
 OOSAD Module Page 1

Ambo University, Woliso Campus

School of Technology and Informatics

Department of Information Systems

Object Oriented System Analysis and Design

(OOSAD)

COMPILED BY: HABTAMU KENO

DEPARTMENT OF INFORMATION SYSTEMS

3, June, 2O

WOLISO, ETHIOPIA

 OOSAD Module Page 2

Contents
Chapter 1: Understanding the Basics: Object oriented concepts ... 4

1.1 A Brief History ... 4

1.2. Object-Oriented Analysis ... 4

1.3. Object-Oriented Design .. 4

1.4. INTRODUCTION .. 5

1.4.1. THE OBJECT MODEL ... 5

1.4.2.Object-Oriented Programming ... 5

1.5. Benefits of Object Model .. 10

3. OBJECT-ORIENTED SYSTEM ... 10

1.6. OBJECT-ORIENTED PRINCIPLES .. 11

1.7.OBJECT-ORIENTED ANALYSIS ... 13

Chapter Two: Object Orientation the new software paradigm .. 19

2. Structured vs. Object Orientation paradigm .. 19

2.1. The Potential Benefits of the Object Oriented paradigm .. 19

2.2. The Potential Drawbacks of OO ... 20

2.3. Object Standards ... 21

Chapter 3: Gathering user requirements .. 22

3. An Overview of Requirements Elicitation ... 22

3.1. Requirements elicitation includes the following activities: .. 22

3.2. Requirements Elicitation Concepts In this section, we describe the main requirements elicitation

concepts used in this chapter. In particular, we describe ... 23

3.3. Functional Requirements .. 23

3.4. Nonfunctional Requirements .. 24

3.5. Fundamental requirements gathering techniques .. 25

Chapter 4: Ensuring Your Requirements are Correct: Requirement validation Techniques 26

4. Requirements Validation ... 26

4.2. The 6 Principles of Validation .. 26

4.3. Validation Techniques .. 27

Chapter 5: Determining What to Build: OO Analysis .. 29

5.1. Overview of Analysis artefacts and their Relationships ... 29

5.2. The Unified Modeling Language (UML) ... 31

5.3. UML BASIC NOTATIONS ... 33

5.4. UML STRUCTURED DIAGRAMS ... 35

5.5. UML BEHAVIORAL DIAGRAMS .. 38

Chapter 6: Determining How to Build Your System: OO Design ... 42

6.1. System Design .. 42

6.2. Object-Oriented Decomposition ... 42

 OOSAD Module Page 3

6.2.1 Identifying Concurrency ... 42

6.2.2. Identifying Patterns .. 43

6.2.3. Controlling Events ... 43

6.2.4. Handling Boundary Conditions ... 43

6.3. Object Design ... 43

6.3.1. Object Identification .. 44

6.3.2. Object Representation .. 44

6.3.3. Classification of Operations ... 44

6.3.4. Algorithm Design .. 44

6.3.7. Packaging Classes .. 45

6.4. Design Optimization ... 46

6.5. IMPLEMENTATION STRATEGIES .. 47

Chapter seven : Software Testing .. 51

7.1 TESTING AND QUALITY ASSURANCE .. 51

7.1.1. Testing Object-Oriented Systems .. 51

7.1.2. Unit Testing ... 51

7.1.3. Subsystem Testing ... 51

7.1.4.System Testing .. 51

7.2. Categories of System Testing ... 51

7.3. Object-Oriented Testing Techniques .. 51

7.4. Techniques for Subsystem Testing ... 52

7.5. The Full-Lifecycle Object-Oriented Testing (FLOOT) .. 52

7.6.Software Quality Assurance .. 53

7.6.1. Quality Assurance .. 54

7.6.2. Quality Factors ... 54

Chapter 8: Software Process .. 55

8.1. Process .. 55

8.2. Software Process ... 55

8. 3. Processes and Process Models ... 55

8.3.1. Component Software Processes ... 56

8.3.2.ETVX Approach for Process Specification .. 57

8.3.3.Characteristics of Software Process .. 57

8.4. Software Development Process Models ... 59

Advantages of Prototyping .. 61

Limitations of Prototyping ... 61

8.4.1. Project Management Process ... 63

8.4.2. Process Management ... 66

8.5. The Unified Process .. 67

 OOSAD Module Page 4

Chapter 1: Understanding the Basics: Object oriented concepts

1.1 A Brief History

The object-oriented paradigm took its shape from the initial concept of a new programming

approach, while the interest in design and analysis methods came much later.

 The first object–oriented language was Simula (Simulation of real systems) that was

developed in 1960 by researchers at the Norwegian Computing Center.

 In 1970, Alan Kay and his research group at Xerox PARK created a personal computer

named Dynabook and the first pure object-oriented programming language (OOPL)-

Smalltalk, for programming the Dynabook.

 In the 1980s, Grady Booch published a paper titled Object Oriented Design that mainly

presented a design for the programming language, Ada. In the ensuing editions, he

extended his ideas to a complete object– oriented design method.

In the 1990s, Coad incorporated behavioral ideas to object-oriented methods.

The other significant innovations were Object Modelling Techniques (OMT) by James

Rumbaugh and Object-Oriented Software Engineering (OOSE) by Ivar Jacobson.

1.2. Object-Oriented Analysis
Object–Oriented Analysis (OOA) is the procedure of identifying software engineering

requirements and developing software specifications in terms of a software system’s object

model, which comprises of interacting objects.

The main difference between object-oriented analysis and other forms of analysis is that in

object-oriented approach, requirements are organized around objects, which integrate both data

and functions. They are modelled after real-world objects that the system interacts with. In

traditional analysis methodologies, the two aspects - functions and data - are considered

separately.

Grady Booch has defined OOA as, “Object-oriented analysis is a method of analysis that

examines requirements from the perspective of the classes and objects found in the vocabulary

of the problem domain”.

The primary tasks in object-oriented analysis (OOA) are:

 Identifying objects

 Organizing the objects by creating object model diagram

 Defining the internals of the objects, or object attributes

 Defining the behavior of the objects, i.e., object actions

 Describing how the objects interact

The common models used in OOA are use cases and object models.

1.3. Object-Oriented Design

Object–Oriented Design (OOD) involves implementation of the conceptual model produced

during object-oriented analysis. In OOD, concepts in the analysis model,which are

technology−independent,are mapped onto implementing classes, constraints are identified and

 OOSAD Module Page 5

interfaces are designed, resulting in a model for the solution domain, i.e., a detailed description

of how the system is to be built on concrete technologies.

The implementation details generally include:
 Restructuring the class data (if necessary),

 Implementation of methods, i.e., internal data structures and algorithms,

 Implementation of control, and

 Implementation of associations.

Grady Booch has defined object-oriented design as “a method of design encompassing the

process of object-oriented decomposition and a notation for depicting both logical and physical

as well as static and dynamic models of the system under design”.

1.4. Introduction

Object-oriented analysis and design (OOAD) is a software engineering approach that models

a system as a group of interacting objects. Each object represents some entity of interest in the

system being modeled, and is characterised by its class, its state (data elements), and its

behavior. Various models can be created to show the static structure, dynamic behavior, and

run-time deployment of these collaborating objects. There are a number of different notations

for representing these models, one such model is Unified

Modeling Language (UML).

 1.4.1. THE OBJECT MODEL

 Object oriented development offers a different model from the traditional software

development approach, which is based on functions and procedures.

 An Object-Oriented environment, software is a collection of discrete objects that

encapsulate their data and the functionality to model real world “Objects”.

 Object are defined, it will perform their desired functions and seal them off in our

mind like black boxes.

 The object- Oriented life cycle encourages a view of the world as a system of

cooperative and collaborating agents.

 An objective orientation producers system that are easier evolve, move flexible

more robust, and more reusable than a top-down structure approach.

 An object orientation allows working at a higher level of abstraction.

 It provides a seamless transition among different phases of software development.

 It encourages good development practices.

 It promotes reusability.

The unified Approach (UA) is the methodology for software development proposed

and used and the following concepts consist of Unified Approach

1.4.2.Object-Oriented Programming

Object-oriented programming (OOP) is a programming paradigm based upon objects (having

both data and methods) that aims to incorporate the advantages of modularity and reusability.

Objects, which are usually instances of classes, are used to interact with one another to design

applications and computer programs.

The important features of object–oriented programming are:

 Bottom up approach in program design

 Programs organized around objects, grouped in classes

 OOSAD Module Page 6

 Focus on data with methods to operate upon object’s data

 Interaction between objects through functions

 Reusability of design through creation of new classes by adding features to existing

classes

Some examples of object-oriented programming languages are C++, Java, Smalltalk, Delphi,

C#, Perl, Python, Ruby, and PHP.

Grady Booch has defined object–oriented programming as “a method of implementation in

which programs are organized as cooperative collections of objects, each of which represents

an instance of some class, and whose classes are all members of a hierarchy of classes united

via inheritance relationships”.

OBJECT MODEL
The object model visualizes the elements in a software application in terms of objects. In this

chapter, we will look into the basic concepts and terminologies of object–oriented systems.

Objects and Classes

The concepts of objects and classes are intrinsically linked with each other and form the

foundation of object–oriented paradigm.

Object

An object is a real-world element in an object–oriented environment that may have a physical or

a conceptual existence. Each object has:

 Identity that distinguishes it from other objects in the system.

 State that determines the characteristic properties of an object as well as the values of the

properties that the object holds.

 Behavior that represents externally visible activities performed by an object in terms of

changes in its state.

Objects can be modeled according to the needs of the application. An object may have a

physical existence, like a customer, a car, etc.; or an intangible conceptual existence, like a

project, a process, etc.

Class
A class represents a collection of objects having same characteristic properties that exhibit

common behavior. It gives the blueprint or description of the objects that can be created from it.

Creation of an object as a member of a class is called instantiation. Thus, object is an instance of

a class.

The constituents of a class are:
 A set of attributes for the objects that are to be instantiated from the class. Generally,

different objects of a class have some difference in the values of the attributes. Attributes
are often referred as class data.

 A set of operations that portray the behavior of the objects of the class. Operations are
also referred as functions or methods.

Example
Let us consider a simple class, Circle, that represents the geometrical figure circle in a two–

dimensional space. The attributes of this class can be identified as follows:

 x–coord, to denote x–coordinate of the center

 y–coord, to denote y–coordinate of the center

 a, to denote the radius of the circle

Some of its operations can be defined as follows:

 findArea(), method to calculate area

 findCircumference(), method to calculate circumference

 scale(), method to increase or decrease the radius

During instantiation, values are assigned for at least some of the attributes. If we create an object

my_circle, we can assign values like x-coord : 2, y-coord : 3, and a :4 to depict its state. Now, if

 OOSAD Module Page 7

the operation scale() is performed on my_circle with a scaling factor of 2, the value of the

variable a will become 8. This operation brings a change in the state of my_circle, i.e., the object

has exhibited certain behavior.

Encapsulation and Data Hiding

Encapsulation
Encapsulation is the process of binding both attributes and methods together within a class.

Through encapsulation, the internal details of a class can be hidden from outside. It permits the

elements of the class to be accessed from outside only through the interface provided by the

class.

Data Hiding
Typically, a class is designed such that its data (attributes) can be accessed only by its class

methods and insulated from direct outside access. This process of insulating an object’s data is

called data hiding or information hiding.

Example
In the class Circle, data hiding can be incorporated by making attributes invisible from outside

the class and adding two more methods to the class for accessing class data, namely:
 setValues(), method to assign values to x-coord, y-coord, and a

 getValues(), method to retrieve values of x-coord, y-coord, and a

Here the private data of the object my_circle cannot be accessed directly by any method that is

not encapsulated within the class Circle. It should instead be accessed through the methods

setValues() and getValues().

Message Passing
Any application requires a number of objects interacting in a harmonious manner. Objects in a

system may communicate with each other using message passing. Suppose a system has two

objects: obj1 and obj2. The object obj1 sends a message to object obj2, if obj1 wants obj2 to

execute one of its methods.

The features of message passing are:

 Message passing between two objects is generally unidirectional.

 Message passing enables all interactions between objects.

 Message passing essentially involves invoking class methods.

 Objects in different processes can be involved in message passing.

Inheritance
Inheritance is the mechanism that permits new classes to be created out of existing classes by

extending and refining its capabilities. The existing classes are called the base classes/parent

classes/super-classes, and the new classes are called the derived classes/child classes/subclasses.

The subclass can inherit or derive the attributes and methods of the super-class(es) provided that

the super-class allows so. Besides, the subclass may add its own attributes and methods and may

modify any of the super-class methods. Inheritance defines an “is – a” relationship.

Example
From a class Mammal, a number of classes can be derived such as Human, Cat, Dog, Cow, etc.

Humans, cats, dogs, and cows all have the distinct characteristics of mammals. In addition, each

has its own particular characteristics. It can be said that a cow “is – a” mammal.

Types of Inheritance
 Single Inheritance : A subclass derives from a single super-class.

 Multiple Inheritance : A subclass derives from more than one super-classes.

 Multilevel Inheritance : A subclass derives from a super-class which in turn is
derived from another class and so on.

 Hierarchical Inheritance : A class has a number of subclasses each of which may have
subsequent subclasses, continuing for a number of levels, so as to form a tree structure.

 Hybrid Inheritance : A combination of multiple and multilevel inheritance
so as to form a lattice structure.

 OOSAD Module Page 8

The following figure depicts the examples of different types of inheritance.

Polymorphism
Polymorphism is originally a Greek word that means the ability to take multiple forms. In

object-oriented paradigm, polymorphism implies using operations in different ways, depending

upon the instance they are operating upon. Polymorphism allows objects with different internal

structures to have a common external interface. Polymorphism is particularly effective while

implementing inheritance.

Example
Let us consider two classes, Circle and Square, each with a method findArea(). Though the

name and purpose of the methods in the classes are same, the internal implementation, i.e., the

procedure of calculating area is different for each class. When an object of class Circle invokes

its findArea() method, the operation finds the area of the circle without any conflict with the

findArea() method of the Square class.

Generalization and Specialization

Generalization and specialization represent a hierarchy of relationships between classes, where

subclasses inherit from super-classes.

Generalization
In the generalization process, the common characteristics of classes are combined to form a

class in a higher level of hierarchy, i.e., subclasses are combined to form a generalized super-

class. It represents an “is – a – kind – of” relationship. For example, “car is a kind of land

vehicle”, or “ship is a kind of water vehicle”.

 OOSAD Module Page 9

Specialization

Specialization is the reverse process of generalization. Here, the distinguishing features of

groups of objects are used to form specialized classes from existing classes. It can be said that

the subclasses are the specialized versions of the super-class.

The following figure shows an example of generalization and specialization.

Links and Association

Link

A link represents a connection through which an object collaborates with other objects.

Rumbaugh has defined it as “a physical or conceptual connection between objects”. Through a

link, one object may invoke the methods or navigate through another object. A link depicts the

relationship between two or more objects.

Association

Association is a group of links having common structure and common behavior. Association

depicts the relationship between objects of one or more classes. A link can be defined as an

instance of an association.

Degree of an Association
Degree of an association denotes the number of classes involved in a connection. Degree may be

unary, binary, or ternary.

 A unary relationship connects objects of the same class.

 A binary relationship connects objects of two classes.

 A ternary relationship connects objects of three or more classes.

Cardinality Ratios of Associations
Cardinality of a binary association denotes the number of instances participating in an

association. There are three types of cardinality ratios, namely:
 One–to–One : A single object of class A is associated with a single object of class B.
 One–to–Many : A single object of class A is associated with many objects of class B.
 Many–to–Many : An object of class A may be associated with many objects of class B

and conversely an object of class B may be associated with many objects of class A.

Aggregation or Composition

Aggregation or composition is a relationship among classes by which a class can be made up of

any combination of objects of other classes. It allows objects to be placed directly within the

body of other classes. Aggregation is referred as a

 OOSAD Module Page 10

“part–of” or “has–a” relationship, with the ability to navigate from the whole to its parts. An

aggregate object is an object that is composed of one or more other objects.

Example
In the relationship, “a car has–a motor”, car is the whole object or the aggregate, and the motor

is a “part–of” the car. Aggregation may denote:
 Physical containment : Example, a computer is composed of monitor, CPU, mouse,

keyboard, and so on.
 Conceptual containment : Example, shareholder has–a share.

1.5. Benefits of Object Model

Now that we have gone through the core concepts pertaining to object orientation, it would be

worthwhile to note the advantages that this model has to offer.

The benefits of using the object model are:

 It helps in faster development of software.

 It is easy to maintain. Suppose a module develops an error, then a programmer can fix

that particular module, while the other parts of the software are still up and running.

 It supports relatively hassle-free upgrades.

 It enables reuse of objects, designs, and functions.

 It reduces development risks, particularly in integration of complex systems.

3. OBJECT-ORIENTED SYSTEM
We know that the Object-Oriented Modeling (OOM) technique visualizes things in an

application by using models organized around objects. Any software development approach

goes through the following stages:

 Analysis,

 Design, and

 Implementation.

In object-oriented software engineering, the software developer identifies and organizes the

application in terms of object-oriented concepts, prior to their final representation in any specific

programming language or software tools.

Phases in Object-Oriented Software Development
The major phases of software development using object–oriented methodology are object-

oriented analysis, object-oriented design, and object-oriented implementation.

Object–Oriented Analysis
In this stage, the problem is formulated, user requirements are identified, and then a model is

built based upon real–world objects. The analysis produces models on how the desired system

should function and how it must be developed. The models do not include any implementation

details so that it can be understood and examined by any non–technical application expert.

Object–Oriented Design

Object-oriented design includes two main stages, namely, system design and object design.

System Design
In this stage, the complete architecture of the desired system is designed. The system is

conceived as a set of interacting subsystems that in turn is composed of a hierarchy of

interacting objects, grouped into classes. System design is done according to both the system

analysis model and the proposed system architecture. Here, the emphasis is on the objects

comprising the system rather than the processes in the system.

Object Design

 OOSAD Module Page 11

In this phase, a design model is developed based on both the models developed in the system

analysis phase and the architecture designed in the system design phase. All the classes required

are identified. The designer decides whether:

 new classes are to be created from scratch,

 any existing classes can be used in their original form, or

 new classes should be inherited from the existing classes.

The associations between the identified classes are established and the hierarchies of classes are

identified. Besides, the developer designs the internal details of the classes and their

associations, i.e., the data structure for each attribute and the algorithms for the operations.

Object–Oriented Implementation and Testing

In this stage, the design model developed in the object design is translated into code in an

appropriate programming language or software tool. The databases are created and the specific

hardware requirements are ascertained. Once the code is in shape, it is tested using specialized

techniques to identify and remove the errors in the code.

1.6. Object-Oriented Principles

Principles of Object-Oriented Systems

The conceptual framework of object–oriented systems is based upon the object model. There are

two categories of elements in an object-oriented system:

Major Elements : By major, it is meant that if a model does not have any one of these elements,

it ceases to be object oriented. The four major elements are:

 Abstraction

 Encapsulation

 Modularity

 Hierarchy

Minor Elements: By minor, it is meant that these elements are useful, but not indispensable

part of the object model. The three minor elements are:

 Typing

 Concurrency

 Persistence

Abstraction
Abstraction means to focus on the essential features of an element or object in OOP, ignoring its

extraneous or accidental properties. The essential features are relative to the context in which the

object is being used.

Grady Booch has defined abstraction as follows:

“An abstraction denotes the essential characteristics of an object that distinguish it from all

other kinds of objects and thus provide crisply defined conceptual boundaries, relative to the

perspective of the viewer.”

Example : When a class Student is designed, the attributes enrolment_number, name, course,

and address are included while characteristics like pulse_rate and size_of_shoe are eliminated,

since they are irrelevant in the perspective of the educational institution.

Encapsulation
Encapsulation is the process of binding both attributes and methods together within a class.

Through encapsulation, the internal details of a class can be hidden from outside. The class has

methods that provide user interfaces by which the services provided by the class may be used.

Modularity

 OOSAD Module Page 12

Modularity is the process of decomposing a problem (program) into a set of modules so as to

reduce the overall complexity of the problem. Booch has defined modularity as:

“Modularity is the property of a system that has been decomposed into a set of cohesive and

loosely coupled modules.”

Modularity is intrinsically linked with encapsulation. Modularity can be visualized as a way of

mapping encapsulated abstractions into real, physical modules having high cohesion within the

modules and their inter–module interaction or coupling is low.

Hierarchy
In Grady Booch’s words, “Hierarchy is the ranking or ordering of abstraction”.
Through hierarchy, a system can be made up of interrelated subsystems, which can have their

own subsystems and so on until the smallest level components are reached. It uses the principle

of “divide and conquer”. Hierarchy allows code reusability.

The two types of hierarchies in OOA are:
 “IS–A” hierarchy : It defines the hierarchical relationship in inheritance, whereby from

a super-class, a number of subclasses may be derived which may again have subclasses
and so on. For example, if we derive a class Rose from a class Flower, we can say that a
rose “is–a” flower.

 “PART–OF” hierarchy : It defines the hierarchical relationship in aggregation by
which a class may be composed of other classes. For example, a flower is composed of
sepals, petals, stamens, and carpel. It can be said that a petal is a “part–of” flower.

Typing
According to the theories of abstract data type, a type is a characterization of a set of elements.

In OOP, a class is visualized as a type having properties distinct from any other types. Typing is

the enforcement of the notion that an object is an instance of a single class or type. It also

enforces that objects of different

types may not be generally interchanged; and can be interchanged only in a very restricted

manner if absolutely required to do so.

The two types of typing are:
 Strong Typing : Here, the operation on an object is checked at the time of compilation,

as in the programming language Eiffel.
 Weak Typing : Here, messages may be sent to any class. The operation is checked only

at the time of execution, as in the programming language Smalltalk.
Concurrency
Concurrency in operating systems allows performing multiple tasks or processes

simultaneously. When a single process exists in a system, it is said that there is a single thread of

control. However, most systems have multiple threads, some active, some waiting for CPU,

some suspended, and some terminated. Systems with multiple CPUs inherently permit

concurrent threads of control; but systems running on a single CPU use appropriate algorithms

to give equitable CPU time to the threads so as to enable concurrency.

In an object-oriented environment, there are active and inactive objects. The active objects have

independent threads of control that can execute concurrently with threads of other objects. The

active objects synchronize with one another as well as with purely sequential objects.

Persistence
An object occupies a memory space and exists for a particular period of time. In traditional

programming, the lifespan of an object was typically the lifespan of the execution of the

program that created it. In files or databases, the object lifespan is longer than the duration of the

process creating the object. This property by which an object continues to exist even after its

creator ceases to exist is known as persistence.

 OOSAD Module Page 13

1.7.Object-Oriented Analysis

In the system analysis or object-oriented analysis phase of software development, the system

requirements are determined, the classes are identified and the relationships among classes are

identified.

The three analysis techniques that are used in conjunction with each other for object-oriented

analysis are object modeling, dynamic modeling, and functional modeling.

Object Modeling
Object modeling develops the static structure of the software system in terms of objects. It

identifies the objects, the classes into which the objects can be grouped into and the relationships

between the objects. It also identifies the main attributes and operations that characterize each

class.

The process of object modeling can be visualized in the following steps:
 Identify objects and group into classes

 Identify the relationships among classes

 Create user object model diagram

 Define user object attributes

 Define the operations that should be performed on the classes

 Review glossary

Dynamic Modeling

After the static behavior of the system is analyzed, its behavior with respect to time and external

changes needs to be examined. This is the purpose of dynamic modelling.

Dynamic modelling can be defined as “a way of describing how an individual object responds to

events, either internal events triggered by other objects, or external events triggered by the

outside world”.

The process of dynamic modelling can be visualized in the following steps:
 Identify states of each object

 Identify events and analyze the applicability of actions

 Construct dynamic model diagram, comprising of state transition diagrams

 Express each state in terms of object attributes

 Validate the state–transition diagrams drawn

Functional Modelling
Functional Modelling is the final component of object-oriented analysis. The functional model

shows the processes that are performed within an object and how the data changes as it moves

between methods. It specifies the meaning of the operations of object modelling and the actions

of dynamic modelling. The functional model corresponds to the data flow diagram of traditional

structured analysis.

The process of functional modelling can be visualized in the following steps:

 Identify all the inputs and outputs
 Construct data flow diagrams showing functional dependencies
 State the purpose of each function
 Identify constraints
 Specify optimization criteria

Structured Analysis vs. Object-Oriented Analysis
The Structured Analysis/Structured Design (SASD) approach is the traditional approach of

software development based upon the waterfall model. The phases of development of a system

using SASD are:

 Feasibility Study

 Requirement Analysis and Specification

 System Design

 OOSAD Module Page 14

 Implementation

 Post-implementation Review

Now, we will look at the relative advantages and disadvantages of structured analysis approach

and object-oriented analysis approach.

Advantages/Disadvantages of Object-Oriented Analysis

Advantages Disadvantages

Focuses on data rather than the Functionality is restricted within

procedures as in Structured objects. This may pose a problem for

Analysis. systems which are intrinsically

 procedural or computational in nature.

The principles of encapsulation and It cannot identify which objects would

data hiding help the developer to generate an optimal system design.

develop systems that cannot be

tampered by other parts of the

system.

The principles of encapsulation and The object-oriented models do not

data hiding help the developer to easily show the communications

develop systems that cannot be between the objects in the system.

tampered by other parts of the

system.

It allows effective management of All the interfaces between the objects

software complexity by the virtue of cannot be represented in a single

modularity. diagram.

It can be upgraded from small to

large systems at a greater ease

than in systems following structured

analysis.

Advantages/Disadvantages of Structured Analysis

Advantages Disadvantages

As it follows a top-down approach in In traditional structured analysis

contrast to bottom-up approach of models, one phase should be

object-oriented analysis, it can be completed before the next phase. This

more easily comprehended than poses a problem in design, particularly

OOA. if errors crop up or requirements

 change.

It is based upon functionality. The The initial cost of constructing the

overall purpose is identified and system is high, since the whole system

 OOSAD Module Page 15

then functional decomposition is needs to be designed at once leaving

done for developing the software. very little option to add functionality

The emphasis not only gives a later.

better understanding of the system

but also generates more complete

systems.

The specifications in it are written in It does not support reusability of code.

simple English language, and hence So, the time and cost of development is

can be more easily analyzed by non- inherently high.

technical personnel.

States and State Transitions

State

The state is an abstraction given by the values of the attributes that the object has at a particular

time period. It is a situation occurring for a finite time period in the lifetime of an object, in

which it fulfils certain conditions, performs certain activities, or waits for certain events to

occur. In state transition diagrams, a state is represented by rounded rectangles.

Parts of a State
 Name : A string differentiates one state from another. A state may not have any

name.
 Entry/Exit Actions : It denotes the activities performed on entering and on exiting the

state.
 Internal Transitions : The changes within a state that do not cause a change in the

state.
 Sub–states : States within states.

Initial and Final States

The default starting state of an object is called its initial state. The final state indicates the

completion of execution of the state machine. The initial and the final states are pseudo-states,

and may not have the parts of a regular state except name. In state transition diagrams, the initial

state is represented by a filled black circle. The final state is represented by a filled black circle

encircled within another unfilled black circle.

Transition
A transition denotes a change in the state of an object. If an object is in a certain state when an

event occurs, the object may perform certain activities subject to specified conditions and

change the state. In this case, a state−transition is said to have occurred. The transition gives the

relationship between the first state and the new state. A transition is graphically represented by a

solid directed arc from the source state to the destination state.

The five parts of a transition are:

 Source State : The state affected by the transition.
 Event Trigger : The occurrence due to which an object in the source state undergoes a

transition if the guard condition is satisfied.
 Guard Condition : A Boolean expression which if True, causes a transition on receiving

the event trigger.
 Action : An un-interruptible and atomic computation that occurs on the source object

due to some event.
 Target State : The destination state after completion of transition.

 OOSAD Module Page 16

Example
Suppose a person is taking a taxi from place X to place Y. The states of the person may be:

Waiting (waiting for taxi), Riding (he has got a taxi and is travelling in it), and Reached (he has

reached the destination). The following figure depicts the state transition.

Events
Events are some occurrences that can trigger state transition of an object or a group of objects.

Events have a location in time and space but do not have a time period associated with it. Events

are generally associated with some actions.

Examples of events are mouse click, key press, an interrupt, stack overflow, etc.

Events that trigger transitions are written alongside the arc of transition in state diagrams.

Example
Considering the example shown in the above figure, the transition from Waiting state to Riding

state takes place when the person gets a taxi. Likewise, the final state is reached, when he

reaches the destination. These two occurrences can be termed as events Get_Taxi and

Reach_Destination. The following figure shows the events in a state machine.

External and Internal Events

External events are those events that pass from a user of the system to the objects within the

system. For example, mouse click or key−press by the user are external events.

Internal events are those that pass from one object to another object within a system. For

example, stack overflow, a divide error, etc.

Deferred Events
Deferred events are those which are not immediately handled by the object in the current state

but are lined up in a queue so that they can be handled by the object in some other state at a later

time.

 OOSAD Module Page 17

Event Classes
Event class indicates a group of events with common structure and behavior. As with classes of

objects, event classes may also be organized in a hierarchical structure. Event classes may have

attributes associated with them, time being an implicit attribute. For example, we can consider

the events of departure of a flight of an airline, which we can group into the following class:

Flight_Departs (Flight_No, From_City, To_City, Route)

Activity

Activity is an operation upon the states of an object that requires some time period. They are the

ongoing executions within a system that can be interrupted. Activities are shown in activity

diagrams that portray the flow from one activity to another.

Action

An action is an atomic operation that executes as a result of certain events. By atomic, it is

meant that actions are un-interruptible, i.e., if an action starts executing, it runs into completion

without being interrupted by any event. An action may operate upon an object on which an

event has been triggered or on other objects that are visible to this object. A set of actions

comprise an activity.

Entry and Exit Actions

Entry action is the action that is executed on entering a state, irrespective of the transition that

led into it.

Likewise, the action that is executed while leaving a state, irrespective of the transition that led

out of it, is called an exit action.

Scenario
Scenario is a description of a specified sequence of actions. It depicts the behavior of objects

undergoing a specific action series. The primary scenarios depict the essential sequences and the

secondary scenarios depict the alternative sequences.

Diagrams for Dynamic Modeling
 There are two primary diagrams that are used for dynamic modeling:

Interaction Diagrams
Interaction diagrams describe the dynamic behavior among different objects. It comprises of a

set of objects, their relationships, and the message that the objects send and receive. Thus, an

interaction models the behavior of a group of interrelated objects. The two types of interaction

diagrams are:
 Sequence Diagram : It represents the temporal ordering of messages in a tabular

manner.
 Collaboration Diagram : It represents the structural organization of objects that send

and receive messages through vertices and arcs.

State Transition Diagram
State transition diagrams or state machines describe the dynamic behavior of a single object. It

illustrates the sequences of states that an object goes through in its lifetime, the transitions of the

states, the events and conditions causing the transition and the responses due to the events.

Concurrency of Events
In a system, two types of concurrency may exist. They are discussed below.

System Concurrency

Here, concurrency is modelled in the system level. The overall system is modelled as the

aggregation of state machines, where each state machine executes concurrently with others.

 OOSAD Module Page 18

Concurrency within an Object

Here, an object can issue concurrent events. An object may have states that are composed of

sub-states, and concurrent events may occur in each of the sub-states.

Concepts related to concurrency within an object are as follows:

Simple and Composite States
A simple state has no sub-structure. A state that has simpler states nested inside it is called a

composite state. A sub-state is a state that is nested inside another state. It is generally used to

reduce the complexity of a state machine. Sub-states can be nested to any number of levels.

Composite states may have either sequential sub-states or concurrent sub-states.

Sequential Sub-states
In sequential sub-states, the control of execution passes from one sub-state to another sub-state

one after another in a sequential manner. There is at most one initial state and one final state in

these state machines.

The following figure illustrates the concept of sequential sub-states.

Concurrent Sub-states
In concurrent sub-states, the sub-states execute in parallel, or in other words, each state has

concurrently executing state machines within it. Each of the state machines has its own initial

and final states. If one concurrent sub-state reaches its final state before the other, control waits

at its final state. When all the nested state machines reach their final states, the sub-states join

back to a single flow.

The following figure shows the concept of concurrent sub-states.

 OOSAD Module Page 19

Chapter Two: Object Orientation the new software paradigm

2. Structured vs. Object Orientation paradigm

Structured paradigm

• The structured paradigm is a development strategy based on the concept that a system

should be separated into two parts:

• Data and functionality (modeled using a process model). Using the structured

approach, you develop applications in which data is separated from behavior in

both the design model and in the system implementation (that is, the program).

• Example: Consider the design of an information system for a university. Taking the

structured approach, you would define the layout of a data initially as a separate system

and the design of a program to access that data as another. The programs have the ability

to change the data states.

Object oriented Paradigm

• The main concept behind the object-oriented paradigm is that instead of defining systems

as two separate parts (data and functionality), system defined as a collection of

interacting objects.

– Describes and build system that consists object

• An object-oriented system comprises a number of software objects that interact to

achieve the system objective.

2.1. The Potential Benefits of the Object Oriented paradigm

Increased reusability:

• The OO paradigm provides opportunities for reuse through the concepts of inheritance,

polymorphism, encapsulation, modularity, coupling and cohesion.

• It provides more opportunities for reuse than the structured paradigm

Increased extensibility

Because classes have both data and functionality, when you add new features to the system you

need to make changes in one place, the class;

 OOSAD Module Page 20

Improved Quality

• Quality systems are on time, on budget and meet or exceed the expectations of their

users.

• Improved quality comes from increased participation of users in systems development.

• OO systems development techniques provide greater opportunity for users to participate

in the development process.

Financial benefits

• Reusability, extensibility, and improved quality are all technical benefits.

• Object orientation enables you to build systems better, faster and cheaper (BFC)

• The benefits OO are realized through out the entire development life cycle, not just

programming

Increased Chance of Project success

• A project is successful if it is on time, on budget and meets the needs of the its users.

• Users are expert at business and they are the only ones who can tell you what they need.

• You need to know the right question to ask, know the business very well.

• You need models that communicate the required information and that users understand.

• You need to work closely with users

• Time invested in defining requirements and modeling pays off in the long run.

• You can use a wide variety of artifacts including code, model and components.

Reduce maintenance Burdon

• Software organizations currently spend significant resources (80%) maintaining and

operating software, and because of the long waiting list of work to be done, it takes

significant time to get new projects started. These two problems are respectively called

– the maintenance Burdon and

– The application backlog

• These are problems that object orientation can help you to overcome

2.2. The Potential Drawbacks of OO

Nothing is perfect including OO. While many exiting benefits exist to OO, they come at a price:

1. OO requires greater concentration on requirements analysis and design

• You cannot build a system that meets users needs unless you know what those

needs are(you need to do requirements)

• You cannot built a system unless you know how it all fit together (you need to

do analysis and design)

• But this fact is often ignored by many developers

2. Developers must closely work with users

– Users are the experts but they have their own jobs to do (busy)

3. OO requires a complete change in the mindset on the part of individuals

– they should understand the benefits of OO

4. OO requires the development culture of the IS dept to change

– The change in the mind set of individual developers actually reflect an over all

change in the development culture

– Do more analysis and design but (less programming) and working with users

5. OO is just more than programming

6. Many OO benefits are long term

– OO truly pays off when you extend and enhance your system

7. OO demands up front investments in training education and tools

– Organizations must train and educate their development staff.

– Buy books, development tools and magazines

8. OO techniques do not guarantee you will build the right system

 OOSAD Module Page 21

– While OO increases the probability of project success ,it still depends on the

ability of individuals involved.

– developers, users, mangers must be working together to have a good working

atmosphere .

9. OO necessitates increased testing

– OO is typically iterative in nature, and probably developing complex system

using the objects, the end result is you need to spend more time in testing.

10. OO is only part of the solution

– You still need CASE tools

– Need to perform quality assurance (QA)

– You still need usable interface so the users can work with the systems effectively

2.3. Object Standards

• OO orientation today becomes the significant part of the software development .

• Objects are the primary enabling technology for components.

• It also stays in the future because of the standard set by the OMG.

• OO orientation today becomes the significant part of the software development .

• Objects are the primary enabling technology for components.

• It also stays in the future because of the standard set by the OMG.

• CORBA(Common object request broker architecture) – the standard

architecture for supporting distributed objects.

• UML (Unified modeling language)-the standard modeling language for the

object oriented software.

• ANSI (Americans National Standards Institute)-Defined standards for C++.

Http://www.ansi.org

• Sun Microsystems ,Http://www.sum.com actively maintains, enhances and

supports a de facto standard definition for java and related standards such as

Enterprise Java Beans (EJB).

• The Object Database Management group (ODMG)- Http://www.odmg.org

actively maintains, enhances and supports a standard definition for object

oriented databases and object query language (OQL).

• ANSI (Americans National Standards Institute)-Defined standards for C++.

Http://www.ansi.org

• Sun Microsystems ,Http://www.sum.com actively maintains, enhances and

supports a de facto standard definition for java and related standards such as

Enterprise Java Beans (EJB).

• The Object Database Management group (ODMG)- Http://www.odmg.org

actively maintains, enhances and supports a standard definition for object

oriented databases and object query language (OQL).

 OOSAD Module Page 22

Chapter 3: Gathering user requirements

3. An Overview of Requirements Elicitation

Requirements elicitation focuses on describing the purpose of the system. The client, the

developers, and the users identify a problem area and define a system that addresses the

problem. Such a definition is called a requirements specification and serves as a contract

between the client and the developers. The requirements specification is structured and

formalized during analysis (Chapter 5, Analysis) to produce an analysis model. Both

requirements specification and analysis model represent the same information. They differ only

in the language and notation they use; the requirements specification is written in natural

language, whereas the analysis model is usually expressed in a formal or semiformal notation.

The requirements specification supports the communication with the client and users. The

analysis model supports the communication among developers. They are both models of the

system in the sense that they attempt to represent accurately the external aspects of the system.

Given that both models represent the same aspects of the system, requirements elicitation and

analysis occur concurrently and iteratively

Requirements elicitation and analysis focus only on the user’s view of the system. For example,

the system functionality, the interaction between the user and the system, the errors that the

system can detect and handle, and the environmental conditions in which the system functions

are part of the requirements. The system structure, the implementation technology selected to

build the system, the system design, the development methodology, and other aspects not

directly visible to the user are not part of the requirements.

3.1. Requirements elicitation includes the following activities:

 Identifying actors. During this activity, developers identify the different types of users

the future system will support.

 Identifying scenarios. During this activity, developers observe users and develop a set

of detailed scenarios for typical functionality provided by the future system. Scenarios

are concrete examples of the future system in use. Developers use these scenarios to

communicate with the user and deepen their understanding of the application domain.

 Identifying use cases. Once developers and users agree on a set of scenarios, developers

derive from the scenarios a set of use cases that completely represent the future system.

Whereas scenarios are concrete examples illustrating a single case, use cases are

abstractions describing all possible cases. When describing use cases, developers

determine the scope of the system.

 OOSAD Module Page 23

 Refining use cases. During this activity, developers ensure that the requirements

specification is complete by detailing each use case and describing the behavior of the

system in the presence of errors and exceptional conditions.

 Identifying relationships among use cases. During this activity, developers identify

dependencies among use cases. They also consolidate the use case model by factoring

out common functionality. This ensures that the requirements specification is

consistent.

 Identifying nonfunctional requirements. During this activity, developers, users, and

clients agree on aspects that are visible to the user, but not directly related to

functionality. These include constraints on the performance of the system, its

documentation, the resources it consumes, its security, and its quality.

During requirements elicitation, developers access many different sources of information,

including client-supplied documents about the application domain, manuals and technical

documentation of legacy systems that the future system will replace, and most important, the

users and clients themselves. Developers interact the most with users and clients during

requirements elicitation. We focus on two methods for eliciting information, making decisions

with users and clients, and managing dependencies among requirements and other artifacts:

 Joint Application Design (JAD) focuses on building consensus among developers,

users, and clients by jointly developing the requirements specification.

 Traceability focuses on recording, structuring, linking, grouping, and maintaining

dependencies among requirements and between requirements and other work products.

3.2. Requirements Elicitation Concepts
In this section, we describe the main requirements elicitation concepts used in this chapter.

In particular, we describe

 Functional Requirements

 Nonfunctional Requirements

3.3. Functional Requirements

Functional requirements describe the interactions between the system and its environment

independent of its implementation. The environment includes the user and any other external

system with which the system interacts.

 OOSAD Module Page 24

3.4. Nonfunctional Requirements

Nonfunctional requirements describe aspects of the system that are not directly related to the

functional behavior of the system. Nonfunctional requirements include a broad variety of

requirements that apply to many different aspects of the system, from usability to performance.

The FURPS+ model2 used by the Unified Process [Jacobson et al., 1999] provides the following

categories of nonfunctional requirements:

 Usability is the ease with which a user can learn to operate, prepare inputs for, and

interpret outputs of a system or component. Usability requirements include, for

example, conventions adopted by the user interface, the scope of online help, and the

level of user documentation. Often, clients address usability issues by requiring the

developer to follow user interface guidelines on color schemes, logos, and fonts.

 Reliability is the ability of a system or component to perform its required functions

under stated conditions for a specified period of time. Reliability requirements include,

for example, an acceptable mean time to failure and the ability to detect specified faults

or to withstand specified security attacks. More recently, this category is often replaced

by dependability, which is the property of a computer system such that reliance can

justifiably be placed on the service it delivers. Dependability includes reliability,

robustness (the degree to which a system or component can function correctly in the

presence of invalid inputs or stressful environment conditions), and safety (a measure

of the absence of catastrophic consequences to the environment).

 Performance requirements are concerned with quantifiable attributes of the system,

such as response time (how quickly the system reacts to a user input), throughput

(how much work the system can accomplish within a specified amount of time),

availability (the degree to which a system or component is operational and accessible

when required for use), and accuracy.

 Supportability requirements are concerned with the ease of changes to the system

after deployment, including for example, adaptability (the ability to change the system

to deal with additional application domain concepts), maintainability (the ability to

change the system to deal with new technology or to fix defects), and

internationalization (the ability to change the system to deal with additional

international conventions, such as languages, units, and number formats). The ISO

9126 standard on software quality [ISO Std. 9126], similar to the FURPS+ model,

replaces this category with two categories: maintainability and portability (the ease

with which a system or component can be transferred from one hardware or software

environment to another). 2. FURPS+ is an acronym using the first letter of the

 OOSAD Module Page 25

requirements categories: Functionality, Usability, Reliability, Performance, and

Supportability. The + indicates the additional subcategories. The FURPS model was

originally proposed by [Grady, 1992].

3.5. Fundamental requirements gathering techniques

Individually interview people informed about the operation and issues of the current system

and future systems needs

 Interview groups of people with diverse needs to fid synergies and contrasts among

system requirements

 Observe workers at selected times to see how data are handled and what information

people need to do their jobs

 Study business documents/document analysis to discover reported issues, policies,

rules, and directions as well as concrete examples of the use of data and information in

the org. What can the analysis of documents tell you about the requirements for a new

system? In documents you can find information about the following:

o Problems with existing systems (e.g., missing information or redundant steps

o Opportunities to meet new needs if only certain information or information

processing were available (e.g., analysis of sales based on customer type

o Organizational direction that can influence information system requirements

(e.g., trying to link customers and suppliers more closely to the organization)

o Titles and names of key individuals who have an interest in relevant existing

systems (e.g., the name of a sales manager who led a study of the buying

behavior of key customers)

o Values of the organization or individuals who can help determine priorities for

different capabilities desired by different users (e.g., maintaining market share

even if it means lower short-term profits)

 OOSAD Module Page 26

Chapter 4: Ensuring Your Requirements are Correct: Requirement validation
Techniques

4. Requirements Validation

Validation denotes checking whether inputs, performed activities, and created outputs

(requirements artifacts) of the requirements engineering core activities fulfill defined quality

criteria. Validation is performed by involving relevant stakeholders, other requirement sources

(standards, laws, etc.) as well as external reviewers, if necessary.

4.1. Quality Criteria

 Completeness
-The requirement must contain all relevant information (template).

 Consistency
- The requirements must be compatible with each other.

 Adequacy
- The requirements must address the actual needs of the system.

 Un ambiguity
-Every requirement must be described in a way that precludes different interpretations.

 Comprehensibility
- The requirements must be understandable by the stakeholders.

 Importance
-Each requirement must indicate how essential it is for the success of the project.

 Measurability
- The requirement must be formulated at a level of precision that enables to evaluate its

satisfaction.

 Necessity
- The requirements must all contribute to the satisfaction of the project goals.

 Viability
-All requirements can be implemented with the available technology, human resources

and budget.

 Traceability
- The context in which a requirement was created should be easy to retrieve.

In System development :

4.2. The 6 Principles of Validation

1. Involving the Right Stakeholders

Ensure that relevant company-internal as well as relevant external stakeholders

participate in validation. Pay attention to the reviewers’ independence and appoint

external, independent stakeholders, if necessary.

2. Defect Detection vs. Defect Correction

Separate defect detection from the correction of the detected defects.

3. Leveraging Multiple Independent Views

Whenever possible, try to obtain independent views that can b e integrated during

requirements validation in order to detect defects more reliably.

 OOSAD Module Page 27

4. Use of Appropriate Documentation Formats

Consider changing the documentation format of the requirements into a format that

matches the validation goal and the preference s of the stakeholders who actually

perform the validation.

5. Creation of Development Artifacts during Validation

If your validation approach generates p o or results, try to supp ort defect detection by

creating development artifacts such as architectural artifacts, test artifacts, user manuals,

or goals and scenarios during validation.

6. Repeated Validation

Establish guidelines that clearly determine when or under what conditions an already

released requirements artifact has to b e validated again.

 4.3. Validation Techniques

 Inspections

 Desk-Checks

 Walkthroughs

 Prototypes

Inspection: an organized examination process of the requirements

Desk-Checks

 The author of a requirement artifact distributes the artifact to a set of stakeholders.

 The stakeholders check the artifact individually.

 The stakeholders report the identified defects to the author.

 The collected issues are discussed in a group session (optional)

Walkthrough
A walkthrough does not have formally defined procedure and does not require a differentiated

role assignment.

 -Checking early whether an idea is feasible or not.

 OOSAD Module Page 28

 -Obtaining the opinion and suggestions of other people.

 - Checking the approval of others and reaching agreement.

Prototypes
A prototype allows the stakeholders to try out the requirements for the system and experience

them thereby.

 Develop the prototype (tool support).

 Training of the stakeholders.

 Observation of prototype usage.

 Collect issues.

 OOSAD Module Page 29

Chapter 5: Determining What to Build: OO Analysis

The purpose of analysis is to understand what will be built. This is similar to requirements

gathering. The main difference is that the focus of requirements gathering is on understanding

your users and their potential usage of the system, whereas the focus of analysis shifts to

understanding the system itself. The following picture depicts the main artefacts of your

analysis efforts and the relationships between them.

5.1. Overview of Analysis artefacts and their Relationships

• The picture has three important implications.

1. Analysis is an iterative process.

2. Requirements gathering and analysis are highly interrelated and iterative.

3. “essential” models, such as essential use case model and essential user

interface prototype, evolve into corresponding analysis artefacts—

respectively, in to system use case model and user interface prototype.

During analysis, your main goal is to evolve your essential use cases into system use cases. The

main difference between an essential use case and a system use case is, in the system use case,

you include high-level implementation decisions.

 OOSAD Module Page 30

– For example, a system use case refers to specific user interface components—

such as screens, HTML pages, or reports—something you wouldn’t do in an

essential use case.

During analysis, you make decisions regarding what will be built or design.

– For example, a design decision is whether your user interface is implemented

using browser-based technology, such as HTML pages or graphical user interface

(GUI) technology such as Windows.

Because your user interface will work differently depending on the implementation technology,

the logic of your system use cases, which reflect the flow of your user interface, will also be

affected. Likewise an essential use case model a system use case model is composed of a use

case diagram and the accompanying documentation describing the use cases, actors, and

associations.The following figures provides an example of a use case diagram, depicts a

collection of use cases, actors, their associations, a system boundary box (optional), and

packages (optional).

The rectangle around the use cases is called the system boundary box and, as the name suggests,

it delimits the scope of your system. The use cases inside the rectangle represent the

functionality you intend to implement. Finally, packages are UML constructs that enable you to

organize model elements (such as use cases) into groups.

 OOSAD Module Page 31

Reuse in Use Case Models: <<extend>>, <<include>>, and Inheritance

• Potential reuse can be modelled through four generalization relationships supported by

the UML use case models:

– extend relationships between use cases,

– include relationships between use cases,

– inheritance between use cases,

– inheritance between actors.

Good Things to Know About Use Case Modelling

An important thing to understand about use case models is that the associations between actors

and use cases indicate the need for interfaces. When the actor is a person, then to support the

association, you need to develop user interface components, such as screens and reports.

5.2. The Unified Modeling Language (UML)

The Unified Modeling Language (UML) is a graphical language for OOAD that gives a standard

way to write a software system’s blueprint. It helps to visualize, specify, construct, and

document the artifacts of an object-oriented system. It is used to depict the structures and the

relationships in a complex system.

Brief History

It was developed in 1990s as an amalgamation of several techniques, prominently OOAD

technique by Grady Booch, OMT (Object Modeling Technique) by James Rumbaugh, and

OOSE (Object Oriented Software Engineering) by Ivar Jacobson. UML attempted to standardize

semantic models, syntactic notations, and diagrams of OOAD.

Systems and Models in UML
System: A set of elements organized to achieve certain objectives form a system. Systems are

often divided into subsystems and described by a set of models.

Model : Model is a simplified, complete, and consistent abstraction of a system, created for

better understanding of the system.

View : A view is a projection of a system’s model from a specific perspective.

Conceptual Model of UML
The Conceptual Model of UML encompasses three major elements:

 Basic building blocks

 Rules

 Common mechanisms

Basic Building Blocks
The three building blocks of UML are:

 Things

 Relationships

 Diagrams

Things
There are four kinds of things in UML, namely:

 Structural Things :These are the nouns of the UML models representing the static

elements that may be either physical or conceptual. The structural things are class,

interface, collaboration, use case, active class, components, and nodes.

 OOSAD Module Page 32

 Behavioral Things : These are the verbs of the UML models representing the dynamic

behavior over time and space. The two types of behavioral things are interaction and

state machine.

 Grouping Things : They comprise the organizational parts of the UML models. There is

only one kind of grouping thing, i.e., package.

 Notational Things : These are the explanations in the UML models representing the

comments applied to describe elements.

Relationships

Relationships are the connection between things. The four types of relationships that can be

represented in UML are:

 Dependency : This is a semantic relationship between two things such that a change in

one thing brings a change in the other. The former is the independent thing, while the

latter is the dependent thing.

 Association : This is a structural relationship that represents a group of links having

common structure and common behavior.

Generalization: This represents a generalization/specialization relationship in which subclasses

inherit structure and behavior from super-classes.

Realization: This is a semantic relationship between two or more classifiers such that one

classifier lays down a contract that the other classifiers ensure to abide by.

Diagrams
A diagram is a graphical representation of a system. It comprises of a group of elements

generally in the form of a graph. UML includes nine diagrams in all, namely:

 Class Diagram

 Object Diagram

 Use Case Diagram

 Sequence Diagram

 Collaboration Diagram

 State Chart Diagram

 Activity Diagram

 Component Diagram

 Deployment Diagram

Rules

UML has a number of rules so that the models are semantically self-consistent and related to

other models in the system harmoniously. UML has semantic rules for the following:

 Names

 Scope

 Visibility

 Integrity

 Execution

Common Mechanisms
UML has four common mechanisms:

 Specifications

 Adornments

 Common Divisions

 Extensibility Mechanisms

Specifications

 OOSAD Module Page 33

In UML, behind each graphical notation, there is a textual statement denoting the syntax and

semantics. These are the specifications. The specifications provide a semantic backplane that

contains all the parts of a system and the relationship among the different paths.

Adornments
Each element in UML has a unique graphical notation. Besides, there are notations to represent

the important aspects of an element like name, scope, visibility, etc.

Common Divisions
Object-oriented systems can be divided in many ways. The two common ways of division are:

 Division of classes and objects : A class is an abstraction of a group of similar objects.
An object is the concrete instance that has actual existence in the system.

 Division of Interface and Implementation : An interface defines the rules for
interaction. Implementation is the concrete realization of the rules defined in the
interface.

Extensibility Mechanisms
UML is an open-ended language. It is possible to extend the capabilities of UML in a controlled

manner to suit the requirements of a system. The extensibility mechanisms are:
 Stereotypes : It extends the vocabulary of the UML, through which new building blocks

can be created out of existing ones.
 Tagged Values : It extends the properties of UML building blocks.
 Constraints : It extends the semantics of UML building blocks.

5.3. UML Basic Notations

UML defines specific notations for each of the building blocks.

Class
A class is represented by a rectangle having three sections:

 the top section containing the name of the class

 the middle section containing class attributes

 the bottom section representing operations of the class

The visibility of the attributes and operations can be represented in the following ways:

 Public : A public member is visible from anywhere in the system. In class diagram, it is

prefixed by the symbol ‘+’.

 Private : A private member is visible only from within the class. It cannot be accessed

from outside the class. A private member is prefixed by the symbol ‘−’.

 Protected : A protected member is visible from within the class and from the subclasses

inherited from this class, but not from outside. It is prefixed by the symbol ‘#’.

An abstract class has the class name written in italics.

Example : Let us consider the Circle class introduced earlier. The attributes of Circle are x-

coord, y-coord, and radius. The operations are findArea(), findCircumference(), and scale(). Let

us assume that x-coord and y-coord are private data members, radius is a protected data

member, and the member functions are public. The following figure gives the diagrammatic

representation of the class.

 OOSAD Module Page 34

Object
An object is represented as a rectangle with two sections:

 The top section contains the name of the object with the name of the class or package of which it is an instance of. The name takes

the following forms:

o object-name : class-name

o object-name : class-name :: package-name

o class-name : in case of anonymous objects
 The bottom section represents the values of the attributes. It takes the form attribute-name = value.
 Sometimes objects are represented using rounded rectangles.

Example : Let us consider an object of the class Circle named c1. We assume that the center of

c1 is at (2, 3) and the radius of c1 is 5. The following figure depicts the object.

Component
A component is a physical and replaceable part of the system that conforms to and provides the

realization of a set of interfaces. It represents the physical packaging of elements like classes and

interfaces.

Notation : In UML diagrams, a component is represented by a rectangle with tabs as shown in

the figure below.

Interface

Interface is a collection of methods of a class or component. It specifies the set of services that

may be provided by the class or component.

Notation : Generally, an interface is drawn as a circle together with its name. An interface is

almost always attached to the class or component that realizes it. The following figure gives the

notation of an interface.

 OOSAD Module Page 35

Package

A package is an organized group of elements. A package may contain structural things like

classes, components, and other packages in it.

Notation:Graphically, a package is represented by a tabbed folder. A package is generally

drawn with only its name. However it may have additional details about the contents of the

package. See the following figures.

Relationship
The notations for the different types of relationships are as follows:

Usually, elements in a relationship play specific roles in the relationship. A role name signifies

the behavior of an element participating in a certain context.

Example : The following figures show examples of different relationships between classes. The

first figure shows an association between two classes, Department and Employee, wherein a

department may have a number of employees working in it. Worker is the role name. The ‘1’

alongside Department and ‘*’ alongside Employee depict that the cardinality ratio is one–to–

many. The second figure portrays the aggregation relationship, a University is the “whole– of”

many Departments.

 5.4. UML STRUCTURED DIAGRAMS

UML structural diagrams are categorized as follows: class diagram, object diagram,

component diagram, and deployment diagram.

Class Diagram

A class diagram models the static view of a system. It comprises of the classes,

interfaces, and collaborations of a system; and the relationships between them.

Class Diagram of a System
Let us consider a simplified Banking System.

 OOSAD Module Page 36

A bank has many branches. In each zone, one branch is designated as the zonal head

office that supervises the other branches in that zone. Each branch can have multiple

accounts and loans. An account may be either a savings account or a current account. A

customer may open both a savings account and a current account. However, a customer

must not have more than one savings account or current account. A customer may also

procure loans from the bank.

The following figure shows the corresponding class diagram.

Classes in the System
Bank, Branch, Account, Savings Account, Current Account, Loan, and Customer.

Relationships
 A Bank “has–a” number of Branches: composition, one–to–many

 A Branch with role Zonal Head Office supervises other Branches : unary association,
one–to-many

 A Branch “has–a” number of accounts : aggregation, one–to–many
From the class Account, two classes have inherited, namely, Savings Account and Current

Account.
 A Customer can have one Current Account : association, one–to–one

 OOSAD Module Page 37

 A Customer can have one Savings Account : association, one–to–one
 A Branch “has–a” number of Loans : aggregation, one–to–many
 A Customer can take many loans : association, one–to–many

Object Diagram

An object diagram models a group of objects and their links at a point of time. It shows the

instances of the things in a class diagram. Object diagram is the static part of an interaction

diagram.

Example : The following figure shows an object diagram of a portion of the class diagram of

the Banking System.

Component Diagram

Component diagrams show the organization and dependencies among a group of components.

Component diagrams comprise of:
 Components
 Interfaces
 Relationships
 Packages and Subsystems (optional) Component diagrams are used for:
 Constructing systems through forward and reverse engineering.
 Modeling configuration management of source code files while developing a system

using an object-oriented programming language.
 Representing schemas in modeling databases.
 Modeling behaviors of dynamic systems.

Deployment Diagram

A deployment diagram puts emphasis on the configuration of runtime processing nodes and

their components that live on them. They are commonly comprised of nodes and dependencies,

or associations between the nodes.

Deployment diagrams are used to:
 model devices in embedded systems that typically comprise of software-intensive

collection of hardware.
 represent the topologies of client/server systems.
 model fully distributed systems.

Example
The following figure shows the topology of a computer system that follows client/server

architecture. The figure illustrates a node stereotyped as server that comprises of processors. The

figure indicates that four or more servers are deployed at the system. Connected to the server are

the client nodes, where each node represents a terminal device such as workstation, laptop,

 OOSAD Module Page 38

scanner, or printer. The nodes are represented using icons that clearly depict the real-world

equivalent.

5.5. UML Behavioral Diagrams

UML behavioral diagrams visualize, specify, construct, and document the dynamic aspects

of a system. The behavioral diagrams are categorized as follows: use case diagrams,

interaction diagrams, state–chart diagrams, and activity diagrams.

Use Case Model

Use Case

A use case describes the sequence of actions a system performs yielding visible results. It

shows the interaction of things outside the system with the system itself. Use cases may be

applied to the whole system as well as a part of the system.

Actor
An actor represents the roles that the users of the use cases play. An actor may be a person

(e.g. student, customer), a device (e.g. workstation), or another system (e.g. bank,

institution).

The following figure shows the notations of an actor named Student and a use case called

Generate Performance Report.

Use Case Diagrams

Use case diagrams present an outside view of the manner the elements in a system behave

and how they can be used in the context.

Use case diagrams comprise of:
 Use cases
 Actors
 Relationships like dependency, generalization, and association Use case

diagrams are used:

o model the context of a system by enclosing all the activities of a system within a
rectangle and focusing on the actors outside the system by interacting with it.To model
the requirements of a system from the outside point of view.

 OOSAD Module Page 39

Example
Let us consider an Automated Trading House System. We assume the following features of the

system:
 The trading house has transactions with two types of customers, individual customers

and corporate customers.
 Once the customer places an order, it is processed by the sales department and the

customer is given the bill.
 The system allows the manager to manage customer accounts and answer any queries

posted by the customer.

Interaction Diagrams

Interaction diagrams depict interactions of objects and their relationships. They also include the

messages passed between them. There are two types of interaction diagrams:
 Sequence Diagrams
 Collaboration Diagrams

Interaction diagrams are used for modeling:
 the control flow by time ordering using sequence diagrams.
 the control flow of organization using collaboration diagrams.

Sequence Diagrams

Sequence diagrams are interaction diagrams that illustrate the ordering of messages according to

time.

Notations: These diagrams are in the form of two-dimensional charts. The objects that initiate

the interaction are placed on the x–axis. The messages that these objects send and receive are

placed along the y–axis, in the order of increasing time from top to bottom

 OOSAD Module Page 40

Example : A sequence diagram for the Automated Trading House System is shown in the

following figure.

Collaboration Diagrams
Collaboration diagrams are interaction diagrams that illustrate the structure of the objects that

send and receive messages.

Notations : In these diagrams, the objects that participate in the interaction are shown using

vertices. The links that connect the objects are used to send and receive messages. The message

is shown as a labeled arrow.

Example : Collaboration diagram for the Automated Trading House System is illustrated in the

figure below.

State–Chart Diagrams
A state–chart diagram shows a state machine that depicts the control flow of an object from one

state to another. A state machine portrays the sequences of states which an object undergoes due

to events and their responses to events.

State–Chart Diagrams comprise of:

 States: Simple or Composite

 Transitions between states

 Events causing transitions

 Actions due to the events

 OOSAD Module Page 41

State-chart diagrams are used for modeling objects which are reactive in nature.

Example
In the Automated Trading House System, let us model Order as an object and trace its sequence.

The following figure shows the corresponding state–chart diagram.

Activity Diagrams
An activity diagram depicts the flow of activities which are ongoing non-atomic operations in a

state machine. Activities result in actions which are atomic operations.

Activity diagrams comprise of:
 Activity states and action states
 Transitions
 Objects

Activity diagrams are used for modeling:
 Workflows as viewed by actors, interacting with the system.
 details of operations or computations using flowcharts.

Example
The following figure shows an activity diagram of a portion of the Automated Trading House

System.

 OOSAD Module Page 42

Chapter 6: Determining How to Build Your System: OO Design

After the analysis phase, the conceptual model is developed further into an object-oriented

model using object-oriented design (OOD). In OOD, the technology-independent concepts in

the analysis model are mapped onto implementing classes, constraints are identified, and

interfaces are designed, resulting in a model for the solution domain. In a nutshell, a detailed

description is constructed specifying how the system is to be built on concrete technologies

The stages for object–oriented design can be identified as:

 Definition of the context of the system

 Designing system architecture

 Identification of the objects in the system

 Construction of design models

 Specification of object interfaces

6.1. System Design

Object-oriented system design involves defining the context of a system followed by designing

the architecture of the system.

 Context : The context of a system has a static and a dynamic part. The static context of

the system is designed using a simple block diagram of the whole system which is

expanded into a hierarchy of subsystems. The subsystem model is represented by UML

packages. The dynamic context describes how the system interacts with its environment.

It is modelled using use case diagrams.

 System Architecture: The system architecture is designed on the basis of the context of

the system in accordance with the principles of architectural design as well as domain

knowledge. Typically, a system is partitioned into layers and each layer is decomposed

to form the subsystems.

6.2. Object-Oriented Decomposition

Decomposition means dividing a large complex system into a hierarchy of smaller components

with lesser complexities, on the principles of divide–and– conquer. Each major component of

the system is called a subsystem. Object-oriented decomposition identifies individual

autonomous objects in a system and the communication among these objects.

The advantages of decomposition are:

 The individual components are of lesser complexity, and so more understandable and

manageable.

 It enables division of workforce having specialized skills.

 It allows subsystems to be replaced or modified without affecting other subsystems.

6.2.1 Identifying Concurrency
Concurrency allows more than one objects to receive events at the same time and more than one

activity to be executed simultaneously. Concurrency is identified and represented in the dynamic

model.

To enable concurrency, each concurrent element is assigned a separate thread of control. If the

concurrency is at object level, then two concurrent objects are assigned two different threads of

 OOSAD Module Page 43

control. If two operations of a single object are concurrent in nature, then that object is split

among different threads.

Concurrency is associated with the problems of data integrity, deadlock, and starvation. So a

clear strategy needs to be made whenever concurrency is required. Besides, concurrency

requires to be identified at the design stage itself, and cannot be left for implementation stage.

6.2.2. Identifying Patterns
While designing applications, some commonly accepted solutions are adopted for some

categories of problems. These are the patterns of design. A pattern can be defined as a

documented set of building blocks that can be used in certain types of application development

problems.

Some commonly used design patterns are:
 Façade pattern
 Model view separation pattern
 Observer pattern
 Model view controller pattern
 Publish subscribe pattern
 Proxy pattern

6.2.3. Controlling Events
During system design, the events that may occur in the objects of the system need to be

identified and appropriately dealt with
An event is a specification of a significant occurrence that has a location in time and space.

There are four types of events that can be modelled, namely:

 Signal Event : A named object thrown by one object and caught by another object.

 Call Event : A synchronous event representing dispatch of an operation.

 Time Event : An event representing passage of time.

 Change Event : An event representing change in state.

6.2.4. Handling Boundary Conditions
The system design phase needs to address the initialization and the termination of the system as

a whole as well as each subsystem. The different aspects that are documented are as follows:

 The start–up of the system, i.e., the transition of the system from non-initialized state to

steady state.

 The termination of the system, i.e., the closing of all running threads, cleaning up of

resources, and the messages to be sent.

 The initial configuration of the system and the reconfiguration of the system when

needed.

 Foreseeing failures or undesired termination of the system.

Boundary conditions are modeled using boundary use cases.

6.3. Object Design

After the hierarchy of subsystems has been developed, the objects in the system are identified

and their details are designed. Here, the designer details out the strategy chosen during the

system design. The emphasis shifts from application domain concepts toward computer

concepts. The objects identified during analysis are etched out for implementation with an aim

to minimize execution time, memory consumption, and overall cost.

Object design includes the following phases:

 Object identification

 Object representation, i.e., construction of design models

 OOSAD Module Page 44

 Classification of operations

 Algorithm design

 Design of relationships

 Implementation of control for external interactions

 Package classes and associations into modules

6.3.1. Object Identification
The first step of object design is object identification. The objects identified in the object–

oriented analysis phases are grouped into classes and refined so that they are suitable for actual

implementation.

The functions of this stage are:

 Identifying and refining the classes in each subsystem or package

 Defining the links and associations between the classes

 Designing the hierarchical associations among the classes, i.e., the

generalization/specialization and inheritances

 Designing aggregations

6.3.2. Object Representation
Once the classes are identified, they need to be represented using object modeling techniques.

This stage essentially involves constructing UML diagrams.

There are two types of design models that need to be produced:
 Static Models: To describe the static structure of a system using class diagrams and

object diagrams.
 Dynamic Models: To describe the dynamic structure of a system and show the

interaction between classes using interaction diagrams and state–chart diagrams.

6.3.3. Classification of Operations
In this step, the operation to be performed on objects are defined by combining the three models

developed in the OOA phase, namely, object model, dynamic model, and functional model. An

operation specifies what is to be done and not how it should be done.

The following tasks are performed regarding operations:

 The state transition diagram of each object in the system is eveloped.

 Operations are defined for the events received by the objects.

 Cases in which one event triggers other events in same or different objects are identified.

 The sub–operations within the actions are identified.

 The main actions are expanded to data flow diagrams.

6.3.4. Algorithm Design
The operations in the objects are defined using algorithms. An algorithm is a stepwise procedure

that solves the problem laid down in an operation. Algorithms focus on how it is to be done.

There may be more than one algorithm corresponding to a given operation. Once the alternative

algorithms are identified, the optimal algorithm is selected for the given problem domain. The

metrics for choosing the optimal algorithm are:
 Computational Complexity: Complexity determines the efficiency of an algorithm in

terms of computation time and memory requirements.
 Flexibility:Flexibility determines whether the chosen algorithm can be implemented

suitably, without loss of appropriateness in various environments.
 Understandability:This determines whether the chosen algorithm is easy to understand

and implement.
6.3.5. Design of Relationships
The strategy to implement the relationships needs to be chalked out during the object design

phase. The main relationships that are addressed comprise of associations, aggregations, and

inheritances.

 OOSAD Module Page 45

The designer should do the following regarding associations:

 Identify whether an association is unidirectional or bidirectional.

 Analyze the path of associations and update them if necessary.

 Implement the associations as a distinct object, in case of many–to-many relationships;

or as a link to other object in case of one–to-one or one–to-many relationships.

Regarding inheritances, the designer should do the following:

 Adjust the classes and their associations.

 Identify abstract classes.

 Make provisions so that behaviors are shared when needed.

6.3.6. Implementation of Control
The object designer may incorporate refinements in the strategy of the state– chart model. In

system design, a basic strategy for realizing the dynamic model is made. During object design,

this strategy is aptly embellished for appropriate implementation.

The approaches for implementation of the dynamic model are:
 Represent State as a Location within a Program : This is the traditional procedure-

driven approach whereby the location of control defines the program state. A finite state
machine can be implemented as a program. A transition forms an input statement, the
main control path forms the sequence of instructions, the branches form the conditions,
and the backward paths form the loops or iterations.

 State Machine Engine : This approach directly represents a state machine through a
state machine engine class. This class executes the state machine through a set of
transitions and actions provided by the application.

 Control as Concurrent Tasks : In this approach, an object is implemented as a task in
the programming language or the operating system. Here, an event is implemented as an
inter-task call. It preserves inherent concurrency of real objects.

6.3.7. Packaging Classes
In any large project, meticulous partitioning of an implementation into modules or packages is

important. During object design, classes and objects are grouped into packages to enable

multiple groups to work cooperatively on a project.

The different aspects of packaging are:

 Hiding Internal Information from Outside View : It allows a class to be viewed as a

“black box” and permits class implementation to be changed without requiring any

clients of the class to modify code.

 Coherence of Elements : An element, such as a class, an operation, or a module, is

coherent if it is organized on a consistent plan and all its parts are intrinsically related so

that they serve a common goal.

 Construction of Physical Modules : The following guidelines help while constructing

physical modules:

 Classes in a module should represent similar things or components in the same

composite object.

 Closely connected classes should be in the same module.

 Unconnected or weakly connected classes should be placed in separate modules.

 Modules should have good cohesion, i.e., high cooperation among its components.

 A module should have low coupling with other modules, i.e., interaction or

interdependence between modules should be minimum.

 OOSAD Module Page 46

6.4. Design Optimization

The analysis model captures the logical information about the system, while the design model

adds details to support efficient information access. Before a design is implemented, it should be

optimized so as to make the implementation more efficient. The aim of optimization is to

minimize the cost in terms of time, space, and other metrics.

However, design optimization should not be excess, as ease of implementation, maintainability,

and extensibility are also important concerns. It is often seen that a perfectly optimized design is

more efficient but less readable and reusable. So the designer must strike a balance between the

two.

The various things that may be done for design optimization are:
 Add redundant associations
 Omit non-usable associations
 Optimization of algorithms
 Save derived attributes to avoid re-computation of complex expressions

Addition of Redundant Associations
During design optimization, it is checked if deriving new associations can reduce access costs.

Though these redundant associations may not add any information, they may increase the

efficiency of the overall model.

Omission of Non-Usable Associations
Presence of too many associations may render a system indecipherable and hence reduce the

overall efficiency of the system. So, during optimization, all non-usable associations are

removed.

Optimization of Algorithms
In object-oriented systems, optimization of data structure and algorithms are done in a

collaborative manner. Once the class design is in place, the operations and the algorithms need

to be optimized.

Optimization of algorithms is obtained by:

 Rearrangement of the order of computational tasks

 Reversal of execution order of loops from that laid down in the functional model

 Removal of dead paths within the algorithm

Saving and Storing of Derived Attributes
Derived attributes are those attributes whose values are computed as a function of other

attributes (base attributes). Re-computation of the values of derived attributes every time they

are needed is a time–consuming procedure. To avoid this, the values can be computed and

stored in their computed forms.

However, this may pose update anomalies, i.e., a change in the values of base attributes with no

corresponding change in the values of the derived attributes. To avoid this, the following steps

are taken:

 With each update of the base attribute value, the derived attribute is also re-computed.

 All the derived attributes are re-computed and updated periodically in a group rather than

after each update.

Design Documentation
Documentation is an essential part of any software development process that records the

procedure of making the software. The design decisions need to be documented for any non–

trivial software system for transmitting the design to others.

Usage Areas

Though a secondary product, a good documentation is indispensable, particularly in the

following areas:

 OOSAD Module Page 47

 In designing software that is being developed by a number of developers

 In iterative software development strategies

 In developing subsequent versions of a software project

 For evaluating a software

 For finding conditions and areas of testing

 For maintenance of the software.

Contents
A beneficial documentation should essentially include the following contents:

 High–level system architecture : Process diagrams and module diagrams

 Key abstractions and mechanisms : Class diagrams and object diagrams.

 Scenarios that illustrate the behavior of the main aspects : Behavioral

diagrams

Features
The features of a good documentation are:

 Concise and at the same time, unambiguous, consistent, and complete

 Traceable to the system’s requirement specifications

 Well-structured

 Diagrammatic instead of descriptive

6.5. IMPLEMENTATION STRATEGIES

Implementing an object-oriented design generally involves using a standard object oriented

programming language (OOPL) or apping object designs to databases. In most cases,it

involves both.

Implementation using Programming Languages
Usually, the task of transforming an object design into code is a straightforward process. Any

object-oriented programming language like C++,Java,Smalltalk,C# and Python, includes

provision for representing classes. In this chapter, we exemplify the concept using C++.The

following figure shows the representation of the class Circle using C++.

Implementing Associations
Most programming languages do not provide constructs to implement associations

directly. So the task of implementing associations needs considerable thought.

Associations may be either unidirectional or bidirectional. Besides, each association

may be either one–to–one, one–to–many, or many–to–many.

Unidirectional Associations

 OOSAD Module Page 48

For implementing unidirectional associations, care should be taken so that

unidirectionality is maintained. The implementations for different multiplicity are as

follows:
 Optional Associations : Here, a link may or may not exist between the participating

objects. For example, in the association between Customer and Current Account in the
figure below, a customer may or may not have a current account.

One–to–one Associations : Here, one instance of a class is related to exactly one
instance of the associated class. For example, Department and Manager have one–to–one
association as shown in the figure below.

This is implemented by including in Department, an object of Manager that should not be

NULL. One–to–many Associations : Here, one instance of a class is related to more than one

instances of the associated class. For example, consider the association between Employee and

Dependent in the following figure.

This is implemented by including a list of Dependents in class Employee.

Bi-directional Associations

To implement bi-directional association, links in both directions require to be maintained.

 Optional or one–to–one Associations : Consider the relationship between Project and
Project Manager having one–to–one bidirectional association as shown in the figure
below.

 One–to–many Associations : Consider the relationship between Department and
Employee having one–to–many association as shown in the figure below.

Implementing Associations as Classes

If an association has some attributes associated, it should be implemented using a separate

class. For example, consider the one–to–one association between Employee and Project as

shown in the figure below.

 OOSAD Module Page 49

Implementing Constraints
Constraints in classes restrict the range and type of values that the attributes may take. In order

to implement constraints, a valid default value is assigned to the attribute when an object is

instantiated from the class. Whenever the value is changed at runtime, it is checked whether

the value is valid or not. An invalid value may be handled by an exception handling routine or

other methods.

Implementing State Charts

There are two alternative implementation strategies to implement states in state chart diagrams.

Enumerations within Class
In this approach, the states are represented by different values of a data member (or set of data

members). The values are explicitly defined by an enumeration within the class. The transitions

are represented by member functions that change the value of the concerned data member.

Arrangement of Classes in a Generalization Hierarchy
In this approach, the states are arranged in a generalization hierarchy in a manner that they can

be referred by a common pointer variable. The following figure shows a transformation from

state chart diagram to a generalization hierarchy.

Object Mapping to Database System

Persistency of Objects
An important aspect of developing object-oriented systems is persistency of data. Through

persistency, objects have longer lifespan than the program that created it. Persistent data is saved

on secondary storage medium from where it can be reloaded when required.

Overview of RDBMS
A database is an ordered collection of related data.

A database management system (DBMS) is a collection of software that facilitates the processes

of defining, creating, storing, manipulating, retrieving, sharing, and removing data in databases.

In relational database management systems (RDBMS), data is stored as relations or tables,

where each column or field represents an attribute and each row or tuple represents a record of

an instance.

Each row is uniquely identified by a chosen set of minimal attributes called primary key.

A foreign key is an attribute that is the primary key of a related table.

One–to–Many Associations
To implement 1:N associations, the primary key of the table in the 1-side of the association is

assigned as the foreign key of the table at the N-side of the association. For example, consider

the association between Department and Employee:

 OOSAD Module Page 50

Many–to–Many Associations

To implement M:N associations, a new relation is created that represents the association. For

example, consider the following association between Employee and Project:

Mapping Inheritance to Tables

To map inheritance, the primary key of the base table(s) is assigned as the primary key as well

as the foreign key in the derived table(s).

Example

 OOSAD Module Page 51

Chapter seven : Software Testing

7.1 TESTING AND QUALITY ASSURANCE

Once a program code is written, it must be tested to detect and subsequently handle all errors in

it. A number of schemes are used for testing purposes.

Another important aspect is the fitness of purpose of a program that ascertains whether the

program serves the purpose which it aims for. The fitness defines the software quality.

7.1.1. Testing Object-Oriented Systems
Testing is a continuous activity during software development. In object-oriented systems, testing

encompasses three levels, namely, unit testing, subsystem testing, and system testing.

7.1.2. Unit Testing
In unit testing, the individual classes are tested. It is seen whether the class attributes are

implemented as per design and whether the methods and the interfaces are error-free. Unit

testing is the responsibility of the application engineer who implements the structure.

7.1.3. Subsystem Testing
This involves testing a particular module or a subsystem and is the responsibility of the

subsystem lead. It involves testing the associations within the subsystem as well as the

interaction of the subsystem with the outside. Subsystem tests can be used as regression tests for

each newly released version of the subsystem.

7.1.4.System Testing
System testing involves testing the system as a whole and is the responsibility of the quality-

assurance team. The team often uses system tests as regression tests when assembling new

releases.

7.2. Categories of System Testing

 Alpha testing : This is carried out by the testing team within the organization that
develops software.

 Beta testing : This is carried out by select group of co-operating customers.

 Acceptance testing : This is carried out by the customer before accepting the
deliverables.

7.3. Object-Oriented Testing Techniques

Grey Box Testing

The different types of test cases that can be designed for testing object-oriented programs are

called grey box test cases. Some of the important types of grey box testing are:
 State model based testing :This encompasses state coverage, state transition coverage,

and state transition path coverage.

 Use case based testing: Each scenario in each use case is tested.

 Class diagram based testing: Each class, derived class, associations, and aggregations
are tested.

 Sequence diagram based testing : The methods in the messages in the sequence
diagrams are tested.

 OOSAD Module Page 52

7.4. Techniques for Subsystem Testing

The two main approaches of subsystem testing are:

 Thread based testing : All classes that are needed to realize a single use case in a

subsystem are integrated and tested.

 Use based testing : The interfaces and services of the modules at each level of hierarchy

are tested. Testing starts from the individual classes to the small modules comprising of

classes, gradually to larger modules, and finally all the major subsystems.

7.5. The Full-Lifecycle Object-Oriented Testing (FLOOT)

 The Full-Lifecycle Object-Oriented Testing (FLOOT) methodology is a collection of testing

techniques to verify and validate object-oriented software. The FLOOT lifecycle is depicted in

Figure 1, indicating a wide variety of techniques (described in Table 1 are available to you

throughout all aspects of software development. The list of techniques is not meant to be

complete: instead the goal is to make it explicit that you have a wide range of options available to

you. It is important to understand that although the FLOOT method is presented as a collection of

serial phases it does not need to be so: the techniques of FLOOT can be applied with

evolutionary/agile processes as well. The reason why I present the FLOOT in a "traditional"

manner is to make it explicit that you can in fact test throughout all aspects of software

development, not just during coding.

 Figure 1. The FLOOT Lifecycle.

http://www.ambysoft.com/essays/floot.html#Figure1
http://www.ambysoft.com/essays/floot.html#Table1

 OOSAD Module Page 53

Table 1. Testing techniques.

FLOOT Technique Description

Black-box testing
Testing that verifies the item being tested when given the appropriate input

provides the expected results.

Boundary-value

testing
Testing of unusual or extreme situations that an item should be able to handle.

Class testing The act of ensuring that a class and its instances (objects) perform as defined.

Class-integration

testing

The act of ensuring that the classes, and their instances, form some software

perform as defined.

Code review A form of technical review in which the deliverable being reviewed is source code.

Component testing The act of validating that a component works as defined.

Coverage testing The act of ensuring that every line of code is exercised at least once.

Design review A technical review in which a design model is inspected.

Inheritance-

regression testing

The act of running the test cases of the super classes, both direct and indirect, on a

given subclass.

Integration testing Testing to verify several portions of software work together.

Method testing Testing to verify a method (member function) performs as defined.

Model review

An inspection, ranging anywhere from a formal technical review to an informal

walkthrough, by others who were not directly involved with the development of

the model.

Path testing The act of ensuring that all logic paths within your code are exercised at least once.

Prototype review

A process by which your users work through a collection of use cases, using a

prototype as if it was the real system. The main goal is to test whether the design of

the prototype meets their needs.

Prove it with code

The best way to determine if a model actually reflects what is needed, or what

should be built, is to actually build software based on that model that show that the

model works.

Regression testing
The acts of ensuring that previously tested behaviors still work as expected after

changes have been made to an application.

Stress testing
The act of ensuring that the system performs as expected under high volumes of

transactions, users, load, and so on.

Technical review

A quality assurance technique in which the design of your application is examined

critically by a group of your peers. A review typically focuses on accuracy, quality,

usability, and completeness. This process is often referred to as a walkthrough, an

inspection, or a peer review.

Usage scenario

testing

A testing technique in which one or more person(s) validate a model by acting

through the logic of usage scenarios.

User interface testing

The testing of the user interface (UI) to ensure that it follows accepted UI

standards and meets the requirements defined for it. Often referred to as graphical

user interface (GUI) testing.

White-box testing
Testing to verify that specific lines of code work as defined. Also referred to as

clear-box testing.

7.6.Software Quality Assurance

Software Quality
Schulmeyer and McManus have defined software quality as “the fitness for use of the total

software product”. A good quality software does exactly what it is supposed to do and is

interpreted in terms of satisfaction of the requirement specification laid down by the user.

 OOSAD Module Page 54

7.6.1. Quality Assurance
Software quality assurance is a methodology that determines the extent to which a software

product is fit for use. The activities that are included for determining software quality are:

 Auditing

 Development of standards and guidelines

 Production of reports

 Review of quality system

7.6.2. Quality Factors

 Correctness : Correctness determines whether the software requirements are

appropriately met.

 Usability : Usability determines whether the software can be used by different categories

of users (beginners, non-technical, and experts).

 Portability : Portability determines whether the software can operate in different

platforms with different hardware devices.

 Maintainability : Maintainability determines the ease at which errors can be corrected

and modules can be updated.

 Reusability : Reusability determines whether the modules and classes can be reused for

developing other software products.

Object-Oriented Metrics

Metrics can be broadly classified into three categories: project metrics, product metrics, and

process metrics.

Project Metrics

Project Metrics enable a software project manager to assess the status and performance of an

ongoing project. The following metrics are appropriate for object-oriented software projects:

 Number of scenario scripts

 Number of key classes

 Number of support classes

 Number of subsystems

Product Metrics

Product metrics measure the characteristics of the software product that has been developed. The

product metrics suitable for object-oriented systems are:
 Methods per Class : It determines the complexity of a class. If all the methods of a class

are assumed to be equally complex, then a class with more methods is more complex and
thus more susceptible to errors.

 Inheritance Structure : Systems with several small inheritance lattices are more well–
structured than systems with a single large inheritance lattice. As a thumb rule, an
inheritance tree should not have more than 7 (± 2) number of levels and the tree should
be balanced.

 Coupling and Cohesion : Modules having low coupling and high cohesion are
considered to be better designed, as they permit greater reusability and maintainability.

 Response for a Class : It measures the efficiency of the methods that are called by the
instances of the class.

Process Metrics
Process metrics help in measuring how a process is performing. They are collected over all

projects over long periods of time. They are used as indicators for long-term software process

improvements. Some process metrics are:

 Number of KLOC (Kilo Lines of Code)

 Defect removal efficiency

 Average number of failures detected during testing

 Number of latent defects per KLOC

 OOSAD Module Page 55

Chapter 8: Software Process

8.1. Process

According to Webster, the term process means "a particular method of doing something,

generally involving a number of steps or operations." In software engineering, the phrase

software process refers to the methods of developing software.

8.2. Software Process
A software process is a set of activities, together with ordering constraints among them, such

that if the activities are performed properly and in accordance with the ordering constraints, the

desired result is produced. The basic desired result is high quality and productivity.

The process that deals with the technical and management issues of software development is

called a software process. Software process is that a set of activities whose goal is the

development or evolution of software.

In an organization whose major business is software development, there are typically many

processes executing simultaneously. Many of these do not concern software engineering, though

they do impact software development. These could be considered non software engineering

process. Business processes, social processes, and training processes, are all examples of

processes that come under this. These processes also affect the software development activity.

Software process as consisting of many component processes, each consisting of a certain type

of activity Each of these component processes typically has a different objective, though they

obviously cooperate with each other to satisfy the overall software engineering objective.

8. 3. Processes and Process Models

Software process is that a set of activities whose goal is the development or evolution of

software. A simplified representation of a software process, presented from a specific

perspective. A successful project is the one that satisfies the expectations on all the three goals

of cost, schedule, and quality.

When planning and executing a software project, the decisions are mostly taken with a view to

ultimately reduce the cost or the cycle time, or for improving the quality. Software projects

utilize a process to organize the execution of tasks to achieve the goals on the cost, schedule,

and quality.

A project's process specification defines the tasks the project should perform, and the order in

which they should be done. The actual process exists when the project is actually executed.

A process model specifies a general process, usually as a set of stages in which a project should

be divided, the order in which the stages should be executed, and any other constraints and

conditions on the execution of stages.

The basic premise behind a process model is that, in the situations for which the model is

applicable, using the process model as the projects process will lead to low cost, high quality,

reduced time. A project's process may utilize some process model. That is, the project's process

has a general resemblance to the process model with the actual tasks being specific to the

project. However, using a process model is not simply translating the tasks in the process model

to tasks in the project.

 OOSAD Module Page 56

That is, a process specifies the steps, the project executes these steps, and during the course of

execution products are produced. A process limits the degrees of freedom for a project by

specifying what types of activities must be undertaken and in what order, such that the "shortest"

(or the most efficient) path is obtained from the user needs to the software satisfying these

needs. It should be clear that it is the process that drives a project and heavily influences the

expected outcomes of a project.

8.3.1. Component Software Processes
Generally, the development process is the central process which specifies the tasks to be done in

a project. Planning and scheduling the tasks and monitoring their execution fall in the domain of

project management process. Hence, there are clearly two major components in a software

process a development process and a project management.

As development processes generally do not focus on evolution and changes, to handle them

another process called software configuration control process, is often used. The objective of

this component process is to primarily deal with managing change, so that the integrity of the

products is not violated despite changes. Sometimes, changes in requirements may be handled

separately by a requirements change management process.

These three constituent processes focus on the projects and the products and can be considered

as comprising the product engineering processes, as their main objective is to produce the

desired product. If the software process can be viewed as a static entity, then these three

component processes will suffice.

The whole process of understanding the current process, analyzing its properties, determining

how to improve, and then affecting the improvement is dealt with by the process management

process. These component processes are distinct not only in the type of activities performed in

them, but typically also in the people who perform the activities specified by the process.

 In a project, development activities are performed by programmers, designers, testers,

etc.

 The project management process activities are performed by the project management.

 Configuration control process activities are performed by a group generally called the

configuration controller.

The process management process activities are performed by the software engineering

process group (SEPG).

 Software process

Fig. show Software processes.

Project Management Process
Process Management Process

Development

Process

Product Management

Process Software Configuration

control Management

 OOSAD Module Page 57

8.3.2.ETVX Approach for Process Specification
(Entry criteria, Task, Verification, and eXit criteria)

A process has a set of phases, each phase performing a well-defined task which leads a project

towards satisfaction of its goals. To reduce the cost, a process should aim to detect defects in the

phase in which they are introduced.

This requires that there be some verification at the end of each step, which in turn requires that

there is a clearly defined output of a phase, which can be verified by some means.

Such outputs of a development process, which are not the final output, are frequently called the

work products. In software, a work product can be the requirements document, design

document, code, prototype, etc. This restriction that the output of each step be some work

product that can be verified suggests that the process should have a small number of steps.

Having too many steps results in too many work products or documents.

A process typically consists of a few steps, each satisfying a clear objective and producing a

document which can be verified. How to perform the activity of the particular step or phase is

generally addressed by methodologies for that activity.

 Control Information to

Management Process

Input Output

Entry Criteria Exit Criteria

A step in a development process

As a process typically contains a sequence of steps, the next issue to address is when a

phase should be initiated and terminated. This is frequently done by specifying the entry criteria

and exit criteria for a phase. The entry criteria of a phase specifies the conditions that the input

to the phase should satisfy to initiate the activities of that phase. The exit criteria specifies the

conditions that the work product of this phase should satisfy to terminate the activities of the

phase.

The entry and exit criteria specify constraints of when to start and stop an activity. It should be

clear that the entry criteria of a phase should be consistent with the exit criteria of the previous

phase. In addition to the entry and exit criteria, the inputs and outputs of a step also need to be

clearly specified.

8.3.3.Characteristics of Software Process

As a process may be used by many projects, it needs characteristics beyond satisfying the

project goals.

• Predictability: Predictability of a process determines how accurately the outcome of following

that process in a project can be predicted before the project is completed. Predictability can be

considered a fundamental property of any process. In fact, if a process is not predictable, it is

of limited use.

Process Step Verification &

Validation

 OOSAD Module Page 58

However, even this simple method implies that the process that will be used to develop project

A will be same as the process used for project B, and that following the process the second time

will produce similar results as the first time. That is, this assumes that the process is predictable.

If it was not predictable, then there is no guarantee that doing a similar project using the process

will incur a similar cost. The fundamental basis for quality prediction is that quality of the

product is determined largely by the process used to develop it.

Testability and Maintainability

In the life of software the maintenance costs generally exceed the development costs. The goal

of development should be to reduce the maintenance effort. That is, one of the important

objectives of the development project should be to produce software that is easy to maintain.

And the process used should ensure this maintainability.

Even in development, coding is frequently given a great degree of importance. We have seen

that a process consists of phases, and a process generally includes requirements, design, coding,

and testing phases. Of the development cost, an example distribution of effort with the different

phases could be:

 Requirements 10%

 Design 10%

 Coding 30%

 Testing 50%

Both testing and maintenance depend heavily on the quality of design and code, and these costs

can be considerably reduced if the software is designed and coded to make testing and

maintenance easier.

 Support Change

Software changes for a variety of reasons. Besides changing an existing and working software,

after all, the needs of the customer may change during the course of the project. And if the

project is of any significant duration, considerable changes can be expected. Changes may occur

simply because people may change their minds as they think more about possibilities and

alternatives.

 Early Defect Removal

The notion that programming is the central activity during software development is largely due

to programming being considered a difficult task and sometimes an "art." Another consequence

of this kind of thinking is the belief that errors largely occur during programming, as it is the

hardest activity in software development and offers many opportunities for committing errors. It

is now clear that errors can occur at any stage during development.

 Cost of correcting errors

As one would expect, the greater the delay in detecting an error after it occurs, the more

expensive it is to correct it. As the figure shows, an error that occurs during the requirements

phase, if corrected during acceptance testing, can cost up to 100 times more than correcting the

error during the requirements phase itself.

If there is an error in the requirements, then the design and the code will be affected by it. To

correct the error after the coding is done would require both the design and the code to be

changed, thereby increasing the cost of correction. Error detection and correction should be a

 OOSAD Module Page 59

continuous process that is done throughout software development. A quality control (QC)

activity is one whose main purpose is to identify and remove defects.

 Process Improvement and Feedback

A process is not a static entity. Improving the quality and reducing the cost of products are

fundamental goals of any engineering discipline. In the context of software, as the productivity

and quality are determined largely by the process, to satisfy the objectives of quality

improvement and cost reduction, the software process must be improved. Process improvement

is also an objective in a large project where feedback from the early parts of the project can be

used to improve the execution of the rest of the project.

8.4. Software Development Process Models

In the software development process, the activities directly related to production of the software,

for example, design, coding, and testing.

As the development process specifies the major development and quality control activities that

need to be performed in the project, the development process really forms the core of the

software process.

A) Waterfall Model

The simplest process model is the waterfall model, which states that the phases are organized in

a linear order. In this model, a project begins with feasibility analysis. Upon successfully

demonstrating the feasibility of a project, the requirements analysis and project planning begins.

The design starts after the requirements analysis is complete, and coding begins after the design

is complete. Once the programming is completed, the code is integrated and testing is done.

Upon successful completion of testing, the system is installed. After this, the regular operation

and maintenance of the system takes place.

The requirements analysis phase is mentioned as "analysis and planning." Planning is a critical

activity in software development. A good plan is based on the requirements of the system and

should be done before later phases begin.

Linear ordering of activities has some important consequences. First, to clearly identify the end

of a phase and the beginning of the next. This is usually done by some verification and

validation means that will ensure that the output of a phase is consistent with its input (which is

the output of the previous phase), and that the output of the phase is consistent with the overall

requirements of the system.

The consequence of the need for certification is that each phase must have some defined output

that can be evaluated and certified. That is, when the activities of a phase are completed, there

should be some product that is produced by that phase. The outputs of the earlier phases are

often called work products and are usually in the form of documents like the requirements

document or design document.

For the coding phase, the output is the code. Though the set of documents that should be

produced in a project is dependent on how the process is implemented, the following documents

generally form a reasonable set that should be produced in each project:

 OOSAD Module Page 60

• Requirements document

• Project plan

• Design documents

• Test plan and test reports

• Final code

• Software manuals (e.g., user, installation, etc.)

Fig. above show the waterfall model.

Advantages:

1. One of the main advantages of this model is its simplicity.

2. It is conceptually straightforward and divides the large task of building a software

system into a series of cleanly divided phases, each phase dealing with a separate logical

concern.

3. It is also easy to administer in a contractual setup as each phase is completed and its

work product produced, some amount of money is given by the customer to the

developing organization.

Limitations are:

1. It assumes that the requirements of a system can be frozen before the design begins. But

for new systems, determining the requirements is difficult as the user does not even

know the requirements.

2. Freezing the requirements usually requires choosing the hardware, may become obsolete

over a period of time.

3. The entire software is delivered in one shot at the end. This entails heavy risks, as the

user does not know until the very end what they are getting.

B) Prototyping

The goal of a prototyping-based development process is that instead of freezing the

requirements before any design or coding can proceed. This prototype is developed based on the

currently known requirements.

 1.Waterfall Model

• Also called Linear Sequential Model/Classic Life Cycle Model.

•

Requirements

Definition

Specification

Design

Implementation

and Unit Testing
Integration and

System Testing

Operations and

Maintenance

 OOSAD Module Page 61

Development of the prototype obviously undergoes design, coding, and testing, but each of these

phases is not done very formally or thoroughly. By using this prototype, the client can get an

actual feel of the system, because the interactions with the prototype can enable the client to,

better understand the requirements of the desired system.

Prototyping is an attractive idea for complicated and large systems for which there is no manual

process or existing system to help determine the requirements. In both situations, the risks

associated with the projects are being reduced through the use of prototyping.

After the prototype has been developed, the end users and clients are given an opportunity to use

the prototype. Based on their experience, they provide feedback to the developers.

 Based on the feedback, the prototype is modified to incorporate some of the suggested changes

that can be done easily, and then the users and the clients are again allowed to use the system.

Based on the feedback, the initial requirements are modified to produce the final requirements

specification, which is then used to develop the production quality system.

Fig. above show the prototyping model.

The focus of the development is to include those features that are not properly understood. And

the development approach is with the focus on quick development rather than quality.

Advantages of Prototyping

1. Users are actively involved in the development

2. It provides a better system to users, as users have natural tendency to change their

mind in specifying requirements and this method of developing systems supports this

user tendency.

3. Errors can be detected much earlier as the system is made side by side.

Limitations of Prototyping

1. This Model Leads to ‘implementing and then repairing’ way of building systems.

2. This may increase the complexity of the system as scope of the system may expand

beyond original plans.

3. Cost of implementing this method for larger or complex systems is more.

C) Iterative Development: The iterative development process model tries to combine the

benefits of both prototyping and the waterfall model. The basic idea is that the software

should be developed in increments, each increment adding some functional capability to the

system until the full system is implemented.

At each step, extensions and design modifications can be made. An advantage of this approach

is that it can result in better testing because testing each increment is likely to be easier than

testing the entire system as in the waterfall model. The prototyping, the increments provide

feedback to the client that is useful for determining the final requirements of the system.

Requirements
Analysis

Design

Code

Test

Code

Test

Design

 OOSAD Module Page 62

D) The iterative enhancement model:

In the first step of this model, a simple initial implementation is done for a subset of the

overall problem.

The iterative enhancement model

This subset is one that contains some of the key aspects of the problem that are easy to

understand and implement and which form a useful and usable system. A project control list is

created that contains, in order, all the tasks that must be performed to obtain the final

implementation. This project control list gives an idea of how far along the project is at any

given step from the final system.

Each step consists of removing the next task from the list, designing the implementation for the

selected task, coding and testing the implementation, performing an analysis of the partial

system obtained after this step, and updating the list as a result of the analysis. These three

phases are called the design phase, implementation phase, and analysis phase.

Advantages of Iterative Enhancement Model

1) This approach results in better testing, the increments provides feedback to the client

which is useful for determining the final requirements of the system.

The spiral model: The spiral model is another iterative model that has been proposed. As the

name suggests, the activities in this model can be organized like a spiral that has many cycles.

The spiral model.

 OOSAD Module Page 63

Each cycle in the spiral begins with the identification of objectives for that cycle, the different

alternatives that are possible for achieving the objectives, and the constraints that exist. The

focus of evaluation in this step is based on the risk perception for the project. The next step is to

develop strategies that resolve the uncertainties and risks.

Time boxing Model

In this model to speed up development, parallelism between the different iterations can be

employed. That is, a new iteration commences before the system produced by the current

iteration is released, and hence development of a new release happens in parallel with the

development of the current release.

By starting an iteration before the previous iteration has completed, it is possible to reduce the

average delivery time for iterations. In the time boxing model, the basic unit of development is a

time box, which is of fixed duration. Since the duration is fixed, a key factor in selecting the

requirements or features to be built in a time box is what can be fit into the time box.

Each time box is divided into a sequence of stages, like in the waterfall model. Each stage

performs some clearly defined task for the iteration and produces a clearly defined output.

The model also requires that the duration of each stage, that is, the time it takes to complete the

task of that stage, is approximately the same. Furthermore, the model requires that there be a

dedicated team for each stage. This is quite different from other iterative models where the

implicit assumption is that the same team performs all the different tasks of the project or the

iteration.

Having time boxed iterations with stages of equal duration and having dedicated teams renders

itself to pipelining of different iterations. (Pipelining is a concept from hardware in which

different instructions are executed in parallel, with the execution of a new instruction starting

once the first stage of the previous instruction is finished.)

As an example, consider a time box consisting of three stages: requirement specification, build,

and deployment. The requirement stage is executed by its team of analysts and ends with a

prioritized list of requirements to be built in in this iteration along with a high level design.

The build team develops the code for implementing the requirements, and performs the testing.

The tested code is then handed over to the deployment team, which performs pre deployment

tests, and then installs the system for production use. These three stages are such that they can

be done in approximately equal time in an iteration.

8.4.1. Project Management Process

Proper management is an integral part of software development. A large software development

project involves many people working for a long period of time. A development process

typically partitions the problem of developing software into a set of phases.

To meet the cost, quality, and schedule objectives, resources have to be properly allocated to

each activity for the project, and progress of different activities has to be monitored and

corrective actions taken. All these activities are part of the project management process.

The project management process specifies all activities that need to be done by the project

management to ensure that cost and quality objectives are met. The focus is on issues like

 OOSAD Module Page 64

planning a project, estimating resource and schedule, and monitoring and controlling the project.

The basic task is to plan the detailed implementation of the process for the particular project and

then ensure that the plan is followed.

The activities in the management process for a project can be grouped broadly into three phases:

planning, monitoring and control, and termination analysis. Project management begins with

planning, which is perhaps the most critical project management activity.

The goal of this phase is to develop a plan for software development following which the

objectives of the project can be met successfully and efficiently. A software plan is usually

produced before the development activity begins and is updated as development proceeds and

data about progress of the project becomes available.

The Inspection Process

The main goal of the inspection process is to detect defects in work products.

Software inspections were first proposed by Fagan. Earlier inspections were focused on code,

but over the years its use has spread to other work products too. In other words, the inspection

process is used throughout the development process. Software inspections are now a recognized

industry best practice with considerable data to support that they help in improving quality and

also improve productivity

An inspection is a review of a software work product by a group of peers following a clearly

defined process. The basic goal of inspections is to improve the quality of the work product by

finding defects.

Some of the characteristics of inspections are:

• An inspection is conducted by technical people for technical people

• It is a structured process with defined roles for the participants

• The focus is on identifying problems, not resolving them

• The review data is recorded and used for monitoring the effectiveness of the inspection process

As inspections are performed by a group of people, they can be applied to any work product,

something that cannot be done with testing. Inspections are performed by a team of reviewers

(or inspectors) including the author, with one of them being the moderator.

 Planning

The objective of the planning phase is to prepare for inspection. The author of the work product

ensures that the work product is ready for inspection. The moderator checks that the entry

criteria are satisfied by the work product. The entry criteria for different work products will be

different. The package that needs to be distributed to the review team is prepared.

 Overview and Preparation

In this phase the package for review is given to the reviewers. The moderator may arrange an

opening meeting, if needed, in which the author may provide a brief overview of the product and

any special areas that need to be looked at carefully.

The objective and overview of the inspection process might also be given in this meeting. The

meeting is optional and can be omitted. In that case, the moderator provides a copy of the group

review package to the reviewers.

 OOSAD Module Page 65

 Group Review Meeting

The basic purpose of the group review meeting is to come up with the final defect list, based on

the initial list of defects reported by the reviewers and the new ones found during the discussion

in the meeting. The entry criterion for this step is that the moderator is satisfied that all the

reviewers are ready for the meeting.

The main outputs of this phase are the defect log and the defect summary report. The moderator

first checks to see if all the reviewers are prepared. The moderator is in-charge of the meeting

and has to make sure that the meeting stays focused on its basic purpose of defect identification

and does not degenerate into a general brainstorming session or personal attacks on the author.

Software Configuration Management Process

Changes continuously take place in a software project changes due to the evolution of work

products as the project proceeds, changes due to defects (bugs) being found and then fixed, and

changes due to requirement changes. Configuration management (CM) or software

configuration management (SCM) is the discipline for systematically controlling the changes

that take place during development.

The IEEE defines SCM as "the process of identifying and defining the items in the system,

controlling the change of these items throughout their life cycle, recording and reporting the

status of items and change requests, and verifying the completeness and correctness of items"

 CM Functionality

To better understand CM, let us consider some of the functionality that a project requires from

the CM process. Give latest version of a program. Suppose that a program has to be modified.

Clearly, the modification has to be carried out in the latest copy of that program; otherwise,

changes made earlier may be lost.

• Undo a change or revert back to a specified version. A change is made to a program, but later

it becomes necessary to undo this change request.

 CM Mechanisms

The main purpose of CM is to provide various mechanisms that can support the functionality

needed by a project to handle the types of scenarios discussed above that arise due to changes.

The mechanisms commonly used to provide the necessary functionality include the following

• Configuration identification and base lining

• Version control or version management

• Access control

A Software configuration item (SCI), or item is a document that is explicitly placed under

configuration control and that can be regarded as a basic unit for modification.

 OOSAD Module Page 66

CM Process

The CM process defines the set of activities that need to be performed to control change. As

with most activities in project management, the first stage in the CM process is planning. Then

the process has to be executed, generally by using some tools.

Finally, as any CM plan requires some discipline from the project personnel in terms of storing

items in proper locations, and making changes properly, monitoring the status of the

configuration items and performing CM audits are therefore other activities in the CM process.

Planning for configuration management involves identifying the configuration items and

specifying the procedures to be used for controlling and implementing changes to these

configuration items. Identifying configuration items is a fundamental activity in any type of. The

configuration controller (CC) is responsible for the implementation of the CM plan. Depending

on the size of the system under development, his or her role may be a part-time or full-time job.

8.4.2. Process Management

A software process is not a static entity, it has to change to improve so that the products

produced using the process are of higher quality and are less costly.

As we have seen, improving quality and productivity are fundamental goals of engineering. To

achieve these goals the software process must continually be improved, as quality and

productivity are determined to a great extent by the process. As stated earlier, improving the

quality and productivity of the process is the main objective of the process management process.

It should be emphasized that process management is quite different from project management.

In process management the focus is on improving the process which in turn improves the

general quality and productivity for the products produced using the process. In project

management the focus is on executing the current project and ensuring that the objectives of the

project are met.

The time duration of interest for project management is typically the duration of the project,

while process management works on a much larger time scale as each project is viewed as

providing a data point for the process. To improve its software process, an organization needs to

first understand the status of the current status and then develop a plan to improve the process.

The reason is that it takes time to internalize and truly follow any new methods that may be

introduced. And only when the new methods are properly implemented will their effects be

visible. Introducing too many new methods for the software process will make the task of

implementing the change very hard. Software process capability describes the range of expected

results that can be achieved by following the process.

The process capability of an organization determines what can be expected from the

organization in terms of quality and productivity. The goal of process improvement is to

improve the process capability. A maturity level is a well-defined evolutionary plateau towards

achieving a mature software process. Based on the empirical evidence found by examining the

processes of many organizations, the CMM suggests that there are five well-defined maturity

levels for a software process. These are initial (level 1), repeatable, defined, managed, and

optimizing.

The CMM framework says that as process improvement is best incorporated in small

increments, processes go from their current levels to the next higher level when they are

improved.

 OOSAD Module Page 67

The initial process (level 1) is essentially an ad hoc process that has no formalized method for

any activity. Basic project controls for ensuring that activities are being done properly, and that

the project plan is being adhered to, are missing. In crisis the project plans and development

processes are abandoned in favour of a code-and-test type of approach.

In a repeatable process (level 2), policies for managing a software project and procedures to

implement those policies exist.

That is, project management is well developed in a process at this level. Some of the

characteristics of a process at this level are: project commitments are realistic and based

on past experience with similar projects, cost and schedule are tracked and problems resolved

when they arise, formal configuration control mechanisms are in place, and software project

standards are defined and followed. Essentially, results obtained by this process can be repeated

as the project planning and tracking is formal.

At the defined level (level 3) the organization has standardized a software process, which is

properly documented. A software process group exists in the organization that owns and

manages the process. In the process each step is carefully defined with verifiable entry and exit

criteria, methodologies for performing the step, and verification mechanisms for the output of

the step.

At the managed level (level 4) quantitative goals exist for process and products. Data is

collected from software processes, which is used to build models to characterize the process.

Hence, measurement plays an important role in a process at this level. Due to the models built,

the organization has a good insight of the process capability and its deficiencies. The results of

using such a process can be predicted in quantitative terms.

At the optimizing level (level 5), the focus of the organization is on continuous process

improvement. Data is collected and routinely analysed to identify areas that can be strengthened

to improve quality or productivity.

8.5. The Unified Process

The Unified Process (UP) is a popular iterative and incremental software development process

framework. The Unified Process (UP) has emerged as a popular software development process

for building object-oriented systems.

The Unified Process is not simply a process, but rather an extensible framework which can and

should be customized for specific organizations and/or projects. The Rational Unified Process

is, similarly, a customizable framework.

The most well known and extensively documented refinement of the Unified Process is the

Rational Unified Process (RUP). The other process arising from UP is the Enterprise Unified

Process(EUP).

The Rational Unified Process (RUP) is a detailed refinement of the Unified Process. It is a

software engineering process. It provides a disciplined approach to assigning tasks and

responsibilities within a development organization. Its goal is to ensure the production of high

quality software that meets the needs of its end users within a predictable schedule and budget.

 OOSAD Module Page 68

RUP is based on a set of building blocks or content elements describing what is to be produced,

the necessary skills required and the step-by-step explanation describing how specific

development goals are to be achieved. The main building blocks, or content elements, are the

following:

 Roles (who) – a role defines a set of related skills, competencies and responsibilities.

 Artifacts/Work Products (what) – a work product represents something resulting from a

task, including all the documents and models produced while working through the

process.

 Activities/Tasks (how) – a task describes a unit of work assigned to a Role that provides

a meaningful result.

The Rational Unified Process (and in fact the Unified Process) is:

 Iterative and incremental

 Use case driven

 Architecture-centric

 Risk-driven

Iterative and Incremental Development

1. Incremental Development

In incremental development, we break up the work into smaller pieces and schedule them to be

developed over time and integrated as they are completed.

Fig Incremental development stage 1, 2, and 3

In Incremental approach, we concentrate on those aspects that are currently the most important

and postpone until later those that are less critical. Eventually, every aspect is handled but in

order of importance. We start off by constructing an artifact that solves only a small part of what

we are trying to achieve. Then we consider further aspects of the problem and add the resulting

new pieces to the existing artefact.

2. Iterative Development

In iterative development, we set aside time to improve what we have. Requirements and user

interfaces are the most notorious places where we historically have had to revise our work, but

they are not the only ones. Technology, architecture, and algorithms are also likely to need

inspection and revision.

Fig Iterative development of Mona Lisa

 OOSAD Module Page 69

Leonardo draws a sketch of what he intends to do and goes to the patron, asking, “How’s this

going to work for you?” The patron says, “No, no, no. She can’t be looking right, she has to be

looking left!” Fortunately, Leonardo has not done too much work yet, so this is easy to change.

Leonardo goes away, reverses the picture and does some color and detail. He goes back to the

patron and says “By cost, I’m about one-third done. What do you think now?” The patron says,

“No, you can’t make her head look that big! Make it look more balanced with her body size.”

Leonardo goes away and finishes the painting. The patron says, “Really, I’d rather have her eyes

bigger, but okay, let’s call it done.”

Iterative development is a rework scheduling strategy in which time is set aside to revise and

improve parts of the system. It does not presuppose incremental development, but works very

well with it. A typical difference is that the output from an increment is not necessarily subject

to further refinement, and its testing or user feedback is not used as input for revising the plans

or specifications of the successive increments. On the contrary, the output of an iteration is

examined for modification, and especially for revising the targets of the successive iterations.

In iterative approach, we produce the first version of the artifact and then we revise it and

produce the second version, and so on. Our intent is that each version will be closer to our target

than its predecessor, and finally a version that is satisfactory.

The unified process groups iterations into phases: inception, elaboration, construction, and

transition.

3. Iterative and Incremental Approach

In practice, iteration and incrementation are used in conjunction with one another. An artifact is

constructed piece by piece (incrementation), and each piece/increment goes through multiple

versions (iteration).

An iteration is a “mini-project”. The result of an iteration is an increment.

Characteristics of RUP

The RUP has the following characteristics:

1. Iterative and Incremental

The Unified Process is an iterative and incremental development process. The Elaboration,

Construction and Transition phases are divided into a series of time-boxed iterations. The

Inception phase may also be divided into iterations for a large project. Each iteration results in

an increment, which is a release of the system that contains added or improved functionality

compared with the previous release.

Although most iterations will include work in most of the process disciplines (e.g.

Requirements, Design, Implementation, Testing) the relative effort and emphasis will change

over the course of the project.

2. Use Case Driven

In the Unified Process, Use Cases are used to capture the functional requirements and to define

the contents of the iterations. Each iteration takes a set of Use Cases or scenarios from

requirements all the way through implementation, test and deployment. The process employs

use cases to drive the development process from inception to deployment.

3. Architecture Centric

The architecture of an information system includes the various component modules and how

they fit together. The architecture of an information system can be described as object oriented,

 OOSAD Module Page 70

pipes and filters (Unix or Linux components), or client-server. The architecture for iterative and

incremental should be extendable continually to incorporate next increment. This is called

robustness.

The Unified Process insists that architecture sit at the heart of the project team's efforts to shape

the system. Since no single model is sufficient to cover all aspects of a system, the Unified

Process supports multiple architectural models and views.

4. Risk Focused

The Unified Process requires the project team to focus on addressing the most critical risks early

in the project life cycle. The deliverables of each iteration, especially in the Elaboration phase,

must be selected in order to ensure that the greatest risks are addressed first.

There are different kinds of risks to projects. Some of them include:

 Technical risks: does the development team have all the necessary skill? Are all the

technology required available? Etc.

 Risk of not getting the requirements right

 Risk of software architecture problem

Phases of the Rational Unified Process

The Unified Process divides the project into four phases:

 Inception

 Elaboration

 Construction

 Transition

Through all phases, activities known as workflows specify the details of the work that needs to

be done. A workflow is a sequence of activities that produces a result which can be measured.

There are nine core process workflows in the Rational Unified Process, which represent a

partitioning of all workers and activities into logical groupings. The core process workflows are

divided into six core engineering workflows:

1. Business modeling workflow – understanding the business

2. Requirements workflow – requirement gathering

3. Analysis & Design workflow – behavioral and structural modeling

4. Implementation workflow – building the system

5. Test workflow – quality assurance

6. Deployment workflow – environmental modeling

And there are three core supporting workflows:

1. Project Management workflow

2. Configuration and Change Management workflow

3. Environment workflow

I. Inception Phase

Inception is the first phase of the UP lifecycle. The purpose of Inception is phase is to determine

whether it is worthwhile to develop the system.

Inception is the smallest phase in the project, and ideally it should be quite short. If the Inception

Phase is long then it is usually an indication of excessive up-front specification, which is

contrary to the spirit of the Unified Process.

II. Elaboration Phase

 OOSAD Module Page 71

During the Elaboration phase, the project team captures the majority of the system requirements.

However, the primary goals of Elaboration are to address known risk factors and to establish and

validate the system architecture.

The architecture is validated primarily through the implementation of an Executable

Architecture Baseline. This is a partial implementation of the system which includes the core,

most architecturally significant, components. It is built in a series of small, time-boxed

iterations. By the end of the Elaboration phase the system architecture must have stabilized and

the executable architecture baseline must demonstrate that the architecture will support the key

system functionality and exhibit the right behavior in terms of performance, scalability and cost.

III. Construction Phase

Construction is the largest phase in the project. In this phase, the remainder of the system is built

on the foundation laid in Elaboration. System features are implemented in a series of short, time-

boxed iterations. Each iteration results in an executable release of the software.

The Initial Operational Capability Milestone marks the end of the Construction phase.

Objectives of the Construction Phase

Construction is really about cost-efficient development of a complete product (an operational

version of your system that can be deployed in the user community. This translates into the

following objectives:

 Minimize development costs and achieve some degree of parallelism in the work of the

development teams. Optimize resources and avoid unnecessary scrap and rework. Even smaller

projects generally have components that can be developed independently of one another,

allowing for natural parallelism between developers or teams of developers (resources

permitting).

 Iteratively develop a complete product that is ready to transition to its user community.

Develop the first operational version of the system by describing the remaining use cases and

other requirements, filling in the design details, completing the implementation, and testing the

software. Determine whether the software, the sites, and the users are all ready for the

application to be deployed.

IV. Transition Phase

The Transition phase is the fourth and last phase of the RUP life cycle. In Transition phase, the

system is deployed to the target users. Feedback received from an initial release may result in

further refinements to be incorporated over the course of several Transition phase iterations. The

Transition phase also includes system conversions and user training. The Product Release

Milestone marks the end of the Transition phase.

The Transition phase has the following objectives:

 Beta test to validate that user expectations are met: this typically requires some tuning activities

such as bug fixing and making enhancements for performance and usability.

 Train users and maintainers to achieve user self-reliability: these activities ensure that the

adopting organization is qualified to use the system and has moved any necessary data from

earlier systems or taken any other measures required to operate the new system successfully.

 Prepare deployment site and convert operational databases: to get the new system up and

running, you may have to purchase new hardware, add space for new hardware, or convert data

from earlier systems to the new system.

 Prepare for launch-packaging, production, and marketing rollout; release to distribution and

sales forces; field personnel training. Especially when developing a commercial product, these

activities should take place to ensure a successful launch.

 OOSAD Module Page 72

 Achieve stakeholder concurrence that deployment baselines are complete and consistent with

the evaluation criteria of the vision.

