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Chap-05 Interfacing and Communication 

I/O  Fundamentals 

Peripheral devices that are under the direct control of the computer are said to be connected online. 

 Input –output devices attached to the computer are also called peripherals. 

 

Input Devices are: Keyboard, mouse, Scanner, Joystick etc. 

Output Devices: Monitor, Printer, Speaker, and Headphone Faxes etc. 

Important Monitor Facts 

A monitor, no matter the type, connects to either an HDMI, DVI, or VGA port on the computer. 

Before investing in a new monitor, make sure that both devices support the same type of 

connection. 

Monitors are not typically user serviceable. For your safety, it's not usually wise to open and 

work on a monitor. 

Monitor Description 

Monitors are display devices external to the computer case and connect via a cable to a port on 

the video card or motherboard. Even though the monitor sits outside the main computer housing, 

it is an essential part of the complete system. 

Monitors come in two major types - LCD or CRT. CRT monitors look much like old-fashioned 

televisions and are very deep in size. LCD monitors are much thinner, use less energy, and 

provide a greater graphics quality. 

LCD monitors have completely obsoleted CRT monitors due to their higher quality, smaller 

"footprint" on the desk, and decreasing price. 

Most monitors are in a widescreen format and range in size from 17" to 24" or more. This size is 

a diagonal measurement from one corner of the screen to the other. 

Monitors are built-in as part of the computer system in laptops, tablets, netbooks, and all-in-one 

desktop machines. 
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CRT vs. LCD Monitors 

The primary advantage that CRT monitors held over LCDs was their color rendering. The contrast ratios 

and depths of colors displayed were much greater with CRT monitors than LCDs. While this still holds 

true in most cases, many strides have been made in LCDs such that this difference is not as great as it 

once was. Many graphic designers still use the very expensive large CRT monitors in their work because 

of the color advantages. Of course, this color ability does degrade over time as the phosphors in the 

tube break down. 

The other advantage that CRT monitors held over LCD screens is the ability to easily scale to 

various resolutions. This is referred to as multisync by the industry. By adjusting the electron 

beam in the tube, the screen can easily be adjusted downward to lower resolutions while keeping 

the picture clarity intact. 

While these two items may play an important role for CRT monitors, there are disadvantages as 

well. The biggest of these are the size and weight of the tubes. An equivalent sized LCD monitor 

is upwards of 80% smaller in size and weight compared to a CRT tube. The larger the screen, the 

bigger the size difference. The other major drawback deals with the power consumption. The 

energy needed for the electron beam means that the monitors consumer and generate a lot more 

heat than the LCD monitors. 

Definition of High Definition 

High Definition is largely a fluid term, taking the shape of a lot of different containers, with the 

only real meaning being something with a significantly increased picture quality and clarity 

based on the resolution of the monitor in question. For this reason, High Definition is, in reality, 

a synonym for high resolution. 

High resolution means more pixels in your screen, which leads to a remarkably more clear 

picture. There are some standards now that allow a more concrete resolution of what it means to 

have an "official" HD display monitor, even for your PC. 

The following are the standard definitions for HD video, which is able to be displayed on 

monitors of slightly varying native resolutions, some being standard for computer screens, other 

for TV screens, but they are to a large degree interchangeable because they all work to display 

these resolutions of video: 

 1280x720 - aka 720p 

 1920x1080 - aka 1080i 

 1920x1080 Progressive - aka 1080p 

 

The "p" and "i" after the resolution denotes either Progressive or Interlaced scanning, respectively. 

Progressive has been proven to the the faster, clearer picture, less prone to blurring, and therefore has 

won the title of the "standardized" best possible resolution for HD broadcasting at 1080p. 

 

http://tv.about.com/od/hdtv/a/contrastratio.htm
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Buffer 

A buffer is a data area shared by hardware devices or program processes that operate at different 

speeds or with different sets of priorities. The buffer allows each device or process to operate 

without being held up by the other. In order for a buffer to be effective, the size of the buffer and 

the algorithms for moving data into and out of the buffer need to be considered by the buffer 

designer. Like a cache, a buffer is a "midpoint holding place" but exists not so much to accelerate 

the speed of an activity as to support the coordination of separate activities.  

This term is used both in programming and in hardware. In programming, buffering sometimes 

implies the need to screen data from its final intended place so that it can be edited or otherwise 

processed before being moved to a regular file or database.  

 

 

Input-Output Interface 

-It provides a method of transferring information between internal storage and external I/O devices. 

- The data transfer rate of peripherals is usually slower than the transfer rate of the CPU. 

- The operating modes of peripherals are different from each other. 

 

I/O Bus Interface Modules 

- I/O bus consists of data lines, address lines, and control lines. 

-The I/O bus from the processor is attached to all peripheral interfaces. 

-When the interface detects its own address, it activates the path between the bus lines and the device 

that it controls. 
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- The interface selected respond to the function code and proceeds to execute it, the function 

code is referred as I/O command. 

Handshaking, Strobe 

 

an input and read transfer. 

-In many computers the strobe tube is controlled by the clock pulse in the CPU. 

-Time out- if the data is not transferred during predetermined time. 
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- The two handshaking lines are data valid, which is generated by the source unit and data 

accepted, are generated by the destination unit. 

- The source unit initiated the transfer by placing the data on the bus and enabling its data valid 

signal, which validates the data on the bus. 

- The source unit then disable sits data valid signals, which invalidates the data on the bus. 
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Modes of Transfer 

-Data transfer between central computer and I/O devices may be handled in a variety of modes. 

 - Programmed I/O 

 - Interrupt I/O 

 - Direct memory Access 

- Programmed I/O operations are the result of I/O instructions written in the computer program. 

-Once a data transfer is initiated, the CPU is required to monitor the interface to see when a transfer can 

again be made. 

- in a program I/O  method, the CPU stays in a program loop until the I/Unit indicates that it is ready for 

data transfer. 

- This is a time consuming process, it keeps the processor busy. 

- it can be avoided by using an interrupt facility and special command to inform the interface to issue an 

interrupt request signal when the data are available from the device. The interface 

to processor access to memory. 

Interrupt Structures  
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the interrupt vector is the first address of the I/O service routine. 

- The device with the highest priority is placed in the first position, followed by lower priority 

devices up to the device with lowest priority, which is placed last. 

- If any device has its interrupt signal in the low level state, the interrupt lines goes in the low 

level state and enables the interrupt input in the CPU. 

 

RAID Architecture 

Non-Redundant (RAID Level 0)  

   

A non-redundant disk array, or RAID level 0, has the lowest cost of any RAID organization 

because it does not employ redundancy at all. This scheme offers the best performance since it 

never needs to update redundant information. Surprisingly, it does not have the best 

performance. Redundancy schemes that duplicate data, such as mirroring, can perform better on 

reads by selectively scheduling requests on the disk with the shortest expected seek and 

rotational delays. Without, redundancy, any single disk failure will result in data-loss. Non-

redundant disk arrays are widely used in super-computing environments where performance and 

capacity, rather than reliability, are the primary concerns.  

Sequential blocks of data are written across multiple disks in stripes, as follows:  
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Mirrored (RAID Level 1)  

 

The traditional solution, called mirroring or shadowing, uses twice as many disks as a non-

redundant disk array. whenever data is written to a disk the same data is also written to a 

redundant disk, so that there are always two copies of the information. When data is read, it can 

be retrieved from the disk with the shorter queuing, seek and rotational delays. If a disk fails, the 

other copy is used to service requests. Mirroring is frequently used in database applications 

where availability and transaction time are more important than storage efficiency.  

   

 

 

Memory-Style (RAID Level 2) 

 

Memory systems have provided recovery from failed components with much less cost than 

mirroring by using Hamming codes. Hamming codes contain parity for distinct overlapping 

subsets of components. In one version of this scheme, four disks require three redundant disks, 

one less than mirroring. Since the number of redundant disks is proportional to the log of the 

total number of the disks on the system, storage efficiency increases as the number of data disks 

increases.  

If a single component fails, several of the parity components will have inconsistent values, and 

the failed component is the one held in common by each incorrect subset. The lost information is 

recovered by reading the other components in a subset, including the parity component, and 

setting the missing bit to 0 or 1 to create proper parity value for that subset. Thus, multiple 

redundant disks are needed to identify the failed disk, but only one is needed to recover the lost 

information.  

In you are unaware of parity, you can think of the redundant disk as having the sum of all data in 

the other disks. When a disk fails, you can subtract all the data on the good disks form the parity 
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disk; the remaining information must be the missing information. Parity is simply this sum 

modulo 2.  

A RAID 2 system would normally have as many data disks as the word size of the computer, 

typically 32. In addition, RAID 2 requires the use of extra disks to store an error-correcting code 

for redundancy. With 32 data disks, a RAID 2 system would require 7 additional disks for a 

Hamming-code ECC. Such an array of 39 disks was the subject of a U.S. patent granted to 

Unisys Corporation in 1988, but no commercial product was ever released.  

For a number of reasons, including the fact that modern disk drives contain their own internal 

ECC, RAID 2 is not a practical disk array scheme. 

 

 

Chap-06  Functional Organization 

Implementation of simple data paths 

4.1. The Central Processor - Control and Dataflow 

Recall that, in Section 3, we designed an ALU based on (a) building blocks such as multiplexers 

for selecting an operation to produce ALU output, (b) carry look ahead adders to reduce the 

complexity and (in practice) the critical path length of arithmetic operations, and (c) components 

such as coprocessors to perform costly operations such as floating point arithmetic. We also 

showed that computer arithmetic suffers from errors due to finite precision, lack of associatively, 

and limitations of protocols such as the IEEE 754 floating point standard 

 

 

Figure 4.1. Schematic diagram of a modern von Neumann processor, where the CPU is denoted by a 

shaded box. 
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4.2. Datapath Design and Implementation  

The data path is the "brawn" of a processor, since it implements the fetch-decode-execute cycle. 

The general discipline for data path design is to (1) determine the instruction classes and formats 

in the ISA, (2) design data path components and interconnections for each instruction class or 

format, and (3) compose the data path segments designed in Step 2) to yield a composite data 

path.  

Simple data path components include memory (stores the current instruction), PC or program 

counter (stores the address of current instruction), and ALU (executes current instruction). The 

interconnection of these simple components to form a basic data path is illustrated in Figure 4.5. 

Note that the register file is written to by the output of the ALU. As in Section 4.1, the register 

file shown in Figure 4.6 is clocked by the RegWrite signal.  

 

Figure 4.5. Schematic high-level diagram of MIPS datapath from an implementation perspective 

Implementation of the datapath for I- and J-format instructions requires two more components - a data 

memory and a sign extender, illustrated in Figure 4.6. The data memory stores ALU results and operands, 

including instructions, and has two enabling inputs (MemWrite and MemRead) that cannot both be active 

(have a logical high value) at the same time. The data memory accepts an address and either accepts data 

(WriteData port if MemWrite is enabled) or outputs data (ReadData port if MemRead is enabled), at the 

indicated address. The sign extender adds 16 leading digits to a 16-bit word with most significant bit b, to 

product a 32-bit word. In particular, the additional 16 digits have the same value as b, thus implementing 

sign extension in twos complement representation. 

 

Figure 4.6. Schematic diagram of Data Memory and Sign Extender 
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4.2.2. Load/Store Datapath 

The load/store datapath uses instructions such as lw $t1, offset($t2), where offset denotes a memory 
address offset applied to the base address in register $t2. The lw instruction reads from memory and 

writes into register $t1. The sw instruction reads from register $t1 and writes into memory. In order to 

compute the memory address, the MIPS ISA specification says that we have to sign-extend the 16-bit 

offset to a 32-bit signed value. This is done using the sign extender shown in Figure 4.6.  

The load/store datapath is illustrated in Figure 4.8, and performs the following actions in the order given:  

1. Register Access takes input from the register file, to implement the instruction, data, or address 

fetch step of the fetch-decode-execute cycle.  

2. Memory Address Calculation decodes the base address and offset, combining them to produce the 
actual memory address. This step uses the sign extender and ALU.  

3. Read/Write from Memory takes data or instructions from the data memory, and implements the 

first part of the execute step of the fetch/decode/execute cycle.  

4. Write into Register File puts data or instructions into the data memory, implementing the second 

part of the execute step of the fetch/decode/execute cycle.  

 

 

 

Figure 4.8. Schematic diagram of the Load/Store instruction datapath. Note that the execute step also 

includes writing of data back to the register file, which is not shown in the figure, for simplicity 

 

4.2.3. Branch/Jump Datapath 

The branch datapath (jump is an unconditional branch) uses instructions such as beq $t1, $t2, 

offset, where offset is a 16-bit offset for computing the branch target address via PC-relative 

addressing. The beq instruction reads from registers $t1 and $t2, then compares the data 

obtained from these registers to see if they are equal. If equal, the branch is taken. Otherwise, the 

branch is not taken.  

By taking the branch, the ISA specification means that the ALU adds a sign-extended offset to 

the program counter (PC). The offset is shifted left 2 bits to allow for word alignment (since 2
2
 = 
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4, and words are comprised of 4 bytes). Thus, to jump to the target address, the lower 26 bits of 

the PC are replaced with the lower 26 bits of the instruction shifted left 2 bits.  

The branch instruction datapath is illustrated in Figure 4.9, and performs the following actions in 

the order given:  

1. Register Access takes input from the register file, to implement the instruction fetch or 

data fetch step of the fetch-decode-execute cycle.  

2. Calculate Branch Target - Concurrent with ALU #1's evaluation of the branch condition, 

ALU #2 calculates the branch target address, to be ready for the branch if it is taken. This 

completes the decode step of the fetch-decode-execute cycle.  

3. Evaluate Branch Condition and Jump to BTA or PC+4 uses ALU #1 in Figure 4.9, to 

determine whether or not the branch should be taken. Jump to BTA or PC+4 uses control 

logic hardware to transfer control to the instruction referenced by the branch target 

address. This effectively changes the PC to the branch target address, and completes the 

execute step of the fetch-decode-execute cycle.  

 

 

Figure 4.9. Schematic diagram of the Branch instruction datapath. Note that, unlike the Load/Store 

datapath, the execute step does not include writing of results back to the register file 

The branch datapath takes operand #1 (the offset) from the instruction input to the register file, 

then sign-extends the offset. The sign-extended offset and the program counter (incremented by 

4 bytes to reference the next instruction after the branch instruction) are combined by ALU #1 to 

yield the branch target address. The operands for the branch condition to evaluate are 

concurrently obtained from the register file via the ReadData ports, and are input to ALU #2, 

which outputs a one or zero value to the branch control logic.  

MIPS has the special feature of a delayed branch, that is, instruction Ib which follows the branch 

is always fetched, decoded, and prepared for execution. If the branch condition is false, a normal 

branch occurs. If the branch condition is true, then Ib is executed. One wonders why this extra 

work is performed - the answer is that delayed branch improves the efficiency of pipeline 

execution, as we shall see in Section 5. Also, the use of branch-not-taken (where Ib is executed) 

is sometimes the common case.  
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Control Unit 

Hardwired Control Unit 

Figure 2 is a block diagram showing the internal organization of a hard-wired control unit for our 

simple computer. Input to the controller consists of the 4-bit opcode of the instruction currently 

contained in the Instruction Register and the negative flag from the accumulator. The controller 's 

output is a set of 16 control signals that go out to the various registers and to the memory of the 

computer, in addition to a HLT signal that is activated whenever the leading bit of the op-code is 

one. The controller is composed of the following functional units: A ring counter, an instruction 

decoder, and a control matrix.  

The ring counter provides a sequence of six consecutive active signals that cycle continuously. 

Synchronized by the system clock, the ring counter first activates its T0 line, then its T1 line, and 

so forth. After T5 is active, the sequence begins again with T0. Figure 3 shows how the ring 

counter might be organized internally.  

The instruction decoder takes its four-bit input from the op-code field of the instruction register 

and activates one and only one of its 8 output lines. Each line corresponds to one of the 

instructions in the computer's instruction set. Figure 4 shows the internal organization of this 

decoder.  

The most important part of the hard-wired controller is the control matrix. It receives input from 

the ring counter and the instruction decoder and provides the proper sequence of control signals. 

Figure 5 is a diagram of how the control matrix for our simple machine might be wired. To 

understand how this diagram was obtained, we must look carefully at the machine's instruction 

set The various control signals are placed horizontally along the top of the table. Entries into the 

table consist of the moments (ring counter pulses T0, T1, T2, T3, T4, or T5) at which each 

control signal must be active in order to have the instruction executed. This table is prepared 

very easily by reading off the information for each instruction given in Table 1. For example, the 

Fetch operation has the EP and LM control signals active at ring count 1, and ED, LI, and IPC 

active at ring count 2. Therefore the first row (Fetch) of Table 2 has T0 entered below EP and 

LM, T1 below R, and T2 below IP, ED, and LI.  

Once Table 2 has been prepared, the logic required for each control signal is easily obtained. For 

each an AND operation is performed between any active ring counter (Ti) signals that were 

entered into the signal's column and the corresponding instruction contained in the far left-hand 

column. If a column has more than one entry, the output of the ANDs are ORed together to 

produce the final control signal. For example, the LM column has the following entries: T0 

(Fetch), T3 associated with the LDA instruction, and T3 associated with the STA instruction. 

Therefore, the logic for this signal is:  

LM = T0 + T3*LDA + T3*STA  

This means that control signal LM will be activated whenever any of the following conditions is 

satisfied: (1) ring pulse T0 (first step of an instruction fetch) is active, or (2) an LDA instruction 
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is in the IR and the ring counter is issuing pulse 3, or (3) and STA instruction is in the IR and the 

ring counter is issuing pulse 3.  

The entries in the JN (Jump Negative) row of this table require some further explanation. The LP 

and EI signals are active during T3 for this instruction if and only if the accumulator's negative 

flag has been set. Therefore the entries that appear above these signals for the JN instruction are 

T3*NF, meaning that the state of the negative flag must be ANDed in for the LP and EI control 

signals.  

These equations have been read from Table 2, as explained above. The circuit diagram of the 

control matrix (Figure 5) is constructed directly from these equations.  

It should be noticed that the HLT line from the instruction decoder does not enter the control 

matrix, Instead this signal goes directly to circuitry (not shown) that will stop the clock and thus 

terminate execution.  

 

 

 

         Figure 5. Hardwired Control unit 

Micro Program Control Unit 

As we have seen, the controller causes instructions to be executed by issuing a specific set of 

control signals at each beat of the system clock. Each set of control signals issued causes one 

basic operation (micro-operation), such as a register transfer, to occur within the data path 

section of the computer. In the case of a hard-wired control unit the control matrix is responsible 

for sending out the required sequence of signals.  

An alternative way of generating the control signals is that of micro-programmed control. In 

order to understand this method it is convenient to think of sets of control signals that cause 

specific micro-operations to occur as being "microinstructions" that could be stored in a memory. 

Each bit of a microinstruction might correspond to one control signal. If the bit is set it means 

that the control signal will be active; if cleared the signal will be inactive. Sequences of 

microinstructions could be stored in an internal "control" memory. Execution of a machine 

language instruction could then be caused by fetching the proper sequence of microinstructions 
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from the control memory and sending them out to the data path section of the computer. A 

sequence of microinstructions that implements an instruction on the external computer is known 

as a micro-routine. The instruction set of the computer is thus determined by the set of micro-

routines, the "microprogram," stored in the controller's memory. The control unit of a 

microprogram-controlled computer is essentially a computer within a computer.  

Figure 7 is a block diagram of a micro-programmed control unit that may be used to implement 

the instruction set of the computer we described above. The heart of the controller is the control 

32 X 24 ROM memory in which upt to 32 24-bit long microinstructions can be stored. Each is 

composed of two main fields: a 16-bit wide control signal field and an 8-bit wide next-address 

field. Each bit in the control signal field corresponds to one of the control signals discussed 

above. The next-address field contains bits that determine the address of the next 

microinstruction to be fetched from the control ROM. We shall see the details of how these bits 

work shortly. Words selected from the control ROM feed the microinstruction register. This 24-

bit wide register is analogous to the outer machine's instruction register. Specifically, the leading 

16 bits (the control-signal field) of the microinstruction register are connected to the control-

signal lines that go to the various components of the external machine's data path section. 

 

 

 

Microprogam Control Unit 
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Pipelining 

 

The pipeline organization is being shown by an example: 

Suppose we want to perform the combined multiply, and add with a stream of numbers 
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Instruction Pipelining 
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Problems in Instruction Pipelining 

Several difficulties prevent instruction pipelining from being as simple as the above description 

suggests. The principal problems are: 

 TIMING VARIATIONS: Not all stages take the same amount of time. This means that the 

speed gain of a pipeline will be determined by its slowest stage. This problem is particularly 

acute in instruction processing, since different instructions have different operand requirements 

and sometimes vastly different processing time. Moreover, synchronization mechanisms are 

required to ensure that data is passed from stage to stage only when both stages are ready. 
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DATA HAZARDS: When several instructions are in partial execution, a problem arises if they 

reference the same data. We must ensure that a later instruction does not attempt to access data 

sooner than a preceding instruction, if this will lead to incorrect results. For example, instruction 

N+1 must not be permitted to fetch an operand that is yet to be stored into by instruction N. 

BRANCHING: In order to fetch the "next" instruction, we must know which one is required. If 

the present instruction is a conditional branch, the next instruction may not be known until the 

current one is processed. 

INTERRUPTS: Interrupts insert unplanned "extra" instructions into the instruction stream. The 

interrupt must take effect between instructions, that is, when one instruction has completed and 

the next has not yet begun. With pipelining, the next instruction has usually begun before the 

current one has completed 

Some Solutions 

Possible solutions to the problems described above include the following strategies: 

 Timing Variations 

To maximize the speed gain, stages must first be chosen to be as uniform as possible in timing 

requirements. However, a timing mechanism is needed. A synchronous method could be used, in 

which a stage is assumed to be complete in a definite number of clock cycles. However, 

asynchronous techniques are generally more efficient. A flag bit or signal line is passed forward 

to the next stage indicating when valid data is available. A signal must also be passed back from 

the next stage when the data has been accepted. 

In all cases there must be a buffer register between stages to hold the data; sometimes this buffer 

is expanded to a memory which can hold several data items. Each stage must take care not to 

accept input data until it is valid, and not to produce output data until there is room in its output 

buffer. 

Data Hazards 

To guard against data hazards it is necessary for each stage to be aware of the operands in use by 

stages further down the pipeline. The type of use must also be known, since two successive reads 

do not conflict and should not be cause to slow the pipeline. Only when writing is involved is 

there a possible conflict. 

The pipeline is typically equipped with a small associative check memory which can store the 

address and operation type (read or write) for each instruction currently in the pipe. The concept 

of "address" must be extended to identify registers as well. Each instruction can affect only a 

small number of operands, but indirect effects of addressing must not be neglected. 

As each instruction prepares to enter the pipe, its operand addresses are compared with those 

already stored. If there is a conflict, the instruction (and usually those behind it) must wait. When 
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there is no conflict, the instruction enters the pipe and its operands addresses are stored in the 

check memory. When the instruction completes, these addresses are removed. The memory must 

be associative to handle the high-speed lookups required. 

Branching 

The problem in branching is that the pipeline may be slowed down by a branch instruction 

because we do not know which branch to follow. In the absence of any special help in this area, 

it would be necessary to delay processing of further instructions until the branch destination is 

resolved. Since branches are extremely frequent, this delay would be unacceptable. 

One solution which is widely used, especially in RISC architectures, is deferred branching. In 

this method, the instruction set is designed so that after a conditional branch instruction, the next 

instruction in sequence is always executed, and then the branch is taken. Thus every branch must 

be followed by one instruction which logically precedes it and is to be executed in all cases. This 

gives the pipeline some breathing room. If necessary this instruction can be a no-op, but frequent 

use of no-ops would destroy the speed benefit. 

Use of this technique requires a coding method which is confusing for programmers but not too 

difficult for compiler code generators. 

Most other techniques involve some type of speculative execution, in which instructions are 

processed which are not known with certainty to be correct. It must be possible to discard or 

"back out" from the results of this execution if necessary. 

The usual solution is to follow the "obvious" branch, that is, the next sequential instruction, 

taking care to perform no irreversible action. Operands may be fetched and processed, but no 

results may be stored until the branch is decoded. If the choice was wrong, it can be abandoned 

and the alternate branch can be processed. 

This method works reasonably well if the obvious branch is usually right. When coding for such 

pipelined CPU's, care should be taken to code branches (especially error transfers) so that the 

"straight through" path is the one usually taken. Of course, unnecessary branching should be 

avoided. 

Another possibility is to restructure programs so that fewer branches are present, such as by 

"unrolling" certain types of loops. This can be done by optimizing compilers or, in some cases, 

by the hardware itself. 

A widely-used strategy in much current architecture is some type of branch prediction. This 

may be based on information provided by the compiler or on statistics collected by the hardware. 

The goal in any case is to make the best guess as to whether or not a particular branch will be 

taken, and to use this guess to continue the pipeline. 

A more costly solution occasionally used is to split the pipeline and begin processing both 

branches. This idea is receiving new attention in some of the newest processors. 
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Instruction Level Parallelism 

Computer designers and computer architects have been striving to improve 

uniprocessor computer performance since the first computer was designed. The most significant 

advances in uniprocessor performance have come from exploiting advances in implementation 

technology. Architectural innovations have also played a part, and one of the most significant of 

these over The last decade has been the rediscovery of RISC architectures. Now that RISC 

architectures have gained acceptance both in scientific and marketing circles, computer architects 

have been thinking of new ways to improve uniprocessor performance. Many of these proposals 

such as VLIW, superscalar, and even relatively old ideas such as vector processing try to 

improve computer performance by exploiting instruction-level parallelism. They take advantage 

of this parallelism by issuing more than one instruction per cycle explicitly (as in VLIW or 

superscalar machines) or implicitly (as in vector machines). 

The amount of instruction-level parallelism varies widely depending on the type of code being 

executed. When we consider uniprocessor performance improvements due to exploitation of 

instruction-level parallelism, it is important to keep in mind the type of application environment. 

If the applications are dominated by highly parallel code (e.g., weather forecasting), any of a 

number of different parallel computers (e.g., vector, MIMD) would improve application 

performance. However, if the dominant applications have little instruction-level parallelism (e.g., 

compilers, editors, event-driven simulators, lisp interpreters), the performance improvements 

will be much smaller 

TYPES OF PARALLELISM 

There are three main types of parallelism. 

 
Instruction Level Parallelism 

Instruction level parallelism (ILP) takes advantage of sequences of instructions that require 

different functional units (such as the load unit, ALU, FP multiplier, etc). Different architectures 

approach this in different ways, but the idea is to have these non-dependent instructions 

executing simultaneously to keep the functional units busy as often as possible. 
Data Level Parallelism 

Data level parallelism (DLP) is more of a special case than instruction level parallelism. DLP to 

the act of performing the same operation on multiple datum simultaneously. A classic example 

of DLP is performing an operation on an image in which processing each pixel is independent 

from the ones around it (such as brightening). This type of image processing lends itself well to 

having multiple pixels modified simultaneously using the same modification function. 

Other types of operations that allow the exploitation of DLP are matrix, array, and vector 

processing. 
Thread Level Parallelism 

Thread level parallelism (TLP) is the act of running multiple flows of execution of a 

single process simultaneously. TLP is most often found in applications that need to run 



22 
 

independent, unrelated tasks (such as computing, memory accesses, and IO) simultaneously. 

These types of applications are often found on machines that have a high workload, such as web 

servers. TLP is a popular ground for current research due to the rising popularity of multi-core 

and multi- processor systems, which allow for different threads to truly execute in parallel. 
 
INSTRUCTION LEVEL PARALLELISM 

 

DEFINITION 

Abbreviated as ILP, Instruction- Level  Parallelism is a measurement of the number of 

operations that can be performed simultaneously in a computer program. Microprocessors 

exploit ILP by executing multiple instructions from a single program in a single cycle. 

 
EXPLANTION 

Instruction-level parallelism (ILP) is a measure of how many of the operations in a 

computer  program can be performed simultaneously. Consider the following program: 

1. e = a + b 

2. f = c + d 

3. g = e * f  

Operation 3 depends on the results of operations 1 and 2, so it cannot be calculated until both 

of them are completed. However, operations 1 and 2 do not depend on any other operation, so 

they can be calculated simultaneously. If we assume that each operation can be completed in one 

unit of time then these three instructions can be completed in a total of two units of time, giving 

an ILP of 3/2. 

A goal of compiler and processor designers is to identify and take advantage of as much ILP 

as possible. Ordinary programs are typically written under a sequential execution model where 

instructions execute one after the other and in the order specified by the programmer. ILP allows 

the compiler and the processor to overlap the execution of multiple instructions or even to 

change the order in which instructions are executed. 

How much ILP exists in programs is very application specific. In certain fields, such as graphics 

and scientific computing the amount can be very large. However, workloads such as 

cryptography exhibit much less parallelism. 
 




