
1

Chapter one

Transaction Management and Concurrency Control

1.1 Transaction

Transaction is the action or series of actions that carried out by users or application, which reads

or updates the contents of the database. It is a logical unit of works on a database.

A transaction is a collection of operations that performs a single logical function in a database

application. Each transaction is a unit of both atomicity and consistency, Transforms database

from one consistent state to another, although consistency may be violated during transaction.

Thus, we require that transactions do not violate any database consistency constraints. That is, if

the database was consistent when a transaction started, the database must be consistent when the

transaction successfully terminates. However, during the execution of a transaction, it may be

necessary temporarily to allow inconsistency, since either the debit of A or the credit of B must

be done before the other. This temporary inconsistency, although necessary, may lead to

difficulty if a failure occurs.

It is the programmer‘s responsibility to define properly the various transactions, so that each

preserves the consistency of the database. For example, the transaction to transfer funds from the

account of department A to the account of department B could be defined to be composed of two

separate programs: one that debits account A, and another that credits account B. The execution

of these two programs one after the other will indeed preserve consistency. However, each

program by itself does not transform the database from a consistent state to a new consistent

state. Thus, those programs are not transactions.

Transaction processing systems are systems with large databases and hundreds of concurrent

users executing database transactions. Examples of such systems include airline reservations,

banking, credit card processing, online retail purchasing, stock markets, supermarket checkouts,

and many other applications. These systems require high availability and fast response time for

hundreds of concurrent users. We define the concept of a transaction, which is used to represent

a logical unit of database processing that must be completed in its entirety to ensure correctness.

A transaction is typically implemented by a computer program, which includes database

commands such as retrievals, insertions, deletions, and updates.

1.2 Transaction Support

The basic definition of an SQL transaction is similar to our already defined concept of a

transaction. That is, it is a logical unit of work and is guaranteed to be atomic. A single SQL

statement is always considered to be atomic—either it completes execution without an error or it

fails and leaves the database unchanged.

2

With SQL, there is no explicit Begin_Transaction statement. Transaction initiation is done

implicitly when particular SQL statements are encountered. However, every transaction must

have an explicit end statement, which is either a COMMIT or a ROLLBACK. Every transaction

has certain characteristics attributed to it. These characteristics are specified by a SET

TRANSACTION statement in SQL. The characteristics are the access mode, the diagnostic area

size, and the isolation level.

The access mode can be specified as READ ONLY or READ WRITE. The default is READ

WRITE, unless the isolation level of READ UNCOMMITTED is specified (see below), in which

case READ ONLY is assumed. A mode of READ WRITE allows select, update, insert, delete,

and create commands to be executed. A mode of READ ONLY, as the name implies, is simply

for data retrieval.

The diagnostic area size option, DIAGNOSTIC SIZE n, specifies an integer value n, which

indicates the number of conditions that can be held simultaneously in the diagnostic area. These

conditions supply feedback information (errors or exceptions) to the user or program on the n

most recently executed SQL statement.

The isolation level option is specified using the statement ISOLATION LEVEL <isolation>,

where the value for <isolation> can be READ UNCOMMITTED, READ COMMITTED,

REPEATABLE READ, or SERIALIZABLE. The default isolation level is SERIALIZABLE,

although some systems use READ COMMITTED as their default. The use of the term

SERIALIZABLE here is based on not allowing violations that cause dirty read, unrepeatable

read, and phantoms, and it is thus not identical to the way serializability. If a transaction executes

at a lower isolation level than SERIALIZABLE, then one or more of the following three

violations may occur:

1. Dirty read. A transaction T1 may read the update of a transaction T2, which has not yet

committed. If T2 fails and is aborted, then T1 would have read a value that does not exist

and is incorrect.

2. Nonrepeatable read. A transaction T1 may read a given value from a table. If another

transaction T2 later updates that value and T1 reads that value again, T1 will see a

different value.

3. Phantoms. A transaction T1 may read a set of rows from a table, perhaps based on

some condition specified in the SQL WHERE-clause. Now suppose that a transaction T2

inserts a new row r that also satisfies the WHERE-clause condition used in T1, into the

table used by T1. The record r is called a phantom record because it was not there when

T1 starts but is there when

T1 ends. T1 may or may not see the phantom, a row that previously did not exist. If the

equivalent serial order is T1 followed by T2, then the record r should not be seen; but if it

is T2 followed by T1, then the phantom record should be in the result given to T1. If the

system cannot ensure the correct behavior, then it does not deal with the phantom record

problem.

3

Table 1.1 Possible Violations Based on Isolation Levels as Defined in SQL

 Type of Violation

Isolation Level Dirty Read Nonrepeatable Read Phantom

READ UNCOMMITTED Yes Yes

Yes

READ COMMITTED No Yes

Yes

REPEATABLE READ No No

Yes

SERIALIZABLE No No

No

Table 1.1 summarizes the possible violations for the different isolation levels. An entry of

Yes indicates that a violation is possible and an entry of No indicates that it is not possible.

READ UNCOMMITTED is the most forgiving, and SERIALIZABLE is the most restrictive

in that it avoids all three of the problems mentioned above.

A sample SQL transaction might look like the following:

EXEC SQL WHENEVER SQLERROR GOTO UNDO;

EXEC SQL SET TRANSACTION

 READ WRITE

 DIAGNOSTIC SIZE 5

 ISOLATION LEVEL SERIALIZABLE;

EXEC SQL INSERT INTO EMPLOYEE (Fname, Lname, Ssn, Dno, Salary)

 VALUES ('Robert', 'Smith', '991004321', 2, 35000);

EXEC SQL UPDATE EMPLOYEE

 SET Salary = Salary * 1.1 WHERE Dno = 2;

 EXEC SQL COMMIT;

 GOTO THE_END;

 UNDO: EXEC SQL ROLLBACK;

 THE_END: ... ;

The above transaction consists of first inserting a new row in the EMPLOYEE table and then

updating the salary of all employees who work in department 2. If an error occurs on any of

the SQL statements, the entire transaction is rolled back. This implies that any updated salary

(by this transaction) would be restored to its previous value and that the newly inserted row

would be removed. As we have seen, SQL provides a number of transaction-oriented

features. The DBA or database programmers can take advantage of these options to try

improving transaction performance by relaxing serializability if that is acceptable for their

applications. Snapshot isolation will ensure that the phantom record problem does not occur,

4

since the database transaction, or in some cases the database statement, will only see the

records that were committed in the database at the time the transaction starts. Any insertions,

deletions, or updates that occur after the transaction starts will not be seen by the transaction.

1.3 Properties of Transaction

 Four basic (ACID) properties of the transaction

 Atomicity: All or Nothing property.

 Consistency: Must transform database from one consistent state to another.

 Isolation: Partial effects of incomplete transactions should not be visible to other

transactions.

 Durability: Effects of a committed transaction are permanent and must not be

lost because of later failure.

1.4 Concurrency Control

Processes of managing simultaneous operations on the database without having them interfere

with one another. Prevents interference when two or more users are accessing database

simultaneously and at least one is updating data. Although two transactions may be correct in

themselves, interleaving of operations may produce an incorrect result.

Needs for Concurrency Control

 Three examples of potential problems caused by concurrency:

 Lost update problem.

 Uncommitted dependency problem.

 Inconsistent analysis problem.

1.4.1 Lost update Problem

 Successfully completed update is overridden by another user.

 T1 withdrawing £10 from an account with balx, initially £100.

 T2 depositing £100 into same account.

 Serially, final balance would be £190.

 Loss of T2‘s update avoided by preventing T1 from reading balx until after update.

5

1.4.2 Uncommitted dependency problem

 Occurs when one transaction can see intermediate results of another transaction before it

has committed.

 T4 updates balx to £200 but it aborts, so balx should be back at original value of £100.

 T3 has read new value of balx (£200) and uses value as basis of £10 reduction, giving a

new balance of £190, instead of £90.

 Problem avoided by preventing T3 from reading balx until after T4 commits or aborts.

1.4.4 Inconsistent Analysis Problem

 Occurs when transaction reads several values but second transaction updates some of

them during execution of first.

 Sometimes referred to as dirty read or unrepeatable read.

 T6 is totaling balances of account x (£100), account y (£50), and account z (£25).

 Meantime, T5 has transferred £10 from balx to balz, so T6 now has wrong result (£10 too

high).

6

 Problem avoided by preventing T6 from reading balx and balz until after T5 completed

updates.

1.5 Concept of Serializability

 Objective of a concurrency control protocol is to schedule transactions in such a way

as to avoid any interference.

 Could run transactions serially, but this limits degree of concurrency or parallelism in

system. (Most programs block for I/O and most systems have DMA-separate module

for I/O)

 Serializability identifies those executions of transactions guaranteed to ensure

consistency.

Schedule: Sequence of reads/writes by set of concurrent transactions.

Serial schedule: Schedule where operations of each transaction are executed

consecutively without any interleaved operations from other transactions.

No guarantee that results of all serial executions of a given set of transactions will be

identical.

Nonserial schedule: Schedule where operations from set of concurrent transactions are

interleaved. Objective of serializability is to find nonserial schedules that allow

transactions to execute concurrently without interfering with one another.

In other words, want to find nonserial schedules that are equivalent to some serial

schedule. Such a schedule is called serializable.

 In serializability, ordering of read/writes is important:

(a) If two transactions only read a data item, they do not conflict and order is not

important.

(b) If two transactions either read or write completely separate data items, they do not

conflict and order is not important.

7

(c) If one transaction writes a data item and another reads or writes same data item, order

of execution is important.

Conflict Schedules. Two schedules are said to be conflict

equivalent if the relative order of any two conflicting operations is the same in both

schedules.

Serializability premises

 Conflict serializable schedule orders any conflicting operations in same way as some

serial execution.

 Under constrained write rule (transaction updates data item based on its old value, which

is first read),

 use precedence graph to test for serializability.

Precedence Graph

Create:

 node for each transaction;

 a directed edge Ti  Tj, if Tj reads the value of an item written by TI;

 a directed edge Ti  Tj, if Tj writes a value into an item after it has been read by Ti.

 a directed edge Ti  Tj, if Tj writes a value into an item after it has been written by Ti.

 If precedence graph contains cycle, schedule is not conflict serializable.

8

Example - Non-conflict serializable schedule

 T9 is transferring £100 from one account with balance balx to another account with

balance baly.

 T10 is increasing balance of these two accounts by 10%.

 Precedence graph has a cycle and so is not serializable.

1.6 Recoverability

 Serializability identifies schedules that maintain database consistency, assuming no

transaction fails.

 Could also examine recoverability of transactions within schedule.

 If transaction fails, atomicity requires effects of transaction to be undone.

 Durability states that once transaction commits, its changes cannot be undone (without

running another, compensating, transaction).

Recoverable schedule

A schedule where, for each pair of transactions Ti and Tj, if Tj reads a data item previously

written by Ti, then the commit operation of Ti precedes the commit operation of Tj.

1.7 Concurrency Control Techniques

 Two basic pessimistic concurrency control techniques:

 Locking,

 Timestamping.
 Both are conservative(pessimistic) approaches: delay transactions in case they conflict

with other transactions.

9

 Optimistic methods assume conflict is rare and only check for conflicts at commit time.

1.7.1 Locking

Transaction uses locks to deny access to other transactions and so prevent incorrect updates.

 Most widely used approach to ensure serializability.

 Generally, a transaction must claim a shared (read) or exclusive (write) lock on a data

item before read or write.

 Lock prevents another transaction from modifying item or even reading it, in the case of a

write lock.

Locking - Basic Rules

 If transaction has shared lock on item, can read but not update item.

 If transaction has exclusive lock on item, can both read and update item.

 Reads cannot conflict, so more than one transaction can hold shared locks simultaneously

on same item.

 Exclusive lock gives transaction exclusive access to that item.

 Some systems allow transaction to upgrade read lock to an exclusive lock, or downgrade

exclusive lock to a shared lock.

Example - Incorrect Locking Schedule

 For two transactions above, a valid schedule using these rules is:

 S = {write_lock(T9, balx), read(T9, balx), write(T9, balx), unlock(T9, balx), write_lock(T10,

balx), read(T10, balx), write(T10, balx), unlock(T10, balx), write_lock(T10, baly), read(T10, baly),

write(T10, baly), unlock(T10, baly), commit(T10), write_lock(T9, baly), read(T9, baly), write(T9,

baly), unlock(T9, baly), commit(T9) }

 If at start, balx = 100, baly = 400, result should be:

 balx = 220, baly = 330, if T9 executes before T10, or

 balx = 210, baly = 340, if T10 executes before T9.

 However, result gives balx = 220 and baly = 340.

 S is not a serializable schedule.

10

 Problem is that transactions release locks too soon, resulting in loss of total isolation and

atomicity.

 To guarantee serializability, need an additional protocol concerning the positioning of

lock and unlock operations in every transaction.

Two-Phase Locking (2PL)

Transaction follows 2PL protocol if all locking operations precede first unlock operation in the

transaction.

 Two phases for transaction:

 Growing phase - acquires all locks but cannot release any locks.

 Shrinking phase-releases locks but cannot acquire any new locks.

 Which phases downgrading and upgrading allowed?

Preventing Lost Update Problem using 2PL

11

Preventing Uncommitted Dependency Problem using 2PL

Preventing Inconsistent Analysis Problem using 2PL

12

Cascading Rollback

 If every transaction in a schedule follows 2PL, schedule is serializable.

 However, problems can occur with interpretation of when locks can be released.

13

 Transactions conform to 2PL.

 T14 aborts.

 Since T15 is dependent on T14, T15 must also be rolled back. Since T16 is dependent on

T15, it too must be rolled back. This is called cascading rollback.

 To prevent this with 2PL, leave release of all locks until end of transaction.

Deadlock

An impasse that may result when two (or more) transactions are each waiting for locks held by

the other to be released.

14

 Only one way to break deadlock: abort one or more of the transactions.

 Deadlock should be transparent to user, so DBMS should restart transaction(s).

 Three general techniques for handling deadlock:

 Timeouts.

 Deadlock prevention.

 Deadlock detection and recovery.

Timeouts

 Transaction that requests lock will only wait for a system-defined period of time.

 If lock has not been granted within this period, lock request times out.

 In this case, DBMS assumes transaction may be deadlocked, even though it may not be,

and it aborts and automatically restarts the transaction.

Deadlock Prevention

 DBMS looks ahead to see if transaction would cause deadlock and never allows deadlock

to occur.

 Could order transactions using transaction timestamps:

 Wait-Die - only an older transaction can wait for younger one, otherwise

transaction is aborted (dies) and restarted with same timestamp.(Why same

timestamp?)

15

 If ts(Ti)<ts(Tj) then Ti waits else Ti dies

 Prefers younger transaction

 Wound-Wait - only a younger transaction can wait for an older one. If older

transaction requests lock held by younger one, younger one is aborted (wounded).

 ―Wound‖: The younger transaction rolls back (if it cannot finish in small

interval of time) and gives lock to the older one

 If ts(Ti)<ts(Tj) then Tj is wounded(rolled back) else Ti waits

 Prefers Older Transaction

Deadlock Detection and Recovery

 DBMS allows deadlock to occur but recognizes it and breaks it.

 Usually handled by construction of wait-for graph (WFG) showing transaction

dependencies:

 Create a node for each transaction.

 Create edge Ti -> Tj, if Ti is waiting to lock item locked by Tj.

 Deadlock exists if and only if WFG contains cycle.

 WFG is created at regular intervals.

Example - Wait-For-Graph (WFG)

Recovery from Deadlock Detection

 Several issues:

16

 choice of deadlock victim;

 how far to roll a transaction back;

 Avoiding starvation on some transaction.

1.7.2 Timestamping

 Transactions ordered globally so that older transactions, transactions with smaller

timestamps, get priority in the event of conflict.

 Conflict is resolved by rolling back and restarting transaction.

 No locks so no deadlock.

Timestamp: A unique identifier created by DBMS that indicates relative starting time of a

transaction. Can be generated by using system clock at time transaction started, or by

incrementing a logical counter every time a new transaction starts.

Timestamping – procedure

 Read/write proceeds only if last update on that data item was carried out by an older

transaction.

 Otherwise, transaction requesting read/write is restarted and given a new timestamp.

 Also timestamps for data items:

 read-timestamp - timestamp of last transaction to read item;

 write-timestamp - timestamp of last transaction to write item.

Timestamping - Read(x)

 Consider a transaction T with timestamp ts(T):

 Check the last write on the Data Item ts(T) < WTS(x)

 x already updated by younger (later) transaction.

 Transaction must be aborted and restarted with a new timestamp.

 Otherwise the Read continues and the RTS(X) will be set to the max of (RTS(x)

and ts(T))

Timestamping - Write(x)

Check the last read and write

17

If ts(T) < RTS(x)

 X is already read by a younger transaction

 Hence error to update now and restarted with new time stamp

If ts(T) < WTS (x)

 x already written by younger transaction.

 Write can safely be ignored - ignore obsolete write rule. (Don‘t need to restart the

transaction)

 Otherwise, operation is accepted and executed.

 WTS(x) is set to ts(T)

Example – Basic Timestamp Ordering

Optimistic Techniques

 Based on assumption that conflict is rare and more efficient to let transactions proceed

without delays to ensure serializability.

 At commit, check is made to determine whether conflict has occurred.

 If there is a conflict, transaction must be rolled back and restarted.

18

 Potentially allows greater concurrency than traditional protocols.

 Three phases:

 Read

 Validation

 Write

Optimistic Techniques - Read Phase

 Extends from start until immediately before commit.

 Transaction reads values from database and stores them in local variables. Updates are

applied to a local copy of the data.

Optimistic Techniques - Validation Phase

 Follows the read phase.

 For read-only transaction, checks that data read are still current values. If no interference,

transaction is committed, else aborted and restarted.

 For update transaction, checks transaction leaves database in a consistent state, with

serializability maintained.

Optimistic Techniques - Write Phase

 Follows successful validation phase for update transactions.

 Updates made to local copy are applied to the database.

Granularity of Data Items

 Size of data items chosen as unit of protection by concurrency control protocol.

 Ranging from coarse to fine:

 The entire database.

 A file.

 A page (or area or database spaced).

 A record.

 A field value of a record.

Tradeoff:

19

 coarser, the lower the degree of concurrency;

 finer, more locking information that is needed to be stored.

 Best item size depends on the types of transactions.

Hierarchy of Granularity

 Could represent granularity of locks in a hierarchical structure.

 Root node represents entire database, level 1s represent files, etc.

 When node is locked, all its descendants are also locked.

 DBMS should check hierarchical path before granting lock.

1.8 Database Recovery

Process of restoring database to a correct state in the event of a failure.

 Need for Recovery Control

 Two types of storage: volatile (main memory) and nonvolatile.

 Volatile storage does not survive system crashes.

 Stable storage represents information that has been replicated in several

nonvolatile storage media with independent failure modes.

Types of Failures

 System crashes, resulting in loss of main memory.

 Media failures, resulting in loss of parts of secondary storage.

 Application software errors.

 Natural physical disasters.

 Carelessness or unintentional destruction of data or facilities.

 Sabotage.

1.9 Transactions and Recovery

 Transactions represent basic unit of recovery.

 Recovery manager responsible for atomicity and durability.

 If failure occurs between commit and database buffers being flushed to secondary

storage then, to ensure durability, recovery manager has to redo (rollforward)

transaction‘s updates.

20

 If transaction had not committed at failure time, recovery manager has to undo

(rollback) any effects of that transaction for atomicity.

 Partial undo - only one transaction has to be undone.

 Global undo - all transactions have to be undone.

Example

 DBMS starts at time t0, but fails at time tf. Assume data for transactions T2 and T3 have

been written to secondary storage.

 T1 and T6 have to be undone. In absence of any other information, recovery manager has

to redo T2, T3, T4, and T5.

1.10 Recovery Facilities

 DBMS should provide following facilities to assist with recovery:

 Backup mechanism, which makes periodic backup copies of database.

 Logging facilities, which keep track of current state of transactions and database

changes.

 Checkpoint facility, which enables updates to database in progress to be made

permanent.

 Recovery manager, which allows DBMS to restore database to consistent state

following a failure.

Log File

 Contains information about all updates to database:

 Transaction records.

 Checkpoint records.

 Often used for other purposes (for example, auditing).

 Transaction records contain:

 Transaction identifier.

 Type of log record, (transaction start, insert, update, delete, abort, commit).

21

 Identifier of data item affected by database action (insert, delete, and update operations).

 Before-image of data item.

 After-image of data item.

 Log management information.

Checkpointing

Checkpoint: Point of synchronization between database and log file. All buffers are force-

written to secondary storage.

 Checkpoint record is created containing identifiers of all active transactions.

 When failure occurs, redo all transactions that committed since the checkpoint and undo

all transactions active at time of crash.

 In previous example, with checkpoint at time tc, changes made by T2 and T3 have been

written to secondary storage.

Thus:

 only redo T4 and T5,

 undo transactions T1 and T6.

1.11 Recovery Techniques

 If database has been damaged:

 Need to restore last backup copy of database and reapply updates of

committed transactions using log file.

 If database is only inconsistent:

 Need to undo changes that caused inconsistency. May also need to redo

some transactions to ensure updates reach secondary storage.

 Do not need backup, but can restore database using before- and after-

images in the log file.

Main Recovery Techniques

 Three main recovery techniques:

 Deferred Update

 Immediate Update

 Shadow Paging

1.11.1 Deferred Update

 Updates are not written to the database until after a transaction has reached its commit

point.

22

 If transaction fails before commit, it will not have modified database and so no undoing

of changes required.

 May be necessary to redo updates of committed transactions as their effect may not have

reached database.

 1.11.2 Immediate Update

 Updates are applied to database as they occur.

 Need to redo updates of committed transactions following a failure.

 May need to undo effects of transactions that had not committed at time of failure.

 Essential that log records are written before write to database. Write-ahead log

protocol.

 If no ―transaction commit‖ record in log, then that transaction was active at failure

and must be undone.

 Undo operations are performed in reverse order in which they were written to log.

1.11.3 Shadow Paging

 Maintain two page tables during life of a transaction: current page and shadow page

table.

 When transaction starts, two pages are the same.

 Shadow page table is never changed thereafter and is used to restore database in event of

failure.

 During transaction, current page table records all updates to database.

 When transaction completes, current page table becomes shadow page table.

23

Chapter Two

Query Processing and Optimization

 Objective

 Objectives of query processing and optimization.

 Static versus dynamic query optimization.

 How a query is decomposed and semantically analyzed.

 How to create a R.A.T. to represent a query.

 Rules of equivalence for RA operations.

 How to apply heuristic transformation rules to improve efficiency of a query.

 Types of database statistics required to estimate cost of operations.

 How pipelining can be used to improve efficiency of queries.

 Difference between materialization and pipelining.

2.1 Introduction

 In network and hierarchical DBMSs, low-level procedural query language is generally

embedded in high-level programming language.

 Programmer‘s responsibility to select most appropriate execution strategy.

 With declarative languages such as SQL, user specifies what data is required rather than

how it is to be retrieved.

 Relieves user of knowing what constitutes good execution strategy.

 Also gives DBMS more control over system performance.

 Two main techniques for query optimization:

 heuristic rules that order operations in a query;

 comparing different strategies based on relative costs, and selecting one that

minimizes resource usage.

 Disk access tends to be dominant cost in query processing for centralized DBMS.

2.2 Query Processing

Activities involved in retrieving data from the database.

 Aims of QP:

24

 transform query written in high-level language (e.g. SQL), into correct and

efficient execution strategy expressed in low-level language (implementing RA);

 execute strategy to retrieve required data.

2.3 Query Optimization

Activity of choosing an efficient execution strategy for processing query.

 As there are many equivalent transformations of same high-level query, aim of QO is to

choose one that minimizes resource usage.

 Generally, reduce total execution time of query.

 May also reduce response time of query.

Example - Different Strategies

Find all Managers who work at a London branch.

SELECT *

FROM Staff s, Branch b

WHERE s.branchNo = b.branchNo AND

(s.position = ‗Manager‘ AND b.city = ‗London‘);

Three equivalent RA queries are:

(1) (position='Manager')  (city='London') 

(Staff.branchNo=Branch.branchNo) (Staff X Branch)

(2) (position='Manager')  (city='London')(

 Staff Staff.branchNo=Branch.branchNo Branch)

(3) (position='Manager'(Staff)) Staff.branchNo=Branch.branchNo

 (city='London' (Branch))

Assume:

 1000 tuples in Staff; 50 tuples in Branch;

 50 Managers; 5 London branches;

 no indexes or sort keys;

25

 results of any intermediate operations stored on disk;

 cost of the final write is ignored;

 tuples are accessed one at a time.

Analysis of each Query Expression

 Analysis 1:

i. read each tuple from the two relations n+m reads

ii. create a table of the Cartesian product nXm writes

iii. test each tuple of step 2nXm read

 Total No. of Disk access: 2(nXm) +n+m

 Analysis 2:

i. read each tuple from the two relations n+m reads

ii. create a table of the Join n writes

iii. test each tuple of step 2n read

 Total No. of Disk access: 3(n) +m

 Analysis 3:

i. read each tuple from the two relations n+m reads

ii. create a table of the Join n writes

iii. test each tuple of step 2n read

 Total No. of Disk access: 3(n) +m

Example - Cost Comparison

 Cost (in disk accesses) are:

(1) (1000 + 50) + 2*(1000 * 50) = 101 050

(2) 2*1000 + (1000 + 50) = 3 050

(3) 1000 + 2*50 + 5 + (50 + 5) = 1 160

 Cartesian product and join operations much more expensive than selection, and third

option significantly reduces size of relations being joined together.

26

2.4 Phases of Query Processing

 Query process has four main phases:

 decomposition (consisting of parsing and validation);

 optimization;

 code generation;

 execution.

Dynamic versus Static Optimization

 Two times when first three phases of QP can be carried out:

 dynamically every time query is run;

 statically when query is first submitted.

 Advantages of dynamic query optimization arise from fact that information is up to date.

 Disadvantages are that performance of query is affected, time may limit finding optimum

strategy.

 Advantages of static query optimization are removal of runtime overhead, and more time

to find optimum strategy.

27

 Disadvantages arise from fact that chosen execution strategy may no longer be optimal

when query is run.

 Could use a hybrid approach to overcome this.

2.5 Query Decomposition

 Aims are to transform high-level query into RA query and check that query is

syntactically and semantically correct.

 Typical stages are:

 analysis,

 normalization,

 semantic analysis,

 simplification,

 query restructuring.

Analysis

 Analyze query lexically and syntactically using compiler techniques.

 Verify relations and attributes exist.

 Verify operations are appropriate for object type.

Analysis – Example

SELECT staff_no

FROM Staff

WHERE position > 10;

 This query would be rejected on two grounds:

 staff_no is not defined for Staff relation (should be staffNo).

 Comparison ‗>10‘ is incompatible with type position, which is variable character

string.

 Finally, query transformed into some internal representation more suitable for processing.

 Some kind of query tree is typically chosen, constructed as follows:

 Leaf node created for each base relation.

28

 Non-leaf node created for each intermediate relation produced by RA operation.

 Root of tree represents query result.

 Sequence is directed from leaves to root.

Example - R.A.T

Normalization

 Converts query into a normalized form for easier manipulation.

 Predicate can be converted into one of two forms:

Conjunctive normal form:

(position = 'Manager'  salary > 20000)  (branchNo = 'B003')

Disjunctive normal form:

(position = 'Manager'  branchNo = 'B003') 

 (salary > 20000  branchNo = 'B003')

Semantic Analysis

 Rejects normalized queries that are incorrectly formulated or contradictory.

29

 Query is incorrectly formulated if components do not contribute to generation of result.

 Query is contradictory if its predicate cannot be satisfied by any tuple.

 Algorithms to determine correctness exist only for queries that do not contain disjunction

and negation.

 For these queries, could construct:

 A relation connection graph.

 Normalized attribute connection graph.

 Relation connection graph

 Create node for each relation and node for result. Create edges between two nodes that

represent a join, and edges between nodes that represent projection.

 If not connected, query is incorrectly formulated.

Example - Checking Semantic Correctness

SELECT p.propertyNo, p.street

FROM Client c, Viewing v, PropertyForRent p

WHERE c.clientNo = v.clientNo AND

 c.maxRent >= 500 AND

 c.prefType = ‗Flat‘ AND p.ownerNo = ‗CO93‘;

 Relation connection graph not fully connected, so query is not correctly formulated.

 Have omitted the join condition (v.propertyNo = p.propertyNo) .

30

SELECT p.propertyNo, p.street

FROM Client c, Viewing v, PropertyForRent p

WHERE c.maxRent > 500 AND

 c.clientNo = v.clientNo AND

 v.propertyNo = p.propertyNo AND

 c.prefType = ‗Flat‘ AND c.maxRent < 200;

 Normalized attribute connection graph has cycle between nodes c.maxRent and 0 with

negative valuation sum, so query is contradictory.

 Simplification

 Detects redundant qualifications,

 eliminates common sub-expressions,

 transforms query to semantically equivalent but more easily and efficiently

computed form.

 Typically, access restrictions, view definitions, and integrity constraints are considered.

 Assuming user has appropriate access privileges, first apply well-known idempotency

rules of boolean algebra.

31

 Examples: for a two predicates p and q , P V~P= True, p  (qv~q)=P …etc.

 In relational Algebra, we have Transformation rules to do so

2.6 Transformation Rules for RA Operations

Conjunctive Selection operations can cascade into individual Selection operations (and vice

versa).

pqr(R) = p(q(r(R)))

 Sometimes referred to as cascade of Selection.

branchNo='B003'  salary>15000(Staff) = branchNo='B003'(salary>15000(Staff))

Commutativity of Selection.

p(q(R)) = q(p(R))

 For example:

 branchNo='B003'(salary>15000(Staff)) = salary>15000(branchNo='B003'(Staff))

In a sequence of Projection operations, only the last in the sequence is required.

 LM … N(R) = L (R) , provided that L is in M and M is in N

 For example:

 lNamebranchNo, lName(Staff) = lName (Staff)

Commutativity of Selection and Projection.

 If predicate p involves only attributes in projection list, Selection and Projection

operations commute:

 Ai, …, Am(p(R)) = p(Ai, …, Am(R)) where p

{A1, A2, …, Am}

 For example:

fName, lName(lName='Beech'(Staff)) = lName='Beech'(fName,lName(Staff))

 Commutativity of Theta join (and Cartesian product).

 R p S = S p R

 R X S = S X R

32

 Rule also applies to Equijoin and Natural join. For example:

 Staff staff.branchNo=branch.branchNo Branch =

 Branch staff.branchNo=branch.branchNo Staff

Commutativity of Selection and Theta join (or Cartesian product).

 If selection predicate involves only attributes of one of join relations, Selection and Join

(or Cartesian product) operations commute:

 p(R r S) = (p(R)) r S

 p(R X S) = (p(R)) X S

 where p {A1, A2, …, An} which are the attributes of R.

 If selection predicate is conjunctive predicate having form (p  q), where p only involves

attributes of R, and q only attributes of S, Selection and Theta join operations commute

as:

 p  q(R r S) = (p(R)) r (q(S))

 p  q(R X S) = (p(R)) X (q(S))

 For example:

position='Manager'  city='London'(Staff) Staff.branchNo=Branch.branchNo Branch) =

(position='Manager'(Staff)) Staff.branchNo=Branch.branchNo (city='London' (Branch))

Commutativity of Projection and Theta join (or Cartesian product).

 If projection list is of form L = L1  L2, where L1 only has attributes of R, and L2

only has attributes of S, provided join condition only contains attributes of L,

Projection and Theta join commute:

 L1L2(R r S) = (L1(R)) r (L2(S))

 If join condition contains additional attributes not in L (M = M1  M2 where M1

only has attributes of R, and M2 only has attributes of S), a final projection

operation is required:

33

 L1L2(R r S) = L1L2((L1M1(R)) r (L2M2(S)))

 For example:

position,city,branchNo(Staff Staff.branchNo=Branch.branchNo Branch) =

(position, branchNo(Staff)) Staff.branchNo=Branch.branchNo (

 city, branchNo (Branch))

 and using the latter rule:

position, city(Staff Staff.branchNo=Branch.branchNo Branch) =

position, city ((position, branchNo(Staff)) Staff.branchNo=Branch.branchNo (city, branchNo (Branch)))

 Commutativity of Union and Intersection (but not set difference).

 R  S = S  R

 R  S = S  R

 R - S ≠ S - R

Commutativity of Selection and set operations (Union, Intersection, and Set difference).

 p(R  S) = p(R)  p(S)

 p(R  S) = p(R)  p(S)

 p(R - S) = p(R) - p(S)

Commutativity of Projection and Union.

 L(R  S) = L(S)  L(R)

 Associativity of Union and Intersection (but not Set difference).

 (R  S)  T = S  (R  T)

 (R  S)  T = S  (R  T)

Associativity of Theta join (and Cartesian product).

 Cartesian product and Natural join are always associative:

34

 (R S) T = R (S T)

 (R X S) X T = R X (S X T)

 If join condition q involves attributes only from S and T, then Theta join is

associative:

 (R p S) q  r T = R p  r (S q T)

 For example:

(Staff Staff.staffNo=PropertyForRent.staffNo PropertyForRent)

 ownerNo=Owner.ownerNo  staff.lName=Owner.lName Owner =

Staff staff.staffNo=PropertyForRent.staffNo  staff.lName=lName

 (PropertyForRent ownerNo Owner)

Example Use of Transformation Rules

 For prospective renters of flats, find properties that match requirements and owned by

CO93.

SELECT p.propertyNo, p.street

FROM Client c, Viewing v, PropertyForRent p

WHERE c.prefType = ‗Flat‘ AND

 c.clientNo = v.clientNo AND

 v.propertyNo = p.propertyNo AND

 c.maxRent >= p.rent AND

 c.prefType = p.type AND

 p.ownerNo = ‗CO93‘;

Heuristical Processing Strategies

 Perform Selection operations as early as possible.

35

 Keep predicates on same relation together. Conjunctive selects

 individual selects

 Push Selections to the respective tables

 Use associativity of binary operations to rearrange leaf nodes so leaf nodes with most

restrictive Selection operations executed first.

 Combine Cartesian product with subsequent selection whose predicate represents join

condition into a Join operation.

 Perform Projection as early as possible.

 Keep projection attributes on same relation together.

 Push Projection to the respective tables.

Cost Estimation for RA Operations

 Many different ways of implementing RA operations.

 Aim of QO is to choose most efficient one.

 Use formulae that estimate costs for a number of options, and select one with lowest cost.

 Consider only cost of disk access, which is usually dominant cost in QP.

 Many estimates are based on cardinality of the relation, so need to be able to estimate

this.

2.7 Database Statistics

 Success of estimation depends on amount and currency of statistical information DBMS

holds.

 Keeping statistics current can be problematic.

 If statistics updated every time tuple is changed, this would impact performance.

 DBMS could update statistics on a periodic basis, for example nightly, or whenever the

system is idle.

Typical Statistics for Relation R

nTuples(R) - number of tuples in R.

bFactor(R) - blocking factor of R (Number of tuples in a block).

36

nBlocks(R) - number of blocks required to store R:

 nBlocks(R) = [nTuples(R)/bFactor(R)]

Typical Statistics for Attribute A of Relation R

nDistinctA(R) - number of distinct values that

 appear for attribute A in R.

minA(R),maxA(R)

 minimum and maximum possible values for attribute A in R.

SCA(R) - selection cardinality of attribute A in R.

 Average number of tuples that satisfy an equality condition on attribute A.

2.8 Pipelining

 Materialization - output of one operation is stored in temporary relation for processing by

next. (heuristic approach)

 Could also pipeline results of one operation to another without creating temporary

relation.

 Known as pipelining or on-the-fly processing.

 Pipelining can save on cost of creating temporary relations and reading results back in

again.

 Generally, pipeline is implemented as separate process or thread.

37

Chapter Three

Database Integrity, Security and Recovery

Objective

 The scope of database security.

 Why database security is a serious concern for an organization.

 The type of threats that can affect a database system.

 How to protect a computer system using computer-based controls.

 Techniques for securing a DBMS on the Web.

3.1 Database Security

 Data is a valuable resource that must be strictly controlled and managed, as with any

corporate resource.

 Part or all of the corporate data may have strategic importance and therefore needs to be

kept secure and confidential.

 Mechanisms that protect the database against intentional or accidental threats.

 Security considerations do not only apply to the data held in a database. Breaches of

security may affect other parts of the system, which may in turn affect the database.

 Involves measures to avoid the following threats:

 Theft and fraud

 Loss of confidentiality (secrecy)

 Loss of privacy

 Loss of integrity

 Loss of availability

 Threat

 Any situation or event, whether intentional or unintentional, that will adversely affect a

system and consequently an organization.

Levels of security measures

 Physical Level: concerned with securing the site containing the computer system should

be physically secured. The backup systems should also be physically protected from

access except for authorized users.

38

 Human Level: concerned with authorization of database users for access to the content

at different levels and privileges.

 Operating System: concerned with the weakness and strength of the operating system

security on data files. Weakness may serve as a means of unauthorized access to the

database. This also includes protection of data in primary and secondary memory from

unauthorized access.

 Database System: concerned with data access limit enforced by the database system.

Access limit like password, isolated transaction and etc.

 Communication Network : Securing Data In transit.

 Application Level: Different Application Software need to have their own Security

mechanism. –eg Authentication

3.2 Countermeasures – Computer-Based Controls

 Concerned with physical controls to administrative procedures and includes:

 Authorization

 Access controls

 Views

 Backup and recovery

 Integrity

 Encryption

 RAID technology

Authorization

 The granting of a right or privilege, which enables a subject to legitimately have

access to a system or a system‘s object.

 Authorization is a mechanism that determines whether a user is, who he or she

claims to be.

 The granting of a right or privilege that enables a subject to have legitimate access

to a system or a system‘s object

 The access allowed to a user could be for data manipulation or control

39

 Authorization controls can be built into the software, and govern not only what

system or object a specified user can access, but also what the user may do with it

 Authorization controls are sometimes referred to as access controls

 The process of authorization involves authentication of subjects (i.e. a user or

program) requesting access to objects (i.e. a database table, view, procedure,

trigger, or any other object that can be created within the system)

Forms of user authorization on data

 User authorization on the data/extension

 Read Authorization: the user with this privilege is allowed only to read the content of

the data object.

 Insert Authorization: the user with this privilege is allowed only to insert new records

or items to the data object.

 Update Authorization: users with this privilege are allowed to modify content of

attributes but are not authorized to delete the records.

 Delete Authorization: users with this privilege are only allowed to delete a record and

not anything else.

User authorization on the database schema

 Index Authorization: deals with permission to create as well as delete an index table for

relation.

 Resource Authorization: deals with permission to add/create a new relation in the

database.

 Alteration Authorization: deals with permission to add as well as delete attribute.

 Drop Authorization: deals with permission to delete and existing relation.

Roles of the DBA in DB security

 Account Creation: involves creating different accounts for different users as well as user

groups.

 Security Level Assignment: involves in assigning different users at different categories of

access levels.

 Privilege Grant: involves giving different levels of privileges for different users and user

groups.

40

 Privilege Revocation: involves denying or canceling previously granted privileges for

users due to various reasons.

 Account Deletion: involves in deleting an existing account of users or user groups. Is

similar with denying all privileges of users on the database.

Access control

 Based on the granting and revoking of privileges.

 A privilege allows a user to create or access (that is read, write, or modify) some

database object (such as a relation, view, and index) or to run certain DBMS

utilities.

 Privileges are granted to users to accomplish the tasks required for their jobs.

Security at different Levels of Data

 Almost all RDBMSs provide security at different levels and formats of data. This

includes:

 Relation Level: permission to have access to a specific relation.

 View Level: permission to data included in the view and not in the named relations

 Hybrid (Relation/View): the case where only part of a single relation is made available

to users through View.

Database Access Request

 Any database access request will have the following three major components

 Requested Operation: what kind of operation is requested by a specific query?

 Requested Object: on which resource or data of the database is the operation sought to

be applied?

 Requesting User: who is the user requesting the operation on the specified object?

 The database should be able to check for all the three components before processing any

request. The checking is performed by the security subsystem of the DBMS.

Access Control models

 Most DBMS provide an approach called Discretionary Access Control (DAC).

 SQL standard supports DAC through the GRANT and REVOKE commands.

41

 The GRANT command gives privileges to users, and the REVOKE command takes away

privileges.

 DAC while effective has certain weaknesses. In particular an unauthorized user can trick

an authorized user into disclosing sensitive data.

 An additional approach is required called Mandatory Access Control (MAC).

 MAC is based on system-wide policies that cannot be changed by individual users.

 Each database object is assigned a security class and each user is assigned a clearance for

a security class, and rules are imposed on reading and writing of database objects by

users.

 MAC determines whether a user can read or write an object based on rules that involve

the security level of the object and the clearance of the user. These rules ensure that

sensitive data can never be ‗passed on‘ to another user without the necessary clearance.

 The SQL standard does not include support for MAC.

View

 Is the dynamic result of one or more relational operations operating on the base

relations to produce another relation.

 A view is a virtual relation that does not actually exist in the database, but is

produced upon request by a particular user, at the time of request.

 The view mechanism provides a powerful and flexible security mechanism by

hiding parts of the database from certain users

 Using a view is more restrictive than simply having certain privileges granted to a

user on the base relation(s)

Backup

 Process of periodically taking a copy of the database and log file (and possibly

programs) to offline storage media.

Journaling

 Process of keeping and maintaining a log file (or journal) of all changes made to

database to enable effective recovery in event of failure.

 Restoring Database is done by restoring the database to the latest Back then applying

the Log file

42

Integrity

 Prevents data from becoming invalid, and hence giving misleading or incorrect

results. Different types of constraints

 Primary key

 Default

 Foreign key

 Unique key

 Check

Encryption

 The encoding of the data by a special algorithm that renders the data unreadable

by any program without the decryption key.

 Encryption can be used for both storing securely in a shared/Multiuser environment or for

transmitting data securely

 Four main components

 Encryption key

 Encryption algorithm

 Decryption key

 Decryption algorithm

Types of cryptosystem

 Cryptosystems can be categorized into two

 Symmetric encryption – uses the same key for both encryption and decryption and relies

on safe communication lines for exchanging the key.

 Asymmetric encryption – uses different keys for encryption and decryption

 Generally, symmetric algorithms are much faster to execute on a computer than those that

are asymmetric. In the contrary, asymmetric algorithms are more secure than symmetric

algorithms

RAID (Redundant Array of Independent Disks) Technology

43

 Hardware that the DBMS is running on must be fault-tolerant, meaning that the DBMS

should continue to operate even if one of the hardware components fails.

 Suggests having redundant components that can be seamlessly integrated into the

working system whenever there is one or more component failures.

 The main hardware components that should be fault-tolerant include disk drives, disk

controllers, CPU, power supplies, and cooling fans.

 Disk drives are the most vulnerable components with the shortest times between failure

of any of the hardware components.

 One solution is to provide a large disk array comprising an arrangement of several

independent disks (with independent failure modes) that are organized to improve

reliability and at the same time increase performance.

 Performance is increased through data striping: the data is segmented into equal-size

partitions (the striping unit), which are transparently distributed across multiple disks.

 Reliability is improved through storing redundant information across the disks using a

parity scheme or an error-correcting scheme.

3.2 Statistical Database Security

 Statistical databases contain information about individuals which may not be permitted to

be seen by others as individual records.

 Such databases may contain information about various populations.

 Example: Medical Records, Personal Data like address, salary, etc

 Such kind of databases should have special security mechanisms so that confidential

information about people will not be disclosed for many users.

 Only queries with statistical aggregate functions like Average, Sum, Min, Max, Standard

Deviation, Mid, Count, etc should be executed.

 Queries retrieving confidential attributes should be prohibited.

 Not to let the user make inference on the retrieved data, one can also implement

constraint on the minimum number of records or tuples in the resulting relation by setting

a threshold.

3.3 DBMSs and Web Security

 Internet communication relies on TCP/IP as the underlying protocol. However, TCP/IP

and HTTP were not designed with security in mind. Without special software, all Internet

traffic travels ‗in the clear‘ and anyone who monitors traffic can read it.

44

 Performance is increased through data striping: the data is segmented into equal-size

partitions (the striping unit), which are transparently distributed across multiple disks.

 Reliability is improved through storing redundant information across the disks using a

parity scheme or an error-correcting scheme.

 Must ensure while transmitting information over the Internet that:

 inaccessible to anyone but sender and receiver (privacy);

 not changed during transmission (integrity);

 receiver can be sure it came from sender (authenticity);

 sender can be sure receiver is genuine (non-fabrication);

 sender cannot deny he or she sent it (non-repudiation).

 Some Measures include:

 Proxy servers

 Firewalls

 Message digest algorithms and digital signatures

 Digital certificates

 Kerberos

 Secure sockets layer (SSL) and Secure HTTP (S-HTTP)

 Secure Electronic Transactions (SET) and Secure Transaction Technology

(STT)

3.4 Data Integrity

Accuracy of Data

• Quality of data entered determines the quality of generated information

Data Validation

• Process of ensuring that data entered into the database is valid

• Record validation rules

– Checks all fields before changes to a record are saved

• Can be enforced on a per transaction basis so the entire transaction will fail if one part is invalid

45

Chapter Four Distributed Database Systems

4.1 Distributed Database Systems

• Database development facilitates the integration of data available in an organization and

enforces security on data access.

• But it is not always the case that organizational data reside in one site.

• This demand databases at different sites to be integrated and synchronized with all the

facilities of database approach.

• This leads to Distributed Database Systems.

Distributed Database is not a centralized database.

• In a distributed database system, the database is stored on several computers. The

computers in a distributed system communicate with each other through various

communication media, such as high speed buses or telephone line.

• A distributed database system consists of a collection of sites, each of which maintains a

local database system and also participates in global transaction where different databases

are integrated together.

• Even though integration of data implies centralized storage and control, in distributed

database systems the intention is different. Data is stored in different database systems in

a decentralized manner but act as if they are centralized through development of

computer networks.

46

• A distributed database system consists of loosely coupled sites that share no physical

component and database systems that run on each site are independent of each other.

• Transactions may access data at one or more sites

• Organization may implement their database system on a number of separate computer

system rather than a single, centralized mainframe. Computer Systems may be located at

each local branch office.

• The functionalities of a DDBMS will include: Extended Communication Services,

Extended Data Dictionary, Distributed Query Processing, Extended Concurrency Control

and Extended Recovery Services.

• Concepts in DDBMS

• Replication: System maintains multiple copies of data, stored in different sites, for

faster retrieval and fault tolerance.

• Fragmentation: Relation is partitioned into several fragments stored in distinct

sites

• Data transparency: Degree to which system user may remain unaware of the

details of how and where the data items are stored in a distributed system

• A distributed database system consists of a collection of sites, each of which maintains a

local database system and also participates in global transaction where different databases

are integrated together.

• Local Transaction: transactions that access data only in that single site

• Global Transaction: transactions that access data in several sites.

4.2 Advantages and disadvantages of DDBMS

1. Data sharing and distributed control:

– User at one site may be able access data that is available at another site.

– Each site can retain some degree of control over local data

– We will have local as well as global database administrator

2. Reliability and availability of data

– If one site fails the rest can continue operation as long as transaction does not

demand data from the failed system and the data is not replicated in other sites

3. Speedup of query processing

47

– If a query involves data from several sites, it may be possible to split the query

into sub-queries that can be executed at several sites which is parallel processing

Disadvantages of DDBMS

– Software development cost

– Greater potential for bugs (parallel processing may endanger correctness)

– Increased processing overhead (due to communication jargons)

– Communication problems

4.3 Homogeneous and Heterogeneous Distributed Databases

• In a homogeneous distributed database

– All sites have identical software

– Are aware of each other and agree to cooperate in processing user requests.

– Each site surrenders part of its autonomy in terms of right to change schemas or

software

– Appears to user as a single system

• In a heterogeneous distributed database

– Different sites may use different schemas and software

• Difference in schema is a major problem for query processing

• Difference in software is a major problem for transaction processing

– Sites may not be aware of each other and may provide only limited facilities for

cooperation in transaction processing

48

Chapter Five Object Oriented DBMS

5.1 Object Oriented Concepts

Database systems that were based on the object data model were known originally as object-

oriented databases (OODBs) but are now referred to as object databases (ODBs).Traditional

data models and systems, such as network, hierarchical, and relational have been quite successful

in developing the database technologies required for many traditional business database

applications.

Another reason for the creation of object-oriented databases is the vast increase in the use of

object-oriented programming languages for developing software applications. Databases are

fundamental components in many software systems, and traditional databases are sometimes

difficult to use with software applications that are developed in an object-oriented programming

language such as C++ or Java. Object databases are designed so they can be directly—or

seamlessly—integrated with software that is developed using object-oriented programming

languages.

An object typically has two components: state (value) and behavior (operations). It can have a

complex data structure as well as specific operations defined by the programmer. Objects in an

OOPL exist only during program execution; therefore, they are called transient objects. An OO

database can extend the existence of objects so that they are stored permanently in a database,

and hence the objects become persistent objects that exist beyond program termination and can

be retrieved later and shared by other programs. In other words, OO databases store persistent

objects permanently in secondary storage, and allow the sharing of these objects among multiple

programs and applications. This requires the incorporation of other well-known features of

database management systems, such as indexing mechanisms to efficiently locate the objects,

concurrency control to allow object

Encapsulation: The concept of encapsulation is one of the main characteristics of OO languages

and systems. It is also related to the concepts of abstract data types and information hiding in

programming languages. In traditional database models and systems this concept was not

applied, since it is customary to make the structure of database objects visible to users and

external programs. In these traditional models, a number of generic database operations are

applicable to objects of all types. For example, in the relational model, the operations for

selecting, inserting, deleting, and modifying tuples are generic and may be applied to any

relation in the database. The relation and its attributes are visible to users and to external

programs that access the relation by using these operations. The concepts of encapsulation is

applied to database objects in ODBs by defining the behavior of a type of object based on the

operations that can be externally applied to objects of that type. Some operations may be used to

create (insert) or destroy (delete) objects; other operations may update the object state; and others

may be used to

retrieve parts of the object state or to apply some calculations. Still other operations may perform

49

a combination of retrieval, calculation, and update. In general, the implementation of an

operation can be specified in a general-purpose programming language that provides flexibility

and power in defining the operations.

Abstraction:

We now discuss four abstraction concepts that are used in semantic data models, such as the

EER model, as well as in KR schemes:

1) classification and instantiation,

 2) identification,

 3) specialization and generalization, and

4) aggregation and association.

1 classification and instantiation

The process of classification involves systematically assigning similar objects/entities to object

classes/entity types. Instantiation is the inverse of classification and refers to the generation and

specific examination of distinct objects of a class. An object instance is related to its object class

by the

IS-AN-INSTANCE-OF or IS-A-MEMBER-OF relationship. Although EER diagrams do not

display instances, the UML diagrams allow a form of instantiation by permitting the display of

individual objects.

2 identification

Identification is the abstraction process whereby classes and objects are made uniquely

identifiable by means of some identifier. For example, a class name uniquely identifies a whole

class within a schema. An additional mechanism is necessary for telling distinct object instances

apart by means of object identifiers. Moreover, it is necessary to identify multiple manifestations

in the database of the same real-world object. For example, we may have a tuple <‗Matthew

Clarke‘, ‗610618‘, ‗376-9821‘> in a PERSON relation and another tuple <‗301-54-0836‘, ‗CS‘,

3.8> in a STUDENT relation that happen to represent the same real-world entity. There is no

way to identify the fact that these two database objects (tuples) represent the same real-world

entity unless we make a provision at design time for appropriate cross-referencing to supply this

identification. Hence, identification is needed at two levels:

■ To distinguish among database objects and classes

■ To identify database objects and to relate them to their real-world counterparts

3 specialization and generalization

50

Specialization is the process of classifying a class of objects into more specialized subclasses.

Generalization is the inverse process of generalizing several classes into a higher-level abstract

class that includes the objects in all these classes. Specialization is conceptual refinement,

whereas generalization is conceptual synthesis. Subclasses are used in the EER model to

represent specialization and generalization. We call the relationship between a subclass and its

superclass an IS-A-SUBCLASS-OF

relationship, or simply an IS-A relationship.

4 Aggregation and Association

Aggregation is an abstraction concept for building composite objects from their component

objects. There are three cases where this concept can be related to the EER model. The first case

is the situation in which we aggregate attribute values of an object to form the whole object. The

second case is when we represent an aggregation relationship as an ordinary relationship. The

third case, which the EER

model does not provide for explicitly, involves the possibility of combining objects that are

related by a particular relationship instance into a higher-level aggregate object. This is

sometimes useful when the higher-level aggregate object is itself to be related to another object.

We call the relationship between the primitive objects and their aggregate object IS-A-PART-

OF; the inverse is called IS-A-COMPONENT-OF.UML provides for all three types of

aggregation.

Chapter 6: Data warehousing and Data Mining Techniques

6.1 Data Warehousing

• Data warehouse is an integrated, subject-oriented, time-variant, non-volatile database that

provides support for decision making.

51

– Integrated  centralized, consolidated database that integrates data derived from

the entire organization.

• Consolidates data from multiple and diverse sources with diverse formats.

• Helps managers to better understand the company‘s operations.

• Subject-Oriented Data warehouse contains data organized by topics. Eg. Sales,

marketing, finance, etc.

• Time variant: In contrast to the operational data that focus on current transactions, the

warehouse data represent the flow of data through time.

– Data warehouse contains data that reflect what happened last week, last month,

past five years, and so on.

• Non volatile Once data enter the data warehouse, they are never removed. Because the

data in the warehouse represent the company‘s entire history.

Differences between database and data warehouse

– Because data is added all the time, warehouse is growing.

– The data warehouse and operational environments are separated. Data warehouse

receives its data from operational databases.

– Data warehouse environment is characterized by read-only transactions to very

large data sets.

– Operational environment is characterized by numerous update transactions to a

few data entities at a time.

– Data warehouse contains historical data over a long time horizon.

• Ultimately Information is created from data warehouses. Such Information becomes the

basis for rational decision making.

• The data found in data warehouse is analyzed to discover previously unknown data

characteristics, relationships, dependencies, or trends.

Data warehouse as a subject-oriented, integrated, nonvolatile, time-variant collection of data in

support of management’s decisions. Data warehouses provide access to data for complex

analysis, knowledge discovery, and decision making. They support high-performance demands

on an organization‘s data and information. Several types of applications—OLAP, DSS, and data

mining applications—are supported. We define each of these next.

OLAP (online analytical processing) is a term used to describe the analysis of complex data

52

from the data warehouse. In the hands of skilled knowledge workers, OLAP tools use distributed

computing capabilities for analyses that require more storage and processing power than can be

economically and efficiently located on an individual desktop.

DSS (decision-support systems), also known as EIS—executive information systems; not to

be confused with enterprise integration systems—support an organization‘s leading decision

makers with higher-level data for complex and important decisions.

 Data mining is used for knowledge discovery, the process of searching data for unanticipated

new knowledge.

Traditional databases support online transaction processing (OLTP), which includes

insertions, updates, and deletions, while also supporting information query requirements.

Traditional relational databases are optimized to process queries that may touch a small part of

the database and transactions that deal with insertions or updates of a few tuples per relation to

process. Thus, they cannot be

optimized for OLAP, DSS, or data mining. By contrast, data warehouses are designed precisely

to support efficient extraction, processing, and presentation for analytic and decision-making

purposes. In comparison to traditional databases, data warehouses generally contain very large

amounts of data from multiple sources that may include databases from different data models

and sometimes files acquired

from independent systems and platforms.

Data warehouses have the following distinctive characteristics:

 ■ Multidimensional conceptual view

 ■ Generic dimensionality

 ■ Unlimited dimensions and aggregation levels

 ■ Unrestricted cross-dimensional operations

 ■ Dynamic sparse matrix handling

 ■ Client-server architecture

 ■ Multiuser support

 ■ Accessibility

 ■ Transparency

 ■ Intuitive data manipulation

 ■ Consistent reporting performance

 ■ Flexible reporting

Because they encompass large volumes of data, data warehouses are generally an order of

magnitude (sometimes two orders of magnitude) larger than the source databases. The sheer

volume of data (likely to be in terabytes or even petabytes) is an issue that has been dealt with

through enterprise-wide data warehouses, virtual data warehouses, and data marts:

■ Enterprise-wide data warehouses are huge projects requiring massive investment of time and

resources.

■ Virtual data warehouses provide views of operational databases that are materialized for

53

efficient access.

■ Data marts generally are targeted to a subset of the organization, such as a department, and

are more tightly focused.

6.2 Data Mining

Data mining refers to the mining or discovery of new information in terms of patterns or rules

from vast amounts of data. To be practically useful, data mining must be carried out efficiently

on large files and databases. Although some data mining features are being provided in

RDBMSs, data mining is not well-integrated with database management systems.

Data mining is typically carried out with some end goals or applications. Broadly speaking, these

goals fall into the following classes: prediction, identification, classification, and optimization.

 ■ Prediction. Data mining can show how certain attributes within the data will behave in the

future. Examples of predictive data mining include the analysis of buying transactions to predict

what consumers will buy under certain discounts, how much sales volume a store will generate

in a given period, and whether deleting a product line will yield more profits. In such

applications, business logic is used coupled with data mining. In a scientific context, certain

seismic wave patterns may predict an earthquake with high probability.

■ Identification. Data patterns can be used to identify the existence of an item, an event, or an

activity. For example, intruders trying to break a system may be identified by the programs

executed, files accessed, and CPU time per session. In biological applications, existence of a

gene may be identified by certain sequences of nucleotide symbols in the DNA sequence. The

area known as authentication is a form of identification. It ascertains whether a user is indeed a

specific user or one from an authorized class, and involves a comparison of parameters or images

or signals against a database.

■ Classification. Data mining can partition the data so that different classes or categories can be

identified based on combinations of parameters. For example, customers in a supermarket can be

categorized into discount seeking shoppers, shoppers in a rush, loyal regular shoppers, shoppers

attached to name brands, and infrequent shoppers. This classification may be used in different

analyses of customer buying transactions as a post mining activity. Sometimes classification

based on common domain knowledge is used as an input to decompose the mining problem and

make it simpler. For instance, health foods, party foods, or school lunch foods are distinct

categories in the supermarket business. It makes sense to analyze relationships within and across

categories as separate problems. Such categorization may be used to encode the data

appropriately before subjecting it to further data mining.

■ Optimization. One eventual goal of data mining may be to optimize the use of limited

resources such as time, space, money, or materials and to maximize output variables such as

sales or profits under a given set of constraints.

As such, this goal of data mining resembles the objective function used

in operations research problems that deals with optimization under

constraints.

54

55

56

57

58

