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CHAPTER 1 

INTRODUCTION 

1.1 Definition of a Fluid 

Matter is recognized to exist in everyday life in three 

states: solid, liquid and gas. Liquids and gases are called 

fluids since they are characterized by their ability to flow. 

The existence of matter in these states is governed by the 

spacing between different molecules and the intermolecular 

attractive forces. The molecules in the solid state are spaced 

very closely and the intermolecular attractive forces are very 

strong thus imparting to solids the property of compactness and 

rigidity of form. On the other hand, as a result of weaker 

intermolecular attractive forces, liquid molecules can move 

more freely within the liquid mass and consequently liquids do 

not possess any rigidity of form but take the shape of the 

container in which they are kept. However, a definite mass of 

a liquid occupies a definite volume. The intermolecular forces 

are extremely weak in gases and the molecules are so farther 

apart spaced that gases do not have a definite volume like 

liquids and solids. Consequently a given mass of gas fills the 

container in which it is placed regardless of the size of the 

container. A liquid offers greater resistance to volumetric 

change (compression) and is not greatly affected by temperature 

changes. A gas, on the other hand, is easily compressible and 

responds markedly to temperature changes. 

It is more appropriate to classify matter as fluids and 

solids on the basis of its response to the application of 

external forces. On this basis, a fluid may be defined as a 

substance which deforms continuously under the action of shear 

forces, however small these forces may be. This implies that 

if a fluid is at rest there can be no shearing forces acting. 

This property distinguishes fluids from solids. Solids acquire 

an equilibrium deformation corresponding to an internal stress 



that develops to just balance the applied external stress. 

Liquids do not acquire an equilibrium distortion but continue 

to deform as long as the stress acts. 

1.2. The subject Matter of Hydraulics: 
. 

The branch of mechanics which treats the equilibrium and . 
motion of liquids and gases and the force interactions between 

them and the bodies through or around which they flow is called 

hydromechanics or fluid mechanics. Hydraulics is an applied 

division of fluid mechanics governing a specific range of 

engineering problems and methods of their solution. 

The principal concern of hydraulics is the study of 

fluids at rest and fluid flow constrained by surrounding 

surfaces, i-e., flow in open and closed channels and conduits, 

including rivers, canals and flumes, as well as pipes, nozzles 

and hydraulic machines with internal flow of fluids. It 

investigates what might be called "internaltt problems, as 

distinct from "externalu problems involving the flow of 

continuous medium about submerged bodies as in the case of a 

solid body moving in water or in the air. These llexternallt 

problems are treated in hydrodynamics and aerodynamics in 

connection with ship and aircraft design. 

The science of hydraulics concerns itself mainly with the 

motion of liquids. However, under certain conditions, the laws 

of motion of liquids and gasses are practically identical as 

for example in the study of internal flows of gases with 

velocities much lower than that of sound in which case their 

compressibility can be disregarded. Hydraulics provides the 

methods of designing a wide range of hydraulic structures 

(dams, canals weirs pipelines etc) , machinery (pumps, turbines, 
fluid couplings) and other devices in many branches of 

engineering. 



Fluid flow problems in hydraulics are investigated by 

first simplifying and idealizing the phenomenon under 

investigation and applying the laws of theoretical mechanics. 

The results are then compared with experimental data, 

discrepancies are established and the theoretical formulae and 

solutions adjusted so as to make them suitable for practical 

application. Some phenomena are so involved as to defy 

theoretical analysis and are investigated in hydraulics on the 

sole basis of experimental measurement. Thus, hydraulics can 

be called a semi-empirical science. 

1.3 Dimensions and Units of Measurement: 

Physical quantities such as displacement, velocity, force 

etc are represented by dimensions. A unit is a particular way 

of describing the magnitude of a dimension. Thus length is a 

dimension associated with variables such as distance, 

displacement, width, deflection and height while centimeters 

and inches are both units used to describe the magnitude of the 

dimension length. 

The dimensions length {L), time {T), mass {M) and force 

{F) are of fundamental interest in fluid mechanics. The 

dimensions of other, derived, physical quantities may be 

established by applying the above dimensions to the definition 

of the physical quantity under consideration as follows: 



From the four fundamental dimensions given earlier only 

three need be selected as basic since force and mass are 

related through Newton's Second Law of motion. Thus if one is 

chosen as a fundamental dimension in any consistent dimensional 

system the other becomes a derived dimension. According to the 

choice made, two systems of measurement result. These are the 

force (or gravitational) system in which the basic dimensions 

are Force, Length and Time and the Mass (or Absolute) system 

in which the basic dimensions are Mass, Length and Time. 

Physical quantity 

Velocity 

Acceleration 

Force 

Mass 

Thus the FPS (British) system is a force (gravitational) 

system while the MKS (metric) system is a mass (Absolute) 

system of measurement. 

The 6.1. System 

Definition 

Displacent/Time 

Velocity/Time 

Mass x Acceleration 

Force c Acceleration 

The Absolute Metric System of units in which kilogram is 

the unit of mass, meter is the unit of length and second is the 

unit of time, forms the basis of an internationally agreed 

system of units - the Systeme Internationale d' unites - 
designated SI, which is now being adopted by almost all 

countries. 

Derived 

dimension 

C L I  / c TI = LT-I 

L T - ~ / T  = LT-2 

M .  LT-2 

F .  L-l T 2  



The following are the derived units of interest in fluid 

mechanics: 

The basic SI units are the following 

Abbreviations in SI 

m 

kg 

s 

A 

OK 

Cd. 

Mol. 

rad. 

Quantity 

Length 

Mass 

Time 

Electric current 

Temperature 

Luminous intensity 

Amount of substance 

Plane angle 
L 

Quantity 

Force 

Pressure (stress) 

Work,energy, 

quantity of heat 

Power 

Dynamic viscosity 

Kinematic viscosity 

Surface Tension 

Momentum 

SI Units 

Meter 

Kilogram 

Second 

Ampere 

Kelvin 

Candela 

Mole 

radian 

SI Units 

Newton 

Pascal 

Joule 

Watt 

Pascal-second 

Squaremetre 

per second 

Newtons per 

meter 

Kilogram x 

meterlsecond 

Abbreviation 

N {IN = lkg m/s2) 

P, {lP, = 1 ~ / m ~ )  

J (1J = 1 N.m) 

W {lW = 1 J/s) 

P,. s 

m2/ s 

N/m 

Kg.m/s 



Regarding the unit of force, 1N is the force required to 

give a 1 kg mass an acceleration of 1 m/s2. Hence 1N = 1 kg 

m/s2. Since W = mg, the weight or the force of gravity of 1 kg 

mass is 1 kg 9.806  m/s2 = 9.806 kg m/s2 = 9.806  N. Standard 

acceleration due to gravity is 9.806  m/s2. 

Abbreviations of SI units are written in small letters 

eg. hours (h), meters (m). When a unit is named after a 

person, the abbreviation (but not the spelled form) is 

capitalized, examples are watt (W), pascal (P), newton (N). 

Common prefixes are shown below: 

Multiple 

1 o9 

1 o6 

1 o3 

1 o - ~  

SI 

Prefix 

gigs 

mega 

kilo 

centi 

Abbre- 

viation 

m 

C1 

n 

P 

Abbre- 

viation 

G 

M 

K 

C 

Multiple 

1 o - ~  

1 o - ~  

1 o - ~  

1 0-l2 

SI 

Prefix 

milli 

micro 

nano 

pic0 



CHAPTER 2 

PROPERTIES OF FLUIDS 

2.1. Introduction: 

The properties of fluids vary from fluid to fluid and 

have a decisive influence on the motion of a fluid. Thus, it 

is not necessary to deal with each fluid separately while 

studying fluid motion. One needs to study only the variation 

of these properties and the manner in which they influence the 

fluid motion. This chapter discuss fluid properties and their 

significance. 

2.2 Density, specific Weight, Specific Volume and Specific 

Gravity 

D e n s i t y  of a fluid, designated by the symbol Q (Rho), is 

probably the most important property. It is defined as the 

fluid mass per unit volume. In the S.I. system density is 

expressed in kg/m3. Generally the density of a fluid is 

dependent on temperature and pressure. For water at 4Oc and 

standard pressure (i.e. 760 mm of mercury ) ,  Q = 1000 kg/m3. 

S p e c i f i c  We igh t  (or Unit Weight) is defined as the weight 

of fluid per unit volume. It is designated by y (Gama). It 

could also be seen as representing the force exerted by gravity 

on a unit volume of fluid. The unit of specific weight in the 

SI system is ~ / m ~ .  Density and specific weight may be related 

as follows: 

w mg Since y = - = -, v v 
then y = p g .  

The specific weight of water at 4"c is 9810 ~ / m ~ .  



Specific Volume V is the volume of the fluid per unit 

weight. It is the reciprocal of specific weight so that V = 

l/y with units of m3/~. It is a property commonly used in gas 

flow problems. 

Specific Gravity S (also known as relative density) is 

the ratio of the mass of a fluid to the mass of an equal volume 

of pure water at standard temperature and pressure. It may 

also be defined as the density of the fluid to the density of 

pure water at standard conditions. As a ratio, specific 

gravity is dimensionless. The specific gravity of pure water 

is unity while that of mercury is about 13.60. 

2.3 Pressure, Compressibility, Viscosity: 

Pressure: The normal force exerted against a plane area 

divided by the area is the average pressure on the area. 

Fluids exert pressure on the walls and the bottom of containers 

in which they are stored. If AF is the force exerted over an 

area AA, then the pressure P is given by: 

lim - A F  p = - - -  
AA-0 A A  

Pressure P has the dimension force per unit area. In the 

SI system, the unit of P is ~/m' which is called pascal (P,). 

Pressure is also expressed in bars, where 1 bar = 100,000 ~ / m ~ .  

Compressibility: All fluids may be compressed by the 

application of pressure, elastic energy being stored in the 

process. As a result of compressibility, fluid density changes 

with pressure. Gases are highly compressible and hence are 

treated as such. In liquids, the change in density (and 

therefore in volume) is very small even under large pressure 

changes. Therefore, liquids are ordinarily considered as 

incompressible. But in special problems such as Water Hammer 

involving sudden or great changes in pressure, the 



compressibility of the liquid becomes important and should be 

taken into consideration. 

The compressibility of a fluid is expressed by defining 

a modulus of elasticity as in done for solids. But since 

fluids do not possess rigidity of form, the modulus of 

elasticity must be defined on the basis of volume; such a 

modulus being termed Bulk Modulus of Elasticity K. 

In order to define the Bulk Modulus of Elasticity, 

consider a compressible fluid in a cylinder of cross-sectional 

area A, which is being compressed by a piston as shown in 

Figure 2.1. The cylinder and the piston are considered rigid. 

L - 
V/Vo (volumetric strain) 

( b) 

Figure 2.1 

Let the original volume of the fluid be V,. The 

application of a force F results in the pressure P = F / A  

exerted on the fluid. This pressure reduces the fluid volume 

to V. A plot of V/V, (which is a measure of volumetric 

strain) against the pressure P results in a curve of negative 

slope as shown in Figure l(b) . The Bulk Modulus of Elasticity 
K of the fluid corresponding to a pressure P, is defined as: 



The negative sign indicates the decrease in dv/Vo with 

increase in pressure. Since dv/V, is dimensionless, the 

dimension of K is the same as that of the pressure P. Water 

has an average value of K = 2.1 GPa. This shows that water is 

about 100 times more compressible than steel, but it is 

ordinarily considered incompressible. 

Table 2.1 Bulk Modulus of Elasticity of Water 

K (GPa) 

Example 2.1. What pressure increase is required to reduce the 

volume of 100 c.c of water by 0.5%? K = 2.1 GPa 

Pressure 

MPa 

0.1 - 2.5 

2.5 - 5.0 

5.0 - 7.5 

7.5 - 10.0 

10.0 - 50.0 
- - 

50.0 - 100.0 

100 - 150 

Solution: 

Temperature 

0" C 

1.93 

1.96 

1.99 

2.02 

2.13 
- 

2.43 

2.84 

50' C 

2.43 

2.77 

3.11 

lo0 C 

2.03 

2.06 

2.14 

2.16 

2.27 

2.57 

2.91 

20° C 

2.07 

2.13 

2.23 

2.24 

2.34 

2.67 

3.00 



Since 1 atmosphere 1 x 10' Pa, the required 

increase in pressure is 105 atmospheres. This 

is an extremely high pressure which is required 

to produce a volume change of only 0.5%. Hence 

the reasonableness of the assumption that 

liquids are practically incompressible under 

ordinary changes in pressure. 

Viscosity: Viscosity is one of the most important 

physical properties of fluids. It is a measure of the 

resistance of a fluid to relative motion such as shear and 

angular deformation within the fluid. Viscosity is due to 

interchange of molecules between adjacent layers of fluids 

moving at different velocities and also to the cohesion between 

fluid particles. Viscosity plays a decisive role in laminar 

flow and fluid motion near solid boundaries. 

The relationship between viscous shear stress and 

viscosity is expressed by Newton's law of viscosity. Consider 

a fluid confined between two plates separated by a small 

distance y as shown in Figure 2.2. The lower plate is 

stationary while the upper plate is moved with a velocity v. 

Figure 2.2 

Since there will not be slippage between the plates and the 

fluid, particles of fluid in contact with each plate will 



adhere to it i.e. fluid particles in contact with the moving 

plate will have a velocity V while those in contact with the 

stationary plate will have zero velocity. The effect is as if 

the fluid were made up of a series of thin, parallel layers 

each moving a little faster relative to the adjacent, lower 

layer. 

For a large number of fluids, the shear stress developed 

between adjacent layers of fluid is found to be directly 

proportional to the rate of change of velocity with respect to 

Y, which is the velocity gradient. For a layer of thickness 

dy at a distance y from the stationary plate this becomes; 

Introducing a constant of proportionality p ,  one obtains: 

The proportionality constant p expresses the property of the 

particular fluid and is called dynamic viscosity. Equation 2.2 

is called Newton's Law of viscosity. 

Fluids may be classified on the basis of the relationship 

between the shear stress r and the rate of deformation 

(velocity gradient) as shown in Figure 2.3. 

Fluids may be classified as Newtonian and non-Newtonian. 

In Newtonian fluids there is a linear relation between the 

xagnitude of the applied shear stress r and the resulting rate 

af deformation i.e. p is constant. In non-Newtonian fluids 

there is a non-linear relation between the applied shear stress 

and the rate of angular deformation. An ideal plastic has a 



Figure 2.3 Rheological diagram 

definite yield stress and a constant linear relation between 

T and du/dy thereafter. A thixotropic substance, such as 

printer's ink, has a viscosity that is dependent upon the prior 

angular deformation of the substance and has a tendency of 

setting when at rest. Gases and thin liquids such as water, 

kerosene, glycerin etc are Newtonian fluids. 

The viscosity of a fluid is a function of temperature. 

Since the viscosity of liquids is governed by cohesive forces 

between the molecules, it decreases with increase in 

temperature. In gases, however, molecular momentum transfer 

plays a dominant role in viscosity and as a result the 

viscosity of gases increases with increase in temperature. 

The unit of dynamic viscosity p is ~ s / m ~  or kg/ms. A 

smaller unit of dynamic viscosity is called the poise. 1 poise 

= 1 gm1crn.s.  Thus 1 poise = 0.1 kg/ms. 

Kinematic viscosity ( v )  is the ratio of dynamic viscosity 

to density. v = p / ~  and has units of m2/s. A smaller unit of 



v is the stoke. 1 stoke = 1 cm2/s. Thus 1 stoke = 1 x l o 4  
m2/s. 

Table 2.2 Dynamic and Kinematic Viscosities of Water and 

Carbon Tetrachloride. 

2.4. Surface Tension, capillarity and Vapour Pressure 

I 

Temp 

oc 

0 

10 

2 0 

3 0 

40 

50 

These are strictly liquid properties. 

Surface Tension and Capillarity are due to properties 

called cohesion and adhesion. Cohesion is the property as a 

result of which molecules of a liquid stick to each other 

whereas adhesion is the property that enables liquids to stick 

or adhere to another body. As a result of cohesion an 

imaginary film capable of resisting some tension is created at 

a free liquid surface. The liquid property that creates this 

capability is called surface tension. It is because of surface 
tension that a small pin placed gently on water surface will 

not sink but remain floating being supported by the tension at 

the water surface. The spherical shape of water drops is also 

due to surface tension. Surface tension force, designated by 

a, is defined as force per unit length and has the unit N/m. 

Water 

Q (kglm3' 

999.8 

999.70 

998.21 

995.7 

992.2 

989.0 

Carbon Tetra Chloride 

p(kglm3) 

1633 

1613 

1594 

1575 

1555 

1535 

P 

(1 O.'P,sl 

17.53 

13.00 

10.02 

7.972 

6.514 

5.542 

U 

(1 06m21s) 

1.75 

1.30 

1.004 

0.801 

0.657 

0.555 

P 

(1 0-'pas) 

13.46 

1 1.34 

9.708 

8.41 8 

7.379 

6.529 

U 

(1 0-6m2/s) 

0.824 

0.703 

0.609 

0.534 

0.475 

0.425 



For water in contact with air 6 varies from about 0.074 N/m 

at O°C to 0.059 N/m at 100°C. Surface tension force is so small 

that it is neglected in ordinary hydraulic problems. It is, 

however, a factor to be taken into consideration in flows at 

small depths that occur in model studies. Capillarity is due 

to both adhesion and cohesion. If a glass tube of small 

diameter and open at both ends is dipped in a container of 

water, the water rises in the tube to some height above the 

level of water in the container (Figure 2.4 a) . If the same 

tube is dipped in a container of mercury, the level inside the 

tube will be lower than that in the container (Figure 2.4 b). 

In the former, adhesion of water to glass is predominant in 

comparison to the cohesion whereas in the latter cohesion 

between mercury molecules is predominant. 

a )  Capillary rise in Water b )  Capillary drop in Mercury 

Figure 2.4 capillarity Effects 

Capillary rise or Capillary drop can be estimated by 

considering the equilibrium of the liquid column of height h 

as follows: 

Consider a tube of small internal diameter D = 2r dipped 

in a liquid of specific weight y and surface tension force a. 



Let the liquid rise to a height h in the tube as a result of 

capillarity (Figure 2.5). 

Figure 2.5 

The liquid column of height h is supported by vertical 

component of the surface tension force at the liquid-air 

interface. For vertical equilibrium: 

from which, h = 20 c o s 0  - - 4a c o s 0  
Y= Y -0  

This shows that the capillary rise is inversely proportional 

to the diameter of the tube. Hence for tubes of very small 

diameter, the capillary rise can be considerable. Therefore, 

to minimize the effect of capillarity, the tubes of manometers 

and piezometers should not be less that about 10 mm in 

diameter. If the surface is clean, the contact angle is zero 

for water and about 140' for mercury. 



Table 2.3 Surface Tension of Water (N/m) 

Vapour Pressure: Liquids evaporate when their surface 

is exposed to the atmosphere. The nature of the liquid, its 

temperature and the prevailing atmospheric pressure determine 

the rate of evaporation. If a closed container is partially 

filled with a liquid maintained at a constant temperature, 

evaporation will take place and the vapor molecules 

accumulating in the space above the liquid exert a pressure 

called vapour pressure P, on the liquid surface. In the 

process of evaporation, some of the vapour molecules get 

reabsorbed into the liquid. With the passage of time an 

equilibrium situation is established whereby the number of 

molecules released from the liquid become equal to the number 

of molecules reabsorbed and the vapour pressure becomes 

constant. This vapour pressure is called the saturation vapour 

pressure. Increase of temperature hastens evaporation because 

of increased molecular activity and consequently saturation 

vapour pressure is increased with temperature. A liquid having 

high vapour pressure evaporates more easily than a liquid with 

low vapour pressure. Thus Carbon Tetra Chloride, with a 

saturation vapour pressure of 1.275 x lo4 ~ / m ~  at 20°C, 

evaporates easily compared to Mercury, which has a saturation 

vapour pressure of only 0.17 ~ / m ~  at 20°C. This is one of the 

reasons that make mercury an ideal liquid for barometers and 

manometers. 

Boiling of a liquid will takes place, at any temperature, 

when the external absolute pressure impressed on a liquid 

surface is equal to or less than the saturation vapour pressure 

of the liquid. In liquid flow system, very low pressures may 

be produced at certain points in the system. If these 

Temperature 

Oc 

o 

0" 

0.0742 

10" 

0.0728 

20" 

0.0713 

30" 

0.0698 

40" 

0.0682 

50" 

0.069 

6 0" 

0.0661 



pressures are less than or equal to the vapour pressure of the 

liquid, the liquid flashes into vapour creating vapour pockets. 

These vapour pockets collapse as they are swept into regions 

of higher pressure. This phenomenon is called Cav ia t i on  and 

can result in damages of conduit walls and propeller runner 

blade tips where low pressures are likely to develop. Table 

2.4 gives some values of saturation vapour pressure of water. 

Table 2.4 Saturation Vapour Pressure of Water 
- 

Example 2 . 2 .  An oil has a density of 850 kg/m3 at 20°C. Find 

its specific gravity and Kinematic viscosity if 

the dynamic viscosity is 6 x loJ kg/ms. 

So lu t ion :  Specific gravity of oil, So = Q  oil/^ water 
= 850/1000 = 0.85 

50 

12.33 

Kinematic viscosity, vo = p / ~  = 6 x 1850 

= 7.06 x lo4 m2/s. 

Temperature 

oC 
7 

PJx1 O3 N/m2) 

Example 2 . 3 .  The velocity distribution over a plate in a fluid 

( p  = 8.63 Poise) is given by 2 
u = --y - y 2  where 

10 

1.227 

0 

0.6108 

u is the velocity in m/s at a distance y metres 

above the plate. Determine the shear stress at 

the plate and at a distance of 0.15 metres from 

the plate. 

20 

2.337 

30 

4.242 

40 

7.377 



Solution: 

2 There fo re  d u / d y  = - - 2 y  
3  

2 Hence d u / d y  = - a t  y = 0 
3  

2 and d u / d y  = - - 0.30 = 0.367 a t  y = 0.15 m 
3 

p = 8 . 6 3  po i se  = 0.863 Ns/m2 

The shear s t r e s s  T = p d u / d y  

2 Thus, a t y =  0, T = 0.863 x - = 0.575 N/m2 
3 

Example 2.4. What should be the diameter of a droplet of water 

in mm at 20°C if the pressure inside is to be 170 

~ / m ~  greater than the outside? 

Solution: 

Let the diameter of the droplet be d and the 

internal pressure be p. If the droplet is cut 

into two halves forces acting on one half will 

x d 2  be those due to pressure intensity p on the area - 
4 

and the force due to surface tension a acting 

around the circumference nd. These two force will 

be equal and opposite under equilibrium condition. 



Therefore d = 0.074 = 1.74 x 10-~rn = 1.74 mm 
17 0 

Example 2.5. The density of a certain oil at 20°C is 800 

kg/m3. Find its specific gravity and kinematic viscosity if the 

dynamic viscosity is 5 x kg1m.s. 

Solution: 

Specific gravity, s = Q of oil/q of water 

= 800/103 = 0.80 

Kinematic viscosity, u = p / ~  

= 5 x 10"/800 = 6.3 x lo4 m2/s 

Example 2.6. The velocity destribution of a viscous fluid 

over a fixed boundary is given by u = 0.72~-y2 in which u is 

the velocity in m/s at a distance y metres above the boundary 

surface. If the dynamic viscosity p of the fluid is 0.92 

~ s / m ~ ,  determine the shear stress at the surface and at y = 

0.36 m. 

Solution: 

u = 0.72~-y2 

.'. du/dy = 0.72-2y 

At the surface, y = 0 and du/dy = 0.72 s" 

At y = 0.36, du/dy = 0.72-2(0.36) = 0 

Since r = p du/dy 

At the surface, r = 0.92 x 0.72 = 0.662 ~/m' 

At y = 0.36, r = 0.92 x 0 = 0 



Example 2.7. At a depth of 6.8 Km in the ocean the pressure 

is 72 MN/m2. The specific weight of sea water at the surface is 

10.2 K N / ~ ~  and its average bulk modulus is 2.4 x 10 h / m  . 
Determine (a) The specific volume (b) The change in specific 

volume over the depth, and (c) the specific weight of sea 

water at 6.8 Krn depth. 

Solution : 

change in pressure dp from surface to 6.8 Km depth 

= 72 MN/m 2 

= 7.2 x lo4 K N / ~ ~  

Bulk  modulus ,  k  = -2 
dv/ V 

a) Specific volume = volume per unit weight = 1/Y 

:. specific volume at the surface = 1110.2 = 9.8 x lo-' m3/IC~. 

b) Change in specific volume between that at the surface and at 

6.8 Km depth, dv = 3 x x 9.8 x = 29.4 x m 3 / W  

c) The specific voulme at 6.8 Km depth = 9.8 x -29.4 x 

= 9.51 x lo-' m3/kN 
:. The specific weight at 6.8 Km depth = l/specific volume 

= 119.51 x lo-' 
= 10.52 kN/m3 

Example 2.8. Calculate the capillary effect in mm in a glass 

tube of 6 mm diameter when immersed in (a) Water a = 73 x 
N/m and (b) Mercury, a = 0.5 N/m. The contact angles for Water 

and Mercury are zero and 130° respectively. Take specific 

weights of water and mercury to be 9810 ~ / m ~  and 1.334 x lo5 N/m3 
respectively. 



Solution: 

Capillary rise (drop), h = 4 o c o s a  , where d is tube 
Y d 

diameter. 

For Mercury: Capillary drop, 

4 x 0.5 x c o s  130° = h = 
1.334 x 10' x 6 x 

= -1.61 mm = 1.61 mm depression 

For Water: Capillary rise 



Exercise Problems 

1. A block of dimensions 300 mm x 300 mm x 300 mm and mass 30 
kg slides down a plane inclined at 30' to the horizontal on 

which there is a thin film of oil of viscosity 2.3 x 

Ns/m2. Determine the speed of the block if the film 

thickness is 0.03 mm. (Ans. 21.3 m/s) 

2. Calculate the capillary effect in mm in a glass tube of 

6mm diameter when immersed in (i) water, and (ii) mercury, 

both liquids being at 20' C. Assume a to be 73 x 10 -3 N/m 

for water and 0.5 N/m for mercury. The contact angles for 

water and mercury are 0" and 130' respectively. 

3. Calculate the internal pressure of a 25 mm diameter soap 

bubble if the tension in the soap film is 0.5 N/m. 

(Ans. 80 N/m2) 

4 .  A hydraulic ram 200 mm in diameter and 1.2 m long moves 

wholly within a concentric cylinder 100.2 mm in diameter, 

and the annular clearance is filled with oil of specific 

gravity 0.85 and kinematic viscosity 400 mm2/s. What is 

the viscous force resisting the motion when the ram moves 

at 120 mm/s? 

5. Eight kilometers below the surface of the ocean the 

pressure is 81.7 M N / ~ ~ .  Determine the specific weight of 

sea water at this depth if the specific weight at the 

surface is 10.06 kN/m3 and the average bulk modulus of 

elasticity is 2.34 G N / ~ ~ .  Assume that g does not vary 

significantly. 

(Ans. 10.42 kN/m3) 

6. A one square metre then plate is dragged at a velocity of 

3 m/s on the top of a 5mm deep liquid of dynamic viscosity 
20 centipoises. Assuming linear velocity variation in the 

liquid, find the drag force. 



7. If the velocity distribution over a plate is given by 

3 u = g y  - y 2  where u is the velocity in m/s at distance y 

metres above the plate determine the shear stress at a 

distance of 0.15 m from the plate. Take the dynamic 

viscosity of the fluid as 0.834 Ns/m2. 

(Ans. 0.375 ~/m*) 

8. The volume of a liquid is reduced by 1% by increasing the 

pressure from 5 atmospheres to 125 atmospheres. Estimate 

the modulus of elasticity of the liquid. 

9. A sliding fit cylindrical body 14.9 cm in diameter and 15 

cm long and having a 1 kg mass drops vertically at a 

constant velocity of 5 cm/s inside a cylinder with 15 cm 

inside diameter, the space between the body and the 

cylinder is filled with oil. Estimate the viscosity of 

the oil. 

(Ans. u = 1.4 Ns/m2) 



CHAPTER 3 

HYDROSTATICS 

3.1 Introduction 

Hydrostatics deals with the study of fluids that are at 

rest or are moving with uniform velocity as a solid body so 

that there is no relative motion between fluid elements. When 

there is no relative motion between fluid layers there is no 

shear stress in fluids at rest whatever the viscosity of the 

fluid. Hence only normal pressure forces are present in 

hydrostatics. Engineering applications of hydrostatic princi- 

ples include the study of forces acting on submerged bodies 

such as gates, submarines, dams etc. and the analysis of 

stability of floating bodies such as ships, pontoons etc.. 

3.2 Pressure at a Point in a Static Fluid 

In a fluid at rest, no tangential stresses can exist. 

The only forces between adjacent surfaces are pressure forces 

that are normal to the surfaces. Therefore the pressure at any 

point in a fluid at rest is the same in every direction. This 

is known as Pascal's Lw. Pascal's Principle can be proved by 
considering a small wedge shaped fluid element at rest as shown 

in fig. 2.1. The thickness of the wedge perpendicular to the 

plane of the paper is dy. 



Figure 3.1 Free-body of a fluid wedge 

Let P,, P,, and P, be the average pressures acting on the 

faces ab, ac and bc of the prism respectively. The weight of 

the fluid prism is %y dx dy dz where y is the specific weight 

of the fluid . 

Since the fluid prism is in equilbrium, the equations of 

equilibrium will be; 

X direction: P, d, d, - P, dt  dy cos a = 0 

but dz = dt  cos a 

so that, P, dt cos a dy - P dt dy cos a = 0 

.'. P, = P3 

Z direction: P2 dx dy - P3 dl! dy sin a - y .  dx.dy.dz = 

2 

dx = dt  sin a and as dx, dy and dz all shrink to 

zero, the third term i n  the above equation 

becomes zero. 

Thus P, - P, = 0 

.'. P, = P, 

Then P, = P, = P, 



This shown that the pressure at a point in a static fluid is 

the same in all directions. 

3.3 Basic Equation of Hydrostatics 

The basic equation of Hydrostatics may be derived by 

considering the infinitesimal fluid parallepiped in a static 

fluid shown in fig. 3.2. below. 

Figure 3.2 A rectangualr fluid parallelepiped 

Assuming the density of the fluid p in the infinitesimal cube 

to be constant, the mass of the fluid is p.dx.dy.dz. Let the 

ap ap pressure variation in the x,y and z directions be - ax ay 

and - respectively and let the entire fluid mass be a2 

subjected to acceleration of a,, a, and a, in the x, y and z 

directions respectively. 



Considering the equilibrium in the vertical (Z) 

direction: 

+ p  &.dy -(P+Z dz) &.dy - pg & dy dz - a,. pcixdydz = o a2 

which reduces to 

Similarly it can be shown that 

ap - = -pay and 3 = -pa, a~ ax 

The total change in pressure is given by the total differential 

as follows: 

or dp = -pa ,. dx - pa,. dy - p ( a ,  + g) . dz 

... dp = - p[a,dx + aydy + (a ,  + g)dz] 

Equation 3.1 is the basic equation of fluid statics applicable 

for both compressible and incompressible fluids. 

3.4 Variation of Pressure with Elevation in a Static 

Incompressible Fluid 

For a fluid at rest and subjected only to graviational 

force, the accelerations ax, ay and az are zero. Eqn 3.1 thus 

reduces to: 



Equation 3.2 holds true for both compressible and 

incompressibile fluids. However for homogeneous and 

incompressible fluids, p is constant and eqn 3.2 may be 

integrated to give; 

where c is a constant of integration and is equal to the 

pressure at z = 0. In hydrostatics the law of variation of 

pressure with depth is usually written as; 

In Equation 3.3, h is measured vertically downward ( i . e. h = - z )  

from a free surface, p is the pressure at a depth h below the 

free surface and p, is the pressure at the free surface. 

Equation 3.3 shows that for a fluid at rest, the pressures at 

the same depth from the free surface are equal. Hence in a 

homogeneous continuous fluid a surface of equal pressures is 

a horizontal plane. 

Figure 3.3 

consider two points (1) and (2) at a depth of h, and h, in a 

tank containing a liquid, with density p, at rest as shown in 

Figure 3.3. The pressure at (1) is p, = p, + pgh,. The 

pressure at (2) is p, = p, + pgh,. If h, = h,, then p, = p,. 



For hl > & ,  the pressure difference between (1) and (2) is 
p1 - p2 = AP = pghl - pgh2 = pg(h~ - h2) = pg A 2.  

b = -  is the pressure difference between (1) and (2) 
Pg 

expressed as a height of the liquid. This difference is also 

refered to as the pressure head difference. Thus, by dividing 

a pressure by the specific weight y = pg of a fluid, the 

pressure can be expressed as height of fluid column. 

3.5 Variation of Pressure with Elevation in Static 

Compressible Fluids 

Since density varies with pressure in compressible 

fluids, the relation between density and pressure must be 

known in order to integrate the basic equation of fluid 

statics and obtain expressions for the variation of pressure 

with elevation in compressible fluids. The relation between 

pressure and density is dependent on the prevailing 

conditions. These conditions are; Constant temperature (i.e. 

isothermal), adiabatic and constant temperature gradient 

conditions. 

Isothermal Condition: The relation between pressure, density 

and temperature for constant temperature condition is given 

by the perfect gas law: P/Q = RT. Substituting this in the 

basic equation of hydrostatics i.e. Equation 3.2: 



Integrating from p = p, where z =z,  to p = p2 where z = z,, 

or 
p2/p1 = exp ( -g/ RT) ( z2 - z l )  ( 3 . 4 )  

Adiabatic Condition: Under adiabatic condition the 

relationship between pressure and density is given by p/ek = 

constant = p,/ e,k, 

so that 

Substitution of the above in the basic equation 3.2 gives: 

- dp - - - (p,g/p:'*) 
dz 

or dz = - (p: 'k /p lg)  . p l / " .  dp 

Integrating from p = p, when z = z , ,  to p = p, when z = z,, 

The above may be written as: 

z, - z, = - ( k /  ( k - 1 )  ( p , / p , g )  { ( P , / P , )  ( k - l ' / k  - 1) 



or, since pl/p, = RT for any gas, 

In the above equation, T is absolute temperature in o,, R = 288 

J kg-' k-' = 288 m2/s20, and k = 1.4 for adiabatic condition. 

The temperature lapse rate - the rate of change of temperature 
with altitude - can be found for a diabatic conditions as 
follows: 

Substituting the characteristic equation, Q = p/RT in Equation 

3.2 and rearranging, 

k  For adiabatic condition, p / p k  = pl/pl , and since p / p  = RT , 

substitution and rearranging gives: 

Differentiating the above, 

k/ (1-k) *-l/ ( 1 - k )  dT dp = -k/ (1-k))~,. T, 

Substituting the values of p and dp in the equation for dz, 

dz = {k/ ( I - k ) ) ( ~ / g ) d ~  



Therefore, the temperature gradient is given by: 

Constant Temperature Gradient Condition: Assuming that there 

is a constant temperature lapse rate (i. e. dT/dZ = constant) 

with elevation in a gas, so that its temperature drops by an 

amount 6T for a unit change in elevation, then if T, = 

temperature at elevation Z,, then T = temperature at elevation 

Z is given by: 

Putting this in Equation 3.2 and noting that p / ~  = RT, 

Substituting the above value of T, 

dp/p = -Ig/ ( R ( T ,  - ~ T ( z - 2 , )  ) )Id2 

Integrating the above between limits P,and P, and Z, and Z,, 

On the average, there is a temperature gradient of about 6.5"C 

per 1000 m in the atmosphere i. e. 6T = 6.5"C per 1000 m = 

0.0065"~.m-l. 

3.6 Absolute and Gage Pressur 

A pressure may be expressed with reference to any 

arbitrary datum. It is usually expressed with respect to 



Absolute zero (perfect vacuum) and local atmospheric pressure. 

When a pressure is expressed with respect to Absoulte zero, the 

pressure is called Absolute pressure, Pabs. If a pressure is 

expressed with respect to local atmospheric pressure, it is 

called gage pressure, Pgage. 

Figure 3.4 ilustrates the concept of pressure datum. 

Prevailing pressure 

- - t G o g e u i e - (  Ive)OTuie pressure (case I ) 
(case I ) ( case I ) 

- - Local atmospheric 
pressure 

Gage pressure (-iveJ 

E'J- - - T- prevailing pressure 
(case 

I Atmospheric / I 
pressure I Absolute pressure 

I ( case ii ) 

Figure 3.4 Pressure and Pressure Datum 

Absolute zero 

It is evident from fig. 3.4 that absolute pressure is always 

positive since there cannot be any pressure below absolute 

zero. 

Gage pressure is positive if the pressure is greater than 

atmospheric pressure and negative if the pressure is lower than 

the atmospheric pressure. The following equation expresses the 

relationship between absolute, gage and atmospheric pressure; 

In equation 3.8 P,,, may be positive or negative as the case may 

be. In hydrostatics, pressures are usually expressed as gage 

pressures unless otherwise specified. 

V 11 



~tmospheric pressure is also called Barometric pressure 

because the Barometer is the instrument used to measure the 

absolute pressure of the atmosphere. The simple barometer 

consists of an inverted tube closed at one end and immersed in 

a liquid with the open end down (Figure 3.5) . If air is 

exhausted form the closed end of tube, the atmospheric pressure 

on the surface of the liquid in the container forces the liquid 

to rise in the tube. 

If air is completely exhausted from the top portion of 

the tube, the liquid will rise in the tube to a height y and 

the only pressure on the liquid surface in the tube is the 

vapor pressure of the liquid, P,. 

Figure 3.5 The simple Barometer 

If p is the density of the liquid then the following equation 
is obtained from the variation of pressure in a static liquid. 

P a  = Pv + PW = Patm 

The vapour pressure P, is very small compared to the 

atmospheric pressure. Hence equation 3.9 may be approximated 

to P, = pgy. Thus the atmospheric pressure when expressed as 



P a  tm the depth of the liquid becomes y = - and y is called the 
P g  

pressure head. It follows from this that if a liquid with low 

density is used, y will be excessively large. Therefore, 

mercury is usually used in barometers mainly because its 

specific weight is very high thus enabling the use of short 

tube and also because its vapour pressure is negligibly small. 

At sea level, y is 760 mm of mercury or 10.33 m of water. 

Atmospheric pressure at sea level is equal to 101.325 K N / ~ ~  and 

is also called standard atmospheric pressure. 

3.7 Measurement of Pressure 

Pressure is always measured by the determination of a 

pressure difference. As mentioned earlier, liquid pressures 

are normally expresed with respect to the prevailing 

atmospheric pressure and are called gage pressures. Several 

devices are employed for measuring pressures. Some of these 

are discussed here. 

3.7.1 The Bourdon Gauge 

The Bourdon gauge is a commercial instrument used to measure 

pressure differences (gage pressures) by the deformation of an 

elastic solid and may be employed when high precision is not 

required. It consists of a curved tube of elliptical cross- 

section closed at one end. The closed end is free to move 

while the other open end through which the fluid enters is 

rigidly fixed to the frame as shown in fig. 3.6. 



Figure 3.6 The Bourdon gauge 

The internal pressure intensity of the fluid tends to 

straighten the curved tube by an amount proportional to the 

pressure intensity. The deflection of the tube cause a pointer 

moving over a scale to undergo a corresponding angular 

displacement by menas of a suitable gear and linkage 

arrangement. Zero reading is calibrated to correspond to local 

atmospheric pressure. All such gages required calibration. 

3.7.2 Piezometer Column 

A piezometer may be used to measure moderate positive 

pressures of liquids. It consists of a simple transparent tube 

open to the atmosphere in which the liquid can freely rise 

without overflowing as shown in Fig. 3.7. The height to which 

the liquid will rise in the tube indicates the pressure. 



Figure 3.7 A simple piezometer 

If the density of the liquid is p ,  then the pressure at 

A (gage pressure) is given by PA = pgh. To reduce capillarity 

effects, the tube diameter should be at least 15 mm. 

Piezometers can not be used to measure negative pressure since 

air will be sucked into the container. 

3.7.3 Manometers 

Manometers are devices used to measure the defference in 

pressure between a certain point and the atmosphere, or between 

two points neither of which is necessarily at atmospheric 

pressure. They are suitable for measuring high pressure 

differences both positive and negative, in liquids and gases. 

The Common (simp1 e) Manometer: 

The simple manometer consists of a transparent U - tube 
connected to a pipe or other container containing fluid N 

(figure 3.8). The lower part of the U - tube contains liquid 
M which should be immiscible with N and is of greater specific 

gravity. The most frequently used manometer liquids are 



mercury (specific gravity 13.6) and Alcohol (speific gravity 

0.9). 

Figure 3.8 The Simple Manometer 

Since the pressure in a continuous and homogenous fluid is the 

same at any two points in a horizontal plane, the pressures at 

K and L are equal for the equilibrium condition shown in Fig. 

3.8. Thus if the specific weight of liquids N and M is y, and 

y, respectively one obtains the following; 

If liquid N is a gas, y, is negligible compared to y, and then 

P = yMy,. In situations where the pressure to be measured is 

sub-atmospheric the arrangement may look like in Fig. 3.9. 



'M 

Figure 3.9 

The manometric equation will now be p, + y,.y, + y,  y, =O. 

Differential Manometer 

A U - tube manometer is often used for measuring the 
difference in pressures between two containers as shown in Fig. 

3.10. Such a manometer is sometimes refered to as differential 

manometer. 

Considering points K and L an a horizontal plane in liquid M, 

PK - - P, and this may be written as 

Micromanometers 

Micromanometers are used for measuring very small 

differences in pressure or precise determination of lare 

pressure. differences. A typical arrangement, shown in Fig. 



Figure 3.10 Differential Manometer 

3.11, consists of two immiscible gage liquids A and B which are 

also immiscible with the fluid C to be measured. Prior to 

connection to the two containers m and n, the heavier gauge 

liquid A fills the lower protion of the U-tube to the level 1-1 

and liquid B is at level 0-0. Fig. 3.11 shows the equilbrium 

situation when the pressure at m is higher than at n. 

Writing the manometric equation starting from m: 

The above simplifies to: 

Pm + 2Amc - 2 A n B  + hyB - h y A  = Pn 



area 

Figure 3.11 Micromanometer 

Substituting and rearranging; 

The term in brackets is constant for a specific gauge and 

fluids and hence the pressure difference is directly 

proportional to h. 

Example 3.1 

A closed tank is partly filled with water and connected 

to the manometer containing mercury (S = 13.6) as shown in the 

figure below. A gauge is connected to the tank at a depth of 

4 m below the water surface. If the manometer reading is 20 



cm, determine the gauge reading in ~ / m ~ .  What will be the 

gauge reading when expressed as head of water in m? 

1 Air I I 

Water 

- 0  

rcury 

Figure E 3.1 

Solution: 

1 using the letter designation in the ~igure, pA = P A  

1 P,  = PA - 0.20 YM 

P ,  = P, and PD = P,,,, = pC + 4  y, 

I Po = P A  - 0.2Oym + 4yw 

= 0 - o.20xyw.sm+4yw=y,(-0.2Sm + 4 )  

(-0.2 x 13.6 + 4 ) m  = 9810(-2.72 + 4 ) N / m 2  
= 9810 7 



Therefore, the gauge reading is 12556.8 N/m, 

When expressed as head of water, the gauge reading will be 

A manometer is mounted in a city water supply main pipe 

to monitor the water pressure in the pipe as shonw below. 

Determine the water pressure in the pipe. 

Figure E 3.2 

Solution: 

PA = P, 

= 1 , 2 6 5 5  x l o 5  N / m  = 1 . 2 4 9 a t m o s p h e r e s  

(Note: 1 s t a n d a r d  atmosphere = 1 . 0 1 3 2 5  x 10' N / m 2 )  



Example 3.3 Calculate the height of liquid columns 

bottom of the tank in the three piezometer tubes 

Figure E 3.3. 

from the 

shown in 

Figure E 3.3 

Solution: 

Pressure at C = PC 

Pressure head in terms of water = h, 

Pressure at B = P, 

Pressure head in terms of liquid with s = 0.9 is h, 



Pressure at A = PA 

Pressure head in terms of liquid with s = 0.8 is h, 

Therefore: 

Height of liquid surface in tube 1 from tank bottom 

= 1.5 + 1.8 + 2 = 5.3 m 

Height of liquid surface in tube 2 from tank bottom 

= 3.13 + 2.0 = 5.13 m 

Height of liquid surface in tube 3 from tank bottom 

= 4.82 m 

Example 3.4 Calculate the pressure at point A in Fig. E 3.4 

and express it in terms of head of water. 

Figure E 3.4 

Solution: 

Starting from B, 

0 - 0.1 X 9810 X 13.6 +0.8~, - 0.4 X 1.8 X 9810 = PA 

- 13,341.6 + 0.8~,, - 7,063.2 = P a  



neglecting y,, , 

PA = -20,404.8 N / m 2  (vacuum) 

In terms of head of water, h, = -20404.8 = -2.08 m of water 
9810 

Example 3.5 Calculate the pressure difference between points 

A and B in the differential manometer shown in Figure E 3.5. 

ter 

Figure E 3.5 

Solution: 

Starting from A, 

Example 3.6 In the two compartment closed tank shown in Fig. 
E 3.6, the pressure in the air in the left compartment is -26.7 



kN/m2 while that in the air in the right compartment is 19.62 

k~/m'. Determine the difference h in the levels of the legs of 

the mercury manometer. specific gravity of mercury is 13.6. 

Figure E 3.6 

Solution: 

Since the pressure in a static fluid is the same in a 

horizontal plane, PA = P, 

PA = PC + 3.5 x y, = 19.62 + 3.5 x 9.81 = 5 3 . 9 5 5 k ~ l m ~  

P, = P, + 4.1 x 0 . 9 ~ ~  + h x 1 3 . 6 ~ ~  

= -26.7 + 4.1 X 0.9 X 9.81 + h X 13.6 X 9.81 

= -26.7 + 36.20 + 133.42 h 

= 9.5 + 133.42 h 

. 9.5 + 133.42 h = 53.955 

Thus h = (53.955-9.5)/133.42 = 0.333 m 

= 33.3 cm 

Example 3.7 At an altitude Z, of 11,000 m the atmospheric 

temperature T is -56.6"C and the pressure P is 22.4 kN/m-'. 



Assuming that the temperature remains the same at higher 

altitudes, calculate the density of the air at an altitude of 

Z, of 15000 m. Assume R = 287 J kg-' K-'. 

Solution : 

Let P, be the absolute pressure at Z, 

Since the temperature is constant: 

P,IP, = P 
-(g IRT - 2,) 

Here, P, = 22.4kN m-, = 22400~ m-', 2, = 11,000 m, 2, = 15000 m 

R = 287 6 kg-' k-', T = -56.6OC = 216.5O k: 

= 22.4 x lo3. exp (-0.631) = 11.91 x lo3 NM-' 

From the equation of state of a perfect gas, P, = Q,RT 

Therefore, the density of air at 15000 m is Q, = P2/RT 

or = 11.92 x lo3/ (287 x 216.5) = 0.192 kg m-3. 

Example 3.8 Assuming that the temperature of the atmosphere 

drops with increasing altitude at the rate of 6.5" C per 1000 

m, find the pressure and density at a height of 5000 m if the 

corresponding values at sea level are 101 kN rn', and 1.235 kg m" 

respectively when the temperature is 15" C. 

Take R = 287 J kg-' K-'. 



Solution: 

From Equation: 

P2 = PI [l - ( a T / T 1 )  ( Z 2  = Z1)] g / R 6 T  

6T = 6.5"C per  1000  m = 0 . 0 0 6 5  K m-' 

T ,  = 15O c = 288 K 

Z2 - Z, = 5000  - 0  = 5000 m .  

g / ( R 6 T )  = 9 . 8 1 / ( 2 8 7  X 0 . 0 0 6 5 )  = 5.259 

. P2 = 1 0 1  x l o 3  [ I  - ( 0 . 0 0 6 5 / 2 8 8 )  x 500015.259 = 53.82 x l o 3  N m - 2  

From the equation of state 

Density p2 = P2/RT2 = P2/R(T l  - 6 T ( Z 2  - 2,) ) 

= 53 .82  X 103/287 ( 2 8 8  - 0 .0065  X 5 0 0 0 )  

= 0.734 k g m - 3  

3.8 Hydrostatic Forces on Surfaces 

Plane and curved surfaces, immersed fully or partly in 

liquids, are subjected to hydrostatic pressure forces. It is, 

therefore, essential to determine the magnitudes, directions 

and locations of the hydrostatic pressure forces on surfaces 

as a first step in the analysis of the stability of a body 

fully or partly immersed in a liquid and in the design of 

hydraulic structures such as dams and gates. 



3.8.1 Hydrostatic Force on Plane Surfaces 

a) Horizontal Plane Burfaces: 

The pressure intensity in a static fluid is the same at any two 

points in a horizontal plane surface. Therefore, a plane 

surface in a horizontal position at a depth h below the free 

surface in a fluid at rest will be subjected to a constant 

pressure intensity equal to y.h, where y is the specific weight 

of the fluid. The total pressure force on a small differential 

area is given by: 

The total pressure force on the entire horizontal plane surface 

with area A will be 

The force F, acts normal to the surface and towards the surface. 

Since the pressure intensity is distributed uniformly over the 

plane surface, the total resultant force F, acts through the 
- 

centroid of the area and h = h , where h is the depth from 

the free surface to the centroid. Thus, for horizontal plane 

surfaces, the centre of pressure C coincides with the centroid 

G. The centre of pressure is the point on the immersed surface 
at which the resultant pressure force on the entire area is 

assumed to act. 

b) Vertical Plane Surface 

Consider a plane vertical surface of area A immersed vertically 

in a liquid (Fig. 3.12). Since the depth from the free surface 



to the various points on the surface varies, the pressure 

intensity on the surface is not constant and varies directly 

with depth. 

Figure 3.12 

Consider also a narrow strip of horizontal area dA, shown 

shaded in Fig. 3.12, at a depth h below the free surface. The 

pressure intensity on this area dA is y.h and is uniform. The 

total pressure force on one side of the strip is thus 

The total pressure force on one side of the entire area A is 

Fp = Jyh.d4 = y.[h d4 

- 
where h is the depth from the free surface to the centroid 

G of the area. Thus, as for a horizontal plane area, the 

magnitude of the resultant hydrostatic pressure force on a 

vertical plane area is obtained by multiplying the pressure 

intensity at the centroid G I  i. e y .  , by the total area A. 
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If the vertical area is not of a regular shape, the area may 

be divided into a finite number of small regular areas and the 

total hydrostatic pressure force determined as the sum of the 

pressure forces acting on these small areas. 

The total pressure force F, acts normal to the vertical plane 

area and towards the area through the centre of pressure C. 

Since the pressure distribution on the area is not uniform, the 

centre of pressure and the centroid will not coincide. The 

depth h, to the centre of pressure may be obtained from the 

principle of moments. The moment of the elementary force dF, 

acting on the area dA (Fig. 3.12) about axis 0-0 on the free 

surface is 

The total moment of all elementary forces on the whole area is: 

From the principle of moments, the sum of the moments of a 

number of forces about an axis is equal to the moment of their 

resultant about the same axis. Thus: 

The term /h2& may be recognized as the second moment of area 

about the free surface i.e. I,. 



using the parallel axis theorem of second moment of area, 

Ioo = IG + A ( f i  

where I, is the second moment of area about the axis parallel 

to 0-0 and passing through the centroid G. Therefore, 

h, = 
Y (I, + ~ ( f i ~ )  

y . K . ~  

lG + E  h, = - 
Ah- 

Thus, the centre of pressure C for vertical plane area is below 

the centroid by an amount equal to: 

. The moment of F, about the centroid is: 

I, F, x GC = pgh-A x - = pgI, , which is independent 
h -A 

of depth of submergence. 

c) Inclined Plane Surface 

The analysis of the hydrostatic force on an inclined plane 

surface will be made by considering a plane surface of 

arbitrary shape and total area A inclined at an arbitrary angle 

8 to the free surface as shown in Fig. 3.13. AB is the trace 

of the inclined surface the extension of which intersects with 

the free surface at 0. h, and $are the depths from the free 

surface to the centroid C and centre of pressure CP of the area 



respectively. Y, and Yp are the corresponding distances from 

0 to C and CP respectively, measured along the inclined 

surface. It is required to determine the magnitude, direction 

and line of action of the resultant hydrostatic force Fp acting 

on one side of the area. 

Figure 3.13 Hydrostatic force on an inclined plane surface 

The magnitude of the force dFp acting on an elementary area dA 

at a depth h below the free surface is given by 

The force dF, acts normal to the plane surface. The resultant 

hydrostatic force Fp is the sum of all elementary forces dP, 

which are parallel to each other. 



Thus Fp = d F p  = pg Sin0 I 

But /y.dA is the first moment of area A about axis through 

0 and is equal to y,.A and since y Sin 8 =, h , the above 
equation for F, becomes: 

Fp = y S i n e  yc A = yhcA 3.11 

yh, is the pressure intensity at the centroid of the inclined 

plane area. This shows that the magnitude of the resultant 

hydrostatic force on an inclined plane area is equal to the 

product of the area and the pressure intensity at the centroid 

of the area. The force F, acts normal to the plane surface and 

towards the surface. 

The resultant force F, acts through the centre of pressure CP 

of the submerged plane area. The location of CP is determined 

using the principle of moments for a parallel force system. 

In Fig. 3.13 let the axis through 0 coinciding with the free 

surface be the axis of moments. The moment of force dF, about 

this axis is equal to dM, which is given by 

dM = y . d F p  = y.pg.y S i n e  & = pg s i n e  y2dA 
0 

The moment of the resultant force F, about the axis of moments 

will be equal to the sum of all elemental moment m. i.e. 

FP Y C P  
= /dM0 = pg S i n e  / y2& = y S i n e  I_ 

Where 1,is the second moment of the plane area about axis 0-0. 



- y S i n O I o o  - y S i n O I o o  - - -  100 Thus y, - - 
FP y Sine yc A yc A 

Using the parallel axis theorem, 

2 
I,, = I, + Yc A 

Where I, is the second moment of area about an axis parallel to 

0-0 and passing through the centroid c. 

Thus (3.12) 

This shows that the centre of pressure is always below the 

centroid of the area. The same has been shown for vertical 

plane surfaces. 

The depth of the centre of pressure below the free surface is 

h,, = ycp sine . Substituting this and the value of y, = h,/Sine 

in Eqn. , the following equation is obtained for the depth 
to the centre of pressure. 

When the surface area is symmetrical about its vertical 

centroidal axis, the centre of pressure CP always lies on this 

symmetrical axis but below the centroid of the area. If the 

area is not symmetrical, an additional coordinate, xcp, must be 

fixed to locate the centre of pressure completely. 



Referring to Figure 3.14, and using moments, 

Figure 3.14 Centre of pressure of an asymmetrical plane 
surf ace 

The location of the centroid C and the magnitude of the second 

moment of area about the centroidal axis of some common 

geometrical shapes is given in Table 3.1. 

3.8.2 Hydrostatic Force on Curved Surfaces 

The total hydrostatic force on a curved surface 

immersed in a liquid can not be directly determined by the 

methods developed for plane surfaces. For plane surfaces, the 

pressure forces on elementary areas act perpendicular to the 

surface and hence are parallel to each other. Consequently, 



it is easier to obtain the resultant force by a simple 

summation of the elementary forces. In the case of a curved 

surface each elementary force acts perpendicular to the tangent 

of the elementary area and because of the curvature of the 

surface the direction of each elementary force is different. 

As a result, the usual procedure is to determine the horizontal 

and vertical components of the resultant force and then add 

them vectorially to obtain the magnitude, direction and 

location of the line of action of the resultant hydrostatic 

force. 

Consider the curved surface BC of unit width shown in 

Figure 3.15. 

d A 

Area  A 

Figure 3.15 Hydrostatic force components on curved surfaces. 

The elementary force dF acting on the elementary area dA has 

a horizontal component dFx and a vertical component dF,. The 

pressure intensity on dA is qgh. 

The total hydrostatic force on dA = dF = qgh dA 

The horizontal component of dF = dFx = qgh dA Cos6 
The vertical component of dF = dF, = ~ g h  dA Sin8 

But dA Cose = CIA, = The projection of dA on the vertical plane 
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and dA sine = dA,, = The projection of dA on the horizontal 

plane. 

The components of the total hydrostatic force in the x and y 
directions are F, and F, respectively and are given by: 

F, = /, d ~ ,  = / A  pgh d~ C O S ~  = pgh, A, 

where: & is the projection of the whole curved surface BC on 
the vertical plane, i.e. BD 

dV is the volume of the water prism (real or virtual) 

extending over the area dA to the free surface. 

Thus : 

The horizontal component, F,, of the resultant hydrostatic 

force on a curved surface BC is equal to the product of the 

vertically projected area of BD and the pressure intensity at 

the centroid of the vertical area BD. The Force F, passes 

through the centre of pressure of the vertically projected area 

BD . 

The vertical component, F,, of the resultant hydrostatic force 

on a curved surface BC is equal to the weight of the water 
(real or virtual) enclosed between the curved surface BC, the 

vertical BD and the free surface CD. The force component F, 

acts through the centre of gravity of the volume. 



The resultant force F is given by: 

F acts normal to the tangent at the contact point on the 

surface at an angle a to the horizontal, where 

3.8.3 Pressure Diagrams: 

The resultant hydrostatic force and centre of pressure for 

regular plane areas could be determined from pressure 

distribution diagrams such as those shown in Figure 3.16 

Figure 3.16 Pressure diagrams 

In Fig. 3,16(a) the surface AB is horizontal and the pressure 

intensity is uniform over the area of the horizontal surface 

AB. The total hydrostatic thrust on AB is equal to the volume 

of the pressure prism, which is the product of the uniform 

pressure intensity egh and the area A, and acts through the 

centroid of the area. 



In Fig. 3.16(b), AB may be assumed to be rectangular with width 

b perpendicular to the plane of the paper. The pressure 

distribution is trapezoidal with intensity ~gh, at A and ~gh, 

at B. The total hydrostatic force on AB is equal to the volume 

of the pressure prism and is given by: 

The centre of pressure is the centroid of the pressure prism. 

It may be located by dividing the prism into a rectangular and 

triangular prism. For the rectangular prism, the centroid is 

at (h, - h,)/2 above B and for the triangular prism it is at 
(h,-h,)/3 above b. The centroid of the trapezoidal prism can 

then be found from the principle of moments. 

3 .8 .4    ensile stress in a p i p e  

Pipes are conduits of circular cross-section that are 

used to transport fluids. During this transport process, a 

certain amount of internal pressure is necessary to make the 

flow possible. This pressure may be supplied by gravity flow 

or by an external input of energy by means of a pump. The 

internal pressure produces tensile stresses in the pipe walls. 

Both longitudinal and circurnferencial (or hoop) stresses exist 

in pipes. However, the circumferential stresses are more 

important since they are twice the longitudinal stresses. In 

pipe flows, the problem is to determine either the required 

wall thickness of the pipe necessary to resist a certain 

pressure or the allowable pressure for a given wall thickness 

of a given pipe material. A circular pipe with internal radius 

r, wall thickness t and having a horizontal axis is in tension 

around its perihery as shown in Fig. 3.17. A 1 metre long 

section of pipe, i.e. the ring between two planes normal to the 

axis and 1 metre apart, is considered for the analysis of the 

problem. Considering one-half of this ring as a free body, the 



tensile forces per metre length at the top and bottom are T, 

and T, respectively. 

Figure 3.17 Tensile stress in pipes. 

The horizontal component of the pressure force acts through the 

centre of pressure CP of the projected area and is given by : 

Where p is the pressure intensity at the pipe centre and 

r is the internal radius r. 

Strictly speaking, T, is smaller than T,. But for high internal 

pressure, the centre of pressure CP may be taken to coincide 

with the pipe centre c and T, may be approximated to be equal 

T, without serious error. Thus summing forces in the 

horizontal direction: 

since TI = T, = T, 2T = 2pr and T = pr 



where T is the tensile force per metre length of pipe. For 

wall thickness t, the circumferential stress a in the pipe wall 

will be 

T - P . 1  ( J = - - -  

t x l  t 

For an allowable tensile stress a,, the required wall thickness 

t will be: 

Where p is in ~/m,, a, is in ~ / m ~ ,  r is in cm and t is in cm. 

For large variations in pressure between top and bottom of 

pipe, i. e. when Z, = p,/ y I lor, the centre of pressure has to 

be computed for which the following two equations are 

necessary: 

From E F ' * = O  : T l + T 2 = F = 2 p . r  

From which: 

TI = p ( r  - e) 

and T, = 2 p r  - TI = 2 p r  - p ( r  - e) = p ( r  + e) 

Obviously, T, > T, and T, must be used for further computations. 

The eccentricity e may be obtained as follows: 



But, y, = 2, = , taking the area as a vertical area. 
Y 

from = 2 = P ( r  + e) 
t t 

In a thin spherical shell subjected to an internal pressure the 

stress in its wall may be found, neglecting the weight of the 

fluid in the sphere, by considering the forces on a free body 

consisting of a hemisphere, cut from the sphere by a vertical 

plane as shown below. 

The component of the pressure force F is: 

t F = p.E2, where r is the internal radius 

of the sphere and p is the internal 
pressure. 

If a, is the stress in the wall, then for equilibrium: 



o, is just half of the circumferential stress a given by 

Eqn.3.16. For a pipe closed at one end, a, will be the 

longitudinal stress in the pipe wall. 

Example 3.7 

A vertical rectangular gate AB shown in Figure E.37 has a width 

of 1.5 m. The gate is hinged on its upper edge at A .  

Determine the moment M at A required to just hold the gate from 

opening. 

- 
n ---- - - -- - - 

- 

4.5m 

l i  

WATER 
' 'C 2 m  

"c P 
B 1 

f / / / / / / / / / / / / / / / / / / I T / / / / / / / / / / -  

Figure E 3.7 

Solution: ~eferring to F'igure. E 3.7 

The centroid C of AB is at ( 4 . 5  - 1) = 3.5 m below the water 

surface i.e. h, = 3.5 m. 

The hydrostatic force on gate AB is F, and will act through CP 

normal to AB. 



The location of CP is obtained from: 

Taking sum of moments about A, 

EM" = M - 103.005 x 3.595 = 0 

. M = 370.3 kN.m Clockwise 

Example 3.8 

The 2 m wide and inclined rectangular gate AB shown in Figure 

E 3.8 is hinged at B. The gate is unifrom and weighs 24 kN. 

Determine 

a) The magnitude and location of the hydrostatic forces on 

each side of the gate. 

b) The resultant of the hydrostatic forces. 

c) The force F required to just open the gate. 

v ---- - -- 
i - - - 

--- 

W A T E R  4 . 5 m  

1 

Figure E 3.8 



Solution: 

a) Let the hydrostatic force on the left side of gate AB be 

F, and that on the rigth side of F,. 

The gate AB is 5 m long and its centroid C is at a depth 

of 1 . 5  from B. 

Thus, F , = y w h , , A = 9 . 8 1  x  (3 + 1 . 5 )  X ( 5  x 2 )  = 4 4 1 . 4 5 k N  

F, acts normal to AB through the center of pressure of 

the left side of AB which is located at Y,,, from 0 1 .  

Y, = CO, = 7.5 m 

Therefore, 

Similarly, 

F, acts normal to AB through the center of pressure of the left 

side of AB which is located at Y,, from 0,. 

l c  
Ycpr = Ycr + - 

Ycr A 



Therefore Y,, = 5 + 2 x 53 = 5 + 0.417 = 5.417 m 
12 x 7.5 x 5 x 2 

The positions of the forces Ft and F, shown below: 

b) The resultant of F, and F, is FR and acts parallel to F, and 

F, in the direction of the greater force F, normal to AB. 

Taking moments about the hinge B, the location of FR from B is 

found as 

i. e FR acts through C. 

c) The force F required to just open the gate will be obtained 

by taking moments of the forces shown in the sketch below 

about the hinge B. 



Therefore, 

Example 3.9 

A triangular opening in the form of an.isosceles triangle, with 

dimensions shown in Figure E 3.9 and with its axis of symmetry 

horizontal, is closed by a plate. Water stands at 9 m from the 

axis of symmetry. Determine the resultant hydrostatic force 

on the plate and its centre of pressure. 

Solution : 

Plate area = 112 x 6 x 3 = 9 m2- 

Depth to centroid of plate = 9 m = h, 

Total hydrostatic force on plate = F = y&,A 

= 9.81 x 9 x 9 = 794.61kN 

The force F acts through the centre of pressure CP and normal 

to the plate. 

To determine the vertical location of the centre of pressure, 



Figure E 3.9 

it is necessary to determine the second moment of area of the 

- =c triangle about axis AD since ycp - Y, + - . 
YCA 

The following steps will be used to determine I,. 

i) Split the plate into two triangles: ABD and ADE. 

ii) Determine the second moment of area of the two 

triangles ABD and ADE separately about line AD. 

iii) Add the results in (ii) to obtain the second moment 

of area I, of triangle ABC about axis AD. 

Thus, second moment of area of triangle ABD about AD is given 

by 

Second moment of area of triangle ADE about AD is 



Therefore, the second moment of area of triangle ABC about the 

centroidal axis AD is: 

The depth h, to the centre of pressure CP will be: 

In the horizontal direction the centre of pressure CP is 

located on the vertical passing through the centroid C i.e. 

the vertical at 6/3 = 2 m from BE. 

Example 3.10 

A vertical, symmetrical trapezoidal gate with its upper edge 

located 5 m below the free surface is shown in Figure E 3.10, 

Determine the total hydrostatic force and its centre of 

pressure. 

Figure E 3.10 



Solution : 

The total hydrostatic force = F = y,h,A 

The depth to centroid C = h c = 5 +  2 ( 2  + 3 )  = 5 . 8 3 3  rn 
3 ( 1  + 3 )  

The area = A = 2 x ( 3  + 1 ) / 2  = 4 m2 

Therefore, F = 9.81 x 5.833 x 4 = 228.89 kN 

The location of the centre of pressure is obtained from: 

where a is the length of the shorter side, b the length of the 

longer side and h the distance between these parallel sides. 

Thus, 

Therefore, ycp = 5 . 8 3 3  + = 5 . 8 8 5  m below the free 
4 x 5 . 8 3 3  

surf ace. 



Example 3.11 

An inverted semicircular plane gate shown in Figure E 3.11 is 

installed at 45' inclination as shown. The top edge of the 

gate is at 3 m below the water surface. Determine the total 

hydrostatic force and the centre of pressure. 

Figure E 3.11 

Solution: 

The total hydrostatic pressure = F = y,hc.A 

h, = y, Sin 45O 

4r yc = 3 / ~ i n  45O + - 4 x 4  
= 4.24 + - = 5.94 m. 

3 x  3 x  

Therefore, h, = 5.94 Sin 45O = 4.20 m. 



1 1 Area of gate  = A  = - n r 2  = - x x x g2 = 25.13 m2 
2 2 

Thus, F = 9.81 x 4.20 x 25.13 = 1.035 MN 

and h, = y, Sin 4 5 O  = 4.33 m 

Example 3.12 

A log hods water as shown in Figure E 3.12. Determine 

a) The force pushing against the obstruction (dam) per metre 

length of log. 

b) The weight of the log per metre length 

c) The specific gravity of the log. 

O I L ,  S r O . 8  
B/ I I i  

WATER 

Figure E 3.12 

Solution: 

a) The force pushing against the dam is equal to the 

horizontal component of the hydrostatic force acting on the 

long. 



Since the hydrostatic forces acting on surfaces BC and CD 

are equal and opposite to each other, they cancel out. 

Hence, the net hydrostatic force acting on the log is the 

horizontal component acting on curved surface AB. 

b) The weight of the log is equal to the net vertical 

hydrostatic force on the log. The vertical component of 

the hydrostatic force is composed of the vertically upward 

force on surface BCD and the vertically downward force on 

surface AB. 

On surface AB, the vertical force F, is equal to the weight 

of the oil supported by it. i.e. 

F, = [(I x 1) - 1 x 12] x 1 x 0.8 x 9.81 = 1.684 k N  downwards 
4 

On surface BCD the vertical force F, equals the weight of 

water and oil (real and virtual) supported by it. Thus 

F, = (2 x 1 x 0.8 x 9.81) + 2 x l2 x 1 x 9.81 
2 

= 15.696 + 15.409 = 31.105 kN , upwards 

Net vertical hydrostatic force = F2 - F,, 

F2 - F, = 31.105 - 1.684 = 29.421 kN upwards 

Therefore, the weight of the log per metre is 29.421 kN 

c) To determine the specific gravity of the log, determine its 

density first. 



29421 = 954.6 kg from which , p, = 81 

- 954.6 = o.955 Specific gravity of log, S, = p,/p, - 1000 

Example 3.13 

Referring to Figure E 3.13, calculate the force F required to 

hold the 1.4 m wide gate AB in a closed position if y = 0.8 m. 

Hin ~e 

Figure E 3.13 

Solution: 

Let the pressure at the interface AAt between oil and water be 

PA - 
Starting from the open end of the manometer, the hydrostatic 

pressure variation gives: 



O + y x 3y,- 1 . 6 ~ ~  = PA 

or 0.8 x 3y, - 1 . 6 ~ ~  = PA 

Thus: PA = (2.4 - 1 . 6 ) ~ ~  = 0.8 y, 

i.e. head at interface = 0.8 m of water = 0.8/0.7 = 1.143 m 

of oil. 

Referring to the following sketch: 

S = r s i n e  

Cos 8 

The elementary hydrostatic force dF, acting normal to the 

elementary area of length rdB of the gate is given by: 

For equilibrium, the sum of moments about the hinge B is zero. 



= 6152.83 [-1.143 Cos 8 + 0.4 cos2 81 

Thus: F = Z 1 4  K 

Example 3.14 

Neglecting the weight of the 4.2 m wide gate AB shown in figure 

E 3.14, determine 

a) The vertical and horizontal components of the hydrostatic 

force on the gate including the location of the line of 

action. 

b) The minimum moments M required to hold the gate. 



Figure E 3.14 

Solution 

Referring to the following sketch: 

a) The horizontal component of the hydrostatic force, FH, is 

the force acting on the projected area BB' 



Therefore, 

Thus: y =  4  - 2 .667  = 1 . 3 3 3  m. 

The vertical component, F,, of the hydrostatic force is 

equal to the weight of the volume of fluid bounded in AA'B 

and acts through the centroid of this volume. i.e. 

To locate the line of action of F, , 

= 4 1 . 2 0 2 [ : ( 4  - 2 . ~ l / ~ ) x d , ,  since y =  2  fi 

- 
T h e r e f o r e ,  x = 

2 6 3 . 6 9 3  - - 2 6 3 . 6 9 3  = I- 
F~ 2 1 9 . 7 4 4  



b) Summing moments about A to obtain the moment M required to 

hold the gate AB, 

EM, = M -  P, .Z-  P, .F= 
- 

fromwhich, M = F , , ~ +  P H y = 2 6 3 . 6 9 3  + 329.63-6 x1.333 

:. M = 703.07 kN-m 

3.9 Buoyancy and Stability of Submerged and Floating Bodies 

Since the pressure in a fluid at rest increases with depth, the 

fluid exerts a resultant upward force on any body which is 

fully or partially immersed in it. This force is known as the 

Buoyant Force. 

The principles of buoyancy and floatation, established by 

Archimedes (288-212 B.C), state that 

i) a body immersed in a fluid in buoyed up by a force 

equal to the weight of the fluid displaced by the 

body and 

ii) A floating body displaces its own weight of the fluid 

in which it floats. 

These principles can be easily proven using the principle of 

hydrostatic force on surfaces. 

3.9.1 Buoyant Force 

Consider a body ABCD, shown in Fig. 3.18, submerged in a liquid 

of constant density Q. 

Referring to Fig. 3.18, A v C v  is the projection of the body on 

a horizontal plane and BIDv is its projection on a vertical 



Figure 3.18 Buoyant Force 

plane. Force F, acting to the right is the horizontal 

component of the hydrostatic force on surface BAD and force F I, 

acting to the left is the horizontal component of hydrostatic 

force on surface BCD. Both Fx and Ftx are equal to the force 

acting on vertical plane surface BtDt and since they are equal, 

opposite and collinear, they cancel each other. Hence, the 

resultant horizontal hydrostatic force on a submerged body is 

zero. 

Force F, is the downward, vertical component of the 

hydrostatic force acting on surface ABC. F, is equal to the 

weight of the liquid volume AtA BC CtAt i.e. F, = qg. Vol. 

AtA BCCtAt. 

Similarly, Ftz is the upward vertical component of the 

hydrostatic force on surface ADC and is equal to the weight of 

the liquid volume AIA DC CtA1, i.e. Ftz = ~ g .  Vol. AtA DC 

CIA'. 

The net upward force is the buoyant force FBI which is 

FB = Fzt -Fz. i.e 

FB = Fzl - Fz = ~ g .  Vol.AIA DC C'A' - QCJ. Vol A'A BC CIA1 
or FB = qg. Vol ABCD (3.19) 



Thus, the buoyant force FB is the weight of the liquid 

displaced by the body and acts vertically upwards through the 

centre of buoyancy which is coincident with the centroid of the 

volume of the displaced liquid. Similar considerations show 

that for a body partially immersed in a liquid, the buoyant 

force is equal to the weight of the displaced liquid. 

Considering the vertical equilibrium of a body submerged in a 

fluid, the condition of floatation of the body depends upon the 

relative magnitude of the weight of the body and the buoyant 

force. If the body is heavier than the weight of the fluid it 

can displace, it will sink to the bottom unless it is prevented 

from doing so by the application of an upward supporting force. 

If the weight of the body is lighter than the weight of the 

liquid it can displace when completely submerged in the fluid, 

it will rise above the surface to a position such that the 

weight of the displaced liquid is equal to the weight of the 

body. 

The principle of buoyancy can be used to determine the weight, 

volume and consequently the specific weight and specific 

gravity of an object by weighing the object in two different 

fluids of known specific weights. Consider an object suspended 

and weighed in two fluids with specific weights y, and y2 as 

shown in Fig. 3.19. Let the weight of the object be W and its 

volume V. 

Vertical equilibrium of forces in Figure 3.19(a) gives: 

Vertical equilibrium of forces in Figure 3.19(b) gives: 



Figure 3.19 

Equating the above two equations and rearranging: 

From which 

Substituting the value of V from the above equation in any of 

the two equilibrium equations, the following equation for the 

weight of the body may be obtained. 

The specific weight of the body will be y = W/V. It should be 

noted that the body should not be weighed in a liquid in which 

it dissolves. 



The hydrometer, which is an instrument used to determine the 

specific gravity of liquids, is constructed on the basis of the 

principle of buoyancy. It consists of a closed glass tube with 

an enlarged bulb shape at the bottom in which lead shots are 

kept to allow it to float vertically when immersed in a liquid. 

The hydrometer sinks to different depth when immersed in 

liquids of different specific gravities, sinking deeper in 

lighter liquids than in heavier liquids. The graduations on 

the stem, from which the specific gravities are read directly 

at the meniscus, are obtained by calibration in liquids of 

known specific gravities. The reading 1.00 corresponds to that 

of distilled water. 

3.9.2 Stability of Bubmerged Bodies 

A submerged or a floating body is said to be stable if it comes 

back to its original position after a slight disturbance. The 

stability of a submerged body depends upon the relative 

position of its centre of gravity and its centre of buoyancy 

both of which have fixed positions. 

Consider the three possible relative positions of centre of 

buoyancy B and centre of gravity G of submerged bodies shown 

in Figure 3.20. 

Fig. 3.20 (a) shows a ballon where the centre of buoyancy is 

always above the centre of gravity. A small angular 

displacement generates a restoring couple, between the buoyant 

force FB and the weight W, which brings the balloon back to its 

original position. This is an example of a stable equilibrium 

of a submerged body. In Fig. 3.20 (b) is shown a submerged 

body where the centre of buoyancy is below the centre of 

gravity. In this case, a small angular displacement generates 

a couple which further increases the displacement. This is a 

situation of unstable equilibrium. For a submerged, 

homogeneous spherical object shown in Fig ...( c) the centre of 

gravity and the centre of buoyancy coincide and any angular 



a) Stable Equilibrium : b) Unstable Equilibrium: c)Neutral Equilibrium 
B always above G B always below G Band G coinciding 

Figure 20 

displacement does not result in development of a couple. In 

this case neutral equilibrium is said to occur. 

The above considerations show that for completely submerged 

bodies the requirements for stability are: 

(i) The centre of buoyancy and centre of gravity must 

lie on the same vertical line in the undisturbed 

position and 

(ii) The centre of buoyancy must be located above the 

centre of gravity for stable equilibrium 

3.9.3 Stability of Floating Bodies 

For a floating body, the centre of buoyancy need not be located 

above the centre of gravity for stability. When a floating 

body which is partially submerged in a liquid is given a small 

angular displacement about a horizontal axis, the shape of the 

displaced volume of liquid changes and consequently the centre 

of buoyancy moves relative to the body. As a result, restoring 

couple can be generated and stable equilibrium achieved even 



when the centre of gravity G of the body is above the centre 

of buoyancy B. 

Figure 3.21 may be used to illustrate the situation. Position 

(a) is the undisturbed position where the centre of buoyancy 

and the centre of gravity are on the same vertical. The weight 

W of the boat and the buoyant force F, are equal, opposite and 

collinear. Hence the boat is in equilibrium. 

Figure 3.21 Stability of a floating body 

Position (b) shows the boat just as it has undergone through 

a small angular displacement 8 .  It is here assumed that the 
location of the centre of gravity G remains unchanged (this is 

true only for situation of unshifting cargo). In this 

position, the displaced volume on the right hand side increases 

and that on the left hand side decreases as a result of the 

displacement and the centre of bouyancy shifts to the right to 

a new position B1. The buoyant force F, (still equal to W) now 

acts vertically upwards through B t  and the weight W acts 

downwards through G. F, and W now constitute a restoring 

counter-clockwise couple which brings the boat back to its 

original position. The line of action of F, now intersects the 

axis BG at M. This point M is known as the Metacentre. Thus, 

as long as M is above G, a restoring couple will be generated 

and the floating object is in stable equilibrium. If M falls 

below G, the generated couple will be an overturning couple and 

the equilibrium would be unstable. 

88 



Thus, for floating objects, stability would be achieved even 

when B is below G as long as the metacentre M is above G. The 

special case where G and B coincide constitutes a situation of 

neutral equilibrium. 

The distance of the metacentre M above G i.e. MG, is known as 

the metacentric height. It must be positive (i.e. M must be 

above G) for stable equilibrium. For small values of heel 

angle 8, the metacentric height is practically constant. The 

concept of metacentre and metacentric height is very useful in 

the design of ship profiles, barrages and caissons and the 

estimation of the metacentric height under various conditions 

of loading is important to ensure stability of the floating 

body. 

Metacentric Height: An expression for the metacentric height 

may be obtained by considering the cross-section of a ship 

through its centre of gravity as shown Figure 3.22. The plan 

view at the water line is also shown. 

In Figure 3.22, AB is the original water line when the floating 

object was in the undisturbed, upright position with the centre 

of buoyancy B and the centre of gravity G in the same vertical 

axis of symmetry BG. CD is the new water line after the 

floating object has experienced a small rotation through an 

angle 8. As a result of the rotation, the triangular wedge BOD 

on the right side has come out of the liquid while an identical 

wedge AOC has gone inside. The total displaced volume does not 

change but its shape has changed and consequently the position 

of the centre of buoyancy shifts from B to B ' .  The triangular 

wedges AOC and BOD correspond to a gain and a loss respectively 

in buoyant forces AFB. 

The moment caused by these two forces is AFB.S and has a 

clockwise sense. This must be equal to the opposite moment 

resulting from the shifting of the total buoyant force F, to 

B ' .  This moment is counterclockwise and is equal to qg.V.6, 



7 SECTION 2-2  

PLAN 

Figure 3.22 Centre of buoyancy and metacentre of a floating 
body. 

where V is the total volume displaced by the floating object 

and Q is the liquid density. 

Thus 

AF,. S 
Therefore 6 = 

PQ. v 

since 6 = =-sine, 



The buoyancy force produced by wedge AOC (see Figu~e 3.22) can 

be estimated by considering a small prism of the wedge. Assume 

that the prism h ~ s  a horizontal area dA and is located at a 

distance x from the axis of rotation 0. The height of the 

prism is x. (tang) . For small angle 8 it may be approximated 

by x.8. Thus the buoyancy force produced by the small prism 

is ~g.xe.dS. The bouyancy force AFB of the wedge AOC will be 

the sum of all these forces i.e. 

The moment produc~d by the couple is: 

or A F , . ~  = p g . 8 . 1 ,  

Where I, is the second moment of area about axis y-y. 

Substituting, &f= (pg0.  I,) /pg.  V . S i n B  = IYY . 9 
V. Sin$ 

But limit B/sjne = 1, 

8-0 

Therefore, - 5 v 



The Metacentric height k = K* GB 

Since the position of G and B is known from the sectional 

geometry or design data of the vessel, the distance GB can be 

determined. In Eqn. 3.22, the (+) sign is used when G is below 

B and the (-) sign used when G falls above B. If the value of 

as determined above is positive, then the floating object 

is in stable equilibrium. If MG is negative, the floating 

object is unstable and if MG is zero, the object is in neutral 

equilibrium. 

Example 3.15 

A concrete block that has a total volume 1.5 m3 and specific 

gravity of 1.80 is tied to one end of a long hollow cylinder. 

The cylinder is 3 m long and has a diameter of 80 cm. When the 

assembly is floated in deep water, 15 cm of the cylinder remain 

above the water surface. Determine the weight of the cylinder. 

Solution: 

Referring to the following sketch: (Fig. E 3.15) 

let W, = Weight of the cylinder 

W, = Weight of the concrete block 

FB = Buoyant force of the assembly. 



Figure E 3.15 

Volume of Water displaced = I? 

= 1.433 + 1.5 = 2.933 m3 

Therefore, F, = y,V = 9810 x 2.933 = 28,772.7 N 

For equilibrium: 

w, + WE - FB = 0 

Thus W, = P, - W, 

= 28772.7 - 26487.0 = 3-N 



Example 3.16 

Two cubes of the same size, 1 m3 each, one of specific gravity 

0.80 and the other of specific gravity 1.1, are connected by 

a short wire and placed in water. What portion of the lighter 

cube is above the water surface? What is the tension in the 

wire? 

Solution : 

Referring to Figure E 3.16: 

Figure E 3.16 

Let AV, be the volume of submergence of the lighter cube. 

W, = Weight of lighter cube 

W, = Weight of heavier cube 

F, = Total Buoyant force of the assembly 

Then FB = (V2 + AV1) yw = (1 + hV1)9810 = 9810 + A V l .  9810 



For equilibrium, 

C F ~ =  0 

i . e .  F , - W , - W , = O  

9810  + 9 8 1 0  AVl - 0 . 8  x 9 8 1 0  X 1 - 1.1 X 9 8 1 0  X 1 = 0  

9810(1 + Av, - 0.8 - 1.1) = 0 

Therefore, AV, = 0.9 

Thus 0.1 of the volume or 10% of the lighter cube is above the 

water surf ace. 

To determine the tension in the wire: 

The buoyant force due to the heavier cube is: 

Weight of heavier cube = W, 1.1 x 9810 x 1 = 10,791 N 

Equilibrium of the heavier cube requires that: 

T + Fq - W, = 0 , where T = tension in the wire. 



Example 3.17 

A rectangular barge 20 m long has a 5 m wide cross-section. 
The water line is 1.5 m above the bottom of the barge when it 

floats in the upright position. If the centre of gravity is 

1.8 m above the bottom, determine the metacentric height. 

Solution: 

Referring to Fig. E 3.17 

Figure E3.17 

The position of B will be at - = 0.75 m above the bottom. 
2 

Since G is above B, the equation of the metacentric height will 

be : 

V = Volume displaced = 20 x 5 x 1.5 = 150 m3 

Therefore, the netacentr ic  height I& will be 



Example 3.18 

A uniform wooden circular cylinder 400 mrn in diameter and 

having a specific gravity of 0.6 is required to float in oil 

of specific gravity 0.8. Determine the maximum length of the 

cylinder in order that the cylinder may float vertically in the 

oil. 

Solution: 

Figure E 3.18 

let length of the cylinder be C 

Weight of cylinder = a .  6 y,. - " d 2  x 4 
4 

ad2 Weight of displaced volume of oil = h.0.8yw- 
4 

Equating the two, depth of immersion h will be: 

I 3 a Therefore, BG = oG- OB = - - - P  = - 
2 8 8 



Second moment of area of the circular section is 

Volume of oil displaced = V, 

The metacentric height is given by: 

- I MG = - - BG v 

For the cylinder to float vertically in oil, 

Therefore, P r 326.6 mrn 



Example 3.19 

A ship of 50 MN displacement floating in water has a weight of 

100 kN moved 10 m across the deck causing a heel angle of 5'. 

Find the metacentric height of the ship. 

Solution : 

Referring to Figure E 3.19 

Figure E 3.19 

Moment causing the ship to heel = 100 x 10 = 1000 kN m. 

= Moment due to shift of W  fro^ 

- 
But, 1000 - GG' = G M S ~ ~ O  = - - 1000 - - -  

w 50 x lo3 50 

Hence, the Metacentric height 



3.10 Relative Equilibrium of Liquids 

If a liquid is contained in a vessel which is at rest, or 

moving with constant linear velocity, it is not affected by the 

motion of the vessel and the pressure distribution is 

hydrostatic. But if the container is given a continuous and 

constant linear acceleration or is rotated about a vertical 

axis with uniform angular velocity (resulting in a constant, 

inward acceleration), the liquid will eventually reach an 

equilibrium situation and move as a solid body with no relative 

motion between the fluid particles and the container. Such 

equilibrium of liquids is referred to as relative equilibrium 

of liquids. The two cases of practical interest are: 

i) Uniform linear acceleration 

ii) Uniform rotation about a vertical axis. 

In both cases, since there is no relative motion between fluid 

particles, shear stress does not exist and the laws of fluid 

statics still apply, but in a modified form to allow for the 

effect of acceleration. 

3.10.1 Uniform Linear Acceleration: 

Consider the fluid element, shown in Fig. 3.23, in a vessel 

containing a liquid with density Q. Let the vessel be given 

a uniform linear acceleration with components a,, a, and a, 

along the x, y, and z directions respectively. Let the 

pressure at the centre of the element be P and pressure 

gradients ap/ax, dp/ay, ap/az are assumed to exist in the x,y 

and z directions respectively. The forces acting on the fluid 

element are shown. 



Figure 3.23 Forces on fluid element under linear acceleration 

Applying Newton's Second Law, the net force in the x-direction 

is: 

which reduces to: 

In the y-direction, considering the weight of the fluid 

element, the net force will be 

which reduced to: 

-dp = p ( g  + a,) 
ay 



Similar considerations in the Z direction lead to: 

Consider a vessel shown in Fig. 3 . 2 4  having uniform linear 

acceleration in the x-y plane with components a, and a, in the 

x and y directions respectively. 

I 
Lines of constant - 

lnitlal 

Figure 3.24 A vessel under uniform linear acceleration 

The total pressure differential is given by: 

On lines of constant pressure, the total pressure differential 

will be zero. 

Thus : 

from which: 



This shows that the lines of constant pressure have a constant 

slope of tan t9= -a,/(a, + g). Since the free surface is a line 

of constant pressure, the above conclusion also shows that 

lines of constant pressure are parallel to the free surface. 

Once the position of the free surface is determined for a given 

acceleration, then the hydrostatic variation of pressure with 

depth applies as in fluid statics. 

Horizontal Acceleration: 

If a vessel containing a liquid moves with a constant linear 

horizontal acceleration a,, say in the positive x direction, 

then a, = 0. Then the slope of the line of constant pressure 

i.e. the slope of the free surface will be 

The variation of pressure with depth will be given by eqn.3.24 

, with ay = 0, as: 

Integrating, 

Measuring the depth h from the free surface vertically down, 

y will be replaced by (-h). Taking the free surface pressure 

as zero, the pressure p at a depth h from the free surface and 

at any section will be, as in hydrostatics, 



Example 3.20 

A rectangular tank 5m long, 2m wide and 3m deep contains water 

filled to 1.5m depth. It is accelerated horizontally at 4 

m/sec2 in the direction of its length. Compute a) the total 

hydrostatic force acting on each side, (b) the force needed 

to impart the acceleration. 

If the tank is completely filled with water and accelerated in 

the direction of its length at the rate of 2.5 m/sec2, how many 

liters of water will be spilled? 

Solution: 

Referring to Figure E 3.20 

Figure E 3.20 

Intercept AB = 2.5 tan8 = 1.02m. = EF 



D e p t h  y, = 1 . 5  + 1.02 = 2.52m. 

D e p t h  y, = 1.5 - 1.02 = 0.48m. 

a) Hydrostatic Force on end AB = FAB 

Hydrostatic Force on end ED = F, 

FED = y h ~  

b) Force needed to impart acceleration = FAB - F, 
F, - F, = 62.297 - 2.260 

= 60.037 kN 

Inertial force of accelerated mass = mass x acceleration 

= (1.5 x 5 x 2) x 1000 x4 
= 60 kN 

Hence, difference between force on each end is equal to the 

inertial force. 

When the tank is full, 



Drop in water surface on front side = 5 tan0 = 1.275 m 

. volume of water spilled 

Example 3.21 A rectangular oil tanker 3 m wide, 2.0 m deep 

and 10 m long contains oil, Q = 800 ~ g / m ~ ,  which stands at 1.0 

m from the top of the tanker. Determine the maximum horizontal 

acceleration that can be given to the tanker without spilling 

the oil. If this tanker is closed and completely filled with 

oil and accelerated horizontally at 3 m/s2 determine the total 

liquid thrust 

i) on the front end (ii) on the rear end and (iii) on one 

of its longitudinal vertical sides. 

Solution: 

Referring to figure E 3.16 

Figure E 3.21 

For maximum acceleration without spilling, the level drops by 

1 m from the original level. 



When the tanker is completely filled and closed, there will be 

pressure built up at the rear end equivalent to the virtual oil 

column h that would assume a slope of a,/g (Fig. E 3.21(b)) 

I i) Total thrust on front AB = - p g . 2  x 2  x 3 = 5 L B L k l l  
2  

ii) Total thrust on rear end CD 

Virtual rise of oil level at rear end is h 

. Total thrust on CD 

iii) Total thrust on side ABCD = Volume of pressure prism 

which is equal to: 



Example 3.22 Calculate the slope of the free surface when 

an open container of liquid accelerates at 4.2 m/s2 

i) In the horizontal direction 

ii) Down a 30' inclined plane. 

Solution: 

i 

-a,= 4.2 m/s2  

Figure E 3.22a 

Slope of free surface is given by dy/dx 

Here, a, = 4 . 2  m/s2, a,= 0 
4 .2  . 0 = tan-' - = 7 3 . 1 8 0  
9.81 

ii) 

When the acceleration down the 30" inclined plane is 4.2 m/s2, 

a, = -4.2 Cos 30' = -3.64 m/s2 

a, = -4.2 x Sin 30' = 2.1 m/s2 



Figure E 3.22b 

:. 0 = t a n - '  a, = tan-' 3 . 6 4  
= 25.27' 

aY + !? -2.10 + 9.81 

Example 3.23 The U-tube shown in the figure below is filled 

with a liquid having a specific gravity of 2.40 and accelerated 

horizontally at 2.45 m/s2. The leg of the U-tube is closed at 

the right end and open at the left end. Draw the imaginary 

free surface and determine the pressure at A. If the cross- 

sectional area of the tube is 6.28 cm2, what volume of the 

liquid will be spilled? 

Solution: 

/ 
Imaginary free Surface 

I 

Figure E 3.23 



Referring to the above figure: 

:. y = 60x1/4 = 15 cm. 

:. PA = y.h = 2.4yw.0.15 = 3.53 RN/rn2 

Volume spilled = y x cross-sectional area of tube 

= 15 x 6.28 = 94.20 cm3 

Vertical Acceleration 

If a liquid in a vessel is subjected to a constant vertical 

= 0  acceleration only, then a, = 0. From Equation 3.23, - 
ax 

and from equation 3.26, 2 = 0 .  This means that the line of 
dx 

constant pressure is horizontal under vertical linear 

acceleration, i.e. the free surface remains horizontal. The 

pressure at any point in the liquid may be determined by 

integrating equation 3.24, i.e., 

Where y is measured vertically upwards in the positive y 

direction. To determine the pressure at any depth h below 
the free surface, y will be replaced by (-h) and the 

pressure intensity is given by: 



For a vessel that is accelerated vertically upwards, a, will be 

positive and for vertically downward acceleration, a, will be 

negative . 

Example 3.24 

A vertical hoist carries a square tank 2m x 2m containing water 
to the top of a construction scaffold with an acceleration of 

2m/ s2. If the water depth is 2m, calculate the total 

hydrostatic force on the bottom of the tank. 

If this tank is lowered with an acceleration equal to that of 

gravity, what are the thrusts on the floor and sides of the 

tank? 

Solution: 

Since this is a case of vertical acceleration, the free 

surface and hence the lines of constant pressure remain 

horizontal. 

Vertical upward acceleration = a, = 2 m / s 2  

P r e s s u r e  intensity a t  a  d e p t h  h = p (g + a,) h 

.'. Total hydrostatic thrust on the floor 
= intensity x area 

= 1.204 x 9.81 x 2 x (2 x 2) = 94.49 kN 



Vertical downward acceleration = -9,81 m/s2 

Pressure intensity at depth h = pgh(1-9.81/9.81) = 0 

:. There exists no hydrostatic force on the floor and on the 

side. 

3.10.2 Rotation about a vertical axis 

When a vessel containing a liquid is rotated about a 

vertical axis at constant angular velocity, the liquid 

will, after a small adjustment period, rotate as solid 

body. Since there is no relative motion between adjacent 

layers of the liquid and between the liquid and the 
container, there are no shear stresses. Such a motion is 

called forced-vortex motion. As a result of the constant 
angular velocity w, a constant, radially inward directed 

centripetal acceleration (-w2y) acts on the fluid mass 

towards the axis of rotation. Consequently the pressure 

will vary in the radial direction because of the 

centrifugal effects. 

In order to determine the variation of pressure in the 
radial direction, consider a small element of fluid of 

length dr and cross sectional area dA at radial distance r 
in liquid mass which is contained in a cylinder of internal 

radius r, shown in figure 3.25. The cylinder is rotated at 
constant angular velocity w rad/s about its vertical axis. 

The mass of the element is p.dr.dA. This mass is subjected 

to a radially inward acceleration -02y .  

Newton's Second Law applied to the element will be: 



I 

Free Swtace 

Orlginal 

\ 
-L - - d- - 

\ 
\ 

/ 
\ 

/ 
'--/ / 

Figure 3.25 Rotation with constant angular velocity 

Which when simplified reduced to: 

The variation of pressure with depth will be obtained by 

considering the forces in the vertical direction with 

gravitational acceleration acting on the fluid element. This 

leads to the variation of pressure with depth to be the same 

as when the liquid is at rest i.e. 

For the surface of constant pressure, the total pressure 

differential will be zero. 



Or I 0 = p 02r.  dr - pgdz 

Leading to: 

Integrating the above, 

This shows that the constant pressure lines are parabolic. 

Considering the free surface which is constant pressure 

surf ace, 

r = 0 at z = 0, which make c = A in equation 3 . 3 2  

Thus : 

At the container's wall, r = r, and z = 2,. Therefore, 

Equation 3 . 3 3  shows that for a circular cylinder rotating about 

its axis, the rise of liquid along the wall from the vertex is 



Consider a cylindrical tank partially filled with a liquid and 

rotated about its vertical axis at constant angular velocity 

O rad/sec so that no liquid is spilled as shown in Figure 3.26 

Level before rotation 

I 

Figure 3.26 

The shaded volume AED = paraboloid of revolution 

= volume of the empty space ABCD 

Paraboloid of revolution = 1/2(volume of circumscribing 

cylinder) 

. Volume of empty space ABCD = 1/2 (nr?. h,) 

2 1 2  i . e .  n r , .  hs, = - x r , . h ,  
2 

This shows that during rotation about a vertical axis at 

constant angular velocity, the liquid rises along the walls the 

same amount above the rest level as the centre drops at the 

axis below the rest level. 



Example 3.25 

An open cylindrical tank, 2 m high and 1 m in diameter, 

contains 1.5 m depth of water. If the cylinder rotates about 

its vertical geometric axis, 

a) What is the maximum constant angular velocity that can be 

attained without spilling any water? 

b) What is the pressure intensity at the centre and corner of 

the bottom of the tank i.e. at C and D (fig. E 3.25) when 

the angular velocity is 

Solution: 

Figure E 3.25 

a) If no liquid is to be spilled, the maximum angular velocity 

O will have such a magnitude that will enable the liquid 

to rise to level B at the wall of the cylinder. 

Under this condition, 

Volume of paraboloid of revolution = Volume of original 

empty space 



From the above, y, = 0.5 m 

Thus : h, = l m  = 
0' X 0.5' 
2 x 9.81 

b) For 2, = 8 radls, 

S drops by 112 h, = 0.405 from level A-A. 

Thus: at C, depth from free surface = 1.5 - 0.408 = 1.092m 

at D, depth from free surface = 1.5 + 0.408 = 1.908m 

P, = pgh, = 9810 x 1.908 = 18,717 ~ / m ~  = 18.72 kPa 

Example 3.26 

If the tank in the above example is closed at the top and the 

air subjected to a pressure of 1.07 bar (= 107 KN/~~), 

determine the pressures at points C and D when the angular 

velocity is 115 rpm. 

Solution: 

Referring to Figure E 3.26: 

Since there is no change in the volume of air within the tank, 

volume above level A-A = volume of empty space 

= volume of paraboloid of revolution 



Figure E 3.26 

o2 r: - 12.04~ . ri 
also Y2=-- = 7.39r; 

2g 2 x 9.81 

Substituting the value of r: from (2) in (1) : 



and y2 = 7 . 3 9  x ( 0 . 4 3 ) ~  = 1 . 3 6  m. 

Thus, S is located ( 2 - 1 . 3 6 )  = 0 . 6 4  m above c 

:. Pressure head at D = 0 . 6 4  + 1 . 8 4 7  = 2 . 4 8 7  m .  

. Pressure at C = PC = P,, + ~gh, 
= 1 . 0 7  x l o 5  + 9810  x 0 . 6 4  

= ( 1 . 0 7  + 0 . 0 6 3 )  X 10' Pa 

= 1 . 1 3 3  x 10' Pa 

Pressure at D = P, = Pa, + ~gh, 
= 1 . 0 7  x l o 5  + 9810  x 2 . 4 8 7  

= ( 1 . 0 7  + 0 . 2 4 4 )  x l o 5  
= 1 . 3 1 4  x 10' Pa 

Example 3 . 2 7  

A closed cylindrical vessel 1 m in diameter and 1.8 m high 

contains water to a depth of 1 . 3  m. If the vessel is rotated 

at 18  rad/s, what is the radius of the circle that will be 

uncovered at the bottom of the vessel? 

Solution: 

Referring to Figure E 3 . 2 7  

assume that the vertex s of the paraboloid is at a distance h: 

m below the bottom of the vessel. 



Then : 

Figure E 3.27 

from which, r: = h1/16.51 

from which, 2 r2 = (1.8 + h1)/16.51 



Volume of water in the vessel = Volume of cylinder - (volume 
of paraboloid ABS - volume 
of paraboloid DSC) 

Substituting the values of rI2 and r: from (1) and ( 2 )  above, 

1.3 = 1.8 - 2(1.8 + h,) (1.8 + h1)/16.51 + 2h:/16.51 

-8.255 = -6.48 - 7. 2h1 
. h, = 0.247 rn. 
and r, = (0.247/16.5)ln = 0.122 m 

= 12.2 cm 

Example 3.28 

The U-tube in Example 3.23 is rotated about a vertical axis 15 

cm to the right of A at such a speed that the pressure at A is 

zero gauge. What is the rotational speed? 



Solution: 

Referring to Figure E 3.28 

Figure 3.28 

If the pressure at A is to be zero gauge i.e. atmospheric, then 

the paraboloid of revolution which passes through B must also 

pass through A. The vertex will be at S. 

Thus : 



Substituting value of y, from (2) into (1) : 

Exercise Problems 

3.1 What will be (a) the gauge pressure, (b) the absolute 

pressure of water at a depth of 20 m below the free 

surface. Assume the density of water to be 1000 kg/m3 and 

the atmospheric pressure 101 k~/m'. (Ans. 196.2 k~/m', 

297.2 kN/m2) 

3.2 Calculate the pressure in the ocean at a depth of 2000 m 

assuming that salt water is (a) incompressible with a 

constant density of 1002 kg/m3, (b) compressible with a 

bulk modulus of 2.05 G N / ~ ~  and a density at the surface of 

1002 kg/m3. 

3.3 An inverted U-tube is used to measure pressure difference 

between A and B (Fig. P. 33) . If the top space in the tube 

is filled with air, what is the difference in pressure 

between A and B, when (a) water (b) oil of relative 

density 0.65 flows through the pipes. 

3.4 Find the value of h in metres in Fig. P 3.4 when the air 

pressure above the surface is 3.5 m of water below 

atmospheric (The manometric liquid has s = 2.5) 



Figure P 3.3 

Figure P 3.4 

3.5 At what height H of water will the conical valve in Fig. 

P 3.5 start to leak? The valve weighs 2.256 kN and assume 

the pulley to be frictionless. (Ans. H = 1.325 m) 



Fig P 3.5 

3.6 A 6 m x 2 m rectangular gate is hinged at the base and is 

inclined at an angle of 60' (Fig P 3.6). If W = 

39.2kNacting at angle of 90' to the gate find the depth of 

the water when the gate begins to fall. Neglect the 

weight of the gate and the friction of the pulley. 

Fig. P 3.6 

3.7 A gate consists of a quadrant of a circle of radius 1.5m 

pivoted at 0 (Fig. P 3.7). The centre of gravity of the 



gate is at G. Calculate the magnitude and direction of 

the resultant force on the gate due to the water and the 

turning moment required to open the gate. The width of 

the gate is 3 m and it has a mass of 5000 kg. 

(Ans. 61.6 kN, 57" 28', 29.417 kN m.) 

Fig. P 3.7 

3.8 A submarine weighing 3.924 MN has an enclosed volume of 

800 m3. What volume of water should be taken in to 

submerge the vessel? 

3.9 An open steel tank having a 3.3 m x 3.3 m plan section and 
a draft of 1.3 m has its centre of gravity at the water 

line. The tank has to be delivered by towing after 

fabrication to its final location. Determine whether it 

will float stably without adding ballast. 

(Ans : Stable) 

3.10 The open rectangular tank shown in Fig p 3.10 is 5 m 

wide, 6 m deep and 10 m long. It is filled to a depth of 

4 m with water. If the tank is accelerated horizontally 

at 1/2g, calculate 

a) The volume of water spilled (if any) 

b) The force on the back and fron end 



Fig. P 3.10 

3.11 In figure P 3.11, calculate the minimum volume of the 
concrete block (y, = 22.5633 K N / ~ ~ )  which will hold the 
circular gate AB in place. The block is submerged in water. 
The pulley is frictionless. (Ans. 1.264 m3) 

CT - - - 

BLOCK f 
water 

Fig: P 3.11 

3.12 In figure P 3.12, a, = 2.45 m/s2, a, = 4.90 m/s2. 
Deetermine 

a) The angle which the free surface makes with 
the horizontal 

b) The pressure at B and C in ~ / m ~  

3.0 m 
Fig. P 3.12 

3.13 An open cylinderical tank 1.2 m in diameter and 1.8 m 
deep is filled with water and rotated about its axis at 60 
rpm. How much liquid is spilled and how deep is the water 
at the axis ? (Ans. 0.43 m3, 1.1 m) 

3.14 At what speed should the tank in problem 3.13 be 
rotated in order that the center of the bottom of the tank 
have. zero depth of water? 
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