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Foreword

I am delighted to write the new foreword for the third edition of Essential
Epidemiology.
This well known, highly respected and engaging book, aimed at the Masters

level in Epidemiology, is a timely evolution from the earlier editions, bringing
in new material and educational approaches (fully described in the authors’
preface).
As someone who has been heavily involved in my own institution’s under-

graduate, masters, and doctoral level research and service training over many
decades, and been external examiner for many other institutions, I see the
value of this book to many international constituencies. The key audience will,
of course, be those involved in Masters studies of Epidemiology, Public Health
and related disciplines. However I would also recommend this book to those
involved in undergraduate teaching of epidemiology, students and teachers,
those in post-Master’s training or practice, as well as those in the biomedical
and social sciences who wish to understand and utilise the perspectives and
principles of epidemiology.
The value of the book is that the authors have based it on many years of

teaching students on the ground and the latest revision and refreshment
ensures that it maintains relevance. Thus this book retains the major content
of the earlier versions, with sound grounding in the core principles and
practice of epidemiology, as well as incorporating new areas. It is vital that
future epidemiological research is relevant to the challenges we face globally.
The book continues to provide this wider perspective, as well as the more
technical approaches that are used when merged with other fields such as
genetics. This new edition also provides on-line further materials (including
expanding on some trickier methodological topics) and full teaching materials
(more on questions and answers, lecture slides), which allow students to
engage in more active learning and teachers to draw on presentations which
they can use and adapt.
As is clear I recommend this book strongly to those in relevant training and

those involved in their education as an up to date, highly accessible and
excellent resource.

Carol Brayne
Professor of Public Health Medicine

University of Cambridge
ix





Preface

This book grew out of our collective experience of teaching introductory
epidemiology both in the classroom and to distance students enrolled in
public health and health studies programmes in the School of Public Health
(formerly the Department of Social and Preventive Medicine and then School
of Population Health), University of Queensland. It began life as a detailed set
of course notes that we wrote because we could not find a single epidemiology
text that covered all of the areas we felt were important in sufficient detail. As
the notes were to be used primarily by distance students, we tried hard to
make them accessible with lots of examples, minimal jargon and equations,
and by engaging readers in ‘doing’ epidemiology along the way. Feedback
from students and colleagues convinced us that the notes were both
approachable and practical and the result is this text, which we offer as a
practical introduction to epidemiology for those who need an understanding
of health data they meet in their everyday working lives, as well as for those
who wish to pursue a career in epidemiology.
The first revision of the text reflected evolution, not revolution. We listened

to the feedback we received from instructors and students and tried to simplify
and clarify some of the trickier bits of the original text while maintaining a very
‘hands-on’ approach. We added new material to reflect contemporary epi-
demiological practice in public health and re-ordered some of the existing
elements to improve the flow and enhance the continuity between chapters.
New and expanded topics included a look at how we measure the burden of
disease, greater discussion of issues relevant to ethics and privacy, appendices
covering life tables and calculation of confidence intervals for common epi-
demiological measures, and a glossary.
This, the third edition, reflects further evolution. With our new co-author

Professor Andrew Page, and inspired by colleagues at a workshop on methods
of teaching modern epidemiology convened by Professors Diana Safarti and
John Lynch at the University of Otago, New Zealand in 2014, we have injected
some more modern approaches to causal thinking, bias and confounding.
These changes are most obvious in Chapter 4 (Study Design), which we have
restructured to show more clearly how each design contrasts with the ‘ideal’
(counterfactual) experiment, Chapters 7 (Bias) and 8 (Confounding), and
Chapter 10 (Causation). A series of constructive reviews from teachers using
the book helped us to identify and correct some faults, convinced us to retain
the infectious disease elements of the text but in a more focussed and practical
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form, and led us to add recommendations for ‘further reading’ for those who
want deeper insights into some of the issues discussed. We have also refined
the final chapter, which now builds on the experience of the earlier material
to consider the role and value of epidemiology in translational research.
Another major enhancement is the greatly expanded website, which provides
the reader with access to additional examples and useful links, many of the
references cited in the book (subject to copyright), additional questions with
comprehensive worked answers and a ‘Test Yourself’ set of interactive mul-
tiple choice questions (and answers) for each of the main content chapters.
For lecturers there are also more detailed sets of teaching slides for each
chapter.

Our overall aims are, however, unchanged. Firstly, to give students a good
understanding of the fundamental principles common to all areas of epidemi-
ology, including the study of both infectious and chronic diseases as well as
public health and clinical epidemiology, and to show the essential role of
epidemiology in a broad range of health monitoring and research activities.
Secondly, and perhaps more importantly, we have endeavoured to do this in a
way that is both approachable and engaging, that minimises mathematical
jargon and complex language without sacrificing accuracy, and that encour-
ages study and stimulates epidemiological thought.

Description

Chapters 2–3

Association

Chapters 4–5

Alternative
explanations

Chapters 6–8

Integration &
interpretation

Chapters 9–11

Practical
applications

Chapters 12–15

As previously, Chapter 1 is a general introduction that both answers the
question ‘what is epidemiology and what can it do?’ and presents the main
concepts that are the focus of the rest of the book. The next chapters are
divided into five separate sections. The first covers the basic principles and
underlying theory of epidemiology in a very ‘hands-on’ way. We start by
looking at how we can measure disease and, new to this edition, the overall
burden of disease in a population (Chapter 2), followed by a look at the role of
descriptive epidemiology in describing health patterns (Chapter 3). We move
on to look at the types of study that we use to identify potential causes of
disease, including an expanded discussion of the potential of record linkage
(Chapter 4) and how we quantify the associations between cause and outcome
(Chapter 5). In the next section we look at the role of chance in epidemiology
(Chapter 6), consider the thorny issues of error and bias (Chapter 7) and give a
practical overview of the problem of confounding (Chapter 8). This leads to
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the third section, where we integrate this information in a practical look at
how we read and interpret epidemiological reports (Chapter 9), think about
assessing causation (Chapter 10), and finally synthesise a mass of information
in to a single review to make practical judgements regarding the likelihood
that a relation is causal (Chapter 11). In the final section we look at some
specific applications of epidemiology, including its role in surveillance (Chap-
ter 12), outbreak control (Chapter 13), prevention – including a discussion of
how we can assess the impact of different preventive interventions on the
health of a population (Chapter 14) and screening (Chapter 15). The greatly
revised Chapter 16 then concludes by reviewing core concepts of the earlier
material to address some of the challenges that face a modern epidemiologist
who desires to improve health through ‘translation’ of research into practice.

Symbols

Throughout the book we have used bold typeface to indicate terms included
in the glossary and the following symbols are used to define key elements
within the text.
We strongly believe that the best way to learn anything is by actually doing it

and so have included questions within the text for those who like to test their
understanding as they go. Because we also know how frustrating it is to have
to search for answers, we have provided these immediately following the
questions for those in a hurry to proceed: The questions at the end of the
chapters also have full worked answers at the end of the book.
We have used numerous real-life examples from all around the world to

illustrate the key points and to provide additional insights in some areas. Extra
examples that provide added interest and complement the main message in
the text are given in boxes featuring this symbol.
Many books present clinical epidemiology as a separate discipline from

public health epidemiology – a distinction that is strengthened by the fact that
clinical epidemiologists have developed their own names for many standard
epidemiological terms. In practice all epidemiology is based on the same
underlying principles, so we have integrated the two approaches throughout
the book but have also highlighted specific examples more relevant to the
clinical situation. (Please note that this book does not offer a comprehensive
coverage of clinical epidemiology; rather, we aim to show the similarity of the
two areas where they overlap.)
We have deliberately tried to keep the main text free of unnecessary detail

and equations, but have included some epidemiological ‘extras’. This material
is not essential to the continuity of the core text but provides some additional
information for those who like to see where things have come from or want a
more detailed perspective.
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New to this third edition, we have identified areas where additional material
is available online; www.cambridge.org/9781107529151. Thismaterial includes
additional reading, links to the papers that we have cited and additional
questions and answers.
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Box 1.1 Epidemiology is …

‘The science of epidemics’ (Concise Oxford Dictionary, 1964)

‘The science of the occurrence of illness’ (Miettinen, 1978)

‘The study of the distribution and determinants of disease in humans’

(MacMahon and Pugh, 1970)

‘The study of the distribution and determinants of health-related states or
events in specified populations, and the application of this study to
control of health problems’ (Porta, 2008)

‘The study of the occurrence and distribution of health-related events,

states and processes in specified populations, including the study of the

determinants influencing such processes, and the application of this

knowledge to control relevant health problems’ (Porta, 2014)
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2 Epidemiology is ... 

So what is epidemiology anyway? As shown in Box 1.1, the Concise Oxford 

Dictionary (1964) defined it accurately, but not very helpfully, as 'the science of 

epidemics'. In 1970, MacMahon and Pugh came up with something a bit more 

concrete: 'the study of the distribution and determinants of disease'. Their 

definition succinctly identifies the two core strands of traditional epidemiology: 

who is developing disease (and where and when), and why are they developing 

it? The next definition, from the 2008 edition of the Dictionary of Epidemiology 

(Porta, 2008), takes things two steps further by broadening the scope to include 

health in general, not just disease, as well as highlighting the essential role of 

epidemiology in translating research findings into health policy and medical 

practice to control disease. The most recent definition (Porta, 2014) elaborates 

further still but, in doing so, loses some of the elegance of the earlier versions. 

Epidemiology, therefore, is about measuring disease or other aspects of 

health, identifying the causes of ill-health and intervening to improve health; 

but what do we mean by 'health'? Back in 948, the World Health 

Organization (WHO, 1948) defined it as '.. a state of physical, mental and 

social well-being'. In practice, what we usually measure is physical health, and 

this focus is reflected in the content of most routine reports of health data and 

in many of the health measures that we will consider here. However, methods 

that attempt to capture the more elusive components of mental and social 

well-being are now emerging. Instead of simply measuring 'life expectancy', 

WHO introduced the concepts of 'health-adjusted life expectancy' (HALE) 

and subsequently 'disability-ad·usted life years' (DALYs) to allow better inter

national comparisons of the effectiveness of health systems. In doing so, they 

recognise that it is not longevity per se that we seek, but a long and healthy 

life. We will discuss these and other measures in more detail in Chapter 2. 

PerhaJ?S egi emiology' s most fundamental role is to provide a logic and 

structure for the analysis of health problems both large and small or, as 

de cribea by Wade Hampton Frost, epidemiology involves the 'orderly 

arrangement of [ established facts] into chains of inference which extend more 

or less beyond the bounds of direct observation' (Frost, 1927). It emphasises 

tHe sound use of numbers - we have to count and we have to think. We have 

to think about what is worth counting and how best to count it, about what is 

practical and, importantly, about how well we (or others) finally measured 

whatever it was we set out to measure, and what it all means. Accurate 

measurement of health is clearly the cornerstone of the discipline, but we 

believe the special value of epidemiology flows from a way of thought that is 

open, alert to the potential for error, willing to consider alternative explan

ations and, finally, constructively critical and pragmatic. 

We offer this book as an aid to such thought. It does not aim to turn you into 

a practising epidemiologist overnight, but will give clear directions if that is 

where you decide to go. Its primary goal is to help you interpret the mass of 



epidemiological literature and the various types of health data that you may
come across. We hope that you will see, by reading and by doing, that the
fundamental concepts and tools of epidemiology are relatively simple,
although the tasks of integrating, synthesising and interpreting health infor-
mation are more challenging. But before we go any further, let us do some
public health epidemiology.

A case of food poisoning

Epidemiology is a bit like detective work in that we try to find out why and how
disease occurs. Our first example illustrates this. After an outbreak of food
poisoning at a youth camp, the local public health unit was called in to identify
the cause (Hook et al., 1996). They first asked everyone at the camp what they
had eaten prior to the outbreak and some results of this investigation are
shown in Table 1.1.
Looking at the numbers in Table 1.1, it is difficult to see which of the foods

might have been responsible for the outbreak. (Note that everyone is recorded
as either having eaten or not eaten each food; and that most people will have
eaten more than one of the foods.) More people became ill after eating potato
fries than after eating cold chicken (184 versus 155) – but then more people ate
the fries (422 versus 202). How then can we best compare the two foods? One
simple way to do this is to calculate the percentage of people who became ill
among those who ate (or did not eat) each type of food. For example, 156 out
of 343 people who ate hot chicken became ill and

156� 343 ¼ 0:45 ¼ 45%

Table 1.1 Numbers of people who became ill after eating various foods at a youth camp.

People who ate the food People who didn’t eat the food

Food Total Number ill Total Number ill

Friday dinner:
Hot chicken 343 156 231 74
Peas 390 175 184 55
Potato fries 422 184 152 46

Saturday lunch:
Cold chicken 202 155 372 75
Salad 385 171 189 59

Saturday dinner:
Fruit salad 324 146 250 84

(Adapted from Hook et al., 1996, with permission from John Wiley and Sons. © 1996
The Public Health Association of Australia Inc.)
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So 45% of people who ate hot chicken became sick. This is known as the
attack rate for hot chicken, i.e. 45% of hot chicken eaters were ‘attacked’ by
food poisoning.

Calculate the attack rates for the other foods. Which food has the highest
attack rate?

Although cold chicken has the highest attack rate (77%), not everyone who
ate it (or, more precisely, who reported eating it) became ill and 20% or one in
five people who did not eat cold chicken still became ill. This is to be expected;
no matter what the cause of concern, it is rare that everyone who is exposed to
it will show the effects (in this case, become ill). What can help here is to work
out how much more likely people who ate a particular food were to become ill
than those who did not eat it. For example, 45% of people who ate hot chicken
became ill, compared with 32% of people who did not eat hot chicken. Hot-
chicken eaters were therefore 1.4 times (45% � 32% ¼ 1.4) more likely to
become ill than people who did not eat hot chicken. This measure gives us the
risk of sickness in hot-chicken eaters relative to non-eaters, hence its name –

relative risk.

Calculate the relative risk of developing food poisoning associated with each of
the other food items. Which food is associated with the highest relative risk of
sickness?

We can now conclude that the food item most likely to have been respon-
sible for the outbreak was the cold chicken – people who ate this were almost
four times as likely to become ill as those who did not. This is quite a strong
relative risk; in comparison, eating any of the other foods was associated with
no more than one and a half times the risk of disease. The relevant data,
including the attack rates and relative risks, are summarised in Table 1.2,
which is much more informative than the raw numbers of Table 1.1.

In identifying the cause of the outbreak you have just solved an epidemi-
ological problem. The ‘attack rates’ and ‘relative risks’ that you used are simple
to calculate and are two very useful epidemiological measures. We will discuss
them further in Chapters 2 and 5 and they will appear throughout the book.

Subdisciplines of epidemiology

The outbreak investigation above is an example of what might be called public
health epidemiology, or infectious disease epidemiology, with the first name
reflecting the broad field of application and the second the nature of both the
aetiological (causal) agent and the disease. It is quite common now to specify
such subfields of epidemiology, which range on the one hand from nutritional
through social to environmental and eco-epidemiology, and on the other from
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cancer to injury or perinatal epidemiology: the former grouping being
exposure-oriented and the latter focused on the particular disease or outcome.
Nonetheless, the core methods and techniques of epidemiology remain
common to all subdisciplines, so the contents of this book are relevant to
all. Setting subspeciality boundaries largely reflects the explosion of know-
ledge in these areas, although some areas do present special challenges. For
example, capturing a person’s usual diet is remarkably challenging and the
subsequent data analysis equally so; epidemiologists coming fresh to the field
of nutritional epidemiology will need to develop experience and expertise in
that specific area. You will meet examples from a wide cross-section of health
research as you read on, and the common threads of logic, study design and
interpretation will, we trust, become apparent.
It is of some interest to know a bit more about a few of the special

epidemiologies. Occupational epidemiology has the longest history of all, with
influential early observations of diseases linked to occupations such as mining
appearing in the sixteenth century, and a systematic treatise on occupational
diseases was published by Ramazzini back in 1700 (Rosen, 1958). Occupa-
tional health research in general, and epidemiology in particular, continue to
contribute to enhancing workplace health today. Seminal contributions in the
field include identification of the pulmonary (lung) hazards of asbestos for
miners and construction workers (Selikoff et al., 1965) and the work practices
that led to an epidemic of a rare fatal cancer in workers in the polyvinyl
chloride industry (Makk et al., 1974). Company records of job tasks can

Table 1.2 Numbers of people who became ill after eating various foods at a youth camp and attack rates and relative risks for
each food.

People who ate the food People who didn’t eat the food

Food Total Number ill Attack rate Total Number ill Attack rate Relative riska

Friday dinner:
Hot chicken 343 156 45% 231 74 32% 1.4
Peas 390 175 45% 184 55 30% 1.5
Potato fries 422 184 44% 152 46 30% 1.4

Saturday lunch:
Cold chicken 202 155 77% 372 75 20% 3.8
Salad 385 171 44% 189 59 31% 1.4

Saturday dinner:
Fruit salad 324 146 45% 250 84 34% 1.3

a Note, relative risks are calculated using the exact percentages and not the rounded values shown.
(Adapted from Hook et al., 1996, with permission from John Wiley and Sons. © 1996 The Public Health Association of
Australia Inc.)

Subdisciplines of epidemiology 5



provide measures of past exposure among employees, allowing researchers to
look back in time and link, for example, past asbestos exposure to subsequent
deaths in the workforce. (This type of study is a historical cohort design – see
Chapter 4. It is only possible when there are good records of both exposure
and outcome, usually death, and for this reason has proved particularly useful
in occupational studies where such records often do exist.)

Far more modern are the subdisciplines of molecular and clinical
epidemiology. The former aims to weld the population perspective of epidemi-
ology with our rapidly increasing understanding of how variations in genes
and their products affect the growth, form and function of cells and tissues. It
thus has the potential to define genetic contributions to disease risk and can
also provide biological markers of some exposures (e.g. changes to DNA
following exposure to tobacco smoke). In contrast, clinical epidemiology
differs from other branches of epidemiology in its focus on enhancing clinical
decisions to benefit individual patients, rather than improving the health of
populations. For this reason, clinical epidemiology is sometimes regarded as a
separate discipline, a view encouraged by the fact that it has developed its own
names for many standard epidemiological measures. The foundations are,
however, identical to those of public health epidemiology and when appropri-
ate we will discuss the two in parallel, highlighting any differences in language
or approach along the way. There is also increasing interest in lifecourse
epidemiology, which attempts to integrate events across the lifetime, often
going right back to conception and sometimes to previous generations, to
understand disease risk.

On epidemics

If we take the word ‘epidemiology’ itself, its origins from ‘epidemic’ are clear. If
we talk about an epidemic we immediately conjure up pictures of an acute
outbreak of infectious disease but, both for practical and for etymological
reasons, it seems reasonable to use the term to describe a notable excess of
any disease over time. Many developed countries could, for example, be
described as undergoing an epidemic of lung cancer over the last few decades
(Figure 1.1). Notably the pattern of lung cancer over time differs for men and
women; rates in men rose sharply between 1950 and 1980 but have been falling
for some years now, while those in women rose later and started to fall more
recently – a consequence of the fact that, as a group, women took up smoking
more recently than men. To describe this excessive occurrence of disease (or
death) as an ‘epidemic’ captures some of the urgency the numbers demand.

The derivation of the word ‘epidemiology’ itself is from the Greek epi, upon,
demos, the people, and logia, study. Literally, therefore, it means the ‘study
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(of what is) upon the people’. Such study suggests a simple set of questions
that have long lain at the heart of epidemiology.

• What disease/condition is present in excess?
• Who is ill?
• Where do they live?
• When did they become ill?
• Why did they become ill?

The first question reflects the need for a sound, common definition of
a disease so that like is compared with like. Epidemiology is all about
comparison – without some reference to what is usual, how can we identify
excess? The next three questions form the mantra of descriptive epidemiology:
‘person, place and time’. As Figure 1.2 shows, an ‘epidemic of premature
mortality’ occurred among young and middle-aged men in Russia in the
mid-1990s and again in the early 2000s. This description captures the essence
of the problem and prompts the next questions: what caused these epidemics?
What changed in the circumstances of younger Russian men to reverse the
pattern of falling mortality in the early 1980s and then cause it to almost
double in less than 10 years? And why did this happen again in the late
1990s? Other data show that there were no such mortality changes in Western
Europe, or among older Russian men or infants, or (to the same extent) in
Russian women. This simple graph captures a public health disaster for Russia
and prompts urgent causal speculation: Why did this happen? Solving and
responding to this final question is critical for public health progress, but there
is clearly no simple solution. In this case, a high proportion of the deaths were
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linked to excess consumption of alcohol during the 1990s: increases in mor-
tality coincided with periods of economic and societal crisis, and rates fell
when the economic situation improved (Zaridze et al., 2009). The earlier
decline during the 1980s coincided with an anti-alcohol campaign involving
higher taxes and reduced production which led to sharp decreases in alcohol
consumption in the short term, and lower rates of alcohol-related mortality
and suicide (Pridemore and Spivak, 2003). This example highlights the
importance of paying close attention to descriptive data that provide a ‘com-
munity diagnosis’ or take the public health ‘pulse’ of a nation. Much can be
gleaned from apparently simple data to give a quite precise description of the
overall health of a population or a more specific health event, as the following
exercise shows.

An historical epidemic

Table 1.3 shows some data that relate to an actual human experience. It tells
you how many people there were in various age, sex and socioeconomic
groups and what percentage of these people died during the ‘epidemic’.
The challenge is to use these data to describe the event systematically in
terms of whom this happened to (we have no data on place or time) and
then to think about the sort of event that might have induced such a
pattern.
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The following questions are designed to help you identify key features of the
data.

1. What is distinctive about this isolated population with regard to:
• the numbers of men and women (sex distribution),
• the numbers of adults and children (age distribution), and
• the numbers in each socioeconomic group (socioeconomic distribution)?

2. What strikes you about the percentage of people who died (the ‘death
rate’)? Is this different for (a) adults and children, (b) men and women,
(c) high and low socioeconomic status (SES) and (d) any particular com-
binations of the above?

3. How many times more likely were:
• men to die than women, and
• those of low SES to die than those of high SES?

4. To what historical event might these data refer?

Table 1.3 displays more complicated data than Table 1.2 because you had to
consider the joint effects of three factors (sex, SES, and age) on mortality. The
sequence of questions above underlines a general principle in describing
such tables – i.e. to look at overall patterns first, then move on to more
detail. We all see things in different ways, but until you develop your own
style the approach shown in Box 1.2 may help you avoid getting lost in the
array of possible relationships. You need first to grasp the size of the whole
group under study and how many died; then check the overall patterns (the
numbers and death rates1) across each ‘exposure’ separately (sex, SES, age).

Table 1.3 An historical event.

Adult males Adult females Children (both sexes) Total population

SESa Total % Dead Total % Dead Total % Dead Total % Dead

High 175 67.4 144 2.8 6 – 325 37.5
Medium 168 91.7 93 14.0 24 – 285 58.6
Low 462 83.8 165 53.9 79 65.8 706 74.8
Other 885 78.3 23 13.0 0 – 908 76.7
Total 1690 80.0 425 25.6 109 47.7 2224 68.0

a SES, socioeconomic status.
(Source: www.anesi.com/titanic.htm, The Titanic casualty figures (and what they mean), accessed 29 April 2015.)

1 As you will see in Chapter 2, these are not technically ‘rates’ in the true sense of the word but

it is convenient to call them rates as they are essentially identical in form to the attack rates in

Table 1.2.
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Box 1.2 An historical event

Things to note about the population include:

• the predominance of adult males (1690 � 2224 ¼ 76%), the much

smaller proportion of adult females (19%), and the very few children;
• the substantial excess of persons of low SES (men and children in

particular); and
• the total population (2224) is quite large – a village, small town, an army

barracks . . . ?

Things to note about the ‘death rates’ include the following.

• The overall death rate is very high – more than two-thirds died.
• Overall, death rates increased with decreasing SES.
• The death rate in men (80.0%) was much higher than that in women

(25.6%); the death rate in children was between these two.
• In men, the death rate was high in all socioeconomic classes, although

those of high SES fared better than the rest; in women, the death rate

was always lower than that for males of equivalent SES, but it increased

strikingly from high to medium to low SES.
• The only children to die were of low SES.

Overall, the relative risk (RR) for men versus women is 80.0 � 25.6 ¼ 3.1

The RR for low versus high SES is 74.8 � 37.5 ¼ 2.0

The RR for women of low SES versus women of high SES is 53.9 �
2.8 ¼ 19.3

The RR for men of low SES versus women of high SES is 83.8 � 2.8 ¼ 29.9

A disaster has occurred, causing a high death rate that predominantly

affected men (of all social classes) and, to a lesser extent, women and

children of low social class. Overall there is a modest benefit of belonging

to a higher social stratum, and among women this protection was

exceptionally strong (a 19-fold higher risk of dying for low versus

high SES).

Such substantial differences in risk reflect powerful preventive effects

and in this instance it was a mix of social custom and the physical

consequences of social stratification. The event was the sinking of the

Titanic, where those of higher SES (the first-class passengers) were

situated on the upper decks and were therefore closer to the lifeboats than

those of medium and low SES (those travelling second and third class,

respectively). The males gallantly helped the females and children into the

lifeboats first. Those of ‘other’ SES were the crew.
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For example, first look at the death rates for all adult males, ignoring their
SES, or for all people of high SES, ignoring their age and sex. Only then
consider the more complex joint effects such as the influence of SES on
mortality among women.
In tackling this and the previous problem you have already done some

serious epidemiology: you have described data, interpreted the patterns you
observed and used epidemiological measures to help do this. We will build on
this throughout the book, but first let’s step back a little and see what other
lessons we can learn from the past.

The beginnings2

The ‘great man’ approach has fallen out of favour in modern historical
practice; however, linking historical events to people adds character so we
will focus on some of the main players in this brief overview of the develop-
ment of population health and epidemiology.
Good epidemiological practice and reasoning started long ago. Perhaps the

first proto-epidemiologist (proto because he did not actually count anything)
was Hippocrates of Cos (460–375 BC), who recognised that both environmen-
tal and behavioural factors could affect health (see Box 1.3).
The Dark Ages and Middle Ages (AD 500–1500) have little to say to us, other

than in the development of causal reasoning, which we will set aside until later
in the book (Chapter 10). The introduction of more quantitative methods into
epidemiology and, in fact, into biology and medicine in general, has been
attributed to John Graunt (1620–1674), a haberdasher and early Fellow of the
Royal Society in London who published his Natural and Political Observations
Mentioned in a Following Index and Made Upon the Bills of Mortality in 1662
(Graunt, 1662). He studied parish christening registers and the ‘Bills of Mor-
tality’, and noted many features of birth and death data, including the higher
numbers of both male births and deaths in comparison with females, the high
rates of infant mortality and seasonal variations in mortality. He also provided
a numerical account of the impact of the plague in London and made the first
attempts to estimate the size of the population. In an attempt to define a ‘law
of mortality’ he constructed the first life-table (Table 1.4). This summarised
the health of a population in terms of the chance of an individual surviving to a
particular age. Notice that at this time only three out of every hundred people
reached the age of 66, and the majority of deaths occurred in early life. This
technique was a forerunner of that used by life insurance companies for

2 The material in this section is drawn from a mix of primary and secondary sources, with the

latter including a number of texts, most helpful being those of Stolley and Lasky (1995) and

Lilienfeld and Lilienfeld (1980).
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calculating insurance premiums today, as well as a fundamental approach to
measuring a population’s health. As you will see, when we come back to
consider life-tables in more detail in Chapter 2 (see also Appendix 5 for details
of how to construct a life-table), things have improved considerably since

Table 1.4 An historical example of a life-table.

Exact age (years) Deaths Survivors
Chance of living
to that age (%)

0 – 100
6 36 64 64
16 24 40 40
26 15 25 25
36 9 16 16
46 6 10 10
56 4 6 6
66 3 3 3
76 2 1 1
86 1 0

(Adapted from Graunt, 1662.)

Box 1.3 On airs, waters and places

Whoever wishes to investigate medicine properly, should proceed thus:

in the first place to consider the seasons of the year, and what effects each

of them produces . . . Then the winds, the hot and the cold, especially such

as are common to all countries, and then such as are peculiar to each

locality. We must also consider the qualities of the waters . . . In the same

manner, when one comes into a city to which he is a stranger, he ought

to consider its situation, how it lies as to the winds and the rising of the sun;

for its influence is not the same whether it lies to the north or the south,

to the rising or to the setting sun. These things one ought to consider most

attentively, and concerning the waters which the inhabitants use, whether

they be marshy and soft, or hard, and running from elevated and rocky

situations, and then if saltish and unfit for cooking; and the ground,

whether it be naked and deficient in water, or wooded and well watered,

and whether it lies in a hollow, confined situation, or is elevated and cold;

and the mode in which the inhabitants live, and what are their pursuits,

whether they are fond of drinking and eating to excess, and given to

indolence, or are fond of exercise and labour . . .

(Extracted from Hippocrates of Cos, 400 BC.)
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Graunt’s time, with about 85 of every 100 men and 90 of every 100 women
now making it to the age of 66 in developed countries.
During the nineteenth century, the collection and use of health statistics for

what we now call ‘descriptive epidemiology’ continued to develop in England
and also, briefly, in France. Of particular influence as a teacher was Pierre
Charles-Alexandre Louis (1787–1872), who conducted some of the earliest
epidemiological studies of treatment effectiveness when he demonstrated that
bloodletting did not aid recovery from disease. Among his students was Wil-
liam Farr (1807–1883), physician, statistician and director of the Office of the
Registrar General for England and Wales from 1837, its second year of oper-
ation. Farr studied levels of mortality in different occupations and institutions
and in married and single persons, as well as other facets of the distribution of
disease. He published these and other findings in the Annual Reports of the
Registrar General, and the present UK system of vital statistics stems directly
from his work.
John Snow (1813–1858), a physician and contemporary of Farr, was better

known at the time for giving chloroform to Queen Victoria during
childbirth, but is now remembered for his pioneering work in elucidating
the mode of transmission of cholera (Snow, 1855). This remains a classic
and exciting example of epidemiological detection and some of Snow’s
personal account of it is given below and again later in the chapter. His
initial observations were based on a series of reports of individual cases of
cholera and, in every instance, he was able to link the case to contact with
another infected person (or their goods), thereby demonstrating that the
disease could spread from person to person. He then surmised, contrary to
popular belief at the time, that cholera could be transmitted through
polluted water, a view that was strengthened by his observations linking a
terrible outbreak of cholera around Broad Street, London, in 1854, to the
local water pump (Box 1.4).
Snow went to a lot of trouble to explain why some people developed cholera

when they were believed not to have drunk the water from the Broad Street
pump. He attributed these cases to the use of water from the pump in the local
public houses, dining rooms and coffee shops. He was also able to explain why
some groups of people did not develop cholera even though they lived in the
affected area. If these low-risk groups (brewery workers, workhouse dwellers)
had been users of the nearby Broad Street pump, Snow’s hypothesis would
have been in tatters. His findings among the ‘exceptions’ of both sorts thus
bolster his arguments considerably: for the most part he found convincing
explanations for why some people apparently at risk did not fall ill, and so too
for the small group not living near the pump who did contract cholera. His
openness to collecting all the facts, not just those that obviously supported his
contention, is a salutary reminder of what constitutes good science – and that

More about some key

figures

More about John Snow
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Box 1.4 John Snow and the Broad Street pump (1854)

Within two hundred and fifty yards of the spot where Cambridge Street

joins Broad Street, there were upwards of five hundred fatal attacks of

cholera in ten days . . . The mortality would undoubtedly have been much

greater had it not been for the flight of the population . . . so that in less

than six days from the commencement of the outbreak, the most afflicted

streets were deserted by more than three-quarters of their inhabitants.

There were a few cases of cholera in the neighbourhood of Broad Street,

Golden Square, in the latter part of August; and the so-called outbreak,

which commenced in the night between the 31st of August and the 1st of

September, was, as in all similar instances, only a violent increase of the

malady. As soon as I became acquainted with the situation and extent of

this eruption of cholera, I suspected some contamination of the water of the

much-frequented street-pump in Broad Street . . . but on examining the

water . . . I found so little impurity in it of an organic nature, that I hesitated

to come to a conclusion. Further inquiry, however, showed me that there

was no other circumstance or agent common to the circumscribed locality

in which this sudden increase of cholera occurred, and not extending

beyond it, except the water of the above mentioned pump.

On proceeding to the spot, I found that nearly all the deaths had taken

place within a short distance of the pump. There were only ten deaths

in houses situated decidedly nearer to another street pump. In five of these

cases the families of the deceased persons informed me that they always

sent to the pump in Broad Street, as they preferred the water to that of the

pump which was nearer. In three other cases, the deceased were children

who went to school near the pump in Broad Street. Two of them were

known to drink the water; and the parents of the third think it probable

that it did so. The other two deaths, beyond the district which this pump

supplies, represent only the amount of mortality from cholera that was

occurring before the irruption took place . . . [Snow used a spot map to

show the spread of cases in relation to this and other pumps.] I had an

interview with the Board of Guardians of St James’s parish, on the evening

of Thursday, 7th September, and represented the above circumstances to

them. In consequence of what I said, the handle of the pump was removed

on the following day.

Snow was also able to explain why some groups of people within the

area did not develop cholera:
The Workhouse in Poland Street is more than three-fourths surrounded

by houses in which deaths from cholera occurred, yet out of five

(continued)
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effective public health action requires realistic information about the problem
at hand.
In addition to mapping the distribution of cases by place, Snow tabulated

the numbers of cases and deaths over time. His time data are displayed
graphically showing what is called an ‘epidemic curve’ in Figure 1.3.

When did the epidemic start? When did it end? What role did Snow’s dramatic
removal of the pump handle on 8 September play in interrupting its course?

The epidemic curve shows that the rise above the preceding baseline began
on 30 August, with a dramatic increase over the next two days. And although the
fall from the peak starts shortly thereafter, case numbers are still high for the
next few days, not getting close to the preceding baseline until two weeks from
the commencement. The epidemic had waned substantially before Snow’s
intervention on 8 September, probably largely due to the flight of much of the
populace. However, because the graph shows the total number of cases occur-
ring and does not take into account the size of the population, the rate of disease
(the number of new cases occurring among the smaller number of people

Box 1.4 (continued)

hundred and thirty-five inmates, only five died of cholera, . . . The

workhouse has a pump well on the premises, . . . and the inmates never

sent to Broad Street for water. If the mortality in the workhouse had been

equal to that in the streets immediately surrounding it on three sides,

upwards of one hundred persons would have died. [Note Snow’s
comparison of the ‘observed’ number of cases with the number ‘expected’.]

There is a Brewery in Broad Street, near to the pump, and on perceiving

that no brewery men were registered as having died of cholera, I called on

Mr Huggins, the proprietor. He informed me that there were above seventy

workmen employed in the brewery, and that none of them had suffered

from cholera . . . The men are allowed a certain quantity of malt liquor, and

Mr Huggins believes they do not drink water at all . . .

The limited district in which this outbreak of cholera occurred, contains

a great variety in the quality of the streets and houses; Poland Street and

Great Pulteney Street consisting in a great measure of private houses

occupied by one family, whilst Husband Street and Peter Street are

occupied by the poor Irish. The remaining streets are intermediate in point

of respectability. The mortality appears to have fallen pretty equally

amongst all classes, in proportion to their number.

(Extracted from Snow, 1855.)
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remaining in the area) could still have been fairly high. Snow’s action may
therefore truly have contributed to containment of the outbreak.

The second half of the nineteenth century saw the expansion of epidemi-
ology in the direct service of public health in the UK, with a similar trend in the
USA starting early the next century. Infectious diseases remained the core
interest until the early 1900s, when Joseph Goldberger, a Hungarian physician
working in the US Public Health Service, showed that pellagra was not infec-
tious but of dietary origin and Wade Hampton Frost, another pioneer in the
field, articulated the value of non-experimental epidemiology in discovering
disease origins. Then in 1950, the publication of two case–control studies of
lung cancer, by Richard Doll (epidemiologist) and Austin Bradford Hill (stat-
istician) in the UK and Ernest Wynder (medical student) and Evart Graham
(surgeon) in the USA, publicly marked the start of modern epidemiology.

Both papers (Doll and Hill, 1950; Wynder and Graham, 1950) showed that
patients with lung cancer (cases) tended to smoke much more than people
without lung cancer (controls). Doll and Hill then set out to confirm their
findings using a different, prospective design (a cohort study, we will discuss
the different types of study further in Chapter 4). They wrote to a large number
of British doctors to find out how much they smoked and then ‘followed’ them
(by mail and death records) over subsequent years to see what they died from.
They again showed quite clearly that those who smoked cigarettes were much
more likely to die of lung cancer than those who did not smoke, and the more
they smoked the higher their risk (Figure 1.4). What is now known as the
‘British Doctors Study’ ran for more than 50 years (Doll et al., 2004).
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Pellagra, a disease that was
common in poorer areas, is
characterised by diarrhoea,
dermatitis, dementia and
ultimately death.
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Unfortunately, in spite of this and other clear evidence of the harmful effects of
smoking, it was many years before attempts to discourage people from
smoking were made, and it is only recently that tobacco companies have
begun to admit that their products cause disease.
Twenty years after those key case–control studies came the publication of

one of the first comprehensive epidemiology textbooks (MacMahon and Pugh,
1970). Widely influential at the time, it remains a benchmark for successors.

What does epidemiology offer?

You will have discerned parts of the answer to this question from what you
have already read and done in reaching this point. Here we review the various
elements more fully, and in doing so, effectively map the content of the rest of
the book. This section outlines the broad purposes of epidemiology (which
might be summarised as ‘description’, ‘causal inference’ and ‘application’)
and the next aims to illustrate these through some concrete examples.
A large part of public health is about monitoring the health of a community,

identifying health problems (who is becoming ill, where and when?), identify-
ing what is causing the problems and then testing possible solutions to resolve
or reduce the problem. Epidemiology is fundamental in providing the data
needed to make public health judgements in each of these areas and the data
come from studies of ‘populations’ (groups of people) of all sorts and sizes.
Epidemiology largely deals with descriptions and comparisons of groups of
people who may vary widely in their genetic make-up, behaviour and environ-
ments. The great challenge for epidemiologists is to deal with these multiple
influences on health in a systematic and logical way in order to produce
information of practical value to improve a community’s health. How this
challenge is met is what this book is all about.
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Description of health status of populations

The observation and recording of health status makes it possible to identify
sudden (and not-so-sudden) changes in the level of disease over time that
might point to a need for action or further investigation. It also allows the
setting of health targets, for example theMillennium Development Goals set by
the United Nations (we will come back to discuss these in Chapter 2), and is
essential to monitor progress towards these targets. Differences between
groups of people in one area, between different geographical areas or at
different time periods, can also give clues regarding the causes of disease (or
health) in those groups. Such descriptive statistics are also important for health
authorities and planners who need to know the nature and size of the health
challenges faced by their communities.

Causation

Once a problem has been identified, we need to know what causes it, and
probably the best-recognised use of epidemiology is in the search for the
causes of disease. In some cases strong genetic factors have been identified,
as for example with cystic fibrosis, a lung disease that occurs because of
specific genetic defects. In other instances major environmental factors are
crucial, such as asbestos in the development of lung mesothelioma (a rare
form of lung cancer). In general, though, there is almost always some inter-
action between genetic and environmental factors in the causation of disease.
Epidemiological tools are central to the identification of modifiable factors that
will allow preventive interventions.

Evaluation of interventions

Once we have identified a factor that causes disease, we then want to know
whether we can reduce a population’s exposure to this factor and so prevent
the occurrence of disease – a ‘primary’ prevention programme (we will discuss
prevention further in Chapter 14). As you will see in Chapter 4, epidemiology
has a core role to play in this process and it is also key to the evaluation of
different treatments for a particular disease (an aspect of both mainstream and
clinical epidemiology) and assessments of the effectiveness of health services
and policies.

Natural history and prognosis

Epidemiologists are also concerned with the course or natural history of a
disease and the likely outcome or prognosis, both in individuals and in groups.
Such knowledge has obvious value for discussing treatment options with

In epidemiology and public
health there is sometimes
confusion over what is meant
by environmental factors.
We, and most others, use this
term to include all non-
genetic factors, including
psychological, behavioural,
social and cultural traits, as
well as obvious environmental
exposures such as air
pollution.
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individual patients, as well as for planning and evaluating interventions. Of
particular interest is whether early disease is present for long before symptoms
drive someone to seekmedical attention. If it is and this ‘subclinical’ disease can
be detected before the normal point of diagnosis and if, as a result, treatment is
more effective, this opens the way for screening programmes that aim to
improve treatment outcomes. (Wewill discuss screening further in Chapter 15.)

What do epidemiologists do?

How then are these objectives of epidemiological research attained? Let us
look briefly at some more examples of what the practice of epidemiology can
yield across some of its main dimensions.

Descriptive studies: person, place and time

By ‘person’
In some countries there is concern over health differences between indigen-
ous people and the rest of the population. Figure 1.5 shows Australian mor-
tality data comparing Indigenous with non-Indigenous people. The bars show
how many times higher mortality from circulatory, respiratory and infectious
diseases and cancer is in Indigenous men and women in Australia compared
to non-Indigenous Australians (the horizontal line at the level ‘1’ indicates the
point where mortality rates in Indigenous and non-Indigenous people would
be equal).
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Figure 1.5 Age-standardised
mortality ratios for selected diseases in
the Indigenous compared to the non-
Indigenous population in Australia,
2004–2008 (drawn from: AIHW, 2011).
The bars indicate how much higher
mortality was among Indigenous men
(open bars) and women (solid bars)
compared to non-Indigenous people.
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How many times higher is mortality from circulatory diseases in Indigenous
males than in non-Indigenous males?

What is the obvious striking fact about relative mortality in Indigenous people
in general?

Mortality for circulatory diseases in Indigenous men is more than three
times that in non-Indigenous men, while for women it is almost double that in
non-Indigenous women. The data presented indicate a much worse health
situation for Indigenous Australians than for the non-Indigenous population.
(Note: these standardised mortality ratios are similar to the relative risk in
the food poisoning example earlier. They show how many times more likely it
was for an Indigenous Australian to die than a non-Indigenous Australian in
2004–2008. The process of standardisation also takes account of the fact that
Indigenous Australians are, on average, younger than non-Indigenous people.
We will discuss these measures further in Chapter 2.)

By ‘place’
How ‘healthy’ is any given country in relation to the rest of the world – are
things better or worse there compared with other countries? Figure 1.6 shows
cardiovascular disease mortality rates in different countries. You can see that
the UK, for example, is better off than Ireland, New Zealand, and particularly
Finland and Hungary; but things could be better – as shown by the lower rates
in the Netherlands, Portugal, France and Japan. What is it about the Japanese
that makes them less likely to die of cardiovascular disease? If we can work this
out then perhaps we could reduce cardiovascular mortality in the UK and
elsewhere to the level seen in Japan (provided that the differences are not
purely genetic). By studying patterns of disease and relating them to variations
in risk factors for the disease we can come up with possible reasons why some
people or places have higher rates of disease than others or why disease rates
have changed over time.

By ‘time’
What emerges if we look at the changing patterns of mortality in a country
over time? The graph in Figure 1.7 shows mortality trends for selected condi-
tions and groups over more than three decades (1979–2013) in the USA.

What are the most notable features of Figure 1.7?

The picture we see is mixed, some good news, some concerning. The most
obvious health success story is the consistent downward trend in deaths from
heart attacks, with about 100 fewer people in every 100,000 dying from them at
the end of the period. A less dramatic decline is seen for motor vehicle
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accidents. Deaths from AIDS rose until 1995 and have fallen since (an epi-
demic where perhaps the worst is past, at least for the USA). The same is true
for lung cancer in men, although on this scale it is not striking. Most worrying
was the steady rise in lung cancer deaths among women, although this has
now levelled off.
However, these details don’t give us the big picture. Some up, some down,

some changing direction: what was happening to overall mortality in the USA
during the period? Total mortality rates fell slightly from about 880 to 810 per
100,000 per year, but we would not be able to fit this information onto the
same graph without losing almost all the details we noted above. We could, of
course, draw a separate graph showing the total death rate, but we can do both
by changing the scale of the vertical axis, as in Figure 1.8.
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Figure 1.6 Ischaemic heart disease
mortality for males and females in
2011, age standardised to the
2010 OECD population. (Drawn from:
OECD, 2013.)
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Instead of a linear scale (1, 2, 3, 4, . . .), we have now used a ‘log’ (logarith-
mic) scale (1, 10, 100, 1000, . . .) where the distance between 1 and 10 (a 10-
fold difference) is the same as the distance between 10 and 100 (also a 10-fold
difference), and so on. Now we can fit mortality rates as different as 2.2/
100,000 (AIDS mortality in 2013) and 878/100,000 (all-cause mortality in
1980) on the same page. It also allows us to compare relative changes in
mortality rates directly, with parallel slopes reflecting equal rates of change.
The fall in heart attacks looks much less dramatic now: the drop is only about
2%–3% per year but, as Figure 1.7 showed, this led to a large absolute benefit,
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Figure 1.7 US mortality rates,
1979–2013, for heart attack (open
diamonds), lung cancer in males (filled
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(drawn from: CDC Wonder (CDC),
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because the death rate was so high to start with. The rate of change for AIDS
looks much steeper on a log scale because the percentage change is greater,
but the absolute benefits are clearly much less. In public health we need to
think on both relative and absolute scales: they tell us different things that are
useful for different purposes. We will take this further in Chapter 5.
See Box 1.5 for a practical example of how simple descriptive epidemiology

helped solve a major global health problem.

Analytic studies

Descriptive work like this may generate ideas about what is causing disease
which can then be tested further in analytic studies, looking for associations
between potential causal agents and diseases. This research is based on facts
collected directly from groups of individuals, not large-scale population statis-
tics. Are people with higher blood pressure more likely to develop coronary
heart disease than those with normal blood pressure? Are people who smoke
more likely to develop lung cancer than those who do not? Even more
usefully, how much more likely is a smoker to develop lung cancer than a
non-smoker? Does risk depend on the number of cigarettes smoked? That is,
how strong is the effect of the exposure, and does it increase with higher levels
of exposure? In the British Doctors Study mentioned earlier, Doll and Hill
found that the risk of lung cancer increased steadily as people smoked more
cigarettes (Figure 1.4). This adds weight to the idea that smoking cigarettes
really does affect the chance that an individual will develop lung cancer.
Box 1.6 describes another cohort study which has studied many exposures
and diseases over the past three decades.

Box 1.5 Smallpox

The elimination of smallpox had a major impact on the health of millions

of people, especially in many of the poorest countries. Descriptive

epidemiology played a major role by providing information about the

distribution of cases (jointly by person, place and time) and levels of

transmission, by mapping outbreaks and by evaluating control measures.

In 1967, there were 10–15 million new cases and 2 million deaths from

smallpox in 31 countries. By 1976, smallpox was being reported in only two

countries and the last naturally occurring case was recorded in 1977.

Elimination of this scourge was helped by simple but painstaking

case-finding and counting (‘shoe-leather’ epidemiology) and by directing

vaccination programmes to places and people still at risk.

The term shoe-leather
epidemiology is sometimes
used when the epidemiologist
travels around to interview
people (presumably wearing
out their shoes in the
process). It can be a critical
aspect of public health
epidemiology and could also
be used to describe John
Snow’s work.
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Once we have found an association, the challenge is then to evaluate this in
order to determine whether something really causes disease or is linked to it
only secondarily. If we find that people with a peptic ulcer drink a lot of milk,
does this mean that drinking milk causes ulcers, or simply that people with an
ulcer drink milk to ease their pain? This latter situation is sometimes described
as reverse causality. We will look more deeply at this challenge in Chapter 10.

Intervention studies

Finally, epidemiologists test new preventive measures, programmes or treat-
ments to see if they actually do reduce ill health or promote good health. They
also evaluate the effectiveness of these ‘intervention’ programmes after they
have been implemented: do they deliver the benefits seen in the initial
studies? Interventions can include different health-promotion strategies
targeted at individuals or whole communities, or clinical trials of new drugs
designed to prevent or cure disease. Does taking aspirin reduce your chance of
having a heart attack? Which of several strategies is better at helping people
give up smoking? Is one drug better than another for treating bronchitis?

A natural experiment

We will end this chapter with another example from John Snow’s On the Mode
of Communication of Cholera (1855) because, although this text is more than

Box 1.6 The Nurses’ Health Study

This cohort study of 120,000 US nurses was started in 1976 by Frank Speizer

of the Channing Laboratory, HarvardMedical School. The study was initially

funded for five years to study whether the oral contraceptive pill caused

breast cancer, but the nurses are still being followed 40 years later. Hundreds

of scientific papers have been published, covering scores of diseases and

exposures and investigating their inter-relationships. The study has been

particularly influential in the field of diet and disease (nutritional

epidemiology), owing to diet questionnaires that the nurses have been

completing since 1980. As with other long-term follow-ups of cohorts, such

as the British Doctors Study of Doll and Hill, its success is jointly dependent

on the enthusiasm and commitment of researchers and participants. For the

latter this has extended to providing blood, toenail clippings (for

measurement of trace metals) and samples of tapwater over the years. This

human side to epidemiology does not feature much in textbooks, but is

fundamental to successful fieldwork. (www.nurseshealthstudy.org)
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150 years old, the methods he used and his combination of flair, skill, logic
and dogged persistence remain the cornerstones of modern epidemiology. His
work also exemplifies, in more detail than modern papers, the logical dissec-
tion of evidence about disease patterns to identify practical preventive strat-
egies – which is still the key function of epidemiology – and it gives an
excellent sense of the role and utility of epidemiology in practical public
health.
In the early 1850s, London was cholera-free for a number of years and

during that period one of the major water supply companies (the Lambeth
Company) moved their waterworks out of London, thereby obtaining water
free of the sewage of the city. During the next major cholera outbreak in
1853–1854, Snow was able to obtain information about the number of deaths
occurring in the different subdistricts of London and he found that cholera
mortality was lower in areas supplied by water from the Lambeth Company
than in those supplied by the Southwark and Vauxhall water company which
continued to take water from Battersea in the city. He did not stop there, but
went on to conduct his ‘Grand Experiment’ (see Box 1.7).

Box 1.7 A grand experiment

Although the facts . . . afford very strong evidence of the powerful influence

which the drinking water containing the sewage of a town exerts over the

spread of cholera, when that disease is present, yet the question does not

end here; for the intermixing of the water supply of the Southwark and

Vauxhall Company with that of the Lambeth Company, over an extensive

part of London, admitted of the subject being sifted in such a way as to

yield the most incontrovertible proof on one side or the other . . . A few

houses are supplied by one Company and a few by the other, according to

the decision of the owner or occupier at that time when the Water

Companies were in active competition . . . Each Company supplies both

rich and poor, both large houses and small; there is no difference either in

the condition or occupation of the persons receiving the water of the

different Companies. Now it must be evident that, if the diminution of

cholera, in the districts partly supplied with the improved water, depended

on this supply, the houses receiving it would be the houses enjoying the

whole benefit of the diminution of the malady, whilst the houses supplied

with the water from Battersea Fields would suffer the same mortality as

they would if the improved supply did not exist at all. As there is no

difference whatever, either in the houses or the people receiving the

supply of the two water Companies, or in any of the physical conditions

(continued)
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Box 1.7 (continued)

with which they are surrounded, it is obvious that no experiment could

have been devised which would more thoroughly test the effect of

water supply on the progress of cholera than this which circumstances

placed ready made before the observer.

The experiment, too, was on the grandest scale. No fewer than three

hundred thousand people of both sexes, of every age and occupation, and

of every rank and station, from gentlefolk down to the very poor, were

divided into two groups without their choice, and, in most cases, without

their knowledge; one group being supplied with water containing the

sewage of London, and amongst it, whatever might have come from the

cholera patients, the other group having water quite free from such

impurity.

To turn this grand experiment to account, all that was required was

to learn the supply of water to each individual house where a fatal attack of

cholera might occur . . .

The Epidemic of 1854

When the cholera returned to London in July of the present year . . .

I resolved to spare no exertion . . . to ascertain the exact effect of the water

supply on the progress of the epidemic, in the places where all the

circumstances were so happily adapted for the inquiry . . . I accordingly

asked permission at the General Register Office to be supplied with the

addresses of persons dying of cholera, in those districts where the supply

of the two Companies is intermingled in the manner I have stated

above . . . I commenced my inquiry about the middle of August with two

sub-districts of Lambeth . . . There were forty-four deaths in these sub-

districts down to 12th August, and I found that thirty-eight of the houses in

which these deaths occurred were supplied with water by the Southwark

and Vauxhall Company, four houses were supplied by the Lambeth

Company, and two had pump-wells on the premises and no supply from

either of the Companies.

As soon as I had ascertained these particulars, I communicated them to

Dr Farr, who was much struck with the result, and at his suggestion the

Registrars of all the south districts of London were requested to make a

return of the water supply of the house in which the attack took place, in

all cases of death from cholera. This order was to take place after the 26th

of August, and I resolved to carry my inquiry down to that date, so that the

facts might be ascertained for the whole course of the epidemic.

(continued)
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Conclusions

Again, we have a vivid picture of a master epidemiologist at work. Not satisfied
that his hypothesis had been adequately tested, Snow identified the opportunity
to conduct an evenmore rigorous test – his ‘Grand Experiment’ – and in doing so
he addressed the major epidemiological issues that still concern us today.

• He identified a situation in which people were unknowingly divided into two
groups differing only in the source of their water, thereby creating what was
effectively a randomised trial (we will look at the different types of epidemi-
ological study in Chapter 4).

• In doing so, he realised the importance of ruling out other differences
between the groups (e.g. sex, age, occupation, SES) that could explain any

Box 1.7 (continued)

The inquiry was necessarily attended with a good deal of trouble. There

were very few instances in which I could at once get the information

I required. Even when the water rates were paid by the residents, they can

seldom remember the name of the Water Company till they have looked

for the receipt. In the case of working people who pay weekly rents, the

rates are invariably paid by the landlord or his agent, who often lives at a

distance, and the residents know nothing about the matter. It would,

indeed, have been almost impossible for me to complete the inquiry, if

I had not found that I could distinguish the water of the two companies

with perfect certainty by a chemical test. The test I employed was founded

on the great difference in the quantity of chloride sodium [salt] contained

in the two kinds of water, at the time I made the inquiry . . .

According to a return which was made to Parliament, the Southwark

and Vauxhall Company supplied 40,046 houses from January 1st to

December 31st, 1853, and the Lambeth Company supplied 26,107 houses

during the same period; consequently, as 286 fatal attacks of cholera took

place, in the first four weeks of the epidemic, in houses supplied by the

former Company, and only 14 in houses supplied by the latter, the

proportion of fatal attacks to each 10,000 houses was as follows. Southwark

and Vauxhall 71, Lambeth 5. The cholera was therefore fourteen times
as fatal at this period amongst persons having the impure water of
the Southwark and Vauxhall Company as amongst those having the
purer water from Thames Ditton.

(Excerpted from Snow, 1855.)
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mortality differences (a problem known as confounding that we will come
back to in Chapter 8).

• He worked long and hard to acquire accurate information about both the
water supply and the number of cholera deaths in each house – we will
consider sources of data in Chapter 3 and will discuss the problem of error
in Chapter 7.

• He measured the rates of occurrence of cholera in the two groups of houses
served by the different water companies – we will look further at measures
such as these in Chapter 2.

• He calculated how many times more common cholera deaths were in those
houses receiving the contaminated water – we will come back to this
measure (again a relative risk) in Chapter 5.

• He then integrated all of his information to reach the conclusion that
cholera was indeed caused by contaminated water – Chapter 10.

He did not stop there, but went on to make a series of clear practical recom-
mendations to prevent transmission of cholera in future – sensible measures
including the need for cleanliness and sterilisation that are still
practised today.

Snow’s work therefore sets the scene for the chapters to come. Chapters 2–8
cover the basic principles and underlying theory of epidemiology in a very
‘hands-on’ way, leading to Chapters 9–11, which integrate this information in
a practical look at how we read and interpret epidemiological reports, synthe-
sise a mass of information in a single review and, finally, think about assessing
causality. Chapters 12–15 then look at some specific applications of epidemi-
ology and Chapter 16 concludes with a fresh look at epidemiology and how we
can use it to help address the health concerns facing the world today.

But, before you move on, take a minute to stop and think. Imagine that
someone asked you what epidemiology was and why it was useful. Could you
now give them a satisfactory explanation in a few sentences?
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32 Measuring disease frequency 

Box 2.1 Who drinks the most beer? 

According to the Brewers Association of Japan, the Chinese drink the 

most beer in the world (44,201 million litres in 2012, up from 28,640 in 

2004) followed by the Americans (24,186 million litres). In contrast, the 

Czech Republic ranked a lowly 21st in terms of total consumption (1905 

million litres) and Ireland didn't even make the top 25. This information 

may be useful for planning production, but do the Chinese and 

Americans really drink more beer than the rest of us? An alternative and 

possibly more informative way to look at these data is in terms of 

consumption per capita. When we do this, the USA falls to 14th position 

in the 'beer drinking league table' (77 litres per capita) and China falls 

way off the screen (a mere 33 litres per capita}. The Czechs are now the 

champions (149 litres per capita}, followed by; A stri (208 litres) and 

Germany ( 106 litres) in 2nd and 3rd place and Ireland comes in 6th place 

(98 litres per capita). While Australia he d the 4th spot in 2004 with an 

average of llO litres per capita, by 20 2 tlie}_'. had fallen to 11th on the 

table (83 litres). 

glish/news/2014/0108_01.html, 

accessed 2 May 2015.) 

The goal of public healtli is to improve the overall health of a population by 

reducing the burden of disease and premature death. To do this we need to be 

able to qua tify the evels of ill-health or disease in a population in order to 

monitor progress towards eliminating existing problems and to identify 

the emergencre of new problems. Many different measures are used by 

researchers and policy makers to describe the health of populations. You have 

already met some of these for example the attack rate, which was used to 

investigate the source of the food poisoning outbreak in the previous chapter. 

In this chapter we will introduce some more of the most commonly used 

measures so that you can use and interpret them correctly. We will first 

discuss the three fundamental measures that underlie both the attack rate 

and most of the other health statistics that you will come across in health

related reports, the incidence rate, incidence proportion (also called risk or 

cumulative incidence) and prevalence, and will then look at how they are 

calculated and used in practice. We will finish by considering some other 

more elaborate measures that attempt to get closer to describing the overall 

health of a population. As you will see, this is not always as straightforward as 

it might seem. 

http://www.kirinholdings.co.jp/english/news/2014/0108_01.html


What are we measuring?

Before we can start to measure disease, we have to have a very clear idea
of what it is that we are trying to determine. In general, the diagnosis of
disease is based on a combination of symptoms, subjective indications
of disease reported by the person themselves; signs, objective indications of
disease apparent to the physician; and additional tests. Criteria for making a
diagnosis can be very simple: the presence of antibodies against an infectious
agent can indicate infection, and diagnosis of most cancers is fairly straight-
forward on the basis of tissue histology (examination with a light microscope);
but for some diseases, particularly mental health conditions such as depres-
sion, the diagnostic criteria are much more complex, involving combinations
of signs and symptoms.
For health data to be meaningful, diagnostic criteria leading to a case

definition have to be clear, unambiguous and easy to use under a wide range
of circumstances. It is important to remember that different case definitions
can lead to very different pictures. As shown in Figure 2.1, a study in the
United Arab Emirates showed that the prevalence of gestational diabetes
(diabetes during pregnancy) in a group of 3500 women was much higher
using one set of criteria to diagnose diabetes (Carpenter’s criteria, 30.4%) than
another (O’Sullivan’s criteria, 20.2%) (Agarwal and Punnose, 2002). Such
differences obviously have major implications for health care planners.
If you want to compare information from different reports the first thing to

From www.CartoonStock.com
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check is that you are comparing apples with apples – have they all measured
the same thing using the same criteria? This can be a particular problem when
trying to compare patterns of disease over time because changes in diagnostic
criteria can lead to sudden increases or decreases in the number of cases
recorded, and you will see a dramatic example of this in Chapter 3. It is also
important to consider how good the measurements are, and we will look at
this and the implications of poor measurement in more detail in Chapter 7.
For the rest of this chapter, however, we will assume that we know what we
want to measure and that we can measure it accurately.

The concepts: prevalence and incidence

Once we have defined what we mean by disease,1 we can go on to measure
how often it occurs.

In Table 2.1 we see the estimated number of people infected with HIV in
the various regions of the world at the end of 2012, and the number of new
cases of HIV infection that occurred during 2012. These data clearly show the
huge burden borne by Sub-Saharan Africa, which has six times the number
of cases of any other region, but what can they tell us about the relative
importance of HIV in other regions? The East Asia and Western/Central
Europe regions both had almost 900,000 people infected with HIV at the
end of 2012. How can we describe and compare the burden of HIV in these
populations more fully?

What percentage of people in Western and Central Europe were living with
HIV at the end of 2012?
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Figure 2.1 Percent of population
with gestational diabetes according to
two sets of diagnostic criteria. (Drawn
from: Agarwal and Punnose, 2002.)

1 Note that although much of our discussion will be in terms of measuring disease, the same

principles apply to any dichotomous health outcome – that is, one that is either present or

absent.
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What percentage of people in Western and Central Europe became HIV-
positive during 2012?

At the end of 2012, 860,000 of the 608,200,000 people in Western and
Central Europe or 0.14% of the population were living with HIV. During
2012, another 29,000 people or 0.0048% of the population became infected
with HIV. Now 0.0048% is a very small number. It simply tells us that there
were 0.0048 new HIV infections for every 100 people during 2012, so an
alternative way to present the same information would be to multiply the
numbers by 1000 and say that there were 4.8 new infections in every 100,000
people (4.8/100,000 or 4.8/105).2

What you calculated above were, first, the prevalence of existing HIV infec-
tions in Western and Central Europe at the end of 2012 and, second, the
incidence of new HIV infections in the same region during 2012. These
measures give us two different ways of quantifying the amount of disease in
a population. Table 2.2 shows the same information for each of the regions.
These data confirm the high levels of HIV infection in Sub-Saharan Africa and
show us that, despite the relatively low number of new cases in the Caribbean,
the small population there means that the incidence is also high. The data

Table 2.1 Estimates of the number of people living with HIV and the number of new HIV
infections around the world in 2012.

Region
Population
(�1000)

People living
with HIV
(end of 2012)

New HIV
infections
(2012)

Sub-Saharan Africa 867,000 25,000,000 1,600,000
East Asia 1,554,400 880,000 81,000
Oceania 34,200 51,000 2100
South and Southeast Asia 2,286,000 3,900,000 270,000
Eastern Europe & Central Asia 278,900 1,300,000 130,000
Western and Central Europe 608,200 860,000 29,000
North Africa & Middle East 319,500 260,000 32,000
North America 348,800 1,300,000 48,000
Caribbean 36,300 250,000 12,000
Latin America 557,000 1,500,000 86,000
TOTAL 6,890,300 35,301,000 2,290,100

(Data source: UNAIDS, 2013 and Population Reference Bureau, 2012.)

2 If you are not familiar with this nomenclature, the superscript number is simply a shorthand

way to say how many zeros the number has. So, 102 would be 100, 105 is 100,000 and 106 is

one million (1,000,000).
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also show us that although the actual numbers of cases in East Asia and
Western/Central Europe are similar, the prevalence per 100 people (%) is
much lower in East Asia (0.06%) than in Western and Central Europe
(0.14%). Like the beer example in Box 2.1, these data emphasise the need to
take the size of a population into account when comparing it with others.

We will now look at these measures in more detail.

Prevalence

The prevalence of a disease tells us what proportion of a population actually
has the disease at a specific point in time: an estimated 0.14% or 140 of every
100,000 people in Western and Central Europe were living with HIV at the end
of 2012. This is a snapshot of the situation at a single point in time and, for this
reason, it is sometimes called the ‘point’ prevalence. Note that you may also
see references to ‘period prevalence’ which measures the proportion of the
population that had the disease at any time during a specified period. This is a
complex measure that combines the prevalence (everybody who had the
disease at the start of the period) and incidence (all of the new cases of disease
during the period).

Prevalence measures the amount of a disease in a population at a given

point in time:

Prevalence¼ Number of people with diseaseat agiven point in time

Total number of people in the populationat that time
(2.1)

Table 2.2 The prevalence and incidence of HIV infection around the world in 2012.

Region
Population
(�1000)

People living with
HIV (end of 2012)

Prevalence
(%)

New HIV
infections (2012)

Incidence
(per 100,000/year)

Sub-Saharan Africa 867,000 25,000,000 2.88 1,600,000 184.5
East Asia 1,554,400 880,000 0.06 81,000 5.2
Oceania 34,200 51,000 0.15 2,100 6.1
South and Southeast Asia 2,286,000 3,900,000 0.17 270,000 11.8
Eastern Europe & Central Asia 278,900 1,300,000 0.47 130,000 46.6
Western and Central Europe 608,200 860,000 0.14 29,000 4.8
North Africa & Middle East 319,500 260,000 0.08 32,000 10.0
North America 348,800 1,300,000 0.37 48,000 13.8
Caribbean 36,300 250,000 0.69 12,000 33.0
Latin America 557,000 1,500,000 0.27 86,000 15.4
TOTAL 6,890,300 35,301,000 0.51 2,290,100 33.2

(Data source: UNAIDS, 2013 and Population Reference Bureau, 2012.)

Percentages can be confusing
because there is often more
than one way in which they can
be calculated and this can
lead to problems with
interpretation – see Box 2.2 for
some additional guidance.
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Prevalence measures are just one number (the number of people with dis-
ease) divided by another number (the total number of people in the popula-
tion). They have no units, and are mostly reported simply as a proportion or a
percentage (2.9% of Sub-Saharan Africans were living with HIV at the end of
2012), but may also be shown as cases/population, for example 370/100,000

Box 2.2 A note about percentages

Imagine a study that gave the following results:

There are two ways that we can look at these data. One way would be to

calculate the percentages of (a) non-smokers and (b) smokers who have

asthma – these are row percentages because we use the total of each row,

the number of non-smokers or smokers, as the denominator (note: the

denominator is the bottomhalf of a fraction and the numerator the top half):

This tells us that 10% of non-smokers and 15% of smokers have asthma.

Alternatively, we could use the same data to calculate the percentages of

people with and without asthma who smoke – these are column

percentages because now we use the total of each column, the number of

people with or without asthma, as the denominator:

This tells us that 43% of people with asthma and only 32% of people

without asthma are smokers.

It is very important to decide first which percentages are most relevant for

a particular situation and then to calculate and interpret the percentages

correctly. Saying that 43% of people with asthma are smokers (correct) is

not the same as saying that 43% of smokers have asthma (incorrect; 15% of

smokers have asthma).

Asthma No asthma Total

Non-smokers 40 360 400
Smokers 30 170 200
Total 70 530 600

Asthma No asthma Total

Non-smokers 40 � 400 = 10% 360 � 400 = 90% 400 = 100%
Smokers 30 � 200 = 15% 170 � 200 = 85% 200 = 100%

Asthma No asthma

Non-smokers 40�70 = 57% 360 � 530 = 68%
Smokers 30�70 = 43% 170 � 530 = 32%
Total 70 = 100% 530 = 100%
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North Americans were living with HIV at the end of 2012. Note that a more
precise answer for the proportion of Sub-Saharan Africans with HIV is
0.02883506. . . or 2.883506% but, for simplicity, we have rounded this to one
decimal place giving 2.9%. Although youwill often see the term ‘prevalence rate’,
this is not a true rate because a rate should include units of time. An example of a
true rate is the use of distance travelled per hour, i.e. kph or mph, tomeasure the
speed of a car. The time point at which people are counted should, however,
always be reported when giving an estimate of prevalence. This is often a fixed
point in calendar time, such as 31 December 2015, but it can also be a fixed point
in life, for instance, birth or retirement. For example, if 1000 babies were born
alive in one hospital in a given year and, of these, five babies were born with
congenital abnormalities, we would say that the prevalence of congenital
abnormality at birth was 5/1000 live births in that year. Prevalence can be
expressed per 100 people (per cent, %) or per 1000 (103), 10,000 (104) or
100,000 (105). It doesn’t matter as long as it is clear which is being used.

In practice, it would be rare to identify all prevalent cases of disease at one
precise point in time; e.g. a blood pressure survey may take weeks or months
to conduct, given limited numbers of researchers, amounts of equipment and
availability of those being measured. The exact size of the population may also
not be known on a given day and this might well be based on an estimate or
projection from the most recent census data.

Incidence

The incidence of disease measures how quickly people are developing the
disease and it differs from prevalence because it considers only new infections,
sometimes called incident cases, that occurred in a specific time period. During
2012, 1.6 million people in Sub-Saharan Africa or 0.18% of the population were
newly diagnosed as HIV-positive. Another way of saying this is that the incidence
of HIV infection was 184.5/100,000 per year (Table 2.2). You will find that people
use the term ‘incidence’ on its own tomean slightly different things – some use it
for the number of new cases (i.e. 1.6 million), some for the proportion of people
who are newly infected (i.e. 0.0018 or 0.18%) and some for the rate at which new
infectionhas occurred (i.e. 184.5 newcases per 100,000 peopleper year). To avoid
confusion wewill describe the lattermeasure as the incidence ratewhich, unlike
measures of prevalence, is a true rate because it includes a measure of time.

Incidence rate¼ Number of people who develop disease in one year
Average number of people in the population in the same year

(2.2)

We will look further at how to calculate these measures later, but first let us
consider the concept of the ‘population at risk’ and the relationship between
prevalence and the incidence rate.

Rounding: If the first
number that is cut off is
between 0 and 4 you round
down and if it is between
5 and 9 you round up. Here
we rounded 2.8835 up to 2.9,
but if it had been 2.8435 we
would have rounded down to
2.8. In practice it is rarely
necessary to show results to
more than two or three
‘significant’ figures (e.g. 2900,
2.9, 0.0029 are all rounded to
2 significant figures), unless
we are confident the
additional numbers are both
accurate and important.
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Population at risk

In the example above it is probably not unreasonable to assume that everyone
in the populationmight be at risk of contracting HIV, although, obviously, some
groups will be more ‘at risk’ than others; but what if the disease of interest were
something like cervical cancer? To use the whole population to calculate rates
of cancer of the cervix (the neck of the uterus) would be inappropriate, because
aman could never develop the disease.Wewould calculate a sex-specific rate by
dividing the number of cases by the number of women in the population.
However, many women will have had a hysterectomy (removal of the uterus).
They are then no longer at risk of developing cervical cancer and so, strictly
speaking, should not be included in the population at risk. In practice, pub-
lished rates of both cervical and endometrial cancer (cancer of the lining of the
uterus) rarely allow for this so it is difficult to compare the rates of these cancers
between countries that have very different hysterectomy rates. We discussed
above the importance of making sure that different reports used the same
definition of disease (i.e. they counted the same thing in the numerator); it is
also crucial to ensure that the denominators represent equivalent populations
(e.g. they are similar in age, sex distribution, etc.).

The relationship between incidence and prevalence

If two diseases have the same incidence, but one lasts three times longer than
the other, then, at any point in time, you are much more likely to find people
suffering from the more long-lasting disease. Very crudely (and assuming that
people do not move into or out of the area), the relationship between
prevalence (P) and the incidence rate (IR) depends on how long the disease
persists before cure or death (average duration of disease, D):

P � IR� D (2.3)

where � means approximately equal to. (Box 2.3 shows a more accurate
version of this formula.)
For example, in the USA in 2009, the incidence of hepatitis A was relatively

high with an estimated 21,000 new infections (CDC Division of Viral Hepatitis,
2009) and almost one-third of the population may have been infected at some
time. However, because it is an acute infection and people recover fairly
quickly, the prevalence of hepatitis A infection at any one point in time would
be quite low. In contrast, hepatitis C infection is less common (approximately
16,000 new infections in 2009) but most of those infected develop a chronic
infection and are infected for life. This means that the prevalence of hepatitis
C is much higher with between 2.7 and 3.9 million Americans estimated to be
living with chronic infection.

Hepatitis A infection rates
have been falling in the USA
since the introduction of
infant and child vaccination,
while reported cases of
hepatitis C have increased.
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If a new treatment were developed for a disease, what effect would this have
on the prevalence and incidence of the disease?

If the new treatment meant that people were cured more quickly and so
were ill for less time, then the prevalence would fall. However, if the disease
had previously been fatal and the new treatment meant that people lived
longer with the disease, then the prevalence would increase. In general, a
new treatment will not affect the incidence of a disease. The only exception to
this rule might be for an infectious disease: if people were ill and thus
infectious for less time, they might pass the infection to fewer people and so
the incidence would fall.

As you can see, the prevalence of a disease reflects a balance of several
factors. If the incidence of a disease increases then the prevalence will also
increase; if the duration of sickness changes then the prevalence will change.
This means that the prevalence of a disease is generally not the best way to
measure the underlying forces driving the occurrence of the disease – we
must use the incidence rate for this. Nonetheless, prevalence is useful for
measuring diseases that have a gradual onset and long duration such as
type-2 diabetes and osteoarthritis, and also for capturing the frequency of
congenital malformations at birth. Both prevalence and incidence are of
direct value for describing the overall disease burden of a population and,
together with simple counts of the numbers of cases of disease, are funda-
mentally important for assessing health care needs and planning health
services.

Box 2.3 More about the relationship among prevalence,
incidence and duration

The relationship P � IR � D is approximately true in what is called a

stationary population where the number of people entering the population

(immigration and birth) balances the number of people leaving

(emigration and death). A second requirement is that the prevalence of

disease must be low (less than about 10%). This is the case for many

diseases, but a more general formula that does not require the disease to

be rare is

P

1� P
� IR� D (2.4)

where P is the prevalence of disease expressed as a proportion and 1 – P is

the proportion of non-diseased people; e.g. if the prevalence (P) is 2% or

0.02 then 1 – P is 0.98.
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Measuring disease occurrence in practice: epidemiological studies

As we discussed above, the occurrence of disease can be quantified by looking
at the prevalence or the incidence rate. We will now consider these further,
together with an alternative way of measuring incidence known as the
incidence proportion (or risk or cumulative incidence). These three funda-
mental measures form the basis of descriptive epidemiology, which seeks to
answer the first four of the five core questions that you met in Chapter 1: What
(diseases are occurring)? Who (is getting them)? Where? and When? The
measures can all be calculated from routinely collected data (as in the HIV
example above) or from studies conducted specifically to measure the inci-
dence or prevalence of disease, and they are widely used in health reports
around the world. We will come back to the use of routine data below and for
now will concentrate on how we measure the occurrence of disease in an
epidemiological study.
To measure the prevalence of disease we need to conduct a survey, or what

is often called a cross-sectional study, in which a random sample (or cross-
section) of the population is questioned or assessed to ascertain whether they
have a particular condition at a given point in time. To measure the incidence
of disease we need to start with a group (or cohort) of people who are free of
the disease of interest but who are ‘at risk’ of developing it. We then follow
them over time to see who actually develops the disease (a cohort study; e.g.
the British Doctors Study mentioned in Chapter 1).
When we conduct a research study we can specify exactly who is in the

study and can usually collect individual data for all (or most) of those people.
We can therefore identify who is ‘at risk’ and calculate quite accurate meas-
ures of disease incidence (or prevalence). We can also relate the occurrence of
disease to its potential causes to answer the final question, Why?, and we will
consider this aspect further in Chapter 5.
Consider, for example, a study conducted in a hypothetical primary school

with 100 pupils. Imagine that, on the first day of the new term, nine children
had a cold. Over the next week another seven children developed a cold.

What percentage of children had a cold on the first day of term?

What percentage of the children who didn’t have a cold on the first day of term
developed one during the next week?

The first measure that you calculated is the prevalence of the common cold
in this group of children: 9 out of 100 children or 9% had a cold on the first day
of term. The second measure is known as the incidence proportion or risk of
colds: out of 91 children ‘at risk’ of developing a cold (i.e. they did not have
one already), 7 or 7.7% developed one during the first week of term. The
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denominator (population at risk) is 91 in this case because 9 of the 100 chil-
dren already had a cold and were not therefore ‘at risk’ of catching another at
the same time. As its name suggests, the incidence proportion measures the
proportion, or percentage, of people (children in this case) who were at risk of
developing a cold and who did so during the period of the study (one week).
Note that it is always important to specify the time period – a risk3 of 5% in
1 year would be very different from a risk of 5% in 20 years. The incidence
proportion is sometimes known as the attack rate, especially when it refers to
a short time period as, for example, in the context of an outbreak of infectious
diseases like the food poisoning example in Chapter 1.

This example was simple because the common cold is just that, very
common, and we were only interested in the children for one week. Imagine
that we were trying to measure the incidence of a much rarer disease such as
cancer. We would obviously need a much larger group of people and we would
need to follow them for much longer to see who developed the cancer. In this
situation it is very difficult to keep track of people and we would inevitably lose
some from the study group and not know what happened to them. Another
problem is that people will die from other ‘competing’ causes and so they will
no longer be at risk of developing the cancer. In this situation, calculations of
the incidence proportion may be inaccurate (or will become so over time)
because we will not know exactly who has developed the disease. In practice,
we can calculate this measure only when we have a clearly defined group of
people who are all (or almost all) followed for the specified follow-up period.

When this is not the situation we use a different method to calculate an
incidence rate. Instead of simply counting the actual number of people at risk
of disease, we count up the length of time they were at risk of disease. Imagine
that we followed a group of 1000 men for 5 years and that during this time
15 of them had a non-fatal heart attack. This gives us an incidence proportion
or risk of 1.5% for the 5-year period. During this period the men have lived a
total of 1000 � 5 = 5000 years of life or person-years. We could have obtained
the same number of person-years by following a group of 5000 men for 1 year
each, or a group of 500 men for 10 years each. Alternatively, we could have
followed some men for one year, some for two years, some for three years,
etc., to arrive at the same total of 5000. We are no longer so focussed on the
actual number of people who were at risk of the disease, but rather on the total
person-time4 (number of person-years) they were at risk. This not only gives
us a much more accurate measure of how quickly disease is occurring among
those at risk, but it also gives us much greater flexibility. Assuming that we still

3 Because the term ‘incidence proportion’ can be unwieldy, we will also use ‘risk’ to describe

this measure.
4 Person-time can be measured in person-years as in this example or any other measure of

time, e.g., person-months, person-days, depending on the time scale of the study.
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saw 15 heart attacks during our 5000 person-years (py), we could calculate the
incidence rate as 15 per 5000 person-years or, more usually, 3 per 1000 or 300/
100,000 person-years.

The incidence proportion (IP) (also known as cumulative incidence or

risk) measures the proportion of people who develop disease during a
specified period:

IP ¼ Number of people who develop disease in a specified period

Number of people at risk of getting the disease
at the start of the period

(2.5)

The incidence rate (IR) measures how quickly people are developing a

disease:

IR ¼ Number of people who develop disease in a specified period

Total person-time when people were at
risk of getting the disease

(2.6)

Note that, although Equation (2.6) looks slightly different from Equation (2.2),
they are measuring the same thing – if you are unsure about this, see Box 2.4
for an explanation of why this is true. We will also come back to this under
‘Crude incidence and mortality rates’ on page 49.

Box 2.4 Calculating incidence rates

As you saw above, the ‘person-time’ method for calculating an incidence

rate (Equation (2.6)) is particularly useful in research studies when

different people have been followed for different lengths of time. However,

at the population level we may be dealing with millions of people and it is

clearly not feasible to calculate the person-time that each is at risk. Instead

we usually calculate the incidence rate for a single year and work on the

assumption that everyone in the population is at risk for the whole of that

year (Equation (2.2)). The fundamental concept is, however, the same – if

there are 500,000 people in the population and we assume they are all at

risk for one year that is the same as 500,000 person-years. The only

distinction is that the ‘routine rates’ calculated using Equation (2.2) are

based on population averages, whereas the ‘epidemiological rates’

calculated using Equation (2.6) are based on adding together carefully

measured units of individual person-time to give a precise denominator.

The resulting incidence rates are also presented slightly differently: routine

incidence rates are usually described per 100,000 people per year, whereas

(continued)

The incidence rate is also
sometimes called the
incidence density.
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Incidence rates versus incidence proportion

The distinction between an incidence proportion or risk and an incidence rate
can be confusing. An analogy that we have found helpful is to think of these
measures in terms of driving a car.

• The incidence rate is equivalent to the average speed of a car at a particular
point in time, e.g. 60 km/hour.

• The incidence proportion is analogous to the distance travelled by a car
during a specified interval of time, e.g. 60 km in one hour.

The distance a car travels depends both on its average speed and on the
length of time it travels for. If a car travels at an average speed of 60 km/hour
then it will cover 30 km in 30 minutes, 60 km in one hour, and so on. When
we consider a time interval of one hour, the total distance travelled (60 km in
one hour) looks very similar to the average speed because this is expressed
per hour (60 km/hr). Distance and speed are, however, fundamentally
different.

In the same way, the incidence rate describes the ‘speed’ at which new
cases of disease are occurring, and therefore reflects what is sometimes called
the underlying force of morbidity. As its name suggests, the incidence propor-
tion measures the proportion of a group who develop the disease over a
particular time and is thus a function both of the underlying incidence rate
and of the length of follow-up. If the incidence rate is 10 per 100,000/year then
the incidence proportion will be 10 cases in 100,000 (= 0.0001 or 0.01%) in one
year, 20 cases in 100,000 (= 0.0002 or 0.02%) in two years, and so on. As with
the car example, when we consider a time interval of one year, an incidence
proportion expressed as 10 per 100,000 people in one year looks much like an
incidence rate (10 per 100,000 per year or person-years) because we usually

Box 2.4 (continued)

in epidemiological studies using individual data they are usually shown

per 100,000 person-years. You will find that some people differentiate the

rates calculated based on person-time by describing them as incidence
density; however, we, as most others, will refer to both as incidence rates

because they are effectively measuring the same thing.

In practice, it will usually only be possible to calculate the incidence

rate one way. If data are available for individual people who have

been followed for different lengths of time then we use Equation (2.6).

If we only have summary data for a population then we use

Equation (2.2).
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show incidence rates per year. It is important to recognise that, as with
distance and speed, the measures are different. A good way to help avoid
confusion is to ensure that the incidence proportion is expressed as a propor-
tion (e.g. 0.0001) or percentage rather than ‘per 100,000’.

Example

Imagine that we identified a group of 10 healthy people on 1 January 2007 and
that we decided to follow these people for seven years to see who developed a
particular disease. Figure 2.2 shows the hypothetical experience of these
people: four developed the disease of interest and three of them died, and
another three were ‘lost to follow-up’ (e.g. they moved away or died of some
other disease). Let us now look at how we would calculate the different
measures of disease occurrence in this group.

Prevalence
Remember that prevalence tells us the proportion of the population who were
sick at a particular point in time (Equation (2.1)). For example, on 1 January
2010, two people were sick out of the nine people left in our group on that date
(one was lost to follow-up), so
Prevalence = 2 � 9 = 22%

What was the prevalence of the disease on 30 June 2011?

On 30 June 2011 two people were sick but there were only seven people
left in the group on that date (one had died and two had been lost to
follow-up), so
Prevalence = 2 � 7 = 29%
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Figure 2.2 A hypothetical follow-
up study.
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Incidence proportion (cumulative incidence)
This tells us the proportion of a population ‘at risk’ of developing a disease
who actually became ill during a specified time interval (Equation (2.5)). It
is also the probability or average risk that an individual will develop the
disease during the period: if 30% of people in a population develop a
disease then each individual has a 30% chance of developing it themselves.
It is important to note that this is the average risk for the population, the
risk for any individual is either zero (they won’t develop the disease) or one
(they will).5 With the exception of some rare genetic diseases such as
Huntington’s disease where all those who carry the aberrant gene will
eventually develop the disease, this individual risk is usually unknown or
unknowable, making accurate predictions for individuals in the clinical
setting almost impossible.

In the example, 4 of the 10 people who were at risk at the start of the study
developed the disease, but three were lost to follow-up and we do not know
whether they developed the disease. This means that we cannot accurately
calculate the incidence proportion or risk at seven years, but a minimum
estimate would be

IP = 4 � 10 = 40% in seven years
This is assuming that none of those lost to follow-up developed the disease. If
any of them had developed the disease then the true risk would have been
higher than 40%. The maximum estimate of the incidence proportion would
assume that all three of the missing people developed the disease:

IP = 7 � 10 = 70% in seven years
Note that we could calculate an accurate incidence proportion at two years –
because we do have complete follow-up to that point:

IP = 1 � 10 = 10% in two years
One type of study in which the study group is clearly defined and loss to
follow-up is usually minimal is a clinical trial (see Chapter 4) and this means
that the incidence proportion is an appropriate and common measure of
outcome in this type of study. However, the field of clinical epidemiology
has developed its own terminology for what we call the incidence proportion
(see Box 2.5).

Incidence rate
Although we do not know what happened to three people in the group, we do
know that they had not developed the disease before they were lost to follow
up. We can use this information to help us calculate the incidence rate or what

5 Note that risk can be measured on a scale from 0 to 1, or from 0 to 100%; a risk of 30% is

therefore equal to a risk of 0.3.
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is sometimes called the incidence density (Equation (2.6)). This is the number
of new cases of disease (four) divided by the total amount of person-time at
risk of developing the disease. An individual is at risk of developing the disease
until the actual moment when they do develop it (in practice, when they are
diagnosed) or until they are lost to follow-up.6 In this example, individual
number one would contribute seven years of person-time; individual number
two would contribute five and a half years; individual number three would
contribute two years, and so on.

Box 2.5 The incidence proportion in clinical trials

You will find that in clinical trials what we have called the incidence

proportion or risk may be called the experimental event rate (EER) when
it describes the risk in the intervention or treatment group, and the control
event rate (CER) in the control or placebo group.

For example, a group in the USA investigated whether four weeks of

aspirin treatment would reduce the risk of blood clots in patients being

treated with antibiotics for infective endocarditis (an infection of the lining

of the heart that usually affects the heart valves). In total 115 patients were

enrolled in the study and assigned at random to receive aspirin (n = 60) or

placebo (n = 55). During the study, 17 patients in the aspirin group (EER or

IPIntervention = 17 � 60 = 28.3%) and 11 in the placebo group (CER or

IPControl = 11 � 55 = 20.0%) experienced blood clots (Table 2.3). The

authors concluded that aspirin treatment did not reduce the risk of clots

(Chan et al., 2003).

6 For this example we assumed that those lost to follow-up were no different from those who

remained in the study. In practice this may not be true, e.g., people who are sicker may be

more likely to drop out, and in this situation the rate we calculate may be biased. We will

come back to discuss this problem in Chapter 7.

Table 2.3 Results of an RCT evaluating aspirin use for infective endocarditis.

Total
patients

Number with
blood clots

Event rate (incidence
proportion of blood clots)

Aspirin 60 17 28.3%
Placebo 55 11 20.0%

(From Chan et al., 2003.)
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What is the total amount of person-time at risk?

What is the incidence rate for this disease per 100 person-years?

The total amount of person time is

7 + 5.5 + 2 + 3.5 + 4 + 2 + 7 + 1.5 + 5 + 7 = 44.5 person-years

So the incidence rate is

4 cases � 44.5 person-years = 0.09 cases/person-year or 9 cases/100 person-
years

Measuring disease occurrence in practice: using routine data

In practice, much of our information about the occurrence of disease comes
from routine statistics, collected at a regional, national, or international level
(we will discuss some of the sources of these data in Chapter 3), and in this
format they comprise the core of many published reports. The data are not
based on specific information about individuals, but relate the number of
cases of disease (or deaths) in a population to the size of that population (often
an estimate from a census). This can lead to problems when we try to relate
the occurrence of disease to potential causes. For example, if a region has a
very high level of unemployment and also has a high incidence of suicide, it
might be tempting to jump to the conclusion that being unemployed drives
people to commit suicide. However, we have no way of knowing from routine
statistics whether it is the same people who are unemployed who are commit-
ting suicide. (This dilemma where we try to extrapolate from an association
seen at the population-level to draw conclusions about the relation in individ-
uals is often called the ecological fallacy (or cross-level bias) and we will
discuss it again in Chapter 3.)

A second drawback of routine data relates to the fact that in public health
we often want to measure the incidence of disease – how quickly are people
becoming ill? Unfortunately, it is often difficult to obtain reliable information
about incidence because few illnesses are captured reliably in routine statis-
tics. Some diseases, such as HIV infection and cancer, are ‘notifiable’ in many
countries and, therefore, all cases should be reported to a central body;
however, these examples are the exceptions rather than the rule, and such
data are not available for most diseases. Furthermore, even where reporting is
mandated it does not always occur in practice. When HIV first came to world
attention, and again during the 2003 SARS (severe acute respiratory syn-
drome) outbreak, some countries suppressed the real numbers of cases for
both political and economic reasons. We will take up some of these issues in
more detail when we discuss surveillance in Chapter 12.

48 Measuring disease frequency



As a result, many common measures that you will come across will be
measures of mortality because death and cause of death are regularly and
reliably recorded in many, but certainly not all, countries. Incidence and
mortality rates have exactly the same form, but for incidence we count new
cases of a disease whereas for mortality we count deaths. Mortality data are
obviously uninformative for many diseases that are not usually fatal – things
like osteoarthritis, non-melanoma skin cancers, psoriasis and rubella (German
measles), to name but a few. However, even for diseases that can be fatal,
mortality figures might not mirror the underlying incidence of disease, for
example if a more effective treatment is introduced. Mortality data can also lag
well behind changes in incidence, delaying identification of changes over time
that may be important for planning or for providing clues as to the causes of
the disease.

Crude incidence and mortality rates

As you saw above, when we conduct an epidemiological study we calculate the
incidence rate as the number of cases of disease divided by the total person-
time at risk of disease (where this is summed over all of the individuals in
the study). This method is particularly useful when different people have
been followed for different lengths of time, but at the population level
we may be dealing with millions of people and it is clearly not feasible to
calculate the person-time that each is at risk. Instead we usually work on the
assumption that everyone is at risk for the whole of the year that we are
interested in.
When we are working with routine data, therefore, we calculate the inci-

dence rate by dividing the total number of new cases of a specific disease (or
the number of deaths) in a specified period, usually one year, by the average
number of people in the population during the same period (Equation (2.2)).
This is then usually multiplied by 100,000 (105) and presented as a rate per 105

people per year. The size of the population will, inevitably, change over a
period of a year, so ideally we would use the number of people in the
population in the middle of the year or the average of the size of the popula-
tion at the start and at the end of the period of interest. Incidence rates may be
calculated for a broad disease group (e.g. cancer) or a more specific disease
(e.g. breast cancer). Similarly, mortality rates may include deaths from all
causes (sometimes called all-cause mortality) or only those from a specific
cause. These basic rates are called crude rates because they describe the
overall incidence or death rate in a population without taking any other
features of the population into account (in contrast to standardised rates –

see below).
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Describe the data shown in Table 2.4.

Comment on the order of the countries – is this helpful to understanding what
is going on? How else might the data have been ordered?

Table 2.4 shows crude mortality rates for ischaemic heart disease (IHD) in
men in seven countries in 1995–1998. We see that Germany, Australia and
Canada had high mortality rates, with intermediate rates in Singapore and
Spain and low rates in Japan and Brazil. The countries are ordered from the
highest rate to the lowest, making it easier to compare the rates between
them. If, for example, they had been ordered alphabetically or by geographic
region, this would have made the comparison of rates harder. A good table
should be structured to convey the most important messages as simply as
possible.

Can we conclude from these data that men were three to four times as likely to
die from IHD in Western countries such as Germany, Australia and Canada
than in countries like Japan and Brazil?

If not, why not?

Age-specific incidence and mortality rates

Table 2.4 describes the total burdens that the different health systems have to
cope with, but a major disadvantage of crude rates is that they are just that –
crude. Most importantly, they do not take into account the fact that different
populations have different age structures and the risk of becoming ill or
dying varies with age. Many diseases are more common among older people

Table 2.4 Crude mortality rates (per 100,000 per year) for ischaemic heart disease (IHD) in
males from selected countries, 1995–1998.

Country
Crude IHD mortality rate
(per 105/year)

Germany 211
Australia 168
Canada 160
Singapore 118
Spain 116
Japan 50
Brazil 47

(Data source: Global Cardiovascular Infobase, www.cvdinfobase.ca, accessed
23 September 2003.)
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and the older a person is, the greater their risk of dying. Developed countries
like Germany have a high proportion of older people, whereas less-
developed countries like Brazil have a much greater proportion of young
people, at a relatively lower risk of dying. Their contrasting population
structures are shown in Figure 2.3. In the example above it turns out that
we are trying to compare countries with very different age structures, so a
crude comparison of IHD mortality has limited meaning if we are trying to
assess the comparative ‘cardiovascular health’ of these countries (see also
Box 2.6).
One obvious way to avoid this problem is to calculate separate rates for

different age groups (age-specific rates). The rate in a particular age group can
then be compared between countries. This process can be extended to calcu-
late separate rates for other groups, for instance men and women (sex-specific
rates), and for different racial or socioeconomic groups. Table 2.5 extends
Table 2.4 to show selected age-specific mortality rates for the seven countries.

What do the age-specific rates shown in Table 2.5 tell us about the relative
cardiovascular health in these countries?

If we compare the age-specific rates, we can see that in each country the
rate is much higher in the older age group. We can also see that, while the
crude rates for Singapore and Spain are similar, the age-specific rates are
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Figure 2.3 Age distribution of the
population in Germany (1998, dark
bars) and Brazil (1995, light bars).
(Drawn from: Global Cardiovascular
Infobase, www.cvdinfobase.ca,
accessed 23 September 2003.)
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about twice as high in Singapore, which actually has the highest rates of all the
countries in both age groups. Brazil has also moved up in the IHD rankings,
although it is still doing better than Germany and Australia, while Japanese
men have notably low rates at all ages.

Standardised incidence and mortality rates

If age-specific rates are presented for a large number of different age groups,
as well as for both sexes, we end up with a lot of numbers to compare and
interpret (we only showed two age groups in Table 2.5 for simplicity). An
alternative is to summarise or combine these age-specific rates using a process
called standardisation. Direct standardisation involves calculating the overall
incidence or mortality rate that you would have expected to find in a ‘stand-
ard’ population if it had the same age-specific rates as your study population.
(The details of how to do this are shown in Appendix 1.) The same methods
can also be used to standardise for other factors that differ between popula-
tions that you want to compare, for example sex or race, because disease rates
often differ markedly between men and women and those from different
ethnic backgrounds.

The age-standardised rates can then be compared across the populations
(assuming that the disease is defined in the same way in each) because the
problem of different age patterns has been removed (Table 2.6). You will
notice that, in countries with an older population, the standardised rate is

Box 2.6 Cardiovascular diseases simplified

You will find that, when we use examples relating to cardiovascular

diseases, the conditions often have different names and abbreviations.

Cardiovascular diseases are grouped and described in many different

ways, emphasising the need to be sure that you know what the numbers

you are looking at represent. The following is a simplified summary of

some commonly used terms:

Myocardial infarction (MI): heart attack

Ischaemic heart disease (IHD): heart attack (MI) or angina

Coronary heart disease (CHD): essentially identical to IHD

Cardiovascular disease (CVD): includes CHD, stroke, and other cardiac

and vascular diseases (note that CVD can also be used as an

abbreviation for cerebrovascular disease, i.e. stroke and transient

ischaemic attack, but we will not use it in this way)
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much lower than the crude rate, but in Brazil this pattern is reversed, and the
standardised rate is higher than the crude rate because Brazil has a much
younger population than the standard population used for this comparison.
The age-standardised rates give a more accurate picture of the relative levels
of cardiovascular health in the seven countries than the crude rates did
because they take into account the larger numbers of older people in the
more developed countries. It is important to stress, however, that for any
individual population the actual rates (crude or age-specific) are of much
greater utility for health planning.

Table 2.5 Crude and age-specific mortality rates (per 100,000 per year) for IHD in males
from selected countries, 1995–1998.

Country
Crude rate
(per 105/year)

Age-specific rates (per 105/year)

45–54 years 55–64 years

Germany 211 76 245
Australia 168 68 222
Canada 160 73 239
Singapore 118 100 346
Spain 116 59 156
Japan 50 20 60
Brazil 47 64 183

(Data source: Global Cardiovascular Infobase, www.cvdinfobase.ca, accessed
23 September 2003.)

Table 2.6 Crude and age-standardised mortality rates (per 100,000 per year) for IHD in
males from selected countries, 1995–1998.

Country
Crude IHD mortality rate
(per 105/year)

Age-standardised rate
(per 105/year)

Germany 211 121
Australia 168 111
Canada 160 108
Singapore 118 121
Spain 116 65
Japan 50 29
Brazil 47 60

(Data source: Global Cardiovascular Infobase, www.cvdinfobase.ca, accessed
23 September 2003.)
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A note about standard populations
It is important to add a word of caution at this stage. There are many different
‘standard’ populations and, in practice, you can age-standardise to any popu-
lation. You will often come across rates that have been standardised to the
‘world’ population which reflects the average age structure of the whole world.
Other common standard populations reflect the typical age structure of either
‘developed’ or ‘developing’ countries. If the aim is to compare rates in differ-
ent groups within the same country then it is common practice to use the
overall age structure of that country as the standard population. To some
extent the choice is arbitrary, but it is important to note that if you standardise
to two very different populations you will get very different standardised rates,
and the relationships between different populations may change. For this
reason, it is always important to note what standard population has been used.

For example, when we standardised IHD mortality in Germany to the world
standard population the age-standardised rate was 121/105 per year. If we had
standardised to the younger ‘African’ standard population, it would have been
only 60/105 per year, whereas if we had standardised to the older ‘European’
standardpopulation itwouldhave been 198/105 per year. In this examplewewere
comparing populations around the world, so it was appropriate to use the world
standard population. If all the countries had been in Europe or Africa then the
European or African standard populations might have been more appropriate.

In 2001, the World Health Organization (WHO) proposed a new world
standard population to reflect the general ageing of populations around the
world. (This and examples of other common standard populations are pro-
vided in Appendix 2.) However, what seems like a logical updating of infor-
mation has major ramifications for anyone looking at time trends in the
occurrence of disease because rates cannot usefully be compared if they have
been standardised to different populations (see Box 2.7).

Measuring risk using routine statistics

Routine statistics may also be used to estimate the incidence proportion and, in
this situation, it is usually described as a risk. It gives the probability or risk that
someone will develop disease (or die) within a given time period, and this time
period can be anything from a few days to a lifetime (a lifetime is commonly
taken as ages 0 to 74 years). For example, men in Australia have a lifetime risk of
lung cancer of 3.8% or, in other words, 3.8% of Australianmenwill develop lung
cancer before their 75th birthday (AIHW, 2015). An alternative way to look at the
same information is to say that the average lifetime risk of lung cancer in
Australian men is ‘1 in 26’ or, in other words, 1 in every 26 Australian men will
develop lung cancer before their 75th birthday. Note that these measures
assume that someone remains ‘at risk’ of lung cancer until their 75th birthday

As people are living longer,
some now calculate lifetime
risk to age 85. An Australian
male has a 7.9% risk or 1 in
13 chance of developing lung
cancer before his 85th
birthday.
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and they also do not take into account any other factors, such as smoking.
Clearly, the lifetime risk will bemuch higher for a smoker than for a non-smoker
and for personalising risk, for example in the doctor’s surgery, smoking-specific
risks would be much more informative, but special research studies with
individual exposures are needed to provide such data. (The methods for calcu-
lating risk and lifetime risk for routine data are shown in Appendix 3.)

Other measures commonly used in public health

We will now consider some other measures that are used commonly in public
health to assess different aspects of disease burden. Many of these descriptive
measures are fundamental to health planning and service provision. They are
expressed in a variety of ways – some are ratios, some percentages, i.e. per 100
population, while others are shown as rates per 1000, 10,000 or 100,000

Box 2.7 An overnight doubling of all-cause mortality rates in the USA

Prior to 1999, various American health agencies had used different

standard populations, including the 1940 US population and the 1970 US

population, to report vital statistics. This made comparisons between data

from different agencies problematic. In 1999 many of these agencies

changed their standard population to the projected population in the year

2000 (the Year 2000 Population Standard). In comparison with the earlier

populations, the Year 2000 population has fewer people under the age of

35 and more people in the middle and older age groups. Because the Year

2000 population is older and the incidence and mortality rates of most

diseases increase with age, rates standardised to this population tend to be

much higher than those standardised to the 1940 and 1970 standards.

The change dramatically increased age-standardised rates in the USA.

The all-cause mortality rate in 1979 was 577/100,000 per year

(standardised to the 1940 population) and 1011/100,000 per year

(standardised to the Year 2000 standard population). The comparable

difference for the all-cause mortality rate in 1995 was between 504/100,000

per year (1940 standard) and 919/100,000 per year (2000 standard). More

reassuringly, in this example at least, the relative reduction in mortality

between 1979 and 1995 was similar regardless of which standard

population was used. Using the 1940 standard, the mortality rate appeared

to fall from 577 to 504/100,000 per year, a drop of 13% over the period;

using the Year 2000 standard, the rate fell from 1011 to 919/100,000 per

year, a drop of 9% (Anderson and Rosenberg, 1998).
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population (see Box 2.8 for clarification of the differences between rates, ratios
and proportions). In some cases different people will use the same term to
describe a slightly different measure. The definitions that we give are as in
A Dictionary of Epidemiology (Porta, 2014) and are probably those most
commonly used. Whenever you come across these rates it is advisable to
check exactly what the numbers being compared are, and what the size of
the reference population is – whether the rate refers to 100, 1000 or 100,000
events or people.

Standardised incidence and mortality ratios

Figure 1.5 in Chapter 1 showed standardised mortality ratios (SMRs) for
Indigenous compared to non-Indigenous Australians. These come from an
alternative way of standardising rates called indirect standardisation (see
Appendix 4). In this example the standardisation is for age, but the same
process is commonly used to adjust for sex, and/or to compare data from
different time periods. The actual number of deaths ‘observed’ in a population
(e.g. deaths from cancer in Indigenous men) is compared with the number of
deaths that would have been ‘expected’ if the death rates in the Indigenous
population had been the same as those for the non-Indigenous population.
The SMR is calculated by dividing the observed number of deaths (O) by the
expected number (E). This measure tells us how much more common death
from cancer is in Indigenous people than in the non-Indigenous population
(about 1.6 times in this case). We can do exactly the same thing with disease

Box 2.8 Rates, ratios and proportions

A ratio is simply one number divided by another number. For example,

the number of beers drunk in one year divided by the number of people in

the population (beers per capita) or the number of cases observed divided

by the number of cases expected.

A proportion is a special type of ratio in which everything or everyone

in the numerator is also counted in the denominator. For example, the

number of people who develop disease divided by the total number of

people in the population (those with and without disease). A proportion

can never be less than 0 (if no-one is affected) or greater than 1 (if

everyone is affected). It can also be expressed as a percentage between

0 and 100%. All proportions are ratios – not all ratios are proportions.

A rate should contain some measure of time, for example 60 km per
hour, 17/100,000 per year. Unlike a proportion, it has no upper limit.
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incidence to calculate a standardised incidence ratio (SIR). SIRs are also
commonly reported by cancer registries, which are among the few sources
of reliable incidence data at the population level.
The SMR and SIR are similar to the relative risk that you met in Chapter 1.

Remember also that Snow used observed and expected numbers of deaths to
show that cholera mortality in the workhouse near the Broad Street pump was
unexpectedly low (Box 1.4). Strictly speaking, they are measures of association
because they compare disease incidence or mortality in one population with
that in a reference population and, as such, would fit more logically into
Chapter 5. We have included them here because of the parallels between
the processes of direct and indirect standardisation (see Box 2.9).

The proportional (or proportionate) mortality ratio (PMR)

This is a measure of the relative importance of a particular cause of death in a
given population. A PMR looks like an SMR, but is used when there is insuffi-
cient information to calculate an SMR (usually because information is avail-
able only about those who have died, so it is not possible to calculate mortality
rates). It is calculated by dividing the proportion of deaths due to a specific
cause in a group of interest by the proportion of deaths due to the same cause
in a comparison group. A PMR is commonly multiplied by 100, so a PMR of

Box 2.9 Direct vs. indirect standardisation

It can be hard to get your head around the difference between direct and

indirect standardisation. When we standardise for age using direct
standardisation we calculate the overall rate that we would see in a

‘standard’ population if it had the same age-specific rates of disease as our

study population. We can then compare rates that have been directly age-

standardised to the same standard population because any age differences

between the original populations have been removed.

In contrast, when we use indirect standardisation we calculate the

number of cases we would have expected to see in our study population if it

had the same age-specific rates of disease as a standard population (often

the general population). We then compare this expected number of cases

to the number of cases that actually occurred in the study population (the

‘observed’ number) and calculate a standardised incidence (or mortality)

ratio by dividing the observed number of cases by the expected number.

Table 2.7 summarises the differences between the two methods;

although these are presented in terms of age-standardisation, the same

issues apply if we are standardising for sex, race or any other factors.

SMR and SIR: while we (and
others) use the term
standardised incidence ratio or
SIR, some people call this a
standardised morbidity ratio
and thus use SMR to describe
both standardised mortality
and morbidity ratios.
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100 means that the proportions of deaths due to a specific cause are the same
in the study and comparison groups, and a PMR of 200 indicates that twice as
many of the deaths in the study group are due to the specific cause. Propor-
tional mortality ratios are most commonly used in occupational studies. For
example, a study of deaths among electrical workers on construction sites in
the USA found that 127 of the total of 31,068 deaths (0.4%) were due to
electrocution. This value was almost 12 times as high (PMR = 1180) as the
proportion of such deaths that would be expected in the general US popula-
tion (Robinson et al., 1999). Proportional mortality ratios have fairly limited
utility because they cannot easily be compared across different populations.
They are usually calculated only when no population data are readily available
and precise mortality rates cannot be calculated.

The case–fatality ratio (CFR)

The CFR (often called the case–fatality rate, although, strictly speaking, it is an
incidence proportion and not a rate because it does not contain a measure of

Table 2.7 Direct versus indirect standardisation for age.

Direct Standardisation Indirect Standardisation

Information required Age-specific rates in study population Age-specific rates in standard population
Age distribution of standard population Age distribution of study population

Total number of cases (deaths) in study
population

Measure calculated Age-standardised incidence (mortality) rate Standardised incidence (mortality) ratio,
SIR (SMR)

Advantages and
disadvantages

Good for comparing large populations
where the age-specific rates are reliable;
less good for small populations because
the age-specific rates may be unstable

Can be used when the age-specific rates in the
study population are unknown or unreliable,
for example when the population is small

Allows comparisons between the
standardised rates for different
populations

Two SIRs and SMRs cannot be directly
compared because they are both calculated
relative to a separate third population

Uses Commonly used to compare rates across
different countries or between large
subgroups within a country, for example
men versus women

Often used to compare incidence or mortality
in smaller subgroups of a population, for
example veterans from a particular armed
conflict, to the general population. Although
direct standardisation could be used in this
situation, if the subgroup is relatively small,
the age-specific rates may not be very reliable
and indirect standardisation is preferred
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time, see Box 2.8 above) is the proportion of people with a given disease or
condition who die from it in a given period. It is a common measure of the
short-term severity of an acute disease and allows a direct assessment of the
effectiveness of an intervention. For example, the CFR for myocardial infarc-
tion (heart attack) is usually measured over a period of 28 days. When deaths
occur over a longer time period then it is more appropriate to consider the
survival rate (see below). The CFR is usually expressed per 100 cases, i.e. as a
percentage. As an example, the overall CFR in the 2003 SARS epidemic was
estimated to be 14%–15%, i.e. approximately one in every seven people who
contracted SARS died. However, this average ratio hides the fact that, while
patients under the age of 25 were unlikely to die (CFR = 1%), approximately
half of patients over the age of 65 died (CFR = 50%). (Note that the mortality
from SARS occurred so quickly that the particular time period the CFR refers
to is generally not specified.)

Survival rate and relative survival rate

As we discussed above, the CFR is an appropriate measure for short-term
mortality (a month or so) but is less useful for conditions in which death may
occur further down the track. For conditions such as cancer, mortality is often
expressed in terms of the proportion of patients who are still alive a specified
number of years after diagnosis – the survival rate. This proportion is often
adjusted to allow for the fact that, depending on the age group being con-
sidered, some people would have been expected to die anyway from causes
other than their cancer and this is known as the relative survival rate.
A relative survival rate of 100% thus indicates that mortality does not differ
from that experienced by the general population. In developed countries, five-
year relative survival rates are often used to compare and report outcomes for
patients with different types of cancer and to show changes over time. As an
example, five-year relative survival rates for breast cancer are about 75%–80%,
compared with only about 15% for lung cancer.

Global health indicators

In Table 2.6 we saw that age-standardised rates of heart disease were higher in
Germany and Singapore than in Spain and Brazil which, in turn, had higher
rates than Japan, but this is only one disease; how does the overall health of
these populations compare? The measures that we have looked at so far have
focussed on either morbidity (incidence) or mortality and many are only really
useful for describing a single disease or group of diseases at a time. They can
tell us how rates of cancer or mortality from heart disease vary between
countries or over time, but they are less useful if we want to look at the overall
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health of a population at a particular point in time and see how it compares
with other time periods and/or populations. In this section we will look at
some of the measures that are commonly used by bodies such as WHO to
monitor different aspects of health, and particularly those that have been used
to track progress towards the Millennium Development Goals (MDG, see
Box 2.10). Some are simple mortality measures similar to those you have
already met, but they obviously tell us nothing about the many states of
ill-health short of death. To assess these we need measures that can account
for the severity of disease and when it occurs in life. A number of measures
have been developed to help solve this problem as organisations such as WHO
attempt to measure not only disease occurrence, but also its consequences
such as pain, disability and loss of income. These measures bring us closer
to measuring the overall ‘health’ of a population according to the WHO
definition and are being used increasingly by national and regional health
departments for planning and resource allocation.

Mortality indicators

Cause-specific mortality rates like those you met earlier are used to monitor
progress towards MDG-6 which seeks to reduce the impact of HIV and AIDS,
malaria and other diseases – between 2000 and 2012, malaria mortality rates
fell by 42% (United Nations, 2014). Other critical indicators of the general
health of a community include measures of mortality relating to early life, and

Box 2.10 Millennium Development Goals

In 2000, the heads of state from 149 countries participating in the United

Nations Millennium Summit adopted the Millennium Declaration which

set out to achieve what are now known as the Millennium Development

Goals by 2015. The eight goals encompass 18 targets and 48 indicators:

1. Eradicate extreme poverty and hunger

2. Achieve universal primary education

3. Promote gender equality and empower women

4. Reduce child mortality

5. Improve maternal health

6. Combat HIV/AIDS, malaria and other diseases

7. Ensure environmental sustainability

8. Develop a global partnership for development

www.un.org/millenniumgoals/
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Table 2.8 shows a number of these which are integral to monitoring progress
towards MDG-4 and MDG-5. By 2012–2013, major improvements had been
seen in both areas, with infant and maternal mortality rates having fallen by
almost 50% and 45%, respectively, since 1990 (United Nations, 2014).
The underlying concept of each rate is the same – it is the ratio of the actual

number of deaths that occur in one year to the total population ‘at risk of death’

Table 2.8 Mortality indicators.

Measure Deaths (numerator)
Population at risk
(denominator) Notes

Maternal mortality
ratio

Deaths among women from
causes related to childbirth in
1 year (WHO defines this as
deaths up to 42 days after
birth, but sometimes deaths up
to 1 year are included)

Number of live births in the
same year

Strictly speaking the
denominator should be all
pregnant women, but this
information is not recorded
directly

Stillbirth or fetal
death rate

Number of stillbirths in 1 year
where a still birth is usually a
fetal death after 28 weeks
gestation although other time
points may also be used
(e.g. 20 weeks)

Live births + fetal deaths in
the same year

Sometimes calculated as the
ratio of the number of fetal
deaths to the number of live
births (excluding fetal deaths).
This is often called the fetal
death ratio

Neonatal mortality
rate

Deaths in children aged less
than 28 days

Number of live births in the
same year

Only live births are included in
the denominator because only
babies born alive are at risk of
dying before the age of 28 days

Infant mortality
rate

Deaths in children up to 1 year
of age

Number of live births in the
same year

Probably the most widely used
single indicator of the overall
health of a community

WHO defines and calculates this as the probability of dying between birth and age 1,
per 1000 live births

Child or under-five
mortality rate

Deaths in children up to
5 years of age

Ideally the number of
children under 5 in the
population; often the
number of live births in the
same year

An alternative to the child death
rate, the latter version is
preferable in countries where it
is hard to enumerate the
population of young children

WHO defines and calculates this as the probability of dying by age 5, per 1000 live births

Adult mortality rate WHO defines and calculates this as the probability of dying between ages 15 and 60,
per 1000 population
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in the same year. Because it is not always possible to obtain an accurate figure
for the number of people at risk, an approximation is sometimes used. For
example, any woman who is pregnant is at risk of maternal death, but the
number of women who are pregnant in a given year is not routinely recorded,
so in practice this is estimated by taking the number of live births in one year. It
is also worth noting that the infant mortality rate is the number of infant deaths
(age 0–1 year) relative to the number of live births in the same year. This means
that the children in the numerator (deaths) are not the same as those in the
denominator (births) becausemany of those who die will have been born in the
previous year. This is not a problem if the birth rate is fairly stable.

For each indicator we have given the most standard definition(s) but, as you
will see, there are some variations. For example, the stillbirth (or fetal death) rate
should be calculated as the ratio of stillbirths to the number of live births plus the
number of stillbirths. This is because all of these children (live plus stillbirths)
were at risk of being stillborn although not all of them were. This measure is,
however, sometimes presented as a stillbirth or fetal death ratio where only live
births are counted in the denominator. WHO in particular tends to use this
variant (WHO, 2014a). Because the number of live births will be less than the
number of live births plus stillbirths, the fetal death or stillbirth ratio will always
be slightly larger than the stillbirth rate. WHO also calculates infant and under-
five mortality rates slightly differently, defining them as the probability of dying
before the age of one or five, respectively (WHO, 2014b). This reinforces how
important it is to check exactly what the numbers refer to in order to make sure
that you are always comparing like with like.

Describe the data shown in Figure 2.4 and comment on the scale used for
the graph.

Figure 2.4 shows the enormous variation in infant mortality rates around the
world, reflecting the great disadvantages under which many countries
still labour. It also shows the very strong inverse correlation between GDP
(gross domestic product) and infant mortality – the more wealthy a country,
the lower the infant mortality rate. In a poor country like Sierra Leone the rate
is more than 70 per 1000 live births or, in other words, 7% of babies die before
their first birthday. This compares with less than 3 per 1000 in Japan and
Singapore. The use of log scales for the axes (a log–log plot), where each
increment represents a 10-fold increase in GDP or infant mortality, allows us
to show the 35-fold difference in mortality rates and the 100-fold range in GDP
on a single graph. (A study like this that compares different populations is
called an ecological study, we will discuss these in more detail in Chapter 3.)

It is, however, important to remember that all of these measures just give an
average picture for the whole population. Low average rates can often hide
much higher rates in some subgroups of the population. This is particularly

Technically, these mortality
rates are proportions or ratios
rather than true rates because
they do not have units of
time – see Box 2.8; they are,
however, commonly described
as rates and we will also use
this terminology.
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true in countries that include more than one ethnic group. For example, as
you saw in Chapter 1, in Australia the Indigenous population has mortality
rates that are several times higher than those of Australians as a whole, and in
the USA in 2010 infant mortality was considerably higher among births to non-
Hispanic black women (11.5 per 1000 live births) than for non-Hispanic White
or Asian and Pacific Islander mothers (5.2 and 4.3 per 1000, respectively)
(Mathews and MacDorman, 2013).

Life expectancy

Another mortality-based measure that accounts for the timing of death is life
expectancy, the average number of years that an individual of a given age is
expected to live if current mortality rates continue. For example, a boy born in
the Russian Federation in 2012 has a life expectancy of 63 years, compared with
80 years for a boy born in Japan (WHO, 2014a). Because they cannot take
account of future changes in incidence and/or treatment of diseases, estimates
of life expectancy are largely hypothetical. Mortality rates have been falling over
time and, until recently, the expectation has been that this trend would con-
tinue into the future. Life expectancy figures therefore almost certainly under-
estimate the actual number of years someone could expect to live. However, the
HIV epidemic and other national phenomena, such as that seen for Russian
men in Figure 1.2, have already reversed this situation in some countries; and
this could becomemore generally true with the increasing ‘obesity epidemic’ in
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Figure 2.4 Infant mortality rates in
relation to GDP in 20 countries around
the world. (Drawn from: The World
Factbook 2013–14. Washington, DC.
Central Intelligence Agency, 2013.
https://www.cia.gov/library/
publications/the-world-factbook/
index.html, accessed 23 May 2015.)
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many westernised countries predicted to lead to highermortality rates and thus
lower life expectancy in future (Olshansky et al., 2005).

Life expectancy can be presented for any age, but is used most commonly to
describe life expectancy at birth or at age 60 as an indicator of adult health. It is
calculated using a ‘life-table’ similar in principle to that shown in Table 1.4. The
starting point is a hypothetical group of newborns (usually 100,000) and age-
specific mortality rates are then used to estimate the number that would be
expected to die at each year of life. The total number of years of life expected for
the entire cohort can then be added up and the life expectancy at birth is this
total divided by 100,000. Life expectancy at other ages is estimated by adding up
the number of years of life after the age of interest and dividing by the number of
people in the cohort who had reached that age (see Appendix 5 for the detailed
calculations). If we draw a graph of the number or proportion of people
expected to survive to each age we get what is called a survival curve. Figure 2.5
shows the survival curves for Australian men and women in 2011–2013, illus-
trating the survival advantage that women still have over men.

Disability-free life expectancy

There is little point in working to extend life expectancy if the additional years
of life are lived in very poor health. This concept is illustrated by the survival
curves shown in Figure 2.6. As in Figure 2.5, the top line shows the proportion
of people surviving at each age, but now the lower line shows the smaller
proportion of people who are still in full health at each age. The combined
areas A and B represent total life expectancy, but only a proportion of that life,
the area A, is lived in full health, while area B indicates life lived with some
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64 Measuring disease frequency



degree of disability. Area C represents the potential years of life lost and the
combined areas C and B represent the total health gap – the loss both of years
of life and years of health. So how can we measure this?
One solution is to refine the calculations of total life expectancy to calculate

disability-free life expectancy, which takes into account not only age-specific
mortality rates but also the prevalence of disability at that age. This measure
effectively adjusts the number of years of life expected for an individual at a
given age by the probability that those years will be lived with some degree of
disability. One advantage of this measure is that it is relatively simple to
calculate and, as a result, it is quite widely used. However, its disadvantages
are that, first, an arbitrary decision has to be made as to what level of disability
will lead to someone being classified as disabled and, second, years of life lived
with disability are not counted at all and thus are effectively considered as bad
as being dead.

Years of life lost (YLL)

Life expectancy measures what is being achieved and is sometimes described
as a measure of health expectancy. An alternative approach is to measure
what is being lost and this type of indicator is sometimes described as a health
gap (Lopez et al., 2006, p. 47). One such measure, the years of life lost (YLL),
also referred to as expected years of life lost (EYLL), looks not at the number of
years someone can expect to live, but instead at the numbers of years of
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Figure 2.6 Survivorship curves
showing years of life lived in full
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(Adapted from: Murray et al., 2000.)
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potential life they have lost if they die before a certain age. This age is
frequently taken to be the life expectancy of the population or, if many
populations are to be compared, an average global value, but YLL can also
be calculated in relation to a predefined age, often taken as 65 or 70 years, in
which case it is known as the potential years of life lost (PYLL). The YLL for a
population is calculated by counting the total number of deaths from a specific
cause in each age group and then multiplying this by the average number of
years of life lost as a result of each of these deaths. For example, if life
expectancy were 80 years, a death from coronary heart disease at age 60 would
contribute 20 years of life lost compared with 30 years for a death at age 50.
Thus, although there are fewer deaths among younger people, each contrib-
utes a greater number of YLL than the deaths in the elderly.

One advantage this measure has over life expectancy is that it is possible to
count the YLL due to specific causes of death such as cancer or heart disease
and thus to target those conditions with the highest YLL. In addition, the years
of life lost due to each cause of death can be summed to give the total years of
life lost. It is, however, important to be aware that, unlike life expectancy
measures, the YLL depend on the size of the population. Assuming two
populations have similar life expectancy and mortality rates, the YLL for the
larger population will always be greater than that for the smaller population,
although it is possible to get around this by calculating average YLL to facilitate
comparisons between populations.

Quality-adjusted life years (QALYs)

The problem of how best to integrate measures of morbidity and mortality
also arises in clinical trials. Before introducing a new treatment, it is import-
ant to know that it will either increase life expectancy, improve quality of life,
or both. A treatment that improves both survival and quality of life is clearly
worth having, but how can we compare two drugs if one increases survival
but at the expense of worse quality of life? This challenge led to the develop-
ment of the concept of a quality-adjusted life year (QALY). Quality-adjusted
life years weight each year of life by the perceived quality of that life from a
value of one for perfect health down to zero for death. One QALY would thus
represent a year of life in perfect health while 0.5 QALY could represent
6 months lived in perfect health or 12 months with 50% disability (or ill-
health). The QALYs gained from a new radical treatment that increases life
expectancy by 10 years but is associated with major side effects might thus be
lower than those from a less-effective drug that increases life expectancy by
only 8 years but does not have any major side effects. It is, however,
important to note that these measures are entirely dependent on the

66 Measuring disease frequency



magnitude of the weights assigned to different health conditions and this
process is necessarily highly subjective.

Health-adjusted life expectancy (HALE)

By combining QALYs with measures of life expectancy we can calculate
health-adjusted or healthy life expectancy (HALE), which represents the
equivalent number of years an individual can expect to live in full health.
A health-adjusted life expectancy of 60 years might therefore represent an
expectation of 50 years life in full health plus an additional 20 years at 50% or
30 years at 33% of full health.
Table 2.9 shows data on life expectancy and healthy life expectancy for a

number of different countries. Notice that healthy life expectancy is consist-
ently 5–12 years less than life expectancy. This difference is a function both of
the expected number of years of life at less than full health and of the extent of
disability. Because life expectancy at birth is partly dependent on mortality in
the first year of life, it is inevitably much lower in lower-income countries,
which tend to have much higher neonatal and infant mortality rates than do
high-income countries. Once an individual has survived the first few years of
life in a low-income country, however, their chances of living to old age are
then much greater and the difference between high- and low-income coun-
tries becomes less marked. As an example, see the apparent paradox in
Nigeria. Healthy life expectancy at birth for a man in 2012 was only 53 years;
but, if a man makes it to 60, he can then expect about another 15 years of

Table 2.9 Life expectancy at birth and age 60 (years), healthy life expectancy at birth (years), and adult mortality rates in
2012 (from WHO, 2014a).

Life expectancy
at birth

Life expectancy
at age 60

Healthy life
expectancy at birth

Adult mortality
rate (per 1000)

Males Females Males Females Males Females

Australia 81 85 24 27 73 75 44
India 64 68 16 18 57 242 160
Japan 80 87 23 29 75 82 43
Nigeria 53 55 15 16 46 371 346
Russian Federation 63 75 14 20 61 339 127
Switzerland 81 85 24 27 73 67 40
United Kingdom 79 83 22 25 71 90 56
Unites States of America 76 81 21 24 70 130 77
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healthy life. Notice also that, while in most countries women can expect to live
about 2–5 years longer than men, the high mortality rates among young
Russian men (Figure 1.2) mean that the difference in the Russian Federation
is 12 years.

Disability-adjusted life years (DALYs)

The concept of a disability-adjusted life year or DALY was developed to
facilitate attempts to quantify the global burden of disease (World Bank,
1993; Murray et al., 2012). Like YLL, DALYs estimate loss of life, but they have
the major advantage that they count not only years of life lost completely due
to premature death but also years of health lost through disability. As for
QALYs, the extent of disability is weighted from zero to one, although the
weights go in the opposite direction – from zero for a year spent in perfect
health to one for a year lost to death. These weights were defined by an
international panel of health experts based on data from population surveys.
One DALY can be thought of as one lost year of healthy life. Thus, if a person
lives with a moderate disability for 10 years, this might equate to the loss of

Table 2.10 The 10 leading causes of mortality and DALYs in the world, 2012.

Mortality
Deaths
(millions)

% of total
deaths Burden of disease

DALYs
(millions)

% of total
DALYs

Ischaemic heart disease 7.4 13.2 Ischaemic heart disease 165.7 6.0
Stroke 6.7 11.9 Lower respiratory

infections
146.9 5.4

Chronic obstructive
pulmonary disease

3.1 5.6 Stroke 141.3 5.2

Lower respiratory
infections

3.1 5.5 Preterm birth conditions 107.2 3.9

Trachea, bronchus and
lung cancers

1.6 2.9 Diarrhoeal diseases 99.7 3.6

HIV/AIDS 1.5 2.8 Chronic obstructive
pulmonary disease

92.4 3.4

Diarrhoeal diseases 1.5 2.7 HIV/AIDS 91.9 3.6
Diabetes 1.5 2.7 Road injury 78.7 2.9
Road injury 1.3 2.3 Unipolar depressive

disorders
76.5 2.8

Hypertensive heart disease 1.1 2.0 Birth asphyxia/trauma 74.6 2.7

Data source: WHO Global Health Estimates 2014 Summary Tables www.who.int/healthinfo/global_burden_disease/en/,
accessed 24 May 2015.
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5 years of healthy life or five DALYs. Like the measures of potential years of life
lost, DALYs are a health gap indicator and have the useful property that they
can be calculated separately for different diseases (see Table 2.10) or for
different causes of disease (Table 2.11). Measurements of DALYs are

Table 2.11 The top 10 causes of DALYs in the world, by income level, 2010.

Developing countries Developed countries

Risk factor
DALYs
(millions)

% of all DALYs DALYs
(millions)

% of all DALYs

Dietary risks 165.6 7.9 64.5 16.8
High blood pressure 124.3 5.9 49.3 12.8
Smoking 112.0 5.3 44.9 11.7
Household air pollution from solid fuels 105.7 5.0 2.4 0.6
Alcohol use 62.5 3.0 34.7 9.0
High body mass index 55.2 2.6 38.4 10.0
High fasting plasma glucose 68.6 3.3 20.4 5.3
Childhood underweight 77.3 3.7 <0.1 0.01
Ambient particulate matter pollution 65.6 3.1 10.6 2.7
Physical inactivity and low physical activity 46.9 2.2 22.4 5.8

(Data source: IHME, 2013, accessed 7 May 2015.)
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increasingly used to estimate the burden of various diseases or exposures in
different countries, as for example in the Global Burden of Disease (GBD)
project (Murray et al., 2012) and the World Health Reports produced by WHO
(WHO, 2014a), and to identify priorities for health intervention. Like QALYs,
they are highly dependent on the magnitude of the weights assigned to
different health conditions.

The use of measures like DALYs highlights the enormous burden of
ill-health due to some common but non-fatal conditions such as unipolar
depressive disorders that do not feature at all on lists derived from mortality-
based indicators. It also highlights the enormous burden of ill-health attrib-
utable to some entirely preventable risk factors such as smoking and alcohol
use. DALYs can also give a very different sense of priorities for disease
control from conventional rates (see Figure 2.7 and Box 2.11). Dementia,
for example, puts an enormous burden on the health system, yet far greater
financial resources tend to be given to research into high-profile conditions
such as cancer.

Box 2.11 Suicide rates: are we winning or losing?

Suicide is a major cause of premature mortality in many countries, but is

the situation becoming better or worse? Data from the UK show that:

• between 1981 and 1998, suicide rates in men and women aged 15 and

over fell by 18%; and
• between 1981 and 1998, the years of potential life lost due to suicide

increased by 5%.

How do we interpret these apparently conflicting data? The answer is that

the major drop in suicide rates has occurred among the older age groups

(45 years and over) and suicide rates in younger men have actually

increased over the same time period. Suicide in a younger person leads to

greater loss of potential life, so although the overall suicide rates are falling,

this average effect hides an increasing loss of life among young men.

These data underline how different measures of health capture different

things and can give very different pictures of the health of a population.

A politician hoping to demonstrate improvements in mental health could

legitimately claim that suicide rates were falling, while an advocate for

more funding for mental health could equally legitimately cite the increase

in years of life lost.

(Gunnell and Middleton, 2003.)

More about the GBD

project
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Table 2.12 A summary of measures of disease occurrence.

Measure Definition Formula Units

Prevalence (P) The proportion of the population with
disease at a specific point in time

No: people with disease at a given point in time
Total number of people in the population at that time

% or proportion
(e.g. 0.01)
(or per 1000, 10,000,
100,000, etc.)

Incidence
Proportion (IP)
or Risk

The proportion of people who develop
disease during a specified period.
Synonyms: Cumulative Incidence,
Attack Rate, Experimental and Control
Event Rate (in the treated and control
groups in a clinical trial)

No: who develop disease in a specified period
No: at risk of the disease at the start of the period

% or proportion
(or per 1000, 10,000,
100,000, etc.)

Incidence Rate (IR) The rate at which disease is occurring,
measured from individual data in a
study. Synonym: Incidence density

No: who develop disease in a specified period
No: person-years at risk of getting the disease

per 100,000/person-
years (or per 1000,
10,000 person-years,
etc.)

The rate at which disease is occurring,
measured from population data, may
be crude, specific (e.g. age-specific) or
standardised (direct standardisation)

No: people who develop disease in one year
Average no: in the population in the same year

per 100,000/year
(or per 1000,
10,000/year, etc.)

Standardised
Incidence or
Mortality Ratio
(SIR/SMR)

Compares incidence or mortality to a
standard population using indirect
standardisation

Observed number of cases ðdeathsÞ
No: expected for a standard population

A ratio, sometimes a
percentage

Proportional
Mortality Ratio
(PMR)

Compares the proportion of deaths to a
standard population (can be used when
information is only available for deaths)

Proportion of deaths from a specific cause
Proportion expected for a standard population

A ratio, sometimes a
percentage

Case Fatality Ratio
(CFR)

The proportion of people who die from
a disease in a specified (usually short)
time period (actually an incidence
proportion)

No: who die from disease in a specified period
Total no: with disease

A percentage
(or per 1000, 10,000,
100,000, etc.)
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Summary

As you have seen, a plethora of measures are used to try to quantify the health
of a population and each has their advantages and limitations. Some measure
only limited aspects of health but are commonly used because they are easy to
calculate, whereas other more complex measures come closer to capturing
our ideal notion of ‘health’ but are much harder to calculate and thus not so
easily applied in practice. All measures have their uses and selection of the
most appropriate measure for any given situation will depend almost entirely
on the question being asked. You should now be able to interpret most
measures of disease and health that you come across (the key features of
the main incidence and mortality measures are summarised in Table 2.12). It
is still important to be very careful when comparing measures of disease
across different groups of people because many other factors can complicate
the comparisons. We will discuss some of these issues in the following
chapters.

Questions

1. For each of the following scenarios, calculate a measure of the incidence of
disease and identify what type of measure it is:
(a) One thousand healthy women were followed for 8 years and

15 developed high blood pressure.
(b) A large group of elderly men was followed for a total of 5000 person-

years and 75 of the men had a stroke during the duration of the study.
(c) In a community with a population of 50,000 people, 27 developed

diabetes during a 1-year period.
2. Two thousand women aged 55 years were given a health check and

100 were found to have high blood pressure. Ten years later, all
2000 women attended a second check and another 300 women had
developed high blood pressure.
(a) What was the prevalence of high blood pressure in the women (i) at age

55, and (ii) at age 65?
(b) How many women were ‘at risk’ of developing high blood pressure at

the start of the 10-year period?
(c) What was the incidence of high blood pressure in these women? Is this

an incidence proportion or an incidence rate?
Assume that, on average, each of the 300 women who developed high
blood pressure did so half-way through the 10 year follow-up period.
(d) Calculate the total number of person-years at risk (of developing high

blood pressure) during the 10 years.
(e) What was the incidence rate of high blood pressure in these women?

Additional questions
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3. Community A and community B both have crude mortality rates for
ischaemic heart disease of 4 per 1000 population per year. The age-
adjusted mortality rate for ischaemic heart disease in community A
is 5 per 1000 population and the age-adjusted rate for ischaemic heart
disease in community B is 3 per 1000 population. Which of the following is
correct?
(a) community A has a younger population than community B
(b) community A has an older population than community B
(c) diagnosis is more accurate in community A
(d) diagnosis is more accurate in community B

4. Look back to Table 2.10. What does this tell us about the relative import-
ance of chronic obstructive pulmonary disease and lower respiratory
infections as causes of mortality and ill health and explain the patterns
you see.
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The rates and measures that we explored in Chapter 2 provide a variety of
ways to describe the health of a population and thus also enable us to
compare patterns of health and disease between populations and over time.
This allows us to answer the core questions relating to disease burden that are
the essential first step in setting health planning and service priorities. As we
discussed in Chapter 1, this descriptive epidemiology, concerned as it is with
‘person, place and time’, attempts to answer the questions ‘Who?’, ‘What?’,
‘Where?’ and ‘When?’. This can include anything from a description of disease
in a single person (a case report) or a special survey conducted to measure the
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prevalence of a particular health issue in a specific population, to reports from 

national surveys and data collection systems showing how rates of disease or 

other health-related factors vary in different geographical areas or over time 

(time trends). 

Although descriptive data may be collected specifically to answer a 

defined question, they often come from governments, health care providers 

and statistical agencies that routinely collect vast amounts of information. 

Summary data - often the various forms of rate which you met in Chapter 2 -

can be accessed from published reports and, increasingly, from online 

databanks. In some cases it is also possible to obtain information from 

which the rates are calculated at the individual level. These descriptive data 

are essential to identify health problems and for health planning and, 

although they cannot usually answer the question 'Why?', they may provide 

the first ideas about causality and thus generate hypotheses that can then 

be tested in more formal 'analytic' studies that we will discuss in Chapter 4. 

As you will come to see in later chapters, descriptive studies also play a 

critical and often under-appreciated role in monitoring the effects of large

scale interventions. 

In this chapter we will look in liilore oetail at some of the most common 

types of descriptive data and where they come from. However, before 

embarking on a data hunt, we first need to decide exactly what it is we want 

to know, and this can pose a challenge; to make good use of the most relevant 

descriptive data, it is critical to formulate our question as precisely as possible. 

If we want to know about iYOUth suicide, are we interested in the suicide rate, 

the number of hosRitalisations for attempted suicide, or the proportion of 

teenagers who have considered suicide? Mortality data are probably readily 

available from a number of sources, but the accuracy of the underlying 

certification of this cause of death may be problematic. Hospital admission 

data may also be accessible, but might not capture suicide attempts that are 

dealt with in the emergency room and not admitted. Furthermore, separating 

individuals from events can be tricky - are a lot of youths making a single 

suicide attempt each, or are there a smaller number who have made multiple 

attempts? The resulting policy implications are quite different. In contrast, to 

find out what proportion of youths have suicidal thoughts we would probably 

need to conduct a special survey, as this information is unlikely to be cap

tured in routine statistics. 

Case reports and case series 

The identification of a new or recurring health problem often begins with a 

case report or case series. These are detailed descriptions, usually by a doctor 



or group of doctors, of one or more cases of a disease that are unusual for
some reason. This might be because the disease has not been seen before or
the cases may have occurred either in individuals who would not normally be
expected to develop that disease, or in an area where the disease had not
previously been reported or was thought to have been controlled. The cases
might also be reported in conjunction with a previous exposure to something
that, it is speculated, may have caused the disease.
The selective nature of these reports and the limited amount of information

they contain mean that they provide little evidence of causality and cannot say
much about patterns of disease occurrence. However, they can help identify
potential health problems such as the outbreaks of Ebola, severe acute respira-
tory syndrome (SARS), bird flu and swine flu that the world experienced
during the last decade (we will discuss these further in Chapter 13). They
may also stimulate interest in an area, leading to more detailed studies, and
in this regard some have been seminal in advancing knowledge (Box 3.1).
However, if we want to know how big the problem is or even if the occurrence
is really anything out of the ordinary, we need more comprehensive infor-
mation about the frequency of occurrence of the event of interest in the
population.

Vital statistics and mortality data

As you saw in Chapter 2, most of the measures we use in descriptive epidemi-
ology relate the number of events of interest that occurred to the number of
people in the population – for example, the number of new cases of HIV per
100,000 people in a given country in a given year. In this section we will look at
some of the sources of routine data that provide information about the size of
a population and key vital statistics such as birth and death rates before we
move on to consider other more specialised sources of data that provide
information about other health events. We will note some of their advantages
and disadvantages, give examples of the uses to which they can be put, and
provide links to some of the most useful sources. Table 3.1 summarises some
of the more common mortality and morbidity data collection and reporting
systems.

Census data

A census is a regular procedure for systematically counting and collecting
information about everyone in a given population. It is this emphasis on
‘everyone’ that differentiates it from a survey which would normally only
collect data for a sample of people. Early records of national censuses include

Events such as births,
marriages and deaths are
collectively known as vital
statistics, from the Latin vita
meaning life.
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the biblical account of the census conducted in Israel around the time of Jesus’
birth and the Domesday Book compiled by William the Conqueror in England
in 1086. In both cases the goal of the census was to facilitate the collection of
taxes. Sweden was the first European country to establish a regular population
census in 1749. Census data provide information about the number of people
in the population and their age and sex as well as information about where
people have come from, where they live, family structure, education and

Box 3.1 Case reports and case series that were instrumental in the
early identification of health problems

• The classic description of a series of infants born with congenital

cataracts, some with additional cardiac abnormalities, in Australia in

1941. This led a Sydney doctor to postulate a causal link between a

severe epidemic of rubella (German measles) that had occurred

six to nine months before the children were born and the

subsequent abnormalities (Gregg, 1941). It is now well known that if a

woman develops rubella during pregnancy it may affect her

unborn baby.
• A case report published in the UK in 1961 described the development of

a pulmonary embolism in a 40-year-old pre-menopausal woman, five

weeks after she had started using an oral contraceptive (OC) to treat

endometriosis (Jordan and Anand, 1961). Because pulmonary embolism

is rare in women of that age, the authors suggested that it might have

been caused by the OC, particularly as it was a novel exposure at that

time. A report of one case could not provide conclusive evidence that it

was the OC rather than some other characteristic of the patient that led

to the embolism – but it did pave the way for more detailed studies.

These have consistently shown that there is an association between the

use of OCs and the risk of this condition.
• A report of a series of five cases of Pneumocystis carinii pneumonia that

occurred in young, previously healthy, homosexual men in three Los

Angeles hospitals in a six-month period during 1980–81 (CDC, 1981).

Until then, this disease had been seen almost exclusively in the elderly,

the severely malnourished and those on anti-cancer chemotherapy

whose immune systems were suppressed. This cluster of cases in young

men suggested that the men were suffering from a previously unknown

disease, possibly related to sexual behaviour. We now know this

as AIDS.
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Table 3.1 Some common health data collections and reporting systems.

Data collection or
reporting system Source of raw data

Summary data
published

Individual-level data
sometimes availablea

Census Census forms (self-reported);
completion required by law

Population
estimates, overall
and in subgroups

–

Civil registration or vital
statistics systems
(national)

Birth, marriage and death
certificates; often required
by law

Fertility and
mortality rates

Date and cause of death
(through a National Death
Index or Register)

Health and demographic
surveillance systems
(regional)

Regular surveys of the same
population

Vital statistics and a
variety of other
data

–

Disease registries (e.g.
cancer registries, injury
registers)

Pathology reports, testing
laboratories, hospital and
medical records; sometimes
required by law

Incidence, mortality
and survival rates,
prevalence

Diagnosis, date, disease
characteristics and
demographics;b mortality
data may also be
available

Notifiable disease
systems (e.g. AIDS,
SARS, TB, other
infectious diseases)

Laboratories, medical
practitioners and hospitals

Numbers of cases,
incidence rates

Diagnosis, date, disease
characteristics and
demographics

Hospital administrative
systems

Hospital discharge sheets and
databases, medical records

– Diagnosis, date, medications
prescribed, investigations
and procedures
performed, costs and
demographics

Other administrative
health systems, e.g.
prescribing and
insurance databases

Prescriptions, investigations
and medical procedures
performed

Health service use
and costs

Date, medications prescribed,
investigations and
procedures performed, costs

Demographic and Health
Surveys (morbidity,
risk factors, needs,
service use, etc.)

Special surveys, sometimes
national, often repeated
at regular intervals
with a different sample
of the population each
time

Special reports De-identified grouped data
sometimes available

Special surveillance
systemsc

e.g. ‘sentinel’ primary care
practices or disease registers
(UK GP data base), MONICA
(international CHD)

Varied Varied

a With appropriate consent/approvals.
b Basic demographic information such as age, sex, and last known address.
c See Chapter 12 for a more detailed discussion of surveillance systems.
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employment. The United Nations recommends that countries conduct a
census at least every 10 years and provides guidelines regarding the infor-
mation that should be collected in a census in order to standardise practice
(United Nations, 2008). Census data usually provide the best estimates of the
number of people in the population, both overall and by key characteristics
such as age, country of birth, area of residence and level of education, and
they are usually readily available in summary form through the relevant
national statistics office.

Civil registration systems

While censuses provide valuable snapshots of a population at isolated points
in time, they inevitably miss events that occur between census years. Civil
registration refers to the ongoing compulsory recording of the occurrence
and characteristics of events such as births, marriages and deaths within a
population. In most countries, the registration of these events is a legal
requirement and the resulting birth, marriage and death certificates are legal
documents. So, for example, when someone dies, a medical practitioner
must complete a medical certificate that usually includes basic demographic
information about the individual, including name, date of birth, ethnicity
and gender, as well as the date and cause(s) of death. This goes to the
Registrar who registers the death and issues a legal death certificate.
Information about the cause of death is coded according to the WHO
International Classification of Diseases or ICD (World Health Organization,
2015) and used to compile national mortality statistics. Again, Sweden was
one of the first countries to establish a nationwide population register and, as
a result, Statistics Sweden has national statistics spanning a period of more
than 250 years (e.g. see Figure 3.1). Elsewhere, the General Register Office of
England and Wales has records of births, marriages and deaths dating back
to 1837 with data from Australia, New Zealand, the USA and Canada avail-
able from the late nineteenth century. These data form the basis of many of
the mortality-based measures that you met in Chapter 2 and historical
information is often made available to individuals for genealogy research.
Access to more recent records is tightly controlled but sometimes possible
for approved medical research (e.g. see National Death Registers, below).
Complete coverage, accuracy and timeliness are critical for quality vital
statistics and good population statistics are essential to measure and track
health indicators such as the Millennium Development Goals that you met
in Chapter 2.

Describe the changes in life expectancy by age and sex over time shown in
Figure 3.1 and comment on the patterns.

Demography, the study of
the characteristics of human
populations such as
population size, growth and
distribution and vital statistics
such as births and deaths, has
many parallels to descriptive
epidemiology.
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Life expectancy at birth increased by about 45 years compared to increases of
only 10–15 years for life expectancy at ages 50 and 65. Why is this?

In the late eighteenth century, average life expectancy in Sweden was only
about 35 years for men and women, although then, as now, women could
expect to live slightly longer than men. This young average age was a
consequence of the very high mortality rates in babies and children at the
time and improvements in this area led to much of the large gains in average
life expectancy, particularly between 1850 and 1950. However, even in 1800,
if an individual survived their childhood years and made it to their 65th
birthday they could then expect to live to about 75. Now, most deaths in a
country like Sweden occur over the age of 65; thus, someone who reaches
that age can still only expect to live until about 85, a much more modest
improvement.

National death registers
Recognising the enormous value of the information, particularly the mortal-
ity data, collected by their registries of births, marriages and deaths, many
countries with a comprehensive civil registration system now also operate a
national death register or index to facilitate health research. These electronic
registers hold information about the name, date of birth and sex of every
individual who has died since the register began, as well as their date, place
and cause of death and they allow bona fide researchers conducting scientif-
ically and ethically approved studies to obtain death information for individ-
uals in their studies. In some countries it is also possible to get approval to
‘link’ these data to other health data sets; we will discuss this further in
Chapter 4.
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Figure 3.1 Time trends in life
expectancy at birth, age 50 and age
65 years, by sex, in Sweden
(1751–2013.) (Source: Statistics
Sweden http://www.scb.se/en_/,
accessed 31 August 2014).
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Verbal autopsy
In many lower-income countries the vital registration systems are less well-
developed than in high-income countries and, although the fact of death is
registered, information about cause of death may not be available. In these
areas an alternative method used to capture information about causes of
death, particularly among children, is the verbal autopsy. These ‘autopsies’
are conducted by a structured interview with the family members about the
circumstances of their relative’s death. This information can then be used to
classify the cause of death according to defined rules and criteria. For
example, until recently up to 40% of the 400,000 deaths each year in
Thailand were classified to poorly defined conditions, and there were con-
cerns regarding the accuracy when specific causes were assigned. To obtain
more reliable information about the patterns of mortality in Thailand,
researchers conducted almost 10,000 verbal autopsies and compared the
results to those obtained from the vital registration system. This showed that
for some conditions mortality rates were at least double those estimated
from vital registration data, while life expectancy was approximately two
years lower (Porapakkham et al., 2010). An even larger project, the Million
Death Study (MDS, Centre for Global Health Research, 2015) is ongoing in
India where, despite the introduction of laws mandating birth and death
registration in 1969, some states still have low rates of death registration.
The MDS, which is monitoring almost 14 million people in 2.4 million
nationally representative households from 1998 to 2014, uses verbal autop-
sies to assign a probable cause to any deaths that occur. The resulting data
help identify areas with excess mortality so that action can be taken to
reduce preventable deaths. While initially used primarily in the research
setting, there is now a push to incorporate verbal autopsies into the routine
death registration process in countries with less-developed vital registration
systems, and WHO and other groups are working to develop a standard
instrument for verbal autopsy.

Health and demographic surveillance systems

In many sub-Saharan African countries and some countries in Asia, the civil
registration and vital statistics systems are incomplete or non-existent. In the
absence of a comprehensive national system, Health and Demographic
Surveillance Systems (HDSS) have been established to monitor vital events
within a defined region. Some of these systems have been in existence for
several decades, for example the Niakhar HDSS which was first established in
a rural area of Senegal in 1962 and now includes 30 villages with a combined
population of approximately 43,000 (Delaunay et al., 2013). As well as collect-
ing standard vital statistics, the HDSS often collect additional information
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about locally relevant health issues, such as the vaccination status of children
and cases of vaccine-preventable diseases or other diseases such as malaria.
Unlike the Demographic and Health Surveys that we will discuss below, the
key feature of a HDSS is that it follows the same group of people over time.1

In 1998, the International Network for the Demographic Evaluation of
Populations and their Health (INDEPTH; www.indepth-network.org2) was
established to bring together the existing HDSS sites and encourage new sites
to join (Sankoh and Byass, 2012). In 2014 there were 49 member centres from
22 countries including 36 from 15 countries in sub-Saharan Africa. Use of the
verbal autopsy is common in the HDSS regions and the INDEPTH Network has
been closely involved with WHO in developing standardised forms for this.

Challenges in using mortality Data

As we noted above, death registration is a legal requirement in most countries.
The registration of a death therefore establishes the fact that someone has died
with virtual certainty. Unfortunately, the information is less reliable when the
cause of death is of interest, rather than the simple fact that a death has
occurred. This can be a consequence either of misdiagnosis (e.g. if a doctor
does not know a person’s full medical history) or of mis-specification on the
form. The sample certificate shown in Figure 3.2 shows the challenge of
getting the sequence and content right. Look at the instructions on completing
the ‘cause of death’ section: it will often not be easy, and those dying at older
ages tend to have a number of coexisting diseases. How should the practi-
tioner sequence the diagnoses of an overweight woman who has had diabetes
for 20 years and high blood pressure for 10 years and who dies of pneumonia
1 year after suffering a stroke? Such a scenario is not uncommon, so we can be
left with considerable uncertainty about the actual cause of death even on
inspection of the original form. Indeed, in research studies where people are
followed up for mortality, considerable extra effort often needs to be made in
collecting clinical and pathology records in order to ensure accuracy in
assigning cause of death. This can never be the case for routine vital statistics
collections (it is far too expensive), so reports of mortality rates based on death
certificates need to be used circumspectly. Generally only a single cause is
extracted from the death certificate for each person who has died, that which
is thought to be underlying any subsequent conditions. Multiple cause of
death coding has recently been introduced in some countries but, while this

1 This characteristic means the HDSS have many parallels with the cohort studies that we will

discuss in Chapter 4.
2 The web addresses given throughout this chapter and elsewhere in the book are current as of

mid-2016 but, although most have been stable for some time, web addresses can change.
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Medical Certificate of the Cause of Death
To the Registrar-General

I hereby certify that 
(name in full)

aged                           years, date of birth     __/ __/ __      who usually resided at 

Postcode was attended and last 

seen by me on        __/ __/ __       (or by*  Dr. on   __/ __/ __     
*if not attended by certifying medical practitioner within 3 months prior to death, insert 
name of medical practitioner who last attended deceasedand date) 

and I am informed that he/she died on         __/ __/ __      at

(town, place etc of death)

Cause of Death (print clearly and do not abbreviate) Duration of 
last illness

Disease or condition directly leading to death
(This means the disease, injury or complication which 
caused death – NOT ONLY, for example, the mode of 
dying such as “heart failure”, “asphyxia”, etc)

1a

due to, or as a consequence of
1b

due to, or as a consequence of
Antecedent causes - morbid conditions, if any 
giving rise to the above cause, stating the
underlying condition last

1c

due to, or as a consequence of
1d

Other significant conditions
Contributing to the death, but not related to the
diseases or condition causing it

2

Date and type of operation in the last 4 weeks __/ __/ __

Was a Coroner consulted before issuing this certificate?

No, death not subject to the provisions of the Coroners Act

Yes, issue of this certificate agreed to by , Coroner

Signature of Medical Practitioner Date __/ __/ __        

Initials and Surname (BLOCK Letters)

Professional Qualifications

Figure 3.2 A typical form completed to record a death.
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may alleviate the problem of coding multiple conditions, it introduces
another – the question of how to report and use this extra information.

Figure 3.3 shows diabetes mortality rates over time in the USA. What explan-
ations can you think of for the sudden change that occurred between 1948 and
1949? Which do you think is most likely?

We saw in Chapter 1 (Figures 1.7 and 1.8 ) that US death rates for a number
of causes have been declining over time, but none as dramatically as seen here
in Figure 3.3, where the mortality rate for diabetes appeared to halve between
1948 and 1949 before plateauing at the new level.3 This could be due to a
spectacular new treatment (but insulin is still the mainstay, as it was in the
1940s), or to fewer cases of diabetes occurring (but no good means of pre-
venting diabetes had been identified). So we are forced to consider artefacts in
the data as a possible explanation. Here the dramatic shift in diabetes mortal-
ity was due to a coding change in the International Classification of Diseases
(ICD), such that, when diabetes and coronary heart disease occurred together,
diabetes was no longer listed as the underlying cause.
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Figure 3.3 Age-adjusted mortality
rates for diabetes by gender (females,
open circles; males filled circles) in
the USA, 1938–1960, Whites only.
(From Methods in Observational
Epidemiology, 2nd edition, by Kelsey,
Thompson and Evans (1996),
Figure 3.2, p. 51. By permission of
Oxford University Press, USA.)

3 During this period most deaths would have been from type 1 or insulin-dependent diabetes

that is usually diagnosed at younger ages. Unlike type 2 diabetes, which is associated with

overweight and obesity and is increasing in incidence, type 1 diabetes is not related to obesity.
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Not surprisingly, some diseases are recorded more accurately on death
certificates than others. One that is rapidly fatal is likely to be clear-cut,
whereas with a long-term disease there is more chance of another illness
occurring and being recorded on the death certificate instead. For example,
many people like the woman described above would not have diabetes
recorded anywhere on their death certificates. Similarly, diseases that are
easily diagnosed tend to be more accurately recorded than those that require
more complex diagnostic procedures; in the absence of an autopsy (and they
are now uncommon), death from a motor vehicle accident would clearly be
easier to recognise than one from pancreatic cancer. In an Australian study it
was found that the overall accuracy of death certificates was only 77%
compared with autopsy records, although cancers were accurately reported
in 90% of cases (Maclaine et al., 1992). A similarly high concordance for
cancers was found in a UK study linking death certificates and hospital
records, but chronic diseases such as diabetes and hypertension were cor-
rectly listed as an underlying cause only about half of the time (Goldacre,
1993). More recent studies have continued to report considerable levels of
discrepancy between the cause of death listed on a death certificate and that
assigned based on an independent review of the medical records (Rampatige
et al., 2014).

Certain diseases may also be under-reported because of a reluctance to
record the information. This might be either because of the potential stigma
attached to the patient, as in the case of a death from suicide or AIDS, or
because of the possibility that blame might be attached to the physician. The
UK research found that conditions generally regarded as ‘avoidable’ causes of
death were frequently omitted from the death certificate; for example, frac-
tured neck of femur (broken hip) in the elderly was recorded in only one-
quarter of cases.

Morbidity data

Although mortality data can provide valuable information about the health
of a population, they are clearly more useful for conditions associated with
a high death rate and provide little or no information about the many
conditions that are not normally fatal. Unfortunately, it is much harder to
find reliable morbidity data. The scope of information is enormous and little
is captured in a systematic way. As a result, it is rarely simple to obtain
complete information at a local level, and the problems escalate dramatic-
ally when trying to make comparisons between regions or countries. Having
said that, attempts are made to record some aspects of morbidity in a
routine way and these sources can provide valuable information (see
Table 3.1).

Cause of death coding is
particularly challenging for
suicide as it may be hard to
differentiate between
intentional self-harm and
accident. While the reported
number of suicides has fallen
in Australia since 1997, the
numbers of deaths coded as
accidents involving asphyxia
or firearms, methods
suggestive of suicide,
increased. Overall, the authors
suggested suicide cases were
undercounted by between
11% and 16% (De Leo et al.,
2010).
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Disease registries

Cancer is the only disease group for which good morbidity data are widely and
routinely available. Some countries, most notably in Scandinavia, have cancer
registries that cover the whole country and have been operating for many
decades. In others, such ‘population-based’ registries are newer and less well-
established or, as in the USA, cover only part of the population. However,
coverage is generally increasing, and a wealth of data on incidence, mortality
and survival is available at regional, national and international levels. In some
jurisdictions cancer is a legally notifiable disease, whereas in others (e.g. the
UK) comprehensive identification of cases has come about gradually due to a
combination of enthusiastic local registries and increasing awareness of the
value of good morbidity data for planning and evaluating services. Cancer is
an ideal candidate for such monitoring due to its relatively clear-cut diagnosis,
usually based on a single simple record (a pathology report of histology).
Rapid advances in technology now allow much of this information to be
transferred electronically from the pathologist to the registry. An added benefit
is that cancer registries around the world collaborate through the International
Association of Cancer Registries and the International Agency for Research on
Cancer (IARC) to compile detailed information about cancer incidence and
mortality at a global level. These data are made widely available through the
publications ‘Cancer Incidence in Five Continents’ and the ‘GLOBOCAN’
project, both accessible through the IARC website (see Box 3.4).
Many health authorities also keep registers of notifiable infectious diseases,

although their prime purpose is for real-time surveillance to allow rapid
response to emerging epidemics. (We will come back to discuss surveillance
in more detail in Chapter 12.) Data for these registers usually come from
medical practitioners and pathology laboratories, often under legal compunc-
tion. Despite this, and in contrast to cancers, most such diseases are poorly
reported. Exceptions are those conditions which are perceived to be more
severe, presenting either an acute challenge to a health system (SARS, AIDS)
or a long-standing threat, such as tuberculosis. WHO publishes summary
statistics for a number of infectious diseases including cholera, meningococcal
meningitis and the conditions covered by the Millennium Development Goals
including HIV and AIDS, malaria and tuberculosis through their Global Health
Observatory. Although other disease registries exist (or have existed) to meet
local health or research needs, they cover only a small minority of conditions.
For example, when it was noted that mortality from coronary heart disease
(CHD) had started to fall in some countries in the late 1960s, it was not obvious
what was driving this. Cardiologists of course claimed that better treatment in
the newly introduced coronary care units meant that fewer patients were dying
(lower case fatality). It was also possible that the number of new cases
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(incidence) was falling due to changes in smoking and dietary patterns, but no
directly relevant data were available to clarify the public health debate. WHO
responded in the early 1980s by encouraging the establishment of a series of
registers around the world to capture international trends in CHD incidence
(the MONICA programme). These provided a wealth of data on CHD inci-
dence, risk factors and mortality (Tunstall-Pedoe et al., 1999), leading to the
conclusion that both falling incidence and better clinical outcomes had con-
tributed to the drop in death rates. However, now that their job is finished,
most of the MONICA sites have stopped active monitoring. Other conditions
that are sometimes covered by registries include injury (e.g. the Australian
Spinal Cord Injury Register) while Australia, Sweden and Norway amongst
others operate a Diabetes Register that covers all or part of the population.

Health records

Governments, health care providers and health insurers have to maintain good
records for administrative and financial reasons and these also generate essential
information about service provision and health care quality and delivery.
Hospital records can provide useful information on conditions that require
hospitalisation. Although detailed patient recordsmay only exist in paper format,
making it necessary to go through individual files by hand to collect the required
information, many countries now require hospitals to keep electronic records of
all patients seen, the conditions they were diagnosed with, and any treatment
provided. These data should be fairly reliable, although varying degrees of
misdiagnosis, mis-recording and mis-coding are inevitable. A further limitation
occurs where there is no unique patient identifier because aggregate admissions
will be greater than the number of people admitted to hospital (because some
will go to hospital more than once). Choosing the right numerator for a morbid-
ity rate can thus be a challenge. There may also be local idiosyncrasies that affect
the utility of the data. For example, in Australia, funding for public hospitals is
provided at a state level so each state maintains an ‘Admitted Patients Database’
with detailed information about inpatients treated in public hospitals in the state.
In contrast, reimbursement for procedures performed in private hospitals is the
responsibility of the national government and information about these is held in
a separate national database (the Medical Benefits Scheme, MBS). It is therefore
important to consider whether data obtained will be representative of the
general population or whether any conclusions will be restricted to the specific
individuals from whom the data were obtained, for example those treated in a
private hospital in the case of the Australian MBS data.

It is also important to remember that hospital databases can only provide
information about those admitted to hospital. For conditions such as heart
attacks that almost always require hospitalisation, they may provide good

In the UK, NHS Digital provides
information on a wide range
of health indicators
(www.digital.nhs.uk).
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information on the levels of disease in the community. For conditions com-
monly treated outside hospital or that do not require an overnight stay,
however, the hospital-based population will not be typical: rather, it will be
biased towards those with more severe disease, or towards those groups of
society more likely to be hospitalised. Information about the potentially greater
burden of conditions treated by family practitioners or in the home is harder to
obtain, although some of this information is now becoming more accessible. As
an example, the Clinical Practice Research Datalink in the UK (www.cprd.com)
contains over 13 million patient records from 650 primary care practices.
A wide range of other health data may also be available, for example in

some countries it is possible to access electronic data regarding medications
prescribed at a regional and/or national level. These may only be available in
the form of summary statistics but, with appropriate scientific and ethical
approvals, it is sometimes possible to access individual-level information for
research. We will discuss the use of these and other health databases for data
linkage further in Chapter 4.

Prevalence surveys

If we want to measure the prevalence of a disease that is not captured by other
routine statistics, or another aspect of health – for example, conditions such as
obesity, health-related behaviours (e.g. smoking, sun-exposure, diet) or use of
health services – it may be necessary to conduct a special survey. This might
vary in size and complexity from a simple face-to-face survey of people
attending a specific location or event, for example shoppers at a mall, to a
national mail- or telephone-based survey of several thousand people carefully
selected to represent the whole population. Whatever the purpose, it is import-
ant to remember that the information collected will only be directly relevant to
the people who were surveyed. If the goal is to apply this information to a wider
population, such as everyone living in the local community, it is essential to
ensure that the sample of people who were actually questioned (the study
population) is as representative of the community (the target population) as
possible. The best way to ensure this is to select them at random from the
population such that everyone has an equal chance of being selected. However,
this is not as easy to do in practice as it might seem (see Box 3.2).
Many countries now conduct regular demographic and health surveys to

collect information at a national level. A major advantage of these government-
led surveys is that legislation may exist to compel people to take part, thereby
greatly reducing the potential for bias. These spot checks on the overall health
of a community are crucial to expanding our understanding of health burdens,
needs and services beyond the hospital sector. They can also be used to
monitor changes in the heath of a nation or region over time. In recent decades

A group of people recruited
from e.g. a shopping mall is
often called a convenience
sample because the people
are chosen for practical
reasons (it is easy to stop
them to ask a few questions).
While the information they
give may tell us about people
who shop at that mall on that
day and at that time, it may
not be relevant to the rest of
the population.
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Box 3.2 Sampling

In practice it is rarely, if ever, possible to survey everyone in the population

that we are interested in and the people who actually end up completing

the survey may only be a very small minority (see Figure 3.4). If, for

example, we define the target population as the population living in

Australia, then we would like to have a list of everyone who lives in

Australia to select people from – the sampling frame. One option is the

national electoral roll (enrolment to vote is required by law in Australia),

but this roll only includes Australian citizens (so misses those who are

permanent residents but have not taken Australian citizenship), and it

does not include anyone under the age of 18. Also, because the list is

usually only updated prior to a general election, the information it holds

may be inaccurate if people have died, moved house or changed their

name. Then, even if we select a random sample of people from the

electoral roll (although not straightforward, it is still possible to get access

to lists of names and addresses from the Australian electoral roll for

approved health research), not all of these people will agree to take part in

our survey (in practice, only 10%–20% of those approached via the elect-

oral roll now agree to take part in a research study). The types of people

who agree to take part in surveys are often very different from those who

do not want to take part, so the final study population may, therefore,

differ quite markedly from the Australian population as a whole. This

means that the information we get from them may not accurately reflect

the true prevalence in the whole population. We will discuss this issue of

selection bias in more detail in Chapter 7.

Study population =
people who actually 
took part in the survey

Sample = people 
approached to take part 
in the survey

Source population or
Sampling frame =
people from whom the 
population is selected 

Target population = 
people you want your 
results to apply to

For example:

Everyone living 
in Australia

Everyone on 
Australian 

Electoral Roll

Random sample 
of those listed

Those who agree 
to take part

Figure 3.4 Sampling.
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they have become a feature of broad-based ‘community diagnosis’ and health
planning, using a wide range of sampling and data-capture designs including
telephone and face-to-face interviews, and sometimes very detailed physical
examinations. One of the longest running examples is the National Health and
Nutrition Examination Surveys (NHANES) conducted in the USA since 1956
(see Box 3.3); and since 1991, 5000–15,000 adults have been interviewed every

Box 3.3 The US National Health and Nutrition Examination Surveys
(NHANES)

NHANES is probably the largest and longest-running national source of

objectively measured health and nutrition data. It was born out of the

National Health Survey Act of 1956, which provided for the establishment

of a continuing National Health Survey to obtain information about the

health status of individuals residing in the USA, and responsibility for this

was given to the National Center for Health Statistics (NCHS). It was

originally known as the National Health Examination Survey (NHES) and

the first wave was conducted in 1959–62 (see Table 3.2). Subsequent

waves focussed on children and then adolescents before the NHES was

combined with the National Nutrition Surveillance System, which had

been established in 1969, to create the current series of NHANES in 1971,

and this is still running in 2016. The NHANES populations are carefully

selected to reflect the multifaceted US population, and they have given

rich descriptions of many prevalent conditions.

(Data source: http://www.cdc.gov/nchs/nhanes.htm,

accessed 31 August 2014.)

Table 3.2 The US National Health and Nutrition Examination Surveys.

Survey Years Population
Size
(approximate)

NHES I 1959–1962 Age 18–79 7,800
NHES II 1963–1965 Age 6-11 7,400
NHES III 1966–1970 Age 12–17 7,500
NHANES I 1971–1975 Age 1–74 32,000
NHANES II 1976–1980 Age <1–74 28,000
Hispanic (H) HANES 1982–1984 Age <1–74 16,000
NHANES III 1988–1994 Age > 2 months 34,000
NHANES
Continuous

Annual from 1999,
data released in
2-year cycles from
1999–2000

All ages 5,000 p.a.
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year for the Health Survey for England (HSE) (Mindell et al., 2012). These
undertakings are very expensive, so in both cases the investigators have
increased the value of the baseline information by asking participants to
consent to follow-up to identify risk factors for subsequent morbidity (requiring
further personal contact or through linkage to cancer registration data) and
mortality (by linking to centrally held death records). Similar surveys are now
conducted in many other countries.

Figure 3.5 shows some contemporary data that will be important for future
health care planning.

How is the prevalence of diabetes related to age?

What additional data are needed for a comprehensive planning response?

We see that, in 2010, the prevalence of diabetes in China rose markedly with
age, affecting almost one quarter of the population over the age of 70 years.4

This is a very heavy clinical load to manage: diabetes is a metabolic disease
with many consequences, including heart and kidney damage, and adequate
numbers of doctors, nutritionists and podiatrists must be provided and their
care integrated. For a better view of the future health care burden (and the
potential for prevention) we need to know time trends both in diabetes and for
its risk factors. The very high prevalence of prediabetes, even among the
young, foreshadows a major challenge as it suggests the prevalence of diabetes
may increase markedly in the future (Xu et al., 2013).

To a large extent, studies such as these are purely descriptive and their aim
is primarily to survey a sample of the population in order to determine the
prevalence of the factors of interest in the community, often to aid health
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Figure 3.5 Estimated prevalence
of diabetes (light bars) and
prediabetes (dark bars) among Chinese
adults in 2010, by age group. (Drawn
from: Xu et al., 2013.)

4 In this study the diagnosis of diabetes was based on the ADA criteria using results from

clinical tests, but a limitation of many prevalence surveys is their reliance on self-reporting by

participants.

92 Descriptive epidemiology



planning. Sometimes, however, the breadth of information collected allows
much more in-depth analysis of the relationships between health behaviours
and conditions. For example, the Australian National Health Survey collects a
vast array of information from participants about their health behaviours such
as alcohol consumption, smoking and physical activity and about health
conditions including diabetes, injury and mental health problems. This allows
us to look at the relation between behaviour and health. For example in
2004–05, people who reported high levels of psychological distress were more
likely to be physically inactive than those with low levels of distress, or, in
other words, the prevalence of inactivity was much higher in those with
distress (48%) than those without distress (31%) (ABS, 2006). A study like this
that looks at the relation between two aspects of health in a ‘cross-section’ of
the population is often described as a cross-sectional study and we will
discuss these further in Chapter 4.

Demographic and health surveys
Since 1984, the United States Agency for International Development has
collaborated with agencies in low- and middle-income countries to conduct
nationally representative surveys through the Demographic and Health Survey
(DHS) program (www.dhsprogram.com). Unlike the HDSS described above,
the key characteristic of these surveys is that they collect information from a
different sample of the population at each time point and the content of the
surveys often changes from year to year. As at late 2014, more than 300 surveys
had been conducted in more than 90 countries. These surveys have a focus
on measures of fertility, maternal and child health, nutrition and health
behaviours as well as mortality, and they provide an additional resource for
monitoring vital statistics as well as a range of population health indicators
(Corsi et al., 2012). The data have also been combined with information from
UNICEF (the United Nations Children’s Fund) for the Countdown to 2015:
Maternal, Newborn and Child Survival project, which was established in 2005
to stimulate and monitor progress towards the Millennium Development Goals,
particularly Goals 4 and 5 which focus on child and maternal health (Requejo
et al., 2014). This project now provides profiles for each of the 75 countries that
together account for more than 95% of all maternal and child deaths.

Creative use of existing data

The many sources of data on mortality, morbidity and other factors relevant to
health are, inevitably, of varying reliability, quality and completeness. This is
true not only across different countries (note that our emphasis here is on the
better-developed data systems), but also within any country, because all
public data sets will have some problems, and some of them will have many.

Good prevalence data are
also essential to estimate the
proportion of disease
attributable to different risk
factors; we will come back to
this in Chapters 5 and 14.
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Any comparisons should be made only with a good understanding of the
accuracy and completeness of the raw data underlying the summary rates.
Another thing to remember is that the data will almost certainly have been
collected for a reason other than your question of interest and therefore might
not be in the ideal form for your purpose. For example, the definition of who is
a ‘case’ might not fit your criteria exactly; the data could have been collected
for age groups that do not correspond to those you want to know about, and so
on. It is always important to balance these disadvantages against the major
advantage of using existing data – someone else has already done the hard
work to collect it. New ways of accessing and displaying this information are
continually appearing and Box 3.4 shows some current examples.

Although, as we said at the start of the chapter, descriptive epidemiology is
mainly concerned with ‘who, what, where and when’ we can also use simple
descriptive information to start to link exposures and health outcomes to try to
determine ‘why’ disease occurs. For example, Figure 3.6 shows trends in lung
cancer mortality over time in Hungary, the UK and the USA.

What does this graph tell us about lung cancer? Why might rates have risen in
Hungary between 1980 and 1995 but fallen in the UK and USA? Do we need any
other information before we can draw any conclusions from this information?

Figure 3.6 suggests that lung cancer mortality rates in the UK have fallen
dramatically since the early 1970s, whereas in the USA they are gradually
falling after having peaked in the 1980s. In contrast, the rates in Hungary rose
markedly in the 1980s and only started to fall in the late 1990s. However,

Box 3.4 Good sites for accessing and visualising international
health data

• WHO Global Health Observatory (www.who.int/gho/en/) provides

access to data, graphs, and maps showing a wide range of health-related

information from the World Health Organization.
• IHME (the Institute for Health Metrics and Evaluation) (www.healthdata

.org/gbd) has a series of visualisation tools that allow you to interact

with and view data from the Global Burden of Diseases (GBD) project.
• The Global Cancer Observatory (gco.iarc.fr) provides access to graphs,

charts and maps via GLOBOCAN and the Cancer Incidence in Five

Continents database from the International Agency for Research on

Cancer.
• Gapminder World (www.gapminder.org) uses moving graphs to show

how a wide range of socioeconomic and health indicators have changed

over time in different countries.

Useful sources of data
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before we accept that these are real differences, we must consider whether
there might be an alternative explanation for the observed patterns. Is lung
cancer diagnosed in the same way in each country? Have either the method of
diagnosis or the criteria for diagnosis changed over time and have they
changed differently in the three countries? Does lung cancer mortality mirror
the incidence of lung cancer (i.e. is lung cancer really more common in
Hungary?), or are the mortality rates higher in Hungary simply because
treatment is less effective and the case–fatality ratio higher? Are lung cancer
mortality rates in the UK and USA falling because the incidence is falling or
because treatment has improved? If this is a real effect, does the fall in rates in
the western countries reflect the reduction in cigarette smoking?
Data of this type leave us with many questions but few definitive answers.

However, if we can relate them to changes in other factors that might influence
mortality they can add support to a hypothesis. For example, by plotting a graph
of per-capita cigarette consumption over time and comparing this with lung
cancer mortality rates (Figure 3.7), we find that the rise in lung cancer mortality
in the USA parallels increasing cigarette sales, but it occurred 20–30 years later.
This represents the two to three decades that it takes smoking to cause lung
cancer and kill someone. The fact that lung cancer rates started to fall again
20–30 years after the decline in smoking adds further weight to the hypothesis
that smoking causes lung cancer: if this fall had not occurred then the hypoth-
esis would have failed a critical test – removal of the cause should reduce the
incidence of disease. So, although these data do not prove that smoking causes
lung cancer, they add weight to the belief that it could. If we found that an
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Figure 3.6 Age-standardised death
rates from lung cancer among men
aged 40–69 years in Hungary
(triangles), the USA (open circles) and
the UK (filled circles). (Data source:
WHO Cancer Mortality Database
(WHO, 2014; United Nations, 2012),
http://www-dep.iarc.fr/WHOdb/
WHOdb.htm, accessed 24 May 2015.)
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increase in cigarette consumption in Hungary occurred much later than the
increases seen in the UK and USA, this would strengthen the belief even further.

Migrant studies

Another creative use of descriptive data comes from what are often called
migrant studies. One of the challenges we face when we try to interpret
differences in disease rates between countries is separating the effects of
nature and nurture. Do Japanese women have very low rates of breast cancer
compared with White American women because they are Japanese (i.e.
because of a different genetic predisposition) or because they live differently
(i.e. have different environmental exposures, such as diet)? For some popula-
tions we are fortunate to have what could be called ‘natural experiments’
when large numbers of people have migrated from a country with a low risk of
a particular disease to a high-risk country, or vice versa, which can help to
answer these questions. For example, large numbers of Japanese have
migrated to Hawaii and California, and Table 3.3 shows SMRs comparing
mortality rates in these migrants, their offspring and the US white population
to the Japanese population in Japan.
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Remember from Chapter 2
that a Standardised
Mortality Ratio (SMR) of
100 indicates no difference;
an SMR of 120 suggests
mortality is 20% higher than
in Japan, etc.
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Describe the data shown in Table 3.3. Do you think the differences between
breast cancer rates in Japan and the USA are due more to genetics or lifestyle?

Table 3.3 shows that the mortality rates of colon cancer, breast cancer and
heart disease among the migrants have moved away from the low levels in
Japan towards the higher levels of the USA; the converse is seen for stomach
cancer and stroke mortality rates, which are both lower in the USA than in
Japan. For colon cancer and stroke these changes happened very quickly, with
the migrants themselves assuming rates similar to the white US population; for
stomach cancer the decline happened over the first generations after migra-
tion; while for breast cancer and heart disease, the changes have been less
marked. If these diseases were largely genetic in origin then the rates could not
have changed so quickly when the migrants moved to the USA. This strongly
implicates the importance of the environment in increasing or decreasing the
migrants’ risk of disease, and has led to enthusiasm for the idea that diet plays
an important causal role in these diseases. However, the only specific causal
hypothesis that is directly tested by such data is that large-scale international
variation in these diseases is not primarily genetic in origin.5

Ecological or correlation studies

Figure 3.8 shows the relation or correlation between the prevalence of infection
with Helicobacter pylori (a bacterium that infects the stomach) and stomach

Table 3.3 SMRs for selected cancer sites and cardiovascular diseases among Japanese
migrants to the USA (1959–62), their offspring (1959–62), and US Whites (1959–61)
compared to Japan (1960–61) (data from Haenszel and Kurihara, 1968).

Standardised Mortality Ratios (SMR)

Cause of death
Japanese
in Japan

Japanese
migrants to
USA

Offspring of
migrants in
USA

White US
population

All cancer 100 128 78 104
Stomach cancer 100 72 38 17
Colon cancer 100 135 129 140
Breast cancer 100 166 136 591
Degenerative heart disease 100 266 165 481
Stroke 100 32 24 37

5 Note that a minority of women do develop breast cancer because they have a mutation in a

gene known to influence breast cancer risk; the most important of these are known as BRCA1

and BRCA2.
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cancer mortality rates in 46 Chinese counties (Forman et al., 1990). In this
study, the prevalence of infection was measured as the percentage of the
population in the county with antibodies to the bacterium (an indication that
they were or had been infected) and the cumulative gastric cancer mortality
rate is the rate per 1000 men and women (summed from birth to age 64).
(Note that cumulative mortality is comparable to the lifetime risk that you met
in Chapter 2.) Each spot on the graph represents one of the 46 counties.

Describe the data shown in Figure 3.8. What, if anything, does this tell you
about the role of H.pylori infection in causing stomach cancer?

There is not a perfect association, but the graph indicates that counties with
a higher prevalence of H. pylori infection also tend to have higher stomach
cancer rates and, perhaps more importantly, counties with a low prevalence of
H. pylori have low stomach cancer rates. This hints that H. pylori might play a
role in the development of stomach cancer; however, the fact that some
counties have a high H. pylori prevalence but a low stomach cancer rate
suggests that infection alone is not enough to cause cancer. Other factors
must also play a role.

This example illustrates the key characteristic of ecological studies – they
compare the prevalence of exposure and occurrence of disease in populations or
groups of people, not individuals. The points on the graph represent the
population prevalence of infection (in this case, taken from special surveys
of individuals in each county) and the rate of disease in the population. The
focus is on whether counties or populations with a high prevalence of infec-
tion also had a high cancer rate. In general, ecological studies are attractive
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Figure 3.8 An ecological study
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because they are easy to do, especially if the routine data are readily available,
but they can be difficult to interpret. The populations being compared may
well differ in ways other than their exposure to the factor of interest and it is
possible that something else that is related to the exposure is actually respon-
sible for the observed differences in morbidity or mortality (i.e. an apparent
relation could be due to confounding – see Chapter 8). Another problem with
this type of study is that an observed association between variables at the
group level might not represent the association at the individual level. In the
example above, we have no way of knowing whether the people who
developed cancer were actually infected with H. pylori. Ascribing
characteristics to members of a group that they might not possess as individ-
uals is called an ecological fallacy. For these reasons, ecological studies rarely
give a strong test of a causal hypothesis but, more often, they help to generate
or develop hypotheses. Box 3.5 shows some other ecological studies that have
been instrumental in suggesting associations between exposures and disease.

E-data

The massive explosion in the use of ‘smart’ technology has opened up a wide
range of other sources of information that are increasingly being used to
identify and study health problems. Mobile phones often include a global
positioning system (GPS) and so can be used to track when, where and how

Box 3.5 Ecological studies

• In a classic study, Armstrong and Doll (1975) reported the correlation

between 27 cancers and a wide range of dietary and other variables in 23

countries. Diet was strongly correlated with several types of cancer,

particularly consumption of meat with cancer of the colon. Countries

with low per-capita daily consumption of meat had the lowest rates of

colon cancer. The findings from this study suggested that dietary factors

play a role in the development of cancer and led to a burgeoning of

research in this area.
• In 1979, the authors of another study reported a strong inverse

association between average per-capita consumption of wine and

mortality from ischaemic heart disease (high wine consumption was

associated with low IHD mortality; St Leger et al., 1979). Since then,

more than 60 ecological, case–control and cohort studies have been

conducted and most have also shown an inverse association between

moderate consumption of wine and other alcohol and heart disease.

More about ecological

fallacy

Creative use of existing data 99



far people travel and we will look at a specific example of this when we
consider surveillance in Chapter 12. Others have suggested monitoring terms
entered into Internet search engines to identify increases in specific symptoms
that might provide early warning of, for example, a flu epidemic – although
‘Google Flu Trends’ (www.google.org/flutrends/) has not, to date, been as
accurate in its predictions as was hoped (Lazer et al., 2014).

Confidentiality

We cannot end any section on health data without touching on the issue of
confidentiality. Clearly, information about an individual’s health is private and
should not be accessible to anyone else other than their health care providers.
Much of the available health data is in the form of summary statistics such as
rates so that it is impossible to identify specific individuals, and this infor-
mation can be made freely (or at least readily) available. To gain access to data
on individuals it will almost certainly be necessary to sign a confidentiality
agreement, have permission from a Human Research Ethics Committee or
Institutional Review Board, and/or obtain consent from the individual patients
and sometimes their physicians as well. Rapidly changing and expanding
privacy legislation in many countries is adding to the challenges. While
properly highlighting ethical use of data, the increasing emphasis on the
principle of autonomy has created tensions between the need to protect
personal information on the one hand and the desire for public good, which
may require some access to individual data, on the other.

Summary

You have now seen the most common types of descriptive data and where
they come from and also some examples of the many ways in which they can
be used. These data are core to health planning and, as you will see in later
chapters, are also essential for identifying new health problems and monitor-
ing the effects of health interventions. You have also seen that although it
cannot provide strong evidence about the causes of disease, creative use of
descriptive epidemiology can generate new ideas about causality. These
hypotheses then need to be tested in more formal ‘analytic’ studies and we
will move on to discuss these in the next chapter.

Questions

1. Figure 3.9 shows how mortality among males in Thailand changed between
1960 and 1970. The numbers are the differences in the number of deaths
(per 10,000) between the two time points. Describe and interpret this pattern.

Additional questions
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2. How representative do you think a convenience sample of people surveyed
at a shopping mall at 11:00 a.m. on a weekday morning would be of the
local population? Would it be any different if the survey were conducted in
the evening or at a weekend?

3. Why do the curves for the USA in Figures 3.6 and 3.7 look so different?
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Box 4.1 Oranges and lemons

In 1747, James Lind conducted an experiment to test six different cures for

scurvy.While at sea, he identified12patientswith scurvywhose ‘caseswere as

similar as I could find them’ and prescribed a different treatment to each

pair of patients. After a few days he found that the two patients fortunate

enough to have been prescribed oranges and lemons were almost fully

(continued )
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Whenwe discussed what epidemiologists do in Chapter 1, we touched on some
of the different types of study that we use to collect the information we need to
answer questions about health. In Chapter 3 we looked at the data systems and
descriptive studies that provide the ‘bread-and-butter’ information of public
health; in this chapter, wewill look at the analytic studies that are ourmain tools
for identifying the causes of disease and evaluating health interventions. Unlike
descriptive epidemiology, analytic studies involve planned comparisons
between people with and without disease, or between people with and without
exposures thought to cause disease. They try to answer the questions ‘Why do
some people develop disease?’ and ‘How strong is the association between
exposure and outcome?’. This group of studies includes the intervention and
cohort studies that you met briefly in Chapter 1, as well as case–control
studies. Together, descriptive and analytic epidemiology provide information
for all stages of health planning, from the identification of problems and their
causes to the design, funding and implementation of public health solutions
and the evaluation of whether they really work and are cost-effective in practice.
As we discussed in Chapter 1, people talk about many different types of

epidemiology, but ultimately almost all epidemiology comes back to the same
fundamental principles; the only things that differ are the health condition of
interest and the factors that might influence that condition. When we discuss
the various study designs in this chapter we will do so mainly in the context of
looking for the ‘exposures’ that cause ‘disease’. However, the approaches that
we will discuss are generic and are equally applicable to studies:

• of treatment, prognosis and patient outcomes (e.g. survival, improved phys-
ical function, or quality of life) in clinical medicine, dentistry, nursing or any
of the allied health professions;

• of the effects of our occupation or our socioeconomic and physical environ-
ment on health;

• aiming to identify factors that influence health behaviours such as smoking,
alcohol consumption, or whether parents choose to have their children
vaccinated;

Box 4.1 (continued )

recovered whilst no improvement was seen in the other 10, who had been

subjected to various regimens including seawater, gruel, cider and various

elixirs. From this, Lind inferred that inclusion of citrus fruit in the diet of sailors

would not only cure, but also prevent scurvy (Lind, 1753). Limes or lime juice

thus became a part of the diet on ships, earning British sailors their nickname

of ‘limeys’.
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• evaluating programs that attempt to change behaviours in order to improve
health outcomes;

• evaluating the effects of changes in health practice or policy . . .

And the list could go on. Likewise, the range of exposures or study factors that
might influence health – for good or bad – is incredibly broad. The ‘exposure’
we are interested in could be an environmental factor such as an infectious
agent, radiation, or some chemical, it could be a behavioural factor like smoking
or drinking habits, an intrinsic characteristic of the individual such as sex, age,
skin colour, or an underlying genetic factor. Furthermore, while most of these
are personal exposures that affect us at the individual level, epidemiology is
expanding and social epidemiology encompasses the additional influences of
the broader social environment. At another level, lifecourse epidemiology
attempts to integrate exposures over an individual’s lifetime. While different
questions place different demands on the specifics of data collection, all can be
addressed via the same suite of research designs, although different designs will
be more or less appropriate in different situations.

It is important to bear in mind that the study designs we discuss have their
strengths, but they also have limitations, and we will touch briefly on these as
we go. We will come back to pick up on some of these limitations in more detail
when we talk about bias and confounding in Chapters 7 and 8 and when we
look at how to report, read and interpret the results of epidemiological studies
in Chapter 9. But first let us consider if there is an ideal study that would give us
a completely unbiased picture of the effect of an exposure on an outcome.

Ignoring ethical and practical issues for a minute, what do you think would be
the best way to determine whether factor A caused outcome B?

The ideal study

If a laboratory scientist wanted to see whether something caused a particular
effect they would set up an experiment. This would involve creating two
identical test systems under identical conditions, adding the particular factor
of interest to one of them and then waiting to see what happened. Any
differences between the outcomes in the two systems could then be fairly
conclusively attributed to the presence of that factor (save for the play of
chance, as discussed in Chapter 6). Unfortunately, life is not so straightforward
when we are interested in human health.

One way to assess whether a factor affects health outcomes would be to
compare the outcomes in a group of people exposed to the factor of interest to
those among a group who were not exposed. If the outcomes differ, the
challenge is then to decide whether it really was the exposure that caused
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the difference. For example, if we observe that people who exercise regularly
(the ‘exposed’ group) are less likely to have depression than those who do not
exercise (‘unexposed’), can we really be sure that physical activity is prevent-
ing depression?

What other reasons might explain the lower rate of depression among people
who exercise?

In all likelihood, the two groups won’t differ only in their exposure status (level
of physical activity), but they will also differ with respect to other factors that
are correlated with the exposure. For example, people who exercise may have
a more healthy diet, drink less alcohol, and be less likely to be overweight or to
smoke than those who do not exercise. They will also be less likely to have
chronic physical conditions that make exercise difficult. So how can we be
sure it is not one of these other factors that led to the different rates of
depression in the two groups? To rule out this possibility (a phenomenon
known as confounding that we will come back to in Chapter 8) we would like
our ‘exposed’ and ‘unexposed’ groups to be as similar as possible to each
other in every respect except the exposure of interest, i.e. they need to be what
is sometimes called exchangeable. In this situation, any difference in out-
comes can only be due to the presence of the exposure in one group. The only
way to be 100% sure that a particular exposure caused a specific outcome in a
given individual or group of individuals would be to wind back the clock to see
whether the same people would have experienced the same outcomes if they
had lived lives identical in every way to their real lives, except they were now
not exposed to the potential cause. If in this hypothetical situation the individ-
ual(s) did not develop the outcome, we could say with some certainty that the
exposure did indeed cause the event. This imaginary parallel world which
differs only from the real world with regard to the exposure of interest is often
described as counterfactual (because it is contrary to fact) and, as epidemi-
ologists, much of our effort is directed to designing studies that come as close
to this hypothetical ideal as possible.
In practice, the closest that we can come to this is with what is known as a

crossover trial in which the outcomes among a group of people exposed to
the factor of interest are compared to the outcomes in the same group of
people when they were unexposed. Although people cannot be exposed and
unexposed at exactly the same time, as required by the counterfactual model,
we hope the periods when they are exposed and unexposed are close enough
together that nothing else changes. This type of study is, however, rarely
possible in practice, so before we discuss it further we will take a step
backwards to consider the epidemiological equivalent of a laboratory experi-
ment – the intervention study or trial – more generally.

In this situation it is also
possible that people who are
depressed are less likely to
exercise. This is often
described as called reverse
causality where it is the
depression that causes
inactivity rather than the
other way around.
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Intervention studies or trials

If there is good reason to believe that something might improve health then it
is possible to conduct an intervention study where the investigator actively
intervenes to change something to see what effect this has on disease occur-
rence. This is what James Lind did in his small, but classic study on scurvy in
1747 (Box 4.1). Such studies include clinical trials comparing two (or more)
forms of treatment for patients with a disease, as well as preventive trials, in
which the aim is to intervene to reduce individuals’ risk of developing disease
in the first place. As with experiments in other sciences, the investigator
controls who is exposed and who is not: for example, who is allocated to a
new treatment regimen and who receives the old treatment, or who is enrolled
in a ‘stop smoking’ campaign and who is not. Box 4.2 hints at the range of

Box 4.2 Some large-scale intervention studies

• In the early 1950s, one of the largest epidemiological studies, and almost

certainly the largest formal human ‘experiment’, was conducted in the

USA. This was a field trial of polio vaccine in which over 400,000 school

children were assigned to receive either the vaccine or a placebo (inactive)

injection. The trial clearly demonstrated both the efficacy and the safety of

the vaccine, which was then given to millions of children throughout the

world (Francis et al., 1955). This has led to amajor drop in the incidence of

polio in both industrialised countries and also many developing countries

which have now been declared polio-free by WHO.
• The ISIS (International Studies of Infarct Survival) investigators

recruited more than 100,000 patients around the world into a series of

trials testing treatments to prevent early death after a suspected

myocardial infarction (heart attack). These treatments included aspirin

and streptokinase which were found to be highly effective in ISIS-2

(ISIS-2 Collaborative Group, 1988).
• In the US Physicians’ Health Study (we have already met the British

Doctors and the US Nurses’ Health studies), 22,000 physicians were

randomly allocated to take aspirin, in an attempt to prevent

cardiovascular disease, and/or β-carotene, in an attempt to prevent

cancer (Hennekens and Eberlein, 1985). After 12 years of follow-up,

rates of cancer were very similar in the β-carotene and placebo groups,

and, while aspirin was shown to lower the rates of heart attack, so few of

these very healthy doctors died that the trial could not determine

whether aspirin saved lives from cardiovascular disease.

(continued )

108 Study designs for public health



interventions that can be studied experimentally. In each study the investi-
gators ‘intervened’ to change something in the hope that this would improve
the future health of the participants. The participants in the ISIS trials were
already sick (patients who had had a heart attack), and the intervention
(treatment) was intended to increase their chances of surviving – aspirin and
streptokinase were shown to be very effective. In contrast, the children in the
polio vaccine trial were healthy and it was hoped that the vaccine would
prevent them from becoming ill. Similarly, it was hoped that vitamin
A supplementation would reduce childhood mortality but, in this example,
the intervention was given to whole villages rather than individual children.

Randomised controlled trials (RCTs)

The bestway to evaluate a new treatment is to identify a groupof patientswith the
same condition and then randomly allocate them to either receive the treatment
or to a control group that does not receive the treatment. A preventive trial differs
only in that it involves people who are disease-free but thought to be at risk of
developing disease. Random allocation (also called randomisation) of individ-
uals to the study groups is the only way to ensure that all of the groups are as
similar as possible (i.e. exchangeable) at the start of the study. It is important
because if one groupwere in somewaymore ill (or less healthy) than the other at
the start, this might make this group appear to have worse outcomes, even if the
intervention really had no effect (another example of confounding).While we can
look for and deal with some factors that differ between study groups in our
analysis, there may also be other important factors that we either do not know
about or cannot measure well. The real strength of randomisation is that, on
average, it will also balance these other unknownor poorlymeasured factors across
the groups. It is because of this aspect of RCTs – the close similarity of the groups
in all respects other than the intervention – that they are generally considered to
give the best evidence of all epidemiological studies.

Box 4.2 (continued )

• A randomised, controlled community trial involving almost 26,000

preschool childrenwas conducted to evaluate the effectiveness of vitamin

A supplementation to prevent childhoodmortality in Indonesia (Sommer

et al., 1986). In 229 villages, children aged 1–5 years were given two doses

of vitamin A while children in the 221 control villages were not given

vitamin A until after the study. Mortality among children in the control

villages was 50% higher than that in the villages given vitamin A.

There is an important
distinction between ‘random
selection’ where we select
people at random to be in our
study but we do not control
whether or not they are
exposed (unless it is a RCT),
and ‘randomisation’ where
we do control exposure by
randomly allocating people to
the exposed and non-exposed
groups in an intervention
study.

Randomisation does not
always work. Equality of the
groups at baseline is highly
dependent on group size.
Even if participants are
allocated to groups at
random, if the groups are
small it is unlikely that all of
the factors that could affect
the outcome will be evenly
distributed across the groups.
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The control or comparison group is essential so that outcomes in the
treated group can be compared with the outcomes among similar people
who have not been treated. Sometimes the patients in the control group
receive no treatment but, preferably, they are given a placebo (something that
resembles the real treatment but is not active). And if an acceptable standard
treatment is available the control group must be given this – it would be
unethical to withhold it – and this is compared with the new experimental
treatment. Figure 4.1 shows the design features of a simple RCT.

Ideally, both the trial investigators and the participants should be unaware of
whether the participant is in the active intervention or placebo group, creating a
‘double-blind’ or ‘masked’ study. If only the patient is unaware of their alloca-
tion, it is a single-blind study. Blinding is important because knowledge of the
treatment might affect both the participant’s response and an observer’s meas-
urement of outcome. If the participant knows they have been given the new

Time

Direction of inquiry

Defined
population

Random

allocation

Exposed

Disease

No disease

Not
exposed

Disease

No disease

Figure 4.1 The design of a
randomised controlled trial.

From www.CartoonStock.com
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treatment they might feel better simply because they believe it will do them
some good (a placebo effect) and, likewise, an observer might bemore likely to
report signs of improvement in someone if they know they received the active
treatment. In some situations (e.g. comparing medical treatment with surgery)
there may be no feasible way of blinding patients and study personnel to the
differences in treatments. Minimising measurement bias in this situation may
be best accomplished by bringing in an independent ‘blinded’ observer whose
only involvement is to assess the outcome measure. Blinding of outcome
measurements obviously becomes more crucial as the measurement becomes
more subjective. When the outcome is objective and less dependent on inter-
pretation, as in a biochemical parameter or death, blinding is less important.
Apart from participants and trial investigators, there are many others (e.g.

health care providers, data collectors, outcome assessors, data analysts)
involved in the conduct of a trial who can introduce bias through their
knowledge of treatment allocation. For this reason there is a growing tendency
to abandon the terms single- and double-blind in favour of a transparent
reporting of the blinding status of each group involved in the trial.
The other crucial feature of an RCT is good follow-up. It is important to know

what has happened to all of the participants in the study because ifmany people
are ‘lost to follow-up’ such that we don’t know if they experienced the health
outcome of interest, then the results of the studymay be biased. This is a form of
selection bias and we will discuss it further in Chapter 7.

Crossover trials
The trials we discussed above and shown in Figure 4.1 are what are known as
parallel group trials, in which individuals are randomly allocated to one of
the two groups, which are then followed in parallel. In a crossover design, the
participants serve as their own controls and thus, as described above, we come
closer to achieving the counterfactual ideal where we observe the same people
twice under conditions that are identical except with respect to the exposure of
interest. For example, in a simple two-period crossover study to assess the
efficacy of an intervention we would randomly assign each participant to
either the intervention or the control (I or C) for a specified period of time
and then the alternative for a similar period of time. Thus, approximately half
of the participants would receive the interventions in the sequence I–C and the
other half in the sequence C–I, reducing the impact of any factors that might
change between the first and second period.
One of the biggest advantages of this design is that it removes much of the

variability that is inherent when we compare different groups of people and
that can never be completely eliminated by randomisation. In particular, it
ensures the groups are truly exchangeable from a genetic perspective and in
terms of other factors that do not change over time. As a result, crossover trials
can produce statistically and clinically valid results with fewer participants
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than would be required with a parallel design. However, it is important to
remember that while we are comparing the participants to themselves, time
has moved on and so it is impossible to be completely sure that nothing else
has changed. As a minimum it is likely that the weather will have changed and
this may affect various aspects of behaviour. Also, not all interventions are
suitable for assessment in this way. We can only use crossover trials to assess
the effects of factors that have a rapid effect and where the effect wanes rapidly
when the exposure is removed. If the effects of the intervention during the first
period are likely to carry over into the second period then this design is clearly
inappropriate, as is also true for assessing long-term benefits and harms.

n-of-1 trials
A variant of the crossover trial is the single patient trial, often called an n-of-1
trial. Here, an individual patient receives the experimental and control treat-
ments in random order on multiple occasions, with specific outcomes being
monitored throughout the trial period. Ideally both the patient and the
treating doctor are blinded to the treatment being received and the trial
usually ends when it becomes clear that there are (or are not) important
differences between the treatments. As with the crossover trial, a strength of
these studies is that by comparing the same person on and off treatment we
come closer to achieving true exchangeability. Again, we have the problem
that we are comparing the active treatment and control at different points in
time but, by giving them multiple times in a random order, we hope to
minimise any bias that might result from this. Although the results of n-of-1
trials are not generalisable to the same extent as those of typical RCTs, they do
provide a good guide to individual clinical decisions.

Cluster randomised controlled trials
For many public health and practice/policy interventions it is impossible to
intervene at an individual level so the answer is a cluster randomised controlled
trial where groups or clusters of people are randomised together. An example
is a study that evaluated a ‘Comprehensive Health Assessment Program’

(CHAP) to enhance interaction between adults with intellectual disability,
their carers and general practitioners. To avoid contamination whereby par-
ticipants randomised to the control arm were inadvertently exposed to the
intervention via their housemates, individuals living in the same house or who
saw the same GP were randomised together as a ‘cluster’. In this study the
clusters were of very different sizes so they were matched to another cluster of
similar size and characteristics and one of each pair was allocated at random
to the intervention and one to the control arm. The study showed increased
detection of health problems and increased screening rates in the intervention
group (Lennox et al., 2007).

“n” is often used to denote
the sample size in a study; an
n-of-1 study is thus a study
where n = 1 person.
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Community trials
Community trials are cluster trials in which the intervention is implemented at
the community level. They are generally conducted when it would be impos-
sible to offer (or evaluate) the intervention at the individual level. An example is
the studies of water fluoridation and dental health conducted in various coun-
tries. When investigators wanted to study the effects of adding fluoride to the
water supply on dental health it was clearly impossible to add fluoride to some
people’s water and not to others’, so whole towns were allocated to receive
fluoride in their water or not. The controlled trial of water fluoridation which
gave the most striking results was carried out in the towns of Newburgh and
Kingston in New York State, USA. After 10 years of fluoridation, the DMF
(decayed, missing or filled teeth) score for Newburgh children aged 6–16 was
50% lower than that for children in the unfluoridated town of Kingston (Ast and
Schlesinger, 1956). The assumption underlying this result was that, apart from
the water, there was no other major difference between the towns that could
explain the effect (i.e., there was no confounding). (Note that, although this and
other studies clearly showed the benefits of low levels of fluoride on dental
health, continuing controversy about the possible adverse effects of fluoride on
other organs in the body, particularly the bones, has meant that universal
fluoridation of water supplies has not occurred.) Because only two towns were
included in this study, in practice it is little different from a non-randomised
comparison (see below). Other cluster designs involve larger numbers of
groups, so that the random allocation of multiple groups to intervention or no
intervention gives more of the benefits of randomisation in terms of balancing
out other factors across the groups (e.g. the vitamin A study, Box 4.2).

Non-randomised designs

The fact that a study is described as a trial or clinical trial does not necessarily
mean that it is a randomised controlled trial. While RCTs remain the gold
standard for initial evaluation of new clinical and public health interventions,
the effectiveness of these interventions in practice can often only be determined
from ‘before and after’ type comparisons in whole communities or populations.
You will see examples of this throughout the book, and particularly when we
discuss prevention in Chapter 14 and screening in Chapter 15. Probably the
most common non-randomised design in the health setting is one that uses
‘historical controls’where health outcomes following the introduction of a new
treatment or preventivemeasure are compared to the outcomes experienced by
the same population before the change in practice (also sometimes called a
pre–post study). For example, in many countries, mortality rates from road
traffic accidents fell dramatically after the introduction of legislation requiring
drivers to wear seat belts. Similarly, patient survival rates might be compared
before and after the introduction of a new surgical technique.

More pre–post study
designs: if measures are
obtained at multiple time
points before and after the
intervention this may be
described as an interrupted
time series, while if multiple
groups are involved it is
sometimes called a multiple
baseline design.
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What is the major problem with a pre–post study of this type?

The main problem with this design is that it assumes that the only (or most
important) thing that has changed is the new legislation or the type of surgery,
and that may not be the case. Another variation on the cluster trial is the
‘stepped wedge’ design, where the intervention is sequentially introduced to
all of the study groups. We will not discuss these designs further here, but see
Sanson-Fisher et al. (2014) for further information.

Observational studies

Although the ideal way to study whether something is causally related to the
occurrence of disease is through an experiment or intervention study, this would
often be unethical (you cannot deliberately expose someone to something
thought to be harmful) or impractical. As a result, epidemiology is rarely an
experimental science. Most of the time an epidemiologist will just go out (after a
lot of thoughtful planning) and measure the rate of occurrence of a disease or
other health outcome, or will compare patterns of exposure and disease to
identify particular exposures or risk factors associated with that disease. This is
purely an observational role: the researcher does not intervene in any way. They
leave nature to take its course, and record what happens, or what happened in
the past. These are commonly described as observational studies.

Cohort studies

Thenext best thing to a randomised trial is a cohort study (sometimesdescribedas
a prospective or longitudinal study). Like a trial, we follow people forwards (pro-
spectively) over time to seewhat happens to them and, again like a trial, the cohort
might be a group of initially healthy people whom we follow to measure the
occurrence of disease or a group of patients whomwe follow to study their disease
outcomes, i.e. their prognosis. Figure 4.2 shows thedesignof a typical cohort study.

Time

Direction of inquiry (about new disease)

Defined
population

Choice or
circumstance

Exposed

Disease

No disease

Not
exposed

Disease

No disease

Figure 4.2 The design of a cohort
study (adapted from Beaglehole et al.,
Basic Epidemiology, 1993, with
permission).

In Ancient Rome, a cohort was
one of 10 divisions of a Roman
military legion. It comprised
young men of similar age from
one region. In service its
members were often injured or
killed and they were not
replaced. The cohort was then
disbanded when the term of
enlistment was over.
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Compare Figures 4.1 and 4.2. How does a cohort study differ from an RCT?

The fundamental difference is that in a trial the investigator controls who is
exposed to the factor of interest and who is not, ideally by assigning people to
the different exposure groups at random, whereas in a cohort study partici-
pants are living the lives they have chosen, and the researcher has to discover
and measure the exposures they have chosen for themselves.

Why is this a problem?

The challenge with this type of study is to disentangle the effects of the
exposure that we are interested in from those of other personal characteristics
or behaviours that are correlated with that exposure. In a randomised trial
these other factors should be distributed evenly across the study groups, but
this is unlikely to be the case in a cohort study where people who choose to
smoke, for example, may also be more likely to drink alcohol or coffee, or to
exercise less and so on, i.e. the groups are intrinsically less similar (exchange-
able) than the arms of a randomised trial.
One classic example of a cohort study is the Framingham Heart Study (Daw-

ber, 1980). It was started in 1948 at a time when heart disease had become the
USA’s number one killer, and the principal aim was to identify biological and
environmental factors that might be contributing to the rapid rise in cardiovas-
cular death and disability. The epidemiological approach was quite novel at the
time and it was designed to discover how and why those who developed heart
disease differed from those who escaped it. The town of Framingham, Massa-
chusetts was selected by the US Public Health Service as the study site, and
5209 healthy men and women between 30 and 60 years of age were enrolled and
followed over time to see who developed disease and/or died. Framingham was
appealing because it had a stable population and a single medical facility,
suggesting that it would be relatively easy to carry out the follow-up. The study
was expanded in 1971 when 5124 children (and their spouses) of the original
cohort were recruited for a second study, the Offspring Study.
Before Framingham, the notion that scientists could identify, and individuals

couldmodify, risk factors (a term coined by the authors of the study) tied to heart
disease, stroke and other diseaseswas not part of standardmedical practice.With
over 50 years of data collected from residents of Framingham (and the publica-
tion of more than 1000 scientific papers), the Framingham researchers have
identified major risk factors associated with heart disease, stroke and other
diseases and created a revolution in preventive medicine. The study identified
several risk factors associated with increased risks of heart disease including
cigarette smoking (1960), high cholesterol levels and high blood pressure
(1967), obesity and low levels of physical activity (1967). These are so commonly
accepted today, both by health professionals and by the public, that it is difficult
to imagine a time when we did not know their importance.
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The Framingham Study is quite small by modern standards: the European
Investigation into Cancer (EPIC) established in 1995 includes more than half a
million individuals from 10 European countries (Bingham and Riboli, 2004)
and the Million Women Study was initiated in the UK in 1996 (The Million
Women Study Collaborative Group, 1999). The Framingham study therefore
needed particularly long follow-up to accumulate enough endpoints to give
robust results. A crucial trade-off is that the smaller size and the setting
permitted regular detailed physical examination and other ‘hands-on’ investi-
gations such as the recording of electrocardiograms, giving a rich array of
high-quality exposure data that cannot be gathered on a very large scale.

Of all the observational designs, cohort studies generally provide the best
information concerning the causes of disease and the most direct and intuitive
measurements of the risk of developing disease. The participants must be free
of the outcome of interest at the start of the follow-up, which makes it easier to
be confident that the exposure preceded the outcome (i.e. to rule out the
possibility of reverse causality). However, if there is a long pre-clinical phase
before a disease is diagnosed, as may be the case for many types of cancer, the
apparent exposure–disease sequence can still be wrong, and for this reason
many cohort studies do not count cases of disease that occur in the first few
years of follow-up. The other advantage of collecting exposure data before
people develop disease is that measurement of exposure is not biased by
knowledge of outcome status, i.e. it avoids recall bias. It is important to note,
however, that if a cohort study has a very long follow-up period and exposure
data were only collected at baseline then people may have changed their
behaviours over the intervening years. For example, smokers may quit
smoking or meat eaters may become vegetarian and it is also an unfortunate
fact that many of us will gain weight as we get older. Depending on when the
critical period of exposure occurs, this may mean that people are wrongly
classified with regard to their exposure (e.g. past smokers as current smokers).
This is a problem of misclassification. Many cohort studies, for example the
US Nurses’ Health Studies (see Box 4.3), avoid this problem by re-contacting
study participants every few years to collect updated exposure data. (We will
discuss misclassification and recall bias further in Chapter 7.)

Selection of participants is an issue at two points of a cohort study: who is
selected into the cohort at the start of the study, and who is lost from the
cohort during follow-up. Who is selected into a cohort can influence the
generalisability (see Chapter 9) of its findings because they may apply only
to the sorts of people who agreed to take part. However, as in a trial, if many
people are ‘lost to follow-up’ and we don’t know their outcome status, then
the results of the study may be biased (see Chapter 7).

Cohort studies are by nature very time-consuming and expensive. However,
the benefit:cost ratio of a well-run cohort study can be high given that many
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different outcomes can often be assessed in a single study. For example, over
the last decade, the Nurses’ Health Study (see Box 4.3) has been the basis for
between 30 and 50 publications every year covering exposures as diverse as air
pollution and shift work. A limitation is that studies established to look at
many different health conditions have to collect information on a very wide
range of potential risk factors and so they often cannot collect much detail on
these. In principle, a long-term cohort study also has the potential to deliver
the public health knowledge of most value, by showing the full array of harms
and benefits associated with a given exposure. The British Doctors Study is an
outstanding example of this with regard to cigarette smoking because while it,
like other studies, shows that there is a potential benefit of cigarette smoking

Box 4.3 Some other notable cohort studies

• The British Doctors Study cohort was established in 1951 and followed for

more than 50 years, although most of the original 40,701 participants are

now dead. It has been of enormous value, particularly in relation to

identifying the manifold health consequences of smoking. This is despite

the fact that, comparedwith studies today, only limited exposure datawere

collected on a very short postal questionnaire mailed to the doctors at

10-year intervals since 1951 (Doll and Hill, 1964; Doll et al., 2004).
• The US Nurses’ Health Study (www.nurseshealthstudy.org/) started in

1976 with 121,964 female nurses aged 30–55, and 5 years of funding. Since

then, its focus has widened enormously from the oral contraceptive–breast

cancer links for which it was first funded (Stampfer et al., 1988) to cover

many exposures (including diet) and a multitude of outcomes. It has now

accumulated more than 30 years of follow-up and is still going strong. It is

very expensive to run, but the scientific and public health yield has been

exceptional. TheNurses’Health Study II began in 1989with 117,000 nurses

aged 25–42 (Rockhill et al., 1998) and in 2010 they started the Nurses’

Health Study III, an entirely web-based study targeting nurses aged 20–46

years in the USA and Canada.
• ALSPAC (The Avon Longitudinal Study of Parents and Children,

www.bristol.ac.uk/alspac/) was started in 1990 to determine ways in

which an individual’s genes combine with environmental pressures to

influence health and development. Comprehensive data have been

collected on over 10,000 children and their parents, from early pregnancy

until the present. Because the study is based in one geographical area of the

UK, linkage to medical and educational records is relatively simple, and

hands-on assessments of children and parents using local facilities allows

good quality control (Golding et al., 2001).
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with regard to Parkinson’s disease, it also clearly shows the overwhelming
negative effects of smoking on many other health conditions which put control
of smoking at the top of the public health agenda.

Historical cohort studies
It is sometimes possible to avoid the long follow-up period common to many
cohort studies by establishing a retrospective or historical cohort. This
requires good records of past exposure for a group of people who can then
be traced to determine their current health. Until fairly recently, such studies
have been most common in industry or the military where good personnel
records exist, but they have also been used to study the development of
disease in relation to characteristics at birth (e.g. weight and length at birth)
because this information can often be obtained retrospectively from birth
records. In the absence of close follow-up – the usual situation – they are
generally limited to studying mortality or cancer outcomes, given the lack of
universal records for other non-fatal endpoints. Some interesting and useful
variations include the use of college alumni records in the USA to study the
benefits of physical activity as a young adult (Paffenbarger et al., 1986) and the
Boyd Orr Study based on detailed dietary records collected from over
4000 British children in the 1930s (Frankel et al., 1998).

Now, with the increasing opportunities for linking other health records,
studies of this type are becomingmore common and increasingly sophisticated.

Record linkage
As health data are increasingly stored in electronic formats, the scope for what
is often described as record or data linkage is increasing exponentially.
Traditionally, investigators performing cohort studies have enhanced their
follow-up by ‘linking’ the identities of their individual cohort members to
centralised cancer and death registries in order to find out about new out-
comes. Some studies now also rely on record linkage to provide information
about potential exposures and other health outcomes without having to rely
on people’s memories for accurate information. For example, the ‘45 and Up’
cohort study is following more than 250,000 men and women aged 45 and
older in the Australian state of New South Wales to look at outcomes ranging
from health conditions to use of health services and quality of life. Although
the investigators asked participants to complete a standard health question-
naire when they joined the study, they also asked them for consent to access
their health records to allow linkage to a wide range of health databases (45
and Up Study Collaborators, 2008). In addition to cancer and death records, in
Australia it is now possible to link to data from the national Pharmaceutical
(drug prescriptions) and Medicare (tests and procedures) Benefits Schedules
and, in some states including New South Wales, it is also possible to link data
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for hospital admissions, emergency presentations, midwives, notifications and
mental health records. Obtaining information from these databases has the
benefit of being less reliant on individual memory, and also broadens the
scope of questions that the study can answer by capturing richer exposure
(e.g. detailed medication use) and outcome data (e.g. health service use).
Western Australia and, notably, the Scandinavian countries also have excellent
systems for linking data from a wide range of health and other databases. The
matches are made in a variety of ways, including using a common personal
identification number as in many Scandinavian countries and the USA (social
security number), or through probabilistic approaches based on a variety of
personal identifiers (e.g. name, date of birth and address).
There are also studies based entirely on record linkage that are essentially

the modern version of the historical cohort study. They are effectively cohort
studies in which both exposure and outcome information come from elec-
tronic records. Until recently, they had been used mostly to link health
services and outcomes. For example, by linking data from hospital morbidity
and death records, Western Australian researchers were able to show that the
presence of other medical conditions (comorbidity), but not advancing age,
predicted repeat admission to hospital for adverse drug reactions (Zhang
et al., 2009). This information will allow better identification and monitoring
of those most at risk of an adverse reaction. However, increasing computer-
isation of medical information is now making more conventional aetiological
research possible by this means. As an example, Swedish investigators were
able to use the Swedish Inpatient Register to identify a cohort of 29,187
patients hospitalised for type-1 diabetes between 1965 and 1999. They then
‘linked’ these names to the Swedish Cancer, Total Population, Migration and
Death Registers. This told them who had been diagnosed with cancer, the type
of cancer and date of diagnosis, and also who had migrated or died from some
other cause and so was no longer at risk of being diagnosed with cancer in
Sweden. They calculated standardised incidence ratios (SIRs) for the cohort
compared with the general population and found that diabetes was associated
with significantly increased risks of cancer of the stomach (SIR = 2.3), cervix
(SIR = 1.6) and uterus (SIR = 2.7) (Zendehdel et al., 2003).
Research based on linking health (and other) records does, however, raise a

number of issues regarding confidentiality, and current privacy concerns and
legislation in some countries have the potential to limit this avenue of research.
The 45 and Up Study, likemany other large cohort studies, asks all participants to
consent to allow the investigators access to their health records when they join
the study. However, it is often not possible or practical for researchers to contact
all of the individuals concerned to get their permission to access their data. To
solve this problem, pure record-linkage studies are conducted where the data
custodians perform the linkage centrally and remove all identifying information

Data linkage can also
provide an opportunity for
real-time monitoring of drug
safety by linking prescribing
data to other health
databases, although currently
few systems exist to do this in
practice (e.g. www.mini-
sentinel.org in the USA).
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such as names, addresses and dates of birth before giving the linked data to the
investigators for analysis. Even so,manyhealth data custodians are still prevented
by law from releasing even such ‘de-identified’ information without individual
consent. Much effort is being expended to enable a constructive resolution of the
tensions between maximising individual autonomy (by protecting against
inappropriate access to personal health data) and ensuring that the public good
delivered by health research is not compromised (Lawlor and Stone, 2001).

Prognostic or survival studies
As we mentioned above, cohort studies can also be used to see what happens
to patients after they are diagnosed with a condition. In this case, the cohort
would comprise patients with the condition of interest who were at the same
point in the course of their illness, e.g. at diagnosis (often called an inception
cohort) or after completion of their primary treatment. They would then be
followed for a fixed period or until they experience the outcome of interest,
which might be death, recurrence of the disease, or quality of life at a given
time point. Studies of this type can identify patient characteristics that predict
their outcome, for example demographic factors such as age, gender or socio-
economic status; disease-specific factors such as the severity or stage of
disease at diagnosis; genetic factors and the presence of other health condi-
tions (known as comorbidities). Such characteristics are called prognostic
factors; they may not actually cause the outcome, but must be associated with
it strongly enough to predict it. Event rates tend to be high, so prognostic
studies can usually be much smaller than cohort studies of risk factors.

They are also increasingly being used to investigate potentially modifiable
factors such as diet and lifestyle that might affect patient outcomes. For example,
an Australian study found that among women diagnosed with ovarian cancer, a
cancer that typically has a high mortality rate, those who ate more vegetables
survived for longer than those who ate fewer vegetables (Nagle et al., 2003).

Case–cohort studies
In many cohort studies, all participants provide a wide range of information at
the time of recruitment, including answers to detailed dietary questionnaires
and blood and urine samples. Because of the large numbers and cost, these
resources – especially the biological samples – are often not analysed in detail
at the time but are stored for future use. It is then possible to use this infor-
mation more efficiently by conducting either a nested case–control study (see
below) or case–cohort study. In the case–cohort design a subset of partici-
pants is selected from the full cohort at baseline. Detailed exposure infor-
mation can then be retrieved for this subcohort and all of the people in the full
cohort who develop the disease of interest. This maintains the major advan-
tage of a cohort study in that the exposure data were originally collected before
the development of disease, while the much smaller scale reduces effort and
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cost. It also has the advantage that the subcohort can be used for comparison
with multiple different case groups. However the case–cohort study requires a
somewhat more sophisticated data analysis than the traditional cohort and
nested case–control studies.

Nested case–control studies
As the name suggests, this is essentially a case–control study (we will discuss
these further below) that is ‘nested’ within an existing cohort study. As in the
case–cohort study, the cases are all cohort members who developed the
disease of interest, but this time each case is matched to one or more non-
cases selected at random from cohort members of the same gender and age
who were disease-free at the time the case was diagnosed. As in the case–cohort
study, it is assumed that the information obtained from these ‘controls’
represents the exposure experience of all of the non-cases in the cohort when
the case was diagnosed. Nested case–control studies are simpler to analyse
than case–cohort studies, but have the disadvantage that they require a
separate control group to be selected for each case group.

Case–control studies

One drawback of most cohort studies is that they can only be used to study
conditions that are relatively common (obviously the very large cohorts we
mention above are exceptions). If we were interested in a very rare disease we
would need to follow a large number of people for a very long time to identify
many people with the disease. In this situation an alternative study design
called a case–control study is often used. You have already seen how a nested
case–control study can be conducted within a cohort study and the underlying
principle is the same for a traditional case–control study, except that here the
underlying cohort study does not actually exist. For a case–control study we
first identify a notional cohort which might include everyone in a particular
geographic region or even a whole country. Depending on how common the
disease is, we would then try to recruit everyone in that population who
develops the disease of interest or a representative sample of these people
(cases), but we recruit only a small fraction of the people without the condi-
tion. These ‘controls’ are selected at random and, as in the nested example
above, we hope that they will be representative of the wider target population.
We then ask both the cases and controls about their previous exposures. Thus,
instead of identifying people on the basis of their exposure status and waiting
to see who develops disease, we effectively start from the end and work
backwards (see Figure 4.3). For instance, if we wanted to know whether
smoking was associated with lung cancer, we could compare people with lung
cancer and controls without lung cancer to see if they differed in their smoking
habits, exactly as Doll and Hill did back in 1950 (see Chapter 1).

Controls: Some authors
prefer to call the comparison
group the ‘reference’ group
and so will describe the study
as a case–reference or case–
referent study.
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A classic case–control study was conducted in Germany in 1961 (Mellin and
Katzenstein, 1962). The mothers of children born with unusual limb malfor-
mations (cases) were compared with mothers of normal children (controls)
with respect to their exposures in pregnancy. Forty-one of the 46 case mothers
(89%), but none of 300 control mothers, had taken thalidomide early in their
pregnancy. This strongly suggested that thalidomide use early in pregnancy
could be responsible for the birth defects. (It should be noted that this study
was stimulated by data from an earlier case series.)

Modern case–control studies tend to be much larger; for example, the
Australian Ovarian Cancer Study included more than 1500 women with
ovarian cancer and a similar number of control women. It has confirmed
the strong inverse associations with pregnancy and oral contraceptive pill use
and risk of ovarian cancer such that women who have several children and/or
who use the ‘pill’ for several years have about half the risk of nulliparous
women or non-pill users (Jordan et al., 2008). A wide range of other possible
causes have also been examined within this one study and this is one of the
major appeals of the case–control design. Because the focus is usually on a
single health outcome, participants can be asked very detailed questions about
relevant exposures; this is often not possible in a cohort study, which will
usually collect less detailed information on a much wider range of exposures
in order to study multiple different outcomes. Participants can be asked about
many different exposures, allowing multiple factors to be evaluated within the
same study. Box 4.4 gives further examples of case–control studies which have
led to direct health benefits.

Ideally, case–control studies include only incident (new) cases of disease as
they arise. However, some studies, especially those of very rare diseases, also
include prevalent cases. This makes them rather like cross-sectional studies

Defined
population

Cases
(+disease)

Controls
(–disease)

Exposed

Not exposed

Exposed

Not exposed

Time

Direction of inquiry (about past exposures)

Figure 4.3 The design of a case–
control study (adapted from
Beaglehole et al., Basic Epidemiology,
1993, with permission).
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(see below), with the possible problem of determining a clear time sequence
for the exposure–disease relation. (That is, a factor may appear to be related to
disease risk simply because it extends the duration of disease.)
Case–control studies offer a number of advantages over follow-up studies.

They are generally quicker and more economical to perform (but are still not a
trivial undertaking) and, as we noted above, are good for studying rare
outcomes. Case–control studies are also good for evaluating many different
exposures, all of which can be asked about at the one interview as we
noted above.
The central problem in the design of a case–control study is selection of the

control group. Controls should represent the population from which the cases
have come such that their exposure prevalence is very similar to that of the
whole population. In practice this means that appropriately selected controls
should have been identified as cases if they had developed the condition of

Box 4.4 Case–control studies

• Phenacetin was introduced as an analgesic in 1887 and used extensively

until it was suggested that it might be associated with kidney disease.

A case–control study involving 554 adults with newly diagnosed kidney

disease and 516 matched control subjects selected randomly from the

same geographical area was conducted in the USA to investigate this

(Sandler et al., 1989). After allowing for the effects of other types of

analgesic, the risk of kidney disease was five times higher among daily

users of phenacetin and three times higher among daily users of

paracetamol (acetaminophen, a metabolite of phenacetin) than it was

among infrequent users of these drugs. There was little association

between aspirin use and kidney disease. Results from this study and

others confirmed the risks of phenacetin, which was withdrawn from

the market.
• In a case–control study conducted in Tasmania, Australia, the parents of

58 children who had died from SIDS (sudden infant death syndrome)

and of 120 control children were interviewed about the sleeping

practices of their children. Children who were placed face-down had a

fourfold higher risk of SIDS than children placed in other positions. This

risk was increased even further if the child slept in a heated room, was

tightly wrapped or had recently been ill (Ponsonby et al., 1993). The

results of this study and others have led to campaigns aimed at

persuading parents to place babies on their backs to sleep in order to

reduce rates of SIDS.
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interest. If the cases form a population-based series (e.g. if all cases from a
defined geographical region are included), then the control group should be
representative of that population. Population controls can be selected in a
number of ways, including from population registers or comprehensive elect-
oral rolls, or by sampling residential telephone numbers at random (random-
digit dialling), although this latter approach is losing its appeal as the use of
mobile phones increases and fewer households have landlines. Another trad-
itional approach to identify controls, that also works when the case group does
not originate from a clearly defined geographical population, was to recruit a
control from the local neighbourhood of the case, for example someone living
in a nearby street. This approach is time-consuming and expensive, but it is
effective and is still used in many lower- and middle-income countries.
A variant that has been used where telephone numbers are assigned by
residential area involves matching telephone numbers with random selection
of the last few digits. In the ovarian cancer study described above, the controls
were selected from the national electoral roll because enrolment to vote is
compulsory in Australia; this strategy would not work in countries where
voting is not mandatory because electoral rolls would be much less complete.
In the UK, selection of controls from the patient lists of the general practition-
ers (GPs) who referred the cases is often a viable alternative because most of
the population is registered with a GP.

Whilst population or neighbourhood controls are ideal, practical reasons
mean that hospital controls are still used, although not as frequently as in
the past. This is usually accomplished by selecting controls from patients
admitted to the same hospitals as the cases for conditions other than the one
being studied (see e.g. Box 4.5). Although this is a much more efficient and
economical process than selecting population controls, it is associated with an
obvious major drawback. The controls are themselves ill and thus different from
most healthy people in the source population from which the cases come.
Indeed, their distribution of risk factors (especially personal habits such as
smoking, excessive alcohol consumption, etc.) may well resemble that of the
cases rather more than that of the source population, leading to biased results.
However, thoughtful use of such designs can still provide good public health
information and Box 4.6 shows an example of such a study that has been used for
post-marketing drug surveillance (sometimes called pharmacoepidemiology).

An important issue related to the selection of both cases and controls is that
they must be chosen independently of their exposure status. In a case–control
study of oral contraceptive pill use and deep vein thrombosis, for example,
whether or not a woman is using the pill should not affect her chances of being
recruited as either a case or a control. Knowledge of the exposure status of
individuals could lead to bias in participant recruitment called selection bias.
Another type of bias that can occur within case–control studies arises when the

In high-income countries it is
getting increasingly hard to
persuade healthy people to
participate in research and
response rates among controls
are only ~50%. Refusal to
take part is often related to
health and lifestyle factors so
controls who do take part
may not represent the wider
population, introducing the
potential for selection bias
(see Chapter 7).

Bias with hospital
controls: When data from
47 studies were combined,
the cohort and population-
based case–control studies
suggested that obesity
increased the risk of ovarian
cancer, but the opposite was
seen in the hospital-based
studies (Collaborative Group,
2012), perhaps because the
hospital controls were, on
average, heavier than
other women.
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information collected from the cases and controls is not comparable. This can
occur if an interviewer elicits or interprets exposure information differently
when the disease status of the individual is known (interviewer bias) or
because people with disease recall their exposures or experiences more pre-
cisely than or otherwise differently from those without disease (recall bias). We
will revisit bias and other forms of inaccuracy in data collection and discuss the
potential impact of these types of error on the results of a study in Chapter 7.
There are several modern variants of the case–control study design. Two,

the nested case–control and case–cohort studies which we discussed under
cohort studies above, are essentially a different way of analysing cohort data.
A third is the case–crossover study.

Case–crossover studies
The case–crossover design is especially suited to identifying the effects of
transient exposures on the risk of an acute-onset disease. Instead of recruiting

Box 4.5 Hospital controls: the pros and cons

Tertiary referral clinics may attract patients from an unpredictably wide

variety of geographical and social origins. If cases are identified through

these clinics it can then be a major challenge to find a group of disease-

free controls who represent the same geographical and social backgrounds

as the cases. For example, a colonoscopy is needed to diagnose adenoma

(polyps) of the large bowel, so a colonoscopy clinic is an ideal place to

identify cases for a study. If controls are selected at random from the local

population there is no guarantee that they would have been picked up as

cases if they had adenoma – they might have gone to a different facility.

Similarly, we would miss all of those people from outside the local popu-

lation who would, nonetheless, have travelled to that clinic for treatment.

An alternative then is to select controls from among other patients

attending the clinic who have a colonoscopy but do not have bowel

polyps. This solution ensures that the controls will represent the geo-

graphical and social distribution of the cases, but it is important to be

aware that it might also introduce other biases. For example, if there are

characteristics, such as a family history of bowel cancer, that make

someone more likely to be referred for colonoscopy, then these charac-

teristics will be over-represented in the control group. This example serves

to emphasise that epidemiological studies will rarely be perfect – the

important thing is to do the best that is possible in a given situation and

then to consider the likely effects of any bias (see Chapter 7).
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a separate group of controls, each case is also their own control and their
exposure in a defined period prior to the onset of disease is compared with
their normal exposure frequency. This innovative design eliminates many of
the problems inherent in studies that compare different groups of people and
comes closest to the theoretical (but unattainable) ideal, which would be to
study an exposed population and then wind back the clock and study exactly
the same population again when they had not been exposed.

In the seminal case–crossover study,Maclure (1991) examined the influence of
a variety of possible precipitating factors, including sexual activity, on the occur-
rence of myocardial infarction (MI, or heart attack). He classified cases as
exposed if they had been sexually active in the two hours before their MI and
then compared this with their usual frequency of sexual activity over a one-year
period. He hypothesised that, if sexual activity were a risk factor forMI, thenmore
cases would have been sexually active shortly before their MI than would be
expected from their usual frequency. After interviewing 300 cases he estimated
that sexual activity increased an individual’s risk of MI more than twofold.

Box 4.6 Using hospital controls for pharmacoepidemiology

Hospital controls have been used very successfully to identify harmful side

effects of prescription medications in a number of settings. One of the

earliest and longest-running pharmacoepidemiology research projects

using this design is the Case–Control Surveillance Study run by the Slone

Epidemiology Center at Boston University (www.bu.edu/slone/research/

studies/ccs/), which ran for over 30 years until 2009, with over 100 pub-

lications. Its purpose was to systematically evaluate the relationship of

medications to the incidence of certain illnesses and to screen for unsus-

pected drug–disease associations. Since 1983, the main focus of the study

was on various cancers. Patients newly diagnosed with a cancer of interest

and who resided in the study area (cases) were recruited from a network of

hospitals. Patients from the same area with acute conditions such as

appendicitis or chronic conditions such as kidney stones or gallstones

diagnosed within the past year were recruited as controls. All patients were

interviewed to collect a wide range of information about lifestyle and a

medical and lifetime medication history. Altogether over 80,000 patients

were interviewed, including over 25,000 with cancer, leading to multiple

publications such as a recent report providing reassurance that use of

statins to lower cholesterol levels does not increase an individual’s risk of

cancer (Coogan et al., 2007).
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Cross-sectional studies

In Chapter 3 we discussed the surveys that many countries conduct on a fairly
regular basis to measure the prevalence of different health behaviours and
health conditions in their population (for example, the NHANES studies in
the USA – see Box 3.3) and we showed how these can be used to look at the
relationships between behaviour and health. The key factor of these surveys is
that they aim to select people in such a way that they are representative of the
whole population so that information collected from the study sample can be
generalised directly to the whole population. Studies like this, that set out to
look at the relation between an exposure and a health outcome in a ‘cross-
section’ of the population, are called cross-sectional studies. As you will see,
they have a number of drawbacks compared to other study designs but, because
of their relatively simple design (summarised in Figure 4.4), they are often
conducted as an early investigation into the possible causes of ill health.
For example, a group of researchers in India wanted to estimate the preva-

lence of and risk factors for suicidal behaviour in young people in Goa. They
invited all 16–24-year-olds from two rural and two urban communities to be
interviewed for the study and achieved a participation rate of almost 95%.
Overall, 3.9% of the 3662 participants reported some form of suicidal behav-
iour in the previous three months. Multiple factors were associated with
suicidal behaviours, including female gender, not attending school and experi-
ence of sexual and recent physical abuse (Pillai et al., 2009).
This cross-sectional study was both descriptive in that it defined the scope of

the problem (how common is suicidal behaviour) and analytic in that it also
identified (and measured the prevalence of) a number of possible causal
factors. All these data, descriptive and analytic, can be valuable for planning
health and social system responses. The key feature of the study is that the
young people were not recruited because they had (or had not) exhibited
suicidal behaviour or because of their particular histories but solely because
they were assumed to be typical of young people in Goa.
Cross-sectional studies such as this may be conducted to gather information

about any aspects of health and lifestyle and, as in the example above,
participants should be recruited without knowledge of either their exposure

Defined
population

Gather data on
exposure and

disease
(simultaneously)

+ Exposure + Disease

– Exposure + Disease

+ Exposure – Disease

– Exposure – Disease 

Figure 4.4 The design of a cross-
sectional study.

Longitudinal cross-sectional
studies recruit a different
sample of people for each
survey and then study
changes in the population
prevalence of disease or
potential risk factors for
disease over time. They
therefore differ from cohort
studies which follow the same
people over time.
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status (presence or absence of the exposures of interest) or their disease status
(presence or absence of the diseases of interest). This is essential to avoid
selection bias – something that we will come back to discuss in Chapter 7.
Information on the outcome (suicidal behaviour in the example above) and
the exposures (gender, education, previous abuse, etc.) is usually obtained at
the same time. For this reason, it can be difficult to identify which came first –
the exposure or the outcome (disease). This problem of reverse causality is a
major issue in cross-sectional studies – does A really cause B, or might the
reverse be true such that B causes A? Does being overweight reduce your
chance of developing lung cancer, or does the development of lung cancer
make you lose weight so you are less likely to be overweight? Cross-sectional
studies can, however, be particularly useful for examining exposures that do
not change over time (for example, personal characteristics such as gender
and blood group) or that occurred many years previously.

Another important thing to note about cross-sectional studies is that they
evaluate prevalent cases of disease – those that are already present in the
population at the time of the survey. As we discussed in Chapter 2, prevalence
is a function both of the incidence and of the duration of a disease. People
who have a disease for longer are more likely to be ill at the time of a cross-
sectional study than those who are sick for a shorter time. An association
between exposure and prevalence of disease can thus reflect not only a link
between exposure and the occurrence of new disease, but also a link between
exposure and factors that affect survival or persistence of a diseased state.

Thinking back to the study of suicidal behaviour described above:

Is there any problem with the time-directionality of the link between (i)
gender, (ii) lifetime sexual abuse, and (iii) not attending school and suicidal
behaviour?

Are the young adults studied likely to be typical of all young adults in
Goa, India?

In this study it is unlikely that there is a problem with the time-directionality of
the relationships with gender (as this does not change over time) or sexual
abuse, as this was recorded over the lifetime and thus is very likely to have
preceded the suicidal behaviour, which was recorded for the last 3 months
only. The relation with not attending school is, however, more problematic, as
it is possible that young adults with suicidal tendencies may be more likely to
miss school than the other way around. In relation to the generalisability of
the findings, the results from the study were based on young people from two
rural and two urban communities. The participation rates were very high
(much higher than would be achieved in most studies in developed countries
now), but before generalising the results beyond the study areas we would
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need to know that the selected communities were representative of all com-
munities in Goa (or India).
Another type of cross-sectional study that you may come across in the

clinical setting is one conducted to evaluate the performance of a diagnostic
or screening test or to validate a self-reported diagnosis in a research setting:
see Box 4.7.

Ecological studies

Wementioned these in Chapter 3 because they compare exposure and disease
in populations rather than individuals, but they do attempt to link exposures
and outcomes and so could equally well be considered analytic studies. After
observing a correlation between rates of infection with the gastric bacterium
Helicobacter pylori and gastric cancer mortality in China as shown in
Figure 3.8, the investigators conducted a similar study comparing infection
rates and gastric cancer incidence in 17 centres from the USA, Japan and
Europe. From this they were able to estimate that mortality from gastric cancer
in a population where everyone was infected with H. pylori would be about six
times that in a population with no infection (i.e. the relative risk for the
relation between H. pyori and death from gastric cancer was ~6; The Eurogast
Study Group, 1993). It is, however, always important to remember that com-
munities that differ in one way – for example, the prevalence of H. pylori
infection – probably differ in other ways too. It is therefore impossible to be

Box 4.7 Diagnostic studies

A study to evaluate the accuracy of a diagnostic test can be thought of as a

special type of cross-sectional study in which the data are collected from

diagnostic test results or physical examination rather than from interviews

or questionnaires. Typically, individuals with symptoms of disease are

selected randomly or consecutively from a clinic or hospital to undergo

the test of interest (the index test). Then, independently (and blinded to

the results of the index test), the same individuals undergo the best test

available to diagnose the disease (the reference test or ‘gold standard’). The

results of the two tests are then compared and the accuracy of the index

test (its sensitivity and specificity) can be determined (we will discuss the

mechanisms of this in Chapter 15). As in all cross-sectional studies, it is

important that the people selected are representative of the target

population – in this case the patients in a particular setting – in whom the

test would be used in real life.
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sure that the factor of interest is what is actually driving their different health
outcomes, in this case mortality from gastric cancer.

Ecological studies can be particularly useful for evaluating changes in health
policy. As an example, investigators looked at the relation between cancer
survival and measures of health expenditure and adherence to standard care
across Europe to serve as a baseline against which they could assess the
efficacy of new European initiatives to improve cancer survival. They found
a positive relation between total national expenditure on health and 5-year
age-adjusted relative all-cancer survival rates, such that individuals from
countries that spent more on health had better survival (Gatta et al., 2013).

A word about ethics

We touched on this under record linkage above, but it would be remiss of us to
end this discussion of study design without some consideration of the subject
of research ethics. Before conducting any research on humans (or animals),
most developed countries require the study protocol to be approved by a
Human Research Ethics Committee (or Institutional Review Board, IRB, in the
USA). This is to ensure that the rights of participants are fully protected in any
research study – that they are fully informed of any risks and benefits associ-
ated with participation and that the benefits of the research (to the individual
or, more often, to society) sufficiently outweigh the potential risks.

Current guidelines for medical research ethics can be traced back more
than 50 years to the end of World War II (see Box 4.8), although some of the
core concepts go back as far as Hippocrates. They are based on four moral
principles:

Beneficience – do good;
Non-maleficence – do no harm, in practice this has to be balanced against the

principle of beneficience – the potential benefits should outweigh the
possible risks;

Respect for autonomy – respect the rights of the individual; this includes the
right to privacy and the right tomake informeddecisions and thus the need for
study participants to give their ‘informed consent’ before enrolling in a study;

Justice – equity, impartiality and fairness.

These principles were first codified in a practical form after the Nuremburg
trials of German medical researchers at the end of World War II. The resulting
‘Nuremburg Code’, which underpins all subsequent codes of health research
ethics, is shown in Box 4.9. However, this Code was largely ignored at the time
and formal statements outlining requirements for the ethical conduct of
research did not start to appear until the late 1970s after continuing reports
of disquieting ethical practices such as the Tuskagee Study (see Box 4.8) and
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the Willowbrook Study (1963–1966) where children in an institution for the
mentally handicapped were deliberately infected with hepatitis virus to study
the course of the infection.
Tensions continue today between the need to protect the rights of individ-

uals (often via strict privacy laws) and the public need for good-quality infor-
mation to improve health. Rigid application of privacy laws can make some
forms of epidemiological research almost impossible. As discussed above, this
is especially true for record linkage studies where it may be impractical or

Box 4.8 Notable events and documents in the development of modern
ethical guidelines

<1945 German scientists accused of experimenting on human subjects in

Nazi concentration camps during World War II; also the beginnings of

large-scale research in the USA using groups such as orphans, the mentally

handicapped and prisoners.

1947 The Nuremberg Code
A list of 10 principles of medical and research ethics developed from the

Nuremberg trials in Germany at the end of World War II (see Box 4.9), but

largely ignored at the time.

1964 The Declaration of Helsinki
Developed at a meeting of the World Medical Association in Helsinki as a

statement of ethical principles to provide guidance to physicians and other

participants in medical research (www.wma.net/en/20activities/10ethics/

10helsinki/).

1966 Beecher’s Report
Publication of a report citing 22 post-war studies that were ethically flawed

despite being conducted at prestigious institutions and published in top

journals (Beecher, 1966).

1972 Publication of a report from the Tuskegee syphilis study in the USA

(1932–1972)

This caused outrage when it became clear that study participants had been

misled and deprived of treatment (www.cdc.gov/tuskegee/timeline.htm).

1978 The Belmont Report
A document developed by what was then the United States Department of

Health, Education, and Welfare entitled ‘Ethical Principles and Guidelines

for the Protection of Human Subjects of Research’ (archive.org/details/

belmontreporteth00unit).
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Box 4.9 The Nuremberg code, 1947

1. The voluntary consent of the human subject is absolutely essential.

This means that the person involved should have legal capacity to give

consent; should be so situated as to be able to exercise free power of

choice, without the intervention of any element of force, fraud, deceit,

duress, over-reaching, or other ulterior form of constraint or coercion;

and should have sufficient knowledge and comprehension of the

elements of the subject matter involved as to enable him to make an

understanding and enlightened decision. This latter element requires

that before the acceptance of an affirmative decision by the

experimental subject there should be made known to him the nature,

duration, and purpose of the experiment; the method and means by

which it is to be conducted; all inconveniences and hazards

reasonable to be expected; and the effects upon his health or person

which may possibly come from his participation in the experiment.

The duty and responsibility for ascertaining the quality of the

consent rests upon each individual who initiates, directs or engages in

the experiment. It is a personal duty and responsibility which may not

be delegated to another with impunity.

2. The experiment should be such as to yield fruitful results for the good

of society, unprocurable by other methods or means of study, and not

random and unnecessary in nature.

3. The experiment should be so designed and based on the results of

animal experimentation and a knowledge of the natural history of the

disease or other problem under study, that the anticipated results will

justify the performance of the experiment.

4. The experiment should be so conducted as to avoid all unnecessary

physical and mental suffering and injury.

5. No experiment should be conducted where there is an a priori reason

to believe that death or disabling injury will occur; except, perhaps, in

those experiments where the experimental physicians also serve as

subjects.

6. The degree of risk to be taken should never exceed that determined by

the humanitarian importance of the problem to be solved by the

experiment.

7. Proper preparations should be made and adequate facilities provided

to protect the experimental subject against even remote possibilities of

injury, disability, or death.

(continued )
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even impossible to obtain consent from individuals to access their informa-
tion. The costs of complying with human research guidelines can also drive up
the costs of research with studies often needing to obtain approval from, and
report back to multiple different ethics committees. However, as the historical
examples cited above emphasise, we cannot ignore the need for real auton-
omy in relation to participation in research.

Summary

Before starting any study it is important to be very clear about the question
you want to answer because different study designs can answer different
questions (we will come back to this issue in Chapter 9). Randomised trials
like those described at the start of the chapter are theoretically the ideal way
to look for associations between exposure and a disease or health outcome
because they are the best way to ensure that the groups we are comparing
are exchangeable in all ways except the exposure of interest. They do,
however, have to be designed, run and reported rigorously to realise this
potential in terms of providing convincing evidence about causality.

Box 4.9 (continued )

8. The experiment should be conducted only by scientifically qualified

persons. The highest degree of skill and care should be required

through all stages of the experiment of those who conduct or engage

in the experiment.

9. During the course of the experiment the human subject should be at

liberty to bring the experiment to an end if he has reached the physical

or mental state where continuation of the experiment seems to him to

be impossible.

10. During the course of the experiment the scientist in charge must be

prepared to terminate the experiment at any stage, if he has probable

cause to believe, in the exercise of the good faith, superior skill and

careful judgment required of him that a continuation of the

experiment is likely to result in injury, disability, or death to the

experimental subject.

From Trials of War Criminals before the Nuremberg Military Tribunals

under Control Council Law No. 10, Vol. 2, pp. 181–182. Washington, DC:

US Government Printing Office, 1949.

Research ethics: the US
National Institute of Health
(NIH) has a free online ethics
tutorial (https://
phrp.nihtraining.com).
Although primarily for NIH
grant holders, most of the
content is generic and
applicable to all.
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Unfortunately, they are often inappropriate (for ethical reasons), not feasible
or unaffordable. Furthermore, because they are often conducted in highly
selected groups of volunteers, it can be challenging to generalise their
findings and we will come back to this problem in Chapter 11. The non-
experimental study designs, particularly cohort and case–control studies, are
therefore of central importance in public health and, as you will see when we
discuss causation in Chapter 10, other designs such as ecological studies can
also provide valuable information. The fundamental importance of descrip-
tive studies in monitoring the health of a population and for identifying
emerging health problems should already be apparent, and you will see
further examples of their essential role in evaluating the effects of population
interventions when we discuss prevention in Chapter 14 and screening in
Chapter 15. Each design thus has an important role to play and different
designs will be more or less appropriate in different situations. It is also
essential to recognise the strengths and limitations of each; we will consider
these further in Chapters 7 and 8 when we look at some of the sources of
bias in epidemiological studies.

Table 4.1 Comparing the strengths and weaknesses of different study designs.

Ecological Cross-sectional Case–control Cohort
Randomised
controlled trial

Nested
case–control

Investigation of rare
disease or outcome

Investigation of a rare
exposure

Testing multiple effects of
an exposure

Study of multiple
exposures

Establishing temporalitya

Give a direct measure of
incidence

Explore exposures from
early life

Explore exposures which
change over time

Time required
Costs
Ethical Problems

a i.e. that the exposure came before the outcome.
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Questions

1. Complete Table 4.1 to show the relative strengths and limitations of the
main study designs, scoring each one on a scale from 1 = Poor (e.g. not
good to investigate a rare disease or very expensive) to 5 = Excellent (e.g.
very good to investigate a rare exposure or very quick to do).

2. Possible designs for the Salk polio vaccine trial described in Box 4.2 might
include giving the vaccine to second-grade children in one region and
comparing the rate of polio in this group to the rate in:
– Second-grade children in another region where the vaccine was not used
– Second-grade children the year before the vaccine was introduced
– First- and third-grade children in the same region and year as the
vaccinated group.

What are the strengths and limitations of each of these designs and which
do you think would be preferable and why?

3. Look back to the section about ethics and identify which of the four
fundamental moral principles apply to each of the 10 statements in the
Nuremburg Code.
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Box 5.1 Who does all the housework?

His view: Australian men do three times more housework today than they

did 40 years ago . . .

Her view: Australian men spend 5 minutes a day on laundry now

compared to 1.6 minutes 40 years ago – an extra 3½ minutes a day . . .

(Maushart, 2003.)
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As you saw in Chapter 1, one of the main uses of epidemiology is to identify
the causes of disease, and this is of fundamental importance in all areas of
public health – if we can work out what is causing ill health then we can work
to prevent it. In Chapter 2 we looked at the ways in which we can measure the
occurrence of disease and touched on some ways in which we can compare
different populations. However, while measuring the occurrence of a disease
in a population can tell us about the health of that population, it does not
directly shed much light on the underlying causes of the disease. To identify
the aspects of people or their environment (exposures) that might lead to the
onset of disease, we need to compare disease occurrence in groups with and
without the exposures of interest. In Chapter 4 we looked at some of the study
designs that we can use to do this; now we will look more closely at the
measures we use to quantify the associations between ‘exposures’, or potential
causes of disease, and the disease itself. By quantifying the association
between an exposure and disease we can start to make judgements as to
whether the exposure might actually cause the disease (we will discuss caus-
ality in more detail in Chapter 10). If we believe that it is causing disease, we
can then identify the importance of that exposure in terms of its overall effect
on the health of a community.

In this chapter we will look at the ways in which we calculate, use and
interpret these ‘measures of association’, so-called because they describe
the association between an exposure and a health outcome. An under-
standing of these measures will help you to interpret reports regarding
the causes of ill health and the effects of particular exposures or interven-
tions on the burden of illness in a community. Note that, while we will
discuss the measures in the context of an ‘exposure’ and ‘disease’, they can
be used to assess the association between any measure of health status and
any potential ‘cause’.

Looking for associations

We all know that smoking is a cause of lung cancer, but might it also increase
the risk of stroke? To answer this question we could compare the incidence
of stroke in a group of women who smoke with that in a group of non-
smokers.

Table 5.1 displays data from a cohort study in which the investigators
followed a large group of women for several years (person-years of observa-
tion). They classified the women as never smokers, ex-smokers and current
smokers, recorded how many women had a stroke during the follow-up
period and calculated the incidence rate of stroke in each group.

You will often see measures
of association referred to as
‘effect’ measures. Although
this name suggests a cause
and effect relationship (i.e.
that the exposure causes the
outcome to occur), we are
actually only measuring
associations and these may or
may not be causal (see
Chapter 10).

Exchangeability:
Throughout this chapter we
assume that the groups we
are comparing are comparable
in all ways except with regard
to the exposure of interest –
i.e. that they are
exchangeable. We will discuss
some of the issues we face
when they are not
exchangeable when we
discuss bias and confounding
in Chapters 7 and 8.
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How many times as likely was
(i) a current smoker to have a stroke than a never smoker, and
(ii) an ex-smoker to have a stroke than a never smoker?

Compared with non-smokers, how many extra strokes were there per 100,000
person-years in

(i) ex-smokers, and
(ii) current smokers?

The answers to these questions reflect the two main ways in which we can
compare smokers and non-smokers. First, ex-smokers were 1.6 times (27.9 �
17.7) and current smokers were 2.8 times (49.6 � 17.7) as likely to have a
stroke as never smokers during the follow-up period. An alternative way to
look at the data would be to say that, all other things being equal, if the
smokers had never smoked we would have expected them to have the same
rate of stroke as the never smokers, i.e. 17.7/100,000 person-years. This means
that, compared with never smokers, there were an extra 10.2 strokes per
100,000 person-years (27.9 – 17.7) in ex-smokers and an extra 31.9 strokes
per 100,000 person-years (49.6 – 17.7) in current smokers.
What we calculated above were, first, the rate ratio and, second, the rate

difference for the association between smoking and stroke. These measures
give us two different ways of quantifying the relation between an exposure and
a disease. The rate ratio tells us how many times higher the rate of disease is in
one group than in another group (e.g. current smokers are almost three times
as likely to have a stroke as never smokers). This gives an indication of the
strength of the association and can help us to decide whether smoking could
be a cause of stroke. The rate difference tells us how much extra disease
occurred in one group compared with another group (e.g. there were an extra
32 strokes per 100,000 person-years among current smokers compared with
non-smokers). If we believe that smoking is a cause of stroke then this extra

Table 5.1 Stroke incidence rates in female nurses, by smoking category.

Smoking category
No. of cases
of stroke

Person-years of
observation

Incidence rate per
100,000 person-years

Never smoked 70 395,594 17.7
Ex-smoker 65 232,712 27.9
Current smoker 139 280,141 49.6
Total 274 908,447 30.2

(Colditz et al., 1988)
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disease can be attributed to the fact that the women are smokers and, theor-
etically, it would not have occurred if they had never smoked. This infor-
mation gives some sense of the potential value of a preventive intervention, in
this case a programme aimed at stopping women from taking up smoking. (Of
course, if such an intervention were successful it would reduce the incidence
of many diseases, not just stroke.)

It is important to remember that ratio and difference measures give us very
different perspectives on a given situation. Look back to Box 5.1 at the start of
the chapter. Men would probably prefer to look at the ratio or relative
measure: they do three times more housework now than 40 years ago. In
contrast, women would focus on the difference or absolute measure: men
may do three times more laundry now than 40 years ago, but they still do an
average of only 5 minutes (3.5 minutes extra) per day.

Ratio measures (relative risk)

The cholera was therefore 14 times as fatal at this period amongst persons having the

impure water of the Southwark and Vauxhall Company, as amongst those having the

purer water from Thames Ditton (Snow, 1855) (from Box 1.7).

People who ate cold chicken at the youth camp were almost four times as likely to

become ill as people who did not eat cold chicken (from Table 1.2).

Ratio or relative measures tell us how many times as likely it is that someone
who is exposed to something will develop a certain disease or experience a
particular health outcome compared (or relative) to someone who is not
exposed. They do not tell us anything about the actual amount of disease
occurring in either group. They provide information about the strength of the
association between the exposure and the outcome and, as you will see in
Chapter 10, a strong association is more suggestive that the exposure is
actually causing the outcome. In the example above, the rate ratio for stroke
and current smoking was 2.8. This is a fairly strong association and would
add weight to an argument that smoking was actually causing strokes,
although it is not as compelling as the much stronger relation between
smoking and lung cancer, for which the rate ratio for current smoking is
somewhere between 10 and 15.

As the example shows, ratio measures are very easy to calculate – you
simply divide the frequency of disease (or of any health outcome) in the group
that is exposed to the factor of interest by the frequency in the group that is not
exposed to it. This can be done using either of the measures of disease
incidence that you met in Chapter 2. If you divide two incidence rates you
end up with a rate ratio (as for the stroke example above); if you divide two
incidence proportions or risks then it is a risk ratio. It is also possible to divide

142 Linking exposure and disease



two measures of prevalence to calculate a prevalence ratio. Note that you
must always divide two measures of the same type – you cannot usefully
divide an incidence rate by an incidence proportion.

Rate ratios

As you saw above, a rate ratio is calculated by simply dividing the incidence
rate of disease in a group of people exposed to the factor of interest (often
denoted by a subscript ‘e’) by the incidence rate in a group of people who are
not exposed to the same factor (denoted by a subscript ‘o’):

Rate Ratio ¼ Incidence Rate in exposed

Incidence Rate in unexposed
¼ IRe

IRo
(5.1)

This factor could be a potential cause of disease, it could be a characteristic of
a person, such as their age or where they live, or it could be something that
influences behaviour. Equally, it could be a preventive measure or, in the
clinical context, a drug or other treatment that we hope will reduce the
incidence of disease.

Risk ratios

Similarly, the risk ratio (also called the relative risk) is calculated by dividing
the incidence proportion or risk of disease in an exposed group by the
incidence proportion in an unexposed group:

Risk Ratio ¼ Incidence Proportion in exposed

Incidence Proportion in unexposed
¼ IPe

IPo
(5.2)

For example, In Chapter 2 we considered a randomised trial to evaluate
whether taking aspirin would reduce the risk of blood clots in people with
infective endocarditis. Look back at Table 2.3 on page 47 and calculate the risk
ratio for the association between aspirin and blood clots.

In this trial, the risk ratio was 28.3% � 20.0% = 1.4; those who took aspirin
were 1.4 times as likely to develop blood clots as those who did not take
aspirin. A risk ratio of 1.0 would mean that there was no difference between
the groups, so those taking aspirin were 40%more likely to develop blood clots
than those not taking aspirin (in the context of clinical epidemiology this may
be described as the relative risk increase or RRI). If aspirin had reduced the
risk of blood clots then we would have expected to see a risk ratio of less than
1.0. Clearly this intervention did not work the way the investigators had hoped
it would.
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This approach can be used much more widely than in the search for the
causes of disease. As an example, a trial was conducted in three general
practices in the UK to find out whether telephoning patients to offer them
an appointment for immunisation against influenza would increase immun-
isation uptake rates (Hull et al., 2002). In this study, attending for immunisa-
tion was the outcome of interest and receiving a telephone call was the
exposure. A total of 1318 patients aged 65–74 years were randomly assigned
to two groups. Patients in one group (n = 660) received a telephone call from
the receptionist at their general practice inviting them to make an appoint-
ment for immunisation (the intervention or exposed group). Patients in the
other group (n = 658) were not called (the control or unexposed group). The
investigators then waited to see who turned up for immunisation. They found
that 328 of the patients who received a phone call attended, as did 288 of those
who did not receive a call.

The easiest way to look at these data is in the form of a ‘2 � 2 table’. These
tables are usually set out so that the two columns show the numbers of people
with and without the outcome of interest while the rows show the numbers in
the exposed and unexposed groups (Table 5.2).

What percentage of patients attended for immunisation (the incidence pro-
portion) in each of the two groups?

How many times as likely were patients to attend if they had received a
personal call to make an appointment than if they had not been telephoned?

In the intervention group 50% of patients were immunised, compared with
44% of those in the control group (despite the intervention the immunisation
rates were still below the government target of 60%). This means that patients
who received an invitation were 1.14 times (50% � 44%) as likely to attend for
immunisation. This measure is still a relative risk because it has the same
structure – the incidence proportion (or risk) of a particular health outcome in

Table 5.2 The results of a study evaluating the effects of calling patients on influenza
immunisation rates.

Outcome

Exposure Immunised Not immunised % immunised

Received a call 328 332 50
No call 288 370 44
Total 616 702 47

(Hull et al., 2002)
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one group is divided by the incidence proportion in a second group. In this
case the word ‘risk’ seems less appropriate, but the term relative risk is still
regularly used.

Prevalence ratios

As you saw when we discussed prevalence surveys in Chapter 3 and cross-
sectional studies in the previous chapter, it is also possible to use measures of
prevalence instead of incidence to compare the burden of disease in two
groups and in this situation you end up with a prevalence ratio:

Prevalence Ratio ¼ Prevalence in exposed

Prevalence in unexposed
¼ Pe

Po
(5.3)

As we discussed in Chapter 2, measures of prevalence are harder to interpret
than measures of incidence and for this reason prevalence ratios are used
much less frequently than rate and risk ratios.

A note about relative risks

We noted above that the term relative risk is synonymous with risk ratio. In
practice, it is also commonly used to describe a rate ratio, because both the
rate ratio and the risk ratio compare the amount of disease in one group
relative to that in another. If a disease is rare (incidence proportion or risk less
than 1%), then the rate ratio and risk ratio will be almost identical; if it is not so
rare then the risk ratio will be closer to 1.0 than the rate ratio although, in
practice, there is little difference as long as the incidence proportion is less
than about 10%. The three terms rate ratio, risk ratio and relative risk are also
commonly and conveniently abbreviated as RR. When we use the term relative
risk it will refer to both the rate ratio and the risk ratio.
It is also worth noting that, although relative risks are also used in the

context of clinical trials, several other related measures are also used in the
field of clinical epidemiology (Box 5.2).

Box 5.2 Relative risks in clinical epidemiology

In 1998, Botti et al. reported a trial of the use of pressure bandages for

patients undergoing coronary angiography. Some of their results are

shown in Table 5.3.

The relative risk of bleeding among those given pressure bandages

compared with those without is 3.5 � 6.7 = 0.52. This tells us that those

(continued)

Ratio measures (relative risk) 145



Box 5.2 (continued)

given pressure bandages were about half as likely to develop bleeding as

those who were not given bandages. The results of treatment trials are

sometimes also reported as a relative risk reduction (RRR). This is the
amount by which the treatment has reduced the relative risk and it is

calculated by subtracting the relative risk from 1.0. It may then be

expressed as a percentage by multiplying by 100:

Relative risk reduction RRRð Þ ¼ 1:0� RR
So the RRR ¼ 1:0� 0:52 ¼ 0:48 or 48%:

(5.4)

Alternatively, it can be calculated directly from the incidence proportion

or, using the terminology of clinical epidemiology (see Box 2.4 on

page 43), the event rates among the experimental (EER) and control (CER)

groups:

Relative risk reduction RRRð Þ ¼ CER� EERð Þ � CER
In this case the RRR ¼ 6:7� 3:5ð Þ � 6:7 ¼ 0:48:

(5.5)

In other words, use of the pressure bandages has reduced the risk of

bleeding among patients undergoing coronary angiography by 48%.

Obviously, the greater the RRR the better the intervention.

For studies with a positive association (RR > 1.0) the results are turned

around to give what is logically called the relative risk increase (RRI). In
the aspirin study discussed previously, aspirin increased the risk of

bleeding by 40% (RR = 1.4).

Note that you will see associations described in this way in all fields of

epidemiology, e.g. ‘The risk of disease was 20% lower among those who

exercised more’. It is a simple, informative mode of description that just

happens to have been given a separate name in the area of clinical

epidemiology.

Table 5.3 Use of pressure bandages in patients undergoing coronary angiography.

Pressure
bandages Total

Number with
bleeding

Incidence proportion
or event rate

Yes 519 18 EERa = 3.5%
No 556 37 CERb = 6.7%
Total 1075 55 5.0%

a EER, experimental event rate or incidence proportion in the treatment group
b CER, control event rate or incidence proportion in the comparison group
(Botti et al., 1998.)
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Standardised incidence and mortality ratios

We discussed these measures in Chapter 2 (pages 56–58) because of the links
between direct and indirect standardisation, but they also deserve a mention
here because they compare the rate of disease (or death) in two populations
and so, in effect, are also measures of relative risk.

Difference measures (attributable risk)

As we noted above, the relative risk tells us nothing about the actual amount of
disease that is occurring. If the incidence proportions or risks of disease in
exposed and unexposed groups were 0.5% and 0.1%, respectively, the relative
risk would be 5.0. Similarly, if the risks were 50% and 10%, the relative risk
would also be 5.0. The major difference between these two situations is
obvious: the actual amount of disease that is occurring is vastly different – in
fact, in the second example it is 100 times greater. This vital public health
information cannot be obtained from the relative risk.
The approach to measuring the excess amount of disease occurring among

those exposed to a potential risk factor is just as intuitive, and the measures
are as simple to calculate as the relative risk. As you saw in the smoking and
stroke example at the start of the chapter, we can calculate the extra amount of
disease that is occurring in the exposed group by simply subtracting the
incidence in the unexposed group (IRo, CIo or background risk) from the
incidence in the exposed group (IRe, CIe). This can again be done using either
of the measures of disease incidence (incidence rate or incidence proportion)
that you met in Chapter 2. If you are subtracting two incidence rates (as in the
stroke example) you end up with a rate difference, whereas if you are
subtracting two incidence proportions or risks (as in the immunisation
example) you have a risk difference. These measures are also sometimes
described as the excess rate and excess risk as they measure the extra disease
that only occurs in the presence of the exposure. If we think that it is
reasonable to assume that the excess disease can be attributed to the expos-
ure, i.e. the exposure is causing the disease, then both of these measures can
also be described as the attributable risk (in the same way that relative risk is
used to describe both rate ratios and risk ratios).

Rate differences

Consider the smoking and stroke example again (Table 5.1). Compared with
never smokers, there were an extra 10.2 strokes (27.9 – 17.7) per 100,000
person-years in ex-smokers and an extra 31.9 strokes (49.6 – 17.7) per
100,000 person-years in current smokers. These differences are illustrated
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in Figure 5.1. The left-hand bar (a) shows the incidence rate of stroke in
non-smokers. This is often called the reference or background rate because
it reflects the natural occurrence of the disease in an unexposed population.
We expect this to operate on all members of the population regardless of
their smoking status, and this is shown for the ex- and current smokers. This
lets us visualise directly the extra burden of stroke added by past and
present smoking habits. Thus the second bar shows the extra incidence of
stroke in ex-smokers (b) that is presumably due to the fact that the women
had smoked in the past. Similarly, the third bar shows the far greater added
rate of stroke in current smokers (c) that is attributable to their smoking.
This extra disease is simply the difference between the rate in the exposed
group (smokers) and the rate in the unexposed group (non-smokers).
The total rate of disease in exposed individuals is therefore the sum of the
background rate (due to other causes) and the additional rate due to the
exposure in question.

If the groups differ only in their smoking habit and if we believe that smoking
is actually causing strokes to occur then we can say that the extra disease in the
smokers is attributable to their smoking – if they had not smoked then it would
not have occurred. This rate difference is also called the attributable risk
(AR) because it measures the actual amount of disease that can be attributed
to a particular exposure:

Rate difference or attributable risk

¼ Incidence rate in exposed� Incidence rate in unexposed
¼ IRe � IRo

(5.6)
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Figure 5.1 Attributable risks: the
results of a study of smoking and
stroke (drawn from: Colditz et al.,
1988).
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Risk differences

Look back to the example of immunisation against influenza in Table 5.2.

What percentage of patients in the intervention group would have been
expected to attend for immunisation even if they hadn’t received a phone call
(background ‘risk’)?

What extra percentage of patients presumably attended only because they had
received a call (i.e. how many attendances could be attributed to the
phone call)?

We would have expected 44% of patients in the intervention group to go for
immunisation even if the practice receptionists had not called to offer them an
appointment. We can therefore say that an extra 6% of patients (50% – 44%) in
the intervention group presumably went for immunisation only because they
had received a call, i.e. their immunisation can be attributed to this. Here we
have calculated a risk difference (as opposed to a rate difference) because we
are subtracting incidences proportions (or risks):

Risk difference or attributable risk

¼ Incidence proportion in exposed� Incidence proportion in unexposed
¼ IPe � IPo

(5.7)

Attributable fractions (AFs)

In addition to the attributable risk, it may also be informative to consider the
proportion of cases in the exposed group that would not have occurred in the
absence of the exposure. This measure is often called the attributable fraction
or attributable proportion, although you will also come across it described as
the attributable risk percent. To calculate the attributable fraction you simply
divide the attributable risk by the incidence in the exposed group:

Attributable Fraction AFð Þ ¼ Attributable Risk

Incidence in exposed

or ¼ Incidence in exposed� Incidence in unexposed

Incidence in exposed

Again, this can be done using either the incidence rate or the incidence
proportion:

Attributable Fraction AFð Þ ¼ AR
IRe

or
AR
IPe

(5.8)

¼ IRe � IRo

IRe
or

IPe � IPo

IPe
(5.9)

Again we are assuming the
two groups are exchangeable
and that if the intervention
group had not been invited to
go for immunisation their rate
of attendance would have
been the same as that in the
control group.
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Consider the smoking and stroke example again. The rate of stroke among
current smokers was 49.6/105 person-years and the rate difference or attribut-
able risk was 31.9/105 person-years. The attributable fraction is therefore 0.64
or 64%, i.e. of all the strokes occurring among current smokers, about two-
thirds could be attributed to the fact that the women smoked:

Attributable Fraction AFð Þ ¼ 49:6� 17:7

49:6
¼ 0:64 ¼ 64%

Interpretation of the attributable risk
The attributable risk tells us how much extra disease actually occurred in the
exposed group. If the exposed and unexposed groups are exchangeable in all
ways except their exposure status, then this extra disease presumably occurred
as a result of the exposure. By implication, we can then say that, if the
association is causal, this is the amount of disease that we could prevent in a
comparable group of people in the future if we could prevent them from being
exposed. This measure is, therefore, of direct use to health planning and policy
setting. Note that in the field of clinical epidemiology, what we have called the
attributable risk is often called the absolute risk reduction (ARR) or absolute
risk increase (ARI) depending on whether the event rate is reduced or
increased in the treatment group (see Box 5.3). The ARR and ARI are identical
to the attributable risks used elsewhere in epidemiology and are calculated in
exactly the same way – the only difference is in the names.

In practice, of course, it is often impossible to remove or prevent an expos-
ure altogether. Someone who smokes cannot go back to being a never-
smoker, but they can become an ex-smoker. This means that current smokers
who stop smoking will not realise the full benefit predicted by the standard
attributable risk (which would compare smokers with the unexposed group, in
this case never smokers). Rather, the best we could achieve with a 100%
effective ‘stop smoking’ campaign would be to reduce the rate of stroke among
smokers to the level seen among ex-smokers, a rate difference given by:

IRcurrent – IRex = 49.6 – 27.9 = 21.7 strokes/100,000 person-years

Population attributable risks (PARs)

The attributable risk tells us about the amount of extra disease occurring in the
exposed group because of the exposure. An alternative way to look at the
burden due to an exposure is to consider how much disease in the whole
community can be attributed to the exposure. To do this we need to compare
the incidence of disease in the whole population or community (some of
whom will be exposed and some unexposed) with the amount of disease in
an unexposed group (the amount that we would expect if no one had been
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exposed). In the smoking and stroke example in Table 5.1 we know that the
overall incidence rate of stroke among the women was 30.2/105 person-years.

What would this rate have been if no one had smoked?

How much of the incidence of stroke in the total population is due to the fact
that some women smoke or are ex-smokers?

What fraction of the overall rate of stroke in the total population is due to
smoking?

If none of the women had smoked and if smokers and non-smokers are
comparable in all other respects, the overall rate of stroke in the population
would be the same as the rate in never smokers (17.7/105 person-years). This
means that, in the whole population, there are an extra 12.5 cases (30.2 – 17.7)
per 100,000 person-years that can be attributed to the fact that some of the

Box 5.3 Attributable risks in clinical epidemiology

In the trial of the use of pressure bandages for patients undergoing

coronary angiography (Table 5.3) the attributable risk or absolute risk
reduction (ARR) of bleeding would be

ARR ¼ CER� EER ¼ 6:7� 3:5 ¼ 3:2% (5.10)

In other words, the use of pressure bandages prevented bleeding in 3.2%

of patients.

Another quite useful way of looking at these data is in terms of the

number needed to treat (NNT). The NNT is the number of patients who

would have to be given the experimental therapy in order to prevent one

adverse event (death, complication) from occurring. It is calculated by

simply dividing 1.0 by the ARR:

NNT ¼ 1� ARR (5.11)

In the study of pressure bandages the ARR was 3.2% or 0.032, so

NNT ¼ 1� 0:032 ¼ 31:3

This means that about 32 patients undergoing coronary angiography

would need to be given pressure bandages in order to prevent one case of

bleeding. (Note that the NNT should always be rounded up to the nearest

whole number because you cannot treat part of a person.) This gives a

good intuitive feel for the treatment benefit, and can aid communication

with patients.
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women in the population smoke or are ex-smokers. This is the population
attributable risk (PAR) and is depicted (d) in the fourth bar in Figure 5.2.

There are two ways to calculate the PAR. One way, analogous to the
calculation of attributable risk (Equations (5.6) and (5.7)), is to subtract the
incidence in the unexposed group (IRo, IPo) from the incidence in the whole
population (IRT, IPT). As for the attributable risk, this can be done using either
incidence rates or incidence proportions:

PAR = Incidence rate in population – Incidence rate in unexposed

¼ IRT � IRo or IPT � IPo (5.12)

Clearly, the PAR will depend not only on the attributable risk among the
exposed, but also on the prevalence of the exposure in the population. An
alternative way to calculate the PAR is therefore to multiply the attributable
risk by the prevalence of exposure in the population (Pe):

PAR ¼ AR� Pe (5.13)

Note that, while this formula is straightforward to use when there are only two
levels of exposure, it is trickier when there are more than two levels, as in the
stroke and smoking example. In this situation it is much easier to use Equation
(5.12) because the overall incidence rate in the population (IRT) combines the
effects of both past and current smoking in a single measure.

Population attributable fractions (PAFs)

As with the attributable risk and attributable fraction, we can also calculate the
population attributable fraction (or population attributable risk percent),
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which indicates the proportion of all the strokes that occurred in the popula-
tion that could have been avoided if no-one had smoked. The formula to
calculate the PAF is analogous to that used for the attributable fraction but
with the incidence in the total population used instead of the incidence in the
exposed group:

Population Attributable Fraction ¼ Population Attributable Risk

Incidence in total population
� 100

Population Attributable Fraction

¼ Incidence in total population-Incidence in unexposed

Incidence in total population
� 100

Again, this can be done using either incidence rates or incidence proportions:

Population Attributable Fraction ¼ PAR
IRT

or
PAR
IPT

(5.14)

Population Attributable Fraction ¼ IRT � IRo

IRT
or

IPT � IPo

IPT
(5.15)

So, in the stroke example, approximately 41% (12.5 � 30.2 = 0.41) of strokes in
the whole population could be attributed to smoking and, in theory, would not
have occurred if no-one had ever smoked.

Interpretation of the population attributable risk
The PAR is exactly analogous to the attributable risk (AR) but, while the
attributable risk tells us how much disease in the exposed group can be
attributed to the exposure, the population attributable risk tells us how much
disease in the whole population can be attributed to the exposure. The
population attributable risk and population attributable fraction are functions
both of the incidence of disease due to an exposure and of the prevalence of the
exposure. An exposure may be associated with a very high attributable risk of a
disease such that those exposed have a very high chance of developing it, but
if the exposure is rare then this high risk will only affect a small proportion of
the population. It will therefore have little impact in a whole community (a low
PAR). The population attributable risk is the best way to measure the burden
of disease in a whole community that can be attributed to a particular
exposure.
As we have noted above for the AR, there is no intervention that we could

implement to change a woman who is a current smoker into a never smoker;
the most we could do would be to persuade her to stop smoking. If we could
do this we could estimate the incidence rate of strokes in the whole group as
23.4 per 100,000 person-years (based on the new mix of never smokers and

PAF: Strictly speaking, the
formulae for the PAF that we
have described are only valid
when there is no
‘confounding’ of the exposure
of interest (Rockhill et al.,
1998), but we show them
here to illustrate the
underlying concepts. Equation
(5.19) shows an alternative
formula for the PAF that can
be used in the presence of
confounding. We will discuss
confounding in Chapter 8.
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ex-smokers1). This means that, if we could have persuaded all current smokers
to give up smoking, we could potentially have prevented 6.8 strokes per
100,000 person-years (PAR = 30.2 – 23.4) or 22.5% of all strokes in the
population (PAF = 6.8 � 30.2).

In practice, however, even this is an overly simplistic view. It is very hard to
persuade people to stop smoking (or to give up most unhealthy behaviours for
that matter) and amore realistic goal might be to look at the health benefits that
would follow if we could halve smoking rates. We will come back to this issue
and will meet the PAR again when we consider disease prevention in Chap-
ter 14. When thinking about the possibilities for intervention and prevention of
disease we should also bear in mind that changing someone’s smoking habit
will reduce not just their risk of stroke but also their risk of many other diseases,
so the public health benefits of a ‘stop smoking’ campaign are not limited to
stroke reduction.While the overall benefits of stopping smoking are clear-cut, it
is less obvious where an intervention reduces risk of one disease but increases
that of another. For example, moderate alcohol consumption can reduce the
risk of heart disease, but it can also increase the risk of breast cancer. These
benefits and risks have to be weighed up and no-one would recommend that
women should drink more alcohol to prevent heart disease.

At the global level, population attributable risks and population attributable
fractions are used to calculate the impacts of various exposures on world
health (see e.g. Lim et al., 2012). For example, it has been estimated that in
the year 2008 almost six million premature deaths around the world were
attributable to tobacco use and second-hand smoke (WHO, 2011). You saw
another example of this in Table 2.11 on page 69 although it looked somewhat
different, because instead of looking at the incidence of disease attributable to
an exposure, the burden of disease was measured in disability adjusted life
years or DALYs. The concept is the same though. Note the variation in the
relative importance of some causes depending on the affluence and thus the
prevalence of exposure in the population.

A word of caution regarding attributable risks

As you have seen, attributable risks are easy to calculate. However, it is important
to remember that, to bemeaningful, we need accurate information regarding the
rates of disease among people who are exposed and unexposed to the factor of

1 If all current smokers became ex-smokers at the start of the study their stroke rate would have

been 27.9/105 person-years so ~78 strokes would have occurred in their 280,141 person-years

of follow-up. This gives a total of 213 strokes (70 + 65 + 78) in 908,447 person years or 23.4/105

person-years in the whole population. Note: this assumes the full benefit is seen immediately

after stopping.
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interest, and the association between exposure and outcomemust be causal. It is
also important to remember that while the RR of disease associated with expos-
ure may be similar across different populations, the PAR also depends on the
prevalence of the exposure in the population (see Equation (5.13)). The PAR in
one population will therefore be very different from that in another population
with a different prevalence of exposure. Finally, there are possibly more terms
used to describe attributable risks than any other measure in epidemiology.
People use different names for the same thing and, what is evenmore confusing,
the same name for different things. This emphasises the importance of never
taking things at face value – always take time to check what are being presented.
The key distinction is whether people are talking about only the exposed group
(what we call the attributable risk, attributable fraction or, in clinical epidemi-
ology, the absolute risk reduction) or the whole population (what we call the
population attributable risk or population attributable fraction). It is also import-
ant to distinguish between absolute differences (what we have called attributable
risks) and percentage differences (attributable fractions).

Relative risk versus attributable risk: an example

In the British Doctors Study (discussed in Chapter 1) mortality rates were
calculated for deaths both from lung cancer and from coronary heart disease
(CHD). These rates, together with the relative risks, attributable risks and
attributable fractions, are shown in Table 5.4.

Is the association with smoking stronger for lung cancer or CHD?

If everyone stopped smoking, would we prevent more cases of lung cancer
or CHD?

In these data there is a very strong relative association between smoking and
lung cancer (RR = 14), but only a modest link between cigarettes and CHD

Table 5.4 Lung cancer and CHD mortality rates in the British Doctors Study.

Disease
Smoking
status

Mortality rate
per 105

person-years
Relative
risk

Attributable
risk per 105

person-years
Attributable
fraction (%)

Lung cancer Yes
No

140
10

14.0 130 93

Coronary
heart disease

Yes
No

669
413

1.6 256 38

(Doll and Peto, 1976)
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(RR = 1.6). On its own, this offers powerful support to a belief in smoking as a
cause of lung cancer, but leaves quite a few doubts as to whether it has a
causal role in the development of CHD (see also Chapter 10). Given that
smoking does cause CHD as well as lung cancer (and there is plenty of other
evidence to support this), the attributable fraction supports the view that
smoking is a more important cause of lung cancer than it is of CHD: among
smokers 93% of lung cancers but only 38% of CHD can be attributed to
smoking. In contrast, the attributable risks show that the public health impact
of smoking is twice as great for CHD mortality as for lung cancer deaths: there
are almost 260 additional deaths from CHD in smokers for every 100,000
person-years compared with only 130 from lung cancer. If we look more
closely at the actual rates of disease, we see that the background rate of
CHD (the rate in non-smokers) is very high, so a large rate difference does
not look so impressive when we calculate the RR. In contrast, the background
rate of lung cancer is very low, so a much smaller rate difference leads to a very
high RR. This example shows very clearly the striking difference in what these
measures describe and the different implications of a large relative risk (or
attributable faction) versus a large attributable risk. Table 5.5 summarises
some of these differences and the uses of the different measures.

Case–control studies

All of the above measures relate to situations in which we can measure the
incidence of disease. This information usually comes from a cohort study in
whichwe identify groups of exposed and unexposed individuals who do not have
the disease of interest and then follow them over time to see how many develop

Table 5.5 A comparison of relative and attributable risks.

Measure Strengths Uses

Relative risk (RR) Evaluates the strength of an association
between exposure and disease

To help identify causes of disease

Attributable risk (AR) Measures the burden of disease
attributable to exposure in the exposed
group

To assess the magnitude of a public health
problem associated with an exposure
among those exposed

Population attributable
risk (PAR)

Measures the burden of disease
attributable to exposure in the
population

To assess the magnitude of a public health
problem associated with an exposure in
the whole population

Attributable fraction (AF) Identifies the specific exposures that cause
most disease in those who are exposed

To identify potential targets for prevention

Population attributable
fraction (PAF)

Identifies the specific exposures that cause
most disease in a population

To identify potential targets for prevention
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the disease. As you saw in the previous chapter, in a case–control study we
usually select only a sample of all possible people without disease as controls.
This often means that we can no longer calculate disease incidence, so we need
different methods to calculate measures of association in a case–control study.
In the early 2000s a case–control study of ovarian cancer was conducted in

Australia. It included the majority of women newly diagnosed with ovarian
cancer across the whole of Australia between 2003 and 2005. The controls
were a sample of women who did not have ovarian cancer and who were
chosen at random from the national electoral roll to give a similar age and
state distribution as the cases (we will discuss this process where we ‘match’
cases and controls further in Chapter 8). The investigators found that 413 of
the 619 women with ovarian cancer and 1160 of the 1482 controls had
previously used the oral contraceptive (OC) pill (Jordan et al., 2008), as shown
in Table 5.6.

What percentage of the OC users have ovarian cancer? Does this reflect the
likely incidence of ovarian cancer in OC users?

In this case–control study 26% (413 � 1573) of the OC users have ovarian
cancer. It is tempting to interpret this as meaning that the incidence of ovarian
cancer among oral contraceptive users was 26% but, even if you don’t know
anything about ovarian cancer, this should ring some warning bells! The OC
pill would never be prescribed if almost half of the women who used it
developed cancer. The numerator (the number of women with cancer) is fine
because most of the women with cancer were included, but the denominator
(the total population) is wrong because only a tiny proportion of all the
women without ovarian cancer have been included. This means that, in a
case–control study, we cannot calculate the usual measures of disease inci-
dence directly, and so cannot calculate relative risks in the same way.

Relative risk in case–control studies

In a case–control study we calculate another measure of association known as
the odds ratio (OR). This involves calculating the odds that a case had used
OCs in exactly the same way as odds are calculated in horse racing. Among the

Table 5.6 A case–control study of oral contraceptive (OC) use and ovarian cancer.

Cases Controls Total

Used OC pill 413 1160 1573
Did not use OC pill 206 322 528
Total 619 1482 2101

(Jordan et al., 2008)

Estimating incidence in a
case–control study: If the
sampling fraction of controls
(i.e. the proportion of the
total population that
participate as controls) is
known then it is possible to
estimate the incidence of
disease in a case–control
study, but this is rarely done
in practice.
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cases, 413 women had used the OC pill and 206 had not, so the ‘odds’ of a case
having used the pill are ‘413 to 206’ or 413 � 206 = 2.00.

What are the odds that a control had used the OC pill?

Among the controls, 1160 women had used the pill and 322 had not. The odds
that a control had used the pill are therefore 1160 � 322 = 3.60. We can then
calculate the odds ratio by dividing the odds that a case had used the pill (i.e.
was exposed) by the odds that a control had used the pill. In this example:

Odds ratio (OR) = 2.00 � 3.60 = 0.56

An alternative and simple way to calculate the odds ratio that is often used
in practice is as follows. Your data must be arranged in a standard way as
shown in Table 5.7 (note that this is the same as the way in which the data are
shown in Table 5.6).

The odds that a case used the OC pill = a � c

The odds that a control used the OC pill = b � d

Therefore the ratio of these odds = (a � c) � (b � d)

or

Odds Ratio ¼ a� d
b� c

(5.16)

So, for the ovarian cancer data, the OR associated with OC use is

Odds Ratio ¼ 413� 322

1160� 206
¼ 0:56

In other words, the odds of a case having used the OC pill is almost half the
odds that a control had used the pill. As you will see below, we can interpret
this as meaning that a woman who uses the OC pill is almost half as likely to
get ovarian cancer as a woman who has not used the pill. But be warned, it is
not always possible to interpret an odds ratio in this way – especially if the
disease of interest is quite common.

Interpreting odds ratios
How we interpret an odds ratio depends to a large extent on how the control
group was recruited for that particular study, as in different situations the odds

Table 5.7 Calculation of the odds ratio in a case–control study.

Cases Controls Total

Exposed a b a + b
Unexposed c d c + d
Total a + c b + d a + b + c + d
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ratio can be a good estimate of either the risk (incidence proportion) ratio or
the incidence rate ratio (see Box 5.4). In many studies the controls are
recruited using what is called density sampling and in this situation the odds
ratio is a good estimate of the rate ratio. For density sampling, the controls for
the study must be identified during the period when the cases were occurring,
not at the beginning or end of the study. In practice this does not make a lot of
difference if the disease is rare, but if the disease is common it means that it is
possible for someone to be recruited as a control early in a study and then to
be recruited again as a case if they later develop the disease of interest.
Although ovarian cancer is a rare disease, one woman participated as a control
in a case–control study similar to the one described above but was diagnosed
with ovarian cancer a year later. She then participated in the study a second
time as a case. This is not only valid but essential for true density sampling.

Box 5.4 Rate ratios, risk ratios and odds ratios

Each of the three measures of association is a valid measure in its own

right, but the relationship among them varies in different situations and

depends on how the controls were selected for the study (see Rodrigues

and Kirkwood, 1990).

• If they were selected at the start of the case-recruitment period and so

included anyone who was disease-free at that point in time (regardless

of whether they went on to develop disease) then

Odds ratio � Risk ratio

so an OR of 3.0 can be interpreted as meaning that the risk of disease in

those who were exposed was three times that among those who were

not exposed.
• If they were selected at the same time as cases were being recruited (i.e.

density sampling), as is usually the case in practice, then

Odds ratio � Rate ratio

so an OR of 3.0 can be interpreted as meaning that the rate of disease in
those who were exposed was three times that among those who were

not exposed.
• If they were selected to include only people who were still disease-free at

the end of the study then the odds ratio will still provide information

about the strength of the association but, if the disease is not rare, it

might not be a good estimate of the relative risk. That is, if an OR = 3.0 it

tells us that the association is strong but it does not necessarily mean

that those who were exposed were precisely three times as likely to

develop disease compared to those who were not exposed.
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In practice, however, if a disease is rare – and for the purposes of epidemi-
ology many diseases are rare – then all three measures, the rate ratio, risk ratio
and odds ratio, will be approximately equal and all can be interpreted as a
relative risk. This is often described as the ‘rare disease assumption’ (see
Appendix 6 for the mathematical derivation of why this is true for the risk ratio
and odds ratio).

Odds ratios in cross-sectional studies
In a cross-sectional study we compare the prevalence of disease in different
exposure groups and the logical measure to use to do this is the prevalence
ratio (PR). However, prevalence ratios are not as easy to work with as odds
ratios and, as a result, you will find that the results of cross-sectional studies
are often presented as odds ratios, sometimes called prevalence odds ratios
(POR). As for the odds ratio (see above), the POR will also be a good estimate
of the prevalence ratio in a cross-sectional study if the outcome is rare.
However, in many cross-sectional studies the outcome is not rare and in this
situation the POR will be more extreme (further from the null value of 1.0)
than the prevalence ratio. In other words, if the PR is 2.0 the POR will be > 2.0;
likewise, if the PR is 0.8 the POR will be < 0.8. This means that when the
outcome is not rare, a POR of 2.0 suggests there is an association between the
exposure and outcome, but it cannot be interpreted as meaning the outcome
was twice as common in the exposed group compared to the unexposed
group.

Attributable risk in case–control studies

Because we cannot usually calculate the actual incidence of disease in
exposed and unexposed subjects in a case–control study, we cannot calculate
the attributable risk of disease associated with the exposure. We can, however,
estimate the attributable fraction using the following formula (see Box 5.5 for
an explanation of where this formula comes from):

Attributable Fraction AFð Þ ¼ OR� 1ð Þ
OR

� 100 (5.17)

We can also estimate the population attributable fraction, as follows:

Population Attributable Fraction PAFð Þ ¼ Pe OR� 1ð Þ
Pe OR� 1ð Þ þ 1

� 100 (5.18)

where Pe is the prevalence of exposure in the population, estimated by
measuring the prevalence in the control group.

Or, alternatively,
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Population attributable fraction = Pe(cases) � AF

¼ Peð casesÞ
OR� 1ð Þ
OR

� 100 (5.19)

where Pe(cases) is the prevalence of exposure among the cases. This version of
the equation is perhaps more intuitive than Equation (5.18) because while the
AF tells us the proportion of cases in the exposed group that can be attributed
to the exposure, when we calculate the PAF we also have to allow for the cases
that were not exposed. For example, if 80% of exposed cases were attributable
to an exposure but only half of the cases were exposed (Pe(cases) = 0.5) then in
the whole population only 40% of cases (80% � 0.5) would have been attrib-
utable to the exposure. Another advantage of Equation (5.19) is that it can also
be used in the presence of confounding by using the OR that has been
‘adjusted’ for the confounders (see Chapter 8).
These measures are the only way of assessing the potential public health

importance of an exposure from a case–control study. (Note that these formu-
lae can also be used for follow-up studies by substituting the RR for the OR.)
Another example comes from a study of the effectiveness of bicycle helmets

for preventing head injury in children (Thomas et al., 1994). The cases were
98 children who presented to the local children’s hospital with bicycle-related
head injuries and the controls were 266 children treated for other bicycle-
related injuries. In total, 207 children, 67 of the cases and 140 controls, were
not wearing a helmet at the time of the accident. (Note that we will consider
not wearing a helmet as the exposure in this example.)

Box 5.5 Deriving the formula for AF in a case–control study

From Equation (5.9) AF ¼ IRe � IRo

IRe

If we then divide each component of this formula* by the incidence of

disease in the unexposed group (IRo) we get:

AF ¼ IRe � IRoð Þ � IRo � IRoð Þ
IRe� � IRoð Þ

But IRe � IRo = the relative risk (Equation (5.1)) and IRo � IRo = 1 so we

have: AF ¼ RR� 1

RR
Or, in a case–control study where we use the OR to estimate the RR:

AF ¼ OR� 1

OR

* This is legitimate as long as we divide both the top and bottom of the

equation by the same thing as this does not change the answer.
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What is the OR for the association between not wearing a helmet and head
injury?

What percentage of head injuries occurring among the children not wearing a
helmet could be attributed to the fact that they were not wearing a
helmet (AF)?

What proportion of the control children were not wearing a helmet (Pe)?

What percentage of all bicycle-related head injuries in children could be
attributed to not wearing a helmet (PAF)?

Table 5.8 shows the results of the study laid out in a standard 2 � 2 table.
The odds ratio for the association between not wearing a bicycle helmet and
head injury is

OR ¼ a� d
b� c

¼ 67� 126

140� 31
¼ 1:95

This indicates that children who do not wear helmets are almost twice as
likely to sustain a head injury in a bicycle accident as children who do wear
helmets.

The attributable fraction tells us the proportion of head injuries among
those not wearing a helmet that could be attributed to the fact that they were
not wearing a helmet:

AF ¼ OR� 1ð Þ
OR

� 100 ¼ 1:95� 1

1:95
� 100 ¼ 49%

This tells us that 49% of head injuries among children not wearing helmets
could be attributed to the fact they were not helmeted and were therefore
potentially preventable if they had been wearing a helmet.

Out of the 266 controls, 140 or 53% were not wearing a helmet. We can use
this information to calculate the population attributable fraction to estimate
the proportion of all head injuries that could be attributed to the fact that some
children were not wearing a helmet:

Table 5.8 A case–control study of bicycle helmets and head injury.

Cases Controls Total

No helmet (exposed) 67 140 207
Wearing a helmet (unexposed) 31 126 157
Total 98 266 364

(Thomas et al., 1994.)
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PAF ¼ Pe OR� 1ð Þ
Pe OR� 1ð Þ þ 1

� 100 ¼ 0:53� 0:95

0:53� 0:95ð Þ þ 1
� 100 ¼ 0:5035

1:5035
� 100 ¼ 33%

The results suggest that, in the study population, almost one-third of all
child head injuries incurred while cycling could be prevented if all children
wore bicycle helmets. (Note that it is important not to round off the numbers
during calculations like this because this may make the answer inaccurate.
Rounding should be used only for communication of the final answer.)

Looking for associations when the measures are continuous

In everything we have discussed above we have looked at what are called
dichotomous outcomes – outcomes where people either experience the out-
come of interest or they do not. We have also looked only at dichotomous
(exposed vs. unexposed) or categorical exposures, such as the comparisons of
never, former and current smokers. However, there are of course many health
measures that cannot be captured by a simple yes/no outcome. For example,
we might be interested in factors that affect blood pressure, body mass index,
blood glucose levels, etc., or we might be interested in how these continuous
measures – so-called because they can take any value (within a plausible
range) – affect disease. In these situations it is sometimes appropriate to
dichotomise or categorise the outcome, e.g. to look at the proportion of people
whose blood pressure is above a certain level versus those whose blood
pressure is below this level. However, if we do this we lose a lot of information
because we are not differentiating between someone whose blood pressure is
only just above the cut point and someone whose blood pressure is very high.
The best methods for analysing continuous variables of this type depend on
the type of data. They can be found in any good biostatistics textbook and we
will not consider them here.

Summary

Box 5.6 gives an example that summarises the calculation and interpret-
ation of the various measures of association that you have just met. It is
based on incidence rates of type-2 diabetes but the formulae also apply to
incidence proportion or risk data – simply substitute IP for IR. In a case–
control study it is not usually possible to calculate the AR or PAR, but we
can use the odds ratio (Equation (5.16)) in place of the RR to calculate the
AF and PAF. After working through this example and the questions at the
end of the chapter you should feel comfortable calculating and interpreting
any of the common measures of association that you come across in the
health literature.
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Box 5.6 An example – obesity and type-2 diabetes

Imagine that 30% of the population in a particular community is over-

weight, 82.5% of diabetics are overweight and the rate of type-2 diabetes is
• 330/105 person-years in the obese (IRe),
• 30/105 person-years in the non-obese (IRo) and
• 120/105 person-years in the whole population (IRT).

Then we can calculate the following.

(1) The rate ratio or relative risk (RR) using Equation (5.1):

RR ¼ IRe

IRo
¼ 330

30
¼ 11:0

The relative risk tells us that the rate of type-2 diabetes is 11 times as

high among people who are obese than among non-obese people.

(2) The rate difference or attributable risk (AR) using Equation (5.6):

AR = IRe – IRo = 330 – 30 = 300 per 105 person-years

The attributable risk tells us that, if obesity is a cause of type-2

diabetes, then, among obese people, 300 cases per 105 person-years

can be attributed to their obesity.

(3) The attributable fraction (AF) using Equation (5.9):

AF ¼ IRe � IRoð Þ
IRe

� 100 ¼ 330� 30ð Þ
330

� 100 ¼ 91%

or Equation (5.17) (using the RR instead of the OR):

AF ¼ RR� 1ð Þ
RR

� 100 ¼ 11� 1ð Þ
11

� 100 ¼ 91%

The attributable fraction tells us that more than 90% of type-2

diabetes in obese people would not occur if they were not

overweight.

(4) The population attributable risk (PAR) using Equation (5.12):

PAR = IRT – IRo = 120 – 30 = 90/105 person-years

or using Equation (5.13):

PAR = AR � Pe = 300 � 0.3 = 90/105 person-years

where Pe = prevalence of exposure in the population = 30% or 0.3.

The population attributable risk tells us that, in the whole
population, 90 cases of type-2 diabetes per 105 person-years can be

attributed to obesity.

(continued)
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Questions

1. In an industry employing 10,000 people, 2500 were employed in areas
where they were exposed to pesticides, while the remaining 7500 were
not exposed. At the beginning of the study, all employees were free of
disease. The entire population of 10,000 was followed for 10 years to
determine whether exposure to pesticides increased the risk of developing
a particular disease. For this disease, the findings were as given in Table 5.9.

(a) Calculate the incidence proportion for the disease in
(i) the exposed workers,
(ii) the unexposed workers, and
(iii) all workers combined.

(b) Calculate the relative risk of this disease in those exposed to pesticides.
What does this tell us?

(c) How much disease in the exposed workers could be due to their
pesticide exposure (attributable risk)?

(d) Calculate the population attributable fraction. What does this tell us?
2. The Family Planning Association in Oxford, England studied 17,000 women

who had been enrolled in a cohort study between 1968 and 1974 to look at
the association between oral contraceptive (OC) use and venous throm-
boembolism (Vessey et al., 1989). For current users of OCs, person-time

Box 5.6 (continued)

(5) The population attributable fraction (PAF) using Equation (5.14):

PAF ¼ PAR
IRT

� 100 ¼ 90� 120ð Þ � 100 ¼ 75%

or Equation (5.18) (using the RR instead of OR):

PAF¼ Pe RR� 1ð Þ
Pe RR� 1ð Þþ 1

� 100¼ 0:3� 11� 1ð Þ
0:3� 11� 1ð Þð Þþ 1

� 100¼ 3

4
� 100¼ 75%

or Equation (5.19):

PAF ¼Pe casesð Þ
RR�1ð Þ
RR

�100¼ 0:825� 11-1ð Þ
11

¼ 0:825�0:91�100¼ 75%

The population attributable fraction tells us that 75% of all cases of

type-2 diabetes would not occur if no one was grossly overweight.

Note: the estimates of PAF are all identical because we have assumed that

there is no confounding (see Chapter 8). In the presence of confounding,
Equation (5.19) should be used with the adjusted estimate of the relative risk.

Additional questions
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was counted from the time a woman began using OCs. For never or past
users, it was counted from the time a woman enrolled in the study.
Woman-years were counted until venous thromboembolism occurred,
the woman was lost-to-follow-up, or the end of the study.
(a) The incidence rate of venous thromboembolism was 53 per 100,000

woman-years among current OC users and 6 per 100,000 woman-years
among never or past users. Calculate the relative risk of venous throm-
boembolism for current users compared with never or past users.

(b) The incidence rate of thromboembolism was 62 per 100,000 among
users of OCs containing higher dosages of oestrogen and 39 per 100,000
among users of lower-dose OCs. Calculate the relative risk of venous
thromboembolism for
(i) low-dose users compared with never or past users, and
(ii) high-dose users compared with never or past users.

(c) What can you conclude about the risk of thromboembolism for users of
OCs containing different doses of oestrogen?

3. Doll and Hill first evaluated the proposition that smoking was a risk factor
for lung cancer in a case–control study (Doll and Hill, 1950). They found
that, of 649 men with lung cancer (cases), 647 had smoked at some time,
compared with 622 of the 649 men without lung cancer (controls).
(a) Draw up a clearly labelled and appropriate 2 � 2 table to show

these data.
(b) How many times as likely was a smoker to develop lung cancer than a

non-smoker?
(c) Calculate the proportion of lung cancers attributable to smoking among

(i) smokers and (ii) the whole population.
(d) What are these measures called and how does their interpretation

differ?
4. The association between decreased duration of sleep and incidence of

coronary heart disease (CHD) was studied among women enrolled in the
Nurses’ Health Study (Ayas et al., 2003). Among women who reported
sleeping for 7 or 8 hours per night, there were 541 incident cases of CHD
during 451,393 person-years of follow-up. Among those who slept for

Table 5.9 The results of a hypothetical study of the effects of pesticide exposure.

Developed disease Did not develop disease Total

Exposed to pesticides 40 2,460 2,500
Not exposed 60 7,440 7,500
Total 100 9,900 10,000
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6 hours per night there were 267 cases in 175,629 person-years, and among
those sleeping 5 or fewer hours per night there were 67 cases during 30,115
person-years of follow-up.
(a) Calculate the incidence rate of CHD among

(i) women who reported sleeping 7–8 hours per night,
(ii) women who reported sleeping for 6 hours per night,
(iii) women who slept 5 or less hours per night, and
(iv) all women.

(b) How strong is the association between sleep duration and the inci-
dence of CHD?

(c) What percentage of CHD cases could theoretically be prevented if all
women slept for 7–8 hours per night?
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If the results of a study reveal an interesting association between some expos-
ure and a health outcome, there is a natural tendency to assume that it is real.
(Note that we are considering whether two things are associated. This does not
necessarily imply that one causes the other to occur. We will discuss
approaches to determining causality further in Chapter 10.) However, before
we can even contemplate this possibility we have to try to rule out other
possible explanations for the results. There are three main ‘alternative explan-
ations’ that we have to consider whenever we analyse epidemiological data or
read the reports of others, no matter what the study design: namely, could the
results be due to

• chance,
• bias or error, or
• confounding?

We will discuss the first of these, chance, in this chapter and will cover bias
and confounding in Chapters 7 and 8, respectively.

Description

Chapters 2–3

Association

Chapters 4–5

Alternative
explanations

Chapter 6: Chance

Integration &
interpretation

Chapters 9–11

Practical
applications

Chapters 12–15
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Random sampling error

When we conduct a study or survey it is rarely possible to include the whole of
a population1 so we usually have to rely on a sample of that population and
trust that this sample will give us an answer that holds true for the general
population. If we select the sample of people wisely so they are truly repre-
sentative of the target population (the population that we want to study) and,
importantly, if most of those selected agree to participate, then we will not
introduce any selection bias into the study (we touched on the issue of
selection bias in Box 3.2, and will discuss it further in Chapter 7). However,
even in the absence of any selection bias, if we were to study several different
samples of people from the same population it is unlikely that we would find
exactly the same answer each time, and unlikely that any of the answers would
be exactly the same as the true population value. This is because each sample
we take will include slightly different people and their characteristics will tend
to vary from those in other samples – just by chance. This is known as random
sampling error.

Imagine that you were interested in the health effects of obesity and wanted
to know the average body mass index (BMI) of 10-year-old children in your
community. If you weighed and measured just one or two children you would
not obtain a very good estimate of the average BMI of all children – but the
more children you studied, the better your estimate would be. The same is
true if we are looking for the association between an ‘exposure’ and ‘out-
come’, for example the relation between BMI and age. If we only survey a
small group of 10-year-olds and another small group of 12-year-olds we
might find that, just by chance, the 10-year olds are bigger than the 12-year
olds, but the larger our study, the better or more precise our estimate of the
true association between age and body-size will be. In general, if we select a
small sample of a population then our results are more likely to differ from
the true population values than if we had selected a larger sample. The best
way to reduce sampling error is thus to increase the size of the study sample
as far as is practical. Of course, there is always a trade-off between study size
and cost. There are ways in which we can calculate how many people we
should include in a study to reduce sampling error to an acceptable level.
This is known as the power of the study and we will come back to consider
this further after we have looked at some ways to assess the amount of
random sampling error in a study.

When we conduct a study to evaluate the relationship between an
exposure and disease we may see an association or we may not. We then
have to use the information from the sample of people in the study to infer

1 Notable exceptions are the population censuses that we discussed in Chapter 3.
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whether the exposure and outcome are truly related in the wider popula-
tion. There are four possible outcomes for any study, as shown in
Figure 6.1.
If there is really no association between the outcome and exposure then we

hope that our study will find just that. Conversely, if the exposure and
outcome are truly associated in the population then we want our study to
show this association. What we want to minimise are the situations where our
study shows an apparent relationship between exposure and outcome when
the truth is that there is none (often called a ‘type I’ or alpha error), or our
study says there is no association when, in truth, there is (a ‘type II’ or beta
error). Unfortunately, in practice we can never know for sure whether we are
right or wrong, but we strive to limit this uncertainty by maximising study
power (see below) to restrict the role of chance. (We will consider strategies to
minimise other types of error in the next two chapters.)

Statistical significance: could an apparent association have
arisen by chance?

One way to assess whether an association might have arisen by chance is to
carry out what is known as a hypothesis test. This works on a similar
principle to many justice systems where someone is presumed innocent until
there is sufficient evidence to suggest they are guilty. Here we assume that
there is really no association, the ‘null’ hypothesis, unless this is so unlikely to
be true that we feel we can reject it in favour of the ‘alternative’ hypothesis
that there is a real association. To do this we calculate the probability that we
would have seen an association as strong as (or stronger than) the observed
association if there were really no difference between the groups (i.e. if the null
hypothesis were true). The results of these statistical tests take the form of a
p-value (or probability value) and they give us some idea of how likely it is
that the groups are truly different and the association is real, or whether the
results might just be due to random sampling error or chance (in other words,

TRUTH (Unknown) 

STUDY RESULTS
(Known)

No association Association

No association Type II error
(probability = β)

Association Type - I error
(probability = α)

Correct
(probability = 1–β)

 = Power

Correct

Figure 6.1 Possible outcomes of an
epidemiological study.

The null hypothesis (H0)
and alternative hypothesis
(H1) for a study looking at the
relation between drinking
coffee and migraine might be:

H0: there is no association
between drinking coffee
and migraine (i.e.
RR = 1.0)

H1: there is an association
between drinking coffee
and migraine (RR 6¼ 1.0).
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a type I error, α). For example, if a survey of children shows that girls have a
higher average BMI than boys, is this likely to be a true difference or could it
just be chance that the girls in the study sample happened to have a higher
BMI than the boys?

Imagine that the average BMI of the girls in a survey was 2 units higher
than the average BMI of the boys and that statistical testing gave a p-value
of 0.01 associated with this difference. We can say from this that, if the
average BMIs of boys and girls were in fact the same (i.e. the null hypoth-
esis is true), then we would have only a 0.01 or 1% probability of seeing an
apparent difference of 2 units (or more) purely by chance. This is a very
low probability, it would occur only 1 in 100 times, thus it seems unlikely to
be a chance finding, although it still could be. Conventionally, results are
considered to be statistically significant, i.e. unlikely to have arisen by
chance, if the p-value is less than 0.05 (p < 0.05); in other words, if the
probability that the result would have arisen by chance is less than 5% (i.e.
the probability that we are making a type I error, α, is less than 0.05). Using
this criterion, we would, therefore, reject the null hypothesis and conclude
that the 2-unit difference in BMI between boys and girls was unlikely to
have arisen by chance and that, all else being equal, girls probably do have
a higher BMI than boys.

Imagine a study which found that, compared with people who
exercised regularly, those who did not exercise were three times as likely
to have a heart attack (RR = 3.0) and that the p-value for this association
was 0.005.

What would the relative risk be if the risk of having a heart attack were the
same for people who exercised and those who did not?

How often would we expect to see a relative risk as big as 3.0 if there were
really no association?

Is it likely that a study would give a relative risk of 3.0 (p = 0.005) if there were
really no association between exercise and heart attack?

If the risk of having a heart attack were the same regardless of how much a
person exercised, i.e. there was no association between exercising and having
a heart attack, then the relative risk would be 1.0. In the example above the
study found a relative risk of 3.0, p = 0.005. The small p-value suggests that it
is very unlikely that the study would have given a relative risk as big as 3.0 if
the true relative risk were 1.0. (With a p-value of 0.005, we would expect this
to happen only about 5 in 1000 or 1 in 200 times.) The observed association
between heart attack and exercise is therefore unlikely to have arisen by
chance.
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Confidence intervals

A hypothesis test is a qualitative assessment of whether or not an observed
association is likely to have arisen simply because, by chance, the people who
ended up in the study differed in some way from the population norm. A more
quantitative way to assess the likely effects of this random sampling error on
our estimates is to calculate what is a called a confidence interval around the
result. This is in effect an explicit admission that the result of a study,2 often
referred to as the ‘point’ or ‘effect’ estimate, is probably not exactly right, but
that the real answer is likely to lie somewhere within a given range – the
confidence interval. A narrow confidence interval therefore indicates good
precision or little random sampling error and, conversely, a wide confidence
interval indicates poor precision. The most commonly used confidence inter-
vals are 95% intervals (95% CI) and they are often described slightly inaccur-
ately as meaning that we can be ‘95% confident’ that the real value is within
the range covered by the confidence interval. What the confidence interval
really means is that if we were to repeat the study many times with different
samples of people, then 95% of the 95% confidence intervals we calculated
would include the true value. Note that this also means that 5% of the time (or
1 in 20 times) the 95% CI would not include the true value and we will never
know which times these are. Other percentages can be used, such as 90%,
which gives a narrower confidence interval but less certainty that it will
contain the true value (we will be wrong about 1 time in 10); and 99%, which
will be more likely to contain the true value (we will only be wrong about
1 time in 100) but will give a wider interval.
To consider a practical example, imagine two studies that have evaluated

the association between exposure to air pollution and asthma.
Study 1 finds a relative risk of 1.5 with a 95% confidence interval (CI) of

1.2–1.9.

What does this tell us about the association between air pollution and
asthma?

This is a fairly precise estimate. It tells us that people who are exposed to air
pollution are about one and a half times as likely (or 50%more likely) to develop
asthma than those who are not exposed. It tells us that the risk might be asmuch
as 1.9 times, but also that it might be as little as 1.2 times as high (i.e. a 20%
increase) in those who are exposed. It also tells us that the relative risk is unlikely
to be more than 1.9 or less than 1.2 (but it still could be outside these values).

2 This would typically be an OR or RR, but it could also be a single measure of prevalence or

a rate.
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Study 2 finds a relative risk of 2.5 (95% CI 0.9–6.9).

What is the most likely value for the relative risk of asthma in people exposed
to air pollution in the second study?

Is it possible that the result could have arisen by chance and there is really no
association (i.e. the ‘true’ population relative risk is 1.0)?

Which of the two studies would give you most concern that air pollution was
associated with asthma?

In the second study, the most likely value for the relative risk is 2.5 and the
true relative risk could be as high as 6.9. However, the confidence interval is
very wide, indicating poor precision, and it also includes the value 1.0
(remembering that an RR of 1.0 suggests no effect), so it is possible that there
is really no association and the result of 2.5 arose by chance. Both results
suggest a possible effect of air pollution in inducing asthma. Assuming there is
no bias, the first study implies that there is a real association between air
pollution and asthma but the effect is not very great. The second study
suggests the relative effect might be larger and thus more important clinically,
but because of the wide CI we are left with some uncertainty as to how ‘true’
that value really is. We should certainly not ignore the result just because
chance is one possible explanation for our findings; after all, the real value is
just as likely to be close to 6.0 (a very strong association), as it is to be close to
1.0 (no effect). However, we should be cautious, and acknowledge the possi-
bility that it could merely reflect the play of chance. In practice, if we had to
make a judgement about the public health effects of air pollution we would
want to consider the results of both studies together to increase the precision
of our estimate. We will look at ways to do this in more detail in Chapter 11.
For now, it is important to remember that narrow confidence intervals (indi-
cating good precision) are always more informative than wide confidence
intervals (indicating poor precision).

The relationship between p-values and confidence intervals

If a 95% CI does not contain the ‘no-effect’ or ‘null’ value then the p-value
from a statistical test would be < 0.05. Conversely, if the 95% CI does
include the null value then p � 0.05. This means that if both ends of a CI
around a relative risk are greater than 1.0 (example (a) in Figure 6.2), it
suggests that the positive association between the exposure and outcome is
unlikely to be due to chance; similarly if both ends of the CI are less than
1.0, it suggests an inverse association that is unlikely to be due to chance
(d). However if the CI includes the null value, i.e. the lower bound is less

See Appendix 7 for some of
the most useful formulae for
calculating confidence
intervals.

The null value is the value a
measure takes when there is
no association, e.g. the rate of
disease in two groups is the
same. For a relative risk (e.g.
RR, OR) the null value is 1.0;
for an absolute risk the null
value is 0.
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than 1.0 and the upper bound is greater than 1.0 as shown in examples (b)
and (c), then we cannot rule out the possibility that the true relative risk is
really 1.0 and thus that there is really no association between the exposure
and outcome. In the hypothetical asthma studies above, the 95% CI for
study 1 does not include the null value so the corresponding p-value would
be less than 0.05 and the result would be termed ‘statistically significant’.
The result of study 2, on the other hand, would not be statistically
significant because the 95% CI includes the value 1.0 so the p-value
would be � 0.05.

Power: could we have missed a true association?

In addition to considering whether an observed association might have
arisen by chance, if we do not see an association we should consider whether
we could have missed a true relation by chance. Is it possible that an
exposure is linked to an outcome but the study was just too small to detect
this reliably (a type II error, β)? Or, returning to the legal analogy, that the
person really was guilty but that we had insufficient evidence to convict
them? Consider again the hypothetical study above that reported a relative
risk of 3.0 (p = 0.005) for the association between a lack of regular exercise
and heart attack. What if the study had been smaller and the p-value was
only 0.1? In this situation p � 0.05 so it is possible that the observed RR of 3.0
has arisen by chance and there is truly no association between lack of
exercise and risk of heart attack; but it is also possible that there really is a
meaningful association but the study was just too small to detect this with
any certainty.

1.0
Relative Risk and 95% confidence interval

(a) 

(d) 

(c) 

(b) 

Figure 6.2 Relative risks and
confidence intervals from four
hypothetical studies.

Power: could we have missed a true association? 175



To avoid such a situation it is important to ensure that a study is big
enough or, in other words, that it has enough power to detect a true
association with sufficient precision. The power of a study is the probability
that it will detect an association of a particular size if it truly exists in the
general population. Imagine that an exposure truly causes a twofold increase
in the risk of disease (of course, we can never know this in practice). If a
study has 80% power to detect a relative risk of 2.0 between the exposure
and outcome then we can say that 80% of the time, or four times out of five,
that study would determine that the exposure and outcome were related. It
also means that there is a 20% or one in five chance that we would miss the
association. There is no hard and fast rule as to how much power a study
should have but, in general, most people would probably want a minimum
of 80% power and many would aim for 90%.

If we are looking to measure the strength of association between an
exposure and an outcome, power or sample size calculations involve some
knowledge, first, of the smallest difference that we want to be able to detect
and, second, of the prevalence of the exposure and/or incidence of the
outcome in the population. They also require a decision as to how precisely
we wish to measure the effect, i.e. how much sampling error we are pre-
pared to accept in our result. If we are looking for a large effect and the
exposure and/or disease are quite common then we do not need a large
study to show this. For example, in 1971 a tiny case–control study (n = 40)
showed that young women who had been exposed in utero to diethylstil-
boestrol (DES) had an increased risk of developing a rare type of vaginal
cancer (clear cell adenocarcinoma) (Herbst et al., 1971). In this situation, the
frequency of DES use among the mothers of the cases was so high (7 out of
8) and the difference was so large (none of 32 control mothers had used
DES) that the investigators needed to study only those 40 women to show
that there was a clear association. Unfortunately, in modern epidemiology
we are often looking for much smaller effects and our studies have to be
much larger than this to detect them with certainty. Table 6.1 shows how the
prevalence of exposure and the size of the association affect the number of
people you need to study to have 80% power to be able to detect the
association (α = 0.05).

A major problem in epidemiology is that, for financial or other practical
reasons, researchers often cannot conduct as large a study as they would like.
However, if they compromise and conduct a small study that shows an
association between the exposure and outcome but this is not statistically
significant (i.e. poor precision), it is difficult to interpret the results. Is there
really an association, i.e. the estimated effect is close to the truth, but the study
was just too small to detect this with any certainty? Or was the observed

As shown in Figure 6.1, the
probability of making a type II
error, i.e. saying there is no
association when one truly
exists, is often denoted β. The
power of a study, i.e. the
probability that it will show
an association if it exists, is
therefore 1 – β.

DES is a synthetic oestrogen
that was used between
1940 and 1970 to prevent
spontaneous abortion and
premature delivery.

Public domain software

for sample size and

power calculations
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association just due to chance and the ‘truth’ is that there is no association?
The smaller the effect, the more important it is that we can estimate it
precisely in order to distinguish between a real association and chance. This
is a major problem in the context of genetic studies when the associations with
disease are likely to be weak (RR < 1.2). This makes it very hard to identify
which, if any, observed associations are real and, as a result, genetic associ-
ation studies have to be very large (tens of thousands of cases) in order to give
sufficient precision.
The question is also particularly important in the context of clinical trials

when we need to know whether small improvements seen for a new treatment
really do represent a benefit that should be passed on to patients (see Box 6.1).
This raises an important ethical issue that most human research and ethics

committees would now consider before giving a study approval to proceed. Is
the study big enough to detect the effects the investigators are looking for? If
the answer is no then it has to be questioned whether the study should be
allowed to go ahead.

Interpreting p-values and confidence intervals

Significance testing is very common and it is easy to get fixated on p-values
and to implicitly believe an association is real if p < 0.05 and to assume it is
not real (i.e. it is due to chance) if p � 0.05. However, it is important to note
that the conventional distinction between p < 0.05 (statistically significant)
and p � 0.05 (not statistically significant) is purely arbitrary. It is also import-
ant to remember that even if p < 0.05 this does not guarantee the association
is real. Similarly, just because p > 0.05 it does not necessarily mean that there

Table 6.1 Number of cases required for a case–control study to detect a statistically
significant association with varying levels of exposure prevalence.a

Prevalence of exposure
in controls (%)

Odds ratio

1.2 1.5 2.0 2.5

1 43,685 7,960 2,395 1,244
5 9,172 1,686 513 269
10 4,885 908 280 149
20 2,799 532 169 92
30 2,172 422 138 77

a Number of cases required (assuming 1 control per case), to achieve 80% power at
α = 0.05.

The level of 0.05 for assessing
statistical significance
came from R.A. Fisher who
concluded ‘we shall not often
be astray if we draw a
conventional line at 0.05 . . .’
(Fisher, 1950).

Interpreting p-values and confidence intervals 177



is no association; it just means that we do not have enough evidence to
conclude that there is an association – a subtle but important distinction.
You will often read statements in the literature along the lines of ‘there was no
association between X and Y (OR = 1.9, p > 0.05)’, but all this can really tell us
is that there is insufficient evidence to conclude that there is an association. It
may well be that Y really is twice as common among people exposed to X but
this study was just too small (i.e. it had insufficient power) to detect an effect of
this magnitude with any certainty.

Hypothesis tests and p-values are tools that can be used to help assess the
results of a study, but they should not be used blindly to decide whether or
not an association exists (see Box 6.2). They are aids to judgement, not
absolute arbiters. It is also important to remember that although when you
use a significance level (α) of 0.05 there is only a 1-in-20 chance that you will

Box 6.1 RCTs failed to show a benefit of streptokinase

Between 1959 and 1988, 33 randomised clinical trials were conducted to

test whether intravenous streptokinase reduced the risk of death after

heart attack. Most of the studies (n = 25) found that mortality was

lower among the groups given streptokinase, but many were small and

so their results were not ‘statistically significant’ (i.e. p � 0.05). As a

result the benefits of streptokinase were not fully appreciated. In 1992,

however, a group combined the results of all the individual streptokinase

studies using a technique called meta-analysis (we will discuss this

further in Chapter 11). This showed that streptokinase was associated

with more than a 20% reduction in mortality after heart attack and,

because of the large sample size, a total of 36,974 patients when all the

studies were combined, this effect was now highly statistically significant

(p < 0.001) (Lau et al., 1992). Importantly, they also found that if the

results of just the first eight studies, involving a total of only 2432 patients,

had been combined, the 20% reduction in mortality among those given

streptokinase would have been apparent back in 1973. The problem was

that individually most of the early studies were simply not big enough to

detect this effect with sufficient certainty. As a consequence, their results

were rarely statistically significant and so were dismissed. If some of them

had been bigger (or if more emphasis had been placed on the size of the

reduction in mortality and less on statistical significance) the beneficial

effects of streptokinase would have been discovered much sooner and

thousands of lives could probably have been saved.
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reject the null hypothesis in error, i.e. you will conclude there is an associ-
ation when really there is none, the chance that this will happen increases as
you do more tests. For example, if you do 20 tests then you would expect to
see 1 statistically significant result by chance; if you do 100 tests you would
expect to see about 5 significant results by chance alone. This problem of
‘multiple testing’ (see Box 6.3) is not uncommon. In dietary studies, for
example, people may look at dozens of different food items and genetic
studies now often include hundreds of thousands or millions of genetic
variants.
For these reasons, the epidemiological and wider health literature has seen

a shift away from using p-values in recent years towards reporting confidence
intervals because of the additional information they provide and to reduce the
dependence on ‘p< 0.05’ which, as you have seen, can be misleading or mean
that important results are missed. A p-value simply gives an indication of
whether an observed association could be ‘due to chance’ and there might
really be no effect (i.e. the true RR or OR is 1.0). It effectively focuses on the

Box 6.2 Why you should not rely only on p-values

The convention of describing a result as ‘statistically significant’ if p < 0.05

is now so strongly ingrained that some people tend to believe a result if

p < 0.05 but not if p > 0.05. For example, a relative risk of 2.5 (p = 0.049)

would, by convention, be called ‘statistically significant’ because 0.049 is

less than 0.05. In contrast, a relative risk of 2.5 (p = 0.051) would not be

classed as statistically significant because 0.051 is greater than 0.05.

However, the relative risk is the same in both cases and p = 0.049 is so

similar to p = 0.051 that it is illogical to believe the first result but not the

second. P-values are also highly dependent on the size of the study – the

bigger the study the smaller the p-value (for the same effect size). Imagine

a study with 80 cases and 80 controls that found an odds ratio of 1.7 with a

p-value of 0.11. By convention this result would not be statistically

significant and we would say that the association could have arisen by

chance. If the same study had been twice as big (160 cases and 160

controls) we would have found the same odds ratio (1.7) but now the p-

value would have been 0.02, so we would have concluded that the

association was statistically significant. These problems associated with

the blind dependence on p-values have led to suggestions from some

epidemiologists that p-values should not be used at all for assessing

associations. (For further discussion of this issue see Sterne and Smith,

2001).
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end of the confidence interval that is closest to the null (does this or does it not
include the null value?) and ignores the other end completely. In contrast, the
width of a confidence interval gives an indication of the precision of the
estimate and the two bounds tell us both how weak the association might be
and also how strong it might be. It is also important to remember that the real
answer is most likely to be somewhere near the point estimate in the middle of
a confidence interval. It is much less likely to be near the ends of the interval
and even less likely to be outside it completely. Thus if an OR = 2.5 with a 95%
CI from 0.9 to 6.9, then the real effect is much more likely to be close to 2.5
than it is to be close to 1.0; furthermore, it is just as likely to be close to 6.0 or
7.0 as it is to be as low as 1.0 (see Figure 6.3).

Box 6.3 The problem of multiple testing

The more hypotheses that we test, the more likely it is that some

apparently statistically significant results will arise by chance. For this

reason, statisticians often recommend ‘correcting’ for this problem of

multiple testing. A simple form of this is to reduce the α-level at which

a result is considered to be statistically significant based on the number

of tests performed. For example, if 20 separate tests are conducted

within a single study then the p-value at which a result is considered

statistically significant would be reduced from 0.05 to 0.05 � 20 =

0.0025. The net result is that fewer results, those with the strongest

associations, will be deemed statistically significant and, hopefully,

these are also the results that are less likely to be due to chance.

However many epidemiologists have pointed out the illogicality of such

an arbitrary rule (for example, should an epidemiologist adjust their

results based on the number of statistical tests performed that day or

for the number of tests they have ever done? (Rothman, 1990)) and

prefer to take a more common-sense approach. One notable exception

is in the context of modern genetic studies, which may evaluate tens or

hundreds of thousands of genetic markers at the same time. In this

situation, increased stringency is essential to minimise the thousands of

spurious results that will arise simply by chance if we accept a

significance level of 5% (5% of 100,000 genes is ~5000 significant results

by chance!). Results from the new ‘genome-wide association studies’

(GWAS) which may look at 1 million or more genetic variants in

relation to disease are usually not considered statistically significant

unless p is less than about 5 � 10–8 (0.00000005).
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Statistical versus clinical significance

Randomised controlled trials evaluating the drug finasteride for treatment of
lower urinary tract symptoms in men have shown that there is a statistically
significant improvement in symptom score (a measure of the symptoms
experienced), from 2.5 to 2.8, in men treated with finasteride (Hirst and Ward,
2000). However, for men to experience a subjective change in quality of life,
their symptom score has to change by at least three points. An increase of 0.3
points, although a 12% improvement, is therefore not clinically significant.
This underscores the need to also consider how meaningful the result of a
study is in practical terms; that is, we should assess a result in terms of its
social, preventive, biological or clinical significance.
This is illustrated in Figure 6.4, which shows the results of four hypothetical

intervention studies. In study (a) the result is both practically important and
statistically significant because the point estimate falls beyond the ‘minimum
practically important difference’ line and the confidence interval does not
include the value 1.0 (in fact, even the lower bound is above the minimum
important difference line). The tightness of the confidence interval around the
RR also gives reassurance of its precision. In study (b) the result is again
practically important but not statistically significant, as the confidence interval
is wide and does include 1.0. The width of the confidence interval suggests that
the study was small, leaving imprecision and some uncertainty about the role of
chance. The finding could be important but we really need more data for a
confident judgement. In contrast, the results shown for (c) are statistically
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Figure 6.3 A typical p-value function
(OR = 2.5; 95% CI = 0.9–6.9)
showing the true effect is much more
likely to be near the middle of the
confidence interval than towards
the ends.
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significant but not important, as in the finasteride example above. The narrow
confidence interval tells us that our estimate is fairly precise (i.e. there are
plenty of data). Finally, the results of study (d) are neither statistically significant
nor practically important. This study provides little useful evidence about the
benefit of the intervention – the very wide confidence interval that spans well
across the null shows that this is a very poor test of the original hypothesis.

In summary, statistical significance is evident on looking at the p-values
from appropriate statistical tests and from the confidence intervals around the
point estimates; and the extra information the latter give as to the precision of
an effect estimate is valuable. In health research where we are looking to
improve outcomes through preventive, clinical or other interventions, we may
have a fair idea of how big an effect needs to be for it to be clinically or
practically significant. This might be a certain percentage improvement (i.e. a
relative effect) or an absolute increase (as in the finasteride example above)
and this might also have to be weighed against any adverse effects of the
therapy. In observational (aetiological) epidemiology, however, there is no
clear rule as to how big an effect should be for it to be meaningful. A relative
risk greater than 2.0 would probably be considered fairly strong and thus, by
implication, practically significant. An RR less than this would not, however, be
dismissed immediately because, as you saw in the example of smoking and
coronary heart disease in Table 5.4, a modest relative risk may still lead to a
high absolute or attributable risk.

1.0

Relative risk and 95% confidence interval 

Minimum practically
important difference

(a)

(d)

(c)

(b)

Figure 6.4 Statistical and clinical
significance: point estimates and
confidence intervals from four
hypothetical studies.
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Summary

In any study there will always be an element of chance as to who is studied
and who is not – this type of random error is called sampling error. As you
have seen, statistical methods have been developed to assess the amount of
sampling error that is likely to be present in any particular study and these are
commonly presented in the form of confidence intervals and p-values from
hypothesis tests. Epidemiologists usually prefer to use confidence intervals
because these convey more information than a single p-value. Nonetheless, it
remains easy to be seduced by statistics, so it is important to be able to
interpret the results of a study practically, regardless of what the investigator
might claim. Just because a result is ‘statistically significant’ does not mean
that it could not have arisen by chance or that it is meaningful at a clinical or
practical level. Conversely, just because a non-null result is not statistically
significant it does not mean there is no association – just that the study did not
have sufficient power to reliably measure an association of that magnitude.
There is a difference between ‘no association’ and a possible association that
is not statistically significant (see Figure 6.4). It is, however, important to
reiterate that all of the preceding discussion of random sampling error
assumes that any differences between the study population and the wider
target population are random. If the study participants were not selected
carefully and are not representative of the wider population (i.e. they differ
from the target population in a systematic way) then we will introduce selection
bias into the study. This is a completely separate issue and we will discuss it in
more detail in the next chapter.

Questions

1. The authors of a study report a RR of 1.8 (95% CI 1.6–2.0) for the association
between alcohol intake and cancer. The authors of a second study report an
OR of 1.8 (95% CI 0.7–3.5) for the association between caffeine intake and
the same cancer. What do the results of these studies tell us (i) about the
studies and (ii) about risk factors for the cancer?

2. What is the best way to reduce sampling error in a study?
(a) Select people from the population at random.
(b) Increase the size of the study.
(c) Calculate a 95% confidence interval for the results.
(d) Use a more reliable instrument to measure exposure.

3. A randomised, placebo-controlled trial was conducted in Indonesia to
study the effects of vitamin A for treating children with measles. The
investigators reported a confidence interval for the relative risk of 0.26 to
0.94. Which of the following statements are true?

Additional questions
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(a) Because the confidence interval does not include zero we can say the
result is statistically significant.

(b) Because the confidence interval does not include zero we can say the
result is not statistically significant.

(c) Because the confidence interval does not include the value 1.0 we can
say the result is statistically significant.

(d) Because the confidence interval does not include the value 1.0 we can
say the result is clinically significant.

4. What is the difference between statistical significance and clinical
significance?
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We saw in Chapter 6 that larger studies are less likely to get the wrong results
due to chance (or random sampling error) than smaller studies; however, the
example in Box 7.1 shows that a large sample size is not sufficient to ensure we
get the right results. The enormous presidential poll conducted by the Literary
Digest didn’t get the right answer because it included the ‘wrong’ people, i.e.
they were not representative of everybody in the voting population. Further-
more, in epidemiology we frequently rely on records that have been collected
for some other purpose, and we have already discussed some of the problems
inherent in this in Chapter 3. Even when the data we use have been collected
specifically for our research they are unlikely to be completely free of error. We
often have to rely on people’s memories, but how accurate are they? And
biological measurements such as blood pressure and weight are often subject
to natural variation as well as being affected by the performance of the
measurement system that we use.

People live complicated lives and, unlike laboratory scientists who can
control all aspects of their experiments, epidemiologists have to work with
that complexity. As a result, no epidemiological study will ever be perfect.
Even an apparently straightforward survey of, say, alcohol consumption in a
community can be fraught with problems. Who should be included in the
survey? How do you measure alcohol consumption reliably? All we can do
when we conduct a study is aim to minimise error as far as possible, and then
assess the practical effects of any unavoidable error. A critical aspect of

Box 7.1 Bigger isn’t always better!

In the run-up to the 1936 presidential election in America, the Literary
Digest conducted a poll of more than two million voters and confidently

predicted that the Republican candidate, Alf Landon, would win. On the

day it was the Democrat candidate, Franklin D. Roosevelt, who won a

landslide victory. The Digest had correctly predicted the winner of the

previous five elections, so what went wrong in 1936?

The Digest sent polling papers to households listed in telephone direc-

tories and car registration records. In 1936, however, telephone and car

ownership were more common among more affluent households and

these were the people who were also more likely to vote Republican. The

generally less-affluent Democrat voters were thus under-represented in

the sample of voters polled. In contrast, a young George Gallup conducted

a much smaller poll of a few thousand representative voters and correctly

predicted the Roosevelt win. As a result of this fiasco the Digest folded but

Gallup polls are still conducted today.
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epidemiology is, therefore, the ability to recognise potential sources of error
and, more importantly, to assess the likely effects of any error, both in your
own work and in the work of others. In this chapter we will point out some of
the most common sources of such error in epidemiological studies and how
these can best be avoided. We also want to emphasise from the outset that
some degree of error is inevitable, but this need not invalidate the results of
a study.

Sources of error in epidemiological studies

In an epidemiological study we usually want to measure the proportion of
people with a particular characteristic or identify the association between an
exposure and an outcome. To do this we have to recruit individuals into the
study, measure their exposure and/or outcome status and then, if appropriate,
calculate a measure of association between the exposure and outcome. We
also want the results we obtain to be as close to the truth as possible. (Note
that, although we will discuss error in the context of exposure and disease,
when we talk about an exposure we mean anything from a gene to a particular
behaviour, and the outcome need not be a disease but could be any health-
related state.)
As you will discover, there are dozens of different names that have been

given to the kinds of error that can occur in epidemiological studies. Fortu-
nately, in practice, all types of error can be classified into one of two main
areas: they relate either to the selection of participants for study or compari-
son, or to the measurement of exposure and/or outcome. These errors can in
turn be either random or systematic. Random error or poor precision is the
divergence, by chance alone, of a measurement from the true value. System-
atic error occurs when measurements differ from the truth in a non-
random way.
We will now discuss the main types of both selection and measurement

error in more detail and will also consider the effects that they may have on
the results of a study. Remember that in practice it is impossible to eliminate
all error and the most important thing is therefore to consider the likely
practical effects of any remaining error.

Selection bias

Depending on how we select subjects for our study, and how many we select,
we can introduce both random and systematic sampling errors into our study.
As you saw in the previous chapter, even if the people selected for a study are
generally representative of the population that we wish to learn about
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(the target population), we may still get the wrong result just because of
random sampling error, i.e. by chance, and this is especially likely when we
take only a small sample. In contrast, the example in Box 7.1 shows how the
results of even a large study can be biased if the sample of people selected for
the study systematically differ from the population that we wish to learn about
in some way.

Selection bias occurs when there is a systematic difference between the
people who are included in a study and those who are not, or when study and
comparison groups are selected inappropriately or using different criteria.
Unlike random sampling error, we cannot reduce selection bias by simply
increasing the size of the study sample – the problem persists no matter how
large the sample.

The issue of selection bias is a major problem in simple descriptive studies
such as prevalence surveys. If the sample of people included in the survey is
not representative of the wider population the results of the survey can be very
wrong, as the Literary Digest found in their biased opinion poll which under-
represented the views of poorer Americans. In analytic studies, selection bias
can add to the differences between groups being compared, thereby moving
them further from the ideal of complete exchangeability that we discussed in
Chapter 4. This will potentially lead to biased measures of association (OR, RR,
AR or PAR). It is a particular concern in case–control studies because the
participants are recruited as two separate groups and it can be difficult to
ensure that the final control group makes an appropriate comparison group
for the cases.

A similar problem can arise in cohort studies when the exposed and unex-
posed groups are recruited separately, for example when the exposed group
comprises workers in a particular occupation or military group and a separate
unexposed group has to be identified for comparison. However, in many
cohort studies, such as the Framingham and Nurses’ Health studies that we
discussed in Chapter 4, we recruit a single group of participants and then
classify them according to their exposure. In this situation the question of how
individuals were recruited is usually less important in terms of the validity of
the study results (what is often called internal validity). However, it can
influence the generalisability or external validity of the findings because they
may apply only to the sorts of people who took part. In some situations,
however, selection bias (at the point of recruitment) can also bias the effect
estimates from a cohort study. As an example, consider a cohort study exam-
ining the effect of children’s socioeconomic status (SES) on their risk of injury.
If the families of lowest SES are more likely to refuse to participate, then this
group may be under-represented in the total cohort. In this situation, meas-
urement of the risk of injury within the low SES group and comparisons with
those of higher SES should still be accurate; the low SES group will just be
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smaller than it might have been had more low SES families participated. If,
however, those families of lower SES who refuse to take part are also those
whose children are at highest risk of injury, i.e. if participation is associated
with both the exposure (SES) and the outcome (injury), then the study will
underestimate the true amount of injury in this group. It will then also
underestimate the effect of low SES on injury risk because the really high-
risk children in that group were not included.
As for cohort studies, selection bias at recruitment and exposure assignment

is not usually a major issue for internal validity in clinical trials, although it can
occur if the allocation process is predictable and the decision whether or not
to enter a person into the trial is influenced by the expected treatment
assignment. For example, if alternate patients are assigned to receive active
drug or placebo, a physician may decide not to enter sicker patients into the
trial if he or she thought they were not going to be given the active drug. This
selection bias will affect the internal validity of the study and is another reason
why the allocation process should be truly random and ideally neither the
investigators nor the participant should know what group the participant is in
(see Chapter 4).
For both cohort and intervention studies the more important issue is to

avoid or minimise ‘loss to follow-up’ because selection bias can arise if those
who remain in a study are different from those who do not, i.e. the issue is
selection out of the study population rather than selection in.

Some specific sources of selection bias

Some common ways in which selection bias can arise include the following.

Volunteers
It is well known that people who volunteer to participate in surveys and
studies (i.e. they spontaneously offer their involvement rather than being
selected in a formal sampling scheme) are different from those who do not
volunteer. In particular, volunteers are often more health-conscious and, as a
result, volunteer groups will often contain a lower proportion of, say,
smokers than the general population. Advertisements calling for volunteers
for a survey or study may also attract people who have a personal interest in
the topic area. The prevalence of various diseases or behaviours in a volun-
teer group may thus be very different from that in the underlying population
because of this self-selection into the study. This means that volunteer
groups are completely unsuitable for surveys conducted to measure the
prevalence of either health behaviours or diseases in the population and
they are also likely to introduce bias into studies looking for associations
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between exposures and health outcomes. For this reason, epidemiological
research rarely uses groups of haphazardly recruited volunteers and, if it
does, it is advisable to pay close attention to whether this may have biased
the results in some way.

Imagine a survey about a sensitive area such as sexual behaviour where
participants were recruited via advertisements in women’s magazines. How
representative do you think the results would be of all women?

There are two potential problems with this type of recruitment. First,
different magazines target different types of women so it is likely that the
readers of one particular magazine will not be representative of all women. It
is also likely that the women who choose to respond to a survey of this type
will differ markedly from those who do not respond; for example, they may
well be more confident and out-going and thus more likely to engage in less
conventional sexual behaviours (Maslow and Sakoda, 1952). This exact issue
plagued Kinsey who conducted some of the earliest work on sexual behav-
iour in the mid-1900s (Kinsey, 1948). He reported high levels of unconven-
tional sexual behaviours in his study groups, but was roundly criticised for
using samples of volunteers, prisoners and male prostitutes, thus raising
concerns about the reliability of his results. Although Kinsey attempted to
address these criticisms, the concerns remained and his results still cause
controversy today.

Low response rates
What might be thought of as a type of volunteer bias, and one that again is a
particular problem in surveys and case–control studies, is the problem of low
response rates. People who have a particular disease are often highly motiv-
ated to take part in research into that disease. Controls, however, have no such
motivation to participate and investigators are finding it increasingly hard to
persuade healthy people to take part in research with the result that control
participation rates are now often around 50%. Even if potential controls for a
study are selected at random, if a large proportion do not agree to take part
then the remaining group may no longer be a true random sample of the
population and the results may be biased. Box 7.2 shows an example from a
study looking at passive smoking and heart attack where the authors assessed
and reported the likely extent of error in their estimates of smoking rates in the
control group. This degree of thoroughness is commendable but, unfortu-
nately, rarely seen due to logistical constraints. Note also how this information
can be used to make a tentative practical assessment of the likely bias this
error may have introduced into the estimate of the effect of passive smoking
on heart disease.
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Box 7.2 Differences between responders and non-responders

In a case–control study of the effects of passive smoking on the risk of heart

attack or coronary death, the investigators put a lot of effort into trying to

achieve a high response rate from controls. Potential controls were initially

invited to attend a study centre where they would have blood collected and

physical measurements taken as well as completing a risk factor question-

naire. Participants who did not respond to this invitation were sent a shorter

questionnaire to complete at home and some people who still did not

respond were then visited and interviewed at their homes. There were thus

three types of people among the control group: the willing volunteers who

replied to the initial invitation, the slightly less willing who replied to the

shorter home questionnaire and the even more reluctant who agreed to

take part only when visited by an interviewer. The investigators then com-

pared the prevalence of smoking in these three groups (Table 7.1).
The harder it was to persuade someone to take part in the study, themore

likely they were to be a current smoker, especially for women. This suggests

that those who refused completely probably had even higher smoking rates.

Themeasured prevalence of smoking in the control group is therefore likely

to be an underestimate of the true level of smoking in the whole population.

Using the study data, the calculated odds ratio for the association between

smoking and heart disease in men was 2.3. However, if the true proportion

of current smokers in the population was actually 3% higher and the

proportion of non-smokers 3% lower than in the study controls, then the

true odds ratio would have been lower, about 1.8. The study would thus

have overestimated the strength of the association.

Table 7.1 Prevalence of smoking increases with increasing reluctance to take part in
a study.

Ease of recruitment
Never
smoker (%)

Ex-smokers
(%)

Current
smokers (%)

Men (age 35–69 years)
Full participation (willing) 35 40 24
Short questionnaire (less willing) 30 42 28
Home interview (reluctant) 29 42 29

Women (age 35–69 years)
Full participation (willing) 67 19 14
Short questionnaire (less willing) 66 13 21
Home interview (reluctant) 53 16 31

(Dobson et al., 1991)
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Loss to follow-up
In a case–control study the main concern with subject selection is with regard
to who is included in the study. For both cohort and intervention studies the
more important issue is to avoid or minimise selective losses from the cohort
or study group. This can be a particular problem if more people are ‘lost to
follow-up’ in one exposure group than another (i.e. loss is associated with
exposure) and if loss is also related to the outcome of interest. For example,
imagine a randomised clinical trial comparing a new drug with the current
standard treatment. If the sickest people in the intervention group withdrew
from the trial, the people remaining in the intervention group would be
healthier than those in the standard treatment group and the new drug would
appear to be more beneficial than it really was. The opposite situation would
occur if those who were doing well were less likely to return for assessments
and thus were more likely to be lost to follow-up. In a cohort study, partici-
pants with socially stigmatised behaviours (which these days can include
smoking cigarettes) may be both less easy to follow-up and more likely to
develop the health conditions being studied.

Ascertainment or detection bias
This can occur if an individual’s chance of being diagnosed as having a
particular disease is related to whether they have been ‘exposed’ to the factor
of interest. An example of this type of bias was seen in early studies of the
association between oral contraceptive (OC) use and thromboembolism (a
condition in which a blood clot develops in the legs and subsequently breaks
off and moves to another part of the body, often the lungs). Doctors who were
aware of the potential for this risk were more likely to hospitalise women with
symptoms suspicious of thromboembolism if they were taking OCs. Early
case–control studies, which were hospital-based, then overestimated the risk
of thromboembolism associated with OC use. This was because the cases were
more likely to be on OCs simply because of the way in which they were
selected to be sent to hospital, because in the minds of their doctors this
partly determined their diagnosis.

The healthy-worker effect
This is a well-documented type of selection bias that can occur in occupa-
tional studies. People who are working have to be healthy enough to do their
job, so they tend to be more robust than the general population, which
necessarily includes those who are disabled or seriously ill and hence unable
to work. As a result, if occupational groups are compared with the general
population – which is not uncommon in cohort studies of occupational
hazards – they will almost always appear to be healthier overall. Comparisons
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within a workplace can also be flawed because different types of job often
attract different types of people as well as requiring different levels of fitness.
Imagine a study of the effects of heavy physical work on the occurrence of
heart disease in which the investigators compared a group of manual

Box 7.3 Veterans’ health

There is concern that men and women who saw active service in conflicts

such as the Vietnam War have worse health than those who did not.

Studies that have compared mortality rates among Vietnam veterans with

those in the general population are hampered by the fact that the veterans

had to pass a stringent medical examination at the time of their enlistment

and so, at that time, were much more healthy than the average person. An

analysis of mortality rates among male Australian Vietnam veterans found

that, up until 1979, mortality among the veterans was actually 18% lower

than in the general population (Table 7.2). It is highly unlikely that service

in Vietnam would reduce a man’s subsequent risk of death, so this inverse

association is likely to be due entirely to the healthy-worker (or in this

case, healthy-warrior) effect. It is impossible to say how large this effect

might be and to assess whether it could actually be masking an underlying

increase in mortality in the veterans.
However, in the years from 1980 to 2001, overall mortality among the

veterans was similar to that in the general population and cancer mortality

was more than 20% higher among the veterans. With the increasing time

interval since enlistment, the healthy-worker effect will have been wearing

off for most causes and it now appears that the veterans do have higher

rates of cancer death compared with the general population. The question

of veterans’ health is now a major issue in many countries.

Table 7.2 Standardised mortality ratios (SMRs) and 95% confidence intervals (CIs) for
selected causes of death among male Australian Vietnam veterans.

Cause of death and time period SMR (95% CI)

All causes: 1963–1979 0.82 (0.77–0.87)
1980–1990 0.95 (0.90–0.99)
1991–2001 0.99 (0.96–1.02)

Lung cancer: 1963–1979 0.59 (0.32–0.90)
1980–1990 1.25 (1.05–1.45)
1991–2001 1.21 (1.08–1.33)

(Wilson et al., 2005)
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labourers with a group of people of similar SES who had desk jobs. In this
situation, people who had heart disease might be incapable of doing a manual
job and therefore more likely to hold a desk job. The frequency of heart
disease would thus appear to be higher in those with desk jobs, falsely
suggesting that heavy work was protective against heart disease. Similar
problems can arise in other groups where members are selected on the basis
of physical capability, e.g. the armed forces (see Box 7.3).

Control of selection bias

The question of selection bias has to be considered and then potential bias
eliminated or minimised in the design and conduct of a study. Any error
introduced here that leads to inappropriate comparisons cannot easily be
removed in the data analysis although, as shown in the example in Box 7.2,
it is sometimes possible to estimate the effects of any such bias; we will discuss
this further below.

In any study, it is important to have a clear definition of the population group
that you want to study (the target population). This need not be everybody, but
could be a specific subgroup of the whole population, and study participants
should then be selected to represent this group. In a descriptive study it is
essential to ensure that the study population really is representative of the target
population or any measures of disease (incidence or prevalence) may be
biased. In a case–control study the critical issues are defining the case group
clearly and selecting an appropriate control group. Ideally all cases from the
defined population would be included, but if only a sample is used they should
be truly representative of all cases arising in the population. The controls should
also be selected to be representative of the same population. (We discussed
options for control selection in Chapter 4.) It is then important to ensure high
participation rates among both cases and controls.

A good study will also have clearly defined eligibility criteria to determine
whether specific individuals are included. For example, in a study of myocar-
dial infarction, specific criteria developed by the World Health Organization
might be used to define a case or, in a study of cancer, only those patients with
histologically confirmed cancer might be eligible. Additional eligibility criteria
might require people to fall within a certain age range (e.g. children are
usually excluded from studies of adult diseases), reside in a defined area or
be admitted to specific hospitals. Box 7.4 gives typical eligibility and exclusion
criteria, here for a case–control study of ovarian cancer.

Note that the eligibility criteria describe the target population, i.e. all women
who are eligible to take part in the study. For practical reasons some eligible
women might later be excluded from the study. It is important to note that if
large numbers of women are excluded, regardless of how good the reasons for
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this, then the resulting study sample might no longer be representative of the
whole population. For example, the exclusion of very sick women might mean
that cases of advanced cancer are under-represented in the study group. If
advanced cancers differ somehow from early cancers in terms of their aeti-
ology then this might affect the overall results. In experiments testing new
treatments, older and sicker patients are often excluded, making it more likely
that adverse drug effects will be missed, only to appear once the wider
population is exposed to the drug.

Exclusion criteria in trials:
In 1999 rofecoxib (Vioxx) was
introduced as a new anti-
inflammatory drug for
management of osteoarthritis.
It was withdrawn in
2004 because users had
elevated risks of
cardiovascular disease. One
reason the adverse effects
were not picked up sooner
was that many of the early
trials only enrolled people at
low risk of cardiovascular
disease (Krumholz et al.,
2007).

Box 7.4 Eligibility and exclusion criteria for a case–control study

Eligibility criteria for cases for a study of ovarian cancer could be as follows:

• A histologically confirmed diagnosis: the cancer must be confirmed by a

pathologist.
• Incident: the woman must have no previous history of ovarian cancer.
• Primary ovarian cancer: the cancer must originate in the ovary;

metastases (cancers that have spread from another anatomical site)

would thus be excluded.
• Age 18–79: studies often exclude children for practical reasons and in

this case ovarian cancer is very rare in children. Older adults are also

commonly excluded, particularly if exposure information is to be

collected by questionnaire or interview because the problems of recall

increase with age.
• Resident in a specific geographical area: women who just happen to be

diagnosed with ovarian cancer while visiting that region will be excluded.

Comparable eligibility criteria for the controls might then be the following:

• Women aged 18–79.
• Resident in the same specific geographical area.
• No previous history of ovarian cancer.
• No history of bilateral oophorectomy (i.e. they must have at least one

ovary and so be at risk of developing ovarian cancer).

Exclusion criteria might include the following:

• Women who are unable to give informed consent (for example, they

have dementia).
• Women who are too sick to participate (this decision might be made by

the treating doctor).
• Women who do not speak English (if the main study documents are all

in English it might not be financially viable to translate them into other

languages).
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In a cohort study or trial, one of the most important criteria for a high-
quality study is to ensure complete follow-up of all participants because, as
you have seen, the more people who are ‘lost to follow-up’ with unknown
health status, the more likely it is that the results will be biased. It is therefore
important to have measures to maximise retention of people within the study
and, if possible, to follow-up those who drop out of the study. Data linkage,
which we discussed in Chapter 3, can be helpful here because if the outcome
of interest is likely to be captured in routine health records it may be possible
to obtain this information for all of the people in the study even if they have
dropped out of the study or can no longer be contacted individually. For
example, studies with cancer incidence or mortality as an outcome can often
use population-based cancer or death registers to obtain this information.

Assessing the likely effects of selection bias on the results of a study

In practice, participation rates in studies are rarely 100%, so it is important to
assess the likely extent of any bias and the potential impact, if any, of this on the
results of the study. In descriptive studies the most important consideration is
whether the observed level of something in the study sample is likely to be
higher or lower than that in the wider population. In analytic studies the
question is usually whether an observed association is entirely due to error,
or would it still exist (and perhaps be even stronger) if the error could be
eliminated? Conversely, if a study shows no association, could this be because
a real effect has been masked because of the way the subjects were selected
(bias) or because the study was just not big enough to show a clear association
(chance)? Figure 7.1 summarises the issues regarding selection bias in analytic
research and also the effects of random sampling error or chance that we
discussed in the previous chapter. Unfortunately, while we can quantify the
effects of random sampling error or chance, questions as to the possible
presence and effects of any selection bias are often more difficult to answer –
if people did not agree to take part in a study then there is usually very limited
information about them. Any such consideration can, therefore, only be based
on informed guesswork, and the results of any case–control study with low
participation rates (particularly among controls) or of a cohort study or trial
with high loss to follow-up are likely to be viewed with suspicion because of the
possibility that some unaccounted-for selection bias could explain the results.

It is, however, important to note that even if selection bias exists, it does not
necessarily invalidate an observed association between exposure and out-
come. Problems occur when the probability that someone takes part in, or is
lost from, a study is related to both the exposure and the outcome of interest
and, specifically, if the exposure–outcome association differs among partici-
pants compared to non-participants (Carter et al., 2012). Selection bias is
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Representative sample
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to detect an effect?
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(Type II error)
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(Type I error)
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Results can be biased
to or away from the null

Usually NO BIASa

Internally valid

Results may not be
GENERALISABLE

May introduce
BIAS if loss is
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aThe same cannot be said for cohorts with an external comparison group where factors like the healthy worker effect can introduce bias at this stage

Figure 7.1 Random and systematic selection error and their consequences for effect estimation.



particularly problematic in case–control studies because participation rates
often differ greatly between cases, who have an interest in helping research
into a condition that affects them, and controls who do not. As a result, the
probability someone takes part in a case–control study is almost always
associated with the outcome, so if it also differs by exposure status it
may cause bias as in the example in Box 7.2, where people were less likely
to participate as controls if they were smokers. Selection bias can also be an
issue in cohort studies because loss to follow-up may be related to both
the exposure and the outcome. For example, if, in a trial, those who are
sicker (the outcome) and those taking the new drug (the exposure) are more
likely to drop out of the study (due to ill health and treatment side effects,
respectively), the results might over-state the effectiveness of the treatment
being tested.

External comparisons
Although it might not be possible to obtain information about the non-
responders in a study, we may have some knowledge of the wider target
population, allowing us to check for differences between it and the actual
study population. For example, many countries have cancer registries, so in a
case–control study of cancer we might be able to find some basic information
such as the age and stage (extent of disease) distribution of all cancer patients
diagnosed in a particular region at the time of the study. By comparing this
information with that of the cases who took part in the study we can see
whether the people who did not take part differ in some way from those who
did, e.g. they might tend to be older and sicker. Similarly, it may be possible to
extract information about possible risk factors such as smoking and alcohol
consumption from a national health survey. If so, we can then compare, say,
the smoking habits of the study population with those of the general popula-
tion. If there are fewer smokers among the controls in a case–control study
than in the general population, then the study may have overestimated the
strength of the association between smoking and disease. For example, a
recent study observed an odds ratio of 1.6 (95% CI 1.2–2.2) for the association
between current smoking and risk of one type of ovarian cancer, but it was
found that the proportion of current smokers in the control group was lower
than would be expected from national statistics (13% vs. 19%) (Pandeya et al.,
2009). By imputing (estimating) smoking status for the non-participating
controls based on the assumption that the total control group should have
had a similar prevalence of smoking to the general population, it was esti-
mated that the true odds ratio would have been approximately 1.1 (95% CI
0.8–1.4). Thus, non-participation very likely biased the odds ratio upwards,
making it seem as if smoking was associated with this type of ovarian cancer
when, in all probability, there is really no association.

More about bias
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Sensitivity analysis
Even without such external data it is still possible to estimate the influence of
bias on the results of a study by conducting what is known as a ‘sensitivity
analysis’ (see Box 7.5). For example, if there is loss to follow-up in a cohort
study or clinical trial, then imagine the worst-case scenario, i.e. that everyone
lost from one group developed the outcome of interest and nobody lost from
the other group did. How would that have affected the results of the study?
What if the loss had been the other way around, or if only half of the people
lost had developed disease? How bad would the loss have to have been to
explain the whole association? If there is still an association after such

Box 7.5 The worst-case scenario

Imagine a study that compared a new anti-arrhythmic drug (drug A) with

an older drug (drug B) for the prevention of sudden death. The results of

this hypothetical study are given in Table 7.3.
From these results, drug A appears to reduce the risk of sudden death by

about half (RR ¼ 4.2 � 8.6 ¼ 0.49) compared with drug B. However, what

if we find that some patients were lost to follow-up: 32 from group A and

16 from group B. The worst-case scenario (if we are hoping to find

evidence in favour of drug A) would be if all the patients lost from group

A had actually died from an arrhythmia while all those lost from group

B were alive and feeling so well that they had decided not to return for

follow-up. We can then recalculate the mortality for drug A on the basis of

this scenario (the mortality for drug B will not change):

Mortality in group A if the 32 patients lost to follow-up died due to an

arrhythmia ¼ (36 þ 32) � 860 ¼ 7.9 per 100 people

Drug A is still found to give a benefit compared with drug B, although

the reduction in risk of mortality is now less than 10%. In practice it is

highly unlikely that all participants lost to follow-up from group A had met

an untimely arrhythmia-related death whereas none of those taking drug

B had. The true reduction in risk for drug A is therefore likely to be greater

than 10% and in this situation we might be happy to conclude that, even in

the presence of the loss to follow-up, drug A was more useful than drug B.

Table 7.3 Results of a hypothetical study comparing two anti-arrhythmic drugs.

Drugs
Number of patients
randomised

Number of
sudden deaths

Mortality per
100 people

Drug A 860 36 4.2
Drug B 842 72 8.6
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worst-case assumptions then the observed result cannot be an artefact due
entirely to selection bias. (Note that this does not imply that the association is
real, it could still be due to chance which we discussed in Chapter 6, meas-
urement error which we discuss below or confounding (see Chapter 8).)

Quantitative bias analysis
There are ways to estimate the likely effects of selection bias (or measurement
bias, see below) on the results of a study and to estimate what the results
would have been in the absence of this bias. This quantitative bias analysis
used to require the skills of an experienced statistician; however, there is now
a range of more accessible tools and approaches that can be used to assess
how bias might have affected an observed association (Lash et al., 2009, 2014).

Measurement or information error

We will now turn our attention to possible sources and effects of error in the
information we collect from or about people. Few measures of exposure will
be perfect and there may also be errors in the measurement of outcome,
leading to misclassification of participants with respect to their exposure
status and/or outcome (disease); i.e. someone may be labelled as ‘exposed’
(or as a ‘case’) when they were actually ‘unexposed’ (or a ‘non-case’). This can
then lead to bias in the results of the study. Some error can and will creep in
whenever we measure or collect information from or about study participants
and, as in the process of subject selection, this error (and any resulting
misclassification) can be either random or systematic.

From www.CartoonStock.com
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Random error

If you were to weigh yourself several times on the same set of scales, how
similar would the results be? If there is little variation between the results we
say that the measuring device is precise. If there is a lot of variation between
the results then the precision is poor or, conversely, we have a lot of random
error. Some measuring instruments will be better than others and although
we would not expect to obtain exactly the same result every time, we would
hope that if were measuring the same thing the results would all be close. If,
for example, we measured someone’s systolic blood pressure and the reading
was 140 millimetres of mercury (mmHg), then, ideally, if we measured it again
and again the results would all be close to this value – perhaps ranging from
137 to 143 mmHg. This would indicate that the measuring device was quite
precise, i.e. it always gives approximately the same answer when measuring
the same thing. But note that it tells us nothing about the accuracy of the
measurement, i.e. whether the person’s systolic blood pressure really is
140 mmHg.
Many biological parameters, including blood pressure, vary on a day-to-

day, hour-to-hour and even minute-to-minute basis. Assuming that we always
measure blood pressure under standard conditions and our participant has
not, for example, just run up a flight of stairs, then any variation should again
be largely random. Depending on when we take our measurements, we will
obtain different readings that will vary around the patient’s usual blood
pressure. We will overestimate some people’s blood pressure and we will
underestimate it for others.
We can reduce random error and thus increase the precision of our meas-

urements by taking repeated measurements on one subject, preferably on
different occasions, and using the average value in the study. The more
measurements we take, the more precise our answer will be. Note that this
is analogous to our discussion of precision in the context of random sampling
error or chance in the previous chapter.

Systematic error

Given that a measuring instrument was not 100% precise, we would expect
some results to be a bit too high and some a bit too low, but we would still
hope that the average results would be close to the true value. In other words,
we want the device to be accurate. Consider the measurement of blood
pressure again. If we use a sphygmomanometer that has not been calibrated
for a year it might consistently read 10 mmHg too high. The person with a
blood pressure of 140 mmHg would now appear to have a blood pressure of
150 mmHg. The precision of the measurements may be unchanged but, if we
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were to make several measurements on each person and average them, we
would find that the average value was always 10 mmHg too high. In this
situation our measurements might be precise but they are not accurate
because we are systematically recording everybody’s blood pressure as
10 mmHg greater than it should be. We have, therefore, introduced system-
atic error or bias into our measurements. Unlike random error, systematic
error cannot be reduced by taking repeated measurements.

We can summarise the effects of systematic and random error, or their
inverse accuracy and precision, by analogy with target shooting (Figure 7.2).
If someone is a good shot and they are using a gun with the sights properly
aligned, their shots will tend to cluster closely around the bull’s-eye in the
centre (situation (a)). The shots are therefore both accurate (close to the centre)
and precise (close to each other). However, if the sights on the gun are not
aligned correctly, it will not be so accurate and the shooter might always hit a
spot to the right of the centre (situation (b)). The results are still precise because
they are tightly clustered around this point, but they are no longer accurate
because they are consistently falling too far to the right. We have introduced a
systematic error. If a less experienced shooter were to use the first gun then their
shots would bemore spread out, but they should still land around the bull’s-eye
(situation (c)). In this situation we have good accuracy because, on average, the
shots are centred around the bull’s-eye, but the shots are very spread out so we
have more random error and thus less precision. Finally, an inexperienced
shooter with a faulty gun would both miss the centre of the target and cover a
wide area (situation (d)). In this situation we have neither accuracy nor preci-
sion. This visualisation shows how we can conceptualise the separate effects of
accuracy and precision, i.e. systematic and random error.

The effects of measurement error

The effects of both biological variation and measurement error mean that
measurements will never be perfect – even if there is no systematic error there
will always be some degree of random error. If something is measured on a

Accurate and precise
Little systematic or

random error

Precise, not accurate
Systematic error but
little random error

(b)(a)

Accurate, not precise
Random error but

little systematic error

Neither accurate, nor
precise Random and

systematic error

(d)(c)Figure 7.2 Accuracy and precision
(systematic and random error).

202 The problem of error



continuous scale (for example, weight in kilograms or height in centimetres)
then random error alone will not lead to any bias in estimates of the average
weight or height of the study population. This is because, although the weight
of some people will be overestimated and the weight of others underesti-
mated, if these errors are truly random, the overestimates and underestimates
should cancel each other out when we calculate the average weight. However,
problems arise in the presence of systematic error. If people systematically
underestimate their weight then their average weight will be an underestimate
of the true average for the population.
If instead of measuring something on a continuous scale we want to classify

people into groups, for example normal and overweight, then both systematic
and random errors will lead to misclassification of people into the wrong
groups. Some normal-weight people will be wrongly labelled as overweight
and vice versa. As you will see below, this misclassification will introduce bias
into measures of association such as odds ratios and relative risks.
In addition to the degree of error in the measurement, a second important

consideration when assessing the likely effects of measurement error is
whether the errors and any subsequent misclassification are likely to be the
same or different in the various study groups. In a case–control study we are
usually concerned about whether errors in exposure measurement are the
same for cases and controls. In a cohort study or a clinical trial we are often
more concerned about whether the outcome measurement may have differed
between the exposed and unexposed groups, although exposure measure-
ment can also be an issue.

Non-differential misclassification
When measurement error and any resulting misclassification occur equally in
all groups being compared, they are described as being non-differential
(because they are the same or ‘not different’ in the various groups). For
example, non-differential error occurs when the amount and type of error
in exposure measurement is the same for cases and controls in a case–control
study, or error in measurement of outcome is the same for the exposed and
unexposed groups in a cohort study.
Imagine a case–control study in which everything is measured perfectly,

with no error. The results of this hypothetical study are shown in Table 7.4 and
the true odds ratio for the association between exposure and outcome is 1.80.
As we have noted above, the instrument used to measure exposure (this

could be a biological test, a measuring device or a questionnaire) will, in
practice, almost always have some degree of random error that results in
non-differential misclassification. Imagine that 10% of all people who are
exposed are misclassified as unexposed and 10% of all unexposed people are
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misclassified as exposed. The key point here is that the misclassification is
non-differential, namely it affects everyone in the study to the same degree. In
this situation 10% or 30 of the 300 exposed cases and 25 of the 250 exposed
controls will be misclassified as unexposed. In addition, 10% or 10 of the
100 unexposed cases and 15 of the 150 unexposed controls will be misclassi-
fied as exposed. This means that, instead of obtaining the true picture shown
in Table 7.4, our results would look like Table 7.5.

Because we have randomly misclassified some of the cases and controls
with regard to their exposure, we have obtained an odds ratio of only 1.56
instead of the true odds ratio of 1.80. This makes the association seem weaker
than it really is; i.e. the effect estimate, in this case an odds ratio, is biased
towards the null. Note that complex exposures such as diet are particularly
hard to measure and levels of misclassification are likely to be much greater
than 10%. In this situation any measures of relative risk would be biased even
closer towards 1.0 and real effects can disappear completely.

As we discussed above, non-differential misclassification due to random
measurement error is a fact of life; it is also possible to have non-differential
misclassification due to systematic measurement error if the systematic error
occurs equally in all study groups. For example, ‘food frequency question-
naires’ ask people to report how often, on average, they eat each of a list of
individual food items. When confronted with a list of 10 or 20 different
vegetables people will often overestimate the total number of servings of
vegetables they eat each day. If we then classify them according to whether
or not they ate the recommended number of servings of vegetables per day,

Table 7.5 The effect of non-differential random measurement error: 10% of all cases and
controls are misclassified with regard to their exposure status.

Cases Controls Total

Exposed 300 – 30 + 10 = 280 250 – 25 + 15 = 240 520
OR ¼ 280� 160

120� 240Unexposed 100 – 10 + 30 = 120 150 – 15 + 25 = 160 280

Total 400 400 800 ¼ 1:56

Table 7.4 The ‘true’ results of a hypothetical case–control study with no
measurement error.

Cases Controls Total

Exposed 300 250 550
OR ¼ 300 � 150

100 � 250Unexposed 100 150 250

Total 400 400 800 ¼ 1:80

10% misclassification is the
same as saying that the
instrument has 90%
sensitivity and specificity;
it correctly identifies 90% of
those who are exposed
(sensitivity) and 90% of those
who are unexposed
(specificity). We will discuss
sensitivity and specificity in
more detail in Chapter 15.

With 20% misclassification
instead of 10%, the odds ratio
would have been

260 � 170
140 � 230

¼ 1:37

With 30% misclassification it
would have been only
240 �180
160 �220

¼ 1:23
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we would systematically misclassify some people with low vegetable intake
into the high intake group and this might happen equally for cases and
controls. If, for example, in the study shown in Table 7.4, 20% of all unex-
posed people, both cases and controls, were systematically misclassified as
exposed then we would obtain an odds ratio of 1.71 which would again
underestimate the true value of 1.80. Note that while these examples have all
considered the effects of non-differential exposure misclassification on a
case–control study, exactly the same effects occur in a cohort study (see
question 5 at the end of the chapter for an example of this), or if the outcome
is equally poorly measured in the unexposed and exposed groups in a cohort
study or trial.
To summarise, in the presence of non-differential misclassification of expos-

ure (or outcome), either random or systematic, estimates of the association
between exposure and outcome will usually be underestimates of the true effect.1

In other words, the odds ratio or relative risk will almost always be biased
towards the null and the true effect will therefore be further from the null than
the observed effect. This means that if a study gives a relative risk of 2.0 (or 0.8)
but there is likely to be non-differential misclassification, then the true associ-
ation is likely to be even stronger than that observed (i.e. > 2.0 or < 0.8).
However, non-differential misclassification can also make it harder to detect a
real association. If a relative risk is close to 1.0 this could indicate that there is
really no association, or it could be a consequence of misclassification that has
made a stronger effect look weaker than it really is. Also, although this is the
norm, it is important to note that in some situations non-differential misclas-
sification can bias estimates away from the null. This can happen simply by
chance but is more common when we classify exposure into more than two
groups (see Box 7.6 for an example).

Differential misclassification
When the measurement error and resulting misclassification occur to a greater
extent in one group than another they are described as being differential. The
effects of differential misclassification are generally harder to predict than
those of non-differential misclassification.
In contrast to random error which, as discussed above, is commonly non-

differential because it is usually an inherent property of the exposure being
measured or the measuring device and thus affects everyone in the study,
systematic error is often differential. It is a particular problem in standard case–
control studies in which cases already have the disease of interest when the
exposure information is collected or measured and so they might recall their
exposure differently from controls; this type of error is known as recall bias.

1 All else being equal; the results may still of course be influenced by other types of error.
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For example, the cases in a case–control study of respiratory disease might
systematically overestimate the amount of passive smoking they had been
exposed to because they thought that this might have caused their disease.
The controls, however, would have no such reason to overestimate their
exposure. This might make it look as if passive smoking was associated with
respiratory disease even if there was really no difference between the cases
and controls.

Imagine that, in the hypothetical study shown in Table 7.4, cases overesti-
mated their exposure and, as a result, 20% of unexposed cases were systemat-
ically misclassified as exposed, but controls were not affected.

Box 7.6 When non-differential misclassification does not bias towards
the null

If an exposure has more than one level, then misclassification between two

of the groups will make those two groups look more similar than they

really are. In a case–control study of smoking and respiratory disease, for

example, participants might be classified as non-smokers, light smokers or

heavy smokers. The distinction between smoker and non-smoker is likely

to be fairly clear (and for simplicity we will assume that it is perfect), but

there will inevitably be some misclassification between the light and heavy

smoking groups. If the non-smokers form the reference group, the mis-

classification will make the odds ratios for light and heavy smokers more

similar than they should be. The effect of this will be to bias the odds ratios

for the highest group (heavy smokers) towards the null again, but the odds

ratio for the middle group (light smokers) will now be biased away from

the null (Table 7.6). Overall, however, the net result is that the association

is weakened.

Table 7.6 Non-differential misclassification can bias away from the null when there
are more than two exposure groups.

Cases Controls Odds ratio

Truth
Non-smokers 150 200 1.0
Light smokers 120 125 1.3
Heavy smokers 130 75 2.3

20% of light smokers misclassified as heavy smokers and vice versa
Non-smokers 150 200 1.0
Light smokers 122 115 1.4
Heavy smokers 128 85 2.0
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How many of (a) the 100 unexposed cases and (b) the 150 unexposed controls
would have been misclassified as exposed?

So, in total, how many (a) cases and (b) controls would have been classified as
exposed and how many as unexposed?

What would the odds ratio have been?

Is this an underestimate or an overestimate of the true odds ratio?

In this situation, 20% or 20 of the 100 unexposed cases but none of the
unexposed controls would be misclassified as exposed and, instead of the true
picture shown in Table 7.4, we would obtain results that looked like Table 7.7
giving an odds ratio of 2.4.
We have now overestimated the true odds ratio of 1.80, making the association

seem stronger than it really is. If the systematic misclassification had gone the
otherway and exposed cases had beenmisclassified as unexposed, or unexposed
controls had beenmisclassified as exposed, then the bias would have gone in the
opposite direction and we would have underestimated the effect.
Random error is less likely to be differential unless, for example, we used

different measuring devices with differing levels of precision in the different
study groups; however, if present, it too can make an association look either
weaker or stronger than it really is (see question 6 at the end of the chapter for
an example). The best way to avoid differential random error and any conse-
quential misclassification is thus to ensure that exactly the same instruments
and methods are used in all of the different study groups.
To summarise, if there is either systematic or random misclassification of

exposure or outcome (see Box 7.7 for an example of this) in a study and this
occurs to a different extent in the two study groups (cases and controls or
exposed and unexposed) then the study results can be biased either up or
down, i.e. towards or away from the null value, and it is often impossible to
know which way the bias would have gone or how large the effect might be.
This type of misclassification can be very difficult to deal with because, unless
you have some idea of how much misclassification is occurring and where it is
occurring, you cannot work out what the true results should have been.

Table 7.7 The effects of differential systematic misclassification: 20% of unexposed cases,
but not controls, are misclassified as exposed.

Cases Controls Total

Exposed 300 + 20 = 320 250 570
OR ¼ 320 � 150

80 � 250Unexposed 100 – 20 = 80 150 230

Total 400 400 800 ¼ 2 :40
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Sources of measurement error

As you will have gathered, almost every study will be subject to some degree of
measurement error. One common but easily avoidable source of bias is the
use of different instruments or measuring systems for different study groups or
parts of groups. Examples of this include the use of different laboratories to
analyse biological specimens, different locations for interviews of cases and
controls (e.g. hospital versus home) and different interview methods (face-to-
face versus telephone interview or postal questionnaire). Other particularly
troublesome sources of error are the possibilities of recall bias and interviewer
or observer bias.

Recall bias
Some degree of recall error is inevitable in any epidemiological study that
requires participants to remember their past exposures. If this error is random
and if it occurs equally in all study groups (i.e. it is non-differential) then the
effects will usually be to bias the effect estimates towards the null. What can be

Box 7.7 Misclassification of the outcome

This can be a particular issue in cohort studies, especially if they rely on

self-reporting of events. If those who are exposed are more (or less) likely

to report the outcome, perhaps because of preconceived beliefs about

what causes the outcome, then the association may be over- (or under-)

estimated. For example, when followed-up by telephone, American vet-

erans who had served in Vietnam (the exposure of interest) reported

higher rates of a variety of medical conditions than did non-Vietnam

veterans. However, when a subset of the veterans was examined more

thoroughly, there was little real difference between those who had and had

not served in Vietnam (CDC, 1988). Note that the analysis presented in

Box 7.3 was based on routine statistics and not on self-report by the

veterans themselves, so it is not subject to the same types of error.

Misclassification of the outcome is also possible in case–control studies

if the disease is quite common and can only be reliably diagnosed (or

ruled out) by an invasive test, for example some pre-cancerous conditions

like endometriosis and Barrett’s oesophagus. In this situation it is usually

impossible to check all of the controls to ensure that they are truly free of

disease and if the control group does include a proportion of people with

undiagnosed disease, then any association between exposure and disease

will appear weaker than it really is.
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more problematic is recall bias which, as we noted above, can occur in case–
control studies and cross-sectional studies if cases (or those with disease in a
cross-sectional study) are systematically more likely to over- or underestimate
their exposure than controls. For example, if an exposure is thought to cause
disease, then cases might be more likely to recall or to exaggerate their past
exposure than controls, leading to overestimation of the effect of that exposure
on disease (as in the passive smoking example above). The opposite effect
would occur if cases tended to underestimate their exposure because they feel
guilty about it. This could occur, for example, in a study of the effects of
sunburn in childhood on the occurrence of childhood skin cancer. If mothers
are asked whether their children have ever been sunburnt, the mothers of
children with cancer might tend to underestimate (or under-report) the
occurrence of sunburn in their children if they felt guilty for allowing their
children to get burned when they were young. This could lead to falsely low
estimates of the frequency of sunburn in cases and consequently a weakened
association between sunburn and skin cancer.
It is difficult to know, even qualitatively, the extent to which recall bias may

operate in any given study, so a great deal of effort is put into designing
information collection systems to limit the likelihood of it occurring. Examples
include the use of highly structured questionnaires, standard prompts and so
forth. Recall bias has been a major concern in the field of melanoma epidemi-
ology because of the growing public awareness of the risks of sun exposure.
However, an analysis of data from a case–control study nested within an
existing cohort, where exposure information was collected both before and
after the cases were diagnosed, did not give any consistent evidence of
substantive recall bias being present for a range of sun-related exposures
(Gefeller, 2009). Nonetheless, this does not mean that we can ignore the need
to capture data as objectively as possible to minimise this potentially import-
ant measurement flaw.

Interviewer or observer bias
Differential error may also occur if data collectors ask questions or record
information in a different way for cases and controls (or for exposed and
unexposed groups in a cohort study or randomised trial). For instance, an
interviewer who knows the case/control status of a subject may probe more
deeply with the cases than with the controls, resulting in differences in the
quality of exposure data obtained for the two groups. Similarly, if in a cohort
study or trial the observers know whether or not a person is exposed or
unexposed (or treated/untreated), they may be more or less likely to diagnose
the outcome of interest. A logical way to avoid these possibilities is to blind the
interviewers/observers to the subject’s status, although this is often not pos-
sible. Again, the use of objective criteria for outcome assessment, structured
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questionnaires and interview schedules, training and tape-recording inter-
views for quality control all help minimise interviewer bias.

Control of measurement error

It is difficult to get rid of measurement error once it has occurred and so it is
important to minimise the potential for error at the design stage of the study.
Whether you are conducting your own research or reading the reports of
others, some important things to consider include the following.

Definitions
Everything that is measured in a study needs to be carefully defined. If the
exposure is smoking, what makes someone a smoker? Anyone who has ever
smoked a cigarette? 10 cigarettes? 100 cigarettes? A cigarette a day for six
months? Are we only interested in current smokers? Those who have smoked
within the last few years? Or anyone who has smoked at any time? Or does it
matter how many cigarettes someone smoked each day? In practice most
people probably try a cigarette at one time or another, so to classify them all
as smokers would not be sensible. Common definitions that have been used
are that someone should have smoked at least 100 cigarettes in their lifetime
or that they should have smoked at least one cigarette a day for a defined
period, usually a few months. If we want to estimate the effect of increasing
dose (amount) of smoking we might want to measure lifetime exposure in
‘pack-years’ where one pack-year is equivalent to smoking a pack of 20 cigar-
ettes daily for a year.

In addition to the important distinctions of exposed/unexposed (and of
case/non-case in a cohort study or trial), it is also essential to have clear
definitions and good measurements of the cofactors being measured. These
are other factors that may influence (or ‘confound’ – see Chapter 8) the results
of a study, e.g. age, SES, smoking, etc.

Choice of instrument
Instruments in epidemiological studies can include sophisticated laboratory
tests, detailed questionnaires, or even simple observations. Inevitably the
method of measurement used will influence the degree of error in the data.
A set of scales that weigh to the nearest 100 g would be more accurate than
scales that weigh to the nearest kilogram. It is relatively easy to collect dietary
data from large numbers of people using a food frequency questionnaire
(FFQ) which asks people to report how often they ate various food items over
the previous months. However, people find it hard to accurately report their
average consumption of a long list of foods. Diet diaries avoid this problem by
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asking people to record exactly what they ate over a few days, but they are
more costly to administer, harder to analyse and, while they may give an
accurate picture of what someone has eaten recently, this may not represent
their usual diet.
Ideally the instrument used should be that which minimises both random

and systematic error. Consideration should also be given to the circumstances
of time and place of use of the instrument, as these may also affect the results
obtained. For example, a face-to-face interview with a trained interviewer
might elicit more reliable information than a questionnaire completed by
the study participants themselves, but it would also be more expensive. And
there are always exceptions – use of self-completed computer-based question-
naires may well capture more reliable data on use of illicit or socially stigma-
tised behaviours than in-person interviews.

Quality control
Whatever measuring devices are used, they need to be standardised. Instru-
ments need regular calibration against a standard value and interviewers need
training in a standard approach to obtaining data. Structured questionnaires
help here, too. If the study continues for some time, consistency should also
be monitored and maintained.

Assessment of measurement error

The two main issues in measurement are (i) is the instrument accurate (i.e. no
systematic error), and (ii) is it precise (minimal random error)?

Assessing accuracy
In some situations accurate measuring devices or tests are available but too
complex or costly to use on everyone in the study, so the investigators have to
use a simpler or cheaper and less-accurate tool. In this situation it is good
practice to conduct a validation study in which both the accurate expensive
(‘gold standard’) test and the simpler, potentially less accurate test are used on
a subset of people in the study and the results are compared (see e.g. Willet
et al., 1985 and ‘Measuring & validating dietary data’ online). It may then be
possible to ‘correct’ the results of the study for any inaccuracies in the cheaper
test (we will not consider the mechanics of this here).

Assessing precision
Another desirable way to test how well a measuring device performs is to
measure its ‘repeatability’ or precision. If the same thing is measured on two
different occasions or by two different people, how well do the two measure-
ments compare? This might simply be a case of repeating laboratory tests on

Measuring & validating

dietary data
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some samples, or it might involve asking some study participants to complete
a study questionnaire twice on two different occasions to see how well their
answers agree. In a cohort study that has repeated measures over time (such
as the Nurses’ Health Study), the values can be averaged over time to give
better precision.

Assessing the likely effects of measurement error on the results of a study

By now it will be clear that there will always be some random measurement
error in any data and thus if subjects have been classified into different
exposure groups, there will always be some misclassification, the extent of
which will depend on the variable being studied and the tool used to measure
it. Things like age and height do not change (or change predictably) and can
be measured fairly easily. In contrast, we have alluded to the fact that complex
factors like diet and physical activity are very hard to measure and so will be
associated with a lot more misclassification. On top of this there may also be
systematic error such as recall bias, particularly when we use case–control and
cross-sectional designs.

The important thing is to assess the likely impact of any such error on the
results of the study. Is it possible that an observed association is entirely due to
error, or would the association still exist (and perhaps be even stronger) if the
error could be eliminated? As shown in Figure 7.3, the key question in a survey
is whether the error is random or systematic. Random errors should not lead to
biased estimates of descriptive statistics such as means, but systematic errors
will. In contrast, when looking for associations between exposure and out-
come the central issue is whether any error and resulting misclassification is
likely to be non-differential or differential; i.e. is it likely to have occurred to the
same extent in all study groups or to a differing extent in different groups? As

Survey Analytic Study

Random Systematic Non-differential
(same in all groups)

BIASED results Random or Systematic Random or Systematic

BIAS to Null

MEASUREMENT
ERROR

No BIAS in mean but lack of
PRECISION

Differential
(different in different groups)

BIAS towards or
away from null

Figure 7.3 An overview of the types and consequences of measurement error.
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you have seen, the likely effects of non-differential misclassification (either
random or systematic) are to bias the estimates of effect (RR or OR) towards
the null, making associations look weaker than they really are or, in some
situations, masking them altogether. However, differential misclassification
can bias estimates upwards or downwards, towards or away from the null. If
information from a validation study is available, it may be possible to ‘correct’
the results of a study to allow for the fact that the measurements were not
perfect, although any such correction will also be imperfect. Sensitivity analy-
sis involves repeating the data analysis using different assumptions in the
same way as we did to assess the effects of loss to follow-up above (look back
to Box 7.5): if a proportion of subjects were misclassified, what effect would
this have had on the results? As noted above for selection bias, quantitative
bias analysis can also be used to assess the likely presence and effects of
measurement bias (Lash et al., 2009, 2014).
At the very least, it is essential to assess the likely degree of measurement

error and/or misclassification and then make some judgements as to how this
might have affected the results. Table 7.8 summarises the likely effects of
misclassification on the estimates of an odds ratio under different scenarios.
We will come back to this challenge in Chapter 9.

Summary

No epidemiological study will be perfect. The important thing, therefore, is to
minimise errors and then evaluate the likely effect of any remaining error, and
we will come back to this again when we look at how to read (or write) and
interpret epidemiological papers in Chapter 9. For now, we can summarise the
problem of error as follows: errors can be random or systematic and can relate

Table 7.8 The likely effects of misclassification on the results of a case–control study.

Type of error/
misclassification

True odds
ratio (OR) Study results Type of bias

Non-differential 2.0 � 1.0 but < 2.0 Result biased towards null but not below
1.0 1.0 No effect if there is no association
0.5 > 0.5 but � 1.0 Result biased towards null but not above

Differential – cases
overestimate (or controls
underestimate) exposure

2.0 > 2.0 Result biased upwards with no upper limit. An
inverse association (OR < 1.0) could appear to be a
positive association (OR > 1.0)

1.0 > 1.0
0.5 > 0.5

Differential – cases
underestimate (or controls
overestimate) exposure

2.0 < 2.0 Result biased downwards. A positive association
(OR > 1.0) could appear to be a inverse association
(OR < 1.0)

1.0 < 1.0
0.5 < 0.5

More about bias
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to subject selection or tomeasurement of exposure and/or outcome. The effects
of random sampling error can be assessed from a confidence interval, but
systematic selection bias is not so easily assessed, and is therefore a major
concern in surveys. It can also be a problem in case–control studies, particu-
larly with regard to selection of the control group. In cohort studies or clinical
trials selection bias is more likely to occur if people are lost to follow-up and
loss is related to both exposure and outcome. In a survey, systematic measure-
ment error is a bigger problem than random error. In analytic studies, the
important distinction is between non-differential error (it occurs equally in all
study groups), which will usually bias the study results towards the null, and
differential error (it occurs to a different extent in the different study groups),
which can bias the study results either towards or away from the null.

We have now considered two of the three possible ‘alternative explanations’
for an observed association, namely chance and bias. In the next chapter we
will discuss the third major threat to the internal validity of epidemiological
and other health research: confounding.

Questions

1. Imagine that a research team wanted to estimate the prevalence of vege-
tarianism in the community by means of a short questionnaire distributed
with a women’s health magazine. Would this give an accurate picture of the
percentage of people who were vegetarians?

2. In a case–control study of liver disease and alcohol consumption, all
patients in a community who had been newly diagnosed with liver disease
were recruited as cases and people without liver disease were selected at
random from the community to act as controls. All of the cases and controls
were then asked about their alcohol intake. Only 25% of the controls
selected from the community agreed to take part in the study.
(a) Do you think that people with a high alcohol intake would be more or

less likely to agree to take part in the study than average?
(b) Is alcohol consumption in the controls likely to be higher, the same as,

or lower than in the whole community?
(c) What effect would this have on the estimate of the association between

alcohol and liver disease?
3. Look back at the hypothetical study shown in Table 7.4 and imagine that

the measurement instrument systematically overestimated people’s expos-
ure and, as a result, 15% of all unexposed people, both cases and controls,
were misclassified as exposed.
(a) Is this misclassification differential or non-differential? Why?
(b) In the presence of this misclassification is the observed odds ratio likely

to be an overestimate or an underestimate of the true odds ratio?

Additional questions
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(c) How many of (i) the 100 unexposed cases and (ii) the 150 unexposed
controls would have been wrongly misclassified as exposed?

(d) So, in total, how many (i) cases and (ii) controls would have been
classified as exposed and how many as unexposed using the flawed
measuring tool?

(e) What would the odds ratio have been?
4. Now imagine that cases underestimated their exposure and, as a result,

20% of exposed cases were falsely classified as unexposed, but that the
classification of controls was not affected.
(a) Is this type of misclassification random or systematic? Is it differential

or non-differential? Why?
(b) What effect would it have had on the results of the study?
(c) Compare your answer to (b) with that in Table 7.7, where cases sys-

tematically overestimated their exposure.
5. Imagine that in a cohort study 10% of all exposed people were misclassified

as unexposed.
(a) Is this misclassification random or systematic? Non-differential or dif-

ferential? And why?
(b) What effects would the misclassification have on the incidence of

disease in (i) the exposed cohort and (ii) the unexposed cohort?
(c) What effect would this have on the observed relative risk?

6. Imagine that all of the cases in a case–control study had their blood
pressure measured by a single doctor at the local hospital but, for prac-
tical reasons, the controls had their blood pressure measured by their
local doctor. In this situation it is likely that there would be less random
error in the blood pressure readings for cases that came from a single
doctor than in those for controls that came from a number of different
doctors.
(a) Recalculate the results of the hypothetical case–control study shown in

Table 7.4 assuming that the measurement of exposure among cases
was perfect but 20% of exposed controls were randomly misclassified as
unexposed, and vice versa.

(b) Is this misclassification differential or non-differential and why?
(c) What effect has it had on the odds ratio and why?
(d) What would the effect have been if we had misclassified cases instead

of controls?
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Box 8.1 Are university admissions biased towards men?

Table 8.1 shows that in one year a prestigious university admitted 52%

of male applicants compared with only 45% of female applicants,

suggesting that there was a bias in favour of men. When quizzed about

this, the two main faculty heads said that it couldn’t be true, they had both

admitted a higher proportion of women than men: the success rate in

arts was 38% for women and only 32% for men and that in science was 66%

for women compared with only 62% for men. How can this be?

This is an example of Simpson’s paradox, an extreme form of

confounding where an apparent association observed in a study is in the

(continued)
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In Chapters 6 and 7 we considered two reasons why the results of a study
might not be the truth, namely chance and error or bias. In this chapter we will
consider a third possible ‘alternative explanation’ – confounding.

Confounding refers to a mixing or muddling of effects that can occur when
the relationship we are interested in is confused by the effect of something
else. It arises when the groups we are comparing are not completely exchange-
able and so differ by factors other than their exposure status (whether they are
‘exposed’ or ‘not exposed’). If one (or more) of these other factors is a cause of
both the exposure and the outcome, then some or all of an observed associ-
ation between the exposure and outcome may be due to that factor. For
example, if in a cohort study we observe that people with yellow fingers have
a higher incidence of lung cancer compared to those who do not have yellow
fingers, does this mean that having yellow fingers causes you to get lung
cancer? Of course, the reason we see this association is because the exposure
‘yellow fingers’ and the outcome ‘lung cancer’ share a common cause –

tobacco smoking (Figure 8.1). The exposure groups we are comparing (those
with and without yellow fingers) are therefore not exchangeable because
people with yellow fingers are more likely to be smokers than people who
do not have yellow fingers. As a result, they are also more likely to get lung
cancer. Even if an exposure does not cause a disease, it will appear to be
associated with the disease if both it and the disease are caused by a third
factor, in this case smoking. The relation between yellow fingers and lung
cancer is therefore confounded by smoking.

Confounding can be a major problem and has to be addressed in all non-
randomised research and in some randomised trials as well, especially if they

Box 8.1 (continued)

opposite

direction to the true association. In this example it arose because women

were much more likely to apply to arts courses, for which applicants

had a lower overall success rate.

(Based on an analysis of graduate admissions data conducted

at the University of California, Berkeley (Bickel et al., 1975).)

Table 8.1 University admissions.

Men Women

Faculty Applicants Admitted Percentage Applicants Admitted Percentage

Arts 4,100 1,300 32 8,250 3,150 38
Science 8,200 5,100 62 2,900 1,900 66
Total 12,300 6,400 52 11,150 5,050 45
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are small. As in previous chapters, we will mainly discuss confounding in the
context of studies of the causes of a disease but, as with all epidemiological
methods, everything that we say will apply equally to any study looking at
associations.
The following hypothetical case–control study of alcohol and lung cancer

illustrates how easily confounding can arise and how it can be diagnosed. It
also suggests how confounding can be dealt with and we will discuss this in
more detail later in the chapter.

An example of confounding: is alcohol a risk factor for lung cancer?

Imagine a (very small) case–control study with 20 cases (people with lung cancer
☹) and 20 controls who do not have lung cancer (☺). Is drinking alcohol
associated with the risk of lung cancer? If all the cases and controls were asked
about their alcohol consumption we could classify people as ‘drinkers’ (☹,☺)
or ‘non-drinkers’ (☹,☺) (Figure 8.2) and calculate an odds ratio to estimate the
strength of the association between alcohol and lung cancer.

What is the odds ratio for the association between alcohol and lung cancer?

Can we conclude that alcohol consumption is associated with lung cancer?

As Table 8.2 shows, the odds ratio for the association between alcohol and
lung cancer is 3.0, suggesting that the risk of developing lung cancer in people
who drink alcohol is three times that in non-drinkers.
However, we know that smokers are much more likely to develop lung

cancer than non-smokers, and it is possible that they are also more likely to
drink alcohol than non-smokers. Could smoking have affected the association

Yellow fingers

Smoking

Lung cancer

Figure 8.1 The relation between
smoking, yellow fingers and
lung cancer.

ControlsCases Figure 8.2 A hypothetical
case–control study of alcohol
and lung cancer (blue = drinkers,
black = non-drinkers).
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we saw between alcohol and lung cancer? To investigate this we need to
separate the smokers from the non-smokers and look at the association
between alcohol and lung cancer – the ‘alcohol effect’ – in each group.
Figure 8.3 shows that 12 of the 16 smokers were also alcohol drinkers com-
pared with only 3 of the 24 non-smokers.

Calculate the odds ratio for alcohol and lung cancer separately for (i) smokers
and (ii) non-smokers. (Hint: first draw up the appropriate 2 x 2 tables.)

Is alcohol associated with lung cancer among smokers? Among non-smokers?

How do you explain the change in the pattern of the alcohol–lung cancer
relationship?

The odds ratio for the association between alcohol and lung cancer among
smokers is 1.0. Fewer of the non-smokers drink alcohol, but again the odds
ratio is 1.0 (see Table 8.3). This process in which we divide or stratify the
study participants into two or more separate groups (strata) is known as
stratification.

So, although there appears to be an association between alcohol and
lung cancer in the whole study population, it disappears when we consider
smokers and non-smokers separately. We could then go on to combine the
odds ratios in smokers and non-smokers to calculate a pooled odds ratio that

Table 8.2 Calculation of the odds ratio for the association between alcohol and
lung cancer.

Cases Controls

Alcohol drinkers 10 5
Odds Ratio ¼ a� d

b� c
¼ 10 � 15

5 � 10
¼ 3.0

Non-drinkers 10 15

Non-smokersSmokers

ControlCasesControlsCases

Figure 8.3 Separating smokers and non-smokers (blue = drinkers, black = non-drinkers).

220 The challenge of confounding



is adjusted for the effects of smoking. In this example, the adjusted odds ratio
is also 1.0. (We will not discuss the methods for calculating an adjusted odds
ratio here, but a common method, developed by Mantel and Haenszel (1959),
is shown in Appendix 8.)
The apparent (crude) overall relationship we saw between alcohol and lung

cancer arose because while those with lung cancer were indeed more likely to
drink alcohol than those without lung cancer, alcohol and smoking go
together so they were also more likely to be smokers than those without lung
cancer. The increased risk of lung cancer among alcohol drinkers was in fact
due entirely to their smoking.
This situation, in which an apparent relationship between an exposure and

an outcome is really due, in whole or in part, to a third factor that is associated
both with the exposure and with the outcome of interest is known as con-
founding. In the example, smoking is said to be a confounder of the alcohol–
lung cancer link. Confounding is a mixing of effects because the effect of the
exposure we are interested in (e.g. alcohol) is mixed up with the effect of some
other factor (e.g. smoking). To look at the real effect of the exposure we have to
first deal with the effect of the confounder.

Characteristics of a confounder

As you saw above, a confounder is a factor that is associated with both the
exposure and the outcome. Strictly speaking, these associations should be
causal as in the yellow fingers example at the start of the chapter – smoking
causes both yellow fingers and lung cancer. However, in practice the con-
founder may just be a proxy for the true cause and this is the situation in
the smoking and alcohol example. Smoking does not cause someone to
drink alcohol in the usual sense of the word, but instead both behaviours
probably result from a complex interplay of genes, socioeconomic status
(SES) and environment. Importantly, the confounder must not be a

Table 8.3 Calculation of the odds ratio for the association between alcohol and lung
cancer, stratified by smoking status.

Cases Controls

Smokers Alcohol drinkers 9 3
Odds Ratio ¼ 9 � 1

3 � 3
¼ 1.0

Non-drinkers 3 1

Non-smokers Alcohol drinkers 1 2
Odds Ratio ¼ 1 � 14

2 � 7
¼ 1.0

Non-drinkers 7 14
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consequence of either the exposure or the outcome. So, to summarise, for
something to be a confounder it must:

• be a risk factor for disease (among those who are not exposed to the factor of
interest),

• be associated with the exposure of interest (in the source population or
among the controls in a case–control study) and

• not be an intermediary between exposure and the outcome (i.e. it must not
lie on the causal pathway).

Look back to Figure 8.3 and check that smoking has these attributes in the
alcohol and lung cancer example.
• Among non-drinkers what proportion of (i) cases and (ii) controls smoked?
• Among the controls what proportion of (i) smokers and (ii) non-smokers
drank alcohol?

• Is alcohol likely to cause smoking? (That is, could smoking lie on a causal
pathway between alcohol and lung cancer?)

In the alcohol example, smoking was a confounder for the following reasons.

(1) It was associated with lung cancer: among people who did not drink
alcohol, 3 out of 10 cases were smokers (30%) compared with only 1 of
15 controls (7%). That is, among non-drinkers, the cases were more likely
to smoke than were the controls.

(2) It was associated with alcohol among the controls: 3 out of 4 controls who
smoked also drank alcohol (75%), compared with only 2 out of 16 controls
who did not smoke (12.5%). That is, among the controls, smokers were
more likely to drink alcohol than were non-smokers.

(3) It is not on a causal pathway between alcohol and lung cancer: although
alcohol and smoking often go together, drinking alcohol does not ‘cause’
someone to be a smoker.

An example of an intermediary is seen in the association between obesity and
heart disease. High blood pressure is related both to obesity (the exposure)
and to heart disease (outcome) and could, therefore, be a potential confoun-
der of this association. However, because raising blood pressure is part of the
causal path through which obesity acts to increase the risk of heart disease
(obesity ! increased blood pressure ! heart disease), it would be misleading
to adjust for this, as it would remove part of a real causal effect of being heavy.

Figure 8.1 illustrates these criteria, showing how when a confounder is
causally related both to the exposure and to the outcome of interest, the
exposure may appear to be related to the disease even when it is not. Because
having yellow fingers is associated with (caused by) smoking and smoking
causes lung cancer, yellow fingers and lung cancer appear to be associated.
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Figure 8.1 is an example of a directed acyclic graph or DAG. DAGs are a very
helpful way to visualise the relationships among the different factors that
might affect an outcome and also to identify potential confounding variables
(see Box 8.2 for more information about DAGs). We could also draw a DAG for
the alcohol and lung cancer example but, as we noted above, while tobacco
smoking clearly causes lung cancer, it is not so obviously a ‘cause’ of alcohol
consumption. In practice, it is likely that tobacco smoking is a proxy for some
unmeasured factor or factors (designated ‘U’) that are a common cause of
both smoking and alcohol consumption and this is illustrated in Figure 8.4. In
this example, smoking fulfils the criteria for a confounder because alcohol is
associated with smoking (because they share the common cause U) and
smoking is associated with lung cancer.

The effects of confounding

In the example above, the apparent effect of alcohol on lung cancer was
entirely due to the effect of smoking, but confounding does not necessarily
create an apparent effect where really there is none. Confounding can lead to
either overestimation or underestimation of the size of a real effect, it can
completely hide a real association that exists and in very extreme situations it
can even reverse the direction of an effect, making it appear that a cause of a
disease actually protects against it. (This is known as Simpson’s paradox and it
explains the apparent contradiction in the university admissions data at the
start of the chapter).
Age, sex and SES are common confounders. As an example, many diseases

occur more frequently in older people. If the exposure of interest also occurs
more commonly in the elderly, e.g. a poor diet, then the confounding effects of
age would have to be considered.
Authors of early studies that looked at the relation between diet and heart

disease found that the more a person ate, the lower their risk of heart disease.
This apparent association was all the more surprising because we know that
obesity is a risk factor for heart disease. However, one factor that the studies
did not take into account was physical activity and, on average, people who
are physically active eat more than those who are inactive, i.e. physical activity
is potentially a cause of high energy intake and physical activity also reduces
risk of heart of disease. Could this have affected the results of the studies?

Alcohol

Smoking

Lung cancer

U Figure 8.4 A DAG showing how
smoking confounds the relation
between alcohol and lung cancer.
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Table 8.4 presents the results of a hypothetical case–control study evaluat-
ing the association between energy intake and heart disease.

Is physical activity associated with energy intake in this study?

Draw a DAG showing the likely relationships between energy intake, physical
activity and heart disease.

Is physical activity likely to confound the relationship between high energy
intake and heart disease? Why?

Table 8.4 clearly shows that people who are more active consume more
energy than those who are less active (510 � 660 = 77% of active controls have
high energy intake compared to only 90 � 480 = 19% of inactive controls).
Figure 8.5 shows a DAG for this example, suggesting that physical activity is a
common cause of both energy intake and heart disease and so is likely to
confound the association between them.

What is the odds ratio for the crude association between high energy intake
and heart disease?

What is the odds ratio for the association between high energy intake and
heart disease in people with (i) high and (ii) low levels of physical activity?

Is the association between high energy intake and heart disease confounded
by the level of physical activity?

The crude odds ratio for the association between high energy intake and
heart disease in this study is (730 � 540) � (700 � 600) = 0.9, i.e. those
with high energy intake appear to have a 10% lower risk of coronary heart

Table 8.4 Results of a hypothetical case–control study of high energy intake and heart
disease, stratified by level of physical activity.

Total High physical activity Low physical activity

Energy
intake

Heart
disease Controls

Heart
disease Controls

Heart
disease Controls

High 730 600 520 510 210 90
Low 700 540 100 150 600 390

Energy intake

Physical ac�vity

Heart disease

Figure 8.5 A DAG showing how
physical activity will confound the
relation between energy intake and
heart disease.
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disease (CHD). When we stratify by physical activity the odds ratio is
(520 � 150) � (100 � 510) = 1.5 among the physically active and (210 �
390) � (600 � 90) = 1.5 among the inactive. Thus, when we remove the
confounding effects of physical activity by stratification, high energy intake is
associated with a 50% higher risk of CHD (OR = 1.5). In this example the
confounding meant that the observed odds ratio (OR = 0.9) was an underesti-
mate of the true association between obesity and CHD (OR = 1.5).
Although this example was a case–control study, confounding can occur in

exactly the same way in a cohort study (see the questions at the end of the
chapter for an example of this).

How can we tell if an association is confounded?

If a factor has the characteristics of a confounder (see above) and when you
stratify or adjust for it the effect estimate changes, then confounding is
present. In the lung cancer example at the start of the chapter the odds ratio
dropped from 3.0 to 1.0 when we adjusted for smoking, indicating that
smoking was a strong confounder. In the heart disease example the estimate
increased from 0.9 to 1.5 when we adjusted for physical activity, so again this
was confounding the association. A commonly used rule is that if, when you
adjust for a potential confounder, the crude and adjusted effect estimates
differ by 10% or more, then the crude estimate is confounded to some degree
and it is more appropriate to present the adjusted value.

When will a possible confounder actually be a confounder in practice?

There are many things that could confound an association between an expos-
ure and outcome, but in practice they might not actually do so.
Table 8.5 shows the characteristics of a group of women at the time of

recruitment into a cohort study of oral contraceptives (OCs) and CHD.

Assume that all the factors are known risk factors for CHD. Which of them
might be confounders of the OC–CHD relationship? Why?

For something to be a confounder it has to be associated both with the
exposure of interest (OC use) and with the outcome of interest (CHD). All of
the factors listed are known risk factors for CHD, so they are all associated with
CHD. Some are also associated with OC use – we can see from Table 8.5 that,
compared with non-users, OC users are:

• twice as likely to be under the age of 30 as non-users (60% versus 30%),
• slightly more likely to be of low SES (50% versus 40%),
• slightly more likely to be current smokers (17% versus 12%),
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• 10 times less likely to have had a stroke (0.03% versus 0.3%) and
• 8 times less likely to have had a venous thromboembolism (1% versus 8%).

So will these factors confound the association between OC use and CHD?
In practice, it turns out that only age, history of thromboembolism and, to a

lesser extent, smoking are likely to affect the results appreciably. Because CHD
rates increase with age, the rate in the OC users will be lower than in the non-
users simply because they are younger. If OC use truly increased the risk of
CHD, say the true RR = 3.0, then the effect of confounding by age might reduce
the observed RR (unadjusted for age) to about 2.5 (Table 8.6), thus reducing
the (real) difference between the groups. Similarly, the eightfold difference
between the OC users and non-users in terms of their history of thromboem-
bolism, a strong risk factor for CHD, will also bias the observed RR downwards
to about 2.4. Conversely, CHD rates are higher in smokers and OC users are
slightly more likely to be smokers than non-users, thus the effect of confound-
ing by smoking would be to increase the apparent RR, making the effect look
stronger than it really is.

This contrasts strikingly with the confounding influence of a history of stroke.
Theoretically this looks sure to be an important confounder, given the 10-fold
difference between OC users and non-users in terms of their past stroke experi-
ence, i.e. a very strong association between OC use and stroke (note that this
occurs because women who have had a stroke would not normally be pre-
scribed the OC pill), and the very strong known link between stroke and heart
disease (due to their common set of risk factors). However, because stroke is so
rare in young women, this imbalance affects only a tiny proportion of the total
study group, and so has a trivial effect on the crude RR, biasing it downwards by
<5%, from 3.0 to 2.9. Even if a history of stroke had been five times more

Table 8.5 Characteristics of women at time of recruitment into a study of oral
contraceptive use and coronary heart disease.

Oral contraceptive use

Yes No

Percentage aged less than 30 years 60 30
Percentage of low SES 50 40
Percentage smoking >15 cigarettes/day 17 12
Mean body mass index (weight (kg)/height (m)2) 26.5 27.0
Percentage with a history of:
Hypertension 1 1
Stroke 0.03 0.3
Venous thromboembolism 1 8

(Figures adapted from Vessey and Lawless, 1984.)
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common in the study groups (0.015% and 1.5%), the RRwould have been biased
downwards by only about 10%, from 3.0 to 2.7. More predictably, strong inde-
pendent risk factors for CHD such as low SES and BMI also fail to confound
when their distributions in the groups being compared are reasonably similar,
i.e. the groups are still exchangeable with respect to these factors. So for
something to be a confounder in practice it must not only be associated quite
strongly with the exposure and the outcome, it must also be reasonably preva-
lent in the population.
As another example, consider the case–control study of energy intake and

heart disease shown in Table 8.4. In this study the prevalence of the con-
founder (physical activity) in the population was very high – 660 of the
1140 controls or 58% were physically active. What would have happened to
our analysis if the population had been much less active? Table 8.7 shows
results from a similar study for a population in which only 6% of controls were
physically active. (To obtain these numbers we have just divided the numbers
in the physically active group by 10 and multiplied the numbers in the inactive
group by 2.) The stratum-specific odds ratios, and thus the adjusted odds ratio,
are unaffected but the crude odds ratio is now 1.3 instead of 0.9; i.e. it is much
closer to the unconfounded value of 1.5 and there is much less confounding
by physical activity because this is now much less common.
We can summarise this by saying the following.

• If the association between a potential confounder and either the exposure or
the outcome is weak, then the confounder is unlikely to have much effect on
the results of a study.

Table 8.6 Likely effects of potential confounders in a study of oral contraceptive use and
coronary heart disease when the true RR = 3.0.

Oral contraceptive use Likely

Yes No Observed RRa

Percentage aged less than 30 years 60 30 2.5
Percentage of low SES 50 40 3.2
Percentage smoking >15 cig/day 17 12 3.3
Mean body mass index

(weight (kg)/height (m)2)
26.5 27.0 2.9

Percentage with a history of:
Hypertension 1 1 3.0
Stroke 0.03 0.3 2.9
Venous thromboembolism 1 8 2.4

a Estimated RR for OC use and CHD, assuming that the RRs for the associations
between the potential confounders and CHD are: 2.0 for age, 2.0 for SES, 4.0 for
smoking, 4.0 for BMI, 10.0 for stroke and 5.0 for venous thromboembolism.
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• If a potential confounder is either rare or almost ubiquitous then it is unlikely
to have much effect on the results of a study because these will be driven by
the large number of people who are not exposed to the rare confounder or by
the many who are exposed to the very common confounder.

The most important confounders are therefore those that are both relatively
common and strongly related to the exposures and health outcomes of inter-
est. The typical confounders that we mentioned above – sex, age and SES –

fulfil all of these criteria. Another common confounder is smoking: it is still
quite common despite large declines in smoking rates in many countries; it is
strongly associated with many lifestyle factors, including high alcohol and
coffee consumption, a less healthy diet (less fresh fruit and vegetables) and
low levels of physical activity; and is also a major risk factor for many diseases.
There are also many other disease-specific confounders: sun exposure is a
major confounder in studies of other risk factors for skin cancer, obesity may
be a confounder in studies looking for causes of type-2 diabetes, and so on.
Although note that, in this latter example, it is also possible that obesity may
lie on the casual pathway for diabetes, for example in studies of physical
activity where it is likely that lower physical activity ! obesity ! diabetes.
In this situation we have to think carefully about whether obesity is simply a
confounder or if it might explain some of the effects of physical activity on
diabetes risk.

Control of confounding

Once we have identified the potential confounders of an exposure–outcome
relationship (see Box 8.2 for further discussion of the use of DAGs for this),
what approaches can we take to remove or reduce the effects of any con-
founding? There are two strategies for dealing with confounding. The first is to
try to prevent it from occurring in the first place and this can be done at the

Table 8.7 Results of a hypothetical case–control study of high energy intake and heart
disease, stratified by level of physical activity (present in only 6% of the population).

Total High physical activity Low physical activity

Energy
intake

Heart
disease Controls

Heart
disease Controls

Heart
disease Controls

High 472 231 52 51 420 180
Low 1210 795 10 15 1200 780
OR 1.3 1.5 1.5
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Box 8.2 Defining pathways to disease outcomes: directed
acyclic graphs

The examples we discussed above mainly relate to a single factor that

might confound an association between an exposure and an outcome but

in reality there is likely to be a multitude of potential confounders that

could be common causes of both the exposure and the outcome. There

may also be intermediate steps between an exposure and an outcome, or

between a confounder and the exposure or outcome. Diseases are rarely

(if ever) the result of a single causal factor (we will discuss this further in

Chapter 10), but usually arise as the result of a complex interaction of an

array of variables, some of which we can never measure. How then can we

make sense of this complexity? And how can we use this information to

determine those factors that are more or less important in understanding

whether an observed association is ‘confounded’? One approach is to use

causal diagrams or Directed Acyclic Graphs (DAGs) to show the

relationship between an exposure, confounders, intermediaries and an

outcome. This is an a priori approach that allows epidemiologists to both

clearly articulate the assumptions they have made about how variables are

inter-related, and decide how best to account for the effects of

confounding in an analysis. Figure 8.6 expands on the DAG shown in

Figure 8.5 to include some other factors that are likely to be important if

we want to assess the relation between energy intake and heart disease.
In this example, energy intake is associated with heart disease through

what are called ‘unblocked paths’ via physical activity, age and smoking,

so these are all potential confounders of the energy–heart disease

relationship. In practice, it turns out that we only need to worry about age

and physical activity because controlling for these two factors will block

all the indirect (non-causal) pathways from energy intake to heart disease.

If there are no other important confounders (and in practice it is likely

there are), then any association remaining after we control for age and

(continued)

Smoking

Energy Intake Heart disease

Physical ac�vity

Age

Figure 8.6 A more complete DAG looking at potential confounders of the relation between energy intake
and heart disease.
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study design stage by randomisation, restriction ormatching. The alternative is
to deal with it when it occurs by using analytic techniques such as stratification
and statistical modelling. The effectiveness of all of these strategies except
randomisation depends on the ability to identify and measure any confoun-
ders accurately.

Control of confounding through study design

Confounding occurs when a confounding variable is distributed unevenly
across our study groups (e.g. in the lung cancer example at the start of the
chapter, cases were more likely to be smokers than controls). One way to avoid
confounding is therefore to design a study so that all groups are similar with
respect to any potential confounders.

Randomisation
The most effective way to prevent confounding is to allocate people to the
different study groups at random. Clearly, this is possible only in an interven-
tion study and it is for this reason that randomised trials are usually con-
sidered to provide the strongest evidence of any of the epidemiological study
designs (note that non-randomised trials are particularly prone to a type of
confounding called confounding by indication – see Box 8.3). When a trial is
large enough, random allocation will generally ensure a balanced distribution
of all characteristics between the intervention (exposed) and control (unex-
posed) groups, i.e. it will ensure they are highly exchangeable. However, even

Box 8.2 (continued)

physical activity could be attributed to a direct effect of energy intake

on heart disease.

So, how do you decide what variables should be included in a DAG?

This is a very important question and it relies on the content knowledge

and hypotheses of the epidemiologist, the type of study design and,

most importantly, evidence from the literature. One strength of DAGs is

that they display causal assumptions that are not captured by

conventional statistical models, but this is also a limitation, as the

variables included in a DAG are chosen by the epidemiologist who has

their own biases and prejudices about what is (and is not) important.

We will not discuss DAGs further here, but more detailed information,

examples and suggestions for further reading are available (see

Greenland et al., 1999 and online).

More about DAGs
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randomisation cannot guarantee the absence of confounding, especially in
smaller studies, so it must always be looked for. The analysis of a randomised
study must then include all participants in the groups to which they were
originally randomised (regardless of whether they actually received the inter-
vention). This is known as intention to treat analysis and we will discuss the
importance of this further in Chapter 15 when we consider randomised
evaluations of screening programmes.
A major advantage of randomisation over other forms of control of confound-

ing is that it deals not only with confounders that we know and can measure,
but also with other unrecognised and unmeasured (or unmeasurable) con-
founders. These too will, on balance, be evenly distributed by the randomisa-
tion process. Such unknown confounders (e.g. aspects of personality that affect
complex lifestyle patterns) cannot be dealt with by any other method.

Restriction
Because randomisation is not possible in the majority of epidemiological
studies, are there any alternatives? One option is to restrict the study sample
to people with or without the confounding characteristic. This can be done

Box 8.3 Confounding by indication

If in a trial the participants are not randomly allocated to the various

treatment groups then confounding is still a major problem, particularly

what is often called confounding by indication (Miettinen, 1983). This

arises because, even among a group of people who all have the same

medical condition, those who choose to take or who are prescribed a

particular medication may well differ from those who do not take it or who

are not prescribed it. Those who take the drug might tend to have more

(or less) severe disease than those who do not take it and, conversely,

anyone who has a medical condition or exposure that is contraindicated

for the drug should certainly not be taking it. As a result, the outcomes

of those who take the drug may well differ from the outcomes of those

who do not in a way that has nothing to do with the treatment itself, i.e.

they might differ simply because those taking the group are less sick or do

not have other major health conditions (comorbidities). The obvious

solution to this problem is a randomised trial in which people are

allocated to the various treatment groups at random. If a randomised

study is not possible then propensity scores can sometimes be used to

control for potential confounding by indication in observational

studies (see Box 8.6).
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by restricting a study to a particular age or socioeconomic group, thereby
removing confounding by age or SES, or by restricting a study to non-smokers
if smoking is a potential confounder. For example, we know that infection with
human papillomavirus (HPV) is a major factor (potentially a necessary cause,
see Chapter 10) in the development of cervical cancer and we also know that
HPV infection is strongly associated with a number of other lifestyle factors
such as smoking and the use of oral contraceptives. This makes it very difficult
to evaluate the association between smoking and cervical cancer because it is
hard to be sure that any association observed is not simply due to confounding
by HPV infection. (Smokers are more likely to be HPV-positive than are non-
smokers, so this could explain why they are more likely to develop cervical
cancer.) By restricting a study to include only HPV-positive women, any
confounding by HPV status would be removed making it possible to evaluate
the effects of other cofactors, such as smoking. Restriction is, however, of
limited practical value when it is necessary to control for more than one or
two likely confounders.

Matching
The third possibility is to select study subjects so that major known con-
founders are evenly distributed across the study groups. This is achieved
by matching subjects on the presence or absence of the confounding
variable(s). This is most often done in case–control studies in which con-
trols are selected to match the cases in some predetermined way, e.g. by
age and sex. Matching can be done on an individual basis, with one or
more controls matched to each case so that, for instance, each control is
matched by sex and year of birth to a specific case. Alternatively, frequency
matching aims to select controls to match the general distribution of the
confounding variable in cases. For example, adenocarcinoma of the
oesophagus is about seven times more common in men than in women
so in a study of this cancer, controls might be selected to give a similar ratio
of males to females (i.e. 7:1). If, in this situation, controls were simply
selected as a random sample of the population, it is likely that about half
would be female and half male. There would therefore be many more
female controls than female cases but many fewer male controls than male
cases. Sex would be a potential confounder in the analysis (because it is
associated with the disease and many of the potential risk factors), but any
adjustment for sex would be statistically inefficient because of the large sex
imbalance between cases and controls.

Matching can also be used in the same way in cohort studies. This has
historically been much less common but, with the increasing use of record
linkage to conduct historical cohort studies, it is likely to become more
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common in the future. For example, a group used records from blood
donation centres in the USA to identify a cohort of 10,259 adults whose
blood samples tested positive for hepatitis C virus (HCV) antibodies
between 1991 and 2002 and another 10,259 blood donors who tested
negative. The HCV-negative group were frequency-matched to the HCV-
positive group by age, sex, year of blood donation and postcode (as a
surrogate marker for ethnicity and SES). They then used record linkage to
the National Death Index to identify the dates and causes of death of people
in the two groups. They found that after an average of 7.7 years follow-up,
the risk of dying was three times higher in the HCV-positive group than in
the HCV-negative group (hazard ratio = 3.1, 95% CI 2.6–3.8) (Guiltinan
et al., 2008).

While it may seem tempting to match cases and controls (or the exposed
and unexposed groups in a cohort study) on as many factors as possible in the
hope of removing all possible confounders, this can lead to over-matching,
which greatly decreases the efficiency and increases the cost of a study. It is
much harder to find a suitable control who matches a long list of criteria than
it is to find someone who is only the same age and sex as the case (and even
that is not always as easy as it sounds).
Finally, in a case–control study it is essential that any matching factors are

accounted for in the analysis. The process of matching does not itself remove
confounding – it can actually introduce different confounding, which must
then be allowed for. If the matching factor is associated with the exposure of
interest then, even if it is not associated with disease and so is not a true
confounder (see characteristics of a confounder above), the fact that cases and
controls have been matched for that factor will make it a confounder in the
study. In general, if a matching factor is positively associated with the expos-
ure, the matching process will make cases and controls look more similar than
they should. This means that, if the matching is not taken into account in the
analysis, the calculated odds ratios will underestimate the true association
between exposure and disease (they will be closer to 1.0) as shown in the
example in Box 8.4. If frequency matching has been used it is sufficient to treat
the matching factors as normal confounders (see ‘Control of confounding’
below), but there are special techniques for analysing individually matched
data (see Box 8.4). The only exception to this rule is if, in practice, it turns out
that a matching factor is not associated with exposure in a case–control study.
In this situation, matching cases to controls on that factor will not have
introduced any additional confounding and the factor need not be allowed
for in the analysis.
Matching was a primary technique for control of confounding in the early

decades of the modern case–control study (from the mid twentieth century

The hazard ratio is a
measure of relative risk. It is
essentially the same as an
incidence rate ratio and is
often calculated in cohort
studies.
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until the 1980s). The ready availability now of flexible and reasonably straight-
forward computing packages that allow effective control for confounding at
the stage of data analysis (either by stratified or multivariable analysis) has
somewhat lessened its importance, although it continues to be used to
increase efficiency in a variety of situations.

Box 8.4 Analysis of individually matched data

To analyse the data from a simple matched case–control study you have to

compare each case with their matched control (or controls if more than

one control is selected for each case). In Table 8.8 the numbers no longer

represent individual people but 155 matched pairs of cases and controls,

so there are 40 pairs for which both the case and the control are exposed,

25 pairs for which only the case was exposed, and so on.

If a case and their matched control are both exposed (or both unexposed)

that pair (or set) cannot tell us anything about the association between

exposure and disease. The interesting case–control pairs are those for which

one member is exposed and the other is unexposed. The matched odds

ratio is calculated by simply dividing the number of pairs for which the case

was exposed and the control unexposed by the number of pairs for which

the control was exposed and the case unexposed:

Matched OR ¼
# of pairs where the case was exposed and

the control unexposed
# of pairs where the control was exposed

and the case unexposed

(8.1)

Note that, if we had not taken the matching into account in the analysis,

we would have said that 65 (40 þ 25) out of the 155 cases were exposed

and 90 (10 þ 80) were unexposed compared with 50 (40 þ 10) exposed

and 105 (25 þ 80) unexposed controls, giving an unmatched odds ratio of

(65 � 105) � (90 � 50) = 1.5, which is considerably less than the matched

value of 2.5.

Table 8.8 Analysing data from an individually matched case–control study.

Controls

Exposed Unexposed

Cases Exposed 40 25 Matched odds ratio
Unexposed 10 80 = 25 � 10 = 2.5
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Does increasing the size of a study help?
Increasing the size of an observational epidemiological study will not make
any difference to the amount of confounding. (To convince yourself of this, go
back to one of the earlier examples and try doubling the numbers of people in
each group. This will not alter the odds ratios or rate ratios, nor will it get rid of
the confounding.) The only time study size does matter is in the context of a
randomised controlled trial. The bigger a randomised trial is, the more likely it
is that any confounders (known and unknown) will be balanced across the
study groups (i.e. that we get closer to complete exchangeability between the
different arms of the trial) and the less likely it is that there will be any
confounding.

Control of confounding in data analysis

If you have designed a study using restriction or matching to reduce the effects
of confounding, it is no longer possible to study the effects of those confound-
ing variables. For example, if you have restricted your study to people aged
between 60 and 70 years, or have matched cases and controls individually for
age, it would no longer be possible to look at the direct effects of age on
disease. This means that it is often preferable to collect information on
potential confounders and then to control for these in the analysis. The aim
of the analysis is exactly the same as the design options mentioned above,
namely to ensure that the confounders are balanced across the groups, and in
practice this is achieved by comparing exposure–disease patterns within
narrow ranges of one or more confounders. These approaches apply equally
to case–control and cohort studies and also to intervention studies if they are
not randomised or if, in a randomised study, the randomisation did not lead to
an equal balance of important confounders across the study groups.

Stratification
This is the method that we used in the alcohol and lung cancer example where
we stratified by smoking status, and the steps are shown in Figure 8.7 (where
RR stands for relative risk and may be a rate, risk or odds ratio). Study subjects
are split into groups, or strata, based on levels of the confounding variable.
The association between the exposure and outcome of interest is then meas-
ured separately in each stratum because if the people in each stratum are
homogeneous (the same or similar) with respect to the confounding variable,
there can no longer be any confounding by that factor. An analysis could be
done separately for men and women to remove confounding by sex, for
different age groups, for smokers and non-smokers (as in the example of
alcohol and lung cancer) and so on.
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In the examples we have looked at so far, the stratum-specific odds ratios
were exactly or almost exactly the same, but this is rarely the case in practice. If
the stratum-specific estimates are similar then it is reasonable to assume that
the small differences between them are simply due to chance. In this situation
it is possible to combine the estimates from each separate stratum to sum-
marise the overall effect in the whole group. There are several ways to do this
and the effect is then said to be ‘adjusted’ for the confounder (see Appendix 8).
This process is analogous to the standardisation that you met in Chapter 2. If
the adjusted measure of association is different from the original crude meas-
ure, then we know that the crude association was confounded. In the alcohol
and lung cancer example the crude OR was 3.0 and the adjusted OR was 1.0,
showing that the crude OR was heavily confounded by smoking.

If, however, the stratum-specific estimates are quite different, then there
may be effect modification, or in other words the ‘effect’ (the association
between exposure and outcome) may be truly different in the different strata.
For example, regular physical activity might reduce the risk of a particular
disease among people who are overweight, but it might confer no benefit
for those of normal weight. In this situation obesity modifies the effect of
physical activity on disease and it would be inappropriate to treat obesity as
a confounder (see Figure 8.7). In practice, however, there is always some

Calculate crude RR

Stratify and calculate
Stratum-specific RR

Stratum-specific RR
are different

Stratum-specific RR
are similar

No effect modification
Calculate pooled RR

Effect modification

Crude RR ª Adjusted RR
No major confounding

Crude RR π Adjusted RR
Confounding present

Use crude RR Use adjusted RR

Use stratum-specific RR

Figure 8.7 A scheme for identifying and dealing with confounding and effect modification.
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variation in the odds ratios across the different strata and it can be very
difficult to know whether this indicates a meaningful difference or just random
variation. There are statistical tests (tests for heterogeneity) that can be used to
help decide whether the variation could just be due to chance. However, these
are not very powerful and are unlikely to detect variation unless the difference
is very great (in which case it would be apparent without a statistical test) or
the study is very large. In this situation it is still possible to use statistical
packages to ‘adjust’ for the effect modifier, but it is important to consider
whether this is appropriate. If the effects in different groups really are different
then combining them will just average out the differences and give a measure
that may not reflect the true association in any of the groups. See Box 8.5 for
more about effect modification.

Box 8.5 More about effect modification (EM)

The presence of effect modification depends on the effect measure used. If

the relative risk (RR) does not differ between groups then the risk

difference or absolute risk (AR) will differ and vice versa. To see this use

the data in Table 8.9 to calculate the AR and RR for the relationship

between smoking and (i) disease A and (ii) disease B, separately for

normal and overweight/obese individuals. Is the association between

smoking and (i) disease A and (ii) disease B modified by body size?

Among people of normal weight the AR and RR for smoking and disease

A are 0.3% (0.5% – 0.2%) and 2.5 (0.5% � 0.2%), respectively, compared to

0.3% (0.8% – 0.5%) and 1.6 (0.8% � 0.5%) among those who are

overweight/obese. This suggests there is effect modification of the RR (i.e.

on a multiplicative scale) but not of the AR (additive scale). In contrast, the

AR and RR for disease B are 0.3% and 2.5 among normal weight people

and 0.75% and 2.5 among the overweight/obese. In this example, the ARs

differ but the RRs do not. The fact that the presence of EM depends on the

measure being used has led to suggestions that a more appropriate term

would be effect measure modification. For a more detailed discussion of

the issues of EM and biological interaction see Rothman (2012).

Table 8.9 Risks of two hypothetical diseases by smoking status and body size.

Risk of disease A (per year) Risk of disease B (per year)

Non-smokers Smokers Non-smokers Smokers

Normal weight 0.2% 0.5% 0.2% 0.5%
Overweight/obese 0.5% 0.8% 0.5% 1.25%
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Finally, it is important to note that although stratification can also be used
for studies in which cases and controls have been frequency-matched, it is
generally not appropriate for individually matched studies. These should be
analysed using a special ‘matched’ analysis (see Box 8.4) or modelling
techniques (see below).

Multivariable modelling
Stratification may be impractical when a study is small or you need to
control for several confounders simultaneously, because you are likely
to end up with small numbers in any one stratum. If, for example, you
wanted to control for sex, age with five 10-year age groups (20–29, 30–39,
40–49, 50–59 and 60–69) and smoking (non-smoker versus smoker),
you would end up with 20 different strata (five age groups for smokers
and five for non-smokers for each sex). On average, each stratum will
contain only 5% of your study population and, with small numbers, it
can be difficult to obtain precise estimates of the stratum-specific asso-
ciations. An alternative is to use statistical modelling techniques to esti-
mate the strength of the relationship of interest while controlling for all
of the potential confounders. The most commonly used multivariable
approach for unmatched (or frequency-matched) case–control studies is
multiple logistic regression. Individually matched case–control data can be
analysed by a variation of this called conditional logistic regression, which
takes the individual matching between cases and controls into account.
A common technique used to analyse person-time data from a cohort
study is Cox proportional hazards regression. (Note that this generates
hazard ratios which are essentially the same as incidence rate ratios.)
We will not discuss the details of these procedures here – they can be
found in any standard medical statistics text. See also Boxes 8.6 and 8.7
for examples of some more complex approaches to controlling for
confounding.

It is very likely that you will come across the output from regression models
in the form of tables and figures in epidemiological reports and papers.
Table 8.10 shows a typical example of results from a conditional logistic
regression model used to analyse data from a population-based case–control
study of suicide in young adults in New South Wales (Australia). Exposure
information on suicide cases was obtained from interviews with key inform-
ants for the suicide case, and this information was compared to key informant
interviews for live age-matched controls. The main question was whether a
history of substance use disorder in the previous 12 months was associated
with an increased risk of suicide. The investigators also indicated a priori that
there were two main potential confounders of this relationship, namely SES
and sex.

When it is not possible to
interview people directly (e.g.
because the cases have died),
information may be collected
from key informants who are
familiar with the case. To ensure
comparability and minimise
bias, key informants were also
used for controls although they
were still alive and could have
been interviewed.
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How strong was the crude (unadjusted) association between substance use
disorder and suicide?

How likely is it that this crude association might be confounded by (a) sex and
(b) SES and why?

How strong was the adjusted association between substance use disorder and
suicide?

What was the effect of adjusting for confounders on the association between
substance use disorder and suicide?

What have we learnt overall about risk factors for youth suicide?

The unadjusted or crude association between substance use and suicide is
quite strong. Those with a history of a substance use disorder were 4.9 times
more likely to die by suicide than those without a substance use disorder (the
‘reference’ group in the comparison, indicated by OR = 1.0). The 95% confi-
dence interval indicates how precise this estimate is (see Chapter 6), although
in this case the range from 2.7 to 8.9 suggests quite a bit of uncertainty. The p
value (<0.001) suggests there was a less than 1 in 1000 chance that an
association this strong would have occurred by chance.
As is often done, the authors have also shown us the associations between

the potential confounders and suicide so we can see from the crude ORs that

Table 8.10 Relative risk of suicide associated with a history of substance use disorders in young adults (18–34 years, New
South Wales, Australia)

Cases Controls

Na % Na %
Crude
OR (95% CI) pb

Adjusted
OR (95% CI) p

Substance use disorderc in the last 12 months
No 48 57.1 219 87.3 1.0 1.0
Yes 36 42.9 32 12.7 4.9 (2.7–8.9) <0.001 3.3 (1.7–6.4) <0.001

Sex
Female 13 15.5 148 59.2 1.0 1.0
Male 71 84.5 102 40.8 7.5 (3.9–14.3) <0.001 6.9 (3.5–13.7) <0.001

Socioeconomic status
High 14 16.7 66 26.8 1.0 1.0
Middle 23 27.4 77 31.3 1.8 (0.9–4.0) 0.1 1.6 (0.7–3.8) 0.2
Low 47 56.0 103 41.9 3.8 (1.8–7.7) <0.001 3.8 (1.7–8.5) 0.001

(Modified from Page et al., 2014)
a Note, numbers may not sum to the total because of missing data.
b P-value from a statistical test of whether the OR is significantly different from 1.0.
c As defined by the 10th edition of the International Classification of Diseases (ICD-10).
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being male and being in a low SES group are also both much more common
among cases than controls and so are strongly associated with suicide. This
makes them likely confounders of the association between substance use
disorder and suicide. Adjusted estimates have been obtained by simultan-
eously including the confounding variables and the exposure variable into a
single regression model. The OR for history of a substance use disorder drops
from 4.9 (crude) to 3.3 (adjusted). That is, the strength of the association was
reduced by approximately 30% after adjusting for sex and SES. In contrast, the
associations between the confounders and suicide do not change substantially
after adjustment. From this output we can conclude that some of the associ-
ation between substance use and suicide is attributable to the higher risk of
suicide among males and among those from a lower SES group. If the analyses
had not been adjusted for these confounders, the investigators would have
overestimated the strength of the association between substance use disorder
and suicide. Nonetheless, even after controlling for this confounding, sub-
stance abuse and suicide remain strongly associated, and sex and SES also
have strong independent effects.

A word of caution, however; multivariable modelling can be performed very
easily with modern statistics software but it is important to know what you are
doing. The models can be complex and they are based on a number of
underlying assumptions. If you are not familiar with the techniques it is wise
to seek advice from a statistician before diving in. Furthermore, it is important
to have a very clear research question in mind and to be familiar with your
data before starting any modelling, and nothing can replace simple stratified
analyses, as outlined above, for this.

Residual confounding
In practice it is rarely possible to remove all confounding so we will be left with
some residual confounding. For example, in a study of US health profession-
als the crude RR (0.56; 95% CI 0.38–0.84) suggested that men who consumed
high levels of fruit and vegetables had almost half the risk of lung cancer of
those who ate little fruit and vegetables (Feskanich et al., 2000). When the
authors adjusted their analysis for a simple measure of smoking status (never,
past, current smoker) the RR increased to 0.86 (95% CI 0.58–1.29), suggesting
that the crude RR was confounded by smoking. When they also adjusted for
more detailed measures of smoking, including time since stopping and cur-
rent amount smoked, the RR increased still further to 1.07 (95% CI 0.71–1.61).
This shows convincingly that the simple adjustment for smoking status was
not sufficient to remove all of the confounding by smoking and there was
considerable residual confounding. If they had not adjusted for the additional
smoking variables the results would have left some room for optimism that
improving diet might confer some benefit, whereas the fully adjusted result
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Box 8.6 More complex ways to identify and control confounding

Propensity scores are mainly used in non-randomised trials when the

probability that an individual receives a particular treatment may depend

on multiple characteristics of the individual, such as other comorbidities,

that might themselves affect the outcome. The first step is to calculate how

individual characteristics (potential confounders of the relation between

treatment and outcome) affect the probability that someone receives the

treatment of interest. It is then possible to calculate, for each individual,

their probability of receiving treatment based on their particular

characteristics. If we then match or stratify study participants on the basis

of this ‘propensity score’, the net effect is to balance the measured
confounders between the study groups, thereby increasing their

exchangeability and reducing the effects of confounding (Joffe and

Rosenbaum, 1999).

Instrumental variables are also used for non-randomised treatment

studies and for other observational studies. In this case the aim is to find a

variable that is associated with treatment selection but not with outcome.

This instrumental variable must be associated with the exposure

(treatment) and must affect the outcome only via this exposure, i.e. it must

not have any independent effect on outcome. It must also not share any

common cause with the outcome, and must not be associated with

confounders of the exposure (Figure 8.8). This variable can then be used in

the analysis instead of the treatment variable. The strength of this approach

over propensity scores is that it controls for both measured and

unmeasured confounders. The major challenge is to find an appropriate

variable that meets all of the criteria for an instrumental variable. For

example, observational treatment data from the US Surveillance

Epidemiology and End Results (SEER) programme were used to assess

whether chemotherapy improved survival from advanced lung cancer in

the elderly. The authors did not look at whether the individuals themselves

received chemotherapy or not, but instead used the probability that

the health care centre the patient attended would offer chemotherapy. This

fitted the criteria of an instrumental variable because, by definition,

(continued)

E* E

C

D

Figure 8.8 DAG showing the relationships between an instrumental variable (E*), the exposure (E),
confounders (C) and the outcome (D).
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Box 8.6 (continued)

it would affect whether someone received chemotherapy but should not

otherwise be related to outcome. The results suggested that chemotherapy

did increase one-year survival by approximately 9% (Earle et al., 2001).
Genetic markers are increasingly being used as instrumental

variables, taking advantage of what is known as Mendelian
randomisation (see Box 8.7).

Box 8.7 Mendelian randomisation

The principle of Mendelian randomisation is that genetic markers are

passed on between generations independently of other genetic

characteristics, and of other environmental factors (Davey Smith and

Ebrahim, 2003; Davey Smith, 2011; Davey Smith and Hemani, 2014). For

example, whether you inherit a genetic variant of the FTO gene that

predisposes you to obesity occurs independently of any other genetic

predisposition you may have; and is also unrelated to your propensity to,

say, smoke or drink alcohol (given our usual ignorance of which genetic

variants we carry). This principle of Mendelian randomisation allows an

observational study examining, for example, whether the FTO variant is

associated with renal cancer to approximate a randomised controlled trial.

While a standard study looking at the relation between obesity (E in

Figure 8.8) and renal cancer (D) could be confounded by a multitude of

lifestyle factors (C) such as diet that could affect both obesity and cancer

risk, the genetic variants (E*) that affect observed weight are unlikely to be

related to the potential confounders. This genetic variant provides an

instrumental variable that can be used to estimate the unconfounded

relation between obesity and renal cancer showing, in this case, that obesity

was associated with increased risk of renal cancer (Brennan et al., 2009).
Studies using Mendelian randomisation (MR) have highlighted how

confounding in observational studies can lead to misleading conclusions,

with some apparently clear associations shown to be null, or even

reversed, by MR analyses. For example, cohort and case–control studies

had reported that plasma fibrinogen was associated with an increased risk

of coronary heart disease (CHD; RR = 1.8, 95% CI 1.6–2.0), but residual

confounding could not be excluded with certainty as higher fibrinogen

levels are also associated with other CHD risk factors. Subsequently, MR

analyses have shown that there is no association between variants of the

(continued)

Gregor Mendel, an Austrian
monk, conducted pioneering
work with pea plants that laid
the foundation of modern
genetics. Based on the
patterns of inheritance of
plant traits, he developed his
Laws of Inheritance: the laws
of ‘segregation’, ‘random
assortment’ and ‘dominance’.
The first two of these laws are
what epidemiologists take
advantage of when applying
Mendelian randomisation to
observational studies. Mendel’s
original paper Experiments in
Plant Hybridization (1865) has
been archived at http://
www.mendelweb.org/archive/
Mendel.Experiments.txt

More about Mendelian

randomisation

242 The challenge of confounding

http://www.mendelweb.org/archive/Mendel.Experiments.txt
http://www.mendelweb.org/archive/Mendel.Experiments.txt
http://www.mendelweb.org/archive/Mendel.Experiments.txt


suggests that unfortunately this is not the case. It also indicates the importance
of measuring confounding variables well, i.e. to minimise misclassification of
confounders as well as the exposure of interest, if we are to achieve effective
control of confounding. In general, if adjustment changes an observed odds
ratio quite markedly, e.g. it reduces it from 5.4 to 2.6, then it is likely that, if we
could have controlled for the confounding perfectly, the true odds ratio would
have been even less than 2.6. We then have to decide whether we think that
there is a true association between the exposure and disease or whether all the
observed association could be due to confounding. However, if the control for
confounding only changed the odds ratio from 5.4 to 5.1 then it is likely that,
even if we could have controlled completely for confounding, the true odds
ratio would still have been close to 5.0, suggesting that this is more likely to be
a real association.

Confounding: the bottom line

Confounding is almost ubiquitous in practice and almost any paper that
reports associations between two factors will say that the authors have
‘adjusted’ for this, that and the other to control for confounding. If a paper
does not mention adjustment for confounding then it is important to consider
whether this is a possibility; we will discuss this further in the next chapter.
As we discussed in the previous chapter, it can be hard to know what

effects bias might have on the results of a study; in contrast, known

Box 8.7 (continued)

β-fibrinogen gene that predict higher fibrinogen levels and CHD (RR = 1.0,

95% CI 0.92–1.04), suggesting the apparent association seen in

observational studies was largely attributable to confounding (Davey

Smith et al., 2005).
The challenges with studies of this type are first the need to find

genetic variants that fulfil the requirements of an instrumental variable (an

association with the exposure of interest and no independent association

with the outcome that is not mediated by the exposure) and, second, that

the genetic effects on lifestyle traits such as obesity are often quite weak

and so we need very large sample sizes (typically thousands or tens of

thousands) to see an association. (There are also additional issues

specific to genetic research, e.g. linkage disequilibrium and population

stratification, which can be problematic; see Davey Smith and Ebrahim,

2003; Davey Smith 2011.)
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confounders can be identified and addressed if information about the con-
founders has been collected.

Even if an analysis has ‘adjusted for confounders’ there is likely to be
residual confounding either by measured confounders or by unmeasured/
unknown confounders. For known confounders, a big difference between the
unadjusted and adjusted measures suggests that there may be considerable
residual confounding; a small difference implies that residual confounding is
not a big problem. Unless we are talking about a randomised trial we will not
know anything about the likely effects of any unknown or unmeasured con-
founders, but if we see a strong association between exposure and outcome
then the confounding would have to be enormous (very strong associations
between the confounder and both the exposure and the outcome) to explain
the whole association. In practice we might hope that we would know about
such strong confounders.

We have now covered the three main issues that we have to consider before
we conclude that the results of a study are real: namely chance, bias and
confounding. In the next chapter we will bring these altogether to look at how
we can make sense of the epidemiological literature.

Questions

Table 8.11 shows some data from a study of injuries involving moped riders in
Spain. The authors obtained information from the Spanish Registry of Traffic
Crashes regarding 187,353 moped riders injured in traffic accidents between
1990 and 1999. They then compared the group with head injuries (cases) with
those with other types of injury (controls).

1. What is the crude odds ratio for the association between not wearing a
helmet (exposed) and head injury?

Table 8.11 Results of a study of head injury and helmet use.

Driver Passenger Total

Head
injury

Other
injury

Head
injury

Other
injury

Head
injury

Other
injury

No helmet 17,869 51,900 3052 12,522 20,921 64,422
Helmet 7,342 86,212 485 7,971 7,827 94,183
Total 25,211 138,112 3,537 20,493 28,748 158,605

(Lardelli-Claret et al., 2003)

Additional questions

244 The challenge of confounding



2. What is the odds ratio for the association between not wearing a helmet
and head injury among (i) moped drivers and (ii) moped passengers?

3. Was the crude association between not wearing a helmet and head injury
confounded by position on the moped?

4. Does the position of the rider (driver or passenger) on the moped affect
their chances of sustaining a head injury? (Hint – first calculate the crude
odds ratio for the association between moped position and head injury and
then consider whether this could be confounded by helmet use.)

5. If we are interested in the association between drinking coffee and inci-
dence of heart disease, which of the following factors are likely to be
confounders and why:
(a) age and sex
(b) smoking
(c) physical activity
(d) fruit and vegetable intake?

6. Imagine that, when we were interested in the association between
energy intake and heart disease we had conducted a cohort study
instead of a case–control study. The results of this study are shown in
Table 8.12.
(a) What is the crude rate ratio for the association between high energy

intake and heart disease?
(b) What is the rate ratio for the association between high energy intake

and heart disease in people with (i) high and (ii) low levels of physical
activity?

(c) Is the association between high energy intake and heart disease con-
founded by the level of physical activity?

7. Go back to Table 8.7 and recalculate the crude (overall) and stratum-
specific odds ratios assuming that the study had (i) half as many people
(i.e. divide all the numbers of cases and controls by 2) and (ii) twice as
many people. What effect does changing the size of a study have on the
confounding effect of physical activity?

Table 8.12 Results of a hypothetical cohort study of high energy intake and heart disease, stratified by level of
physical activity.

Total High physical activity Low physical activity

Energy
intake

Person-
years

Developed
heart disease

Person-
years

Developed
heart disease

Person-
years

Developed
heart disease

High 60,000 720 50,000 500 10,000 220
Low 55,000 700 15,000 100 40,000 600
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them. Good studies are difficult to design and implement, and interpretation
of their results and conclusions is not always as straightforward as we might
hope. How, then, can we make the best use of this information? In the next
three chapters we will look at ways to identify, appraise, integrate and
interpret the literature to generate the evidence we need to inform policy
and practice. In this chapter we will focus on interpreting the results from a
single study, while Chapter 10 will consider some of the issues involved
when we try to decide if an observed association might be causal. Finally,
Chapter 11 will look at how we conduct and interpret reviews and how we
can bring all of this information together to make evidence-based
recommendations.
The central question we have to answer when we read a study report is ‘Are

the results of the study valid?’ If the authors report an association between
exposure and outcome, is it real? If they find nothing, do we accept this? Or
could there be an alternative explanation for the results, namely chance, bias
and/or confounding? Then, if we think the results are valid, we should ask ‘so
what?’ – are the results clinically or socially important? And ‘to whom do these
results apply’ – can we assume that they will apply more generally than in that
particular study population?

Much of the following discussion will pick up and integrate the core
epidemiological issues covered in the previous chapters. We will concentrate
mainly on analytic studies looking for associations between ‘cause’ and
‘effect’, the study designs that you met in Chapter 4, but the same general
principles apply equally to descriptive epidemiology. To extract the max-
imum information from a paper we need a systematic approach to identify-
ing its strengths and weaknesses. Some quite detailed sets of guidelines for
‘critical appraisal’ of the health literature exist already (e.g. see Box 9.2 on
page 259) and we do not intend to add to this list (although we do offer a
flowchart for more general guidance). Instead, we will focus on the essence
of the challenge: what are the practical effects of the ways in which subjects

Frank and Ernest used with the
permission of the Thaves and the
Cartoonist Group. All rights reserved.
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were selected and information collected, and the likely influence of con-
founding and chance on the results we see? While the elements of the
general strategy we propose are universal, the approach can (and should)
be tailored to suit your own personal style. In practice you will almost
certainly have to read individual papers and reports and, if you are involved
in research, you may write some of your own. Both activities demand a very
practical approach and this is what we will focus on here. We will emphasise
the perspective of the reader, but the writer should be thinking about exactly
the same things, because good writing demands that the readers’ needs and
perspectives are kept firmly in mind.

The research question and study design

When reading a paper, the first step is to identify the research question that the
authors set out to answer and then the strategy they used to attempt to answer
that question. Was the study design appropriate to answer the question posed?
This involves consideration of what the ideal type of study would be and also
what would be practical in that particular situation.

As you have seen, the ideal study to answer a question of cause and effect
would usually be some sort of randomised trial, as this is the best way to
ensure that the groups we are comparing are exchangeable, but in many
situations this will be impossible for numerous ethical and/or practical
reasons. Next best would generally be a cohort study in which exposure is
measured prior to the development of disease, but again the resources, time
and money required to conduct a large enough study often make it unfeasible.
So from a practical viewpoint, the key question should be ‘Was the research
design the best that could have been done in the circumstances to answer
that particular question?’ If it was not the best, can it still provide useful
information? Are there other studies addressing the same issue that were of
better design?

Many studies are not conducted to give a definitive answer to direct
questions about causation, but because they can answer other more indirect
questions of interest. For example, the results from the ecological study of
Helicobacter pylori infection and stomach cancer rates in China shown in
Figure 3.8 cannot directly answer the question ‘Does H. pylori infection cause
stomach cancer?’, but they can answer the question ‘Are stomach cancer rates
higher in areas where H. pylori infection is more common?’ If H. pylori
infection does cause stomach cancer then we would expect this to be the case
and evidence to this effect supports the hypothesis that the relation is causal.
Although non-randomised studies provide more circumstantial evidence than
RCTs, if the results are valid each can increase our understanding of the
relation between an exposure and outcome. As an example, ecological and

It is obviously easier to assess
the results of a study if they
are presented in a clear and
systematic way. A number of
checklists have been
developed to assist authors
with this; we will discuss
these under ‘Writing papers’.
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migrant studies conducted across countries with widely differing levels of solar
ultraviolet (UV) radiation have consistently revealed an association between
sun exposure in childhood and melanoma rates. In contrast, case–control
studies, which have generally been conducted within a single country or
region with a narrow range of UV exposures, have not given consistent results
(Whiteman et al., 2001). In this particular situation ecological studies with
their wide variety of exposure levels provide a valuable addition to the case–
control studies.

Internal validity

Internal validity is the extent to which the results of a study reflect the true
situation in the study sample. So how do we decide whether the results of a
study are internally valid? We have to consider the three main alternative
explanations that we discussed in the preceding chapters: chance, bias (both
the selection of participants for the study and the information that was meas-
ured or collected from or about them) and confounding.

The study sample: selection bias

Who was included in the study, how were they selected and are there possible
sources of selection bias? Specific questions to ask when reading a paper
include those below.

• Is the comparison group appropriate?
In a case–control study are the controls really representative of the popula-
tion from which the cases arose? In a cohort study where the comparison
cohort was recruited separately from the exposed cohort, are the two groups
really comparable (i.e. are they exchangeable)?

• What proportion of eligible participants actually took part in the study and, if
appropriate, what proportion was lost to follow-up?
Low participation or follow-up rates may be cause for some concern. If the
rates are lower than 80% or 90%, could participation (or loss to follow-up)
be related to either the exposure or the outcome of interest? That is, could
those who refused to take part (or who were lost to follow-up) have differed
in some way from those who did take part? If so, might this have led to an
overestimation or underestimation of the level of exposure and/or outcome?
Most importantly, could this have differed between study groups?

• Finally, what is the likely effect of any selection bias on the results of the study?
Ideally, the authors of the paper will have considered all of these issues in
their discussion, but if they have not then it is up to the reader to decide
whether bias might be present and, if so, what effect it may have had on the

As you saw in Chapter 7, high
participation rates are very
important for cross-sectional
and case–control studies, but
high follow-up rates are
more important in cohort
studies and trials.

Internal validity 251



results. In practice there will almost certainly be some potential for selection
bias. Participation rates are never 100% and in many developed countries it
is becoming increasingly hard to persuade people to take part in research,
especially when they see no benefit to themselves. This is a major issue in
case–control studies when the motivation for a ‘case’ to take part may be
much greater than that of an unaffected ‘control’. Also, people are becoming
increasingly mobile, so follow-up in a cohort study that runs for more than a
few years is never likely to be 100%. However, remember that selection bias
will only affect the validity of the results if, in a case–control or cross-
sectional study, the likelihood that someone agrees to take part differs by
both case–control and exposure status or, in a cohort study, the likelihood of
someone being lost to follow is related to both their exposure and their
probability of developing the disease of interest.

If we were to reject all studies with less than 100% participation or follow-up
rates, we would be left with nothing to review. In practice, participation or
follow-up rates greater than 80% or 90% are generally considered to be good,
but rates lower than this do not necessarily invalidate the findings (see
Example 2 below). This is especially true for cohort studies and trials where
low participation rates are less of a problem as long as the follow-up rate is
high. The challenge for both investigator and reader is to think practically and
to decide whether any potential biases related to selection might have com-
promised the study results (the internal validity) and, if so, how and to what
degree the results might be biased. It is often impossible to quantify this, but
sensitivity analyses making various assumptions about the size and direction
of possible bias can be informative (see Chapter 7).

Example 1: case–control studies of blood transfusion and
Creutzfeldt–Jakob disease
In five case–control studies of Creutzfeldt–Jakob disease (CJD) the controls
were more likely to report having had a blood transfusion than cases (Riggs
et al., 2001). Does this tell us that blood transfusions might protect against CJD
(a finding contrary to the causal hypothesis)? If we consider the control
groups, we find that in three of the five studies they were selected from among
hospitalised patients and in another study more than 12,000 telephone calls
were made in order to recruit just 784 controls.

The use of hospital controls and the very low participation rate among controls
should ring alarm bells. Why?

People who are in hospital are more likely to have had a blood transfusion
than those who are not; in addition, given the publicity surrounding ‘mad cow
disease’, people who have had a blood transfusion may well have been more
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likely to agree to take part in a study of CJD. Indeed, in these four studies
approximately 20% of controls reported having had a blood transfusion – an
improbably high proportion, probably due at least in part to these selection
pressures. So what can we conclude about the association between transfu-
sion and CJD from these studies? Not much. The high transfusion rate in
controls almost certainly overestimates the base rate in the population from
which the cases came. Unless we have some knowledge of how common
transfusion really is in the population, we have no idea whether the true
background rate is similar to that in cases (i.e. there is no association) or
lower than in cases (i.e. there is a positive association). Our next example
shows how external information was used to help resolve such a dilemma.

Example 2: a case–control study of oesophageal cancer and smoking
in Australia
In an Australian case–control study of oesophageal cancer, the authors con-
sidered the relation with smoking. In this study approximately 70% of eligible
cases but only 49% of the controls who were contacted agreed to participate –

this is a fairly typical response rate in many countries these days, but far from
ideal. The authors found that current smoking rates were higher among cases
with oesophageal adenocarcinoma than controls (OR compared to never
smokers = 2.7; 95% CI 1.9–3.9), but could this be due to selection bias?

In general, smokers are less likely to agree to take part in a study than non-
smokers. What effect might this have had on the odds ratio?

If smokers were less likely to take part the prevalence of smoking in the control
group would be lower than that in the general population. This would exagger-
ate the difference between cases and controls and so increase the odds ratio,
making it look as if smoking is associated with oesophageal adenocarcinoma
when in reality it might not be. To address this issue the authors used data
from a National Health Survey conducted at about the same time. If they
assumed that the whole control population had a smoking rate equal to that
seen in the national survey, they found that the odds ratio for the association
between smoking and oesophageal adenocarcinoma was slightly weaker but
still significantly greater than 1.0 (imputed OR = 2.4; 95% CI 1.7–3.4). This
suggested that even though only about half of the controls invited to take part
in the study actually agreed to participate, the overall results for the associ-
ation with smoking were not seriously biased (Pandeya et al., 2009).

Measuring disease and exposure: measurement bias

We also have to consider the information collected from or about the people
in the study – particularly the measurement of ‘outcome’ and ‘exposure’ but

More about low
participation rates:
Investigators compared
prevalence estimates and ORs
for the association between
selected exposures and health
conditions calculated using
baseline data from a cohort
study with a participation rate
of only 18%, with those from
a population survey with a
60% response rate. The
results suggested that any
bias due to the low response
rate in the study was minimal
(Mealing et al., 2010).
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also measurement of other factors that might be important confounders.
Attention to unbiased measurement of outcome is crucial for cross-sectional,
cohort and intervention studies. It is of relatively less importance in a case–
control study, in which cases are selected because they have already experi-
enced the outcome of interest (although a clear definition of what constitutes a
case is still essential). Accurate measurement of exposure is important in every
study, and in a case–control study it is critical to ensure that there are no
systematic differences in measurement between cases and controls. Good
measurement of confounders is often overlooked, but this is essential to
enable optimal control of confounding in the analysis (see comments on
residual confounding in Chapter 8).

Some questions to ask when reading a paper are the following.

• Have all relevant outcomes and/or exposures and/or confounders been
included and, if not, how important are those omitted?

• Were the outcome/exposures/confounders clearly defined, and how were
they measured?

• Were the same definitions and methods of measurement used in all of the
study groups?

• Is measurement error likely to be a problem and, if so, could there be non-
differential misclassification?

No measurement is perfect and some measurements are very poor. The effect
of the ubiquitous random error and consequent non-differential misclassifi-
cation must always be considered. The practical implication of this is that
effects (OR, RR) estimated in the face of equal measurement error in the
compared groups will usually appear weaker than they truly are, e.g. if the
observed OR is 1.8 then, in all probability, the real association is even
stronger, i.e. >1.8. Thus a finding of a positive association, despite poor
measurement, should not be dismissed because of this – the true association
is likely to be more impressive. On the other hand, a null finding or a very
weak effect in the presence of non-differential misclassification is uninforma-
tive because it may reflect the imprecise measurement (thereby masking a
true association) or there may truly be no effect. (Note that non-differential
misclassification is unlikely to make it appear that an association exists when
in reality there is none.)

• Is the extent of any measurement error likely to differ between groups (e.g.
could there be recall or interviewer bias in exposure measurement in a case–
control study) and so could there be differential misclassification?

If so, is it possible to predict what the differences might have been? For
example, are cases more or less likely to have over-reported exposure? If cases
overestimate their exposure then the OR is likely to be biased upwards,

Non-differential
misclassification is
particularly problematic in
dietary studies because
measurement of diet is very
challenging and, as a result,
misclassification is likely to be
high. Furthermore the real
effects are likely to be small.
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conversely if they underestimate their exposure (or controls overestimate
theirs) then the bias is likely to be downwards. Could the observed association
be due to misclassification? Or might the real association be stronger than that
observed? Differential misclassification can bias results in either direction, it
can make an association appear where there is none, it can make it seem that
there is no association when in reality there is one and it can even make a
positive association look like an inverse association, and vice versa. It is
particularly important to consider this possibility in cross-sectional and
case–control studies when exposure is measured after the outcome has
occurred. In analytic research it is generally easier to distinguish clearly
between outcome states (diseased versus non-diseased) than it is to measure
exposures precisely, but the avoidance of differential outcome assessment is
central to the integrity of cohort studies and trials, and again for cross-
sectional studies.

• Finally, what practical effects might any measurement bias (outcome or
exposure) have had on the results of the study?

Example 3: a case–control study of body mass index (BMI)
and asthma in Mexico
A significant association between asthma and obesity1 based on self-
reported weight and height was observed among women (adjusted OR =
1.7; 95% CI 1.1–2.7), with a weaker non-significant association (adjusted OR =
1.3; 95% CI 0.6–2.9) among men (Santillan and Camargo, 2003); but how
reliable are self-reported data on body size, and could measurement error
have affected the results? The authors specifically addressed this question by
weighing and measuring all of the participants. They found that, on average,
people tended to report that they were taller and lighter than they really
were, particularly the men. As a result, the true prevalence of obesity based
on measured BMI was higher than that based on self-reported BMI and the
difference was somewhat greater for cases (40% versus 24% for men and 44%
versus 38% for women) than for controls (28% versus 22% for men; 24%
versus 23% for women).

Is the error in the self-reported information on body-size differential or non-
differential?

Assuming that the measured BMI values are correct, is the true association
between obesity and asthma likely to be stronger or weaker than that seen for
self-reported obesity?

1 In this study, as in most, obesity was defined as a body mass index (BMI, calculated as weight

in kg divided by the square of height in m) � 30 kg/m2.
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In this example there is differential error because cases, particularly men, were
more likely to underestimate their weight and overestimate their height than
controls. The effect of these errors would be to reduce the association seen
and this is what happened. When the authors calculated the association
between asthma and measured obesity, the OR was 2.3 (95% CI 1.5–3.8) for
women and 2.5 (95% CI 1.1–5.9) for men, i.e. the associations were much
stronger than those based on self-reported BMI above. By measuring height
and weight they have removed the possibility of recall bias and any subse-
quent differential misclassification, and they have also reduced the potential
for non-differential misclassification. The OR based on measured BMI is
therefore likely to be a more accurate estimate than that based on self-
reporting. (Note that even this may still slightly underestimate the ‘true’ effect
because there may be some remaining non-differential random misclassifica-
tion.) Validation studies such as this can provide valuable insights into the
accuracy of study results as can sensitivity analyses such as that described
in Box 9.1.

Box 9.1 Sensitivity analysis: pet flea treatment and autism spectrum
disorders

Laboratory studies suggest prenatal exposure to the insecticide imidaclo-

prid may induce neurobehavioural deficits in animals. To assess whether

it might have a similar effect in humans, researchers conducted a case–

control study to assess the relationship between use of pet flea and tick

treatments containing imidacloprid and autism spectrum disorders (ASD)

in young children. Mothers of children with and without ASD were asked

how often they used flea or tick products before, during and after their

pregnancy. The results did not show a significant association between

imidacloprid use and ASD (OR = 1.3; 95% CI = 0.79–2.2). However,

because of the high potential for recall bias, the researchers performed a

range of sensitivity analyses where they assumed different proportions of

children were misclassified as exposed or unexposed. Depending on the

level of misclassification and whether it occurred in cases and/or controls,

the OR varied from about 0.6 (suggesting no increase in risk) up to about

4.0 – suggesting a very strong association. The authors concluded that

their results suggested an association could result from misclassification

alone, but they also noted that their estimates were higher among con-

sistent users and for use during pregnancy and suggested further studies

were warranted.

(Keil et al., 2014)
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Confounding

The next major issue to consider is that of confounding.

• Have the authors considered all important confounders and controlled for
them in their analysis?

• Could there be residual confounding by variables that have not been con-
sidered or because of incomplete adjustment for factors that have?

• If so, what effect might this have had on the study results?

As we discussed in Chapter 8, it can be helpful to draw a directed acyclic
graph or DAG to show the relationships between all of the factors that need to
be considered as potential confounders. There are then formal methods to
help identify which factors are likely to be confounders and which can be
ignored. Again, the important thing is to think practically: in which direction is
any residual confounding likely to operate? If adjustment brings a RR towards
1.0 then in the presence of residual confounding the true RR is likely to be
even closer to 1.0. Conversely, if the adjusted RR is further from 1.0 than the
crude RR, then the true RR is likely to be even more extreme. In the former
situation our confidence in a positive effect estimate would decrease, unless it
was very large. A large effect is less likely to be wholly due to confounding
because, to explain away a very strong RR (e.g. 10.0), the confounder itself
would have to be an even stronger risk factor for the disease. If this is the case
then it is likely to be known already, and hence should have been measured
and controlled for.

Example 4: a cross-sectional study of risk factors for depression in the UK
Among 14,217 adults aged over 75 years, the risk of depression appeared to be
somewhat higher among women than among men (crude OR = 1.3, 95% CI
1.1–1.5) (Osborn et al., 2003). After adjustment for potential confounding
factors including age, marital status, living alone, smoking and alcohol con-
sumption, the adjusted OR was 1.1 (95% CI 1.0–1.3).

What do these results suggest about the association between sex and risk of
depression?

The adjustment has reduced the OR, bringing it closer to 1.0. It is also likely
that there is further residual confounding, which might bring the true OR even
closer to 1.0, suggesting that sex is not associated with depression (at least in
this study). This example also highlights the need to consider the clinical or
practical significance of the results of a study. A very large study can show
what appears to be a very small effect with great precision (a narrow confi-
dence interval); even though the result might be statistically significant
(p < 0.05), the key question is whether such a small difference is meaningful.
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Example 5: a cohort study of statin use and atrial fibrillation in the USA
A cohort of patients with coronary artery disease was followed for a minimum of
12months to document the incidence of atrial fibrillation (AF, an abnormal heart
rhythm); 263 of the patients were using statins (cholesterol-lowering drugs) and
186 had never used them (Young-Xu et al., 2003). (Note that this was an
observational study – a prognostic cohort – not a randomised trial.) Overall,
the rate of AF was lower among the group taking statins, giving a crude relative
risk of 0.5 (95%CI 0.3–0.8). When the authors adjusted for potential confounding
factors including age, systolic blood pressure, alcohol consumption, history of
heart failure and total serum cholesterol level, the RR was 0.4 (95% CI 0.2–0.8).

Assuming that there are no important selection or measurement errors, what
conclusions can we draw about the association between statin use and AF?

It appears that there was some confounding by the other factors such as age
because the RR dropped from 0.5 to 0.4 after adjustment, indicating that the
real effect of statin use was even stronger than the crude RR suggested.
However, doctors prescribe treatment partly on the basis of prognostic judge-
ments, which are difficult to measure. There may thus be other unknown and
unmeasured confounders that have not been controlled for, so we would still
need to be cautious about this particular result. Large, well-conducted RCTs
remove this potential problem which, as you saw in Chapter 8, is called
confounding by indication.

Interpreting results from RCTs

Although RCTs are less susceptible to confounding than other study designs, it
is important to remember that they are not immune to bias and problems can
occur even in the best trials. It is for this reason that the Cochrane Collaboration
developed their ‘risk of bias’ tool to assess the quality of RCTs (see Box 9.2).

Example 6: the Women’s Health Initiative (WHI) trial of menopausal hormone therapy
The WHI comprised a number of studies including a double-blind RCT where
about 16,600 menopausal women aged 50–79 years were randomly allocated to
receive oestrogen plus progesterone (combined hormone therapy, HT) or pla-
cebo. After five years of follow-up the results suggested that rather than improv-
ing women’s health, those randomised to combined HT experienced higher
rates of some outcomes, including breast cancer. The conclusion was that
combined HT increased a woman’s risk of developing breast cancer (Rossouw
et al., 2002) and the trial was stopped. However, although the trial was con-
ducted according to rigorous standards, women randomised to combined HT
often experienced bleeding requiring investigation to rule out uterine cancer
and this meant that a high proportion (> 40%) became ‘unblinded’ and so knew
which tablet they were taking, compared to only 7% of women in the placebo
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group. If women who knew they were taking HT were more likely to examine
their own breasts or to seek breast screening, it is possible they were more likely
to be diagnosed with breast cancer than control women. As a result, some have
suggested that although combined HT might increase breast cancer, the results
of the WHI trial did not conclusively establish this (Shapiro et al., 2011).

Chance

Finally, it is important to consider the role of chance. Have the authors
included confidence intervals for their estimates? How narrow (good precision)
or wide (poor precision) are they? Have they conducted any statistical tests and
presented the resulting p-values? If an association is seen, how likely is it that
there is really no effect (i.e. the association arose by chance)? As you saw in
Chapter 6, if the probability of getting a result as strong as or stronger than that
observed is < 5% (p < 0.05, i.e. one time in 20) then, by convention, we would
consider it unlikely to be due to chance. However, in many modern studies the
investigators study multiple associations so the probability that one will arise
by chance is greatly increased. Although some authors recommend correcting
results for this problem of ‘multiple testing’ (see Box 6.3 in Chapter 6), we and

Box 9.2 The Cochrane collaboration (www.cochrane.org)

This was established to promote evidence-based decision making in

health. It does this by conducting systematic reviews to bring together all

of the relevant evidence in a given health area (we will discuss systematic

reviews in Chapter 11). To facilitate the review process, the Cochrane

Collaboration has developed standardised methods for reviewing the

literature including a ‘risk of bias’ tool to help a reviewer assess the quality

of evidence from RCTs (Higgins et al., 2011). (As the focus is on evaluating

health interventions, the best information usually comes from RCTs.) The

tool covers six domains including issues relating to: randomisation (what

they term selection bias*), blinding of participants and personnel (per-
formance bias) and of outcome assessment (detection bias), loss to follow-

up and exclusions (attrition bias), completeness of reporting (reporting
bias) and any other bias. The probability that each type of bias has occurred

is rated as high, low or unclear. A parallel tool, ROBINS-I (previously

ACROBAT-NRSI) (www.riskofbias.info) has been developed for assessing

risk of bias in non-randomised studies of interventions by comparing them

to an idealised RCT of the same intervention (Sterne et al., 2014).
*This is another example where those working in a more clinically

oriented environment use somewhat different terms from epidemiologists
working in public health.
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many others prefer to rely more on a common-sense approach that places less
emphasis on the question of statistical significance and more on the overall
strength, coherence and plausibility of an observed association. (We will dis-
cuss some of these issues further in Chapter 10.) If there is no clear association
(e.g. if the confidence limits are very wide and include 1.0 or p > 0.05), is it
possible that there is a real effect but the study was simply too small to detect
it? Is the study useful or are the results inconclusive?

Overall internal validity

Once we have considered all of these aspects (summarised in Figure 9.1) we
can make an overall judgement of the internal validity of the study results.
Have the authors discussed the limitations of their study? What conclusions
do they draw with respect to the research question? Are these conclusions
justified? Does the study appear to be internally valid or could the results be
due to chance, bias or confounding? These ‘alternative explanations’ have
been the focus of this and the preceding chapters.

The prime objective of study design, implementation, analysis and interpret-
ation is to generate an answer to the research question that is as close to the
truth as possible. However, in public health we are dealing with real people
and complex exposures that are often difficult to measure and/or impossible
to control adequately and we are, quite rightly, constrained as to what we can
do by codes of ethics. Any study is thus likely to fall short of perfection and it is
important to realise this. Research should be appraised in the light of what it
has been able to achieve – there will be deficiencies but, given the particular
circumstances, could things realistically have been improved? The evidence
reported in a research paper might not always be strong but, if it is the best
that is likely to be available, we should not discount it because of the flaws.
Rather we should draw from it what information we can.

So what? Are the results important?

We discussed the need to consider whether the results could have arisen by
chance above, but as well as statistical significance it is also important to
consider whether the results are socially or clinically significant (see
Statistical versus clinical significance in Chapter 6). A large study may give an
association that is statistically significant, for example the odds ratio of 1.1 (95%
CI 1.0–1.3) seen for the association between sex and depression in Example 4
above, but we then have to ask whether a 10% higher risk of depression in
women than men is a meaningful difference. As you saw in Chapter 5, the
relative risk is not the only measure we can look at to assess the importance of a
relationship, and relative and absolute risks can often give a very different
picture. A modest RR can equate to a high population attributable fraction if
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the exposure is common but, conversely, if the exposure is rare the PAF may be
low, despite a high RR. Similarly, if the background rate of disease is low, a
small absolute increase will appear to be a large relative increase. The question
of clinical significance becomes particularly problematic when the cost of
achieving a statistically significant, but sometimes very small, clinical benefit
is high. This is a particularly thorny issue for governments who have to grapple
with decisions whether to subsidise expensive new drugs (see Box 9.3).

What was the research
question?

-  Was the study design appropriate to answer this
   question?

How were people selected
for the study?

Measurement of outcome
&

exposure

Confounding

-  Did the authors consider all important
   confounders in the design and/or adjust for them?
-  Is residual confounding likely to be a problem?

Chance

Do the results of the study
appear to be internally valid?
If they are not fully valid (or nearly
so), what quantitative or
qualitative caveats should apply?

-  Were the outcomes and exposures clearly
   defined?
-  Were outcome assessors blinded to participants’
   exposure status?
-  Were interviewers blinded to participants’ disease
   status?
-  Is there likely to have been much non-differential
   measurement error?
-  Is any measurement error likely to have differed
   between the study groups? (differential)

-  If there was an association could this be
   due to chance?
-  If there was no statistically significant
   association was the study big enough to
   detect an effect if it had existed?

-  In a case-control study were the controls
   representative of the population the cases came
   from?

-  Was participation (or loss to follow-up) related to
   either the exposure or outcome of interest? i.e. did
   it differ in the different study groups?

-  What proportion of eligible people actually took
   part in the study (or were lost during follow-up)?

-  In a cohort study was the comparison population
   appropriate for the exposed population?

What effects might this
have had on the study
results?
Are measures likely to
have been biased
upwards or downwards?

Figure 9.1 Issues to consider when reading epidemiological papers.
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Generalisability (external validity)

It is important to remember that the aim of the ‘causal arm’ of epidemiology is
to discover general scientific truths about cause and effect. If the results of a
study of, for example, American men aged 50–65 appear to be internally valid,
can they be generalised to all American men in that age group? What about
older or younger men? Women? Non-Americans? (Note that internal validity
must always be the primary goal, if a study is not internally valid, then the
results should not be applied to anyone.)

There are no firm rules to help with generalising from a study to the wider
population but the first step is to consider whether the results obtained from
the study population can be generalised to the source population that they
came from (see Figure 3.4) and this will depend both on how potential
participants were identified for the study, and on the response rate. In case–
control comparisons, population-based studies are the ideal in order to
reduce the possibilities of selection bias and, as a result, it might not require
such a leap of faith to extrapolate the study results to the source population.
The second step is to consider whether the results might also apply to other
populations and this process is not simply a matter of statistical representa-
tiveness, but is more fundamentally one of biological insight. The question
then is ‘How relevant (biologically) is a result for a given population?’ Can a
study in a very select population (e.g. urban-living Japanese, Czech women,
Brazilian men) inform us about disease causation more generally? Well, we
certainly hope so. As an example, careful follow-up of the survivors of the
atomic bomb blasts in Hiroshima and Nagasaki, Japan, has yielded volumes of
information regarding the relation between exposure to ionising radiation and
subsequent risks of mortality, cancers and other diseases. While this

Box 9.3 How much is life worth?

More than 90% of new anti-cancer agents approved by the US Food and

Drug Administration between 2005 and 2009 cost more than US$20,000 for

a 12-week course of treatment. However, many show only marginal gains

in survival: new therapies approved for non-small cell lung cancer, for

example, cost an average of US$91,000 per patient and increase median

survival by only 1.2 months; others for pancreatic cancer cost $16,000 and

increase median survival by only 10 days. This equates to costs of up to

US$800,000 per year of life gained compared to $129,090 for something

like renal dialysis and raises the question of what represents a clinically

significant improvement and how much we should we pay for this (Fojo

and Grady, 2009).
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information comes only from the Japanese, no one would argue that radiation
would not have similar effects in other nationalities, and we certainly do not
want to see this ‘unnatural experiment’ repeated. While this generalisation is
perhaps easier than many because of the magnitude and timing of the effects
and the well-understood physical and biological properties of ionising radi-
ation, the principle is identical for other abstract causal speculation.
Generalising from clinical and other trials raises additional issues. For

practical reasons, many clinical trials are conducted on highly selected groups
of people. This can make the results of the specific trials easier to interpret
(good internal validity), but means it can be hard to know exactly how well the
intervention will work in the general population. Post-marketing surveillance
systems such as those you met in Chapter 4 (see Record linkage and Box 4.6)
are increasingly being established to monitor new interventions for unex-
pected adverse events.

Descriptive studies

The discussion above has focussed on papers evaluating associations between
exposure and outcome and that, therefore, address the ‘Why?’ of epidemiology.
It is equally important to evaluate the results of descriptive studies that provide
the ‘Who?’, ‘Where?’ and ‘When?’ information that is essential to make a
community diagnosis and, as you will see in Chapter 14, is also important for
evaluating the effects of public health interventions. In practice this requires us
to consider exactly the same issues: selection and measurement error, con-
founding and chance.

• How was the survey sample selected? Is it representative of the wider
population?
It is important to note that, although representativeness is not the primary
issue in studies of aetiology, it is critical for most descriptive research as you
saw in Chapter 7 (Box 7.1). If the sample of people surveyed to identify the
health needs of an area does not represent the whole population, the results
could be very misleading. For example, if they were unusually healthy then
the needs of the population might be greatly underestimated, and vice versa.
For this reason, national censuses and, in some countries like Australia, the
government-run national health surveys are supported by legislation that
legally obliges people to take part.

• How was the factor of interest measured? Is it likely to be over- or under-
reported?

• If we are making comparisons, are we comparing like with like (are the
groups we are comparing exchangeable?) or is there a need for standardisa-
tion (to remove confounding by, for example, differences in the age struc-
ture of populations)?

Generalising from RCTs:
trials of new drugs are often
restricted to younger more
healthy patients. It is then
hard to know whether the
drugs will also work for older
people who often have
significant comorbidities and
who may comprise the
majority of the patient group.
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• Could any observed excesses (or deficits) of disease in different populations,
in different places or at different times be due to chance? For example, it is
unlikely that several cases of a rare disease would occur in the same small
community (what is known as a ‘cluster’ – see Chapter 13), but it is not
impossible for this to occur by chance. Similarly, rates of disease (particu-
larly rare diseases) will naturally vary from year to year, so could an appar-
ent increase or decline just be due to chance?

Writing papers

We have concentrated on the information that you need to look for when
reading a paper and, as we suggested at the start of this chapter, it goes
without saying that this is also the information that you need to provide when
writing a paper. In general, a research paper should be structured with a brief
abstract followed by an introduction to show why the research question is of
interest; a methods section to explain how the work was done; a summary of
the results; and, finally, the conclusions or a discussion where the results are
interpreted, any threats to validity considered and causal conclusions drawn.
To improve the reporting of health research, specific standards have been
developed for a wide range of study types and many journals now require
authors to complete the relevant checklist prior to submitting their paper for
publication. Many of these guidelines are available via the EQUATOR (Enhan-
cing the QUAlity and Transparency Of health Research) Network (www
.equator-network.org/) and Table 9.1 summarises some of the most useful.

Table 9.1 Guidelines for reporting the results of health research.

Guideline Area

CONSORT: Consolidated Standards of Reporting Trials
(Shulz et al., 2010)

Randomised controlled trials

TREND: Transparent Reporting of Non-randomised Designs
(Des Jarlais et al., 2004)

Behavioural and public health interventions with non-
randomised designs

STROBE: Strengthening the Reporting of Observational
Studies in Epidemiology (von Elm et al., 2007)

Cohort, case–control and cross-sectional studies

STREGA: Strengthening the Reporting of Genetic
Association Studies (Little et al., 2009)

A modification of STROBE for genetic studies

STARD: Standards for the Reporting of Diagnostic Accuracy
Studies (Bossuyt et al., 2003)

Diagnostic tests

CARE: Case Reporting (Gagnier et al., 2013) Consensus-based guideline for clinical case reports and
reports of patient encounters

SAMPL: Statistical Analyses and Methods in the Published
Literature (Lang and Altman, 2013)

Basic statistical reporting for articles published in
biomedical journals
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Summary: one swallow doesn’t make a summer

As we have discussed, the ultimate aim of much public health research is to
change practice or policy to improve health outcomes, but even if a well-
written paper that is (largely) free from major sources of bias and confounding

Box 9.4 The Francis field trial of inactivated poliomyelitis vaccine or
‘Salk vaccine trial’ – a practice changer

Regular poliomyelitis epidemics in the USA, with over 58,000 affected in

1952 alone, led to widespread fear of the disease and its consequences

(paralysis, death). In response, the National Foundation for Infantile Par-

alysis, a voluntary foundation, proposed, initiated and largely funded a

massive project in the early 1950s to evaluate the preventive benefits of a

vaccine developed by Dr Jonas Salk. This single trial, which you first met in

Chapter 4, initiated the modern era of vaccine evaluation, and was a

national event, with intense public scrutiny.

Thomas Frances (epidemiologist) saw the need for a randomised

placebo-controlled trial with independent evaluation to ensure that the

result would be accepted by scientists and the community. However, he

also understood that many saw randomisation as unethical although they

supported the need to assess the vaccine. Thus, a randomised trial was

conducted in parallel with an observational study. In the randomised

component, all children in grades 1–3 in 84 counties in 11 states were

randomised to either vaccine (200,745) or placebo (201,229) injections. In

the observational arm, participating grade 2 children in 127 areas in

33 states were vaccinated and compared to children in grades 1 and 3.

The speed with which the project was designed, implemented, analysed

and reported was phenomenal by current standards. Vaccine and placebo

were given to participants between April and June 1954, after which

intensive surveillance of all 1.8 million children continued throughout that

summer. Clinical and laboratory diagnoses were confirmed and data

analyses undertaken over the next 6 months and the results were reported

at a national press conference in April 1955.

Attack rates of paralytic polio (per 100,000) were 54.7 for the placebo

arm and 16.4 for the vaccine arm of the trial, RR = 0.3. This success led to

the immediate licensing of the vaccine for national use. By 1961 polio rates

in the US were < 1/100,000, and international vaccination campaigns are

now close to eliminating polio globally.

(From: Francis et al., 1955 and Meldrum, 1998;

see also https://sph.umich.edu/polio/)
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finds what appears to be a statistically and practically significant association
between an exposure and health outcome, we cannot rush out to act on this.
Despite our best efforts and those of the investigators, it is still possible that
statistically significant results can arise by chance. With the possible exception
of a large randomised trial (see Box 9.4 for one that did change practice), no
practical or policy decision should be made on the basis of the results of a
single study, however good. As you have seen, individual studies can never be
perfect, so it is important to consider all of the evidence on a given subject
before attempting to make policy or practical decisions. We will come back to
the ways in which you can do this in Chapter 11.

Questions

Questions and answers (covering a range of study designs) for this chapter can
be found on the accompanying website (www.cambridge.org/9781107529151).

In addition, the Epidemic Intelligence Service of the US Centers for Disease
Control and Prevention has developed an excellent exercise ‘Cigarette
smoking and lung cancer’ that draws on many of the issues covered in this
and the previous chapters. This and other similar exercises are freely available
from http://www.cdc.gov/eis/casestudies.html.
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Box 10.1 Who sank the boat?

As the story goes, there were five animals living by the sea, a cow, a donkey, a

sheep, a pig and amouse. One fine day they decided to go rowing on the bay.

(continued)



The search for the causes of disease is an obvious central step in the pursuit of

better health through disease prevention and Box 10.1, abstracted from a
wonderful children’s picture book, illustrates perfectly the complexity of
assigning causation. In the previous chapters we have looked at how we
measure health (or disease) and how we look for associations between expos-
ure and disease. Being able to identify a relation between a potential cause of
disease and the disease itself is not enough, though. If our goal is to change
practice or policy in order to improve health then we need to go one step

Box 10.1 (continued)

First the cow got into the boat, it rocked a bit but she settled herself down

comfortably at the back. Then the donkey got in carefully and sat down at

the front to balance the boat. Next the pig climbed in, clutching her

umbrella – the boat is low in the water by now. Then the sheep climbed in

carrying her knitting and she sat down opposite the pig.

The boat is still afloat, but only just. Finally the little mouse jumped

aboard and – disaster! The boat capsized and the animals had to swim to

the shore.

So who sank the boat?

(Storyline (adapted) and pictures from Who Sank the Boat? by Pamela Allen,

Copyright 1982. Published by Penguin Books Australia. Reproduced

courtesy of Tim Curnow Literary Agent and Consultant, Sydney.)
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further and decide whether the relation is causal because, if it is not, interven-
ing will have no effect. As in previous chapters we will discuss causation
mainly in the context of an exposure causing disease but, as you will see,
when we come to assessing causation in practice, the concepts apply equally
to a consideration of whether a potential preventive measure really does
improve health.

What do we mean by a cause?

It is tempting to think that a cause is a single condition or event that
inevitably leads to a particular effect or outcome; i.e. that there is a one-
to-one relationship such that wherever or whenever the cause occurs the
effect will follow. If we consider this more closely, it quickly becomes
apparent that things are not so simple and that everyday causal phenomena
are rather more complicated than they might seem at first. For example,
while it might appear that all we need to do to turn on a computer is press
the ‘on’ button, we know better: what if the wiring is faulty, there is no
power supply or the hard drive has died an untimely death? To ‘cause’ the
computer to come on we need power, good wiring, a functioning hard drive
and relevant software in addition to the pressure of our finger on the button.
We could describe each of these separate requirements as component
causes, because they are all part of the one sufficient cause that will
inevitably lead to the effect – in this case the computer turning on. In this
situation they are also necessary causes because in the absence of just one
of these things the computer will not work.
In the same way, disease rarely occurs as the result of a single event or

exposure. Even though it might seem that an infectious agent would be a
sufficient cause in its own right, not everyone develops disease following
exposure to a particular bug. The real-life food-poisoning example in Chapter 1
made this clear – although people who ate the cold chicken were 3.8 times
more likely to suffer from food poisoning than those who did not, almost one-
quarter (23%) of those who ate the cold chicken suffered no ill effects. Whether
someone does become ill depends both on their susceptibility to the agent and
on the dose they receive. For tuberculosis (TB), for example, a person’s
susceptibility is determined by whether they have been infected before and
are now immune, and also their overall level of health at the time. The
infectious agent, the tubercle bacillus, is only a component of the total or
sufficient cause that will lead to TB. It is, however, a necessary cause in that, by
definition, TB cannot occur without it. We will look at infectious diseases in
more detail in Chapter 13.
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Some definitions

There are many definitions of a cause, but the following, from Rothman
(1986, p. 11), is appealing because of the brevity with which it captures
the concept:

a cause is ‘an event, condition or characteristic [or a combination of these factors] that plays an

essential role in producing an occurrence of the disease’

A more modern definition (Parascandola and Weed, 2001) that picks up on
the concept of the ‘counterfactual’ that we discussed in Chapter 4 is that a
cause is

something that makes a difference in the outcome (or the probability of the outcome) when it is

present compared with when it is absent, while all else is held constant

The key to this second definition is that ‘all else is held constant’, something
that is almost always impossible to achieve in real life. It also allows that a
‘cause’ may not always produce disease but may just increase (or reduce) the
chance that disease will develop.

There are also many ways in which such entities (causes) can be classified,
but the following subdivision serves well.

• A sufficient cause is a factor (or more usually a combination of several
factors) that will inevitably produce disease.

• A component cause is a factor that contributes towards disease causation
but is not sufficient to cause disease on its own.

• A necessary cause is any agent (or component cause) that is required for
the development of a given disease (for example, the specific infectious
agent).

In terms of working out ‘who sank the boat’ we can say that each one of the
animals was a component cause and that together they created the sufficient
cause that caused the disaster. Probably none was actually necessary to sink
the boat – any group of similarly sized animals would have had a similar effect.
The ordering of the events, i.e. whether the mouse got in first or last, also did
not matter; it was the sum of the weights that caused the boat to sink. This may
also be true in much disease causation, but sometimes the component causes
will have to occur in a specific order or they will have to be present at the same
time. For example, TB infection will occur only if the individual is susceptible
at the time they are exposed to the infection; and thrombosis (blood clotting)
in an artery leading to a heart attack or stroke rarely occurs unless the blood
vessel is already damaged or partly blocked.

A useful model for considering causal mechanisms is the ‘pie’ diagrams
used by Rothman (1976) and shown in Figure 10.1. In this scheme:
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• I, II and III are three different sufficient causes for a disease;
• A is a necessary cause for the disease because it is present in all three
sufficient causes (assuming there are no other sufficient causes that do not
include A); and

• A, B, C, D, E, F, G, H, I and J are all component causes of one or other of the
sufficient causes.

So, for example, if ‘A’ were the cow, ‘B’ the donkey, ‘C’ the pig, ‘D’ the sheep
and ‘E’ the mouse, we would have sufficient cause I, while the other ‘pies’
show that different combinations of animals or other objects would also have
led to the boat overturning.
In practice, when considering causes of disease we mostly find ourselves

dealing with component causes. Aside from something like a major disaster
such as an earthquake or nuclear explosion, it is hard to imagine identifying a
single factor that is truly necessary and sufficient to cause disease. We also
have to accept that, other than for something like an injury, we are unlikely to
know either the precise nature of any sufficient cause or many of the possible
component causes of disease. This need not matter – we do not have to
eliminate all components of a particular cause in order to prevent disease
due to that cause. If any one of them is identified and removed (e.g. B in the
example above), then we will prevent cases of disease due to sufficient causes
that contain component B (i.e. I and II). Some disease will still occur, however,
as a result of sufficient cause III.
The causes of many diseases, and especially those like cancer that develop

over many years, are going to be complex and we may never identify all their
components. It is thus encouraging to know that by just identifying one or two
we may still prevent a large proportion of the disease. If we could have
stopped any one of the animals, even the mouse, from getting into the boat
then it would not have turned over at that point in time. However, if the wind
blew up or a wave came along once they had pushed off then they may have
sunk later: a different sufficient cause leading to a similar outcome. Searching for
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Figure 10.1 A conceptual scheme
for the causes of a hypothetical
disease. (From: Rothman, Causes,
Am. J. Epidemiol., 1976; 104: 589, by
permission of the Society for
Epidemiological Research.)

To be strictly accurate, we will
only prevent the disease
occurring at that point in time.
In practice we may not
prevent it completely, but
might simply delay the onset.
This is most obvious if we
consider premature mortality;
while we may be able to help
someone live longer, e.g. by
stopping them from smoking,
we cannot prevent death
completely.
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modifiable causes that are associated with a large population attributable risk,
i.e. those which cause a large number of cases of disease, will give the greatest
benefit in terms of public health. (We will take this up again in Chapter 14.)

Look at Table 10.1. The proportions of DALYs for cardiovascular and circula-
tory diseases attributable to the various risk factors sum to more than 100%.
Why is this so? Is it a problem?

If we assume that each of the causes of cardiovascular and circulatory
disease shown can be represented by one of the letters in Figure 10.1 (for
example, if dietary risks were cause ‘A’, high blood pressure were cause ‘B’
and smoking were cause ‘C’), we can immediately see that the total amount of
disease attributable to each component cause will be much greater than 100%.
Ensuring that everyone had an adequate diet (i.e. removing cause ‘A’) would
prevent all disease due to sufficient causes I, II and III. However, if we have
already removed the problem of high blood pressure (cause ‘B’) and so
prevented disease due to sufficient causes I and II, then the extra benefit of
improving diet could only prevent the extra disease due to sufficient cause III.
Similarly, although stopping everyone smoking would prevent some disease
on its own, once we have removed the problems of diet and high blood
pressure it would have little extra benefit.

In thinking about how component causes might act together, we need to
keep in mind that in no sense need they be similar: one component might be
the absence of a protective factor, and another the presence of a quite different

Table 10.1 The percentage of DALYs due to cardiovascular and circulatory diseases which
can be attributed to various risk factors, shown separately for developing and developed
countries, 2010.

Percentage of DALYs attributable to
various risk factors

Developing Developed Global

Dietary risks 65 66 65
High blood pressure 56 58 57
Tobacco smoking 27 25 26
Ambient particulate matter pollution 21 11 18
High body mass index 13 29 17
Physical inactivity 15 20 16
Household air pollution from solid fuels 21 2 16

(Data from Institute for Health Metrics and Evaluation (IHME), 2013, accessed 7 May
2015.)

274 Association and causation



harmful factor. For instance, if we consider the underlying causes of lung
cancer we would probably find that cigarette smoke is a component in most
sufficient causes. However, because not all smokers develop lung cancer we
can surmise that smoking is not a sufficient cause on its own but also requires
other factors (for example, weakened DNA-repair capacity) to complete a
sufficient cause. Similarly, because lung cancer can develop in the absence
of smoking, we can presume that there is at least one sufficient cause that does
not have personal smoking as a component cause.

Association versus causation

In preceding chapters we have considered how we can determine whether a
particular exposure is associated with the outcome of interest. The next stage is
to determine whether such an association may be causal. Just because a
particular exposure is associated with the development of a disease does not
automatically imply cause and effect. We must attempt to draw appropriate
causal inferences explicitly from our data, in the light of other evidence.
In London during the cholera epidemics of the nineteenth century one

common belief, the ‘miasma’ theory, was that cholera was caused by noxious
vapours in the air. While John Snow was conducting his pioneering work
implicating contaminated water, William Farr, director of the Office of the
Registrar General, was also interested in the transmission of cholera. He had
noticed that cholera mortality seemed to be higher in lower-lying areas and so
collected mortality data for a number of districts in London at different
elevations. This revealed a dramatic inverse relation between elevation and
mortality, and Farr was able to calculate a formula that could accurately
predict the mortality rate for any given elevation. Figure 10.2 shows a graph
of actual cholera death rates for various levels of elevation above the River
Thames as well as the death rates predicted by Farr’s theory. These data were
taken as strong evidence in favour of the miasma theory, under which it was
felt that the vapours would be most concentrated and, therefore, most dan-
gerous at lower elevations.
However, as you saw in Chapter 3, like most ecological research (the graph

compares rates of cholera in areas at various elevations, not individual data),
these observations provide weak evidence for a true causal association, and
we must consider whether other differences between people living at different
elevations could explain them. As it happened, people living closest to the
river were also more likely to be exposed to contaminated water than their
neighbours in the higher areas. This confounding factor could explain the
apparent association between elevation and cholera mortality entirely, and
today it is John Snow, not William Farr, whom we recognise as having solved
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the mystery of cholera. Ironically, in trying to prove his own ‘airborne’ theory,
Farr also provided much of the crucial evidence that ultimately supported
Snow’s theory of contaminated water.

This example highlights the necessity of not accepting the results of any
study, however exciting, at face value. There are two substantial steps to be
taken before we can reasonably promote an exposure–disease relation as
warranting serious attention with respect to disease control. We must first
thoroughly consider alternative non-causal explanations for an association:
could it be an artefact due to chance, bias or confounding? We need to apply
the approach outlined in Chapter 9 to decide whether the results we are
looking at (our own or those reported by someone else) are believable. In
the cholera example we have postulated that confounding by water supply is
the most likely explanation for the close association seen in Figure 10.2, and
that the relation with elevation is an artefact. If, however, the answer to the
question ‘Is it real?’ is at least a qualified ‘yes’, then we can move on to the
next step – a formal evaluation of whether the observed relation could be
causal.

Evaluating causation

How should we do this? The nature of causation has been a central theme of
philosophy for centuries (see Box 10.2) and in recent times has been given a
fair bit of attention by epidemiologists as well (see Box 10.3). This has given a
useful perspective, but epidemiologists are fundamentally pragmatic and seek
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Box 10.2 Some potted philosophy

Do we learn about the world from observation and experience or by

reason? This was the major tension in Western causal thinking for many

centuries. Broadly speaking, observation or learning from our own

experience (induction) gradually replaced more abstract reasoning about

how the world worked (deduction). The practical inductive approach fits

pretty well with public health and epidemiology – we collect facts, decide

what they mean and then act accordingly – but, of course, it is not perfect.

Starting with David Hume in eighteenth-century Scotland, many

philosophers have demonstrated that induction can never prove a cause-

and-effect relationship (this became known as Hume’s problem). Just

because we observe that the computer turns on the first 99 times we press

the button does not mean that it will turn on again the 100th time (we are

all familiar with this phenomenon). Final proof is thus unobtainable by

this process. In Europe in the middle decades of the twentieth century,

Karl Popper in a sense turned Hume’s problem around and said that,

although induction based on supportive observations could never finally

confirm a hypothesis, contrary data could be used to refute one. Consider
the statement ‘all swans are white’. We may see only white swans but can

never prove that this statement is true – it just takes one black swan to

disprove it. The hypothesis stood for millennia in Europe until Dutch

explorers saw their first black swan in Western Australia in 1697.

We will never know anything with absolute certainty and this is

something we have to learn to live with comfortably. You will note that the

subsequent guidelines to causal reasoning incorporate both judgement

(continued)

Consider
new

knowledge
(deduction)

Test
hypothesis

Develop
hypothesis

Evaluate
results

(induction)

Figure 10.3 An integrated cycle of causal reasoning.
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practical tools. Unfortunately, in the causal realm our tools are not as precise
as we might like and views on how to apply them differ somewhat.

As we discussed in Chapter 4, the best way to assess whether an exposure is
truly associated with a given outcome is in the context of a randomised
controlled trial (RCT). Assuming that the trial is of high quality, it would be
reasonable to assume in this situation that the exposed and unexposed groups
were exchangeable and thus that the exposure caused the outcome – at least
among the type of people included in the study.1 However, in the absence of
good trial data, and these are rare in the field of public health, we often have to
make decisions about causation using observational data. As we noted at the
end of the previous chapter, no practical decisions should be made on the
basis of a single study – it is important to consider all of the available evidence.
We will come back to look at how we conduct reviews to integrate this
evidence in Chapter 11, but first we will look more closely at how we might
decide whether an observed association really is causal. Various sets of guide-
lines have been proposed to assist our causal evaluations in this situation.
There are many similarities among them, and arguably the best known –

certainly the best written – were set forth by a British statistician, Sir Austin
Bradford Hill, in an after-dinner speech. He put forward a list of nine aspects
of an association to be considered when assessing whether it was likely to be
causal (Hill, 1965). He was adamant that these should serve only as ‘aids to
thought’ and were not absolute requirements to be met before an exposure
could be considered to cause a disease. Various modifications of this list have

Box 10.2 (continued)

and probabilistic elements, reflecting that we cannot demand certainty. If

we did we would never act, the antithesis of the remit of public health. In

pursuit of making good judgements on how and when to act,

epidemiologists have long sought to bring good evidence to bear on a

question. In the past decade or so this has come into sharper focus with

research increasingly aiming to test critical elements of causal belief or

hypothesis along the lines proposed by Popper and his followers last

century. This has led to an integrated cycle of causal reasoning that

essentially combines both induction and deduction (Figure 10.3).

1 As we noted previously, RCTs often have very strict inclusion and exclusion criteria so their

results may only apply to the (sometimes small) subset of the population that meet the same

criteria.
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Box 10.3 The counterfactual (potential) outcomes model of causation

This more recent way of thinking about causation (see e.g. Hernán, 2004)

comes from the counterfactual definition of a cause that we presented

earlier. If, at the simplest level, we consider a perfectly measured exposure

that is either present or absent and its relation to a single disease, there are

two potential outcomes for each individual: they will either get the disease

or they won’t. In the counterfactual world that we described in Chapter 4

we could look to see who developed disease when they were exposed and,

in a hypothetical parallel universe, who would develop it when they were

not exposed. If someone would develop disease when they were exposed

but not if they were unexposed, then we could confidently say that the

exposure caused their disease.

The left panel in Table 10.2 shows some hypothetical data relating an

exposure to disease. It appears that five men were exposed and three of

them (60%) developed disease compared to one of the three men who

were unexposed (33%). This suggests the exposure may have increased the

risk of disease in the exposed group, but we don’t know what would have

happened to them if they had not been exposed or what would have

happened to the unexposed men if they had been exposed. By invoking

the idea of a parallel universe we could look to see what would have

happened to the same people if they had all been exposed and then if

none had been exposed. The right panel in Table 10.2 shows that their

outcomes would have been identical regardless of whether or not they

were exposed: half or 50% of the men would have developed disease in

(continued)

Table 10.2 Potential outcomes (0 = no disease, 1 = disease) from an exposure.

Real world
A world with parallel
universes

Exposed Unexposed Exposed Unexposed

Alfred 1 Alfred 1 1
Bob 0 Bob 0 0
Charles 0 Charles 0 0
David 1 David 1 1
Edward 0 Edward 0 0
Fred 1 Fred 1 1
George 0 George 0 0
Harry 1 Harry 1 1
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been suggested, andmany of the elements remain cornerstones of judgement on
whether an exposure really does cause a disease, or whether an intervention is
effective in preventing or treating disease. These elements are discussed below.

Temporality
For an exposure to cause a disease it must precede the development of the
disease. This might seem obvious, but in some instances, say for a condition
like cancer that is often present for many years before diagnosis, it can be
difficult to decide whether an exposure really did occur before the true origin
of disease. If we find that people with stomach cancer have lower levels of
vitamin C in their blood than those without stomach cancer, can we be sure
that the low levels of vitamin C really preceded the growth of the cancer? Or
might the lower vitamin C levels be a result of the disease process? As you will
recall from Chapter 4, these questions can frequently be answered only by
performing cohort studies and, even then, it may be difficult to establish the
order of exposure and effect with certainty. Of all Bradford Hill’s factors this is
the only one that is an absolute requirement.

Strength of association
The stronger an association is (usually as described by the relative effect, OR
or RR), the less likely it is to be due solely to either bias or confounding.

Box 10.3 (continued)

each case. Therefore, although in the ‘real world’ shown in the left panel

the exposure appeared to be associated with the disease, in this example it

did not actually cause the disease.
The problem in real life is that we do not know what would have

happened to someone if their exposure level had been different so we

only know one of their two potential outcomes: what would happen if they

were exposed or what would happen if they were unexposed. The other

counterfactual outcome (it is counter to fact because it does not actually

occur) is unknown. This means we cannot say for sure whether the

exposure actually caused the disease in that individual. However, we can

estimate whether the exposure appears to be causing disease at the

population level and this is what we set out to achieve in epidemiological

studies by trying to ensure that our exposed and unexposed groups are

exchangeable (i.e. they are as similar as possible in every way except the

exposure) even if they are not exactly the same people.
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A strong association is thus more suggestive that the effect is real. However,
just because a relation is weak does not mean that it cannot be causal, only
that it is harder to eliminate study error as a possible explanation for the
apparent effect.
What constitutes a ‘weak’ or a ‘strong’ effect? There is no universal

agreement on this, but we might generally consider an effect (OR, RR)
greater than 2.0 to be moderately strong and an effect greater than 5.0 to
be strong. Note, however, that a small effect observed consistently in many
studies, especially if these are of different designs and performed in different
settings, may well give stronger evidence of causation than an effect that is
strong in one or two studies but not found in others (see ‘Consistency’,
below, and Chapter 11). It is important not to be too dismissive of ‘weak’
effects, as these can be of great public health importance when the exposure
is common and the consequences severe. For example, smoking is well
accepted as an important cause of coronary heart disease but, as you saw
in Table 5.4, the RR for CHD among smokers compared to non-smokers in
the British Doctors’ Study was only 1.6.

Consistency
An effect found consistently across a range of studies of different types and/
or in different populations gives some reassurance that it is not an artefact.
Figure 10.4 summarises the results of 10 studies that looked at the relation
between frequency of aspirin use and risk of colorectal cancer. If we look
first at the square boxes that represent the relative risks, we see that, while
there is some variability, all are less than 1.0 and in six the association is
statistically significant (i.e. their 95% confidence intervals do not cross 1.0).
When the data from all 10 studies were combined the overall ‘pooled’ RR
was 0.80 (95% confidence interval 0.75–0.85), suggesting that there was a
20% reduction in risk among those who took aspirin most frequently. The
results are, therefore, quite consistent and so increase belief that the
association between aspirin use and colorectal cancer might be ‘causal’
(note in this case the relationship is reversed and aspirin prevents colo-
rectal cancer).
However, lack of consistency need not in itself rule out causation. Differing

results could reflect variation in study design or quality, or an exposure could
have a different effect in people with a different genetic make-up or with
different exposures to other factors that might modify (interact with) the
possible cause of interest. As you will see in the next chapter, it is important
to give thoughtful consideration to why studies might give different results
(heterogeneity) when reviewing the evidence for an association; indeed, this is
essential for a good review.
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Dose–response relationships
If a factor does cause a disease, then the risk of developing the disease is likely
to be related to the amount or ‘dose’ of exposure. This is often a function of
both level and duration of exposure. Figure 10.5 shows some data from the first
eight years of follow-up of the US Nurses’ Health Study. The investigators
calculated the age-adjusted relative risk that a woman would develop type-2
diabetes on the basis of her body mass index (BMI; weight/height2) and found
that the risk of diabetes increased dramatically with increasing body size,
particularly for women with a BMI greater than 25 kg/m2 (the upper limit of
what is usually considered to be ‘normal’). Among the heaviest women, those
with a BMI of 35 kg/m2 or greater, the risk of diabetes was almost 60 times that
of women with a BMI less than 22 kg/m2. Similarly, we saw that the risk of lung
cancer increases sharply with increasing numbers of cigarettes smoked
(Figure 1.1). Patterns like these add credence to the idea that an association
is causal. Note, however, that measurement of dose is not always straightfor-
ward. In the British Doctor’s Study discussed in previous chapters, Doll and
Hill used a simple measure of dose of smoking, namely ‘average number of
cigarettes smoked per day’. This clearly worked very well, but does not capture

Relative risk (95% CI)
0.1 1 10

Figure 10.4 The relation between
frequency of aspirin use (high vs. low)
and risk of colorectal cancer. The
squares represent the relative risk,
with the size of the square being
proportional to the size of the study,
and the horizontal lines represent the
95% confidence intervals. The open
diamond represents the relative risk
and 95% confidence interval from all
10 studies combined.
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other important information such as the number of years that someone has
smoked. These days this additional information would almost always be
included in any assessment of effects of smoking, often in a combined variable
called ‘pack-years’, where one pack-year is equivalent to smoking 20 cigarettes
a day for 1 year (or 10 cigarettes a day for 2 years, etc.).
Of course, some genuine cause-and-effect relationships will not give such a

regular pattern. For instance, there may be a ‘threshold’ effect, whereby any
exposure above a certain level will lead to disease. For example, infectious
diseases often show a threshold effect as exposure to a number of organisms
below the ‘infectious dose’ is unlikely to cause disease but exposure to a
higher number of organisms will. The actual dose required for infection will,
however, differ depending on a person’s age, immune and nutritional status,
etc. (see Chapter 13). A dose–response relationship can therefore add weight
to an evaluation of causation, but its absence need not count against a
causal link.

Biological plausibility
A causal hypothesis should obviously be viewed in the light of its plausibility. If
there is a likely biological mechanism through which an exposure might cause
the disease, this can add substantial weight to a causal argument. Lack of
plausibility does not necessarily rule out causation, because increasing know-
ledge of disease mechanisms may make an association appear more credible
in time. The characteristic of plausibility is also tempered by the realisation
that scientists are ingenious by nature and can probably come up with a
plausible-sounding hypothesis in most situations if they believe an association
to be causal!
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Specificity
Bradford Hill presented this concept somewhat less clearly than the others on
his list – he suggested that, if an association were limited to a specific outcome,
then this would argue in favour of causation. He went on to say that this
characteristic should not be overemphasised because factors could cause
more than one disease and diseases might have more than one cause. This
concept was crudely interpreted as ‘one cause – one disease’ in attempts to
argue that cigarette smoking did not cause lung cancer: cigarettes were linked
to many different diseases, therefore their effects were not specific, therefore
they caused none of them.2

When we recall that many diseases are based on similar underlying path-
ologies (e.g. vascular diseases of the brain, heart and other organs frequently
stem from atherosclerosis) it is hardly surprising that a single exposure (e.g. a
high-fat diet) can be linked to a variety of different conditions. Nonetheless,
we would still not expect an exposure to be linked to all outcomes; thus there
must be some degree of specificity that we can use to inform an evaluation of
causation (Weiss, 2002). For example, bicycle helmets would be expected to
reduce the risk of head injury but not of other types of injury (specificity of
outcome). If results of studies suggested that helmet use did indeed reduce the
risk of injuries to the head only, then this would strengthen belief that it was a
causal (or in this case protective) association. An association seen only for one
particular type of analgesic (as in the Phenacetin study described in Box 4.4)
could again strengthen belief in causation (specificity of exposure). Similarly,
individuals might be susceptible to an exposure only if they have a particular
genetic make-up, so, if the relation is seen only for those with the specific
genotype (specificity of susceptibility), then belief in causation is again
strengthened.

Pulling it all together

Bradford Hill also suggested that consideration should be given to any experi-
mental data – these could come from studies in animals or other organisms or
from intervention studies in humans. Such evidence in humans is of course
crucial to assessing the benefits of interventions. The final two characteristics
that he put forward are sensible but of less direct help than the others:
coherence – a cause-and-effect interpretation should not conflict with the
known facts; and analogy to existing known causal associations. An additional
aspect to consider is that, if a relation is causal, then removal of the exposure

2 In fact, cigarette smoke has been shown to have multiple components, some of which do

show specificity of action at various sites.
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should lead to a reduction in the effect – as was seen in the time trends of
cigarette sales and lung cancer mortality in Figure 3.7.
Consideration of these issues can help us decide whether an association is

likely to be causal. Sometimes the decision may be clear-cut, but it is equally
likely to be controversial, and in this situation there can be no ‘right’ answer. It
is important to remember that these elements do not provide an infallible
checklist that will lead to the correct decision. Rather, they provide a frame-
work for an evaluation of causation.
Bradford Hill (1965) summarised the questions that should guide a consid-

eration of causation as follows:
Is there any other way of explaining the set of facts before us, is there any other

answer equally, or more likely than cause and effect?

An example: does H. pylori cause stomach cancer?

In the next chapter we will look at how we can review evidence to make
causal judgements in practice, but before we do this we will end this chapter
with an example of how we might consider the issues raised by Bradford
Hill to decide whether an observed association really is causal. You have
seen in earlier chapters that there appears to be a link between infection
with H. pylori (a bacterium that infects the stomach) and stomach cancer
rates. Many case–control studies have been conducted to evaluate this, but
these are fraught with problems, in particular because people with stomach
cancer may test negative for H. pylori even if they have been infected in the
past. As a result, there is the potential for differential misclassification of
cases as H. pylori-negative, thereby biasing the odds ratio towards the null.
Cohort studies are impractical because of the logistics of testing thousands
of cohort members for H. pylori. The best evidence therefore comes from
well-designed nested case–control studies (see Chapter 4) in which blood
samples were collected prior to the diagnosis of cancer. In 2001, a group
pooled the data from 12 such studies to evaluate this association
(Helicobacter and Cancer Collaborative Group, 2001). (We will discuss
pooled studies further in Chapter 11.) In all of the studies the cases and
controls were matched for age and sex and there were no other major con-
founders; there were also no obvious sources of selection or measurement
bias. Authors of all 12 studies reported an increased risk of stomach cancer
associated with infection, which was statistically significant (i.e. unlikely to
be due to chance) in nine. The odds ratio from all 12 studies combined was
2.4 (95% CI 2.0–2.8).
So could the relation be causal? The association is quite strong and also

consistent across these better studies. In all of them the blood samples used for
testing for H. pylori were collected before diagnosis of cancer, suggesting that
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infection does indeed precede cancer. Because, by and large, someone is either
infected or not infected, it is not possible to look for a dose–response relation-
ship, but the association appears to be fairly specific for some types of stomach
cancer, and laboratory studies have shown that some types of H. pylorimay be
more carcinogenic than others. Further experimental evidence comes from
studies that have shown that H. pylori infection induces cancer in some animal
models. A relation is also biologically plausible because the bacterial infection
directly affects the stomach, which is where the cancer occurs. Taken together,
there is thus good evidence for the conclusion, now widely accepted, that
H. pylori infection is indeed a cause of stomach cancer.

Conclusion

Although wholly reliable criteria for truly establishing causation do not exist,
modern society often requires a black-and-white answer. Clinicians need to
know what treatment to offer their patients and public health physicians need
to know what advice they should give the population to prevent disease. Also,
increasingly, rapid ‘proof’ is required for legal reasons when an individual sues
the government or a corporation claiming they have been exposed to some-
thing that made them sick. Unfortunately, as you will have gathered, this
yearning for certainty can rarely be fulfilled. As we have discussed, it is
impossible to prove something definitively so, ultimately, absolute proof is
almost impossible but the clearer our thinking and our insight into the
evidence, the better our judgements will be.

So, to conclude this chapter, if we had stopped the mouse from jumping
into the boat (i.e. removed one component cause) it would not have over-
turned at that precise point in time (we would have prevented that particular
outcome). But who is to say what would have happened if the other animals
had ventured out into the rougher water in the middle of the lake . . .

Questions

1. Your case–control study has shown a halving of risk of stroke among people
who eat cauliflower three or more times weekly. Before you can claim this
association is causal, which of the following alternative explanations must
you consider?
(a) chance,
(b) random misclassification of exposure,
(c) random misclassification of the stroke diagnosis,
(d) increased forgetfulness of stroke patients.

2. What other alternatives to a causal explanation for the association must
always be considered?

Additional questions
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3. If your finding is robust and none of the above alternatives seem likely,
what other factors would you consider when determining whether the
association between cauliflower and stroke is likely to be causal and why?
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While it is important to be able to read and interpret individual papers, as
we have noted previously the results of a single study are never going to
provide the complete answer to a question. To move towards this we need
to review the literature more widely. There can be a number of reasons for
doing this, some of which require a more comprehensive approach than
others. If the aim is simply to increase our personal understanding of a new
area then a few papers might provide adequate background material.
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Traditional narrative reviews, which give less emphasis to complete cover-
age of the literature and tend to be more qualitative, have value for
exploring areas of uncertainty or novelty, but it is harder to scrutinise them
for flaws. In contrast, a major decision regarding policy or practice should
be based on a systematic review and perhaps a meta-analysis of all the
relevant literature and it is this systematic approach that we will focus
on here.

What is a systematic review?

A systematic review should be a helpful synthesis of all of the relevant data –

highlighting patterns but not hiding differences. Although its primary data
units are whole studies rather than individuals, it should still have a clearly
formulated research question and be conducted with the same rigour as its
component studies. So how should we go about conducting a systematic
review? This is a major undertaking and excellent guidelines are widely
available for would-be reviewers (see e.g. the Cochrane Collaboration website
www.cochrane.org) so we will not attempt to cover all of the issues here. But,
in brief, it involves:

• identifying all potentially relevant primary research studies that address the
question of interest and including or excluding them according to predeter-
mined criteria;

• abstracting the data in a standard format and critically appraising the
included studies;

• summarising the findings of the studies, this might include a formal meta-
analysis to combine the results of all of the studies into a single summary
estimate; and

• an overall evaluation of the evidence with appropriate conclusions.

It follows from this that such a review should be structured in the same
way as a primary paper: an introduction to show why the research question
is of interest; a methods section to explain how studies were identified,
included/excluded and appraised, and how the data were abstracted; the
results where patterns are highlighted and differences assessed; and,
finally, a discussion where the results are interpreted, threats to validity
considered and causal conclusions drawn. Box 11.1 shows a condensed
excerpt from the methods section of a Cochrane systematic review of the
use of antibiotics for treating acute laryngitis, giving a sense of the detailed
approach required. In the next few pages we will discuss the various stages
of the review process as a guide to both reading and writing a systematic
review.
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Box 11.1 Are antibiotics effective for treating acute laryngitis?

Objectives

To assess the effectiveness and safety of different antibiotic therapies in

adults with acute laryngitis.

Search strategy

We searched the Cochrane Central Register of Controlled Trials

(CENTRAL 2014, Issue 11), MEDLINE (January 1966 to November week 3,

2014), EMBASE (1974 to December 2014), LILACS (1982 to December

2014) and BIOSIS (1980 to December 2014). The CENTRAL and MEDLINE

search strategies are provided. We imposed no language or publication

restrictions.

We employed other strategies including the searching of references of

review articles and books related to infections of the respiratory tract, and

handsearches of journals, etc. We searched grey literature such as

conference abstracts/proceedings, published lists of theses and

dissertations, etc., and other literature outside of the main journal

literature, where possible.

Trial selection

Randomised controlled trials (RCTs) comparing any antibiotic therapy

with placebo or another antibiotic in the treatment of acute laryngitis. The

primary outcome was an improvement in recorded voice score assessed

by an expert panel.

Data extraction

Two review authors (names provided) independently:

• retrieved the articles and assessed their eligibility from the title and

abstracts,
• assessed the full text of all studies identified as possibly relevant,
• assessed the risk of bias (see Box 9.2) for each study and resolved

disagreements by discussion.

Data synthesis

We used Review Manager 5.3 to create ‘Summary of findings’ tables. We

produced a summary of the intervention effect and a measure of quality

for each of the above outcomes using the GRADE approach (see ‘Drawing

conclusions’, below).

(Excerpted from Reveiz and Cardona, 2015.)
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Identifying the literature

The first challenge when conducting a systematic review is to identify all of the
relevant literature. The potential sources of data are numerous. MEDLINE
is probably the most commonly used source for epidemiological papers. At
June 2016 it contained more than 23 million references to articles published
since 1946 in 5,600 life sciences journals worldwide. It is freely accessible
through the US National Library of Medicine search engine PubMed® at
www.ncbi.nlm.nih.gov/pubmed/. EMBASE® is not so widely available but
has some advantages over MEDLINE in that it includes many additional
journals as well as conference abstracts. Another valuable database, particu-
larly for systematic reviews of trials of the effects of healthcare interventions, is
that of the Cochrane Collaboration (CENTRAL, www.cochrane.org). There are
also many other electronic databases that may be valuable sources of litera-
ture depending on the question you are researching (e.g. PsycINFO® has an
obvious specialised focus).
No electronic literature search is ever likely to be complete, so it is important

to use multiple strategies. Once several relevant articles have been identified, it
can help to check the papers that they cite, and also to look in the other
direction, i.e. for papers that have cited them (e.g. via PubMed which lists other
articles in PubMed that have cited the selected paper). Other sources include
personal communication with experts in the field who may know of additional
published articles (and unpublishedmaterial); theses, seminars, internal reports
and non-peer-reviewed journals (sometimes described as the ‘grey literature’);
and other electronic information including topic-specific Internet databases.

Publication and related biases

When searching the literature it is important to bear in mind that studies with
positive and/or statistically significant findings may be more likely to be
published than those without significant results. This publication bias is
related not only to selective acceptance by journals, but also to selective
submission to journals by researchers who may decide not to submit reports
from research that either finds no association at all (i.e. a null finding) or in
which the results are not statistically significant.

It is possible to check the
existence of publication bias
by drawing what is called a
funnel plot. In the absence of
bias, this should be a roughly
symmetrical inverted
funnel shape.

PEANUTS © 1982 Peanuts Worldwide
LLC. Dist. By UNIVERSAL UCLICK.
Reprinted with permission. All rights
reserved.
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Another problem is the preferential detection of articles in English.
For an English speaker there are several barriers to the inclusion of
non-English studies in a review, including the difficulties associated with
translation and the fact that non-English articles may be published in local
journals that are not indexed by major bibliographic databases. This is
more likely to be the case for less exciting findings. It is also important to
be aware that there may be multiple publications from one study and, if
these are included as separate studies in the review, this could bias the
conclusions.

Study inclusion and exclusion

Studies should be selected for inclusion in the review on the basis of pre-
defined criteria. Depending on the research question, it might be appropriate
to restrict the review to specific research designs, for example only random-
ised trials, or to those with specific methodological features. Such features
might include:

• the study size (e.g. only those studies with more than a certain number of
cases),

• the participants (e.g. a particular age range or sex),
• a specific outcome or the way in which the outcome was measured (e.g.
histological or serological confirmation),

• the way in which the exposure was measured or classified (e.g. a particular
type of blood test to measure an infection, more than two levels of alcohol
intake) and

• the duration of follow-up (e.g. more than 12 months).

Appraising the literature

The amount and types of literature generated by a search will vary enormously
depending on the subject area. For a review of a specific treatment the studies
may all be clinical trials, whereas an aetiological review is likely to include
observational studies of all types from case reports to cohort studies, with few
or no trials. As you have seen, different types of study answer different types of
questions, or may be subject to different biases when answering the same
question, so it is sensible to group them separately, at least to start with. This
grouping may then provide a logical framework to help organise the data
within the review.

Key information including aspects of the study design and conduct, the
potential for error and the relevant results should be abstracted onto
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purpose-designed forms and the validity of the studies evaluated as out-
lined in Chapter 9. In an ideal world the appraisers should be blinded
to the authors and the study results because this knowledge has been
shown to influence judgements about validity. In practice this is not always
possible, because the reviewers may already be too familiar with the
literature. Rigorous systematic reviews like that described in Box 11.1
will often specify the need for multiple assessors to reduce the potential
for bias.
A common approach to grading the quality of individual studies has

been to classify study designs according to a hierarchy such that those
at the top are considered to provide stronger evidence of an effect than
those further down the scale (Table 11.1). You will notice that this ranking
puts randomised trials at the top of the pile. While a classification of
this type may be appropriate in the clinical context where RCTs are the
norm, it is often not much help for an aetiological review. In 2003, the
British Medical Journal published an entertaining systematic review of
randomised controlled trials of ‘parachute use to prevent death and major
trauma related to gravitational challenge’ (Smith and Pell, 2003). Not
surprisingly, the authors failed to find any randomised trials for this
particular preventive intervention. Despite the tongue-in-cheek nature of
the report, the fact remains that not all interventions can be evaluated in
RCTs and a lack of RCT evidence does not mean a lack of useful evidence
for public health action. Even more important is the disregard for
the quality of individual studies inherent in this approach. A well-designed
and properly conducted cohort or case–control study could provide better

Table 11.1 A system commonly used to classify levels of evidence.

Level Evidence

I Evidence from at least one properly randomised controlled trial
II-1 Evidence from well-designed controlled trials without randomisation
II-2 Evidence from well-designed cohort or case–control studies, preferably from

more than one centre or research group
II-3 Evidence from comparisons over time or between places with or without the

intervention; dramatic results in uncontrolled experiments could also be
regarded as this level of evidence

III Opinions of respected authorities, based on clinical experience, descriptive
studies and case reports, or reports of expert committees

(Harris et al., 2001.)
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evidence than a small or poorly conducted trial, but this rigid hierarchy
would rate the evidence from the trial more highly. Box 11.2 considers the
value of randomised and non-randomised designs in healthcare evaluation
in more detail.

The need to move away from such a rigid approach has been well docu-
mented both for clinical research (Glasziou et al., 2004) and for health services
research in general (Black, 1996). A preferable approach, adopted by decision-
making bodies around the world such as the US Preventive Services Task
Force (USPSTF) and the Canadian Task Force on Preventive Health Care
(CTFPHC), is not to classify studies purely on the basis of their design but
also according to the quality of the evidence they provide. As its name suggests,
the USPSTF regularly reviews the evidence for and against a wide range of
preventive interventions. They rate studies according to specific criteria for
that design (based on the key questions of subject selection and measurement
that we discussed in Chapters 4 and 7). A ‘good’ study would generally
meet all of the specified criteria, a ‘fair’ study does not meet them all but is
judged not to have a fatal flaw that would invalidate the results, and a fatally
flawed study is classified as ‘poor’ (Harris et al., 2001). Another tool for
assessing the quality of a study is the Cochrane ‘Risk of bias’ tool that we
mentioned in Chapter 9 (Box 9.2) and was used by the authors of the review in
Box 11.1.

Summarising the data

The next step in any review is to draw the data together to simplify their
interpretation and to assist in drawing valid conclusions. It is important to look
both for consistency of effects across studies (homogeneity) and for differ-
ences among studies (heterogeneity). Could differences be due to chance
variation, or can they be explained by features of the studies or the popula-
tions they were conducted in? Graphs can be used to summarise the results of
many studies in a simple format and in some situations the technique of
meta-analysis can be used to combine the results from a number of different
studies.

Graphical display of results

One way to display the results of a number of different studies is in a figure
called a forest plot. Figure 11.1 shows a forest plot from a systematic review of
the relation between weight/BMI and ovarian cancer risk (Purdie et al., 2001).
It shows the results of all 23 case–control studies whose authors had reported
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Box 11.2 Randomisation versus observation

Most generic lists rank RCTs first in terms of study quality. For appropriate

questions, i.e. about the effects of various interventions, this is reasonable,

as you have seen. However, even for such questions caveats need to be

applied. If a randomised trial is not competently conducted, or is too small,

then its theoretical advantages disappear, and it can give misleading results

(Schultz et al., 1995). There are also many situations in which a trial would

be unfeasible, unethical, undesirable or unnecessary (Black, 1996), and

trials are generally irrelevant for questions related to frequency or

measurement validation (e.g. of the performance of a screening or

diagnostic test).

Estimates of the effects of treatment may differ between randomised and

non-randomised studies, but when direct comparisons have been made

neither method has consistently given a greater effect than the other

(McKee et al., 1999). Overall, it seems that dissimilarities between the

participants in RCTs and non-randomised studies explain many of the

differences; the two methods should therefore be compared only after

patients not meeting the RCT eligibility criteria have also been excluded

from the non-randomised study. Not surprisingly then, treatment effects

measured in randomised and non-randomised studies are most similar

when the exclusion criteria are the same and where potential prognostic

factors are well understood and controlled for in the non-randomised

setting. Taking this approach has helped reconcile some of the apparently

major differences between the effects of menopausal hormone therapy

(MHT) as found in RCTs (evidence of harm) and cohort studies (evidence

of health benefits). Closer consideration of the details of the different

studies suggests that differences in the ages at which women started

taking MHT – around menopause (average age 51 years in the USA) in the

cohort studies but at a mean age of more than 60 years in the trials – could

explain many of the differences (Manson and Bassuk, 2007). It is also

important to consider the precision of the RCT effect estimates – some are

based on so few events (especially when death is the outcome of interest)

that chance differences from the true underlying effect are quite likely.

(For an example of these issues from studies comparing the effectiveness

of various interventions to unblock coronary arteries see Britton

et al., 1998.)

The generalisability (see Chapters 7 and 9) of the results of RCTs can

also be questionable, given the highly selected nature of the participants:

(continued)
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data on this association, ordered with the most recent study at the top and the
oldest at the bottom. The odds ratio for each individual study is represented by
the black square, with the size of the square indicating the size (or ‘weight’ –
see ‘Meta-analysis’, below) of that particular study. The horizontal bar through
each box shows the 95% confidence interval for the odds ratio and the vertical
line indicates the point where there is ‘no effect’, i.e. an odds ratio of 1.0.
When the confidence interval crosses this line (i.e. it includes the null value) it

Box 11.2 (continued)

patients excluded from randomised controlled trials tend to have a worse

prognosis than those included (McKee et al., 1999). When both

randomised and non-randomised studies have been conducted and

estimates of treatment effect are reasonably consistent for patients at

similar risk, it allows more certain generalisation to the broader target

populations of the non-randomised studies.

Odds Ratio and 95% confidence interval
0.1 1 10

Figure 11.1 Diagrammatic
representation of the results of 23
case–control studies evaluating the
relation between extremes of
weight/BMI and risk of ovarian cancer
(Purdie et al., 2001).
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indicates that the result is not statistically significant (i.e. p � 0.05). (Note the
use of the logarithmic scale, which balances positive and inverse relative
effects visually around the null; i.e. an OR of 2.0 would be the same distance
from 1.0 as an OR of 0.5 in the opposite direction.)

Assessing heterogeneity

In this example the results of the 23 studies are scattered both sides of the line
that marks an odds ratio of 1.0 (i.e. no effect), and they show no obvious
pattern. The next step should be to evaluate this heterogeneity in more detail.
Are there any differences between the studies that could explain some of the
variation in their results?
One major methodological difference between the studies in this

example is subject selection: some were population-based and others were
hospital-based. We touched on some of the problems inherent in hospital-
based studies in earlier chapters – could this difference explain any of the
variation in the study results? Other possibilities to consider might include
the geographical areas where the research was done – for example, separ-
ating high- and low-risk countries, and the ages of the participants. In this
case, if we separate the hospital- and population-based studies (Figure 11.2)
we start to see some regularity. In each of the 11 population-based studies
at the bottom of Figure 11.2, the OR is greater than 1.0 (although many of
the individual results are not statistically significant), suggesting that
obesity/higher weight is associated with an increased risk of ovarian
cancer. In contrast, the results of the hospital studies still vary widely. In
this situation it was felt that using hospital-based controls might not be
appropriate, as obese people are more likely to have other health problems
and thus end up in hospital so their use could lead to overestimation of the
prevalence of obesity in the population and thereby to underestimation of
the obesity–cancer association.

Meta-analysis

Meta-analysis is a powerful technique that allows the results of a number of
different studies to be combined. Each study is assigned a weight based on the
amount of information it provides (e.g. the inverse of the standard error of the
OR) and in general larger studies have greater weight. A weighted average of
the individual study results can then be calculated. The assumption under-
lying this analysis is that all of the studies are estimating the same underlying
effect and any variation between their results is due to chance. If their results

There are formal statistical
tests to check for
heterogeneity between the
results of different studies. For
example Cochran’s Q-test and
I2 statistics.
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are very different (i.e. they are heterogeneous), as in the hospital-based studies
of BMI above, then this assumption may not be true and it might not be
appropriate to combine the results.

The diamond at the bottom of Figure 11.2 represents the combined odds
ratio for the 11 population-based studies; the centre indicates the point
estimate and the ends show the 95% confidence interval. In this case, it
indicates that being overweight increases the risk of ovarian cancer by 40%
(pooled OR = 1.4; 95% CI 1.2–1.6). Notice that the diamond does not overlap
the ‘no-effect’ line (i.e. the confidence interval does not include 1.0), so the
pooled OR is statistically significant. If we draw a dotted line vertically through
the combined odds ratio, it passes through the 95% confidence interval of each
of the individual studies. This is an indication that the results of the studies are
fairly homogeneous, but it is certainly not definitive. In this case a formal
statistical test for heterogeneity gives a p-value of 0.63. If p were < 0.05, this

Odds Ratio and 95% confidence interval
0.1 1 10

Population studies combined

Population-based studies

Hospital-based studies

 Hospital studies combined

Figure 11.2 Diagrammatic
representation of the results of 12
hospital-based and 11 population-
based case–control studies evaluating
the relation between extremes of
weight/BMI and risk of ovarian cancer
(Purdie et al., 2001).
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would suggest that differences between the results of the individual studies
were unlikely to be due to chance; however, the observed p-value is well away
from this, suggesting there is no significant heterogeneity and thus supporting
the ‘eyeball’ finding that the results are all fairly similar.
In contrast, if we combine the results of the 12 hospital-based studies, we

find a combined OR of 0.9 (95% CI 0.9–1.2), but a line through this point would
not pass through the confidence intervals of the individual studies. This
suggests that the results of the hospital-based studies are heterogeneous,
and this is confirmed by a statistical test for heterogeneity, which gives
p < 0.001, which is highly statistically significant. In this situation it is inappro-
priate to combine the results into a single estimate of effect.

Pooled analysis
An even more rigorous but much more time-consuming approach is known as
a pooled analysis or re-analysis. Instead of combining the summary results
(OR or RR) from a number of different studies, the investigator obtains copies
of the raw data from the original studies and re-analyses them in a consistent
way. An excellent example is the Oxford-based Collaborative Group on Hor-
monal Factors in Breast Cancer which, since the mid-1990s, has been produ-
cing reports based on analyses of over 50,000 women with breast cancer and
100,000 without, from data provided by more than 50 separate studies. The
collaboration’s first paper showed with great precision the very low absolute
risk of breast cancer conferred by the majority of patterns of oral contraceptive
pill use (Collaborative Group on Hormonal Factors in Breast Cancer, 1996).
This report removed a great deal of the uncertainty that remained about this
relation, despite many prior publications from individual studies.
Until recently, such pooled analyses were relatively uncommon: the effort

required to obtain the original data, clean, recode and re-shape each data set
to a common standard, conduct a new analysis and write the paper, all the
while maintaining full approval of all contributing investigators, is monumen-
tal. However, the last few years have seen an explosion in the number of
international consortia (and acronyms!) established specifically to bring
together investigators from around the world to pool genetic and/or epidemi-
ological data from different studies. This has been particularly true in the field
of molecular epidemiology, where it seems likely that aside from a small
number of ‘high-risk’ genes, such as the BRCA1 and BRCA2 genes identified
for breast and ovarian cancer, the effects of any individual genetic variant on
cancer risk are likely to be small and, as a result, very large numbers of
individuals are needed to show an association with any certainty. Examples
of these consortia include BCAC (Breast Cancer Association Consortium),
OCAC (Ovarian Cancer Association Consortium), PANC4 (Pancreatic Cancer
Case Control Consortium), E2C2 (Epidemiology of Endometrial Cancer
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Consortium), BEACON (Barrett’s and Esophageal Adenocarcinoma Consor-
tium), DIAGRAM (DIAbetes Genetics Replication And Meta-analysis)
Consortium . . . the list is ever-growing.

A word of caution
Combining the results of a number of studies usually generates an estimate
with narrow confidence limits, thereby giving a sense of precision and
accuracy that may be illusory. However, the combined results of a meta-
analysis will depend entirely on the studies selected for inclusion (or exclu-
sion) and Box 11.3 gives an example of where two systematic reviews reached
almost diametrically opposing conclusions due, at least in part, to the different
sets of studies considered appropriate for inclusion. (Note, this is also another
example of when simple descriptive data can be informative.)

Furthermore, as you saw in Chapters 7 and 8, there are numerous ways in
which bias can occur and the old adage still holds true: ‘rubbish in = rubbish
out’. Combining results cannot get rid of bias or undetected confounding and,
although a combined odds ratio from several poor studies may look good, it
will not compensate for problems in the individual studies. Figure 11.3 shows
the results of a pooled analysis of data from 32 studies looking at the relation
between birth weight and subsequent risk of breast cancer (dos Santos Silva
et al., 2008). When the authors separated the studies according to the source
of the birth weight information, they saw a clear trend towards increasing risk
of breast cancer with increasing birth weight among the 16 studies where the
information on birth weight came directly from birth records and was thus,
presumably, most accurate. The association was much weaker in the one
study where the information was provided by the women’s mothers when
the women themselves were children, and there was no association at all
among the 11 studies that relied on the women reporting their own birth
weight – almost certainly the least reliable source of information. (Note also
that the results of the statistical tests for heterogeneity are all non-significant
(p > 0.05), suggesting that the results of the various studies within each group
are all quite consistent.) This is a striking example where error and subsequent
non-differential misclassification (see Chapter 7) in the self-reported data has
completely masked what appears to be quite a strong association based on the
more accurate birth record information. If all of these studies had been pooled
together, it is likely that this association would have been missed.

Drawing conclusions

Once a review is complete, the final challenge is to draw appropriate
conclusions. Meta-analyses and pooled analyses that generate combined
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Box 11.3 Do mobile telephones cause brain cancer?

Given the unprecedented growth in the use of mobile telephones over the

last 25 years such that usage is now almost ubiquitous in many countries, a

major question is whether exposure to the radiofrequency fields they

generate causes brain cancer. This is both a highly controversial and highly

emotive area as brain cancers often occur at younger ages than many other

cancers and, because of their location, are often fatal. In mid-2009, two

meta-analyses attempted to address this question.

The first study focussed on the long-term effects of mobile phone use and

thus only included published studies where participants had used mobile

phones for at least 10 years. Because the radiofrequency waves generated by

mobile phones do not penetrate very far into the brain, they also restricted

their review to studies with a ‘laterality’ analysis, i.e. that considered whether

the cancer arose on the same side of the head preferred for phone use. A total

of 11 studies met these criteria. They found that use of a mobile phone for

10 or more years approximately doubled the risk of being diagnosed with a

brain tumour on the side of the head preferred for phone use, and that the

association was statistically significant for two types of brain cancer: gliomas

and acoustic neuromas. They therefore concluded that there was adequate

epidemiological evidence to suggest a link (Khurana et al., 2009).
The second group took a broader approach and included all published

studies that had evaluated this association (>20 individual reports). They

found that the current data did not show any increase in risk of brain cancer

with up to 10 years of mobile phone use and concluded that the data do not
suggest a causal association between mobile phone use and fast-growing brain

tumours such as gliomas (Ahlbom et al., 2009). The authors did, however,
acknowledge that longer follow-up was needed before any conclusions could

be drawn regarding longer-termuse and the effects on slow-growing tumours.

So why did these two meta-analyses come to such different conclusions?

The individual studies included in the meta-analyses have given quite

different results; some show a strong association and others see no effect.

No-one has, as yet, been able to adequately explain the reasons for this, but

it is likely that the different criteria used to determine which studies would

be included/excluded from each of the reviews led to their differing

conclusions. As to which is correct? It may be that only time and a longer

follow-up period will tell, although it is worth noting that, as yet, there have

been no overall increases in reported incidence or mortality rates of brain

cancer since use of mobile phones has become widespread (Deltour et al.,

2009; Inskip et al., 2010).
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effect estimates across studies provide more precise summary measures of
the strength of an association and sometimes of the dose–response relation-
ship. The homogeneity (or otherwise) of study results addresses the con-
cept of consistency – we do not require that effect estimates be near-
identical across studies to meet this criterion, simply showing that most
are positive (or negative) and reasonably similar with respect to their
confidence intervals (i.e. the 95% CIs are overlapping) may suffice. Also, if
more extreme heterogeneity can be shown to be due to differing method-
ology or degrees of study error, and results among the better studies are
reasonably consistent, then the review still provides helpful causal infor-
mation (Weed, 2000).

One system that was developed specifically to guide those reviewing
evidence in order to establish clinical guidelines, but that is also more
widely applicable, is ‘GRADE’ (Grading of Recommendations, Assessment,
Development and Evaluation Guyatt et al., 2008). This classifies the quality
of evidence as high, moderate, low and very low. Evidence based
on RCTs is initially considered as high quality, but this rating is down-
graded if the trials have limitations, their results are inconsistent or
imprecise, the evidence is indirect (it does not directly address the ques-
tion of interest) or there are concerns about reporting bias. In contrast,
evidence based on observational studies is initially considered low but
this rating can be upgraded if the effects are very large, there is evidence
of a dose–response relation or the likely effect of any bias would
have been to underestimate the true effect. The Cochrane Collaboration
has adopted the principles of the GRADE system for evaluating the quality

Source of birth size data (nos. cases / non-cases)

Birth weight category (kg)

Birth records (4,135 / 426,289) 

Parental recall in women’s childhood (2,887 / 107,003)

<2.5
2.5 -
3.0 - (baseline)
3.5 -
≥ 4.0

0.96 (0.80, 1.16)
0.90 (0.81, 1.01)
1
1.05 (0.97, 1.14)
1.12 (1.00, 1.25)

0.001 16 0.80
0.83
-
0.61
0.78

Relative risk
(95% CI)

P for
trend

No. of
studies

P for heterogeneity
within stratum b

<2.5
2.5 -
3.0 - (baseline)
3.5 -
≥ 4.0

0.96 (0.81, 1.13)
0.96 (0.86, 1.08)
1
1.02 (0.93, 1.12)
1.04 (0.92, 1.17)

0.45 1 -

Adult reports (14,361 / 69,669) 

.5 .75 1

Relative risk

1.5

<2.5
2.5 -
3.0 - (baseline)
3.5 -
≥ 4.0

0.19 111.05 (0.97, 1.13)
0.96 (0.92, 1.03)
1
0.95 (0.87, 1.03)
1.02 (0.91, 1.16)

0.78
0.77
-
0.18
0.06

Figure 11.3 Relative risk of breast
cancer (and 95% confidence intervals)
associated with increasing birth
weight, stratified by source of birth
weight data (from: dos Santos Silva
et al., 2008).
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of evidence from systematic reviews so this approach was used by the
authors in Box 11.1.

Assessing the quality of a systematic review

A principal feature of a modern systematic review is that it must have a
comprehensive methods section. As you saw in Box 11.1, the authors should
have detailed their literature-searching strategy and the processes of study
selection and appraisal and data extraction. Table 11.2 outlines a fairly com-
prehensive set of the key criteria for appraising the validity of a systematic
review which summarises and extends the major points made above. As for
reports from individual studies (Table 9.1), guidelines have been developed to
improve the reporting of meta-analyses. The main focus of the ‘Preferred
Reporting Items for Systematic reviews and Meta-Analyses’ or PRISMA state-
ment (Liberati et al., 2009, http://www.prisma-statement.org/) is on meta-
analyses of randomised controlled trials, but it can also be used for other
types of research, particularly evaluations of interventions. A parallel guide for
meta-analyses of observational studies is the ‘Meta-analysis Of Observational
Studies in Epidemiology’ or MOOSE statement (Stroup et al., 2000). Omitted
from some such lists, however, but always central to making a comprehensive
judgement, is a consideration of the logic and insight of the review, especially
its treatment of error, heterogeneity, causality and practical importance.

Making judgements in practice

Primary epidemiological data (from individual studies) and secondary data
(from reviews) are not ends in themselves. They aim to tell us about the
healthiness of populations, what we might need to change to improve their
condition, and how we might go about this. The goal of the enterprise is to
take action to improve health. This is not a modern phenomenon and, as you
have seen, many advances in public health pre-dated epidemiology. The
strong call to base action on good evidence (evidence-based practice) is,
however, quite recent, and has spread rapidly from clinical medicine to public
health. We will conclude this chapter with descriptions of how some influen-
tial national and international bodies conduct and use reviews to make
judgements regarding causation to inform practice and policy.

The US Preventive Services Task Force (USPSTF)

The USPSTF was convened by the US Public Health Service in the 1980s
to assess the merits of preventive activities in clinical practice

The SUPPORT Tools
(SUPporting POlicy relevant
Reviews and Trials) have
been developed to guide
the evaluation of
research evidence for
evidence-informed
policymaking (see Lavis et al.,
2009).
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Table 11.2 Guidelines for appraising the validity of a systematic review.

Criteria What to look for Comments

Focused research
question

The main research question should be
clear from either the title or the abstract.
The exposure, such as a risk factor or
therapy, and the outcome(s) of interest
should be expressed in terms of a
simple relationship

If the review addresses multiple questions it is
likely to be a general introduction to the area
and may have limited sources of evidence for
the conclusions drawn. Statements may be
made with few citations and limited in-depth
analysis of studies. Caution should be taken in
accepting conclusions from this type of review

Inclusion and
exclusion criteria

The eligibility criteria used to select
studies should be stated and should
specify the participants, exposures and
outcomes of interest and in some cases
the study design

If the eligibility criteria are not clearly stated you
have no way of knowing whether studies were
included (or excluded) solely on the basis of
their results, which could bias the conclusions
of the review

Comprehensiveness
of search strategy

Detailed search strategy indicating that the
authors have searched all the relevant
bibliographic databases with a variety of
appropriate search terms. Other
strategies such as hand searching and
snowballinga may be used

It is only possible to evaluate the thoroughness of
the search strategies if the methods used by
the authors are made explicit. If there is no
methods section then you should be cautious
in accepting any of the results

Assessment of
included studies

Statements that indicate whether
individual included studies are
scientifically sound as measured against
established criteria

The criteria for appraising the individual studies
should reflect the study design. For example, if
the review was examining a treatment effect
then the criteria should relate primarily to RCTs

Reproducibility of
assessmentsb

Statements that the appraisals were
conducted independently by at least two
reviewers and any differences resolved
by consensus or by a third person

Because appraisal of studies involves judgement
calls, decisions based on these appraisals are
subject to random errors or mistakes and
systematic errors or bias. Having two
independent reviewers should minimise these

Similarity of results
of included
studies

Detailed reporting of the results of
individual studies with some measure of
the differences (heterogeneity) between
them

If the results are very different it may not be
appropriate to combine them in a meta-
analysis. Instead there should be some
exploration of the reasons for the differences
(e.g. different populations, different study
methods, etc.)

Overall logic and
insight

Discussion of how error and heterogeneity
have been handled, also causality and
practical importance

These issues are central to making a
comprehensive judgement

(Adapted from Oxman et al., 1994.)
a Snowballing refers to the iterative process of searching where the results of the initial search are used to identify
missed papers through either a search of the reference list at the end of the identified paper or by using Science Citation
Index to see who has cited the identified paper.
b Multiple assessors are used in rigorous systematic reviews of clinical interventions such as those conducted through
the Cochrane Collaboration, but this level of rigour is less commonly used for aetiologic reviews. This need not
invalidate the results as long as the criteria used to include and exclude studies are clearly described.
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(http://www.uspreventiveservicestaskforce.org/). It aims to provide simple
practical guidelines for clinicians regarding the utility of preventive interven-
tions that they might use in their practice (over 200 to date). Many of the
interventions assessed relate to early detection of a wide range of conditions,
counselling to change behaviour and primary chemoprevention (e.g. aspirin
to prevent cardiovascular disease). Topic teams assigned by the task force
prepare systematic reviews of the evidence according to a standard protocol.
The evidence for a particular preventive service is classified as good, fair or
poor and then combined with a judgement of the net benefit of the service
(substantial, moderate, small or zero/negative). Notably, the public is invited
to comment at all stages of the process from the draft research plan to the draft
evidence review and recommendation statements. The USPSTF assesses the
reviews centrally and then makes formal recommendations with specific
ratings (AHRQ, 2004; Harris et al., 2001), examples of which are given below.
These recommendations translate into practice guidance for clinicians who
are advised to offer or provide services with ‘A’ and ‘B’ recommendations to
eligible patients; discourage the use of services with ‘D’ recommendations; offer
or provide services with ‘C’ recommendations to selected patients depending
on individual circumstances; and, for services with ‘I’ (insufficient evidence)
statements, carefully read the Clinical Considerations section for guidance, and
help patients understand the uncertainty surrounding these services.

A The USPSTF recommends that clinicians screen all pregnant women for
HIV, including those who present in labour who are untested and whose
HIV status is unknown. The net benefit of screening for HIV infection in
pregnant women is substantial (April 2013).

B The USPSTF recommends offering or referring adults who are overweight or
obese and have additional cardiovascular disease (CVD) risk factors to inten-
sive behavioural counselling interventions to promote a healthful diet and
physical activity for CVD prevention . . . The USPSTF concludes withmoderate
certainty that intensive behavioural counselling interventions to promote a
healthful diet and physical activity have amoderate net benefit in adults who
are overweight or obese and at increased risk for CVD (August 2014).

C The USPSTF recommends that clinicians selectively offer screening for
abdominal aortic aneurysm in men ages 65–75 years who have never
smoked rather than routinely screening all men in this group (June 2014).

D The USPSTF recommends against prostate-specific antigen (PSA)-based
screening for prostate cancer . . . The benefits of PSA-based screening for
prostate cancer do not outweigh the harms (May 2012).

I The USPSTF concludes that the current evidence is insufficient to assess the
balance of benefits and harms of screening for vitamin D deficiency in
asymptomatic adults (November, 2014).
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A parallel activity for community prevention, the Community Guide, was
established by the US Department of Health and Human Services in
1996 and is conducted by the Task Force on Community Preventive Services
(http://www.thecommunityguide.org/index.html). Some typical findings are
summarised in Table 11.3.

The International Agency for Research on Cancer (IARC):
monographs programme

Three times a year the IARC convenes a working party of experts to review all
of the literature relating a specific exposure or exposures to cancer. This
process is one of the most comprehensive conducted anywhere; in addition
to studies in humans, the working parties also include experts on the expos-
ure itself (chemists, toxicologists, physicists, etc.), on animal studies and on
molecular biology. The IARC secretariat performs comprehensive literature
searches and sends the material to the individual scientists who are asked to
summarise the literature in a particular area. During a week-long face-to-
face meeting, subgroups of the working party (exposure data, human studies,
animal studies and laboratory data) discuss and finalise the draft sections of
the report and prepare a summary for their section. The full group then
comes together to reach a final consensus. The human and animal data are
first classified separately as providing sufficient, limited or inadequate evi-
dence of carcinogenicity or, occasionally, evidence suggesting a lack of
carcinogenicity. These data are then combined with the exposure data and
molecular information to make a more formal assessment of causality,
classifying agents as:

Table 11.3 Some findings from the US Community Guide regarding community interventions.

Finding Intervention Date

Recommended Combined diet and physical activity promotion programmes to prevent
type-2 diabetes among people at increased risk

July 2014

Universal motorbike helmet laws August 2013
Behavioural interventions that aim to reduce recreational sedentary

screen time among children
August 2014

Insufficient evidence Community-based interventions to encourage use of helmets, facemasks
and mouthguards in contact sports

October 2013

Internet-based smoking cessation interventions December 2011

Recommended against Policies facilitating the transfer of juveniles to adult justice systems April 2003
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• carcinogenic to humans,
• probably carcinogenic to humans,
• possibly carcinogenic to humans,
• not classifiable regarding carcinogenicity to humans or
• probably not carcinogenic to humans (http://monographs.iarc.fr).

As at August 2016 they had classified 118 agents or mixtures as clear carcino-
gens with another 80 classified as probable and 289 as possible carcinogens,
reflecting the general lack of certainty when dealing with evidence of this type.
(Only one compound has been classified as probably not carcinogenic.)
A further 502 agents were found to be not classifiable because there was
insufficient evidence to make any judgement. (For further information see
http://monographs.iarc.fr/.)

The World Cancer Research Fund and American Institute of Cancer Research

The aim of the World Cancer Research Fund (WCRF) International is to ‘lead
and unify a global network of cancer charities dedicated to the prevention
and control of cancer by means of healthy food and nutrition, physical activity
and weight management’ (http://www.wcrf.org/index.php). In 1997, the
WCRF joined forces with the American Institute for Cancer Research (AICR)
to jointly publish a comprehensive review of the current state of knowledge
regarding the relation between nutrition and cancer (WCRF and AICR, 1997).
In 2007 the second edition of this report was published to incorporate new
evidence that had accumulated since 1997 (WCRF and AICR, 2007) and since
then updates for a number of cancer sites have been published via the
‘Continuous Update Project’. The reviews are contracted out to international
teams of experts and their detailed methodological plans for the review are
critiqued by others and refined before the reviews are conducted and again
before the results are published. While these reviews are not directly linked to
policy, the aim is to provide good scientific evidence that can be used by
policy makers, research scientists, health professionals and community
groups around the world.

The end result

Once a cause-and-effect association has been established beyond any rea-
sonable doubt, action can be taken to change public policy, legislation,
health education, clinical practice or the direction of research. Thalidomide
is no longer given to women during pregnancy because it causes birth
defects; diethylstilboestrol is no longer prescribed to prevent miscarriage
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because it can cause vaginal cancer in the women’s daughters; dietary advice
and drugs are used to lower cholesterol levels to prevent heart disease; the
hazards of smoking are publicised, and legislation restricting smoking in
public has been enacted in many countries; seat-belt wearing is becoming
ubiquitous internationally – the list goes on. It is, however, worth noting that
it has taken a long time, decades even, to establish causality for some of
these associations. This tension between the desire for full knowledge and
the social need for action is a given in public health so policy makers and
planners have to act despite this and make the best of what is available. As
one of the seminal figures in health services research said:

The absence of excellent evidence does not make evidence-based decision making

impossible; what is required is the best evidence available not the best evidence possible

(Muir Gray, 1997).

We will end with a question that still causes controversy: should we recom-
mend widespread mammographic screening for women under the age of
50 years (Box 11.4)? (Or, some would argue, should we recommend it at all?
(Various, 2004).)

Box 11.4 Should women under the age of 50 be offered routine
mammographic screening?

The debate surrounding this question highlights the difficulties of

interpreting evidence. In 1993, an expert panel at the US National Cancer

Institute (NCI) concluded that there was no evidence for a benefit of

mammographic screening for women aged 40–49 years and the NCI

withdrew their recommendation for screening in this age group. In

response, the American Cancer Society reaffirmed their recommendation

for screening, which was based on the view of a separate expert panel. The

publication of additional data in 1996 opened up the question again and

the NCI responded by convening a consensus conference in 1997. The

independent experts at the conference again concluded that there was

insufficient evidence to recommend routine mammography for women

under the age of 50 years. This conclusion led to such a public outcry that

the NCI was forced to reconsider their position. The question went back to

the National Cancer Advisory Board, a presidentially appointed

committee, who voted 17 to 1 in favour of recommending mammographic

screening for younger women. Since then, the controversy has continued,

with groups reaching opposing conclusions based on the same evidence.

(continued)
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Conclusion

In the previous chapters we have discussed the practical ‘nuts and bolts’ of
epidemiology. In Chapters 2–5 we considered the ways in which we can
measure health and quantify associations between ‘exposures’ and health
‘outcomes’. We then looked critically at how we interpret the results of
individual studies in Chapters 6–9 and in Chapter 10 we started to think about
how we can assess whether an association might be causal. In this chapter we
have considered how we can bring together all of this information to inform
decision-making. We will now move on to look at some practical applications
of epidemiology that aim to reduce the burden of disease in a community:
surveillance, outbreak management, prevention and screening. These will
draw on the core concepts that you have learned so far and reinforce the
epidemiological perspective – a mix of science and art that requires an open
mind, attention to detail and the potential for error, a willingness to consider

Box 11.4 (continued)

As you will see in Chapter 15, the evaluation of screening programmes is

not simple, and in this particular instance there is still no clear consensus.

In 2015, IARC convened a working group to assess the evidence and,

although the overall conclusion was that the evidence for a benefit for

women under 50 was limited, almost half of the group considered there

was sufficient evidence of a benefit for women aged 45–49 (Lauby-

Secretan et al., 2015). In the same year, the USPSTF released their new

draft recommendations for breast cancer screening concluding that ‘The

decision to start screening mammography in women before age 50 years

should be an individual one. Women who place a higher value on the

potential benefit than the potential harms may choose to begin screening

between the ages of 40 and 49 years. (C recommendation)’. They also

noted that ‘A C grade is not a recommendation against screening. It means

that the balance of benefits and harms for any individual woman is a

delicate one. The Task Force recognizes mammograms can help women in

their 40s reduce their risk of dying from breast cancer. Because the risk of

developing breast cancer is lower in women under 50, the potential benefit

of mammography for women under 50 is also smaller’ (USPSTF, 2015).

[Both groups recommended mammography for women aged 50–74 years

(USPSTF B recommendation), but USPSTF concluded the current

evidence was insufficient to assess the balance of benefits and harms of

screening mammography in women 75 years and older (I statement).]
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alternative explanations and, finally, the ability to be both constructively
critical and pragmatic.

Questions

1. List three strategies you might use to identify relevant literature to include
in a systematic review.

2. What is meant by the term ‘grey literature’ and why is it a good idea to
search this to identify potentially relevant studies for a systematic review?

3. If early results from a trial were published after one year of follow-up and
then a second paper with longer follow-up was published a few years later,
is it appropriate to include both of these publications in a systematic review
or meta-analysis of the topic? Why/why not?

REFERENCES

Ahlbom, A., Feychting, M., Green, A., et al. (2009). Epidemiologic evidence on
mobile phones and tumor risk. A review. Epidemiology, 20: 639–652.

AHRQ. (2004). Guide to Clinical Preventive Services, Third Edition: Periodic
Updates. AHRQ Publication No. 04-IP003, January 2004. Rockville, MD:
Agency for Healthcare Research and Quality.

Black, N. (1996). Why we need observational studies to evaluate the effectiveness
of health care. British Medical Journal, 312: 1215–1218.

Britton, A., McKee, M., Black, N., et al. (1998). Choosing between randomised
and non-randomised studies: a systematic review. Health Technology
Assessment, 2 (13): 1–124.

Collaborative Group on Hormonal Factors in Breast Cancer. (1996). Breast
cancer and hormonal contraceptives: collaborative reanalysis of individual
data on 53297 women with breast cancer and 100239 women without breast
cancer from 54 epidemiological studies. The Lancet, 347: 1713–1727.

Deltour, I., Johansen, C., Auvinen, A., et al. (2009). Time trends in brain tumor
incidence rates in Denmark, Finland, Norway, and Sweden, 1974–2003.
Journal of the National Cancer Institute, 101: 1621–1724.

dos Santos Silva, I., de Stavola, B., McCormack, V. and Collaborative Group on
Pre-Natal Risk Factors and Subsequent Risk of Breast Cancer. (2008). Birth
size and breast cancer risk: re-analysis of individual participant data from 32
studies. PLoS Medicine, 5: e193.

Glasziou, P., Vandenbroucke, J. and Chalmers, I. (2004). Assessing the quality of
research. British Medical Journal, 328: 39–41.

Guyatt, G. H., Oxman, A. D., Vist, G. E., et al. (2008). GRADE: what is “quality of
evidence” and why is it important to clinicians? British Medical Journal, 336:
995–998.

References

Additional questions

310 Reviews and their uses



Harris, R. P., Helfand, M., Woolf, S. H. et al. for the Methods Work Group Third
US Preventive Services Task Force. (2001). Current methods of the US
Preventive Services Task Force: a review of the process. American Journal
of Preventive Medicine, 20 (3S): 21–35.

Inskip, P. D., Hoover, R. N. and Devesa, S. S. (2010). Brain cancer incidence
trends in relation to cellular telephone use in the United States. Neuro-
Oncology; 12: 1147–1151.

Khurana, V. G., Teo, C., Kundi, M., Hardell, L. and Carlberg, M. (2009). Cell
phones and brain tumors: a review including the long-term epidemiologic
data. Surgical Neurology, 72: 205–214.

Lauby-Secretan, B., Scoccianti, C., Loomis, D., et al. for the IARC Handbook
Working Group. (2015). Breast-cancer screening – viewpoint of the IARC
Working Group. The New England Journal of Medicine, 372: 2353–2358.

Lavis, J. N., Oxman, A. D., Lewin, S. and Frethein, A. (2009). SUPPORT Tools for
evidence-informed health policymaking (STP). Health Research Policy and
Systems, 7(Suppl I): II.

Liberati, A., Altman, D. G., Tetzlaff, J., et al. (2009). The PRISMA statement for
reporting systematic reviews and meta-analyses of studies that evaluate
healthcare interventions: explanation and elaboration. British Medical Jour-
nal, 339: b2700 doi: 10.1136/bmj.b2700.

Manson, J. E. and Bassuk, S. S. (2007). Invited commentary: Hormone therapy
and risk of coronary heart disease – why renew the focus on the early years
of menopause? American Journal of Epidemiology, 166: 511–517.

McKee, M., Britton, A., Black, N., et al. (1999). Interpreting the evidence: choos-
ing between randomised and non-randomised studies. British Medical
Journal, 319: 312–315.

Muir Gray, J. A. (1997). Evidence-Based Health Care – How to Make Health Policy
and Management Decisions. Edinburgh: Churchill Livingstone.

Oxman, A. D., Cook, D. J. and Guyatt, G. H. (1994). Users’ guides to the medical
literature VI. How to use an overview. Journal of the American Medical
Association, 272: 1367–1371.

Purdie, D. M., Bain, C. J., Webb, P. M., et al. (2001). Body size and ovarian
cancer: case–control study and systematic review (Australia). Cancer Causes
Control, 12: 855–863.

Reveiz, L. and Cardona, A. F. (2015). Antibiotics for acute laryngitis in adults.
Cochrane Database of Systematic Reviews, Issue 5. Art. No.: CD004783. DOI:
10.1002/14651858.CD004783.pub5.

Schultz, K. F., Chalmers, I., Hayes, R. J. and Altman, D. G. (1995). Empirical
evidence of bias. Dimensions of methodological quality associated with
estimates of treatment effects in controlled trials. Journal of the American
Medical Association, 273: 408–412.

Smith, G. C. S. and Pell, J. P. (2003). Parachute use to prevent death and major
trauma related to gravitational challenge: systematic review of randomised
controlled trials. British Medical Journal, 327: 1459–1461.

References 311



Stroup, D. F., Berlin, J. A., Morton, S. C., et al. (2000). Meta-analysis of observa-
tional studies in epidemiology. A proposal for reporting. Journal of the
American Medical Association, 283: 2008–2012.

USPSTF (United States Preventive Services Task Force). (2015). Draft Recom-
mendation Statement: Breast Cancer: Screening. U.S. Preventive Services
Task Force. May 2015. http://www.uspreventiveservicestaskforce.org/Page/
Document/UpdateSummaryFinal/breast-cancer-screening1, accessed 6
June 2015.

Various. (2004). Screening for breast cancer: point–counterpoint. International
Journal of Epidemiology, 33: 43–74.

WCRF (World Cancer Research Fund) and AICR (American Institute for Cancer
Research). (1997). Food, Nutrition and the Prevention of Cancer: A Global
Perspective. Washington, DC: AICR.

WCRF (World Cancer Research Fund) and AICR (American Institute for Cancer
Research). (2007). Food, Nutrition, Physical Activity, and the Prevention of
Cancer: A Global Perspective. Washington, DC: AICR.

Weed, D. L. (2000). Interpreting epidemiological evidence: how meta-analysis
and causal inference methods are related. International Journal of Epidemi-
ology, 29: 387–390.

RECOMMENDED FOR FURTHER READING

• A thorough review of a tricky contemporary exposure:
Ahlbom, A., Feychting, M., Green, A., et al. (2009). Epidemiologic evidence on
mobile phones and tumor risk. A review. Epidemiology, 20: 639–652.

• A clear reminder of the need to consider all study types for inclusion in a
review:
Black, N. (1996). Why we need observational studies to evaluate the effective-
ness of health care. British Medical Journal, 312: 1215–1218.

312 Reviews and their uses

http://www.uspreventiveservicestaskforce.org/Page/Document/UpdateSummaryFinal/breast-cancer-screening1
http://www.uspreventiveservicestaskforce.org/Page/Document/UpdateSummaryFinal/breast-cancer-screening1


12

Surveillance: collecting health-related data for
epidemiological intelligence and public health action

Martyn Kirk and Adrian Sleigh

The scope of surveillance 314
Why conduct surveillance? 315
Surveillance essentials 316

Defining a case for surveillance purposes 318
Collection of surveillance data 319
Analysis of surveillance data 321
Evaluation of surveillance systems 321

Types of surveillance 322
Indicator-based surveillance 322
Event-based surveillance 324
Digital surveillance – a new era for event-based surveillance 325
Mass gathering surveillance 327

Sentinel surveillance – the health status of sentinels 327
Other forms of surveillance 328

Summary 329
Questions 329

Description
Chapters 2–3

Association
Chapters 4–5

Alternative
explanations
Chapters 6–8

Integration &
interpretation
Chapters 9–11

Practical
applications

Chapter 12:
Surveillance

Box 12.1 The Ebola virus outbreak, 2014–2015

Detection of the primary event: In March 2014, Guinea reported an

outbreak of febrile illness among 49 people with a high case fatality

rate (59%); it was later confirmed as Ebola virus. Epidemiological

investigation of the reports identified that the primary case was likely to

have been a two-year-old child who died in December 2013 (Baize

et al., 2014).
(continued )
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In the previous chapters we have considered the nuts and bolts of epidemi-
ology. In this and the next few chapters we move on to look at how epidemi-
ology is used in practice to improve public health. We start with ‘surveillance’
as, without the ability to gather timely information on emerging and changing
health problems, public health can be paralysed or, at best, inefficient. In this
chapter we discuss the design and use of surveillance systems that allow
health officials to detect new risks and diseases such as Ebola promptly, track
known diseases and generate data needed for effective health planning and
resource allocation.

The scope of surveillance

Surveillance is a cornerstone of public health activities as it provides data and
intelligence for development of policy, disease prevention programmes,

Box 12.1 (continued)

International response: The international response to the outbreak

initially seemed effective, but cases continued to spread in Guinea and to

neighbouring countries, leading to Médecins Sans Frontières declaring

that the outbreak was ‘out of control’ in June 2014. The World Health

Organization (WHO) published a roadmap to control in August 2014

(WHO, 2014) and declared the outbreak a ‘Public Health Emergency of

International Concern’.

Controlling the outbreak: With support from international partner

organisations, affected countries established programmes to identify

cases, deaths and those who had been in contact with them. This

required investigative teams to travel from house to house in very

remote areas to track down contacts. The resulting information was

entered into specialised databases and communicated through regional

and country offices to WHO. The data were discussed at daily meetings

and used to identify areas of high risk and those where the infection

had been cleared. This ‘surveillance’ was vital for detecting new cases

and outbreaks and for monitoring spread of infections to neighbouring

countries.

Preparedness of unaffected countries: Despite the challenges, the

WHO Africa region now advocates integrated surveillance of disease and,

in response to this outbreak, international agencies have assisted

neighbouring countries to strengthen their surveillance and control

activities (WHO Ebola Response Team, 2014).
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estimation of disease burden, detection of outbreaks and applied research. It
was originally applied primarily to infectious diseases, and we will mainly
discuss surveillance in this context, but the approach, principles and practice
have broadened to include chronic diseases, injuries, health system outcomes,
risk factors and even potential hazards to human health. Surveillance is
defined as the: ‘systematic and continuous collection, analysis, and interpret-
ation of data, closely integrated with the timely and coherent dissemination of
the results and assessment to those who have the right to know so that action
can be taken’ (Porta, 2014). Ultimately, these data should be used to inform
public health interventions and action to prevent human illness. The emphasis
of this definition, and the feature that separates surveillance from the collec-
tion of data for monitoring purposes, is the dissemination of data for the
purposes of public health action.
A good example of the importance of public health surveillance comes

from the Ebola virus disease epidemic in West Africa in 2014–2015 – a crisis
in international health (Box 12.1). The Ebola virus is spread by close contact
with an infected person during the symptomatic phase of their illness, or
contact with the body of someone who died from the disease. In the
outbreak in West Africa, the international community focussed on control-
ling the outbreak rapidly, supported by establishment of surveillance for
possible Ebola infections. This surveillance was critical to determine when
disease activity had declined in a given regional area (WHO Ebola Response
Team, 2014).

Why conduct surveillance?

Public health surveillance provides information on the changing nature of
diseases in populations and, ideally, there is a clear link between the

Box 12.2 The role of epidemiology in surveillance

Epidemiology has a fundamental role in public health surveillance:

• epidemiology provides the tools to guide data collection, collation and

analysis;
• the concepts of rates of infection and analysis by subpopulations are key

to analysis of surveillance data;
• epidemiology provides a systematic framework for assessing potential

biases that are inherent in surveillance data; and
• surveillance provides much of the data essential to descriptive

epidemiology (see Chapter 3).
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surveillance system outputs and control programmes or interventions, such as
introduction of a vaccine or health promotion campaign. There are several
reasons why it is important to conduct surveillance:

• To inform public health policy. For some diseases, such as influenza, infor-
mation arising from surveillance of circulating strains in one hemisphere is
used to inform decisions about vaccine composition for the next influenza
season in the other hemisphere.

• To detect clusters or outbreaks. Diseases that are prone to occurring in
clusters or outbreaks require surveillance to allow timely and effective
investigation to identify a source. We will discuss this further in
Chapter 13.

• To monitor the effect of interventions. Public health and other agencies may
institute control measures that should reduce the incidence and prevalence
of diseases; the effects of these can be observed in disease-specific
surveillance data.

• To monitor the introduction of new pharmaceutical drugs. New drugs are
often licensed before long-term safety data are available. Electronic data-
bases now make it much simpler to link prescribing and health databases to
identify unexpected safety concerns more rapidly than before.

• To quantify the burden of disease. Surveillance data can be critical to identi-
fying the effects that diseases have on affected populations in terms of cases,
hospitalisation, disability and deaths.

• To support disease elimination and eradication. Multiple modes of surveil-
lance play a critical role during the phases of elimination and eradication of
a disease (e.g. during the eradication of smallpox, see Box 1.5) and surveil-
lance efforts are intensive due to the need to have highly sensitive systems
for detecting cases.

Surveillance can provide dynamic data on population risks, morbidity and
mortality – all key indicators for epidemiological intelligence on community
health. However, given the limited resources of public health, it is important
that only conditions of public health importance are considered for surveil-
lance. Public health importance may be defined by a range of factors (we will
discuss these further below) that should be well articulated before a condition
is put under surveillance.

Surveillance essentials

To understand the basics of surveillance, we need to consider the exposure–
disease–diagnosis pathway as this influences whether cases progress from
exposure through to reporting to a surveillance system. Firstly, a person
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must be exposed to a hazard, such as another infectious person, and there
will then be a latency or incubation period that depends on the agent. In
some instances, there may be some other necessary cause, such as prior
exposure to antibiotics or a comorbid illness, that will potentiate or result in
the person moving on to develop disease. There are then other factors that
predict whether a diseased person goes on to seek diagnosis and medical
treatment. These include the proportion of people who develop symptoms,
the severity of the major signs and symptoms and how communicable the
disease is. Finally, for a case to be reported to a surveillance system,
the health care provider making the diagnosis must recognise that it fits
the criteria (whether these are specific tests for a clearly defined condition
or the more general characteristics of a disease syndrome) for a reportable
condition.
The steps in this pathway highlight many important criteria of surveillance,

including timeliness of the data, the sensitivity of the system to detect a case,
the representativeness of cases that are reported and, ultimately, the cost of
the system. The key steps in surveillance are (1) collection of data, (2) collation
and cleaning of data, (3) analysis and interpretation and (4) dissemination of
data to those who can take action and, importantly, back to those who
provided the data. Surveillance systems should have well-defined aims and
objectives that are clearly communicated to stakeholders for surveillance to be
successful.
It is likely that only a proportion of people with the disease under surveil-

lance will present to a health care recorder, be tested and test positive for the
disease in question. This is equivalent to the ‘sensitivity’ of the system (we will
discuss this further in Chapter 15) and is the complement of ‘undercount’, the
proportion of those with disease who are not counted. For diseases where
some people may experience mild symptoms and not present for medical
attention, such as Salmonella infections, the undercount may be substantial.
In contrast, for a condition with a severe outcome, such as meningococcal
meningitis where most of those affected are very ill and present to a hospital,
there may only be a small degree of undercount inherent in surveillance.
A system with low sensitivity may be acceptable if there is still a reasonable
probability of identifying outbreaks. Undercount in surveillance is typically
represented by a pyramid showing loss of cases through the system.
Figure 12.1 shows the reporting pyramid for surveillance of a disease trans-
mitted by contaminated foods where a person must visit a doctor and submit a
specimen for testing in order to be counted as a case.
Depending on the nature of the disease and the aims of surveillance, the

response to a single case will be different. For many diseases, health depart-
ments do not follow up all cases. However, they may interview all cases of
diseases with epidemic potential, if there is a planned evaluation of an

Health care recorders are
those who provide reports of
cases or other details about
disease. They include
physicians in community
clinics or microbiologists in a
laboratory.

In the USA an estimated 29
Salmonella infections – a
common cause of foodborne
disease – occur in the
community for every one that
is reported to surveillance
(Scallan et al., 2011).
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intervention or where there is a requirement to provide prophylaxis. For
example, the incidence and burden of hepatitis A has declined globally due
to improvements in sanitation and hygiene (Franco et al., 2012). It is routine
for health department staff to contact and interview all cases of hepatitis A in
high-income countries to determine if there is a need to offer hepatitis
A immunoglobulin (prophylactic vaccination) to contacts, and to use their
exposure histories to identify links between cases that might indicate an
outbreak is occurring.

Defining a case for surveillance purposes

All forms of surveillance rely on some form of case definition which specifies
elements of person, place and time. The case definition may be syndromic in
nature and specify clinical signs and symptoms, or it may be more specific and
require particular pathology, but it is important to recognise that what defines
a case for surveillance purposes may differ from what a doctor might use to
diagnose a condition in a patient. This is particularly true for surveillance
during outbreak settings when there may be multiple case definitions repre-
senting greater degrees of certainty about whether a patient is a true case
or not.

Where a case definition is based on a syndrome, it is called ‘syndromic
surveillance’. Syndromic surveillance can be much more sensitive as it picks
up cases of illness that may be due to many different disease-causing agents,
but it may not be very specific and may consequently be less useful for public

Person exposed to pathogen
or agent through food

Person becomes ill

Visits doctor

Faecal specimen collected

Lab test

Pathogen detected

Notified
Figure 12.1 The surveillance
pyramid for gastrointestinal illnesses.

318 Surveillance



health action. Syndromic surveillance is very useful for diseases where there is
a need for a sensitive indicator of disease activity. Box 12.3 shows an example
of this with surveillance for acute flaccid paralysis (AFP) – the syndrome
potentially signalling the presence of cases of poliovirus in a community
(Porter et al., 2015).

Collection of surveillance data

Data collection for surveillance relies on a combination of reports on paper or
electronically from recorders and supplementary information obtained from

Box 12.3 Polio eradication – surveillance and progress in India

By 2001, polio had largely been limited to two states in India with only

268 new cases that year, but in 2002 there was a resurgence with 1600 new

cases. In 2003, a network of 248 medical officers trained in surveillance

assisted Indian health authorities with surveillance for acute flaccid

paralysis (AFP), the critical clinical marker of polio. The WHO criteria for

assessing the quality of polio surveillance require that

• non-polio AFP should be detected at a rate of �1 per 100,000 in the

population aged <15 years (to ensure that ‘background’ AFP cases are

being detected at a level showing the detection system is working) and
• adequate stool specimens are collected from �80% of people with AFP

for polio diagnosis.

India had been meeting these criteria since 2000, but in 2003 the non-

polio AFP rate was <1/100,000 in seven small states and stool specimens

were inadequate in 11 states covering one-third of India’s population.

Investigation showed that during 2002, the proportion of infants aged

<1 year who received three or more routine doses of oral poliovirus

vaccine had fallen to only 21% in some states. Vaccination rates

increased again in 2003 and only 225 wild poliovirus cases were reported

that year (Anonymous, 2004). In February 2012, India was finally

removed from the list of polio-endemic countries. This list now includes

only six countries in the Eastern Mediterranean Region including

Afghanistan and Iraq, and 23 African countries. Of these, all six Eastern

Mediterranean countries but only 15 of the African countries (down

from 20 in 2013) met both surveillance quality indicators in 2014 (Porter

et al., 2015).
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interviews of case patients or next of kin. In low-resource settings, novel data
collection strategies can be useful, such as short-messaging system (SMS)
reporting of syndromic surveillance data via mobile phone to a central system
(Box 12.4).

Surveillance data are entered or captured into computer-based databases
which are usually built for this purpose. Simple databases for surveillance can
be developed quickly and cheaply using free public-domain software and
agencies have developed specific systems for certain diseases, such as those
caused by organisms resistant to antibiotics. However, these databases may
not be sufficient for sophisticated systems housing millions of records of data,
and health agencies often commission the development of expensive systems
for collecting and managing data.

Surveillance is commonly described in terms of whether managers of
surveillance actively seek reports from recorders (‘active surveillance’) or wait
for them to be sent in (‘passive surveillance’). Many traditional notifiable
disease systems are passive in that health departments do not actively seek
reports from doctors or laboratories. This is in contrast to what may occur in
an outbreak of a new infection. Active surveillance, such as that used for Ebola
in Box 12.1, is based on specific collection of data from health care providers
or institutions, both as a need arises and in the longer term. Active surveillance

Box 12.4 Using mobile phones for surveillance

In Papua New Guinea, mobile phones were trialled for surveillance of

syndromes such as haemorrhagic fever, bloody diarrhoea, AFP and acute

watery diarrhoea, which may indicate the occurrence of important

illnesses of national and international significance. The objectives of the

system were to rapidly identify outbreaks of illness and provide

confirmation of events to complement other surveillance. The system was

piloted in several sites where health workers in provinces sent weekly text

messages to the central coordinating unit in the national Department of

Health. The text messages reported the numbers of cases of different

syndromes. For urgent conditions reports were sent immediately, and this

proved very effective at identifying cases of AFP and dengue haemorrhagic

fever. The pilot system was more timely, complete and sensitive than

reporting through existing systems although it required development of

software and a secure online database, along with the costs associated

with preparation of investigational materials, mobile phones and field

missions (Rosewell et al., 2013).

Public-domain epidemi-

ology software
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can produce more complete data of better quality than that provided by other
systems. However, it is resource-intensive to maintain, especially to produce
timely output of information. It is used, for example, during outbreaks of
foodborne illness or measles when health care providers may be contacted
and asked to provide details of any possible cases they have seen.

Analysis of surveillance data

Surveillance data are usually presented as numbers and rates per population
at risk (see Chapter 2). It is vital that the analyses support the aims and
objectives of the system, and that they are conducted in a timely fashion to
identify changes. Data are often analysed to examine disease occurrence in
high-risk groups, such as certain age groups, geographic regions and time
periods. For comparison of different areas and populations, it may be neces-
sary to standardise the resulting rates to remove the confounding effects of age
and other factors. For routine notifiable disease systems, it is important that
there is regular analysis of data to detect potential outbreaks, which can then
be discussed at routine surveillance team meetings to identify whether case
numbers represent more than would be expected historically and so require
investigation.
Analysis of surveillance data to identify disease ‘clusters’, both temporal

and geographical, is an important and specialised area of public health (we
will discuss clusters further in Chapter 13). Analysis of clustering is aided by
specific case definitions for a disease or characterisation of infectious agents
into epidemiologically meaningful categories. A good example of this is the
classical serotyping of Salmonella enterica – a bacterium causing gastroen-
teritis that often results in outbreaks from contaminated food. There are
over 2000 different serotypes and an increase in the number of cases of a
specific serotype in a defined geographic area above what is expected may
indicate a cluster requiring investigation. Typing of many infectious agents is
undergoing significant change with the ability to sequence whole genomes
of organisms and this will dramatically improve surveillance and identifica-
tion of clusters.

Evaluation of surveillance systems

It is important to regularly evaluate surveillance systems to ensure that they
meet their objectives. It is unfortunately common for health agencies to
establish surveillance for diseases and for the system to continue for many
years without any changes, despite it being inefficient. There are several
frameworks for evaluating surveillance, including those prepared by the

Strains or serotypes of
bacteria like Salmonella can
be identified based on
proteins measured in serum.
Common serotypes can be
further characterised by
considering the appearance
(phenotype) and/or genetic
make-up (genotype) of the
organism.

It is almost as easy to be
drowned in useless
information as to be starved
of essential elements.

Sir Richard Doll
(Doll, 1974, p 309).
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Centers for Disease Control and Prevention (CDC) (see: www.cdc.gov/surveil
lancepractice/). These frameworks direct evaluators to focus the nature of the
evaluation, consult stakeholders about system performance, and evaluate
system data against various criteria, including timeliness, sensitivity, represen-
tativeness and cost (McKerr et al., 2015).

Sometimes surveillance information will indicate a public health problem
but there is slow or no response or communication of results is suppressed.
A combination of system failure and/or misguided political judgement can
compromise the best surveillance systems. Response failures have been
shown to lead to much avoidable morbidity and mortality for infections such
as plague, cholera, Ebola haemorrhagic fever, West Nile virus and SARS
(severe acute respiratory syndrome). It is even worse when the infection
spreads to multiple countries, or around the world. Early responses to out-
breaks of serious transmissible infections, or to diseases caused by new
exposures to environmental toxins, may save many lives. However, it is
challenging for public health officials to exercise good judgement to balance
the scale of the response against the risk. Once an emergency is declared,
trade, travel, schools and many facets of normal life and the economy may be
disrupted.

Types of surveillance

There are several different types of surveillance that can be divided into two
main categories: indicator-based surveillance where selected ‘indicator’ con-
ditions are under surveillance for specific purposes, such as evaluating an
intervention or detecting outbreaks, and event-based surveillance where the
main focus is to identify events of public health significance.1

Indicator-based surveillance

Examples of indicator-based surveillance include traditional reporting of
cancer diagnoses to a cancer registry, or pathology laboratories reporting
cases of notifiable diseases such as tuberculosis to a health department. It
relies on recorders, such as a doctor or laboratory, reporting details about each
case. The level of relevant detail about cases can be extensive and sophisti-
cated systems may incorporate molecular information as well as, for example,
more traditional pathology data. Many systems for infectious diseases and
cancer now rely on automated reporting from pathology systems and this has

1 Active and passive surveillance are often described as types of surveillance but, as discussed

above, these are really characteristics of the data collection which is just one component of a

surveillance programme.
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greatly improved the timeliness and completeness of the data collected,
although the amount of information available may be more limited.
Notifiable disease reporting refers to the process, usually enabled by public

health legislation, whereby physicians, laboratories and other responsible
bodies report diagnoses of specific types of diseases to a health department.
The legislation allows reporting of confidential and private data about patients
for the purposes of surveillance, and the interrelated activities of follow-up
and investigation. For many years, notifiable disease surveillance has been a
key focus of health departments in preventing and controlling many diseases,
particularly those of an infectious nature. In high-income countries, there may
be between 50 and 100 different infectious conditions that it is mandatory for
physicians or laboratories to report. These conditions range from those that
are very rare, such as botulism, through to those that are very common, such
as salmonellosis and pertussis.
Similarly, reporting is mandatory for a number of non-communicable dis-

eases (NCDs) such as different forms of cancer. For mesotheliomas, which are
cancers caused almost exclusively by exposure to asbestos, there is a need to
conduct surveillance to identify if there are changes in the epidemiology of
disease that might result from novel exposures in a community, and to
monitor the incidence over time. While cases of mesothelioma are reported
to cancer registries, extra information is usually sought from the treating
doctor, patients and the next of kin about likely exposure to asbestos for public
health surveillance purposes. The resulting actions for chronic diseases such
as this differ from the response to an infectious disease as there is no obvious
requirement to search for a source of disease in a rapid fashion and the focus
may be more on development of public health policies to prevent further cases
of disease.
Health departments consider the overall public health importance of a

disease when deciding to make it notifiable under public health law. Public
health importance is determined by several factors, including:

• the incidence or prevalence of the condition in the community;
• the severity of the illness in terms of hospitalisations, deaths and
sequelae;

• whether the disease manifests in clusters or outbreaks;
• the societal costs and disease burden using metrics such as DALYs;
• the presence of an intervention, such as a publicly funded vaccine; and
• if there are specific vulnerable subpopulations that are affected.

In addition, there can be substantial pressure from the public, the media and
politicians to make diseases notifiable, although this may not represent a good
use of public health resources. Most importantly, health departments must be
able to do something about reported cases.
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Some diseases may not initially be considered of sufficient public health
importance to be made notifiable, but it may become important for health
departments to institute surveillance at a later stage. A good example of this
is the case of chicken pox and herpes zoster infections. Chicken pox due to
the varicella-zoster virus is a highly infectious illness common in childhood.
The infection used to be so common that it was not considered necessary to
have it under surveillance. In recent decades, many countries have intro-
duced vaccines for varicella-zoster viruses into childhood immunisation
programmes, and this led to a need for data on pre-vaccine levels of disease,
both for chicken pox and zoster infections. In this case, surveillance has
become more manageable with the reduced levels of disease, and is more
important for identifying the age of infection and evaluating the impact that
the vaccine programmes have had on reports of zoster infections. It can,
however, be difficult to conduct surveillance for diseases such as measles
when a country is close to eliminating indigenous transmission, as the
system must be extremely sensitive or many false positive cases may be
reported.

Event-based surveillance

In event-based surveillance the specific aim is to detect events of public health
concern such as potential outbreaks of disease (WHO, 2008a). It is a distinct
form of surveillance in that it usually relies on reports of groups of cases, i.e.
one report for multiple patients, such that individual patient details are not
transmitted to the system. It often has loose or non-existent case definitions to
ensure the system is highly sensitive and all possible outbreaks are reported. It
is not concerned about who reports an event, it may rely on reports from
health clinics or regional public health units about disease clusters that
require verification and investigation, or if there are multiple reports regarding
the same event. The emphasis is on detecting events that affect many people
rather than all individual cases; it is therefore important that there is a system
to verify reports of cases or outbreaks to confirm or deny common sources.
Once a report of an outbreak or event is received, surveillance system man-
agers must try to gather other information to confirm that the event is
occurring and make a decision about whether to investigate further.

The importance of event-based surveillance was dramatically highlighted
during the outbreak of SARS in 2003 where the disease had a high case–fatality
ratio (10% overall), mysterious origins and cause, apparent rapidity of long-
distance spread and the consequences for the travel industry were severe.
Although there were only 8096 cases worldwide, 1706 (21%) of those affected
were health care workers and in some areas (like Hong Kong and Canada) the
case–fatality ratio was as high as 17%. Initially, reports about the outbreak
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were patchy or non-existent from some countries. To capture information
about disease occurrence, WHO established ‘rumour surveillance’ by tech-
nical officers monitoring media reports and email list server sources, such as
Promed – an electronic mailing list of disease outbreaks run by the Inter-
national Society for Infectious Diseases. The SARS outbreak led many coun-
tries to make SARS a notifiable disease, but event-based surveillance was very
important for obtaining information from countries with weak or non-existent
surveillance systems. The rumour surveillance was further developed for
surveillance of H5N1 avian influenza in Asia in 2005 (Samaan et al., 2005).
The experience with SARS and H5N1 influenza helped strengthen the global

surveillance and notification system. In 2007, WHO member states adopted
new International Health Regulations (WHO, 2008b). The regulations include
a decision-making algorithm (Figure 12.2) to identify events that might indi-
cate a ‘Public Health Emergency of International Concern’ (PHEIC) and
countries are required to report these to WHO. Under the regulations,
countries are required to nominate a focal point – a national centre that is
accessible 24 hours a day and 365 days per year – for reporting PHEIC,
including events that are not infectious in nature. The revised regulations
include a smaller number of diseases where every case is reportable to WHO
and the focus has shifted to event-based surveillance based on guidance to
member states. The appearance of a new low-virulence variant of pandemic
influenza (H1N1) in 2009 tested the new regulations in ways that had not
been anticipated as WHO had to balance well-prepared responses against
a public heath impact that was less severe than expected. One impact of
the International Health Regulations is that there is now a well-developed
surveillance system for countries reporting outbreaks to WHO (Heymann
et al., 2013).

Digital surveillance – a new era for event-based surveillance
Digital surveillance refers to the use of the Internet to detect events or
outbreaks. The email list server Promed – an initiative of the International
Society for Infectious Diseases – started in the 1990s and was one of the
earliest digital forms of surveillance (Brownstein et al., 2009). Promed relies
on web-based trawling and information submitted by subscribers to identify
reports about emerging infectious disease threats from public domain reports
and technical specialists in the field. This information is then circulated to
Promed subscribers. Reports to Promed are moderated by infectious disease
specialists who oversee what is posted and provide commentary about the
agent or event.
An explosion of the use of the Internet in the early 2000s made it possible for

health investigators to use it identify events, such as outbreaks of respiratory
illness, gastroenteritis or other possible emerging events. Investigators have
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ANNEX 2
DECISION INSTRUMENT FOR THE ASSESSMENT AND NOTIFICATION OF EVENTS THAT

MAY CONSTITUTE A PUBLIC HEALTH EMERGENCY OF INTERNATIONAL CONCERN

A case of the following
diseases is unusual or
unexpected and may
have serious public
health impact, and thus
shall be notifieda,b:
- Smallpox
- Poliomyelities due to
  wild-type poliovirus
- Human influenza
  caused by a new
  subtype
- Severe acute
  respiratory
  syndrome (SARS).

OR OR

Is the public health impact
of the event serious?

Yes

Yes

No

No

Yes No

Yes
Not notified at this

stage. Reassess when
more information

becomes available.

Yes No

Yes No

Is the event unusual or unexpected?
Is the event unusual or

unexpected?

Is there a significant risk of
international spread?

Is there a significant risk of
international spread?

Is there a significant risk of inter-
national travel or trade restriction?

a As per WHO case definitions.
b The disease list shall be used only for the purposes of these Regulations.

EVENT SHALL BE NOTIFIED TO WHO UNDER THE INTERNATIONAL HEALTH REGULATIONS

An event involving the following
diseases shall always lead to
utilization of the algorithm,
because they have demonstrated
the ability to cause serious public
health impact and to spread rapidly
internationallyb:
- Cholera
- Pneumonic plague
- Yellow fever
- Viral haemorrhagic fevers

(Ebola, Lassa Marburg)
- West Nile fever
- Other diseases that are of
special national or regional
concern, e.g. dengue fever,
Rift Valley fever, and
meningococcal disease.

Any event of potential
international public
heath concern,
including those of
unknown causes or
sources and those
involving other events
or disease than those
listed in the box on the
right shall lead to
utilization of the
algorithm.

Events detected by national surveillance system (see Annex 1)

No

Figure 12.2 WHO decision-making algorithm to identify events that might indicate a ‘Public Health Emergency of International Concern’ (from: WHO, 2008b
reproduced with permission).
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used public domain social networks, such as Twitter, to trawl for key words
about illness, or restaurant rating sites to look for multiple reports about
gastroenteritis (Aslam et al., 2014). Currently, health departments use this
form of surveillance as an adjunct to traditional methods, and it has gained
a lot of attention from researchers, defence and security agencies, and the
non-government sector.
Digital surveillance can be very effective at detecting events, particularly

in low-resource settings. For example, the surveillance network HealthMap
(www.healthmap.org) detected the first cases of an unexplained illness in
Guinea in 2013 that was later confirmed to be Ebola virus disease that affected
several West African countries (Stevens and Pfeiffer, 2015). There is no doubt
that there will be more use of digital disease detection in the future and it will
become integrated into routine public health practice.

Mass gathering surveillance
Surveillance has a special use in settings such as major religious, musical and
sporting events (e.g. the Olympics) where large numbers of people gather
together and this is sometimes called ‘mass gathering surveillance’. Surveil-
lance at these events requires substantial additional resources and relies on
multiple sources of data (McCloskey et al., 2014). Although in practice the risk
of major outbreaks of disease is likely to be low at mass gatherings, it is vitally
important that the public are reassured about the absence of problems.

Sentinel surveillance – the health status of sentinels

Sentinel surveillance refers to the concept of monitoring the health of specific
regional sites in a population as ‘sentinels’ for the health of the larger or target
population. Sentinel surveillance often relies on sentinel clinics within a
population that report the number of diagnoses of specific conditions, often
with simple case definitions. Health departments in many countries have used
physician clinics for sentinel surveillance for influenza to determine when the
flu season has begun and to collect specimens for confirmation of circulating
strains. Sentinel surveillance may also be used in resource-poor settings where
it is desirable to know about various conditions, but it is impractical to have
every clinic in the country report cases.
Typically, these sentinel surveillance programmes collect quite limited

information, but there are also much more sophisticated systems that have
enhanced surveillance in sentinel sites to provide information about potential
disease incidence and changes in the whole population. A good example is the
FoodNet system of active surveillance for various foodborne diseases that
occurs in 10 geographically distinct sites across the USA as sentinels for the
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rest of the country (http://www.cdc.gov/foodnet/). FoodNet sentinel sites
contact all pathology laboratories within their region each week to gather
information about specific infections that may be foodborne (Henao et al.,
2010). The data are used for detecting events, describing the epidemiology of
foodborne infections, applied research and planning for public health
response. The high-quality FoodNet system has provided rich insights into
the epidemiology of foodborne diseases that are relevant both in the USA and
globally.

Other forms of surveillance

There are several other types of surveillance that are important, including that
for risk factors; post-marketing for adverse events from medical devices,
medications and vaccines (see Box 12.5); and hazards, such as poor water
quality. Many health agencies now conduct surveillance for risk factors
using repeat cross-sectional surveys. The most well-known of these systems
is the Behavioural Risk Factor Surveillance System (BRFSS) in the USA

Box 12.5 Post-marketing surveillance of narcolepsy in children in
Europe following influenza vaccination

In 2010, reports from Sweden and Finland suggested that children

vaccinated with Pandemrix influenza vaccine were developing narcolepsy,

a neurological illness of uncertain aetiology that is characterised by

excessive daytime sleepiness. European Union countries solicited reports

of narcolepsy and other conditions through an EU-wide adverse events

reporting scheme. The investigation used eight different linked health care

databases from seven countries as well as a case–control study to examine

the association between vaccination and narcolepsy. The sophisticated

post-marketing surveillance showed that prior to immunisation beginning

in September 2009, the rate of narcolepsy in EU countries was low and

stable at approximately 1 per 100,000 person years. After September 2009,

the rate of narcolepsy was 1.67 per 100,000 in Sweden and Finland

combined, which was statistically significantly higher than in other EU

countries. Rates of narcolepsy were highest in the age groups covered by

school vaccination programmes (ECDC, 2012). It was suggested that

adjuvants in the vaccine were a potential cause of the illness that

warranted further research (Nohynek et al., 2012).
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(http://www.cdc.gov/brfss/). The BRFSS is a national computer-assisted tele-
phone interview survey of over 400,000 people each year that captures vital
information about health-related risk behaviours, chronic health conditions
and preventive health measures, such as intake of fruit and vegetables (Moore
et al., 2015).
In practice, many diseases such as influenza require information from

multiple surveillance data streams. For example, in high-income countries,
influenza surveillance may rely on a combination of surveillance of absentee-
ism in workplaces, surveillance of patients hospitalised with influenza-like
illness, and phone calls to health advice centres, in addition to information
obtained from notifiable disease systems and sentinel surveillance (Budgell
et al., 2015; Dawood, et al., 2010). This allows health agencies to develop a
more complete picture of incidence, health impact and strains that are circu-
lating in the community in a given influenza season.

Summary

Information and data arising from surveillance systems represent a corner-
stone for public health action. There are two main types of surveillance:
indicator-based surveillance and event-based surveillance. Surveillance
systems are changing to make greater use of electronic data streams, such as
electronic reporting from laboratories and searching information posted on
social media. Many health agencies around the world conduct routine surveil-
lance of notifiable diseases and regularly report results. The objectives of
surveillance for a specific disease or risk factor should dictate the system
attributes, such as timeliness, sensitivity and representativeness, and surveil-
lance managers should regularly evaluate systems to ensure that they are
efficient and continue to fulfil important public health functions. Then, once
a potential problem has been identified, the next challenge is to identify the
likely causes and to implement control measures and we will go on to discuss
these issues in the next chapter.

Questions

1. An increasing trend in surveillance data for a given disease can be
accounted for by:
(a) An increase in the incidence of a disease
(b) Less testing of true cases
(c) Use of a new database system
(d) Use of statistical analysis tools for trend analysis
(e) All of the above

Additional questions
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2. For surveillance data, undercount is best defined as:
(a) Cases recorded by local health department, but not referred onto the

national surveillance system
(b) Cases not reported by a laboratory
(c) The ratio of cases occurring in the community to cases reported to

surveillance system
(d) People who are infected but asymptomatic
(e) All of the above

3. Briefly define event-based surveillance and describe some of the potential
advantages and disadvantages of such systems.

4. Name two purposes of indicator-based surveillance.
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Box 13.1 A massive outbreak of haemolytic uraemic syndrome

Detection of event: A local health department requested assistance from

the German federal government with investigation of 3 cases of

haemolytic uraemic syndrome (HUS, a rare condition that affects the

kidneys) in northern Germany on 19 May 2011. On investigation, it

became obvious that the outbreak had started weeks earlier and the

number of cases of gastroenteritis and HUS peaked on 22 May 2011.

Descriptive epidemiology: In total, 3816 cases were reported in Germany.

The majority of patients had bloody diarrhoea with 22% progressing to
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The distribution of infectious diseases often occurs in a non-random fashion
leading to what may be referred to as clusters, outbreaks or epidemics. Investi-
gation of outbreaks like that described in Box 13.1 is part of the core business
of field epidemiology and it relies on multidisciplinary approaches to identify-
ing and controlling disease. The outbreak of toxigenic E. coli O104:H4 is a
dramatic example of the seriousness of contamination in the food supply, and

Box 13.1 (continued)

develop HUS and 36 (4.2%) died. The rates of infection were highest in

northern Germany and most of those affected were adults (median age

42 years) and women (68%). The estimated incubation period was

8 days from exposure to illness. Cases also occurred in several other

countries in Europe and North America, but the majority of these had

acquired their infection while visiting Germany.

Investigation: The investigating teams conducted multiple studies to

understand the source of infection, including: explorative hypothesis-

generating interviews, 30 cohort studies, several case–control studies,

testing of potentially contaminated foods and microbiological studies.

Initial interviews of patients did not reveal the food causing the

outbreak – contaminated fenugreek seed sprouts – as they were difficult

to remember. The particular strain of Escherichia coli responsible –

serotype O104:H4 – had not been seen in animals previously and was

rare in humans; importantly, it showed characteristics of multiple

pathogenic types of E. coli and resulted in an unusually high proportion

of people developing HUS.

Containment: The outbreak was rapidly brought under control once

sprouts were identified as the food vehicle. The fenugreek seeds

originated from Egypt and were sprouted at a small farm in northern

Germany. Once the vehicle was identified and removed from the food

supply the only new cases were due to secondary transmission within

households.

Implications: The outbreak resulted in significant societal concern and had

major implications for trade of food and agricultural produce. Early

reports suggested the outbreak was linked to Spanish cucumbers.

These were later shown to be false, but costs to agriculture were

estimated to be hundreds of millions of Euro.

(Frank et al., 2011)
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how spread of infectious diseases can be controlled through rapid investi-
gation and intervention.
Historically, the study of epidemic infections helped develop methods for

epidemiology, especially retrospective cohort and case–control studies, and, as
shown in Box 13.2, epidemiology still plays a central role in outbreak investi-
gation. Investigations of outbreaks still have a high public profile today, particu-
larly because of the globalisation of trade and increasing ease of international
travel. Emerging and re-emerging infections have become prominent over the
last two to three decades and the threat of global epidemics, or pandemics, has
mobilised resources to plan for, detect and combat such catastrophes. Many
examples earlier in this book focussed on ‘chronic’ or ‘non-communicable’
diseases. Now we will discuss infectious diseases, although not exclusively,
because other agents such as toxins and chemicals can also result in ‘outbreaks’
of non-communicable intoxications, injuries and cancer.

Outbreaks, epidemics and clusters

What do we mean by an epidemic or an outbreak? The two terms are often
used interchangeably, although they are perceived differently in the media
and by the public. Epidemic comes from the Greek words epi (upon) and
dēmos (the people) and means an increase in disease in a region or time
period that is clearly above what would normally be expected. Most diseases
are endemic, in that they are commonly present at a baseline level in a given
geographic area or population group. Increases above the endemic baseline or
incursions of diseases into new areas may signal the occurrence of an
epidemic.

Box 13.2 The role of epidemiology in outbreak investigation

Epidemiology is central to investigating and correctly managing outbreaks

of disease. In particular, epidemiology is used to:

• detect clustering in surveillance data that may represent an increase in

cases of disease warranting investigation
• identify and count cases that may be related to an outbreak or cluster
• develop and conduct cohort or case–control studies to identify sources

of illness during or after an outbreak has occurred
• characterise the risks to populations potentially exposed to a source of

illness
• monitor the effectiveness of risk communication in outbreak settings
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An outbreak is defined as ‘an epidemic limited to a localised increase in the
incidence of a disease, e.g. in a village, town or closed institution’ (Porta, 2014,
p. 206). Outbreak may also be used to refer to a small epidemic arising in an
area that has had no cases for a long time. In general, outbreaks include two or
more cases, but a single case of a rare disease, such as botulism, could
represent an outbreak.

When a disease affects a large number of people and crosses international
boundaries it is called a pandemic. Historically, pandemics have caused great
loss of human populations, notably plague in the late middle ages and ‘Span-
ish’ influenza at the end of World War I. The organism causing the most recent
pandemic as declared by the World Health Organization (WHO) under the
International Health Regulations – H1N1 influenza virus – first appeared in
Mexico in April 2009 and quickly spread to over 200 countries by the end of
the year. H1N1 infections resulted in less-severe disease than health depart-
ments had planned for, but did result in more serious outcomes in young
adults and pregnant women.

Finally, it is important to understand the use of the word cluster, which is
an aggregation ‘of relatively uncommon events or diseases in space and/or
time in amounts that are believed or perceived to be greater than could be
expected by chance’ (Porta, 2014, p. 47). Health agencies often use this term
where there is no obvious source of disease identified, and it may be used for
both infectious and non-communicable diseases, such as cancer.

Epidemiology of infectious diseases

Infectious disease epidemiology is often presented as a different discipline
from the epidemiology we have been describing, but the fundamental prin-
ciples are similar and causal reasoning is conceptually simpler for infectious
diseases where the agent or ‘pathogen’ is a necessary cause of the disease. The
major difference for most infectious conditions, and other outbreaks we
discuss here, is the urgency with which investigations take place and the direct
link to management activities. This is often extreme and demands robust,
practical methods for identifying people who are exposed and infected, along
with a constant focus on controlling the outbreak before all information has
been gathered.

Infectious or communicable diseases are defined as ‘An illness due to a
specific infectious agent or its toxic products that arises through transmis-
sion of that agent or its products from an infected person, animal or
reservoir to a susceptible host, either directly or indirectly through an
intermediate plant or animal host, vector, or the inanimate environment’
(Porta, 2014, p. 51). The burden of infectious diseases in terms of incidence
and mortality in industrialised countries has declined dramatically since the
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1950s when the use of powerful antibiotics, vaccines and other interven-
tions became routine (van Panhuis et al., 2013). In low-income countries,
there is still an ongoing epidemiological transition from a pattern of high
mortality rates due to infectious diseases of childhood to one of non-
communicable diseases later in life (Dye, 2014; GBD 2013 Mortality and
Causes of Death Collaborators, 2015). Despite these major changes in
burden of disease, infectious diseases remain highly prevalent and import-
ant in all countries of the world. Some of the major concerns with infectious
diseases globally include:

• the threat of antimicrobial resistance leading to untreatable infections;
• the emergence of new highly pathogenic and virulent strains;
• the resurgence of diseases once thought controlled because of lowered
vaccination rates;

• the opportunity to eliminate, and potentially eradicate diseases such as
smallpox, Guinea worm, polio and measles;

• the regular occurrence of high-profile outbreaks of infectious diseases that
threaten community health, trade and security; and

• the synergistic effects of infectious diseases on the burden of non-
communicable diseases.

Acute infections affect all sectors of society and the public health impacts are
substantial. Even common infections, such as gastroenteritis and respiratory
infections, result in considerable lost productivity. Periodically, epidemics of
vaccine-preventable diseases recur, even in countries with very high vaccine
coverage; for example, pertussis (whooping cough), rubella and measles.
There are also many infections that have recently emerged or re-emerged
and for some we have made little headway with prevention or treatment, for
example Hendra virus transmitted from horses and bats in Australia, novel
coronaviruses in the Middle East, and varicella-zoster infection, which causes
shingles and is common among the elderly.
Many of these emerging infections are zoonotic in origin, in that they have

reservoirs in animal populations (Jones et al., 2008), and a high proportion are
due to pathogenic viruses, such as rapidly evolving RNA viruses including
those that cause AIDS, SARS and influenza. Emergence is based on many
factors including population growth, expanding trade and travel, mass-
produced food, intensive livestock production, environmental change, resist-
ance to antimicrobial drugs, human encroachment on wilderness and forest,
and global warming (Sleigh et al., 2006). The SARS multicountry epidemic of
2003 was an example of a global threat due to emergence of a new infectious
disease that had origins in live animal markets in Asia, which were also
subsequently identified as a potential risk for transmission of highly patho-
genic H5N1 influenza (Samaan et al., 2011).

More about SARS
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In addition, infectious diseases are a particular problem for vulnerable
populations, such as the very young, the elderly or those who are immuno-
compromised due to disease or medical treatment. In some instances, those
who are vulnerable may be predisposed to infection or, when infected, they
may experience worse outcomes. Many people in these categories are regular
visitors to the hospital environment where they are at risk of opportunistic
infections, some of which have become highly resistant to antimicrobial
agents. WHO (2015) has declared the emergence of antimicrobial resistance
a global health concern resulting in many countries developing plans for
antibiotic stewardship, monitoring of usage and surveillance of antibiotic
resistant organisms.

The public health impacts of infectious diseases are substantial: epidemics
capture the public and media attention, but the majority of burden arises from
infections that are endemic. Sometimes outbreak alerts trigger worldwide
alarm and politically complex national and international responses, as has
been noted recently with Ebola virus in West Africa and Middle East Respira-
tory Syndrome (MERS) caused by a novel coronavirus. Increasingly, small or
large outbreaks threaten economically important industries, as seen with
Hendra virus in Australia in 1994 that had impacts on the horse racing indus-
try, Nipah virus in Malaysia in 1998–1999 affecting pig farming, SARS in Hong
Kong and Canada in 2003 affecting services and tourism, and regular out-
breaks of food-borne disease affecting various food businesses.

A causal model

Simple ecological models of the ‘agent–host–environment’ interplay have
served infectious disease epidemiology well, providing a neat structure for
linking the variety of factors that determine whether disease occurs. Figure 13.1
shows the interaction between an infectious agent and its potential host, the
transmission process (how the disease is spread) and how all of these may be
influenced by the environment. The relationship between the agent, host and
environment are largely understood by laboratory testing, epidemiology and
environmental surveys, respectively.

The infectious agent
There are many different types of infectious agent: bacteria, viruses, fungi,
protozoa, helminths (parasitic worms), etc. In almost every natural habitat
there will be agents potentially infectious to humans. Animal contact is par-
ticularly important in the genesis of human infections and many (perhaps
most) infections afflicting us have been traced back to the beginnings of
agriculture and animal farming.
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Infection is the entry of a microbial agent into a higher-order host and its
multiplication within the host. When a lower organism lives on an external
surface of another organism it is called an infestation rather than an infection;
for example, lice and scabies. Infections do not necessarily lead to overt
disease and the principal characteristics of microbial agents that influence
their ability to cause disease are defined below.
Infectivity is the ability of an organism to invade and multiply in a host and

is assessed by the proportion of exposures that result in infection. One meas-
ure of infectivity is the secondary attack rate, which measures the number of
cases of infection that develop among susceptible contacts of an infected case.
Polio virus is a highly infectious agent infecting most susceptible people who
are exposed, but only a small proportion will develop symptoms or chronic
sequelae from their infection. Its pathogenicity, the power of an organism to
produce overt illness, measured as the proportion of those infected who
develop clinical or overt illness, is therefore relatively low. Measles virus is
highly infectious like polio, but is much more pathogenic in that most people
infected develop symptoms. Virulence, the ability of an organism to produce
serious disease, is measured by the proportion of those infected who develop
severe disease. If death is a criterion of severity, this can be measured by the
case–fatality ratio (CFR, see Chapter 2). The intensity of an infection, the
number of organisms infecting an individual, is especially important for
parasitic infections, such as hookworms or schistosomes, where the burden
of parasites often predicts the severity of disease.
The natural habitat of the agent is known as its reservoir and this may be

human, animal or in the environment. Agents with human reservoirs include
the pertussis bacterium, the malarial parasite and the roundworm. For some
agents such as Vibrio cholera, the cause of cholera, it is unclear what the

Agent

EpidemiologyEnvironmental
assessment

Laboratory
tests

HostEnvironment

Figure 13.1 The relationships among
agent, host and environment and the
methods used to evaluate these.
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reservoir is between epidemics. The source of an infectious agent is the
person, animal or object from which the host acquires the infection. If human,
this may be someone who is sick or convalescent, or a long-term carrier of
infection who was never clinically sick themselves, as can happen with hepa-
titis B, typhoid and HIV.

Laboratory testing (chemical, microbiological, serological or genetic) is a
critical element in understanding the agent. A detailed discussion is beyond the
scope of this book, but it is important to realise that, combined with epidemi-
ology, new genomic testing of infectious agents has revealed striking new insights
into their transmission as the genetic code of the agent from the putative source
can nowbe comparedwith that of the infected humans. In investigations of acute
outbreaks, laboratory testing of foods and water, animals, humans and the
environment is critical to identify the source of infection.

The host
The host is a human or animal that an agent enters and in which it multiplies.
A host’s reaction to infection can be extremely variable, depending on the
interplay between the characteristics of the agent, including the dose received,
and the immune status of the host. The immune response of the very young and
the old may not be as protective as that of a young healthy adult. If the host has
been exposed to the agent before there may be natural immunity, or immunity
may be induced artificially by vaccination. A person who is not immune to a
particular agent is often referred to simply as a ‘susceptible’. These factors, and
others to do with the biology, maturation and replication of the agent, influence
the incubation periodwhich is the time between initial infection and the onset
of clinical disease as shown by signs and symptoms. For control of infectious
diseases it is also important to know the latent period, the time from entry into
the host until the onset of infectiousness, which may be longer or shorter than
the incubation period. If it is shorter, then infected persons may pass on the
infection before they become ill, as with hepatitis A, and if it is longer they will
be ill before they are very infectious, as for SARS. These features are known for
the majority of infectious diseases and are an important determinant of infec-
tion dynamics. They are useful tools in the investigation and control of epidem-
ics and are always the focus of attention for new emerging infectious diseases.
Infections transmitted before someone becomes ill, or by someone who does
not become ill, are the most difficult to control and the most likely to cause
explosive epidemics in susceptible populations.

Transmission
Transmission of an agent is its spread from a reservoir or source to a new host
by one or more of three possible routes: direct, indirect or airborne. For
example, SARS is usually transmitted by (large) respiratory droplets reaching

In a study of typhoid in Nepal,
the diversity of typhoid
genotypes revealed that while
human-to-human
transmission occurred, this
was overwhelmed by indirect
transmission, possibly via
contaminated water (Baker
et al., 2011).
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close contacts, but some cases have spread infection to scores of persons with
whom they had little or no direct contact (Li et al., 2004). The mode of
transmission has a profound effect on how infectious diseases are managed,
both in the clinical setting and in the community. As an example, ordinary
masks and gloves are used in hospitals as precautions against heavy respira-
tory droplets, but are inadequate against airborne infections which require
fitted masks or respirators, eye shields and negative-pressure ventilation.
Some modes of transmission are shown in Figure 13.2 and discussed in more
detail below.
Direct transmission arises from ‘close personal contact’ by touching infec-

tious secretions or excreta from another person (A) or animal (B). This
includes touching or inhaling the large (10–100 μm) respiratory droplets
produced by a person suffering from a respiratory infection sneezing,
coughing or talking. These heavy droplets contain mostly water and pass
through the air to fall on surrounding objects within 1 metre of the source
(Fernstrom and Goldblatt, 2013). Examples of direct transmission include
sexual, skin, eye, congenital and most respiratory infections, including measles
and influenza. Sometimes vertical transmission (as opposed to the usual
horizontal transmission (A)) occurs directly from mother to unborn child
(C) for diseases such as listeriosis where serious bacterial meningitis or
septicaemia can result from eating contaminated foods.
Indirect transmission always involves a vehicle, which may be inanimate,

such as bedding, clothes or utensils (collectively called ‘fomites’), water (D) or
food (E), or the soil (F). Alternatively, the infection may be transmitted via a
vector (G), such as a mosquito responsible for malaria or dengue.

A

B

F

GH

D

C

E

Figure 13.2 Patterns of spread for
infectious agents showing (A) person-
to-person, (B) zoonotic, (C) vertical,
(D) waterborne, (E) food-borne, (F)
soil-transmitted, (G) vectorborne and
(H) airborne modes of transmission.
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Airborne transmission (H) became an outmoded concept in the nine-
teenth century after Snow had shown that London cholera was waterborne,
disproving the prevailing theory of an infectious airborne ‘miasma’ rising from
the river. Later, Pasteur and others demonstrated the existence of germs and
showed that they could be transmitted directly through the air. In the 1930s,
the laboratory production of ‘bioaerosols’ of tiny infectious droplet nuclei that
could be inhaled, as well as careful epidemiological studies on TB and Q fever
in the 1940s and 1950s, eventually resurrected the concept of airborne infec-
tion as an important mode of transmission (Langmuir, 1961). Bioaerosols may
also be produced in abattoirs when cutting open the body cavities of infected
animals, in air-conditioning cooling towers, or by germ warfare. WHO uses a
particle size of <5 μm in diameter to define particles that may be airborne and
infectious over large distances. These include pathogens such as Mycobacter-
ium tuberculosis, for which this mode is obligate (it is transmitted only in this
way), and pathogens that can infect by multiple routes but are mostly trans-
mitted by droplet nuclei (their preferential pathway), such as measles and
chickenpox (Fernstrom and Goldblatt, 2013).

The environment
The environment has a critical influence on the transmission of infectious
diseases as it affects the survival of pathogens, vectors and of vertebrate hosts.
The physical environment or climate has obvious influences, sometimes for
reasons we do not understand well. Many infectious diseases exhibit strong
seasonality. For example, in temperate zones, influenza and other respiratory
infections appear in the colder winter months, times of close human contact.
On the other hand, Ross River fever usually occurs in hot humid months,
reflecting the importance of an abundance of mosquitoes for the transmission
of that disease.

Other environmental influences on infectious disease dynamics include
levels of sanitation, air pollution, water quality, human and livestock population
density, overcrowding, poverty, housing conditions and food availability.
Human behaviour itself often creates environments suitable for infections, such
as warm, well-aerated water in cooling towers that is suitable for proliferation of
Legionella pneumophila – the bacterium responsible for the pneumonia named
Legionnaires’ disease. Often, infections are the result of ecological conditions
directly stemming from poverty, such as the transmission of cholera in settings
where sanitation and hygiene are inadequate. It can also be due to necessity,
such as wet-rice farming to produce a crucial food staple that also creates
breeding sites for the intermediate host snails of schistosome infections.

Figure 13.3 summarises the key aspects that influence the occurrence of an
outbreak, picking up on the key attributes of the agent, host and environment
that we discussed above.

Legionnaires’ disease acquired
its name in 1976 when an
outbreak of pneumonia
occurred among people
attending a convention of the
American Legion at a
Philadelphia hotel. Of the
221 reported cases, 34 died.
The causative agent was a
previously unknown
bacterium, subsequently
named Legionella
pneumophila.
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Non-infectious clusters and outbreaks

Clusters in space and time of rare chronic diseases, injuries and birth defects, and
especially cancer, are often reported by members of the community and public
awareness of environmental hazards has increased demand for public health
authorities to investigate them. Any apparently unusual frequency of any disease
will now attract attention and this causes great difficulty for health officials who
are asked to respond to the problem. Rare diseases will inevitably be distributed
in small numbers and their frequency will fluctuate widely. In a country like the
USAwith a large population and a large area it is inevitable that numerous small-
area clusters will arise for rare diseases – for example, several of the cases in a
large state may just happen to occur in one corner of that state by chance.
Community members are likely to note the cluster and then to look for possible
causes, including any nearby environmental contamination. Investigating such
clusters rarely leads to conclusive evidence as to the cause and usually reveals
that the cluster is most probably a chance effect due to the variation of small
expected numbers. Thismight not be considered a satisfactory answer, especially
if people have formed their own hypotheses as to the cause.
When a decision is made to investigate a cluster formally, it needs to be

recognised from the outset that it can be extremely challenging given the
latency between exposure and development of disease may be several decades
and the aetiology may be unclear or multifactorial. Investigation of these
clusters should take an epidemiological approach potentially including:

• rapid case ascertainment, and subsequent refinements of case definition
(possibly using novel molecular or other biomarkers);

• obtaining residential, occupational and other pertinent history;

Figure 13.3 Key elements that
influence the development of an
outbreak.

One of the best-known cancer
clusters, involving 33 cases of
mesothelioma (a rare cancer
of the lining of the chest),
emerged in South Africa in
the late 1950s. Researchers
identified that 32 of those
affected had worked with
asbestos and exposure to
asbestos is now known to be
the major risk factor for
mesothelioma (Wagner et al.,
1960).
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• analysis of case distributions by place, time and personal characteristics;
• reviewing registry and other available electronic data;
• assessing the environment for possible causes, including approaches where
the totality of environmental exposures is taken into account; and

• investigating possible infectious causes.

For an example of a very thorough and expensive investigation into a cluster
of cancer that yielded far more striking results than usual, see Box 13.3.

Box 13.3 Investigating a cluster of breast cancer cases at the Toowong
Australian Broadcasting Commission (ABC) worksite, Queensland,
Australia

Nature of event: Between January 1994 and June 2006, 13 women who had

worked at an ABC site, many in the newsroom, were diagnosed with

breast cancer. The staff expressed concerns that this was related to

working at the ABC.

Epidemiological assessment: Investigators examined rates of cancer in the

ABC workforce. Ten women were diagnosed with invasive breast cancer

while working at the ABC and this was significantly higher than the

expected number of 1.6 based on rates in all Queensland women

(Standardised Incidence Ratio 6.25; 95% CI 3.0–11.5, p < 0.001),

although the p-value increased to 0.04 after adjusting for multiple

comparisons. There was a statistically significant increasing trend in

breast cancer risk of 12% (95% CI 2–23%) per year of employment at the

ABC. Detailed environmental assessments detected no current or

historical evidence of contamination or exposure to known or suspected

carcinogens on the site, nor was there any unusual pattern of personal

risk factors among the affected women.

Interpretation: The investigators concluded that there was a statistically

significant increase in the risk of cancer in female ABC employees in

the newsroom. It was, however, considered highly unlikely that this

increase was caused by exposure while working at the site, although the

exact cause of the cluster of breast cancer cases could not be explained.

A record linkage-based cohort study of 5969 women working at other

comparable ABC sites showed no excess risk at any site other than

Brisbane. Thus, despite the strong association and dose–response effect

present in the Brisbane cluster, its origin is likely to be due to chance.

Bottom line: Despite the scientific reassurances, the ABC studio moved

premises and sold the building in question.

(Armstrong et al., 2007; Sitas et al., 2010)

The US Centers for Disease
Control (CDC) have issued
guidelines for investigating
clusters (http://www.cdc.gov/
nceh/clusters).
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However, many epidemiologists remain concerned that the resources con-
sumed by the investigation of rare disease clusters, especially if political
pressure is applied, may far exceed the benefits gained. Such expenditure
may deprive the community of public funds needed for other activities,
including environmental clean-ups that should be done anyway. Ultimately,
the final public health decisions are often based on expert opinion and
prudent judgements and do not depend on p-values and associated math-
ematical models (Coory, 2008).
Chemicals and toxins can also result in clusters of disease that fit the

definition of an outbreak, particularly where there is a putative common
source. A classic example of a non-infectious outbreak is ciguatera, where
those affected experience neurological symptoms such as blurry vision,
nausea, vomiting, diarrhoea, cramps, excessive sweating, headaches and
muscle aches along with unusual taste sensations after consuming tropical
reef fish contaminated with algal toxins. Outbreaks and small clusters of
ciguatera are common, as groups of people usually eat larger fish together
and these larger fish have a higher concentration of ciguatoxin resulting in
multiple cases of illness within 6–12 hours. These non-communicable disease
outbreaks can be investigated using an identical framework to infectious
diseases, as outlined below.

Outbreak management and investigation

As we noted above, a key feature of nearly all outbreak and epidemic investi-
gations is that they must occur rapidly to limit spread. In addition, there is
much to be learned about the nature and epidemiology of disease from
outbreaks. They are ‘natural experiments’ and can provide new insights into
the natural history, clinical features, outcomes, modes of transmission and
societal impacts of disease as well as into the specific pathogen or agent itself.

Management of outbreaks

Managing outbreaks is a complex task, as it involves many different agencies
and may require social mobilisation to limit spread of infection. Furthermore,
there are often public and legal inquiries following outbreaks that focus on
‘who knew what and when’. In large complex outbreaks, the agency respon-
sible for managing the overarching response may not be the health depart-
ment. Depending on the nature and scale of the outbreak, the development of
an appropriate and measured response may require input from aid agencies,
clinicians, emergency services, customs, agriculture, environment, industry
and the public.

More about clusters
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The communication of risk is a vital and specialised component of man-
aging an outbreak or epidemic and it is important that stakeholders and those
affected are aware of the need for and process of investigating and managing
outbreaks. For many outbreaks, rapid communication can allay community
concern and direct possible cases to seek attention to assist authorities. In the
2014 Ebola virus outbreak in West Africa, the Firestone rubber company
provided a robust risk management and communication strategy to their
employees and the surrounding population in response to a case within the
Firestone plantation. This increased awareness about spread of the disease
appeared to limit spread (Reaves et al., 2014).

WHO has developed a risk assessment tool to assist countries to manage
outbreaks and public health incidents, independent of the type of agent
responsible (WHO, 2012). The risk assessment process encourages a system-
atic approach involving examining information about the hazard, the means
and context of exposure, and characterisation of level of risk, which helps
focus the different options available to manage an outbreak or epidemic,
even in the early phases. At the end of any outbreak or epidemic there should
also be an audit of activities, or a debrief to ensure that any insights for
management of the outbreak are incorporated into future responses (Dalton
et al., 2009).

International United Nations agencies, such as WHO, the Food and
Agriculture Organization and World Organization for Animal Health, also
have significant roles in outbreak management where there is the potential
for multicountry spread. Under the International Health Regulations (IHR)
(2005) (WHO, 2008), WHO maintains a surveillance system for Public
Health Events of International Concern (PHEIC), which includes significant
outbreaks occurring in member states. The IHR (2005) allow countries to
be alerted to outbreaks and epidemics in other countries, along with
potential events that could result in serious outbreaks. In addition, many
non-government organisations, such as Médecins Sans Frontières and the
International Red Cross, are important players in understanding and
responding to epidemic disease. In light of the Ebola virus outbreak of
2014–2015, there has been significant debate about the strength and cap-
acity of the international health system to effectively manage large-scale
epidemics (Gates, 2015).

Finally, it is important to have a well-trained workforce. The Centers for
Disease Control and Prevention (CDC) established the Epidemic Intelligence
Service (EIS) programme in the USA in the 1950s and this has served as a
model programme for many other countries, including Australia, Canada,
Europe, Thailand, Malaysia and China. The Training Programmes in Epidemi-
ology and Public Health Interventions Network (http://www.tephinet.org/)
now links over 50 Field Epidemiology Training Programmes around the world.
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Investigating outbreaks

The CDC prescribe 10 recognised steps of investigation for infectious disease
outbreaks (Gregg, 2008). These steps, which are accepted world best practice,
are as follows.

1. Determine the existence of an outbreak.
2. Confirm the diagnosis of the disease in question.
3. Define and count cases of human infection.
4. Orient the data collected in terms of time, place, person – i.e. when, where

and who have been infected.
5. Identify people who are specifically at risk of the disease.
6. Develop and test hypotheses relating to the cause of the outbreak.
7. Compare hypotheses with current facts.
8. Plan more systematic study.
9. Prepare a written a report.
10. Execute control and prevention activities.

Steps 1–5 represent the ‘identification phase’ of any investigation and are
important to establishing that an outbreak has actually occurred and describ-
ing its key features. Steps 6 and 7 represent the ‘hypothesis-generation and
testing phase’ of the investigation, while steps 8–10 are the ‘confirmation
phase’ where public health action takes place. The whole framework repre-
sents the piecing together of disparate information to identify a cause for the
outbreak.

The identification phase
Health authorities are the main agencies responsible for detection of out-
breaks which are then investigated under public health legislation. Health
agencies detect outbreaks using public health surveillance (see Chapter 12),
or reports from alert clinicians, the media or the public. It is vital that
neighbouring agencies communicate about investigations, as it is possible
that one or more agencies (nationally or internationally) may be investigating
the same outbreak without realising it. It is important that investigators
identify the agent responsible for an outbreak early, as this knowledge will
guide control efforts. It is important that the agent is identified using stand-
ardised and reliable tests. There are many examples of misdiagnosis due to
poorly performing test kits or contamination occurring during testing of
clinical samples.
Epidemiologists define cases using the traditional ‘person, place and time’ to

decide who is part of an outbreak for investigative purposes. This case defin-
ition may involve different levels of certainty about case status and may
change during the course of an outbreak as more information comes to light.

Investigation of an apparent
increase in human samples
testing positive for Salmonella
showed this was likely due to
use of contaminated media
(Thiolet et al., 2011).

More about investigating

outbreaks
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The use of highly specific laboratory tests, such as whole genome sequencing,
is starting to rapidly improve recognition of the true scale and nature of
outbreaks from common sources.

Analysis of case data follows traditional descriptive epidemiology. In par-
ticular, it is important to present data with regards to spatial and temporal
orientation. Traditionally, epidemiologists have put pins in maps, but with
new geographical information systems, sophisticated mapping allows for
excellent visualisation of the geographical distribution of cases. Free software
for epidemiological investigation, such as Epi Info™ from the CDC, now
incorporates simple mapping tools.

During an investigation, it is normal to produce a graphical representation
of the outbreak in the form of an ‘epidemic curve’ which identifies when cases
first developed symptoms. The epidemic curve can give critical clues to the
nature of the outbreak, such as whether it originated from a single source or is
propagated from person to person. Figure 13.4 shows a typical epidemic curve
for a point- or common-source outbreak which occurs when many people
are suddenly exposed to the same source of infection, leading to a clear
increase in incidence of disease. Here the average incubation period was
between 12 and 13 hours, which is typical for an outbreak of food poisoning
such as salmonellosis where illness usually occurs within 6–48 hours of eating
contaminated food. Figure 1.3 showed an actual point-source epidemic that
you met in Chapter 1.

Figure 13.5 shows the pattern typical of an epidemic which arose
from the introduction of an infection into a susceptible population (some-
times called a propagative epidemic). On 12 May there was a single case
and 8–11 days later we see another cluster of cases, sometimes referred to
as secondary cases, which arose from the primary case by person-to-person
transmission. A further 8–13 days later there is a third generation of cases,
serially infected by the secondary cases.
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Figure 13.4 The epidemic curve for a
point-source epidemic.
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It is normal for the epidemic curve to be refreshed at least daily during the
outbreak. Figure 13.6 shows the epidemic curve for the outbreak of E. coli
O104 infections and haemolytic uraemic syndrome associated with fenugreek
sprouts from Box 13.1. It shows that numbers of patients in the outbreak
started to grow dramatically on 8 May 2011 and peaked on 21–22 May 2011.
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Figure 13.5 The epidemic curve for a
propagative epidemic.
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Frank et al., New Engl J Med, 2011;
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The hypothesis-generation and testing phase
During the outbreak, investigators develop hypotheses regarding the likely
cause through interviews of cases, inspection of the environment and testing
of samples of food, water and other environmental specimens. Interviewing
cases with standardised questionnaires to examine clinical features of the
infection or disease and potential exposures to develop ideas about a common
cause is an important but difficult task, as many people find it hard to recall
what they did prior to becoming ill. These interviews are often conducted over
the telephone or face to face and can take some time to fully explore all
important issues.

Although most outbreak investigations are carried out retrospectively after
the event has occurred, in some instances investigators may prospectively
recruit cases. If it is possible to identify the entire population at risk of
developing the disease then it may be possible to conduct a cohort study in
order to compare the risk of disease amongst those who are exposed com-
pared to the unexposed. The advantage of this type of study is that the
resulting relative risk is easy to interpret. If it is not possible to enumerate
the study population, investigators will conduct a case–control study that will
test hypotheses about different exposures. This allows calculation of an odds
ratio to estimate the association between the source and disease in the usual
way (see Chapter 5). Increasingly, investigators are using online tools to collect
epidemiological data from people affected by an outbreak, thereby speeding
up the data collection process.

The confirmation phase
The final phase in an investigation of an outbreak relates to documentation
and control activities. In reality, taking action to control the spread of a disease
occurs prior to many of the preceding steps. However, proper epidemiological
investigation can provide focus for risk management and intervention activ-
ities. Outbreaks are exceedingly common and not all outbreaks are worth
documenting in peer review literature. There are in excess of 1500 outbreaks
of gastroenteritis reported in Australia annually (OzFoodNet Working Group,
2012); however, it is important for public accountability that brief summaries
are included in reports. These summaries can then be used to quantify the
burden of human food-borne illness attributable to specific sources in order to
prioritise food safety interventions (Pires et al., 2010).

Evidence for causation

Identifying whether a specific exposure caused an outbreak can be complex,
particularly where there are multiple potential modes of transmission. Several
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streams of evidence are important for developing control and interventions.
Epidemiological information, in terms of persons at risk and measures of
association, is a key determinant. Other forms of information include test
results from foods, waters, environments and animals; tracing of movements
of foods and animals; and contact tracing between infected persons and
subsequent cases.
For complex outbreaks, it is necessary to specifically collect these forms of

information to take action. Box 13.4 shows an example, in this case a multi-
national food-borne outbreak of hepatitis A. There have been situations where
outbreaks that were initially thought to be due to one cause were subsequently
shown to be due to another vehicle, for example an extremely large and
complex outbreak of Salmonella Saintpaul gastroenteritis in the USA that
initially implicated tomatoes, but was subsequently linked to chile peppers
(Barton Behravesh et al., 2008). In practice, to attribute causation in these

Box 13.4 A large, multistate outbreak of hepatitis a associated with
semi-dried tomatoes, Australia, 2009

Detection of outbreak: An initial increase of locally acquired hepatitis

A infections occurred in two Australian States in March 2009 and

subsequently spread to other jurisdictions. A multijurisdictional

investigation team was formed to identify the potential source of the

outbreak.

Nature of investigation: The team conducted several investigations of

cases, foods and supply chains to identify a source for the outbreak.

A case–control study identified that cases were significantly more likely

to have eaten semi-dried tomatoes during their incubation period than

controls (odds ratio 3.0, 95% CI 1.4–6.7); however, the food supply

chain could not identify a specific brand or ingredient. The outbreak

then declined in June 2009 before resurging in October 2009,

particularly in the state of Victoria. A second case–control study also

showed a strong association between illness and consuming semi-dried

tomatoes (OR = 10.3; 95% CI, 4.7–22.7). This time, hepatitis A virus

was detected in semi-dried tomatoes and the supply chain linked

the contaminated product back to the country of Turkey. Related

outbreaks were detected in the France, the Netherlands and the

United Kingdom.

Weight of evidence: This was strong in this outbreak with epidemiological

evidence implicating semi-dried tomatoes, related outbreaks occurring

in other countries, foods positive for a viral sequence that was

(continued)
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widely distributed outbreaks requires coherent evidence from at least two of:
epidemiology, microbiology, and traceback of implicated foods from con-
sumers to a common source of supply.

There is extreme time pressure on public health investigators to gather
these streams of evidence and intervene at the same time. This often occurs
before all of the relevant information has been gathered, analysed and inter-
preted. In complex outbreaks, it is vital that health departments and other
agencies conduct multiple smaller investigations to develop a sensible picture
of the cause of the outbreak. This is a time-consuming and labour-intensive
process, but it is vital to ensure that the process is thoroughly and meticu-
lously investigated, while constantly revising the interventions in light of new
knowledge.

Summary

Outbreak and cluster investigation are an important function of public health
and should follow well-defined frameworks. There has been rapid change in
the nature of outbreak investigation as a result of improved microbiological
tests and greater availability of online data. Increasingly, health agencies are
becoming connected during outbreak investigations due to rapid spread of
agents via air travel, food and infected animals. It is not only infectious agents
that can present in clusters, but also other diseases, such as birth defects,
injuries and cancers. These non-communicable clusters are challenging to
investigate due to the often long latency and multifactorial disease causation.
Outbreaks and epidemics are challenging to investigate due to the complex
nature of information, and the need for information in a timely fashion to take
effective public health action.

Box 13.4 (continued)

indistinguishable from the virus infecting cases, and traceback

implicating a common source.

Implications: This was a serious outbreak with >560 cases of hepatitis

A reported to the national surveillance system in Australia during the

outbreak period. Approximately 45% of locally acquired cases were

hospitalised during the outbreak, with one fatality. Due to the potential

for international spread, the outbreak was reported to WHO under the

International Health Regulations (2005).

(Donnan et al., 2012)
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Questions

1. List three categories of information that should be collected in a
hypothesis-generating interview of a patient involved in an outbreak.

2. The following odds ratios were calculated for different foods eaten by
patrons at a restaurant buffet which was later connected with an outbreak
of Clostridium perfringens. Which one of the following measures of associ-
ation most strongly suggests that there is a true association between food
and illness?
a. OR = 1.3 (95% CI = 0.61–2.45)
b. OR = 0.4 (95% CI = 0.25–0.56)
c. OR = 5.4 (95% CI = 0.92–13.97)
d. OR = 3.6 (95% CI = 1.00–6.45)

3. Three inmates in a prison have been diagnosed with acute hepatitis B – an
acute infection of the liver transmitted by blood-borne and sexually trans-
mitted routes – in the previous month. With reference to the modes of
transmission, suggest three possible measures that could be used to stop
this potential outbreak of infection.

4. See also the TB Case-Study online for additional questions (and answers).
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Prevention is so much better than healing, because it saves the labour of being sick.

(Adams, 1618)

We can happily agree with Adams; where possible, prevention should be a
central element of any disease control strategy and epidemiology plays a key
role in its development, implementation and evaluation (see Box 14.1). When
we speak of prevention in the context of public health, we usually think of
what is sometimes called primary prevention which aims to prevent disease
from occurring in the first place, i.e. to reduce the incidence of disease.
Vaccination against childhood infectious diseases is a good example of
primary prevention, as is the use of sunscreen to prevent the development
of skin cancer. However, somewhat confusingly, the term prevention is also
used to describe other strategies to control disease. One of these is the use of
screening to advance diagnosis to a point where intervention is more effective,
often described as secondary prevention, and we will discuss this in the next
chapter. What is sometimes called tertiary prevention is even more remote
from the everyday concept of prevention, usually implying limiting disease
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applications
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progression or providing better rehabilitation to enhance quality of life in the
longer term. In terms of disease control it seems more useful to emphasise the
fundamental distinction between primary prevention, the focus of this chap-
ter, and all other actions that lead to improved clinical outcomes once disease
occurs. The former lowers disease incidence and hence limits the clinical
burden from a disease while, as you will see in the next chapter, the latter
(e.g. screening) can actually lead to large increases in clinical activity to bring
about additional reductions in morbidity and mortality.

Disease prevention in public health

Figure 14.1 shows tuberculosis (TB) mortality over time in England and Wales.
This is a disease that had all but disappeared from developed countries but is
now re-emerging as a worldwide scourge.

Considering the figure, how important do you think the BCG vaccine and new
therapy were in promoting the decline in TB mortality?

Box 14.1 The role of epidemiology in disease prevention

Epidemiology underpins much of our work in the area of

prevention:

• it is central to identifying modifiable causes of disease through the

various analytic study designs you have encountered, ideally the

results of these would be summarised in a systematic review or

meta-analysis;
• it provides quantitative measures of relative and absolute risk and

summary measures of disease burden such as PAF, PIF (potential

impact fractions) and DALYs that help identify areas where realistic

benefits might be achieved;
• it informs the design of studies, often RCTs but sometimes non-

randomised comparisons, to evaluate the potential for an intervention

to prevent disease in practice;
• together with other disciplines (e.g. statistics, anthropology and

economics), it contributes to development of policy to introduce

an overall intervention strategy; and, once the strategy has been

put in place, it guides the use of appropriate descriptive data

to evaluate whether the intervention actually delivers on

its promise.
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Figure 14.1 and other historical trends make it clear that major health
gains were made before the advent of any sophisticated medical therapies
and preventive measures. Social and cultural changes such as improved
housing, sanitation, general hygiene and nutrition have had a major influ-
ence on TB mortality, presumably both by reducing incidence and by
increasing survival. The effects of such ‘upstream’ effects on disease inci-
dence are sometimes termed primordial prevention, because they are remote
from the more proximal causes that medicine and (conventionally) public
health usually deal with. Our view is that the upstream and proximal causes
are inter-related and in practice it can be difficult to distinguish the two;
any intervention that lowers incidence is thus sensibly termed primary
prevention.

So, should we dismiss the value of the proximal strategies for TB control?
On the absolute scale of Figure 14.1 their contribution does seem marginal.
But would mortality have declined less quickly if there had been no BCG
vaccine and no chemotherapy? Consider Figure 14.2, which shows the same
information plotted on a log scale so that a 50% reduction in mortality looks
the same regardless of whether the drop is from a death rate of 4000 to 2000
per million or from 40 to 20 per million, i.e. Figure 14.2 depicts the rate of
change. We now see a slow and steady fall in mortality across the first 80 years
that quickens slightly around 1920. The slope steepens just after the introduc-
tion of chemotherapy and continues to fall following the introduction of BCG
vaccination. These are hardly definitive evaluations of the benefits of these
advances, but the acceleration of the fall in mortality around 1950 implies that
something has changed, and the introductions of vaccination and treatment
are the best candidates. And here, as elsewhere, when evaluating the ‘big-
picture’ population effects of interventions we have to realise that such appar-
ently simple descriptive data are often going to be the principal basis on which
our judgements rest.
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While the principal goal of public health should first and foremost be
primary prevention, for many diseases we do not have enough information
(biological and/or epidemiological) to mount such a programme effectively
(or cost-effectively). Even when we do have the knowledge, the barriers to
implementation may be substantial (e.g. financial, cultural, social, ethical).
For example, we already know that ensuring everyone has access to clean
water would prevent a large proportion of infectious disease, but for many
countries the practical and financial implications are enormous. Similarly,
by persuading more people to stop smoking, stay out of the sun, lose
weight, exercise more and eat better we could prevent much of our present
burden of chronic disease, but changing behaviour remains a major
challenge.
Additional strategies are therefore required in order to enhance disease

control and decisions as to the most appropriate approach need to be
disease-specific: less disease is most desirable, but might not be attainable if
causal knowledge is limited, or if causes are not readily modifiable. Screening
may be a good second choice in some circumstances if advancing diagnosis
really does produce better outcomes (not as straightforward as it might seem,
as you will see in the next chapter). Finally, improvements in treatment
remain an important avenue for enhancing survival and quality of life for
affected individuals. Table 14.1 contrasts two cancers with markedly different
control profiles.
The solution to the lung cancer epidemic is obvious (given a PAF of at least

80% for a single, modifiable cause), and concerted multilevel efforts to reduce
smoking rates (including banning advertising, legislating for smoke-free public
space, and plain paper packaging) have made big inroads on lung cancer
rates in many countries (see Figures 3.6 and 3.7). Nonetheless, it remains a
common disease, so efforts to improve clinical outcomes through early detec-
tion and better treatments are also important, although their yield to date has
been limited. Other valuable benefits have come from smoking control
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programmes as noted in Box 14.2, but the other examples there point to the
need to consider the balance of all effects – positive and negative – of any
intervention before deciding if it should be introduced widely.

With breast cancer we see the reverse situation. Quite a lot is known about
its aetiology, but there is no strong established causal factor that offers a
basis for widespread intervention although reductions in use of postmeno-
pausal hormones have probably lowered incidence in a number of countries
(Parkin, 2009). Reducing alcohol intake and, in postmenopausal women,
weight control could also yield some preventive benefits, but the PAFs of
only 6–8% for alcohol and overweight/obesity (Parkin et al., 2011; Whiteman
et al., 2015) show the more limited potential for prevention at present.
Fortunately, dual approaches to decreasing morbidity and mortality, namely
population screening by mammography to detect early lesions and more
effective non-surgical treatments, have paid off. Despite incidence rates that
have, until recently, been constant or even increasing, there have been
downturns in mortality from breast cancer in a number of countries from
the early 1990s, with examples from the USA and UK shown in Figure 14.3.
This suggests that the improved outcomes predicted by tightly controlled
clinical trials have transferred reasonably effectively to the community set-
ting. Note again the use of routine descriptive data to evaluate the effects of
interventions in the community; but also that this alone cannot separate out
the relative contributions of early diagnosis and improved treatment. How-
ever, as this is important knowledge for setting the cancer control agenda,

Table 14.1 The role of epidemiological knowledge in disease control: a case of two cancers.

Accepted utility for widescale use

Intervention Lung cancer Breast cancer

Prevention YES. Smoking cigarettes is the strong risk factor
(PAFa > 80%); and exposure is modifiable by
actions at personal and community levels

NO. Many weak risk factors, most not readily
modifiable (although limiting alcohol intake
(PAF ~6%) and, post-menopause, weight control
(PAF ~8%) and limiting use of hormone therapy
(PAF ~3%) are possibilities)

Screening NO. Even the newest tests (computed-
tomography lung scans) yield very limited
survival benefits

YES. Substantial good evidence (from RCTs) of
lower mortality due to population screening
programmes for over 50s

Improved
treatment

NO. Minor survival improvements only with
newer treatments

YES. Results from RCTs show that a survival
advantage can be achieved with appropriate
chemotherapy/radiotherapy

a PAF, population attributable fractions (from Parkin et al., 2011 and Whiteman et al., 2015).
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there have been a number of attempts to address the question by comparing
disease characteristics and survival in eras with different screening and
treatment interventions (Webb et al., 2004) and statistical modelling (Mor-
rell et al., 2012).
We will not consider clinical contributions to disease control any further

here; instead, our discussion will focus largely on the applications of both
epidemiological data and epidemiological thinking to disease prevention and
screening. In relation to disease prevention, we will concentrate on the con-
ceptual underpinnings of the preventive approach and some current practical
concerns and challenges as well as looking at the utility of using population
attributable fractions (PAFs) to target potential ‘high-yield’ interventions. In

Box 14.2 Choosing a preventive strategy: the whole story

An important aside to the lung cancer story is that anti-smoking

campaigns have also greatly reduced incidence of other respiratory

disease and heart disease. While much causal research is disease-specific,

preventive interventions manipulate exposures that may have many

consequences. Thus we need good information on the full array of effects

of any exposure we plan on modifying. Even immunisation campaigns

against infectious diseases have consequences beyond the clear preventive

benefits, as they have lowered incidence so dramatically that fewer lives

are now saved and the occasional severe side effects of immunisation start

to take a more prominent place on the balance sheet. Although virtually

every consequence of decreased exposure to cigarettes is positive and thus

the total benefit-to-cost ratio is huge, counter-examples abound where

complexity is the rule. For example, moderate alcohol consumption is

linked to lower heart disease but higher breast cancer rates and, at high
intakes, it is associated with an array of other health and social problems.

While the oral contraceptive pill clearly prevents cancers of the ovary and

uterus, it has an array of secondary effects which influence whether it is

prescribed, and it also increases risks of clotting disorders and breast

cancer. And so on.

How do we combine the different effects on morbidity and mortality for

various diseases? Does the benefit of avoiding one non-fatal stroke

obtained by long-term aspirin use outweigh the risk of three new life-

threatening gastric bleeds? Measures such as the DALYs and QALYs that

you met in Chapter 2 provide a more quantitative method of doing this

and are increasingly reported by health agencies.
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Chapter 15 we will go on to consider screening in terms of its underlying logic,
and the major challenges to evaluating its contributions to the control of a
given disease.

The scope for preventive medicine

Our earlier examples of disease variation by person, place and time have
shown that there are large differences between groups, suggesting that
much disease should be preventable if only we could lower everyone’s risk
to that of the lower-risk populations. Another striking example comes from
an investigation seeking an explanation for the threefold excess of cardio-
vascular disease (CVD) mortality in Finland compared with China. Surveys
carried out in rural villages in the two countries over the same time period
revealed quite different profiles of CVD risk factors (Table 14.2). The first
three factors, all more prevalent in Finland, could be taken as related to
overnutrition, and possibly to the fat content of the diet. Given China’s
history of major famines in the mid twentieth century it is not surprising
that differences remain so profound, at least in rural populations. Countries
undergoing the health transition away from a predominance of infectious
diseases and problems of marginal nutrition are, in principle, well placed for
intervention to prevent the emergence of Western lifestyle diseases, many of
which are related to overconsumption and inactivity. However, social engin-
eering is challenging, and the pace of development and industrialisation in
China coupled with dramatic reductions in rates of most infectious diseases
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(except HIV/AIDS) and increases in rates of chronic diseases including
cancer and cardiovascular disease (Yang et al., 2013) suggest that the risk-
factor profiles have already shifted towards those seen in the West. This is
also true for other countries in transition, as can be seen in Thailand, where
more frequent consumption of sugar-sweetened beverages in 2005 was
associated with greater weight gain over the next four years (Lim et al.,
2014). Table 14.2 also reflects different attitudes to control of smoking, with
the consequences of China’s high rates now seen in the rising lung cancer
and CVD rates there.

Population versus individual risk

There is a tendency in medicine and epidemiology to try to divide people into
two groups – those who have a high risk of developing a particular disease and
those at low risk. For instance, a woman of child-bearing age with high blood
pressure who smokes and has a family history of blood clotting would be
considered at high risk of complications if she took the oral contraceptive pill
and this would not be prescribed. In population terms, however, the benefits
of the pill outweigh the harms, and it is widely prescribed, although not
primarily for the prevention of disease.
So, how should we think about preventing ill health? Should we devote most

of our attention to the high-risk groups? This has been the basis of the vast
improvements in occupational health and safety since the industrial revolu-
tion, and remains an appropriate approach for specifically disadvantaged or
exposed groups, including many indigenous peoples. However, in the general
population there are few well-defined natural borders between clearly

Table 14.2 A comparison of prevalence of CVD risk factors between Finnish and Chinese
village populations aged 20–64 years.a

Men Women

Risk factor Finns (%) Chinese (%) Finns (%) Chinese (%)

Being overweight 63 21 61 24
Obesity 19 2 24 5
Hypercholesterolaemia 34 3 28 6
Hypertension 49 32 35 28
Smoking 26 73 7 37

a All differences were statistically significant (p < 0.001, except p < 0.05 for
hypertension among women) (Hu et al., 2001).

Risks and benefits of oral
contraceptives: Ovarian and
uterine cancer rates would be
20–30% higher if women did
not use the pill, but breast
and cervical cancer rates
would be slightly lower.
However, the number of
cancers prevented by the pill
in Australia in 2010 (~1340)
greatly outweighs the number
it potentially caused (Jordan
et al., 2015).
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different levels of risk. As an example, consider the relationship between blood
pressure and risk of fatal cardiovascular disease. We can see in data from the
Whitehall cohort study of British public servants (Rose, 1992) that the age-
adjusted risk of dying from CVD over 18 years of follow-up increases with
increasing blood pressure (Figure 14.4). Clearly, reducing blood pressure
levels is likely to reduce the CVD mortality rate. However, when we look at
Figure 14.5, we see that individuals do not fall into obviously separate groups
with low and high blood pressure and, therefore, clear-cut ‘low’ or ‘high’ risk
of heart disease.
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In Figure 14.4, is there any level of systolic blood pressure that is not ‘riskier’
than the one below it?

Looking at Figures 14.4 and 14.5, how many men in a population of 10,000
would have a systolic blood pressure of 150 mmHg? What is the risk (inci-
dence proportion) of dying from CVD in this group?

So how many men with a blood pressure of 150 mmHg will die from CVD?
What about those with a blood pressure of 170 mmHg?

From Figure 14.4 we can infer that the risk of dying from CVD at any level of
blood pressure is greater than that at the level below. The risk increases slowly
up to 130 mmHg and then increases more sharply and linearly from there.
From Figure 14.5 we can estimate that 15% or 1500 of a population of 10,000
men would have a blood pressure around 150 mmHg, and from Figure 14.4
the risk of dying of CVD in this group is 12% over the 18 years of follow-up. We
would, therefore, expect about 12% � 1500 = 180 CVD deaths in this group.
Similarly, 4% or 400 of the population would have a blood pressure of
170 mmHg and they have a 17% risk of dying of CVD. We would therefore
expect about 17%� 400 = 68 CVD deaths in this group. Thus, although the risk
of dying of CVD is greater for those with very high blood pressure, over twice
as many actual CVD deaths will occur among the much larger number of
people with intermediate blood pressure. Targeting prevention at only those
with very high blood pressure will not, therefore, address the majority of
deaths (but see Box 14.3 for a clinical perspective).
Figure 14.6 shows a concrete example of the close overlap in risk-factor

distributions (in this case serum cholesterol level) between those who did and
did not subsequently die from ischaemic heart disease (IHD; if the disease
terminology here is becoming confusing, check back to Box 2.6, page 52). The
whole curve for those who died from IHD is clearly shifted to the right
compared with those who did not die, but the two overlap considerably and
the cut-off point identifying the extreme upper 5% of the ‘healthy’ cohort
identifies only 15% of those who will develop IHD. So again, identifying and
treating individuals with very high cholesterol level is not a good preventive
strategy for the whole population.

Strategies for prevention

Choosing the best way to intervene in order to lower disease risk in a specific
population will often be a challenge. We present below some brief comments
on the theoretical extremes of practice, the high-risk and the mass or popula-
tion strategies. Although we have seen why the mass strategy is widely con-
sidered to be preferable, it might not always be practical. We also show a
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‘middle path’ showing the value of considering detailed patterns of risk factor–
disease associations to guide intervention targets and strategies.

The high-risk strategy

Classically, preventive medicine takes a high-risk approach. First, those indi-
viduals in special need are identified (e.g. intravenous drug users). The

9 11108765432

Serum cholesterol (mmol/l)

Did not die of IHD Died of IHD

Figure 14.6 Relative distributions
of serum cholesterol levels in men
who subsequently died of ischaemic
heart disease and men who did not.
The shaded areas indicate the
proportions of the population above
a cut-point that identifies the
top 5% of the healthy cohort.
(Reproduced from: Wald and Law,
BMJ, 2003; 326: 1419–1425, with
permission from BMJ Publishing
Group Ltd.)

Box 14.3 A clinical perspective

The example in the text shows the population perspective on prevention:

at the community levelmore CVD deaths would be prevented by focussing

on the larger numbers of people at intermediate risk than on the few at

high risk. However, let us focus on the individual for a moment. Lowering

an individual’s blood pressure from 150 to 120 mmHg would reduce their

risk of CVD from 12% to about 7%, an absolute risk reduction of 5%.

Similarly, lowering an individual’s blood pressure from 170 to 120 mmHg

would reduce their risk of dying from CVD from 17% to about 7%, an

absolute risk reduction of 10%. At the individual level, therefore, the

benefits are greatest for those at highest risk, so a clinical decision to

identify and treat such individuals, despite potentially harmful side effects,

can make sense and complement population strategies such as lowering

the salt content of foods.

Note, from a health system perspective, these reductions translate to a

number needed to treat (NNT) of 20 (1 � 0.05) in order to prevent one

CVD death among those with blood pressure 150 mmHg compared to

NNT = 10 for those with blood pressure of 170 mmHg.
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preventive process then takes the form of controlling the level of exposure to a
cause (e.g. introduction of a needle-exchange programme) or providing
protection against the consequences of the exposure (e.g. vaccination against
hepatitis B) in this high-risk group.
Another example can be found in the blood pressure problem we discussed

earlier. We might decide that high-risk patients are those with a systolic blood
pressure over 160 mmHg. The high-risk strategy would then involve screening
out those individuals with high blood pressure, followed by intervention to
bring their blood pressure down. This remains a common approach in clinical
practice and, if fully applied, might lead to a population blood pressure
distribution like that in Figure 14.7. If we compare this graph with Figure 14.5,
we can see that those who were in the upper tail have lowered their blood
pressure, and thus presumably their CVD risk, but the main group (among
whom most cases will occur) is unaffected.
High-risk strategies appeal for a number of reasons. The intervention is well

matched to individuals and their concerns (e.g. a needle-exchange pro-
gramme is a specific and tailored response to a tightly defined group), and
thus should also improve the benefit-to-risk and benefit-to-cost ratios. Fur-
thermore, avoiding interference with the non-needy group and adopting a
‘magic bullet’ approach to the target group are readily accommodated within
the ethos of the medical care system.
So, can the high-risk strategy play a useful preventive role? Of course, it

remains highly appropriate and desirable in clinical practice, and can also be
appropriate at the community level if a problem is confined to an identifiable
minority and can be successfully controlled in isolation. This includes the
well-documented benefits of targeting various occupational groups, for
example, hepatitis vaccination for those who work with blood products, and
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Figure 14.7 The hypothetical
distribution of systolic blood pressure
in middle-aged men after applying a
‘high-risk’ screening strategy. (Adapted
from: The Strategy of Preventive
Medicine, G. Rose (1992), figure 4.1,
by permission of Oxford University
Press.)
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early treatment and targeted vaccination of contacts of infected persons can be
a very effective way to control outbreaks of infectious diseases. However, we
need to be cautious in claiming that a risk really is sufficiently limited to the
so-called high-risk group. For example, screening only older pregnant women,
who are known to be at highest risk of conceiving a child with Down’s
syndrome, will miss the majority of afflicted foetuses, which are conceived
by younger women, in whom most pregnancies occur.

The mass strategy

In the case of a common disease or widespread cause, the extreme alternative
approach is the mass or population strategy advocated by Geoffrey Rose
(1992). This starts with the recognition that the occurrence of common dis-
eases and exposures reflects the behaviour and circumstances of society as a
whole. The mass strategy thus aims to reduce the health risks of the entire
population.

Using the blood pressure data again we can illustrate a mass-strategy
approach to this problem. Instead of targeting only those people with
the highest blood pressure, we would aim to reduce everybody’s blood pres-
sure by a smaller amount. This would shift both the blood pressure and the
CVD risk of the population to a lower level (Figure 14.8). This is a much
healthier situation for the whole group (although perhaps not for some
highest-risk individuals) than the truncated distribution we saw in Figure 14.7.

Other examples of the mass strategy are immunisation programmes, water
fluoridation, fortification of common foods such as bread with vitamins
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Figure 14.8 The distribution of
systolic blood pressure in a population
of middle-aged men before and
after a hypothetical intervention.
(From: The Strategy of Preventive
Medicine, G. Rose (1992), figure 6.5,
by permission of Oxford University
Press.)
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(e.g. folic acid), legislating use of seat belts (together with effective enforce-
ment, as without this a number of countries have failed to realise the true
benefits from introducing seat belt laws) and extensive legislative restrictions
on cigarette advertising and on smoking in public. Implementation of effective
preventive strategies for the current challenges of obesity is even more
daunting, given the complex causal web leading to weight gain. Here, as for
other preventive interventions, online motivational tools have been developed
to assist individuals to lower their risks.
In Box 14.4 we show an example of a ‘middle-road’ approach that sits

somewhere between the mass and high-risk approaches, reminding us of
the need to test our presumptions and prejudices against the known data
before proceeding with a particular approach to implementing a prevention
programme. Indeed, Rose made it clear that careful attention must be paid to
the patterns of association between risk factors and disease (e.g. a linear
increase in risk versus an exponential one – see Box 14.4 for example). The
prevalence of the high-risk exposures is also important, as seen for blood
pressure and CVD above, and it is for this reason that the PAF that you met in
Chapter 5 can be useful in identifying optimal preventive interventions. We
will look at this further in the next section.

Box 14.4 Weight and diabetes: a ‘middle-road’ strategy

Brown and colleagues (2007) used data from the Australian Longitudinal

Study on Women’s Health to model the effects of different patterns of

weight reduction on risk of hypertension and diabetes. As predicted, for

hypertension they found a larger benefit for a mass approach than for

a targeted high-risk approach (Table 14.3). However, the pattern was

(continued)

Table 14.3 Effects of different intervention approaches on risk of hypertension and
diabetes in an Australian population.

Risk reduction

Approach Intervention Hypertension Diabetes

Mass Modest reduction in weight (1 BMI unit)
across whole population

10% 13%

High-risk Larger reduction in weight (3 BMI units)
in heaviest 20% of the population

7% 17%

Middle-
road

Moderate reduction in weight (2 BMI
units) in heaviest 50% of the population

12% 23%

(Data source: Brown et al., 2007.)

Prevention in practice: We
have had sufficient evidence
of the causal role of smoking
in disease for more than 50
years (Office of the US
Surgeon General, 1964) yet
although mass prevention
programmes have
substantially decreased
smoking rates in some
countries, they remain high in
many parts of the world.

Health risk assessment

tools
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The population attributable fraction as a guide to prevention

As you saw in Chapter 5, one useful way to estimate the burden of disease in a
population that can be attributed to a particular risk factor is to calculate the
population attributable fraction (PAF)1:

PAF ¼ Pe casesð Þ
RR� 1ð Þ
RR

where Pe is the prevalence of exposure to the risk factor of interest in those
with disease and RR is the relative risk of disease for the exposure of interest.
The PAF also represents the maximum percentage reduction in the burden of
disease (or death) that might be expected if we could remove the exposure
completely.

However, this formula assumes that exposure is dichotomous: people are
either exposed to a risk factor or they are not. For instance, if we are interested
in the PAF of CHD or stroke due to high blood pressure we could set a cut-off
point at 140mmHg to define ‘high blood pressure’. However, we know that while
the highest risks of CHDand stroke are seen at bloodpressures above 140mmHg,
there is also some increase in risk between 110 and 140 mmHg (Figure 14.4).

Box 14.4 (continued)

somewhat different for diabetes where the high-risk approach was more

effective, largely because unlike risks of hypertension which increase

linearly with increasing BMI, the risks of diabetes are more concentrated

at the higher end of the distribution. But for both outcomes, a ‘middle-

road’ approach aiming for a moderate reduction in weight in the top half

of the population gave the greatest reductions in risk. Ultimately, though,

the predicted benefits have to be balanced against the costs and

acceptability of each approach. For example, while targeting only a fifth of

the population via a high-risk strategy may save money initially, achieving

and maintaining the greater weight loss required to deliver the full benefit

may prove impractical in the longer term and aiming for a more modest

weight loss in a greater proportion of the population may be more

cost-effective.

1 As you saw in Chapter 5, there are several different formulae for calculating the PAF. This

version is the most flexible as it is still valid when we need to use adjusted relative risks to

allow for confounding; however, it may not be the most useful in practice, as Pe may not be

known and for this reason formula 5.18 (page 160) is often used.
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We also know that most of the population have values below 140 mmHg
(Figure 14.5), so using that simple cutpoint would underestimate the total
amount of disease due to elevated blood pressure. Moreover, if we uniformly
apply one average value of RR for the effects of having any systolic blood
pressure over 140 mmHg, we ignore the dramatic increases in risk above that
level. Despite these limitations, this approach still gives a reasonable quantita-
tive appreciation of the potential benefits from improving population blood
pressure distributions in most situations. However, it can be an issue if we want
to compare populations with very different prevalences of high and very high
blood pressures.
This was a particular challenge for the World Health Organization when it

set out to estimate cross-national burdens of disease due to a range of risk
factors as a basis for identifying preventive strategies (the Comparative Risk
Assessment study). Their practical solution was to develop an approach which
could account for several different levels of a risk factor by summing the effects
across these levels to produce an overall PAF (Murray et al., 2003).

Attributable and avoidable disease

A second challenge for WHO was to determine what the unexposed or refer-
ence level should be for a particular risk factor to allow sensible comparisons
to be made between risk factors and preventive strategies. For risk factors with
an obvious zero exposure level (e.g. smoking, air pollution) it makes intuitive
sense to use that level as the reference. However, for risk factors such as blood
pressure, body mass and serum cholesterol there is no zero exposure so, for
these factors, the reference value was taken to be that level of exposure which
would give the minimum disease/injury burden (Murray and Lopez, 1999).
The attributable burden of disease due to a risk factor is thus the absolute
amount of disease in the population due to levels of exposure above the defined
reference level and the population attributable fraction2 is the proportion of
that disease which can be so attributed.
To gain the maximum future benefit from a preventive intervention we

would have to reduce exposures to their reference level, e.g. by eliminating
smoking or air pollution completely. This of course is infeasible, particularly
for an exposure like smoking, because once someone has smoked they can
never return to being a never smoker, so more realistic estimates are needed.
A plausible minimum for tobacco exposure might be the low smoking preva-
lence in Sweden (16%); however, even this might not be realistic for the near

2 Note that Murray and Lopez (1999) use the term attributable fraction to describe what we

have called the population attributable fraction.
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future and a more feasible target might be to reduce smoking prevalence by
5%, say from 25% to 20%.

Figure 14.9 shows the hypothetical effects of reducing levels of current
exposure (at time T0) on the future burden of disease (time Tx). The darker
blue area represents the burden of disease attributable to prior exposure; at
time T0 this is equal to ‘a’ and the population attributable fraction at T0 is
therefore a � (a + b). The dashed arrows represent the effects on the future
burden of disease of different reductions in exposure at T0: 0% (no change),
25%, 50%, 75% or 100% (complete elimination). Thus if we were to reduce the
prevalence of exposure by 50% at time T0 the amount of disease avoided at
time Tx, the avoidable burden, would be that indicated ‘c’ and the avoidable
fraction of disease in the population is c � (c + d). Note that the burden of
disease not attributable to the risk factor of interest (the spotted area) may be
decreasing, constant or increasing (as shown in the figure) over time.

For a real-life example, see Figure 14.10. This shows standardised lung
cancer mortality rates for men and women in Australia from 1979 to 2001,
with projections to 2021. The lightest blue area shows the unavoidable burden
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Figure 14.9 Attributable and
avoidable burden. (Adapted from:
Murray et al., 2003.)

Potential impact fraction
(PIF): this is another measure
that can be used to assess the
future impact of a reduction
in exposure. It is similar to the
PAF, but instead of estimating
the fraction of disease that
might be prevented by
complete elimination of an
exposure, it estimates the
fraction of disease potentially
preventable if exposure is
reduced to a new lower level.
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of lung cancer attributable to past smoking, the dark blue area predicts the
amount of future disease that would potentially be prevented if smoking levels
had dropped to zero in 2001, and the area above the dashed line shows the
effects of a 50% reduction in smoking in 2001. Of course, we must always keep
in mind the uncertainty of all such forward projections as they are highly
dependent on all of the other factors that affect population behaviours.

Prevention in practice

Box 14.5 describes an innovative population-wide suicide-prevention
programme that was developed explicitly from Rose’s ideal model of popula-
tion change.

How highly would you rate this study design for evaluating such a
programme?
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Figure 14.10 Attributable and avoidable lung cancer mortality due to tobacco (age-standardised rates), Australia
1979 to 2021. (Source: Stephen Begg, Queensland Health, reproduced with permission.)
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How easily can we generalise from these findings to, say, the US population as
a whole?

The actual study design used is a simple pre–post-intervention comparison
of suicide rates (i.e. very straightforward descriptive data). It would be nice to
have RCT data on this issue but, for pretty obvious reasons, it is very difficult to

Box 14.5 Flying higher: the US Air Force suicide prevention programme

Suicide rates in the US Air Force increased notably in the early 1990s,

leading to a concerted effort by senior staff to halt and reverse this trend.

A multilayered population-based prevention programme was introduced

in 1996 to reduce risk factors and enhance protective factors among the

more than 5 million personnel. The intervention focussed on removing the

stigma from mental health problems, enhancing understanding of mental

health, and changing policies and social norms. Strong and continuing

endorsement of the initiative by senior leaders was a critical element. The

approach adopted was explicitly a population-oriented risk-reduction

approach. Its effectiveness was measured by comparison of suicide rates

among US Air Force personnel before and after the intervention: overall

suicide was reduced by 33% (Figure 14.11) (Knox et al., 2003). Further
follow-up in 2008 found that suicide rates had remained at the new lower

level since 2003 with the exception of a spike in incidence in 2004, which

was found to coincide with a period when the programme was

implemented less rigorously (Knox et al., 2010).
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Figure 14.11 Suicide rates in the US Air Force before and after the population-based intervention in
1996–1997. (Data source: Knox et al., 2003.)
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conduct such a trial on this scale. Furthermore, because the interventions
have to be applied to an entire community, not just to individuals, it would
have to be a cluster randomised trial with only a few large groups and so
would miss out on the core benefits of individual randomisation. A trial would,
however, avoid the possible confounding of pre–post studies when there are
underlying time trends in suicide rates that are independent of any interven-
tion. (In this particular situation the unexposed and exposed cohorts, pre- and
post-intervention, are likely to have been quite similar with regard to potential
confounders among individuals, although external factors which might
change over time, such as new wars and total population size, could influence
suicide rates.) While the summary figures indicate the programme’s likely
benefit, we can see from Figure 14.11 that the pattern of change for suicide
is not simple to interpret. More recent data which extend both the pre- and
post-intervention periods for the study support a genuine benefit of the
intervention (Knox et al., 2010).
Generalising the specific findings to the whole population is more problem-

atic, not the least because air force personnel and the air force environment
are likely to be very different from the general US population; however, the
underlying theories may well be generally applicable. Taken at face value,
these results suggest that the mass strategy is capable of addressing the
underlying social, economic and political determinants of ill health in a
population, and need not be restricted to immediate causes. It is also a
desirable approach to intervention because it aims to change not only the risk
factors, but also the context in which they are embedded: it is easier to seek
help for a problem, or give up smoking, for example, if the rest of the popula-
tion is supportive.
Naturally, simpler solutions to preventive interventions are appealing –

immunisations for infectious diseases and some cancers (HPV for cervical
cancer, hepatitis B for liver cancer) are notable and valuable examples. How-
ever, the search for other ‘magic bullets’ continues; the editor of the British
Medical Journal speculated that the 28 June 2003 edition might be ‘The most

Frank and Ernest used with the
permission of the Thaves and the
Cartoonist Group. All rights reserved.
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important BMJ for 50 years’ (Smith, 2003). He referred to an article by Wald
and Law (2003) proposing the ‘Polypill’, a six-drugs-in-one cardiovascular
panacea that might prevent 80% of all vascular morbidity and mortality
beyond the age of 55 by reducing blood pressure (a three-drug cocktail),
serum levels of LDL cholesterol (a statin) and homocysteine (folate), and
clotting tendency (aspirin). Their quantification of the benefits and risks of
such a pill was based on combining relevant evidence from RCTs and long-
term cohort studies drawn from a series of systematic reviews and meta-
analyses. They recommended implementing a population strategy aimed to
shift the whole cardiovascular ‘risk curve’ well to the left, exactly the sort of
outcome of which Rose would have approved. This achieves the same pre-
ventive end as the Air Force suicide intervention programme by moderating
whole-of-population risk, but the onus on achieving the goal is shifted from
society to the individual, from primary structural and behavioural change to
life-long pill taking (and if compliance is not high the benefits shrink rapidly).
Whether this ‘medicalisation’ of a society is desirable or acceptable is conten-
tious, and the paper engendered debate. A series of trials of variants of the
polypill have now been published demonstrating the feasibility of the
approach and showing good compliance; larger-scale interventions currently
underway should yield direct measures of the polypill’s preventive potential
(Castellano et al., 2014).

Evaluation of preventive interventions in practice

The first reasonably strong evidence that intervention (adding or removing an
exposure) might decrease disease incidence often comes from observational
epidemiology, i.e. case–control or cohort studies. If, as this evidence accumu-
lates, a causal relationship between exposure and disease seems likely, and if
the potential for practical change exists, then this preventive potential can be
tested in randomised controlled trials. You have already seen some of these,
for example the trial of polio vaccine (Box 9.4) and the Physicians’ Health
Study which tested aspirin for preventing coronary heart disease and beta-
carotene to prevent cancer (Box 4.2). The utility (polio immunisation) or
otherwise (beta-carotene) of these interventions as demonstrated by the trials
directly underpinned decisions to implement the former but not the latter
preventive programme.

However, once the programme has been shown to be feasible in a trial, and
is rolled out to the wider population, it is no longer operating with the close
overview that characterises most experimental research, and so it cannot
automatically be assumed that it will be as effective as in the RCT setting. It
now needs ‘real-world’monitoring and evaluation and in the first instance this
information usually comes from the ‘routine’ data sources that we discussed
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in Chapter 3, especially trends in disease-specific mortality. You have met a
number of examples of this already, including the US Airforce suicide preven-
tion programme, and in figures showing mortality declines from lung cancer
(Figure 1.1), heart attacks (Figure 1.7), tuberculosis (Figure 14.1) and breast
cancer (Figure 14.3). Interpretation of the falling lung cancer mortality among
men in the USA is fairly straightforward from consideration of Table 14.1 and
Figure 3.7, and the additional knowledge that the incidence of this cancer is
also falling. The multiple strategies applied to induce falling smoking rates
have produced effective primary prevention of this fatal cancer, although it is
hard to know exactly which elements of the anti-smoking campaigns have had
most effect. And the reduction in smoking is just one of many factors that have
contributed to the massive declines in CHD deaths among Australian men
(see Figure 14.12). We have discussed factors behind the mortality changes for
TB and breast cancer above, and in the next chapter will consider the contri-
butions of screening to controlling breast cancer in more detail.
These examples all underline the critical importance of having good mor-

tality data (we discussed some of the challenges in getting this in Chapter 3) to
monitor the effectiveness of disease control programmes whether they are
attempting primary prevention or to improve treatment outcomes.

Figure 14.12 Contribution of
changes in risk factors to decline in
coronary heart disease (CHD) mortality
rate in Australian men aged 35–64
years 1968–2000. (From: Taylor et al.,
Eur. J. Cardiovasc. Prev. Rehabil., 2006;
13: 760–768, with permission.)

Evaluation of preventive interventions in practice 377



A final (cautionary) word

There are inevitably limitations to the mass strategy, especially the difficulties
of effective implementation. It is quite hard to persuade the public that a
health problem is a matter for concerted public action rather than simply the
responsibility of the few affected individuals. If everyone wants to smoke or
drive cars fast then it is not easy to stop them (the enforced changes in views
on drink-driving in many societies are, however, encouraging). Population-
level interventions such as water fluoridation or fortification of flour products
with folate are also highly controversial as they effectively remove an individ-
ual’s choice as to whether they want to receive the intervention or not. Even if
we know what is desirable and the public is on side, it can still be difficult to
effect a change (e.g. to reduce poverty). All change involves costs, and change
on a large scale involves large-scale costs. Finally, population change is made
more difficult because of what Rose dubbed the prevention paradox: ‘a preven-
tive measure which brings much benefit to the community offers little to each
participating individual’ (Rose, 1981). We all have to change our risk profile
(by wearing seat belts, changing our behaviour, etc.), but the only people who
really benefit are the unidentifiable minority among us whose seat belt will
save them in an accident or who would have died from CVD if they had not
reduced their blood pressure. In practice we often fall short of fully informing
the public of the very limited individual benefits that result from mass preven-
tion programmes (and from screening programmes; see Chapter 15).

In the next chapter we willmove fromprimary prevention to secondary preven-
tion or screening, and will apply an epidemiological perspective to the use of
population screening as a public health intervention. It often seems to be a given
that early detection of diseasemust be a good thing but, as youwill see, this is not
always the case, and thus this assumption should never be allowed to gountested.

Questions

1. Comment on the utility of relative and absolute measures of effect in
assessing the benefits a community will get from a prevention programme.

2. Refer back to Table 5.4. What are the implications of the data shown for the
benefits an effective anti-smoking campaign could deliver?
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Up to this point we have mainly focussed on the issues of how we can quantify
health (or ill health) and how to identify factors that might be causing ill
health, with a view to preventing it in the future. In the previous chapter we
alluded to what is sometimes called ‘secondary’ prevention, where instead of
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trying to prevent disease from occurring, we try to detect it earlier in the hope
that this will allow more effective treatment and thus improved health out-
comes. This is an aspect of public health that has great intuitive appeal,
especially for serious conditions such as cancer where the options for primary
prevention can be very limited. However, screening programmes are usually
very costly exercises and they do not always deliver the expected benefits in
terms of improved health outcomes (see Box 15.1). In this chapter we will
introduce you to the requirements for implementing a successful screening
programme and to some of the problems that we encounter when trying to
determine whether such a programme is actually beneficial in practice.
Box 15.2 summarises the various stages in this process and the central role
of epidemiology in all of these.

Why screen?

It has been known for some time that infection with human papilloma-
virus (HPV) is a major and probably necessary cause of cervical cancer
(see Chapter 10), but until the development of HPV vaccines in recent years
we could not prevent people from becoming infected, other than through
encouraging condom use. As uptake of these vaccines becomes widespread,

Box 15.1 Just because screening should work doesn’t mean it will

In the 1960s, public health practitioners were seduced by the concept of

early diagnosis – give people regular health checks to identify and treat

disease early. It seemed so obvious it would work that initiatives of this

type started springing up in the USA and the UK. The UK Ministry of

Health realised that the cost implications were enormous, so between

1967 and 1976 a trial was conducted in London to evaluate the benefits of

multiphasic screening of middle-aged adults in general practice.

Approximately 7000 participants were randomly allocated to receive either

two screening checks two years apart or no screening and all participants

then underwent a health survey. The investigators did not find any

significant differences between the two groups in terms of their morbidity,

hospital admissions, absence from work for sickness, or mortality. The

only outcome appeared to be the increased costs of healthcare –

approximately £142 million to screen the entire middle-aged UK

population (and that was at 1976 prices). (The South-East London

Screening Study Group, 1977; reprinted in 2001 with a series of

commentaries, Various, 2001.)
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they may eventually replace the current screening programmes as the pre-
ferred method for control of this disease. However, the screening programmes
have shown that in the absence of primary preventives like vaccines, detecting
disease before the usual time of diagnosis can provide an effective ‘second
level’ of public health intervention.
When used as a public health measure for disease control, screening implies

the widespread use of a simple test for disease in an apparently healthy
(asymptomatic) population. A screening test will often not diagnose the pres-
ence of disease directly, but will instead separate people who are more likely
to have the disease from those who are less likely to have it. Those who may
have the disease (i.e. those who screen positive) can then undergo further
diagnostic tests and treatment if necessary. The improved public health out-
comes we seek through screening are reduced morbidity, mortality and/or
disability. The benefits of public health screening are primarily for those
people who are actually screened, and generally even among this group only
very few will benefit directly, but there may also be wider social benefits if
overall health costs are reduced.

Box 15.2 The role of epidemiology in screening

Epidemiology has multiple roles to play in screening, from the initial

decision-making on whether or not to use screening to help control a

disease through to assessment of whether the screening works in practice.

Elements of this (and the relevant study designs) include:

• identifying whether a disease has an appropriate ‘natural history’ to

make screening an option (descriptive case series);
• considering if it conveys a significant burden (estimates of incidence,

prevalence, mortality and overall burden e.g. in the form of DALYs);
• measuring test quality and estimating how it might perform in the

population (cross-sectional studies);
• assessing the potential of a screening programme to improve

outcomes while dealing with special forms of selection bias (RCTs);

and finally
• evaluating the performance of the programme in practice (long-term

descriptive and ecological coverage of regions and nations).

This dependence on the sound design and interpretation of a broad mix of

epidemiological studies to determine the quality and practical utility of a

screening programme emphasises the central role of epidemiology in

health services assessment and policy evaluation.
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Screening is also used, in a slightly different fashion, to protect the general
population from exposure to disease. As an example, immigrants to a number
of countries are screened for HIV and hepatitis B infection; and travellers from
regions with epidemic acute infectious diseases, such as Ebola, SARS (severe
acute respiratory syndrome) or H1N1 influenza, have been subjected to
screening using health declaration cards to identify symptoms and sometimes
thermal scanning to detect signs of infection at airports. The primary aim of
this type of screening is not to benefit the individual who is screened, but to
protect the local population from these viruses. Similarly, some occupations
require regular screening; for example, airline pilots have regular medical
checks in an attempt to ensure that they will not have a heart attack while
flying. Insurance companies often require people to undergo health checks
and screening before they offer them a life insurance policy. Here the
‘screening’ is done for purely financial reasons, because insurance companies
charge higher premiums for people at higher risk.

The disease process

The first we know of the existence of a disease in a person is when it is
diagnosed. This is usually some time after it first produces the symptoms
which cause the person to seek medical care. The actual onset of disease will
of course be earlier than this – how much earlier depends on the disease
concerned. Figure 15.1 illustrates this point.

At some stage between the biological onset of disease and the time of usual
clinical diagnosis there may come a time when early signs of disease are there,
if only we could detect them. The position of this point will vary depending on

Biological
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Early
diagnosis
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diagnosis

CP 1 CP = critical point

Ideal to Screen

TIME

Outcome
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Figure 15.1 The natural history of a
disease (adapted from: Sackett et al.,
1991).
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the disease, perhaps occurring many years before the appearance of clinical
disease (e.g. high blood pressure, some cancers), or only shortly before
symptoms appear (e.g. acute infectious diseases).
At some stage during the disease process there is also likely to be a critical

point, after which the disease process is irreversible and treatment will confer
little or no benefit. An example is the point at which a cancer starts spreading
to other tissues (known as metastasis). If this ‘point of no return’ occurs before
it is possible to detect the disease (CP 1 in Figure 15.1), then advancing the
time of detection will simply mean that the person knows about their disease
for longer but their outcome will not be improved. Similarly, if this point
occurs after the time of usual clinical diagnosis (CP 3) there is no need to
detect the disease any earlier, given that treatment following usual diagnosis
will be effective.
Screening, then, is of greatest potential benefit when the critical point occurs

between the time of first possible detection and the usual time of diagnosis
(CP2). In this situation it may be that picking up the disease early would
improve outcomes, and this is the aim of a screening programme. Unfortu-
nately, we currently have too little knowledge of the progress of most diseases
for this to have much practical value in planning screening programmes.

Screening versus case-finding

There is considerable debate about the best way to implement early detection
of disease. Should the focus be on large-scale mass population screening, or
are we better off pursuing opportunistic early detection or ‘case-finding’ when
someone comes into contact with the health system for another reason? There
are some parallels here with the mass versus high-risk approach to primary
prevention that we discussed in the previous chapter. The terms ‘screening’ and
‘case-finding’ can also have quite different meanings to different practitioners.
We think it is most useful, and best accepted, to use the term ‘screening’ for
organised population-wide approaches and ‘case-finding’ for more opportu-
nistic attempts at early detection. If systematically applied, case-finding can
nonetheless form the basis for quite good population coverage. For example,
if a large proportion of the people visit a primary care physician every year
or two, this contact could permit early detection of risks (e.g. from cigarette
smoking, high blood pressure) in a setting that allows good follow-up.

The requirements of a screening programme

Screening differs from diagnostic testing in that it is performed before the
development of clinical disease. Thus, those who undergo screening are
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free, or appear to be free, of the disease of interest. They are not seeking
care because they are sick, but are instead persuaded to be screened by the
health service. The requirements of a screening test are therefore somewhat
different from those of a diagnostic test, which is performed only when
someone is suspected to have a disease. While both should be as accurate
as possible (see below), the screening test will often sacrifice some accuracy
as it also has to be relatively cheap, very safe, and acceptable to someone
who has no symptoms. Critically, though, an accurate test for a disease is
not sufficient to justify a community screening programme. The suitability
of a disease for screening has to be considered explicitly before all else and,
finally, the whole programme must be shown to confer a net benefit to the
community.

The disease

We need to consider the following characteristics of a disease before deciding
whether screening for it may be desirable.

• The disease should be severe, relatively common and perceived as a public
health problem by the community.

• We must understand the natural history of the disease sufficiently well
that we can be reasonably sure that earlier detection will give a better
outcome.

Prostate cancer shows us the importance of this. It appears to occur in a
number of biological forms that we cannot tell apart, and it is probable that
many men in whom a cancer could be detected by screening (e.g. with a
prostate-specific antigen (PSA) test) would never develop symptoms or suffer
from the disease (and therefore would not otherwise be diagnosed). This has
been clearly seen in a number of studies of autopsies showing that many
men who died of other diseases had microscopic cancers present in their
prostate glands (Martin, 2007). To detect and treat these men would be
wholly harmful and, largely for this reason, screening for prostate cancer is
generally not recommended, even though there are tests that could be used
(and which are used quite widely in some countries, e.g. the USA, on an
ad-hoc case-finding basis). Research is under way in a number of countries
in an attempt to shed light on this dilemma to allow a more informed
judgement to be made.

• In general, there should be a high prevalence of pre-clinical (early-stage)
disease.

This criterion becomes less important as the severity of the disease increases.
For example, it may be of benefit to screen for a fairly uncommon disease if
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not treating it has severe consequences – an example is the use of screening
for phenylketonuria (PKU) in newborns. Babies born with this condition lack
an enzyme that metabolises the amino acid phenylalanine. When they eat
proteins containing this amino acid, the end-products accumulate in the
brain, leading to severe mental retardation. By simply restricting the phenyl-
alanine in their diet this can be prevented. Although only about one in 15,000
babies is born with this condition, the availability of a simple, accurate and
inexpensive test makes it worthwhile to screen all newborn babies (Wilcken
et al., 2003).

• Screening is likely to be more effective if there is a long period between the
first detectable signs of disease and the overt symptoms that normally lead
to diagnosis (the lead time).

If a disease progresses rapidly from the pre-clinical to clinical stages, i.e. the
interval between the point when early diagnosis is theoretically possible and
when clinical diagnosis would usually occur (see Figure 15.1) is short, then it is
much harder to detect the disease by screening because this would have to
occur within this narrow time window to have any benefit. (Clearly, metabolic
conditions of early life, such as PKU, are exceptions to this because screening
can be done at birth.)

The screening test

The next requirement for a worthwhile screening programme is that we have a
test that will enable us to detect the disease before the usual time of diagnosis.
Any such test must meet the following criteria.

• Firstly it should be accurate.

As discussed in Chapter 7, accuracy reflects the degree to which the results of
the test correspond to the true state of the phenomenon being measured. In
practice, accuracy can be influenced by the standardisation or calibration of
the testing apparatus and by the skill of the person conducting or interpreting
the test. Maintaining high standards of testing in a service setting is thus
crucial for a screening programme to reach its full potential.
So what should we expect of a screening test in relation to its accuracy? We

would expect it to be:

sensitive – ideally it would identify all people with the disease; in practice, it
should identify most of these people;

specific – ideally it would identify only those with that particular disease and
those without the disease should test negative; in practice, most of those
without the disease should test negative.

The measures of sensitivity
and specificity are also used
to determine the accuracy of a
diagnostic test (see Box 15.3).
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• It must be safe and acceptable to the population being screened.

Because we are advising apparently well people to undergo screening, we
should not offer them a test that might adversely affect their health. The only
exception might be for those at very high risk of developing a serious disease,
when a slight risk from screening might be outweighed by a large benefit of
early diagnosis (e.g. regular colonoscopy for people with ulcerative colitis, who
develop large bowel cancer at a high rate). Social and cultural acceptability are
separate issues and are seldom related to the safety of the screening test. For
example, the requirement to take a sample of their faeces to test for blood as
an early indicator of colon cancer is unpalatable to many. Likewise, cervical
cancer screening is not immediately appealing in many societies and in some
it may be prohibited, particularly if the health professional is male.

• It should be simple and cheap.

If we wish to screen a large proportion of the population any test used
should be relatively cheap to administer and simple to perform or it would be
too costly to perform large-scale screening.

Mammography is neither simple nor cheap. Why then do you think that
mammographic screening to detect early breast cancer is recommended?

Although mammography is neither simple nor cheap, breast cancer is a
severe disease of substantial concern to many communities. It occurs rela-
tively commonly and, if detected early, is usually highly treatable, with better
outcomes than when treated later.

Test quality: sensitivity and specificity
We can evaluate the performance of a test by comparing the results with a ‘gold
standard’ method that ideally would give 100% correct results (but more com-
monly is just the best test available). This standard might be a more costly or
time-consuming test, or perhaps a combination of investigations performed in
hospital that is reliable for diagnosis but unsuitable for routine use in screening.

For example, children in many countries undergo a simple hearing test in
their first year at school. Any who fail this screening test are retested at a later
date and/or referred to a hearing clinic for further, more extensive tests to
identify whether they have a real hearing problem. Imagine that in a group of
500 children, 50 have a genuine hearing problem. Of these, 45 fail the school
hearing test, as do 30 of the children with normal hearing (perhaps they had a
cold on the day of the test).

Summarise the results of the test in a table, including labels for the rows and
columns.

Your table should look something like Table 15.1.
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There are four possible outcomes for a child, as shown in Figure 15.2.
A child with a real hearing problem may either fail the screening test (true
positive; group ‘a’ in Figure 15.2) or pass the test, suggesting falsely that they
do not have a problem (false negative; group ‘c’). Similarly, a child without a
problem may pass the test (true negative; group ‘d’) or fail, falsely implying
that they do have a problem (false positive; group ‘b’).
For a test to be accurate it should produce few false positive and false

negative results. So how good is the school hearing test? There are two issues
to consider: how well has the test identified the children who do have a
problem; and how well has it classified the normal children as normal?

What percentage of children with a real hearing problem failed the school test?

What percentage of children with normal hearing passed the school test?

Looking at Table 15.1, we see that 90% (45 � 50) of children with a hearing
problem failed the school test and 93% (420 � 450) of children with normal
hearing passed the test. These measures of a test are known, respectively, as its
sensitivity and specificity.
The sensitivity of a test measures how well it classifies people with the

condition as ‘sick’. It is the percentage of people with the condition who test
positive (90% in the example above). It is calculated by dividing the number of

Table 15.1 Hypothetical results from a school hearing test programme.

True hearing status

School hearing test Hearing problem Normal Total

Fail (positive test result) 45 30 75
Pass (negative test result) 5 420 425
Total 50 450 500

Disease Status

Test Result

Positive

Positive

True

Positives

a

False

Positives

b

Negative

Negative

False

Negatives

c

True

Negatives

d

Figure 15.2 Possible outcomes from
a screening test.
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true positive results (a) by the total number of people with the condition
(a þ c) from Figure 15.2:

Sensitivity %ð Þ ¼ True Positives

All with Disease
� 100

¼ a
aþ cð Þ � 100 (15.1)

The specificity of a test measures how well it classifies people without the
condition as ‘healthy’. It is the percentage of people without the condition who
test negative (93% in the above example). To calculate it, we divide the number
of true negative results (d) by the total number of people without disease
(b þ d):

Specificity %ð Þ ¼ True Negatives

All without Disease
� 100

¼ d
bþ dð Þ � 100 (15.2)

A combination of high sensitivity and high specificity is essential for a good
screening test – in this regard, the school hearing test works quite well.

Note that it is necessary to do a special (cross-sectional) study, as
discussed in ‘Diagnostic studies’ in Chapter 4 (Box 4.7), to assess the
sensitivity and specificity of a test. In the service setting, usually only those
who test positive (groups ‘a’ and ‘b’ from Figure 15.2) will be followed up
with formal diagnostic testing to determine the true positives. Those who
test negative are not normally followed up, so the proportion of false
negatives is not known and we cannot measure either the sensitivity or
the specificity of the test.

Test performance in practice: positive and negative predictive values
Two other measures tell us how well a test performs in a given population. In
practice we do not know at the point of testing whether a child does have a
real hearing problem – we have to predict this from the screening test result.
We therefore need to know how well a positive test result (i.e. failing the
hearing test) predicts that a child really does have a hearing problem and,
conversely, how well a negative test result (i.e. passing the hearing test)
predicts that their hearing is normal.

What percentage of children who failed the school hearing test had a real
hearing problem?

What percentage of children who passed the school hearing test really did
have normal hearing?

390 Early detection



Out of 75 children who failed the school hearing test, 45 (60%) had a real
hearing problem. Out of 425 children who passed the school test, 420 (99%)
really did have normal hearing.
These measures are known respectively as the positive and negative pre-

dictive values (PPV and NPV) of the test in that situation. Unlike the sensitivity
and specificity, they are not fixed properties of the test because, as you will see
below, they also depend on the prevalence of the condition in the population
being tested.
The positive predictive value (PPV) tells us how likely it is that a positive test

result indicates the presence of the condition. It is the percentage of all people
who test positive who really have the condition (60% in the example). It is
calculated by dividing the number of true positive results (a) by the total
number of positive results (a þ b):

Positive Predictive Value %ð Þ ¼ True Positives

All Positives
� 100

¼ a
aþ bð Þ � 100 (15.3)

The negative predictive value (NPV) is the percentage of all people who test
negative who really do not have the condition (99% in the example). To
calculate it, simply divide the number of true negative results (d) by the total
number of negative results (c þ d):

Negative Predictive Value %ð Þ ¼ True Negative

All Negative
� 100

¼ d
c þ dð Þ � 100 (15.4)

These measures of test performance are best thought of as operational measures
of the overall programme. They reflect both the accuracy of the test (sensitivity
and specificity) and the prevalence of the condition in the population tested.
Even a superb test (very high sensitivity and specificity) will yield a low PPV if
the condition is rare.

An example – testing blood donors for HIV infection
It is routine practice in most countries to screen all blood donors for HIV, but
what is the probability that someone who tests positive really is infected
with HIV?

What measure do we need to calculate to answer this question?

To answer this, we must calculate the positive predictive value of the test.
Assume that we are using the test to screen a high-risk population of
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intravenous drug users in New York City who have an HIV prevalence of
5500 per 10,000. Using this information and your answers to the following
questions, construct a table similar to Table 15.1 to show these data.1

How many in a group of 10,000 intravenous drug users would you expect to
have HIV infection?

Of these, how many would test positive if the test had a sensitivity of 99.5%,
and how many would falsely test negative?

How many of the drug users will not be HIV-positive and, of them, how many
would test negative if the test had a specificity of 99.5%? How many would
falsely test positive?

What proportion of the people who test HIV-positive would truly have HIV
infection?

Given the known prevalence of HIV infection in this group, we would expect
5500 of the 10,000 intravenous drug users to be HIV-positive and the
remaining 4500 would be HIV-negative, giving the ‘total’ row at the bottom
of the table. Of the HIV-positive group, 99.5% or 5473 would correctly test

1 If you are faced with questions about the performance of a screening of diagnostic test, the

easiest way to look at the data is in the form of a 2 � 2 table (so-called because it has 2 main

columns and 2 rows of data) like this.

From: www.cartoonstock.com
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positive and the remaining 27 would falsely test negative (giving the numbers
for cells a and c in the table) and among the HIV-negative group 99.5% or
4478 would correctly test negative (d) and the remaining 22 would falsely test
positive (b). Your table should then show a total of 5495 positive test results, of
which 5473 or 99.6% are true positives (the PPV). Similarly, of the 4505 nega-
tive test results, 4478 or 99.4% are true negatives (the NPV). The test therefore
performs very well in this high-risk population.

Now repeat the calculations for a low-risk population of new blood donors
where the prevalence of HIV is only 4 per 10,000.

Among the blood donors we would expect only about 4 out of 10,000 people
to be truly HIV-positive and the remaining 9996 would be HIV-negative. All
four of the HIV-positive people should correctly test positive (Table 15.2).
Among the HIV-negative group 99.5% or 9946 would correctly test negative
and the remaining 50 would falsely test positive. This means that we now have
a total of 54 positive test results but, of these, only 4 or 7.4% are true positives
(PPV). This means that 93% or more than 9 of every 10 positive test results
would be false positives.
Thus, even with a very high sensitivity and specificity, the same test per-

forms badly in this low-risk population. The profound influence of changes in
disease prevalence and test accuracy on the positive predictive value of a test
is shown in Table 15.3. In practice, the lower values for sensitivity and
specificity included in the table are often encountered, and for most diseases
of consequence the prevalence in the general population is also quite low; for
example, recent Australian data suggest the prevalence of breast cancer

Table 15.2 Positive and negative predictive values of
an HIV test in high- and low-risk populations.

True HIV status

Test Positive Negative Total

Intravenous drug users
Positive 5,473 22 5,495 PPV = 5,473� 5,495 = 99.6%
Negative 27 4,478 4,505 NPV = 4,478� 4,505 = 99.4%

Total 5,500 4,500 10,000

New blood donors
Positive 4 50 54 PPV = 4� 54 = 7.4%
Negative 0 9,946 9,946 NPV = 9,946� 9,946 = 100%

Total 4 9,996 10,000
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among women aged 50–69 who attend for mammographic screening (the
target age group) is around 0.3% (AIHW and NBOCC, 2009).

The prevalence of prostate cancer in 60-year-old men is approximately 1%.
Using Table 15.3, how accurate would you want an ultrasound screening test
to be before you would consider starting a screening programme to detect
early prostate cancer?

With such a low prevalence, even a test with 99% sensitivity and specificity
would give a positive predictive value of only 50%; i.e. half of all positive test
results would be false positives. While this is less than ideal, in practice this is
not necessarily the sole consideration in initiating a screening programme.
For example, most studies of screening mammography have demonstrated
that it achieves a positive predictive value in the range of only 10%–20% for
women aged between 50 and 69 years. However, the reduction in breast
cancer mortality associated with screening women over the age of 50 is
deemed by most (but not all, see Box 15.5 at the end of the chapter) to
outweigh the consequences of the large number of false positives that inevit-
ably result.

Parallels with clinical diagnostic tests
Although tests used for screening and diagnosis may look similar, it is import-
ant to remember that these are two fundamentally different processes as
shown in Table 15.4, which compares the attributes of a screening test and a
test used for clinical diagnosis. However, the aspects of accuracy and predict-
ive values that we have just discussed in relation to screening also apply
to all diagnostic tests, although this is another situation where clinical
epidemiologists use different terms for the same things. Box 15.3 shows an
example.

Table 15.3 Variation in the positive predictive value of a test with prevalence of disease
and accuracy of test.

Sensitivity and specificitya

Prevalence (%) 99% 95% 90% 80%

20 96.1% 82.1% 69.2% 50.0%
10 91.7% 67.9% 50.0% 30.8%
5 83.9% 50.0% 32.1% 17.4%
1 50.0% 16.1% 8.3% 3.9%
0.1 9.0% 1.9% 0.9% 0.4%

a Assuming, for convenience, that sensitivity and specificity have the same value.

394 Early detection



Table 15.4 A comparison of screening and diagnostic tests.

Screening tests Diagnostic tests

Use To identify people likely to have pre-clinical
disease

To establish presence/absence of disease

Timing Performed before development of clinical
disease

Performed after onset of symptoms or when disease
is suspected

Target
population

Large numbers of asymptomatic but
potentially at-risk individuals

People with symptoms to establish diagnosis, or
asymptomatic individuals with a positive
screening test

Characteristics Relatively cheap, very safe, and acceptable to
someone who has no symptoms

May be expensive, possibly invasive but justifiable if
necessary to establish diagnosis

Performance High sensitivity desirable so potential cases
are not missed

High specificity important (to minimise false
positives) as well as high sensitivity

Positive result Identifies people who may have the disease
and in whom further investigations are
required

Result provides a definite diagnosis

Box 15.3 Accuracy and predictive values of diagnostic tests

A red tympanic membrane is generally considered a good predictor of acute

otitis media (AOM) or middle-ear infection in children. However, in a study

conducted to determine the accuracy of this sign compared with the results

of the ‘gold standard’ test, myringotomy (incising the tympanic membrane),

the sensitivity and specificity were found to be only 18% and 84%,

respectively (Karma et al., 1989). If we assume a pre-test probability* or
prevalence of AOM of 50%, this means that only 53% of children with a red

tympanic membrane will actually have AOM (the PPV or post-test
probability), the other positive test results will be false positives. Similarly,

49% of those who do not have a red tympanic membrane will have AOM

(false negatives). On its own, then, this is not a very accuratemarker of AOM,

but if seen together with other signs such as bulging and reduced mobility of

the tympanic membrane the accuracy of diagnosis improves. Clinical

decision rules based on the presence or absence of several known clinical

features of a condition are useful tools to enhance diagnostic accuracy.

*This is another situation in which clinical epidemiologists use different terms to

describe the same things. In clinical epidemiology the term ‘pre-test probability’ is

often used synonymouslywith prevalence. It represents the probability that the patient

had the condition on the basis of information available before the testwas undertaken,

i.e. the prevalence of the condition and the patient’s clinical picture. Similarly, the

predictive values, which represent the probability that the patient has (or does not

have) disease on the basis of test results, are often called ‘post-test probabilities’.
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The trade-off between sensitivity and specificity
Let us assume that we have developed a new blood test that will screen people
for a debilitating but treatable disease. The test involves measuring blood
levels of a marker M and is far less invasive than the ‘gold standard’ test. To
evaluate the new test, levels of M were measured in 225 people believed to be
at moderately high risk for the disease and the results were compared with the
‘gold standard’ test. For the blood test, anyone with an M level of 20 mg/l or
higher was said to have the disease. Figure 15.3 shows the distribution of
M levels in people with and without the disease as diagnosed by the ‘gold
standard’ test. The light bars on the left represent the 99 people who truly do
not have the disease and the dark bars on the right represent the 126 people
who truly do. When compared with the ‘gold standard’ results, 115 of 126 with
disease tested positive (M levels � 20 mg/l) as did 10 of 99 without disease; the
remaining 11 with disease and 89 without had negative test results. We can
summarise the data as shown in Table 15.5.

How accurate is the M test? (i.e. what are the sensitivity and specificity?)

How well has the test performed in this population? (i.e. what are the predict-
ive values of the test?)
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0
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Figure 15.3 Distribution of M levels
by disease status according to the
‘gold standard’ test.

Table 15.5 A summary 2 � 2 table for the M test with a cut-off point of 20 mg/l.

True disease status

M test Positive Negative Total

�20 mg/l (positive) 115 10 125
<20 mg/l (negative) 11 89 100
Total 126 99 225
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Using a cut-off of �20 mg/l to classify people as positive or negative we can
calculate the following:

Sensitivity ¼ 115

126
� 100 ¼ 91:3%

Specificity ¼ 89

99
� 100 ¼ 89:9%

PPV ¼ 115

125
� 100 ¼ 92:0%

NPV ¼ 89

100
� 100 ¼ 89:0%

These look pretty good, but ideally we would like to have all of these values
as close to 100% as possible. The M test has, for instance, missed the 11 people
with the disease whose M values were less than 20 mg/l. So what if we were to
lower the cut-off point to 10 mg/l? Looking again at Figure 15.3, this would
mean that 9 of the 11 false negative people would now be correctly diagnosed
as having the disease, but it would also mean that an extra 31 people without
the disease would be included in the diseased group.

Calculate the sensitivity, specificity and PPV for this new cut-off point. (Hint:
use Table 15.5 as a guide to lay out a 2 � 2 table for the new cut-off point.)

How do the values compare with those obtained using the higher cut-off point
(20 mg/l)?

If we change the cut-off point to 10 mg/l the results are now as shown in
Table 15.6. We can calculate the new sensitivity, specificity, PPV and NPV as
we did above:

Sensitivity ¼ 124

126
� 100 ¼ 98:4%

Specificity ¼ 58

99
� 100 ¼ 58:6%

Table 15.6 Results of the M test using a cut-off point of 10 mg/l.

True disease status

M test Positive Negative Total

�10 mg/l (positive) 124 41 165
<10 mg/l (negative) 2 58 60
Total 126 99 225
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PPV ¼ 124

165
� 100 ¼ 75:2%

NPV ¼ 58

60
� 100 ¼ 96:7%

By changing the cut-point to �10 mg/l the sensitivity is now excel-
lent and there are very few false negatives, but the specificity has
markedly decreased. With the drop in specificity, the PPV of the test has
fallen from 92% to 75% because there are now far more false positives
(41 instead of 10).

Looking at the distribution of M levels in the two groups of people
(Figure 15.3), we can see that, although they are clearly different, there is
some overlap between the two. Where we decide to make the cut-off to try to
differentiate between ‘disease’ and ‘no disease’ determines how many false
positive and false negative test results we find. There is, therefore, a trade-off
to be made between sensitivity and specificity. For any disease, the optimum
point has to be selected depending on the consequences of missing a few
positives if the cut-off point is set higher or falsely classifying more negatives
as positive if the cut-off point is set lower. If early detection greatly reduced
mortality from the disease, and if false positives could be identified fairly
quickly and cheaply, and without adverse consequences by further testing,
then clearly we would set the cut-point lower than if the reverse were the
case. (See Box 15.4 for more about how we can assess the performance of a
screening test.)

Box 15.4 ROC curves and likelihood ratio tests

One way to visualise the relation between sensitivity and specificity is with

a ‘receiver operating characteristic’ or ROC curve. These were developed

by the British during World War II to measure how well their radar

receivers (hence the name) could discriminate between incoming German

planes and flocks of birds. To generate a ROC curve we plot the sensitivity

of a test against 1 (or 100%) minus the specificity of the test. Figure 15.4

shows the ROC curve for the M test (dark blue line). The closer the curve

goes to the top left-hand corner of the graph where the sensitivity = 100%

and specificity = 100% (i.e. 1 – specificity = 0%) the better the test, so the

light blue curve shows a test that performs less well than the M test. One

way to assess how well a test discriminates between people with and

without disease is by calculating the area under the curve (often referred to

as the AUC or C-statistic) where a value of 1.0 indicates a perfect test

(continued)

398 Early detection



Box 15.4 (continued)

and a value of 0.5 indicates the test is performing no better than chance

(shown by the dashed line in the figure).
You will also hear clinicians talking about the likelihood ratio (LR) for a

test. This is the probability of getting a particular test result in someone

who truly has the condition of interest divided by the probability of getting

the same result in someone who does not have the condition. For a

positive result this is equal to the sensitivity � (1 – specificity). So for the

M test with a cut-off of � 20 mg/l the LR for a positive test is 91.3 � 10.1 =

9.0. For a negative test the likelihood ratio is equal to (1 – sensitivity) �
specificity or 8.7 � 89.9 = 0.1.

The large LR positive and small LR negative indicate that

someone who is positive on this test is much more likely to actually

have the disease than not, while someone who tests negative is very

unlikely to have it. Their new ‘post-test’ probability of having/not

having the disease depends on their ‘pre-test’ probability (before the test)

and the LR and can be estimated using Bayes’ nomogram
(Attia, 2003).
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The screening programme

Even if a disease appears suitable for screening and there is a valid and
acceptable test, there is still no guarantee that the public will benefit from a
screening programme. Some major concerns beyond predictive values should
be that:

• the programme is demonstrably effective in practice, i.e. all its elements
work near enough to plan that lives are saved and/or morbidity is reduced,
and the cost is acceptable;

• the health care system can cope with the flood of extra diagnostic testing
and treatment due to finding prevalent disease (in the initial screening
rounds) as well as false positives.

We thus have to measure the outcomes of a screening programme, and
also consider some of the practical aspects of maintaining quality as
outlined below.

Facilities required
Before embarking on a screening programme it is important to assess the
infrastructure that will be required to support it. Facilities are obviously
needed for the screening process but, equally importantly, they are also
needed for the subsequent confirmatory testing and diagnosis, treatment
and follow-up of those who test positive. Estimates are needed as to the likely
uptake of screening, the total number of positive test results (including false
positives) expected based on the prevalence of the disease and the sensitivity
and specificity of the test, and the likely effect that this will have on the
demand for medical services. It is of no use, and is indeed unethical, to initiate
a screening programme if the resources required in order to act upon the results
are not available.

Treatment
The proposed treatment must be effective and early initiation of treatment
must improve the disease outcome. If it does not, then by diagnosing the
disease earlier we will simply lengthen the time a person is aware of, and
worrying about, the disease.

Cost
When a screening programme is introduced we must consider not only the
financial cost, but also the emotional cost of both the screening and subse-
quent treatment for those who test positive and then weigh this against the
costs of treating those who develop disease later. A positive balance is required
between the costs of screening and the consequences of not screening.
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Evaluation of a screening programme

The fact that a screening programme ought to work does not mean that it will
in practice (see Box 15.1 at the start of the chapter). No mass screening should
be introduced without convincing evidence of its likely effectiveness and it is
imperative that the programme be evaluated as a whole. We will now look at
the initial research that should precede the introduction of any full-scale
population screening, and provide some comment on the necessary in-service
monitoring that should follow its introduction.
It can be difficult to assess whether a programme will work. There are

some relatively simple early process measures that can give an idea of how
things are going, but ultimately we also have to show that the programme
delivers improved outcomes. To see whether we have succeeded in detect-
ing disease earlier than usual, we can compare the stage of disease in
patients whose disease was detected at screening with the stage of disease
in those in whom it was detected in the normal way. If cases identified at
screening are less advanced, then at least the potential for benefit has been
demonstrated. Another simple check on the process is the positive predict-
ive value of the screening test being used. A high PPV reflects a good
combination of an accurate test and an appropriate population (reasonably
high prevalence).

A low PPV implies that the programme may be in trouble. Why?

As you saw above, a low PPV indicates that, of all the positive test results, only
a few reflect true instances of disease, and the large number of false positives
will lead to unnecessary concern and expense for those individuals. Because
virtually all diseases considered serious enough for screening in the general
population will have a fairly low prevalence, the PPV of any test will be less
than optimal however high its sensitivity and specificity (refer back to
Table 15.3). Health authorities and the general public need to agree explicitly
on what level of false positives is acceptable, in the light of what these people
will suffer. The community should also be given the chance to declare that
they believe that a large benefit for a minority (only some of the ‘true posi-
tives’) outweighs the smaller losses (and the costs) suffered by a much larger
group (the ‘false positives’).
Turning to outcome evaluation, the ultimate judge of the potential value of

a screening programme, there are four areas we need to address:

• the health outcomes to be considered,
• potential sources of bias in the evaluation of a screening programme,
• the design of an evaluation study, and
• the negative consequences of screening.
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Health outcomes to be considered

It is important to identify the most important health outcomes that it is hoped
the screening programme will deliver. For fatal conditions such as many
cancers, a reduction in mortality is the most important outcome to be gained
from a screening programme. However, mere prolongation of life might not
adequately justify screening if the quality of the additional life is poor. Thus we
should also consider absence or reduction of serious morbidity and improve-
ment in quality of life as essential target outcomes for a screening programme.
The quality-adjusted life years or QALYs that you met in Chapter 2 can help
with this. Other sensible endpoints need to be set for non-fatal conditions: for
example, we would want to know that detecting impaired hearing in school
children led to some measurable benefits of consequence – perhaps improved
performance at school.

Potential sources of bias in the evaluation of a screening programme

At first glance, it might seem that all we need to do is follow-up people who
have and have not been screened to see what effects the screening has on their
morbidity and mortality. However, such simple cohort comparisons are unre-
liable as bias is a major problem and, as you will see, what we really need is
evidence from randomised trials. There are three major sources of bias to be
dealt with in any evaluation of the effects of screening: volunteer bias, lead-
time bias and length bias. All are special forms of selection bias and will lead to
inappropriate comparisons unless dealt with properly.

Volunteer bias
People who attend for screening are likely to differ from those who do not.
They tend to be of higher socioeconomic status, to be more health-conscious
and more likely to comply with prescribed advice. Thus, better results for a
screening programme of volunteers compared with disease outcomes in non-
volunteers may relate to factors associated with the ‘volunteerism’, rather than
benefits of treatment following earlier diagnosis. (This is the same volunteer
bias that you saw when we discussed selection bias in Chapter 7.)

In the HIP trial of mammographic screening (described in Box 15.5), only
about two-thirds of the 31,000 women randomly allocated to the mammog-
raphy group actually took up the initial offer to be screened and less than half
attended all four annual examinations. After 5 years of follow-up of all women
in the intervention arm, i.e. all those who were offered screening, those
women who had refused breast screening had much higher mortality from
all causes and from cardiovascular disease than those who were screened
(Table 15.7).

Quality of life is a
particularly important issue
for a disease like prostate
cancer, where standard
treatments can convey
substantial morbidity.
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Because the screening was directed only at breast cancer, why might women
who came for screening have lower mortality rates for causes other than breast
cancer?

The most likely reason is ‘volunteer bias’ – the women who took up the offer
of screening were different in important ways from those who did not. (And
note that Table 15.8 shows that the overall rates of total and cardiovascular
mortality were essentially the same in both arms of the trial, reinforcing the
fact that the mammographic screening itself did not affect these outcomes.)
The only reliable way to avoid this type of bias is to recruit a pool of

volunteers and then assign them randomly to receive screening or no screening,
just as they did in the HIP trial (Box 15.5). It is also important to ensure that as
many as possible of those assigned to screening are actually screened. The
correct analysis is then by intention to treat, i.e. comparing the groups as they
were originally randomised, regardless of whether women were actually
screened. If only those who actually received the screening are compared with
the rest, we lose all the benefits of the randomisation in terms of controlling for
confounding and avoidance of selection bias. (As you saw in Table 15.7, those
who do take up screening are likely to have inherently better health outcomes
than those who do not, regardless of the screening.) This analysis is not only
theoretically correct, but also reflects the reality of public health practice
because not all of us will eagerly take up each preventive opportunity. Details
of this analysis are described below, and shown in Table 15.8.

Lead-time bias
Lead-time is the period between when disease is detected by screening and
when it would have become symptomatic and been diagnosed in the usual way.
Consider a situation in which breast cancer starts to develop (disease onset)

Table 15.7 Volunteerism among women randomly allocated to the mammography group
in the HIP study, showing that mortality was lower among women who took up the offer
of mammography than among those who did not.

Deaths per 10,000 women
per year

Women randomly allocated to mammography All causes Cardiovascular

Women who underwent mammography 42 17
Women who refused the offer of mammography 77 38
Total 54 24

(Sackett et al., 1991)
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Box 15.5 Mammographic screening for breast cancer – still generating
controversy

Mammographic (X-ray) screening for breast cancer has been evaluated in a

number of different countries. One of the first randomised trials conducted

to determine its efficacy was the Health Insurance Plan (HIP) study in New

York – an inspired initiative that linked the introduction of breast screening

to a health insurance scheme. In this large-scale trial, 62,000 women aged

50–64 years who were members of this insurance plan were invited to

participate in the early 1960s. About 31,000 women were randomly

allocated to the intervention group and offered an initial mammographic

(and physical) screening examination followed by three additional

screening examinations at yearly intervals. Another 31,000 women were

randomly allocated to the control group and were not offered the screening

programme. After 18 years of follow-up, breast cancer mortality was 23%

lower in the group offered screening (Shapiro et al., 1985). These promising

first results were the basis for many countries to consider mammography

as a valuable public health tool, particularly in 50–64-year-old women.

However, there are still controversial issues to be resolved.

• The results of most studies have not shown a marked benefit of

screening women aged under 50 years.
• There have been criticisms of this and other core mammographic

screening trials and, although these have generally been rebutted, they

indicate that there are complex issues involved, both in conducting the

studies and in interpreting the results. This has been highlighted by two

(continued)

Table 15.8 Detection of new breast cancers and mortality from breast cancer, all causes other than breast cancer and
cardiovascular disease in the HIP study.

Deaths (per 10,000 women per yeara)

Study group

Breast cancer cases in the
first 10 years
(per 1000 person-yearsa)

Breast cancer
All
other
causes

Cardiovascular
disease

Age
40–49

Age
50–59

Age
60–69

Control 2.1 2.4 5.0 5.0 54 25
Mammography 2.1 2.5 2.3 3.4 54 24
Change – +4% –54% –32% – –4%

a Units as reported.
(Shapiro, 1989; Sackett et al., 1991)
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in two women at age 45. One attends for mammography and the tumour is
detected at age 48, while the other is diagnosed at the age of 50 when she
notices a lump in her breast. Both women die of their cancer at age 54
(Figure 15.5). The first woman has survived for 6 years following the discovery
of the tumour while the second has lived for only 4 years following diagnosis.
Without knowledge of the time of onset of disease, the screening process

appears to have increased the survival time by 2 years for the woman who was
screened when in fact their disease courses were identical. Both women have
lived for 9 years following the initial development of the tumour. The first woman
has just known and worried about her disease, and perhaps been without one
breast, for 2 years longer than the second woman. This is known as ‘lead-time
bias’ and, if ignored, it would distort a direct comparison of survival rates in
screened and unscreened groups. Conventionally, survival is often calculated for
a 5-year period after diagnosis of cancer: in this example, the woman diagnosed

Diagnosis

Onset
age 45

‘Early’
age 48

‘Usual’
age 50

Death
age 54

Unscreened woman O---------------------------------------Dx ----------------

Screened woman O------------------Dx -------------------------------------

Lead-time

Figure 15.5 The lead time associated
with screening in two individuals.
The shaded area represents the
lead time.

Box 15.5 (continued)

recent systematic reviews which reached discordant conclusions on the

value of mammographic screening programs (Gøtzche and Jørgensen,

2013; Independent UK Panel on Breast Cancer Screening, 2012).
• The ability to implement programmes in routine public health practice

which operate with the same high standards of those in the well-funded

research projects is still a matter of concern for many countries. If

programme standards are lowered (e.g. due to inadequate training of

radiologists to read mammograms, or longer screening intervals) then

the balance of benefits and harms will shift unfavourably.

Recent descriptive evidence shows that there has been a persistent

downturn in deaths from breast cancer in a number of countries (e.g. see

Figure 14.3). Although the reasons for this downturn have been a subject

of heated debate, as discussed in the previous chapter, it appears that both

better treatment (particularly chemotherapy) and screening have played

their part.
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clinically (unscreened) who died 4 years after diagnosis would not be in the
numerator of the survival rate, i.e. she would be defined as a ‘non-survivor’.
However, her exact counterpart in the screened group who died 6 years after
diagnosis would be included as a survivor, incorrectly suggesting a benefit from
screening. If lead-time bias is ignored, the survival among women who were
screened would appear to be higher than that among women diagnosed clinic-
ally, even if their disease courses were identical. A related phenomenon is the
apparent transient increase in incidence seen when a screening programme is
first introduced as the screening detects prevalent cases in the population earlier
than they would normally have been detected (e.g. see Törnberg et al., 2006).

So unless we have some idea of the actual lead time, perhaps from previous
studies, we should not use survival time from diagnosis to evaluate a screening
programme. Instead, we should consider the effects on longer-term age-
specific morbidity or mortality rates of the disease. These rates are less likely
to be affected by early diagnosis than time-limited survival rates, and should
therefore better reflect the true benefits of early treatment. Table 15.8 shows
such results from the HIP study evaluating the effectiveness of mammography,
based on a 10-year follow-up.

Describe the data reported in Table 15.8 above. Would you implement a
breast-screening programme on the basis of these results?

Table 15.8 compares breast cancer detection rates and breast cancer mor-
tality rates (separately for three age groups) among the group randomly
allocated to mammography (regardless of whether they actually underwent
the procedure) and the control group. It also shows the mortality rates for
cardiovascular disease and for all causes other than breast cancer. Cardiovas-
cular and ‘all-other-cause’ mortality rates were similar for the two groups
(implying that the randomisation process had created two equivalent, i.e.
‘exchangeable’, groups of women), but breast cancer mortality rates in women
aged 50–59 and 60–69 years were substantially lower in the group randomly
allocated to screening. On the basis of these data alone it would appear that a
breast cancer screening programme for women between the ages of 50 and 64
(the maximum age of women when they entered the study) should certainly
be considered. In practice, it would also be important to consider other
aspects of this study, to ensure that the results were valid; and given that we
are making our judgement many years after these data were published, we
must also examine the results of other studies in this area, ideally through a
formal systematic review and meta-analysis (see Chapter 11).2

2 As noted in Box 15.5 this has been done, and there has been sufficient variation in the results

of subsequent RCTs to leave the policy implications less certain than they appear from the

HIP data.

Over the 10 years of follow-up
in the HIP Study, breast
cancer detection rates in
the two groups were very
similar. Screening does not
alter the underlying incidence
of disease (although
introduction of screening may
be associated with an
apparent transient increase in
incidence due to detection of
prevalent cases, and/or a
small ongoing increase due to
detection of clinically
insignificant tumours), but
simply improves the outcome
after diagnosis.
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Length bias
When we screen for disease we are also more likely to detect cases where the
disease is progressing slowly. This is because, as we discussed earlier (look
back to ‘The disease’), rapidly developing disease will become clinically
apparent sooner and so be more likely to be diagnosed outside a screening
programme. These cases that are diagnosed between regular screening visits
are sometimes called ‘interval’ cases. The ‘slower’ cases that are more likely
to be detected by screening (remember, prevalence is a function of incidence
and duration) are likely to have an inherently more favourable outcome, and
the effect of this will again tend to make screening appear more favourable
than it really is. Length bias refers to this over-representation of slowly
progressing disease among cases detected by screening (see Figure 15.6
which shows that at any point in time there will be more slowly developing
cases in the population than rapidly developing cases). Randomisation
should give an even balance of each type of case in screened and unscreened
groups, again eliminating this as a problem for comparisons of age-specific
mortality.

Design of a study to evaluate a screening programme

The preceding discussion should make it clear that the initial evaluation
of a novel screening programme requires a randomised trial to allay con-
cerns about these varied threats to validity; no other design can be wholly
convincing in this regard. However, it is important to note that there are
situations where this is not possible, for example for ethical reasons, as
in the case of cervical cancer screening (see below), and in this case we
need to rely on other sources of evidence. Moreover, once a screening
programme has been rolled out as part of a health service’s disease con-
trol activities it needs further monitoring and evaluation in that setting.
As randomisation to the intervention will no longer be an option, this
will generally include careful assessment of the process measures we dis-
cussed above and monitoring of population-wide descriptive data including

Screening

Figure 15.6 Length bias. Dark bars
represent slowly developing and light
bars rapidly developing disease. The
length of the bar indicates the
duration of the detectable pre-clinical
state.
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trends in incidence and mortality rates. Making sound judgements from
such data is challenging, but the example of cervical cancer below gives a
sense of what is achievable. However, before we look at these non-
randomised designs, let us return to consider some examples of random-
ised studies.

Randomised studies
Secure long-term benefits of a screening programme must be documented
before it can be adopted for widescale use. Ideally, this demands a number of
randomised trials with persons assigned to be offered screening or not, and
then followed for some time (usually many years) to assess their health.
Inevitably, in the short term more disease will be found among those
screened, so the real issue is whether their survival or quality of life is
enhanced in the long term. The HIP study mentioned above was a landmark
in this respect, with the investigators showing great foresight in realising the
need for a very large long-term trial. It included over 60,000 women and the
length of follow-up was 18 years, but even so, from the point of view of
obtaining reliable results, the numbers of deaths from breast cancer were
not very great in the earlier years of the study. A smaller study, or one that
was conducted for only a short period of time, would not have been sufficient
to show with any certainty (i.e. precision) whether breast cancer screening
was of benefit. Additional data from subsequent RCTs, combined in the
form of a meta-analysis, have allowed more reliable assessment of the value
of mammographic screening (National Cancer Institute, 2015). However,
as noted above, this is still not definitive; nonetheless, both the National
Cancer Institute and the US Preventive Services Taskforce continue to recom-
mend biennial mammography for women 50–75 (US Preventive Services
Taskforce, 2015).

Large bowel cancer is the only other cancer for which strong evidence from
randomised studies shows a consistent mortality benefit from screening using
a simple test for blood in a person’s stools (Ee and Olynyk, 2009). The widely
accepted benefits of screening for cervical cancer by a smear test to detect
abnormal cells are based on much weaker evidence (see non-randomised
studies below), as it had become an accepted part of medical practice before
the benefits of RCTs for assessing screening programmes were realised. And
while prostate cancer screening by testing PSA levels in blood is widely
practised in the USA, and to a lesser degree in some other countries (essen-
tially large-scale case-finding, as there are no organised public programmes),
supportive trial data are lacking. A number of large RCTs have now reported
interim results, although these have not resolved the questions of the magni-
tude (if any) of any absolute benefit from screening, nor the trade-offs
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(expected to be substantial, see below) in terms of extra morbidity and costs of
screening (Ilic et al., 2013).

Non-randomised studies
As you saw in Chapters 7 and 8, non-randomised studies are much more
prone to selection bias and confounding than are randomised studies. How-
ever, they are sometimes the only source of evidence available. Ecological
studies have been used as the primary evidence to evaluate the impact of
cervical screening on rates of cervical cancer and, as an example, Figure 15.7
shows changes in cervical cancer mortality rates over time in Scandinavia.

What are the most striking elements of this figure?

Perhaps the most conspicuous feature of the graph is the fact that, until
about 1975, cervical cancer mortality rates in Denmark were double those
elsewhere in Scandinavia. Leaving Denmark aside for the moment, we can see
that between 1965 and 1980, mortality fell more rapidly in Finland and
Sweden, where nationwide screening programmes had been introduced in
the early 1960s, than it did in Norway, where, at that time, only 5% of the
population was covered by screening (nationwide screening was not intro-
duced until 1995). This visual impression is reinforced by a more formal
analysis that indicated that, between 1965 and 1982, cumulative cervical
cancer mortality rates fell by 50% in Finland and 34% in Sweden compared
with a drop of only 10% in Norway (Laara et al., 1987). Since 1980 the rates
have continued to fall in all three countries.
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Figure 15.7 Cervical cancer mortality
rates (5-year averages, standardised
to the world population) from
1960–2012 in the Nordic countries.
(Data source: NORDCAN, http://
www-dep.iarc.fr/NORDCAN/english/
frame.asp, accessed 14 March 2015.)
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So what about Denmark? Mortality has also fallen there, but, although the
absolute drop is quite dramatic, the relative fall between 1965 and 1982 was
only 25%, i.e. somewhere between that in Sweden and that in Norway, and this
fits with the intermediate level of screening in Denmark – about 40% coverage
of the population by 1980. Thus the data appear to support the hypothesis that
screening does reduce mortality from cervical cancer, but, as you saw in
Chapter 3, the results of an ecological study can be hard to interpret. For
example, it has been pointed out that the fall in cervical cancer rates in some
of these countries actually began before the introduction of screening, empha-
sising the problems of separating out other temporal effects, such as social
change. It is difficult from these data to say how much of an impact the
screening really had, although other evidence now supports the claim that
cervical cancer screening confers a real benefit in terms of saving life.

Case–control studies have also been used to compare those with and
without disease with respect to their history of screening. For example, case–
control studies of bowel cancer have shown that screening sigmoidoscopy is
associated with 50%–70% lower mortality from cancers in the parts of the
bowel that are within reach of the sigmoidoscope, but with no difference in
mortality from tumours in parts of the bowel that cannot be reached (Selby
et al., 1992). This design has a number of practical advantages over prospect-
ive studies, including the fact that case–control studies can often be conducted
more quickly and at relatively low cost; however, considerable care must go
into the design stage and interpreting the data can pose a number of add-
itional challenges (Walter, 2003).

Non-randomised studies are most important once a screening programme
has been established as a standard public health intervention, as ongoing
monitoring and evaluation is required to check that the benefits shown in the
research trials are actually achieved in practice. In the early stages, process
measures of the sort noted above (e.g. a shift towards diagnosis of cancer at an
earlier stage, high predictive values) will be prominent. In the longer term the
focus needs to change to disease-specific outcomes, for example ecological-
type assessments of the contributions of a screening programme to any changes
in disease patterns seen, as for the cervical cancer example you saw above (see
National Cancer Institute, 2015 for more examples). This need for ongoing
monitoring using routine data holds for all large-scale population interventions,
not just for screening programmes, and emphasises the importance of high-
quality administrative data for in-service programme evaluation.

The negative consequences of a screening programme

Our prime focus in the previous discussion was how to validly assess whether
screening provides a health benefit. However, this is only part of the story; the
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potential harms that may follow screening also have to be considered and
must be found to be substantially less than the benefits before screening can
proceed. We therefore summarise below the sorts of problems that can follow
from offering screening to healthy individuals as a counterbalance to any
unbridled enthusiasm you may have developed for screening as a strategy
for disease control.
The negative effects or harm that can result from screening are different for

those people with positive test results and those with negative test results.
Potential harm for those with a positive test result includes the possibilities of:

• complications arising from investigation,
• adverse effects of treatment,
• unnecessary treatment of persons with true positive test results who have
inconsequential disease (this is central to doubts over prostate cancer
screening, and almost certainly important for breast cancer as well
(National Cancer Institute, 2015; Independent UK Panel on Breast
Screening, 2012),

• adverse effects of labelling someone as having disease or early diagnosis,
• anxiety generated by the investigations and treatment, and
• costs and inconvenience incurred during investigations and treatment.

For example, it has been estimated that, of 1000 women aged less than
50 years screened every two years by mammography for 10 years, 251 women
will have an abnormal mammogram (Barratt et al., 2005). This group will
then undergo more than 300 additional procedures, with 60 women having
at least one biopsy, but only 12 women will finally be diagnosed as having
cancer and three of these cancers will be ductal carcinoma in situ, a pre-
cancerous lesion for which the benefit of surgical and medical intervention
remains uncertain. This represents a PPV for mammography of about 5% for
all cancers and 4% for invasive cancer among women aged under 50 years.
The other 239 women whose mammograms were abnormal will have under-
gone the stress of follow-up testing for no clear benefit. Another nine of the
women whose mammogram is negative for breast cancer will be diagnosed
with interval cancers when they present with symptoms between their regu-
lar screening visits. The corresponding PPVs for women over the age of
50 are 10%–19% and 7%–16%, i.e. two to four times higher, thus the benefits
of screening will also be higher. (Improvements in technology may improve
the situation somewhat, but the fundamental problem of very low prevalence
remains.) We also noted above the uncertainties that still surround screening
for prostate cancer; as at 2009, the trial data show an approximate doubling
of major interventions (surgery, radiotherapy, both of which have serious
side effects) in the men offered screening, for at best a modest lowering of
mortality (Barry, 2009).
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Potential harm for those with a negative test result includes the possibili-
ties of:

• false reassurance if the result turns out to be a false negative and there is
delayed presentation of symptomatic disease later,

• anxiety generated by the screening test and waiting for the result, and
• costs and inconvenience incurred during the screening test.

Harm from screening programmes can therefore include the following.

(1) Physical harm from complications, invasive tests and/or treatments, espe-
cially if falsely positive, or from delayed presentation if falsely negative.

(2) Psychological harm from anxiety, anger or depression from waiting, distress
from invasive tests or procedures, knowing a serious diagnosis earlier with-
out improved prognosis, and from falsely negative or positive test results.

(3) Financial harm from the costs of tests, medical appointments, possible
hospitalisation and treatments.

We detail these negatives to emphasise the need to take a balanced view of
what we are really offering the public when we introduce a screening pro-
gramme. If we overemphasise the potential benefits, and neglect serious
consideration of how a community might view and be impacted by the harms,
we do everyone a disservice.

Summary

Screening is an inherently attractive public health strategy for controlling
some diseases, particularly when no or few feasible avenues for primary
prevention exist, as early diagnosis of disease among apparently well people
can certainly lead to better outcomes. Nonetheless, its popularity among some
segments of the public and the health professions may over-represent its
capabilities, especially if people expect the results of a screening test to be
100% accurate all of the time. A cool-headed approach is required, and some
simple questions make a good starting point when considering screening.

• Is this disease appropriate for screening?
• Do we have a truly valid test?
• How well could a screening programme work in our community?

Points to look for when evaluating the potential benefits of screening
include the stage of disease in cases detected by screening, a high positive
predictive value for the screening test and, most importantly, demonstrated
and worthwhile improvement in outcomes in randomised trials.

These are the scientific aims. We then have to think practically and ethically.
Other questions we should ask include the following.

A recent systematic review
concluded that reductions in
disease-specific mortality are
uncommon and reductions in
all-cause mortality are rare or
non-existent for most
currently available screening
tests (Saquib et al., 2015).
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• Do we have the resources to implement the programme, and to deal with
the extra clinical and psychological load that will ensue?

• If we are taking resources from other public health programmes, are we sure
that we are improving the overall cost–benefit ratio for the community?

• Does our community truly understand and accept the inherent trade-off –
namely, that there will be a large benefit for only a few and some costs
(mostly smaller) for many others, and that some disease will be missed?

These are not light challenges to be faced.

Questions

1. Papanicolau (Pap) smear screening is currently the accepted method for
early detection of cervical cancer and women with an abnormal Pap smear
result are referred to a gynaecologist for colposcopy for definitive diagnosis.
To see whether repeat Pap screening would reduce the number of
unnecessary referrals, 110 women with an abnormal Pap smear were given
both a second Pap smear and colposcopy. The colposcopy showed that
13 women had high-grade lesions and 97 did not. The result of the repeat
Pap test was abnormal for 12 of the women with and 72 without high-grade
lesions.
(a) Construct a 2 � 2 table comparing repeat Pap test with colposcopy.
(b) Calculate the sensitivity and specificity of the repeat Pap test.
(c) What is the positive predictive value of the repeat Pap test?
(d) What is the probability that a woman whose repeat Pap test gives a

negative result actually has a high-grade lesion?
(e) Could a second Pap smear be used to identify women who should be

referred for colposcopy?
2. An experimental screening test for hepatitis B has a sensitivity of 82% and a

specificity of 93%. The prevalence of hepatitis B in the population to be
screened is estimated to be 3%.
(a) What is the probability that an individual with a positive test result does

not have hepatitis B?
(b) Using this test, what proportion of a population free of hepatitis

B would falsely test positive?
3. You are considering introducing a prostate cancer screening programme

using the PSA (prostate-specific antigen) test. You know that the test has a
sensitivity of 85% and a specificity of 80% for detecting prostate cancer and
that the prevalence of prostate cancer in men over 60 years of age is 4%.
(a) Among a group of 10,000 men aged over 60, how many would be

expected to have prostate cancer and how many of these would be
expected to have a positive PSA test?

Additional questions
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(b) How many men would not have prostate cancer and, of these, how
many would have a positive PSA test?

(c) Summarise these data in a table and calculate the positive predictive
value of a positive PSA test.

(d) How useful is the PSA test in this population? Consider both the
negative and positive outcomes for men who are screened.

(e) If the prevalence of prostate cancer among men older than 70 years is
15% would it be better to restrict screening to this age group?

(f) What characteristics of a disease make it one for which we would
consider introducing a screening programme?

For further questions relating to screening, see an excellent case study,
‘Screening for antibody to the human immunodeficiency virus’ from the Epi-
demic Intelligence Service of the US Centers for Disease Control and
Prevention (CDC-EIS, 2003, Student Guide #871–703), which is freely available
from their website: http://www.cdc.gov/eis/casestudies.html.
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• The original paper from screening study discussed in Box 15.1 plus a series of
commentaries on this:
The South-East London Screening Group. (1977). A controlled trial of multi-
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• A discussion of the history and current relevance of screening for prostate
cancer:
Martin, R. M. (2007). Commentary: Prostate cancer is omnipresent, but should
we screen for it? International Journal of Epidemiology, 36: 278–281.

• A systematic review looking at whether screening for disease really saves lives:
Saquib, N., Saquib, J. and Ioannidis, J. P. A. (2015). Does screening for disease
save lives in asymptomatic adults? Systematic review of meta-analyses and
randomized trials. International Journal of Epidemiology, 44: 264–277.
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In the preceding chapters we have covered the core principles and methods of
epidemiology and have shown you some of the main areas where epidemi-
ological evidence is crucial for policy and planning. You will also have gained a
sense of the breadth and depth of the subject from the examples throughout
the book. To finish off we will take a broader look at the role of

Box 16.1 The role of epidemiology in translational research

Translational research can be divided into five separate phases (T0–T4)

and epidemiology has a key role to play in all of these (from Khoury

et al., 2010):

T0: Description and discovery: describing patterns of health and

disease by person, place and time; observational studies to

identify potential ‘causes’ of health outcomes.

T1: From discovery to application (e.g. tests, interventions): clinical

and population studies to further characterise discoveries

from T0 and identify potential interventions to improve

health.

T2: From application to evidence-based guidelines: observational and
experimental studies to assess the efficacy of an intervention

to inform guidelines and recommendations.

T3: From guidelines to practice: studies to assess the implementation

and uptake of guidelines (e.g. identifying barriers to uptake).

T4: From practice to health outcomes: evaluation studies to assess the

effectiveness of interventions (e.g. a screening programme) in

practice.
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epidemiological practice and logic in improving health. This process where
research evidence is used to change practice or policy is known as translation
(see Box 16.1).

Translating epidemiological research into practice

When epidemiological evidence is both sufficient and sound it has the poten-
tial for direct translation into public health (and clinical) practice and policy.
In addition to providing primary research evidence to identify and test poten-
tial interventions to improve health, you saw in Chapter 11 the fundamental
role of epidemiology in knowledge synthesis through systematic reviews and
meta-analyses to better inform all stages of the research and translation
continuum. You have also encountered many examples of the application of
simple descriptive tools to evaluate disease control programmes once they
have been implemented. However, policy makers must have confidence in the
quality of our data and the soundness and impartiality of our interpretations of
those data. As you have seen, the evidence will often not include any data from
experiments. How then can we give assurances as to the soundness of our data
and their meaning?

Sometimes the data almost ‘speak for themselves’, but this is uncommon.
The role of cigarette smoke in the lung cancer epidemics perhaps comes
closest. Here the accumulated mass of causal evidence – very strong associ-
ations from observational studies, powerful dose–response effects, consistency
across multiple studies, the proven carcinogenicity of many ingredients of
tobacco smoke, and clear evidence that smoking preceded the onset of cancer
(temporality) –made a compelling case. The fact that the associations became
stronger when ‘dose’ of smoking was measured more accurately through
detailed questioning, together with validation of self-reported smoking status
using serum or saliva cotinine levels, a biomarker for nicotine intake, made
measurement error an unlikely explanation. But perhaps most influential were
the huge relative risks, generally of the order of 10–20 for smokers compared
to non-smokers, which made it virtually impossible for confounding to explain
away the link. In many countries these observational data were rapidly trans-
lated into anti-smoking programmes, the beneficial results of which you have
seen in previous chapters. However, over 60 years after the original case–
control studies, and 50 years since the influential policy document from the
US Surgeon General (U.S. Department of Health, Education, and Welfare,
1964) on the harmful effects of smoking, smoking in Western societies has
not been eliminated, despite a raft of legislative and behavioural science-
driven interventions. Even with strong evidence, full translation is tricky, and
goes well beyond science.
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Unfortunately, the evidence is rarely as convincing as that seen for
smoking. Box 16.2 summarises the research that led to the conclusion
that beta-carotene was not the cancer preventive that scientists had
initially hoped it might be. The unexpected trial results, which firmly

Box 16.2 Beta-carotene: an epidemiological tale

The history of nutritional epidemiology is based on the identification and

correction of specific deficits in what came to be called vitamins, as well as

the need to provide adequate energy for growth. In the second half of the

twentieth century, observations from descriptive studies comparing

populations with adequate energy intake led to hypotheses that much of

the uneven distribution of non-infectious diseases, especially cancers and

heart diseases, could be due to dietary differences between populations.

This led to a flood of analytic epidemiology and parallel laboratory work as

scientists tried to identify specific cancer-causing agents (carcinogens) and

possible cancer preventives.

Observational studies suggested that a number of cancers occurred less

commonly among individuals and groups who ate more fruit and

vegetables, and laboratory studies showed (amongst many other factors)

that vitamin A and related compounds (retinoids) were promising anti-

carcinogens. The strands were woven together and beta-carotene, the

principal dietary precursor of vitamin A, was identified in the laboratory

and in case–control and cohort studies as a substance that might underlie

the beneficial effects of fruits and vegetables. Beta-carotene’s appeal as a

preventive agent was substantial: it combined a number of theoretical

anti-cancer properties and appeared to be entirely safe (vitamin A itself

being far more toxic at effective anti-cancer doses).

This message was captured most cogently in a paper published in

Nature (Peto et al., 1981), and several research groups were stimulated to

conduct randomised trials using beta-carotene. These experiments were

required to quantify the ‘beta-carotene effect’ separately from effects of

other inter-related dietary elements. When put to the test in this way, the

hypothesis failed to stand up; in fact beta-carotene may actually have been

harmful to some smokers: in one trial the incidence of lung cancer was

18% (95% CI 3–36%) higher among smokers randomised to receive beta-

carotene than among those randomised to the placebo group. (ATBC,

1994). The overall trial evidence led the US Food and Drug Administration

to disallow health claims for beta-carotene related to cancer prevention

(FDA, 1998).
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contradicted the preventive promise of the non-experimental research,
were seen by some as a strong indictment of observational epidemiology.
So what went wrong? Why did the observational studies get the ‘wrong’
answer?

Clearly we need more information to answer this question fully. If we first
consider the complex make-up of our diets, a first thought might be that
there is likely to be real potential for confounding when studying effects of
one nutrient among many and, given the general imprecision of dietary
measures (as discussed in Chapter 7), control for confounding by other
dietary factors will not be wholly successful. Additionally, people who eat
diets high in fruit and vegetables (the main contributors of beta-carotene)
are likely to differ from those with low fruit and vegetable intake with
respect to other personal and lifestyle factors such as smoking, alcohol
consumption and physical activity, which also affect cancer risk. Some of
these other factors will also be very hard to measure and so hard to control
for in the analyses. Furthermore, the associations found in the observa-
tional research were generally small to modest (50%–100% increases in risk
or RRs of 1.5–2.0) thus, despite great consistency of effects across studies
and strong biological support for the hypothesis, a cautious interpretation
was required. These challenges to interpreting the results of the observa-
tional studies were the reason that scientists promoted the need for ran-
domised experiments as the only way to make a strong test of the
hypothesis (Peto et al., 1981). (A more detailed overview is provided by
Hercberg, 2005.)

Despite the outcome, the full research sequence from the beta-carotene
case study is actually a good example of how science should operate: a
sound hypothesis that may have strong public health value emerged from a
variety of sources (Peto et al., 1981); it was then tested via a series of large
and rigorous experiments in different populations; it failed the test, leading
to quite rapid formal direction from the US Government that beta-carotene
(and vitamin A) supplements were not approved as cancer prevention
agents (FDA, 1998).

Challenges

So what have we learned from this? The totality of evidence indicates that
beta-carotene is a good marker of (and part of) a beneficial diet, but is
insufficient on its own to provide any protection. We have also learned
that dietary epidemiology is more challenging than was initially appreci-
ated, and that due attention needs to be given to the challenges of
measurement and confounding in observational studies; we want to
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minimise dilemmas such as those depicted in the cartoon for the public
and for policy makers.
Compelling observational data such as those seen for smoking are, unfor-

tunately, the exception. The multivariable and often hard-to-identify and
remote causes of many chronic diseases are generally much weaker, leaving
many studies under-powered with more room for results to vary by chance,
quite apart from the real potential for weak effects to be due to residual
confounding or bias. The resulting papers report weak or moderate effects
(RRs less than two) which may well differ among studies investigating the
same relationship. One result is a flow of sometimes contradictory news-
paper headlines and journal articles depicting new panaceas or lifestyle risks.
This highlights the importance of a sound systematic review to provide a
balanced explanation and presentation of all relevant data (Chapter 11) and
the need for authors, editors and medical journalists to show restraint and

From: www.Cartoonstock.com
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avoid the premature trumpeting of ‘interesting’ findings from the report of a
single study.

So how can we address these challenges?

Synthesis and integration

The increasing focus on translational epidemiology (Khoury et al., 2010;
Hiatt, 2010) offers a useful counter to those who have questioned the value
of epidemiology, by promoting the value of data synthesis and collaborative
engagements across research groups, as well as increased integration of
epidemiology with other disciplines relevant to public health, especially
social and laboratory sciences. The first two endeavours help minimise the
play of chance and allow direct assessment of consistency of findings, while
the third broadens causal perspectives and, through advances at the molecu-
lar and genetic level, permits sharper measures of both diseases and
exposures.

The Cochrane Collaboration has set a superb example by encouraging
investigators to conduct practically directed data syntheses in a standardised
manner and, since its inception in 1993, Cochrane contributors have pro-
duced thousands of systematic reviews evaluating health care interventions
(Ferrie, 2015). Collaboration among researchers is also becoming more
common and an increasing number of groups of epidemiologists are sharing
their data to permit direct pooling of their results with results from other
studies. One of the first of these was established at Oxford University to help
pin down the long-contentious relationship between use of the oral contra-
ceptive pill and a woman’s risk of breast cancer (Collaborative Group on
Hormonal Factors in Breast Cancer, 1996). Finally, recognising the need for
integration across disciplines, funding bodies are increasingly demanding that
research be ‘multidisciplinary’, bringing together scientists from a range of
relevant fields. In addition to epidemiologists, these groups may include
demographers, geographers, social scientists and health policy experts who
provide perspective on the upstream ‘macro’ level drivers of health as well as
geneticists and molecular biologists who add insights at the ‘micro’ level
regarding individual susceptibility to disease and more sophisticated ways to
classify disease (see, for example, serotyping of infectious agents in Chap-
ter 13). The rapidly increasing integration with bench (laboratory) science,
where new, sophisticated tools and the mapping of the human genome
provide a welter of molecular, genetic and epigenetic data, complements the
standard personal and health information of traditional epidemiology. How-
ever, although it is easy to focus on individual-level risk factors when search-
ing for the causes of disease, we should not ignore the fact that that these exist

The research outputs from
epidemiology fit well with the
growing desire for public
health and medical research
to be ‘translational’, i.e.
directly applicable to a
population or patient. Hiatt
(2010) puts epidemiology at
‘the epicenter of translational
science’.
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within a much broader and more complex web of social and environmental
factors (McMichael, 1999).
A qualitative sense of some of these multifactorial approaches is given in

Figure 16.1, which shows the eco-social model which guided the design and
research questions of the Thai Health-Risk Transition Study, a large-scale
cohort study established in 2005 to evaluate forces behind changing disease
patterns in Thailand (Sleigh et al., 2008).
At another level, we have also briefly discussed lifecourse epidemiology (Kuh

and Ben-Shlomo, 2004) which brings temporal integration. It aims to identify
and integrate exposures and other influences across a person’s life (as far back
as conception, and possibly beyond) and relate them to their health at differ-
ent ages. Capturing details of habits, diets and other aspects of early life is
mostly too much to expect from retrospective questioning in adulthood, but
historical records from early surveys, schools and hospitals have proved
invaluable. For example, a group of Bristol epidemiologists identified good
dietary records from the 1930s for over 4000 children, more than 85% of whom
have been followed up to the present for mortality, and a proportion resur-
veyed six decades later (the Boyd Orr study; Frankel et al., 1998). A number of
pregnancy and birth cohorts have also been established to collect detailed
early-life data prospectively, with the intention of life-long follow-up of the
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study participants (for example the ALSPAC Study, see Box 4.3). Improve-
ments in data linkage will help these studies ensure high follow-up rates,
something that will be critical to avoid selection bias in the long term.

Limiting error

We have given a lot of attention to the challenges of error and confounding
throughout the book so will not revisit these in detail here, but dealing with
these biases effectively is crucial for epidemiology to be a consistently useful
translational discipline. New analytic methods for identifying, quantifying and
(to a degree) dealing with bias and confounding provide some tools to help us
achieve this. By making the relationships between the variables we are study-
ing explicit, directed acyclic graphs (DAGs) can sharpen our causal thinking
and improve our ability to identify and control for confounders appropriately.
Some of the newer methods we have alluded to like instrumental variables
and Mendelian randomisation, itself a spinoff of our new genetic knowledge,
offer the potential to remove, or at least reduce, the bias in our analyses. And
perhaps most importantly, keeping an eye on the exchangeability of the
groups we are comparing can help us design better studies as well as in
assessing whether selection bias or confounding might affect our results. In
addition to this we must continually strive to sharpen our measurement – not
just of exposures and the outcome we are interested in, but also of confoun-
ders so that we can adjust for these more fully. In particular, anything we can
do to decrease random misclassification will increase the precision of our
estimates and so help clarify weaker associations that lie close to the null.

Improving measurement

As epidemiology is, at its core, a measurement science we will expand a little
further on this here. New technologies now allow more sophisticated meas-
urement both of exposure (e.g. serum biomarkers, DNA damage in cells) and
of outcome (e.g. early cellular changes, molecular subtypes of disease based
on genetic profiles). Increasing the precision and accuracy of our measure-
ment is paramount, but we also need to be highly specific about what we
mean by exposure and outcome. A single infectious agent may have different
strains, cigarettes have varying levels of tar, menopausal hormone therapy
comes in different formulations and doses, and so on. Duration, intensity,
pattern and timing of exposure may be critical. Is someone who drinks a glass
or two of wine each night getting the same ‘causal dose’ of alcohol as their
neighbour who drinks only on Friday nights but then drinks a bottle or two?
For liver cirrhosis the answer might be ‘yes’, but for risk of injury it would
clearly be ‘no’. Similarly, we need maximum precision in defining outcomes.
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Uterine cancer was recorded as one disease until the mid-twentieth century
when cancers of the body of the uterus were separated from those of the cervix
(neck of the uterus), as they are histologically quite distinct. They were then
found to have completely different risk factors: obesity and oestrogen expos-
ure for endometrial cancer and human papillomavirus (HPV) infection for
cervical cancer, requiring very different preventive strategies. We now know
that risk factors also differ for different histological types of cancer at the same
site – for example, cigarette smoking is associated only with the rare mucinous
type of ovarian cancer (Collaborative Group on Epidemiological Studies of
Ovarian Cancer, 2012) while a history of endometriosis is associated only with
two other histological types (endometrioid and clear cell) (Pearce et al., 2012).
With our increasing genetic and molecular capability we can now subdivide
the histological types of cancer further based on their molecular characteris-
tics. In many cases these ‘molecular subtypes’ have a very different prognosis
and, in the case of breast cancer, they are now used to determine treatment
as different drugs target different molecular characteristics of the cancers.

Box 16.3 The evolving epidemiology of cancer of the cervix

1713: Cancer of the whole uterus (including what we now know as the

cervix) noted to be uncommon in nuns (Ramazzini, 1713) leading to

the hypothesis that it was related to sexual activity.

1928: Papanikolaou reported that ‘uterine’ cancer could be diagnosed

by vaginal smear.

1950s: Cancer of the cervix identified as a separate entity.

1960s: Introduction of cervical cancer screening using the ‘Pap’ smear

in the USA.

1974: The evidence shows a strong relation between sexual activity

and cervical cancer mortality suggesting an infectious cause

(Beral, 1974).

1960s–1970s: Herpes simplex virus initially suspected as the cause.

1976: Harald zur Hausen identifed human papillomavirus (HPV) DNA
in cervical cancer and genital warts and was later
awarded the Nobel Prize for Medicine for this work; subsequently
multiple HPV strains were identified and refined testing showed
specific strains including HPV16, 18, 31 and 45 were very
strongly associated with the cancer.

1999: HPV proposed as a necessary cause of cancer of the cervix

(Walboomers et al., 1999).
2006: First HPV vaccine approved by the US FDA.
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For example, Herecptin® is given only to women with breast cancer if their
cancer tests positive for human epidermal growth factor receptor 2 (HER2).
This sophisticated molecular information also allows us to refine our case
definitions and thus has the potential to increase our ability to identify causal
relationships by allowing us to study more homogeneous groups that are more
likely to share a common aetiology.

A dramatic example of the effects of clearly defining both exposure and
outcome comes from studies of the relation between HPV infection and
cervical cancer (see also Box 16.3). In early studies HPV was detected in
30%–60% of cases and the observed associations suggested a 2- to 5–fold
increase in risk. Improved detection methods mean that HPV is now identified
in 99% of cases and, as a result, we now see odds ratios of 100–900 for the
association between the presence of HPV DNA and risk of invasive cervical
cancer (Franco and Tota, 2010). The massive effects of this improvement in
measurement on the magnitude of the observed association are shown in
Figure 16.2. This increasing precision has in turn helped identify the best
targets for the recently introduced vaccines against HPV intended to prevent
cancer of the cervix. Good translation thanks to improved measurement.

Good measurement is also essential for descriptive epidemiology. As you
saw in Chapters 2 and 3, international organisations such as the United
Nations and World Health Organization are trying to tackle health at a global
level. Similarly, as you saw in Chapter 12, good surveillance data are essential
to detect and effectively control outbreaks of infectious diseases. These efforts
require accurate information to quantify the problem (by person, place and
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Figure 16.2 Odds ratios and 95%
confidence intervals (CI) for the
association between human
papillomavirus (HPV) infection (via
HPV DNA detection) and invasive
cervical cancer risk in successive
molecular epidemiologic studies.
(Adapted from: Franco and Tota,
Invited commentary: Human
papillomavirus infection and risk of
cervical precancer – using the right
methods to answer the right
questions, Am J Epidemiol., 2010; 171,
p. 166, by permission of the Society
for Epidemiological Research.)
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time) and to track changes over time. High-income countries usually have the
luxury of well-developed civil registration and surveillance systems, often
covering the entire country; however, the same cannot be said for lower-
and middle-income countries. While many are making great improvements
in this area, comprehensive data collection requires resources and reliable
systems and so is difficult in areas of conflict or with limited resources or in
countries with a very large and geographically dispersed population such as
India. This makes tracking of progress towards the Millennium Development
Goals (see Box 2.10) and other health targets a challenge. Initiatives like the
INDEPTH Network which encourages low- and middle-income countries to
establish health and demographic surveillance systems to collect routine data
are helping to improve data in some areas, but there is still a long way to go.

A final word

We hope that by now you have a good sense of what epidemiology has offered
and continues to offer the study of public health and indeed health in general.
As we alluded to right at the start, perhaps epidemiology’s most important role
is the rigour it brings to the collection, analysis and interpretation of all aspects
of health data, because without reliable data we cannot move forward. As you
have seen, this is often not straightforward – the study of free-living people,
their environment and society is necessarily highly complex and the various
elements are often closely inter-related making it hard to study the effects of
individual components. However, by applying sound epidemiological prin-
ciples with a pragmatic approach that is alert to the pitfalls but also practical
about assessing the likely effects of any error on the data we see, there is much
we can learn and contribute to improving health.
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Answers to questions

Chapter 2

1. (a) Incidence proportion = 15 cases � 1000 women = 1.5% in 8 years.
(b) Incidence rate = 75 strokes � 5000 person-years

= 1.5/100 person-years or
15/1000 person-years or
1500/105 person-years

(c) Incidence rate = 27 cases � 50,000 = 54 per 100,000 per year
2. (a) Prevalence at age 55 = 100 � 2000 = 0.05 or 5%

Prevalence at age 65 = 400 � 2000 = 0.20 or 20%
(b) Number of women ‘at risk’ = 2000 – 100 (who already had high blood

pressure) = 1900
(c) Incidence proportion = 300 � 1900 = 0.16 or 16% in 10 years

It is an incidence proportion (or cumulative incidence) because the
same women have been followed for the 10-year period.

(d) We could estimate the total number of person-years at risk by assum-
ing that all 1900 initially healthy women were followed for the whole 10
years, giving
1900 � 10 = 19,000 py
but 300 of the women developed high blood pressure and so were not
at risk for the whole period. If we assume that, on average, they
developed it half way through the follow-up period, we can improve
our estimate of the number of person-years to
300 women who developed high blood pressure � 5 years = 1500
+ 1600 women with no high blood pressure � 10 years = 16,000
giving a total of 17,500 py.

(e) Incidence rate = 300 � 17,500 = 17.1/1000 person-years or 1710/105

person-years (actually 1714 but we have rounded this off to 1710).
3. Answer = (a) community A has a younger population than community B.

If a disease is more common in older people (true for most diseases,
including IHD), then if the age-standardised rate is higher than the crude
rate this tells us that the average age in the standard population is higher
than that in the community. Conversely, if the age-standardised rate is
lower than the crude rate, then the average age in the standard population
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is lower than in the community. The age-standardised rate was higher in
community A but lower in community B so community A must have a
younger population.

4. Table 2.10 shows that chronic obstructive pulmonary disease (COPD) and
lower respiratory infections are the third and fourth most common causes
of mortality with each causing approximately 3.1 million deaths worldwide
each year. However, if we consider the burden of each disease measured in
DALYs, lower respiratory infections accounted for greater loss of healthy
life (146.9 million DALYs) than COPD (92.4 million DALYs). This is because
COPD is primarily a disease of older age while deaths from lower respira-
tory infections are relatively more common in children; as a result, more
years of life are lost following the death of a child from a lower respiratory
infection than following the death of an adult from COPD.

Chapter 3

1. While this graph is rather different from any you have seen so far, if you
consider the title and the labels of the x and y axes a clear picture emerges:
over one decade there has been a very large shift in mortality. Over 600 of
every 10,000 deaths have been deferred from early life (most from before
1 year of age) until after age 60, with the majority of them now occurring
after the age of 70. The proportions of deaths occurring at intermediate
ages are largely unchanged. Clearly some major changes to the environ-
ment and/or care of infants (resulting in reduced infant mortality) and
young children occurred during this time. It is difficult to identify these
changes precisely in retrospect, but they coincided with campaigns to
improve the quality of primary care and maternal care, as well as the
initiation of programmes to improve the quality of water supply and
sanitation across much of Thailand.

2. A sample of people surveyed at a shopping mall on a weekday morning is
very unlikely to be representative of the general population because it will
not include the vast majority of those who work during the week. These
people are more likely to be captured by a survey conducted in the evening
or at a weekend, but this may miss those who do not work and so might be
more likely to shop during the day.

3. The shape of the curve for the USA in Figure 3.6 looks very different from
that in Figure 3.7 because while Figure 3.7 shows rates from 1950 to 2010,
Figure 3.6 only shows data from 1970 and so misses the upsurge in
incidence that occurred prior to 1970.
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Chapter 4

1. This is not a straightforward task and there are no absolute right or wrong
answers – it will always be partly a matter of judgement depending on the
specific circumstances. A completed version of Table 4.1 below shows the
main issues and some specific exceptions are noted below.

Comments and exceptions:
Ecological study: it may be possible to study rare diseases and exposures if

the populations are large enough. If it uses routinely available data it
may also be quick and cheap to run; however, if new data collection is
required the converse may be true. The major drawbacks are that
populations often differ in many ways other than the characteristic of
interest and the results seen at the population level may not apply to
the individual.

Cross-sectional study: relatively simple, cheap and quick to conduct. Not
good for studying rare conditions and hard to establish temporality.
The ethical issues are likely to be minor although for any study,
collection of blood samples for genetic testing adds ethical complexity.

Case–control study: good for studying multiple causes of rare diseases.
Ensuring that exposure occurred before the disease can be a challenge
but is less of an issue for things that do not change over time (e.g. blood
type, genetic markers, early life exposures). Not good for studying rare

Table 4.1 Comparing the strengths and weaknesses of different study designs.

Ecological
Cross-
sectional

Case–
control Cohort

Randomised
controlled
trial

Nested
case–
control

Investigation of rare disease or outcome 4 2 5 2 1 2
Investigation of a rare exposure 1 1 1 2–5 5 2
Testing multiple effects of an exposure 2–4 3 1 5 3 1
Study of multiple exposures 2–4 5 5 3 1 3
Establishing temporalitya N/A 1 1–3a 4 5 4
Give a direct measure of incidence N/A 1 1 5 5 3
Explore exposures which change over time 1 1 2 5 1 5
Time requiredb 4 4 3 1 1 4
Costsb 1–3 4 3 1 1 4
Ethical Problemsb N/A 4 4 4 1 4

a That is, that the exposure came before the outcome. N.B., even in a case–control study, some exposures will clearly
pre-date the development of disease – for example, gender, genetic characteristics, blood group.
b For these attributes, a score of 1 = poor indicates a lot of time required, high costs or major ethical problems; a score of
5 = excellent indicates least time required, lowest costs or no ethical problems.
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exposures. In a true population-based study it is possible to estimate
disease incidence.

Cohort study: population-based cohort studies are not very good for study
ing rare exposures, but rare exposures can be studied if participants are
selected to over-represent those who are ‘exposed’ to the factor of
interest, for example an occupational cohort exposed to a specific
chemical. Very large cohort studies (such as EPIC and the Million
Women Study), with sufficient follow-up, can investigate rare out-
comes. If information is collected at regular intervals it is possible to
study effects of exposures that change over time. Establishing tempor-
ality can still be a problem for cases diagnosed very early in the follow-
up period.

Randomised controlled trial: this shares many of the attributes of a cohort
study except it is an excellent design to study rare exposures (because a
large proportion of the population can be intentionally exposed) but is
usually less good for studying multiple outcomes of one exposure as an
RCT will usually be designed to focus on a small number of ‘end-
points’. However, the ethical implications and, because of the
increased regulatory issues, sometimes the cost are much greater.

Nested case–control study: this combines many of the benefits of the
cohort and case–control designs but can only be conducted in the
context of an existing cohort study. The incremental costs are likely
to be low.

2. The aim of the control group is to tell us what the rate of polio would have
been in the vaccinated group if the children had not been vaccinated. The
vaccine and control groups must therefore be as similar as possible in every
way except vaccination status. A major advantage of using other groups of
second-grade children as controls is that they would be the same age as the
vaccinated children. However, it is very likely that exposure to the polio virus
would vary geographically and over time. This means that control children
selected from a different area or from a different calendar year might have a
much higher or lower chance of being exposed to the virus than the children
in the study group making comparisons very problematic. Although first-
and third-grade children would be slightly younger and older, respectively,
than second-grade children, by comparing rates in these groups to the rate in
the vaccinated second-graders in the same area in the same year, the investi-
gators were able to ensure that, as far as possible, the children in both groups
had a similar chance of being exposed to the virus.
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3.

Chapter 5

1. (a) Incidence proportion ¼ Number of people who get disease
Number of people at risk at the start of the period

So the incidence proportion in
(i) exposed workers = 40 � 2500 = 1.6% in 10 years
(ii) unexposed workers = 60 � 7500 = 0.8% in 10 years
(iii) all workers = 100 � 10,000 = 1.0% in 10 years

(b) The relative risk ¼ Incidence in exposed group
Incidence in unexposed group

= IPe � IPo
= 1.6 � 0.8 = 2.0

Workers exposed to pesticides were twice as likely to develop the
disease as those not exposed.

(c) The attributable risk
= Incidence in exposed group � Incidence in unexposed group

Nuremberg Code Statement Relevant moral principle

1. Requirement for voluntary consent Respect for autonomy
2. The experiment should yield fruitful results Beneficence
3. The experiment should be designed based on prior

knowledge so the results justify performing the
experiment

Beneficence and
non-maleficence

4. Avoid unnecessary suffering Non-maleficence
5. Experiments should not be conducted if death or

disabling injury is a possibility
Non-maleficence

6. The degree of risk should not exceed the importance Beneficence and
non-maleficence

7. Proper precautions should be taken to avoid adverse
events

Non-maleficence

8. Scientists should be properly qualified Beneficence and
non-maleficence

9. The subject should be able to withdraw at any time Respect for autonomy
10. The scientist should discontinue the study if

continuation is likely to risk in injury/death
Non-maleficence

Note that the principle of Justice is not explicitly covered by any of the statements,
although it could be seen as implicit in some. This is because the primary focus is on
protecting the individual, reflecting the circumstances from which the Nuremberg
Code arose.
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= IPe � IPo
= 1.6 � 0.8 = 0.8% in 10 years
An additional 0.8 cases of disease will occur in every 100 men (or 8 in
1000 men) exposed to pesticides for 10 years (over and above the
background rate of disease in the unexposed group). This is the
amount of disease that can be said to be attributable to the pesticides
assuming that we believe that pesticide exposure is actually causing the
disease.
Note: the attributable fraction would be 0.8 � 1.6 = 50%

(d) The population attributable fraction = (IPT � IPo) � IPT
= (1.0 � 0.8) � 1.0
= 0.2 or 20%

This tells us that if pesticide exposure is a cause of the disease then 20%
of all cases occurring among the workers (regardless of whether they
were exposed to pesticides) could be attributed to pesticide exposure.
Note: the population attributable risk would be 1.0 � 0.8 = 0.2% in

10 years.
The difference between the population attributable fraction (PAF) and

the attributable fraction (AF) depends on the prevalence of the exposure.
An exposure with a high AF may have a low PAF if the exposure is very
rare (very few of the cases in the whole population could be attributed to
the exposure). Conversely, an exposure with a lower AFmay have almost
as high a PAF if the exposure is very common.

2. (a) Relative risk = IRe � IRo = 53 � 6 = 8.8
(b) (i) RR for low dose versus never used = 39 � 6 = 6.5

(ii) RR for high dose versus never used = 62 � 6 = 10.3
Results such as these are often presented as follows:

(c) The results suggests that, compared with women who have never
used OCs, users of low-dose oestrogen OCs have a 6.5-fold risk
of thromboembolism and users of high-dose oestrogen OCs have a
10.3-fold risk of thromboembolism. The risk of thromboembolism

OC use Incidence rate
Relative risk
(versus never/past user)

Never/past user 6 1.0
Low-dose user 39 6.5
High-dose user 62 10.3

(Note: the relative risk in never/past users is set as 1.0 because this is the
reference to which we are comparing the other groups; IRo � IRo = 1.0.)
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therefore increases with increasing level of oestrogen. This pattern is
called a ‘dose–response’ relationship.

3. (a) A case–control study of smoking and lung cancer

(b) To answer this question you need to calculate the odds ratio:

Odds Ratio ¼ a� d
b� c

¼ 647� 27

622� 2
¼ 14:0

(c) and (d) You need to calculate first the attributable fraction and then
the population attributable fraction:

Attributable Fraction ¼ OR� 1ð Þ
OR

14� 1ð Þ
14

� 100 ¼ 92:9%

If smoking is a cause of lung cancer then 93% of lung cancers among
smokers can be attributed to their smoking and, theoretically, would
not have occurred if the men had never smoked.

Population Attributable Fraction

¼ Pe OR� 1ð Þ
Pe OR� 1ð Þ þ 1

¼ 0:958� 13ð Þ
0:958� 13ð Þ þ 1

� 100 ¼ 92:6%

where Pe = prevalence of exposure among controls = 622 � 649 = 0.958.
While the AF told us the proportion of lung cancers among smokers that
could be attributed to smoking, the PAF tells us the proportion of all
lung cancers attributable to smoking. In this particular example the
prevalence of exposure is so high that the AF and PAF are almost
identical.

4. (a) The incidence rates can be calculated as follows:

Cases Controls Total

Ever smokers 647 622 1269
Never smokers 2 27 29
Total 649 649 1298

Cases Person-years (py)
Incidence rate
(per 100,000 py) Rate ratio

7–8 hours sleep 541 451,393 120 1.0
6 hours sleep 267 175,629 152 1.27
�5 hours sleep 67 30,115 222 1.85
All women 875 657,137 133
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(b) The rate of CHD increases as the length of time a woman sleeps
decreases. A woman who sleeps for 6 hours is 27% more likely, and a
woman who sleeps for 5 hours or less is 85% more likely, to develop
CHD than a woman who sleeps for 7–8 hours.

(c) To answer this you need to calculate the population attributable
fraction:
PAF = (CIT � CIo) � CIT

= (133 � 120) � 133
= 0.098 or 9.8%

The PAF is quite low because most women, or at least most of the
person-time, is for women who sleep for 7–8 hours.

Chapter 6

1. The results from the first study suggest that alcohol is associated with an
80% increase in risk of the cancer. The confidence interval is quite narrow,
suggesting that the study was fairly large and the estimate of the RR is quite
precise. The results of the second study suggest that caffeine may also be
associated with an 80% increase in risk of the cancer, but in this case the
confidence interval is very wide, implying that it was a small study and
hence that the estimate of the OR is very imprecise. It is possible that the
association seen in the second study could simply represent the play of
chance because the confidence interval includes the no-effect value of 1.
Overall, the data suggest that there is a moderately strong association
between alcohol and the cancer (although we would still like to see add-
itional data to support this), but they tell us little about the risks of caffeine
other than to flag a possible association that needs evaluating in a
larger study.

2. The answer is (b). There will always be some random sampling error in a
study even when study participants are selected at random and a 95%
confidence interval will just give an indication of how much random
sampling error is present. Exposure measurement is a completely
different issue.

3. The answer is (c). The ‘no-effect’ value for a relative risk is 1.0 – this means
that the risk is the same in the two groups being compared. Because the
confidence interval does not include the value 1.0 (both the lower and
upper bounds are below 1.0), this means that the result is statistically
significant. Without having more information about the size of the relative
risk we cannot say whether this is clinically significant.

4. If a result is statistically significant itmeans that it is unlikely to have arisen by
chance while clinical significance describes whether or not a result is
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clinically or practically meaningful. In a large study even quite small differ-
ences can be statistically significant, but if the difference is so small that it has
no practical effect, e.g. a drug that reduces the duration of flu symptoms by
only a couple of hours, then it may not be clinically significant. Conversely, a
study may see a large difference that would be clinically meaningful but, if
the studywas quite small, thismay not be statistically significant and it would
be hard to be sure the difference had not arisen just by chance.

Chapter 7

1. Women who read health magazines obviously have an interest in health
and so are probably more likely to be vegetarian than are women who do
not read such magazines. On top of this, the vegetarian readers may also be
more likely to respond to the questionnaire. Both of these biases would
mean that the percentage of vegetarians in the community would be
overestimated. Note also that the study would provide information just
about women and men might be very different.

2. (a) People with high alcohol intake are probably less likely to agree to
take part.

(b) Alcohol consumption in the control group is, therefore, likely to be
lower than in the whole community.

(c) Assuming that patients with liver disease tend to have a higher than
average alcohol consumption, the difference between the cases and
controls would be exaggerated because of the falsely low level of con-
sumption among the controls. This would make the association between
alcohol consumption and liver disease look stronger than it really was.

3. (a) The misclassification is systematic (because the measurement instru-
ment systematically overestimated people’s exposure) and non-differ-
ential (because it has occurred among both cases and controls).

(b) In the presence of non-differential misclassification, the observed odds
ratio is likely to underestimate the true odds ratio.

(c) In this situation, (i) 15% or 15 of the 100 unexposed cases and (ii) 15%
or 23 of the 150 unexposed controls would have been misclassified as
exposed.

(d) The best way to answer this is to draw up a 2 � 2 table showing the
results that would have been obtained:

Cases Controls Total

Exposed 300 + 15 = 315 250 + 23 = 273 588
Unexposed 100 � 15 = 85 150 � 23 = 127 212
Total 400 400 800
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Therefore, in this situation, (i) 315 of the cases would be classified as
exposed and 85 as unexposed, and (ii) 273 of the controls were exposed
and 127 were unexposed.

(e) OR ¼ 315� 127

85� 273
¼ 1:7

This compares to the ‘true’ value of 1.8. Non-differential misclassifica-
tion will usually bias the results towards the null value regardless of
whether it is random (as you saw in Table 7.5) or systematic, as in this
example.

4. (a) The misclassification is systematic, because cases systematically under-
estimated their exposure, and is differential, because it occurred only
among cases, and not controls.

(b) There are 300 exposed cases so if misclassification affects 20% this
means that 60 cases will be misclassified as unexposed. We can draw
up a 2 � 2 table to show the results that would be obtained:

The observed OR is therefore much lower than the true OR of 1.8, in
fact the bias is so great that the observed OR is less than 1.0 when the
true OR is greater than 1.0.

(c) This contrasts with the situation in Table 7.7, where cases systematic-
ally overestimated their exposure to the same extent and the OR was
biased upwards to 2.40.

5. (a) The misclassification is systematic because non-exposed people are
misclassified as exposed but the reverse is not occurring. It is non-
differential, as would be expected in a cohort study, because it affects
all exposed people regardless of whether or not they go on to develop
disease.

(b) If exposed people, who have a higher incidence of disease, are mis-
classified as unexposed then the incidence of disease in the unexposed
group will increase. The incidence in the exposed group should not be
affected.

(c) The effect of the misclassification will therefore be to make the two
groups look more similar than they really are and the observed RR will
be closer to 1.0 than the true RR.

Cases Controls Total

Exposed 300 – 60 = 240 250 490
OR ¼ 240� 150

160� 250Unexposed 100 + 60 = 160 150 310
Total 400 400 800 ¼ 0:9
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Misclassification is just as much a problem in cohort studies as it is in
case–control studies.

6. (a) In the situation where 20% of the controls are misclassified with regard
to their exposure status, 50 of 250 exposed controls will be misclassified
as unexposed and 30 of 150 unexposed controls will be misclassified as
exposed:

(b) This misclassification is differential; exposure measurement among the
cases was perfect, and the misclassification only occurred among
controls.

(c) Differential random misclassification can make an association look
stronger or weaker than it really is. In this situation, we would observe
a higher odds ratio (2.2 compared to the ‘true’ odds ratio of 2.0),
making the association seem stronger than it really is.

(d) If we had misclassified cases instead of controls the bias would have
gone the other way and we would have underestimated the ‘true’ odds
ratio (an observed OR of 1.11), making the association seem weaker
than it really is.

Chapter 8

1. Odds Ratio ¼ a� d
b� c

¼ 20921� 94183

64422� 7827
¼ 3:9

2. (i) Moped drivers: Odds Ratio ¼ 17869� 86212

51900� 7342
¼ 4:0

(ii) Moped passengers: Odds Ratio ¼ 3052� 7971

12522� 485
¼ 4:0

3. The crude and stratum-specific odds ratios are almost identical suggesting
that position on the moped does not confound the association between not
wearing a helmet and head injury.

4. The crude association between rider position (drivers versus passengers)
and head injury:

Cases Controls Total

Exposed 300 250 – 50 + 30 = 230 530
OR ¼ 300� 170

100� 230Unexposed 100 150 – 30 + 50 = 170 270
Total 400 400 800 ¼ 2:22
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Crude Odds Ratio ¼ 25211� 20493

138112� 3537
¼ 1:1

(i) No helmet: Odds Ratio ¼ 17869� 12522

51900� 3052
¼ 1:4

(ii) Helmet: Odds Ratio ¼ 7342� 7971

86212� 485
¼ 1:4

The crude odds ratio suggests that rider position does not affect the risk
of head injury (OR = 1.1) but when we stratify by helmet use we see that
moped drivers have a 40% higher risk of head injury (OR = 1.4) than
moped passengers regardless of whether or not they wear a helmet. The
crude association was therefore confounded by helmet wearing.

5. For something to be a confounder it must be (i) a risk factor for disease
among those who are not exposed to the factor of interest; (ii) be associated
with the exposure of interest; and (iii) not lie on the causal pathway
between exposure and outcome. Therefore, in the situation of drinking
coffee and heart disease:
(a) Heart disease occurs more frequently in older people, and among

males. It is possible that older people might drink less coffee than
younger people, or that men might drink more (or less) coffee than
women. If either of these conditions is true then the potential con-
founding effects of age and/or sex should be considered (certainly age
and sex do not lie on the causal pathway between coffee drinking and
heart disease).

(b) The confounding effects of smoking should definitely be considered. As
you have seen in previous chapters, heart disease occurs more fre-
quently in smokers, and those who drink coffee may be more likely to
smoke. Also, while coffee drinking and smoking often go together,
coffee drinking does not ‘cause’ someone to smoke.

(c) Heart disease occurs more frequently among those who do not exer-
cise, and people who drink coffee may exercise less (for example,
people who work in an office may drink more coffee and have less
opportunity to exercise). Therefore, the confounding effects of physical
activity should also be considered.

(d) While consumption of fruit and vegetables may be protective against
heart disease; it is also possible that people who drink a lot of coffee eat
less of these foods so fruit and vegetable intake might confound the
effects of coffee drinking on heart disease.

6. (a) The overall incidence rate of heart disease among those with a high
energy intake is 720 � 60,000 = 12.0/1000 person-years (py) and the
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incidence rate among those with a low energy intake is 700 � 55,000 =
12.7/1000 py, giving a crude rate ratio of 0.9 (12.0 � 12.7).

(b) When we stratify by level of physical activity we see a different picture:
in the active group, the incidence rate of heart disease among those
with a high energy intake is 500 � 50,000 = 10.0/1000 py, whereas that
among those with a low energy intake is 100 � 15,000 = 6.7/1000 py,
giving a rate ratio of 1.5; in the inactive group, the incidence rate of
heart disease among those with a high energy intake is 220 � 10,000 =
22.0/1000 py, whereas that among those with a low energy intake is
600 � 40,000 = 15.0/1000 py, again giving a rate ratio of 1.5.

(c) As in the case–control example in Table 8.4, when we remove the effects
of physical activity the true association between a high energy intake
and heart disease is stronger (RR = 1.5) than when we did not allow for
the effects of physical activity. Confounding is just as much a problem
in cohort studies (or any other non-randomised follow-up studies,
including non-randomised trials) as it is in case–control studies.

7. If either (i) half as many people participated in the study, or (ii) twice as
many people participated in the study, the odds ratios will not change.
Increasing or decreasing the size of a study will not make any difference to
the amount of confounding (except in the context of a randomised con-
trolled trial, when the bigger the study is, the less likely it is that there will
be any confounding).
Results of the study shown in Table 8.7 assuming that the study had half

as many people (the minor differences are due to rounding).

Results of the study shown in Table 8.7 assuming that the study had twice
as many people.

Total High physical activity Low physical activity

Energy intake Heart disease Controls Heart disease Controls Heart disease Controls

High 236 116 26 26 210 90
Low 605 398 5 8 600 390
OR 1.3 1.6 1.5

Total High physical activity Low physical activity

Energy intake Heart disease Controls Heart disease Controls Heart disease Controls

High 944 462 104 102 840 360
Low 2420 1590 20 30 2400 1560
OR 1.3 1.5 1.5
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Chapter 10

1. (a) and (d)
(a) We should always consider chance as a possible explanation and we

know nothing of the sample size or the width of the confidence interval
around the risk estimate. (d) If cases could not remember how much
cauliflower they ate this is likely to lead to misclassification in this group.
If this is random then the true association would probably be even stronger
than that observed but if cases (but not controls) had systematically under-
estimated how much cauliflower they ate, this might falsely make it look as
if they ate less cauliflower than controls and thus that eating cauliflower
protected against stroke.
Although it is likely that there is random misclassification of the expos-

ure, this would probably have biased the results to the null so the true
association would be even stronger than that observed. Misclassification of
the outcome is less likely, but if some cases are incorrectly classified as
controls and vice versa then the true association is again likely to be
stronger than that observed.

2. The other issues that we should consider are:
Confounding: a single food (cauliflower here) will be highly correlated

with other elements of a diet, and probably other lifestyle factors too; if any
of these are causes of stroke then at least part of the apparent cauliflower
‘effect’ will be due to them, i.e. it could be confounded. Appropriate control
for these factors in the analysis may at least partially solve the problem,
provided all variables are measured reasonably accurately.
Selection bias: this is always a concern in case–control studies. We have

no information here on which to make a judgement, but when interpreting
the result you would need to argue for the appropriateness of your choice
of control group on theoretical (if one of them suffered a stroke they would
be very likely to be enrolled as a case) and practical (a high response rate)
grounds.

3. Other factors to consider when assessing whether an association is likely to
be causal are:
– The strength of the association: the point estimate (OR in this case,
otherwise RR) is ~0.5 so moderately strong but still more likely to be
due to chance or bias than a much stronger effect would be.

– A dose–response – i.e. a clear trend of increasing effect at higher levels of
exposure – is reassuring; however, a variety of dose–response patterns
are possible, including thresholds (below which no effect is observed)
and plateaus (a maximum possible effect, beyond which further dose
increases are irrelevant to outcomes). Thus, absence of a clear trend does
not exclude causality.
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– Consistency of the effect across a number of studies: if your finding is
aberrant (e.g. most others show little or no effect of cauliflower on stroke)
any causal claim you make will be very weak and likely to be dismissed,
unless you can argue convincingly that your research is of far higher
quality than what has gone before. This might be so if you were reporting
results from a large, well-conducted randomised trial which refuted prior
observational data supporting a causal relation, especially if uncontrolled
confounding was a concern in the earlier research. An example from
observational dietary research is shown in the beta-carotene example
on p 419.

– Temporality: it should be clear that the exposure or dose in question
preceded the outcome by sufficient time that it could plausibly have
induced (or prevented) the relevant pathological change underlying dis-
ease occurrence (for cauliflower and stroke this might be the slowing
down of the development of atheromatous plaque in the cerebral blood
vessels). While the precise timing and dose of a causal exposure is rarely
known with certainty, your questions must have been clearly formulated
to avoid (or at least minimise) the potential that cases who ate a lot of
cauliflower then gave it up, perhaps because of altered taste sensation, and
thus the stroke caused them to avoid the vegetable and not the reverse.

– Plausibility: it is reassuring if there is a known or plausible biological
mechanism through which exposure could produce or prevent disease.

– Another factor that could be considered is the ‘specificity’ of the associ-
ation but, as described on page 284, this can be a more tricky. For
discussion of this and some other possible aids to causal arguments it
can be helpful to read Bradford-Hill’s excellent speech on the subject
(Hill, 1965).

Hill, A. B. (1965). The environment and disease: association or causation?
Proceedings of the Royal Society for Medicine, 58: 295–300.

Chapter 11

1. The primary ways to identify relevant literature for a systematic review
include:
– a Pubmed search of mainstream literature,
– searching reference lists of papers identified,
– looking for papers that have cited the papers identified,
– a search of the Cochrane CENTRAL database (or other clinical trials
registers) if it is an area where trials have been conducted,

– talking to investigators in the field.
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2. The grey literature is that outside the mainstream journals and it includes
documents such as reports, theses, conference abstracts, etc. When feas-
ible, it is a good idea to look beyond the mainstream literature when
conducting a systematic review because:
– there is the possibility of publication bias – mainstream journals may be
more likely to publish reports that find an association than studies that
do not find an association;

– authors may be less likely to write up null results for publication although
they may present them at a conference, in which case they will probably
be available in abstract format;

– results from studies conducted by a student or by a health department
may be available in a student thesis or government report but may never
be published in the mainstream literature;

– if a review is restricted to published papers it may miss studies that did
not find an association, so the conclusions may be biased in favour of
concluding there is an association. Studies that don’t find a significant
result may be more likely to be reported in abstracts, student theses, etc.

Searching this literature can, however, be challenging.
3. It would be inappropriate to include the data from both reports in a meta-

analysis because the two sets of results would not be independent and
including both reports would give too much weight to the results from this
one study. Unless the focus of the meta-analysis was specifically on short-
term follow-up, it would be usual to include the more recent paper with
longer follow-up.

Chapter 12

1. Answer = (a). If the number of cases detected by surveillance increases, this
suggests the incidence of disease may be increasing.

2. Answer = (c). Undercount represents the cases that are not reported to a
surveillance system. It may be presented as the proportion of cases that are
not reported, or as the ratio of the total number of cases to the number
reported, e.g. for hepatitis C in the USA it is estimated there may be ~10
times as many cases in the community as are counted by a surveillance
system.

3. An event-based surveillance system establishes an organised framework for
rapidly capturing information about events that are a potential risk to
public health and it relies on a wide variety of information sources. Data
collected are on specific ‘events’, such as multiple reports of similar ill-
nesses, an outbreak, or potential high-risk exposures in a population. The
information can be rumours or ad-hoc unstructured reports and may be
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sourced from recorders or automated information extracted from Internet
sources. The advantages of an event-based system are that it may provide
for early detection of outbreaks, detection of rare but potentially high
impact outbreaks and/or emerging or unknown diseases. A disadvantage
of event-based surveillance is that there is a need to verify reports or
information therefore resources are required to follow up reports. In add-
ition, there is a lot of ‘noise’ in the system and it may be very sensitive to
potential events but not very specific, i.e. many reports will not be potential
events of interest.

4. Indicator-based surveillance is conducted for a number of notifiable infec-
tious diseases and for cancer to:
– count cases to quantify the burden of disease
– establish trends in occurrence and/or to monitor elimination
– identify epidemics, outbreaks and clusters
– evaluate the effect of interventions to control the diseases.

Chapter 13

1. In a hypothesis-generating interview it is important to have a wide range of
inquiry about illness and possible sources. The types of information that
could be collected include: (1) demographic details including place of
residence, occupation, etc., (2) signs and symptoms of illness to character-
ise disease and develop a case definition, (3) contact with other people who
were ill with similar symptoms, (4) recent travel, (5) exposure to potential
sources of infection, such as contact with animals, swimming in recre-
ational water, eating foods, visiting shopping centres, etc.

2. Answer (d): OR = 3.6 (95% CI = 1.00 – 6.45) because, although this is not the
largest relative risk, it is statistically significant and so least likely to be due
to chance.

3. Hepatitis B is a vaccine-preventable disease. The main control measures in
this prison setting are to: (1) offer screening to inmates to identify those
who are susceptible, (2) immunise susceptible prisoners, (3) interview
inmates about high-risk activities and possible illness, (4) educate inmates
about the spread of hepatitis B, including unprotected sex, sharing needles
and injecting equipment, tattooing and sharing razors, hair clippers and
toothbrushes, (5) provide condoms and equipment for safe injection, and
(6) offer post-exposure prophylaxis to high-risk contacts of cases. The key
measures to preventing the spread of hepatitis B through the prison popu-
lation are to break the chains of transmission through immunisation and
education.
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Chapter 14

1. Relative measures (e.g. relative risk, RR; odds ratio, OR) evaluate the
relative strength of an association between exposure and disease, and they
are most useful for identifying the causes of a disease. Absolute or differ-
ence measures (e.g. attributable risk, AR; population attributable risk, PAR)
are a better measure of the burden of disease attributable to an exposure
and, therefore, potentially preventable by removal of that exposure. The
attributable risk and attributable fraction tell us how much disease in an
exposed group can be attributed to the exposure and the population
attributable risk and population attributable fraction tell us how much
disease in the whole population can be attributed to the exposure. Of all
these measures, the PAR is most directly useful to assess the likely benefits
of a prevention programme for the whole community.

2. We can see that lowering smoking rates will reduce mortality from both
lung cancer and coronary heart disease (CHD), given that we accept both
associations are causal. The maximum benefits achievable if in the future
no-one smoked depend on the prevalence of smoking, which was very high
amongst these doctors (83% in 1951). The crucial marker, the PAR, would
therefore be approximately 80% of the ARs shown. A very large number of
CHD deaths could therefore be averted, as could a lesser, but still consider-
able, number of lung cancer deaths. (Of course, mortality from other
diseases would also be lessened, increasing the attraction of anti-smoking
campaigns.) The AFs and high prevalence indicate that a non-smoking
population would experience very low mortality from lung cancer, but
there are many other contributors to CHD mortality so this would continue
as a public health challenge, despite more lives being saved by avoiding
CHD deaths than from lowering lung cancer deaths.
In applying these data to other populations, it seems reasonable to accept

the RRs as being widely applicable (and other data support this), but other
crucial factors will be the base mortality rates among non-smokers, espe-
cially for CHD, and, more importantly, the prevalence of smoking (and
average amounts smoked, which we have ignored for simplicity) in the
population. If the prevalence of smoking was lower, the benefits would be
more limited. The actual benefits realised by such campaigns also depend on
the success of efforts to induce current smokers to quit, as well as from those
discouraging non-smokers from starting, and this is hard to predict.
A later paper from the original investigators looking at mortality in this

cohort gives a good description of the long-term fate of this cohort and a
good sense of the complexities of studying influences of exposures over
long periods (Doll et al., 2004).
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Doll, R., Peto, R., Boreham, J. and Sutherland, I. (2004). Mortality in relation to
smoking: 50 years’ observations on male British doctors. British Medical
Journal, 328: 1519–1528.

Chapter 15

1. (a) The 2 � 2 table for repeat Pap smear:

(b) Sensitivity and specificity for Pap smear:
Sensitivity = 12 � 13 = 0.923 or 92%
Specificity = 25 � 97 = 0.258 or 26%

(c) Positive predictive value = 12 � 84 = 14%
(d) Probability of high-grade disease in women testing negative by Pap

smear = 1 � 26 = 0.038 or 4%
(e) The repeat Pap smear had low specificity. In this population with a

prevalence of 11.8% (pre-test probability), the positive predictive value is
low, and all women testing positive would still have to go on to colpos-
copy. So, although only 8% of higher-grade lesions would have been
missed, this is not a very helpful extra step to add to the diagnostic process.

2. The first thing to do is complete a 2 � 2 table based on an artificial
population of, say, 1000 people. We know that about 30 (3% � 1000) will
be hepatitis B-positive and that the test will detect 82% or about 25 of them
(82% � 30), leaving 5 false negatives. With a specificity of 93%, 902 of the
970 who are truly hepatitis B negative will correctly test negative, leaving
68 false positives:

Colposcopy

Pap smear Positive Negative Total

Positive 12 72 84
Negative 1 25 26
Total 13 97 110

True status

Hepatitis B test Positive Negative Total

Positive 25 68 93
Negative 5 902 907
Total 30 970 1000
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(a) The probability that an individual with a positive test result does not
have hepatitis B is thus 68 � 93 = 73%.

(b) In a population free of hepatitis B, 7% (68 � 970) of people would
falsely test positive.

3. (a) The prevalence of prostate cancer in men over 60 years is 4% so 400 of a
group of 10,000 men would be expected to have prostate cancer (4% �
10,000). The test has a sensitivity of 85% so 340 of the men with prostate
cancer (85% � 400) would be expected to have a positive PSA test.

(b) The remaining 9600 men would not have prostate cancer and, as the
test has a specificity of 80%, 7680 of them (80% � 9600) would be
expected to have a negative PSA test and the remaining 1920 would test
positive.

(c) The table below summarises the results.

The PPV is the proportion of all positive test results that are true
positives = 340 � 2260 = 15.0%.

(d) The positive predictive value of 15% tells us that for every prostate
cancer the PSA test identifies in this population (‘true positives’),
another 6 or 7 more men without cancer will also test positive and
thus have to be investigated (‘false positives’). The PPV is low because
of the combination of relatively poor specificity and quite a low preva-
lence of disease (although 4% is higher than for many other cancers).
Whether this means the programme should be abandoned depends on
the amount of harm suffered by the false positives and the benefits of
detecting the disease earlier in the minority who do have cancer.
Widespread screening, for example for breast and large bowel cancer,
is conducted with PPVs of this order; however, the public should be
made more aware of the likelihood of false positive results when
involving them in a decision of whether to screen or not.
On a more positive note, someone who has a negative test result is

not too badly off. The negative predictive value of the test is very high
(7680 � 7740 = 99%), although you can see that the test would will still
miss 60 cancers in every 10,000 men screened.

Properties of the PSA screening test

Prostate cancer

PSA test Yes No Total

+ 340 1920 2260
– 60 7680 7740
Total 400 9600 10,000
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(e) If the prevalence of disease is higher, then the positive predictive value
will also increase – in this case to 43% (1275 � 2975). Now only about
one in two PSA-positive men will be incorrectly labelled as having
prostate cancer, a far more acceptable situation. However, as can be
seen from the table below, we now miss more cases (225 instead of 60),
and have a slightly reduced NPV of 97% (6800 � 7025). And of course
we have missed the opportunity for any early detection of prostate
cancers in men in their 60s. Neither choice will please everyone!

(f) For a disease to be considered for a screening programme it should be a
serious threat to health (and be perceived as such by the population);
be reasonably common (but this can still mean very low prevalence in
practical terms); and have a fairly well-understood natural history/
clinical course. There must also be a good screening test for it and it
should have been demonstrated, ideally in randomised trials, that out-
comes are improved if treatment is initiated sooner.

Properties of the PSA screening test among men aged over 70 years.

Prostate cancer

PSA test Yes No Total

+ 1275 1700 2975
– 225 6800 7025
Total 1500 8500 10,000
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APPENDIX 1

Direct standardisation

To use direct standardisation you need to know:

(1) the age-specific disease rates in your study population and
(2) the age distribution of the standard population

An example: standardising the IHD mortality rate for males in
Germany to the world standard population

See Table 1. You first multiply each age-specific rate (Column D) by the
number of people in that age group in the standard population (Column E)
to calculate the number of events that you would expect to see in the standard
population if it had the same rates as your study population (Column F).
You then divide the total number of events expected (the total of column F)

by the total number of people in the standard population (the total of Column E)
to calculate the standardised rate.

Crude mortality rate ¼ Total deaths� total population
¼ 211 per 100 ,000 per year

Standardised mortality rate ¼ Expected deaths� standard population
¼ 121 per 100 ,000 per year
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Table 1 Standardising the IHD mortality rate for males in Germany to the world standard population.

A B C D E F
Age
group
(years)

Number of IHD
deaths (males)
in Germany

Number of
males in
Germany

Mortality rate in
Germany (per
100,000) (B � C)

World
standard
population

Cases expected in
standard population
(D � E)

0–4 0 2,032,000 0.00 12,000 0.00
5–9 0 2,296,000 0.00 10,000 0.00
10–14 0 2,362,000 0.00 9,000 0.00
15–19 11 2,353,000 0.47 9,000 0.04
20–24 15 2,283,000 0.66 8,000 0.05
25–29 42 2,990,000 1.40 8,000 0.11
30–34 142 3,722,000 3.82 6,000 0.23
35–39 407 3,548,000 11.47 6,000 0.69
40–44 839 3,061,000 27.41 6,000 1.64
45–49 1,484 2,801,000 52.98 6,000 3.18
50–54 2,396 2,295,000 104.40 5,000 5.22
55–59 5,352 2,903,000 184.36 4,000 7.37
60–64 8,080 2,505,000 322.55 4,000 12.90
65–69 11,562 1,844,000 627.01 3,000 18.81
70–74 12,605 1,350,000 933.70 2,000 18.67
75–79 12,700 869,000 1461.45 1,000 14.61
80–84 12,727 403,000 3158.06 500 15.79
85+ 16,213 376,000 4311.97 500 21.56

TOTAL 84,575 39,993,000 211.47 100,000 120.89

(Source for raw data: Global Cardiovascular Infobase, www.cvdinfobase.ca, accessed 23 September 2003.)
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APPENDIX 2

Standard populations

REFERENCES

Ahmad, O., Boschi-Pinto, C., Lopez, A., et al. (2001). Age Standardization of
Rates: a New WHO Standard. EIP/GPE/EBD World Health Organization.
Report No.: GPE Discussion Paper Series: No. 31. Geneva: World Health
Organization.

Table 2 Examples of some commonly used standard populations

Age
(years)

Segi World
Standard
(1960)a

African
Standardb

European
Standarda

Proposed
New
European
Standardc

New WHO
World
Standard
2000–2025a

INDEPTH
Standard
for LMIC
2013d

0–4 12,000 10,000 8,000 5,000 8,860 14,630
5–9 10,000 10,000 7,000 5,500 8,690 13,660
10–14 9,000 10,000 7,000 5,500 8,600 12,640
15–19 9,000 10,000 7,000 5,500 8,470 10,800
20–24 8,000 10,000 7,000 6,000 8,220 8,540
25–29 8,000 10,000 7,000 6,000 7,930 7,050
30–34 6,000 10,000 7,000 6,500 7,610 6,040
35–39 6,000 10,000 7,000 7,000 7,150 5,230
40–44 6,000 5,000 7,000 7,000 6,590 4,540
45–49 6,000 5,000 7,000 7,000 6,040 3,890
50–54 5,000 3,000 7,000 7,000 5,370 3,230
55–59 4,000 2,000 6,000 6,500 4,550 2,740
60–64 4,000 2,000 5,000 6,000 3,720 2,290
65–69 3,000 1,000 4,000 5,500 2,960 1,820
70–74 2,000 1,000 3,000 5,000 2,210 1,320
75–79 1,000 500 2,000 4,000 1,520 840
80–84 500 300 1,000 2,500 910 440
85+ 500 200 1,000 2,500e 630 320
TOTAL 100,000 100,000 100,000 100,000 100,000 f 100,000 f

LMIC: Low- and middle-income countries.
a From Ahmad et al. (2001); b from Waterhouse et al. (1976); c from Eurostat (2013); d from Sankoh et al. (2014);
e includes 1500 age 85–89, 800 age 90–94 and 200 age 95+; f the numbers do not sum to exactly 100,000 because
of rounding.
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Eurostat Task Force. (2013). Revision of the European Standard Population:
Report of Eurostat’s task force. Luxembourg, European Union. Available
from http://ec.europa.eu/eurostat/.

Sankoh, O., Sharrow, D., Herbst, K., et al. (2014). The INDEPTH standard
population for low- and middle-income countries, 2013. Global Health
Action, 7: 23286. Available at: www.globalhealthaction.net/index.php/gha/
article/view/23286, accessed 2 May 2015.

Waterhouse, J., Muir, C., Correa, P. and Powell, J. (eds). (1976). Cancer Incidence
in Five Continents, Volume III. IARC Scientific Publication No. 15. Lyon:
International Agency for Research on Cancer.

454 Appendix 2: Standard populations

http://www.globalhealthaction.net/index.php/gha/article/view/23286
http://www.globalhealthaction.net/index.php/gha/article/view/23286
http://ec.europa.eu/eurostat/


APPENDIX 3

Calculating risk and lifetime risk from routine data

The ‘quick and dirty’ method

If a disease is rare, it is possible to make a rough estimate of the risk (or
incidence proportion or cumulative incidence) by adding up the incidence
rates for each year of life from 0 to 74. Because incidence rates are usually
presented for 5-year age groups, e.g. 0–4 years, 5–9 years, etc., the rate at age
0 is the same as that at ages 1, 2, 3 and 4 years; similarly, the rate at age 5 is the
same as that at ages 6, 7, 8 and 9 years; and so on for each 5-year age group.
This means that, if the incidence in a 5-year band is 3/100,000, the chance a
person develops disease during one of the 5 years is 3/100,000 and it is 15/
100,000 for the whole 5-year period. One way to add up all the incidence rates
to age 74 is therefore to multiply each of the age-specific rates by 5 (assuming
that they are for 5-year age groups) and then to add them up. Or, to save time,
you can do it the other way around and add up the 5-year rates and then
multiply by 5 to obtain the same answer. This is then usually presented as a
percentage:

Lifetime risk � 5� sumof rates from 0� 74ð Þ � 100 (A3.1)

As an example, consider the age-specific IHD mortality rates in Germany
shown in Appendix 1. If we add up the rates from ages 0–4 up to 70–74, we
find a total of 2,270/100,000 = 0.0227, so

Lifetime risk � 5� 0:0227� 100 ¼ 11:4%

The proper method

Technically, the measure above is called the ‘cumulative rate’ because it is just
the incidence rates summed or ‘accumulated’ for all ages from 0 to 74 years.
To calculate a more accurate estimate of the lifetime risk you have to use a
slightly more complicated formula:

Lifetime risk ¼ 1� exp � cumulative rateð Þ (A3.2)

Where exp(x) means ex, where e = 2.7183, the base for natural logarithms (as
opposed to 10 which is the base for standard logarithms).
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So, if the cumulative rate of IHD mortality is 11.4% (=0.114) then the lifetime
risk is

Lifetime risk ¼ 1� e�0:114 ¼ 1� 0:892 ¼ 0:108 or 10:8%

Note that this figure of 10.8% is slightly lower than the ‘quick and dirty’ value
of 11.4% we calculated above. This difference arises because IHD is quite
common. The rarer the disease and, therefore, the lower the lifetime risk, the
closer the answers from the two methods will be.

Another way to express the lifetime risk is in the form of ‘1 in X’ where X is
calculated by dividing 1 (or 100% if the lifetime risk is expressed as a percent-
age) by the lifetime risk:

¼ 1 in 1� lifetime riskð Þ (A3.3)

So the lifetime risk of IHD mortality in Germany could be expressed as:

1 in 1� 0:108ð Þ ¼ 1 in9

It is important to note that, in this context, the lifetime risk is an artificial
measure. It assumes that people do not die of any other causes along the way
and it is also based on the current rates of disease without taking into account
the fact that these may change over time. However, despite these limitations it
can be a useful measure for comparing the burdens of various diseases within
a population or for comparing the same disease across different populations.
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APPENDIX 4

Indirect standardisation

To use indirect standardisation you need to know:

(1) the age distribution of your study population and
(2) the age-specific disease rates in the standard population

An example: calculating the SMR for IHD in males in Brazil compared
with Germany

See Table 3. You first multiply each age-specific rate in the standard popula-
tion (Column C) by the number of people in that age group in the study

Table 3 Calculating the SMR for IHD in males in Brazil compared with Germany.

A B C D
Age group
(years)

Male population in
Brazil (�1000)

Mortality rate (males) in
Germany (per 100,000)

Expected deaths in
Brazil (C � B)

0–4 9,025 0.00 0.00
5–9 8,703 0.00 0.00
10–14 8,604 0.00 0.00
15–19 8,109 0.47 37.91
20–24 7,360 0.66 48.36
25–29 6,841 1.40 96.09
30–34 6,642 3.82 253.40
35–39 5,622 11.47 644.91
40–44 4,707 27.41 1290.16
45–49 3,745 52.98 1984.14
50–54 2,912 104.40 3040.15
55–59 2,454 184.36 4524.22
60–64 1,957 322.55 6312.40
65–69 1,583 627.01 9925.51
70–74 1,138 933.70 10625.55
75–79 721 1461.45 10537.05
80+ 583 3715.02 21658.57
TOTAL 80,706 211.47 70978.43

(Source for raw data: Global Cardiovascular Infobase, www.cvdinfobase.ca, accessed
23 September 2003.)
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population (Column B) to calculate the number of events you would expect to
see in the study population if it had the same rates as the standard population
(Column D). You then divide the total number of events actually observed in
the study population by the number of events expected (the total of column D)
if the study population had had the same rates as the standard population.
This gives you the standardised mortality ratio (SMR) (or standardised inci-
dence ratio (SIR) if you are using incidence rates).

Observed number of deaths in Brazil = 39,437
Expected number if Brazil had same mortality rates as Germany = 70,978
∴ Standardised Mortality Ratio (SMR) = O � E = 39,437 � 70,978 = 0.56
The crude mortality rate from IHD in Brazilian men was less than one-

quarter of that in Germany (47 versus 211/100,000 per year) but the average
age of the population is much lower in Brazil than in Germany. When we
standardise for age, the SMR=0.56 suggests that IHD mortality in Brazil is
about half that in Germany.
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APPENDIX 5

Calculating life expectancy from a life table

Life expectancy is calculated based on what we expect to happen to a hypo-
thetical cohort of 100,000 newborn infants if they experience the same mor-
tality rates that currently operate within the population. (The cohort size is
often denoted Ix, where x is the age of interest, thus at the start age = 0 and I0 =
100,000.) Table 4 shows the first and last few rows of a standard life table for
Australian males based on mortality rates from 2005 to 2007.
If the probability of a male dying before his first birthday (qo) is 0.00527 then

we would expect 527 deaths in our cohort in the first year of life (d0 = Io � q0)
leaving 99,473 survivors at age = 1 (i.e. I1 = 99,473). We can also estimate the
numbers of years of life lived between the ages of 0 and 1. Because most infant
deaths occur shortly after birth, this is estimated as 99,535 years, but for older
ages we assume that those who died did so, on average, halfway through the
year and thus contribute 0.5 years of life. Thus, for example, at age = 3 the total

Table 4 Life table for Australian males, 2005–2007.

Age

Life table
Cohort
Ix

Probability
of dying
qx

Number of
deaths
dx = Ix� qx

Years of live
lived
Lx = Ix – (dx�2)

Cumulative
years of life
Tx = Tx+1 + Lx

Life expectancy
ex = Tx � Ix

0 100,000 0.00527 527 99,535 7,902,203 79.0
1 99,473 0.00040 40 99,452 7,802,668 78.4
2 99,434 0.00025 25 99,420 7,703,216 77.5
3 99,409 0.00019 19 99,399 7,603,796 76.5
. . . . . . . . . . . . . . . . . . . . .

97 3,879 0.27159 1,054 3,330 10,862 2.8
98 2,825 0.28593 808 2,403 7,532 2.7
99 2,018 0.30026 606 1,700 5,129 2.5
100 1,412 0.31460 445 3,429 3,429 2.4

Where: Ix = the proportion of persons surviving to that age
qx = the proportion of persons dying between exact age x (Ix) and exact age x+1 (Ix+1)
dx = the number of deaths occurring between exact age x and exact age x+1
Lx = the years of life lived by the cohort between exact age x and exact age x+1
(Source for raw data: Australian Bureau of Statistics. (2007). Life Tables Australia: 2005–2007. ABS Publication
3302.0.55.001. http://www.abs.gov.au, accessed 12 September 2009.)
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years of life L3 = 99,409 – (19 � 2) = 99,399. If we repeat these calculations for
each year of age up to 100 we end up with 1412 men from our original cohort
of 100,000 who survive to age 100, 445 of whom will die before their 101st
birthday.

We then go on to calculate the total number of years lived by our cohort.
Most life tables do not go beyond 100 years, although there are still some
survivors at this point. We therefore have to estimate the total amount of life
they have left; in this case 3429 years. We can then add on the total years of
life lived at every other year of life giving a total of 7,902,203 years for the entire
cohort. By dividing the years of life remaining at any given age by the number
of survivors at that age (Tx � Ix), we can then calculate life expectancy at that
age. For example, at age 3 the 99,409 survivors have a total of 7,603,796 years
life remaining giving a life expectancy at age 3 of 76.5 years.
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APPENDIX 6

Why the odds ratio approximates
the relative risk for a rare disease

Table 5 shows the results of a hypothetical cohort study.

Relative risk ¼ IPe

IPo
¼ a

aþ bð Þ �
c

c þ dð Þ ¼ 0:75% � 0:25% ¼ 3:0

However, if the disease is rare then
a (= 75) is very small in comparison to b (= 9,925), so a + b � b
and
c (= 25) is very small in comparison to d (= 9,975) so c + d � d
This means that the

Relative risk ¼ a
aþ bð Þ � c

c þ dð Þ �
a
b
� c
d
¼ a� d

b� c
¼ Odds Ratio

To show that this is true, imagine we conducted a case–control study in this
population with all 100 cases and the same number of controls. Half of the
population is exposed and half is unexposed, so we would expect about
50 controls to be exposed and 50 to be unexposed and the

Odds ratio ¼ 75 � 50
25 � 50

¼ 3:0

Table 5 Results of a hypothetical cohort study.

Cases Non-cases Total Incidence proportion (%)

Exposed 75 (a) 9,925 (b) 10,000 (a + b) 0.75
Unexposed 25 (c) 9,975 (d) 10,000 (c + d) 0.25

Total 100 19,900 20,000
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APPENDIX 7

Formulae for calculating confidence intervals
for common epidemiological measures

Although statistical packages routinely calculate confidence intervals for
you, it is helpful to understand where they come from and sometimes useful
to be able to calculate them by hand. We show below the formulae for
estimating confidence intervals for some of the most common measures.
The general rule for a 95% confidence interval is that the lower bound is
equal to the point estimate minus 1.96 � the standard error and the upper
bound is equal to the estimate plus 1.96 � the standard error. For 90%
intervals you simply substitute 1.645 for 1.96 (giving a narrower interval but
less certainty that it contains the correct value) and for 99% intervals you use
2.575 (giving a wider interval and more certainty that it contains the correct
value).1

i.e. 95% confidence limits = estimate � 1.96 � standard error

It is important to remember, though, that some intervals have to be calcu-
lated on a log scale and then back transformed to the original scale (see, for
example, the formula for the odds ratio below).

So, assuming that your data are set out in a standard way as follows:

Then Table 6 shows you how to calculate the standard error for some
common epidemiological measures.

Cases/
affected

Controls/
unaffected

Total
people

Total person-
years

Exposed a b N1 PY1
Unexposed c d N0 PY0

1 These intervals are calculated on the assumption that the estimate comes from a ‘normal’

distribution or bell-shaped curve and this distribution can therefore be used to identify

the multiplier for any width of CI although 90%, 95% and 99% are those most commonly

used.

462



So if a case–control study gives the following results:

Odds ratio =
130� 198

87� 45
= 6.57

Log odds ratio = ln(6.57) = 1.883

Standard error of log odds ratio =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

130 þ 1
45 þ 1

87 þ 1
198

q
= 0.216

So to calculate the 95% confidence interval for the log odds ratio:

Lower bound = 1.883 – (1.96 � 0.216) = 1.460

Upper bound = 1.883 + (1.96 � 0.216) = 2.306

and the 95% confidence interval for the odds ratio itself is then obtained by
exponentiating to move back from the (natural) log scale to the more familiar
arithmetic scale:

Lower bound = exp1:460 = 4.3

Upper bound = exp2:306 = 10.0

The final result might thus be presented as OR = 6.6 (95% CI = 4.3 – 10.0).

Table 6 Formulae for calculating the standard error for some common epidemiological
measures.

Measure Estimate Standard deviation

Risk (in exposed)* a
N1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a N1 � að Þ

N1
3

r

Incidence rate (in exposed) a
PY 1

ffiffiffiffiffiffiffiffiffiffiffi
a

PY 1
2

r

Log odds ratio
ln

a� d
b� c

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a
þ 1

b
þ 1

c
þ 1

d

r

Log risk ratio
ln

a
N1

� c
N0

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a
� 1

N1
þ 1

c
� 1

N0

r

Log rate ratio
ln

a

PY 1
� c

PY 0

� � ffiffiffiffiffiffiffiffiffiffiffi
1

a
þ 1

b

r

* Can be used for any proportion, e.g. incidence proportion or prevalence.

Table 7 Hypothetical results from a case–control study.

Cases Controls Total

Exposed 130 45 175
Unexposed 87 198 285
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APPENDIX 8

The Mantel–Haenszel method for
calculating pooled odds ratios

When you do a stratified analysis to control for confounding you end up with a
number of different odds ratios – one for each stratum. If these are all fairly
similar, the next stage is to combine them into a single adjusted odds ratio
that summarises the effect of the exposure adjusted for the confounder. Note
that it is practical to do this only when you have a fairly small number of strata;
once you need to adjust for more than one or two confounders it is better to
use multivariable modelling techniques.

An adjusted odds ratio is essentially a weighted average of the stratum-
specific odds ratios. We calculate a weighted average rather than a straight
average so that strata with more people (and therefore greater precision) have
a bigger influence on the final result than small strata. To calculate a weighted
average, each individual value is multiplied by its weight and these new values
are then added up and divided by the sum of the weights. Various sets of
weights can be used for pooling odds ratios, but those proposed by Mantel and
Haenszel (1959) are commonly used.

Imagine a case–control study with a total of T people in each stratum (Tmay
be different for each stratum) as follows:

The odds ratio in each stratum is OR ¼ a� d
b� c

The weight for each stratum is w ¼ b� c
T

(A8.1)

So for each stratum we calculate:

OR� w ¼ a� d
b� c

� b� c
T

(A8.2)

We then add these values up for each stratum (= Σ[(a�d)�T], where Σ (sigma)
means summed over all strata), and divide by the sum of the weights =
Σ[(b�c)�T], so:
Mantel–Haenszel pooled OR ¼

P
a� dð Þ � T

� �
P

b� cð Þ � T½ �

Cases Controls

Exposed a b
Unexposed c d T = a + b + c + d
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As an example, imagine a case–control study in which we are concerned
about possible confounding by socioeconomic status (SES) because high SES
is associated with a lower risk of disease but an increased risk of exposure:

To calculate the Mantel–Haenszel adjusted odds ratio:

1. first calculate for each stratum separately: (a � d) � T and add these up for
all of the strata,

2. then calculate for each stratum separately: (b � c) � T and add these up for
all of the strata, and

3. then divide (1) by the result from (2).

In this example the pooled or adjusted OR of 2.45 is higher than the crude
OR of 1.94, confirming that there was some confounding by SES. The adjusted
OR is much closer to the OR in the high SES group (2.35) than it is to the OR in
the low SES group (2.71) because the high SES group is much larger.

Meta-analysis

Exactly the same method can also be used to pool odds ratios from different
studies in a meta-analysis.

REFERENCE

Mantel, N. and Haenszel, W. (1959) Statistical aspects of the analysis of data
from retrospective studies of disease. Journal of the National Cancer Insti-
tute; 22: 719–748.

Table 8 A hypothetical case–control study, stratified by SES.

High SES Low SES Total

Cases Controls Cases Controls Cases Controls

Exposed 460 490 90 45 550 535
Unexposed 60 150 70 95 130 245
Total 520 640 160 140 680 245
Odds Ratio 2.35 2.71 1.94

Table 9 Calculation of the Mantel–Haenszel adjusted odds ratio.

High SES Low SES Total

(1) (a � d) � T (460 � 150) � 1160 = 59.48 (90 � 95) � 300 = 28.50 59.48 + 28.50 = 87.98
(2) (b � c) � T (60 � 490) � 1160 = 25.34 (70 � 45) � 300 = 10.50 25.34 + 10.50 = 35.84

(3)
P

a� dð Þ � T½ �P
b� cð Þ � T½ � 87.98 � 35.84 = 2.45
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Glossary

Note: We have used italics to indicate other terms that are defined in this glossary.

Absolute risk reduction (ARR), Absolute risk increase (ARI) – clinical epidemiology terms
for the attributable risk, used when then the risk in the exposed group is
lower (ARR = Io � Ie) or higher (ARI = Ie � Io) than the risk in the
control group.

Accuracy – this is achieved when the observed result is close to the true value.
See also precision.

Adjustment – the process of correcting an estimate (e.g. odds ratio or relative
risk) to reduce the confounding effects of some other factor; analogous to
the process of standardisation.

Age-specific rate – incidence or mortality rate calculated for a specific age-group
(usually a one, five or 10 year age band) to remove the confounding effects
of age. See also crude rate, age-standardised rate.

Age-standardised rate – incidence or mortality rate that has been standardised for
age by the process of direct standardisation. In practice an age-standardised
rate is a weighted average of the age-specific rates where the weights are
obtained from the age-distribution of a pre-defined standard population.
See also crude rate, standardised incidence (mortality) rate.

Airborne transmission – transmission of an infectious agent via infectious droplet
nuclei that can be inhaled. See also direct transmission and indirect
transmission.

Ascertainment bias – see selection bias.
Attack rate – a measure of risk or the incidence proportion often used for an

outbreak that occurs over a relatively short time period. See also second-
ary attack rate.

Attributable fraction – the proportion of all disease occurring in an exposed group
that can be attributed to their exposure; equal to the attributable risk
(Ie – Io) divided by the incidence of disease in the exposed group (Ie).

Attributable risk – a measure of the excess amount of disease occurring in one
group over and above that in a comparison or reference group (Ie – Io). It
can be calculated using incidence rates in which case it is also known as a
rate difference, or incidence proportions in which case it is a risk difference.

Background rate or risk – the rate or risk of disease in an unexposed population;
i.e. the amount of disease that will occur in the absence of the exposure or
risk factor of interest.
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Case–cohort study – a study conducted within the context of a cohort study, where
cases are all those diagnosed with a particular disease and the comparison
group is a random sample (subcohort) of the whole cohort population.
The main difference from a nested case–control study is that the subcohort
may include some people with the disease of interest; also, because it is
selected to represent the whole cohort, the same subcohort can be used
for studies of different outcomes.

Case–control study – a study where a group of people with disease (cases) are
compared to a group without the disease (controls), selected to represent
the population from which the cases came.

Case–crossover study – a study where each case acts as their own control thereby
controlling for many known and unknown confounders. Exposure in a
defined period prior to disease onset is compared with exposure in a
defined ‘control’ period. Only suitable for studying transient exposures –
for example studies of sexual activity and myocardial infarction.

Case–fatality ratio (CFR) – the proportion of people with a given disease or
condition who die from it in a given period. It is a common measure of
the short-term severity of an acute disease and allows a direct assessment
of the effectiveness of an intervention.

Case-finding – opportunistic attempts at early detection of disease when some-
one comes into contact with the health system for another reason.

Cause – something (an event, condition, characteristic or combination of these)
that plays an essential role in producing an effect (e.g. the occurrence of
disease). See also component cause, necessary cause, sufficient cause.

Clinical significance – see significance, clinical.
Cluster – a group of cases of a rare (usually non-infectious) disease that occur in

the same area or time period at a level greater than would be expected by
chance.

Cohort study – a study where a sample of people (the cohort) are followed up
over time to see who develops the disease of interest. The cohort may be a
single population group who are then stratified on the basis of their
exposure level, or it may be a group who have experienced a specific
exposure (for example, an occupational or military group) who are then
compared with e.g. the general population.

Common-source outbreak or epidemic – see point-source outbreak or epidemic.
Community trial – a trial in which the intervention is implemented at the com-

munity level, usually because it would be impossible to offer (or evaluate)
the intervention at the individual level, for example studies of water
fluoridation and dental health.

Competing cause – a cause of death other than the disease of interest. For
example, in a long-term cohort study some people will die from other
causes before they develop the condition of interest and in this case the
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investigator will never know if they might have developed the condition if
they had lived longer.

Component cause – something (an event, condition, characteristic or combination
of these) that, in conjunction with other factors, plays a role in producing
an effect (e.g. the occurrence of disease). However it is neither necessary
to cause disease, nor sufficient to cause disease on its own. See also
necessary cause, sufficient cause.

Confidence interval (CI) – the range placed around a point estimate in which the
true result is likely to lie and a way of quantifying the amount of random
sampling error in a study or, conversely, the precision of an estimate. Most
common are 95% confidence intervals and these are often interpreted as
the range that will include the true value 95% of the time. However what
they really mean is that if we were to repeat a study many times with
different samples of people, then 95% of the 95% confidence intervals we
calculated would include the true value. Other percentages can also be
used, for example 99% intervals are wider but more likely to include the
true value whereas 90% intervals are narrower but less likely to include
the true value.

Confounding – a mixing or muddling of effects that can occur when the relation-
ship we are interested in is confused by the effect of something else – the
‘confounder’.

Confounding by indication – a type of confounding common in non-randomised
studies looking at the effects of treatment. It occurs because, even among
a group of people who all have the same medical condition, those who
choose to take or who are prescribed a particular medication may well
differ from those who do not take it or who are not prescribed it. For
example, most drugs have one or more contraindications and people with
these conditions would not be prescribed that drug and so would all be in
the non-exposed group.

Control event rate (CER) – a term sometimes used in clinical trials to describe the
risk or incidence proportion of the outcome of interest in the control or
placebo group. See also experimental event rate.

Correlation study – see ecological study.
Counterfactual – a situation or condition that did not occur but could, would, or

might have occurred under differing conditions.
Critical point – the theoretical (and usually unknown) point during the

development of disease after which the disease process is irreversible
and treatment will confer little or no benefit. Depending on the
disease, this may occur very early in the disease process or may not
occur at all.

Cross-level bias – bias that is due to the aggregation at the population level of
causes or effects that are unlike those at the individual level. This form of
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bias is also referred to as the ecological fallacy when aggregate-level associ-
ations in ecological studies are interpreted as individual-level associations.

Crossover trial – a clinical trial where the same group of participants forms both
the experimental and the control group. Participants are randomised such
that they either receive the active treatment for the first time period and
placebo for the second, or receive placebo for the first study period and
the active treatment for the second. This design can only be used for
exposures that have a fairly transient effect such that the effect of treat-
ment does not carryover from one time period to the next.

Cross-sectional study – a survey of a random sample or cross-section of the
population where information about potential exposures and outcomes
is collected at the same time. Distinct from cohort studies and most case–
control studies because it does not just consider incident (new) cases but
all those in the population at the time of the survey (prevalent cases).

Crude estimate – an unadjusted measure of disease occurrence or association
that has been calculated without consideration of the potential confound-
ing effects of other variables.

Crude rates – overall incidence or mortality rates calculated for a whole popula-
tion (IR = number of events in one year � total population or IR = number
of events � person-time at risk) with no adjustment for the potential
confounding effects of other variables e.g. age. See also age-specific rate,
age-standardised rate, standardised incidence (mortality) rate.

Cumulative incidence – see incidence proportion.
DAG – see directed acyclic graph.
Data linkage – see record linkage.
Density sampling – a scheme for selecting controls for a case–control study (or

nested case–control study) where controls are selected from all those in the
population who are disease-free but at risk of developing the disease at
the time when a case is diagnosed. In practice this means that someone
can be recruited as a control for a study and then recruited again as a case
if they go on to develop the disease of interest.

Diagnostic test – a definitive test used to diagnose disease in those suspected of
being affected. See also screening test.

Differential error or misclassification – measurement error or misclassification that
occurs to a greater extent in one study group than another, for example it
is more likely to occur in cases than controls (or vice versa) in a case–
control study.

Direct standardisation – the process where the rate of disease (or mortality) in a
population is calculated on the assumption that the population had a
standard age-sex distribution. If this is done for several different study
populations then the resulting standardised incidence (mortality) rates can
be directly compared because any differences in age/sex between the
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populations have been removed. Direct standardisation is most commonly
performed for age and sex but can be performed for other characteristics
such as race or socioeconomic status. See also indirect standardisation.

Direct transmission – transmission of an infectious agent through close personal
contact with an infected individual, for example by touching infectious secre-
tions or excreta. See also indirect transmission and airborne transmission.

Directed acyclic graph (DAG) – a pictorial representation of the causal relationships
between variables. It is ‘directed’ because arrows indicate the direction
from causes to outcomes, and ‘acyclic’ because no variable can affect itself
(i.e. the arrows cannot form a loop).

Disability-adjusted life year (DALY) – a measure of the burden of a disease or risk
factor on a population that counts not only years of life lost completely
due to premature death, but also years of health lost through disability
where the extent of disability is weighted from zero (perfect health) to one
(death). See also quality-adjusted life year.

Disability-free life expectancy – the number of years of life an individual of a
given age is expected to live free of disability, based on current morbidity
and mortality rates. See also life expectancy and health adjusted life
expectancy.

Ecological fallacy – an error made when information about groups of people is
used to make inferences about individuals. For example, if suicide rates
are lower in areas with high unemployment it would be tempting to
assume this means that the unemployed are less likely to commit suicide
than the employed. However, we do not know who is actually committing
suicide. It is possible that it is unemployed people committing suicide, but
that they are more likely to do so if they live in an area where the overall
unemployment rate is low.

Ecological study – a study comparing the levels of exposure and or disease across
populations rather than individuals. For example a study relating average
income to child mortality rates in different countries. Susceptible to eco-
logical fallacy.

Effect modification – when the association between an exposure and outcome (the
‘effect’) differs across levels of a third variable – the ‘effect modifier’.

Eligibility criteria – criteria used to define the target population and establish
whether an individual is eligible to participate in a study. See also exclu-
sion criteria.

Endemic disease – a disease that is constantly present in a given population.
Epidemic – the occurrence of disease at a level greater than would normally be

expected.
Event-based surveillance – see surveillance.
Excess rate – see rate difference.
Excess risk – see risk difference.
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Exchangeability – two groups are exchangeable when individuals in the ‘exposed’
group of a study do not differ in any respect from individuals in the
‘unexposed’ group (with the exception of their exposure status). Ensuring
the exposed and unexposed groups are exchangeable reduces the likelihood
of confounding.

Exclusion criteria – criteria on which potential participants who are eligible for a
study are excluded, usually for practical reasons such as their level of
health, ability to give informed consent, ability to complete the study
requirements. See also eligibility criteria.

Expected years of life lost (EYLL) – see years of life lost.
Experimental event rate (EER) – a term sometimes used in clinical trials to describe

the risk or incidence proportion of the outcome of interest in the treatment
or intervention group.

Exposure – a generic term used to describe the genetic, phenotypic, behavioural,
lifestyle, environmental factors (or potential causes) being studied in
relation to an outcome of interest.

External validity – see generalisability.
False negative – a negative test result in a person who actually has the condition

being tested for and thus should have tested positive.
False positive – a positive test result in a person who does not actually have the

condition being tested for and thus should have tested negative.
Force of morbidity – a synonym for the incidence rate.
Generalisability – the degree to which the results of a study can be reliably

applied to a broader population than that included in the study. This
depends on how representative the study population is of the target
population (i.e. the response rate) and also how representative the target
population is of other populations of interest. When applied to a causal
association it is usually a decision based on judgement – for example,
can the results of a study of American men be applied to men (or
women) in Russia?

Health-adjusted life expectancy (HALE) – the equivalent number of years an individ-
ual can expect to live in full health based on current morbidity and
mortality rates. Unlike disability-free life expectancy where years of life
lived with disability are ignored, HALE includes this extra time but
includes a weighting to allow for the fact that it is not lived in full health.
See also life expectancy.

Health expectancy measures – measures that focus on what is being achieved such
as life-expectancy. See also health gap measures.

Health gap measures –measures that focus on what is not being achieved such as
potential years of life lost. They have the useful property that they can be
calculated separately for different diseases or for different causes of dis-
ease. See also health expectancy measures.
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Healthy worker effect – a problem that arises in occupational studies because
workers are inherently healthier than the general population which
includes all those too sick to work. As a result, employed groups will
naturally tend to have lower morbidity/mortality rates than the overall
population and it can be difficult to know whether this might mask an
increase in risk due to a specific occupational exposure. Similar issues
arise in comparisons of other healthy groups, such as the armed forces, to
the general population.

Heterogeneity –when something varies across different groups it is heterogeneous.
See also homogeneity.

Historical (or retrospective) cohort study – a cohort study where participants are
identified in the present and historical records are used to measure their
exposure in the past. This past measure of exposure can then be linked to
the incidence of disease over the intervening years. This preserves the
major benefit of a cohort study in that exposure is documented prior to
the outcomes occurring, but avoids the lengthy time delay in that the
outcomes have already occurred.

Homogeneity – when something is constant across different groups it is homo-
geneous. See also heterogeneity.

Host – the human or animal to which an infectious agent acquires entry and in
which it multiplies.

Hypothesis test – a statistical test to assess the probability that the observed result
would have arisen if the true result was something different. Usually
calculated to assess the probability that a result as great as or greater than
that observed would have arisen if there is really no association (the null
hypothesis).

Incidence – new cases of disease; somewhat confusingly the term is commonly
used to describe the actual number of new cases and also as a synonym
for both the incidence rate and incidence proportion (or cumulative
incidence).

Incidence density – see incidence rate.
Incidence proportion – the proportion of a defined population that develop the

outcome of interest in a specified time period (IP = number of cases in a
given time period � number of people at risk during the same period).
Synonyms are risk or cumulative incidence.

Incidence rate – the rate at which new cases of disease occur in a population. Can
be calculated from population data as IR = number of new cases in a one-
year period � the number of people at risk during the same period. If it is
not reasonable to assume that everyone has been at risk for the whole
period, for example in a cohort study where people have been recruited to
the study over a period of time, then it can be calculated as IR = number of
new cases in a one-year period � total person time at risk.
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Incident case – a new case of disease that is diagnosed during a specified time
period.

Incubation period – the time between initial infection (entry of an infectious agent
into a susceptible host) and the onset of clinical disease (symptoms).

Indicator-based surveillance – see surveillance.
Indirect standardisation – the process where the observed number of events in a

study population is compared to the number of events that would have
been expected to occur if the study population had the same characteris-
tics as a standard population. Indirect standardisation is most commonly
performed for age and sex but can be performed for other characteristics
such as race or socioeconomic status. The results are usually presented as
a standardised incidence (mortality) ratio. See also direct standardisation.

Indirect transmission – transmission of an infectious agent that involves a
vehicle which may be inanimate, such as bedding, clothes or utensils
(collectively called ‘fomites’), food or water, or the soil; or alive in which
case it is called a vector. See also direct transmission and airborne
transmission.

Infection – the entry of a microbial agent into a higher-order host and its
multiplication within the host.

Infectivity –the ability of an organism to invade and multiply in a host. It is the
proportion of exposures that result in infection.

Infestation – when a lower organism lives on an external surface of another
(usually higher) organism, for example, lice and scabies.

Information bias – see measurement bias.
Intensity (of infection) – a measure of the number of organisms infecting an

individual.
Intention to treat analysis – analysis of data from a randomised trial that compares

the groups as they were originally randomised, regardless of whether
people actually received the intervention or not. Usually the most appro-
priate way to analyse data from a randomised study because if only those
who actually received the intervention are compared with the rest, the
benefits of the randomisation in terms of controlling for confounding and
avoidance of selection bias are lost.

Internal validity – the degree to which the results of a particular study are free
from bias and confounding.

Interval case – a case of disease that is diagnosed clinically between routine visits
for screening.

Interviewer (observer) bias – a bias that can arise in exposure (disease) measure-
ment when an interviewer (or observer) is aware of the disease (exposure)
status of an individual. For example: an interviewer may ask questions
somewhat differently, and thus potentially get different answers, when
they know they are talking to someone they know has disease; a clinician
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may be more likely to diagnose disease in someone they know has been
exposed to a particular factor.

Latent period (of an infectious agent) – the time from entry of an infectious agent
into a host until the onset of infectiousness; may be longer or shorter than
the incubation period. If it is shorter then infected persons may pass on
the infection before they become ill (as with influenza) and if it is longer
they will be ill before they are very infectious (like with SARS).

Lead time – the period between the first detectable signs of disease (i.e. detec-
tion by screening is possible) and the overt symptoms that normally lead
to diagnosis.

Lead time bias – bias introduced into screening studies when groups of screened
and unscreened individuals are compared without consideration of lead
time such that screened individuals appear to do better simply because their
disease was detected earlier than among those who are not screened.

Length bias – the over-representation of slowly progressing disease, which is more
likely to have a favourable outcome, among cases detected by screening.

Life expectancy – the average number of years that an individual of a given age is
expected to live if current mortality rates continue; see also health
adjusted life expectancy.

Life table – a table that shows, amongst other things, the probability that an
individual of any given age will die before reaching their next birthday (or
the next age-group if the table is not calculated for individual years of
age), and their future life-expectancy. Also known as a mortality table or
actuarial table.

Measurement (or information) bias – any error in the measurement of either expos-
ure or disease that differs between study groups. Can lead to differential
misclassification of exposure or disease status.

Measurement error – any error in the measurement of either exposure or disease.
Can lead to misclassification of exposure or disease status.

Meta-analysis – a technique for combining the results of multiple different
studies into a single estimate, essentially a weighted average of the
study-specific results where more reliance is placed on bigger studies
with more precise estimates.

Migrant study – a comparison of disease incidence/mortality between groups
who have migrated to a new country and those who stayed in their home
country, for example Japanese people in Hawaii and Japanese in Japan. As
both groups are likely to be genetically similar, differences between the
groups suggest the condition under study is at least partly determined by
environmental causes.

Misclassification – occurs when errors in measurement of exposure or outcome
mean that people are classified into the wrong groups. For example
someone with disease is wrongly classified as disease-free or vice versa,
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or someone who has been exposed to the factor of interest is wrongly
classified as unexposed, or exposed at a lower level. See also non-differential
misclassification, differential misclassification.

N-of-1 trial – a crossover trial where each participant serves as their own control
such that they are randomised to periods of active treatment and placebo
and their outcomes during the different time periods are compared. This
design can only be used for exposures that have a fairly transient effect
such that the effect of treatment does not carryover from one time period
to the next.

Necessary cause – a component cause that is necessary for an outcome to occur;
for example infection with influenza virus is a necessary cause of
influenza.

Negative predictive value (NPV) – a measure of the performance of a screening
programme in a specific population; the NPV of the test is the probability
that someone who tests negative truly does not have the condition of
interest. See also: sensitivity, specificity, positive predictive value.

Nested case–control study – a study conducted within the context of a cohort study,
where cases are all those diagnosed with a particular disease and the
comparison group is selected from those without disease at the time the
cases were diagnosed. For this reason, the comparison group is specific to
the particular case-group and cannot be used to study other outcomes as
is possible in a case–cohort study.

Non-differential error or misclassification – measurement error or misclassification
that occurs to the same extent in all study groups, for example in both
cases and controls in a case–control study.

Null hypothesis – the hypothesis that there is no difference between the groups
being studied or no association between an exposure and outcome.

Null value – the value that indicates no effect or association between two factors;
equal to 0 for a difference measure (absolute risk) and 1.0 for a relative
measure (relative risk).

Number needed to treat – the estimated number of people who would have to be
given a new treatment in order to save one life (or prevent one adverse
event if death is not the relevant outcome) in a specified time period,
often one year. Calculated as 1 � absolute risk reduction.

Observer bias – see interviewer bias.
Odds – the ratio of the number of people within a particular group who meet a

specified condition divided by the number of people in the group who do
not meet that condition. Identical to the odds commonly used in betting.

Odds ratio – the odds of disease in a group of people exposed to a potential risk
factor divided by the odds of the same disease in a second or reference
group who are unexposed. In practice this is equal to the odds that
someone with disease (case) is exposed to a potential risk factor divided
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by the odds that someone without the disease is exposed to the same
factor. In some circumstances (the outcome is rare or controls in a case–
control study are selected via density sampling) the odds ratio is equal to
the relative risk.

Outbreak – the occurrence of cases of disease in a community or region where it
would not normally be expected, or at a much greater level than expected.
See also epidemic.

Pathogenicity – the power of an organism to produce overt illness among those
infected. It is measured as the proportion of those exposed to infection
that goes on to develop clinical or overt illness.

Period prevalence – the proportion of a population affected by the condition of
interest at any point during a specified time interval; period prevalence =
the prevalence at the start of the time interval + the incidence of new cases
during the time interval. See also point prevalence.

Person-time or person-years – the total amount of time lived by a defined group of
people. For example, if 100 people are followed for an average of 5.7 years
this is a total 570 person-years (100 � 5.7) of follow-up.

Point estimate or effect estimate – the main measure of association calculated in a
study, for example an odds ratio or relative risk.

Point prevalence – the proportion of a population affected by the condition of
interest at a specific point in time.

Point-source outbreak or epidemic – an epidemic that occurs when many people are
suddenly exposed to the same source of infection, leading to a clear
increase in incidence of disease. May also be called a common-source
or extended-source outbreak, the latter implying that the exposure may be
spread over a period.

Population attributable fraction – the proportion of disease occurring in a popula-
tion that can be attributed to the exposure of interest. Equal to the
population attributable risk (IT – Io) divided by the incidence of disease
in the whole population (IT). See also population attributable risk, attrib-
utable fraction.

Population attributable risk – the amount of disease (usually measured as incidence
rate or incidence proportion) occurring in a population that can be attrib-
uted to the exposure of interest (IT – Io). See also population attributable
fraction, attributable risk.

Positive predictive value (PPV) – a measure of the performance of a screening
programme in a specific population; the PPV of the test is the probability
that someone who tests positive actually has the condition of interest. See
also: sensitivity, specificity, negative predictive value.

Post-test probability – a clinical epidemiology term for the probability that some-
one has disease based on the results of a specific test; a synonym for the
positive predictive value.
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Potential years of life lost (PYLL) – also known as years of potential life lost; the
number of years of life lost because of deaths that occur prior to some pre-
defined age.

Power – probability that the study will detect an association of a particular size
if it truly exists in the general population.

Precision – little variation between the results; the converse of random error.
A precise estimate will have a narrow confidence interval, conversely a
wide confidence interval indicates a lack of precision.

Pre-test probability – a clinical epidemiology term for the probability that some-
one has disease based on the evidence available before a test is per-
formed; often used synonymously with prevalence.

Prevalence – the proportion of a population affected by the condition of interest.
See also point prevalence, period prevalence.

Prevalence ratio – the prevalence of disease in one group divided by the preva-
lence in a second or reference group.

Prevalent case – a case of disease that is already present in the population at a
given point in time.

Primary prevention – all interventions that attempt to prevent disease from
occurring, i.e. to reduce the incidence of disease.

Propagative epidemic – an epidemic that arises from the introduction of an
infection into a susceptible population with subsequent transmission
from person to person and a progressive increase in incidence. Also
known as a contagious epidemic.

Proportional mortality ratio (PMR) – the proportion of deaths due to a specific cause
in a group of interest divided by the proportion of deaths due to the same
cause in a comparison group.

Publication bias – a form of selection bias that can occur in a systematic review or
meta-analysis where studies with unexpected or null findings are less
likely to be published than studies with new or positive findings or that
confirm expectations.

p-value (probability value) – the probability that we would have seen a difference as
big as (or bigger than) we did if there were really no difference between
the groups.

Quality-adjusted life year (QALY) – a measure of life expectancy that weights each
year of life based on the quality of that life from one (perfect health) to
zero (death). See also disability-adjusted life year.

Random error – or poor precision is the divergence, by chance alone, of a
measurement from the true value. See also systematic error.

Randomisation – the process of allocating study participants to different exposure
groups (e.g. intervention and control) at random such that each person
has an equal chance of being allocated to the intervention group. Not to
be confused with random selection.
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Randomised controlled trial – a study where people are allocated to the exposure
and control groups at random; the best design to avoid confounding.

Random sampling error – the introduction of error into the results of a study
because only a sample of the population was studied instead of the whole
population, for example in a population-based case–control study where a
sample of people without disease are recruited to represent the broader
population. Random sampling error is unavoidable in most situations but
can be minimised by taking as large a sample as possible. It can also be
quantified by the use of confidence intervals.

Random selection – the selection of participants for a study on the basis of chance
such that each person in the source population has the same chance of
being included in the study. Note, this does not mean that exposure is
assigned at random, see randomisation.

Rare disease assumption – when a disease (or any health condition) is relatively
rare (e.g.<10%) then the odds ratio, risk ratio and incidence rate ratio will
all be approximately equal and the odds ratio can be used as an estimate
of the relative risk (the risk of disease in one group relative to a
reference group).

Rate difference – the incidence rate of disease in one group minus the incidence
rate in a second or reference group (IRe – IRo); also described as attribut-
able risk.

Rate ratio – the incidence rate of disease in one group divided by the incidence
rate in a second or reference group (IRe � IRo); also described as relative
risk.

Recall bias – a type of bias that occurs when one group in a study tends to recall
or report information differently from the comparison group. Most likely
in a case–control study (or cross-sectional study) when cases, who may
have thought extensively about what caused their disease, may recall their
past exposures differently from controls, who do not have disease.

Record linkage – a process where records from different sources, for example
prescribing records and death records, are combined at the individual
level. In some countries this is facilitated by the use of a unique identifi-
cation number to match records for a single person.

Relative risk – the term relative risk is synonymous with risk ratio but in practice
it is also commonly used to describe a rate ratio and, in some circum-
stances, an odds ratio since all three measures compare the amount of
disease in one group relative to that in another.

Relative risk reduction (RRR), Relative risk increase (RRI) – clinical epidemiology terms
used to describe the reduction (or increase) in relative risk in a study
group compared to the reference level of 1.0. For example, a RRI of 0.3
would mean that the relative risk in the study group was 1.3; a RRR of 0.3
would mean that the relative risk was 0.7.
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Relative survival rate – the survival rate adjusted to allow for the fact that some
people would have died anyway from other causes. A relative survival rate
of 100% thus does not indicate that no one has died, but that mortality did
not differ from that experienced by the general population.

Reservoir – the natural habitat of an infectious agent; may be human, animal or
environmental.

Residual confounding – in practice adjusting for a confounding variable is unlikely
to remove its confounding effect completely. Any remaining confounding
is known as residual confounding. The more a variable confounds an
association (i.e., the bigger the change in an effect estimate when you
adjust for the confounder), the more likely there is to be some remaining
uncontrolled confounding.

Retrospective cohort study – see historical cohort study.
Reverse causality – occurs when the outcome precedes and causes the exposure,

instead of the exposure preceding and causing the outcome.
Risk difference – the incidence proportion or risk of disease in one group minus

the incidence proportion or risk in a second or reference group (IPe – IPo);
also described as attributable risk.

Risk factor – a factor (genetic, behavioural, environmental, societal) that is
thought to increase risk of developing a particular health state. For
example, smoking is a strong risk factor for lung cancer. The term was
coined by investigators on the Framingham Heart Study.

Risk ratio – the incidence proportion or risk of disease in one group divided by
the incidence proportion or risk in a second or reference group (IPe � IPo);
also described as relative risk.

Screening – the widespread use of a simple test for disease in an apparently
healthy (asymptomatic) population.

Screening programme – an organised system using a screening test among asymp-
tomatic people in the population to identify early cases of disease in order
to improve outcomes.

Screening test – a test, usually relatively cheap and simple, used to test large
numbers of apparently healthy people to identify individuals suspected of
having early disease who will then go on to have further diagnostic tests to
confirm the diagnosis. A screening test differs from a diagnostic test in
that there is greater emphasis on cost and safety (as large numbers may be
tested and most will not have disease) and less on definitive diagnosis.

Secondary attack rate – the number of cases of infection that develop among the
susceptible contacts of an infected case as a proportion of the total
number of exposed contacts; a measure of infectivity.

Secondary prevention – efforts to reduce the burden of disease by detecting it
sooner (e.g. by screening) and thereby making treatment more effective
and improving outcomes. Secondary prevention does not affect the
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incidence of disease, in fact it may actually lead to a transient increase in
incidence as more cases are detected quickly. See also primary prevention.

Selection bias – the introduction of bias into the results of a study because those
selected to be in the study differ from those not selected in some systematic
way. For example, those who agree to participate in a study may be more
health conscious (e.g. less overweight, lower levels of smoking and alcohol
consumption, higher levels of physical activity) than those who refuse to
participate. If this affects recruitment of controls (but not cases) for a case–
control study then comparisons between cases and controls will be biased.

Sensitivity – usually a measure of the performance of a screening test; the
sensitivity of the test is the probability that someone with the condition
of interest will return a positive test result. See also: specificity, positive
predictive value, negative predictive value

Sensitivity analysis – the process of repeating the analysis of a study to see how
the results are affected if different assumptions are made. If the results are
similar regardless of the assumptions then we can be more confident in
them; if they differ greatly then we would be less confident that we were
seeing a real effect.

Significance, clinical – an observed difference between two groups that is of
clinical or public health importance, irrespective of whether it is, or is
not, statistically significant.

Significance, statistical – an observed difference between two groups that is
unlikely to have arisen by chance. Conventionally, an association is con-
sidered statistically significant if is likely to have occurred by chance less
than 1 in 20 times (or p < 0.05).

Simpson’s paradox – where the crude association observed in a study is in the
opposite direction to the true association due to confounding.

Source (of infectious agent) – the person, animal or object from which the host
acquires the infection.

Specificity – usually a measure of the performance of a screening test; the
specificity of the test is the probability that someone without the condition
of interest will return a negative test result. See also sensitivity, positive
predictive value, negative predictive value.

Standardisation – see direct standardisation, indirect standardisation.
Standardised incidence (morbidity) ratio (SIR, SMR) – the number of new cases of disease

observed in a study population over a specified period of time compared
with the number that would have been expected if the study population had
had the same incidence rates as a standard or comparison population (often
the general population). Calculated by the process of indirect standardisa-
tion. Note: confusingly, both standardised morbidity ratios and the stand-
ardised mortality ratio (see below) are sometimes abbreviated as SMR.
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Standardised incidence (mortality) rate – an incidence or mortality rate that has been
adjusted by the process of direct standardisation to remove the potential
confounding effects of another variable, usually age. In practice, the
standardised rate is the rate that would have been seen in a population
with a pre-defined distribution of the factor of concern (e.g. age). See also
age-standardised rate.

Standardised mortality ratio (SMR) – the number of deaths observed in a study
population over a specified period of time compared with the number
that would have been expected if the study population had had the same
mortality rates as a standard or comparison population (often the general
population).

Stationary population – a population that does not change in size over time i.e. the
number of people entering the population (e.g. by birth or immigration)
approximately equals the number of people leaving the population (death
or emigration).

Statistical significance – see significance, statistical.
Stratification – a process in which we divide or stratify the study participants into

two or more separate groups or strata and calculate measures of associ-
ation separately in each group. Used to assess whether an association (or
effect) varies among different subgroups of the population, i.e. there is
effect modification. For example, if an association differs between smokers
and non-smokers (stratification by smoking status).

Study population – the individuals sampled from the target population who
actually participate in the study.

Sufficient cause – a component cause or group of causes that will inevitably lead
an outcome to occur.

Surveillance – the systematic and continuous collection, analysis and interpret-
ation of data, closely integrated with the timely and coherent dissemination
of the results and assessment so that action can be taken. Indicator-based
surveillance is when selected indicator conditions are under surveillance
for specific purposes, such as evaluating an intervention or detecting
outbreaks; event-based surveillance is when the main focus is to identify
events of public health significance.

Survival rate – proportion of patients in a group who are still alive a specified
period after diagnosis.

Systematic error – occur when observations in a study differ from the truth in a
non-random way. For example, if those who agree to take part in a study
are less likely to be smokers than those who do not agree to take part; or if
cases are more likely to overestimate their past exposure to second-hand
smoke than non-cases. See also random errors.

Target population – the population that we want to study.
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True negative – a negative test result in a person who is truly free of the condition
being tested for.

True positive – a positive test result in a person who truly has the condition being
tested for

Type I error – the error that occurs when the results of a study suggest there is a
relationship between exposure and outcome but the truth is that there is
none (also called alpha error).

Type II error – the error that occurs when the results of a study suggest there is
no association between exposure and outcome when, in truth, there is an
association (also known as beta error).

Validity – see internal validity, generalisability.
Vector – a living organism that transmits an infectious agent, for example

mosquitoes that transmit malaria and dengue, ticks.
Vehicle – something that transmits an infectious agent from one host to another.

It may be inanimate (e.g. food, water, the soil) or it may be alive in which
case it is called a vector.

Verbal autopsy – an interview method sometimes used in the absence of medical
information or formal death certification to ascertain information from
family members or other third parties about the circumstances of death of
an individual. It is often used in situations where vital registration systems
do not exist, but can also be used in epidemiological studies of mortality
to obtain information on study exposures.

Virulence – the ability of an organism to produce serious disease; measured by
the proportion of those who are infected (determined by immunoassay)
who develop severe overt disease.

Volunteer bias or volunteerism – bias introduced because people who volunteer for
a study or attend for screening are likely to be different from those who do
not volunteer.

Years of life lost (YLL) – the number of years of expected life lost due to a death at a
given age, equal to the life expectancy at that age. See also potential years
of life lost.

Years of potential life lost (YPLL) – see potential years of life lost.
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absolute risk increase (ARI), 150, 466
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155, 466
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201–2, 300, 386–7, 391, 393–5 see also
error, systematic

active surveillance, 320, 327
aetiologic fraction see attributable fraction;
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age-specific rates, 51, 57, 451, 455, 457
AIDS see HIV/AIDS
American Institute of Cancer Research, 307
analytic studies, 23, 105, 129, 188, 196, 214,

249
ascertainment bias, 192
association
versus causation, 275–6
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asthma and BMI (body mass index),
255–6

attack rate, 4, 32, 42, 265 see also incidence
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secondary, 339
attributable burden, 371
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calculation of, 149
in case–control studies, 139
in disease prevention, 154
interpretation of, 150–1
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worked example, 150, 164
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attributable risk (AR), 147–9, 152, 154, 160
see also rate difference; risk difference
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interpretation of, 153–4
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beta-carotene, trials for anti-cancer effects,

419
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measurement see measurement error,
misclassification

publication, 291
recall, 116, 125, 208–9
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cancer see also specific types of cancer
and diet, 99
beta-carotene trials, 376, 419
dedicated websites, 87
epidemiology, 5
registries, 87, 198, 323

cardiovascular disease (CVD)
and high blood pressure, 364–5
definitions, 52
mortality rates, 20
proposed ‘Polypill’ prevention strategy,
376

risk factor profiles in Finland and China,
362

case–fatality ratio (CFR), 58–9, 71
case reports, 76–8
case series, 76–8
case–cohort studies, 120–1
case–control studies

advantages and disadvantages of, 121,
123

attributable risk in, 160–1
confounding in, 242, 418
control selection for, 194
design of, 122–3
hospital controls, 252
matching in, 232–3
measuring relative risk in, 157–8
misclassification in, 205, 208
nested case–control study, 120–1, 433
odds ratios for, 160
population attributable fraction in, 160
recall bias in, 125, 209, 212
selection bias in, 125, 196, 198

case–crossover study, 126
case-finding, versus screening, 385
case-reference (or case-referent) studies

see case–control studies
causation

causal reasoning, 279–80
component cause, 272
definitions of causes, 272
evaluation of, 283–5
models of, 338
necessary cause, 271
sufficient cause, 271
versus association, 275–6

Centers for Disease Control and Prevention
(CDC) (USA), 346, 414

CER see control event rate
cervical cancer
and human papillomavirus (HPV)
infection, 382, 425

screening programmes for, 383
CFR see case-fatality ratio
chance (random sampling error),

170–1
assessment of effects of, 214
confidence intervals, 173–4
hypothesis testing, 171, 173
multiple testing, 180
power, 175–6
p-values, 174–5, 177
type I error, 172
type II error, 171, 175

CHD see coronary heart disease
child death rate, 61
childhood mortality and vitamin A,

109, 109
cholera epidemic, John Snow investigation

of, 16, 275
cholesterol and ischaemic heart disease,

366
CI see confidence intervals
cigarette smoking see smoking
clinical epidemiology, 6
attributable risk in, 150–1
incidence proportion in, 46, 47
diagnostic studies, 129
number needed to treat (NNT), 151
predictive values in, 394–5
prognostic studies, 120
relative risk in, 145–6

clinical significance, 181, 260
clinical trials see randomised controlled

trials
clusters, 335–6
definitions of, 343
examples of, 335
investigation of, 343–4

Cochrane Collaboration database,
258–9

cohort studies, 99, 105, 116–20
45 and Up Study, 118
advantages and disadvantages of, 116
Avon Longitudinal Study of Parents and
Children (ALSPAC) (UK), 117

British Doctors Study, 117
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case–cohort studies, 120–1
confounding in, 200, 210, 225
design of, 114
European Prospective Investigation into

Cancer (EPIC), 433
Framingham Heart Study, 115
generalisability, 116
internal validity, 188
loss to follow-up, 189, 192
Million Women Study, 433
misclassification in, 116
nested case–control studies, 121
Nurses’ Health Study, 116–17, 188
prognostic studies, 120
record linkage, 118–19
retrospective or historical, 118
selection bias in, 188–9

communicable diseases see infectious
diseases

community trials, 113 see also intervention
studies

component cause, 271–4, 286
conditional logistic regression, 238
confidence intervals (CI), 173–4
and p-values, 174–5, 177–8
evaluating role of chance, 181

confidentiality, 100
confounding, 28, 217–45
and study size, 235
assessment of effects, 243
by indication, 230–1
common confounders, 223
conditions for confounding to occur, 225–8
control through data analysis, 235–43
control through study design, 230–5
criteria for a confounder, 221–3
versus effect modification, 236–7
effects of, 223–8
example of, 219–21
in a case–control study, 219, 227, 233
cohort study, 218, 225
in an ecological study, 99
matching, to control, 232–3
modelling, to control, 238
randomisation, to control, 230–1
residual, 240–3
restriction, to control, 231–2
Simpson’s paradox, 217, 223
stratification, to control, 235–8

congenital abnormalities and rubella, 38
consistency, as factor in evaluating

causality, 281, 302
control event rate (CER), 47, 146 see also

incidence proportion
control group see also case–control studies

hospital controls, 124–5
population controls, 124

coronary heart disease (CHD) see also
cardiovascular disease, ischaemic
heart disease

and smoking, 182, 281
terminology, 52
registries (MONICA Programme), 88

correlation studies see ecological studies
Counterfactual, 107, 111, 272, 279–80
Cox proportional hazards regression,

238
Creutzfeldt–Jacob disease (CJD)

and blood transfusions, 252–3
critical point, in the disease process, 385
cross-level bias, 48, see also ecological

fallacy
cross-sectional studies, 127–9

avoiding selection bias, 128
design of, 127
recall bias, 209

crossover trial, 111–12
crude rates, 49, 51
cumulative incidence (CI) see incidence

proportion
CVD see cardiovascular disease

DALY see disability-adjusted life year
data analysis

conditional logistic regression, 238
Cox proportional hazards modelling,
238

matched data, 233–4
multiple logistic regression, 238
multivariable modelling, 238

death
certificates, 80, 83, 86
establishing cause of, 49, 66, 80, 83
national registers, 81
rates see mortality rates

Declaration of Helsinki, 131
Demographic and Health Surveys (DHS),
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density sampling, 159
depression, risk factors for, 257
descriptive epidemiology, 7, 13, 23, 41, 333
descriptive studies, 196

assessing results of, 263–4
by person, place and time, 19–20, 22
selection bias in, 188

detection bias, 192
diabetes (mellitus)

and BMI (body mass index), 282, 370
gestational, 33–4
mortality and ICD changes (USA), 85

diagnostic criteria, 33
diagnostic studies, 129, 390
diagnostic tests

accuracy and predictive values, 395
diet and cancer, 24
diethylstilboestrol (DES) exposure and

vaginal cancer risk, 176
difference measures see attributable risk;

rate difference; risk difference
differential error/misclassification

estimation of effects of, 197
sources, 197

directed acyclic graphs, 223, 229–30
direct standardisation, 52, 57, 147, 451
disability-free life expectancy, 64–5
disability-adjusted life years (DALY), 31,

68–70
disease

diagnostic criteria, 33
endemic and epidemic, 470
natural history of, 18
prognosis, 18
transmission, 13

Doll, Sir Richard, 16–17, 23–4
dose–response relationships, in evaluating

causality, 269, 282

ecological fallacy, 48, 99, 470
ecological studies, 62, 98–9, 103–4, 129–30,

134, 250, 409–10, 432, 468, 470
EER see experimental event rate
effect modification, 236–7, 470, 481
eligibility and exclusion criteria, 195
endemic disease, 336–8
epidemic (outbreak)

common conditions for occurrence/
cessation, 41

curve, 15, 348–9
definition of, 8–11
examples of, 19
index case, 129
investigation of, 4
management of, 345–6
point-source, 348
prevention, 357
propagative (contagious), 349
tuberculosis, a case study, 347

epidemiology
analytic, 105, 419
boundaries of, 5
cancer, 5
clinical, 6, 46, 150–1
definitions of, 2
descriptive, 7, 13, 23, 41, 75, 105, 333,
426

environmental, 5
historical beginnings, 8–10
infectious diseases, 4, 336–8
injury, 5
lifecourse, 6, 106, 423
molecular, 6, 299
nutritional, 4, 24
occupational, 5
perinatal, 5
pharmacoepidemiology, 126
public health, 6, 23
scope of, 2
social, 4, 106

error, sources of see also selection bias,
measurement error, misclassification

in subject selection see selection bias
in measurement see measurement error
random, 183, 201
systematic, 201–2

ethics, 130–1
Declaration of Helsinki, 131
Nuremberg Code, 131–3

European Prospective Investigation into
Cancer (EPIC), 116

excess rate/risk see rate/risk difference
exchangeability, 107, 109, 111, 112, 140,

188, 235, 241, 425
exclusion criteria, 195
expected years of life lost (EYLL), 65–6
experimental event rate (EER), 47, 146

see also incidence proportion
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experimental studies see intervention
studies

external validity of results, 188

Farr, William (1807–1883), 13, 275
follow-up studies see cohort studies
force of morbidity, 44, 471
forest plots, 294, 297
Framingham Heart Study, 115–16, 188

gastric cancer see stomach cancer
generalisability (external validity), 116, 128,

188, 248, 262–3
genetic versus environmental effects, 18
gestational diabetes, 33–4
global warming, and infection risks, 337
Goldberger, Joseph (1620–1674) and

pellagra, 16
Graunt, John (1620–1674, 11–13

HALE see health-adjusted life expectancy
hazard ratio, 233, 238
head injury and bicycle helmets, 161–3, 284
health, definition of, 18
health data
ethical use of, 100
morbidity data, 77, 87
mortality data, 19, 49, 79, 86, 275, 377
privacy concerns, 119
sources of summary, 77

Health Insurance Plan (HIP), study of
breast cancer screening, 404

health-adjusted life expectancy (HALE), 2,
31, 67, 471

health-adjusted life years
disability-adjusted life years (DALY), 31,

68, 70
quality-adjusted life years (QALY ), 31, 66

Health and Demographic Surveillance
Systems (HDSS), 82–3

health expectancy, measures of, 65, 471
health gaps, measures of, 65, 69, 471
healthy-worker effect, 192–3, 472
heart attack see myocardial infarction
heart disease see coronary heart disease;

ischaemic heart disease;
cardiovascular disease

Helicobacter pylori infection and stomach
cancer, 97, 250, 285

hepatitis
A and C, 393
surveillance for hepatitis C, 39

heterogeneity, of study results, 237, 281,
294, 298, 300, 302, 304, 472

high blood pressure, and CVD, 364
high-risk strategy for disease prevention,

367, 370
Hill, Sir Austin Bradford, 278
Hippocrates of Cos, 11
historical cohort study, 118–19, 232, 479
HIV/AIDS

identification of, 34
prevalence and incidence rates, 34–6
screening of blood donors, example,
391–4

hospital records, for morbidity data, 86, 88
host see infectious diseases, host factors
human papillomavirus (HPV) infection,

and cervical cancer, 232, 425–6
Human Research Ethics Committee

(HREC), 100, 130
Hume, David (Hume’s problem), 277
hypothesis testing

and p-values, 174–5
type I error, 171
confirmation and refutation, 277
power and type II error, 175–6

IHD see ischaemic heart disease
incidence see also incidence proportion;

incidence rate
relationship with prevalence and
duration, 39–40

standardised incidence ratio (SIR), 52,
56–7

incidence density see incidence rate
incidence proportion, 41–2 see also attack

rate
calculation of, 43
control event rate (CER), 47
definition, 43
experimental event rate (EER), 47
from routine data, 54–5
measurement in epidemiological
studies, 46

versus incidence rate, 44–5
incidence rate (IR), 46–8

age-specific, 50–1
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incidence rate (IR) (cont.)
calculation of, 43–4
definition of, 43
crude, 49–50
from routine data, 48–9
measurement in epidemiological
studies, 41–3, 46–8

incidence rate difference, 42
incidence rate ratio, 158, 233, 238
standardised, 52–3
stroke and smoking, 140, 147
versus incidence proportion, 44–5

incubation period for disease, 317, 334,
340, 348, 351, 473

Indigenous Australians, mortality ratios,
19, 56

indirect standardisation, 57–8, 457, 473
infant mortality rate, 11, 61–3, 67
infection see also infectious agents;

infectious diseases
control of, 340
definition of, 7
elimination of, 316
eradication of, 316
intensity of, 473

infectious agents
case–fatality ratio (CFR), 339
incubation period, 340
infectivity, 339
infestation, 339
intensity of infection, 339
latent period, 340
pathogenicity, 339
reservoirs, 339
secondary attack rate, 339
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