Chapter 7 Onsite wastewater treatment technologies

2020

• Technologies

- Septic tank
- Constructed wetland
- Aerobic treatment unit
- Media filter
- Disinfection
- Lagoons
- Anaerobic up-flow filter

- Final dispersal options
 - Subsurface disposal
 - Atmospheric disposal
 - Surface disposal

- 1.Septic Tank
 - What it is ? does it consist of ?
 - A pre-treatment component (i.e. concrete, fiberglass, plastic)
 - Receive wastewater
 - Partially treatment
 - Solids removal to near the middle of the fluid

What

- -A 1 or 2 compartment tank
- -Prefab units possible
- -Different geometry possible
- -Outlet baffle or tee extending

-Inlet baffle

- Efficiency of solids removal related

to compartment number

Typical One-Compartment Septic Tank

How does it work?

- Raw wastewater flows in to the tank
- Settleable and floating solids separated
- Settleable solids fall to the bottom
- Lightest material float (scum layer)
- Gases generated vent through the building venting system.
- Environment extremely anoxic (H₂S, methane)
- Majority of total solids settle
- Tank design allows attenuation

Typical applications	A properly operating
septic tank should produce	
	effluent of the
following characteristics	
 Most common pretreatment option reduction in BOD 	-30 to 35%
 Can be used alone or in combination with other 80% reduction of settleable and SS 	-60 to
treatment or discharge components. of pathogens	-Some removal
 In most cases, the most pretreatment step 30% reduction in total nitrogen 	-20 to

Design considerations

- Compartment size
- Tank material
- Construction quality
- Inlet and outlet arrangements
- Volume of tank
 - hydraulic retention time
 - Sludge retention

- 2.Aerobic Treatment Unit (ATU)
 - What it is?
 - Down sized version of secondary sewage treatment processes
 - Stand alone or can be used with septic tank
 - Treatment aerobic decomposition
 - Saturated (suspended growth media)
 - Unsaturated (fixed growth media)
 - Removal BOD, TSS, and micro-organisms.

What does it consist of ?

How does it work?

More of a batch

- A tank Dissolved oxygen , micro-organisms and wastewater brought in to contact.
- Components : Contact :
 trash trap
 aeration chamber growth
 A clarification chamber
 Flow scheme:

reactor

Design/performance consideration considerations

- Similar to secondary treatment units design
- Handle small flows
- Design basis
 - Hydraulic loading
 - Biological loading
- Pretreatment required
- Final treatment/dispersal components preceded by ATUs may differ from septic tanks

- 3.Media Filter
 - An aerobic , fixed film bioreactor
 - Treatment process usually consist of a lined excavation or watertight structure filled or packed with media to which aerobic micro-

What does it consist of ?

- A container for medium distribution network
- Distribution or dosing system anaerobic environment via
- A filtering medium
- An under drain system
- Other components depending on type of the filter used. processes

How does it work?

-Effluent dosed out of the

-Treatment occurs in

-Microbiological

-Physical processes

-Chemical

Figure - Typical System using Media Filter

Effluent Distribution Network

Typical Applications

- High level of treatme
- Single family residences, small communities, and commercial facilities
- Used when higher le of pretreatment is required
- Used when sufficien area is not available

• 4. Wetlands

- An artificial swamp
- Use aquatic plans to treat wastewater
- They serve as biofilters : Remove sediments and pollutants
- Two types:- *1.Free water surface: it resembles natural wetlands in appearance and function, with a combination of open water areas, vegetation, varying water depths.*

2. Subsurface flow wetlands:-they do not resembles natural wetlands because they have no standing water.they contain a bed of media(such as crushed stones,gravel,sand,or soil)

What does it consist of ?

- A liner
- Bed or channel of porous media
- Plants
- A distribution means at the inlet end of the bed channel
- A collection and outlet mechanism

How does it work?

- Septic tank effluent flows into the inlet
- Effluent slowly flows to the outlet end of the channel
- As the effluent moves
 - Plants provide oxygen to the channel
 - Microbes attached to the bed and the plant root provide treatment
 - Other treatment include : filtration and adsorption

Typical applications ?

- They can produce effluent that meets secondary standard of 30mg/I BOD₅ and 30 mg/I TSS.
- Where sufficient area exists to install the system
- Provide minimal removal of nitrogen and phosphorus

End of chapter Seven