

To my children, Lemar, Sivan, and Aaron
and my Nicolette

Avi Silberschatz

To my wife, Carla,
and my children, Gwen, Owen, and Maddie

Peter Baer Galvin

To my wife, Pat,
and our sons, Tom and Jay

Greg Gagne

Abraham Silberschatz is the Sidney J. Weinberg Professor & Chair of Com
puter Science at Yale University. Prior to joining Yale, he was the Vice President
of the Information Sciences Research Center at Bell Laboratories. Prior to that,
he held a chaired professorship in the Department of Computer Sciences at the
University of Texas at Austin.

Professor Silberschatz is an ACM Fellow and an IEEE Fellow. He received
the 2002 IEEE Taylor L. Booth Education Award, the 1998 ACM Karl V. Karl
strom Outstanding Educator Award, and the 1997 ACM SIGMOD Contribution
Award. In recognition of his outstanding level of innovation and technical
excellence, he was awarded the Bell Laboratories President's Award for three
different projects-the QTM Project (1998), the DataBlitz Project (1999), and
the Netlnventory Project (2004).

Professor Silberschatz' writings have appeared in numerous ACM and
IEEE publications and other professional conferences and journals. He is a
coauthor of the textbook Database System Concepts. He has also written Op-Ed
articles for the New York Times, the Boston Globe, and the Hartford Courant,
among others.

Peter Baer Galvin is the chief technologist for Corporate Technologies
(www.cptech.com), a computer facility reseller and integrator. Before that, Mr.
Galvin was the systems manager for Brown University's Computer Science
Department. He is also Sun columnist for ;login: magazine. Mr. Galvin has
written articles for Byte and other magazines, and has written columns for
Sun World and SysAdmin magazines. As a consultant and trainer, he has given
talks and taught tutorials on security and system administration worldwide.

Greg Gagne is chair of the Computer Science department at Westminster
College in Salt Lake City where he has been teaching since 1990. In addition
to teaching operating systems, he also teaches computer networks, distributed
systems, and software engineering. He also provides workshops to computer
science educators and industry professionals.

Operating systems are an essential part of any computer system. Similarly,
a course on operating systems is an essential part of any computer-science
education. This field is undergoing rapid change, as computers are now
prevalent in virtually every application, from games for children through the
most sophisticated planning tools for governments and multinational firms.
Yet the fundamental concepts remain fairly clear, and it is on these that we base
this book.

We wrote this book as a text for an introductory course in operating systems
at the junior or senior undergraduate level or at the first-year graduate level.
We hope that practitioners will also find it useful. It provides a clear description
of the concepts that underlie operating systems. As prerequisites, we assume
that the reader is familiar with basic data struchues, computer organization,
and a high-level language, such as C or Java. The hardware topics required
for an understanding of operating systems are included in Chapter 1. For code
examples, we use predominantly C, with some Java, but the reader can still
understand the algorithms without a thorough knowledge of these languages.

Concepts are presented using intuitive descriptions. Important theoretical
results are covered, but formal proofs are omitted. The bibliographical notes
at the end of each chapter contain pointers to research papers in which results
were first presented and proved, as well as references to material for further
reading. In place of proofs, figures and examples are used to suggest why we
should expect the result in question to be true.

The fundamental concepts and algorithms covered in the book are often
based on those used in existing conunercial operating systems. Our aim
is to present these concepts and algorithms in a general setting that is
not tied to one particular operating system. We present a large number of
examples that pertain to the most popular and the most im1.ovative operating
systems, including Sun Microsystems' Solaris; Linux; Microsoft Windows
Vista, Windows 2000, and Windows XP; and Apple Mac OS X. When we refer
to Windows XP as an example operating system, we are implying Windows
Vista, Windows XP, and Windows 2000. If a feature exists in a specific release,
we state this explicitly.

vii

viii

The organization of this text reflects our many years of teaching courses on
operating systems. Consideration was also given to the feedback provided by
the reviewers of the text, as well as comments submitted by readers of earlier
editions. In addition, the content of the text corresponds to the suggestions
from Computing Curricula 2005 for teaching operating systems, published by
the Joint Task Force of the IEEE Computing Society and the Association for
Computing Machinery (ACM).

On the supporting Web site for this text, we provide several sample
syllabi that suggest various approaches for using the text in both introductory
and advanced courses. As a general rule, we encourage readers to progress
sequentially through the chapters, as this strategy provides the most thorough
study of operating systems. However, by using the sample syllabi, a reader can
select a different ordering of chapters (or subsections of chapters).

On-line support for the text is provided by WileyPLUS. On this site, students
can find sample exercises and programming problems, and instructors can
assign and grade problems. In addition, in WileyPLUS, students can access new
operating-system simulators, which are used to work through exercises and
hands-on lab activities. References to the simulators and associated activities
appear at the ends of several chapters in the text.

The text is organized in nine major parts:

Overview. Chapters 1 and 2 explain what operating systems are, what they
do, and how they are designed and constructed. These chapters discuss what
the common features of an operating system are, what an operating system
does for the user, and what it does for the computer-system operator. The
presentation is motivational and explanatory in nature. We have avoided a
discussion of how things are done internally in these chapters. Therefore,
they are suitable for individual readers or for students in lower-level classes
who want to learn what an operating system is without getting into the
details of the internal algorithms.

Process management and Process coordination. Chapters 3 through 7
describe the process concept and concurrency as the heart of modern
operating systems. A process is the unit of work in a system .. Such
a system consists of a collection of concurrently executing processes,
some of which are operating-system processes (those that execute system
code) and the rest of which are user processes (those that execute user
code). These chapters cover n1.ethods for process scheduling, interprocess
communication, process synchronization, and deadlock handling. Also
included is a discussion of threads, as well as an examination of issues
related to multicore systems.

Memory management. Chapters 8 and 9 deal with the management of
main memory during the execution of a process. To improve both the
utilization of the CPU and the speed of its response to its users, the
computer must keep several processes in memory. There are many different

ix

management, and the effectiveness of a particular algorithm depends on
the situation.

Storage management. Chapters 10 through 13 describe how the file system,
mass storage, and I/0 are handled in a modern computer system. The
file system provides the mechanism for on-line storage of and access
to both data and programs. We describe the classic internal algorithms
and structures of storage management and provide a firm practical
understanding of the algorithms used -their properties, advantages, and
disadvantages. Our discussion of storage also includes matters related
to secondary and tertiary storage. Since the I/0 devices that attach to a
computer vary widely, the operating system needs to provide a wide range
of functionality to applications to allow them to control all aspects of these
devices. We discuss system I/O in depth, including I/O system design,
interfaces, and internal system structures and functions. In many ways,
I/O devices are the slowest major components of the computer. Because
they represent a performance bottleneck, we also examine performance
issues associated with I/0 devices.

Protection and security. Chapters 14 and 15 discuss the mechanisms
necessary for the protection and security of computer systems. The
processes in an operating system must be protected from one another's
activities, and to provide such protection, we must ensure that only
processes that have gained proper authorization from the operating system
can operate on the files, memory, CPU, and other resources of the system.
Protection is a mechanism for controlling the access of programs, processes,
or users to the resources defined by a computer system. This mechanism
must provide a means of specifying the controls to be imposed, as
well as a means of enforcement. Security protects the integrity of the
information stored in the system (both data and code), as well as the
physical resources of the system, from 1.mauthorized access, malicious
destruction or alteration, and accidental introduction of inconsistency.

Distributed systems. Chapters 16 through 18 deal with a collection of
processors that do not share memory or a clock-a distributed system. By
providing the user with access to the various resources that it maintains, a
distributed system can improve computation speed and data availability
and reliability. Such a system also provides the user with a distributed file
system, which is a file-service system whose users, servers, and storage
devices are dispersed among the sites of a distributed system. A distributed
system must provide various mechanisms for process synchronization
and communication, as well as for dealing with deadlock problems and a
variety of failures that are not encountered in a centralized system.

Special-purpose systems. Chapters 19 and 20 deal with systems used for
specific purposes, including real-time systems and multimedia systems.
These systems have specific requirements that differ from those of the
general-purpose systems that are the focus of the remainder of the text.
Real-time systems may require not only that computed results be "correct"
but also that the results be produced within a specified deadline period.
Multimedia systems require quality-of-service guarantees ensuring that
the multimedia data are delivered to clients within a specific time frame.

X

Case studies. Chapters 21 through 23 in the book, and Appendices A
through C (which are available on www.wiley.comJ go I global/ silberschatz
and in WileyPLUS), integrate the concepts described in the earlier chapters
by describing real operating systems. These systems include Linux,
Windows XP, FreeBSD, Mach, and Windows 2000. We chose Linux
and FreeBSD because UNIX-at one time-was almost small enough
to understand yet was not a "toy" operating system. Most of its
internal algorithms were selected for simplicity, rather than for speed
or sophistication. Both Linux and FreeBSD are readily available to
computer-science departments, so many students have access to these
systems. We chose Windows XP and Windows 2000 because they provide
an opporhmity for us to study a modern operating system with a design
and implementation drastically different from those of UNIX. Chapter 23
briefly describes a few other influential operating systems.

This book uses examples of many real-world operating systems to illustrate
fundamental operating-system concepts. However, particular attention is paid
to the Microsoft family of operating systems (including Windows Vista,
Windows 2000, and Windows XP) and various versions of UNIX (including
Solaris, BSD, and Mac OS X). We also provide a significant amount of coverage
of the Linux operating system reflecting the most recent version of the kernel
-Version 2.6-at the time this book was written.

The text also provides several example programs written in C and
Java. These programs are intended to run in. the following programming
environments:

Windows systems. The primary programming environment for Windows
systems is the Win32 API (application programming interface), which pro
vides a comprehensive set of functions for managing processes, threads,
memory, and peripheral devices. We provide several C programs illustrat
ing the use of the Win32 API. Example programs were tested on systems
rum1.ing Windows Vista, Windows 2000, and Windows XP.

POSIX. POSIX (which stands for Portable Operating System Inte1jace) repre
sents a set of standards implemented primarily for UNIX-based operating
systems. Although Windows Vista, Windows XP, and Windows 2000 sys
tems can also run certain POSIX programs, our coverage of POSIX focuses
primarily on UNIX and Linux systems. POSIX-compliant systems must
implement the POSIX core standard (POSIX.1): Linux, Solaris, and Mac OS
X are examples of POSIX-compliant systems. POSIX also defines several
extensions to the standards, including real-time extensions (POSIXl.b) and
an extension for a threads library (POSIX1.c, better known as Pthreads). We
provide several programn1.ing examples written inC illustrating the POSIX
base API, as well as Pthreads and the extensions for real-time programming.
These example programs were tested on Debian Linux 2.4 and 2.6 systems,
Mac OS X 10.5, and Solaris 10 using the gee 3.3 and 4.0 compilers.

Java. Java is a widely used programming language with a rich API and
built-in language support for thread creation and management. Java

xi

programs run on any operating system supporting a Java virtual machine
(or JVM). We illustrate various operating system and networking concepts
with several Java programs tested using the Java 1.5 JVM.

We have chosen these three programming environments because it is our
opinion that they best represent the two most popular models of operating
systems: Windows and UNIX/Linux, along with the widely used Java environ
ment. Most programming examples are written in C, and we expect readers to
be comfortable with this language; readers familiar with both the C and Java
languages should easily understand most programs provided in this text.

In some instances-such as thread creation-we illustrate a specific
concept using all three programming environments, allowing the reader
to contrast the three different libraries as they address the same task. In
other situations, we may use just one of the APis to demonstrate a concept.
For example, we illustrate shared memory using just the POSIX API; socket
programming in TCP /IP is highlighted using the Java API.

As we wrote the Eighth Edition of Operating System Concepts, we were guided
by the many comments and suggestions we received from readers of our
previous editions, as well as by our own observations about the rapidly
changing fields of operating systems and networking. We have rewritten
material in most of the chapters by bringing older material up to date and
removing material that was no longer of interest or relevance.

We have made substantive revisions and organizational changes in many
of the chapters. Most importantly, we have added coverage of open-source
operating systems in Chapter 1. We have also added more practice exercises
for students and included solutions in WileyPLUS, which also includes new
simulators to provide demonstrations of operating-system operation. Below,
we provide a brief outline of the major changes to the various chapters:

Chapter 1, Introduction, has been expanded to include multicore CPUs,
clustered computers, and open-source operating systems.

Chapter 2, System Structures, provides significantly updated coverage of
virtual machines, as well as multicore CPUs, the GRUB boot loader, and
operating-system debugging.

Chapter 3, Process Concept, provides new coverage of pipes as a form of
interprocess communication.

Chapter 4, Multithreaded Programming, adds new coverage of program
ming for multicore systems.

Chapter 5, Process Scheduling, adds coverage of virtual machine schedul
ing and multithreaded, multicore architectures.

Chapter 6, Synchronization, adds a discussion of mutual exclusion locks,
priority inversion, and transactional memory.

Chapter 8, Memory-Management Strategies, includes discussion of
NUMA.

xii

Chapter 9, Virtual-Memory Management, updates the Solaris example to
include Solaris 10 memory managernent.

Chapter 10, File System, is updated with current technologies and
capacities.

Chapter 11, Implementing File Systems, includes a full description of
Sun's ZFS file system and expands the coverage of volumes and directories.

Chapter 12, Secondary-Storage Structure, adds coverage of iSCSI, vol
umes, and ZFS pools.

Chapter 13, I/0 Systems, adds coverage of PCIX PCI Express, and Hyper
Transport.

Chapter 16, Distributed Operating Systems, adds coverage of 802.11
wireless networks.

Chapter 21, The LimiX System, has been updated to cover the latest version
of the LimiX kernel.

Chapter 23, Influential Operating Systems, increases coverage of very
early computers as well as TOPS-20, CP/M, MS-DOS, Windows, and the
original Mac OS.

To emphasize the concepts presented in the text, we have added several
programming problems and projects that use the POSIX and Win32 APis, as
well as Java. We have added more than 15 new programming problems, which
emphasize processes, threads, shared memory, process synchronization, and
networking. In addition, we have added or modified several programming
projects that are more involved than standard programming exercises. These
projects include adding a system call to the Linux kernel, using pipes on
both UNIX and Windows systems, using UNIX message queues, creating
multithreaded applications, and solving the producer-consumer problem
using shared memory.

The Eighth Edition also incorporates a set of operating-system simulators
designed by Steven Robbins of the University of Texas at San Antonio. The
simulators are intended to model the behavior of an operating system as it
performs various tasks, such as CPU and disk-head schedulil1.g, process creation
and interprocess communication, starvation, and address translation. These
simulators are written in Java and will run on any computer systern with
Java 1.4. Students can download the simulators from WileyPLUS and observe
the behavior of several operating system concepts in various scenarios. In
addition, each simulator includes several exercises that ask students to set
certain parameters of the simulator, observe how the system behaves, and then
explain this behavior. These exercises can be assigned through WileyPLUS. The
WileyPLUS course also includes algorithmic problems and tutorials developed
by Scott M. Pike of Texas A&M University.

xiii

The following teaching supplencents are available in WileyPLUS and on
www.wiley.coml go I global/ silberschatz: a set of slides to accompany the
book, model course syllabi, all C and Java source code, up-to-date errata,
three case study appendices and the Distributed Communication appendix.
The WileyPLUS course also contains the simulators and associated exercises,
additional practice exercises (with solutions) not found in the text, and a
testbank of additional problems. Students are encouraged to solve the practice
exercises on their own and then use the provided solutions to check their own
answers.

To obtain restricted supplements, such as the solution guide to the exercises
in the text, contact your local J orne Wiley & Sons sales representative. Note that
these supplements are available only to faculty who use this text.

We use the mailman system for communication among the users of Operating
System Concepts. If you wish to use this facility, please visit the following URL
and follow the instructions there to subscribe:

http: I I mailman.cs.yale.edul mailmanllistinfo I os-book
The mailman mailing-list system provides many benefits, such as an archive
of postings, as well as several subscription options, including digest and Web
only. To send messages to the list, send e-mail to:

os-book@cs.yale.edu
Depending on the message, we will either reply to you personally or forward
the message to everyone on the mailing list. The list is moderated, so you will
receive no inappropriate mail.

Students who are using this book as a text for class should not use the list
to ask for answers to the exercises. They will not be provided.

We have attempted to clean up every error in this new edition, but-as
happens with operating systems-a few obscure bugs may remain. We would
appreciate hearing from you about any textual errors or omissions that you
identify.

If you would like to suggest improvements or to contribute exercises,
we would also be glad to hear from you. Please send correspondence to
os-book-authors@cs.yale.edu.

This book is derived from the previous editions, the first three of which
were coauthored by James Peterson. Others who helped us with previous
editions include Hamid Arabnia, Rida Bazzi, Randy Bentson, David Black,

xiv

Joseph Boykin, Jeff Brumfield, Gael Buckley, Roy Campbell, P. C. Capon, John
Carpenter, Gil Carrick, Thomas Casavant, Bart Childs, Ajoy Kum.ar Datta,
Joe Deck, Sudarshan K. Dhall, Thomas Doeppner, Caleb Drake, M. Racsit
Eskicioglu, Hans Flack, Robert Fowler, G. Scott Graham, Richard Guy, Max
Hailperin, Rebecca I-Iartncan, Wayne Hathaway, Christopher Haynes, Don
Heller, Bruce Hillyer, Mark Holliday, Dean Hougen, Michael Huangs, Ahmed
Kamet Marty Kewstet Richard Kieburtz, Carol Kroll, Marty K westet Thomas
LeBlanc, John Leggett, Jerrold Leichter, Ted Leung, Gary Lippman, Carolyn
Miller, Michael Molloy, Euripides Montagne, Yoichi Muraoka, Jim M. Ng,
Banu Ozden, Ed Posnak, Boris Putanec, Charles Qualline, John Quarterman,
Mike Reiter, Gustavo Rodriguez-Rivera, Carolyn J. C. Schauble, Thomas P.
Skimcer, Yannis Smaragdakis, Jesse St. Laurent, John Stankovic, Adam Stauffer,
Steven Stepanek, John Sterling, Hal Stern, Louis Stevens, Pete Thomas, David
Umbaugh, Steve Vinoski, Tommy Wagner, Larry L. Wear, Jolm Werth, James
M. Westall, J. S. Weston, and Yang Xiang

Parts of Chapter 12 were derived from a paper by Hillyer and Silberschatz
[1996]. Parts of Chapter 17 were derived from a paper by Levy and Silberschatz
[1990]. Chapter 21 was derived from an unpublished manuscript by Stephen
Tweedie. Chapter 22 was derived from an unpublished manuscript by Dave
Probert, Cliff Martin, and Avi Silberschatz. Appendix C was derived from
an unpublished manuscript by Cliff Martin. Cliff Martin also helped with
updating the UNIX appendix to cover FreeBSD. Some of the exercises and
accompanying solutions were supplied by Arvind Krishnamurthy.

Mike Shapiro, Bryan Cantrill, and Jim Mauro answered several Solaris
related questions. Bryan Cantrill from Sun Microsystems helped with the ZFS
coverage. Steve Robbins of the University of Texas at San Antonio designed
the set of simulators that we incorporate in WileyPLUS. Reece Newman
of Westminster College initially explored this set of simulators and their
appropriateness for this text. Josh Dees and Rob Reynolds contributed coverage
of Microsoft's .NET. The project for POSIX message queues was contributed by
John Trona of Saint Michael's College in Colchester, Vermont.

Marilyn Turnamian helped generate figures and presentation slides. Mark
Wogahn has made sure that the software to produce the book (e.g., Latex
macros, fonts) works properly.

Our Associate Publisher, Dan Sayre, provided expert guidance as we
prepared this edition. He was assisted by Carolyn Weisman, who managed
many details of this project smoothly. The Senior Production Editor Ken
Santor, was instrumental in handling all the production details. Lauren Sapira
and Cindy Jolmson have been very helpful with getting material ready and
available for WileyPlus.

Beverly Peavler copy-edited the manuscript. The freelance proofreader was
Katrina Avery; the freelance indexer was Word Co, Inc.

Abraham Silberschatz, New Haven, CT, 2008
Peter Baer Galvin, Burlington, MA 2008
Greg Gagne, Salt Lake City, UT, 2008

PART ONE • OVERVIEW

Chapter 1 Introduction
1.1 What Operating Systems Do 3
1.2 Computer-System Organization 6
1.3 Computer-System Architecture 12
1.4 Operating-System Sh·ucture 18
1.5 Operating-System Operations 20
1.6 Process Management 23
1.7 Memory Management 24
1.8 Storage Management 25

Chapter 2 System Structures
2.1 Operating-System Services 49
2.2 User Operating-System Interface 52
2.3 System Calls 55
2.4 Types of System Calls 58
2.5 System Programs 66
2.6 Operating-System Design and

Implementation 68
2.7 Operating-System Structure 70

1.9 Protection and Security 29
1.10 Distributed Systems 30
1.11 Special-Purpose Systems 32
1.12 Computing Environments 34
1.13 Open-Source Operating Systems 37
1.14 Summary 40

Exercises 42
Bibliographical Notes 46

2.8 Virtual Machines 76
2.9 Operating-System Debugging 84

2.10 Operating-System Generation 88
2.11 System Boot 89
2.12 Summary 90

Exercises 91
Bibliographical Notes 97

PART TWO • PROCESS MANAGEMENT

Chapter 3 Process Concept
3.1 Process Concept 101
3.2 Process Scheduling 105
3.3 Operations on Processes 110
3.4 Interprocess Communication 116
3.5 Examples of IPC Systems 123

3.6 Communication in Client
Server Systems 128

3.7 Summary 140
Exercises 141
Bibliographical Notes 152

XV

xvi

Chapter 4 Multithreaded Programming
4.1 Overview 153
4.2 Multithreading Models 157
4.3 Thread Libraries 159
4.4 Threading Issues 165

Chapter 5 Process Scheduling
5.1 Basic Concepts 183
5.2 Scheduling Criteria 187
5.3 Scheduling Algorithms 188
5.4 Thread Scheduling 199
5.5 Multiple-Processor Scheduling 200

4.5 Operating-System Examples 171
4.6 Summary 174

Exercises 174
Bibliographical Notes 181

5.6 Operating System Examples 206
5.7 Algorithm Evaluation 213
5.8 Summary 217

Exercises 218
Bibliographical Notes 222

PART THREE • PROCESS COORDINATION

Chapter 6 Synchronization
6.1 Backgrmmd 225
6.2 The Critical-Section Problem 227
6.3 Peterson's Solution 229
6.4 Synchronization Hardware 231
6.5 Semaphores 234
6.6 Classic Problems of

Synchronization 239

Chapter 7 Deadlocks
7.1 System Model 283
7.2 Deadlock Characterization 285
7.3 Methods for Handling Deadlocks 290
7.4 Deadlock Prevention 291
7.5 Deadlock Avoidance 294

6.7 Monitors 244
6.8 Synchronization Examples 252
6.9 Atomic Transactions 257

6.10 Summary 267
Exercises 267
Bibliographical Notes 280

7.6 Deadlock Detection 301
7.7 Recovery from Deadlock 304
7.8 Summary 306

Exercises 307
Bibliographical Notes 310

PART FOUR • MEMORY MANAGEMENT

Chapter 8 Memory-Management Strategies
8.1 Background 315
8.2 Swapping 322
8.3 Contiguous Memory Allocation 324
8.4 Paging 328
8.5 Structure of the Page Table 337

8.6 Segmentation 342
8.7 Example: The Intel Pentium 345
8.8 Summary 349

Exercises 350
Bibliographical Notes 354

xvii

Chapter 9 Virtual-Memory Management
9.1 Background 357
9.2 Demand Paging 361
9.3 Copy-on-Write 367
9.4 Page Replacement 369
9.5 Allocation of Frames 382
9.6 Thrashing 386
9.7 Memory-Mapped Files 390

9.8 Allocating Kernel Memory 396
9.9 Other Considerations 399

9.10 Operating-System Examples 405
9.11 Summary 407

Exercises 409
Bibliographical Notes 416

PART FIVE • STORAGE MANAGEMENT

Chapter 10 File System
10.1 File Concept 421
10.2 Access Methods 430
10.3 Directory and Disk Structure 433
10.4 File-System Mounting 444
10.5 File Sharing 446

10.6 Protection 451
10.7 Summary 456

Exercises 457
Bibliographical Notes 458

Chapter 11 Implementing File Systems
11.1 File-System Structure 461
11.2 File-System Implementation 464
11.3 Directory Implementation 470
11.4 Allocation Methods 471
11.5 Free-Space Management 479
11.6 Efficiency and Performance 482

11.7 Recovery 486
11.8 NFS 490
11.9 Example: The WAFL File System 496

11.10 Summary 498
Exercises 499
Bibliographical Notes 502

Chapter 12 Secondary-Storage Structure
12.1 Overview of Mass-Storage

Structure 505
12.2 Disk Structure 508
12.3 Disk Attachment 509
12.4 Disk Scheduling 510
12.5 Disk Man.agement 516
12.6 Swap-Space Management 520

Chapter 13 I/0 Systems
13.1 Overview 555
13.2 I/0 Hardware 556
13.3 Application I/0 Interface 565
13.4 Kernel I/0 Subsystem 571
13.5 Transforming I/0 Requests to

Hardware Operations 578

12.7 RAID Structure 522
12.8 Stable-Storage Implementation 533
12.9 Tertiary-Storage Struchue 534

12.10 Summary 543
Exercises 545
Bibliographical Notes 552

13.6 STREAMS 580
13.7 Performance 582
13.8 Summary 585

Exercises 586
Bibliographical Notes 588

xviii

PART SIX • PROTECTION AND SECURITY

Chapter 14 System Protection
14.1 Goals of Protection 591
14.2 Principles of Protection 592
14.3 Domain of Protection 593
14.4 Access Matrix 598
14.5 Implementation of Access Matrix 602
14.6 Access Control 605

Chapter 15 System Security
15.1 The Security Problem 621
15.2 Program Threats 625
15.3 System and Network Threats 633
15.4 Cryptography as a Security Tool 638
15.5 User Authentication 649
15.6 Implementing Security Defenses 654
15.7 Firewalling to Protect Systems and

Networks 661

14.7 Revocation of Access Rights 606
14.8 Capability-Based Systems 607
14.9 Language-Based Protection 610

14.10 Surnmary 615
Exercises 616
Bibliographical Notes 618

15.8 Computer-Security
Classifications 662

15.9 An Example: Windows XP 664
15.10 Summary 665

Exercises 666
Bibliographical Notes 667

PART SEVEN • DISTRIBUTED SYSTEMS

Chapter 16 Distributed Operating Systems
16.1 Motivation 673
16.2 Types of Network-

based Operating Systems 675
16.3 Network Structure 679
16.4 Network Topology 683
16.5 Communication Structure 684
16.6 Communication Protocols 690

16.7 Robustness 694
16.8 Design Issues 697
16.9 An Example: Networking 699

16.10 Summary 701
Exercises 701
Bibliographical Notes 703

Chapter 17 Distributed File Systems
17.1 Background 705
17.2 Naming and Transparency 707
17.3 Remote File Access 710
17.4 Stateful versus Stateless Service 715
17.5 File Replication 716

17.6 An Example: AFS 718
17.7 Summary 723

Exercises 724
Bibliographical Notes 725

Chapter 18 Distributed Synchronization
18.1 Event Ordering 727
18.2 Mutual Exclusion 730
18.3 Atomicity 733
18.4 Concurrency Control 736
18.5 Deadlock Handling 740

18.6 Election Algorithms 747
18.7 Reaching Agreement 750
18.8 Summary 752

Exercises 753
Bibliographical Notes 754

PART EIGHT • SPECIAL PURPOSE SYSTEMS

Chapter 19 Real-Time Systems
19.1 Overview 759
19.2 System Characteristics 760
19.3 Features of Real-Time Kernels 762
19.4 Implementing Real-Time Operating

Systems 764

19.5 Real-Time CPU Scheduling 768
19.6 An Example: VxWorks 5.x 774
19.7 Summary 776

Exercises 777
Bibliographical Notes 777

Chapter 20 Multimedia Systems
20.1 What Is Multimedia? 779
20.2 Compression 782
20.3 Requirements of Multimedia

Kernels 784
20.4 CPU Scheduling 786
20.5 Disk Scheduling 787

20.6 Network Management 789
20.7 An Example: CineBlitz 792
20.8 Summary 795

Exercises 795
Bibliographical Notes 797

PART NINE • CASE STUDIES

Chapter 21 The Linux System
21.1 Linux History 801
21.2 Design Principles 806
21.3 Kernel Modules 809
21.4 Process Management 812
21.5 Scheduling 815
21.6 Memory Management 820
21.7 File Systems 828

Chapter 22 Windows XP
22.1 History 847
22.2 Design Principles 849
22.3 System Components 851
22.4 Environmental Subsystems 874
22.5 File System 878

21.8 Input and Output 834
21.9 Interprocess Communication 837

21.10 Network Structure 838
21.11 Security 840
21.12 Summary 843

Exercises 844
Bibliographical Notes 845

22.6 Networking 886
22.7 Programmer Interface 892
22.8 Sum.mary 900

Exercises 900
Bibliographical Notes 901

Chapter 23 Influential Operating Systems
23.1 Feature Migration 903
23.2 Early Systems 904
23.3 Atlas 911
23.4 XDS-940 912
23.5 THE 913
23.6 RC 4000 913
23.7 CTSS 914
23.8 MULTICS 915

23.9 IBM OS/360 915
23.10 TOPS-20 917
23.11 CP/M and MS/DOS 917
23.12 Macintosh Operating System and

Windows 918
23.13 Mach 919
23.14 Other Systems 920

Exercises 921

xix

XX

Chapter A BSD UNIX
A1 UNIX History 1
A2 Design Principles 6
A3 Programmer Interface 8
A.4 User Interface 15
AS Process Management 18
A6 Memory Management 22

Appendix B The Mach System
B.l History of the Mach System 1
B.2 Design Principles 3
B.3 System Components 4
B.4 Process Management 7
B.S Interprocess Conununication 13
B.6 Memory Management 18

Appendix C Windows 2000
C.1 History 1
C.2 Design Principles 2
C.3 System Components 3
C.4 Enviromnental Subsystems 19
C.S File System 22

Bibliography 923

Credits 941

Index 943

A7 File System 25
AS I/0 System 32
A9 Interprocess Communication 35

AlO Summary 40
Exercises 41
Bibliographical Notes 42

B.7 Programmer Interface 23
B.S Summary 24

Exercises 25
Bibliographical Notes 26
Credits 27

C.6 Networking 28
C.7 Programmer Interface 33
C.S Summary 40

Exercises 40
Bibliographical Notes 41

Part One

An operating system acts as an intermediary between the user of a
computer and the computer hardware. The purpose of an operating
system is to provide an environment in which a user can execute
programs in a convenient and efficient manner.

An operating system is software that manages the computer hard
ware. The hardware must provide appropriate mechanisms to ensure the
correct operation of the computer system and to prevent user programs
from interfering with the proper operation of the system.

Internally, operating systems vary greatly in their makeup, since they
are organized along many different lines. The design of a new operating
system is a major task. It is impmtant that the goals of the system be well
defined before the design begins. These goals form the basis for choices
among various algorithms and strategies.

Because an operating system is large and complex, it must be created
piece by piece. Each of these pieces should be a well delineated portion
of the system, with carefully defined inputs, outputs, and functions.

1.1

CH ER

An is a program that manages the computer hardware. It
also provides a basis for application programs and acts as an intermediary
between the computer user and the computer hardware. An amazing aspect
of operating systems is how varied they are in accomplishing these tasks.
Mainframe operating systems are designed primarily to optimize utilization
of hardware. Personal computer (PC) operating systems support complex
games, business applications, and everything in between. Operating systems
for handheld computers are designed to provide an environment in which a
user can easily interface with the computer to execute programs. Thus, some
operating systems are designed to be convenient, others to be efficient, and others
some combination of the two.

Before we can explore the details of computer system operation, we need
to know something about system structure. We begin by discussing the basic
functions of system startup, I/0, and storage. We also describe the basic
computer architecture that makes it possible to write a functional operating
system.

Because an operating system is large and complex, it must be created
piece by piece. Each of these pieces should be a well-delineated portion of the
system, with carefully defined inputs, outputs, and functions. In this chapter,
we provide a general overview of the major components of an operating
system.

To provide a grand tour of the major components of operating systems.

To describe the basic organization of computer systems.

We begin our discussion by looking at the operating system's role in the
overall computer system. A computer system can be divided roughly into

3

4 Chapter 1

compiler assembler text editor

operating system

database
system

Figure 1.1 Abstract view of the components of a computer system.

four components: the hardware/ the operating system, the application programs/
and the users (Figure 1.1).

The hardwa.te-the the and the
<ievices-provides the basic computing resources for the

system. The as word processors/ spreadsheets/
compilers, and Web browsers-define the ways in which these resources are
used to solve users' computing problems. The operating system controls the
hardware and coordinates its use among the various application programs for
the various users.

We can also view a computer system as consisting of hardware/ software/
and data. The operating system provides the means for proper use of these
resources in the operation of the computer system. An operating system is
similar to a government. Like a government, it performs no useful function by
itself. It simply provides an environment within which other programs can do
useful work.

To understand more fully the operating systemfs role, we next explore
operating systems from two viewpoints: that of the user and that of the system.

1.1.1 User View

The user's view of the computer varies according to the interface being
used. Most computer users sit in front of a PC, consisting of a monitor/
keyboard/ mouse, and system unit. Such a system is designed for one user
to monopolize its resources. The goal is to maximize the work (or play) that
the user is performing. In this case/ the operating system is designed mostly
for with some attention paid to performance and none paid
to various hardware and software resources are
shared. Performance is, of course, important to the user; but such systems

1.1 5

are optimized for the single-user experience rather than the requirements of
multiple users.

In other cases, a user sits at a terminal connected to a or a
Other users are accessing the sance computer through other

terminals. These users share resources and may exchange information. The
operating system in S"Llclc cases is designed to maximize resource utilization
to assure that all available CPU time, memory, and I/0 are used efficiently and
tbat no individual user takes more than her fair share.

In still otber cases, users sit at connected to networks of
other workstations and These users have dedicated resources at their
disposal, but they also share resources such as networking and servers-file,
compute, and print servers. Therefore, their operating system is designed to
compromise between individual usability and resource utilization.

Recently, many varieties of handheld computers have come into fashion.
Most of these devices are standalone units for individual users. Some are
connected to networks, either directly by wire or (more often) through wireless
modems and networking. Because of power, speed, and interface limitations,
they perform relatively few remote operations. Their operating systems are
designed mostly for individual usability, but performance per unit of battery
life is important as well.

Some computers have little or no user view. For example, embedded
computers in home devices and automobiles may have numeric keypads and
may turn indicator lights on or off to show status, but they and their operating
systems are designed primarily to run without user intervention.

1.1.2 System View

From the computer's point of view, the operating system is the program
most intimately involved with the hardware. In this context, we can view
an operating system as a . A computer system has many
resources that may be required to solve a problem: CPU time, memory space,
file-storage space, I/0 devices, and so on. The operating system acts as the
manager of these resources. Facing numerous and possibly conflicting requests
for resources, the operating system must decide how to allocate them to specific
programs and users so that it can operate the computer system efficiently and
fairly. As we have seen, resource allocation is especially important where many
users access the same mainframe or minicomputer.

A slightly different view of an operating system emphasizes the need to
control the various I/0 devices and user programs. An operating system is a
control program. A manages the execution of user programs
to prevent errors and improper use of the computer. It is especially concerned
with the operation and control of I/O devices.

1.1.3 Defining Operating Systems

We have looked at the operating system's role from the views of the user
and of the system. How, though, can we define what an operating system
is? In general, we have no completely adequate definition of an operating
system. Operating systems exist because they offer a reasonable way to solve
the problem of creating a usable computing system. The fundamental goal
of computer systems is to execute user programs and to make solving user

6 Chapter 1

1.2

STORAGE DEFINITIONS AND NOTATION

A is the basic unit of computer storage. It can contain one of two values,
zero and one. All other storage in a computer is based on collections of bits.
Given enough bits, it is amazing how many things a computer can represent:
numbers, letters, images, movies, sounds, documents, and programs, to name
a few. A is 8 bits, and on most computers it is the smallest convenient
chunk of storage. For example, most computers don't have an instruction
to move a bit but do have one to move a byte. A less common term is

which is a given computer architecture's native storage unit. A word is
generally made up of one or more bytes. For example, a computer may have
instructions to move 64-bit (8-byte) words.

A kilobyte, or KB, is 1,024 bytes; a megabyte, or MB, is 1,0242 bytes; and
a gigabyte, or GB, !s 1,0243 bytes. Computer manufacturers often round off
these numbers and say that a megabyte is 1 million bytes and a gigabyte is 1
billion bytes.

problems easier. Toward this goal, computer hardware is constructed. Since
bare hardware alone is not particularly easy to use, application programs are
developed. These programs require certain common operations, such as those
controlling the II 0 devices. The common functions of controlling and allocating
resources are then brought together into one piece of software: the operating
system.

In addition, we have no universally accepted definition of what is part of the
operating system. A simple viewpoint is that it includes everything a vendor
ships when you order "the operating system." The features included, however,
vary greatly across systems. Some systems take up less than 1 megabyte of
space and lack even a full-screen editor, whereas others require gigabytes of
space and are entirely based on graphical windowing systems. A more common
definition, and the one that we usually follow, is that the operating system
is the one program running at all times on the computer-usually called
the . (Along with the kernel, there are two other types of programs:

which are associated with the operating system but are not
part of the kernel, and which include all programs not
associated with the operation of the system.)

The matter of what constitutes an operating system has become increas
ingly important. In 1998, the United States Deparhnent of Justice filed suit
against Microsoft, in essence claiming that Microsoft included too much func
tionality in its operating systems and thus prevented application vendors from
competing. For example, a Web browser was an integral part of the operating
systems. As a result, Microsoft was found guilty of using its operating-system
monopoly to limit competition.

Before we can explore the details of how computer systems operate, we need
general knowledge of the structure of a computer system. In this section,
we look at several parts of this structure. The section is mostly concerned

1.2

THE STUDY OFOPERATING SYSTEMS

There has neverbeenarnore interestirighnwtostud yoperating systems:· and
it has neverb.een.e~sier.Theopen-sourc;e movernent has overtaken .operating
systems, caJ.tsing marly ofthenctobemadeavailable in both source and binary
(e~ecuta]Jle) fonnat.·.This Iistindud~~Linu)(, BSDUNIX/Solat•is,and part of•
]\II~cos.x. Th~availa~ilityqf·source.code.q,llowsus.tostudyoperq,til}.gsy?tems
frorrt theinsid,eout' .. Questionsthat previo)1sly could onlyb~ answerecL~y
looking atdocumentaticmor thebehayior.ofan op~rating system c.annow be
answered by examining the code itself.

In additi?n,. the rise of virtualization as a ll}.ainsfreafll. (andfrequelltly free)
cmnp)1ter ftmctionmakesitpos;~i1Jlet()runnmnyoperqtingsystems.ontop.of
onecoresystem .. Forexample,VMware(J:lttp.://www .• vmwarE:).com):provides
afree·''player'' on which hundreds.of free .''virtualappliilnces'' cann.m.Using
this method,students call tryolit hundreds. ofoperatingsystems.withintheir
existing operatingsystems .atno cost. ... ··.·. ·.. · ... ·

Operating .sy~temsthat are no lortge~ ~ofllmerci~lly viableltave been
opell-~o}lrced asvvell, ·enablirtg·.usto study how system~ pperated i~<
time.of•.•f~v.r~r CPU, ll}.emory,•·•etnd.storcrge•·•·.resoJ.trces,·····.An ... exten~iye.b).It·•not
complete .•. list ()f 9pen'-sourct operafirtg-"system pr?j~?ts is .. availa~le £rom
ht~p :// dm()~ ' org/ C:omp)1ters/Softp(lre /Operati»g:-Systems/p~~m._Sourc~/-

S. i.m .. • .. •· .. ·.u. l·a·t·o . .rs.•· .. o··.f······s·· .. P ... e ... c .. i.fi .. ·.·c·· .. ··. ·•.h a ... ·.r ... ·.d ...• w ... •·.a .•. r ... e ·.· ar .. e· ... · .a·l·s·o .. · a·.··v ... •· ... a.il .. ·<1. b ... ·.·.le·· ... ·.i·n···.· .. · ... · ... s .. om .•. ·. · .. e. •.·.c.·.· a····.·s·e· s. '···· ... al .. I.·.o w.· .•.. m.· .•··.g ..
th~ operat~<g systell}.to.runon.''na~ve''.hardware, ... all~ithrrtthec?l}.fines
of a modem CO!TIPJ-Iter and moderJ1 OPf/'atirtg ~ystem. For: example, a
DECSYSTEMc20 simulator running on Mac OS X can boot TOPS-20, loa~. the
~ource.tages;.·and modify al'ld comp~le·<l·.J:t.evvTOPS-20 .k~rneL ··Art·interested
stltdent ~ar• search theint~rnet to find the origillal papers that de~cribe the
operating systemand .. the.origipa~ manuals:

Tl<e adve~t?fogen-source operafirtg sy~te1Tis also l}."lal<es it easy t?··.make
the move fromstu~enttooper<:lting~systemdeveloper.With some knov.rledge,
som~ effo1't, a11d an Internet connection,a student c;al'leven create a new
operating-systemdistribution! Justa. fev.r years, ~go itwas diffic]_llt or
if1Lpossible ··to. get acce~s·. to ·source co?e . . N?v.r·. that access is.·liJnited only
bylt()wmuchtimeand disk space a student has. ·

7

with computer-system organization, so you can skim or skip it if you already
understand the concepts.

1.2.1 Computer-System Operation

A modern general-purpose computer system consists of one or more CPUs
and a number of device controllers connected through a common bus that
provides access to shared memory (Figure 1.2). Each device controller is in
charge of a specific type of device (for example, disk drives, audio devices, and
video displays). The CPU and the device controllers can execute concurrently,
competing for memory cycles. To ensure orderly access to the shared memory,
a memory controller is provided whose function is to synchronize access to the
memory.

For a computer to start rum<ing-for instance, when it is powered
up or rebooted-it needs to have an initial program to run. This initial

8 Chapter 1

mouse keyboard printer monitor

O ~~~ (_rlo•i-nneh b

Figure 1.2 A modern computer system.

program, or tends to be simple. Typically, it is stored
in read-only memory or electrically erasable programmable read-only
memory known by the general term within the computer
hardware. It initializes all aspects of the system, from CPU registers to device
controllers to memory contents. The bootstrap program must know how to load
the operating system and how to start executing that system. To accomplish this
goal, the bootstrap program must locate and load into memory the operating
system kernel. The operating system then starts executing the first process,
such as "init," and waits for some event to occur.

The occurrence of an event is usually signaled by an from either
the hardware or the software. Hardware may trigger an interrupt at any time
by sending a signal to the CPU, usually by way of the system bus. Software
may trigger an interrupt executing a special operation called a
(also called a

When the CPU is interrupted, it stops what it is doing and immediately
transfers execution to a fixed location. The fixed location usually contains
the starting address where the service routine for the interrupt is located.
The interrupt service routine executes; on completion, the CPU resumes the
interrupted computation. A time line of this operation is shown in Figure 1.3.

Interrupts are an important part of a computer architecture. Each computer
design has its own interrupt mechanism, but several functions are common.
The interrupt must transfer control to the appropriate interrupt service routine.
The straightforward method for handling this transfer would be to invoke a
generic routine to examine the interrupt information; the routine, in turn,
would call the interrupt-specific handler. However, interrupts must be handled
quickly. Since only a predefined number of interrupts is possible, a table of
pointers to interrupt routines can be used instead to provide the necessary
speed. The interrupt routine is called indirectly through the table, with no
intermediate routine needed. Generally, the table of pointers is stored in low
memory (the first hundred or so locations). These locations hold the addresses
of the interrupt service routines for the various devices. This array, or

of addresses is then indexed by a unique device number, given with
the interrupt request, to provide the address of the interrupt service routine for

CPU user

1/0
device

process
executing

1/0 interrupt
processing

idle "~""~-~-

tmcefeniog I L ..
1/0

request

1.2

ll v

-~~'"''''''~'"''"-~~ -~~-"] t---~---

''m'] L,~"~~~

transfer
done

1/0 transfer
request done

Figure 1.3 Interrupt time line for a single process doing output.

9

the interrupting device. Operating systems as different as Windows and UNIX
dispatch interrupts in this manner.

The interrupt architecture must also save the address of the interrupted
instruction. Many old designs simply stored the interrupt address in a
fixed location or in a location indexed by the device number. More recent
architectures store the return address on the system stack. If the interrupt
routine needs to modify the processor state-for instance, by modifying
register values-it must explicitly save the current state and then restore that
state before returning. After the interrupt is serviced, the saved return address
is loaded into the program counter, and the interrupted computation resumes
as though the interrupt had not occurred.

1.2.2 Storage Structure

The CPU can load instructions only from memory, so any programs to run must
be stored there. General-purpose computers run most of their programs from
rewriteable memory, called main memory (also called
or RAM). Main commonly is implemented in a semiconductor
technology called Computers use
other forms of memory as well. Because the read-only memory (ROM) camwt
be changed, only static programs are stored there. The immutability of ROM
is of use in game cartridges. EEPROM camwt be changed frequently and so
contains mostly static programs. For example, smartphones have EEPROM to
store their factory-il<stalled programs.

All forms of memory provide an array of words. Each word has its
own address. Interaction is achieved through a sequence of load or store
instructions to specific memory addresses. The load instruction moves a word
from main memory to an internal register within the CPU, whereas the store
instruction moves the content of a register to main memory. Aside from explicit
loads and stores, the CPU automatically loads instructions from main memory
for execution.

A typical instruction-execution cycle, as executed on a system with a
architecture, first fetches an il1struction from memory and stores

that instruction in the . The instruction is then decoded
and may cause operands to be fetched from memory and stored in some

10 Chapter 1

internal register. After the instruction on the operands has been executed, the
result may be stored back in memory. Notice that the memory unit sees only
a stream of memory addresses; it does not know how they are generated (by
the instruction counter, indexing, indirection, literal addresses, or some other
means) or what they are for (instructions or data). Accordingly, we can ignore
how a memory address is generated by a program. We are interested only in
the sequence of memory addresses generated by the running program.

Ideally, we want the programs and data to reside in main ncemory
permanently. This arrangement usually is not possible for the following two
reasons:

Main memory is usually too small to store all needed programs and data
permanently.

Main memory is a volatile storage device that loses its contents when
power is turned off or otherwise lost.

Thus, most computer systems provide as an extension
of main memory. The main requirement for secondary storage is that it be able
to hold large quantities of data permanently.

The most common secondary-storage device is a which
provides storage for both programs and data. Most programs (system and
application) are stored on a disk until they are loaded into memory. Many
programs then use the disk as both the source and the destination of their
processing. Hence, the proper management of disk storage is of central
importance to a computer system, as we discuss in Chapter 12.

In a larger sense, however, the storage structure that we have described
consisting of registers, main memory, and magnetic disks-is only one of many
possible storage systems. Others include cache memory, CD-ROM, magnetic
tapes, and so on. Each storage system provides the basic functions of storing
a datum and holding that datum until it is retrieved at a later time. The main
differences among the various storage systems lie in speed, cost, size, and
volatility.

The wide variety of storage systems in a computer system can be organized
in a hierarchy (Figure 1.4) according to speed and cost. The higher levels are
expensive, but they are fast. As we move down the hierarchy, the cost per bit
generally decreases, whereas the access time generally increases. This trade-off
is reasonable; if a given storage system were both faster and less expensive
than another-other properties being the same-then there would be no
reason to use the slower, more expensive memory. In fact, many early storage
devices, including paper tape and core memories, are relegated to museums
now that magnetic tape and have become faster and
cheaper. The top four levels of memory in Figure 1.4 may be constructed using
semiconductor memory.

In addition to differing in speed and cost, the various storage systems
are either volatile or nonvolatile. As mentioned earlier, loses
its contents when the power to the device is removed. In the absence of
expensive battery and generator backup systems, data must be written to

for safekeeping. In the hierarchy shown in Figure 1.4, the
the electronic disk are volatile, whereas those below

1.3 15

Figure 1.6 Symmetric multiprocessing architecture.

Solaris. The benefit of this model is that many processes can run simultaneously
-N processes can run if there are N CPUs-without causing a significant
deterioration of performance. However, we must carefully control I/0 to
ensure that the data reach the appropriate processor. Also, since the CPUs
are separate, one may be sitting idle while another is overloaded, resulting in
inefficiencies. These inefficiencies can be avoided if the processors share certain
data structures. A multiprocessor system of this form will allow processes and
resources-such as memory-to be shared dynamically among the various
processors and can lower the variance among the processors. Such a system
must be written carefully, as we shall see in Chapter 6. Virtually all modern
operating systems-including Windows, Windows XP, Mac OS X, and Linux
-now provide support for SMP.

The difference between symmetric and asymmetric multiprocessing may
result from either hardware or software. Special hardware can differentiate the
multiple processors, or the software can be written to allow only one master and
multiple slaves. For instance, Sun's operating system SunOS Version 4 provided
asymmetric multiprocessing, whereas Version 5 (Solaris) is symmetric on the
same hardware.

Multiprocessing adds CPUs to increase computing power. If the CPU has an
integrated memory controller, then adding CPUs can also increase the amount
of memory addressable in the system. Either way, multiprocessing can cause
a system to change its memory access model from uniform memory access

to non-uniform memory access UMA is defined as the situation
in which access to any RAM from any CPU takes the same amount of time. With
NUMA, some parts of memory may take longer to access than other parts,
creating a performance penalty. Operating systems can minimize the NUMA
penalty through resource management_, as discussed in Section 9.5.4.

A recent trend in CPU design is to in.clude multiple computing on
a single chip. In essence, these are multiprocessor chips. They can be more
efficient than multiple chips with single cores because on-chip communication
is faster than between-chip communication. In addition, one chip with multiple
cores uses significantly less power than multiple single-core chips. As a result,
multicore systems are especially well suited for server systems such as database
and Web servers.

16 Chapter 1

Figure 1.7 A dual-core design with two cores placed on the same chip.

In Figure 1.7, we show a dual-core design with two cores on the same
chip. In this design, each core has its own register set as well as its own local
cache; other designs might use a shared cache or a combination of local and
shared caches. Aside from architectural considerations, such as cache, memory,
and bus contention, these multicore CPUs appear to the operating system
as N standard processors. This tendency puts pressure on operating system
designers-and application programmers-to make use of those CPUs.

Finally, are a recent development in which multiple processor
boards, I/0 boards, and networking boards are placed in the same chassis.
The difference between these and traditional multiprocessor systems is that
each blade-processor board boots independently and runs its own operating
system. Some blade-server boards are n1.ultiprocessor as well, which blurs the
lines between types of computers. In essence, these servers consist of multiple
independent multiprocessor systems.

1.3.3 Clustered Systems

Another type of multiple-CPU system is the Like multipro
cessor systems, clustered systems gather together multiple CPUs to accomplish
computational work. Clustered systems differ from multiprocessor systems,
however, in that they are composed of two or more individual systems-or
nodes-joined together. The definition of the term clustered is not concrete;
many commercial packages wrestle with what a clustered system is and why
one form is better than another. The generally accepted definition is that clus
tered computers share storage and are closely linked via a JC'.H.a,,·o.x

(as described in Section 1.10) or a faster interconnect, such as InfiniBand.
Clustering is usually used to provide service; that is,

service will continue even if one or more systems in the cluster faiL High
availability is generally obtained by adding a level of redundancy in the
system. A layer of cluster software runs on the cluster nodes. Each node can
monitor one or more of the others (over the LAN). If the monitored machine
fails, the monitoring machine can take ownership of its storage and restart the
applications that were running on the failed machine. The users and clients of
the applications see only a brief interruption of service.

1.3

BEOWULF CLUSTERS

Beowulf clusters are designed for solving high-performance computing
tasks. These clusters are built using comm.odi ty hard ware-such as. personal
computers-that are connected via a simple local area network Interestingly,
a Beowulf duster uses no one specific software package but rather consists
of a set of open-source software libraries that allow the con1puting nodes
in the cluster to communicate with one another .. Thus,.there are a variety of
approaches for constructing a Beowulf cluster, although Beowulf computing
nodes typically run the Linux operating system. Since Beowulf clusters
require no special hardware and operate using open~source software that
is freely available, they offer a low-cost strategy for building a high~
performance computing cluster. In fact, some Beowulf clusters built from
collections of discarded personal computers are using ht.mdreds of cornputing
nodes to solve computationally expensive problems in scientific computing.

Clusterin.g can be structured or symmetrically. In

17

one machine is in while the other is
rmming the applications. The hot-standby host machine does nothing but
monitor the active server. If that server fails, the hot-standby host becomes the
active server. In two or more hosts are rmming applications
and are monitoring each other. This mode is obviously more efficient, as it uses
all of the available hardware. It does require that more than one application be
available to run.

As a cluster consists of several
clusters may also be used to provide environ
ments. Such systems can supply significantly greater computational power
than single-processor or even SMP systems because they are capable of running
an application concurrently on all computers in the cluster. However, appli-
cations must be written to take advantage of the cluster by using
a technique known as which consists of dividing a program
into separate components that run in parallel on individual computers in the
cluster. Typically, these applications are designed so that once each computing
node in the cluster has solved its portion of the problem, the results from all
the nodes are combined into a final solution.

Other forms of clusters include parallel clusters and clustering over a
wide-area network (WAN) (as described in Section 1.10). Parallel clusters allow
multiple hosts to access the same data on the shared storage. Because most
operating systems lack support for simultaneous data access by multiple hosts,
parallel clusters are usually accomplished by use of special versions of software
and special releases of applications. For example, Oracle Real Application
Cluster is a version of Oracle's database that has been designed to run on
a parallel cluster. Each machine runs Oracle, and a layer of software tracks
access to the shared disk. Each machine has full access to all data in the
database. To provide this shared access to data, the system must also supply
access control and locking to ensure that no conflicting operations occur. This
function, commonly known as a is included
in some cluster technology.

18 Chapter 1

1.4

interconnect interconnect
computer computer computer

Figure 1.8 General structure of a clustered system.

Cluster technology is changing rapidly. Some cluster products support
dozens of systems in a cluster, as well as clustered nodes that are separated
by miles. Many of these improvements are made possible by

(SAJ·~Is), as described in Section 12.3.3, which allow many systems
to attach to a pool of storage. If the applications and their data are stored on
the SAN, then the cluster software can assign the application to run on any
host that is attached to the SAN. If the host fails, then any other host can take
over. In a database cluster, dozens of hosts can share the same database, greatly
increasing performance and reliability. Figure 1.8 depicts the general structure
of a clustered system.

Now that we have discussed basic information about computer-system orga
nization and architecture, we are ready to talk about operating systems.
An operating system provides the envirorunent within which programs are
executed. Internally, operating systems vary greatly in their makeup, since
they are organized along many different lines. There are, however, many
commonalities, which we consider in this section.

One of the most important aspects of operating systems is the ability
to multiprogram. A single program cannot, in generat k~~p~ith_er thg CPU
ortbt?J/Qgey:ic:es 1Jusy_C1t all times: Single users frequently have multiple
programs running. Il.ul increases CPU utilization byorganizing
jobs(codeand datafso _ hasoi1(0tO execl1te. - ·

---- fhe idea is as follows: The op-ei:atlng system keeps several jobs in memory
simultaneously (Figure 1.9). Since, in generat main memory is too small to
accommodate all jobs, the jobs are kept initially on the disk in the
This pool consists of all processes residing on disk awaiting allocation of main
memory.

Ih~ setofjobs inmemg_ry_canbe asubt:;et of the jobs kept in thejql:Jpoo1.
The operating system picks and begins to execute one of the jobs in memory.
Eventually, the job may have to wait for some task, such as an I/O operation,

1.4 19

Figure 1.9 Memory layout for a multiprogramming system.

!()_C()_tnpl~te: In a non-multiprogrammed system, the CPU would sit idle. In
a multiprogrammed system, the operatilcg system simply switches to, and
executes, another job. When that job needs to wait, the CPU is switched to
another job, and so on. Eventually the first job finishes waiting and gets the
CPU back. As long as at least one job needs to execute, the CPU is never idle.

This idea is common in other life situations. A lawyer does not work for
only one client at a time, for example. While one case is waiting to go to trial
or have papers typed, the lawyer can work on another case. If he has enough
clients, the lawyer will never be idle for lack of work. (Idle lawyers tend to
become politicians, so there is a certain social value in keeping lawyers busy.)

Multiprogrammed systems provide an environment in which the various
system resources (for example, CPU, memory, and peripheral devices) are
utilized effectively, but they do not provide for user interaction with the
computer system. is_~l()gi~alex_tension of
multiprogramming. ~' time-s!caring syste~s,the CPl] execu~eslnl1ltiplejobs
by switcll.Ing~ainong them, but the switches occur so frequently that the ~1sers
canh~teract with eachprograffi~v Ere l.t1sil.mning.--····

-Ti1ne shar:il~g requi.i-es an . . (or -
which provides direct communication between the user and the system. The
user gives instructions to the operating system or to a program directly, using a
input device such as a keyboard or a mouse, and waits for immediate results on
an output device. Accordingly, !!'te sho~1ld be sh()rt=typically
less than one second.

A time-shared operating system allows many users to share the computer
simultaneously. Since each action or command in a time-shared system tends
to be short, only a little CPU time is needed for each user. As the system switches
rapidly from one user to the next, each user is given the impression that the
entire computer system is dedicated to his use, even though it is being shared
among many users.

A time-shared operating system 11ses CPU scheduling and multiprogram
ming to provide each user with a small portion of a time-shared computer.
Eachuserhas atleast or:t_e S§parateprogra111inmemory. A program loaded into

20

1.5

Chapter 1

memory and executing is called a When a process executes, it typically
executes for only a short tirne it either finishes or needs to perform I/0.
I/0 may be interactive; that is, output goes to a display for the user, and input
comes from a user keyboard, mouse, or other device. Since interactive I/0
typically runs at "people speeds," it may take a long time to complete. Input,
for example, may be bounded by the user's typing speed; seven characters per
second is fast for people but incredibly slow for computers. Rather than let
the CPU sit idle as this interactive input takes place, the operating system will
rapidly switch the CPU to the program of some other user.

Time sharing and multiprogramming require that several jobs be kept
simultaneously in memory. If several jobs are ready to be brought into memory,
and if there is not enough room for all of them, then the system must choose
among them. Making this decision is which is discussed in
Chapter 5. When the operating system selects a job from the job pool, it loads
that job into memory for execution. Having several programs in memory at the
same time requires some form of memory management, which is covered in
Chapters 8 and 9. In addition, !f_s~veraJjq}Jsaxere(lclY to rw~at the same time,
the system must choose among them. Making this decision i~ _ _ sd1,2dviii·lg,
which is discussed in Chapter 5. Finally, running multiple jobscoi~cl.lrl:ei1Hy
requires that their ability to affect one another be limited in all phases of the
operating system, including process scheduling, disk storage, and memory
management. These considerations are discussed throughout the text.

In a time-sharing system, the operating system must ensure reasonable
response time, which is sometimes accomplished through where
processes are swapped in and out of main memory to the disk. A more common
method for achieving this goal tec:hDiql1~_fuC!t __ CillQws._
the execution of aprocessthat isnot completely inl1le1Yl_clD~- (Chapter 9).
The main advai1tage of the virtual-memory scheme is that it enables users
to run programs that are larger than actual . Further, it
abstracts main memory into a large, uniform array of storage, separating logical

as viewed by the user from physical memory. This arrangement frees
programmers from concern over memory-storage limitations.

Time-sharing systems must also provide a file system (Chapters 10 and 11).
The file system resides on a collection of disks; hence, disk management must
be provided (Chapter 12). Also, time-sharing systems provide a mechanism for
protecting resources from inappropriate use (Chapter 14). To ensure orderly
execution, the system must provide mechanisms for job synchronization and
communication (Chapter 6), and it may ensure that jobs do not get stuck in a
deadlock, forever waiting for one another (Chapter 7).

}\SI1[e11tio11ecl ~arlier, rn()clETnopexatli1KSYStems_m~e _ If there
are no processes to execute, no I/0 devices to service, and no users to whom
to respond, an operating system will sit quietly waiting for something to
happen. Events are almost always signaled by the occurrence of an interrupt
or a trap. (or an is_ a software~generated interruptca~seci
~it[ler byan error (for division byzero or invalid memory acc~ss_)
or by a specific request from a user program that an operating-system service

1.5 21

be performed. The interrupt-driven nature of an operating system defines
that system's general structure. For each type of interrupt, separate segments
of code in the operating system determine what action should be taken. An
interrupt service routine is provided that is responsible for dealing with the
interrupt.

Since the operating system and the users share the hardware and software
resources of the computer system, we need to make sure that an error in a
user program could cause problems only for the one program running. With
sharing, many processes could be adversely affected by a bug in one program.
For example, if a process gets stuck in an infinite loop, this loop could prev.ent
the correct operation of many other processes. More subtle errors can occur
in a multiprogramming system, where one erroneous program might modify
another program, the data of another program, or even the operating system
itself.

Without protection against these sorts of errors, either the computer must
execute only one process at a time or all output must be suspect. A properly
designed operating system must ensure that an incorrect (or malicious)
program cannot cause other program~ to .~X.t;cute incorrectly.

~~,;~,_C: ·· ;·..c·~

1.5.1 Dual-Mode Operation ·

In order to ensure the proper execution of the operating system, we must be
able to distinguish between the execution of operating-system code and user
defined code. The approach taken by most computer systems is to provide
hardware support that allows us to differentiate among various modes of
execution.

At the very least we need two
and (also called or

A bit, called the is added to the hardware of the computer to
indicate the current mode: kernel (0) or user (1). \!Viththeplode1:Jit\!Ve2lrea]Jle
to distinguishbetween a task that is executed onbehalf of the operating system
aicd one that is executeci on behalfoftheJJser, When tl~e computer systel.n1s
executing on behalf of a user application, the system is in user mode. However,
when a user application requests a service from the operating system (via a

.. system call), it must transition from user to kernel mode to fulfill the request.
/ This is shown in Figure 1.10. As we shall see, this architectural enhancement is

useful for many other aspects of system operation as well.

execute system call

Figure 1. i 0 Transition from user to kernel mode.

user mode
(mode bit = I)

kernel mode
(mode bit = 0)

22 Chapter 1

At system boot time, the hardware starts in kernel mode. The operating
system is then loaded and starts user applications in user mode. Whenever a
trap or interrupt occurs, the hardware switches from user mode to kernel mode
(that is, changes the state of the mode bit to 0). Thus, whenever the operating
system gains control of the computer, it is in kernel mode. The system always
switches to user mode (by setting the mode bit to 1) before passing control to
a user program.

The dual mode of operation provides us with the means for protecting the
operating system from errant users-and errant users from one another. }Ye
_(!CC011lplishthis protection by designating some ofthe machineinE;tructions~ha!
:trliJjT cal1_seJ~i:i~l11 ins trucrci\}]<§l: Il1e hardware all~\<\'Spl·iyileg~d
instrl]ctionsto be o11ly inkern~Ll11QQ_~, If an attempt is made to
execute a privileged instruction in user mode, the hardware does not execute
the instruction but rather treats it as illegal and traps it to the operating system.

The instruction to switch to kernel mode is an example of a privileged
instruction. Some other examples include I/0 controt timer management and
interrupt management. As we shall see throughout the text, there are many
additional privileged instructions.

We can now see the life cycle of instruction execution in a computer system.
Initial control resides in the operating system, where instructions are executed
in kernel mode. When control is given to a user application, the mode is set to
user mode. Eventually, control is switched back to the operating system via an
interrupt, a trap, or a system call.

_5ysiemcalls proyide the means for auser program to ask the operating
2}'St~m to perforp:t tasks re_?erved forjhe operating syst~m gr1 the 1.lser
.12l.:Qgra1ll'sbeha,lf A system call is invoked in a variety of ways, depending
on the functionality provided by the underlying processor. In all forms, it is the
method used by a process to request action by the operating system. A system
call usually takes the form of a trap to a specific location in the interrupt vector.
This trap can be executed by a generic trap instruction, although some systems
(such as the MIPS R2000 family) have a specific syscall instruction.

When asystep1 calljs e)(ecutect it is treated by the hardware as a software
-i:rlt~rr:l.l:[if:C()iltrol passes through the interrupt vector to a service routine in
the operating system/ and the m()de bit is set to kernel mode. The system
caflserv1ce routine is a part of the operating system. The-kernel examines
the interrupting instruction to determine what system call has occurred; a

~ parameter indicates what type of service the user program is requesting.
Additional information needed for the r~quest_may be passed in registers,
on the stack/ or in memory (with pointers to the memory locations passed in
registers). The kernel vedfies that the parameters are correct and legat executes
ti1erequest, and returns control to the instruction following the system call. We
describe system calls more fully in Section 2.3.

The lack of a hardware-supported dual mode can cause serious shortcom-
ings in an operating system. For instance, MS-DOS was written for the Intel
8088 architecture, which has no mode bit and therefore no dual mode. A user
program rum1ing awry can wipe out the operating system by writing over it
with data; and multiple programs are able to write to a device at the same time,
with potentially disastrous results. Recent versions of the Intel CPU do provide
dual-mode operation. Accordingly, most contemporary operating systems
such as Microsoft Vista and Windows XP, as well as Unix, Linux, and Solaris

1.6

1.6 23

-take advantage of this dual-mode feature and provide greater protection for
the operating system.

Once hardware protection is in place, it detects errors that violate modes.
These errors are normally handled by the operating system. If a user program
fails in some way-such as by making an attempt either to execute an illegal
instruction or to access memory that is not in the user's address space-then
the hardware traps to the operating system. The trap transfers control through
the interrupt vector to the operating system, just as an interrupt does. When
a program error occurs, the operating system must terminate the program
abnormally. This situation is handled by the same code as a user-requested
abnormal termination. An appropriate error message is given, and the memory
of the program may be dumped. The memory dump is usually written to a
file so that the user or programmer can examine it and perhaps correct it and
restart the program.

1.5.2 Timer

Wer:r1,_ust ensure th<t! the ope:J;atil}gsystemiJ:taintains t:ontrol overthe C}J_!:l_~
We cam1.ot allow a userp~ogram to_ get stuc:kin e1ninfinite loop or to fail
to call syste1n seryices and never retltrn control to the c:>perating system. To
~c<:9!ll£1I:S~ tl1.1s=g~at we_can usea _A_tirn~r_can beset to interrupt
th~ c:c:>mp_ut~r af_t~ril §p~c:ified peri() d. The period may be fixed (for example,
1/60 second) or variable (for example, from 1 millisecond to 1 second). A

is generally implemented by a fixed-rate clock and a counter.
The operating system sets the counter. Every time the clock ticks, the counter
is decremented. When the counter reaches 0, an interrupt occurs. For instance,
a 10-bit counter with a 1-millisecond clock allows interrupts at intervals from
1 millisecond to 1,024 milliseconds, in steps of 1 millisecond.

Before turning over control to the user, the operating system ensures
that the timer is set to interrupt. lL~ll.~ __ tiJ11e_£_il1t~rrl1pts/control transfers
automatically totll.e ()pel:9:t~~Y§!epl,_"\Thicfl__!l-1(1Ytreat the interrupt as a faiaf
error or n:taygi-y_etll.ep_rograrn rnc:>r~!i:rn~:. Clearly,il~structions that modify the
content of the timer are privileged.

Thus, we can use the timer to prevent a user program from running too
long. A simple technique is to il1.itialize a counter with the amount of time that a
program is allowed to run. A program with a 7-minute time limit, for example,
would have its counter initialized to 420. Every second, the timer interrupts
and the counter is decremented by 1. As long as the counter is positive, control
is returned to the user program. When the counter becomes negative, the
operating system terminates the program for exceeding the assigned time
limit.

A program does nothing unless its instructions are executed by a CPU. A
program in execution, as mentioned, is a process. A time-shared user program
such as a compiler is a process. A word-processing program being run by an
individual user on a PC is a process. A system task, such as sending output
to a printer, can also be a process (or at least part of one). For now, you can
consider a process to be a job or a time-shared program, but later you will learn

24 Chapter 1

1.7

that the concept is more general. As we shall see in Chapter 3, it is possible
to provide system calls that allow processes to create subprocesses to execute
concurrent! y.

A process needs certain resources---including CPU time, me111ory, files,
and-I;o devices:::_:_ to accomplish its:task These i·esources are e!tl1er given to
the process when it is created or- allocated to it while it is running. In addition
to the various physical and logical resources that a process obtains when it is
created, various initialization data (input) may be passed along. For example,
consider a process whose function is to display the status of a file on the screen
of a terminal. The process will be given as an input the name of the file and will
execute the appropriate instructions and system calls to obtain and display
on the terminal the desired information. When the process terminates, the
operating system will reclaim any reusable resources.

l"Ve ~_111pl:t21size that a program by itselfis nota process; a program is a
· y_assive er~!~ty, likt:tl1e C()I1terltsof a fil(?storecl_m1 c!iskL~A.ThereasC_pr(Jce~~s_1s 21~1

aCtive entity. A si-Dgl~::1hr:eaded proc~ss has on~_pr_ogra111 cou11!er s:eecifying the
nexf1il~r:Uc_tiogt()_eX~ClJte. (Threads are covered in Chapter 4.) The -execi.rtioil.
of such a process must be sequential. The CPU executes one instruction of the
process after another, until the process completes. Further, at any time, one
instruction at most is executed on behalf of the process. Thus, although two
processes may be associated with the same program, they are nevertheless
considered two separate execution sequences. A multithreaded process has
multiple program counters, each pointing to the next instruction to execute for
a given thread.

A process is the unit of work in a system. Such a system consists of a
collection of processes, some of which are operating-system processes (those
that execute system code) and the rest of which are user processes (those that
execute user code). Al]Jheseprocesses canp()t~!ltially execute concurrently-

_llY.IJ:lli}!p_l~)(_i!lg ()I'\a sir1gle _C:Pl],for_~)(ample. - - - --- ----
The operating system is responsible for the following activities in connec

tion with process management:

Scheduling processes and threads on the CPUs

Creating and deleting both user and system processes

Suspending and resuming processes

Providing mechanisms for process synchronization

Providing mechanisms for process communication

We discuss process-management techniques in Chapters 3 through 6.

As we discussed in Section 1.2.2, the main memory is central to the operation
of a modern computer system. Main memory is a large array of words or bytes,
ranging in size from hundreds of thousands to billions. Each word or byte has
its own address. Main memory is a repository of quickly accessible data shared
by the CPU and I/0 devices. The central processor reads instructions from main

1.8

1.8 25

memory during the instruction-fetch cycle and both reads and writes data from
main memory during the data-fetch cycle (on a von Neumann architecture).
As noted earlier, the main memory is generallythe only large storage device
that the CPU is able to address and access directly. For example, for the CPU to
process data from disk, those data mu.st first be transferred to main n"lemory
by CPU-generated I/0 calls. In the same way, instructions must be in memory
for the CPU to execute them.

For a program to be executed, it must be mapped to absolute addresses and
loaded into memory. As the program executes, it accesses program instructions
and data from memory by generating these absolute addresses. Eventually,
the program terminates, its memory space is declared available, and the next
program can be loaded and executed.

To improve both the utilization of the CPU and the speed of the computer's
response to its users, general-purpose computers must keep several programs
in memory, creating a need for memory management. Many different memory
management schemes are used. These schemes reflect various approaches, and
the effectiveness of any given algorithm depends on the situation. In selecting a
memory-management scheme for a specific system, we must take into account
many factors-especially the hardware design of the system. Each algorithm
requires its own hardware support.

The operating system is responsible for the following activities in connec
tion with memory management:

Keeping track of which parts of memory are currently being used and by
whom

Deciding which processes (or parts thereof) and data to move into and out
of memory

Allocating and deallocating memory space as needed

Memory-management techniques are discussed il1 Chapters 8 and 9.

To make the computer system convenient for users, the operating system
provides a uniform, logical view of information storage. The operating system
abstracts from the physical properties of its storage devices to define a logical
storage unit, the file. The operating system maps files onto physical media and
accesses these files via the storage devices.

1.8.1 File-System Management

Pile management is one of the most visible components of an operating system.
Computers can store information on several different types of physical media.
Magnetic disk, optical disk, and magnetic tape are the most common. Each
of these media has its own characteristics and physical organization. Each
medium is controlled by a device, such as a disk drive or tape drive, that
also has its own unique characteristics. These properties include access speed,
capacity, data-transfer rate, and access method (sequential or randmn).

26 Chapter 1

A file is a collection of related information defined by its creator. Commonly,
files represent programs (both source and object forms) and data. Data files may
be numeric, alphabetic, alphanumeric, or binary. Files may be free-form (for
example, text files), or they may be formatted rigidly (for example, fixed fields).
Clearly, the concept of a file is an extremely general one.

The operating system implements the abstract concept of a file by managing
mass-storage media, such as tapes and disks, and the devices that control them.
Also, files are normally organized into directories to make them easier to use.
Finally, when multiple users have access to files, it may be desirable to control
by whom and in what ways (for example, read, write, append) files may be
accessed.

The operating system is responsible for the following activities in connec
tion with file management:

Creating and deleting files

Creating and deleting directories to organize files

Supporting primitives for manipulating files and directories

Mapping files onto secondary storage

Backing up files on stable (nonvolatile) storage media

File-management teclmiques are discussed in Chapters 10 and 11.

1.8.2 Mass-Storage Management

As we have already seen, because main memory is too small to accommodate
all data and programs, and because the data that it holds are lost when power
is lost, the computer system must provide secondary storage to back up main
memory. Most modern computer systems use disks as the principal on-line
storage medium for both programs and data. Most programs-including
compilers, assemblers, word processors, editors, and formatters-are stored
on a disk until loaded into memory and then use the disk as both the source
and destination of their processing. Hence, the proper management of disk
storage is of central importance to a computer system. The operating system is
responsible for the following activities in connection with disk management:

Free-space management

Storage allocation

Disk scheduling

Because secondary storage is used frequently, it must be used efficiently. The
entire speed of operation of a computer may hinge on the speeds of the disk
subsystem and the algorithms that manipulate that subsystem.

There are, however, many uses for storage that is slower and lower in cost
(and sometimes of higher capacity) than secondary storage. Backups of disk
data, seldom-used data, and long-term archival storage are some examples.
Magnetic drives and their tapes and CD and DVD drives and platters are
typical devices. The media (tapes and optical platters) vary
between (write-once, read-many-times) and (read-write) formats.

1.8 27

Tertiary storage is not crucial to systern performance, but it still must
be managed. Some operating systems take on this task, while others leave
tertiary-storage management to application progran1s. Some of the functions
that operating systerns can provide include mounting and unmounting rnedia
in devices, allocating and freeing the devices for exclusive use by processes,
and migrating data from secondary to tertiary storage.

Techniques for secondary and tertiary storage management are discussed
in Chapter 12.

1.8.3 Caching

is an important principle of computer systems. Information is
normally kept in some storage system (such as main memory). As it is used,
it is copied into a faster storage system-the cache-on a temporary basis.
When we need a particular piece of information, we first check whether it is
in the cache. If it is, we use the information directly from the cache; if it is not,
we use the information from the source, putting a copy in the cache under the
assumption that we will need it again soon.

In addition, internal programmable registers, . such as index registers,
provide a high-speed cache for main memory. The programmer (or compiler)
implements the register-allocation and register-replacement algorithms to
decide which information to keep in registers and which to keep in main
memory. There are also caches that are implemented totally in hardware.
For instance, most systems have an instruction cache to hold the instructions
expected to be executed next. Without this cache, the CPU would have to wait
several cycles while an instruction was fetched from main memory. For similar
reasons, most systems have one or more high-speed data caches in the memory
hierarchy. We are not concerned with these hardware-only caches in this text,
since they are outside the control of the operating system.

Because caches have limited size, is an important
design problem. Careful selection of the cache size and of a replacement policy
can result in greatly increased performance. Figure 1.11 compares storage
performance in large workstations and small servers. Various replacement
algorithms for software-controlled caches are discussed in Chapter 9.

Typical size <16MB <64GB >100GB

Implementation custom memory with on-chip. or off-chip CMOS DRAM magnetic disk
technology multiple ports, CMOS CMOSSRAM

Access time (ns) 0.25-0.5 0.5-25 80-250 5,000.000

Bandwidth (MB/sec) 20,000 ~ 100,000 5000- 10,000 1000-5000 20-150

Managed by compiler hardware operating system operating system

Backed by cache main memory disk CD or tape

Figure 1.11 Performance of various levels of storage.

28 Chapter 1

Main memory can be viewed as a fast cache for secondary storage, since
data in secondary storage must be copied into main memory for use, and
data must be in main memory before being moved to secondary storage for
safekeeping. The file-system data, which resides permanently on secondary
storage, may appear on several levels in the storage hierarchy. At the highest
level, the operating system may maintain a cache of file-system data in main
memory. In addition, electronic RAM disks (also known as
may be used for high-speed storage that is accessed through the file-system
interface. The bulk of secondary storage is on magnetic disks. The magnetic
disk storage, in turn, is often backed up onto magnetic tapes or removable
disks to protect against data loss in case of a hard-disk failure. Some systems
autoinatically archive old file data from secondary storage to tertiary storage,
such as tape jukeboxes, to lower the storage cost (see Chapter 12).

The movement of information between levels of a storage hierarchy may
be either explicit or implicit, depending on the hardware design and the
controlling operating-system software. f_o].')!LStilnce,datatransfe~ from cache
l~CPU ~'11~cl !"~g~~!~:r-_s _is __ ~1suall y ahardvvare function, with no op-era t[ii.g=sy-s tern
intervention. In contrast, transfer of daTa-from- aisk to memory is usually
controlledby the-op~ra-t!:ri.g"system. -

- fn a 11ier2rrchical storage structure, the same data may appear in different
levels of the storage system. For example, suppose that an integer A that is to
be incremented by 1 is located in file B, and file B resides on magnetic disk.
The increment operation proceeds by first issuing an I/O operation to copy the
disk block on which A resides to main memory. This operation is followed by
copying A to the cache and to an internal register. Thus, the copy of A appears
in several places: on the magnetic disk, in main memory, in the cache, and in an
internal register (see Figure 1.12). Once the increment takes place in the internal
register, the value of A differs in the various storage systems. The value of A
becomes the same only after the new value of A is written from the internal
register back to the magnetic disk.

In a computing environment where only one process executes at a tim.e,
this arrangement poses no difficulties, since an access to integer A will always
be to the copy at the highest level of the hierarchy. However, in a multitasking
environment, where the CPU is switched back and -forth-among var1ous
processes~ extreme care must be taken to ensure that, if several processe~vv:is}l
i:o-accessA, then each of these processes will obtain the most recently updated

___ c_=--.C. of A. - - - -
The situation becomes more complicated in a multiprocessor environment

where, in addition to maintaining internal registers, each of the CPUs also
contains a local cache (Figure 1.6). ~'"1_ su~bC1:.1l_<:_n~i£o!_l:_Il'l_~1lt,~S<2EY()f_A IJ.t~y
exist simultaneouslyinseyeral caches. Since the variousCPUs can all execute
.S:2~1c~r~~l~tly,"\,Ve-must1nake surethat an to the value ofA in one cache

Figure 1.12 Migration of integer A from disk to register.

1.9

1.9 29

1.8.4 1/0 Systems

One of the purposes of a11 operating system is to hide the peculiarities ofspecific
hardware d~~ic:~Jro1n th~l1S~J:: For example, in UNIX, the peculiarities of I/O
devices are hidden from the bulk of the operating system itself by the I/0
subsystem. The I/O subsystem consists of several components:

A memory-management component that includes buffering, caching, and
spooling

A general device-driver interface

Drivers for specific hardware devices

Only the device driver knows the peculiarities of the specific device to which
it is assigned.

We discussed in Section 1.2.3 how interrupt handlers and device drivers are
used in the construction of efficient I/O subsystems. In Chapter 13, we discuss
how the I/O subsystem interfaces to the other system components, manages
devices, transfers data, and detects I/0 completion.

If a computer system has multiple users and allows the concurrent execution
of multiple processes, then access to data must be regulated. For that purpose,
mechanisms ensure that files, memory segments, CPU, and other resources can
be operated on by only those processes that have gained proper authoriza
tion from the operating system. For example, memory-addressing hardware
ensures that a process can execute only within its own address space. The
timer ensures that no process can gain control of the CPU without eventually
relinquishing control. Device-control registers are not accessible to users, so
the integrity of the various peripheral devices is protected.

Protection, then, is any mechanism for controlling the access of processes
or users-to the resourcesdefined by a computer system. This mechanism rni1st
provide means to speCify the confrols to be imposed and means to enforce the
controls.

Protection can improve reliability by detecting latent errors at the interfaces
between component subsystems. Early detection of interface errors can often
prevent contamination of a healthy subsystem by another subsystem that is

30 Chapter 1

1.10

malfunctioning. Furthermore, an unprotected resource cannot defend against
use (or n<isuse) by an unauthorized or incompetent user. A protection-oriented
system provides a means to distinguish between authorized and unauthorized
usage, as we discuss in Chapter 14.

6§yt:;terl<_ca1lhave adequateprotection but still be prone to failure and
aDo_w inappr()priat~ acs~s~: Consider a user whose authentication information
(her means of identifying herself to the system) is stolen. Her data could be
copied or deleted, even though file and memory protection are working. It is
the job of to defend a system from external and internal attacks. Such
attacks spread across a huge range and include viruses and worms, denial-of
service attacks (which use all of a system's resources and so keep legitimate
users out of the system), identity theft, and theft of service (unauthorized use
of a system). Prevention of some of these attacks is considered an operating
system function on some systems, while other systems leave the prevention to
policy or additional software. Due to the alarming rise in security incidents,
operating-system security features represent a fast-growing area of research
and implementation. Security is discussed in Chapter 15.

Protection and security require the system to be able to distinguish among
all its users. Most maintain a list of user names and

--·-- -

In Windows Vista parlance, this is _<1_

These numerical IDs are unique, one per user. When a user
logs in system, the authentication stage determines the appropriate user
ID for the user. That user ID is associated with all of the user's processes and
threads. When an ID needs to be user readable, it is translated back to the user
name via the user name list.

In some circumstances, we wish to distinguish among sets of users rather
than individual users. For example, the owner of a file on a UNIX system may be
allowed to issue all operations on that file, whereas a selected set of users may
only be allowed to read the file. To accomplish this, we need to define a group
name and the set of users belonging to that group. Group functionality can
be implemented as a system-wide list of group names and ic'1entifiers.
A user can be in one or more groups, depending on operating-system design
decisions. The user's group IDs are also included in every associated process
and thread.

In the course of normal use of a system, the user ID and
are s-l.iffici.e11t. HoV\Tever; a user sometimes needs to to gain
extra permissions for an activity. The user may need access to a fhatis
resh;icted,for examp1e.Operatmg systems provide various methods to allow
privilege escalation. On UNIX, for example, the setuid attribute on a program
causes that program to run with the user ID of the owner of the file, rather than
the current user's ID. The process runs with this until it turns off
the extra privileges or terminates.

A distributed system is a collection of physically separate, possibly heteroge
neous, computer systems that are networked to provide the users with access
to the various resources that the system maintains. Access to a shared resource

1.10 31

increases computation speed, functionality, data availability, and reliability.
Some operating systems generalize network access as a form of file access, with
the details of networking contained in the network interface's device driver.
Others make users specifically invoke network functions. Generally, systems
contain a mix of the two modes-for example FTP and NFS. The protocols
that create a distributed system can greatly affect that system's utility and
popularity.

A in the simplest terms, is a communication path between
two or more systems. Distributed systems depend on networking for their
functionality. Networks vary by the protocols used, the distances between
nodes, and the transport media. TCP /IP is the most common network protocol,
although ATM and other protocols are in widespread use. Likewise, operating
system support of protocols varies. Most operating systems support TCP /IP,

including the Windows and UNIX operating systems. Some systems support
proprietary protocols to suit their needs. To an operating system, a network
protocol simply needs an interface device-a network adapter, for example
with a device driver to manage it, as well as software to handle data. These
concepts are discussed throughout this book.

Networks are characterized based on the distances between their nodes.
A computers within a room, a floor,
or a building. A N) usually links buildings, cities,
or countries. A global company may have a WAN to com1ect its offices
worldwide. These networks may run one protocol or several protocols. The
continuing advent of new technologies brings about new forms of networks.
For example, a {]'/!Al··I} could link buildings within

'.::a city. BlueTooth and 802.11 devices use wireless technology to commt.micate
over a distance of several feet, in essence creating a such
as might be found in a home.

The media to carry networks are equally varied. They include copper wires,
fiber strands, and wireless transmissions between satellites, microwave dishes,
and radios. When computing devices are connected to cellular phones, they
create a network. Even very short-range infrared communication can be used
for networking. At a rudimentary level, whenever computers communicate,
they use or create a network. These networks also vary in their performance
and reliability.

Some operating systems have taken the concept of networks and dis
tributed systems further than the notion of providing network connectivity. A

is an operating system that provides features such
as file sharing across the network and that includes a communication scheme
that allows different processes on different computers to exchange messages.
A computer rmming a network operating system acts autonomously from all
other computers on the network, although it is aware of the network and is
able to communicate with other networked computers. A distributed operat
ing system provides a less autonomous envirorunent: The different operating
systems comm"Lmicate closely enough to provide the illusion that only a single
operating system controls the network.

We cover computer networks and distributed systems in Chapters 16
through 18.

32 Chapter 1

1.11

The discussion thus far has focused on the general-purpose computer systems
that we are all familiar with. There are, however, other classes of computer
systems whose functions are more limited and whose objective is to deal with
limited computation domains.

1.11.1 Real-Time Embedded Systems

Embedded computers are the most prevalent form of computers in existence.
These devices are found everywhere, from car engines and manufacturing
robots to DVDs and microwave ovens. They tend to have very specific tasks.
The systencs they run on are usually primitive, and so the operating systems
provide limited features. Usually, they have little or no user interface, preferring
to spend their time monitoring and managing hardware devices, such as
automobile engines and robotic arms.

These embedded systems vary considerably. Some are general-purpose
computers, running standard operating systems-such as UNIX-with
special-purpose applications to implement the functionality. Others are
hardware devices with a special-purpose embedded operating system
providing just the functionality desired. Yet others are hardware devices
with application-specific integrated circuits that perform their tasks
without an operating system.

The use of embedded systems continues to expand. The power of these
devices, both as standalone units and as elements of networks and the Web,
is sure to increase as well. Even now, entire houses can be computerized, so
that a central computer-either a general-purpose computer or an embedded
system-can control heating and lighting, alarm systems, and even coffee
makers. Web access can enable a home owner to tell the house to heat up
before she arrives home. Someday, the refrigerator may call the grocery store
when it notices the milk is gone.

Embedded systems almost always run A
real-time system is used when rigid time requirements been placed on
the operation of a processor or the flow of data; thus, it is often used as a
control device in a dedicated application. Sensors bring data to the computer.
The computer must analyze the data and possibly adjust controls to modify
the sensor inputs. Systems that control scientific experiments, medical imaging
systems, industrial control systems, and certain display systems are real
time systems. Some automobile-engine fuel-injection systems, home-appliance
controllers, and weapon systems are also real-time systems.

A real-time system has well-defined, fixed time constraints. Processing
must be done within the defined constraints, or the system will fail. For instance,
it would not do for a robot arm to be instructed to halt after it had smashed
into the car it was building. A real-time system functions correctly only if it
returns the correct result within its time constraints. Contrast this system with
a time-sharing system, where it is desirable (but not mandatory) to respond
quickly or a batch system, which may have no time constraints at all.

In Chapter 19, we cover real-time embedded systems in great detail. In
Chapter 5, we consider the scheduling facility needed to implement real-time
functionality in an operating system. In Chapter 9, we describe the design

1.11 33

of memory management for real-time computing. Finally, in Chapter 22, we
describe the real-time components of the Windows XP operating system.

1.11.2 Multimedia Systems

Most operating systems are designed to handle conventional data such as
text files, progran'ls, word-processing documents, and spreadsheets. However,
a recent trend in technology is the incorporation of multimedia data into
computer systems. Multimedia data consist of audio and video files as well as
conventional files. These data differ from conventional data in that multimedia
data-such as frames of video-must be delivered (streamed) according to
certain time restrictions (for example, 30 frames per second).

Multimedia describes a wide range of applications in popular use today.
These include audio files such as MP3, DVD movies, video conferencing, and
short video clips of movie previews or news stories downloaded over the
Internet. Multimedia applications may also include live webcasts (broadcasting
over the World Wide Web) of speeches or sporting events and even live
webcams that allow a viewer in Manhattan to observe customers at a cafe
in Paris. Multimedia applications need not be either audio or video; rather, a
multimedia application often includes a combination of both. For example, a
movie may consist of separate audio and video tracks. Nor must multimedia
applications be delivered only to desktop personal computers. Increasingly,
they are being directed toward smaller devices, including PDAs and cellular
telephones. For example, a stock trader may have stock quotes delivered
wirelessly and in real time to his PDA.

In Chapter 20, we explore the demands of multimedia applications,
describe how multimedia data differ from conventional data, and explain how
the nature of these data affects the design of operating systems that support
the requirements of multimedia systems.

1.11.3 Handheld Systems

include personal digital assistants (PDAs), such as Palm
and Pocket-Pes, and cellular telephones, many of which use special-purpose
embedded operating systems. Developers of handheld systems and applica
tions face many challenges, most of which are due to the limited size of such
devices. For example, a PDA is typically about 5 inches in height and 3 inches
in width, and it weighs less than one-half pound. Because of their size, most
handheld devices have small amounts of memory, slow processors, and small
display screens. We take a look now at each of these limitations.

The amount of physical memory in a handheld depends on the device, but
typically it is somewhere between 1 MB and 1 GB. (Contrast this with a typical
PC or workstation, which may have several gigabytes of memory.) As a result,
the operating system and applications must manage memory efficiently. This
includes returning all allocated memory to the memory manager when the
memory is not being used. In Chapter 9, we explore virtual memory, which
allows developers to write programs that behave as if the system has more
memory than is physically available. Currently, not many handheld devices
use virtual memory techniques, so program developers must work within the
confines of limited physical memory.

34 Chapter 1

1.12

A second issue of concern to developers of handheld devices is the speed
of the processor used in the devices. Processors for most handheld devices
run at a fraction of the speed of a processor in a PC. Faster processors require
more power. To include a faster processor in a handheld device would require
a larger battery, which would take up more space and would have to be
replaced (or recharged) more frequently. Most handheld devices use smaller,
slower processors that consume less power. Therefore, the operating system
and applications must be designed not to tax the processor.

The last issue confronting program designers for handheld devices is l/0.
A lack of physical space limits input methods to small keyboards, handwriting
recognition, or small screen-based keyboards. The small display screens limit
output options. Whereas a monitor for a home computer may measure up to
30 inches, the display for a handheld device is often no more than 3 inches
square. Familiar tasks, such as reading e-mail and browsing Web pages, must
be condensed into smaller displays. One approach for displaying the content
in Web pages is where only a small subset of a Web page is
delivered and displayed on the handheld device.

Some handheld devices use wireless technology, such as BlueTooth or
802.11, allowing remote access to e-mail and Web browsing. Cellular telephones
with connectivity to the Internet fall into this category. However, for PDAs that
do not provide wireless access, downloading data typically requires the user
first to download the data to a PC or workstation and then download the data
to the PDA. Some PDAs allow data to be directly copied from one device to
another using an infrared link

Generally, the limitations in the functionality of PDAs are balanced by
their convenience and portability. Their use continues to expand as network
com1ections become more available and other options, such as digital cameras
and MP3 players, expand their utility.

So far, we have provided an overview of computer-system organization and
major operating-system components. We conclude with a brief overview of
how these are used in a variety of computing environments.

1.12.1 Traditional Computing

As computing matures, the lines separating many of the traditional computing
environments are blurring. Consider the "typical office environment." Just a
few years ago, this environment consisted of PCs connected to a network,
with servers providing file and print services. Remote access was awkward,
and portability was achieved by use of laptop computers. Terminals attached
to mainframes were prevalent at many companies as well, with even fewer
remote access and portability options.

The current trend is toward providing more ways to access these computing
environments. Web technologies are stretching the boundaries of traditional
computing. Companies establish which provide Web accessibility
to their internal servers. ccxEpu1as are essentially terminals that
understand Web-based computing. Handheld computers can synchronize with

1.12 35

PCs to allow very portable use of con1pany information. Handheld PDAs can
also connect to to use the company's Web portal (as well as
the myriad other Web resources).

At home, most users had a single computer with a slow modem connection
to the office, the Internet, or both. Today, network-connection speeds once
available only at great cost are relatively inexpensive, giving home users more
access to more data. These fast data connections are allowing home computers
to serve up Web pages and to run networks that include printers, client PCs,
and servers. Some homes even have to protect their networks from
security breaches. Those firewalls cost thousands of dollars a few years ago
and did not even exist a decade ago.

In the latter half of the previous century, computing resources were scarce.
(Before that, they were nonexistent!) For a period of time, systems were either
batch or interactive. Batch systems processed jobs in bulk, with predetermined
input (from files or other sources of data). Interactive systems waited for
input from users. To optimize the use of the computing resources, multiple
users shared time on these systems. Time-sharing systems used a timer and
scheduling algorithms to rapidly cycle processes through the CPU, giving each
user a share of the resources.

Today, traditional time-sharing systems are uncommon. The same schedul
ing technique is still in use on workstations and servers, but frequently the
processes are all owned by the same user (or a single user and the operating
system). User processes, and system processes that provide services to the user,
are managed so that each frequently gets a slice of computer time. Consider
the windows created while a user is working on a PC, for example, and the fact
that they may be performing different tasks at the same time.

1.12.2 Client-Server Computing

As PCs have become faste1~ more powerful, and cheaper, designers have shifted
away from centralized system architecture. Terminals connected to centralized
systems are now being supplanted by PCs. Correspondingly, user-interface
functionality once handled directly by centralized systems is increasingly being
handled by PCs. As a result, many of today' s systems act as
to satisfy requests generated by This form of specialized
distributed system, called a system, has the general structure
depicted in Figure 1.13.

Server systems can be broadly categorized as compute servers and file
servers:

Figure 1.13 General structure of a client-server system.

36 Chapter 1

The provides an interface to which a client can
send a request to perform an action (for example, read data); in response,
the server executes the action and sends back results to the client A server
running a database that responds to client requests for data is an example
of such a system.

The provides a file-system interface where clients can
create, update, read, and delete files. An example of such a system is a Web
server that delivers files to clients running Web browsers.

1.12.3 Peer-to-Peer Computing

Another structure for a distributed system is the peer-to-peer (P2P) system
model. In this model, clients and servers are not distinguished from one
another; instead, all nodes within the system are considered peers, and each
ncay act as either a client or a server, depending on whether it is requesting or
providing a service. Peer-to-peer systems offer an advantage over traditional
client-server systems. In a client-server system, the server is a bottleneck; but
in a peer-to-peer system, services can be provided by several nodes distributed
throughout the network.

To participate in a peer-to-peer system, a node must first join the network
of peers. Once a node has joined the network, it can begin providing services
to-and requesting services from -other nodes in the network. Determining
what services are available is accomplished in one of two general ways:

When a node joins a network, it registers its service with a centralized
lookup service on the network. Any node desiring a specific service first
contacts this centralized lookup service to determine which node provides
the service. The remainder of the communication takes place between the
client and the service provider.

A peer acting as a client must first discover what node provides a desired
service by broadcasting a request for the service to all other nodes in the
network. The node (or nodes) providing that service responds to the peer
making the request. To support this approach, a discovery protocol must be
provided that allows peers to discover services provided by other peers in
the network.

Peer-to-peer networks gained widespread popularity in the late 1990s with
several file-sharing services, such as Napster and Gnutella, that enable peers
to exchange files with one another. The Napster system uses an approach
similar to the first type described above: a centralized server maintains an
index of all files stored on peer nodes in the Napster network, and the actual
exchanging of files takes place between the peer nodes. The Gnutella system
uses a technique similar to the second type: a client broadcasts file requests
to other nodes in the system, and nodes that can service the request respond
directly to the client. The future of exchanging files remains uncertain because
many of the files are copyrighted (music, for example), and there are laws
governing the distribution of copyrighted material. In any case, though, peer
to-peer technology undoubtedly will play a role in the future of many services,
such as searching, file exchange, and e-mail.

1.13

1.13 37

1.12.4 Web-Based Computing

The Web has become ubiquitous/ leading to more access by a wider variety of
devices than was dreamt of a few years ago. PCs are still the most prevalent
access devices/ with workstations/ handheld PDAs1 and even cell phones also
providing access.

Web computing has increased the emphasis on networking. Devices that
were not previously networked now include wired or wireless access. Devices
that were networked now have faster network connectivity/ provided by either
improved networking technology optimized network implementation code/
or both.

The implementation of Web-based computing has given rise to new
categories of devices/ such as which distribute network
connections an1.ong a pool of similar servers. Operating systems like Windows
95 1 which acted as Web clients/ have evolved into Linux and Windows XP 1 which
can act as Web servers as well as clients. Generally/ the Web has increased the
complexity of devices because their users require them to be Web-enabled.

The study of operating systems/ as noted earlier/ is made easier by the
availability of a vast number of open-source releases.

are those made available in source-code format rather than as
compiled binary code. Linux is the most famous open- source operating system,
while Microsoft Windows is a well-known example of the opposite dosed-

approach. Starting with the source code allows the programmer to
produce binary code that can be executed on a system. Doing the opposite

the source code from the binaries-is quite a lot of work1

and useful items such as comments are never recovered. Learning operating
systems by examining the actual source code1 rather than reading summaries of
that code/ can be extremely useful. With the source code in hand/ a student can
modify the operating system and then compile and nm the code to try out those
changes1 which is another excellent learning tool. This text indudes projects
that involve modifying operating system source code/ while also describing
algorithms at a high level to be sure all important operating system topics are
covered. Throughout the text1 we provide pointers to examples of open-source
code for deeper study.

There are many benefits to open-source operating systems/ including a
commtmity of interested (and usually unpaid) programmers who contribute
to the code by helping to debug it analyze it/ provide support/ and suggest
changes. Arguably/ open-source code is more secure than closed-source code
because many more eyes are viewing the code. Certainly open-source code has
bugs/ but open-source advocates argue that bugs tend to be found and fixed
faster owing to the number of people using and viewing the code. Companies
that earn revenue from selling their programs tend to be hesitant to open-source
their code/ but Red Hat/ SUSE1 Sun/ and a myriad of other companies are doing
just that and showing that commercial companies benefit/ rather than suffer/
when they open-source their code. Revenue can be generated through support
contracts and the sale of hardware on which the software runs/ for example.

38 Chapter 1

1.13.1 History

In the early days of modern computing (that is, the 1950s), a great deal of
software was available in open-source format. The original hackers (computer
enthusiasts) at MIT's Tech Model Railroad Club left their programs in drawers
for others to work on. "Homebrew" user groups exchanged code during their
meetings. Later, company-specific user groups, such as Digital Equipment
Corporation's DEC, accepted contributions of source-code programs, collected
them onto tapes, and distributed the tapes to interested ncembers.

Computer and software companies eventually sought to limit the use
of their software to authorized computers and paying customers. Releasing
only the binary files compiled from the source code, rather than the source
code itself, helped them to achieve this goal, as well as protecting their code
and their ideas from their competitors. Another issue involved copyrighted
material. Operating systems and other programs can limit the ability to play
back movies and music or display electronic books to authorized computers.
Such or Digital would not be
effective if the source code that implemented these limits were published.
Laws in many countries, including the U.S. Digital Millennium Copyright
Act (DMCA), make it illegal to reverse-engineer DRM code or otherwise try to
circumvent copy protection.

To counter the move to limit software use and redistribution, Richard
Stallman in 1983 started the GNU project to create a free, open-source UNIX
compatible operating system. In 1985, he published the GNU Manifesto, which
argues that all software should be free and open-sourced. He also formed
the with the goal of encouraging the free
exchange of software source code and the free use of that software. Rather than
copyright its software, the FSF "copylefts" the software to encourage sharing
and improvement. The Gercera:! codifies copylefting
and is a common license under which free software is released. Ftmdamentally,
GPL requires that the source code be distributed with any binaries and that any
changes made to the source code be released under the same GPL license.

1.13.2 Linux

As an example of an open-source operating system, consider
The GNU project produced many UNIX-compatible tools, including compilers,
editors, and utilities, but never released a kernel. In 1991, a student in
Finland, Linus Torvalds, released a rudimentary UNIX-like kernel using the
GNU compilers and tools and invited contributions worldwide. The advent of
the Internet meant that anyone interested could download the source code,
modify it, and submit changes to Torvalds. Releasing updates once a week
allowed this so-called Linux operating system to grow rapidly, enhanced by
several thousand programmers.

The GNU /Linux operating system has spawned hundreds of
unique or custom builds, of the system. Major distributions
include RedHat, SUSE, Fedora, Debian, Slackware, and Ubuntu. Distributions
vary in function, utility, installed applications, hardware support, user inter
face, and purpose. For example, RedHat Enterprise Lim1X is geared to large
commercial use. PCLinuxOS is a [jvc:"CD-an operating system that can be
booted and run from a CD-ROM without being installed on a system's hard

1.13 39

disk. One variant of PCLinuxOS, "PCLinuxOS Supergamer DVD," is a
that includes graphics drivers and games. A gamer can run it on any compatible
system simply by booting from the DVD. When the gamer is finished, a reboot
of the system resets it to its installed operating system.

Access to the Linux source code varies by release. Here, we consider
Ubuntu Linux. Ubuntu is a popular Linux distribution that comes in a variety
of types, including those tuned for desktops, servers, and students. Its founder
pays for the printing and mailing of DVDs containing the binary and source
code (which helps to make it popular). The following steps outline a way
to explore the Ubuntu kernel source code on systems that support the free
"VMware Player" tool:

Download the player from http: I /www. vrnware. com/ download/player I
and install it on your system.

Download a virtual machine containing Ubuntu. Hundreds of
"appliances", or virtual machirte images, pre-installed with oper
ating systems and applications, are available from VMware at
http://www.vmware.com/appliances/.

Boot the virtual machine within VMware Player.

Get the source code of the kernel release of interest, such as 2.6, by executing
wget http://www.kernel.org/pub/linux/kernel/v2.6/linux-
2. 6. 18. 1. tar. bz2 within the Ubuntu virtual machine.

Uncompress and untar the downloaded file via tar xj f linux-
2.6.18.1.tar.bz2.

Explore the source code of the Ubuntu kernel, which is now in . /linux-
2. 6.18 .1.

For more about Linux, see Chapter 21. For more about virtual machines, see
Section 2.8.

1.13.3 BSD UNIX

has a longer and more complicated history than Linux. It started in
1978 as a derivative of AT&T's UNIX. Releases from the University of California
at Berkeley (UCB) came in source and binary form, but they were not open
source because a license from AT&T was required. BSD UNIX's development was
slowed by a lawsuit by AT&T, but eventually a fully functional, open-source
version, 4.4BSD-lite, was released in 1994.

Just as with Lim.IX, there are many distributions of BSD UNIX, including
FreeBSD, NetBSD, OpenBSD, and DragonflyBSD. To explore the source code
of FreeBSD, simply download the virtual machine image of the version of
interest and boot it within VMware, as described above for Ubuntu Linux. The
source code comes with the distribution and is stored in /usr I src/. The kernel
source code is in /usr/src/sys. For example, to examine the virtual-memory
implementation code in the FreeBSD kernel, see the files in /usr/src/sys/vrn.

Darwin, the core kernel component of MAC, is based on BSD
UNIX and is open-sourced as well. That source code is available from
http: I /www. opensource. apple. corn/ darwinsource/. Every MAC release

40 Chapter 1

1.14

has its open-source components posted at that site. The name of the
package that contains the kernel is "xnu." The source code for MAC
kernel revision 1228 (the source code to MAC Leopard) can be found at
www.opensource.apple.coml darwinsource I tar balls I apsll xnu-1228. tar.gz.
Apple also provides extensive developer tools, documentation, and support
at http: I I connect. apple. com. For more information, see Appendix A.

1.13.4 Solaris

is the commercial UNIX-based operating system. of Sun Microsystems.
Originally, Sun's operating system was based on BSD UNIX. Sun moved
to AT&T's System V UNIX as its base in 1991. In 2005, Sun open-sourced some
of the Solaris code, and over time, the company has added more and more to
that open-source code base. Unfortunately, not all of Solaris is open-sourced,
because some of the code is still owned by AT&T and other companies. However,
Solaris can be compiled from the open source and linked with binaries of the
close-sourced components, so it can still be explored, modified, compiled, and
tested.

The source code is available from http: I I opensolaris. org/ os/ downloads/.
Also available there are pre-compiled distributions based on the source code,
docun1.entation, and discussion groups. It is not necessary to download the
entire source-code bundle from the site, because Sun allows visitors to explore
the source code on-line via a source code browser.

1.13.5 Utility

The free software movement is driving legions of programmers to create
thousands of open-source projects, including operating systems. Sites like
http: I /freshmeat. net/ and http: I I distrowatch. com/ provide portals to
many of these projects. Open-source projects enable students to use source
code as a learning tool. They can modify programs and test them, help find
and fix bugs, and otherwise explore mature, full-featured operating systems,
compilers, tools, user interfaces, and other types of programs. The availability
of source code for historic projects, such as Multics, can help students to
understand those projects and to build knowledge that will help in the
implementation of new projects.

GNU ILinux, BSD UNIX, and Solaris are all open-source operating sys
tems, but each has its own goals, utility, licensing, and purpose. Sometimes
licenses are not mutually exclusive and cross-pollination occurs, allowing
rapid improvements in operating-system projects. For example, several major
components of Solaris have been ported to BSD UNIX. The advantages of free
software and open sourcing are likely to increase the number and quality of
open-source projects, leading to an increase in the number of individuals and
companies that use these projects.

An operating system is software that manages the cornputer hardware, as well
as providing an environment for application programs to run. Perhaps the

1.14 41

most visible aspect of an operating system is the interface to the computer
system it provides to the human user.

For a computer to do its job of executing programs, the program.s must be
in main memory. Main memory is the only large storage area that the processor
can access directly. It is an array of words or bytes, ranging in size from millions
to billions. Each word in memory has its own address. The main mem.ory is
usually a volatile storage device that loses its contents when power is turned
off or lost. Most computer systems provide secondary storage as an extension
of main memory. Secondary storage provides a form of nonvolatile storage that
is capable of holding large quantities of data permanently. The most common
secondary-storage device is a magnetic disk, which provides storage of both
programs and data.

The wide variety of storage systems in a computer system can be organized
in a hierarchy according to speed and cost. The higher levels are expensive,
but they are fast. As we move down the hierarchy, the cost per bit generally
decreases, whereas the access time generally increases.

There are several different strategies for designing a computer system.
Uniprocessor systems have only a single processor, while multiprocessor
systems contain two or more processors that share physical memory and
peripheral devices. The most common multiprocessor design is symmetric
multiprocessing (or SMP), where all processors are considered peers and run
independently of one another. Clustered systems are a specialized form of
multiprocessor systems and consist of multiple computer systems connected
by a local area network.

To best utilize the CPU, modern operating systems employ multiprogram
ming, which allows several jobs to be in memory at the same time, thus ensuring
that the CPU always has a job to execute. Time-sharing systems are an exten
sion of multiprogramming wherein CPU scheduling algorithms rapidly switch
between jobs, thus providing the illusion that each job is nmning concurrently.

The operating system must ensure correct operation of the computer
system. To prevent user programs from interfering with the proper operation of
the system, the hardware has two modes: user mode and kernel mode. Various
instructions (such as I/0 instructions and halt instructions) are privileged and
can be executed only in kernel mode. The memory in which the operating
system resides must also be protected from modification by the user. A tin1.er
prevents infinite loops. These facilities (dual mode, privileged instructions,
memory protection, and timer interrupt) are basic building blocks used by
operating systems to achieve correct operation.

A process (or job) is the fundamental unit of work in an operating system.
Process management includes creating and deleting processes and providing
mechanisms for processes to communicate and synchronize with each other.
An operating system manages memory by keeping track of what parts of
memory are being used and by whom. The operating system is also responsible
for dynamically allocating and freeing memory space. Storage space is also
managed by the operating system; this includes providing file systems for
representing files and directories and managing space on mass-storage devices.

Operating systems must also be concerned with protecting and securing
the operating system and users. Protection measures are mechanisms that
control the access of processes or users to the resources made available by the

42 Chapter 1

computer system. Security measures are responsible for defending a computer
system from external or internal attacks.

Distributed systems allow users to share resources on geographically
dispersed hosts connected via a computer network. Services may be provided
through either the client-server model or the peer-to-peer n10del. In a clustered
system, multiple machines can perform computations on data residing on
shared storage, and computing can continue even when some subset of cluster
members fails.

LANs and WANs are the two basic types of networks. LANs enable
processors distributed over a small geographical area to communicate, whereas
WANs allow processors distributed over a larger area to communicate. LANs
typically are faster than WANs.

There are several computer systems that serve specific purposes. These
include real-time operating systems designed for embedded environments
such as consumer devices, automobiles, and robotics. Real-time operating
systems have well-defined, fixed-time constraints. Processing must be done
within the defined constraints, or the system will fail. Multimedia systems
involve the delivery of multimedia data and often have special requirements
of displaying or playing audio, video, or synchronized audio and video
streams.

Recently, the influence of the Internet and the World Wide Web has
encouraged the development of operating systems that include Web browsers
and networking and communication software as integral features.

The free software movement has created thousands of open-source projects,
including operating systems. Because of these projects, students are able to use
source code as a learning tool. They can modify programs and test them,
help find and fix bugs, and otherwise explore mature, full-featured operating
systems, compilers, tools, user interfaces, and other types of programs.

GNU /Linux, BSD UNIX, and Solaris are all open-source operating systems.
The advantages of free software and open sourcing are likely to increase the
number and quality of open-source projects, leadi.J.1.g to an increase in the
number of individuals and companies that use these projects.

1.1 How are network computers different from traditional personal com
puters? Describe some usage scenarios in which it is advantageous to
use network computers.

1.2 What network configuration would best suit the following environ
ments?

a. A dormitory floor

b. A university campus

c. A state

d. A nation

43

1.3 Give two reasons why caches are useful. What problems do they solve?
vVbat problems do they cause? If a cache can be made as large as the
device for which it is caching (for instance, a cache as large as a disk),
why not make it that large and eliminate the device?

1.4 Under what circumstances would a user be better off using a time
sharing system rather than a PC or a single-user workstation?

1.5 List the four steps that are necessary to run a program on a completely
dedicated machine-a computer that is running only that program.

1.6 How does the distinction between kernel mode and user mode function
as a rudimentary form of protection (security) system?

1.7 In a multiprogramming and time-sharing environment, several users
share the system simultaneously. This situation can result in various
security problems.

a. What are two such problems?

b. Can we ensure the same degree of security in a time-shared
machine as in a dedicated machine? Explain your answer.

1.8 Describe a mechanism for enforcing memory protection in order to
prevent a program from modifying the memory associated with other
programs.

1.9 What are the tradeoffs inherent in handheld computers?

1.10 Distinguish between the client-server and peer-to-peer models of
distributed systems.

1.11 Some computer systems do not provide a privileged mode of operation
in hardware. Is it possible to construct a secure operating system for
these computer systems? Give arguments both that it is and that it is not
possible.

1.12 What are the main differences between operating systems for mainframe
computers and personal computers?

1.13 Which of the following instructions should be privileged?

a. Set value of timer.

b. Read the clock.

44 Chapter 1

c. Clear memory.

d. Issue a trap instruction.

e. Turn off interrupts.

f. Modify entries in device-status table.

g. Switch from user to kernel mode.

h. Access I/O device.

1.14 Discuss, with examples, how the problem of maintaining coherence of
cached data manifests itself in the following processing environments:

a. Single-processor systems

b. Multiprocessor systems

c. Distributed systems

1.15 Identify several advantages and several disadvantages of open-source
operating systems. Include the types of people who would find each
aspect to be an advantage or a disadvantage.

1.16 How do clustered systems differ from multiprocessor systems? What is
required for two machines belonging to a cluster to cooperate to provide
a highly available service?

1.17 What is the main difficulty that a programmer must overcome in writing
an operating system for a real-time environment?

1.18 Direct memory access is used for high-speed I/O devices in order to
avoid increasing the CPU's execution load.

a. How does the CPU interface with the device to coordinate the
transfer?

b. How does the CPU know when the memory operations are com
plete?

c. The CPU is allowed to execute other programs while the DMA
controller is transferring data. Does this process interfere with
the execution of the user programs? If so, describe what forms
of interference are caused.

1.19 Identify which of the functionalities listed below need to be supported by
the operating system for (a) handheld devices and (b) real-time systems.

a. Batch programming

b. Virtual memory

c. Time sharing

45

1.20 Some CPUs provide for more than two modes of operation. What are
two possible uses of these multiple modes?

1.21 Define the essential properties of the following types of operating
systems:

a. Batch

b. Interactive

c. Time sharing

d. Real time

e. Network

f. Parallel

a Distributed b"

h. Clustered

1. Handheld

1.22 Describe the differences between symmetric and asymmetric multipro
cessing. What are three advantages and one disadvantage of multipro
cessor systems?

1.23 The issue of resource utilization shows up in different forms in different
types of operating systems. List what resources must be managed
carefully in the following settings:

a. Mainframe or minicomputer systems

b. Workstations connected to servers

c. Handheld computers

1.24 What is the purpose of interrupts? What are the differences between a
trap and an interrupt? Can traps be generated intentionally by a user
program? If so, for what purpose?

1.25 Consider an SMP system sincilar to what is shown in Figure 1.6. Illustrate
with an example how data residing in memory could in fact have two
different values in each of the local caches.

1.26 Consider a computing cluster consisting of two nodes running a
database. Describe two ways in which the cluster software can manage
access to the data on the disk. Discuss the benefits and disadvantages of
each.

46 Chapter 1

Brookshear [2003] provides an overview of computer science in generaL
An overview of the Linux operating system is presented in Bovet and

Cesati [2006]. Solomon and Russinovich [2000] give an overview of Microsoft
Windows and considerable technical detail abmrt the systern internals and
components. Russinovich and Solomon [2005] update this information to
Windows Server 2003 and Windows XP. McDougall and Mauro [2007] cover
the internals of the Solaris operating system. Mac OS X is presented at
http: I /www. apple. com/macosx. Mac OS X internals are discussed in Singh
[2007].

Coverage of peer-to-peer systems includes Parameswaran et al. [2001],
Gong [2002], Ripeanu et al. [2002], Agre [2003], Balakrishnan et al. [2003], and
Loo [2003]. A discussion of peer-to-peer file-sharing systems can be found in
Lee [2003]. Good coverage of cluster computing is provided by Buyya [1999].
Recent advances in cluster computing are described by Ahmed [2000]. A survey
of issues relating to operating-system support for distributed systems can be
found in Tanenbaum and Van Renesse [1985].

Many general textbooks cover operating systems, including Stallings
[2000b], Nutt [2004], and Tanenbaum [2001].

Hamacher et al. [2002] describe cmnputer organization, and McDougall
and Laudon [2006] discuss multicore processors. Hennessy and Patterson
[2007] provide coverage of I/O systems and buses, and of system archi
tecture in general. Blaauw and Brooks [1997] describe details of the archi
tecture of many computer systems, including several from IBM. Stokes
[2007] provides an illustrated introduction to microprocessors and computer
architecture.

Cache memories, including associative memory, are described and ana
lyzed by Smith [1982]. That paper also includes an extensive bibliography on
the subject.

Discussions concerning magnetic-disk technology are presented by Freed
man [1983] and by Harker et al. [1981]. Optical disks are covered by Kenville
[1982], Fujitani [1984], O'Leary and Kitts [1985], Gait [1988], and Olsen and
Kenley [1989]. Discussions of floppy disks are offered by Pechura and Schoeffler
[1983] and by Sarisky [1983]. General discussions concerning mass-storage
technology are offered by Chi [1982] and by Hoagland [1985].

Kurose and Ross [2005] and Tanenbaum [2003] provide general overviews
of computer networks. Fortier [1989] presents a detailed discussion of network
ing hardware and software. Kozierok [2005] discuss TCP in detail. Mullender
[1993] provides an overview of distributed systems. [2003] discusses
recent developments in developing embedded systems. Issues related to hand
held devices can be found in Myers and Beigl [2003] and DiPietro and Mancini
[2003].

A full discussion of the history of open sourcing and its benefits and chal
lenges is found in Raymond [1999]. The history of hacking is discussed in Levy
[1994]. The Free Software Foundation has published its philosophy on its Web
site: http://www.gnu.org/philosophy/free-software-for-freedom.html.
Detailed instructions on how to build the Ubuntu Linux kernel are on

47

http: I /www. howtof orge. com/kerneLcompilation_ubuntu. The open-source
components of MAC are available from http: I I developer. apple. com/ open
source/index.html.

Wikipedia (http: I I en. wikipedia. org/wiki/Richard_Stallman) has an
informative entry about Richard Stallman.

The source code of Multics is available at http: I /web .mit. edu/multics
history/source/Multics_Internet_Server/Multics_sources.html.

2.1

An operating system provides the environment within which programs are
executed. Internally, operating systems vary greatly in their makeup, since
they are organized along many different lines. The design of a new operating
system is a major task. It is important that the goals of the system be well
defined before the design begins. These goals form the basis for choices among
various algorithms and strategies.

We can view an operating system from several vantage points. One view
focuses on the services that the system provides; another, on the interface that
it makes available to users and programmers; a third, on its components and
their interconnections. In this chapter, we explore all three aspects of operating
systems, showin.g the viewpoints of users, programmers, and operating-system
designers. We consider what services an operating system provides, how
they are provided, how they are debugged, and what the various method
ologies are for designing such systems. Finally, we describe how operating
systems are created and how a computer starts its operating system.

To describe the services an operating system provides to users, processes,
and other systems.

To discuss the various ways of structuring an operating system.

To explain how operating systems are installed and customized and how
they boot.

An operating system provides an environment for the execution of programs.
It provides certain services to programs and to the users of those programs.
The specific services provided, of course, differ from one operating system to
another, but we can identify common classes. These operating-system services
are provided for the convenience of the programmer, to n1.ake the programming

49

50 Chapter 2

user and other system programs

hardware

Figure 2. i A view of operating system services.

task easier. Figure 2.1 shows one view of the various operating-system services
and how they interrelate.

One set of operating-system services provides functions that are helpfuJ to
the user. ~ ~

User interface. Almost all operating systems have a
This interface can take several forms. One is a Dcfr'":c;~,

which uses text commands and a method for entering them
(say, a program to allow entering and editing of commands). Another is
a batch in which commands and directives to control those
commands are entered into files, and those files are executed. Most
commonly, a is used. Here, the interface
is a window system with a pointing device to direct I/0, choose from
menus, and make selections and a keyboard to enter text. Some systems
provide two or all three of these variations.

Program execution. The system must be able to load a program into
memory and to run that program. The program must be able to end its
execution, either normally or abnormally (indicating error).

I/O operations. A running program may require I/0, which may involve a
file or an I/0 device. For specific devices, special functions may be desired
(such as recording to a CD or DVD drive or blanking a display screen). For
efficiency and protection, users usually cannot control I/0 devices directly.
Therefore, the operating system must provide a means to do I/0.

File-system manipulation. The file system is of particular interest. Obvi
ously, programs need to read and write files and directories. They also
need to create and delete them by name, search for a given file, and list file
information. Finally, some programs include permissions management to
allow or deny access to files or directories based on file ownership. Many
operating systems provide a variety of file systems, sometimes to allow
personal choice, and sometimes to provide specific features or performance
characteristics.

2.1 51

Communications. There are many circumstances in which one process
needs to exchange information with another process. Such communication
ncay occur between processes that are executing on the same computer
or between processes that are executing on different computer systems
tied together by a computer network. Communications may be imple
mented via shared rnenwry or through message passing, in which packets of
information are moved between processes by the operating system.

Error detection. The operating system needs to be constantly aware of
possible errors. Errors may occur in the CPU and memory hardware (such
as a memory error or a power failure), in I/0 devices (such as a parity error
on tape, a connection failure on a network, or lack of paper in the printer),
and in the user program (such as an arithmetic overflow, an attempt to
access an illegal memory location, or a too-great use of CPU time). For each
type of error, the operating system should take the appropriate action to
ensure correct and consistent computing. Of course, there is variation in
how operating systems react to and correct errors. Debugging facilities can
greatly enhance the user's and programmer's abilities to use the system
efficiently.

Another set of operating-system functions exists not for helping the user
but rather for ensuring the efficient operation of the system itself. Systems with
multiple users can gain efficiency by sharing the computer resources among
the users.

Resource allocation. When there are I}lultiple usersormultiple jobs
rmuung at the sametime, resources must be allocated to each of them.
Many d1Herent -types of resources are managed by the operating system.
Some (such as CPU cycles, main memory, and file storage) may have special
allocation code, whereas others (such as I/0 devices) may have much more
general request and release code. For instance, in determining how best to
use the CPU, operating systems have CPU-scheduling routines that take into
account the speed of the CPU, the jobs that must be executed, the number of
registers available, and other factors. There may also be routines to allocate
printers, modems, USB storage drives, and other peripheral devices.

Accounting. Vl[e want to_keeptrack of whichusers use}lovy rnL1C:hand
what kindsofcomputer resources. This record keeping may be used for
accoun:tii1g (so thai: users can be billed) or simply for accumulating usage
statistics. Usage statistics may be a valuable tool for researchers who wish
to reconfigure the system to improve computing services.

Protection and security. The owners of information stored in a multiuser or
networked computer system may want to control use of that information.
When. several separate processes execute concurrently, it ~hould not be
possible for one process to interfere with the others or with the operating
system itself. Protection iiwolves ensuring that all access to systerr1-
resources 1S -controlled. Security of the system from outsiders is also
important. Such security starts with requiring each user to authenticate
himself or herself to the system, usually by means of a password, to gain
access to system resources. It extends to defending external I/0 devices,

52 Chapter 2

2.2

including modems and network adapters, from invalid access attempts
and to recording all such connections for detection of break-ins. If a system
is to be protected and secure, precautions must be instituted throughout
it. A chain is only as strong as its weakest link.

We mentioned earlier that there are several ways for users to interface with
the operating system. Here, we discuss two fundamental approaches. One
provides a command-line interface, or that allows users
to directly enter commands to be performed by the operating system. The
other allows users to interface with the operating system via a graphical user
interface, or GUI.

2.2.1 Command Interpreter

Some operating systems include the command interpreter in the kernel. Others,
such as Windows XP and UNIX, treat the command interpreter as a special
program that is rmming when a job is initiated or when a user first logs on
(on interactive systems). On systems with multiple command interpreters to
choose from, the interpreters are known as shells. For example, on UNIX and
Linux systems, a user may choose among several different shells, including
the Bourne shell, C shell, Bourne-Again shell, Korn shell, and others. Third-party
shells and free user-written shells are also available. Most shells provide similar
functionality, and a user's choice of which shell to use is generally based on
personal preference. Figure 2.2 shows the Bourne shell command interpreter
being used on Solaris 10.

The main function of the command interpreter is to get and execute the next
user-specified command. Many of the commands given at this level manipulate
files: create, delete, list, print, copy, execute, and so on. The MS-DOS and UNIX
shells operate in this way. These commands can be implemented in two general
ways.

In one approach, the command interpreter itself contains the code to
execute the command. For example, a command to delete a file may cause
the command interpreter to jump to a section of its code that sets up the
parameters and makes the appropriate system call. In this case, the number of
comn'lands that can be given determines the size of the command interpreter,
since each command requires its own implementing code.

An alternative approach -used by UNIX, among other operating systems
-implements most commands through system programs. In this case, the
command interpreter does not understand the cmnmand in any way; it merely
uses the command to identify a file to be loaded into memory and executed.
Thus, the UNIX command to delete a file

rm file.txt

would search for a file called rm, load the file into memory, and execute it with
the parameter file. txt. The function associated with the rm command would
be defined completely by the code in the file rm. In this way, programmers can
add new commands to the system easily by creating new files with the proper

0.0
0.0

r/s
0.0
0.6

console

2.2

0.2 0.0 0.2 0

0.0 0.0 0.0 0.0 0.0 0.0 0 0

extended device statistics
w/s
0.0
0.0

kr./s klv/s
0.0 0.0

0.0

1 ogi nell idle
1SJ un0718days

wai ·t actv svc_t 9{tN 1i~b

0.0 0.0 0.0 0 0

0 0
0

load average: 0.09, 0.11, 8.66
JCPU PCPU what

1 /usr/bin/ssh-agent -- /usr/bi

18 4 w

Figure 2.2 The Bourne shell command interpreter in Solaris I 0.

53

names. The command-interpreter program, which can be small, does not have
to be changed for new commands to be added.

2.2.2 Graphical User Interfaces

A second strategy for interfacing with the operating system is through a user
friendly graphical user interface, or CUI. Here, rather than entering commands
directly via a command-line interface, users employ a mouse-based window-
and-nl.enu system characterized by a metaphor. The user moves the
mouse to position its pointer on images, or on the screen (the desktop)
that represent programs, files, directories, and system functions. Depending
on the mouse pointer's location, clicking a button on the mouse can invoke a
program, select a file or directory-known as a folder-or pull down a menu
that contains commands.

Graphical user interfaces first appeared due in part to research taking place
in the early 1970s at Xerox PARC research facility. The first CUI appeared on
the Xerox Alto computer in 1973. However, graphical interfaces became more
widespread with the advent of Apple Macintosh computers in the 1980s. The
user interface for the Macintosh operating system (Mac OS) has undergone
various changes over the years, the most significant being the adoption of
the Aqua interface that appeared with Mac OS X. Microsoft's first version of
Windows-Version 1.0-was based on the addition of a CUI interface to the
MS-DOS operating system. Later versions of Windows have made cosmetic
changes in the appearance of the CUI along with several enhancements in its
functionality, including Windows Explorer.

54 Chapter 2

Traditionally, UNIX systencs have been dominated by command-line inter
faces. Various GUl interfaces are available, however, including the Common
Desktop Environment (CDE) and X-Windows systems, which are common
on commercial versions of UNIX, such as Solaris and IBM's AIX system. In
addition, there has been significant development in GUI designs from various

projects, such as I< Desktop Environment (or KDE) and the GNOME

desktop by the GNU project. Both the KDE and GNOME desktops run on Linux
and various UNIX systems and are available under open-source licenses, which
means their source code is readily available for reading and for modification
under specific license terms.

The choice of whether to use a command-line or GUI interface is mostly
one of personal preference. As a very general rule, many UNIX users prefer
command-line interfaces, as they often provide powerful shell interfaces.
In contrast, most Windows users are pleased to use the Windows GUI
environment and almost never use the MS-DOS shell interface. The various
changes undergone by the Macintosh operating systems provide a nice study
in contrast. Historically, Mac OS has not provided a command-line interface,
always requiring its users to interface with the operating system using its GUI.
However, with the release of Mac OS X (which is in part implemented using a
UNIX kernel), the operating system now provides both a new Aqua interface
and a command-line interface. Figure 2.3 is a screenshot of the Mac OS X GUI.

The user interface can vary from system to system and even from user
to user within a system. It typically is substantially removed from the actual
system structure. The design of a useful and friendly user interface is therefore

Figure 2.3 The Mac OS X GUI.

2.3

2.3 55

not a direct function of the operating systenc. In this book, we concentrate on
the fundamental problems of providing adequate service to user programs.
From the point of view of the operating system, we do not distinguish between
user programs and systern programs.

System calls provide an interface to the services made available by an operating
system. These calls are generally available as routines written in C and
C++, although certain low-level tasks (for example, tasks where hardware
must be accessed directly), may need to be written using assembly-language
instructions.

Before we discuss how an operating system makes system calls available,
let's first use an example to illustrate how system calls are used: writing a
simple program to read data from one file and copy them to another file. The
first input that the program will need is the names of the two files: the input file
and the output file. These names can be specified in many ways, depending
on the operating-system design. One approach is for the program to ask the
user for the names of the two files. In an interactive system, this approach will
require a sequence of system calls, first to write a prompting message on the
screen and then to read from the keyboard the characters that define the two
files. On mouse-based and icon-based systems, a menu of file names is usually
displayed in a window. The user can then use the mouse to select the source
name, and a window can be opened for the destination name to be specified.
This sequence requires many I/0 system calls.

Once the two file names are obtained, the program must open the input file
and create the output file. Each of these operations requires another system call.
There are also possible error conditions for each operation. When the program
tries to open the input file, it may find that there is no file of that name or that
the file is protected against access. In these cases, the program should print a
message on the console (another sequence of system calls) and then terminate
abnormally (another system call). If the input file exists, then we must create a
new output file. We may find that there is already an output file with the same
name. This situation may cause the program to abort (a system call), or we
may delete the existing file (another system call) and create a new one (another
system call). Another option, in an interactive system, is to ask the user (via
a sequence of system calls to output the prompting message and to read the
response from the termin.al) whether to replace the existing file or to abort the
program.

Now that both files are set up, we enter a loop that reads from the input
file (a system call) and writes to the output file (another system call). Each read
and write must return status information regarding various possible error
conditions. On input, the program may find that the end of the file has been
reached or that there was a hardware failure in the read (such as a parity error).
The write operation may encounter various errors, depending on the output
device (no more disk space, printer out of paper, and so on).

Finally, after the entire file is copied, the program may close both files
(another system call), write a message to the console or window (more
system calls), and finally terminate normally (the final system call). As we

56 Chapter 2

can see1 even simple programs may make heavy use of the operating system.
Frequently/ systems execute thousands of system calls per second. This system
call sequence is shown in Figure 2A.

Most programmers never see this level of detail however. Typically/ appli
caTiol1 developers design program.s accordir1g to an
---·-----~Jl~J'I}. Tl1e AJ'Ispecifies a set of functions
application programmer/ including the parameters that are passed to each
function and the return values the programmer can expect. Three of the most
common APis available to application programmers are the Win32 API for Win
dows systems, the POSIX API for POSIX-based systems (which include virtually
all versions of UNIX, Linux/ and Mac OS X), and the Java API for designing
programs that run on the Java virtual machine. Note that-unless specified
-the system-call names used throughout this text are generic examples. Each
operating system has its own name for each system call.

Behind the scenes/ the functions that make up an API typically invoke the
actual system calls on behalf of the application programmer. For example, the
Win32 function CreateProcess () (which unsurprisingly is used to create
a new process) actually calls the NTCreateProcess () system call in the
Windows kernel. Why would an application programnl.er prefer programming
according to an API rather than invoking actual system calls? There are several
reasons for doing so. One benefit of programming according to an API concerns
program portability: An application programmer designing a program using
an API can expect her program to compile and run on any system that supports
the same API (although in reality/ architectural differences often make this
more difficult than it may appear). Furthermore/ actual system calls can often
be more detailed and difficult to work with than the API available to an
application programmer. Regardless/ there often exists a strong correlation
between a function in the API and its associated system call within the kernel.

Example System Call Sequence

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until. read fails
Close output file
Write completion message to screen
Terminate normally

Figure 2.4 Example of how system calls are used.

2.3

EXAMPLE OF STANDARD API

As an example of a standard APT, consider the ReadFile 0 £unction in the
Win32 API-a function for reading £rom a file. The API for this function
appears in Figure 2.5 .

.. ·

return value

~
BOOL ReadFile c

t
function name

(HANDLE
LPVOID
DWORD
LPDWORD
LPOVERLAPPED

file, ~

buffer,
bytes To Read, parameters
bytes Read,
ovl);

Figure 2.5 The API for the ReadFile () function.

A description of the parameters passed to ReadFile 0 is as follows:

HANDLE file-the file to be read

LPVOID buffer-a buffer where the data will be read into and written
from

DWORD bytesToRead-the number of bytes to be read into the buffer

LPDWORD bytesRead -the number of bytes read during the last read

LPOVERLAPPED ovl-indicates if overlapped I/0 is being used

57

In fact, many of the POSIX and Win32 APis are similar to the native system calls
provided by the UNIX, Linux, and Windows operating systems.

The run-time support system (a set of functions built into libraries included
with a compiler) for most programming languages provides a system-call
interface that serves as the link to system calls made available by the operating
system. The system-call interface intercepts function calls in the API and
invokes the necessary system calls within the operating system. Typically,
a number is associated with each system call, and the system-call interface
maintains a table indexed according to these nun'lbers. The system call interface
then invokes the intended system call in the operating-system kernel and
returns the status of the system call and any return values.

The caller need know nothing about how the system call is implemented or
what it does during execution. Rathel~ it need only obey the API and understand
what the operating system will do as a result of the execution of that system
calL Thus, most of the details of the operating-system interface are hidden from
the programmer by the API and are managed by the run-time support library.
The relationship between an API, the system-call interface, and the operating

58 Chapter 2

2.4

user
mode

kernel
mode

user application

opeo () (J

open ()

Implementation
of open ()
system call

return

Figure 2.6 The handling of a user application invoking the open() system call.

system is shown in Figure 2.6, which illustrates how the operating system
handles a user application invoking the open() system call.

System calls occur in different ways, depending onthe COJ:rlpl1te.rjJlll§e.
Often, more information is required than simply the identity of the desired
system call. The exact type and ammmt of information vary according to the
particular operating system and call. For example, to get input, we may need
to specify the file or device to use as the source, as well as the address and
length of the memory buffer into which the input should be read. Of course,
the device or file and length may be implicit in the call.

Three general methods are used to pass parameters to the operating
system. The simplest approach is to pass the param.eters in registers. In some
cases, however, there may be more parameters than registers. In these cases,
the parameters are generally stored in a block, or table, in memory, and the
address of the block is passed as a parameter in a register (Figure 2.7). This
is the approach taken by Linux and Solaris. Parameters also can be placed, or
pushed, onto the stack by the program and popped oH the stacl(by the operatirl:g
~yste111: Some operating syste1ns prefer the block or stack method because those
approaches do not limit the number or length of parameters being passed.

System calls can be grouped ~oughly intc) six major categories: process
control, file manipuJation, device manipulation, information maintenance,
coinmuiii~a1ioii.~; <:lndpr{}tediol}. In Seci:lo:ri.s 2.4.l.~Hi.i=o~l.gli 2.L[6~·we diSCllSS
briefly the types of system calls that may be provided by an operating system.
Most of these system calls support, or are supported by, concepts and functions

X: parameters
for call

load address X
system call 13 +-~---

user program

2.4

register

operating system

Figure 2.7 Passing of parameters as a table.

59

that are discussed in later chapters. Figure 2.8 summarizes the types of system
calls normally provided by an operating system.

2.4.1 Process Control

A running program needs to be able to halt its execution either normally (end)
or abnormally (abort). If a system call is made to terminate the currently
ruru1il1g program abnormally, or if the program runs into a problem and
causes an error trap, a dump of memory is sometimes taken and an error
message generated. The dump is written to disk and may be examined by a

system program designed to aid the programmer in finding and
correcting bugs-to determine the cause of the problem. Under either normal
or abnormal circumstances, the operating system must transfer control to the
invoking command mterpreter. The command interpreter then reads the next
cominand. In an interactive system, the command interpreter simply continues
with the next command; it is assumed that the user will issue an appropriate
command to respond to any error. In a GUI system, a pop-up wmdow might
alert the user to the error and ask for guidance. In a batch system, the command
interpreter usually terminates the entire job and continues with the next job.
Some systems allow control cards to indicate special recovery actions in case
an error occurs. A is a batch-system concept. It is a command to
manage the execution of a process. If the program discovers an error in its input
and wants to terminate abnormally, it may also want to define an error level.
More severe errors can be indicated by a higher-level error parameter. It is then
possible to combi11e normal and abnormal termination by defining a normal
termination as an error at level 0. The command interpreter or a following
program can use this error level to determine the next action automatically.

A process or jobexecuting one P!()gral11_11l<:ly __ \;\'(ll1tto Joad andexecut~
anotEer pro-gra1:n:.- Th1s feafl:11:e allows the cmnmand i11terpreter to execute a
program as directed by, for example, a user command, the click of a mouse,
or a batch command. An interesting question is where to return control when
the loaded program terminates. This question is related to the problem of

60 Chapter 2

Process control

o end, abort

o load, execute

o create process, terminate process

o get process attributes, set process attributes

o wait for time

o wait event, signal event

o allocate and free memory

File management

o create file, delete file

o open, close

o read, write, reposition

o get file attributes, set file attributes

e: Device management

o request device, release device

o read, write, reposition

o get device attributes, set device attributes

o logically attach or detach devices

Information maintenance

o get time or date, set time or date

o get system data, set system data

o get process, file, or device attributes

o set process, file, or device attributes

Communications

o create, delete communication connection

o send, receive messages

o transfer status information

o attach or detach remote devices

Figure 2.8 Types of system calls.

whether the existing program is lost, saved, or allowed to continue execution
concurrently with the new program.

If control returns to the existing program when the new program termi
nates, we must save the memory image of the existing program; thus, we have
effectively created a mechanism for one program to call another program. If
both programs continue concurrently, we have created a new job or process to

2.4 61

EXAMPLES OF WINDOWS AND UNIX SYSTEM CALLS

Windows Unix

Process CreateProcessO fork()
Control Exi tProcess () exit()

WaitForSingleObject() wait()

File CreateFile () open()
Manipulation ReadFile() read()

WriteFile () write()
CloseHandle () close()

Device SetConsoleMode() ioctl()
Manipulation ReadConsole() read()

WriteConsole() write()

Information GetCurrentProcessiD() getpid()
Maintenance SetTimerO alarm()

Sleep() sleep()

Communication CreatePipe () pipe()
CreateFileMapping() shmget()
MapViewOfFile () mmapO

Protection SetFileSecurity() chmod()
InitlializeSecurityDescriptor() umask()
SetSecurityDescriptorGroup() chown()

be multi programmed. Often, there is a system call specifically for this purpose
(create process or submit job).

If we create a new job or process, or perhaps even a set of jobs or processes,
we should be able to control its execution. This control requires the ability
to determine and reset the attributes of a job or process, including the job's
priority, its maximum allowable execution time, and so on (get process
attributes and set process attributes). We may also want to terminate
a job or process that we created (terminate process) if we find that it is
incorrect or is no longer needed.

Having created new jobs or processes, we may need to wait for them
to finish their execution. We may want to wait for a certain amount of time
to pass (wait time); more probably, we will want to wait for a specific event to
occur (wait event). The jobs or processes should then signal when that event
has occurred (signal event). Quite often, two or more processes may share
data. To ensure the integrity of the data being shared, operating systems often
provide system calls allowing a process to lock shared data, thus preventing
another process from accessing the data while it is locked. Typically such
system calls include acquire lock and release lock. System calls of these

62 Chapter 2

EXAMPLE OF STANDARD C LIBRARY

The standard C library provides a portion o£ the system-call interface for
many versions of UNIX and Linux. As an example, let's assume a C program
invokes the printf () statement The C library intercepts this call and
invokes the necessary system call(s) in the operating system-in this instance,
the write() system call. The C library takes the value returned by write()
and passes it back to the user program. This is shown in Figure 2.9.

user
mode

kernel
mode

I

I

#include <stdio.h>
int main ()
{

- printf ("Greetings"); I+

return 0;

standard C library

write ()
system call

I
I

)

Figure 2.9 Standard C library handling of write().

types, dealilcg with the coordination of concurrent processes, are discussed in
great detail in Chapter 6.

There are so many facets of and variations in process and job control that
we next use two examples-one involving a single-tasking system and the
other a multitasking system -to clarify these concepts. The MS-DOS operating
system is an example of a single-tasking system. It has a command interpreter
that is invoked when the computer is started (Figure 2.10(a)). Because MS-DOS
is single-tasking, it uses a sincple method to run a program and does not create
a new process. It loads the program into memory, writing over most of itself to
give the program as much memory as possible (Figure 2.10(b)). Next, it sets the
instruction pointer to the first instruction of the program. The program then
runs, and either an error causes a trap, or the program executes a system call
to terminate. In either case, the error code is saved in the system memory for
later use. Following this action, the small portion of the command interpreter
that was not overwritten resumes execution. Its first task is to reload the rest

free memory

command
interpreter

(a)

2.4

free memory

process

command
interpreter

(b)

Figure 2.10 MS-DOS execution. (a) At system startup. (b) Running a program.

63

of the command interpreter from disk Then the command interpreter makes
the previous error code available to the user or to the next program.

Fre~_J?_S_I)(der_i_\'~c!Jr()In B(:>J,"~eley UNIX) is an example of a multitasking
syst(:'~ When a user logs on to the system~ the shell oTthe user's-choice
is run. This shell is similar to the MS-DOS shell in that it accepts commands
and executes programs that the user requests. However, since FreeBSD is a
multitasking system, the command interpreter may continue running while
another program is executed (Figure 2.11). Io startanew:__process,_th_es1w1L
execu~£2_:for-k()sy~tem call. Then, the selected program is loaded into
memory via an exec() system call, and the program is executed. Depending
on the way the command was issued, the shell then either waits for the process
to finish or runs the process "in the background." In the latter case, the shell
immediately requests another command. When a process is rmming in the
background, it cannot receive input directly fron1. the keyboard, because the

process D

free memory

process c

interpreter

Figure 2.11 FreeBSD running multiple programs.

64 Chapter 2

shell is using this resource. I/O is therefore done through files or through a CUI
interface. Meanwhile, the user is free to ask the shell to run other programs, to
monitor the progress of the running process, to change that program's priority,
and so on. When the process is done, it executes an exit () system call to
terminate, returning to the invoking process a status code of 0 or a nonzero
error code. This status or error code is then available to the shell or other
programs. Processes are discussed in Chapter 3 with a program example using
thefork() and exec() systemcalls.

2.4.2 File Management

The file system is discussed in more detail in Chapters 10 and 11. We can,
however, identify several common system calls dealing with files.

We first need to be able to create and delete files. Either system call
requires the name of the file and perhaps some of the file's attributes. Once the
file is created, we need to open it and to use it. We may also read, write, or
reposition (rewinding or skipping to the end of the file, for example). Finally,
we need to close the file, indicating that we are no longer using it.

We may need these same sets of operations for directories if we have a
directory structure for organizing files in the file system. In addition, for either
files or directories, we need to be able to determine the values of various
attributes and perhaps to reset them if necessary. File attributes include the
file name, file type, protection codes, accounting information, and so on. At
least two system calls, get file attribute and set file attribute, are
required for this function. Some operating systems provide many more calls,
such as calls for file move and copy. Others might provide an API that performs
those operations using code and other system calls, and others might just
provide system programs to perform those tasks. If the system programs are
callable by other programs, then each can be considered an API by other system
programs.

2.4.3 Device Management

A process may need several resources to execute-main memory, disk drives,
access to files, and so on. If the resources are available, they can be granted,
and control can be returned to the user process. Otherwise, the process will
have to wait until sufficient resources are available.

The various resources controlled by the operating system can be thought
of as devices. Some of these devices are physical devices (for example, disk
drives), while others can be thought of as abstract or virtual devices (for
example, files). A system with multiple users may require us to first request
the device, to ensure exclusive use of it. After we are finished with the device,
we release it. These functions are similar to the open and close system
calls for files. Other operating systems allow Llnmanaged access to devices.
The hazard then is the potential for device contention and perhaps deadlock,
which is described in Chapter 7.

Once the device has been requested (and allocated to us), we can read,
write, and (possibly) reposition the device, just as we can with files. In fact,
the similarity between I/0 devices and files is so great that many operating
systems, including UNIX, merge the two into a combined file-device structure.
In this case, a set of system calls is used on both files and devices. Sometimes,

2.4 65

l/0 devices are identified by special file names, directory placement, or file
attributes.

The user interface can also ncake files and devices appear to be similar1 even
though the underlying system calls are dissimilar. This is another example of
the many design decisions that go into building an operating system and user
interface.

2.4.4 Information Maintenance

Many system calls exist simply for the purpose of transferring information
between the user program and the operating system. For example, most
systems have a system call to return the current time and date. Other system
calls may return information about the system, such as the number of current
users, the version number of the operating system, the amount of free memory
or disk space, and so on.

Another set of system calls is helpful in debugging a program. Many
systems provide system calls to dump memory. This provision is useful for
debugging. A program trace lists each system call as it is executed. Even
microprocessors provide a CPU mode known as single step, in which a trap is
executed by the CPU after every instruction. The trap is usually caught by a
debugger.

Many operating systems provide a time profile of a program to indicate
the amount of time that the program executes at a particular location or set
of locations. A time prof~~~~(C_92:1i!~~~i!!'ceE a t~(lC~Ki2l<:ility_S?E!:egl1lar _tii"!'_eE
interrupts. At every occurrence of the timer interrupt, the value of the program
c6l-i:i~te1·-ls recorded. With sufficiently frequent timer interrupts, a statistical
picture of the time spent on various parts of the program can be obtained.

In addition, the operating system keeps information about all its processes,
and system calls are used to access this information. Generally, calls are
also used to reset the process information (get process attributes and
set process attributes). In Section 3.1.3, we discuss what information is
normally kept.

2.4.5 Communication

Th~~e~e two C()ll1l~cJ:JI1 __ mod_e_l~_()fi!'!e_!El·()_c~ss_col'rll"!'~~nica tion: the .. l"!'~ssag_e::_
passing model and the shared-memory model. !nth~Il!~S~~g_e .. pa,s~iJ1gl"!'()'leL

t_l:t_~_C():rrtll12InJfa_fii~gpr§c~~§:~~-e)(c£lailg~ Il'l-es~~ges with one another to transfer
i:tcfo_rillaJi()J}. Messages can be exchanged between the processes either directly
or indirectly through a common mailbox. Before communication can take
place, a connection must be opened. The name of the other communicator
must be known, be it another process on the same system or a process on
another computer comcected by a communications network. Each computer
in a network has a host name by which it is commonly known. A host also
has a network identifier, such as an IP address. Similarly, each process has
a process narne, and this name is translated into an identifier by which the
operating systemcanrefertotheprocess. The get hostidand get processid
system calls do this translation. The identifiers are then passed to the general
purpose open and close calls provided by the file system or to specific
open connection and close connection system calls, depending on the
system's model of communication. The recipient process usually must give its

66 Chapter 2

2.5

permission for comnmnication to take place with an accept connection call.
Most processes that will be receiving connections are special-purpose daemons,
which are systems programs provided for that purpose. They execute a wait
for connection call and are awakened when a connection is rna de. The source
of the communication, known as the client, and the receiving daenwn, known as
a server, then exchange messages by using read message and write message
system calls. The close connection call terminates the communication.

_!11 the shared-me_1llorytllodel,proc~sses use s:tlared memorycreate and
shared memory attach system calls to create 2rt1d gain access toi·egions oT
n1emory owned by other processes. Recall that, normally, the operatinisystein
hiesf() prevei1foiie process-from accessing another process's memory. Shared
memory requires that two or more processes agree to remove this restriction.
They can then exchange information by reading and writing data in the shared
areas. The form of the data is determined by the processes and are not under
the operating system's control. The processes are also responsible for ensuring
that they are not writing to the same location sirnultaneously. Such mechanisms
are discussed in Chapter 6. In Chapter 4, we look at a variation of the process
scheme-threads-in which memory is shared by default.

Both of the models just discussed are common in operating systems,
and most systems implement both. Message passing is useful for exchanging
smaller amounts of data, because no conflicts need be avoided. It is also easier to
implement than is shared memory for intercomputer communication. Shared
memory allows maximum speed and convenience of communication, since it
can be done at memory transfer speeds when it takes place within a computer.
Problems exist, however, in the areas of protection and synchronization
between the processes sharing memory.

2.4.6 Protection

Protection provides a mechanism for controlling access to the resources
provided by a computer system. Historically, protection was a concern only on
multiprogrammed computer systems with several users. However, with the
advent of networking and the Internet, all computer systems, from servers to
PDAs, must be concerned with protection.

Typically, system calls providing protection include set permission and
get permission, which manipulate the permission settings of resources
such as files and disks. The allow user and deny user system calls spec
ify whether particular users can-or cannot-be allowed access to certain
resources.

We cover protection in Chapter 14 and the much larger issue of security in
Chapter 15.

Another aspect of a modern system is the collection of system programs. Recall
Figure 1.1, which depicted the logical computer hierarchy. At the lowest level is
hardware. Next is the operating system, then the system programs, and finally
the application programs. System programs, also known as system utilities,
provide a convenient enviromnenf1orprograrn-aevelopmeiiTa1inexecuhon.

2.5 67

Some of them are simply user interfaces to system calls; others are considerably
more complex. They can be divided into these categories:

File management. These programs create, delete, copy, rename, print,
dump, list, and generally ncanipulate files and directories.

Status information. Some programs simply ask the system for the date,
time, amount of available memory or disk space, number of users, or
similar status information. Others are more complex, providing detailed
performance, logging, and debugging information. Typically, these pro
grams format and print the output to the terminal or other output devices
or files or display it in a window of the GUI. Some systems also support a

which is used to store and retrieve configuration information.

File modification. Several text editors may be available to create and
modify the content of files stored on disk or other storage devices. There
may also be special commands to search contents of files or perform
transformations of the text.

Programming-language support. Compilers, assemblers, debuggers, and
interpreters for common programming languages (such as C, C++, Java,
Visual Basic, and PERL) are often provided to the user with the operating
system.

Program loading and execution. Once a program is assembled or com
piled, it must be loaded into memory to be executed. The system may
provide absolute loaders, relocatable loaders, linkage editors, and overlay
loaders. Debugging systems for either higher-level languages or machine
language are needed as well.

Communications. These programs provide the mechanism for creating
virtual comcections among processes, users, and computer systems. They
allow users to send rnessages to one another's screens, to browse Web
pages, to send electronic-mail messages, to log in remotely, or to transfer
files from one machine to another.

In addition to systems programs, most operating systems are supplied
with programs that are useful in solving common problems or performing
common operations. Such application]JJ:"Ogr!lJ1lS iitclLlde'if\T~l:l l:Jrg_wsf2r~, worg
processors an<i text f6-rinattEis,spreadsheets, database systems, compilers,
plott1i1g ana s-tafistica]-analysis packages, ancl gan1es~ - -- - - - ------- -----
___ Tne viewoClne Opei;ating-sysrerri-seen b)T inost users is defined by the
application and system programs, rather than by the actual systern calls.
Consider a user's PC. When a user's computer is rumcing the Mac OS X
operating system, the user might see the GUI, featuring a mouse-and-windows
interface. Alternatively, or even in one of the windows, the user might have
a command-line UNIX shell. Both use the same set of system calls, but the
system calls look different and act in different ways. Further confusing the
user view, consider the user dual-booting from Mac OS X into Windows Vista.
Now the same user on the same hardware has two entirely different interfaces
and two sets of applications using the same physical resources. On the same

68 Chapter 2

2.6

hardware, then, a user can be exposed to multiple user interfaces sequentially
or concurrently.

In this section, we discuss problems we face in designing and implementing an
operating system. There are, of course, no complete solutions to such problems,
but there are approaches that have proved successful.

2.6.1 Design Goals

The first problem in designing a system is to define goals and specifications.
At the highest level, the design of the system will be affected by the choice of
hardware and the type of system: batch, time shared, single user, multiuser,
distributed, real time, or general purpose.

Beyond this highest design level, the requirements may be much harder to
specify. The requirements can, however, be divided into two basic groups: user
goals and system goals.

Users desire certain obvious properties in a system. The system should be
convenient to use, easy to learn and to use, reliable, safe, and fast. Of course,
these specifications are not particularly useful in the system design, since there
is no general agreement on how to achieve them.

A similar set of requirements can be defined by those people who must
design, create, maintain, and operate the system. The system should be easy to
design, implement, and maintain; and it should be flexible, reliable, error free,
and efficient. Again, these requirements are vague and may be interpreted in
various ways.

There is, in short, no unique solution to the problem of defining the
requirements for an operating system. The wide range of systems in existence
shows that different requirements can result in a large variety of solutions for
different environments. For example, the requirements for VxWorks, a real
time operating system for embedded systems, must have been substantially
different from those for MVS, a large multiuser, multiaccess operating system
for IBM mainframes.

Specifying and designing an operating system is a highly creative task.
Although no textbook can tell you how to do it, general principles have
been developed in the field of software engineering, and we turn now to
a discussion of some of these principles. c -

2.6.2 Mechanisms and Policies .,
I

One important principle is the separation of policy from mechanisiil~echa::
1'lis~s (:leter111il1e hcnu !Q_c:@-son'l~tl-til1g; p()lic:les (i~termir<e . zul1dT wilCbe done.
For example, the timer construct (see Section 1.5.2) is a mechani.sril:-forensill1ng
CPU protection, but deciding how long the timer is to be set for a particular
user is a policy decision.

_]'h~_S_§122l!Cl_tig!l:()fP.Qli_cy_an_ci~T1_echanism is imp()rtant for flexibility. Policies
are likely to change across places o1:'over- time. 'rri tll'e worst case, each change
in policy would require a change in the underlying mechanism. A general
mechanism insensitive to changes in policy would be more desirable. A change

2.6 69

in policy would then require redefinition of only certain parameters of the
system. For instance, consider a mechanism for giving priority to certain types
of programs over others. If the mechanism. is properly separated from policy,
it can be used either to support a policy decision that I/O-intensive progran1.s
should have priority over CPU-intensive ones or to support the opposite policy.

Microkernel=based operati1lg sy_sh:~ms(Section 2-?.3)take the separation of
mechai~1Sinai~Cfp?Hcyto one extreme byimplementing a basicset()j_pri111.iti_y~
1Jiwding bfocks. These blocks are almost policy free, allowing more advanced

-1necharnsms and policies to be added via user-created kernel modules or via
user programs themselves. As an example, consider the history of UNIX. At
first, it had a time-sharing scheduler. In the latest version of Solaris, scheduling
is controlled by loadable tables. Depending on the table currently loaded,
the system can be time shared, batch processing, real time, fair share, or
any combination. Making the scheduling mechanism general purpose allows
vast policy changes to be made with a single load-new-table command. At
th_~ ()th~r extreme is_il_~~~t~l"Il ~:ttC:l~-as _\1\t'i_!l_t:l()!YJ'c_~ \1\T~~icJ:l ~Qt~ J1"leC:!'.c:l~~~1l~
and_p()_1i_c_y__a_:r~_epc:()ciec:lj~1._!he sy~te~_ t(J_e_Ilforce__~gl()~~l()Ok an_cl_ fe_eL All
applications have similar interfaces, because the interface itself is built into
the kernel and system libraries. The Mac OS X operating system has similar
functionality.

Policy decisions are important for all resource allocation. Whenever it is
necessary to decide whether or not to allocate a resource, a policy decision must
be made. Whenever the question is how rather than what, it is a mechanism that
must be determined.

2.6.3 Implementation

Once an operating system is designed, it must be implemented. Traditionally,
operating systems have been written in assembly language. Now, however,
they are most commonly written in higher-level languages such as Cor C++.

The first system that was not written in assembly language was probably
the Master Control Program (MCP) for Burroughs computers. MCP was written
in a variant of ALGOL. MULTICS, developed at MIT, was written mainly in
PL/1. The Linux and Windows XP operating systems are written mostly in C,
although there are some small sections of assembly code for device drivers and
for saving and restoring the state of registers.

The advantages of using a higher-level language, or at least a systems
implementation language, for implementing operating systems are the same
as those accrued when the language is used for application programs: the
code can be written faster, is more compact, and is easier to understand and
debug. In addition, improvements in compiler technology will improve the
generated code for the entire operating system by simple recompilation. Finally,
an operating system is far easier to port-to move to some other hardware-if
it is written in a higher-level language. For example, MS-DOS was written in Intel
8088 assembly language. Consequently, it runs natively only on the Intel X86
family of CPUs. (Although MS-DOS runs natively only on Intel X86, emulators
of the X86 instruction set allow the operating system to run non-natively
slower, with more resource use-on other CPUs. are programs that
duplicate the functionality of one system with another system.) The Linux

70 Chapter 2

2.7

operating system, in contrast, is written mostly inC and is available natively on
a number of different CPUs, including Intel X86, Sun SPARC, and IBMPowerPC.

The only possible disadvantages of implementing an operating system in a
higher-level language are reduced speed and increased storage requirements.
This, howeve1~ is no longer a major issue in today's systems. Although an
expert assembly-language programmer can produce efficient small routines,
for large programs a modern compiler can perform complex analysis and apply
sophisticated optimizations that produce excellent code. Modern processors
have deep pipelining and n1.ultiple functional units that can handle the details
of complex dependencies much more easily than can the human mind.

As is true in other systems, major performance improvements in operating
systems are more likely to be the result of better data structures and algorithms
than of excellent assembly-language code. In addition, although operating sys
tems are large, only a small amount of the code is critical to high performance;
the memory manager and the CPU scheduler are probably the most critical rou
tines. After the system is written and is working correctly, bottleneck routines
can be identified and can be replaced with assembly-language equivalents.

A system as large and complex as a modern operating system must be
engineered carefully if it is to function properly and be modified easily. A
common approach is to partition the task into small components rather than
have one monolithic system. Each of these modules should be a well-defined
portion of the system, with carefully defined inputs, outputs, and functions.
We have already discussed briefly in Chapter 1 the common components
of operating systems. In this section, we discuss how these components are
interconnected and melded into a kernel.

2.7.1 Simple Structure

Many commercial operating systen1.s do not have well-defined structures.
Frequently, such systems started as small, simple, and limited systems and
then grew beyond their original scope. MS-DOS is an example of such a systen1..
It was originally designed and implemented by a few people who had no
idea that it would become so popular. It was written to provide the most
functionality in the least space, so it was not divided into modules carefully.
Figure 2.12 shows its structure.

In MS-DOS, the interfaces and levels of functionality are not wellseparated.
For rnstai1.ce, appii.cat1on programs aie able to access the basic I) b 1:outiri.es
to write directly to the display and disk drives. Such freedom leaves MS-DOS
vulnerable to errant (or malicio"LlS) programs, causing entire system crashes
when user programs fail. Of course, MS-DOS was also limited by the hardware
of its era. Because the Intel 8088 for which it was written provides no dual
mode and no hardware protection, the designers of MS-DOS had no choice but
to leave the base hardware accessible.

Another example of limited structuring is the original UNIX operating
systein. Like MS~Dc5S, UNix initially was limited· by hard ware ft1il.cfionali.ty. ft
consistsoftwo separahlepai;fS: thei<:eril.el ai1d the system prograrns:·Thekei:nel

2.7 71

ROM BIOS device drivers

Figure 2.12 MS-DOS layer structure.

is further separated into a series of interfaces and device drivers, which have
been added and expanded over the years as UNIX has evolved. We can view the
traditional UNIX operating system as being layered, as shown in Figure 2.13.
Everything below the system-call interface and above the physical hardware
is the kernel. Tb~l<(Ol"ll~Lp:rgvides__i:h~_fil~syste:rn, C::P_l!_s~h~duLiJl,g, memory
management, and other operating-system fm1ctions through system calls.
Taken i.n sum~thatl.sai1 enormous an1ol.lnt of functionality to be combined into
one level. This monolithic structure was difficult to implement and maintain.

2.7.2 Layered Approach

Withproper J:tarc:l\A!<lre support, operating systems can be brokeninto pieces
that are smaller and more app1:opriate thar:t}hose allowed by the _ _2!i2;g~af

(the users)

shells and commands
compilers and. interpreters

system libraries

signals terminal
handling

character 1/0 system
terminal drivers

file system
swapping block 1/0

system
disk and tape drivers

CPU scheduling
page replacement

demand paging
virtual memory

Figure 2.13 Traditional UNIX system structure.

72 Chapter 2

Figure 2.14 A layered operating system.

M~-:.QOi'ilncil]l'J_IX systeill~· The operating system can then retain much greater
control over the computer and over the applications that make use of that
computer. Implementers have more freedom in changing the inner workin.gs
of the system and in creating modular operating systems. Under a top
down approach, the overall functionality and features are determined and
are separated into components. Information hiding is also important, because
it leaves programmers free to implement the low-level routines as they see fit,
provided that the external interface of the routine stays unchanged and that
the routine itself performs the advertised task.

A system can be made modular in many ways. Qne method is the layered
approach, in which the operating system is broken ii1to a 1l.umberoflayers
""(lever8J.TI1eoottom.Iiiyer.(layer 0).1stheTiarawai;e; the nig:Ytesl: (layerN) .. 1sfhe
user interface. This layering structure is depicted in Figure 2.14.

An operating-system layer is an implementation of an abstract object made
up of data and the operations that can manipulate those data. A typical
operating-system layer-say, layer M -consists of data structures and a set
of routines that can be invoked by higher-level layers. Layer M, in turn, can
invoke operations on lower-level layers.

The main advantage of the layered approach is simplicity of construction
and debugging. The layers are selected so that each uses functions (operations)
and services of only lower-level layers. This approach simplifies debugging
and .system verification. The first layer can be debugged without any concern
for the rest of the system, because, by definition, it uses only the basic hardware
(which is assumed correct) to implement its functions. Once the first layer is
debugged, its correct functioning can be assumed while the second layer is
debugged, and so on. If an error is found during the debugging of a particular
layer, the error must be on that layer, because the layers below it are already
debugged. Thus, the design and implementation of the system are simplified.

2.7 73

Each layer is implemented with only those operations provided by lower
level layers. A layer does not need to know how these operations are
implemented; it needs to know only what these operations do. Hence, each
layer hides the existence of certain data structures, operations, and hardware
from higher-level layers.

The major difficulty with the layered approach involves appropriately
defining the various layers. Because a layer can use only lower-level layers,
careful planning is necessary. For example, the device driver for the backing
store (disk space used by virtual-memory algorithms) must be at a lower
level than the memory-management routines, because memory management
requires the ability to use the backing store.

Other requirements may not be so obvious. The backing-store driver would
normally be above the CPU scheduler, because the driver may need to wait for
I/0 and the CPU can be rescheduled during this time. However, on a large
system, the CPU scheduler m.ay have more information about all the active
processes than can fit in memory. Therefore, this u1.formation may need to be
swapped u1. and out of memory, requiring the backu1.g-store driver routine to
be below the CPU scheduler.

A final problem with layered implementations is that they tend to be less
efficient than other types. For instance, when a user program executes an I/0
operation, it executes a system call that is trapped to the I/0 layer, which calls
the memory-management laye1~ which in tum calls the CPU-scheduling layer,
which is then passed to the hardware. At each layer, the parameters may be
modified, data may need to be passed, and so on. Each layer adds overhead to
the system call; the net result is a system call that takes longer than does one
on a nonlayered system.

These limitations have caused a small backlash against layering in recent
years. Fewer layers with more functionality are beu1.g designed, providu1.g most
of the advantages of modularized code while avoidu1.g the difficult problems
of layer definition and interaction.

2.7.3 Microkernels

We have already seen that as UNIX expanded, the kernel became large
and difficult to manage. In the mid-1980s, researchers at Carnegie Mellon
University developed an operatu1.g system called Mach that modularized
the kernel using the ~i~roke~ll:~_!_~EE1~()2lC:~~I.b~._gL~!b_()_<:!_0ructl.~~~~--t!~e
operatingsystem by removing all nonessential cornponentsfrom thekemel and
1mp~e_l?:l~-ll:!~~~itil~!?::t~~s-~~fe_l"Il~~~~rl.ls_~l:~i~\r~}:Jr()greili~~:· the.reslin is-a smarrei:
kernel. There is little consensus regarding which services should remain u1. the
kernel and which should be implemented in user space. Typically, however,
microkernels provide minimal process and memory management, in addition
to a communication facility.

The main function of the micro kernel is to provide a communication facility
between the client program and the various services that are also rum1.ing
in user space. Communication is provided by message passing, which was
described in Section 2.4.5. For example, if the client program wishes to access
a file, it must interact with the file server. The client program and service never
interact directly. Rathel~ they communicate indirectly by exchanging messages
with the microkemel.

74 Chapter 2

One benefit of the microkernel approach is ease of extending the operating
system. All new services are added to user space and consequently do not
require modification of the kernel. When the kernel does have to be modified,
the changes tend to be fewer, because the microkernel is a smaller kernel.
The resulting operating system is easier to port from one hardware design
to another. The microkernel also provides more security and reliability, since
most services are running as user-rather than kernel-processes. If a service
fails, the rest of the operating system remains untouched.

Several contemporary operating systems have used the microkernel
approach. Tru64 UNIX (formerly Digital UNIX) provides a UNIX interface to the
user, but it is implemented with a Mach kernel. The Mach kernel maps UNIX
system calls into messages to the appropriate user-level services. The Mac OS
X kernel (also known as Darwin) is also based on the Mach micro kernel.

Another example is QNX, a real-time operating system. The QNX nl.icro
kernel provides services for message passing and process scheduling. It also
handles low-level network communication and hardware interrupts. All other
services in QNX are provided by standard processes that run outside the kernel
in user mode.

Unfortunately, microkernels can suffer from performance decreases due
to increased system function overhead. Consider the history of Windows NT.
The first release had a layered microkernel organization. However, this version
delivered low performance compared with that of Windows 95. Windows NT
4.0 partially redressed the performance problem by moving layers from user
space to kernel space and integrating them more closely. By the time Windows
XP was designed, its architecture was more monolithic than microkernel.

2.7.4 Modules

Perhaps the best current methodology for operating-system design involves
using object-oriented programming techniques to create a modular kernel.
Here, the kernel has a set of core components and links in additional services
either during boot time or during run time. Such a strategy uses dynamically
loadable modules and is common in modern implementations of UNIX, such
as Solaris, Linux, and Mac OS X. For example, the Solaris operating system
structure, shown in Figure 2.15, is organized armmd a core kernel with seven
types of loadable kernel modules:

Scheduling classes

File systems

Loadable system calls

Executable formats

STREAMS modules

Miscellaneous

Device and bus drivers

Such a design allows the kernel to provide core services yet also allows
certain features to be implemented dynamically. For example, device and

2.7

file systems

Figure 2.15 Solaris loadable modules.

loadable
system calls

75

bus drivers for specific hardware can be added to the kernel, and support
for different file systems can be added as loadable modules. The overall
result resembles a layered system in that each kernel section has defined,
protected interfaces; but it is more flexible than a layered system in that any
module can call any other module. Furthermore, the approach is like the
microkernel approach in that the primary module has only core functions
and knowledge of how to load and communicate with other modules; but it
is more efficient, because modules do not need to invoke message passing in
order to communicate.

The Apple Mac OS X operating system uses a hybrid structure. It is a layered
system in which one layer consists of the Mach microkernel. The structure of
Mac OS X appears in Figure 2.16. The top layers include application environ
ments and a set of services providing a graphical interface to applications.
Below these layers is the kernel environment, which consists primarily of the
Mach microkernel and the BSD kernel. Mach provides memory management;
support for remote procedure calls (RPCs) and interprocess communication
(IPC) facilities, including message passing; and thread scheduling. The BSD
component provides a BSD command line interface, support for networking
and file systems, and an implementation of POSIX APis, including Pthreads.

kernel
environment

application environments
and common services

Figure 2.16 The Mac OS X structure.

76 Chapter 2

2.8

In addition to Mach and BSD, the kernel environment provides an I/0 kit for
development of device drivers and dynamically loadable modules (which Mac
OS X refers to as kernel extensions). As shown in the figure, applications and
comn:10n services can make use of either the Mach or BSD facilities directly.

The layered approach described in Section 2.7.2 is taken to its logical conclusion
in the concept of a The fundamental idea behind a virtual
machine is to abstract the hardware of a si11.gle computer (the CPU, memory,
disk drives, network interface cards, and so forth) into several different
execution environments, thereby creating the illusion that each separate
execution environment is run.ning its own private computer.

By using CPU scheduling (Chapter 5) and virtual-memory techniques
(Chapter 9), an operating system can create the illusion that a process
has its own processor with its own (virtual) memory. The virtual machine
provides an interface that is identical to the underlying bare hardware. Each

process is provided with a (virtual) copy of the underlying computer
(Figure 2.17). Usually, the guest process is in fact an operating system, and
that is how a single physical machine can run multiple operating systems
concurrently, each in its own virtual machine.

2.8.1 History

Virtual machines first appeared commercially on IBM mainframes via the VM
operating system in 1972. VM has evolved and is still available, and many of

processes

programming/
/ interface

1----~-----1

kernel

(a)

processes

processes

processes

kernel kernel kernel

VM1 VM2 VM3
virtual-machine
implementation

(b)

Figure 2.17 System models. (a) Nonvirtual machine. (b) Virtual machine.

2.8 77

the original concepts are found in other systems, making this facility worth
exploring.

IBM VM370 divided a mainframe into nmltiple virtual machines, each
numing its own operating system. A ncajor difficulty with the VM virtual
machine approach involved disk systems. Suppose that the physical machine
had three disk drives but wanted to support seven virtual machines. Clearly, it
could not allocate a disk drive to each virtual machine, because the virtual
machine software itself needed substantial disk space to provide virtual
memory and spooling. The solution was to provide virtual disks-termed
minidislcs in IBM's VM operating system -that are identical in all respects except
size. The system implemented each minidisk by allocating as many tracks on
the physical disks as the minidisk needed.

Once these virtual machines were created, users could run any of the
operating systems or software packages that were available on the underlying
machine. For the IBM VM system, a user normally ran CMS-a single-user
interactive operating system.

2.8.2 Benefits

There are several reasons for creating a virtual machine. Most of them are
fundarnentally related to being able to share the same hardware yet run
several different execution environments (that is, different operating systems)
concurrently.

One important advantage is that the host system is protected from the
virtual machines, just as the virtual machines are protected from each other. A
virus inside a guest operating system might damage that operating system but
is unlikely to affect the host or the other guests. Because each virtual machine
is completely isolated from all other virtual machines, there are no protection
problems. At the same time, however, there is no direct sharing of resources.
Two approaches to provide sharing have been implemented. First, it is possible
to share a file-system volume and thus to share files. Second, it is possible to
define a network of virtual machines, each of which can send information over
the virtual communications network. The network is modeled after physical
communication networks but is implemented in software.

A virtual-machine system is a perfect vehicle for operating-systems
research and development. Normally, changing an operating system is a diffi
cult task. Operating systems are large and complex programs, and it is difficult
to be sure that a change in one part will not cause obscure bugs to appear
in some other part. The power of the operating system makes changing it
particularly dangerous. Because the operating system executes in kernel mode,
a wrong change in a pointer could cause an error that would destroy the entire
file system. Thus, it is necessary to test all changes to the operating system
carefully.

The operating system, however, runs on and controls the entire machine.
Therefore, tlle current system must be stopped and taken out of use while
changes are made and tested. This period is comnconly called system
development time. Since it makes the system unavailable to users, system
development time is often scheduled late at night or on weekends, when system
load is low.

78 Chapter 2

A virtual-machine system can eliminate much of this problem. System
programmers are given their own virtual machine, and system development is
done on the virtual machine instead of on a physical machine. Normal system
operation seldom needs to be disrupted for system development.

Another advantage of virtual machines for developers is that multiple
operating systems can be running on the developer's workstation concur
rently. This virtualized workstation allows for rapid porting and testing of
programs in varying enviromnents. Sin'lilarly, quality-assurance engineers can
test their applications in multiple environments without buying, powering,
and maintaining a computer for each environment.

A major advantage of virtual machines in production data-center use is
system which involves taking two or more separate systems
and running them in virtual machines on one system. Such physical-to-virtual
conversions result in resource optimization, as many lightly used systems can
be combined to create one more heavily used system.

If the use of virtual machines continues to spread, application deployment
will evolve accordingly. If a system can easily add, remove, and move a
virtual machine, then why install applications on that system directly? Instead,
application developers would pre-install the application on a tuned and
customized operating system in a virh1al machine. That virtual environment
would be the release mechanism for the application. This method would be
an improvement for application developers; application management would
become easier, less tuning would required, and technical support of the
application would be more straightforward. System administrators would
find the environment easier to manage as well. Installation would be simple,
and redeploying the application to another system would be much easier
than the usual steps of uninstalling and reinstalling. For widespread adoption
of this methodology to occur, though, the format of virtual machines must
be standardized so that any virtual machine will run on any virtualization
platform. The "Open Virtual Machine Format" is an attempt to do just that,
and it could succeed in unifying virtual-machine formats.

2.8.3 Simulation

System virtualization as discussed so far is just one of many system-emulation
methodologies. Virtualization is the most common because it makes guest
operating systems and applications "believe" they are running on native
hardware. Because only the system's resources need to be virtualized, these
guests run at almost full speed.

Another methodology is in which the host system has one
system architecture and the guest system was compiled for a different archi
tecture. For example, suppose a company has replaced its outdated computer
system with a new system but would like to continue to run certain important
programs that were compiled for the old system. The programs could be run
in an e1nulator that translates each of the outdated system's instructions into
the native instruction set of the new system. Emulation can increase the life of
programs and allow us to explore old architectures without having an actual
old machine, but its major challenge is performance. Instruction-set emulation
can run an order of magnitude slower than native instructions. Thus, unless
the new machine is ten times faster than the old, the program running on

2.8 79

the new machine will run slower than it did on its native hardware. Another
challenge is that it is difficult to create a correct emulator because, in essence,
this involves writing an entire CPU in software.

2.8.4 Para-virtualization

is another vanat10n on this theme. Rather than try to
trick a guest operating system into believing it has a system to itself, para
virtualization presents the guest with a system that is similar but not identical
to the guest's preferred system. The guest must be modified to run on the
paravirtualized hardware. The gain for this extra work is more efficient use of
resources and a smaller virtualization layer.

Solaris 10 includes or that create a virtual layer between
the operating system and the applications. In this system, only one kernel is
installed, and the hardware is not virtualized. Rather, the operating system
and its devices are virtualized, providing processes within a container with
the impression that they are the only processes on the system. One or more
containers can be created, and each can have its own applications, network
stacks, network address and ports, user accounts, and so on. CPU resources
can be divided up among the containers and the systemwide processes. Figure
2.18 shows a Solaris 10 system with two containers and the standard "global"
user space.

user programs
system programs
CPU resources

memory resources

global zone

user programs
system programs

network addresses
device access
CPU resources

user programs
system programs

network addresses
device access
CPU resources

memory resources memory resources

zone 1 zone 2

virtual platform
device management

Figure 2.18 Solaris I 0 with two containers.

80 Chapter 2

2.8.5 Implementation

Although the virtual-machine concept is usefut it is difficult to implement.
Much work is required to provide an exact duplicate of the underlying machine.
Remember that the underlying machine typically has two modes: user mode
and kernel mode. The virtual-machine software can run in kernel mode, since
it is the operating system. The virtual machine itself can execute in only user
mode. Just as the physical machine has two modes, however, so must the virtual
machine. Consequently, we must have a virtual user mode and a virtual kernel
mode, both of which run in a physical user mode. Those actions that cause a
transfer from user mode to kernel mode on a real machine (such as a system
call or an attempt to execute a privileged instruction) must also cause a transfer
from virtual user mode to virtual kernel mode on a virtual machine.

Such a transfer can be accomplished as follows. When a system calt for
example, is made by a program running on a virtual machine in virtual user
mode, it will cause a transfer to the virtual-machine monitor in the real machine.
When the virtual-machine monitor gains controt it can change the register
contents and program counter for the virtual machine to simulate the effect of
the system calL It can then restart the virtual machine, noting that it is now in
virtual kernel mode.

The major difference, of course, is time. Whereas the real I/O might have
taken 100 milliseconds, the virtual I/O might take less time (because it is
spooled) or more time (because it is interpreted). In addition, the CPU is
being multi programmed among many virtual machines, further slowing down
the virtual machines in unpredictable ways. In the extreme case, it may be
necessary to simulate all instructions to provide a true virtual machine. VM,
discussed earlier, works for IBM machines because normal instructions for the
virtual machines can execute directly on the hardware. Only the privileged
instructions (needed mainly for I/0) must be simulated and hence execute
more slowly.

Without some level of hardware support, virtualization would be impos
sible. The more hardware support available within a system, the more feature
rich, stable, and well performing the virtual machines can be. All major general
purpose CPUs provide some amount of hardware support for virtualization.
For example, AMD virtualization technology is found in several AMD proces
sors. It defines two new modes of operation-host and guest. Virtual machine
software can enable host mode, define the characteristics of each guest virtual
machine, and then switch the system to guest mode, passing control of the
system to the guest operating system that is running in the virtual machine.
In guest mode, the virtualized operating system thinks it is rum1.ing on native
hardware and sees certain devices (those included in the host's definition of
the guest). If the guest tries to access a virtualized resource, then control is
passed to the host to manage that interaction.

2.8.6 Examples

Despite the advantages of virtual machines, they received little attention for
a number of years after they were first developed. Today, however, virtual
machines are coming into fashion as a means of solving system compatibility
problems. In this section, we explore two popular contemporary virtual
machines: the VMware Workstation and the Java virtual machine. As you

2.8 81

will see, these virtual machines can typically run on top of operating systems
of any of the design types discussed earlier. Thus, operating system design
methods-simple layers, microkernels, n:wdules, and virtual machines-are
not mutually exclusive.

2.8.6.1 VMware

Most of the virtualization techniques discussed in this section require virtual
ization to be supported by the kernel. Another method involves writing the
virtualization tool to run in user mode as an application on top of the operating
system. Virtual machines running within this tool believe they are rum<ing on
bare hardware but in fact are running inside a user-level application.

is a popular commercial application that abstracts
Intel X86 and compatible hardware into isolated virtual machines. VMware
Workstation runs as an application on a host operating system such as Windows
or Linux and allows this host system to concurrently run several different guest
operating systems as independent virtual machines.

The architecture of such a system is shown in Figure 2.19. In this scenario,
Linux is running as the host operating system; and FreeBSD, Windows NT, and
Windows XP are rum<ing as guest operating systems. The virtualization layer is
the heart of VMware, as it abstracts the physical hardware into isolated virtual
machines running as guest operating systems. Each virtual machine has its
own virtual CPU, memory, disk drives, network interfaces, and so forth.

The physical disk the guest owns and manages is really just a file within the
file system of the host operating system. To create an identical guest instance,
we can simply copy the file. Copying the file to another location protects the
guest instance against a disaster at the original site. Moving the file to another

application application application application

guest operating guest operating guest operating
system system system

(free BSD) (Windows NT) (Windows XP)

virtual CPU virtual CPU virtual CPU
virtual memory virtual memory virtual memory
virtual devices virtual devices virtual devices

virtualization layer

hardware

I· QPU· •.. ·•[I r!Jemgfy

Figure 2.19 VMware architecture.

82 Chapter 2

location moves the guest system. These scenarios show how virtualization can
improve the efficiency of system administration as well as system resource use.

2.8.6.2 The Java Virtual Machine

Java is a popular object-oriented programming language introduced by Sun
Microsystems in 1995. In addition to a language specification and a large API
library, Java also provides a specification for a Java virtual machine-or JVM.

Java objects are specified with the class construct; a Java program
consists of one or more classes. For each Java class, the compiler produces
an architecture-neutral bytecode output (.class) file that will run on any
implementation of the JVM.

The JVM is a specification for an abstract computer. It consists of a class
loader and a Java interpreter that executes the architecture-neutral bytecodes,
as diagrammed in Figure 2.20. The class loader loads the compiled . class
files from both the Java program and the Java API for execution by the Java
interpreter. After a class is loaded, the verifier checks that the . class file is
valid Java bytecode and does not overflow or underflow the stack It also
ensures that the bytecode does not perform pointer arithmetic, which could
provide illegal memory access. If the class passes verification, it is run by the
Java interpreter. The JVM also automatically manages memory by performing
garbage collection -the practice of reclaiming memory from objects no longer
in use and returning it to the system. Much research focuses on garbage
collection algorithms for increasing the performance of Java programs in the
virtual machine.

The JVM may be implemented in software on top of a host operating
system, such as Windows, Linux, or Mac OS X, or as part of a Web browser.
Alternatively, the JVM may be implemented in hardware on a chip specifically
designed to nm Java programs. If the JVM is implemented in. software, the
Java interpreter interprets the bytecode operations one at a time. A faster
software technique is to use a just-in-time (JIT) compiler. Here, the first time a
Java method is invoked, the bytecodes for the method are turned into native
machine language for the host system. These operations are then cached so that
subsequent invocations of a method are performed using the native machine
instructions and the bytecode operations need not be interpreted all over again.
A technique that is potentially even faster is to nm the JVM in hardware on a

Java program
.class files -•I class loader 1-+-

+
I Java I interpreter

t
host system

(Windows, Linux, etc.)

Figure 2.20 The Java virtual machine.

2.8

THE .NET FRAMEWORK

The .NET Framework is a collection of technologies, including a set of class
libraries, and an execution environment that come together to provide a
platform for developing software. This platform allows programs to be
written to target the .NET Framework instead of a specific architecture. A
program written for the .NET Framework need not worry aboutthe specifics
of the hardware or the operating system on which it will run. Thus, any
architecture implementing .NET will be able to successfully execute the
program. This is because the execution environment abstracts these details
and provides a virtual machine as an intermediary between the executing
program and the underlying architecture.

At the core of the .NET Framework is the Common Language Runtime
(CLR). The CLR is the implementation of the .NET virtual machine. Itprovides
an environment for execution of programs written in any of the languages
targeted at the .NET Framework. Programs written in languages such as
C# (pronounced C-sharp) and VB.NET are compiled into an intermediate,
architecture-independent language called Microsoft Intermediate Language
(MS-IL). These compiled files, called assemblies, include MS-IL instructions
and metadata. They have file extensions of either .EXE or .DLL. Upon
execution of a program, the CLR loads assemblies into what .is known as
the Application Domain. As instructions are requested by the executing
program, the CLR converts the MS-IL instructions inside the assemblies into
native code that is specific to the underlying architecture using just-in-time
compilation. Once instructions have been converted to native code, they are
kept and will continue to run as native code for the CPU. The architecture of
the CLR for the .NET framework is shown in Figure 2.21.

compilation

CLR

C++
source

MS-IL
assembly

VB.Net
source

MS-IL
assembly

host system

Figure 2.21 ArchiteCture ofthe.CLR for the .NET Framework.

83

84 Chapter 2

2.9

special Java chip that executes the Java bytecode operations as native code, thus
bypassing the need for either a software interpreter or a just-in-tim.e compiler.

Broadly, is the activity of finding and fixing errors, or in a
system. Debugging seeks to find and fix errors in both hardware and software.
Performance problems are considered bugs, so debugging can also include

which seeks to improve performance by removing
-""'-·"'-·-···" in the processing taking place within a system. A discussion of

hardware debugging is outside of the scope of this text. In this section, we
explore debugging kernel and process errors and performance problems.

2.9.1 Failure Analysis

If a process fails, most operating systems write the error information to a
to alert system operators or users that the problem occurred. The operating

system can also take a capture of the memory (referred to as the
"core" in the early days of computing) of the process. This core image is stored
in a file for later analysis. Running programs and core dumps can be probed
by a a tool designed to allow a programmer to explore the code and
memory a process.

Debugging user-level process code is a challenge. Operating system kernel
debugging even more complex because of the size and complexity of the kernel,
its control of the hardware, and the lack of user-level debugging tools. A kernel
failure is called a As with a process failure, error information is saved to
a log file, and the memory state is saved to a

Operating system debugging frequently uses different tools and techniques
than process debugging due to the very different nature of these two tasks.
Consider that a kernel failure in the file-system code would make it risky for
the kernel to try to save its state to a file on the file system before rebooting.
A common technique is to save the kernel's memory state to a section of disk
set aside for this purpose that contains no file system .. If the kernel detects
an unrecoverable error, it writes the entire contents of memory, or at least the
kernel-owned parts of the system memory, to the disk area. When the system
reboots, a process runs to gather the data from that area and write it to a crash
dump file within a file system for analysis.

2.9.2 Performance Tuning

To identify bottlenecks, we must be able to monitor system performance. Code
must be added to compute and display measures of system behavior. In a
number of systems, the operating system does this task by producing trace
listings of system behavior. All interesting events are logged with their time and
important parameters and are written to a file. Later, an analysis program can
process the log file to determine system performance and to identify bottlenecks
and inefficiencies. These same traces can be run as input for a simulation of
a suggested improved system. Traces also can help people to find errors in
operating-system behavior.

2.9

Kernighan's Law

"Debugging is twice as hard as writing the code in the first place. Therefore,
if you write the code as cleverly as possible, you are, by definition, not smart
enough to debug it."

85

Another approach to performance tuning is to include interactive tools
with the system that allow users and administrators to question the state of
various components of the system to look for bottlenecks. The UNIX command
top displays resources used on the system, as well as a sorted list of the "top"
resource-using processes. Other tools display the state of disk I/0, memory
allocation, and network traffic. The authors of these single-purpose tools try to
guess what a user would want to see while analyzing a system and to provide
that information.

Making running operating systems easier to understand, debug, and tune
is an active area of operating system research and implementation. The cycle
of enabling tracing as system problems occur and analyzing the traces later
is being broken by a new generation of kernel-enabled performance analysis
tools. Further, these tools are not single-purpose or merely for sections of code
that were written to emit debugging data. The Solaris 10 DTrace dynamic
tracing facility is a leading example of such a tool.

2.9.3 DTrace

is a facility that dynamically adds probes to a running system, both
i11 user processes and in the kernel. These probes can be queried via the D

programming language to determine an astonishing amount about the kernel,
the system state, and process activities. For example, Figure 2.22 follows an
application as it executes a system call (ioctl) and further shows the functional
calls within the kernel as they execute to perform the system call. Lines ending
with "U" are executed in user mode, and lines ending in "K" in kernel mode.

Debugging the interactions between user-level and kernel code is nearly
impossible without a toolset that understands both sets of code and can
instrument the interactions. For that toolset to be truly useful, it must be able
to debug any area of a system, including areas that were not written with
debugging in mind, and do so without affecting system reliability. This tool
must also have a minimum performance impact-ideally it should have no
impact when not in use and a proportional impact during use. The DTrace tool
meets these requirements and provides a dynamic, safe, low-impact debugging
environncent.

Until the DTrace framework and tools became available with Solaris 10,
kernel debugging was usually shrouded in mystery and accomplished via
happenstance and archaic code and tools. For example, CPUs have a breakpoint
feature that will halt execution and allow a debugger to examine the state of the
system. Then execution can continue until the next breakpoint or termination.
This method cannot be used in a multiuser operating-system kernel without
negatively affecting all of the users on the system. Pn:rEEn,g, which periodically
samples the instruction pointer to determine which code is being executed, can
show statistical trends but not individual activities. Code can be included in
the kernel to emit specific data under specific circumstances, but that code

86 Chapter 2

./all.d 'pgrep xclock' XEventsQueued
dtrace: script './all.d' matched 52377 probes
CPU FUNCTION

0 -> XEventsQueued
0 -> _XEventsQueued

u
u

0 -> _XllTransBytesReadable U
0 <- _XllTransBytesReadable U
0 -> _XllTransSocketBytesReadable U
0 <- _XllTransSocketBytesreadable U
0 -> ioctl U
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0 <-

<-

<-
-

-> ioctl

<-

-> getf
-> set active fd
<- set active fd

<- getf
-> get udatamodel
<- get udatamodel

-> releasef
-> clear active -
<- clear active
-> cv broadcast
<- cv broadcast

<- releasef
ioctl

ioctl
XEventsQueued

XEventsQueued

fd
fd

K
K
K
K
K
K
K

K
K
K
K
K
K
K
u
u
u

Figure 2.22 Solaris 10 dtrace follows a system call within the kernel.

slows down the kernel and tends not to be included in the part of the kernel
where the specific problem being debugged is occurring.

In contrast, DTrace runs on production systems-systems that are running
important or critical applications-and causes no harm to the system. It
slows activities while enabled, but after execution it resets the system to its
pre-debugging state. It is also a broad and deep tool. It can broadly debug
everything happening in the system (both at the user and kernel levels and
between the user and kernel layers). DTrace can also delve deeply into code,
showing individual CPU instructions or kernel subroutine activities.

is composed of a compiler, a framework, of
written within that framework, and of those probes. DTrace
providers create probes. Kernel structures exist to keep track of all probes that
the providers have created. The probes are stored in a hash table data structure
that is hashed by name and indexed according to unique probe identifiers.
When a probe is enabled, a bit of code in the area to be probed is rewritten
to call dtrace_probe (probe identifier) and then continue with the code's
original operation. Different providers create different kinds of probes. For
example, a kernel system-call probe works differently from a user-process
probe, and that is different from an I/O probe.

DTrace features a compiler that generates a byte code that is run in the
kernel. This code is assured to be "safe" by the compiler. For example, no

2.9 87

loops are allowed, and only specific kernel state modifications are allowed
when specifically requested. Only users with the DTrace "privileges" (or "root"
users) are allowed to use DT!·ace, as it can retrieve private kernel data (and
modify data if requested). The generated code runs in the kernel and enables
probes. It also enables consumers in user mode and enables communications
between the two.

A DT!·ace consumer is code that is interested in a probe and its results.
A consumer requests that the provider create one or more probes. When a
probe fires, it emits data that are managed by the kernel. Within the kernel,
actions called or are performed when probes
fire. One probe can cause multiple ECBs to execute if more than one consumer
is interested in that probe. Each ECB contains a predicate ("if statement") that
can filter out that ECB. Otherwise, the list of actions in the ECB is executed. The
most usual action is to capture some bit of data, such as a variable's value at
that point of the probe execution. By gathering such data, a complete picture of
a user or kernel action can be built. Further, probes firing from both user space
and the kernel can show how a user-level action caused kernel-level reactions.
Such data are invaluable for performance monitoril1.g and code optimization.

Once the probe consumer tennil1.ates, its ECBs are removed. If there are no
ECBs consuming a probe, the probe is removed. That involves rewriting the
code to remove the dtrace_probe call and put back the original code. Thus,
before a probe is created and after it is destroyed, the system is exactly the
same, as if no probing occurred.

DTrace takes care to assure that probes do not use too much memory or
CPU capacity, which could harm the running system. The buffers used to hold
the probe results are monitored for exceeding default and maximum limits.
CPU time for probe execution is monitored as well. If limits are exceeded, the
consumer is terminated, along with the offending probes. Buffers are allocated
per CPU to avoid contention and data loss.

An example ofD code and its output shows some of its utility. The following
program shows the DTrace code to enable scheduler probes and record the
amount of CPU time of each process running with user ID 101 while those
probes are enabled (that is, while the program nms):

sched:: :on-cpu
uid == 101
{

self->ts timestamp;
}

sched: : :off -cpu
self->ts
{

}

©time [execname]
self->ts = 0;

sum(timestamp- self->ts);

The output of the program, showing the processes and how much time (in
nanoseconds) they spend running on the CPUs, is shown in Figure 2.23.

88 Chapter 2

2.10

dtrace -s sched.d
dtrace: script 'sched.d' matched 6 probes
Ac

grwme-settings-d
gnome-vfs-daemon
dsdm
wnck-applet
gnome-panel
clock-applet
mapping-daemon
xscreensaver
meta city
Xorg
gnome-terminal
mixer _applet2
Java

142354
158243
189804
200030
277864
374916
385475
514177
539281

2579646
5007269
7388447

10769137

Figure 2.23 Output of the 0 code.

Because DTrace is part of the open-source Solaris 10 operating system,
it is being added to other operating systems when those systems do not
have conflicting license agreements. For example, DTrace has been added to
Mac OS X 10.5 and FreeBSD and will likely spread further due to its unique
capabilities. Other operating systems, especially the Linux derivatives, are
adding kernel-tracing functionality as well. Still other operating systems are
beginning to include performance and tracing tools fostered by research at
various institutions, including the Paradyn project.

It is possible to design, code, and implement an operating system specifically
for one machine at one site. More commonly, however, operating systems
are designed to nm on any of a class of machines at a variety of sites with
a variety of peripheral configurations. The system must then be configured
or generated for each specific computer site, a process sometimes known as
system generation (SYSGEN).

The operating system is normally distributed on disk, on CD-ROM or
DVD-ROM, or as an "ISO" image, which is a file in the format of a CD-ROM
or DVD-ROM. To generate a system, we use a special program. This SYSGEN
program reads from a given file, or asks the operator of the system for
information concerning the specific configuration of the hardware systenc, or
probes the hardware directly to determine what components are there. The
following kinds of information must be determined.

What CPU is to be used? What options (extended instruction sets, floating
point arithmetic, and so on) are installed? For multiple CPU systems, each
CPU may be described.

2.11

2.11 89

How will the boot disk be formatted? How many sections, or "partitions,"
will it be separated into, and what will go into each partition?

How much memory is available? Some systems will determine this value
themselves by referencing memory location after memory location until an
"illegal address" fault is generated. This procedure defines the final legal
address and hence the amount of available memory.

What devices are available? The system will need to know how to address
each device (the device number), the device interrupt number, the device's
type and model, and any special device characteristics.

What operating-system options are desired, or what parameter values are
to be used? These options or values might include how many buffers of
which sizes should be used, what type of CPU-scheduling algorithm is
desired, what the maximum number of processes to be supported is, and
so on.

Once this information is determined, it can be used in several ways. At one
extreme, a system administrator can use it to modify a copy of the source code of
the operating system. The operating system then is completely compiled. Data
declarations, initializations, and constants, along with conditional compilation,
produce an output-object version of the operating system that is tailored to the
system described.

At a slightly less tailored level, the system description can lead to the
creation of tables and the selection of modules from a precompiled library.
These modules are linked together to form the generated operating system.
Selection allows the library to contain the device drivers for all supported I/0
devices, but only those needed are linked into the operating system. Because
the system is not recompiled, system generation is faster, but the resulting
system may be overly general.

At the other extreme, it is possible to construct a system that is completely
table driven. All the code is always part of the system, and selection occurs at
execution time, rather than at compile or lil1.k time. System generation involves
simply creating the appropriate tables to describe the system.

The major differences among these approaches are the size and generality
of the generated system and the ease of modifying it as the hardware
configuration changes. Consider the cost of modifying the system to support a
newly acquired graphics termil1.al or another disk drive. Balanced against that
cost, of course, is the frequency (or infrequency) of such changes.

After an operating system is generated, it must be made available for use by
the hardware. But how does the hardware know where the kernel is or how to
load that kernel? The procedure of starting a computer by loading the kernel
is known as booting the system. On most computer systems, a small piece of
code known as the bootstrap program or bootstrap loader locates the kernel,
loads it into main memory, and starts its execution. Some computer systems,
such as PCs, use a two-step process in which a simple bootstrap loader fetches
a more complex boot program from disk, which in turn loads the kernel.

90 Chapter 2

2.12

When a CPU receives a reset event-for instance, when it is powered up
or rebooted -the instruction register is loaded with a predefined memory
location, and execution starts there. At that location is the initial bootstrap
program. This program is in the form of read-only memory (ROM), because
the RAM is in an unknown state at system startup. ROM is convenient because
it needs no initialization and cannot easily be infected by a computer virus.

The bootstrap program can perform a variety of tasks. Usually, one task
is to run diagnostics to determine the state of the machine. If the diagnostics
pass, the program can continue with the booting steps. It can also initialize all
aspects of the system, from CPU registers to device controllers and the contents
of main memory. Sooner or later, it starts the operating system.

Some systems-such as cellular phones, PDAs, and game consoles-store
the entire operating system in ROM. Storing the operating system in ROM is
suitable for small operating systems, simple supporting hardware, and rugged
operation. A problem with this approach is that changing the bootstrap code
requires changing the ROM hardware chips. Some systems resolve this problem
by using erasable programmable read-only memory (EPROM), which is read
only except when explicitly given a command to become writable. All forms
of ROM are also known as firmware, since their characteristics fall somewhere
between those of hardware and those of software. A problem with firmware
in general is that executing code there is slower thart executing code in RAM.
Some systems store the operating system in firmware and copy it to RAM for
fast execution. A final issue with firmware is that it is relatively expensive, so
usually only small ammmts are available.

For large operating systems (including most general-purpose operating
systems like Windows, Mac OS X, and UNIX) or for systems that change
frequently, the bootstrap loader is stored in firmware, and the operating system
is on disk. In this case, the bootstrap nms diagnostics and has a bit of code
that can read a single block at a fixed location (say block zero) from disk into
memory and execute the code from that b!ock. The program stored in the
boot block may be sophisticated enough to load the entire operating system
into memory and begin its execution. More typically, it is simple code (as it fits
in a single disk block) and knows only the address on disk and length of the
remainder of the bootstrap program. is an example of an open-source
bootstrap program for Linux systems. All of the disk-bound bootstrap, and the
operating system itself, can be easily changed by writing new versions to disk.
A disk that has a boot partition (more on that in Section 12.5.1) is called a boot
disk or system disk.

Now that the full bootsh·ap program has been loaded, it can traverse the
file system to find the operating system kernel, load it into memory, and start
its execution. It is only at this point that the system is said to be running.

Operating systems provide a number of services. At the lowest level, system
calls allow a running program to make requests from the operating system
directly. At a higher level, the command interpreter or shell provides a
mechanism for a user to issue a request without writing a program. Commands
may come from files during batch-mode execution or directly from a terminal

91

when in an interactive or time-shared mode. System programs are provided to
satisfy many common u.ser requests.

The types of requests vary accord:ilcg to level. The system-call level must
provide the basic functions, such as process control and file and device
manipulation. Higher-level requests, satisfied by the command interpreter or
system programs, are translated into a sequence of system calls. System services
can be classified into several categories: program controt status requests,
and I/0 requests. Program errors can be considered implicit requests for
service.

Once the system services are defined, the structure of the operating system
can be developed. Various tables are needed to record the information that
defines the state of the computer system and the status of the system's jobs.

The design of a new operating system is a major task. It is important that
the goals of the system be well def:ilced before the design begins. The type of
system desired is the foundation for choices among various algorithms and
strategies that will be needed.

S:iiLCe an operating system is large, modularity is important. Designing a
system as a sequence of layers or using a microkernel is considered a good
technique. The virtual-machine concept takes the layered approach and treats
both the kernel of the operat:ilcg system and the hardware as though they were
hardware. Even other operating systems may be loaded on top of this virtual
machine.

Throughout the entire operating-system design cycle, we must be careful
to separate policy decisions from implementation details (mechanisms). This
separation allows maximum flexibility if policy decisions are to be changed
later.

Operating systems are now almost always written in a systems
implementation language or in a higher-level language. This feature improves
their implementation, maintenance, and portability. To create an operating
system for a particular machine configuration, we must perform system
generation.

Debugging process and kernel failures can be accomplished through the
use of de buggers and other tools that analyze core dumps. Tools such as DTrace
analyze production systems to fucd bottlenecks and understand other system
behavior.

For a computer system to begin running, the CPU must initialize and start
executing the bootstrap program in firmware. The bootstrap can execute the
operating system directly if the operating system is also in the firmware, or
it can complete a sequence in which it loads progressively smarter programs
from firmware and disk until the operating system itself is loaded into memory
and executed.

2.1 What are the five major activities of an operat:ilcg system with regard to
file management?

2.2 What are the three major activities of an operating system with regard
to memory management?

92 Chapter 2

2.3 Why is a just-in-time compiler useful for executing Java programs?

2.4 The services and functions provided by an operating system can be
divided into two main categories. Briefly describe the two categories
and discuss how they differ.

2.5 Why is the separation of mechanism and policy desirable?

2.6 Would it be possible for the user to develop a new command interpreter
using the system-call interface provided by the operating system?

2.7 What is the purpose of the command interpreter? Why is it usually
separate from the kernel?

2.8 What is the main advantage for an operating-system designer of using
a virtual-machine architecture? What is the main advantage for a user?

2.9 It is sometimes difficult to achieve a layered approach if two components
of the operating system are dependent on each other. Identify a scenario
in which it is unclear how to layer two system components that require
tight coupling of their functionalities.

2.10 What is the main advantage of the layered approach to system design?
What are the disadvantages of using the layered approach?

2.11 What is the relationship between a guest operating system and a host
operating system in. a system like VMware? What factors need to be
considered in choosing the host operating system?

2.12 Describe three general methods for passing parameters to the operating
system.

2.13 What is the main advantage of the microkemel approach to system
design? How do user programs and system services interact in a
microkernel architecture? What are the disadvantages of usil1.g the
microkernel approach?

2.14 What system calls have to be executed by a command interpreter or shell
in order to start a new process?

2.15 What are the two models of interprocess conununication? What are the
strengths and weaknesses of the two approaches?

2.16 The experimental Synthesis operating system has an assembler incor
porated in the kernel. To optimize system-call performance, the kernel
assembles routines within kernel space to minimize the path that the
system call must take through the kernel. This approach is the antithesis
of the layered approach, in which the path through the kernel is extended
to make buildu1.g the operating system easier. Discuss the pros and cons
of the Synthesis approach to kernel design and system-performance
optimization.

2.17 In what ways is the modular kernel approach similar to the layered
approach? In what ways does it differ from the layered approach?

2.18 How could a system be designed to allow a choice of operating systems
from which to boot? What would the bootstrap program need to do?

93

2.19 What are the advantages and disadvantages of using the same system
call interface for manipulating both files and devices?

2.20 Describe how you could obtain a statistical profile of the amount of time
spent by a program executing different sections of its code. Discuss the
importance of obtaining such a statistical profile.

2.21 Why do some systems store the operating system in firmware, while
others store it on disk?

2.22 In Section 2.3, we described a program that copies the contents of one file
to a destination file. This program works by first prompting the user for
the name of the source and destilcation files. Write this program using
either the Win32 or POSIX API. Be sure to include all necessary error
checking, including ensuring that the source file exists.

Once you have correctly designed and tested the program, if
you used a system that supports it, run the program using a utility
that traces system calls. Linux systems provide the ptrace utility, and
Solaris systems use the truss or dtrace command. On Mac OS X, the
ktrace facility provides similar functionality. As Windows systems do
not provide such features, you will have to trace through the Win32
version of this program using a debugger.

2.23 Adding a system call to the Linux Kernel

In this project you will study the system-call interface provided by the
Linux operating system and learn how user programs communicate with
the operating system kernel via this interface. Your task is to i11corporate
a new system call into the kernet thereby expanding the functionality
of the operating system.

Part 1: Getting Started

A user-mode procedure call is performed by passing arguments to the
called procedure either on the stack or through registers, saving the
current state and the value of the program counter, and jumping to
the beginning of the code corresponding to the called procedure. The
process continues to have the same privileges as before.

System calls appear as procedure calls to user programs but result i11
a change in execution context and privileges. In Linux on the Intel386
architecture, a system call is accomplished by storing the system-call
number into the EAX register, storing arguments to the system call in
other hardware registers, and executing a trap instruction (which is the

94 Chapter 2

INT Ox80 assembly instruction). After the trap is executed, the system
call number is used to index into a table of code pointers to obtain the
starting address for the handler code implementing the system call. The
process then juxnps to this address, and the privileges of the process
are switched from user to kernel mode. With the expanded privileges,
the process can now execute kernel code, which may include privileged
instructions that cannot be executed in user mode. The kernel code
can then carry out the requested services, such as interacting with I/O
devices, and can perform process management and other activities that
cannot be performed in user mode.

The system call numbers for recent versions of the Linux ker
nel are listed in lusr I src/linux-2. xl include/ asm-i386/unistd. h.
(For instance, __ NR_close corresponds to the system call close 0, which
is invoked for closin.g a file descriptor, and is defined as value 6.) The
list of pointers to system-call handlers is typically stored in the file
lusrlsrcllinux-2.x/arch/i386/kernel/entry.S under the head
ing ENTRY (sys_calLtable). Notice that sys_close is stored at entry
number 6 in the table to be consistent with the system-call number
defined in the unistd. h file. (The keyword .long denotes that the entry
will occupy the same number of bytes as a data value of type long.)

Part 2: Building a New Kernel

Before adding a system call to the kernel, you must familiarize yourself
with the task of building the binary for a kernel from its source code and
booting the machine with the newly built kernel. This activity comprises
the following tasks, some of which depend on the particular installation
of the Linux operating system in use.

Obtain the kernel source code for the Linux distribution. If the
source code package has already been installed on your machine,
the corresponding files might be available under lusr I srcllinux
or /usr I src/linux-2. x (where the suffix corresponds to the kernel
version number). If the package has not yet been installed, it can be
downloaded from the provider of your Linux distribution or from
http:l/www.kernel.org.

Learn how to configure, compile, and install the kernel binary. This
will vary among the different kernel distributions, but some typical
commands for building the kernel (after entering the directory
where the kernel source code is stored) include:

o make xconfig

o make dep

o make bzimage

Add a new entry to the set of boatable kernels supported by the
system. The Linux operating system typically uses utilities such as
lilo and grub to maintain a list ofbootable kernels from which the

95

user can choose during machine boot-up. If your system supports
lilo, add an entry to lilo. conf, such as:

image=/boot/bzimage.mykernel
label=mykernel
root=/dev/hda5
read-only

where lbootlbzimage. my kernel is the kernel image and my kernel
is the label associated with the new kernel. This step will allow
you to choose the new kernel during the boot-up process. You will
then have the option of either booting the new kernel or booting
the unmodified kernel if the newly built kernel does not ftmction
properly.

Part 3: Extending the Kernel Source

You can now experiment with adding a new file to the set of source
files used for compiling the kernel. Typically, the source code is stored
in the lusr I srcllinux-2. xlkernel directory, although that location
may differ in your Linux distribution. There are two options for adding
the system call. The first is to add the system call to an existing source file
in this directory. The second is to create a new file in the source directory
and modify lusr I srcllinux-2. xlkerneliMakef ile to include the
newly created file in the compilation process. The advantage of the first
approach is that when you modify an existing file that is already part of
the compilation process, the Makefile need not be modified.

Part 4: Adding a System Call to the Kernel

Now that you are familiar with the various background tasks corre
sponding to building and booting Linux kernels, you can begin the
process of adding a new system call to the Linux kernel. In this project,
the system call will have limited functionality; it will simply transition
from user mode to kernel mode, print a message that is logged with the
kernel messages, and transition back to user mode. We will call this the
helloworld system call. While it has only limited functionality, it illustrates
the system-call mechanism and sheds light on the interaction between
user programs and the kernel.

Create a new file called helloworld. c to define your system call.
Include the header files linuxllinkage. h and linuxlkernel. h.
Add the following code to this file:

#include <linuxllinkage.h>
#include <linuxlkernel.h>
asmlinkage int sysJhelloworld() {

printk(KERN_EMERG "hello world!");

return 1;
}

96 Chapter 2

This creates a system call with the name sys_helloworld (). If you
choose to add this system call to an existing file in the source
directory, all that is necessary is to add the sys_hellowor ld ()
function to the file you choose. In the code, asmlinkage is
a rellli<ant from the days when Linux used both C++ and C
code and is used to indicate that the code is written in C. The
printk () function is used to print messages to a kernel log file
and therefore may be called only from the kernel. The kernel mes
sages specified in the parameter to printk () are logged in the
file /var/log/kernel/warnings. The function prototype for the
printk () call is defined in /usr /include/linux/kernel. h.

Define a new system call number for __ NR_helloworld in
/usr/src/linux-2.x/include/asm-i386/unistd.h. A user
program can use this number to identify the newly added system
call. Also be sure to increment the value for __ NR_syscalls, which
is stored in the same file. This constant tracks the number of system
calls currently defuced in the kernel.

Add an entry .long sys_helloworld to the sys_calLtable
definedinthe/usr/src/linux-2.x/arch/i386/kernel/entry.S
file. As discussed earlier, the system-call number is used to index
into this table to find the position of the handler code for the
invoked system call.

Add your file helloworld. c to the Makefile (if you created a new
file for your system call.) Save a copy of your old kernel binary
image (in case there are problems with your newly created kernel).
You can now build the new kernet rename it to distinguish it from
the unmodified kernet and add an entry to the loader configuration
files (such as lilo. conf). After completing these steps, you can boot
either the old kernel or the new kernel that contains your system
call.

Part 5: Using the System Call from a User Program

When you boot with the new kernet it will support the newly defined
system call; you now simply need to invoke this system call from a
user program. Ordinarily, the standard C library supports an interface
for system calls defined for the Linux operating system. As your new
system call is not linked into the standard C library, however, invoking
your system call will require manual intervention.

As noted earlie1~ a system call is invoked by storing the appropriate
value in a hardware register and performing a trap instruction. Unfortu
nately, these low-level operations cannot be performed using C language
statements and instead require assembly instructions. Fortunately, Linux
provides macros for instantiating wrapper functions that contain the
appropriate assembly instructions. For instance, the following C pro
gram uses the _syscallO () macro to invoke the newly defined system
call:

#include <linux/errno.h>
#include <sys/syscall.h>
#include <linux/unistd.h>

_syscallO(int, helloworld);

main()
{

helloworld();
}

97

The _syscallO macro takes two arguments. The first specifies the
type of the value returned by the system call; the second is the
name of the system call. The name is used to identify the system
call number that is stored in the hardware register before the trap
instruction is executed. If your system call requires arguments, then
a different macro (such as _syscallO, where the suffix indicates the
number of arguments) could be used to instantiate the assembly
code required for performing the system call.

Compile and execute the program with the newly built kernel.
There should be a message "hello world!" in the kernel log file
/var/log/kernel/warnings to indicate that the system call has
executed.

As a next step, consider expanding the functionality of your system call.
How would you pass an integer value or a character string to the system
call and have it printed illto the kernel log file? What are the implications
of passing pointers to data stored in the user program's address space
as opposed to simply passing an integer value from the user program to
the kernel using hardware registers?

Dijkstra [1968] advocated the layered approach to operating-system desigll".
Brinch-Hansen [1970] was an early proponent of constructing an operating
system as a kernel (or nucleus) on which more complete systems can be built.

System instrumentation and dynamic tracing are described in Tamches and
Miller [1999]. DTrace is discussed in Cantrill et al. [2004]. The DTrace source
code is available at http: I I src. opensolaris. org/ source/" Cheung and
Loong [1995] explore issues of operating-system structure from microkernel
to extensible systems.

MS-DOS, Version 3.1, is described in Microsoft [1986]. Windows NT and
Windows 2000 are described by Solomon [1998] and Solomon and Russinovich
[2000]. Windows 2003 and Windows XP internals are described in Russinovich
and Solomon [2005]. Hart [2005] covers Windows system$ programming in
detail. BSD UNIX is described in McKusick et al. [1996]. Bovet and Cesati
[2006] thoroughly discuss the Linux kernel. Several UNIX systems-including
Mach-are treated in detail in Vahalia [1996]. Mac OS X is presented at

98 Chapter 2

http: I lwww. apple. comlmacosx and in Singh [2007]. Solaris is fully described
in McDougall and Mauro [2007].

The first operating system to provide a virtual machine was the CP I 67 on
an IBM 360167. The commercially available IBM VMI370 operating system was
derived from CP 167. Details regarding Mach, a microkernel-based operating
system, can be found in Young et al. [1987]. Kaashoeket al. [1997] present details
regarding exokernel operating systems, wherein the architecture separates
management issues from protection, thereby giving untrusted software the
ability to exercise control over hardware and software resources.

The specifications for the Java language and the Java virtual machine are
presented by Gosling et al. [1996] and by Lindholm and Yellin [1999], respec
tively. The internal workings of the Java virtual machine are fully described
by Ven11ers [1998]. Golm et al. [2002] highlight the JX operating system; Back
et al. [2000] cover several issues in the design of Java operating systems. More
information on Java is available on the Web at http: I lwww. j a vas oft. com.
Details about the implementation of VMware can be found in Sugerman et al.
[2001]. Information about the Open Virh1al Machine Format can be found at
http:llwww.vmware.comlappliancesllearnlovf.html.

Part Two

A process can be thought of as a program in execution. A process will
need certain resources-such as CPU time, memory, files, and 1/0 devices
-to accomplish its task. These resources are allocated to the process
either when it is created or while it is executing.

A process is the unit of work in most systems. Systems consist of
a collection of processes: Operating-system processes execute system
code, and user processes execute user code. All these processes may
execute concurrently.

Although traditionally a process contained only a single thread of
control as it ran, most modem operating systems now support processes
that have multiple threads.

The operating system is responsible for the following activities in
connection with process and thread management: the creation and
deletion of both user and system processes; the scheduling of processes;
and the provision of mechanisms for synchronization, communication,
and deadlock handling for processes.

3.1

CHAPTER

Early computer systems allowed only one program to be executed at a
time. This program had complete control of the system and had access to
all the system's resources. In contrast, current-day computer systems allow
multiple programs to be loaded into memory and executed concurrently.
This evolution required firmer control and more compartmentalization of the
various programs; and these needs resulted in the notion of a process/ which is
a program in execution. A process is the unit of work in a modern time-sharing
system.

The more complex the operating system is, the more it is expected to do on
behalf of its users. Although its main concern is the execution of user programs,
it also needs to take care of various system tasks that are better left outside the
kernel itself. A system therefore consists of a collection of processes: operating
system processes executing system code and user processes executing user
code. Potentially/ all these processes can execute concurrently/ with the CPU (or
CPUs) multiplexed among them. By switching the CPU between processes, the
operating system can make the computer more productive. In this chapter/ you
will read about what processes are and how they work.

To introduce the notion of a process- a program in execution, which forms
the basis of all computation.

To describe the various features of processes, including scheduling,
creation and termination, and communication.

To describe communication in client-server systems.

A question that arises in discussing operating systems involves what to call all
the CPU activities,_f_QCIJ:C:hJ3ystem~xeq_l_~§_LQQ.S_;.I'\'b§'X{C9::? _ _2l_!_i_!11_e:-::?_l<(it~ds_ys!~:r:tl
has user programs, or tas~~- Even on a single-user system such as Microsoft

101

102 Chapter 3

Windows, a user may be able to run several programs at one time: a word
processor, a Web browse1~ and an e-mail package. And even if the user can
execute only one program at a time, the operating system may need to support
its own internal programmed activities, such as memory management. In many
respects, all these activities are similar, so we call all of them processes.

_The ten:ns~Job i:!DQ pL~e~.s etif:'_lised almost interchangeably in this te)(t.
Although we personally prefer the term process, much of operat1ng-system
theory and terminology was developed during a time when the major activity
of operating systems was job processing. It would be misleading to avoid
the use of commonly accepted terms that include the word job (such as job
scheduling) simply because process has superseded job.

3.1.1 The Process

Informally, as mentioned earlier, a process is a program in execution. A process
is more than the program code, which is sometimes known as the text section.
It also includes the current activity, as represented by the value of the program
counter and the contents of the processor's registers. A process generally also
includes the process stack, which contains temporary data (such as function
parameters, return addresses, and local variables), and a data section, which
contains global variables. A process may also include a heap, which is memory
thatis dynamically allocated during process run time. The structure of a process
in memory is shown in Figure 3.1.

We emphasize that a program by itself is not a process; a program is a passive
entity, such as a file containing a list of instructions stored on disk (often called
an executable file), whereas a process is an active entity, with a program counter
specifying the next instruction to execute and a set of associated resources. A
program becomes a process when an executable file is loaded into memory.
Two common techniques for loading executable files are double-clicking an
icon representing the executable file and entering the name of the executable
file on the command line (as in prog. exe or a. out.)

0

figure 3.1 Process in memory.<

3.1 103

1/0 or event completion

Figure 3.2 Diagram of process state.

Although two processes may be associated with the same program, they
are nevertheless considered two separate execution sequences. For instance,
several users may be running different copies of the mail program, or the same
user may invoke many copies of the Web browser program. Each of these is a
separate process; and although the text sections are equivalent, the data, heap,
and stack sections vary. It is also common to have a process that spawns many
processes as it runs. We discuss such matters in Section 3.4.

3.1.2 Process State

As a proces::; excr:utes, it changes state. The state of a process is defil1.ed in
part by the current activity of that process. Each process may be in one of the
following states:

New. The process is being created.

Running. Instructions are being executed.

Waiting. The process is waiting for some event to occur (such as an I/0
completion or reception of a signal).

Ready. The process is waiting to be assigned to a processor.

Terminated. The process has finished execution.

These names are arbitrary, and they vary across operating systems. The states
that they represent are found on all systems, however. Certain operating
systems also more finely delineate process states. It is important to realize
that only one process can be running on any processor at any instant. Many
processes may be ready and waiting, however. The state diagram corresponding
to these states is presented in Figure 3.2.

3.1.3 Process Control Block

"§_(1cb pr()cess isrepreserlt~pjnthe operatir1,g system l:Jy a process_ coptrol blo_ck _
(PCB)-alsocalled a taskcontroZbloclc. A PCB is shown in Figure 3.3. It contains
mi:my pieces of iil.format1o11assodated with a specific process, including these:

104 Chapter 3

• • •

Figure 3.3 Process control block (PCB).

Process state. The state may be new, ready runnil•g, waiting, halted, and
so on.

Program counter. The counter indicates the address of the next instruction
to be executed for this process.

CPU registers. The registers vary in number and type, depending on
the computer architecture. They mclude accumulators, index registers,
stack pointers, and general-purpose registers, plus any condition-code
information. Along with the program counter, this state information must
be saved when an mterrupt occurs, to allow the process to be continued
correctly afterward (Figure 3.4).

CPU-scheduling information. This information includes a process priority,
pointers to scheduling queues, and any other scheduling parameters.
(Chapter 5 describes process scheduling.)

Memory-management information. This information may include such
information as the value of the base and limit registers, the page tables,
or the segment tables, dependmg on the memory system used by the
operating system (Chapter 8).

Accounting information. This mformation includes the amount of CPU
and real time used, time limits, account numbers, job or process numbers,
and so on.

I/O status information. This information includes the list of I/O devices
allocated to the process, a list of open files, and so on.

In briet the PCB simply serves as the repository for any information that may
vary from process to process.

3.1.4 Threads

The process model discussed so far has implied that a process is a program
that performs a single thread of execution. For example, when a process is
running a word-processor program, a single thread of instructions is being
executed. This single thread of control allows the process to perform only one

3.2

process P0

idle

3.2

operating system

interrupt or system call

•

•

process P 1

executing

idle

Figure 3.4 Diagram showing CPU switch from process to process.

105

task at one time. The user cannot simultaneously type in characters and run the
spell checker within the same process, for example. Many modern operatin.g
systems have extended the process concept to allow a process to have multiple
threads of execution and thus to perform more than one task at a time. On a
system that supports threads, the PCB is expanded to include information for
each thread. Other changes throughout the system are also needed to support
threads. Chapter 4 explores multithreaded processes in detail.

The objective of multiprogramming is to have some process nnming at all
times, to maximize CPU utilization. The objective of time sharing is to switch the
CPU among processes so frequently that users can interact with each program
while it is run.ning. To meet these objectives, the process scheduler selects
an available process (possibly from a set of several available processes) for
program execution on the CPU. For a single-processor system, there will never
be more than one running process. If there are more processes, the rest will
have to wait until the CPU is free and can be rescheduled.

3.2.1 Scheduling Queues

As processes enter the system, they are put into a job queue, which consists
of all processes in the system. The processes that are residing in main memory
and are ready and waiting to execute are kept on a list called the ready queue.

106 Chapter 3

PROCESS REPRESENTATION IN LINUX

The process control block in the Linux operating system is represented
by the C struch1re task_struct. This structure contains all the necessary
information for representing a process, including the state of the process,
scheduling and memory-management information, list of open files, and
pointers to the process's parent and any of its children. (A process's parent is
the process that created it; its children are any processes that it creates.) Some
of these fields include:

pid_t pid; I* process identifier *I
long state; I* state of the process *I
unsigned int time_slice I* scheduling information *I
struct task_struct *parent; I* this process's parent *I
struct list__head children; I* this process's children *I
struct files_struct *files; I* list of open files *I
struct mm_struct *mm; I* address space of this process *I

For example, the state of a process isrepresented by the field long state
in this structure. Within the Linux kernel, all active processes are represented
using a doubly linked list of task_struct, and the kernel maintains a pointer
-current -to the process currently executing on the system. This is shown
in Figure 3.5.

struct task_struct
process information

struct task_struct
process information

t
current

(currently executing proccess)

Figure 3.5 Active processes in Linux.

struct task_struct
process information

As an illustration of how the kernel might manipulate one of the fields in
the task_struct for a specified process, let's assume the system would like
to change the state of the process currently running to the value new_state.
If currentis a pointer to the process currently executing, its state is changed
with the following:

current->state = new_state;

This queue is generally stored as a linked list. A ready-queue header contains
pointers to the first and final PCBs in the list. Each PCB includes a pointer field
that points to the next PCB in the ready queue.

3.2 107

queue header

mag
tape ~=7:C""77~"""""

unit 0 k:\\t_82_11~~il-==

Figure 3.6 The ready queue and various 1/0 device queues.

The system also includes other queues. When a process is allocated the
CPU, it executes for a while and eventually quits, is interrupted, or waits for
the occurrence of a particular event, such as the completion of an I/0 request.
Suppose the process makes an I/O request to a shared device, such as a disk.
Since there are many processes in the system, the disk may be busy with the
I/0 request of some other process. The process therefore may have to wait for
the disk. The list of processes waiting for a particular I/0 device is called a
device queue. Each device has its own device queue (Figure 3.6).

A common representation of process scheduling is a queueing diagram,
such as that in Figure 3.7. Each rectangular box represents a queue. Two types
of queues are present: the ready queue and a set of device queues. The circles
represent the resources that serve the queues, and the arrows indicate the flow
of processes in the system.

A new process is initially put in the ready queue. It waits there until it is
selected for execution, or is dispatched. Once the process is allocated the CPU
and is executing, one of several events could occur:

The process could issue an I/0 request and then be placed in an I/0 queue.

The process could create a new subprocess and wait for the subprocess's
termination.

The process could be removed forcibly from the CPU, as a result of an
interrupt, and be put back in the ready queue.

108 Chapter 3

Figure 3.7 Queueing-diagram representation of process scheduling.

In the first two cases, the process eventually switches from the waiting state
to the ready state and is then put back in the ready queue. A process continues
this cycle until it terminates, at which time it is removed from all queues and
has its PCB and resources deallocated.

3.2.2 Schedulers

A process migrates among the various scheduling queues throughout its
lifetime. The operating system must select, for scheduling purposes, processes
from these queues in some fashion. The selection process is carried out by the
appropriate scheduler.

Often, in a batch system, more processes are submitted than can be executed
immediately. These processes are spooled to a mass-storage device (typically a
disk), where they are kept for later execution. The long-term scheduler, or job
scheduler, selects processes from this pool and loads them into memory for
execution. The short-term scheduler, or CPU scheduler, selects from among
the processes that are ready to execute and allocates the CPU to one of them.

The primary distinction between these two schedulers lies in frequency
of execution. The short-term scheduler must select a new process for the CPU
frequently. A process may execute for only a few milliseconds before waiting
for an I/0 request. Often, the short-term scheduler executes at least once every
100 milliseconds. Because of the short time between executions, the short-term
scheduler must be fast. If it takes 10 milliseconds to decide to execute a process
for 100 milliseconds, then 10 I (100 + 10) = 9 percent of the CPU is being used
(wasted) simply for scheduling the work.

The long-term scheduler executes much less freqvently; minutes may sep
arate the creation of one new process and the next. The long-term scheduler
controls the degree of multiprogramming (the number of processes in mem
ory). If the degree of multiprogramming is stable, then the average rate of
process creation must be equal to the average departure rate of processes
leaving the system. Thus, the long-term scheduler may need to be invoked

3.2 109

only when a process leaves the system. Because of the longer interval between
executions, the long-term scheduler can afford to take more tin<e to decide
which process should be selected for execution.

It is important that the long-term scheduler make a careful selection. In
general, most processes can be described as either I/ 0 bound or CPU bound. An
I/O-bound process is one that spends more of its time doing I/O than it spends
doing computations. A CPU-bound process, in contrast, generates I/0 requests
infrequently, using more of its time doing computations. It is important that the
long-term scheduler select a good process mix of I/O-bound and CPU-bound
processes. If all processes are I/0 bound, the ready queue will almost always
be empty, and the short-term scheduler will have little to do. If all processes
are CPU bound, the I/0 waiting queue will almost always be empty, devices
will go unused, and again the system will be unbalanced. The system with the
best performance will thus have a combination of CPU-bound and I/O-bound
processes.

On some systems, the long-term scheduler may be absent or minimal.
For example, time-sharing systems such as UNIX and Microsoft Windows
systems often have no long-term scheduler but simply put every new process in
memory for the short-term scheduler. The stability of these systems depends
either on a physical limitation (such as the number of available terminals)
or on the self-adjusting nature of human users. If performance declines to
m<acceptable levels on a multiuser system, some users will simply quit.

Some operating systems, such as time-sharing systems, may introduce an
additional, intermediate level of scheduling. This medium-term scheduler is
diagrammed in Figure 3.8. The key idea behind a medium-term scheduler
is that sometimes it can be advantageous to remove processes from mem
ory (and from active contention for the CPU) and thus reduce the degree
of multiprogramrning. Later, the process can be reintroduced into memory,
and its execution can be continued where it left off. This scheme is called
swapping. The process is swapped out, and is later swapped in, by the
medium-term scheduler. Swapping may be necessary to improve the pro
cess mix or because a change in memory requirements has overcommitted
available memory, requiring memory to be freed up. Swapping is discussed in
Chapter 8.

swap in .·.····••·.· •. ··. partiaii}' exec~t~d
•sw11pped-out processes·.

swap out

Figure 3.8 Addition of medium-term scheduling to the queueing diagram.

110 Chapter 3

3.3

3.2.3 Context Switch

As mentioned in Section 1.2.1, interrupts cause the operating system to change
a CPU from its current task and to run a kernel routine. Such operations happen
frequently on general-purpose systems. When an interrupt occurs, the system
needs to save the current of the process running on the CPU so that
it can restore that context when its processing is done, essentially suspending
the process and then resuming it. The context is represented in the PCB of the
process; it includes the value of the CPU registers, the process state (see Figure
3.2), and memory-management information. Generically, we perform a

of the current state of the CPU, be it in kernel or user mode, and then a
to resu.me operations.

Switching the CPU to another process requires performing a state save
of the current process and a state restore of a different process. This task is
known as a When a context switch occurs, the kernel saves the
context of the old process in its PCB and loads the saved context of the new
process scheduled to run. Context-switch time is pure overhead, because the
system does no useful work while switching. Its speed varies from machine to
machine, depending on the memory speed, the number of registers that must
be copied, and the existence of special instructions (such as a single instruction
to load or store all registers). Typical speeds are a few milliseconds.

Context-switch times are highly dependent on hardware support. For
instance, some processors (such as the Sun UltraSPARC) provide multiple sets
of registers. A context switch here simply requires changing the pointer to the
current register set. Of course, if there are more active processes than there are
register sets, the system resorts to copying register data to and from memory,
as before. Also, the more complex the operating system, the more work must
be done during a context switch. As we will see in Chapter 8, advanced
memory-management techniques may require extra data to be switched with
each context. For instance, the address space of the current process must be
preserved as the space of the next task is prepared for use. How the address
space is preserved, and what amount of work is needed to preserve it, depend
on the memory-management method of the operating system.

The processes in most systems can execute concurrently, and they may
be created and deleted dynamically. Thus, these systems must provide a
mechanism for process creation and termination. In this section, we explore
the n1.echanisms involved in creating processes and illustrate process creation
on UNIX and Windows systems.

3.3.1 Process Creation

A process may create several new processes, via a create-process system call,
during the course of execution. The creating process is called a parent process,
and the new processes are called the children of that process. Each of these
new processes may in turn create other processes, forming a tree of processes.

Most operating systems (including UNIX and the Windows family of
operating systems) identify processes according to a unique process identifier

3.3 111

(or pid), which is typically an integer number. Figure 3.9 illustrates a typical
process tree for the Solaris operating system, showing the name of each process
and its pid. In Solaris, the process at the top of the tree is the sched process,
with pid of 0. The sched process creates several children processes-including
pageout and fsflush. These processes are responsible for managing memory
and file systems. The sched process also creates the ini t process, which serves
as the root parent process for all user processes. In Figure 3.9, we see two
children of ini t-inetd and dtlogin. inetd is responsible for networking
services such as telnet and ftp; dtlogin is the process representing a user
login screen. When a user logs in, dtlogin creates an X-windows session
(Xsession), which in turns creates the sdt_shel process. Below sdLshel, a
user's command-line shell-the C-shell or csh-is created. In this command
line interface, the user can then invoke various child processes, such as the ls
and cat commands. We also see a csh process with pid of 7778 representing a
user who has logged onto the system using telnet. This user has started the
Netscape browser (pid of 7785) and the emacs editor (pid of 8105).

On UNIX, we can obtain a listing of processes by using the ps command. For
example, the command ps -el will list complete information for all processes
currently active in the system. It is easy to construct a process tree similar to
what is shown in Figure 3.9 by recursively tracing parent processes all the way
to the ini t process.

In general, a process will need certain resources (CPU time, memory, files,
I/0 devices) to accomplish its task. When a process creates a subprocess, that

inetd
pid=140

dtlogin
pid = 251

Figure 3.9 A tree of processes on a typical Solaris system.

112 Chapter 3

subprocess may be able to obtain its resources directly from the operating
system, or it may be constrained to a subset of the resources of the parent
process. The parent may have to partition its resources among its children,
or it may be able to share some resources (such as ncemory or files) among
several of its children. Restricting a child process to a subset of the parent's
resources prevents any process from overloading the system by creating too
many subprocesses.

In addition to the various physical and logical resources that a process
obtains when it is created, initialization data (input) may be passed along by
the parent process to the child process. For example, consider a process whose
function is to display the contents of a file-say, img.jpg-on the screen of a
terminal. When it is created, it will get, as an input from its parent process,
the name of the file img.jpg, and it will use that file name, open the file, and
write the contents out. It may also get the name of the output device. Some
operating systems pass resources to child processes. On such a system, the
new process may get two open files, img.jpg and the terminal device, and may
simply transfer the datum between the two.

When a process creates a new process, two possibilities exist in terms of
execution:

The parent continues to execute concurrently with its children.

The parent waits until some or all of its children have terminated.

There are also two possibilities in terms of the address space of the new process:

The child process is a duplicate of the parent process (it has the same
program and data as the parent).

The child process has a new program loaded into it.

To illustrate these differences, let's first consider the UNIX operating system.
In UNIX, as we've seen, each process is identified by its process identifier,
which is a tmique integer. A new process is created by the fork() system
call. The new process consists of a copy of the address space of the original
process. This mechanism allows the parent process to communicate easily with
its child process. Both processes (the parent and the child) continue execution
at the instruction after the fork () , with one difference: the return code for
the fork() is zero for the new (child) process, whereas the (nonzero) process
identifier of the child is returned to the parent.

Typically, the exec() system call is used after a fork() system call by
one of the two processes to replace the process's memory space with a new
program. The exec() system call loads a binary file into memory (destroying
the memory image of the program containing the exec() system call) and
starts its execution. In this manner, the two processes are able to communicate
and then go their separate ways. The parent can then create more children; or,
if it has nothing else to do while the child runs, it can issue await() system
call to move itself off the ready queue until the termination of the child.

The C program shown in Figure 3.10 illustrates the UNIX system calls
previously described. We now have two different processes running copies of
the same program. The only difference is that the value of pid (the process

3.3

#include <sysltypes.h>
#include <stdio.h>
#include <unistd.h>

int main()
{
pid_t pid;

}

I* fork a child process *I
pid =fork();

if (pid < 0) { I* error occurred *I
fprintf(stderr, "Fork Failed");
return 1;

}
else if (pid == 0) { I* child process *I

execlp("lbinlls","ls",NULL);
}
else { I* parent process *I

}

I* parent will wait for the child to complete *I
wait (NULL) ;
printf("Child Complete");

return 0;

Figure 3.10 Creating a separate process using the UNIX fork() system call.

113

identifier) for the child process is zero, while that for the parent is an integer
value greater than zero (in fact, it is the actual pid of the child process). The
child process inherits privileges and scheduling attributes from the parent,
as well certain resources, such as open files. The child process then overlays
its address space with the UNIX command lbin/ls (used to get a directory
listing) using the execlp() system call (execlp() is a version of the exec()
system call). The parent waits for the child process to complete with the wait()
system call. When the child process completes (by either implicitly or explicitly
invoking exit ()) the parent process resumes from the call to wait (),where it
completes using the exit() system call. This is also illustrated in Figure 3.11.

parent
wait

resumes

child ~--------+(exit()

Figure 3.11 Process creation using fork() system call.

114 Chapter 3

#include <stdio.h>
#include <windows.h>

int main(VOID)
{
STARTUPINFO si;
PROCESS_INFORMATION pi;

}

II allocate memory
ZeroMemory(&si, sizeof(si));
si.cb = sizeof(si);
ZeroMemory(&pi, sizeof(pi));

II create child process
if (!CreateProcess(NULL, II use command line

"C:\\WINDOWS\\system32\\mspaint.exe", II command line
NULL, II don't inherit process handle

{

}

NULL, II don't inherit thread handle
FALSE, II disable handle inheritance
0, II no creation flags
NULL, II use parent's environment block
NULL, II use parent's existing directory
&si,
&pi))

fprintf(stderr, "Create Process Failed");
return -1;

II parent will wait for the child to complete
WaitForSingleObject(pi.hProcess, INFINITE);
printf("Child Complete");

II close handles
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);

Figure 3.12 Creating a separate process using the Win32 API.

As an alternative examplef we next consider process creation in Windows.
Processes are created in the Win32 API using the CreateProcess () functionf
which is similar to fork () in that a parent creates a new child process. Howeverf
whereas fork() has the child process inheriting the address space of its parent
CreateProcess () requires loading a specified program into the address space
of the child process at process creation. Furthermoref whereas fork() is passed
no parametersf CreateProcess () expects no fewer than ten parameters.

The C program shown in Figure 3.12 illustrates the CreateProcess ()
functionf which creates a child process that loads the application mspaint. ex e.
We opt for many of the default values of the ten parameters passed to
CreateProcess (). Readers interested in pursuing the details of process

3.3 115

creation and management in the Win32 API are encouraged to consult the
bibliographical notes at the end of this chapter.

Two parameters passed to CreateProcess () are instances of the START
UPINFO and PROCESS_INFORMATION structures. STARTUPINFO specifies many
properties of the new process, such as window size and appearance and han
dles to standard input and output files. The PROCESS_INFORMATION structure
contains a handle and the identifiers to the newly created process and its thread.
We invoke the ZeroMemory () function to allocate memory for each of these
structures before proceeding with CreateProcess ().

The first two parameters passed to CreateProcess () are the application
name and command-line parameters. If the application name is NULL (as
it is in this case), the command-line parameter specifies the application to
load. In this instance, we are loading the Microsoft Windows mspaint.exe
application. Beyond these two initial parameters, we use the default parameters
for inheriting process and thread handles as well as specifying no creation flags.
We also use the parent's existing environment block and starting directory.
Last, we provide two pointers to the STARTUPINFO and PROCESS.lNFORMATION
structures created at the beginning of the program. In Figure 3.10, the parent
process waits for the child to complete by invoking the wait () system
calL The equivalent of this in Win32 is Wai tForSingleObj ect (), which is
passed a handle of the child process-pi. hProcess-and waits for this
process to complete. Once the child process exits, control returns from the
Wai tForSingleObj ect () function in the parent process.

3.3.2 Process Termination

A process terminates when it finishes executing its final statement and asks the
operating system to delete it by using the exit () system calL At that point, the
process may return a status value (typically an integer) to its parent process
(via the wait() system call). All the resources of the process-including
physical and virtual memory, open files, and I/0 buffers-are deallocated
by the operating system.

Termination can occur in other circumstances as welL A process can cause
the termination of another process via an appropriate system call (for example,
TerminateProcess () in Win32). Usually, such a system call can be invoked
only by the parent of the process that is to be terminated. Otherwise, users
could arbitrarily kill each other's jobs. Note that a parent needs to know the
identities of its children. Thus, when one process creates a new process, the
identity of the newly created process is passed to the parent.

A parent may terminate the execution of one of its children for a variety of
reasons, such as these:

The child has exceeded its usage of some of the resources that it has been
allocated. (To determine whether this has occurred, the parent m.ust have
a mechanism to inspect the state of its children.)

The task assigned to the child is no longer required.

The parent is exiting, and the operating system does not allow a child to
continue if its parent terminates.

116 Chapter 3

3.4

Some systencs, including VMS, do not allow a child to exist if its parent
has terminated. In such systems, if a process terminates (either normally or
abnormally), then all its children must also be terminated. This phenomenon,
referred to as cascading termination, is normally initiated by the operating
system.

To illustrate process execution and termination, consider that, in UNIX, we
can terminate a process by using the exit() system call; its parent process
may wait for the termination of a child process by using the wait() system
call. The wait() system call returns the process identifier of a terminated child
so that the parent can tell which of its children has terminated. If the parent
terminates, however, all its children have assigned as their new parent the
ini t process. Thus, the children still have a parent to collect their status and
execution statistics.

Processes executing concurrently in the operating system may be either
independent processes or cooperating processes. A process is independent
if it cannot affect or be affected by the other processes executing in the system.
Any process that does not share data with any other process is independent. A
process is cooperating if it can affect or be affected by the other processes
executing in the system. Clearly, any process that shares data with other
processes is a cooperating process.

There are several reasons for providing an environment that allows process
cooperation:

Information sharing. Since several users may be interested in the same
piece of information (for instance, a shared file), we must provide an
environment to allow concurrent access to such information.

Computation speedup. If we want a particular task to run faster, we must
break it into subtasks, each of which will be executing in parallel with the
others. Notice that such a speedup can be achieved only if the computer
has multiple processing elements (such as CPUs or I/O channels).

Modularity. We may want to construct the system in a modular fashion,
dividing the system functions into separate processes or threads, as we
discussed in Chapter 2.

Convenience. Even an individual user may work on many tasks at the
same time. For instance, a user may be editing, printing, and compiling in
parallel.

Cooperating processes require an interprocess communication (IPC) mech
anism that will allow them to exchange data and information. There are two
fundamental models of interprocess communication: (1) shared memory and
(2) message passing. In the shared-memory model, a region of memory that
is shared by cooperating processes is established. Processes can then exchange
information by reading and writing data to the shared region. In the message
passing model, communication takes place by means of messages exchanged

3.4 117

process A process A

2

2

kernel

(a) (b)

Figure 3.13 Communications models. (a) Message passing. (b) Shared memory.

between the cooperating processes. The two communications models are
conh·asted in Figure 3.13.

Both of the models just discussed are common in operating systems, and
many systems implement both. Message passing is useful for exchanging
smaller ammmts of data, because no conflicts need be avoided. Message
passing is also easier to implement than is shared memory for intercomputer
communication. Shared memory allows maximum speed and convenience of
communication. Shared memory is faster than message passing, as message
passing system.s are typically implemented using system calls and thus require
the more time-consuming task of kernel irttervention. In contrast, in shared
memory systems, system calls are required only to establish shared-memory
regions. Once shared memory is established, all accesses are treated as routine
memory accesses, and no assistance from the kernel is required. In the
ren1.ainder of this section, we explore each of these IPC models in more detail.

3.4.1 Shared-Memory Systems

Interprocess communication using shared memory requires communicating
processes to establish a region of shared memory. Typically, a shared-memory
region resides in the address space of the process creating the shared
memory segment. Other processes that wish to communicate using this shared
memory segment must attach it to their address space. Recall that, normally, the
operating system tries to prevent one process from accessing another process's
memory. Shared memory requires that two or more processes agree to remove
this restriction. They can then excbange information by reading and writing
data in the shared areas. The form of the data and the location are determined by
these processes and are not under the operating system's control. The processes
are also responsible for ensuring that they are not writing to the same location
simultaneously.

118 Chapter 3

To illustrate the concept of cooperating processes, let's consider the
producer-consumer problem, which is a common paradigm for cooperating
processes. A producer process produces information that is consumed by a
consumer process. For example, a compiler may produce assembly code,
which is consumed by an assembler. The assembler, in turn, ncay produce
object modules, which are consumed by the loader. The producer-consumer
problem also provides a useful metaphor for the client-server paradigm. We
generally think of a server as a producer and a client as a consumer. For
example, a Web server produces (that is, provides) HTML files and images,
which are consumed (that is, read) by the client Web browser requesting the
resource.

One solution to the producer-consumer problem uses shared memory. To
allow producer and consumer processes to run concurrently, we must have
available a buffer of items that can be filled by the producer and emptied by
the consumer. This buffer will reside in a region of memory that is shared
by the producer and consumer processes. A producer can produce one item
while the consumer is consuming another item. The producer and consumer
must be synchronized, so that the consumer does not try to consume an item
that has not yet been produced.

Two types of buffers can be used. The places no practical
limit on the size of the buffer. The consumer may have to wait for new items,
but the producer can always produce new items. The assumes
a fixed buffer size. In this case, the consumer must wait if the buffer is empty,
and the producer must wait if the buffer is full.

Let's look more closely at how the bounded buffer can be used to enable
processes to share memory. The following variables reside in a region of
memory shared by the producer and consumer processes:

#define BUFFER_SIZE 10

typedef struct

}item;

item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

The shared buffer is implemented as a circular array with two logical
pointers: in and out. The variable in points to the next free position in the
buffer; out points to the first full position in the buffer. The buffer is empty
when in== out; the buffer is full when ((in+ 1)% BUFFER_SIZE) == out.

The code for the producer and consumer processes is shown in Figures 3.14
and 3.15, respectively. The producer process has a local variable nextProduced
in which the new item to be produced is stored. The consumer process has a
local variable next Consumed in which the item to be consumed is stored.

This scheme allows at most BUFFER_SIZE - 1 items in the buffer at the same
time. We leave it as an exercise for you to provide a solution where BUFFER_SIZE
items can be in the buffer at the same time. In Section 3.5.1, we illustrate the
POSIX API for shared memory.

3.4

item nextProduced;

while (true) {

}

I* produce an item in nextProduced *I
while (((in + 1) % BUFFER_SIZE) == out)

; I* do nothing *I
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;

Figure 3.'14 The producer process.

119

One issue this illustration does not address concerns the situation in which
both the producer process and the consumer process attempt to access the
shared buffer concurrently. In Chapter 6, we discuss how synchronization
among cooperating processes can be implemented effectively in a shared
memory environment.

3.4.2 Message-Passing Systems

lrt Section 3.4.1, we showed how cooperating processes can communicate in a
shared-memory environment. The scheme requires that these processes share a
region of memory and that the code for accessing and manipulating the shared
memory be written explicitly by the application programmer. Another way to
achieve the same effect is for the operating system to provide the means for
cooperating processes to comm"Lmicate with each other via a message-passing
facility.

Message passing provides a mechanism to allow processes to communicate
and to synchronize their actions without sharing the same address space and
is particularly useful in a distributed environment, where the communicating
processes may reside on different computers connected by a network. For
example, a chat program used on the World Wide Web could be designed so
that chat participants communicate with one another by exchanging messages.

A message-passing facility provides at least two operations: send(message)
and recei ve(message). Messages sent by a process can be of either fixed
or variable size. If only fixed-sized messages can be sent, the system-level
implementation is straightforward. This restriction, however, makes the task

item nextConsumed;

while (true) {

}

while (in == out)
; II do nothing

nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
I* consume the item in nextConsumed *I

Figure 3.15 The consumer process.

120 Chapter 3

of programming more difficult. Conversely, variable-sized messages require
a 1nore complex system-level implementation, but the programming task
becomes simpler. This is a COITlmon kind of tradeoff seen throughout operating
system design.

If processes P and Q want to communicate, they must send messages to and
receive messages from each other; a communication link must exist between
them. This link can be implemented in a variety of ways. We are concerned here
not with the link's physical implementation (such as shared memory, hardware
bus, or network, which are covered in Chapter 16) but rather with its logical
implementation. Here are several methods for logically implementing a link
and the send 0 I receive() operations:

Direct or indirect communication

Synchronous or asynchronous communication

Automatic or explicit buffering
We look at issues related to each of these features next.

3.4.2.1 Naming

Processes that want to communicate must have a way to refer to each other.
They can use either direct or indirect communication.

Under direct communication, each process that wants to comm"Lmicate
must explicitly name the recipient or sender of the communication. In this
scheme, the send() and receive() primitives are defined as:

send(P, message) -Send a message to process P.

receive (Q, message)-Receive a message from process Q.

A communication link in this scheme has the following properties:

A link is established automatically between every pair of processes that
want to communicate. The processes need to know only each other's
identity to communicate.

A link is associated with exactly two processes.

Between each pair of processes, there exists exactly one link.

This scheme exhibits symmetry in addressing; that is, both the sender
process and the receiver process must name the other to communicate. A
variant of this scheme employs asymmetry in addressing. Here, only the sender
names the recipient; the recipient is not required to name the sender. In this
scheme, the send() and receive() primitives are defined as follows:

send(P, message) -Send a message to process P.

receive (id, message) -Receive a message from any process; the vari
able id is set to the name of the process with which communication has
taken place.

The disadvantage in both of these schemes (symmetric and asymmetric)
is the limited modularity of the resulting process definitions. Changing the
identifier of a process may necessitate examining all other process definitions.
All references to the old identifier must be found, so that they can be modified

3.4 121

to the new identifier. In general, any such hard-coding techniques, where
identifiers must be explicitly stated, are less desirable than techniques involving
indirection, as described next.

With indirect communication, the messages are sent to and received from
mailboxes, or ports. A mailbox can be viewed abstractly as an object into which
messages can be placed by processes and from which messages can be removed.
Each mailbox has a w1.ique identification. For example, POSIX message queues
use an integer value to identify a mailbox. In this scheme, a process can
communicate with some other process via a number of different mailboxes.
Two processes can communicate only if the processes have a shared mailbox,
however. The send() and receive 0 primitives are defined as follows:

send (A, message) -Send a message to mailbox A.

receive (A, message)-Receive a message from mailbox A.

In this scheme, a communication link has the following properties:

A link is established between a pair of processes only if both members of
the pair have a shared mailbox.

A link may be associated with more than two processes.

Between each pair of communicating processes, there may be a number of
different links, with each link corresponding to one mailbox.

Now suppose that processes P1, P2, and P3 all share mailbox A. Process
P1 sends a message to A, while both P2 and P3 execute a receive 0 from A.
Which process will receive the message sent by P1? The answer depends on
which of the following methods we choose:

Allow a link to be associated with two processes at most.

Allow at most one process at a time to execute a receive 0 operation.

Allow the system to select arbitrarily which process will receive the
message (that is, either P2 or P3, but not both, will receive the message).
The system also may define an algorithm for selecting which process
will receive the message (that is, round robin, where processes take turns
receiving messages). The system may identify the receiver to the sender.

A mailbox may be owned eith~r by a process or by the operating system.
If the mailbox is owned by a process (that is, the mailbox is part of the address
space of the process), then we distinguish between the owner (which can
only receive messages through this mailbox) and the user (which can only
send messages to the mailbox). Since each mailbox has a unique owner, there
can be no confusion about which process should receive a message sent to
this mailbox. When a process that owns a mailbox terminates, the mailbox
disappears. Any process that subsequently sends a message to this mailbox
must be notified that the mailbox no longer exists.

In contrast, a mailbox that is owned by the operating system has an
existence of its own. It is independent and is not attached to any particular
process. The operating system then must provide a mechanism that allows a
process to do the following:

122 Chapter 3

Create a new mailbox.

Send and receive messages through the mailbox.

Delete a mailbox.

The process that creates a new mailbox is that mailbox's owner by default.
Initially, the owner is the only process that can receive messages through this
n:tailbox. However, the ownership and receiving privilege may be passed to
other processes through appropriate system calls. Of course, this provision
could result in multiple receivers for each mailbox.

3.4.2.2 Synchronization

Communication between processes takes place through calls to send() and
receive () primitives. There are different design options for implementing
each primitive. Message passing may be either blocking or nonblocking
also known as synchronous and asynchronous.

Blocking send. The sending process is blocked until the message is
received by the receiving process or by the mailbox.

Nonblocking send. The sending process sends the message and resumes
operation.

Blocking receive. The receiver blocks until a message is available.

Nonblocking receive. The receiver retrieves either a valid message or a
null.

Different combinations of send() and receive() are possible. When both
send() and receive() are blocking, we have a rendezvous between the
sender and the receiver. The solution to the producer-consumer problem
becomes trivial when we use blocking send() and receive() statements.
The producer merely invokes the blocking send() call and waits until the
message is delivered to either the receiver or the mailbox. Likewise, when the
consumer invokes receive(), it blocks until a message is available.

Note that the concepts of synchronous and asynchronous occur frequently
in operating-system I/0 algorithms, as you will see throughout this text.

3.4.2.3 Buffering

Whether communication is direct or indirect, messages exchanged by commu
nicating processes reside in a temporary queue. Basically, such queues can be
implemented in three ways:

Zero capacity. The queue has a maximum length of zero; thus, the link
cannot have any messages waiting in it. In this case, the sender must block
until the recipient receives the message.

Bounded capacity. The que~ue has finite length n; thus, at most n messages
can reside in it. If the queue is not full when a new message is sent, the
message is placed in the queue (either the message is copied or a pointer
to the message is kept), and the sender can continue execution without

3.5

3.5 123

waiting. The link's capacity is finite, however. If the link is full, the sender
must block until space is available in the queLie.

Unbounded capacity. The queue's length is potentially infinite; thus, any
number of messages can wait in it. The sender never blocks.

The zero-capacity case is sometimes referred to as a message system with no
buffering; the other cases are referred to as systems with automatic buffering.

In this section, we explore three different IPC systems. We first cover the
POSIX API for shared memory and then discuss message passing in the Mach
operating system. We conclude with Windows XP, which interestingly uses
shared memory as a mechanism for providing certain types of message passing.

3.5.1 An Example: POSIX Shared Memory

Several IPC mechanisms are available for POSIX systems, including shared
memory and message passing. Here, we explore the POSIX API for shared
memory.

A process must first create a shared memory segment using the shmget ()
system call (shmget () is derived from SHared Memory GET). The following
example illustrates the use of shmget ():

segment_id = shmget (IPCPRIVATE, size, S_lRUSR I S_lWUSR) ;

This first parameter specifies the key (or identifier) of the shared-memory
segment. If this is set to IPCPRIVATE, a new shared-memory segment is created.
The second parameter specifies the size (in bytes) of the shared-memory
segment. Finally, the third parameter identifies the mode, which indicates
how the shared-memory segment is to be used-that is, for reading, writing,
or both. By setting the mode to S_lRUSR 1 S_lWUSR, we are indicating that the
owner may read or write to the shared-memory segment. A successful call to
shmget () returns an integer identifier for the shared-memory segment. Other
processes that want to use this region of shared memory must specify this
identifier.

Processes that wish to access a shared-memory segment must attach it to
their address space using the shmat () (SHared Memory ATtach) system call.
The call to shmat () expects three parameters as well. The first is the integer
identifier of the shared-memory segment being attached, and the second is
a pointer location in memory indicating where the shared ncemory will be
attached. If we pass a value of NULL, the operating system selects the location
on the user's behalf. The third parameter identifies a flag that allows the shared
memory region to be attached in read-only or read-write mode; by passing a
parameter of 0, we allow both reads and writes to the shared region. We attach
a region of shared memory using shmat () as follows:

shared_memory =(char*) shmat(id, NULL, 0);

If successful, shmat () returns a pointer to the beginning location in memory
where the shared-memory region has been attached.

124 Chapter 3

Once the region of shared ncemory is attached to a process's address space,
the process can access the shared memory as a routine memory access using
the pointer returned from shmat (). In this example, shmat () returns a pointer
to a character string. Thus, we could write to the shared-memory region as
follows:

sprintf(shared_memory, "Writing to shared memory");

Other processes sharing this segment would see the updates to the shared
memory segment.

Typically, a process using an existing shared-memory segment first attaches
the shared-memory region to its address space and then accesses (and possibly
updates) the region of shared memory. When a process no longer requires
access to the shared-memory segment it detaches the segment from its address
space. To detach a region of shared memory, the process can pass the pointer
of the shared-memory region to the shmdt () system call, as follows:

shmdt(shared_memory);

Finally, a shared-memory segment can be removed from the system with the
shmctl () system call, which is passed the identifier of the shared segrnent
along with the flag IPCRMID.

The program shown in Figure 3.16 illustrates the POSIX shared-memory
API just discussed. This program creates a 4,096-byte shared-memory segment.
Once the region of shared memory is attached, the process writes the message
Hi There! to shared memory. After outputting the contents of the updated
memory, it detaches and removes the shared-memory region. We provide
further exercises using the POSIX shared-memory API in the programming
exercises at the end of this chapter.

3.5.2 An Example: Mach

As an example of a message-based operating system, we next consider
the Mach operating system, developed at Carnegie Mellon University. We
introduced Mach in Chapter 2 as part of the Mac OS X operating system. The
Mach kernel supports the creation and destruction of multiple tasks, which are
similar to processes but have multiple threads of control. Most communication
in Mach-including most of the system calls and all intertask information
is carried out by messages. Messages are sent to and received from mailboxes,
called ports in Mach.

Even system calls are made by messages. When a task is created, two special
n:tailboxes-the Kernel mailbox and the Notify mailbox-are also created. The
Kernel mailbox is used by the kernel to communicate with the task. The kernel
sends notification of event occurrences to the Notify port. Only three system
calls are needed for message transfer. The msg_send () call sends a message
to a mailbox. A message is received via msg_recei ve (). Remote procedure
calls (RPCs) are executed via msg_rpc (),which sends a message and waits for
exactly one return message from the sender. In this way, the RPC models a
typical subroutine procedure call but can work between systems-hence the
term remote.

The porLallocate () system call creates a new mailbox and allocates
space for its queue of messages. The maximum size of the message queue

#include <stdio.h>
#include <syslshm.h>
#include <syslstat.h>

int main()
{

3.5

I* the identifier for the shared memory segment *I
int segmenLid;
I* a pointer to the shared memory segment *I
char *shared_memory;
I* the size (in bytes) of the shared memory segment *I
canst int size = 4096;

I* allocate a shared memory segment *I

125

segment_id = shmget(IPC_PRIVATE, size, s_IRUSR I s_IWUSR);

}

I* attach the shared memory segment *I
shared_memory = (char*) shmat(segment_id, NULL, 0);

I* write a message to the shared memory segment *I
sprint£ (shared_memory, "Hi there!");

I* now print out the string from shared memory *I
printf (" *%s \n" , shared_memory) ;

I* now detach the shared memory segment *I
shmdt(shared_memory);

I* now remove the shared memory segment *I
shmctl(segment_id, IPC_RMID, NULL);

return 0;

Figure 3.16 C program illustrating POSIX shared-memory API.

defaults to eight messages. The task that creates the mailbox is that mailbox's
owner. The owner is also allowed to receive from the mailbox. Only one task
at a time can either own or receive from a mailbox, but these rights can be sent
to other tasks if desired.

The mailbox's message queue is initially empty. As messages are sent to
the mailbox, the messages are copied into the mailbox. All messages have the
same priority. Mach guarantees that multiple messages from the same sender
are queued in first-in, first-out (FIFO) order but does not guarantee an absolute
ordering. For instance, messages from two senders may be queued in any order.

The messages themselves consist of a fixed-length header followed by a
variable-length data portion. The header indicates the length of the message
and :indudes two mailbox names. One mailbox name is the mailbox to which
the message is being sent. Commonly, the sending thread expects a reply; so

126 Chapter 3

the mailbox name of the sender is passed on to the receiving task, which can
use it as a "return address."

The variable part of a message is a list of typed data items. Each entry
in the list has a type, size, and value. The type of the objects specified in the
message is important, since objects defined by the operating system-such as
ownership or receive access rights, task states, and memory segments-n<ay
be sent in messages.

The send and receive operations themselves are flexible. For instance, when
a message is sent to a mailbox, the mailbox may be full. If the mailbox is not
full, the message is copied to the mailbox, and the sending thread continues. If
the mailbox is full, the sending thread has four options:

Wait indefinitely until there is room in the mailbox.

Wait at most n milliseconds.

Do not wait at all but rather return immediately.

Temporarily cache a message. One message can be given to the operating
system to keep, even though the mailbox to which that message is being
sent is full. When the message can be put in the mailbox, a message is
sent back to the sender; only one such message to a full mailbox can be
pending at any time for a given sending thread.

The final option is meant for server tasks, such as a line-printer driver. After
finishing a request, such tasks may need to send a one-time reply to the task
that had requested service; but they must also continue with other service
requests, even if the reply mailbox for a client is full.

The receive operation must specify the mailbox or mailbox set from which a
message is to be received. A mailbox set is a collection of mailboxes, as declared
by the task, which can be grouped together and treated as one mailbox for the
purposes of the task. Threads in a task can receive only from a mailbox or
mailbox set for which the task has receive access. A porLstatus () system
call returns the number of messages in a given mailbox. The receive operation
attempts to receive from (1) any mailbox in a mailbox set or (2) a specific
(named) mailbox. If no message is waiting to be received, the receiving thread
can either wait at most n milliseconds or not wait at all.

The Mach system was especially designed for distributed systems, which
we discuss in Chapters 16 through 18, but Mach is also suitable for single
processor systems, as evidenced by its inclusion in the Mac OS X system. The
major problem with message systems has generally been poor performance
caused by double copying of messages; the message is copied first from
the sender to the mailbox and then from the mailbox to the receiver. The
Mach message system attempts to avoid double-copy operations by using
virtual-memory-management techniques (Chapter 9). Essentially, Mach maps
the address space containing the sender's message into the receiver's address
space. The message itself is never actually copied. This message-management
technique provides a large performance boost but works for only intrasystem
messages. The Mach operating system is discussed in an extra chapter posted
on our website.

3.5 127

3.5.3 An Example: Windows XP

The Windows XP operating system is an example of modern design that
employs modularity to increase functionality and decrease the time needed
to implement new features. Windows XP provides support for multiple
operating environments/ or subsystems/ with which application programs
communicate via a n1.essage-passing mechanism. The application programs
can be considered clients of the Windows XP subsystem server.

The message-passing facility in Windows XP is called the
facility. The LPC in Windows XP communicates between two

processes on the same machine. It is similar to the standard RPC mechanism that
is widely used/ but it is optimized for and specific to Windows XP. Like Mach/
Windows XP uses a port object to establish and maintain a connection between
two processes. Every client that calls a subsystem needs a communication
channet which is provided by a port object and is never inherited. Windows
XP uses two types of ports: connection ports and communication ports. They
are really the same but are given different names according to how they are
used.

Cmmection ports are named objects and are visible to all processes; they
give applications a way to set up communication channels (Chapter 22). The
communication works as follows:

The client opens a handle to the subsystem/ s connection port object.

The client sends a cmmection request.

The server creates two private conimunication ports and returns the handle
to one of them to the client.

The client and server use the corresponding port handle to send messages
or callbacks and to listen for replies.

Windows XP uses two types of rnessage-passing techniques over a port that
the client specifies when it establishes the channel. The simplest/ which is used
for small messages/ uses the port's message queue as intermediate storage and
copies the message from one process to the other. Under this method, messages
of up to 256 bytes can be sent.

If a client needs to send a larger message, it passes the message through
a which sets up a region of shared memory. The client has to
decide when it sets up the channel whether or not it will need to send a large
message. If the client determines that it does want to send large messages/ it
asks for a section object to be created. Similarly, if the server decides that replies
will be large, it creates a section object. So that the section object can be used,
a small message is sent that contains a pointer and size information about the
section object. This method is more complicated than the first method, but it
avoids data copying. In both cases, a callback mechanism can be used when
either the client or the server cannot respond immediately to a request. The
callback mechanism allows them to perform asynchronous message handling.
The structure of local procedure calls in Windows XP is shown in Figure 3.17.

It is important to note that the LPC facility in Windows XP is not part of
the Win32 API and hence is not visible to the application programmer. Rather,
applications using the Win32 API invoke standard remote procedure calls.

128 Chapter 3

3.6

Client Server
Connection

request J Connection I Handle

I Port I

Handle I Client I
1 Communication Port

i ~
I Server. I Handle

Communication Port I

Shared
Section Object
(<= 256 bytes)

Figure 3.17 Local procedure calls in Windows XP.

When the RPC is being invoked on a process on the same system, the RPC is
indirectly handled through a local procedure call. LPCs are also used in a few
other functions that are part of the Win32 API.

In Section 3.4, we described how processes can communicate using shared
memory and message passing. These techniques can be used for communica
tion in client-server systems (Section 1.12.2) as well. In this section, we explore
three other strategies for communication ir1 client-server systems: sockets,
remote procedure calls (RPCs), and pipes.

3.6.1 Sockets

A is defined as an endpoint for communication. A pair of processes
communicating over a network employ a pair of sockets-one for each process.
A socket is identified by an IP address concatenated with a port number. In
general, sockets use a client-server architecture. The server waits for incoming
client requests by listening to a specified port. Once a request is received, the
server accepts a cmmection from the client socket to complete the com1ection.
Servers implementing specific services (such as telnet, FTP, and I-HTP) listen
to well-known ports (a telnet server listens to port 23; an FTP server listens to
port 21; and a Web, or HTTP, server listens to port 80). All ports below 1024 are
considered ·well known; we can use them to implement standard services.

When a client process initiates a request for a connection, it is assigned
a port by its host computer. This port is some arbitrary number greater than
1024. For example, if a client on host X with IP address 146.86.5.20 wishes to
establish a connection with a Web server (which is listening on port 80) at
address 161.25.19.8, host X may be assigned port 1625. The connection will
consist of a pair of sockets: (146.86.5.20:1625) on host X and (161.25.19.8:80)
on the Web server. This situation is illustrated in Figure 3.18. The packets
traveling between the hosts are delivered to the appropriate process based on
the destination port number.

3.6 129

host X
(I 46.86.5.20)

socket
(I 46.86.5.20:1 625)

web server
(I 61 .25. I 9.8)

socket
(I 61 .25. I 9.8:80)

Figure 3.18 Communication using sockets.

All com1.ections must be unique. Therefore, if another process also on host
X wished to establish another connection with the same Web server, it would be
assigned a port number greater than 1024 and not equal to 1625. This ensures
that all com1.ections consist of a unique pair of sockets.

Although most program examples in this text use C, we will illustrate
sockets using Java, as it provides a much easier interface to sockets and has a
rich library for networking utilities. Those interested in socket programming
inC or C++ should consult the bibliographical notes at the end of the chapter.

Java provides three different types of sockets.
are implemented with the Socket class.

use the Datagram.Socket class. Finally, the Mul ticastSocket class is a subclass
of the Datagram.Socket class. A multicast socket allows data to be sent to
multiple recipients.

Our example describes a date server that uses connection-oriented TCP

sockets. The operation allows clients to request the current date and time from
the server. The server listens to port 6013, although the port could have any
arbitrary number greater than 1024. When a cmmection is received, the server
returns the date and time to the client.

The date server is shown in Figure 3.19. The server creates a ServerSocket
that specifies it will listen to port 6013. The server then begins listening to the
port with the accept() method. The server blocks on the accept() method
waiting for a client to request a com1.ection. When a connection request is
received, accept() returns a socket that the server can use to communicate
with the client

The details of how the server communicates with the socket are as follows.
The server first establishes a PrintWri ter objectthatitwill use to communicate
with the client A PrintWri ter object allows the server to write to the socket
using the routine print() and println () methods for output. The server
process sends the date to the client, calling the method println (). Once it
has written the date to the socket, the server closes the socket to the client and
resumes listening for more requests.

A client communicates with the server by creating a socket and connecting
to the port on which the server is listening. We implement such a client in the

130 Chapter 3

import java.net.*;
import java.io.*;

public class DateServer
{

}

public static void main(String[] args) {
try {

}

}

ServerSocket sock= new ServerSocket(6013);

II now listen for connections
while (true) {

}

Socket client= sock.accept();

PrintWriter pout = new
PrintWriter(client.getOutputStream(), true);

II write the Date to the socket
pout.println(new java.util.Date().toString());

II close the socket and resume
II listening for connections
client. close() ;

catch (IOException ioe) {
System.err.println(ioe);

}

Figure 3.19 Date server.

Java program shown in Figure 3.20. The client creates a Socket and requests
a connection with the server at IP address 127.0.0.1 on port 6013. Once the
connection is madef the client can read from the socket using normal stream
I/0 statements. After it has received the date from the serverf the client closes
the socket and exits. The IP address 127.0.0.1 is a special IP address known as the

When a computer refers to IP address 127.0.0.t it is referring to itself.
This mechanism allows a client and server on the same host to communicate
using the TCP /IP protocol. The IP address 127.0.0.1 could be replaced with the
IP address of another host running the date server. In addition to an IP addressf
an actual host namef such as www.westminstercollege.eduf can be used as well.

Communication using sockets-although common and efficient-is con
sidered a low-level form of communication between distributed processes.
One reason is that sockets allow only an unstructured stream of bytes to be
exchanged between the communicating threads. It is the responsibility of the
client or server application to impose a structure on the data. In the next two
subsectionsf we look at two higher-level methods of communication: remote
procedure calls (RPCs) and pipes.

3.6

import java.net.*;
import java.io.*;

public class DateClient
{

}

public static void main(String[] args) {
try {

}

}

//make connection to server socket
Socket sock= new Socket("127.0.0.1",6013);

InputStream in= sock.getinputStream();
BufferedReader bin = new

BufferedReader(new InputStreamReader(in));

II read the date from the socket
String line;
while ((line = bin.readLine()) !=null)

System.out.println(line);

II close the socket connection
sock. close() ;

catch (IDException ioe) {
System.err.println(ioe);

}

Figure 3.20 Date client.

3.6.2 Remote Procedure Calls

131

One of the most common forms of remote service is the RPC paradigm, which
we discussed briefly in Section 3.5.2. The RPC was designed as a way to
abstract the procedure-call mechanism for use between systems with network
connections. It is similar in many respects to the IPC mechanism described in
Section 3.4, and it is usually built on top of such a system. Here, howeve1~
because we are dealing with an environment in which the processes are
executing on separate systems, we must use a message-based communication
scheme to provide remote service. In contrast to the IPC facility, the messages
exchanged in RPC communication are well structured and are thus no longer
just packets of data. Each message is addressed to an RPC daemon listening to
a port on the remote system, and each contains an identifier of the ftmction
to execute and the parameters to pass to that function. The function is then
executed as requested, and any output is sent back to the requester in a separate
message.

A port is simply a number included at the start of a message packet. Whereas
a system normally has one network address, it can have many ports within
that address to differentiate the many network services it supports. If a rencote
process needs a service, it addresses a message to the proper port. For instance,

132 Chapter 3

if a system wished to allow other systems to be able to list its current users, it
would have a daemon supporting such an RPC attached to a port-say port
3027. Any remote system could obtain the needed information (that is, the list
of current users) by sending an RPC message to port 3027 Oil the server; the
data would be received in a reply message.

The semantics of RPCs allow a client to invoke a procedure on a remote
host as it would invoke a procedure locally. The RPC system hides the details
that allow comnmnication to take place by providing a on the client side.
Typically, a separate stub exists for each separate remote procedure. When the
client invokes a remote procedure, the RPC system calls the appropriate stub,
passing it the parameters provided to the remote procedure. This stub locates
the port on the server and marshals the parameters. Parameter marshalling
involves packaging the parameters into a form that can be transmitted over
a network. The stub then transmits a message to the server using message
passing. A similar stub on the server side receives this message and invokes
the procedure on the server. If necessary, return values are passed back to the
client using the same teclu1.ique.

One issue that must be dealt with concerns differences in data representa
tion on the client and server machines. Consider the representation of 32-bit
integers. Some systems (known as big-endian) store the most significant byte
first, while other systems (known as little-endian) store the least significant
byte first. Neither order is "better" per se; rather, the choice is arbitrary within
a computer architecture. To resolve differences like this, many RPC systems
define a machine-independent representation of data. One such representation
is known as data On the client side, parameter
marshalling involves converting the machine-dependent data into XDR before
they are sent to the server. On the server side, the XDR data are m1.marshalled
and converted to the machine-dependent representation for the server.

Another important issue involves the semantics of a call. Whereas local
procedure calls fail only under extreme circumstances, RPCs can fait or be
duplicated and executed more than once, as a result of common network
errors. One way to address this problem is for the operating system to ensure
that messages are acted on exactly once, rather than at most once. Most local
procedure calls have the "exactly once" functionality, but it is more difficult to
implement.

First, consider "at most once". This semantic can be implemented by
attaching a timestamp to each message. The server must keep a history of
all the timestamps of messages it has already processed or a history large
enough to ensure that repeated messages are detected. Incoming messages
that have a timestamp already in the history are ignored. The client can then
send a message one or more times and be assured that it only executes once.
(Generation of these timestamps is discussed in Section 18.1.)

For "exactly once/' we need to remove the risk that the server will never
receive the reqLiest. To accomplish this, the server must implement the "at
most once" protocol described above but must also acknowledge to the client
that the RPC call was received and executed. These ACK messages are common
throughout networking. The client must resend each RPC call periodically until
it receives the ACK for that call.

Another important issue concerns the communication between a server
and a client. With standard procedure calls, some form of binding takes place

3.6 133

during link, load, or execution time (Chapter 8) so that a procedure call's name
is replaced by the memory address of the procedure call. The RPC scheme
requires a similar binding of the client and the server port, but how does a client
know the port numbers on the server? Neither system has full information
about the other because they do not share memory.

Two approaches are common. First, the binding information may be
predetermined, in the form of fixed port addresses. At compile time, an RPC

call has a fixed port number associated with it. Once a program is compiled,
the server cannot change the port number of the requested service. Second,
binding can be done dynamically by a rendezvous mechanism. an
operating system provides a rendezvous (also called a daemon
on a fixed RPC port. A client then sends a message containing the name of
the RPC to the rendezvous daemon requesting the port address of the RPC it
needs to execute. The port number is returned, and the RPC calls can be sent
to that port until the process terminates (or the server crashes). This method
requires the extra overhead of the initial request but is more flexible than the
first approach. Figure 3.21 shows a sample interaction.

client

kEJYt"!.C3)Sends
rness<tQe:t() ..••.
matchrnaKecto
fit:1d pgrtpuml:)er

messages

From: client
To: server

f--------\Port: matchmakerf-------+1.>:
Re: address
for RPC X

From: server
To: client

Port: kernel
Re: RPCX

Port: P

server

Figure 3.21 Execution of a remote procedure call (RPC).

134 Chapter 3

The RPC scheme is useful in implementing a distribLited file system
(Chapter 17). Such a system can be implemented as a set of RPC daemons
and clients. The messages are addressed to the distributed file system port on a
server on which a file operation is to take place. The message contains the disk
operation to be performed. The disk operation might be read, write, rename,
delete, or status, corresponding to the usual file-related system calls. The
return message contains any data resulting from that call, which is executed by
the DFS daemon on behalf of the client. For instance, a message might contain
a request to transfer a whole file to a client or be limited to a simple block
request. In the latter case, several such requests may be needed if a whole file
is to be transferred.

3.6.3 Pipes

A acts as a conduit allowin.g two processes to communicate. Pipes were
one of the first IPC mechanisms in early UNIX systems and typically provide one
of the simpler ways for processes to communicate with one another, although
they also have some limitations. In implementing a pipe, four issues must be
considered:

Does the pipe allow unidirectional communication or bidirectional com
munication?

If two-way communication is allowed, is it half duplex (data can travel
only one way at a time) or full duplex (data can travel in both directions
at the same time)?

Must a relationship (such as parent-child) exist between the commLmicat
ing processes?

Can the pipes communicate over a network, or must the communicating
processes reside on the same machine?

In the following sections, we explore two common types of pipes used on both
UNIX and Windows systems.

3.6.3.1 Ordinary Pipes

Ordinary pipes allow two processes to communicate in standard producer-
consumer fashion; the producer writes to one end of the (the
and the consumer reads from the other end (the a result, ordinary
pipes are unidirectional, allowing only one-way communication. If two-way
communication is required, two pipes must be used, with each pipe sending
data in a different direction. We next illustrate constructing ordinary pipes
on both UNIX and Windows systems. In both program examples, one process
writes the message Greetings to the pipe, while the other process reads this
message front the pipe.

On UNIX systems, ordinary pipes are constructed using the function

pipe (int fd [])

This function creates a pipe that is accessed through the int fd [] file
descriptors: fd [0] is the read-end of the pipe, and fd [1] is the write end.

3.6 135

parent child

fd(O) fd(1) fd(O) fd(1)

U-(-pip-e -oU
Figure 3.22 File descriptors for an ordinary pipe.

UNIX treats a pipe as a special type of file; thus, pipes can be accessed using
ordinary read() and write() system calls.

An ordinary pipe cannot be accessed from outside the process that creates
it. Thus, typically a parent process creates a pipe and uses it to comnmnicate
with a child process it creates via fork(). Recall from Section 3.3.1 that a child
process inherits open files from its parent. Since a pipe is a special type of file,
the child inherits the pipe from its parent process. Figure 3.22 illustrates the
relationship of the file descriptor fd to the parent and child processes.

In the UNIX progranc shown in Figure 3.23, the parent process creates a
pipe and then sends a fork() call creating the child process. What occurs after
the fork() call depends on how the data are to flow through the pipe. In this
instance, the parent writes to the pipe and the child reads from it. It is important
to notice that both the parent process and the child process initially close their
unused ends of the pipe. Although the program shown in Figure 3.23 does not
require this action, it is an important step to ensure that a process reading from
the pipe can detect end-of-file (read() returns 0) when the writer has closed
its end of the pipe.

#include <sys/types.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

#define BUFFER_SIZE 25
#define READ_END 0
#define WRITE_END 1

int main(void)
{
char write_msg[BUFFER_SIZE]
char read_msg[BUFFER_SIZE];
int fd[2];
pid_t pid;

"Greetings";

program continues in Figure 3.24

Figure 3.23 Ordinary pipes in UNIX.

136 Chapter 3

}

I* create the pipe *I
if (pipe(fd) == -1) {

fprintf(stderr,"Pipe failed");
return 1;

}

I* fork a child process *I
pid = fork();

if (pid < 0) { I* error occurred *I
fprintf(stderr, "Fork Failed");
return 1;

}

if (pid > 0) { I* parent process *I

}

I* close the unused end of the pipe *I
close(fd[READ_END]);

I* write to the pipe *I
write(fd[WRITE_END], write_msg, strlen(write_msg)+1);

I* close the write end of the pipe *I
close(fd[WRITE_END]);

else { I* child process *I

}

I* close the unused end of the pipe *I
close(fd[WRITE_END]);

I* read from the pipe *I
read(fd[READ_END], read_msg, BUFFER_SIZE);
printf ("read %s", read_msg) ;

I* close the write end of the pipe *I
close(fd[READ_END]);

return 0;

Figure 3.24 Continuation of Figure 3.23 program.

Ordinary pipes on Windows systems are termed and
they behave similarly to their UNIX counterparts: they are unidirectional and
employ parent-child relationships between the communicating processes.
In addition, reading and writing to the pipe can be accomplished with the
ordinary ReadFile () and Wri teFile () functions. The Win32 API for creating
pipes is the CreatePi pe () function, which is passed four parameters: separate
handles for (1) reading and (2) writing to the pipe, as well as (3) an instance of
the STARTUPINFO structure, which is used to specify that the child process is to

3.6

#include <stdio.h>
#include <stdlib.h>
#include <windows.h>

#define BUFFER_SIZE 25

int main(VOID)
{
HANDLE ReadHandle, WriteHandle;
STARTUPINFO si;
PROCESS_INFORMATION pi;
char message [BUFFER_SIZE] "Greetings";
DWORD written;

program continues in Figure 3.26

Figure 3.25 Windows anonymous pipes- parent process.

137

inherit the handles of the pipe. Furthermore, (4) the size of the pipe (in bytes)
may be specified.

Figure 3.25 illustrates a parent process creating an anonymous pipe for
communicating with its child. Unlike UNIX systems, in which a child process
automatically inherits a pipe created by its parent, Windows requires the
programmer to specify which attributes the child process will inherit. This is
accomplished by first initializing the SECURITY--ATTRIBUTES structure to allow
handles to be inherited and then redirecting the child process's handles for
standard input or standard output to the read or write handle of the pipe.
Since the child will be reading from the pipe, the parent must redirect the
child's standard input to the read handle of the pipe. Furthermore, as the pipes
are half duplex, it is necessary to prohibit the child from inheriting the write
end of the pipe. Creating the child process is similar to the program in Figure
3.12, except that the fifth parameter is set to TRUE, indicating that the child
process is to inherit designated handles from its parent. Before writing to the
pipe, the parent first closes its unused read end of the pipe. The child process
that reads from the pipe is shown in Figure 3.27. Before reading from the pipe,
this program obtains the read handle to the pipe by invoking GetStdHandle ().

Note that ordinary pipes require a parent-child relationship between the
communicating processes on both UNIX and Windows systems. This means
that these pipes can be used only for communication between processes on the
same machine.

3.6.3.2 Named Pipes

Ordinary pipes provide a simple communication mechanism between a pair
of processes. However, ordinary pipes exist only while the processes are
communicating with one another. On both UNIX and Windows systems, once
the processes have finished communicating and terminated, the ordinary pipe
ceases to exist.

138 Chapter 3

I* set up security attributes allowing pipes to be inherited *I
SECURI1YATTRIBUTES sa = { sizeof(SECURITYATTRIBUTES) , NULL, TRUE};
I* allocate memory *I
ZeroMemory(&pi, sizeof(pi));

I* create the pipe *I
if (!CreatePipe(&ReadHandle, &WriteHandle, &sa, 0)) {

fprintf(stderr, "Create Pipe Failed");
return 1;

}

I* establish the STARTJNFO structure for the child process *I
GetStartupinfo(&si);
si.hStdOutput = GetStdHandle(STD_OUTPUTJHANDLE);

I* redirect standard input to the read end of the pipe *I
si.hStdinput = ReadHandle;
si. dwFlags = STARTF _USESTDHANDLES;

I* don't allow the child to inherit the write end of pipe *I
SetHandleinformation(Wri teHandle, HANDLE_FLAGJNHERIT, 0);

I* create the child process *I
CreateProcess(NULL, "child.exe", NULL,NULL,

TRUE, I* inherit handles *I
0, NULL, NULL, &si, &pi);

I* close the unused end of the pipe *I
CloseHandle(ReadHandle);

I* the parent writes to the pipe *I
if (! Wri teFile (Wri teHandle, message, BUFFER_SIZE, &written, NULL))

fprintf (stderr, "Error writing to pipe.");

I* close the write end of the pipe *I
CloseHandle(WriteHandle);

I* wait for the child to exit *I
Wai tForSingleObj ect (pi. hProcess, INFINITE);
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);
return 0;
}

Figure 3.26 Continuation of Figure 3.25 program.

Named pipes provide a much more powerful communication tool;
communication can be bidirectional, and no parent-child relationship is
required. Once a named pipe is established, several processes can use it for

3.6

#include <stdio.h>
#include <windows.h>

#define BUFFER_STZE 25

int main(VOID)
{
HANDLE Readhandle;
CHAR buffer [BUFFER_SIZE] ;
DWORD read;

I* get the read handle of the pipe *I
ReadHandle GetStdHandle (STD_INPULI-IANDLE) ;

I* the child reads from the pipe *I

139

if (ReadFile (ReadHandle, buffer, BUFFER_SIZE, &read, NULL))
printf("child read %s",buffer);

else
fprintf(stderr, "Error reading from pipe");

return 0;
}

Figure 3.27 Windows anonymous pipes -child process.

communication. In fact, in a typical scenario, a named pipe has several
writers. Additionally, named pipes continue to exist after communicating
processes have finished. Both UNIX and Windows systems support named
pipes, although the details of implementation vary greatly. Next, we explore
named pipes in each of these systems.

Named pipes are referred to as FIFOs in UNIX systems. Once created, they
appear as typical files in the file system. A FIFO is created with the mkfifo ()
system call and manipulated with the ordinary open(), read(), write(),
and close () system calls. It will contirme to exist m<til it is explicitly deleted
from the file system. Although FIFOs allow bidirectional communication, only
half-duplex transmission is permitted. If data must travel in both directions,
two FIFOs are typically used. Additionally, the communicating processes must
reside on the same machine; sockets (Section 3.6.1) must be used if intermachine
communication is required.

Named pipes on Windows systems provide a richer communication mech
anism than their UNIX counterparts. Full-duplex communication is allowed,
and the communicating processes may reside on either the same or different
machines. Additionally, only byte-oriented data may be transmitted across a
UNIX FTFO, whereas Windows systems allow either byte- or message-oriented
data. Named pipes are created with the CreateNamedPipe () function, and a
client can connect to a named pipe using ConnectNamedPipe (). Communi
cation over the named pipe can be accomplished using the ReadFile () and
Wri teFile () functions.

140 Chapter 3

3.7

PIPES IN PRACTICE

Pipes are used quite often in. the UNIX command-line environment for
situations in which the output of one command serves as input to the
second. For example; the UNIX ls command produces a directory listing.
For especially long directory listings; the output may scroll through several
screens. The command more manages output by displaying only one screen
of output at a time; the user must press the space bar to move from one screen
to the next. Setting up a pipe between the ls and more commands (which
are running as individual processes) allows the output of ls to be delivered
as the input to moref enabling the user to display a large directory listing a
screen at a time. A pipe can be constructed on the command line using the I
character. The complete command is

ls I more

In this scenario; the ls corrm1and serves as the producer, and its output is
consumed by the more command.

Windows systems provide a more command for the DOS shell with
functionality similar to that of its UNIX cmmterpart. The DOS shell also uses
the I character for establishing a pipe. The only difference is that to get a
directory listing, DOS uses the dir command rather than ls. The equivalent
command in DOS to what is shown above is

dir I more

A process is a program in execution. As a process executes/ it changes state. The
state of a process is defined by that process's current activity. Each process may
be in one of the following states: new, readyf running, waiting; or terminated.
Each process is represented in the operating system by its own process control
block (PCB).

A process; when it is not executing; is placed in some waiting queue. There
are two major classes of queues in an operating system: I/0 request queuecc
and the ready queue. The ready queue contains all the processes that are ready
to execute and are waiting for the CPU. Each process is represented by a PCBf
and the PCBs can be linked together to form a ready queue. Long-term (job)
scheduling is the selection of processes that will be allowed to contend for
the CPU. Normally, long-term scheduling is heavily influenced by resource
allocation considerations, especially memory management. Short-term (CPU)
scheduling is the selection of one process from the ready queue.

Operating systems must provide a mechanism for parent processes to
create new child processes. The parent may wait for its children to terminate
before proceeding, or the parent and children may execute concurrently. There
are several reasons for allowing concurrent execution: information sharing,
computation speedup, modularity, and convenience.

141

The processes executing in the operating system may be either independent
processes or cooperating processes. Cooperating processes require an interpro
cess communication mechanisnc to commLmicate with each other. Principally,
communication is achieved through two schemes: shared mernory and mes
sage passing. The shared-memory method requires communicating processes
to share some variables. The processes are expected to exchange information
through the use of these shared variables. In a shared-memory system, the
responsibility for providing communication rests with the application pro
grammers; the operating system needs to provide only the shared memory.
The message-passing method allows the processes to exchange messages.
The responsibility for providing communication may rest with the operating
system itself. These two schemes are not mutually exclusive and can be used
simultaneously within a single operating system.

Communication in client-server systems may use (1) sockets, (2) remote
procedure calls (RPCs), or (3) pipes. A socket is defined as an endpoint for
communication. A connection between a pair of applications consists of a
pair of sockets, one at each end of the communication chamcel. RPCs are
another form of distributed commLmication. An RPC occurs when a process
(or thread) calls a procedure on a remote application. Ordinary pipes allow
communication between parent and child processes, while named pipes permit
unrelated processes to communicate with one another.

3.1 What are the benefits and the disadvantages of each of the following?
Consider both the system level and the programmer level.

a. Synchronous and asynchronous commmucation

b. Automatic and explicit buffering

c. Send by copy and send by reference

d. Fixed-sized and variable-sized messages

3.2 Consider the RPC mechanism. Describe the undesirable consequences
that could arise from not enforcing either the "at most once" or "exactly
once" semantic. Describe possible uses for a mechanism that has neither
of these guarantees.

3.3 With respect to the RPC mechanism, consider the "exactly once" semantic.
Does the algorithm for implementing this semantic execute correctly
even if the ACK message back to the client is lost due to a network
problem? Describe the sequence of messages and discuss whether
"exactly once" is still preserved.

3.4 Palm OS provides no means of concurrent processing. Discuss three
major complications that concurrent processing adds to an operating
system.

142 Chapter 3

3.5 Describe the actions taken by a kernel to context-switch between
processes.

3.6 The Sun UltraSPARC processor has multiple register sets. Describe what
happens when a context switch occurs if the new context is already
loaded into one of the register sets. What happens if the new context is
in memory rather than in a register set and all the register sets are in
use?

3.7 Construct a process tree similar to Figure 3.9. To obtain process informa
tion for the UNIX or Linux system, use the command ps -ael. Use the
command man ps to get more information about the ps command. On
Windows systems, you will have to use the task manager.

3.8 Give an example of a situation in which ordinary pipes are more suitable
than named pipes and an example of a situation in which named pipes
are more suitable than ordinary pipes.

3.9 Describe the differences among short-term, medium-term, and long
term scheduling.

3.10 Including the initial parent process, how many processes are created by
the program shown in Figure 3.28?

3.11 Using the program in Figure 3.29, identify the values of pid at lines A, B,
C, and D. (Assume that the actual pids of the parent and child are 2600
and 2603, respectively.)

#include <stdio.h>
#include <unistd.h>

int main()
{

}

I* fork a child process *I
fork();

I* fork another child process *I
fork();

I* and fork another *I
fork();

return 0;

Figure 3.28 How many processes are created?

#include <sysltypes.h>
#include <stdio. h>
#include <unistd.h>

int main()
{
pid_t pid' pid1;

}

I* fork a child process *I
pid = fork();

if (pid < 0) { I* error occurred *I
fprintf(stderr, "Fork Failed");
return 1;

}
else if (pid == 0) { I* child process *I

pid1 = getpid();

}

printf("child: pid = %d",pid); I* A *I
printf("child: pid1 = %d",pid1); I* B *I

else { I* parent process *I
pid1 = getpid() ;

}

printf("parent: pid = %d",pid); I* C *I
printf("parent: pid1 = %d" ,pid1); I* D *I
wait(NULL);

return 0;

Figure 3.29 What are the pid values?

143

3.12 Using the program shown in Figure 3.30, explain what the output will
be at Line A.

3.13 The Fibonacci sequence is the series of numbers 0, 1, 1, 2, 3, 5, 8,
Formally, it can be expressed as:

fib 0 = 0
fibl = 1
jibn = jibn-l + jibn-2

Write a C program using the fork() system call that generates the
Fibonacci sequence in the child process. The number of the sequence
will be provided in the comm_and line. For example, if 5 is provided, the
first five numbers in the Fibonacci sequence will be output by the child

144 Chapter 3

#include <sysltypes.h>
#include <stdio.h>
#include <unistd.h>

int value = 5;

int main()
{
pid_t pid;

}

pid = fork();

if (pid == 0) { I* child process *I
value += 15;
return 0;

}
else if (pid > 0) { I* parent process *I

wait(NULL);

}

printf("PARENT: value= %d",value); I* LINE A *I
return 0;

Figure 3.30 What output will be at Line A?

process. Because the parent and child processes have their own copies
of the dataf it will be necessary for the child to output the sequence.
Have the parent invoke the wait () call to wait for the child process to
complete before exiting the program. Perform necessary error checking
to ensure that a non-negative number is passed on the command
line.

3.14 Repeat the preceding exercisef this time using the CreateProcess ()
function in the Win32 API. In this instancef you will need to specify
a separate program to be invoked from CreateProcess (). It is this
separate program that will run as a child process outputting the
Fibonacci sequence. Perform necessary error checking to ensure that
a non-negative number is passed on the command line.

3.15 Modify the date server shown in Figure 3.19 so that it delivers random
jokes rather than the current date. Allow the jokes to contain multiple
lines. The date client shown in Figure 3.20 can be used to read the
multi-line jokes returned by the joke server.

3.16 An echo server echoes back whatever it receives from a client. For
examplef if a client sends the server the string Hello there! the server
will respond with the exact data it received from the client-that isf
Hello there!

145

Write an echo server using the Java networking API described in
Section 3.6.1. This server will wait for a client connection using the
accept () method. When a client connection is received, the server will
loop, perfonning the following steps:

Read data from the socket into a buffer.

Write the contents of the buffer back to the client.

The server will break out of the loop only when it has determined that
the client has closed the connection.

The server shown in Figure 3.19 uses the java. io. BufferedReader
class. BufferedReader extends the java. io. Reader class, which is
used for reading character streams. However, the echo server cannot
guarantee that it will read characters from clients; it may receive binary
data as well. The class java. io. Input Stream deals with data at the byte
level rather than the character level. Thus, this echo server must use an
object that extends java. io. InputStrearn. The read() method in the
java. io. InputStrearn class returns -1 when the client has closed its
end of the socket connection.

3.17 In Exercise 3.13, the child process must output the Fibonacci sequence,
since the parent and child have their own copies of the data. Another
approach to designing this program is to establish a shared-memory
segment between the parent and child processes. This technique allows
the child to write the contents of the Fibonacci sequence to the shared
memory segment and has the parent output the sequence when the child
completes. Because the memory is shared, any changes the child makes
will be reflected in the parent process as well.

This program will be structured using POSIX shared memory
as described in Section 3.5.1. The program first requires creating the
data structure for the shared-memory segment. This is most easily
accomplished using a struct. This data structure will contain two items:
(1) a fixed-sized array of size MALSEQUENCE that will hold the Fibonacci
values and (2) the size of the sequence the child process is to generate
sequence_size, where sequence_size :::: MALSEQUENCE. These items
can be represented in a struct as follows:

#define MAX_SEQUENCE 10

typedef struct {
long fib_sequence[MAX_SEQUENCE];
int sequence_size;

} shared_data;

The parent process will progress thmugh the following steps:

a. Accept the parameter passed on the command line and perform
error checking to ensure that the parameter is :::: MAX_SEQUENCE.

b. Create a shared-memory segment of size shared_data.

c. Attach the shared-memory segment to its address space.

146 Chapter 3

d. Set the value of sequence_size to the parameter on the command
line.

e. Fork the child process and invoke the wait() systen1. call to wait
for the child to finish.

f. Output the value of the Fibonacci sequence in the shared-memory
segment.

g. Detach and remove the shared-memory segment.

Because the child process is a copy of the parent, the shared-memory
region will be attached to the child's address space as well as the
parent's. The child process will then write the Fibonacci sequence to
shared memory and finally will detach the segment.

One issue of concern with cooperating processes involves synchro
nization issues. In this exercise, the parent and child processes must be
synchronized so that the parent does not output the Fibonacci sequence
until the child finishes generating the sequence. These two processes
will be synchronized using the wait () system call; the parent process
will invoke wait (), which will cause it to be suspended until the child
process exits.

3.18 Design a program using ordinary pipes in which one process sends a
string message to a second process, and the second process reverses
the case of each character in the message and sends it back to the first
process. For example, if the first process sends the message Hi There,
the second process will return hi tHERE. This will require using two
pipes, one for sending the original message from the first to the second
process, and the other for sending the modified message from the second
back to the first process. You may write this program using either UNIX
or Windows pipes.

3.19 Design a file-copying program named FileCopy using ordinary pipes.
This program will be passed two parameters: the first is the name of
the file to be copied, and the second is the name of the copied file. The
program will then create an ordinary pipe and write the contents of the
file to be copied to the pipe. The child process will read this file from
the pipe and write it to the destination file. For example, if we invoke
the program as follows:

FileCopy input.txt copy.txt

the file input. txt will be written to the pipe. The child process will
read the contents of this file and write it to the destination file copy. txt.
You may write this program using either UNIX or Windows pipes.

3.20 Most UNIX and Linux systems provide the ipcs command. This com
mand lists the status of various POSIX interprocess communication
mechanisms, including shared-memory segments. Much of the informa
tion for the command comes from the data structure struct shmid_ds,

147

which is available in the /usr/include/sys/shm.h file. Some of the
fields in this structure include:

int shm_segsz-size of the shared-memory segment

short shm__nattch-number of attaches to the shared-memory
segment

struct ipc_perm shm_perm-permission structure of the shared
memory segment

The struct ipc_perm data structure (which is available in the file
/usr/include/sys/ipc .h) contains the fields:

unsigned short uid -identifier of the user of the shared -memory
segment

unsigned short mode-permission modes

key_t key (on Linux systems, __ key)-user-specified key identifier

The permission modes are set according to how the shared-memory
segment is established with the shmget () system call. Permissions are
identified according to the following:

Write permission of owner.

0040 Read permission of group.

0020 Write permission of group.

0004 Read permission of. world.

0002 Write permissionof world.

Permissions can be accessed by using the bitwise AND operator &.
For example, if the statement mode & 0400 evaluates to "true," the
permission mode gives read permission to the owner of the shared
memory segment.

A shared-memory segment can be identified according to a user
specified key or according to the integer value returned from the
shmget () system call, which represents the integer identifier of the
shared-memory segment created. The shm_ds structure for a given
integer segment identifier can be obtained with the following shmctl ()
system call:

I* identifier of the shared memory segment*/
int segment_id;
shm_ds shmbuffer;

shmctl(segment_id, IPC_STAT, &shmbuffer);

148 Chapter 3

If successful, shmctl () returns 0; otherwise, it returns -1 indicating an
error condition (the global variable errno can be accessed to determine
the error condition).

Write a C program that is passed an identifier for a shared-memory
segment. This program will invoke the shmctl () function to obtain
its shm_ds structure. It will then output the following values of the
shared-memory segment:

SegmentiD

Key

Mode

Owner DID

Size

Number of attaches

3.21 POSIX Message Passing.

This project consists of using POSIX message queues for communicating
temperatures between each of four external processes and a central
process. The project can be completed on systems that support POSIX
message passing, such as UNIX, Linux, and Mac OS X.

Part 1: Overview

Four external processes will communicate temperatures to a central
process, which in turn will reply with its own temperature and will
indicate whether the entire system has stabilized. Each process will
receive its initial temperature upon creation and will recalculate a new
temperature according to two formulas:

new external temp =
(myTemp * 3 + 2 * centralTemp) I 5;

new central temp =
(2 * centralTemp +four temps received from external processes) I 6;

Initially, each external process will send its temperature to the mailbox
for the central process. If all four temperatures are exactly the same as
those sent by the four processes during the last iteration, the system
has stabilized. In this case, the central process will notify each external
process that it is now finished (along with the central process itself),
and each process will output the final stabilized temperature. If the
system has not yet become stable, the central process will send its new
temperature to the mailbox for each of the outer processes and await
their replies. The processes will continue to run until the temperature
has stabilized.

149

Part 2: The Message Passing System

Processes can exchange messages by using four system calls: msgget (),
msgsnd (), msgrcv (), and msgctl (). The msgget () function converts
a mailbox name to a message queue id, msqid. (A mailbox name
is an externally known message queue name that is shared among
the cooperating processes.) msqid, the internal identifier returned by
msgget (), must be passed to all subsequent system calls using this
message queue to facilitate interprocess communication. A typical
invocation of msgget ()is seen below:

msqid = msgget(1234, 0600 I IPC_CREAT);

The first parameter is the name of the mailbox, and the second parameter
instructs the operating system to create the message queue if it does not
already exist, with read and write privileges only for processes with the
same user id as this process. If a message queue already exists for this
mailbox name, msgget () returns the msqid of the existing mailbox. To
avoid attaching to an existing message queue, a process can first attempt
to attach to the mailbox by omitting IPC_CREAT and then checking the
return value from msgget (). If msq id is negative, an error has occurred
during the system calt and the globally accessible variable errno can be
consulted to determine whether the error occurred because the message
queue already exists or for some other reason. If the process determines
that the mailbox does not currently exist it can then create it by including
IPC_CREAT. (For the current project, this strategy should not be necessary
if students are using standalone PCs or are assigned unique ranges of
mailbox names by the instructor.)

Once a valid msqid has been established, a process can begin to
use msgsnd () to send messages and msgrcv () to receive messages.
The messages being sent and received are similar in format to those
described in Section 3.5.2, as they include a fixed-length portion at the
beginning followed by a variable-length portion. Obviously, the senders
and receivers must agree on the format of the messages being exchanged.
Since the operating system specifies one field in the fixed-length portion
of every message format and at least one piece of information will
be sent to the receiving process, it is logical to create a data aggregate
for each type of message using a struct. The first field of any such
struct must be a long, and it will contain the priority of the message.
(This project does not use this functionality; we recommend that you
simply make the first field in every message equal to the same integral
value, such as 2.) Other fields in the messages contain the information
to be shared between the communicating processes. Three additional
fields are recommended: (1) the temperature being sent, (2) the process
number of the external process sending the message (0 for the central
process), and (3) a flag that is set to 0 but that the central process will
set to 1 when it notices stability. A recommended struct appears as
follows:

150 Chapter 3

struct {
long priority;
int temp;
int pid;
int stable;

} msgp;

Assuming the msqid has been established, examples of msgsnd() and
msgrcv () appear as such:

int stat, msqid;

stat = msgsnd(msqid, &msgp,
sizeof(msgp)-sizeof(long), 0);

stat msgrcv(msqid, &msgp,
sizeof(msgp)-sizeof(long), 2, 0);

The first parameter in both system calls must be a valid msq id; otherwise
a negative value is returned. (Both functions return the number of
bytes sent or received upon successful completion of the operation.)
The second parameter is the address of where to find or store the
message to be sent or received, followed by the number of information
bytes to be sent or received. The final parameter of 0 indicates that the
operations will be synchronous and that the sender will block if the
message queue is full. (IPC_NOWAIT would be used if asynchronous, or
nonblocking, operations were desired. Each individual message queue
can hold a maximum number of messages-or bytes-so it is possible
for the queue to become filled, which is one reason a sender may block
when attempting to transmit a message.) The 2 that appears before this
final parameter in msgrcv () indicates the minimum priority level of
the messages the process wishes to receive; the receiver will wait until
a message of that priority (or higher) is sent to the msqid if this is a
synchronous operation.

Once a process is finished using a message queue, it must be
removed so that the mailbox can be reused by other processes. Unless
it is removed, the message queue-and any messages that have not yet
been received-will remain in the storage space that has been provided
for this mailbox by the kernel. To remove the message queue, and delete
any unread messages therein, it is necessary to invoke msgctl (), as
follows:

struct msgid_ds dummyParam;
status= msgctl(msqid, IPC_RMID, &dummyParam);

The third parameter is necessary because this function requires it but it
is used only if it the programmer wishes to collect some statistics about
the usage of the message queue. This is accomplished by substituting
IPC_STAT as the second parameter.

All programs should include the following three header files, which
are found in /usr/include/sys: ipc.h, types.h, and msg.h. One
possibly confusing artifact of the message queue implementation bears

151

mentioning at this point. After a mailbox is removed via msgctl (),any
subsequent attempts to create another mailbox with that same name
using msgget () will typically generate a different msqid.

Part 3: Creating the Processes

Each external process, as well as the central server, will create its own
mailbox with the name X+ i, where i is a numeric identifier of the
external process 1..4 or zero for the central process. Thus, if X were 70,
then the central process would receive messages in the mailbox named
70, and it would send its replies to mailboxes 71-74. Outer process 2
would receive in mailbox 72 and would send to mailbox 70, and so forth.
Thus, each external process will attach to two mailboxes, and the central
process will attach to five. If each process specifies IPC_CREAT when
invoking msgget (), the first process that invokes msgget () actually
creates the mailbox; subsequent calls to msgget () attach to the existing
mailbox. The protocol for removal should be that the mailbox/message
queue that each process is listening to should be the only one it removes
-via msgctl () .)

Each external process will be uniquely identified by a command-line
parameter. The first parameter to each external process will be its initial
temperature, and the second parameter will be its unique number: 1,
2, 3, or 4. The central server will be passed one parameter-its initial
temperature. Assuming the executable name of the external process is
external and the central server is central, invoking all five processes
will be done as follows:

./external 100 1 &

./external 22 2 &

./external 50 3 &

./external 40 4 &

./central 60 &

Part 4: Implementation Hints

It might be best to start by sending one message successfully from
the central process to a single outer process, and vice versa, before
trying to write all the code to solve this problem. It is also wise to
check all the return values from the four message queue system calls
for possible failed requests and to output a message to the screen after
each one successfully completes. The message should indicate what was
accomplished and by whom -for instance, "mailbox 71 has been created
by outer process 1/' "message received by central process from external
process 2/' and so forth. These messages can be removed or commented
out after the problem is solved. Processes should also verify that they
were passed the correct number of command-line parameters (via the
argc parameter in main()). Finally, extraneous messages residing in
a queue can cause a collection of cooperating processes that function
correctly to appear erroneous. For that reason, it is wise to remove all
mailboxes relevant to this project to ensure that mailboxes are empty
before the processes begin. The easiest way to do this is to use the

152 Chapter 3

ipcs command to list all message queues and the ipcrm command to
remove existing message queues. The ipcs command lists the msqid of
all message queues on the system. Use ipcrm to remove message queues
according to their msqid. For example, if msqid 163845 appears with the
output of ipcs, it can be deleted with the following command:

ipcrm -q 163845

Interprocess communication in the RC 4000 system is discussed by Brinch
Hansen [1970]. Schlichting and Schneider [1982] discuss asynchronous
message-passing prirnitives. The IPC facility implemented at the user level is
described by Bershad et al. [1990].

Details of interprocess communication in UNIX systems are presented by
Gray [1997]. Barrera [1991] and Vahalia [1996] describe interprocess commu
nication in the Mach system. Russinovich and Solomon [2005], Solomon and
Russinovich [2000], and Stevens [1999] outline interprocess communication
in Windows 2003, Windows 2000 and UNIX respectively. Hart [2005] covers
Windows systems programming in detail.

The implementation of RPCs is discussed by Birrell and Nelson [1984].
Shrivastava and Panzieri [1982] describes the design of a reliable RPC mecha
nism, and Tay and Ananda [1990] presents a survey of RPCs. Stankovic [1982]
and Stmmstrup [1982] discuss procedure calls versus message-passing com
munication. Harold [2005] provides coverage of socket programming in Java.
Hart [2005] and Robbins and Robbins [2003] cover pipes in Windows and UNIX
systems, respectively.

4.1

CHAPTER

The process model introduced in Chapter 3 assumed that a process was an
executing program with a single thread of control. Most modern operating
systems now provide features enabling a process to contain multiple threads of
control. This chapter introduces many concepts associated with multithreaded
computer systems, including a discussion of the APis for the Pthreads, Win32,
and Java thread libraries. We look at many issues related to multithreaded
programming and its effect on the design of operating systems. Finally, we
explore how the Windows XP and Linux operating systems support threads at
the kernel level.

To introduce the notion of a thread- a fundamental unit of CPU utilization
that forms the basis of multithreaded computer systems.

To discuss the APis for the Pthreads, Win32, and Java thread libraries.

To examine issues related to multithreaded programming.

A thread is a basic unit of CPU utilization; it comprises a thread ID, a program
counter, a register set, and a stack. It shares with other threads belonging
to the same process its code section, data section, and other operating-system
resources, such as open files and signals. A traditional (or heavrvveighl:) process
has a single thread of control. If a process has multiple threads of control, it
can perform more than one task at a time. Figure 4.1 illustrates the difference
between a traditional process and a process.

4.1.1 Motivation

Many software packages that run on modern desktop PCs are multithreaded.
An application typically is implemented as a separate process with several
threads of control. A Web browser might have one thread display images or

153

154 Chapter 4

thread--+

single-threaded process multithreaded process

Figure 4.1 Single-threaded and multithreaded processes.

text while another thread retrieves data from the network, for example. A
word processor may have a thread for displaying graphics, another thread
for responding to keystrokes from the user, and a third thread for performing
spelling and grammar checking in the background.

In certain situations, a single application may be required to perform
several similar tasks. For example, a Web server accepts client requests for
Web pages, images, sound, and so forth. A busy Web server may have several
(perhaps thousands of) clients concurrently accessing it. If the Web server ran
as a traditional single-tlu·eaded process, it would be able to service only one
client at a time, artd a client might have to wait a very long time for its request
to be serviced.

One solution is to have the server run as a single process that accepts
requests. When the server receives a request, it creates a separate process
to service that request. In fact, this process-creation method was in common
use before threads became popular. Process creation is time consuming and
resource intensive, however. If the new process will perform the same tasks as
the existing process, why incur all that overhead? It is generally more efficient
to use one process that contains multiple threads. If the Web-server process
is multithreaded, the server will create a separate thread that listens for client
requests. When a request is made, rather than creating another process, the
server will create a new thread to service the request and resume listening for
additional requests. This is illustrated in Figure 4.2.

Threads also play a vital role in remote procedure call (RPC) systems. Recall
from Chapter 3 that RPCs allow interprocess communication by providing a
communication mechanism similar to ordinary function or procedure calls.
Typically, RPC servers are multithreaded. When a server receives a message, it
services the message using a separate thread. This allows the server to service
several concurrent requests.

Finally, most operating system kernels are now multithreaded; several
threads operate in the kernel, and each thread performs a specific task, such

client

(1) request

4.1

(2) create new
thread to service

the request 1-------•1 thread

'------.--r---10

server

(3) resume listening
for additional

client requests

Figure 4.2 Multithreaded server architecture.

155

as managing devices or interrupt handling. For examplef Solaris creates a set
of threads in the kernel specifically for interrupt handling; Linux uses a kernel
thread for managing the amount of free memory in the system.

4.1.2 Benefits

The benefits of multithreaded programming can be broken down into four
major categories:

Responsiveness. Multithreading an interactive application may allow a
program to continue running even if part of it is blocked or is performing
a lengthy operation, thereby increasing responsiveness to the user. For
instancef a multithreaded Web browser could allow user interaction in
one thread while an image was being loaded in another thread.

Resource sharing. Processes may only share resources through tech
niques such as shared memory or message passing. Such techniques must
be explicitly arranged by the programmer. However, threads share the
memory and the resources of the process to which they belong by default.
The benefit of sharing code and data is that it allows an application to
have several different threads of activity within the same address space.

3. Economy. Allocating memory and resources for process creation is costly.
Because threads share the resources of the process to which they belong,
it is more economical to create and context-switch threads. Empirically
gauging the difference in overhead can be difficult, but in general it is
much more time consuming to create and manage processes than threads.
In Solarisf for example, creating a process is about thirty times slower than
is creating a thread, and context switching is about five times slower.

Scalability. The benefits of multithreading can be greatly increased in a
multiprocessor architecture, where threads may be running in parallel
on different processors. A single-threaded process can only run on one
processor, regardless how many are available. Multithreading on a multi
CPU machine increases parallelism. We explore this issue further in the
following section.

156 Chapter 4

time

Figure 4.3 Concurrent execution on a single-core system.

4.1.3 Multicore Programming

A recent trend in system design has been to place multiple computing cores on
a single chip, where each core appears as a separate processor to the operating
system (Section 1.3.2). Multithreaded programming provides a mechanism
for more efficient use of multiple cores and improved concurrency. Consider
an application with four threads. On a system with a single computing core,
concurrency merely means that the execution of the threads will be interleaved
over time (Figure 4.3), as the processing core is capable of executing only one
thread at a time. On a system with multiple cores, however, concurrency means
that the threads can run in parallel, as the system can assign a separate thread
to each core (Figure 4.4).

The trend towards multicore systems has placed pressure on system
designers as well as application programmers to make better use of the multiple
computing cores. Designers of operating systems must write scheduling
algorithms that use multiple processing cores to allow the parallel execution
shown in Figure 4.4. For application programmers, the challenge is to modify
existing programs as well as design new programs that are multithreaded to
take advantage of multicore systems. In general, five areas present challenges
in programming for multicore systems:

Dividing activities. This involves examining applications to find areas
that can be divided into separate, concurrent tasks and thus can run in
parallel on individual cores.

Balance. While identifying tasks that can run in parallel, programmers
must also ensure that the tasks perform equal work of equal value. In
some instances, a certain task may not contribute as much value to the
overall process as other tasks; using a separate execution core to run that
task may not be worth the cost.

Data splitting. Just as applications are divided into separate tasks, the
data accessed and manipulated by the tasks must be divided to run on
separate cores.

core 1 l<T1 I T3 T1 T3 I Ti

core 2 [i] T4 T2 T4 I Tz

time

Figure 4.4 Parallel execution on a multicore system.

4.2

4.2 157

Data dependency. The data accessed by the tasks must be examined
for dependencies between two or more tasks. In instances where one
task depends on data from another, programmers must ensure that
the execution of the tasks is synchronized to accommodate the data
dependency. We examine such strategies in Chapter 6.

Testing and debugging. When a program is running in parallel on
multiple cores, there are many different execution paths. Testing and
debugging such concurrent programs is inherently more difficult than
testing and debugging single-threaded applications.

Because of these challenges, many software developers argue that the advent of
multicore systems will require an entirely new approach to designing software
systems in the future.

Our discussion so far has treated threads in a generic sense. However, support
for threads may be provided either at the user level, for or by the
kernel, for threads. User threads are supported above the kernel and
are managed without kernel support, whereas kernel threads are supported
and managed directly by the operating system. Virtually all contemporary
operating systems-including Wiridows XP, Linux, Mac OS X, Solaris, and
Tru64 UNIX (formerly Digital UNIX)-support kernel threads.

Ultimately, a relationship must exist between user threads and kernel
threads. In this section, we look at three common ways of establishing such a
relationship.

4.2.1 Many-to-One Model

The many-to-one model (Figure 4.5) maps many user-level threads to one
kernel thread. Thread management is done by the thread library in user

Figure 4.5 Many-to-one model.

158 Chapter 4

- user thread

Figure 4.6 One-to-one model.

space, so it is efficient; but the entire process will block if a thread makes a
blocking system call. Also, because only one thread can access the kernel at a
time, multiple threads are unable to nm in parallel on multiprocessors.

-a thread library available for Solaris-uses this modet as does GNU

4.2.2 One-to-One Model

The one-to-one model (Figure 4.6) maps each user thread to a kernel thread. It
provides more concurrency than the many-to-one model by allowing another
thread to run when a thread makes a blocking system call; it also allows
multiple threads to run in parallel on multiprocessors. The only drawback to
this model is that creating a user thread requires creating the corresponding
kernel thread. Because the overhead of creating kernel threads can burden the
performance of an application, most implementations of this model restrict the
number of threads supported by the system. Linux, along with the family of
Windows operating systems, implement the one-to-one model.

4.2.3 Many-to-Many Model

The many-to-many model (Figure 4.7) multiplexes many user-level threads to
a smaller or equal number of kernel threads. The number of kernel threads
may be specific to either a particular application or a particular machine (an
application may be allocated more kernel threads on a multiprocessor than
on a uniprocessor). Whereas the many-to-one model allows the developer to

user thread

k +--- kernel thread

Figure 4.7 Many-to-many model.

4.3

4.3 159

2 ::.,
(

I

~
((/

' ' /
(')_ user thread

(((

0 -kernel thread

Figure 4.8 Two-level model.

create as many user threads as she wishes, true concurrency is not gained
because the kernel can schedule only one thread at a time. The one-to-one
model allows for greater concurrency, but the developer has to be careful not
to create too many threads within an application (and in some instances may
be limited in the number of threads she can create). The many-to-many model
suffers from neither of these shortcomings: developers can create as many user
threads as necessary, and the corresponding kernel threads can run in parallel
on a multiprocessor. Also, when a thread performs a blocking system call, the
kernel can schedule another thread for execution.

One popular variation on the many-to-many model still multiplexes many
user-level threads to a smaller or equal number of kernel threads but also allows
a user-level thread to be bound to a kernel thread. This variation, sometimes
referred to as the two-level model (Figure 4.8), is supported by operating systems
such as IRlX, HP-UX, and Tru64 UNIX. The Solaris operating system supported
the two-level model in versions older than Solaris 9. However, beginning with
Solaris 9, this system uses the one-to-one model.

A provides the programmer with an API for creating and
managing threads. There are two primary ways of implementii<g a thread
library. The first approach is to provide a library entirely in user space with no
kernel support. All code and data structures for the library exist ii< user space.
This means that invoking a function in the library results in a local function
call in user space and not a system call.

The second approach is to implement a kernel-level library supported
directly by the operating system. In this case, code and data structures for
the library exist in kernel space. Invoking a function in the API for the library
typically results in a system call to the kernel.

Three main thread libraries are in use today: (1) POSIX Pthreads, (2) Win32,
and (3) Java. Pthreads, the threads extension of the POSIX standard, may be
provided as either a user- or kernel-level library. The Win32 thread library
is a kernel-level library available on Windows systems. The Java thread API
allows threads to be created and managed directly in Java programs. However,
because in most instances the JVM is running on top of a host operating system,

160 Chapter 4

the Java thread API is generally implemented using a thread library available
on the host system. This means that on Windows systems, Java threads are
typically implemented using the Win32 API; UNIX and Linux systems often use
Pthreads.

In the remainder of this section, we describe basic thread creation using
these three thread libraries. As an illustrative example, we design a multi
threaded program that performs the summation of a non-negative integer in a
separate thread using the well-known summation function:

N

sum= I~>
i=O

For example, if N were 5, this function would represent the summation of
integers from 0 to 5, which is 15. Each of the three programs will be n.m with
the upper bounds of the summation entered on the command line; thus, if the
user enters 8, the summation of the integer values from 0 to 8 will be output.

4.3.1 Pthreads

refers to the POSIX standard (IEEE 1003.lc) defining an API for thread
creation and synchronization. This is a specification for thread behavim~ not an
implementation. Operating system designers may implement the specification in
any way they wish. Numerous systems implement the Pthreads specification,
including Solaris, Linux, Mac OS X, and Tru64 UNIX. Shareware implementations
are available in the public domain for the various Windows operating systems
as well.

The C program shown in Figure 4.9 demonstrates the basic Pthreads API for
constructing a multithreaded program that calculates the summation of a non
negative integer in a separate thread. In a Pthreads program, separate threads
begin execution in a specified function. In Figure 4.9, this is the runner()
function. When this program begins, a single thread of control begins in
main (). After some initialization, main () creates a second thread that begins
control in the runner () function. Both threads share the global data sum.

Let's look more closely at this program. All Pthreads programs must
include the pthread. h header file. The statement pthread_t tid declares
the identifier for the thread we will create. Each thread has a set of attributes,
including stack size and scheduling information. The pthread_attr_t attr
declaration represents the attributes for the thread. We set the attributes in the
function call pthread_attr _ini t (&attr). Because we did not explicitly set
any attributes, we use the default attributes provided. (In Chapter 5, we discuss
some of the scheduling attributes provided by the Pthreads API.) A separate
thread is created with the pthread_create () function call. In addition to
passirtg the thread identifier and the attributes for the thread, we also pass the
name of the function where the new thread will begin execution-in this case,
the runner () function. Last, we pass the integer parameter that was provided
on the command line, argv [1].

At this point, the program has two threads: the initial (or parent) thread
in main() and the summation (or child) thread performing the summation

4.3

#include <pthread.h>
#include <stdio.h>

int sum; I* this data is shared by the thread(s) *I
void *runner(void *param); I* the thread *I

int main(int argc, char *argv[])
{

}

pthread_t tid; I* the thread identifier *I
pthread_attr_t attr; I* set of thread attributes *I

if (argc != 2) {

}

fprintf(stderr,"usage: a.out <integer value>\n");
return -1;

if (atoi(argv[1]) < 0) {

}

fprintf(stderr,"%d must be>= 0\n",atoi(argv[1]));
return -1;

I* get the default attributes *I
pthread_attr_init(&attr);
I* create the thread *I
pthread_create(&tid,&attr,runner,argv[1]);
I* wait for the thread to exit *I
pthread_join(tid,NULL);

printf("sum = %d\n",sum);

I* The thread will begin control in this function *I
void *runner(void *param)
{

}

inti, upper= atoi(param);
sum = 0;

for (i = 1; i <= upper; i++)
sum += i;

pthread_exi t (0) ;

Figure 4.9 Multithreaded C program using the Pthreads API.

161

operation in the runner() function. After creating the summation threadf
the parent thread will wait for it to complete by calling the pthread_j oin ()
function. The summation thread will complete when it calls the function
pthread_exi t (). Once the summation thread has returnedf the parent thread
will output the value of the shared data sum.

162 Chapter 4

4.3.2 Win32 Threads

The technique for creating threads using the Win32 thread library is similar
to the Pthreads technique in several ways. We illustrate the Win32 thread
API in the C program shown in Figure 4.10. Notice that we must include the
windows . h header file when using the Win32 API.

Just as in the Pthreads version shown in Figure 4.9, data shared by the
separate threads-in this case, Sum-are declared globally (the DWORD data
type is an unsigned 32-bit integer). We also define the Summation() function
that is to be performed in a separate thread. This function is passed a pointer to
a void, which Win32 defines as LPVOID. The thread performing this function
sets the global data Sum to the value of the summation from 0 to the parameter
passed to Summation() .

Threads are created in the Win32 API using the CreateThread () function,
and-just as in Pthreads-a set of attributes for the thread is passed to this
function. These attributes il1.clude security information, the size of the stack,
and a flag that can be set to indicate if the thread is to start in a suspended
state. In this program, we use the default values for these attributes (which do
not initially set the thread to a suspended state and instead make it eligible
to be rm1. by the CPU scheduler). Once the summation thread is created, the
parent must wait for it to complete before outputting the value of Sum, as
the value is set by the summation thread. Recall that the Pthread program
(Figure 4.9) had the parent thread wait for the summation thread using the
pthread_j oin () statement. We perform the equivalent of this in the Win32 API
using the Wai tForSingleObj ect ()function, which causes the creatil1.gthread
to block until the summation thread has exited. (We cover synchronization
objects in more detail in Chapter 6.)

4.3.3 Java Threads

Tlu·eads are the fundamental model of program execution in a Java program,
and the Java language and its API provide a rich set of features for the creation
and management of threads. All Java programs comprise at least a single thread
of control-even a simple Java program consisting of only a main() method
runs as a single thread in the JVM.

There are two teclmiques for creating threads in a Java program. One
approach is to create a new class that is derived from the Thread class and
to override its run() method. An alternative-and more commonly used
teclmique is to define a class that implements the Runnable interface. The
Runnable interface is defined as follows:

public interface Runnable
{

public abstract void run();

When a class implements Runnable, it must define a run() method. The code
implementing the run() method is what runs as a separate thread.

Figure 4.11 shows the Java version of a multithreaded program that
determines the summation of a non-negative integer. The Summation class
implements the Runnable interface. Thread creation is performed by creating

4.3

#include <Windows.h>
#include <stdio.h>
DWORD Sum; I* data is shared by the thread(s) *I
I* the thread runs in this separate function *I

DWORD WINAPI Sumrnation(LPVOID Param)
{

}

DWORD Upper = *(DWORD*)Param;
for (DWORD i = 0; i <= Upper; i++)

Sum += i;
return 0;

int main(int argc, char *argv[])
{

}

DWORD Threadid;
HANDLE ThreadHandle;
int Param;
I* perform some basic error checking *I
if (argc != 2) {

}

fprintf(stderr,"An integer parameter is required\n");
return -1;

Param = atoi(argv[1]);
if (Param < 0) {

}

fprintf(stderr,"An integer>= 0 is required\n");
return -1;

II create the thread
ThreadHandle = CreateThread(

NULL, II default security attributes
0, II default stack size
Summation, II thread function
&Param, II parameter to thread function
0, II default creation flags
&Threadid); II returns the thread identifier

if (ThreadHandle != NULL) {

}

II now wait for the thread to finish
WaitForSingleObject(ThreadHandle,INFINITE);

II close the thread handle
CloseHandle(ThreadHandle);

printf("surn = %d\n" ,Sum);

Figure 4.10 Multithreaded C program using the Win32 API.

163

164 Chapter 4

class Sum
{

}

private int sum;

public int getSum() {
return sum;

}

public void setSum(int sum) {
this.sum sum;

}

class Summation implements Runnable
{

}

private int upper;
private Sum sumValue;

public Summation(int upper, Sum sumValue) {
this.upper = upper;
this.sumValue = sumValue;

}

public void run() {
int sum = 0;

}

for (int i = 0; i <= upper; i++)
sum += i;

sumValue.setSum(sum);

public class Driver
{

}

public static void main(String[] args) {
if (args.length > 0) {

}

if (Integer.parseint(args[O]) < 0)
System.err.println(args[O] + "must be>= 0.");

else {
II create the object to be shared
Sum sumObject = new Sum();
int upper= Integer.parseint(args[O]);
Thread thrd =new Thread(new Summation(upper, sumObject));
thrd.start();
try {

thrd. join () ;
System.out.println

("The sum of "+upper+" is "+sumObject.getSum());
} catch (InterruptedException ie) { }
}

else
System.err.println("Usage: Summation <integer value>"); }

Figure 4.11 Java program for the summation of a non-negative integer.

4.4

4.4 165

an object instance of the Thread class and passing the constructor a Runnable
object.

Creating a Thread object does not specifically create the new thread; rather,
it is the start() method that creates the new thread. Calling the start()
method for the new object does two things:

It allocates memory and initializes a new thread in the JVM.

It calls the run() method, making the thread eligible to be run by the
JVM. (Note that we never call the run() method directly. Rathel~ we call
the start() method, and it calls the run() method on our behalf.)

When the summation program runs, two threads are created by the JVM.
The first is the parent thread, which starts execution in the main () method.
The second thread is created when the start() method on the Thread object
is invoked. This child thread begins execution in the run () method of the
Summation class. After outputting the value of the summation, this thread
terminates when it exits from its run() method.

Sharing of data between threads occurs easily in Win32 and Pthreads, since
shared data are simply declared globally. As a pure object-oriented language,
Java has no such notion of global data; if two or more threads are to share
data in a Java program, the sharing occurs by passing references to the shared
object to the appropriate threads. In. the Java program shown in Figure 4.11,
the main thread and the summation thread share the object instance of the Sum
class. This shared object is referenced through the appropriate get Sum () and
setSum() methods. (You might wonder why we don't use an Integer object
rather than designing a new sum class. The reason is that the Integer class is
immutable-that is, once its value is set, it cannot change.)

Recall that the parent threads in the Pthreads and Win32 libraries use
pthread_j oin () and Wai tForSingleDbj ect () (respectively) to wait for
the summation threads to finish before proceeding. The join() method
in Java provides similar functionality. (Notice that join() can throw an
InterruptedException, which we choose to ignore.)

In this section, we discuss some of the issues to consider with multithreaded
programs.

4.4.1 The fork() and exec() System Calls

In Chapter 3, we described how the fork() system call is used to create a
separate, duplicate process. The semantics of the fork() and exec() system
calls change in a multithreaded program.

If one thread in a program calls fork(), does the new process duplicate
all threads, or is the new process single-threaded? Some UNIX systems have
chosen to have two versions of fork(), one that duplicates all threads and
another that duplicates only the thread that invoked the fork() system call.

The exec() system call typically works in the same way as described
in Chapter 3. That is, if a thread invokes the exec() system call, the program

166 Chapter 4

The JVM and the Host Operating System

The JVM is typically implemented on top of a host operating system (see
Figure 2.20). This setup allows the JVM to hide the implementation details
of the underlying operating system and to provide a consistent, abstract
environment that allows Java programs to operate on any platform that
supports a JVM. The specification for the JVM does not indicate how Java
threads are to be mapped to the underlying operating system, instead leaving
that decision to the particular implementation of the JVM. For example, the
Windows XP operating system uses the one-to-one model; therefore, each
Java thread for a JVM running on such a. system maps to .a kernel thread: On
operating systems that use the many-to-many model (such as Tru64 UNIX), a
Java thread is mapped according to the many-to-manymodel. Solaris initially
implemented the JVM using themany~to-one model (the greenthreads library,
mentioned earlier). Later releases of the JVM were implementedusing the
many-to-:inany model. Beginning with Solaris 9, Java threads were mapped
using the one~ to-one model. In addition, there may be a relationship between
the Java thread library and the thread library on the host operating system.
For .example, implementations of a JVM for the Windows family of operating
systems might use the Win32 API when creating Java threads; Linux, Solaris,
and Mac OS X systems might use the Pthreads API.

specified in the parameter to exec () will replace the entire process-including
all threads.

Which of the two versions of fork() to use depends on the application.
If exec() is called immediately after forking, then duplicating all threads is
unnecessary, as the program specified in the parameters to exec() will replace
the process. In this instance, duplicating only the calling thread is appropriate.
If, however, the separate process does not call exec () after forking, the separate
process should duplicate all threads.

4.4.2 Cancellation

""·"'''-'C'"''"·""'"" is the task of terminating a thread before it has completed.
For example, if multiple threads are concurrently searching through a database
and one thread returns the result, the remaining threads might be canceled.
Another situation might occur when a user presses a button on a Web browser
that stops a Web page from loading any further. Often, a Web page is loaded
using several threads-each image is loaded in a separate thread. When a
user presses the stop button on the browser, all threads loading the page are
canceled.

A thread that is to be canceled is often referred to as the
Cancellation of a target thread may occur in two different scenarios:

Asynchronous cancellation. One thread immediately terminates the
target thread.

4.4 167

Deferred cancellation. The target thread periodically checks whether it
should terminate, allowing it an opportunity to terminate itself in an
orderly fashion.

The difficulty with cancellation occurs in situations where resources have
been allocated to a canceled thread or where a thread is canceled while in
the midst of updating data it is sharing with other threads. This becomes
especially troublesome with asynchronous cancellation. Often, the operating
system will reclaim system resources from a canceled thread but will not
reclaim all resources. Therefore, canceling a thread asynchronously may not
free a necessary system-wide resource.

With deferred cancellation, in contrast, one thread indicates that a target
thread is to be canceled, but cancellation occurs only after the target thread has
checked a flag to determine whether or not it should be canceled. The thread
can perform this check at a at which it can be canceled safely. Pthreads
refers to such points as

4.4.3 Signal Handling

A is used in UNIX systems to notify a process that a particular event has
occurred. A signal may be received either synchronously or asynchronously,
depending on the source of and the reason for the event being signaled. All
signals, whether synchronous or asynchronous, follow the same pattern:

A signal is generated by the occurrence of a particular event.

A generated signal is delivered to a process.

Once delivered, the signal must be handled.

Examples of synchronous signals include illegal memory access and
division by 0. If a running program performs either of these actions, a signal
is generated. Synchronous signals are delivered to the same process that
performed the operation that caused the signal (that is the reason they are
considered synchronous).

When a signal is generated by an event external to a running process, that
process receives the signal asynchronously. Examples of such signals include
terminating a process with specific keystrokes (such as <control> <C>) and
having a timer expire. Typically, an asynchronous signal is sent to another
process.

A signal may be handled by one of two possible handlers:

A default signal handler

A user-defilced signal handler

Every signal has a that is run by the kernel when
handling that signal. This default action can be overridden by a
signal handle~ that is called to handle the signal. Signals are handled in
different ways. Some signals (such as changing the size of a window) are
simply ignored; others (such as an illegal memory access) are handled by
terminating the program.

168 Chapter 4

Handling signals in single-threaded programs is straightforward: signals
are always delivered to a process. However, delivering signals is more
complicated in multithreaded programs, where a process may have several
threads. Where, then, should a signal be delivered?

In generat the following options exist:

Deliver the signal to the thread to which the signal applies.

Deliver the signal to every thread in the process.

Deliver the signal to certain threads in the process.

Assign a specific thread to receive all signals for the process.

The method for delivering a signal depends on the type of signal generated.
For example, synchronous signals need to be delivered to the thread causing
the signal and not to other threads in the process. However, the situation with
asynchronous signals is not as clear. Some asynchronous signals-such as a
signal that terminates a process (<control><C>, for example)-should be
sent to all threads.

Most multithreaded versions of UNIX allow a thread to specify which
signals it will accept and which it will block. Therefore, in some cases, an
asynchronous signal may be delivered only to those threads that are not
blocking it. However, because signals need to be handled only once, a signal
is typically delivered only to the first thread found that is not blocking it.
The standard UNIX function for delivering a signal is kill (pid_t pid, int
signal), which specifies the process (pi d) to which a particular signal is to be
delivered. POSIX Pthreads provides the pthread_kill (pthread_t tid, int
signal) function, which allows a signal to be delivered to a specified thread
(tid).

Although Windows does not explicitly support for signals, they
can be emulated using (APCs). The APC facility
allows a user thread to specify a function that is to be called when the user
thread receives notification of a particular event. As indicated by its name,
an APC is roughly equivalent to an asynchronous signal in UNIX. However,
whereas UNIX must contend with how to deal with signals in a multithreaded
environment, the APC facility is more straightforward, since an APC is delivered
to a particular thread rather than a process.

4.4.4 Thread Pools

In Section 4.1, we mentioned multithreading in a Web server. In this situation,
whenever the server receives a request, it creates a separate thread to service
the request. Whereas creating a separate thread is certainly superior to creating
a separate process, a multithreaded server nonetheless has potential problems.
The first issue concerns the amount of time required to create the thread prior
to servicing the request, together with the fact that this thread will be discarded
once it has completed its work. The second issue is more troublesome: if we
allow all concurrent requests to be serviced in a new thread, we have not placed
a bound on the number of threads concurrently active in the system. Unlimited
threads could exhaust system resources, such as CPU tince or memory. One
solution to this problem is to use a

4.4 169

The general idea beh_ind a thread pool is to create a number of threads at
process startup and place them into a pool, where they sit and wait for work.
When a server receives a request, it awakens a thread from this pool-if one
is available-and passes it the request for service. Once the thread completes
its service, it returns to the pool and awaits more work. If the pool contains no
available thread, the server waits until one becomes free.

Thread pools offer these benefits:

Servicing a request with an existing thread is usually faster than waiting
to create a thread.

A thread pool limits the number of threads that exist at any one point.
This is particularly important on systems that cannot support a large
number of concurrent threads.

The number of threads in the pool can be set heuristically based on factors
such as the number of CPUs in the system, the amount of physical memory,
and the expected number of concurrent client requests. More sophisticated
thread-pool architectures can dynamically adjust the number of threads in the
pool according to usage patterns. Such architectures provide the further benefit
of having a smaller pool-thereby consuming less memory-when the load
on the system is low.

The Win32 API provides several functions related to thread pools. Using
the thread pool API is similar to creating a thread with the Thread Create()
function, as described in Section 4.3.2. Here, a function that is to run as a
separate thread is defin_ed. Such a function may appear as follows:

DWORD WINAPI PoolFunction(AVOID Param)
/**
* this function runs as a separate thread.
**/

A pointer to PoolFunction() is passed to one of the functions in the thread
pool API, and a thread from the pool executes this function. One such member
in the thread pool API is the QueueUserWorkitemO function, which is passed
three paranceters:

LPTHREAD_STARLROUTINE Function-a pointer to the function that is to
nm as a separate thread

PVOID Param-the parameter passed to Function

ULONG Flags-flags indicating how the thread pool is to create and
manage execution of the thread

An example of invoking a function is:

QueueUserWorkitem(&PoolFunction, NULL, 0);

This causes a thread from the thread pool to invoke PoolFunction()
on behalf of the programmer. In this instance, we pass no parameters to

170 Chapter 4

- lightweight process
'-----'-'-----"

d0~ kamalthcead

Figure 4.12 Lightweight process (LWP).

PoolFunction(). Because we specify 0 as a flag, we provide the thread pool
with no special instructions for thread creation.

Other members in the Win32 thread pool API include utilities that invoke
functions at periodic intervals or when an asynchronous I/0 request completes.
The java. util. concurrent package in Java 1.5 provides a thread pool utility
as welL

4.4.5 Thread-Specific Data

Threads belonging to a process share the data of the process. Indeed, this
sharing of data provides one of the benefits of multithreaded programming.
However, in some circumstances, each thread need its own copy of
certain data. We will call such data For example, in a
transaction-processing system, we might service each transaction in a separate
thread. Furthermore, each transaction might be assigned a unique identifier. To
associate each thread with its unique identifier, we could use thread-specific
data. Most thread libraries-including Win32 and Pthreads-provide some
form of support for thread-specific data. Java provides support as well.

4.4.6 Scheduler Activations

A final issue to be considered with multithreaded programs concerns com
munication between the kernel and the thread library, which may be required
by the many-to-many and two-level models discussed in Section 4.2.3. Such
coordination allows the number of kernel threads to be dynamically adjusted
to help ensure the best performance.

Many systems implementing either the many-to-many or the two-level
model place an intermediate data structure between the user and kernel
threads. This data structure-typically known as a lightweight process, or
LWP-is shown in Figure 4.12. To the user-thread library, the LWP appears to
be a virtual processor on which the application can schedule a user thread to
run. Each LWP is attached to a kernel thread, and it is kernel threads that the
operating system schedules to run on physical processors. If a kernel thread
blocks (such as while waiting for an I/0 operation to complete), the LWP blocks
as well. Up the chain, the user-level thread attached to the LWP also blocks.

An application may require any number of LWPs to run efficiently. Consider
a CPU-bound application running on a single processor. In this scenario, only

4.5

4.5 171

one thread can run at once, so one LWP is sufficient. An application that is I/O
intensive may require multiple LWPs to execute, however. Typically, an LWP is
required for each concurrent blocking system call. Suppose, for example, that
five different file-read requests occur simultaneously. Five LWPs are needed,
because all could be waiting for I/0 completion in the kernel. If a process has
only four LWPs, then the fifth request must wait for one of the LWPs to return
from the kernel.

One scheme for communication between the user-thread library and the
kernel is known as It works as follows: The kernel
provides an application with a set of virtual processors (LWPs), and the
application can schedule user threads onto an available virtual processor.
Furthermore, the kernel must inform an application about certain events. This
procedure is known as an Upcalls are handled by the thread library
with an and upcall handlers must run on a virtual processor.
One event that triggers an upcall occurs when an application thread is about to
block. In this scenario, the kernel makes an upcall to the application informing
it that a thread is about to block and identifying the specific thread. The kernel
then allocates a new virtual processor to the application. The application runs
an upcall handler on this new virtual processor, which saves the state of the
blocking thread and relinquishes the virtual processor on which the blocking
thread is running. The upcall handler then schedules another thread that is
eligible to run on the new virtual processor. When the event that the blocking
thread was waiting for occurs, the kernel makes another upcall to the thread
library informilcg it that the previously blocked thread is now eligible to run.
The up call handler for this event also requires a virtual processor, and the kernel
may allocate a new virtual processor or preempt one of the user threads and
run the upcall handler on its virtual processor. After marking the 1-mblocked
thread as eligible to run, the application schedules an eligible thread to run on
an available virtual processor.

In this section, we explore how threads are implemented in Windows XP and
Linux systems.

4.5.1 Windows XP Threads

Windows XP implements the Win32 API, which is the primary API for the
family of Microsoft operating systems (Windows 95, 98, NT, 2000, and XP).
Indeed, much of what is mentioned in this section applies to this entire family
of operating systems.

A Windows XP application runs as a separate process, and each process
may contain one or more threads. The Win32 API for creating threads is
covered in Section 4.3.2. Windows XP uses the one-to-one mapping described
in Section 4.2.2, where each user-level thread maps to an associated kernel
thread. However, Windows XP also provides support for a library, which
provides the functionality of the many-to-many model (Section 4.2.3). By using
the thread library, any thread belonging to a process can access the address
space of the process.

172 Chapter 4

The general components of a thread include:

A thread ID uniquely identifying the thread

A register set representing the status of the processor

A user stack, employed when the thread is running in user mode, and a
kernel stack, employed when the thread is running in kernel mode

A private storage area used by various run-time libraries and dynamic link
libraries (DLLs)

The register set, stacks, and private storage area are known as the rcc::nw<YT

of the thread. The primary data structures of a thread include:

ETHREAD-executive thread block

KTHREAD-kernel thread block

TEE-thread environment block

The key components of the ETHREAD include a pointer to the process
to which the thread belongs and the address of the routine in which the
thread starts control. The ETHREAD also contains a pointer to the corresponding
KTHREAD.

ETHREAD

kernel space user space

Figure 4.13 Data structures of a Windows XP thread.

4.5 173

The KTHREAD includes scheduling and synchronization inforn1.ation for
the thread. In addition, the KTHREAD includes the kernel stack (used when the
thread is running in kernel mode) and a pointer to the TEB.

The ETHREAD and the KTHREAD exist entirely in kernel space; this means
that only the kernel can access thern. The TEB is a user-space data structure that
is accessed when the thread is running in user mode. Among other fields, the
TEB contains the thread identifie1~ a user-mode stack, and an array for thread
specific data (which Windows XP terms The structure of
a Windows XP thread is illustrated in Figure 4.13.

4.5.2 Linux Threads

Linux provides the fork() system call with the traditional functionality of
duplicating a process, as described in Chapter 3. Linux also provides the ability
to create threads using the clone() system call. However, Linux does not
distinguish between processes and threads. In fact, Linux generally uses the
term task-rather than process or thread-when referring to a flow of control
within a program.

When clone() is invoked, it is passed a set of flags, which determine how
much sharing is to take place between the parent and child tasks. Some of these
flags are listed below:

flag meaning

CLONE FS - File-system information is shared.

CLONE VM - The same memory space is shared.

CLONE SIGHAND Signal handlers are shared. -

CLONE FILES The set of open files is shared.

For example, if clone() is passed the flags CLONE_FS, CLONE_VM,
CLONE_SIGHAND, and CLONE_FILES, the parent and child tasks will share
the same file-system information (such as the current working directory), the
same memory space, the same signal handlers, and the same set of open files.
Using clone() in this fashion is equivalent to creating a thread as described
in this chapter, since the parent task shares most of its resources with its child
task. However, if none of these flags is set when clone() is invoked, no
sharing takes place, resulting in functionality similar to that provided by the
fork() system call.

The varying level of sharing is possible because of the way a task is
represented in the Linux kernel. A unique kernel data structure (specifically,
struct task_struct) exists for each task in the system. This data structure,
instead of storing data for the task, contains pointers to other data structures
where these data are stored -for example, data structures that represent the list
of open files, signal-handling information, and virtual memory. When fork()
is invoked, a new task is created, along with a copy of all the associated data
structures of the parent process. A new task is also created when the clone()
system call is made. Howevet~ rather than copying all data structures, the new

174 Chapter 4

4.6

task points to the data structures of the parent task, depending on the set of
flags passed to clone().

Several distributions of the Linux kernel now include the NPTL thread
library. NPTL (which stands for Native POSIX Thread Library) provides a
POSIX-compliant thread model for Linux systems along with several other
features, such as better support for SMP systems, as well as taking advantage
of NUMA support. In addition, the start-up cost for creating a thread is
lower with NPTL than with traditional Linux threads. Finally, with NPTL, the
system has the potential to support hundreds of thousands of threads. Such
support becomes more important with the growth of multicore and other SMP
systems.

A thread is a flow of control within a process. A multithreaded process contains
several different flows of control within the same address space. The benefits of
multithreading include increased responsiveness to the use1~ resource sharing
within the process, economy, and scalability issues such as more efficient use
of multiple cores.

User-level threads are threads that are visible to the programmer and are
unknown to the kernel. The operating-system kernel supports and manages
kernel-level threads. In general, user-level threads are faster to create and
manage than are kernel threads, as no intervention from the kernel is required.
Three different types of models relate user and kernel threads: The many-to-one
model maps many user threads to a single kernel thread. The one-to-one model
maps each user thread to a corresponding kernel thread. The many-to-many
model multiplexes many user threads to a smaller or equal number of kernel
threads.

Most modern operating systems provide kernel support for threads; among
these are Windows 98, NT, 2000, and XP, as well as Solaris and Linux.

Thread libraries provide the application programmer with an API for
creating and managing threads. Three primary thread libraries are in com
mon use: POSIX Pthreads, Win32 threads for Windows systems, and Java
threads.

Multithreaded programs introduce many challenges for the programmer,
including the semantics of the fork() and exec() system calls. Other issues
include thread cancellation, signal handling, and thread-specific data.

4.1 Provide two programming examples in which multithreading does not
provide better performance than a single-threaded solution.

4.2 Write a ncultithreaded Java, Pthreads, or Win32 program that outputs
prime numbers. This program should work as follows: The user will
run the program and will enter a number on the command line. The

175

program will then create a separate thread that outputs all the prime
numbers less than or equal to the number entered by the user.

4.3 Which of the following components of program state are shared across
threads in a multithreaded process?

a. Register values

b. Heap memory

c. Global variables

d. Stack memory

4.4 The program shown in Figure 4.14 uses the Pthreads API. What would
be the output from the program at LINE c and LINE P?

#include <pthread.h>
#include <stdio.h>

int value = 0;
void *runner(void *param); I* the thread *I

int main(int argc, char *argv[])
{
int pid;
pthread_t tid;
pthread_attr _ t attr;

}

pid = fork();

if (pid == 0) { I* child process *I
pthread_attr_init(&attr);
pthread_create(&tid,&attr,runner,NULL);
pthread_join(tid,NULL);
printf("CHILD: value= %d",value); I* LINE C *I

}
else if (pid > 0) { I* parent process *I

wait(NULL);
printf("PARENT: value= %d",value); I* LINE P *I

}

void *runner(void *param) {
value = 5;
pthread_exi t (0);

}

Figure 4.14 C program for Exercise 4.4.

176 Chapter 4

4.5 Consider a multiprocessor system and a multithreaded program written
using the many-to-many threading rnodel. Let the number of user-level
threads in the program be more than the number of processors in the
system. Discuss the performance implicatiorts of the following scenarios.

a. The number of kernel threads allocated to the program is less than
the number of processors.

b. The number of kernel threads allocated to the program is equal to
the number of processors.

c. The number of kernel threads allocated to the program is greater
than the number of processors but less than the number of user
level threads.

4.6 What are two differences between user-level threads and kernel-level
threads? Under what circumstances is one type better than the other?

4.7 Exercise 3.16 in Chapter 3 involves designing an echo server using the
Java threading API. However, this server is single-threaded, meaning
that the server cannot respond to concurrent echo clients until the current
client exits. Modify the solution to Exercise 3.16 so that the echo server
services each client in a separate request.

4.8 Modify the socket-based date server (Figure 3.19) in Chapter 3 so that
the server services each client request in a separate thread.

4.9 Can a multithreaded solution using multiple user-level threads achieve
better performance on a multiprocessor system than on a single
processor system? Explain.

4.10 What resources are used when a thread is created? How do they differ
from those used when a process is created?

4.11 Under what circumstances does a multithreaded solution using multi
ple kernel threads provide better performance than a single-threaded
solution on a single-processor system?

4.12 The Fibonacci sequence is the series of numbers 0, 1, 1, 2, 3, 5. 8,
Formally, it can be expressed as:

fib 0 = 0
fih = 1
Jibn = Jibn-1 + Jibn-2

Write a multithreaded program that generates the Fibonacci sequence
using either the Java, Pthreads, or Win32 thread library. This program

177

should work as follows: The user will enter on the command line
the number of Fibonacci numbers that the program~ is to generate.
The program will then create a separate thread that will generate the
Fibonacci numbers, placing the sequence in data that can be shared by
the threads (an array is probably the most convenient data structure).
When the thread finishes execution, the parent thread will output the
sequence generated by the child thread. Because the parent thread cannot
begin outputting the Fibonacci sequence until the child thread finishes,
this will require having the parent thread wait for the child thread to
finish, using the techniques described in Section 4.3.

4.13 A Pthread program that performs the smmnation function was provided
in Section 4.3.1. Rewrite this program in Java.

4.14 As described in Section 4.5.2, Linux does not distinguish between
processes and threads. Instead, Linux treats both in the same way,
allowing a task to be more akin to a process or a thread depending
on the set of flags passed to the clone() system call. However, many
operating systems-such as Windows XP and Solaris-treat processes
and threads differently. Typically, such systems use a notation wherein
the data structure for a process contains pointers to the separate threads
belonging to the process. Contrast these two approaches for modeling
processes and threads within the kernel.

4.15 Describe the actions taken by a thread library to context-switch between
user-level threads.

The set of projects below deal with two distinct topics-naming service and
matrix muliplication.

Project 1: Naming Service Project

A naming service such as DNS (for domain name system) can be used to
resolve IP names to IP addresses. For example, when someone accesses the host
www. westminstercollege. edu, a naming service is used to determine the
IP address that is mapped to the IP name www. westminstercollege. edu.
This assignment consists of writing a multithreaded nan"ling service in Java
using sockets (see Section 3.6.1).

The java. net API provides the following mechanism for resolving IP names:

InetAddress hostAddress =

InetAddress.getByName("www.westminstercollege.edu");
String IPaddress = hostAddress.getHostAddress();

where getByName () throws an UnknownHostException if it is unable to
resolve the host name.

178 Chapter 4

The Server

The server will listen to port 6052 waiting for client connections. When
a client connection is made, the server will service the connection in a separate
thread and will resume listening for additional client connections. Once a
client makes a connection to the server, the client will write the IP name it
wishes the server to resolve-such as www. westminstercollege. edu
to the socket. The server thread will read this IP name from the socket and
either resolve its IP address or, if it cannot locate the host address, catch an
UnknownHostException. The server will write the IP address back to the
client or, in the case of an UnknownHostException, will write the message
"Unable to resolve host <host name>." Once the server has written
to the client, it will close its socket connection.

The Client

Initially, write just the server application and connect to it via telnet.
For example, assuming the server is running on the localhost a telnet session
would appear as follows. (Client responses appear in

telnec localhost 6052

Connected to localhost.
Escape character is 'A]'.

\i~/VV\H "'destrninstercollege. edu
146.86.1.17
Connection closed by foreign host.

By initially having telnet act as a client, you can more easily debug any problems
you may have with your server. Once you are convinced your server is working
properly, you can write a client application. The client will be passed the IP
name that is to be resolved as a parameter. The client will open a socket
connection to the server and then write the IF name that is to be resolved. It
will then read the response sent back by the server. As an example, if the client
is named NSClient, it is invoked as follows:

java NSClient www.westminstercollege.edu

and the server will respond with the corresponding IF address or "unknown
host" message. Once the client has output the IF address, it will close its socket
connection.

Project 2: Matrix Multiplication Project

Given two matrices, A and B, where matrix A contains M rows and K columns
and matrix B contains K rows and N columns, the of A and B
is matrix C, where C contains M rows and N coh.11m1s. The entry in matrix C
for row i, column j (C.j) is the sum of the products of the elements for row i
in matrix A and column j in matrix B. That is,

179

K

C,j = L A;, 11 X Bn,j
11=:1

For example, if A is a 3-by-2 matrix and B is a 2-by-3 m.atrix, element C3,1 is
the sum of A3,1 x B1. 1 and A3,2 x B2,1·

For this project, calculate each element C;,j in a separate worker thread. This
will involve creating M x N worker threads. The main-or parent-thread
will initialize the matrices A and B and allocate sufficient memory for matrix
C, which will hold the product of matrices A and B. These matrices will be
declared as global data so that each worker thread has access to A, B, and C.

Matrices A and B can be initialized statically, as shown below:

#define M 3
#define K 2
#define N 3

int A [M] [K]
int B [K] [N]
int C [M] [N] ;

{ {1,4}, {2,5}, {3,6} };
{ {8,7,6}, {5,4,3} };

Alternatively, they can be populated by reading in values from a file.

Passing Parameters to Each Thread

The parent thread will create M x N worker threads, passing each worker the
values of row i and column j that it is to use in calculating the matrix product.
This requires passing two parameters to each thread. The easiest approach with
Pthreads and Win32 is to create a data structure using a struct. The members
of this structure are i and j, and the structure appears as follows:

I* structure for passing data to threads *I
struct v
{

} ;

int i; I* row *I
int j; I* column *I

Both the Pthreads and Win32 programs will create the worker threads
using a strategy similar to that shown below:

I* We have to create M * N worker threads *I
for (i = 0; i < M, i++)

}

for (j = 0; j < N; j++) {

}

struct v *data= (struct v *) rnalloc(sizeof(struct v));
data->i = i;
data->j = j;
I* Now create the thread passing it data as a parameter *I

180 Chapter 4

public class WorkerThread implements Runnable
{

}

private int row;
private int col;
private int [] [] A;
private int [] [] B;
private int[] [] C;

public WorkerThread(int row, int col, int[] [] A,

}

int [] [] B, int [] [] C) {
this.row =row;
this.col = col;
this.A A;
this.B
this.C

B·
'

C;

public void run() {
I* calculate the matrix product in C [row] [col] *I

}

Figure 4.15 Worker thread in Java.

The data pointer will be passed to either the pthread_create () (Pthreads)
function or the CreateThread () (Win32) function, which in turn will pass it
as a parameter to the function that is to run as a separate thread.

Sharing of data between Java threads is different from sharing between
threads in Pthreads or Win32. One approach is for the main thread to create
and initialize the matrices A, B, and C. This main thread will then create the
worker threads, passing the three matrices-along with row i and column j
to the constructor for each worker. Thus, the outline of a worker thread appears
in Figure 4.15.

Waiting for Threads to Complete

Once all worker threads have completed, the main thread will output the
product contained in matrix C. This requires the main thread to wait for
all worker threads to finish before it can output the value of the matrix
product. Several different strategies can be used to enable a thread to wait
for other threads to finish. Section 4.3 describes how to wait for a child
thread to complete using the Win32, Pthreads, and Java thread libraries.
Win32 provides the Wai tForSingleObj ect () function, whereas Pthreads
and Java use pthread_j oin () and join(), respectively. However, in these
programming examples, the parent thread waits for a single child thread to
finish; completing this exercise will require waiting for multiple threads.

In Section 4.3.2, we describe the Wai tForSingleObj ect () function, which
is used to wait for a single thread to finish. However, the Win32 API also
provides the Wai tForMultipleDbj ects () function, which is used when
waiting for multiple threads to complete. WaitForMultipleObjectsO is
passed four parameters:

#define NUM_THREADS 10

I* an array of threads to be joined upon *I
pthread_t workers[NUM_THREADS];

for (int i = 0; i < NUM_THREADS; i++)
pthread_join(workers[i], NULL);

Figure 4.16 Pthread code for joining ten threads.

The num.ber of objects to wait for

A pointer to the array of objects

A flag indicating if all objects have been signaled

A timeout duration (or INFINITE)

181

For example, if THandles is an array of thread HANDLE objects of size N, the
parent thread can wait for all its child threads to complete with the statement:

WaitForMultipleObjects(N, THandles, TRUE, INFINITE);

A simple strategy for waiting on several threads using the Pthreads
pthread_join() or Java's join() is to enclose the join operation within a
simple for loop. For example, you could join on ten threads using the Pthread
code depicted in Figure 4.16. The equivalent code using Java threads is shown
in Figure 4.17.

final static int NUM_THREADS = 10;

I* an array of threads to be joined upon *I
Thread[] workers = new Thread[NUM_THREADS];

for (int i = 0; i < NUM_THREADS; i++) {
try {

workers [i] . join() ;
} catch (InterruptedException ie) { }

}

Figure 4.17 Java code for joining ten threads.

Threads have had a long evolution, starting as "cheap concurrency" in
programming languages and moving to "lightweight processes", with early
examples that included the Thotll. system (Cheriton et al. [1979]) and the Pilot
system (Redell et al. [1980]). Binding [1985] described moving threads into
the UNIX kernel. Mach (Accetta et al. [1986], Tevanian et al. [1987a]) and V
(Cheriton [1988]) made extensive use of threads, and eventually almost all
major operating systems implemented them in some form or another.

182 Chapter 4

Thread performance issues were discussed by Anderson et al. [1989], who
continued their work in Anderson et al. [1991] by evaluating the performance
of user-level threads with kernel support. Bershad et al. [1990] describe
combining threads with RPC. Engelschall [2000] discusses a technique for
supporting user-level threads. An analysis of an optimal thread-pool size can
be found in Ling et al. [2000]. Scheduler activations were first presented in
Anderson et al. [1991], and Williams [2002] discusses scheduler activations in
the NetBSD system_. Other mechanisms by which the user-level thread library
and the kernel cooperate with each other are discussed in Marsh et al. [1991],
Govindan and Anderson [1991], Draves et al. [1991], and Black [1990]. Zabatta
and Young [1998] compare Windows NT and Solaris threads on a symmetric
multiprocessor. Pinilla and Gill [2003] compare Java thread performance on
Lim1X, Windows, and Solaris.

Vahalia [1996] covers threading in several versions of UNIX. McDougall
and Mauro [2007] describe recent developments in threading the Solaris kernel.
Russinovich and Solomon [2005] discuss threading in the Windows operating
system family. Bovet and Cesati [2006] and Love [2004] explain how Linux
handles threading and Singh [2007] covers threads in Mac OS X.

Information on Pthreads programming is given in Lewis and Berg [1998]
and Butenhof [1997]. Oaks and Wong [1999], Lewis and Berg [2000], and Holub
[2000] discuss multithreading in Java. Goetz et al. [2006] present a detailed
discussion of concurrent programming in Java. Beveridge and Wiener [1997]
and Cohen and Woodring [1997] describe multithreading using Win32.

5.1

CPU scheduling is the basis of multiprogrammed operating systems. By
switching the CPU among processes, the operating system can make the
computer more productive. In this chapter, we introduce basic CPU-scheduling
concepts and present several CPU-scheduling algorithms. We also consider the
problem of selecting an algorithm for a particular system.

In Chapter 4, we introduced threads to the process model. On operating
systems that support them., it is kernel-level threads-not processes-that are
in fact being scheduled by the operating system. However, the terms process
scheduling and thread scheduling are often used interchangeably. In this
chapter, we use process scheduling when discussing general scheduling concepts
and thread scheduling to refer to thread-specific ideas.

To introduce CPU scheduling, which is the basis for multiprogrammed
operating systems.

To describe various CPU-scheduling algorithms.

To discuss evaluation criteria for selecting a CPU-scheduling algorithm for
a particular system.

In a single-processor system, only one process can run at a time; any others
must wait until the CPU is free and can be rescheduled. The objective of
multiprogramming is to have some process rum1ing at all times, to maximize
CPU utilization. The idea is relatively simple. A process is executed until
it must wait, typically for the completion of some I/O request. In a simple
computer system, the CPU then just sits idle. All this waiting time is wasted;
no useful work is accomplished. With multiprogramming, we try to use this
time productively. Several processes are kept in memory at one time. When
one process has to wait, the operating system takes the CPU away from that

183

184 Chapter 5

load store
add store
read from file

wait for 110

store increment
index
write to file

wait for 1/0

load store
add store
read from file

[Wait.tor;l/0

CPU burst

1/0 burst

CPU burst

1/0 burst

CPU burst

1/0 burst

Figure 5.i Alternating sequence of CPU and 1/0 bursts.

process and gives the CPU to another process. This pattern continues. Every
time one process has to wait, another process can take over use of the CPU.

Scheduling of this kind is a fundamental operating-system function.
Almost all computer resources are scheduled before use. The CPU is, of course,
one of the primary computer resources. Thus, its scheduling is central to
operating-system design.

5.1.1 CPU-i/O Burst Cycle

The success of CPU scheduling depends on an observed property of processes:
process execution consists of a cycle of CPU execution and I/0 wait. Processes
alternate between these two states. Process execution begins with a CPU burst.
That is followed by an I/O burst, which is followed by another CPU burst, then
another I/0 burst, and so on. Eventually, the final CPU burst ends with a system
request to terminate execution (Figure 5.1).

The durations of CPU bursts have been measured extensively. Although
they vary greatly from process to process and from computer to compute1~
they tend to have a frequency curve similar to that shown in Figure 5.2. The
curve is generally characterized as exponential or hyperexponential, with a
large number of short CPU bursts and a small number of long CPU bursts.
An I/O-bound program typically has many short CPU bursts. A CPU-bound

5.1 185

160

140

120

>- 100 0
c
aJ
:::l
u 80
~

60

40

20

0 8 16 24 32 40
burst duration (milliseconds)

Figure 5.2 Histogram of CPU-burst durations.

program might have a few long CPU bursts. This distribution can be important
in the selection of an appropriate CPU-scheduling algorithm.

5.1.2 CPU Scheduler

Whenever the CPU becomes idle, the operating system must select one of the
processes in the ready queue to be executed. The selection process is carried
out by the short-term scheduler (or CPU scheduler). The scheduler selects a
process from the processes in memory that are ready to execute and allocates
the CPU to that process.

Note that the ready queue is not necessarily a first-in, first-out (FIFO) queue.
As we shall see when we consider the various scheduling algorithms, a ready
queue can be implen<ented as a FIFO queue, a priority queue, a tree, or sirnply
an unordered linked list. Conceptually, howeve1~ all the processes in the ready
queue are lined up waiting for a chance to run on the CPU. The records in the
queues are generally process control blocks (PCBs) of the processes.

5.1.3 Preemptive Scheduling

CPU-scheduling decisions may take place under the following four circum
stances:

When a process switches from the running state to the waiting state (for
example, as the result of an I/0 request or an invocation of wait for the
termination of one of the child processes)

When a process switches from the numing state to the ready state (for
example, when an interrupt occurs)

186 Chapter 5

When a process switches from the waiting state to the ready state (for
example, at completion of I/0)

When a process terminates

For situations 1 and 4, there is no choice in terms of scheduling. A new process
(if one exists in the ready queue) must be selected for execution. There is a
choice, however, for situations 2 and 3.

When scheduling takes place only under circumstances 1 and 4, we say
that the scheduling scheme is nonpreemptive or cooperative; otherwise, it
is preemptive. Under nonpreemptive scheduling, once the CPU has been
allocated to a process, the process keeps the CPU until it releases the CPU either
by terminating or by switching to the waiting state. This scheduling method
was used by Microsoft Windows 3.x; Windows 95 introduced preemptive
scheduling, and all subsequent versions of Windows operating systems have
used preemptive scheduling. The Mac OS X operating system for the Macintosh
also uses preemptive scheduling; previous versions of the Macintosh operating
system relied on cooperative scheduling. Cooperative scheduling is the only
method that can be used on certain hardware platforms, because it does not
require the special hardware (for example, a timer) needed for preemptive
scheduling.

Unfortunately, preemptive scheduling incurs a cost associated with access
to shared data. Consider the case of two processes that share data. While one
is updating the data, it is preempted so that the second process can run. The
second process then tries to read the data, which are in an inconsistent state. In
such situations, we need new mechanisms to coordinate access to shared data;
we discuss this topic in Chapter 6.

Preemption also affects the design of the operating-system kernel. During
the processing of a system call, the kernel may be busy with an activity on
behalf of a process. Such activities may involve changing important kernel
data (for instance, I/0 queues). What happens if the process is preempted
in the middle of these changes and the kernel (or the device driver) needs
to read or modify the same structure? Chaos ensues. Certain operating sys
tems, including most versions of UNIX, deal with this problem by waiting
either for a system call to com.plete or for an I/O block to take place before
doing a context switch. This scheme ensures that the kernel structure is
simple, since the kernel will not preempt a process while the kernel data
structures are in an inconsistent state. Unfortunately, this kernel-execution
model is a poor one for supportil1g real-time computing and multipro
cessing. These problems, and their solutions, are described i.J.1 Sections 5.5
and 19.5.

Because interrupts can, by definition, occur at any time, and because
they cannot always be ignored by the kernel, the sections of code affected
by interrupts must be guarded from simultaneous use. The operating system
needs to accept interrupts at almost all times; otherwise, input might be lost or
output overwritten. So that these sections of code are not accessed concurrently
by several processes, they disable interrupts at entry and reenable interrupts
at exit. It is important to note that sections of code that disable interrupts do
not occur very often and typically contain few instructions.

5.2

5.2 187

5.1.4 Dispatcher

Another component involved in the CPU-scheduling function is the dispatcher.
The dispatcher is the module that gives control of the CPU to the process selected
by the short-term scheduler. This function involves the following:

Switching context

Switching to user mode

Jumping to the proper location in the user program to restart that program

The dispatcher should be as fast as possible, since it is invoked during every
process switch. The time it takes for the dispatcher to stop one process and
start another running is known as the dispatch latency.

Different CPU-scheduling algorithms have different properties, and the choice
of a particular algorithm may favor one class of processes over another. In
choosing which algorithm to use in a particular situation, we must consider
the properties of the various algorithms.

Many criteria have been suggested for comparing CPU-scheduling algo
rithms. Which characteristics are used for comparison can make a substantial
difference in which algorithm is judged to be best. The criteria include the
following:

CPU utilization. We want to keep the CPU as busy as possible. Concep
tually, CPU utilization can range from 0 to 100 percent. In a real system, it
should range from 40 percent (for a lightly loaded system) to 90 percent
(for a heavily used system).

Throughput. If the CPU is busy executing processes, then work is being
done. One measure of work is the number of processes that are completed
per time unit, called throughput. For long processes, this rate may be one
process per hour; for short transactions, it may be ten processes per second.

Turnaround time. From the point of view of a particular process, the
important criterion is how long it takes to execute that process. The interval
from the time of submission of a process to the time of completion is the
turnaround time. Turnaround tim.e is the sum of the periods spent waiting
to get into memory, waiting in the ready queue, executing on the CPU, and
doing I/0.

Waiting time. The CPU-scheduling algorithm does not affect the amount
of time during which a process executes or does I/0; it affects only the
an1.ount of time that a process spends waiting in the ready queue. Waiting
time is the sum of the periods spent waiting in the ready queue.

Response time. In an interactive system, turnaround time may not be
the best criterion. Often, a process can produce some output fairly early
and can continue computing new results while previous results are being

188 Chapter 5

5.3

output to the user. Thus, another measure is the time from the submission
of a request until the first response is produced. This measure, called
response time, is the tince it takes to start responding, not the time it takes
to output the response. The turnaround time is generally limited by the
speed of the output device.

It is desirable to maximize CPU utilization and throughput and to minirnize
turnaround time, waiting time, and response time. In most cases, we optimize
the average measure. However, under some circumstances, it is desirable
to optimize the minimum or maximum values rather than the average. For
example, to guarantee that all users get good service, we may want to minirnize
the maximum response time.

Investigators have suggested that, for interactive systems (such as time
sharing systerns), it is more important to minimize the variance in the response
time than to minimize the average response time. A system with reasonable
and predictable response time may be considered more desirable than a system
that is faster on the average but is highly variable. Howeve1~ little work has
been done on CPU-scheduling algorithms that minimize variance.

As we discuss various CPU-scheduling algorithms in the following section,
we illustrate their operation. An accurate illustration should involve many
processes, each a sequence of several hundred CPU bursts and I/O bursts.
For simplicity, though, we consider only one CPU burst (in milliseconds) per
process in our examples. Our measure of comparison is the average waiting
time. More elaborate evaluation mechanisms are discussed in Section 5.7.

CPU scheduling deals with the problem of deciding which of the processes in the
ready queue is to be allocated the CPU. There are many different CPU-scheduling
algorithms. In this section, we describe several of them.

5.3.1 First-Come, First-Served Scheduling

By far the simplest CPU-scheduling algorithm is the first-come, first-served
(FCFS) scheduling algorithm. With this scheme, the process that requests the
CPU first is allocated the CPU first. The implementation of the FCFS policy is
easily managed with a FIFO queue. When a process enters the ready queue, its
PCB is linked onto the tail of the queue. When the CPU is free, it is allocated to
the process at the head of the queue. The running process is then removed from
the queue. The code for FCFS scheduling is simple to write and understand.

On the negative side, the average waiting time under the FCFS policy is
often quite long. Consider the following set of processes that arrive at time 0,
with the length of the CPU burst given in milliseconds:

Process Burst Time

p] 24
p2 3
Po

:) 3

5.3 189

If the processes ani ve in the order P1, P2, P3, and are served in FCFS order,
we get the result shown in the following Gantt chart, which is a bar chart that
illustrates a particular schedule, including the start and finish times of each of
the participating processes:

0 24 27 30

The waiting time is 0 milliseconds for process P1, 24 milliseconds for process
P2 , and 27 milliseconds for process P3 . Thus, the average waiting time is (0
+ 24 + 27)/3 = 17 ncilliseconds. If the processes arrive in the order P2, P3 , P1,

however, the results will be as shown in the following Gantt chart:

0 3 6 30

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction
is substantial. Thus, the average waiting time under an FCFS policy is generally
not minimal and may vary substantially if the processes CPU burst times vary
greatly.

In addition, consider the performance of FCFS scheduling in a dynamic
situation. Assume we have one CPU-bound process and many I/O-bound
processes. As the processes flow armmd the system, the following scenario
may result. The CPU-bound process will get and hold the CPU. During this
time, all the other processes will finish their I/0 and will move into the ready
queue, waiting for the CPU. While the processes wait in the ready queue, the
I/0 devices are idle. Eventually, the CPU-bound process finishes its CPU burst
and moves to an I/0 device. All the I/O-bound processes, which have short
CPU bursts, execute quickly and move back to the I/0 queues. At this point,
the CPU sits idle. The CPU-bound process will then move back to the ready
queue and be allocated the CPU. Again, all the I/0 processes end up waiting in
the ready queue until the CPU-bound process is done. There is a convoy effect
as all the other processes wait for the one big process to get off the CPU. This
effect results in lower CPU and device utilization than might be possible if the
shorter processes were allowed to go first.

Note also that the FCFS scheduling algorithm is nonpreemptive. Once the
CPU has been allocated to a process, that process keeps the CPU until it releases
the CPU, either by terminating or by requesting I/0. The FCFS algorithm is thus
particularly troublesome for time-sharing systems, where it is important that
each user get a share of the CPU at regular intervals. It would be disastrous to
allow one process to keep the CPU for an extended period.

5.3.2 Shortest-Job-First Scheduling

A different approach to CPU scheduling is the shortest-job-first (SJF) schedul
ing algorithm. This algorithm associates with each process the length of the
process's next CPU burst. When the CPU is available, it is assigned to the process

190 Chapter 5

that has the smallest next CPU burst. If the next CPU bursts of two processes are
the same, FCFS scheduling is used to break the tie. Note that a more appropriate
term for this scheduling method would be the shortest-next-CPU-burst algorithm,
because scheduling depends on the length of the next CPU burst of a process,
rather than its total length. We use the term SJF because m.ost people and
textbooks use this term to refer to this type of scheduling.

As an example of SJF scheduling, consider the following set of processes,
with the length of the CPU burst given in milliseconds:

Process Burst Time

pl 6
p2 8
p3 7
p4 3

Using SJF scheduling, we would schedule these processes according to the
following Gantt chart:

0 3 9 16 24

The waiting time is 3 milliseconds for process P1, 16 milliseconds for process
P2, 9 milliseconds for process P3, and 0 milliseconds for process P4 . Thus, the
average waiting time is (3 + 16 + 9 + 0) I 4 = 7 milliseconds. By comparison, if
we were using the FCFS scheduling scheme, the average waiting time would
be 10.25 milliseconds.

The SJF scheduling algorithm is provably optimal, in that it gives the
minimum average waiting time for a given set of processes. Moving a short
process before a long one decreases the waiting time of the short process more
than it increases the waiting time of the long process. Consequently, the average
waiting time decreases.

The real difficulty with the SJF algorithm is knowing the length of the next
CPU request. For long-term (job) scheduling in a batch system, we can use as
the length the process time limit that a user specifies when he submits the
job. Thus, users are motivated to estimate the process time limit accurately,
since a lower value may mean faster response. (Too low a value will cause
a time-limit-exceeded error and require resubmission.) SJF scheduling is used
frequently in long-term scheduling.

Although the SJF algorithm is optimal, it cannot be implemented at the level
of short-term CPU scheduling. With short-term scheduling, there is no way to
know the length of the next CPU burst. One approach is to try to approximate
SJF scheduling. We may not know the length of the next CPU burst, but we may
be able to predict its value. We expect that the next CPU burst will be similar
in length to the previous ones. By computing an approximation of the length
of the next CPU burst, we can pick the process with the shortest predicted CPU

burst.

5.3 191

The next CPU burst is generally predicted as an exponential average of
the measured lengths of previous CPU bursts. We can define the exponential
average with the following formula. Let t 11 be the length of the nth CPU burst,
and let T11+t be our predicted value for the next CPU burst. Then, for a, 0 :s a <
1, define

The value of tn contains our most recent information; T11 stores the past history.
The parameter a controls the relative weight of recent and past history in
our prediction. If a= 0, then Tn+l = T11, and recent history has no effect (current
conditions are assumed to be transient). If a= 1, then Tn+l = t11 , and only the most
recent CPU burst matters (history is assumed to be old and irrelevant). More
commonly, a= 1/2, so recent history and past history are equally weighted.
The initial To can be defined as a constant or as an overall system average.
Figure 5.3 shows an exponential average with a= 1/2 and To= 10.

To Lmderstand the behavior of the exponential average, we can expand the
formula for Tn+l by substituting for T 11 , to find

) j JJ ' 1
Tn+l = atn + (1 - a atn-1 + · · · + (1- a) atn-j + · · · + (1- a) 'To.

Since both a and (1 - a) are less than or equal to 1, each successive term has
less weight than its predecessor.

The SJF algorithm can be either preemptive or nonpreemptive. The choice
arises when a new process arrives at the ready queue while a previous process is
still executing. The next CPU burst of the newly arrived process may be shorter

time---+

CPU burst (f) 6 4 6 4 13 13 13

"guess" (T;) 10 8 6 6 5 9 1 1 12

Figure 5.3 Prediction of the length of the next CPU burst.

192 Chapter 5

than what is left of the currently executing process. A preemptive SJF algorithm
will preempt the currently executing process, whereas a nonpreemptive SJF
algorithm will allow the currently running process to finish its CPU burst.
Preemptive SJF scheduling is sometimes called shortest-remaining-time-first
scheduling.

As an example, consider the following four processes, with the length of
the CPU burst given in milliseconds:

Process Arrival Time Burst Time

pl 0 8
p2 1 4
p3 2 9
p4 3 5

If the processes arrive at the ready queue at the times shown and need the
indicated burst times, then the resulting preemptive SJF schedule is as depicted
in the following Gantt chart:

0 5 10 17 26

Process P1 is started at time 0, since it is the only process in the queue. Process
P2 arrives at time 1. The remaining time for process P1 (7 milliseconds) is
larger than the time required by process P2 (4 milliseconds), so process P1 is
preempted, and process P2 is scheduled. The average waiting time for this
example is [(10- 1) + (1 - 1) + (17- 2) +(5-3)]/ 4 = 26/4 = 6.5 milliseconds.
Nonpreemptive SJF scheduling would result in an average waiting time of 7.75
milliseconds.

5.3.3 Priority Scheduling

The SJF algorithm is a special case of the general priority scheduling algorithm.
A priority is associated with each process, and the CPU is allocated to the process
with the highest priority. Equal-priority processes are scheduled in FCFS order.
An SJF algorithm is simply a priority algorithm where the priority (p) is the
inverse of the (predicted) next CPU burst. The larger the CPU burst, the lower
the priority, and vice versa.

Note that we discuss scheduling in terms of high priority and low priority.
Priorities are generally indicated by some fixed range of numbers, such as 0
to 7 or 0 to 4,095. However, there is no general agreement on whether 0 is the
highest or lowest priority. Some systems use low numbers to represent low
priority; others use low numbers for high priority. This difference can lead to
confusion. In this text, we assume that low numbers represent high priority.

As an example, consider the following set of processes, assumed to have
arrived at time 0 in the order P1, P2, · · ·, Ps, with the length of the CPU burst
given in milliseconds:

5.3 193

Process Burst Time ~[~()rity

pl 10 ,.,
0

p2 1 1
p3 2 4
p4 1 5
Ps 5 2

Using priority scheduling, we would schedule these processes according to the
following Gantt chart:

0 6 16 18 19

The average waiting time is 8.2 milliseconds.
Priorities can be defined either internally or externally. Internally defined

priorities use some nceasurable quantity or quantities to compute the priority
of a process. For example, time limits, memory requirements, the number of
open files, and the ratio of average I/0 burst to average CPU burst have been
used in computing priorities. External priorities are set by criteria outside the
operating system, such as the importance of the process, the type and amount
of funds being paid for computer use, the department sponsoring the work,
and other, often politicat factors.

Priority scheduling can be either preemptive or nonpreemptive. When a
process arrives at the ready queue, its priority is compared with the priority
of the currently running process. A preemptive priority scheduling algorithm
will preempt the CPU if the priority of the newly arrived process is higher
than the priority of the currently running process. A nonpreemptive priority
scheduling algorithm will simply put the new process at the head of the ready
queue.

A rnajor problem with priority scheduling algorithms is indefinite block
ing, or starvation. A process that is ready to run but waiting for the CPU can
be considered blocked. A priority scheduling algorithm can leave some low
priority processes waiting indefinitely. In a heavily loaded computer system, a
steady stream of higher-priority processes can prevent a low-priority process
from ever getting the CPU. Generally, one of two things will happen. Either the
process will eventually be run (at 2 A.M. Sunday, when the system is finally
lightly loaded), or the cornputer systern will eventually crash and lose all
unfinished low-priority processes. (Rumor has it that when they shut down
the IBM 7094 at MIT in 1973, they found a low-priority process that had been
submitted in 1967 and had not yet been run.)

A solution to the problem of indefinite blockage of low-priority processes
is aging. Aging is a techniqtJe of gradually increasing the priority of processes
that wait in the system for a long time. For example, if priorities range from
127 (low) to 0 (high), we could increase the priority of a waiting process by
1 every 15 minutes. Eventually, even a process with an initial priority of 127
would have the highest priority in the system and would be executed. In fact,
it would take no more than 32 hours for a priority-127 process to age to a
priority-0 process.

194 Chapter 5

5.3.4 Round-Robin Scheduling

The round-robin (RR) scheduling algorithm is designed especially for time
sharing systems. It is similar to FCFS scheduling, but preemption is added to
enable the system to switch between processes. A small unit of time, called a
time quantum or time slice, is defined. A time quantum is generally fronc 10
to 100 milliseconds in length. The ready queue is treated as a circular queue.
The CPU scheduler goes around the ready queue, allocating the CPU to each
process for a time interval of up to 1 time quantum.

To implement RR scheduling, we keep the ready queue as a FIFO queue o£
processes. New processes are added to the tail of the ready queue. The CPU
scheduler picks the first process from the ready queue, sets a timer to interrupt
after 1 time quantum, and dispatches the process.

One of two things will then happen. The process may have a CPU burst of
less than 1 time quantum. In this case, the process itself will release the CPU
voluntarily. The scheduler will then proceed to the next process in the ready
queue. Otherwise, if the CPU burst of the currently running process is longer
than 1 time quantum, the timer will go off and will cause an interrupt to the
operating system. A context switch will be executed, and the process will be
put at the tail o£ the ready queue. The CPU scheduler will then select the next
process in the ready queue.

The average waiting time under the RR policy is often long. Consider the
following set of processes that arrive at time 0, with the length of the CPU burst
given in milliseconds:

Process Burst Time

If we use a time quantum of 4 milliseconds, then process P1 gets the first 4
milliseconds. Since it requires another 20 milliseconds, it is preempted after
the first time quantum, and the CPU is given to the next process in the queue,
process P2 . Process P2 does not need 4 milliseconds, so it quits before its time
quantum expires. The CPU is then given to the next process, process P3. Once
each process has received 1 time quantum, the CPU is returned to process P1

for an additional time quantum. The resulting RR schedule is as follows:

0 4 7 10 14 18 22 26 30

Let's calculate the average waiting time for the above schedule. P1 waits for 6
millisconds (10- 4), P2 waits for 4 millisconds, and P3 waits for 7 millisconds.
Thus, the average waiting time is 17/3 = 5.66 milliseconds.

In the RR scheduling algorithm, no process is allocated the CPU for more
than 1 time quantum in a row (unless it is the only runnable process). If a

5.3 195

process's CPU burst exceeds 1 time quantum, that process is preempted and is
p11t back in the ready queue. The RR scheduling algorithm is thus preemptive.

If there are n. processes in the ready queue and the time quantum is q,
then each process gets 1 In of the CPU time in chunks of at most q time units.
Each process must wait no longer than (11 - 1) x q time units until its
next time quantum. For example, with five processes and a time quantum of 20
milliseconds, each process will get up to 20 milliseconds every 100 milliseconds.

The performance of the RR algorithm depends heavily on the size of the
time quantum. At one extreme, if the time quantum is extremely large, the
RR policy is the same as the FCFS policy. In contrast, if the time quantum
is extremely small (say, 1 millisecond), the RR approach is called processor
sharing and (in theory) creates the appearance that each of 11 processes has its
own processor running at 1 I 11 the speed of the real processor. This approach
was used in Control Data Corporation (CDC) hardware to implement ten
peripheral processors with only one set of hardware and ten sets of registers.
The hardware executes one instruction for one set of registers, then goes on to
the next. This cycle continues, resulting in ten slow processors rather than one
fast one. (Actually, since the processor was much faster than memory and each
instruction referenced memory, the processors were not much slower than ten
real processors would have been.)

In software, we need also to consider the effect of context switching on the
performance of RR scheduling. Assume, for example, that we have only one
process of 10 time units. If the quantum is 12 time units, the process finishes
in. less than 1 time quantum, with no overhead. If the quantum is 6 time units,
however, the process requires 2 quanta, resulting in a context switch. If the
time quantum is 1 time unit, then nine context switches will occur, slowing the
execution of the process accordingly (Figure 5.4).

Thus, we want the time quantum to be large with respect to the context
switch time. If the context-switch time is approximately 10 percent of the
time quantum, then about 10 percent of the CPU time will be spent in context
switching. In practice, most modern systems have time quanta ranging from
10 to 100 milliseconds. The time required for a context switch is typically less
than 10 microseconds; thus, the context-switch time is a small fraction of the
time quantum.

process time = 10 quantum context
switches

12 0

0 10

6

0 6 10

r.r >r-.· ... r •. ·r .•. ·-···.r· r-···-lr·-··-r··•··r 9

0 2 3 4 5 6 7 8 9 10

Figure 5.4 How a smaller time quantum increases context switches.

196 Chapter 5

process time

12.5
.P1 6

12.0 Pz 3
p3 1

Q)

11.5 P4. 7 E
·.;::;

"0
c 11.0
::J
0
(a

10.5 E
.2
Q) 10.0 en
~
Q)

> 9.5
C1l

9.0

2 3 4 5 6 7

time quantum

Figure 5.5 How turnaround time varies with the time quantum.

Turnaround time also depends on the size of the time quantum. As we
can see from Figure 5.5, the average turnaround time of a set of processes
does not necessarily improve as the time-quantum size increases. In general,
the average turnaround time can be improved if most processes finish their
next CPU burst in a single time quantum. For example, given three processes
of 10 time units each and a quantum of 1 time unit, the average turnaround
time is 29. If the time quantum is 10, however, the average turnaround time
drops to 20. If context-switch time is added in, the average turnaround time
increases even more for a smaller time quantum, since more context switches
are required.

Although the time quantum should be large compared with the context
switch time, it should not be too large. If the time quantum is too large, RR
scheduling degenerates to an FCFS policy. A rule of thumb is that 80 percent of
the CPU bursts should be shorter than the time quantum.

5.3.5 Multilevel Queue Scheduling

Another class of scheduling algorithms has been created for situations in
which processes are easily classified into different groups. For example, a
common division is made between foreground (interactive) processes and
background (batch) processes. These two types of processes have different
response-time requirements and so may have different scheduling needs. In
addition, foreground processes may have priority (externally defined) over
background processes.

A multilevel queue scheduling algorithm partitions the ready queue into
several separate queues (Figure 5.6). The processes are permanently assigned to
one queue, generally based on some property of the process, such as memory

5.3 197

highest priority

====~'-------'i-'-n_te_r~ac_t_iv_e_e...:.d_it~in_g'-'-p~r-.o'-c_·e'---ss~e-s"--------"--'-'---l====i>

======~'---------'b_a_tc_h_p_r_o_ce_s_s_e_s ______ _J======~>

======·~'-------s_tu_d_e_n_t_p_ro_c_e_s_s_es _____ __jl======i>

lowest priority

Figure 5.6 Multilevel queue scheduling.

size, process priority, or process type. Each queue has its own scheduling
algorithm. For example, separate queues might be used for foreground and
background processes. The foreground queue might be scheduled by an RR
algorithm, while the background queue is scheduled by an FCFS algorithm.

In addition, there must be scheduling among the queues, which is com
monly implemented as fixed-priority preemptive scheduling. For example, the
foreground queue may have absolute priority over the background queue.

Let's look at an example of a multilevel queue scheduling algorithm with
five queues, listed below in order of priority:

System processes

Interactive processes

Interactive editing processes

Batch processes

Student processes

Each queue has absolute priority over lower-priority queues. No process in the
batch queue, for example, could run unless the queues for system processes,
interactive processes, and interactive editing processes were all empty. If an
interactive editing process entered the ready queue while a batch process was
running, the batch process would be preempted.

Another possibility is to time-slice among the queues. Here, each queue gets
a certain portion of the CPU time, which it can then schedule among its various
processes. For instance, in the foreground-background queue example, the
foreground queue can be given 80 percent of the CPU time for RR scheduling
among its processes, whereas the background queue receives 20 percent of the
CPU to give to its processes on an FCFS basis.

198 Chapter 5

5.3.6 Multilevel Feedback Queue Scheduling

Normally, when the multilevel queue scheduling algorithm is used, processes
are permanently assigned to a queue when they enter the system. If there
are separate queues for foreground and background processes, for example,
processes do not move from one queue to the other, since processes do not
change their foreground or background nature. This setup has the advantage
of low scheduling overhead, but it is inflexible.

The multilevel feedback queue scheduling algorithm, in contrast, allows
a process to move between queues. The idea is to separate processes according
to the characteristics of their CPU bursts. If a process uses too much CPU time,
it will be moved to a lower-priority queue. This scheme leaves I/O-bound and
interactive processes in the higher-priority queues. In addition, a process that
waits too long in a lower-priority queue may be moved to a higher-priority
queue. This form of aging prevents starvation.

For example, consider a multilevel feedback queue scheduler with three
queues, numbered from 0 to 2 (Figure 5.7). The scheduler first executes all
processes in queue 0. Only when queue 0 is empty will it execute processes
in queue 1. Similarly, processes in queue 2 will only be executed if queues 0
and 1 are empty. A process that arrives for queue 1 will preempt a process in
queue 2. A process in queue 1 will in turn be preempted by a process arriving
for queue 0.

A process entering the ready queue is put in queue 0. A process in queue 0
is given a time quantum of 8 milliseconds. If it does not filcish within this time,
it is moved to the tail of queue 1. If queue 0 is empty, the process at the head
of queue 1 is given a quantum of 16 milliseconds. If it does not complete, it is
preempted and is put into queue 2. Processes in queue 2 are run on an FCFS
basis but are run only when queues 0 and 1 are empty.

This scheduling algorithm gives highest priority to any process with a CPU
burst of 8 milliseconds or less. Such a process will quickly get the CPU, finish
its CPU burst, and go off to its next I/0 burst. Processes that need more than
8 but less than 24 milliseconds are also served quickly, although with lower
priority than shorter processes. Long processes automatically sink to queue
2 and are served in FCFS order with any CPU cycles left over from queues 0
and 1.

Figure 5.7 Multilevel feedback queues.

5.4

5.4 199

In general, a multilevel feedback queue scheduler is defined by the
following parameters:

The number of queues

The scheduling algorithm for each queue

The method used to determine when to upgrade a process to a higher
priority queue

The method used to determine when to demote a process to a lower
priority queue

The method used to determine which queue a process will enter when that
process needs service

The definition of a multilevel feedback queue scheduler makes it the most
general CPU-scheduling algorithm. It can be configured to match a specific
system under design. Unfortunately, it is also the most complex algorithm,
since defining the best scheduler requires some means by which to select
values for all the parameters.

In Chapter 4, we introduced threads to the process model, distinguishing
between user-level and kernel-level threads. On operating systems that support
them, it is kernel-level threads-not processes-that are being scheduled by
the operating system. User-level threads are managed by a thread library,
and the kernel is unaware of them. To run on a CPU, user-level threads
must ultimately be mapped to an associated kernel-level thread, although
this mapping may be indirect and may use a lightweight process (LWP). In this
section, we explore scheduling issues involving user-level and kernel-level
threads and offer specific examples of scheduling for Pthreads.

5.4.1 Contention Scope

One distinction between user-level and kernel-level threads lies in how they
are scheduled. On systems implementing the many-to-one (Section 4.2.1) and
many-to-many (Section 4.2.3) models, the thread library schedules user-level
threads to run on an available LWP, a scheme known as process-contention
scope (PCS), since competition for the CPU takes place among threads belonging
to the same process. When we say the thread library schedules user threads onto
available LWPs, we do not mean that the thread is actually running on a CPU;
this would require the operating system to schedule the kernel thread onto
a physical CPU. To decide which kernel thread to schedule onto a CPU, the
kernel uses system-contention scope (SCS). Competition for the CPU with SCS
scheduling takes place among all threads in the system. Systems usilcg the
one-to-one model (Section 4.2.2), such as Windows XP, Solaris, and Linux,
schedule threads using only SCS.

Typically, PCS is done according to priority-the scheduler selects the
runnable thread with the highest priority to run. User-level thread priorities

200 Chapter 5

5.5

are set by the programmer and are not adjusted by the thread library, although
some thread libraries may allow the programmer to change the priority of
a thread. It is important to note that PCS will typically preempt the thread
currently running in favor of a higher-priority thread; however, there is no
guarantee of time slicing (Section 5.3.4) among threads of equal priority.

5.4.2 Pthread Scheduling

We provided a sample POSTX Pthread program in Section 4.3.1, along with an
introduction to thread creation with Pthreads. Now, we highlight the POSIX
Pthread API that allows specifying either PCS or SCS during thread creation.
Pthreads identifies the following contention scope values:

PTHREAD_SCOPE_PROCESS schedules threads using PCS scheduling.

PTHREAD_SCOPE_SYSTEM schedules threads using SCS scheduling.

On systems implementing the many-to-many model, the
PTHREAD_SCOPE_PROCESS policy schedules user-level threads onto available
LWPs. The number of LWPs is maintained by the thread library, perhaps using
scheduler activations (Section 4.4.6). The PTHREAD_SCOPE_SYSTEM scheduling
policy will create and bind an LWP for each user-level thread on many-to-many
systems, effectively mapping threads using the one-to-one policy.

The Pthread IPC provides two functions for getting-and setting-the
contention scope policy:

pthread_attr_setscope(pthread_attr_t *attr, int scope)

pthread_attr_getscope(pthread_attr_t *attr, int *scope)

The first parameter for both functions contains a pointer to the attribute set for
the thread. The second parameter for the pthread_attr_setscope () function
is passed either the PTHREAD_SCOPE_SYSTEM or the PTHREAD_SCOPE_PROCESS
value, indicating how the contention scope is to be set. In the case of
pthread_attr_getscope (), this second parameter contaiilS a pointer to an
int value that is set to the current value of the contention scope. If an error
occurs, each of these functions returns a non-zero value.

In Figure 5.8, we illustrate a Pthread scheduling API. The pro
gram first determines the existing contention scope and sets it to
PTHREAD_SCOPLPROCESS. It then creates five separate threads that will
run using the SCS scheduling policy. Note that on some systems, only certain
contention scope values are allowed. For example, Linux and Mac OS X
systems allow only PTHREAD_SCOPE_SYSTEM.

Our discussion thus far has focused on the problems of scheduling the CPU in
a system with a single processor. If multiple CPUs are available, load sharing
becomes possible; however, the scheduling problem becomes correspondingly

505

#include <pthreadoh>
#include <stdiooh>
#define NUM_THREADS 5

int main(int argc, char *argv[])
{

}

int i, scope;
pthread_t tid[NUM_THREADS];
pthread_attr_t attr;

I* get the default attributes *I
pthread_attr_init(&attr);

I* first inquire on the current scope *I
if (pthread_attr_getscope(&attr, &scope) != 0)

fprintf(stderr, "Unable to get scheduling scope\n");
else {

}

if (scope == PTHREAD_SCOPE_PROCESS)
printf("PTHREAD_SCOPLPROCESS");

else if (scope == PTHREAD_SCOPE_SYSTEM)
printf("PTHREAD_SCOPE_SYSTEM");

else
fprintf(stderr, "Illegal scope valueo\n");

I* set the scheduling algorithm to PCS or SCS *I
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

I* create the threads *I
for (i = 0; i < NUM_THREADS; i++)

pthread_create(&tid[i] ,&attr,runner,NULL);

I* now join on each thread *I
for (i = 0; i < NUM_THREADS; i++)

pthread_join(tid[i], NULL);

I* Each thread will begin control in this function *I
void *runner(void *param)
{

I* do some work 0 0 0 *I

pthread_exi t (0) ;
}

Figure 508 Pthread scheduling API.

201

more complex. Many possibilities have been tried; and as we saw with single
processor CPU scheduling, there is no one best solution. Here, we discuss
several concerns in multiprocessor scheduling. We concentrate on systems

202 Chapter 5

in which the processors are identical-homogeneous-in terms of their
functionality; we can then use any available processor to run any process
in the queue. (Note, however, that even with homogeneous multiprocessors,
there are sometimes limitations on scheduling. Consider a system with an l/0
device attached to a private bus of one processor. Processes that wish to use
that device must be scheduled to run on that processor.)

5.5.1 Approaches to Multiple-Processor Scheduling

One approach to CPU scheduling in a n1.ultiprocessor system has all scheduling
decisions, I/O processing, and other system activities handled by a single
processor-the master server. The other processors execute only user code.
This asymmetric multiprocessing is simple because only one processor
accesses the system data structures, reducing the need for data sharing.

A second approach uses symmetric multiprocessing (SMP), where each
processor is self-scheduling. All processes may be in a common ready queue, or
each processor may have its own private queue of ready processes. Regardless,
scheduling proceeds by having the scheduler for each processor examine the
ready queue and select a process to execute. As we shall see in Chapter 61

if we have multiple processors trying to access and update a common data
structure, the scheduler must be programmed carefully. We must ensure that
two processors do not choose the same process and that processes are not lost
from the queue. Virtually all modern operating systems support SMP, including
Windows XP, Windows 2000, Solaris, Linux, and Mac OS X. In the remainder of
this section, we discuss issues concerning SMP systems.

5.5.2 Processor Affinity

Consider what happens to cache memory when a process has been running on
a specific processor. The data most recently accessed by the process populate
the cache for the processor; and as a result, successive memory accesses by
the process are often satisfied in cache memory. Now consider what happens
if the process migrates to another processor. The contents of cache memory
must be invalidated for the first processor, and the cache for the second
processor must be repopulated. Because of the high cost of invalidating and
repopulating caches, most SMP systems try to avoid migration of processes
from one processor to another and instead attempt to keep a process rumung
on the same processor. This is known as processor affinity-that is, a process
has an affinity for the processor on which it is currently rumting.

Processor affinity takes several forms. When an operating system has a
policy of attempting to keep a process running on the same processor-but
not guaranteeing that it will do so-we have a situation known as soft affinity.
Here, it is possible for a process to migrate between processors. Some systems
-such as Lim.IX -also provide system calls that support hard affinity, thereby
allowing a process to specify that it is not to migrate to other processors. Solaris
allows processes to be assigned to limiting which processes can
run on which CPUs. It also implements soft affinity.

The main-memory architecture of a system can affect processor affinity
issues. Figure 5.9 illustrates an architecture featuring non-uniform memory
access (NUMA), in which a CPU has faster access to some parts of main memory
than to other parts. Typically, this occurs in systems containing combined CPU

5.5 203

computer

Figure 5.9 NUMA and CPU scheduling.

and memory boards. The CPUs on a board can access the memory on that board
with less delay than they can access memory on other boards in the system.
If the operating system's CPU scheduler and memory-placement algorithms
work together, then a process that is assigned affinity to a particular CPU
can be allocated memory on the board where that CPU resides. This example
also shows that operating systems are frequently not as cleanly defined and
implemented as described in operating-system textbooks. Rather, the "solid
lines" between sections of an operating system are frequently only "dotted
lines," with algorithms creating connections in ways aimed at optimizing
performance and reliability.

5.5.3 Load Balancing

On SMP systems, it is important to keep the workload balanced among all
processors to fully utilize the benefits of having more than one processor.
Otherwise, one or more processors may sit idle while other processors have
high workloads, along with lists of processes awaiting the CPU. Load balancing
attempts to keep the workload evenly distributed across all processors in
an SMP system. It is important to note that load balancing is typically only
necessary on systems where each processor has its own private queue of eligible
processes to execute. On systems with a common run queue, load balancing
is often unnecessary, because once a processor becomes idle, it immediately
extracts a rmmable process from the common run queue. It is also important to
note, howeve1~ that in most contemporary operating systems supporting SMP,
each processor does have a private queue of eligible processes.

There are two general approaches to load balancing: push migration and
pull migration. With push migration, a specific task periodically checks the
load on each processor and -if it finds an imbalance-evenly distributes the
load by moving (or pushing) processes from overloaded to idle or less-busy
processors. Pull migration occurs when an idle processor pulls a waiting task
from a busy processor. Push and pull migration need not be mutually exclusive
and are in fact often implemented in parallel on load-balancing systems. For
example, the Linux scheduler (described in Section 5.6.3) and the ULE scheduler

204 Chapter 5

available for FreeBSD systems implement both techniqL1es. Linux runs its load
balancing algorithm every 200 milliseconds (push migration) or whenever the
run queue for a processor is empty (pull migration).

Interestingly, load balancing often counteracts the benefits of processor
affinity, discussed in Section 5.5.2. That is, the benefit of keeping a process
running on the same processor is that the process can take advantage of its data
being in that processor's cache memory. Either pulling or pushing a process
from one processor to another invalidates this benefit. As is often the case
in systems engineering, there is no absolute rule concerning what policy is
best. Thus, in some systems, an idle processor always pulls a process from
a non-idle processor; and in other systems, processes are moved only if the
imbalance exceeds a certain threshold.

5.5.4 Multicore Processors

Traditionally, SMP systems have allowed several threads to run concurrently by
providing multiple physical processors. However, a recent trend in computer
hardware has been to place multiple processor cores on the same physical chip,
resulting in a . Each core has a register set to maintain its
architectural state and appears to the operating system to be a separate
physical processor. SMP systems that use multicore processors are faster and
consume less power than systems in which each processor has its own physical
chip.

Multicore processors may complicate scheduling issues. Let's consider how
this can happen. Researchers have discovered that when a processor accesses
memory, it spends a significant amount of time waiting for the data to become
available. This situation, known as a may occur for various
reasons, such as a cache miss (accessing data that is not in cache memory).
Figure 5.10 illustrates a memory stall. In this scenario, the processor can spend
up to 50 percent of its time waiting for data to become available from memory.
To remedy this situation, many recent hardware designs have implemented
multithreaded processor cores in which two (or more) hardware threads are
assigned to each core. That way, if one thread stalls while waiting for memory,
the core can switch to another thread. Figure 5.11 illustrates a dual-threaded
processor core on which the execution of thread 0 and the execution of thread 1
are interleaved. From an operating-system perspective, each hardware thread
appears as a logical processor that is available to run a software thread. Thus,
on a dual-threaded, dual-core system, four logical processors are presented to
the operating system. The UltraSPARC Tl CPU has eight cores per chip and four

0 compute cycle ~memory stall cycle

thread c M c M c M c M

time

Figure 5.10 Memory stall.

5.5 205

thread1 c M c M c M c

thread0 c M c M c M c

time

Figure 5.11 Multithreaded multicore system.

hardware threads per core; from the perspective of the operating system, there
appear to be 32 logical processors.

In general, there are two ways to multithread a processor: ~__u.,u."·c-).;u:•cHccu
multithreading. With coarse-grained multithreading, a thread

executes on a processor until a long-latency event such as a memory stall occurs.
Because of the delay caused by the long-latency event, the processor must
switch to another thread to begin execution. However, the cost of switching
between threads is high, as the instruction pipeline must be flushed before
the other thread can begin execution on the processor core. Once this new
thread begins execution, it begins filling the pipeline with its instructions.
Fine-grained (or interleaved) multithreading switches between threads at a
much finer level of granularity-typically at the boundary of an instruction
cycle. However, the architectural design of fine-grained systems includes logic
for thread switching. As a result, the cost of switching between threads is small.

Notice that a multithreaded multicore processor actually requires two
different levels of scheduling. On one level are the scheduling decisions that
must be made by the operating system as it chooses which software thread to
run on each hardware thread (logical processor). For this level of scheduling,
the operating system may choose any scheduling algorithm, such as those
described in Section 5.3. A second level of scheduling specifies how each core
decides which hardware thread to run. There are several strategies to adopt
in this situation. The UltraSPARC Tl, mentioned earlier, uses a simple round
robin algorithm to schedule the four hardware threads to each core. Another
example, the Intel Itanium, is a dual-core processor with hvo hardware
managed threads per core. Assigned to each hardware thread is a dynamic
urgency value ranging from 0 to 7, with 0 representing the lowest urgency,
and 7 the highest. The Itanium. identifies five different events that may trigger
a thread switch. When one of these events occurs, the thread-switching logic
compares the urgency of the two threads and selects the thread with the highest
urgency value to execute on the processor core.

5.5.5 Virtualization and Scheduling

A system with virtualization, even a single-CPU system, frequently acts like
a multiprocessor system. The virtualization software presents one or more
virtual CPUs to each of the virtual machines rum1.ing on the system and
then schedules the use of the physical CPUs among the virtual machines.
The significant variations between virtualization technologies make it difficult
to summarize the effect of virtualization on scheduling (see Section 2.8).
In general, though, most virtualized environments have one host operating

206 Chapter 5

5.6

system and many guest operating systems. The host operating system creates
and manages the virtual machines, and each virtual n<achine has a guest
operating system installed and applications running within that guest. Eacb
guest operating system may be fine-tuned for specific use cases, applications,
and users, including time sharing or even real-time operation.

Any guest operating-system scheduling algorithm that assumes a certain
amount of progress in a given amount of time will be negatively impacted by
virtualization. Consider a time-sharing operating system that tries to allot 100
milliseconds to each time slice to give users a reasonable response time. Within
a virtual machine, this operating system is at the mercy of the virtualization
system as to what CPU resources it actually receives. A given 100-millisecond
time slice may take much more than 100 milliseconds of virtual CPU time.
Depending on how busy the system is, the time slice may take a second or more,
resulting in very poor response times for users logged into that virtual machine.
The effect on a real-time operating system would be even more catastrophic.

The net effect of such scheduling layering is that individual virtualized
operating systems receive only a portion of the available CPU cycles, even
though they believe they are receiving all of the cycles and indeed that they
are scheduling all of those cycles. Commonly, the time-of-day clocks in virtual
machines are incorrect because timers take longer to trigger than they would on
dedicated CPUs. Virtualization can thus "Lmdo the good scheduling-algorithm
efforts of the operating systems within virtual machines.

We turn next to a description of the scheduling policies of the Solaris, Windows
XP, and Linux operating systems. It is important to remember that we are
describing the scheduling of kernel tlueads with Solaris and Windows XP.
Recall that Linux does not distinguish between processes and threads; thus,
we use the term task when discussing the Linux scheduler.

5.6.1 Example: Solaris Scheduling

Solaris uses priority-based thread scheduling where each thread belongs to
one of six classes:

Time sharing (TS)

Interactive (IA)

Real time (RT)

System (SYS)

Fair share (FSS)

Fixed priority (FP)

Within each class there are different priorities and different scheduling algo
rithms.

The default scheduling class for a process is time sharing. The scheduling
policy for the time-sharing class dynamically alters priorities and assigns time

5.6 207

10 160 0 51

15 160 5 51

20 120 10 52

25 120 15 52

30 80 20 53

35 80 25 54

40 40 30 55

45 40 35 56

50 40 40 58

55 40 45 58

59 20 49 59

Figure 5.12 Solaris dispatch table for time-sharing and interactive threads.

slices of different lengths using a multilevel feedback queue. By default, there
is an inverse relationship between priorities and time slices. The higher the
priority, the smaller the time slice; and the lower the priority, the larger the
time slice. Interactive processes typically have a higher priority; CPU-bound
processes, a lower priority. This scheduling policy gives good response time
for interactive processes and good throughput for CPU-bound processes. The
interactive class uses the same scheduling policy as the time-sharing class, but
it gives windowing applications-such as those created by the KDE or GNOME
window managers-a higher priority for better performance.

Figure 5.12 shows the dispatch table for scheduling time-sharing and
interactive threads. These two scheduling classes include 60 priority levels,
but for brevity, we display only a handful. The dispatch table shown in Figure
5.12 contains the following fields:

Priority. The class-dependent priority for the time-sharing and interactive
classes. A higher number indicates a higher priority.

Time quantum. The time quantum for the associated priority. This illus
trates the inverse relationship between priorities and time quanta: the
lowest priority (priority 0) has the highest tince quantum (200 millisec
onds), and the highest priority (priority 59) has the lowest time quantum
(20 milliseconds).

Time quantum expired. The new priority of a thread that has used
its entire time quantum without blocking. Such threads are considered

208 Chapter 5

CPU-intensive. As shown in the table, these threads have their priorities
lowered.

Return from sleep. The priority of a thread that is returning from sleeping
(such as waiting for I/0). As the table illustrates, when I/0 is available
for a waiting thread, its priority is boosted to between 50 and 59, thus
supporting the scheduling policy of providing good response time for
interactive processes.

Threads in the real-time class are given the highest priority. This assignment
allows a real-time process to have a guaranteed response from the system
within a bounded period of time. A real-time process will run before a process
in any other class. In general, however, few processes belong to the real-time
class.

Solaris uses the system class to run kernel threads, such as the scheduler
and paging daemon. Once established, the priority of a system thread does not
change. The system class is reserved for kernel use (user processes rum1ing in
kernel mode are not in the system class).

The fixed-priority and fair-share classes were introduced with Solaris 9.
Threads in the fixed-priority class have the same priority range as those in
the time-sharing class; however, their priorities are not dynamically adjusted.
The fair-share scheduling class uses CPU instead of priorities to
make scheduling decisions. CPU shares indicate entitlement to available CPU
resources and are allocated to a set of processes (known as a project).

Each scheduling class includes a set of priorities. However, the scheduler
converts the class-specific priorities into global priorities and selects the thread
with the highest global priority to n.m. The selected thread n.ms on the CPU
until it (1) blocks, (2) uses its time slice, or (3) is preempted by a higher-priority
thread. If there are multiple threads with the same priority, the scheduler uses
a round-robin queue. Figure 5.13 illustrates how the six scheduling classes
relate to one another and how they map to global priorities. Notice that the
kernel maintains 10 threads for servicing interrupts. These threads do not
belong to any scheduling class and execute at the highest priority (160-169).
As mentioned, Solaris has traditionally used the many-to-many model (Section
4.2.3) but switched to the one-to-one model (Section 4.2.2) beginning with
Solaris 9.

5.6.2 Example: Windows XP Scheduling

Windows XP schedules threads using a priority-based, preemptive scheduling
algorithm. The Windows XP scheduler ensures that the highest-priority thread
will always run. The portion of the Windows XP kernel that handles scheduling
is called the dispatcher. A thread selected to run by the dispatcher will run until
it is preempted by a higher-priority thread, until it terminates, until its time
quantum ends, or until it calls a blocking system call, such as for I/0. If a
higher-priority real-time thread becomes ready while a lower-priority thread
is running, the lower-priority thread will be preempted. This preemption gives
a real-time thread preferential access to the CPU when the thread needs such
access.

The dispatcher uses a 32-level priority scheme to determine the order of
thread execution. Priorities are divided into two classes. The

global
priority

highest

lowest

169

160
159

100
99

60
59

0

5.6

Figure 5.13 Solaris scheduling.

scheduling
order

first

last

209

contains threads having priorities from 1 to 15, and the contains
threads with priorities ranging from 16 to 31. (There is also a thread running at
priority 0 that is used for memory management.) The dispatcher uses a queue
for each scheduling priority and traverses the set of queues from highest to
lowest until it finds a thread that is ready to run. If no thread is found,
the dispatcher will execute a special thread called the

There is a relationship between the numeric priorities of the Windows XP
kernel and the Win32 API. The Win32 API identifies several priority classes to
which a process can belong. These include:

REALTIME_PRIORITY _CLASS

HIGf-LPRIORITY _CLASS

ABOVKNORMALPRIORITY _CLASS

NORMALPRIORITY _CLASS

210 Chapter 5

.15 12 10

14 11 9

13 10 8

12 9 7

22 1.1 8 6

16

Figure 5.14 Windows XP priorities.

BELOW _NORMAL...PRIORITY _CLASS

IDLE...PRIORITY _CLASS

8 6

7 5

6 4

5 3

4 2

Priorities in all classes except the REALTIME...PRIORITY _CLASS are variable,
meaning that the priority of a thread belonging to one of these classes can
change.

A thread within a given priority classes also has a relative priority. The
values for relative priorities include:

TIME_CRITICAL

HIGHEST

ABOVE_NORMAL

NORMAL

BELOW _NORMAL

LOWEST

IDLE

The priority of each thread is based on both the priority class it belongs to and its
relative priority within that class. This relationship is shown in Figure 5.14. The
values of the priority classes appear in the top row. The left column contains the
values for the relative priorities. For example, if the relative priority of a thread
in the ABOVE_NORMAL...PRIORITY_CLASS is NORMAL, the nunceric priority of
that thread is 10.

Furthermore, each thread has a base priority representing a value in the
priority range for the class the thread belongs to. By default, the base priority
is the value of the NORMAL relative priority for that class. The base priorities
for each priority class are:

REALTIME...PRIORITY_CLASS-24

HIGrLPRIORITY _CLASS-13

5.6

ABOVE_NORMALPRIORITY_CLASS-10

NORMALPRIORITY _CLASS-8

BELOW _NORMALPRIORITY _CLASS-6

IDLE_PRIORITY _CLASS-4

211

Processes are typically members of the NORMALPRIORITY_CLASS. A pro
cess belongs to this class unless the parent of the process was of the
IDLE_PRIORITY _CLASS or unless another class was specified when the process
was created. The initial priority of a thread is typically the base priority of the
process the thread belongs to.

When a thread's time quantun1 runs out, that thread is interrupted; if the
thread is in the variable-priority class, its priority is lowered. The priority is
never lowered below the base priority, however. Lowering the priority tends
to limit the CPU consumption of compute-bound threads. When a variable
priority thread is released from a wait operation, the dispatcher boosts the
priority. The amount of the boost depends on what the thread was waiting
for; for example, a thread that was waiting for keyboard I/0 would get a large
increase, whereas a thread waiting for a disk operation would get a moderate
one. This strategy tends to give good response times to interactive threads that
are using the mouse and windows. It also enables I/O-bound threads to keep
the I/0 devices busy while permitting compute-bound threads to use spare
CPU cycles in the background. This strategy is used by several time-sharing
operating systems, including UNIX. In addition, the window with which the
user is currently interacting receives a priority boost to enhance its response
time.

When a user is running an interactive program, the system needs to provide
especially good performance. For this reason, Windows XP has a special
scheduling rule for processes in the NORMALPRIORITY_CLASS. Windows XP
distinguishes between the foreground process that is currently selected on the
screen and the background processes that are not currently selected. When a
process moves into the foreground, Windows XP increases the scheduling
quantum by some factor-typically by 3. This increase gives the foreground
process three times longer to run before a time-sharing preemption occurs.

5.6.3 Example: Linux Scheduling

Prior to Version 2.5, the Linux kernel ran a variation of the traditional UNIX
scheduling algorithm. Two problems with the traditional UNIX scheduler are
that it does not provide adequate support for SMP systems and that it does
not scale well as the number of tasks on the system grows. With Version 2.5,
the scheduler was overhauled, and the kernel now provides a scheduling
algorithm that runs in constant time-known as 0(1)-regardless of the
number of tasks on the system. The new scheduler also provides increased
support for SMP, including processor affinity and load balancing, as well as
providing fairness and support for interactive tasks.

The Linux scheduler is a preemptive, priority-based algorithm with two
separate priority ranges: a real-time range from 0 to 99 and a nice value ranging
from 100 to 140. These two ranges map into a global priority scheme wherein
numerically lower values indicate higher priorities.

212 Chapter 5

numeric
priority

0

99
100

140

relative
priority

highest

lowest

time
quantum

200 ms

10 ms

Figure 5.15 The relationship between priorities and time-slice length.

Unlike schedulers for many other systems, including Solaris (Section 5.6.1)
and Windows XP (Section 5.6.2), Lim1X assigns higher-priority tasks longer time
quanta and lower-priority tasks shorter time quanta. The relationship between
priorities and tim.e-slice length is shown in Figure 5.15.

A runnable task is considered eligible for execution on the CPU as long
as it has time remaining in its time slice. When a task has exhausted its time
slice, it is considered expired and is not eligible for execution again until all
other tasks have also exhausted their time quanta. The kernel maintains a list
of all runnable tasks in a data structure. Because of its support for
SMP, each processor maintains its own nmqueue and schedules itself indepen
dently. Each runqueue contains two priority arrays: and The
active array contains all tasks with time remaining in their time slices, and the
expired array contains all expired tasks. Each of these priority arrays contains a
list of tasks indexed according to priority (Figure 5.16). The scheduler chooses
the task with the highest priority from the active array for execution on the
CPU. On multiprocessor machines, this means that each processor is scheduling
the highest-priority task from its own runqueue structure. When all tasks have
exhausted their time slices (that is, the active array is empty), the two priority
arrays are exchanged; the expired array becomes the active array, and vice
versa.

Linux implements real-time scheduling as defined by POSIX.1b, which is
described in Section 5.4.2. Real-time tasks are assigned static priorities. All

active
array

priority
[0]
[1]

[140]

task lists
o-o
0--0--0

0

expired
array

priority
[0]
[1]
•

[140]

task lists
o--o-o
0

Figure 5.16 List of tasks indexed according to priority.

5.7

5.7 213

other tasks have dynamic priorities that are based on their nice values plus or
minus the value 5. The interactivity of a task determines whether the value
5 will be added to or subtracted from the nice value. A task's interactivity is
deterncined by how long it has been sleeping while waiting for I/0. Tasks that
are more interactive typically have longer sleep times and therefore are more
likely to have adjustments closer to -5, as the scheduler favors interactive
tasks. The result of such adjustments will be higher priorities for these tasks.
Conversely, tasks with shorter sleep times are often more CPU-bound and thus
will have their priorities lowered.

A task's dynamic priority is recalculated when the task has exhausted its
time quantum and is to be moved to the expired array. Thus, when the two
arrays are exchanged, all tasks in the new active array have been assigned new
priorities and corresponding time slices.

How do we select a CPU-scheduling algorithm for a particular system? As we
saw in Section 5.3, there are many scheduling algorithms, each with its own
parameters. As a result, selecting an algorithm can be difficult.

The first problem is defining the criteria to be used in selecting an algorithm.
As we saw in Section 5.2, criteria are often defined in terms of CPU utilization,
response time, or thxoughput. To select an algorithm, we must first define
the relative importance of these elements. Our criteria may include several
measures, such as:

Maximizing CPU utilization under the constraint that the maximum
response time is 1 second

Maximizing throughput such that turnaround time is (on average) linearly
proportional to total execution time

Once the selection criteria have been defined, we want to evaluate the
algorithms under consideration. We next describe the various evaluation
methods we can use.

5.7.1 Deterministic Modeling

One major class of evaluation methods is analytic evaluation. Analytic
evaluation uses the given algorithm and the system workload to produce a
formula or number that evaluates the performance of the algorithm for that
workload.

Deterministic modeling is one type of analytic evaluation. This method
takes a particular predetermined workload and defines the performance of each
algorithm for that workload. For example, assume that we have the workload
shown below. All five processes arrive at time 0, in the order given, with the
length of the CPU burst given in milliseconds:

214 Chapter 5

Process Burst Time
------~

PJ 10
p2 29
Po C)

J 0

p4 7
Ps 12

Consider the FCFS, SJF, and RR (quantum = 10 milliseconds) scheduling
algorithms for this set of processes. Which algorithm would give the minimum
average waiting time?

For the FCFS algorithm, we would execute the processes as

0 10 39 42 49 61

The waiting time is 0 milliseconds for process P1, 10 milliseconds for process
P2 , 39 milliseconds for process P3, 42 milliseconds for process P4, and 49
milliseconds for process P5 . Thus, the average waiting time is (0 + 10 + 39
+ 42 + 49)/5 = 28 milliseconds.

With nonpreemptive SJF scheduling, we execute the processes as

0 3 10 20

p
5

32 61

The waiting time is 10 milliseconds for process P11 32 milliseconds for process
P2, 0 milliseconds for process P3 , 3 milliseconds for process P4 , and 20
milliseconds for process P5 . Thus, the average waiting time is (10 + 32 + 0
+ 3 + 20) I 5 = 13 milliseconds.

0

With the RR algorithm, we execute the processes as

p
1

10 20 23 30 40 50 52 61

The waiting time is 0 milliseconds for process P1, 32 milliseconds for process
P2, 20 milliseconds for process P3, 23 milliseconds for process P4 , and 40
milliseconds for process P5 . Thus, the average waiting time is (0 + 32 + 20
+ 23 + 40)/5 = 23 milliseconds.

We see that, in this case, the average waiting time obtained with the SJF
policy is less than half that obtained with FCFS scheduling; the RR algorithm
gives us an intermediate value.

Deterministic modeling is simple and fast. It gives us exact numbers,
allowing us to compare the algorithms. However, it requires exact numbers for
input, and its answers apply only to those cases. The main uses of deterministic
modeling are in describing scheduling algorithms and providing examples. In

5.7 215

cases where we are running the same program over and over again and can
measure the program's processing requirements exactly, we may be able to use
deterministic modeling to select a scheduling algorithm. Furthermore, over a
set of examples, deterministic modeling may indicate trends that can then be
analyzed and proved separately. For example, it can be shown that, for the
environment described (all processes and their times available at tirne 0), the
SJF policy will always result in the rninimum waiting time.

5.7.2 Queueing Models

On many systems, the processes that are run vary from day to day, so there
is no static set of processes (or times) to use for deterministic modeling. What
can be determined, however, is the distribution of CPU and I/0 bursts. These
distributions can be measured and then approximated or simply estimated. The
result is a mathematical formula describing the probability of a particular CPU
burst. Commonly, this distribution is exponential and is described by its mean.
Similarly, we can describe the distribution of times when processes arrive in
the system (the arrival-time distribution). Fron1. these two distributions, it is
possible to compute the average throughput, utilization, waiting time, and so
on for most algorithms.

The computer system is described as a network of servers. Each server has
a queue of waiting processes. The CPU is a server with its ready queue, as is
the I/0 system with its device queues. Knowing arrival rates and service rates,
we can compute utilization, average queue length, average wait time, and so
on. This area of study is called queueing-network analysis.

As an example, let n be the average queue length (excluding the process
being serviced), let W be the average waiting time in the queue, and let A be
the average arrival rate for new processes in the queue (such as three processes
per second). We expect that during the time W that a process waits, A x W
new processes will arrive in the queue. If the system is in a steady state, then
the number of processes leaving the queue must be equal to the number of
processes that arrive. Thus,

n =Ax W.

This equation, known as Little's formula, is particularly useful because it is
valid for any scheduling algorithm and arrival distribution.

We can use Little's formula to compute one of the three variables if we
know the other two. For example, if we know that 7 processes arrive every
second (on average), and that there are normally 14 processes in the queue,
then we can compute the average waiting time per process as 2 seconds.

Queueing analysis can be useful in comparing scheduling algorithms,
but it also has limitations. At the moment, the classes of algorithms and
distributions that can be handled are fairly limited. The mathematics of
complicated algorithms and distributions can be difficult to work with. Thus,
arrival and service distributions are often defined in mathematically tractable
-but unrealistic-ways. It is also generally necessary to make a number of
independent assumptions, which may not be accurate. As a result of these
difficulties, queueing models are often only approximations of real systems,
and the accuracy of the computed results may be questionable.

216 Chapter 5

performance
statistics
for FCFS

performance
statistics
for SJF

performance
statistics

for RR (q = 14)

Figure 5.17 Evaluation of CPU schedulers by simulation.

5.7.3 Simulations

To get a more accurate evaluation of scheduling algorithms, we can use
simulations. Rumung simulations involves programming a model of the
computer system. Software data structures represent the major components
of the system. The simulator has a variable representing a clock; as this
variable's value is increased, the simulator modifies the system state to reflect
the activities of the devices, the processes, and the scheduler. As the simulation
executes, statistics that indicate algorithm performance are gathered and
printed.

The data to drive the simulation can be generated in several ways. The
most common method uses a random-number generator that is programmed to
generate processes, CPU burst times, arrivals, departures, and so on, according
to probability distributions. The distributions can be defined mathematically
(uniform, exponential, Poisson) or empirically. If a distribution is to be defined
empirically, measurements of the actual system under study are taken. The
results define the distribution of events in the real system; this distribution can
then be used to drive the simulation.

A distribution-driven simulation may be inaccurate, however, because of
relationships between successive events in the real system. The frequency
distribution indicates only how many instances of each event occur; it does not
indicate anything about the order of their occurrence. To correct this problem,
we can use trace tapes. We create a trace tape by monitoring the real system and
recording the sequence of actual events (Figure 5.17). We then use this sequence
to drive the simulation. Trace tapes provide an excellent way to compare two
algorithms on exactly the same set of real inputs. This method can produce
accurate results for its inputs.

Simulations can be expensive, often requiring hours of computer time. A
more detailed simulation provides more accurate results, but it also takes more
computer time. In addition, trace tapes can require large amounts of storage

5.8

5.8 217

space. Finally, the design, coding, and debugging of the simulator can be a
major task.

5.7.4 Implementation

Even a simulation is of limited accuracy. The only con'lpletely accurate way
to evaluate a scheduling algorithm is to code it up, put it in the operating
system, and see how it works. This approach puts the actual algorithm in the
real system for evaluation under real operating conditions.

The major difficulty with this approach is the high cost. The expense is
incurred not only in coding the algorithm and modifying the operating system
to support it (along with its required data structures) but also in the reaction
of the users to a constantly changing operating system. Most users are not
interested in building a better operating system; they merely want to get their
processes executed and use their results. A constantly changing operating
system does not help the users to get their work done.

Another difficulty is that the environment in which the algorithm is used
will change. The environment will change not only in the usual way, as new
programs are written and the types of problems change, but also as a result
of the performance of the scheduler. If short processes are given priority, then
users may break larger processes into sets of smaller processes. If interactive
processes are given priority over noninteractive processes, then users may
switch to interactive use.

For example, researchers designed one system that classified interactive
and noninteractive processes automatically by looking at the amount of
terminal I/0. If a process did not input or output to the terminal in a 1-second
interval, the process was classified as noninteractive and was moved to a
lower-priority queue. In response to this policy, one programmer modified his
programs to write an arbitrary character to the terminal at regular intervals of
less than 1 second. The system gave his programs a high priority, even though
the terminal output was completely meaningless.

The most flexible scheduling algorithms are those that can be altered
by the system managers or by the users so that they can be tuned for
a specific application or set of applications. A workstation that performs
high-end graphical applications, for instance, may have scheduling needs
different from those of a Web server or file server. Some operating systems
particularly several versions of UNIX-allow the system manager to fine-tune
the scheduling parameters for a particular system configuration. For example,
Solaris provides the dispadmin command to allow the system administrator
to modify the parameters of the scheduling classes described :in Section 5.6.1.

Another approach is to use APis that modify the priority of a process or
thread. The Java, /POSIX, and /WinAPI/ provide such functions. The downfall
of this approach is that performance-tuning a system or application most often
does not result in improved performance in more general situations.

CPU scheduling is the task of selecting a waiting process from the ready queue
and allocating the CPU to it. The CPU is allocated to the selected process by the
dispatcher.

218 Chapter 5

First-come, first-served (FCFS) scheduling is the simplest scheduling algo
rithm, but it can cause short processes to wait for very long processes. Shortest
job-first (SJF) scheduling is provably optimal, providing the shortest average
waiting time. Implementing SJF scheduling is difficult, howeve1~ because pre
dicting the length of the next CPU burst is difficult. The SJF algorithm is a special
case of the general priority scheduling algorithm, which simply allocates the
CPU to the highest-priority process. Both priority and SJF scheduling may suffer
from starvation. Aging is a technique to prevent starvation.

Round-robin (RR) scheduling is more appropriate for a time-shared (inter
active) system. RR scheduling allocates the CPU to the first process in the ready
queue for q time units, where q is the time quantum. After q time units, if
the process has not relinquished the CPU, it is preem.pted, and the process is
put at the tail of the ready queue. The major problem is the selection of the
time quantum. If the quantum is too large, RR scheduling degenerates to FCFS
scheduling; if the quantum is too small, scheduling overhead in the form of
context-switch time becomes excessive.

The FCFS algorithm is nonpreemptive; the RR algorithm is preemptive. The
SJF and priority algorithms may be either preemptive or nonpreemptive.

Multilevel queue algorithms allow different algorithms to be used for
different classes of processes. The most common model includes a foreground
interactive queue that uses RR scheduling and a background batch queue that
uses FCFS scheduling. Multilevel feedback queues allow processes to move
from one queue to another.

Many contemporary computer systems support multiple processors and
allow each processor to schedule itself independently. Typically, each processor
maintains its own private queue of processes (or threads), all of which
are available to run. Additional issues related to multiprocessor scheduling
include processor affinity, load balancing, and multicore processing as well as
scheduling on virtualization systems.

Operating systems supporting threads at the kernel level must schedule
threads-not processes-for execution. This is the case with Solaris and
Windows XP. Both of these systems schedule threads using preemptive,
priority-based scheduling algorithms, including support for real-time threads.
The Linux process scheduler uses a priority-based algorithm with real-time
support as well. The scheduling algorithms for these three operating systems
typically favor interactive over batch and CPU-bound processes.

The wide variety of scheduling algorithms demands that we have methods
to select among algorithms. Analytic methods use mathematical analysis to
determine the performance of an algorithm. Simulation methods determine
performance by imitating the scheduling algorithm on a "representative"
sample of processes and computing the resulting performance. However, sim
ulation can at best provide an approximation of actual system performance;
the only reliable technique for evaluating a scheduling algorithm is to imple
ncent the algorithm on an actual system and monitor its performance in a
"real-world" environment.

5.1 Why is it important for the scheduler to distinguish T /0-bound programs
from CPU-bound programs?

219

5.2 A CPU-scheduling algorithm determines an order for the execution
of its scheduled processes. Given n processes to be scheduled on one
processor, how many different schedules are possible? Give a formula
in tenTlS of n.

5.3 Consider a systenc running ten I/O-bound tasks and one CPU-bound
task. Assume that the I/O-bound tasks issue an I/O operation once for
every millisecond of CPU computing and that each I/0 operation takes
10 milliseconds to complete. Also assume that the context-switching
overhead is 0.1 millisecond and that all processes are long-running tasks.
Describe the CPU utilization for a round-robin scheduler when:

a. The time quantum is 1 millisecond

b. The time quantum is 10 milliseconds

5.4 What advantage is there in having different time-quantum sizes at
different levels of a multilevel queueing system?

5.5 Consider a system implementing multilevel queue scheduling. What
strategy can a computer user employ to maximize the amount of CPU
time allocated to the user's process?

5.6 Consider the scheduling algorithm in the Solaris operating system for
time-sharing threads.

a. What is the time quantum (in milliseconds) for a thread with
priority 10? With priority 55?

b. Assume that a thread with priority 35 has used its entire time
quantum without blocking. What new priority will the scheduler
assign this thread?

c. Assume that a thread with priority 35 blocks for I/0 before its time
quantum has expired. What new priority will the scheduler assign
this thread?

5.7 Explain the differences in how much the following scheduling algo
rithms discriminate in favor of short processes:

a. FCFS

b. RR

c. Multilevel feedback queues

5.8 Consider the exponential average formula used to predict the length of
the next CPU burst. What are the implications of assigning the following
values to the parameters used by the algorithm?

a. ex = 0 and To = 100 milliseconds

b. ex= 0.99 and To = 10 milliseconds

220 Chapter 5

5.9 Which of the following scheduling algorithms could result in starvation?

a. First-come, first-served

b. Shortest job first

c. Round robin

d. Priority

5.10 Suppose that a scheduling algorithm (at the level of short-term CPU
scheduling) favors those processes that have used the least processor
time in the recent past. Why will this algorithm favor I/O-bound
programs and yet not permanently starve CPU-bound programs?

5.11 Using the Windows XP scheduling algorithm, determine the numeric
priority of each of the following threads.

a. A thread in the REALTIMEYRIORITY _CLASS with a relative priority
of HIGHEST

b. A thread in the NORMALYRIORITY_CLASS with a relative priority
of NORMAL

c. A thread in the HIGHYRIORITY _CLASS with a relative priority of
ABOVE..NORMAL

5.12 Consider a variant of the RR scheduling algorithm in which the entries
in the ready queue are pointers to the PCBs.

a. What would be the effect of putting two pointers to the same
process in the ready queue?

b. What would be two major advantages and two disadvantages of
this scheme?

c. How would you modify the basic RR algorithm to achieve the same
effect without the duplicate pointers?

5.13 Consider the following set of processes, with the length of the CPU burst
given in milliseconds:

Process Burst Time Priority

Pt 10 3
p2 1 1
p3 2 3
p4 1 4

Ps 5 2

221

The processes are assumed to have arrived in the order P1, P2, P3, P4, Ps,
all at time 0.

a. Draw four Gantt charts that illustrate the execution of these
processes using the following scheduling algorithms: FCFS, SJF,
nonpreemptive priority (a smaller priority number implies a higher
priority), and RR (quantum= 1).

b. What is the turnaround time of each process for each of the
scheduling algorithms in part a?

c. What is the waiting ti1r1e of each process for each of these schedul
ing algorithms?

d. Which of the algorithms results in the minimum average waiting
time (over all processes)?

5.14 The traditional UNIX scheduler enforces an inverse relationship between
priority numbers and priorities: the higher the numbe1~ the lower the
priority. The scheduler recalculates process priorities once per second
using the following function:

Priority = (recent CPU usage I 2) + base

where base = 60 and recent CPU usage refers to a value indicating how
often a process has used the CPU since priorities were last recalculated.

Assume that recent CPU usage for process P1 is 40, for process P2 is 18,
and for process P3 is 10. What will be the new priorities for these three
processes when priorities are recalculated? Based on this information,
does the traditional UNIX scheduler raise or lower the relative priority
of a CPU-bound process?

5.15 Discuss how the following pairs of scheduling criteria conflict in certain
settings.

a. CPU utilization and response time

b. Average turnaround time and maximum waiting time

c. I/0 device utilization and CPU utilization

5.16 Consider a preemptive priority scheduling algorithm based on dynami
cally changing priorities. Larger priority numbers imply higher priority.
When a process is waiting for the CPU (in the ready queue, but not
running), its priority changes at a rate a; when it is running, its priority
changes at a rate ~- All processes are given a priority of 0 when they
enter the ready queue. The parameters a and ~ can be set to give many
different scheduling algorithms.

a. What is the algorithm that results from ~ > a > 0?

b. What is the algorithm that results from a < ~ < 0?

5.17 Suppose that the following processes arrive for execution at the times
indicated. Each process will run for the amount of time listed. In
answering the questions, use nonpreemptive scheduling, and base all

222 Chapter 5

decisions on the information you have at the time the decision must be
made.

Process Arrival Time Burst Time

pl 0.0 8
p2 0.4 4
p3 1.0 1

a. What is the average turnaround time for these processes with the
FCFS scheduling algorithm?

b. What is the average turnaround time for these processes with the
SJF scheduling algorithm?

c. The SJF algorithm is supposed to improve performance, but notice
that we chose to run process P1 at time 0 because we did not k11ow
that two shorter processes would arrive soon. Compute what the
average turnaround time will be if the CPU is left idle for the first
1 unit and then SJF scheduling is used. Remember that processes
P1 and P2 are waiting durirtg this idle time, so their waiting time
may increase. This algorithm could be known as future-knowledge
scheduling.

Feedback queues were originally implemented on the CTSS system described
in Corbato et al. [1962]. This feedback queue scheduling system was analyzed
by Schrage [1967]. The preemptive priority scheduling algorithm of Exercise
5.16 was suggested by Kleinrock [1975].

Anderson et al. [1989], Lewis and Berg [1998], and Philbin et al. [1996]
discuss thread scheduling. Multicore scheduling is examined in McNairy and
Bhatia [2005] and Kongetira et al. [2005].

Scheduling techniques that take into account information regarding pro
cess execution times from previous runs are described in Fisher [1981], Hall
et al. [1996], and Lowney et al. [1993].

Fair-share schedulers are covered by Henry [1984], Woodside [1986], and
Kay and La·uder [1988].

Scheduling policies used in the UNIX V operating system are described
by Bach [1987]; those for UNIX FreeBSD 5.2 are presented by McKusick and
Neville-Neil [2005]; and those for the Mach operating system are discussed
by Black [1990]. Love [2005] covers scheduling in Lim.IX. Details of the ULE
scheduler can be found in Roberson [2003]. Solaris scheduling is described
by Mauro and McDougall [2007]. Solomon [1998], Solomon and Russinovich
[2000], and Russinovich and Solomon [2005] discuss scheduling in Windows
internals. Butenhof [1997] and Lewis and Berg [1998] describe scheduling
in Pthreads systems. Siddha et al. [2007] discuss scheduling challenges on
multicore systems.

Part Three

6.1

c ER

A cooperating process is one that can affect or be affected by other processes
executing in the system. Cooperating processes can either directly share a
logical address space (that is, both code and data) or be allowed to share data
only through files or messages. The former case is achieved through the use of
threads, discussed in Chapter 4. Concurrent access to shared data may result in
data inconsistency, however. In this chapter, we discuss various mechanisms
to ensure the orderly execution of cooperating processes that share a logical
address space, so that data consistency is maintained.

To introduce the critical-section problem, whose solutions can be used to
ensure the consistency of shared data.

To present both software and hardware solutions of the critical-section
problem.

To introduce the concept of an atomic transaction and describe mecha
nisms to ensure atomicity.

In Chapter 3, we developed a model of a system consisting of cooperating
sequential processes or threads, all running asynchronously and possibly
sharing data. We illustrated this model with the producer-consumer problem,
which is representative of operating systems. Specifically, in Section 3.4.1, we
described how a bounded buffer could be used to enable processes to share
memory.

Let's return to our consideration of the bounded buffer. As we pointed
out, our original solution allowed at most BUFFER_SIZE - 1 items in the buffer
at the same time. Suppose we want to modify the algorithm to remedy this
deficiency. One possibility is to add an integer variable counter, initialized to
0. counter is incremented every time we add a new item to the buffer and is

225

226 Chapter 6

decremented every time we remove one item from the buffer. The code for the
producer process can be modified as follows:

while (true) {

}

I* produce an item in nextProduced *I
while (counter == BUFFER_SIZE)

; I* do nothing *I
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE ;

counter++;

The code for the consumer process can be modified as follows:

while (true) {

}

while (counter == 0)
; I* do nothing *I

nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

counter--;
I* consume the item in nextConsumed *I

Although both the producer and consumer routines shown above are
correct separately, they may not function correctly when executed concurrently.
As an illustration, suppose that the value of the variable counter is currently
5 and that the producer and consumer processes execute the statements
"counter++" and "counter--" concurrently. Following the execution of these
two statements, the value of the variable counter may be 4, 5, or 6! The only
correct result, though, is counter == 5, which is generated correctly if the
producer and consumer execute separately.

We can show that the value of counter may be incorrect as follows. Note
that the statement" counter++" may be implemented in machine language (on
a typical machine) as

register1 = counter
register1 = register1 + 1
counter= register1

where register1 is one of the local CPU registers. Similarly, the statement
register2"counter--" is implemented as follows:

register2 = counter
register2 = register2 ~ 1
counter= register2

where again register2 is on eo£ the local CPU registers. Even though register1 and
register2 may be the same physical register (an accumulator, say), remember
that the contents of this register will be saved and restored by the interrupt
handler (Section 1.2.3).

6.2

6.2 227

The concurrent execution of "counter++" and "counter--" is equivalent
to a sequential execution in which the lower-level statements presented
previously are interleaved in some arbitrary order (but the order within each
high-level statement is preserved). One such interleaving is

To: producer execute register1 =counter {register1 = 5}
T1: producer execute register1 = register1 + 1 {register1 = 6}
T2: consumer execute register2 = counter {register2 = 5}
T3: consumer execute register2 = register2 1 {register2 = 4}
T4: producer execute counter= register1 {counter = 6}
Ts: consumer execute counter = register2 {counter = 4}

Notice that we have arrived at the incorrect state "counter == 4", indicating
that four buffers are full, when, in fact, five buffers are full. If we reversed the
order of the statements at T4 and T5, we would arrive at the incorrect state
"counter== 6".

We would arrive at this incorrect state because we allowed both processes
to manipulate the variable counter concurrently. A situation like this, where
several processes access and manipulate the same data concurrently and the
outcome of the execution depends on the particular order in which the access
takes place, is called a To guard against the race condition
above, we need to ensure that only one process at a time can be manipulating
the variable counter. To make such a guarantee, we require that the processes
be synchronized in some way.

Situations such as the one just described occur frequently in operating
systems as different parts of the system manipulate resources. Furthermore,
with the growth of multicore systems, there is an increased emphasis on
developing multithreaded applications wherein several threads-which are
quite possibly sharing data-are rmming in parallel on different processing
cores. Clearly, we want any changes that result from such activities not
to interfere with one another. Because of the importance of this issue, a
major portion of this chapter is concerned with and

amongst cooperating processes.

Consider a system consisting of n processes {Po, P1 , ... , P11 _ I}. Each process
has a segment of code, called a cdticall in which the process may
be changing common variables, updating a table, writing a file, and so on.
The important feature of the system is that, when one process is executing in
its critical section, no other process is to be allowed to execute in its critical
section. That is, no two processes are executing in their critical sections at the
same time. The critical-section problem is to design a protocol that the processes
can use to cooperate. Each process must request permission to enter its critical
section. The section of code implementing this request is the The
critical section may be followed by an exit The remaining code is the

The general structure of a typical process Pi is shown in

228 Chapter 6

do {

I entry section I

critical section

I exit section I

remainder section

} while (TRUE);

Figure 6.1 General structure of a typical process A.

Figure 6.1. The entry section and exit section are enclosed in boxes to highlight
these important segments of code.

A solution to the critical-section problem must satisfy the following three
requirements:

1. Mutual exclusion. If process Pi is executing in its critical section, then no
other processes can be executing in their critical sections.

2. Progress. If no process is executing in its critical section and some
processes wish to enter their critical sections, then only those processes
that are not executing in their remainder sections can participate in
deciding which will enter its critical section next, and this selection carmot
be postponed indefinitely.

Bounded waiting. There exists a bound, or limit, on the number of times
that other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before that
request is granted.

We assume that each process is executing at a nonzero speed. However, we can
make no assumption concerning the relative of the n processes.

At a given point in time, many kernel-mode processes may be active in the
operating system. As a result, the code implementing an operating system
(kernel code) is subject to several possible race conditions. Consider as an
example a kernel data structure that maintains a list of all open files in the
system. This list must be modified when a new file is opened or closed (adding
the file to the list or removing it from the list). If two processes were to open files
simultaneously, the separate updates to this list could result in a race condition.
Other kernel data structures that are prone to possible race conditions include
structures for maintaining memory allocation, for maintaining process lists,
and for interrupt handling. It is up to kernel developers to ensure that the
operating system is free from such race conditions.

Two general approaches are used to handle critical sections in operating
systems: (1) preemptive kernels and (2) nonpreemptive kernels. A preemptive
kernel allows a process to be preempted while it is running in kernel mode.
A nonpreemptive kernel does not allow a process running in kernel mode

6.3

6.3 229

to be preempted; a kernel-mode process will run until it exits kernel mode,
blocks, or voluntarily yields control of the CPU. Obviously, a nonpreemptive
kernel is essentially free from race conditions on kernel data structures, as only
one process is active in the kernel at a time. We cannot say the same about
preemptive kernels, so they must be carefully designed to ensure that shared
kernel data are free from race conditions. Preemptive kernels are especially
difficult to design for SMP architectures, since in these environments it is
possible for two kernel-mode processes to run simultaneously on different
processors.

Why, then, would anyone favor a preemptive kernel over a nonpreemptive
one? A preemptive kernel is more suitable for real-time programming, as it will
allow a real-time process to preempt a process currently running in the kernel.
Furthermore, a preemptive kernel may be more responsive, since there is less
risk that a kernel-mode process will run for an arbitrarily long period before
relinquishing the processor to waiting processes. Of course, this effect can be
minimized by designing kernel code that does not behave in this way. Later in
this chapter, we explore how various operating systems manage preemption
within the kernel.

Next, we illustrate a classic software-based solution to the critical-section
problem known as Peterson's solution. Because of the way modern computer
architectures perform basic machine-language instructions, such as load and
store, there are no guarantees that Peterson's solution will work correctly on
such architectures. Howeve1~ we present the solution because it provides a good
algorithmic description of solving the critical-section problem and illustrates
some of the complexities involved in designing software that addresses the
requirements of mutual exclusion, progress, and bomcded waiting.

Peterson's solution is restricted to two processes that alternate execution
between their critical sections and remainder sections. The processes are
numbered Po and P1. For convenience, when presenting Pi, we use Pj to
denote the other process; that is, j equals 1 - i.

Peterson's solution requires the two processes to share two data items:

int turn;
boolean flag[2];

The variable turn indicates whose turn it is to enter its critical section. That is,
if turn == i, then process Pi is allowed to execute in its critical section. The
flag array is used to indicate if a process is ready to enter its critical section.
For example, if flag [i] is true, this value indicates that Pi is ready to enter
its critical section. With an explanation of these data structures complete, we
are now ready to describe the algorithm shown in Figure 6.2.

To enter the critical section, process Pi first sets flag [i] to be true and
then sets turn to the value j, thereby asserting that if the other process wishes
to enter the critical section, it can do so. If both processes try to enter at the same
time, turn will be set to both i and j at roughly the sance time. Only one of these
assignments will last; the other will occur but will be overwritten immediately.

230 Chapter 6

do {

flag [i] = TRUE;
turn= j;
while (flag[j] && turn j);

critical section

I flag [i] = FALSE; I

remainder section

} while (TRUE);

Figure 6.2 The structure of process A in Peterson's solution.

The eventual value of turn determines which of the two processes is allowed
to enter its critical section first.

We now prove that this solution is correct. We need to show that:

Mutual exclusion is preserved.

The progress requirement is satisfied.

The bounded-waiting requirement is met.

To prove property 1, we note that each P; enters its critical section only
if either flag [j] == false or turn == i. Also note that, if both processes
can be executing in their critical sections at the same time, then flag [0] ==
flag [1] ==true. These two observations imply that Po and P1 could not have
successfully executed their while statements at about the same time, since the
value of turn can be either 0 or 1 but camwt be both. Hence, one of the processes
-say, Pi -must have successfully executed the while statencent, whereas P;
had to execute at least one additional statement ("turn== j"). However, at
that time, flag [j] == true and turn == j, and this condition will persist as
long as Pi is in its critical section; as a result, mutual exclusion is preserved.

To prove properties 2 and 3, we note that a process P; can be prevented from
entering the critical section only if it is stuck in the while loop with the condition
flag [j] ==true and turn=== j; this loop is the only one possible. If Pi is not
ready to enter the critical section, then flag [j] ==false, and P; can enter its
critical section. If Pj has set flag [j] to true and is also executing in its while
statement, then either turn === i or turn === j. If turn == i, then P; will enter
the critical section. If turn== j, then Pi will enter the critical section. However,
once Pi exits its critical section, it will reset flag [j] to false, allowing P; to
enter its critical section. If Pi resets flag [j] to true, it must also set turn to i.
Thus, since P; does not change the value of the variable turn while executing
the while statement, P; will enter the critical section (progress) after at most
one entry by P1 (bounded waiting).

6.4

6.4 231

do {

acquire lock

critical section

I release lock I

remainder section

} while (TRUE);

Figure 6.3 Solution to the critical-section problem using locks.

We have just described one software-based solution to the critical-section
problem. However, as mentioned, software-based solutions such as Peterson's
are not guaranteed to work on modern computer architectures. Instead, we
can generally state that any solution to the critical-section problem requires a
simple tool-a lock. Race conditions are prevented by requiring that critical
regions be protected by locks. That is, a process must acquire a lock before
entering a critical section; it releases the lock when it exits the critical section.
This is illustrated in Figure 6.3.

In the following discussions, we explore several more solutions to the
critical-section problem using techniques ranging from hardware to software
based APis available to application programmers. All these solutions are based
on the premise of locking; however, as we shall see, the designs of such locks
can be quite sophisticated.

We start by presenting some simple hardware instructions that are available
on many systems and showing how they can be used effectively in solving the
critical-section problem. Hardware features can make any programming task
easier and improve system efficiency.

The critical-section problem could be solved simply in a uniprocessor envi
ronment if we could prevent interrupts from occurring while a shared variable
was being modified. In this manner, we could be sure that the current sequence
of instructions would be allowed to execute in order without preemption. No
other instructions would be run, so no unexpected modifications could be
made to the shared variable. This is often the approach taken by nonpreemptive
kernels.

Unfortunately, this solution is not as feasible in a multiprocessor environ
ment. Disabling interrupts on a multiprocessor can be time consuming, as the

boolean TestAndSet(boolean *target) {
boolean rv = *target;
*target = TRUE;
return rv;

}

Figure 6.4 The definition of the TestAndSet () instruction.

232 Chapter 6

do {
while (TestAndSet(&lock))

; II do nothing

II critical section

lock = FALSE;

II remainder section
} while (TRUE);

Figure 6.5 Mutual-exclusion implementation with TestAndSet ().

message is passed to all the processors. This message passing delays entry into
each critical section, and system efficiency decreases. Also consider the effect
on a system's clock if the clock is kept updated by interrupts.

Many modern computer systems therefore provide special hardware
instructions that allow us either to test and modify the content of a word or
to swap the contents of two words is, as one unin.terruptible
unit. We can use these special instructions to solve the critical-section problem
in a relatively simple manner. Rather than discussing one specific instruction
for one specific machine, we abstract the main concepts behind these types of
instructions by describing the TestAndSet () and Swap() instructions.

The TestAndSet () instruction can be defined as shown in Figure 6.4. The
important characteristic of this instruction is that it is executed atomically.
Thus, if two TestAndSet () instructions are executed simultaneously (each on
a different CPU), they will be executed sequentially in some arbitrary order. If
the machine supports the TestAndSet () instruction, then we can implement
mutual exclusion by declaring a Boolean variable lock, initialized to false.
The structure of process P; is shown in Figure 6.5.

The Swap() instruction, in contrast to the TestAndSet () instruction,
operates on the contents of two words; it is defined as shown in Figure 6.6.
Like the TestAndSet () instruction, it is executed atomically. If the machine
supports the Swap() instruction, then mutual exclusion can be provided as
follows. A global Boolean variable lock is declared and is initialized to false.
In addition, each process has a local Boolean variable key. The structure of
process P; is shown in Figure 6.7.

Although these algorithms satisfy the mutual-exclusion requirement, they
do not satisfy the bounded-waiting requirement. In Figure 6.8, we present
another algorithm using the TestAndSet () instruction that satisfies all the
critical-section requirements. The common data structures are

void Swap(boolean *a, boolean *b) {
boolean temp = *a;
*a *b;
*b = temp;

}

Figure 6.6 The definition of the Swap () instruction.

6.4

do {
key = TRUE;
while (key == TRUE)

Swap(&lock, &key);

II critical section

lock = FALSE;

II remainder section
} while (TRUE);

Figure 6.7 Mutual-exclusion implementation with the Swap() instruction.

boolean waiting[n];
boolean lock;

233

These data structures are initialized to false. To prove that the mutual
exclusion requirement is met, we note that process P; can enter its critical
section only if either waiting [i] == false or key == false. The value
of key can become false only if the TestAndSet () is executed. The first
process to execute the TestAndSet () will find key== false; all others must
wait. The variable waiting [i] can become false only if another process
leaves its critical section; only one waiting [i] is set to false, maintaining the
mutual-exclusion requirement.

do {
waiting[i] = TRUE;
key = TRUE;
while (waiting[i] && key)

key= TestAndSet(&lock);
waiting[i] = FALSE;

II critical section

j = (i + 1) % n;
while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)
lock = FALSE;

else
waiting[j] = FALSE;

II remainder section
} while (TRUE) ;

Figure 6.8 Bounded-waiting mutual exclusion with TestAndSet ().

234 Chapter 6

6.5

To prove that the progress requirement is met, we note that the arguments
presented for mutual exclusion also apply here, since a process exiting the
critical section either sets lock to false or sets waiting[j] to false. Both
allow a process that is waiting to enter its critical section to proceed.

To prove that the bounded-waiting requirement is met, we note that, when
a process leaves its critical section, it scans the array waiting in the cyclic
ordering (i + 1, i + 2, ... , n 1, 0, ... , i 1). It designates the first process in this
ordering that is in the entry section (waiting[j] ==true) as the next one to
enter the critical section. Any process waiting to enter its critical section will
thus do so within n - 1 turns.

Unfortunately for hardware designers, implementing atomic TestAnd
Set () instructions on multiprocessors is not a trivial task. Such implementa
tions are discussed in books on computer architecture.

The hardware-based solutions to the critical-section problem presented in
Section 6.4 are complicated for application programmers to use. To overcmrte
this difficulty, we can use a synchronization tool called a

A semaphore S is an integer variable that, apart from initialization, is
accessed only through two standard atomic operations: wait () and signal ().
The wait () operation was originally termed P (from the Dutch proberen, "to
test"); signal() was originally called V (from verhogen, "to increment"). The
definition of wait () is as follows:

wait(S) {

}

while S <= 0
II no-op

s--· '

The definition of signal() is as follows:

signal(S) {
S++;

}

All modifications to the integer value of the semaphore in the wait () and
signal() operations must be executed indivisibly. That is, when one process
modifies the semaphore value, no other process can simultaneously modify
that same semaphore value. In addition, in the case of wait (S), the testing of
the integer value of S (S :S 0), as well as its possible modification (S--), must
be executed without interruption. We shall see how these operations can be
implemented in Section 6.5.2; first, let us see how semaphores can be used.

6.5.1 Usage

Operating systems often distinguish between counting and binary semaphores.
The value of a counting semaphore can range over an unrestricted domain.
The value of a binary semaphore can range only between 0 and 1. On some

6.5 235

systems, binary semaphores are lmown as mutex locks, as they are locks that
provide mutual exclusion.

We can use binary semaphores to deal with the critical-section problem £or
mlJltiple processes. Then processes share a semaphore, mutex, initialized to 1.
Each process Pi is organized as shown in Figure 6.9.

Counting semaphores can be used to control access to a given resource
consisting of a finite number o£ instances. The semaphore is initialized to the
number of resources available. Each process that wishes to use a resource
performs a wait() operation on the semaphore (thereby decrementing the
count). When a process releases a resource, it performs a signal() operation
(incrementing the count). When the count for the semaphore goes to 0, all
resources are being used. After that, processes that wish to use a resource will
block until the count becomes greater than 0.

We can also use semaphores to solve various synchronization problems.
For example, consider two concurrently numing processes: P1 with a statement
51 and P2 with a statement 52 . Suppose we require that 52 be executed only
after 51 has completed. We can implement this scheme readily by letting P1

and P2 share a common semaphore synch, initialized to 0, and by inserting the
statements

51;
signal(synch) ;

in process P1 and the statements

wait(synch);
52;

in process P2. Because synch is initialized to 0, P2 will execute 52 only after P1

has invoked signal (synch), which is after statement 51 has been executed.

6.5.2 Implementation

The main disadvantage of the semaphore definition given here is thatit requires
While a process is in its critical section, any other process that

tries to enter its critical section must loop continuously in the entry code. This
continual looping is clearly a problem in a real multiprogramming system,

do {
wait (mutex) ;

II critical section

signal(mutex);

II remainder section
} while (TRUE);

Figure 6.9 Mutual-exclusion implementation with semaphores.

236 Chapter 6

where a single CPU is shared among ncany processes. Busy waiting wastes
CPU cycles that some other process might be able to use productively. This
type of semaphore is also called a because the process "spins" while
waiting for the lock. (Spinlocks do have an advantage in that no context switch
is required when a process must wait on a lock, and a context switch may
take considerable time. Thus, when locks are expected to be held for short
times, spinlocks are useful; they are often employed on multiprocessor systems
where one thread can "spin" on one processor while another thread performs
its critical section on another processor.)

To overcome the need for busy waiting, we can modify the definition of
the wait() and signal() semaphore operations. When a process executes the
wait () operation and finds that the semaphore value is not positive, it must
wait. However, rather than engaging in busy waiting, the process can block
itself. The block operation places a process into a waiting queue associated
with the semaphore, and the state of the process is switched to the waiting
state. Then control is transferred to the CPU scheduler, which selects another
process to execute.

A process that is blocked, waiting on a semaphore S, should be restarted
when some other process executes a signal() operation. The process is
restarted by a wakeup () operation, which changes the process from the waiting
state to the ready state. The process is then placed in the ready queue. (The
CPU may or may not be switched from the running process to the newly ready
process, depending on the CPU-scheduling algorithm.)

To implement semaphores under this definition, we define a semaphore as
a "C' struct:

typedef struct {
int value;
struct process *list;

} semaphore;

Each semaphore has an integer value and a list of processes list. When
a process must wait on a semaphore, it is added to the list of processes. A
signal() operation removes one process from the list of waiting processes
and awakens that process.

The wait() semaphore operation can now be defined as

wait(semaphore *S) {
S->value--;

}

if (S->value < 0) {

}

add this process to S->list;
block();

The signal () semaphore operation can now be defined as

signal(semaphore *S) {
S->value++;
if (S->value <= 0) {

6.5

remove a process P fron< S->list;
wakeup(P);

}
}

237

The block() operation suspends the process that invokes it. The wakeup(P)
operation resumes the execution of a blocked process P. These two operations
are provided by the operating system as basic system calls.

Note that in this implementation, semaphore values may be negative,
although semaphore values are never negative under the classical definition of
semaphores with busy waiting. If a semaphore value is negative, its magnitude
is the number of processes waiting on that semaphore. This fact results from
switching the order of the decrement and the test in the implementation of the
wait () operation.

The list of waiting processes can be easily implemented by a link field in
each process control block (PCB). Each semaphore contains an integer value and
a pointer to a list of PCBs. One way to add and rernove processes from the list
so as to ensure bounded waiting is to use a FIFO queue, where the semaphore
contains both head and tail pointers to the queue. In general, howeve1~ the list
can use any queueing strategy. Correct usage of semaphores does not depend
on a particular queueing strategy for the semaphore lists.

It is critical that semaphores be executed atomically. We must guarantee
that no two processes can execute wait() and signal() operations on the
same semaphore at the same time. This is a critical-section problem; and
in a single-processor environment (that is, where only one CPU exists), we
can solve it by simply inhibiting interrupts during the time the wait() and
signal() operations are executing. This scheme works in a single-processor
environment because, once interrupts are inhibited, instructions from different
processes cannot be interleaved. Only the currently running process executes
until interrupts are reenabled and the scheduler can regain control.

In a multiprocessor environment, interrupts must be disabled on every
processor; otherwise, instructions from different processes (running on differ
ent processors) may be interleaved in some arbitrary way. Disabling interrupts
on every processor can be a difficult task and furthermore can seriously dimin
ish performance. Therefore, SMP systems must provide alternative locking
techniques-such as spinlocks-to ensure that wait() and signal() are
performed atomically.

It is important to admit that we have not completely eliminated busy
waiting with this definition of the wait () and signal () operations. Rather,
we have moved busy waiting from the entry section to the critical sections
of application programs. Furthermore, we have limited busy waiting to the
critical sections of the wait () and signal () opera times, and these sections are
short (if properly coded, they sbould be no more than about ten instructions).
Thus, the critical section is almost never occupied, and busy waiting occurs
rarely, and then for only a short time. An entirely different situation exists
with application programs whose critical sections may be long (minutes or

238 Chapter 6

even hours) or may almost always be occupied. In such casesf busy waiting is
extremely inefficient.

6.5.3 Deadlocks and Starvation

The implementation of a semaphore with a waiting queue may result in a
situation where two or more processes are waiting indefinitely for an event
that can be caused only by one of the waiting processes. The event in question
is the execution of a signal() When such a state is reached, these
processes are said to be

To illustrate this, we consider a system consisting of two processes, Po and
P1, each accessing two semaphores, S and Q, set to the value 1:

Po

wait(S);
wait(Q);

signal(S);
signal(Q);

pl

wait(Q);
wait(S);

signal(Q);
signal(S);

Suppose that Po executes wait (S) and then P1 executes wait (Q). When Po
executes wait (Q), it must wait until P1 executes signal (Q). Similarly, when
P1 executes wait (S), it must wait until Po executes signal(S). Since these
signal() operations cam1ot be executed, Po and P1 are deadlocked.

We say that a set of processes is in a deadlock state when every process
in the set is waiting for an event that can be caused only by another process
in the set. The events with which we are mainly concerned here are resource
acquisition and release. However, other types of events may result in deadlocks,
as we show in Chapter 7. In that chapter, we describe various mechanisms for
dealing with the deadlock problem.

Another problem related to deadlocks is or
a situation in which processes wait indefinitely within the semaphore.

Indefinite blocking may occur if we remove processes from the list associated
with a semaphore in LIFO (last-in, first-out) order.

6.5.4 Priority Inversion

A scheduling challenge arises when a higher-priority process needs to read
or modify kernel data that are currently being accessed by a lower-priority
process-or a chain of lower-priority processes. Since kernel data are typically
protected with a lock, the higher-priority process will have to wait for a
lower-priority one to finish with the resource. The situation becomes more
complicated if the lower-priority process is preempted in favor of another
process with a higher priority. As an example, assume we have three processes,
Lf M, and H, whose priorities follow the order L < M < H. Assume that
process H requires resource R, which is currently being accessed by process L.
Ordinarily, process H would wait for L to finish using resource R. However,
now suppose that process M becomes runnable, thereby preempting process

6.6

6.6 239

PRIORITY INVERSION AND THE MARS PATHFINDER

Priority inversion can be more than a scheduling inconvenience. On systems
with tight time constraints (such as real-time systems-see Chapter 19),
priority inversion can cause a process to take longer than it should to
accomplish a task. When that happens, other failures can cascade, resulting
in system failure.

Consider the Mars Pathfinde1~ a NASA space probe that landed a robot, the
Sojourner rove1~ on Mars in 1997 to conduct experiments. Shortly after the
Sojourner began operating, it started to experience frequent computer resets.
Each reset reinitialized all hardware and software, including communica
tions. If the problem had not been solved, the Sojourner would have failed in
its mission.

The problem was caused by the fact that one high-priority task, "bcdist,"
was taking longer than expected to complete its work. This task was being
forced to wait for a shared resource that was held by the lower-priority
"ASI/MET" task, which in turn was preempted by multiple medium-priority
tasks. The "bcdist" task would stall waiting for the shared resource, and
ultimately the "bc_sched" task would discover the problem and perform the
reset. The Sojourner was suffering from a typical case of priority inversion.

The operating system on the Sojourner was VxWorks (see Section 19.6),
which had a global variable to enable priority inheritance on all semaphores.
After testing, the variable was set on the Sojourner (on Mars!), and the
problem was solved.

A full description of the problem, its detection, and its solu
tion was written by the software team lead and is available at
research.microsoft.com/ mbj /MarsYathfinder I Authoritative_Account.html.

L. Indirectly, a process with a lower priority-process M-has affected how
long process H must wait for L to relinquish resource R.

This problem is known as It occurs only in systems with
more than two priorities, so one solution is to have only two priorities. That is
insufficient for most general-purpose operating systems, however. Typically
these systems solve the problem by implementing a 2Tic?x,u"

:. According to this protocol, all processes that are accessing resources
needed by a higher-priority process inherit the higher priority until they are
finished with the resources in question. When they are finished, their priorities
revert to their original values. In the exan1.ple above, a priority-inheritance
protocol would allow process L to temporarily inherit the priority of process
H, thereby preventing process M from preempting its execution. When process
L had finished using resource R, it would relinquish its inherited priority from
Hand assume its original priority. Because resource R would now be available,
process H-not M-would run next.

In this section, we present a number of synchronization problems as examples
of a large class of concurrency-control problems. These problems are used for

240 Chapter 6

do {

II produce an item in nextp

wait(empty);
wait(mutex);

II add nextp to buffer

signal(mutex);
signal(full);

} while (TRUE);

Figure 6.10 The structure of the producer process.

testing nearly every newly proposed synchronization scheme. In our solutions
to the problems, we use semaphores for synchronization.

6.6.1 The Bounded-Buffer Problem

The bounded-buffer problem was introduced in Section 6.1; it is commonly used
to illustrate the power of synchronization primitives. Here, we present a
general structure of this scheme without committing ourselves to any particular
implementation; we provide a related programming project in the exercises at
the end of the chapter.

We assume that the pool consists of n buffers, each capable of holding
one item. The mutex semaphore provides mutual exclusion for accesses to the
buffer pool and is initialized to the value 1. The empty and full semaphores
comct the number of empty and full buffers. The semaphore empty is initialized
to the value n; the semaphore full is initialized to the value 0.

The code for the producer process is shown in Figure 6.10; the code for
the consumer process is shown in Figure 6.11. Note the symmetry between
the producer and the consumer. We can interpret this code as the producer
producing full buffers for the consumer or as the consumer producing empty
buffers for the producer.

do {
wait (full);
wait (mutex) ;

II remove an item from buffer to nextc

signal(mutex);
signal(empty);

II consume the item in nextc

} while (TRUE);

Figure 6.11 The structure of the consumer process.

6.6 241

6.6.2 The Readers-Writers Problem

Suppose that a database is to be shared among several concurrent processes.
Some of these processes may want only to read the database, whereas others
may want to update (that is, to read and write) the database. We distinguish
between these two types of processes by referring to the former as readers
and to the latter as writers. Obviously, if two readers access the shared data
simultaneously, no adverse effects will result. However, if a writer and some
other process (either a reader or a writer) access the database simultaneously,
chaos may ensue.

To ensure that these difficulties do not arise, we require that the writers
have exclusive access to the shared database while writing to the database. This
synchronization problem is referred to as the readers-writers problem. Since it
was originally stated, it has been used to test nearly every new synchronization
primitive. The readers-writers problem has several variations, all involving
priorities. The simplest one, referred to as the first readers-writers problem,
requires that no reader be kept waiting unless a writer has already obtained
permission to use the shared object. In other words, no reader should wait for
other readers to finish simply because a writer is waiting. The second readers
writers problem requires that, once a writer is ready, that writer performs its
write as soon as possible. In other words, if a writer is waiting to access the
object, no new readers may start reading.

A solution to either problem may result in starvation. In the first case,
writers may starve; in the second case, readers may starve. For this reason,
other variants of the problem have been proposed. Next, we present a solution
to the first readers-writers problem. Refer to the bibliographical notes at the
end of the chapter for references describing starvation-free solutions to the
second readers-writers problem.

In the solution to the first readers-writers problem, the reader processes
share the following data structures:

semaphore mutex, wrt;
int readcount;

The semaphores mutex and wrt are initialized to 1; readcount is initialized
to 0. The semaphore wrt is common to both reader and writer processes.
The mutex semaphore is used to ensure mutual exclusion when the variable
readcount is updated. The readcount variable keeps track of how many
processes are currently reading the object. The semaphore wrt functions as a
mutual-exclusion semaphore for the writers. It is also used by the first or last
reader that enters or exits the critical section. It is not used by readers who
enter or exit while other readers are in their critical sections.

The code for a writer process is shown in Figure 6.12; the code for a reader
process is shown in Figure 6.13. Note that, if a writer is in the critical section
and n readers are waiting, then one reader is queued on wrt, and n- 1 readers
are queued on mutex. Also observe that, when a writer executes signal (wrt),
we may resume the execution of either the waiting readers or a single waiting
writer. The selection is made by the scheduler.

The readers-writers problem and its solutions have been generalized to
provide locks on some systems. Acquiring a reader-writer lock

242 Chapter 6

do {
wait(wrt);

II writing is performed

signal(wrt);
} while (TRUE);

Figure 6. i 2 The structure of a writer process.

requires specifying the mode of the lock either read or write access. When a
process wishes only to read shared data, it requests the reader-writer lock
in read mode; a process wishing to modify the shared data must request the
lock in write mode. Multiple processes are permitted to concurrently acquire
a reader-writer lock in read mode, but only one process may acquire the lock
for writing, as exclusive access is required for writers.

Reader-writer locks are most useful in the following situations:

In applications where it is easy to identify which processes only read shared
data and which processes only write shared data.

In applications that have more readers than writers. This is because reader
writer locks generally require more overhead to establish than semaphores
or mutual-exclusion locks. The increased concurrency of allowing multiple
readers compensates for the overhead involved in setting up the reader
writer lock.

6.6.3 The Dining-Philosophers Problem

Consider five philosophers who spend their lives thinking and eating. The
philosophers share a circular table surrounded by five chairs, each belonging

do {
wait (mutex);
readcount++;
if (readcount 1)

wait (wrt);
signal(mutex);

II reading is performed

wait(mutex);
readcount--;
if (readcount 0)

signal(wrt);
signal(mutex);

} while (TRUE);

Figure 6.13 The structure of a reader process.

6.6 243

Figure 6.14 The situation of the dining philosophers.

to one philosopher. In the center of the table is a bowl of rice, and the table is laid
with five single chopsticks (Figure 6.14). When a philosopher thinks, she does
not interact with her colleagues. From time to time, a philosopher gets hungry
and tries to pick up the two chopsticks that are closest to her (the chopsticks
that are between her and her left and right neighbors). A philosopher may pick
up only one chopstick at a time. Obviously, she cam1ot pick up a chopstick that
is already in the hand of a neighbor. When a htmgry philosopher has both her
chopsticks at the same time, she eats without releasing her chopsticks. When
she is finished eating, she puts down both of her chopsticks and starts thinking
again.

The dining-philosophers problem is considered a classic synchronization
problem neither because of its practical importance nor because computer
scientists dislike philosophers but because it is an example of a large class
of concurrency-control problems. It is a simple representation of the need
to allocate several resources among several processes in a deadlock-free and
starvation-free mam1er.

One simple solution is to represent each chopstick with a semaphore. A
philosopher tries to grab a chopstick by executing await () operation on that
semaphore; she releases her chopsticks by executing the signal() operation
on the appropriate semaphores. Thus, the shared data are

semaphore chopstick[5];

where all the elements of chopstick are initialized to 1. The structure of
philosopher i is shown in Figure 6.15.

Although this solution guarantees that no two neighbors are eating
simultaneously, it nevertheless must be rejected because it could create a
deadlock. Suppose that all five philosophers become hungry simultaneously
and each grabs her left chopstick. All the elements of chopstick will now be
equal to 0. When each philosopher tries to grab her right chopstick, she will be
delayed forever.

Several possible remedies to the deadlock problem are listed next.

Allow at most four philosophers to be sitting simultaneously at the table.

244 Chapter 6

6.7

do {
wait(chopstick[i]);
wait(chopstick[(i+l) % 5]);

I I eat

signal(chopstick[i]);
signal(chopstick[(i+l) % 5]);

II think

} while (TRUE);

Figure 6.15 The structure of philosopher i.

Allow a philosopher to pick up her chopsticks only if both chopsticks are
available (to do this, she must pick them up in a critical section).

Use an asymmetric solution; that is, an odd philosopher picks up first her
left chopstick and then her right chopstick, whereas an even philosopher
picks up her right chopstick and then her left chopstick

In Section 6.7, we present a solution to the dining-philosophers problem
that ensures freedom from deadlocks. Note, however, that any satisfactory
solution to the dining-philosophers problem must guard against the possibility
that one of the philosophers will starve to death. A deadlock-free solution does
not necessarily eliminate the possibility of starvation.

Although semaphores provide a convenient and effective mechanism for
process synchronization, using them incorrectly can result in timing errors
that are difficult to detect, since these errors happen only if some particular
execution sequences take place and these sequences do not always occur.

We have seen an example of such errors in the use of counters in our
solution to the producer-consumer problem (Section 6.1). In that example,
the timing problem happened only rarely, and even then the counter value
appeared to be reasonable-off by only 1. Nevertheless, the solution is
obviously not an acceptable one. It is for this reason that semaphores were
introduced in the first place.

Unfortunately, such timing errors can still occur when semaphores are
used. To illustrate how, we review the semaphore solution to the critical-section
problem. All processes share a semaphore variable mutex, which is initialized
to 1. Each process must execute wait (mutex) before entering the critical section
and signal (mutex) afterward. If this sequence is not observed, two processes
may be in their critical sections simultaneously. Next, we examine the various
difficulties that may result. Note that these difficulties will arise even if a
single process is not well behaved. This situation may be caused by an honest
programming error or an uncooperative programmer.

6.7 245

Suppose that a process interchanges the order in which the wait() and
signal() operations on the semaphore mutex are executed, resulting in
the following execution:

signal(mutex);

critical section

wait(mutex);

In this situation, several processes may be executing in their critical sections
simultaneously, violating the mutual-exclusion requirement. This error
may be discovered only if several processes are simultaneously active
in their critical sections. Note that this situation may not always be
reproducible.

Suppose that a process replaces signal (mutex) with wait (mutex). That
is, it executes

wait(mutex);

critical section

wait(mutex);

In this case, a deadlock will occur.

Suppose that a process omits the wait (mutex), or the signal (mutex), or
both. In this case, either mutual exclusion is violated or a deadlock will
occur.

These examples illustrate that various types of errors can be generated easily
when programmers use sencaphores incorrectly to solve the critical-section
problem. Similar problems may arise in the other synchronization models
discussed in Section 6.6.

To deal with such errors, researchers have developed high-level language
constructs. In this section, we describe one fundamental high-level synchro
nization construct-the monitor type.

6.7.1 Usage

A abstract data type- or ADT- encapsulates private data with public methods
to operate on that data. A monitor type is an ADT which presents a set of
programmer-defined operations that are provided mutual exclusion within
the monitor. The monitor type also contains the declaration of variables whose
values define the state of an instance of that type, along with the bodies of
procedures or functions that operate on those variables. The syntax of a monitor
type is shown in Figure 6.16. The representation of a monitor type cannot be
used directly by the various processes. Thus, a procedure defined within a
monitor can access only those variables declared locally within the monitor
and its formal parameters. Similarly, the local variables of a monitor can be
accessed by only the local procedures.

246 Chapter 6

monitor rrwnitor name
{

II shared variable declarations

procedure P1 (. . .) {

}

procedure P2 (. . .) {

}

procedure Pn (. . .) {

}

initialization code (. . .) {

}
}

Figure 6.16 Syntax of a monitor.

The monitor construct ensures that only one process at a time is active
within the monitor. Consequently, the programmer does not need to code
this synchronization constraint explicitly (Figure 6.17). Howeve1~ the monitor
construct, as defined so fa1~ is not sufficiently powerful for modeling some
synchronization schemes. For this purpose, we need to define additional syn
chronization mechanisms. These mechanisms are provided by the condition
construct. A programmer who needs to write a tailor-made synchronization
scheme can define one or more variables of type condition:

condition x, y;

The only operations that can be invoked on a condition variable are wait ()
and signal(). The operation

x. wait();

means that the process invoking this operation is suspended until another
process invokes

x. signal();

The x. signal() operation resumes exactly one suspended process. If no
process is suspended, then the signal() operation has no effect; that is, the
state of x is the same as if the operation had never been executed (Figure

shared data

operations

initialization
code

6.7

Figure 6.17 Schematic view of a monitor.

247

6.18). Contrast this operation with the signal() operation associated with
semaphores, which always affects the state of the semaphore.

Now suppose that, when the x. signal () operation is invoked by a process
P, there exists a suspended process Q associated with condition x. Clearly, if the
suspended process Q is allowed to resume its execution, the signaling process P
must wait. Otherwise, both P and Q would be active simultaneously within the
monitor. Note, however, that both processes can conceptually continue with
their execution. Two possibilities exist:

Signal and wait. P either waits until Q leaves the monitor or waits for
another condition.

Signal and continue. Q either waits until P leaves the monitor or waits
for another condition.

There are reasonable arguments in favor of adopting either option. On the
one hand, since P was already executing in the monitor, the signal-and-continue
method seems more reasonable. On the other hand, if we allow thread P to
continue, then by the time Q is resumed, the logical condition for which Q
was waiting may no longer hold. A compromise between these two choices
was adopted in the language Concurrent Pascal. When thread P executes the
signal operation, it imncediately leaves the monitor. Hence, Q is immediately
resumed.

Many programming languages have incorporated the idea of the monitor
as described in this section, including Concurrent Pascal, Mesa, C# (pro
nounced C-sharp), and Java. Other languages-such as Erlang-provide some
type of concurrency support using a similar mechanism.

248 Chapter 6

queues associated with {
x, y conditions ;-_:__----~-~-------\

...

operations

initialization
code

Figure 6.18 Monitor with condition variables.

6.7.2 Dining-Philosophers Solution Using Monitors

Next, we illustrate monitor concepts by presenting a deadlock-free solution to
the dining-philosophers problem. This solution imposes the restriction that a
philosopher may pick up her chopsticks only if both of them are available. To
code this solution, we need to distinguish among three states in which we may
find a philosopher. For this purpose, we introduce the following data structure:

enum{THINKING, HUNGRY, EATING}state[5];

Philosopher i can set the variable state [i] = EATING only if her two
neighbors are not eating: (state [(i +4) % 5] ! = EATING) and (state [(i +1)
% 5] '= EATING).

We also need to declare

condition sel£[5];

in which philosopher i can delay herself when she is hungry but is unable to
obtain the chopsticks she needs.

We are now in a position to describe our solution to the dining-philosophers
problem. The distribution of the chopsticks is controlled by the monitor Din
ingPhilosophers, whose definition is shown in Figure 6.19. Each philosopher,
before starting to eat, must invoke the operation pickup(). This act n'lay result
in the suspension of the philosopher process. After the successful completion of
the operation, the philosopher may eat. Following this, the philosopher invokes

6.7

monitor dp
{

}

enum {THINKING, HUNGRY, EATING} state[5];
condition self[5];

void pickup(int i) {
state[i] =HUNGRY;
test(i);

}

if (state [i] ! = EATING)
self [i] . wait() ;

void putdown(int i) {
state[i] =THINKING;
test((i + 4) % 5);
test((i + 1) % 5);

}

void test(int i) {

}

if ((state[(i + 4) % 5] !=EATING) &&
(state[i] ==HUNGRY) &&

}

(state[(i + 1) % 5] !=EATING)) {
state[i] =EATING;
self[i] .signal();

initialization_code() {

}

for (int i = 0; i < 5; i++)
state[i] =THINKING;

Figure 6.19 A monitor solution to the dining-philosopher problem.

249

the put down() operation. Thus, philosopher i must invoke the operations
pickup() and put down() in the following sequence:

DiningPhilosophers.pickup(i);

eat

DiningPhilosophers.putdown(i);

It is easy to show that this solution ensures that no two neighbors are eating
simultaneously and that no deadlocks will occur. We note, however, that it is
possible for a philosopher to starve to death. We do not present a solution to
this problem but rather leave it as an exercise for you.

250 Chapter 6

6.7.3 Implementing a Monitor Using Semaphores

We now consider a possible implementation of the nwnitor mechanism using
semaphores. For each lTlonitor, a semaphore mutex (initialized to 1) is provided.
A process must execute wait (mutex) before entering the n1onitor and must
execute signal (mutex) after leaving the monitor.

Since a signaling process must wait until the resumed process either leaves
or waits, an additional sernaphore, next, is introduced, initialized to 0. The
signaling processes can use next to suspend themselves. An integer variable
next_count is also provided to count the number of processes suspended on
next. Thus, each external procedure F is replaced by

wait(mutex);

body ofF

if (next_count > 0)
signal(next);

else
signal(mutex);

Mutual exclusion within a monitor is ensured.
We can now describe how condition variables are implemented as well.

For each condition x, we introduce a semaphore x_sem and an integer
variable x_count, both initialized to 0. The operation x. wait() can now be
implemented as

x_count++;
if (next_count > 0)

signal(next);
else

signal(mutex);
wait (x_sem) ;
x_count--;

The operation x. signal() can be implemented as

if (x_count > 0) {
next_count++;
signal(x_sem);
wait(next);
next_count--;

}

This implementation is applicable to the definitions of monitors given by
both Hoare and Brinch-Hansen. In some cases, however, the generality of the
implementation is unnecessary, and a significant improvement in efficiency is
possible. We leave this problem to you in Exercise 6.35.

6.7.4 Resuming Processes within a Monitor

We turn now to the subject of process-resumption order within a monitor. If
several processes are suspended on condition x, and an x. signal() operation

monitor ResourceAllocator
{

}

boolean busy;
condition x;

void acquire(int time) {
if (busy)

x.wait(time);
busy = TRUE;

}

void release() {
busy = FALSE;
x. signal() ;

}

initialization_code() {
busy = FALSE;

}

6.7

Figure 6.20 A monitor to allocate a single resource.

251

is executed by some process, then how do we determine which of the
suspended processes should be resumed next? One simple solution is to use an
FCFS ordering, so that the process that has been waiting the longest is resumed
first. In many circumstances, however, such a simple scheduling scheme is not
adequate. For this purpose, the construct can be used; it has
the form

x.wait(c);

where c is an integer expression that is evaluated when the wait () operation
is executed. The value of c, which is called a pdos!ty is then stored
with the name of the process that is suspended. When x. signal () is executed,
the process with the smallest priority number is resumed next.

To illustrate this new mechanism, consider the ResourceAllocator mon
itor shown in Figure 6.20, which controls the allocation of a single resource
among competing processes. Each process, when requesting an allocation of
this resource, specifies the maximum time it plans to use the resource. The mon
itor allocates the resource to the process that has the shortest time-allocation
request. A process that needs to access the resource in question must observe
the following sequence:

R.acquire(t);

access the resource;

R. release() ;

where R is an instance of type ResourceAllocator.

252 Chapter 6

6.8

Unfortunately, the monitor concept cannot guarantee that the preceding
access sequence will be observed. In particular, the following problems can
occur:

A process might access a resource without first gaining access permission
to the resource.

A process ntight never release a resource once it has been granted access
to the resource.

A process might attempt to release a resource that it never requested.

A process might request the same resource twice (without first releasing
the resource).

The same difficulties are encountered with the use of semaphores, and
these difficulties are similar in nature to those that encouraged us to develop
the monitor constructs in the first place. Previously, we had to worry about
the correct use of semaphores. Now, we have to worry about the correct use of
higher-level programmer-defined operations, with which the compiler can no
longer assist us.

One possible solution to the current problem is to include the resource
access operations within the ResourceAllocator monitor. However, using
this solution will mean that scheduling is done according to the built-in
monitor-scheduling algorithm rather than the one we have coded.

To ensure that the processes observe the appropriate sequences, we must
inspect all the programs that make use of the ResourceAllocator monitor
and its managed resource. We must check two conditions to establish the
correctness of this system. First, user processes must always make their calls
on the monitor in a correct sequence. Second, we must be sure that an
uncooperative process does not simply ignore the mutual-exclusion gateway
provided by the monitor and try to access the shared resource directly, without
using the access protocols. Only if these two conditions can be ensured can we
guarantee that no time-dependent errors will occur and that the scheduling
algorithm will not be defeated.

Although this inspection may be possible for a small, static system, it is
not reasonable for a large system or a dynamic system. This access-control
problem can be solved only through the use of additional mechanisms that are
described in Chapter 14.

Many programming languages have incorporated the idea of the monitor
as described in this section, including Concurrent Pascal, Mesa, C# (pro
nounced C-sharp), and Java. Other languages-such as Erlang-provide some
type of concurrency support using a similar mechanism.

We next describe the synchronization mechanisms provided by the Solaris,
Windows XP, and Linux operating systems, as well as the Pthreads API. We have
chosen these three operating systems because they provide good examples of
different approaches for synchronizing the kernel, and we have included the

6.8 253

JAVA MONITORS

Java provides a monitor-like concurrency mechanisn1 for thread synchro
nization. Every object in Java has associated with it a single lock. When a
method is declared to be synchronized, calling the method requires owning
the lock for the object. We declare a synchronized method by placing the
synchronized keyword in the method definition. The following defines the
safeMethod() as synchronized, for example:

public class SimpleClass {

}

public synchronized void safeMethod() {
I* Implementation of safeMethod() *I

}

Next, assume we create an object instance of SimpleClass, such as:

SimpleClass sc =new SimpleClass();

Invoking the sc. safeMethod() method requires owning the lock on the
object instance sc. If the lock is already owned by another thread, the thread
calling the synchronized method blocks and is placed in the entry set for the
object's lock. The entry set represents the set of threads waiting for the lock
to become available. If the lock is available when a synchronized method
is called, the calling thread becomes the owner of the object's lock and can
enter the method. The lock is released when the thread exits the method; a
thread from the entry set is then selected as the new owner of the lock.

Java also provides wait() and notify() methods, which are similar
in function to the wait() and signal 0 statements for a monitor. Release
1.5 of the Java language provides API support for semaphores, condition
variables, and mutex locks (among other concurrency mechanisms) in the
java. util. concurrent package.

Pthreads API because it is widely used for thread creation and synchronization
by developers on UNIX and Linux systems. As you will see in this section, the
synchronization methods available in these differing systems vary in subtle
and significant ways.

6.8.1 Synchronization in Solaris

To control access to critical sections, Solaris provides adaptive mutexes, condi
tion variables, sernaphores, reader-writer locks, and turnstiles. Solaris imple
ments semaphores and condition variables essentially as they are presented
in Sections 6.5 and 6.7. In this section, we describe adaptive mLltexes, reader
writer locks, and turnstiles.

254 Chapter 6

An protects access to every critical data item. On a
multiprocessor system, an adaptive mutex starts as a standard semaphore
implemented as a spinlock. If the data are locked and therefore already in use,
the adaptive mutex does one of two things. If the lock is held by a thread that
is currently running on another CPU, the thread spins while waiting for the
lock to become available, because the thread holding the lock is likely to finish
soon. If the thread holding the lock is not currently in run state, the thread
blocks, going to sleep until it is awakened by the release of the lock. It is put
to sleep so that it will not spin while waiting, since the lock will not be freed
very soon. A lock held by a sleeping thread is likely to be in this category. On
a single-processor system, the thread holding the lock is never rwming if the
lock is being tested by another thread, because only one thread can run at a
time. Therefore, on this type of system, threads always sleep rather than spin
if they encounter a lock.

Solaris uses the adaptive-mutex method to protect only data that are
accessed by short code segments. That is, a mutex is used if a lock will be
held for less than a few hundred instructions. If the code segment is longer
than that, the spin-waiting method is exceedingly inefficient. For these longer
code segments, condition variables and semaphores are used. If the desired
lock is already held, the thread issues a wait and sleeps. When a thread frees
the lock, it issues a signal to the next sleeping thread in the queue. The extra
cost of putting a thread to sleep and waking it, and of the associated context
switches, is less than the cost of wasting several hundred instructions waiting
in a spinlock.

Reader-writer locks are used to protect data that are accessed frequently
but are usually accessed in a read-only manner. In these circumstances,
reader-writer locks are more efficient than semaphores, because multiple
threads can read data concurrently, whereas semaphores always serialize access
to the data. Reader-writer locks are relatively expensive to implement, so again
they are used only on long sections of code.

Solaris uses turnstiles to order the list of threads waiting to acquire either
an adaptive n1.utex or a reader-writer lock. A is a queue structure
containing threads blocked on a lock. For example, if one thread currently
owns the lock for a synchronized object, all other threads trying to acquire the
lock will block and enter the turnstile for that lock. When the lock is released,
the kernel selects a thread from the turnstile as the next owner of the lock.
Each synchronized object with at least one thread blocked on the object's lock
requires a separate turnstile. However, rather than associating a turnstile with
each synchronized object, Solaris gives each kernel thread its own turnstile.
Because a thread can be blocked only on one object at a time, this is more
efficient than having a turnstile for each object.

The turnstile for the first thread to block on a synchronized object becomes
the turnstile for the object itself. Threads subsequently blocking on the lock will
be added to this turnstile. When the initial thread ultimately releases the lock,
it gains a new turnstile from a list of free turnstiles maintained by the kernel. To
prevent a priority inversion, turnstiles are organized according to a priority
inheritance protocol. This means that if a lower-priority thread currently holds
a lock on which a higher-priority thread is blocked, the thread with the lower
priority will temporarily inherit the priority of the higher-priority thread. Upon
releasing the lock, the thread will revert to its original priority.

6.8 255

Note that the locking mechanisms used by the kernel are implemented
for user-level threads as well, so the same types of locks are available inside
and outside the kernel. A crucial implementation difference is the priority
inheritance protocol. Kernel-locking routines adhere to the kernel priority
inheritance methods used by the scheduler, as described in Section 19.4;
user-level thread-locking mechanisms do not provide this functionality.

To optimize Solaris performance, developers have refined and fine-tuned
the locking methods. Because locks are used frequently and typically are used
for crucial kernel functions, tuning their implem.entation and use can produce
great performance gains.

6.8.2 Synchronization in Windows XP

The Windows XP operating system is a multithreaded kernel that provides
support for real-time applications and multiple processors. When the Windows
XP kernel accesses a global resource on a uniprocessor system, it temporarily
masks interrupts for all interrupt handlers that may also access the global
resource. On a multiprocessor system, Windows XP protects access to global
resources using spinlocks. Just as in Solaris, the kernel uses spinlocks only to
protect short code segments. Furthermore, for reasons of efficiency, the kernel
ensures that a thread will never be preempted while holding a spinlock.

For thread synchronization outside the kernel, Windows XP provides
"~,: Using a dispatcher object, threads synchronize according

to several different mechanisms, including mutexes, semaphores, events, and
timers. The system protects shared data by requiring a tluead to gain ownership
of a mutex to access the data and to release ownership when it is finished.
Semaphores behave as described in Section 6.5. are similar to condition
variables; that is, they may notify a waiting thread when a desired condition
occurs. Finally, timers are used to notify one (or more than one) thread that a
specified amount of time has expired.

Dispatcher objects may be in either a signaled state or a nonsignaled state.
A si§,7'2led indicates that an object is available and a thread will not block
when acquiring the object. A indicates that an object is not
available and a thread will block when attempting to acquire the object. We
illustrate the state transitions of a mutex lock dispatcher object in Figure 6.21.

A relationship exists between the state of a dispatcher object and the state
of a thread. When a thread blocks on a nonsignaled dispatcher object, its state
changes frmn ready to waiting, and the thread is placed in a waiting queue
for that object. When the state for the dispatcher object moves to signaled,
the kernel checks whether any threads are waiting on the object. If so, the

owner thread releases mutex lock

thread acquires mutex lock

Figure 6.21 Mutex dispatcher object.

256 Chapter 6

kernel moves one thread -or possibly nlOre threads-from the waiting state
to the ready state, where they can resume executing. The number of threads
the kernel selects from the waiting queue depends on the type of dispatcher
object for which it is waiting. The kernel will select only one thread from the
waiting queue for a mutex, since a mutex object may be "owned" by only a
single thread. For an event object, the kernel will select all threads that are
waiting for the event.

We can use a mutex lock as an illustration of dispatcher objects and
thread states. If a thread tries to acquire a mutex dispatcher object that is in a
nonsignaled state, that thread will be suspended and placed in a waiting queue
for the mutex object. When the mutex moves to the signaled state (because
another thread has released the lock on the mutex), the thread waiting at the
front of the queue will be moved from the waiting state to the ready state and
will acquire the mutex lock.

We provide a programming project at the end of this chapter that uses
mutex locks and semaphores in the Win32 API.

6.8.3 Synchronization in Linux

Prior to Version 2.6, Linux was a nonpreemptive kernel, meaning that a process
running in kernel mode could not be preempted -even if a higher-priority
process became available to run. Now, however, the Linux kernel is fully
preemptive, so a task can be preempted when it is running in the kerneL

The Linux kernel provides spinlocks and semaphores (as well as reader
writer versions of these two locks) for locking in the kerneL On SMP machines,
the fundamental locking mechanism is a spinlock, and the kernel is designed so
that the spinlock is held only for short durations. On single-processor machines,
spinlocks are inappropriate for use and are replaced by enabling and disabling
kernel preemption. That is, on single-processor machines, rather than holding
a spinlock, the kernel disables kernel preemption; and rather than releasing
the spinlock, it enables kernel preemption. This is summarized below:

Disable kernel preemption, Acquirespin lock.

Enable kernel preemption. Release spin lock.

Linux uses an interesting approach to disable and enable kernel preemp
tion. It provides two simple system calls-preempLdisable () and pre
empt_enable ()-for disabling and enabling kernel preemption. In addition,
however, the kernel is not preemptible if a kernel-mode task is holding a lock.
To enforce this rule, each task irl the system has a thread-info structure
containing a counter, preempLcount, to indicate the number of locks being
held by the task. When a lock is acquired, preempLcount is incremented. It
is decremented when a lock is released. If the value of preempt_count for the
task currently running is greater than zero, it is not safe to preempt the kernel,
as this task currently holds a lock If the count is zero, the kernel can safely be
interrupted (assuncing there are no outstanding calls to preempLdisable ()).

6.9

6.9 257

Spinlocks-along with enabling and disabling kernel preemption-are
used in the kernel only when a lock (or disabling kernel preemption) is held
for a short duration. When a lock must be held for a longer period, semaphores
are appropriate for use.

6.8.4 Synchronization in Pthreads

The Pthreads API provides mutex locks, condition variables, and read-write
locks for thread synchronization. This API is available for programmers and
is not part of any particular kernel. Mutex locks represent the fundamental
synchronization technique used with Pthreads. A mutex lock is used to protect
critical sections of code-that is, a thread acquires the lock before entering
a critical section and releases it upon exiting the critical section. Condition
variables in Pthreads behave much as described in Section 6.7. Read-write
locks behave similarly to the locking mechanism described in Section 6.6.2.
Many systems that implement Pthreads also provide semaphores, although
they are not part of the Pthreads standard and instead belong to the POSIX SEM
extension. Other extensions to the Pthreads API include spinlocks, but not all
extensions are considered portable from one implementation to another. We
provide a programming project at the end of this chapter that uses Pthreads
mutex locks and semaphores.

The mutual exclusion of critical sections ensures that the critical sections are
executed atomically -that is, as one uninterruptible unit. If two critical sections
are instead executed concurrently, the result is equivalent to their sequential
execution in some unknown order. Although this property is useful in many
application domains, in many cases we would like to make sure that a critical
section forms a single logical unit of work that either is performed in its entirety
or is not performed at all. An example is funds transfer, in which one account
is debited and another is credited. Clearly, it is essential for data consistency
either that both the credit and debit occur or that neither occurs.

Consistency of data, along with storage and retrieval of data, is a concern
often associated with Recently, there has been an upsurge of
interest in using database-systems techniques in operating systems. Operating
systems can be viewed as manipulators of data; as such, they can benefit from
the advanced techniques and models available from database research. For
instance, many of the ad hoc techniques used in operating systems to manage
files could be more flexible and powerful if more formal database methods
were used in their place. In Sections 6.9.2 to 6.9.4, we describe some of these
database techniques and explain how they can be used by operating systems.
First, however, we deal with the general issue of transaction atomicity. It is this
property that the database techniques are meant to address.

6.9.1 System Model

A collection of instructions (or operations) that performs a single logical
function is called a A major issue in processing transactions is the

258 Chapter 6

preservation of atomicity despite the possibility of failures within the computer
system.

We can think of a transaction as a program unit that accesses and perhaps
updates various data items that reside on a disk within some files. From our
point of view, such a transaction is simply a sequence of read and write
operations terminated by either a commit operation or an abort operation.
A commit operation signifies that the transaction has terminated its execution
successfully, whereas an abort operation signifies that the transaction has

TRANSACTIONAL MEMORY

With the emergence of multicore systems has come increased pressure to
develop multithreaded applications that take advantage of multiple process
ing cores. However, multithreaded applications present an increased risk
of race conditions and deadlocks. Traditionally, techniques such as locks,
semaphores, and monitors have been used to address these issues. How
ever, provides an alternative strategy fordeveloping
thread-safe concurrent applications.

A is a sequence of memory read-write operations
that are atomic. If all operations in a transaction are completed, the memory
transaction is committed; otherwise, the operations must be aborted and
rolled back. The benefits of transactional memory can be obtained through
features added to a programming language.

Consider an example. Suppose we have a function update () that
modifies shared data. Traditionally, this function would be written using
locks such as the following:

update () {
acquire();

}

I* modify shared data *I
release();

However, using synchronization mechanisms such as locks and semaphores
involves many potential problems, including deadlocks. Additionally, as the
number of threads increases, traditional locking does not scale well.

As an alternative to traditional methods, new features that take advantage
of transactional memory can be added to a programming language. In our
example, suppose we add the construct atomic{s}, which ensures that
the operations in s execute as a transaction. This allows us to rewrite the
update () method as follows:

update () {
atomic {

I* modify shared data *I
}

}

Continued on following page.

6.9 259

TRANSACTIONAL MEMORY(Continued)

The advantage of using such a mechanism rather than locks is that. the
transactional memoi"y system~not the developer-isrespon.sible for guar
anteeing atomicity Additionally, the system can identify which statements in
atomic blocks can be executed concurrently, such as concurrent read access to
a shared variable. It is, of course, possible for a programmer to identify these
situations and use reader-writer locks, but the task becomes increasingly
difficult as the number ofthreads within anapplicationgrows.

Transactional memory can be implemented in either software or hard
ware. Software transactional memory (STM), as the nam~ suggests, imp lee
ments transactional memory exclusivelyin software~nospecial hardware
is needed. STM works by inserting instrumentation code inside transaction
blocks. The code is inserted by a compiler and manages each transaction by
examining where statements may run concurrently and where specific low
levellockingis required. Hardware transactional memory(small HTM) uses
hardware cache hierarchies and cache coherency protocols to manage and
resolve conflicts involving shared data residing in separate processors caches.
HTM requires no special code instmmentation and thus has less overhead
than STM. However, HTM does require that existing cache hierarchies and
cachecoherencyprotocolsbe modified to support transactional memory.

Transactional memory has existed for several years Without widespread
implementation. However, the growth of multi core systems and the asso
ciated emphasis on concurrent programming have prompted a significant
amoLmt ofresearch in this area on the part of both academics and hard ware
vendors, including Intel and Sun Microsystems.

ended its normal execution due to some logical error or a system failure.
If a terminated transaction has completed its execution successfully, it is

otherwise, it is
Since an aborted transaction may already have modified the data that it

has accessed, the state of these data may not be the same as it would have
been if the transaction had executed atomically. So that atomicity is ensured,
an aborted transaction must have no effect on the state of the data that it has
already modified. Thus, the state of the data accessed by an aborted transaction
must be restored to what it was just before the transaction started executing. We
say that such a transaction has been It is part of the responsibility
of the system to ensure this property.

To determ.ine how the system should ensure atomicity, we need first to
identify the properties of devices used for storing the various data accessed
by the transactions. Various types of storage media are distinguished by their
relative speed, capacity, and resilience to failure.

Volatile storage. Information residing in volatile storage does not usually
survive system crashes. Examples of such storage are main and cache
merrwry. Access to volatile storage is extremely fast, both because of the
speed of the memory access itself and because it is possible to access
directly any data item in volatile storage.

260 Chapter 6

Nonvolatile storage. Information residing in nonvolatile storage usually
survives system crashes. Examples of m.edia for such storage are disks and
magnetic tapes. Disks are more reliable than main memory but less reliable
than magnetic tapes. Both disks and tapes, however, are subject to failure,
which may result in loss of inform.ation. Currently, nonvolatile storage is
slower than volatile storage by several orders of magnitude, becm1se disk
and tape devices are electromechanical and require physical motion to
access data.

Stable storage. Information residing in stable storage is never lost (never
should be taken with a grain of salt, since theoretically such absolutes
cannot be guaranteed). To implement an approximation of such storage, we
need to replicate information in several nonvolatile storage caches (usually
disk) with independent failure modes and to update the inform.ation in a
controlled manner (Section 12.8).

Here, we are concerned only with ensuring transaction atomicity in an
environment where failures result in the loss of inform.ation on volatile storage.

6.9.2 Log-Based Recovery

One way to ensure atomicity is to record, on stable storage, information
describing all the modifications made by the transaction to the various data it
accesses. The most widely used method for achieving this form of recording
is Here, the system maintains, on stable storage, a data
structure called the Each log record describes a single operation of a
transaction write and has the following fields:

Transaction name. The unique name of the transaction that performed the
write operation

Data item name. The unique name of the data item written

Old value. The value of the data item prior to the write operation

New value. The value that the data item will have after the write

Other special log records exist to record significant events during transac
tion processing, such as the start of a transaction and the commit or abort of a
transaction.

Before a transaction T; starts its execution, the record < T; starts> is
written to the log. During its execution, any write operation by T; is preceded
by the writing of the appropriate new record to the log. When T; commits, the
record< T; commits> is written to the log.

Because the information in the log is used in reconstructing the state of the
data items accessed by the various transactions, we cannot allow the actual
update to a data item to take place before the corresponding log record is
written out to stable storage. We therefore require that, prior to execution of a
wri te(X) operation, the log records corresponding to X be written onto stable
storage.

Note the performance penalty inherent in this system. Two physical writes
are required for every logical write requested. Also, more storage is needed,
both for the data themselves and for the log recording the changes. In cases

6.9 261

where the data are extremely important and fast failure recovery is necessary,
however, the functionality is worth tl1e price.

Using the log, the system can handle any failure that does not result in the
loss of information on nonvolatile storage. The recovery algorithm uses two
procedures:

undo(T;), which restores the value of all data updated by transaction T; to
the old values

redo(T;), which sets the value of all data updated by transaction T; to the
new values

The set of data updated by T; and the appropriate old and new values can be
found in the log. Note that the undo and redo operations must be idempotent
(that is, multiple executions must have the same result as does one execution) to
guarantee correct behavior even if a failure occurs during the recovery process.

If a transaction T; aborts, then we can restore the state of the data that
it has updated by simply executing undo(T;). If a system failure occurs, we
restore the state of all updated data by consulting the log to determine which
transactions need to be redone and which need to be Lmdone. This classification
of transactions is accomplished as follows:

Transaction T; needs to be undone if the log contains the < I; starts>
record but does not contain the< T; corrnni ts> record.

Transaction T; needs to be redone if the log contains both the< T; starts>
and the< T; corrnni ts> records.

6.9.3 Checkpoints

When a system failure occurs, we must consult the log to determine which
transactions need to be redone and which need to be undone. In. principle, we
need to search the entire log to make these determinations. There are two major
drawbacks to this approach:

The searching process is time consuming.

Most of the transactions that, according to our algorithm, need to be
redone have already actually updated the data that the log says they
need to modify. Although redoing the data modifications will cause no
harm (due to idempotency), it will nevertheless cause recovery to take
longer.

To reduce these types of overhead, we introduce the concept of
During execution, the system maintains the write-ahead log. In addi

tion, the system periodically performs checkpoints that require the following
sequence of actions to take place:

Output all log records currently residing in volatile storage (usually main
memory) onto stable storage.

Output all modified data residing in volatile storage to the stable storage.

Output a log record <checkpoint> onto stable storage.

262 Chapter 6

The presence of a <checkpoint> record in the log allows the systen'l
to streamline its recovery procedure. Consider a transaction I; that committed
prior to the checkpoint. The < T; commits> record appears in the log before the
<checkpoint> record. Any modifications made by T; must have been written
to stable storage either prior to the checkpoint or as part of the checkpoint
itself. Thus, at recovery time, there is no need to perform a redo operation
on T;.

This observation allows us to refine our previous recovery algorithm. After
a failure has occurred, the recovery routine examines the log to determine
the most recent transaction T; that started executing before the most recent
checkpoint took place. It finds such a transaction by searching the log backward
to find the first <checkpoint> record and then finding the subsequent
< T; start> record.

Once transaction T; has been identified, the redo and undo operations need
be applied only to transaction T; and all transactions T1 that started executing
after transaction I;·. We'll call these transactions set T. The remainder of the log
can be ignored. The recovery operations that are required are as follows:

For all transactions 'nc in T for which the record < Tic commits> appears in
the log, execute redo(T/c)·

For all transactions 'nc in T that have no < Tic commits> record in the log,
execute undo(T;c).

6.9.4 Concurrent Atomic Transactions

We have been considering an environment in which only one transaction can
be executing at a time. We now turn to the case where multiple transactions
are active simultaneously. Because each transaction is atomic, the concurrent
execution of transactions must be equivalent to the case where these trans
actions are executed serially in some arbih·ary order. This property, called

can be maintained by simply executing each transaction within
a critical section. That is, all transactions share a common semaphore mutex,
which is initialized to 1. When a transaction starts executing, its first action is to
execute wai t(mutex). After the transaction either commits or aborts, it executes
signal(mutex).

Although this scheme ensures the atomicity of all concurrently executing
transactions, it is nevertheless too restrictive. As we shall see, in many
cases we can allow transactions to overlap their execution while maintaining
serializability. A number of different ensure
serializability, and we describe these algorithms next.

6.9.4.1 Serializability

Consider a system with two data items, A and B, that are both read and written
by two transactions, To and T1. Suppose that these transactions are executed
atomically in the order T0 followed by T1. This execution sequence, which is
called a schedule, is represented in Figure 6.22. In schedule 1 of Figure 6.22, the
sequence of instruction steps is in chronological order from top to bottom, with
instructions of To appearing in the left column and instructions of T1 appearing
in the right colunm.

6.9 263

To T1
read(A)
write(A)
read(B)
write(B)

read(A)
write(A)
read(B)
write(B)

Figure 6.22 Schedule I: A serial schedule in which To is followed by T1 •

A schedule in which each transaction is executed atomically is called
a A serial schedule consists of a sequence of instructions
from various transactions wherein the instructions belonging to a particular
transaction appear together. Thus, for a set of n transactions, there exist n!
different valid serial schedules. Each serial schedule is correct, because it is
equivalent to the atomic execution of the various participating transactions in
some arbitrary order.

If we allow the two transactions to overlap their execution, then the result
ing schedule is no longer serial. A :•cJ,sef'i:al does not necessarily
imply an incorrect execution (that is, an execution that is not equivalent to one
represented by a serial schedule). To see that this is the case, we need to define
the notion of nflic;cing

Consider a schedule S in which there are two consecutive operations 0;
and Oi of transactions~ and Ti, respectively. We say that 0; and Oj conflict if
they access the same data item and at least one of them is a write operation.
To illustrate the concept of conflicting operations, we consider the nonserial
schedule 2 of Figure 6.23. The wri te(A) operation of To conflicts with the
read(A) operation of T1. However, the wri te(A) operation of T1 does not
conflict with the read(B) operation of To, because the two operations access
different data items.

To T1
read(A)
write(A)

read(A)
write(A)

read(B)
write(B)

read(B)
write(B)

Figure 6.23 Schedule 2: A concurrent serializable schedule.

264 Chapter 6

Let 0; and 0; be consecutive operations of a schedule 5. If 0; and Oi are
operations of different transactions and 0; and Oi do not conflict then we can
swap the order of 0; and 0; to produce a new schedule 5'. We expect 5 to be
equivalent to 5', as all operations appear in the same order in both schedules,
except for 0; and 0 1, whose order does not matter.

We can illustrate the swapping idea by considering again schedule 2 of
Figure 6.23. As the wri te(A) operation of T1 does not conflict with the read(B)
operation of T0, we can swap these operations to generate an equivalent
schedule. Regardless of the initial system state, both schedules produce
the same final system state. Continuing with this procedure of swapping
nonconflicting operations, we get:

Swap the read(B) operation of To with the read(A) operation of T1.

Swap the write(B) operation of To with the write(A) operation of T1.

Swap the wri te(B) operation of To with the read(A) operation of T1.

The final result of these swaps is schedule 1 in Figure 6.22, which is a
serial schedule. Thus, we have shown that schedule 2 is equivalent to a serial
schedule. This result implies that regardless of the initial system state, schedule
2 will produce the same final state as will some serial schedule.

If a schedule 5 can be transformed into a serial schedule 5'
swaps of nonconflicting operations, we say that a schedule 5 is
izable. Thus, schedule 2 is conflict serializable, because it can be transformed
into the serial schedule 1.

6.9.4.2 Locking Protocol

One way to ensure serializability is to associate a lock with each data item and
to require that each transaction follow a that governs how
locks are acquired and released. There are various modes in which a data item
can be locked. In this section, we restrict our attention to two modes:

Shared. If a transaction 7i has obtained a shared-mode lock (denoted by
S) on data item Q, then 1i can read this item but cannot write Q.

Exclusive. If a transaction T; has obtained an exclusive-mode lock (denoted
by X) on data item Q, then 7i can both read and write Q.

We require that every transaction request a lock in an appropriate m.ode on
data item Q, depending on the type of operations it will perform on Q.

To access data item Q, transaction 1i must first lock Q in the appropriate
mode. If Q is not currently locked, then the lock is granted, and T; can now
access it. However, if the data item Q is currently locked by some other
transaction, then T; may have to wait. More specifically, suppose that 1i requests
an exclusive lock on Q. In this case, 1i must wait until the lock on Q is released.
If T; requests a shared lock on Q, then T; must wait if Q is locked in exclusive
mode. Otherwise, it can obtain the lock and access Q. Notice that this scheme
is quite similar to the readers-writers algorithm discussed in Section 6.6.2.

A transaction may unlock a data item that it locked at an earlier point.
It must, however, hold a lock on a data item as long as it accesses that item.

6.9 265

Moreove1~ it is not always desirable for a transaction to unlock a data item
immediately after its last access of that data item, because serializability may
not be ensured.

One protocol that ensures serializability is the
This protocol requires that each transaction issue lock and unlock requests in
two phases:

Growing phase. A transaction may obtain locks but may not release any
locks.

Shrinking phase. A transaction may release locks but may not obtain any
new locks.

Initially a transaction is in the growing phase. The transaction acquires locks
as needed. Once the transaction releases a lock, it enters the shrinking phase,
and no more lock requests can be issued.

The two-phase locking protocol ensures conflict serializability (Exercise
6.14). It does not, however, ensure freedom from deadlock. In addition, it
is possible that, for a given set of transactions, there are conflict-serializable
schedules that cannot be obtained by use of the two-phase locking protocol.
To improve performance over two-phase locking, we need either to have
additional information about the transactions or to impose some structure
or ordering on the set of data.

6.9.4.3 Timestamp-Based Protocols

In the locking protocols described above, the order followed by pairs of
conflicting transactions is determined at execution time. Another method for
determining the serializability order is to select an order in advance. The most
common method for doing so is to use a ordering scheme.

With each transaction ~ in the system, we associate a unique fixed
timestamp, denoted by TS(T;). This timestamp is assigned by the system
before the transaction T; starts execution. If a transaction ~ has been assigned
timestamp TS(~), and later a new transaction Ti enters the system, then TS(T;)
< TS(TJ). There are two simple methods for implementing this scheme:

Use the value of the system clock as the timestamp; that is, a transaction's
timestamp is equal to the value of the clock when the transaction enters the
system. This method will not work for transactions that occur on separate
systems or for processors that do not share a clock.

Use a logical counter as the timestamp; that is, a transaction's timestamp
is equal to the value of the counter when the transaction enters the system.
The counter is incremented after a new timestamp is assigned.

The timestamps of the transactions determine the serializability order.
Thus, if TS(Ti) < TS(Tj), then the system must ensure that the schedule
produced is equivalent to a serial schedule in which transaction ~ appears
before transaction Tj.

To implement this scheme, we associate with each data item. Q two
timestamp values:

266 Chapter 6

W-timestamp(Q) denotes the largest timestamp of any transaction that
successfully executed wri te(Q).

R-timestamp(Q) denotes the largest timestamp of any transaction that
successfully executed read(Q).

These timestamps are updated whenever a new read(Q) or wri te(Q) instruc
tion is executed.

The timestamp ordering protocol ensures that any conflicting read and
write operations are executed in timestamp order. This protocol operates as
follows:

Suppose that transaction T; issues read(Q):

o If TS(Ti) < W-timestamp(), then T; needs to read a value of Q that was
already overwritten. Hence, the read operation is rejected, and T; is
rolled back.

o If TS(T;) 2:: W-timestamp(Q), then the read operation is executed, and
R-timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(T;).

Suppose that transaction T; issues wri te(Q):

o If TS(T;) < R-timestamp(Q), then the value of Q that T; is producing
was needed previously and T; assumed that this value would never be
produced. Hence, the write operation is rejected, and T; is rolled back.

o If TS(T;) < W-timestamp(Q), then T; is attempting to write an obsolete
value of Q. Hence, this write operation is rejected, and T; is rolled back.

o Otherwise, the write operation is executed.

A transaction T; that is rolled back as a result of either a read or write operation
is assigned a new timestamp and is restarted.

To illustrate this protocol, consider schedule 3 in Figure 6.24, which includes
transactions T2 and T3. We assume that a transaction is assigned a timestamp
immediately before its first instruction. Thus, in schedule 3, TS(T2) < TS(T3),

and the schedule is possible under the timestamp protocol.
This execution can also be produced by the two-phase locking protocol.

Howeve1~ some schedules are possible under the two-phase locking protocol
but not under the timestamp protocol, and vice versa.

T2 T3
read(B)

read(B)
write(B)

read(A)
read(A)
write(A)

Figure 6.24 Schedule 3: A schedule possible under the timestamp protocol.

6.10

267

The timestamp protocol ensures conflict serializability. This capability
follows from the fact that conflicting operations are processed in timestamp
order. The protocol also ensures freedom fron1 deadlocl<:, because no transaction
ever waits.

Given a collection of cooperating sequential processes that share data, mutual
exclusion must be provided to ensure that a critical section of code is used
by only one process or thread at a tince. Typically, computer hardware
provides several operations that ensure mutual exclusion. However, such
hardware-based solutions are too complicated for most developers to use.
Semaphores overcome this obstacle. Semaphores can be used to solve various
synchronization problems and can be implemented efficiently, especially if
hardware support for atomic operations is available.

Various synchronization problems (such as the bounded-buffer problem,
the readers-writers problem, and the dining-philosophers problem) are impor
tant mainly because they are examples of a large class of concurrency-control
problems. These problems are used to test nearly every newly proposed
synchronization scheme.

The operating system must provide the means to guard against timing
errors. Several language constructs have been proposed to deal with these prob
lems. Monitors provide the synchronization mechanism for sharing abstract
data types. A condition variable provides a method by which a monitor
procedure can block its execution until it is signaled to continue.

Operating systems also provide support for synchronization. For example,
Solaris, Windows XP, and Linux provide mechanisms such as semaphores,
mutexes, spinlocks, and condition variables to control access to shared data.
The Pthreads API provides support for mutexes and condition variables.

A transaction is a program unit that must be executed atomically; that
is, either all the operations associated with it are executed to completion, or
none are performed. To ensure atomicity despite system failure, we can use a
write-ahead log. All updates are recorded on the log, which is kept in stable
storage. If a system crash occurs, the information in the log is used in restoring
the state of the updated data items, which is accomplished by use of the undo
and redo operations. To reduce the overhead in searching the log after a system
failure has occurred, we can use a checkpoint scheme.

To ensure serializability when the execution of several transactions over
laps, we must use a concurrency-control scheme. Various concurrency-control
schemes ensure serializability by delaying an operation or aborting the trans
action that issued the operation. The most common ones are locking protocols
and timestamp ordering schemes.

6.1 The first known correct software sohJtion to the critical-section problem
for two processes was developed by Dekker. The two processes, P0 and
P1, share the following variables:

boolean flag[2]; I* initially false *I
int turn;

268 Chapter 6

do {
flag[i] = TRUE;

while (flag[j]) {

}

if (turn == j) {
flag [i] = false;
while (turn == j)

; II do nothing
flag [i] = TRUE;

}

II critical section

turn= j;
flag [i] = FALSE;

II remainder section
} while (TRUE);

Figure 6.25 The structure of process A in Dekker's algorithm.

The structure of process Pi (i == 0 or 1) is shown in Figure 6.25; the other
process is P1 (j == 1 or 0). Prove that the algorithm satisfies all three
requirements for the critical-section problem.

6.2 Explain why interrupts are not appropriate for implementing synchro
nization primitives in multiprocessor systems.

6.3 The first known correct software solution to the critical-section problem
for n processes with a lower bound on waiting of n - 1 turns was
presented by Eisenberg and McGuire. The processes share the following
variables:

enum pstate {idle, want_in, in_cs };
pstate flag [n] ;
int turn;

All the elements of flag are initially idle; the initial value of turn is
immaterial (between 0 and n-1). The structure of process Pi is shown in
Figure 6.26. Prove that the algorithm satisfies all three requiren'lents for
the critical-section problem.

6.4 Write a monitor that implements an alarm clock that enables a calling
program to delay itself for a specified number of tirne units (ticks).
You may assume the existence of a real hardware clock that invokes
a procedure hclc in your monitor at regular intervals.

6.5 A file is to be shared among different processes, each of which has
a unique number. The file can be accessed simultaneously by several
processes, subject to the following constraint: The sum of all unique

do {
while (TRUE) {

flag[i] = want_in;
j = turn;

}

while (j != i) {

}

if (flag [j] I= idle) {
j = turn;

else
j = (j + 1) % n;

flag [i]
j = 0;

in_cs;

while ((j < n) && (j
j++;

if ((j >= n) && (turn
break;

II critical section

j = (turn + 1) % n;

while (flag[j] == idle)
j = (j + 1) % n;

turn= j;
flag [i] = idle;

II remainder section
} while (TRUE);

i II flag[j] != in_cs))

i I I flag [turn] idle))

Figure 6.26 The structure of process A in Eisenberg and McGuire's algorithm.

269

numbers associated with all the processes currently accessing the file
must be less than n. Write a monitor to coordinate access to the file.

6.6 The decrease_count () function in the previous exercise currently
returns 0 if sufficient resources are available and -1 otherwise. This
leads to awkward programming for a process that wishes to obtain a
number of resources:

while (decrease_count(count) == -1)

Rewrite the resource-manager code segment using a monitor and
condition variables so that the decrease_count () function suspends

270 Chapter 6

the process until sufficient resources are available. This will allow a
process to invoke decrease_count () by simply calling

decrease_count(count);

The process will return from this function call only when sufficient
resources are available.

6.7 Exercise 4.12 requires the parent thread to wait for the child thread to
finish its execution before printing out the computed values. If we let
the parent thread access the Fibonacci numbers as soon as they have
been computed by the child thread - rather than waiting for the child
thread to terminate- Explain what changes would be necessary to the
solution for this exercise? Implement your modified solution.

6.8 In Section 6.4, we mentioned that disabling interrupts frequently can
affect the system's clock. Explain why this can occur and how such
effects can be mil1.imized.

6.9 Servers can be designed to limit the number of open coru1.ections. For
example, a server may wish to have only N socket com1.ections at any
point in time. As soon as N connections are made, the server will
not accept another incoming connection until an existing connection
is released. Explain how semaphores can be used by a server to limit the
number of concurrent connections.

6.10 Why do Solaris, Lil1.ux, and Windows XP use spinlocks as a syn
chronization mechanism only on multiprocessor systems and not on
single-processor systems?

6.11 Show that, if the wait () and signal () semaphore operations are not
executed atomically, then mutual exclusion may be violated.

6.12 Show how to implement the wait() and signal() semaphore opera
tions in multiprocessor environments using the TestAndSet () instruc
tion. The solution should exhibit minimal busy waiting.

6.13 Suppose we replace the wait() and signal() operations of moni
tors with a single construct await (B), where B is a general Boolean
expression that causes the process executing it to wait until B becomes
true.

a. Write a monitor using this scheme to implement the readers
writers problem.

b. Explain why, in general, this construct cannot be implemented
efficiently.

c. What restrictions need to be put on the await statement so that it
can be implemented efficiently? (Hint: Restrict the generality of B;
see Kessels [1977].)

271

6.14 Show that the two-phase locking protocol ensures conflict serializability.

6.15 How does the signal() operation associated with monitors differ from
the corresponding operation defined for semaphores?

6.16 Describe how volatile, nonvolatile, and stable storage differ in cost.

6.17 Explain why implementing synchronization primitives by disabling
interrupts is not appropriate in a single-processor system if the syn
chronization primitives are to be used in user-level programs.

6.18 Consider a system consisting of processes P1, P2, ... , P11, each of which
has a unique priority number. Write a monitor that allocates three
identical line printers to these processes, using the priority numbers
for deciding the order of allocation.

6.19 Describe two kernel data structures in which race conditions are possible.
Be sure to include a description of how a race condition can occur.

6.20 Assume that a finite number of resources of a single resource type must
be managed. Processes may ask for a number of these resources and
-once finished-will return them. As an example, many commercial
software packages provide a given number of licenses, indicating the
number of applications that may run concurrently. When the application
is started, the license count is decremented. When the application is
terminated, the license count is incremented. If all licenses are in use,
requests to start the application are denied. Such requests will only be
granted when an existing license holder terminates the application and
a license is returned.

The following program segment is used to manage a finite number of
instances of an available resource. The maximum number of resources
and the number of available resources are declared as follows:

#define MAX_RESOURCES 5
int available_resources = MAX_RESOURCES;

When a process wishes to obtain a number of resources, it invokes the
decrease_count () function:

I* decrease available_resources by count resources *I
I* return 0 if sufficient resources available, *I
I* otherwise return -1 *I
int decrease_count(int count) {

}

if (available_resources < count)
return -1;

else {
available_resources count;

return 0;
}

272 Chapter 6

When a process wants to return a number of resourcesf it calls the
increase_count () function:

I* increase available_resources by count *I
int increase_count(int count) {

available_resources += count;

return 0;
}

The preceding program segment produces a race condition. Do the
following:

a. Identify the data involved in the race condition.

b. Identify the location (or locations) in the code where the race
condition occurs.

c. Using a semaphoref fix the race condition. It is ok to modify the
decrease_count () fun.ction so that the calling process is blocked
until sufficient resources are available.

6.21 Explain why spinlocks are not appropriate for single-processor systems
yet are often used in multiprocessor systems.

6.22 The Cigarette-Smokers Problem. Consider a system with three smoker
processes and one agent process. Each smoker continuously rolls a
cigarette and then smokes it. But to roll and smoke a cigarettef the
smoker needs three ingredients: tobaccof paperf and matches. One of
the smoker processes has paperf another has tobaccof and the third has
matches. The agent has an infinite supply of all three materials. The
agent places two of the ingredients on the table. The smoker who has
the remaining iJ.l.gredient then makes and smokes a cigarette, signaling
the agent on completion. The agent then puts out another two of the three
ingredients, and the cycle repeats. Write a program to synchronize the
agent and the smokers using Java synchronization.

6.23 Describe how the Swap () instruction can be used to provide mutual
exclusion that satisfies the bounded-waiting requirement.

6.24 a new lightweight synchronization tool called
locks. Whereas most implementations of reader

writer locks favor either readers or writers, or perhaps order waiting
threads using a FIFO policy, slim reader-writer locks favor neither
readers nor writers, nor are waiting threads ordered in a FIFO queue.
Explain the benefits of providing such a synchronization tool.

6.25 What are the implications of assigning a new timestamp to a transaction
that is rolled back? How does the system process transactions that were
issued after the rolled -back transaction b-ut that have timestamps smaller
than the new timestamp of the rolled-back transaction?

273

6.26 Discuss the tradeoff between fairness and throughput of operations
in the readers-writers problem. Propose a method for solving the
readers-writers problem without causing starvation.

6.2'7 When a signal is performed on a condition inside a monitor, the signaling
process can either continue its execution or transfer control to the process
that is signaled. How would the solution to the preceding exercise differ
with these two different ways in which signaling can be performed?

6.28 What is the meaning of the term busy waiting? What other kinds of
waiting are there in an operating system? Can busy waiting be avoided
altogether? Explain your answer.

6.29 Demonstrate that monitors and semaphores are equivalent insofar as
they can be used to implement the same types of synchronization
problems.

6.30 In log-based systems that provide support for transactions, updates to
data items cannot be performed before the corresponding entries are
logged. Why is this restriction necessary?

6.31 Explain the purpose of the checkpoint mechanism. How often should
checkpoints be performed? Describe how the frequency of checkpoints
affects:

System performance when no failure occurs

The time it takes to recover from a system crash

The time it takes to recover from a disk crash

6.32 Write a bounded-buffer monitor in which the buffers (portions) are
embedded within the monitor itself.

6.33 The strict mutual exclusion within a monitor makes the bounded-buffer
monitor of Exercise 6.32 mainly suitable for small portions.

a. Explain why this is true.

b. Design a new scheme that is suitable for larger portions.

6.34 Race conditions are possible in many computer systems. Consider
a banking system with two functions: deposit (amount) and with
draw (amount). These two functions are passed the amount that is to
be deposited or withdrawn from a bank account. Assume a shared
bank account exists between a husband and wife and concurrently the
husband calls the withdraw() function and the wife calls deposit().
Describe how a race condition is possible and what might be done to
prevent the race condition from occurring.

274 Chapter 6

6.35 Suppose the signal() statement can appear only as the last statement
in a monitor procedure. Suggest how the implementation described in
Section 6.7 can be simplified in this situation.

6.36 The Sleeping-Barber Problem. A barbershop consists of a waiting room
with n chairs and a barber roorn with one barber chair. If there are no
customers to be served, the barber goes to sleep. If a customer enters
the barbershop and all chairs are occupied, then the customer leaves the
shop. If the barber is busy but chairs are available, then the customer sits
in one of the free chairs. If the barber is asleep, the customer wakes up
the barber. Write a program to coordinate the barber and the customers.

6.37 Producer-Consumer Problem
In Section 6.6.1, we had presented a semaphore-based solution to the
producer-consumer problem using a bounded buffer. In this project,
we will design a programming solution to the bounded-buffer problem
using the producer and consumer processes shown in Figures 6.10 and
6.11. The solution presented in Section 6.6.1 uses three semaphores:
empty and full, which count the number of empty and full slots in the
buffer, and mutex, which is a binary (or mutual-exclusion) semaphore
that protects the actual insertion or removal of items in the buffer. For
this project, standard counting semaphores will be used for empty and
full, and a mutex lock, rather than a binary semaphore, will be used
to represent mutex. The producer and consumer-running as separate
threads-will move items to and from a buffer that is synchronized with
these empty, full, and mutex structures. You can solve this problem
using either Pthreads or the Win32 API.

The Buffer

Internally, the buffer will consist of a fixed-size array of type
buffer_i tern (which will be defined using a typedef). The array of
buffer_i tern objects will be manipulated as a circular queue. The
definition of buffer _i tern, along with the size of the buffer, can be
stored in a header file such as the following:

I* buffer.h *I
typedef int buffer_item;
#define BUFFER_SIZE 5

The buffer will be manipulated with two functions, insert_i tern () and
remove_i tern (),which are called by the producer and consumer threads,
respectively. A skeleton outlining these functions appears in Figure 6.27.

#include "buffer.h"

I* the buffer *I
buffer_item buffer[BUFFER_SIZE];

int insert_item(buffer_item item) {
I* insert item into buffer
return 0 if successful, otherwise
return -1 indicating an error condition *I

}

int remove_item(buffer_item *item) {

}

I* remove an object from buffer
placing it in item
return 0 if successful, otherwise
return -1 indicating an error condition *I

Figure 6.27 A skeleton program.

275

The insert_item() and remove_item() functions will synchronize
the producer and consumer using the algorithms outlined in Figures
6.10 and 6.11. The buffer will also require an initialization function that
initializes the mutual-exclusion object mutex along with the empty and
full semaphores.

The main() f-Lmction will initialize the buffer and create the separate
producer and consumer threads. Once it has created the producer
and consumer threads, the main() function will sleep for a period of
time and, upon awakening, will terminate the application. The main ()
function will be passed three parameters on the command line:

a. How long to sleep before terminating

b. The number of producer threads

c. The nuncber of consumer threads

A skeleton for this function appears in Figure 6.28.

#include "buffer.h"

int main(int argc, char *argv[]) {

}

I* 1. Get command line arguments argv[1] ,argv[2] ,argv[3] *I
I* 2. Initialize buffer *I
I* 3. Create producer thread(s) *I
I* 4. Create consumer thread(s) *I
I* 5. Sleep *I
I* 6. Exit *I

Figure 6.28 A skeleton program.

276 Chapter 6

Producer and Consumer Threads

The producer thread will alternate between sleeping for a random period
of time and inserting a random integer into the buffer. Random numbers
will be produced using the rand () function, which produces random
integers between 0 and RAND..MAX. The consumer will also sleep for a
random period of time and, upon awakening, will attempt to remove an
item from the buffer. An outline of the producer and consumer threads
appears in Figure 6.29.

In the following sections, we first cover details specific to Pthreads
and then describe details of the Win32 API.

Pthreads Thread Creation

Creating threads using the Pthreads API is discussed in Chapter 4. Please
refer to that chapter for specific instructions regarding creation of the
producer and consumer using Pthreads.

#include <stdlib.h> I* required for rand() *I
#include "buffer.h"

void *producer(void *pararn) {
buffer_item item;

}

while (TRUE) {
I* sleep for a random period of time *I
sleep(...);
I* generate a random number *I
item = rand();
if (insert_item(item))

fprintf("report error condition");
else

printf("producer produced %d\n",item);

void *consumer(void *pararn) {
buffer_item item;

}

while (TRUE) {
I* sleep for a random period of time *I
sleep(...);
if (remove_item(&item))

fprintf("report error condition");
else

printf("consumer consumed %d\n",item);

Figure 6.29 An outline of the producer and consumer threads.

#include <pthread.h>
pthread_mutex_t mutex;

I* create the mutex lock *I
pthread_mutex_init(&mutex,NULL);

I* acquire the mutex lock *I
pthread_mutex_lock(&mutex);

I*** critical section ***I

I* release the mutex lock *I
pthread_mutex_unlock(&mutex);

Figure 6.30 Code sample.

Pthreads Mutex Locks

277

The code sample depicted in Figure 6.30 illustrates how mutex locks
available in the Pthread API can be used to protect a critical section.

Pthreads uses the pthread_mutex_t data type for mutex locks.
A mutex is created with the pthread_mutex_ini t (&mutex, NULL)
function, with the first parameter being a pointer to the mutex.
By passing NULL as a second parameter, we initialize the mutex to
its default attributes. The mutex is acquired and released with the
pthread_mutex_lock() and pthread_mutex_unlock() functions.
If the mutex lock is unavailable when pthread_mutex_lock() is
invoked, the callil1.g thread is blocked until the owner invokes
pthread_mutex_unlock 0. All mutex ftmctions return a value of 0 with
correct operation; if an error occurs, these functions return a nonzero
error code.

Pthreads Semaphores

Pthreads provides two types of semaphores-named and unnamed. For
this project, we use unnamed semaphores. The code below illush·ates
how a semaphore is created:

#include <semaphore.h>
sem_t sem;

I* Create the semaphore and initialize it to 5 *I
sem_init(&sem, 0, 5);

The sem_ini t () creates and initializes a semaphore. This function is
passed three parameters:

a. A pointer to the semaphore

b. A flag indicating the level of sharing

c. The semaphore's initial value

278 Chapter 6

#include <semaphore.h>
sem_t mutex;

I* create the semaphore *I
sem_init(&mutex, 0, 1);

I* acquire the semaphore *I
sem_wait(&mutex);

I*** critical section ***I

I* release the semaphore *I
sem_post(&mutex);

Figure 6.31 AAA5.

In this example, by passing the flag 0, we are indicating that this
semaphore can only be shared by threads belonging to the same
process that created the semaphore. A nonzero value would allow other
processes to access the semaphore as well. In this example, we initialize
the semaphore to the value 5.

In Section 6.5, we described the classical wait() and signal()
semaphore operations. Pthreads names the wait() and signal()
operations sem_wai t () and sem_post (),respectively. The code example
shown in Figure 6.31 creates a binary semaphore mutex with an initial
value of 1 and illustrates its use in protecting a critical section.

Win32

Details concerning thread creation using the Win32 API are available in
Chapter 4. Please refer to that chapter for specific instructions.

Win32 Mutex Locks

Mutex locks are a type of dispatcher object, as described in Section
6.8.2. The following illustrates how to create a mutex lock using the
CreateMutex () function:

#include <windows.h>

HANDLE Mutex;
Mutex = CreateMutex(NULL, FALSE, NULL);

The first parameter refers to a security attribute for the mutex lock. By
setting this attribute to NULL, we are disallowing any children of the
process creating this mutex lock to inherit the handle of the mutex.
The second parameter indicates whether the creator of the mutex is the
initial owner of the mutex lock. Passing a value ofF ALSE indicates that
the thread creating the mutex is not the initial owner; we shall soon see
how mutex locks are acquired. The third parameter allows naming of

279

the mutex. However, because we provide a value of NULL, we do not
name the mutex. If successful, CreateMutex () returns a HANDLE to the
mutex lock; otherwise, it returns NULL.

In Section 6.8.2, we identified dispatcher objects as being either
signaled or nonsignaled. A signaled object is available for ownership;
once a dispatcher object (such as a mutex lock) is acquired, it moves to
the nonsignaled state. When the object is released, it returns to signaled.
Mutex locks are acquired by invoking the Wai tForSingleObj ect ()
function, passing the function the HANDLE to the lock and a flag indicating
how long to wait. The following code demonstrates how the mutex lock
created above can be acquired:

WaitForSingleObject(Mutex, INFINITE);

The parameter value INFINITE indicates that we will wait an infinite
amount of time for the lock to become available. Other values could
be used that would allow the calling thread to time out if the lock
did not become available within a specified time. If the lock is in a
signaled state, Wai tForSingleObj ect () returns immediately, and the
lock becomes nonsignaled. A lock is released (moves to the signaled
state) by invoking Re leas eMu t ex () , such as:

ReleaseMutex(Mutex);

Win32 Semaphores

Semaphores in the Win32 API are also dispatcher objects and thus use
the same signaling mechanism as mutex locks. Semaphores are created
as follows:

#include <Windows.h>

HANDLE Sem;
Sem = CreateSemaphore(NULL, 1, 5, NULL);

The first and last parameters identify a security attribute and a name for
the semaphore, similar to what was described for mutex locks. The sec
ond and third parameters indicate the initial value and maximum value
of the semaphore. In this instance, the initial value of the semaphore is 1,
and its maximum value is 5. If successful, CreateSemaphore () returns
a HANDLE to the mutex lock; otherwise, it returns NULL.

Semaphores are acquired with the same Wai tForSingleObj ect ()
function as mutex locks. We acquire the semaphore Sem created in this
example by using the statement:

WaitForSingleObject(Semaphore, INFINITE);

If the value of the semaphore is > 0, the semaphore is in the signaled
state and thus is acquired by the calling thread. Otherwise, the calling
thread blocks indefinitely-as we are specifying INFINITE-until the
semaphore becomes signaled.

280 Chapter 6

The equivalent of the signal () operation on Win32 semaphores is the
ReleaseSemaphore () function. This function is passed three parame
ters:

a. The HANDLE of the semaphore

b. The amount by which to increase the value of the semaphore

c. A pointer to the previous value of the semaphore

We can increase Sem by 1 using the following statement:

ReleaseSemaphore(Sem, 1, ~LL);

Both ReleaseSemaphore () and ReleaseMutex() return nonzero if
successful and zero otherwise.

The mutual-exclusion problem was first discussed in a classic paper by Dijkstra
[1965a]. Dekker's algorithm (Exercise 6.1)-the first correct software solution
to the two-process mutual-exclusion problem-was developed by the Dutch
mathematician T. Dekker. This algorithm also was discussed by Dijkstra
[1965a]. A simpler solution to the two-process mutual-exclusion problem has
since been presented by Peterson [1981] (Figure 6.2).

Dijkstra [1965b] presented the first solution to the mutual-exclusion prob
lem for n processes. This solution, however, does not have an upper bound on
the amount of time a process must wait before it is allowed to enter the critical
section. Knuth [1966] presented the first algorithm with a bound; his bound
was 211 turns. A refinement of Knuth's algorithm by deBruijn [1967] reduced the
waiting time to n2 turns, after which Eisenberg and McGuire [1972] succeeded
in reducing the time to the lower bound of n-1 turns. Another algorithm
that also requires n-1 turns but is easier to program and to understand is
the bakery algorithm, which was developed by Lamport [1974]. Burns [1978]
developed the hardware-solution algorithm that satisfies the bounded-waiting
requirement.

General discussions concerning the mutual-exclusion problem were
offered by Lamport [1986] and Lamport [1991]. A collection of algorithms for
mutual exclusion was given by Raynal [1986].

The semaphore concept was suggested by Dijkstra [1965a]. Patil [1971]
examined the question of whether semaphores can solve all possible syn
chronization problems. Parnas [1975] discussed some of the flaws in Patil's
arguments. Kosaraju [1973] followed up on Patil's work to produce a problem
that cannot be solved by wait() and signal() operations. Lipton [1974]
discussed the limitations of various synchronization primitives.

The classic process-coordination problems that we have described are
paradigms for a large class of concurrency-control problems. The bounded
buffer problem, the dining-philosophers problem, and the sleeping-barber
problem (Exercise 6.36) were suggested by Dijkstra [1965a] and Dijkstra [1971].
The cigarette-smokers problem (Exercise 6.22 was developed by Patil [1971].
The readers-writers problem was suggested by Courtois et al. [1971]. The

281

issue of concurrent reading and writing was discussed by Lamport [1977].
The problem of synchronization of independent processes was discussed by
Lamport [1976].

The critical-region concept was suggested by Hoare [1972] and by Brinch
Hansen [1972]. The monitor concept was developed by Brinch-Hansen [1973].
A complete description of the monitor was given by Hoare [1974]. Kessels
[1977] proposed an extension to the monitor to allow automatic signalil1.g.
Experience obtained from the use of monitors in concurrent programs was
discussed by Lampson and Redell [1979]. They also examined the priority
inversion problem. General discussions concerning concurrent programming
were offered by Ben-Ari [1990] and Birrell [1989].

Optimizing the performance of lockil1.g primitives has been discussed in
many works, such as Lamport [1987], Mellor-Crummey and Scott [1991], and
Anderson [1990]. The use of shared objects that do not require the use of critical
sections was discussed in Herlihy [1993], Bershad [1993], and Kopetz and
Reisinger [1993]. Novel hardware instructions and their utility in implementing
synchronization primitives have been described in works such as Culler et al.
[1998], Goodman et al. [1989], Barnes [1993], and Herlihy and Moss [1993].

Some details of the locking mechanisms used in Solaris were presented
in Mauro and McDougall [2007]. Note that the locking mechanisms used by
the kernel are implemented for user-level threads as well, so the same types
of locks are available inside and outside the kernel. Details of Windows 2000
synchronization can be found in Solomon and Russinovich [2000]. Goetz et al.
[2006] presents a detailed discussion of concurrent programming in Java as
well as the java. util. concurrent package.

The write-ahead log scheme was first mtroduced in System R by Gray et al.
[1981]. The concept of serializability was formulated by Eswaran et al. [1976] in
connection with their work on concurrency control for System R. The two-phase
locking protocol was introduced by Eswaran et al. [1976]. The timestamp
based concurrency-control scheme was provided by Reed [1983]. Various
timestamp-based concurrency-control algorithms were explail1.ed by Bernstem
and Goodman [1980]. Adl-Tabatabai et al. [2007] discusses transactional
memory.

7.1

CH ER

In a multiprogramming environment, several processes may compete for a
finite number of resources. A process requests resources; if the resources are
not available at that time, the process enters a waiting state. Sometimes, a
waiting process is never again able to change state, because the resources it
has requested are held by other waiting processes. This situation is called
a deadlock We discussed this issue briefly in Chapter 6 in cmmection with
semaphores.

Perhaps the best illustration of a deadlock can be drawn from a law passed
by the Kansas legislature early in the 20th century. It said, in part: "When two
trains approach each other at a crossing, both shall come to a full stop and
neither shall start up again until the other has gone."

In this chapter, we describe methods that an operating system can use
to prevent or deal with deadlocks. Although some applications can identify
programs that may deadlock, operating systems typically do not provide
deadlock-prevention facilities, and it remains the responsibility of program
mers to ensure that they design deadlock-free programs. Deadlock problems
can only become more common, given current trends, including larger num
bers of processes, multithreaded programs, many more resources withirt a
system, and an emphasis on long-lived file and database servers rather than
batch systems.

To develop a description of deadlocks, which prevent sets of concurrent
processes from completing their tasks.

To present a number of different methods for preventing or avoiding
deadlocks in a computer system.

A system consists of a finite number of resources to be distributed among
a number of competing processes. The resources are partitioned into several

283

284 Chapter 7

types, each consisting of some number of identical instances. Memory space,
CPU cycles, files, and I/0 devices (such as printers and DVD drives) are examples
of resource types. If a system has two CPUs, then the resource type CPU has
two instances. Similarly, the resource type printer may have five instances.

If a process requests an instance of a resource type, the allocation of any
instance of the type will satisfy the request. If it will not, then the instances are
not identical, and the resource type classes have not been defined properly. For
example, a system may have two printers. These two printers may be defined to
be in the same resource class if no one cares which printer prints which output.
However, if one printer is on the ninth floor and the other is in the basement,
then people on the ninth floor may not see both printers as equivalent, and
separate resource classes may need to be defined for each printer.

A process must request a resource before using it and must release the
resource after using it. A process may request as many resources as it requires
to carry out its designated task. Obviously, the number of resources requested
may not exceed the total number of resources available in the system. In other
words, a process cannot request three printers if the system has only two.

Under the normal mode of operation, a process may utilize a resource in
only the following sequence:

Request. The process requests the resource. If the request cannot be
granted immediately (for example, if the resource is being used by another
process), then the requesting process must wait until it can acquire the
resource.

Use. The process can operate on the resource (for example, if the resource
is a printer, the process can print on the printer).

Release. The process releases the resource.

The request and release of resources are system calls, as explained in
Chapter 2. Examples are the request() and release() device, open() and
close() file, and allocate() and free() memory system calls. Request and
release of resources that are not managed by the operating system can be
accomplished through the wait() and signal() operations on semaphores
or through acquisition and release of a mutex lock. For each use of a kernel
managed resource by a process or thread, the operating system checks to
make sure that the process has requested and has been allocated the resource.
A system table records whether each resource is free or allocated; for each
resource that is allocated, the table also records the process to which it is
allocated. If a process requests a resource that is currently allocated to another
process, it can be added to a queue of processes waiting for this resource.

A set of processes is in a deadlocked state when every process in the set is
waiting for an event that can be caused only by another process in the set. The
events with which we are mainly concerned here are resource acquisition and
release. The resources may be either physical resources (for example, printers,
tape drives, memory space, and CPU cycles) or logical resources (for example,
files, semaphores, and monitors). However, other types of events may result in
deadlocks (for example, the IPC facilities discussed in Chapter 3).

To illustrate a deadlocked state, consider a system with three CD RW drives.
Suppose each of three processes holds one of these CD RW drives. If each process

7.2

7.2 285

now requests another drive, the three processes will be in a deadlocked state.
Each is waiting for the event "CD RW is released," which can be caused only
by one of the other waiting processes. This example illustrates a deadlock
involving the same resource type.

Deadlocks may also involve different resource types. For example, consider
a system with one printer and one DVD drive. Suppose that process P; is holding
the DVD and process Pi is holding the printer. If P; requests the printer and P1
requests the DVD drive, a deadlock occurs.

A programmer who is developing multithreaded applications must pay
particular attention to this problem. Multithreaded programs are good candi
dates for deadlock because multiple threads can compete for shared resources.

In a deadlock, processes never finish executing, and system resources are tied
up, preventing other jobs from starting. Before we discuss the various methods
for dealing with the deadlock problem, we look more closely at features that
characterize deadlocks.

7.2.1 Necessary Conditions

A deadlock situation can arise if the following four conditions hold simultane
ously in a system:

Mutual exclusion. At least one resource must be held in a nonsharable
mode; that is, only one process at a time can use the resource. If another

DEADLOCK WITH MUTEX LOCKS

Let's see how deadlock can occur in a multithreaded Pthread program
using mutex locks. The pthread....mutex_ini t () function initializes
an unlocked mutex. Mutex locks are acquired and released using
pthread....mutex_lock() and pthread....mutex_unlock (), respec
tively. If a thread attempts to acquire a locked mutex, the call to
pthread....mutex_lock 0 blocks the thread until the owner of the mutex
lock invokes pthread....mutex_unlock ().

Two mutex locks are created in the following code example:

I* Create and initialize the mutex locks *I
pthread....mutex_t first....mutex;
pthread....mutex_t second_nmtex;

pthread....mutex_ini t (&first....mutex, NULL) ;
pthread....mutex_ini t (&second....mutex, NULL) ;

Next, two threads-thread_one and thread_two-'-are created, and both
these threads have access to both mutex locks. thread_one and thread_ two
run in the functions do_work_one () and do_work_two (), respectively, as
shown in Figure 7.1.

286 Chapter 7

DEADLOCK WITH MUTEX LOCKS (Continued)

I* thread_one runs in this function *I
void *do_work_one(void *param)
{

}

pthread_mutex_lock(&first_mutex);
pthread_mutex_lock(&second_mutex);

I**
* Do some work

*I
pthread_mutex:_unlock (&second_mutex) ;
pthread_mutex_unlock(&first_mutex);

pthread_exit (0) ;

I* thread_two runs in this function *I
void *do_work_two(void *param)
{

}

pthread_mutex_lock (&second_mutex) ;
pthread_mutex_lock(&first_mutex);

I**
* Do some work
*I

pthread_mutex_unlock (&first_mutex) ;
pthread_mutex_unlock (&second_mutex) ;

pthread_exi t (0) ;

Figure 7.1 Deadlock example.

In this example, thread_one attempts to acquire the mutex locks in the
order (1) first_mutex, (2) second_mutex, while thread_two attempts to
acquire the mutex locks in the order (1) second__mutex, (2) first_mutex.
Deadlock is possible if thread_one acquires first __mutex while thread_ two
aacquites second__mutex.

Note that, even though deadlock is possible, it will not occur if thread_one
is able to acquire and release the mutex locks for first_mutex and sec
ond_mutex before thread_two attemptsto acquire the locks. This example
illustrates a problem with handling deadlocks: it is difficult to identify and
test for deadlocks that may occur only under certain circumstances.

process requests that resource, the requesting process must be delayed
until the resource has been released.

Hold and wait. A process must be holding at least one resource and
waiting to acquire additional resources that are cmrently being held by
other processes.

7.2 287

No preemption. Resources cannot be preempted; that is, a resource can
be released only voluntarily by the process holding it, after that process
has completed its task.

Circular wait. A set { P0 , Pl, ... , P11 } of waiting processes must exist such
that Po is waiting for a resource held by P1, P1 is waiting for a resource
held by P2, ... , Pn-1 is waiting for a resource held by P,v and P11 is waiting
for a resource held by Po.

We emphasize that all four conditions must hold for a deadlock to
occur. The circular-wait condition implies the hold-and-wait condition, so the
four conditions are not completely independent. We shall see in Section 7.4,
however, that it is useful to consider each condition separately.

7.2.2 Resource-Allocation Graph

Deadlocks can be described more precisely in terms of a directed graph called
a graph. This graph consists of a set of vertices V
and a set of edges E. The set of vertices Vis partitioned into two different types
of nodes: P == { P1, P2, ... , Pn}, the set consisting of all the active processes in the
system, and R == {R1, R2, ... , RmL the set consisting of all resource types in the
system.

A directed edge from process g to resource type Rj is denoted by P; -+ Rj;
it signifies that process P; has requested an instance of resource type Rj and
is currently waiting for that resource. A directed edge from resource type Rj
to process P; is denoted by R1 -+ P;; it signifies that an instance of resource
type R1 has been allocated to process P;. A directed edge P; -+ Rj is called a

edge; a directed edge R1 -+ P; is called an
Pictorially we represent each process P; as a circle and each resource type

Rj as a rectangle. Since resource type Ri may have more than one instance, we
represent each such instance as a dot within the rectangle. Note that a request
edge points to only the rectangle R1, whereas an assignment edge must also
designate one of the dots in the rectangle.

When process P; requests an instance of resource type Ri, a request edge
is inserted in the resource-allocation graph. When this request can be fulfilled,
the request edge is instantaneously transformed to an assignment edge. When
the process no longer needs access to the resource, it releases the resource; as a
result, the assignment edge is deleted.

The resource-allocation graph shown in Figure 7.2 depicts the following
situation.

The sets P, K and E:

o P == {P1, P2, P3}

oR== {R1, R2, R3, ~}

0 E == {Pl-+ RlF p2-+ R3F Rl-+ p2F R2-+ p2F R2-+ Pl, R3-+ P3}

Resource instances:

o One instance of resource type R1

o Two instances of resource type R2

288 Chapter 7

Figure 7.2 Resource-allocation graph.

o One instance of resource type R3

o Three instances of resource type ~

Process states:

o Process P1 is holding an instance of resource type R2 and is waiting for
an instance of resource type R1 .

o Process P2 is holding an instance of R1 and an instance of R2 and is
waiting for an instance of R3.

o Process P3 is holding an instance of R3 .

Given the definition of a resource-allocation graph, it can be shown that, if
the graph contains no cycles, then no process in the system is deadlocked. If
the graph does contain a cycle, then a deadlock may exist.

If each resource type has exactly one instance, then a cycle implies that a
deadlock has occurred. If the cycle involves only a set of resource types, each
of which has only a single instance, then a deadlock has occurred. Each process
involved in the cycle is deadlocked. In this case, a cycle in the graph is both a
necessary and a sufficient condition for the existence of deadlock.

If each resource type has several instances, then a cycle does not necessarily
imply that a deadlock has occurred. In this case, a cycle in. the graph is a
necessary but not a sufficient condition for the existence of deadlock.

To illustrate this concept, we return to the resource-allocation graph
depicted in Figure 7.2. Suppose that process P3 requests an instance of resource
type R2 . Since no resource instance is currently available, a request edge P3 ---+

R2 is added to the graph (Figure 7.3). At this point, two minimal cycles exist in
the system:

P1 ---+ R 1 ---+ P2 ---+ R3 ---+ P3 ---+ R2 ---+ P1
P2 ---+ R3 ---+ P3 ---+ R2 ---+ P2

7.2 Deadlock Characterization 289

Figure 7.3 Resource-allocation graph with a deadlock.

Processes P1, Pz, and P3 are deadlocked. Process Pz is waiting for the resource
R3, which is held by process P3. Process P3 is waiting for either process P1 or
process Pz to release resource R2 . In addition, process P1 is waiting for process
Pz to release resource R1.

Now consider the resource-allocation graph in Figure 7.4. In this example,
we also have a cycle:

However, there is no deadlock. Observe that process P4 may release its instance
of resource type R2. That resource can then be allocated to P3, breaking the cycle.

In summary, if a resource-allocation graph does not have a cycle, then the
system is not in a deadlocked state. If there is a cycle, then the system may or
may not be in a deadlocked state. This observation is important when we deal
with the deadlock problem.

Figure 7.4 Resource-allocation graph with a cycle but no deadlock.

290 Chapter 7

7.3

Generally speaking, we can deal with the deadlock problem in one of three
ways:

We can use a protocol to prevent or avoid deadlocks, ensuring that the
system will never enter a deadlocked state.

We can allow the system to enter a deadlocked state, detect it, and recover.

We can ignore the problem altogether and pretend that deadlocks never
occur in the system.

The third solution is the one used by most operating systems, including UNIX
and Windows; it is then up to the application developer to write programs that
handle deadlocks.

Next, we elaborate briefly on each of the three methods for handling
deadlocks. Then, in Sections 7.4 through 7.7, we present detailed algorithms.
Before proceeding, we should mention that some researchers have argued that
none of the basic approaches alone is appropriate for the entire spectrum of
resource-allocation problems in operating systems. The basic approaches can
be combined, however, allowing us to select an optimal approach for each class
of resources in a system.

To ensure that deadlocks never occur, the
prevention or a deadlock-avoidance scheme. provides
a set of methods for ensuring that at least one of the necessary conditions
(Section 7.2.1) cannot hold. These methods prevent deadlocks by constraining
how requests for resources can be made. We discuss these methods in
Section 7.4.

requires that the operating system be given in
advance additional information concerning which resources a process will
request and use during its lifetime. With this additional knowledge, it can
decide for each request whether or not the process should wait. To decide
whether the current request can be satisfied or must be delayed, the system
must consider the resources currently available, the resources currently allo
cated to each process, and the future requests and releases of each process. We
discuss these schemes in Section 7.5.

If a system does not employ either a deadlock-prevention or a deadlock
avoidance algorithm, then a deadlock situation may arise. In this environment,
the system can provide an algorithm that examines the state of the system to
determine whether a deadlock has occurred and an algorithm to recover from
the deadlock (if a deadlock has indeed occurred). We discuss these issues in
Section 7.6 and Section 7.7.

In the absence of algorithms to detect and recover from deadlocks, we may
arrive at a situation in which the system is in a deadlock state yet has no way
of recognizing what has happened. In this case, the undetected deadlock will
result in deterioration of the system's performance, because resources are being
held by processes that cannot run and because more and more processes, as
they make requests for resources, will enter a deadlocked state. Eventually, the
system will stop functioning and will need to be restarted manually.

7.4

7.4 291

Although this method may not seem to be a viable approach to the deadlock
problem, it is nevertheless used in most operating systems, as mentioned
earlier. In many systems, deadlocks occur infrequently (say, once per year);
thus, this method is cheaper than the prevention, avoidance, or detection and
recovery methods, which must be used constantly. Also, in some circumstances,
a system is in a frozen state but not in a deadlocked state. We see this situation,
for example, with a real-time process running at the highest priority (or any
process running on a nonpreemptive scheduler) and never returning control
to the operating system. The system must have manual recovery methods for
such conditions and may simply use those techniques for deadlock recovery.

As we noted in Section 7.2.1, for a deadlock to occur, each of the four necessary
conditions must hold. By ensuring that at least one of these conditions cannot
hold, we can prevent the occurrence of a deadlock. We elaborate on this
approach by examining each of the four necessary conditions separately.

7.4.1 Mutual Exclusion

The mutual-exclusion condition must hold for nonsharable resources. For
example, a printer cannot be simultaneously shared by several processes.
Sharable resources, in contrast, do not require mutually exclusive access and
thus cannot be involved in a deadlock. Read-only files are a good example of
a sharable resource. If several processes attempt to open a read-only file at the
same time, they can be granted simultaneous access to the file. A process never
needs to wait for a sharable resource. In general, however, we cannot prevent
deadlocks by denying the mutual-exclusion condition, because some resources
are intrinsically nonsharable.

7.4.2 Hold and Wait

To ensure that the hold-and-wait condition never occurs in the system, we must
guarantee that, whenever a process requests a resource, it does not hold any
other resources. One protocol that can be used requires each process to request
and be allocated all its resources before it begins execution. We can implement
this provision by requiring that system calls requesting resources for a process
precede all other system calls.

An alternative protocol allows a process to request resources only when it
has none. A process may request some resources and use them. Before it can
request any additional resources, however, it must release all the resources that
it is currently allocated.

To illustrate the difference between these two protocols, we consider a
process that copies data from a DVD drive to a file on disk, sorts the file, and
then prints the results to a printer. If all resources must be requested at the
beginning of the process, then the process must initially request the DVD drive,
disk file, and printer. It will hold the printer for its entire execution, even though
it needs the printer only at the end.

The second method allows the process to request initially only the DVD
drive and disk file. It copies from the DVD drive to the disk and then releases

292 Chapter 7

both the DVD drive and the disk file. The process must then again request the
disk file and the printer. After copying the disk file to the printer, it releases
these two resources and terminates.

Both these protocols have two main disadvantages. First, resource utiliza
tion may be low, since resources may be allocated but unused for a long period.
In the example given, for instance, we can release the DVD drive and disk file,
and then again request the disk file and printe1~ only if we can be sure that our
data will remain on the disk file. Otherwise, we must request all resources at
the beginning for both protocols.

Second, starvation is possible. A process that needs several popular
resources may have to wait indefinitely, because at least one of the resources
that it needs is always allocated to some other process.

7.4.3 No Preemption

The third necessary condition for deadlocks is that there be no preemption
of resources that have already been allocated. To ensure that this condition
does not hold, we can use the following protocol. If a process is holding
some resources and requests another resource that cannot be immediately
allocated to it (that is, the process must wait), then all resources the process is
currently holding are preempted. In other words, these resources are implicitly
released. The preempted resources are added to the list of resources for which
the process is waiting. The process will be restarted only when it can regain its
old resources, as well as the new ones that it is requesting.

Alternatively, if a process requests some resources, we first check whether
they are available. If they are, we allocate them. If they are not, we check
whether they are allocated to some other process that is waiting for additional
resources. If so, we preempt the desired resources from the waiting process and
allocate them to the requesting process. If the resources are neither available
nor held by a waiting process, the requesting process must wait. While it is
waiting, some of its resources may be preempted, but only if another process
requests them. A process can be restarted only when it is allocated the new
resources it is requesting and recovers any resources that were preempted
while it was waiting.

This protocol is often applied to resources whose state can be easily saved
and restored later, such as CPU registers and memory space. It cannot generally
be applied to such resources as printers and tape drives.

7 .4.4 Circular Wait

The fourth and final condition for deadlocks is the circular-wait condition. One
way to ensure that this condition never holds is to impose a total ordering of
all resource types and to require that each process requests resources in an
increasing order of enumeration.

To illustrate, we let R = { R1, R2, ... , Rm} be the set of resource types. We
assign to each resource type a unique integer number, which allows us to
compare two resources and to determine whether one precedes another in our
ordering. Formally, we define a one-to-one hmction F: R ___,. N, where N is the
set of natural numbers. For example, if the set of resource types R includes
tape drives, disk drives, and printers, then the function F might be defined as
follows:

7.4

F (tape drive) = 1
F (disk drive) = 5
F (printer) = 12

293

We can now consider the following protocol to prevent deadlocks: Each
process can request resources only in an increasing order of enumeration. That
is, a process can initially request any number of instances of a resource type
-say, R;. After that, the process can request instances of resource type Rj if
and only if F(Rj) > F(R;). For example, using the function defined previously,
a process that wants to use the tape drive and printer at the same time must
first request the tape drive and then request the printer. Alternatively, we can
require that a process requesting an instance of resource type Rj must have
released any resources R; such that F(Ri) ::=:: F(Rj). It must also be noted that if
several iilstances of the same resource type are needed, a single request for all
of them must be issued.

If these two protocols are used, then the circular-wait condition cannot
hold. We can demonstrate this fact by assuming that a circular wait exists
(proof by contradiction). Let the set of processes involved in the circular wait be
{ P0 , P1, ... , P11 }, where Pi is waiting for a resource R;, which is held by process
Pi+l· (Modulo arithmetic is used on the indexes, so that P 11 is waiting for
a resource R11 held by P0 .) Then, since process Pi+l is holding resource Ri
while requesting resource Ri+l' we must have F(Ri) < F(R;H) for all i. But
this condition means that F(Ro) < F(R1) < ... < F(R11) < F (Ro). By transitivity,
F(Ro) < F(Ro), which is impossible. Therefore, there can be no circular wait.

We can accomplish this scheme in an application program by developing
an ordering among all synchronization objects in the system. All requests for
synchronization objects must be made in increasing order. For example, if the
lock ordering in the Pthread program shown in Figure 7.1 was

F (first_mutex) = 1
F (second_mutex) = 5

then thread_ two could not request the locks out of order.
Keep in mind that developing an ordering, or hierarchy, does not in itself

prevent deadlock. It is up to application developers to write programs that
follow the ordering. Also note that the function F should be defined according
to the normal order of usage of the resources in a system. For example, because
the tape drive is usually needed before the printer, it would be reasonable to
define F(tape drive) < F(printer).

Although ensuring that resources are acquired in the proper order is the
responsibility of application developers, certain software can be used to verify
that locks are acquired in the proper order and to give appropriate warnings
when locks are acquired out of order and deadlock is possible. One lock-order
verifier, which works on BSD versions of UNIX such as FreeBSD, is known as
witness. Witness uses mutual-exclusion locks to protect critical sections, as
described in Chapter 6; it works by dynamically maintaining the relationship
of lock orders in a system. Let's use the program shown in Figure 7.1 as an
example. Assume that thread_one is the first to acquire the locks and does so in
the order (1) first_mutex, (2) second_mutex. Wih1ess records the relationship
that first_mutex must be acquired before second_mutex. If thread_two later

294 Chapter 7

7.5

acquires the locks out of order, witness generates a warning message on the
system console.

It is also important to note that imposing a lock ordering does not guarantee
deadlock prevention if locks can be acquired dynamically. For example, assume
we have a function that transfers funds between two accounts. To prevent a
race condition, each account has an associated semaphore that is obtained from
a get Lock () function such as the following:

void transaction(Account from, Account to, double amount)
{

}

Semaphore lock1, lock2;
lock1 getLock(from);
lock2 = getLock(to);

wait(lock1);
wait(lock2);

withdraw(from, amount);
deposit(to, amount);

signal(lock2);
signal (lock1) ;

Deadlock is possible if two threads simultaneously invoke the trans action ()
function, transposing different accounts. That is, one thread might invoke

transaction(checkingAccount, savingsAccount, 25);

and another might invoke

transaction(savingsAccount, checkingAccount, 50);

We leave it as an exercise for students to fix this situation.

Deadlock-prevention algorithms, as discussed in Section 7.4, prevent deadlocks
by restraining how requests can be made. The restraints ensure that at least
one of the necessary conditions for deadlock cannot occur and, hence, that
deadlocks cannot hold. Possible side effects of preventing deadlocks by this
method, however, are low device utilization and reduced system throughput.

An alternative method for avoiding deadlocks is to require additional
information about how resources are to be requested. For example, in a system
with one tape drive and one printer, the system might need to know that
process P will request first the tape drive and then the printer before releasing
both resources, whereas process Q will request first the printer and then the
tape drive. With this knowledge of the complete sequence of requests and
releases for each process, the system can decide for each request whether or
not the process should wait in order to avoid a possible future deadlock. Each
request requires that in making this decision the system consider the resources

7.5 Deadlock Avoidance 295

currently available, the resources currently allocated to each process, and the
future requests and releases of each process.

The various algorithms that use this approach differ in the amount and type
of information required. The simplest and most useful model requires that each
process declare the maximum number of resources of each type that it may need.
Given this a priori information, it is possible to construct an algorithm that
ensures that the system will never enter a deadlocked state. Such an algorithm
defines the deadlock-avoidance approach. A deadlock-avoidance algorithm
dynamically examines the resource-allocation state to ensure that a circular
wait condition can never exist. The resource-allocation state is defined by the
number of available and allocated resources and the maximum demands of
the processes. In the following sections, we explore two deadlock-avoidance
algorithms.

7.5.1 Safe State

A state is safe if the system can allocate resources to each process (up to its
maximum) in some order and still avoid a deadlock. More formally, a system
is in a safe state only if there exists a safe sequence. A sequence of processes
<P1, P2, ... , Pn> is a safe sequence for the current allocation state if, for each
Pi, the resource requests that Pi can still make can be satisfied by the currently
available resources plus the resources held by all Pj, with j < i. In this situation,
if the resources that Pi needs are not immediately available, then Pi can wait
until all Pj have finished. When they have finished, Pi can obtain all of its
needed resources, complete its designated task, return its allocated resources,
and terminate. When Pi terminates, Pi+l can obtain its needed resources, and
so on. If no such sequence exists, then the system state is said to be unsafe.

A safe state is not a deadlocked state. Conversely, a deadlocked state is
an unsafe state. Not all unsafe states are deadlocks, however (Figure 7.5).
An unsafe state may lead to a deadlock. As long as the state is safe, the
operating system can avoid unsafe (and deadlocked) states. In an unsafe state,
the operating system cannot prevent processes from requesting resources in
such a way that a deadlock occurs. The behavior of the processes controls
unsafe states.

Figure 7.5 Safe, unsafe, and deadlocked state spaces.

296 Chapter 7 Deadlocks

To illustrate, we consider a system with twelve magnetic tape drives and
three processes: Po, P1, and P2. Process Po requires ten tape drives, process P1
may need as many as four tape drives, and process P2 may need up to nine tape
drives. Suppose that, at time to, process Po is holding five tape drives, process
P1 is holding two tape drives, and process P2 is holding two tape drives. (Thus,
there are three free tape drives.)

Maximum Needs Current Needs

10
4
9

5
2
2

At time t0, the system is in a safe state. The sequence <P1, P0, P2> satisfies
the safety condition. Process P1 can immediately be allocated all its tape drives
and then return them (the system will then have five available tape drives);
then process Po can get all its tape drives and return them (the system will then
have ten available tape drives); and finally process P2 can get all its tape drives
and return them (the system will then have all twelve tape drives available).

A system can go from a safe state to an unsafe state. Suppose that, at time
t1, process P2 requests and is allocated one more tape drive. The system is no
longer in a safe state. At this point, only process P1 can be allocated all its tape
drives. When it returns them, the system will have only four available tape
drives. Since process Po is allocated five tape drives but has a maximum of ten,
it may request five more tape drives. If it does so, it will have to wait, because
they are unavailable. Similarly, process P2 may request six additional tape
drives and have to wait, resulting in a deadlock. Our mistake was in granting
the request from process P2 for one more tape drive. If we had made P2 wait
until either of the other processes had finished and released its resources, then
we could have avoided the deadlock.

Given the concept of a safe state, we can define avoidance algorithms that
ensure that the system will never deadlock. The idea is simply to ensure that the
system will always remain in a safe state. Initially, the system is in a safe state.
Whenever a process requests a resource that is currently available, the system
must decide whether the resource can be allocated immediately or whether
the process must wait. The request is granted only if the allocation leaves the
system in a safe state.

In this scheme, if a process requests a resource that is currently available,
it may still have to wait. Thus, resource utilization may be lower than it would
otherwise be.

7.5.2 Resource-Allocation-Graph Algorithm

If we have a resource-allocation system with only one instance of each resource
type, we can use a variant of the resource-allocation graph defined in Section
7.2.2 for deadlock avoidance. In addition to the request and assignment edges
already described, we introduce a new type of edge, called a claim edge.
A claim edge Pi ~ Rj indicates that process Pi may request resource Rj at
some time in the future. This edge resembles a request edge in direction but is
represented in the graph by a dashed line. When process Pi requests resource

7.5 297

Figure 7.6 Resource-allocation graph for deadlock avoidance.

R1, the claim edge P; -+ R1 is converted to a request edge. Similarly, when a
resource R1 is released by P;, the assignment edge Rj -+ P; is reconverted to a
claim edge P; -+ Rj.

We note that the resources must be claimed a priori in the system. That is,
before process P; starts executing, all its claim edges must already appear in
the resource-allocation graph. We can relax this condition by allowing a claim
edge P; -+ R1 to be added to the graph only if all the edges associated with
process P; are claim edges.

Now suppose that process P; requests resource Rj. The request can be
granted only if converting the request edge P; -+ Rj to an assignment edge
R1 -+ P; does not result in the formation of a cycle in the resource-allocation
graph. We check for safety by using a cycle-detection algorithm. An algorithm
for detecting a cycle in this graph requires an order of n2 operations, where n
is the number of processes in the system.

If no cycle exists, then the allocation of the resource will leave the system
in a safe state. If a cycle is found, then the allocation will put the system in
an unsafe state. In that case, process P; will have to wait for its requests to be
satisfied.

To illustrate this algorithm, we consider the resource-allocation graph of
Figure 7.6. Suppose that P2 requests R2 . Although R2 is currently free, we
cannot allocate it to P2, since this action will create a cycle in the graph (Figure
7.7). A cycle, as mentioned, indicates that the system is in an unsafe state. If P1

requests R2, and P2 requests R1, then a deadlock will occur.

Figure 7.7 An unsafe state in a resource-allocation graph.

298 Chapter 7

7.5.3 Banker's Algorithm

The resource-allocation-graph algorithm is not applicable to a resource
allocation system with multiple instances of each resource type. The deadlock
avoidance algorithm that we describe next is applicable to such a system but
is less efficient than the resource-allocation graph scheme. This algorithm is
commonly known as the banker's algorithm. The name was chosen because the
algorithm. could be used in a banking system to ensure that the bank never
allocated its available cash in such a way that it could no longer satisfy the
needs of all its customers.

When a new process enters the system, it must declare the maximum
number of instances of each resource type that it may need. This nun1.ber may
not exceed the total number of resources in the system. When a user requests
a set of resources, the system must determine whether the allocation of these
resources will leave the system in a safe state. If it will, the resources are
allocated; otherwise, the process must wait until some other process releases
enough resources.

Several data structures must be maintained to implement the banker's
algorithm. These data structures encode the state of the resource-allocation
system. We need the following data structures, where n is the number of
processes in the system and m is the number of resource types:

Available. A vector of length m indicates the number of available resources
of each type. If Available[j] equals k, then k instances of resource type Ri
are available.

Max. An n x m matrix defines the maximum demand of each process.
If Max[i] [j] equals k, then process P; may request at most k instances of
resource type Ri.

Allocation. An 11 x m matrix defines the number of resources of each type
currently allocated to each process. If Allocation[i][j] equals lc, then process
P; is currently allocated lc instances of resource type Rj.

Need. An n x m matrix indicates the remaining resource need of each
process. If Need[i][j] equals k, then process P; may need k more instances of
resource type Ri to complete its task. Note that Need[i][j] equals Max[i][j]
- Allocation [i][j].

These data structures vary over time in both size and value.
To simplify the presentation of the banker's algorithm, we next establish

some notation. Let X andY be vectors of length 11. We say that X::= Y if and
only if X[i] ::= Y[i] for all i = 1, 2, ... , n. For example, if X = (1,7,3,2) and Y =
(0,3,2,1), then Y ::=X. In addition, Y < X if Y ::=X andY# X.

We can treat each row in the matrices Allocation and Need as vectors
and refer to them as Allocation; and Need;. The vector Allocation; specifies
the resources currently allocated to process P;; the vector Need; specifies the
additional resources that process P; may still request to complete its task.

7.5.3.1 Safety Algorithm

We can now present the algorithm for finding out whether or not a systern is
in a safe state. This algorithm can be described as follows:

7.5 299

Let Work and Finish be vectors of length m and n, respectively. Initialize
Work= Available and Finish[i] =false for i = 0, 1, ... , n - 1.

Find an index i such that both

a. Finish[i] ==false

b. Need; ::; Work

If no such i exists, go to step 4.

Work = Work + Allocation;
Finish[i] = true
Go to step 2.

If Finish[i] ==true for all i, then the system is in a safe state.

This algorithm may require an order of m x n2 operations to determine whether
a state is safe.

7.5.3.2 Resource-Request Algorithm

Next, we describe the algorithm for determining whether requests can be safely
granted.

Let Request; be the request vector for process P;. If Request; [j] == k, then
process P; wants k instances of resource type Rj. When a request for resources
is made by process P;, the following actions are taken:

If Request; ::::; Need;, go to step 2. Otherwise, raise an error condition, since
the process has exceeded its maximum claim.

If Request; ::; Available, go to step 3. Otherwise, P; must wait, since the
resources are not available.

Have the system pretend to have allocated the requested resources to
process P; by modifyil1.g the state as follows:

Available= Available- Request;;
Allocation; =Allocation; +Request;;
Need; =Need;- Request;;

If the resulting resource-allocation state is safe, the transaction is com
pleted, and process P; is allocated its resources. However, if the new state
is unsafe, then P; must wait for Request;, and the old resource-allocation
state is restored.

7.5.3.3 An Illustrative Example

To illustrate the use of the banker's algorithm, consider a system with five
processes Po through P4 and three resource types A, B, and C. Resource type A
has ten instances, resource type B has five instances, and resource type C has
seven instances. Suppose that, at time T0 , the following snapshot of the system
has been taken:

300 Chapter 7

Allocation Max Available

ABC ABC ABC

Po 010 753 332
pl 200 322
p2 302 902
p3 2 11 222
p4 002 433

The content of the matrix Need is defined to be Max - Allocation and is as
follows:

Need

ABC

Po 743
pl 122
p2 600
p3 011
p4 431

We claim that the system is currently in a safe state. Indeed, the sequence
< Plt P3, P4, P2, Po> satisfies the safety criteria. Suppose now that process
P1 requests one additional instance of resource type A and two instances of
resource type C, so Request1 = (1,0,2). To decide whether this request can be
immediately granted, we first check that Request1 s Available-that is, that
(1,0,2) s (3,3,2), which is true. We then pretend that this request has been
fulfilled, and we arrive at the following new state:

Allocation Need Available

ABC ABC ABC
Po 010 743 230
pl 302 020
p2 302 600
p3 211 0 11
p4 002 431

We must determine whether this new system state is safe. To do so, we
execute our safety algorithm and find that the sequence <P1, P3, P4, Po, P2>
satisfies the safety requirement. Hence, we can immediately grant the request
of process P1.

You should be able to see, however, that when the system is in this state, a
request for (3,3,0) by P4 cannot be granted, since the resources are not available.
Furthermore, a request for (0,2,0) by Po cannot be granted, even though the
resources are available, since the resulting state is unsafe.

We leave it as a programming exercise for students to implement the
banker's algorithm.

7.6

7.6 301

If a system does not employ either a deadlock-prevention or a deadlock
avoidance algorithm, then a deadlock situation may occur. In this environment,
the system may provide:

An algorithm that examines the state of the system to determine whether
a deadlock has occurred

An algorithm to recover from the deadlock

In the following discussion, we elaborate on these two requirements as they
pertain to systems with only a single instance of each resource type, as well as to
systems with several instances of each resource type. At this point, however, we
note that a detection-and-recovery scheme requires overhead that includes not
only the run-time costs of maintaining the necessary information and executing
the detection algorithm but also the potential losses inherent in recovering from
a deadlock.

7.6.1 Single Instance of Each Resource Type

If all resources have only a single instance, then we can define a deadlock
detection algorithm that uses a variant of the resource-allocation graph, called
a wait-for graph. We obtain this graph from the resource-allocation graph by
removing the resource nodes and collapsing the appropriate edges.

More precisely, an edge from Pi to Pi in a wait-for graph implies that
process Pz is waiting for process P1 to release a resource that P; needs. An edge
Pz --+ Pi exists iil a wait-for graph if and only if the corresponding resource
allocation graph contains two edges Pz --+ Rq and Rq --+ Pi for some resource
Rq. For example, in Figure 7.8, we present a resource-allocation graph and the
corresponding wait-for graph.

As before, a deadlock exists in the system if and only if the wait-for graph
contains a cycle. To detect deadlocks, the system needs to maintain the wait-for
graph and periodically invoke an algorithm that searches for a cycle in the graph.
An algorithm to detect a cycle in a graph requires an order of n2 operations,
where n is the number of vertices in the graph.

7.6.2 Several Instances of a Resource Type

The wait-for graph scheme is not applicable to a resource-allocation system
with multiple instances of each resource type. We turn now to a deadlock
detection algorithm that is applicable to such a system. The algorithm employs
several time-varying data structures that are similar to those used in the
banker's algorithm (Section 7.5.3):

Available. A vector of length nz indicates the number of available resources
of each type.

Allocation. Ann x nz matrix defines the number of resources of each type
currently allocated to each process.

302 Chapter 7

(a) (b)

Figure 7.8 (a) Resource-allocation graph. (b) Corresponding wait-for graph.

Request. An n x m matrix indicates the current request of each process.
If Request[i][j] equals k, then process P; is requesting k more instances of
resource type Rj.

The:::: relation between two vectors is defined as in Section 7.5.3. To simplify
notation, we again treat the rows in the matrices Allocation and Request as
vectors; we refer to them as Allocation; and Request;. The detection algorithm
described here simply investigates every possible allocation sequence for the
processes that remain to be completed. Compare this algorithm with the
banker's algorithm of Section 7.5.3.

Let Work and Finish be vectors of length m and n, respectively. Initialize
Work= Available. Fori= 0, 1, ... , n-1, if Allocation; # 0, then Finish[i] =false;
otherwise, Finish[i] = tme.

2. Find an index i such that both

a. Finish[i] ==false

b. Request; :::: Work

If no such i exists, go to step 4.

Work= Work+ Allocation;
Finish[i] = true
Go to step 2.

4. If Finish[i] ==false for some i, 0 :::: i < n, then the system is in a deadlocked
state. Moreover, if Finish[i] ==false, then process P; is deadlocked.

This algorithm requires an order o£ m x n2 operations to detect whether the
system is in a deadlocked state.

7.6 303

You may wonder why we reclaim the resources of process P; (in step 3)
as soon as we determine that Request; :S Work (in step 2b). We know that P;
is currently not involved in a deadlock (since Request; :S Work). Thus, we take
an optimistic attitude and assume that P; will require no more resources to
complete its task; it will thus soon return all currently allocated resources to
the system. If our assumption is incorrect, a deadlock may occur later. That
deadlock will be detected the next tince the deadlock-detection algorithm is
invoked.

To illustrate this algorithm, we consider a system with five processes Po
through P4 and three resource types A, B, and C. Resource type A has seven
instances, resource type B has two instances, and resource type C has six
instances. Suppose that, at time T0, we have the following resource-allocation
state:

Allocation Request Available

ABC ABC ABC
Po 0 1 0 000 000
pl 200 202
p2 303 000
p3 2 11 100
p4 002 002

We claim that the system is not in a deadlocked state. Indeed, if we execute
our algorithm, we will find that the sequence <Po, P2, P3, Plt P4> results in
Finish[i] == true for all i.

Suppose now that process P2 makes one additional request for an instance
of type C. The Request matrix is modified as follows:

Request

ABC
Po 000
pl 202
p2 001
p3 100
p4 002

We claim that the system is now deadlocked. Although we can reclaim the
resources held by process Po, the number of available resources is not sufficient
to fulfill the requests of the other processes. Thus, a deadlock exists, consisting
of processes P1, P2, P3, and P4.

7.6.3 Detection-Algorithm Usage

When should we invoke the detection algorithm? The answer depends on two
factors:

1. How often is a deadlock likely to occur?

How many processes will be affected by deadlock when it happens?

304 Chapter 7

7.7

If deadlocks occur frequently, then the detection algorithm should be invoked
frequently. Resources allocated to deadlocked processes will be idle until the
deadlock can be broken. In addition, the number of processes involved in the
deadlock cycle may grow.

Deadlocks occur only when some process makes a request that cannot be
granted immediately. This request may be the final request that completes a
chain of waiting processes. In the extreme, then, we can invoke the deadlock
detection algorithm every time a request for allocation cannot be granted
immediately. In this case, we can identify not only the deadlocked set of
processes but also the specific process that "caused" the deadlock (In reality,
each of the deadlocked processes is a link in the cycle in the resource graph, so
all of them, jointly, caused the deadlock) If there are many different resource
types, one request may create many cycles in the resource graph, each cycle
completed by the most recent request and "caused" by the one identifiable
process.

Of course, invoking the deadlock-detection algorithm for every resource
request will incur considerable overhead in computation time. A less expensive
alternative is simply to invoke the algorithm at defined intervals-for example,
once per hour or whenever CPU utilization drops below 40 percent. (A deadlock
eventually cripples system throughput and causes CPU utilization to drop.) If
the detection algorithm is invoked at arbitrary points in time, the resource
graph may contain many cycles. In this case, we generally cannot tell which of
the many deadlocked processes "caused" the deadlock

When a detection algorithm determines that a deadlock exists, several alter
natives are available. One possibility is to inform the operator that a deadlock
has occurred and to let the operator deal with the deadlock manually. Another
possibility is to let the system recover from the deadlock automatically. There
are two options for breaking a deadlock One is simply to abort one or more
processes to break the circular wait. The other is to preempt some resources
from one or more of the deadlocked processes.

7.7.1 Process Termination

To eliminate deadlocks by aborting a process, we use one of two methods. In
both methods, the system reclaims all resources allocated to the terminated
processes.

Abort all deadlocked processes. This method clearly will break the
deadlock cycle, but at great expense; the deadlocked processes may have
computed for a long time, and the results of these partial computations
must be discarded and probably will have to be recomputed later.

Abort one process at a time until the deadlock cycle is eliminated. This
method incurs considerable overhead, since after each process is aborted, a
deadlock-detection algorithnc rnust be invoked to determine whether any
processes are still deadlocked.

7.7 305

Aborting a process may not be easy. If the process was in the midst of
updating a file, terminating it will leave that file in an incorrect state. Similarly,
if the process was in the midst of printing data on a printer, the system must
reset the printer to a correct state before printing the next job.

If the partial termination method is used, then we must determine which
deadlocked process (or processes) should be terminated. This determination is
a policy decision, similar to CPU-scheduling decisions. The question is basically
an economic one; we should abort those processes whose termination will incur
the minimum cost. Unfortunately, the term minimum cost is not a precise one.
Many factors may affect which process is chosen, including:

1. What the priority of the process is

2. How long the process has computed and how much longer the process
will compute before completing its designated task

How many and what types of resources the process has used (for example,
whether the resources are simple to preempt)

How many more resources the process needs in order to complete

5. How many processes will need to be terminated

Whether the process is interactive or batch

7.7.2 Resource Preemption

To eliminate deadlocks using resource preemption, we successively preempt
some resources from processes and give these resources to other processes 1-m til
the deadlock cycle is broken.

If preemption is required to deal with deadlocks, then three issues need to
be addressed:

Selecting a victim. Which resources and which processes are to be
preempted? As in process termil<ation, we must determine the order of
preemption to minimize cost. Cost factors may include such parameters
as the number of resources a deadlocked process is holding and the
amount of time the process has thus far consumed during its execution.

Rollback. If we preempt a resource from a process, what should be done
with that process? Clearly, it cannot contil<ue with its normal execution; it
is missing some needed resource. We must roll back the process to some
safe state and restart it from that state.

Since, in general, it is difficult to determine what a safe state is, the
simplest solution is a total rollback: abort the process and then restart
it. Although it is more effective to roll back the process only as far as
necessary to break the deadlock, this method requires the system to keep
more information about the state of all running processes.

Starvation. How do we ensure that starvation will not occur? That is,
how can we guarantee that resources will not always be preempted from
the same process?

306 Chapter 7

7.8

In a system where victim selection is based primarily on cost factors,
it may happen that the same process is always picked as a victim. As
a result, this process never completes its designated task, a starvation
situation that must be dealt with in any practical system. Clearly, we
must ensure that a process can be picked as a victim" only a (small) finite
number of times. The most common solution is to include the number of
rollbacks in the cost factor.

A deadlocked state occurs when two or more processes are waiting indefinitely
for an event that can be caused only by one of the waiting processes. There are
three principal methods for dealing with deadlocks:

Use some protocol to prevent or avoid deadlocks, ensuring that the system
will never enter a deadlocked state.

Allow the system to enter a deadlocked state, detect it, and then recover.

Ignore the problem altogether and pretend that deadlocks never occur in
the system.

The third solution is the one used by most operating systems, including UNIX
and Windows.

A deadlock can occur only if four necessary conditions hold simultaneously
in the system: mutual exclusion, hold and wait, no preemption, and circular
wait. To prevent deadlocks, we can ensure that at least one of the necessary
conditions never holds.

A method for avoiding deadlocks, rather than preventing them, requires
that the operating system have a priori information about how each process
will utilize system resources. The banker's algorithm, for example, requires
a priori information about the maximunl. number of each resource class that
each process may request. Using this information, we can define a deadlock
avoidance algorithm.

If a system does not employ a protocol to ensure that deadlocks will never
occur, then a detection-and-recovery scheme may be employed. A deadlock
detection algorithm must be invoked to detennine whether a deadlock
has occurred. If a deadlock is detected, the system must recover either by
terminating some of the deadlocked processes or by preempting resources
from some of the deadlocked processes.

Where preemption is used to deal with deadlocks, three issues must be
addressed: selecting a victim, rollback, and starvation. In a system that selects
victims for rollback primarily on the basis of cost factors, starvation may occur,
and the selected process can never complete its designated task.

Researchers have argued that none of the basic approaches alone is appro
priate for the entire spectrum of resource-allocation problems in operating
systems. The basic approaches can be combined, however, allowing us to select
an optimal approach for each class of resources in a system.

307

7.1 A single-lane bridge connects the two Vermont villages of North
Tunbridge and South Tunbridge. Farmers in the two villages use this
bridge to deliver their produce to the neighboring town. The bridge
can become deadlocked if a northbound and a southbound farmer get
on the bridge at the same time (Vermont farmers are stubborn and are
unable to back up.) Using semaphores, design an algorithm that prevents
deadlock. Initially, do not be concerned about starvation (the situation
in which northbound farmers prevent southbound farmers from using
the bridge, or vice versa).

7.2 Modify your solution to Exercise 7.1 so that it is starvation-free.

7.3 Consider a system consisting of four resources of the same type that are
shared by three processes, each of which needs at most two resources.
Show that the system is deadlock free.

7.4 Consider the traffic deadlock depicted in Figure 7.9.

a. Show that the four necessary conditions for deadlock hold in this
example.

b. State a simple rule for avoiding deadlocks in this system.

7.5 In a real computer system, neither the resources available nor the
demands of processes for resources are consistent over long periods
(months). Resources break or are replaced, new processes come and go,
and new resources are bought and added to the system. If deadlock is
controlled by the banker's algorithm, which of the following changes

Figure 7.9 Traffic deadlock for Exercise 7.4

308 Chapter 7

can be made safely (without introducing the possibility of deadlock),
and under what circumstances?

a. Increase Available (new resources added).

b. Decrease Available (resource permanently removed from system).

c. Increase Max for one process (the process needs or wants rnore
resources than allowed).

d. Decrease Max for one process (the process decides it does not need
that many resources).

e. Increase the number of processes.

f. Decrease the number of processes.

7.6 We can obtain the banker's algorithm for a single resource type from
the general banker's algorithm simply by reducing the dimensionality
of the various arrays by 1. Show through an example that we cannot
implement the multiple-resource-type banker's scheme by applying the
sil1.gle-resource-type scheme to each resource type individually.

7.7 Consider the following resource-allocation policy. Requests for and
releases of resources are allowed at any time. If a request for resources
cannot be satisfied because the resources are not available, then we check
any processes that are blocked waiting for resources. If a blocked process
has the desired resources, then these resources are taken away from it
and are given to the requestmg process. The vector of resources for which
the blocked process is waiting is increased to include the resources that
were taken away.

For example, consider a system with three resource types and the
vector Available initialized to (4,2,2). If process Po asks for (2,2,1), it gets
them. If P1 asks for (1,0,1), it gets them. Then, if Po asks for (0,0,1), it
is blocked (resource not available). If P2 now asks for (2,0,0), it gets the
available one (1,0,0) and one that was allocated to Po (since Po is blocked).
Po's Allocation vector goes down to (1,2,1), and its Need vector goes up
to (1,0,1).

a. Can deadlock occur? If you answer "yes," give an example. If you
answer "no," specify which necessary condition cannot occur.

b. Can indefinite blocking occur? Explain your answer.

7.8 A possible method for preventing deadlocks is to have a single, higher
order resource that must be requested before any other resource. For
example, if multiple threads attempt to access the synchronization
objects A··· E, deadlock is possible. (Such synchronization objects may
include mutexes, semaphores, condition variables, and the like.) We can
prevent the deadlock by adding a sixth object F. Whenever a thread
wants to acquire the synchronization lock for any object A· · · E, it must
first acquire the lock for object F. This solution is known as containment:
the locks for objects A··· E are contained within the lock for object F.
Compare this scheme with the circular-wait scheme of Section 7.4.4.

309

7.9 Compare the circular-wait scheme with the various deadlock-avoidance
schemes (like the banker's algorithnc) with respect to the following
issues:

a. Runtime overheads

b. System throughput

7.10 Consider the following snapshot of a system:

Allocation Max Available

ABCD ABCD ABCD
Po 0012 0012 1520
pl 1000 1750
p2 1354 2356
p3 0632 0652
p4 0014 0656

Answer the following questions using the banker's algorithm:

a. What is the content of the matrix Need?

b. Is the system in a safe state?

c. If a request from process P1 arrives for (0,4,2,0), can the request be
granted immediately?

7.11 Consider a system consisting of m resources of the same type being
shared by n processes. A process can request or release only one resource
at a time. Show that the system is deadlock free if the following two
conditions hold:

a. The maximum need of each process is between one resource and
m resources.

b. The sum of all maximum needs is less than m + n.

7.12 Consider a computer system that runs 5,000 jobs per month and has no
deadlock-prevention or deadlock-avoidance scheme. Deadlocks occur
about twice per month, and the operator must terminate and rerun about
10 jobs per deadlock. Each job is worth about $2 (in CPU time), and the
jobs terminated tend to be about half-done when they are aborted.

A systems programmer has estimated that a deadlock-avoidance
algorithm (like the banker's algorithm) could be installed in the system
with an increase in the average execution time per job of about 10 percent.
Since the machine currently has 30 percent idle time, all 5,000 jobs per
month could still be run, although turnaround time would increase by
about 20 percent on average.

a. What are the arguments for installing the deadlock-avoidance
algorithm?

b. What are the arguments against installing the deadlock-avoidance
algorithm?

310 Chapter 7

7.13 Consider the deadlock situation that can occur in the dining
philosophers problem when the philosophers obtain the chopsticks one
at a time. Discuss how the four necessary conditions for deadlock hold
in this setting. Discuss how deadlocks could be avoided by eliminating
any one of the four necessary conditions.

7.14 What is the optimistic assumption made in the deadlock-detection
algorithm? How can this assumption be violated?

7.15 Consider the version of the dining-philosophers problem in which the
chopsticks are placed at the center of the table and any two of them
can be used by a philosopher. Assume that requests for chopsticks are
made one at a time. Describe a simple rule for determining whether a
particular request can be satisfied without causing deadlock given the
current allocation of chopsticks to philosophers.

7.16 Is it possible to have a deadlock involving only a single process? Explain
your answer.

7.17 Consider again the setting in the preceding question. Assume now that
each philosopher requires three chopsticks to eat. Resource requests are
still issued one at a time. Describe some simple rules for determining
whether a particular request can be satisfied without causing deadlock
given the current allocation of chopsticks to philosophers.

7.18 In Section 7.4.4, we describe a situation in which we prevent deadlock
by ensuring that all locks are acquired in a certain order. However,
we also point out that deadlock is possible in this situation if two
threads simultaneously invoke the transaction() function. Fix the
transaction() function to prevent deadlocks.

7.19 Write a multithreaded program that implements the banker's algorithm
discussed in Section 7.5.3. Create n threads that request and release
resources from the bank. The banker will grant the request only if it
leaves the system in a safe state. You may write this program using
either Pthreads or Win32 threads. It is important that shared data be safe
from concurrent access. To ensure safe access to shared data, you can
use mutex locks, which are available in both the Pthreads and Win32
APis. The use of mutex locks in both of these libraries is described in the
project entitled "Producer-Consumer Problem" at the end of Chapter 6.

Dijkstra [1965a] was one of the first and most influential contributors in the
deadlock area. Holt [1972] was the first person to formalize the notion of
deadlocks in terms of an allocation-graph model similar to the one presented
in this chapter. Starvation was also covered by Holt [1972]. Hyman [1985]
provided the deadlock example from the Kansas legislature. A recent study of
deadlock handling is provided in Levine [2003].

311

The various prevention algorithms were suggested by Havender [1968],
who devised the resource-ordering scheme for the IBM OS/360 systen'l.

The banker's algorithm for avoiding deadlocks was developed for a single
resource type by Dijkstra [1965a] and was extended to multiple resource types
by Habermam'l [1969]. Exercises 7.3 and 7.11 are from Holt [1971].

The deadlock-detection algorithm for multiple instances of a resource type,
which is described in Section 7.6.2, was presented by Coffman et al. [1971].

Bach [1987] describes how many of the algorithms in the traditional UNIX
kernel handle deadlock. Solutions to deadlock problems in networks are
discussed in works such as Culler et al. [1998] and Rodeheffer and Schroeder
[1991].

The witness lock-order verifier is presented in Baldwin [2002].

Part Four

The main purpose of a computer system is to execute programs. These
programs, together with the data they access, must be at least partially
in main memory during execution.

To improve both the utilization of the CPU and the speed of its
response to users, a general-purpose computer must keep several pro
cesses in memory. Many memory-management schemes exist, reflect
ing various approaches, and the effectiveness of each algorithm depends
on the situation. Selection of a memory-management scheme for a sys
tem depends on many factors, especially on the hardware design of the
system. Most algorithms require hardware support.

8.1

c

In Chapter 5, we showed how the CPU can be shared by a set of processes. As
a result of CPU scheduling, we can improve both the utilization of the CPU and
the speed of the computer's response to its users. To realize this increase in
performance, however, we must keep several processes in memory; that is, we
must share memory.

In this chapter, we discuss various ways to manage memory. The memory
management algorithms vary from a primitive bare-machine approach to
paging and segmentation strategies. Each approach has its own advantages
and disadvantages. Selection of a memory-management method for a specific
system depends on many factors, especially on the hardware design of the
system. As we shall see, many algorithms require hardware support, although
recent designs have closely integrated the hardware and operating system.

To provide a detailed description of various ways of organizing memory
hardware.

To discuss various memory-management techniques, including paging
and segmentation.

To provide a detailed description of the Intel Pentium, which supports both
pure segmentation and segmentation with paging.

As we saw in Chapter 1, memory is central to the operation of a modern
computer system. Memory consists of a large array of words or bytes, each
with its own address. The CPU fetches instructions from memory according
to the value of the program counter. These instructions may cause additional
loading from and storing to specific memory addresses.

A typical instruction-execution cycle, for example, first fetches an instruc
tion from memory. The instruction is then decoded and may cause operands
to be fetched from memory. After the instruction has been executed on the

315

316 Chapter 8

operands, results may be stored back in memory. The mernory unit sees only a
stream of memory addresses; it does not know how they are generated (by the
instruction counter, indexing, indirection, literal addresses, and so on) or what
they are for (instructions or data). Accordingly, we can ignore hozu a program
generates a memory address. We are interested only in the sequence of memory
addresses generated by the running program.

We begin our discussion by covering several issues that are pertinent to the
various techniques for managing memory. This coverage includes an overview
of basic hardware issues, the binding of symbolic memory addresses to actual
physical addresses, and the distinction between logical and physical addresses.
We conclude the section with a discussion of dynamically loading and linking
code and shared libraries.

8.1.1 Basic Hardware

Main memory and the registers built into the processor itself are the only
storage that the CPU can access directly. There are machine instructions that take
memory addresses as arguments, but none that take disk addresses. Therefore,
any instructions in execution, and any data being used by the instructions,
must be in one of these direct-access storage devices. If the data are not in
memory, they must be moved there before the CPU can operate on them.

Registers that are built into the CPU are generally accessible within one
cycle of the CPU clock. Most CPUs can decode instructions and perform simple
operations on register contents at the rate of one or more operations per
clock tick The same cannot be said of main memory, which is accessed via
a transaction on the memory bus. Completing a memory access may take
many cycles of the CPU clock. In such cases, the processor normally needs
to stall, since it does not have the data required to complete the instruction
that it is executing. This situation is intolerable because of the frequency of
memory accesses. The remedy is to add fast memory between the CPU and

0 "

operating
system

""

256000

process

300040 i soa(?LJ.o "I

process base

420940 I 120!1GO I I"" .

limit
process

880000

1024000

Figure 8.1 A base and a limit register define a logical address space.

8.1 317

main memory. A memory buffer used to accommodate a speed differential,
called a is described in Section 1.8.3.

Not only are we concerned with the relative speed of accessing physical
memory, but we also must ensure correct operation to protect the operating
system from access by user processes and, in addition, to protect user processes
from one another. This protection must be provided by the hardware. It can be
implemented in several ways, as we shall see throughout the chapter. In this
section, we outline one possible implementation.

We first need to make sure that each process has a separate memory space.
To do this, we need the ability to determine the range of legal addresses that
the process may access and to ensure that the process can access only these
legal addresses. We can provide this protection by using two registers, usually
a base and a limit, as illustrated in Figure 8.1. The base holds the
smallest legal physical memory address; the specifies the size of
the range. For example, if the base register holds 300040 and the limit register is
120900, then the program can legally access all addresses from 300040 through
420939 (inclusive).

Protection of memory space is accomplished by having the CPU hardware
compare every address generated in user mode with the registers. Any attempt
by a program executing in user mode to access operating-system memory or
other users' memory results in a trap to the operating system, which treats the
attempt as a fatal error (Figure 8.2). This scheme prevents a user program from
(accidentally or deliberately) modifying the code or data structures of either
the operating system or other users.

The base and limit registers can be loaded only by the operating system,
which uses a special privileged instruction. Since privileged instructions can
be executed only in kernel mode, and since only the operating system executes
in kernel mode, only the operating system can load the base and limit registers.
This scheme allows the operating system to change the value of the registers
but prevents user programs from changing the registers' contents.

The operating system, executing in kernel mode, is given unrestricted
access to both operating system memory and users' memory. This provision
allows the operating system to load users' programs into users' memory, to

yes

no

trap to operating system
monitor-addressing error memory

Figure 8.2 Hardware address protection with base and limit registers.

318 Chapter 8

dump out those programs in case of errors, to access and modify parameters
of system calls, and so on.

8.1.2 Address Binding

Usually, a program resides on a disk as a binary executable file. To be executed,
the program must be brought into memory and placed within a process.
Depending on the memory management in use, the process may be moved
between disk and memory during its execution. The processes on the disk that
are waiting to be brought into memory for execution form the

The normal procedure is to select one of the processes in the input queue
and to load that process into memory. As the process is executed, it accesses
instructions and data from memory. Eventually, the process terminates, and its
memory space is declared available.

Most systems allow a user process to reside in any part of the physical
memory. Thus, although the address space of the computer starts at 00000,
the first address of the user process need not be 00000. This approach affects
the addresses that the user program can use. In most cases, a user program
will go through several steps-some of which may be optional-before bein.g
executed (Figure 8.3). Addresses may be represented in different ways during
these steps. Addresses in the source program are generally symbolic (such as
count). A compiler will typically bind these symbolic addresses to relocatable
addresses (such as "14 bytes from the beginning of this module"). The lin.kage
editor or loader will in turn bind the relocatable addresses to absolute addresses
(such as 74014). Each binding is a mapping from one address space to another.

Classically, the binding of instructions and data to memory addresses can
be done at any step along the way:

Compile time. If you know at compile time where the process will reside
in memory, then can be generated. For example, if you krww
that a user process will reside starting at location R, then the generated
compiler code will start at that location and extend up from there. If, at
some later time, the starting location changes, then it will be necessary
to recompile this code. The MS-DOS .COM-format programs are bound at
compile time.

Load time. If it is not known at compile time where the process will reside
in memory, then the compiler must generate In this case,
final binding is delayed until load time. If the starting address changes, we
need only reload the user code to incorporate this changed value.

Execution time. If the process can be moved during its execution from
one memory segment to another, then binding must be delayed until run
time. Special hardware must be available for this scheme to work, as will
be discussed in Section 8.1.3. Most general-purpose operating systems 11se
this method.

A major portion of this chapter is devoted to showing how these vari
ous bindings can be implemented effectively in a computer system and to
discussing appropriate hardware support.

8.1

compile
time

load
time

}
execution
time (run
time)

Figure 8.3 Multistep processing of a user program.

8.1.3 Logical versus Physical Address Space

An address generated by the CPU is commonly referred to as a

319

whereas an address seen by the memory unit-that is, the one loaded into
the of the memory-is commonly referred to as a

The compile-time and load-time address-binding methods generate iden
tical logical and physical addresses. However, the execution-time address-
binding scheme results in differing logical and addresses. In this case,
we usually refer to the logical address as a We use logical address
and virtual address interchangeably in this text. The set of all logical addresses
generated by a program is a logical the set of all physical
addresses corresponding to these logical addresses is a physical
Thus, in_ the execution-time address-binding scheme, the logical and physical
address spaces differ.

The run-time mapping from virtual to physical addresses is done by a
hardware device called the We can choose
from many different methods to accomplish such mapping, as we discuss in

320 Chapter 8

Figure 8.4 Dynamic relocation using a relocation register.

Sections 8.3 through 8.7. For the time being, we illustrate this mapping with
a simple MMU scheme that is a generalization of the base-register scheme
described in Section 8.1.1. The base register is now called a
The value in the relocation register is added to every address generated by a user
process at the time the address is sent to memory (see Figure 8.4). For example,
if the base is at 14000, then an attempt by the user to address location 0 is
dynamically relocated to location 14000; an access to location 346 is mapped
to location 14346. The MS-DOS operating system running on the Intel 80x86
family of processors used four relocation registers when loading and running
processes.

The user program never sees the real physical addresses. The program can
create a pointer to location 346, store it in memory, manipulate it, and compare it
with other addresses-all as the number 346. Only when it is used as a memory
address (in an indirect load or store, perhaps) is it relocated relative to the base
register. The user program deals with logical addresses. The memory-mapping
hardware converts logical addresses into physical addresses. This form of
execution-time binding was discussed in Section 8.1.2. The final location of
a referenced memory address is not determined until the reference is made.

We now have two different types of addresses: logical addresses (in the
range 0 to max) and physical addresses (in the rangeR+ 0 toR+ max for a base
valueR). The user generates only logical addresses and thinks that the process
runs in locations 0 to max. The user program generates only logical addresses
and thinks that the process runs in locations 0 to max. However, these logical
addresses must be mapped to physical addresses before they are used.

The concept of a logical address space that is bound to a separate physical
address space is central to proper memory management.

8.1.4 Dynamic Loading

In our discussion so far, it has been necessary for the entire program and all
data of a process to be in physical memory for the process to execute. The size
of a process has thus been limited to the size of physical memory. To obtain
better memory-space utilization, we can use dynamic With dynancic

8.1 321

loading, a routine is not loaded until it is called. All routines are kept on disk
in a relocatable load format. The main program is loaded into memory and
is executed. When a routine needs to call another routine, the calling routine
first checks to see whether the other routine has been loaded. If it has not, the
relocatable linking loader is called to load the desired routine into menwry and
to update the program's address tables to reflect this change. Then control is
passed to the newly loaded routine.

The advantage of dynamic loading is that an unused routine is never
loaded. This method is particularly useful when large amounts of code are
needed to handle infrequently occurring cases, such as error routines. In this
case, although the total program size may be large, the portion that is used
(and hence loaded) may be much smaller.

Dynamic loading does not require special support from the operating
system. It is the responsibility of the users to design their programs to take
advantage of such a method. Operating systems may help the programmer,
however, by providing library routines to implement dynamic loading.

8.1.5 Dynamic Linking and Shared Libraries

Figure 8.3 also shows Some operating systems
support only linking, in system language libraries are treated
like any other object module and are combined by the loader into the binary
program image. Dynamic linking, in contrast, is similar to dynamic loading.
Here, though, linking, rather than loading, is postponed until execution time.
This feature is usually used with system libraries, such as language subroutine
libraries. Without this facility, each program on a system must include a copy
of its language library (or at least the routines referenced by the program) in the
executable image. This requirement wastes both disk space and main memory.

With dynamic linking, a stub is included in the image for each library
routine reference. The stub is a small piece of code that indicates how to locate
the appropriate memory-resident library routine or how to load the library if
the routine is not already present. When the stub is executed, it checks to see
whether the needed routine is already in memory. If it is not, the program loads
the routine into memory. Either way, the stub replaces itself with the address
of the routine and executes the routine. Thus, the next time that particular
code segment is reached, the library routine is executed directly, incurring no
cost for dynamic linking. Under this scheme, all processes that use a language
library execute only one copy of the library code.

This feature can be extended to library updates (such as bug fixes). A library
may be replaced by a new version, and all programs that reference the library
will automatically use the new version. Without dynamic linking, all such
programs would need to be relinked to gain access to the new library. So that
programs will not accidentally execute new, incompatible versions of libraries,
version information is included in both the program and the library. More than
one version of a library may be loaded into memory, and each program uses its
version information to decide which copy of the library to use. Versions with
minor changes retain the same version number, whereas versions with major
changes increment the number. Thus, only programs that are compiled with
the new library version are affected by any incompatible changes incorporated

322 Chapter 8

8.2

in it. Other programs linked before the new library was installed will continue
using the older library. This system is also known as "'H•"-"='""

Unlike dynamic loading, dynamic linking generally requires help from the
operating system. If the processes in memory are protected from one another,
then the operating system is the only entity that can check to see whether the
needed routine is in another process's memory space or that can allow multiple
processes to access the same memory addresses. We elaborate on this concept
when we discuss paging in Section 8.4.4.

A process must be in memory to be executed. A process, however, can be
temporarily out of memory to a and then brought

into memory for continued execution. For example, assume a multipro
gramming environment with a round-robin CPU-scheduling algorithm. When
a quantum expires, the memory manager will start to swap out the process that
just finished and to swap another process into the memory space that has been
freed (Figure 8.5). In the meantime, the CPU scheduler will allocate a time slice
to some other process in memory. When each process finishes its quantum, it
will be swapped with another process. Ideally, the memory manager can swap
processes fast enough that some processes will be in memory, ready to execute,
when the CPU scheduler wants to reschedule the CPU. In addition, the quantum
must be large enough to allow reasonable amounts of computing to be done
between swaps.

A variant of this swapping policy is used for priority-based scheduling
algorithms. If a higher-priority process arrives and wants service, the memory
manager can swap out the lower-priority process and then load and execute
the higher-priority process. When the higher-priority process finishes, the

@swap out

@swap in

backing store

main memory

Figure 8.5 Swapping of two processes using a disk as a backing store.

8.2 323

lower-priority process can be swapped back in and continued. This variant
of swapping is sometimes called roll

Normally, a process that is swapped out will be swapped back into the
same memory space it occupied previously. This restriction is dictated by the
method of address binding. If binding is done at assembly or load time, then
the process cannot be easily moved to a different location. If execution-time
binding is being used, however, then a process can be swapped into a different
memory space, because the physical addresses are computed during execution
time.

Swapping requires a backing store. The backing store is commonly a fast
disk. It must be large enough to accommodate copies of all memory images
for all users, and it must provide direct access to these memory images. The
system maintains a consisting of all processes whose memory
images are on the backing store or in memory and are ready to run. Whenever
the CPU scheduler decides to execute a process, it calls the dispatcher. The
dispatcher checks to see whether the next process in the queue is in memory.
If it is not, and if there is no free memory region, the dispatcher swaps out a
process currently in memory and swaps in the desired process. It then reloads
registers and transfers control to the selected process.

The context-switch time in such a swapping system is fairly high. To get
an idea of the context-switch time, let us assume that the user process is 100
MB in size and the backing store is a standard hard disk with a transfer rate of
50MB per second. The actual transfer of the 100-MB process to or from main
memory takes

100MB/50MB per second= 2 seconds.

Assuming an average latency of 8 milliseconds, the swap time is 2008
milliseconds. Since we must both swap out and swap in, the total swap time is
about 4016 milliseconds.

Notice that the major part of the swap time is transfer time. The total
transfer time is directly proportional to the amount of memory swapped. If we
have a computer system with 4 GB of main memory and a resident operating
system taking 1 GB, the maximum size of the user process is 3GB. However,
many user processes may be much smaller than this-say, 100 MB. A 100-MB
process could be swapped out in 2 seconds, compared with the 60 seconds
required for swapping 3 GB. Clearly, it would be useful to know exactly how
much memory a user process is using, not simply how much it might be using.
Then we would need to swap only what is actually used, reducing swap time.
For this method to be effective, the user must keep the system informed of
any changes in memory requirements. Thus, a process with dynamic memory
requirements will need to issue system calls (request memory and release
memory) to inform the operating system of its changing memory needs.

Swapping is constrained by other factors as well. If we want to swap
a process, we must be sure that it is completely idle. Of particular concern
is any pending I/0. A process may be waiting for an I/0 operation when
we want to swap that process to free up memory. However, if the I/0 is
asynchronously accessing the user memory for I/0 buffers, then the process
cannot be swapped. Assume that the I/0 operation is queued because the
device is busy. If we were to swap out process P1 and swap in process P2, the

324 Chapter 8

8.3

I/0 operation might then attempt to use memory that now belongs to process
P2 . There are two main solutions to this problem: never swap a process with
pending I/0, or execute I/0 operations only into operating-system buffers.
Transfers between operating-system buffers and process memory then occur
only when the process is swapped in.

The assumption, mentioned earlier, that swapping requires few, if any,
head seeks needs further explanation. We postpone discussing this issue until
Chapter 12, where secondary-storage structure is covered. Generally, swap
space is allocated as a chunk of disk, separate from the file system, so that its
use is as fast as possible.

Currently, standard swapping is used in few systems. It requires too
much swapping time and provides too little execution time to be a reasonable
memory-management solution. Modified versions of swapping, however, are
found on many systems.

A modification of swapping is used in many versions of UNIX. Swapping is
normally disabled but will start if many processes are running and are using a
threshold amount of memory. Swapping is again halted when the load on the
system is reduced. Memory management in UNIX is described fully in Sections
21.7 and A.6.

Early PCs-which lacked the sophistication to implement more advanced
memory-management methods-ran multiple large processes by using a
modified version of swapping. A prime example is the Microsoft Windows
3.1 operating system, which supports concurrent execution of processes in
memory. If a new process is loaded and there is insufficient main memory,
an old process is swapped to disk This operating system does not provide
full swapping, however, because the user, rather than the scheduler, decides
when it is time to preempt one process for another. Any swapped-out process
remains swapped out (and not executing) until the user selects that process to
run. Subsequent versions of Microsoft operating systems take advantage of the
advanced MMU features now found in PCs. We explore such features in Section
8.4 and in Chapter 9, where we cover virtual memory.

The main memory must accommodate both the operating system and the
various user processes. We therefore need to allocate main menlOry in the most
efficient way possible. This section explains one common method, contiguous
memory allocation.

The memory is usually divided into two partitions: one for the resident
operating system and one for the user processes. We can place the operating
system in either low memory or high memory. The major factor affecting this
decision is the location of the interrupt vector. Since the interrupt vector is
often in low memory, programmers usually place the operating system in low
memory as well. Thus, in this text, we discuss only the situation in which
the operating system resides in low memory. The development of the other
situation is similar.

We usually want several user processes to reside in memory at the same
time. We therefore need to consider how to allocate available memory to the
processes that are in the input queue waiting to be brought into memory.

8.3 325

In. contiguous memory allocation, each process is contained in a single
contiguous section of memory.

8.3.1 Memory Mapping and Protection

Before discussing memory allocation further, we must discuss the issue of
memory mapping and protection. We can provide these features by using a
relocation register, as discussed in Section 8.1.3, together with a limit register,
as discussed in Section 8.1.1. The relocation register contaiTlS the value of
the smallest physical address; the limit register contains the range of logical
addresses (for example, relocation= 100040 and limit= 74600). With relocation
and limit registers, each logical address must be less than the limit register; the
MMU maps the logical address dynamically by adding the value in the relocation
register. This mapped address is sent to memory (Figure 8.6).

When the CPU scheduler selects a process for execution, the dispatcher
loads the relocation and limit registers with the correct values as part of the
context switch. Because every address generated by a CPU is checked against
these registers, we can protect both the operating system and the other users'
programs and data from being modified by this running process.

The relocation-register scheme provides an effective way to allow the
operating system's size to change dynamically. This flexibility is desirable in
many situations. For example, the operating system contains code and buffer
space for device drivers. If a device driver (or other operating-system service)
is not commonly used, we do not want to keep the code and data in memory, as
we might be able to use that space for other purposes. Such code is sometimes
called transient operating-system code; it comes and goes as needed. Thus,
using this code changes the size of the operating system during program
execution.

8.3.2 Memory Allocation

Now we are ready to turn to memory allocation. One of the simplest
methods for allocating memory is to divide memory into several fixed-sized

Each partition may contain exactly one process. Thus, the degree

no

trap: addressing error

Figure 8.6 Hardware supportfor relocation and limit registers.

326 Chapter 8

of multiprogramming is bound by the number of partitions. In this
when a partition is free, a process is selected from the input

queue and is loaded into the free partition. When the process terminates, the
partition becomes available for another process. This method was originally
used by the IBM OS/360 operating system (called MFT); it is no longer in use.
The method described next is a generalization of the fixed-partition scheme
(called MVT); it is used primarily in batch environments. Many of the ideas
presented here are also applicable to a time-sharing environment in which
pure segmentation is used for memory management (Section 8.6).

In the scheme, the operating system keeps a table
indicating which parts of memory are available and which are occupied.
Initially, all memory is available for user processes and is considered one
large block of available memory a Eventually as you will see, memory
contains a set of holes of various sizes.

As processes enter the system, they are put into an input queue. The
operating system takes into account the memory requirements of each process
and the amount of available memory space in determining which processes are
allocated memory. When a process is allocated space, it is loaded into memory,
and it can then compete for CPU time. When a process terminates, it releases its
memory which the operating system may then fill with another process from
the input queue.

At any given time, then, we have a list of available block sizes and an
input queue. The operating system can order the input queue according to
a scheduling algorithm. Memory is allocated to processes untit finally, the
memory requirements of the next process cannot be satisfied -that is, no
available block of memory (or hole) is large enough to hold that process. The
operating system can then wait until a large enough block is available, or it can
skip down the input queue to see whether the smaller memory requirements
of some other process can be met.

In generat as mentioned, the memory blocks available comprise a set of
holes of various sizes scattered throughout memory. When a process arrives
and needs memory, the system searches the set for a hole that is large enough
for this process. If the hole is too large, it is split into two parts. One part is
allocated to the arriving process; the other is returned to the set of holes. When
a process terminates, it releases its block of memory, which is then placed back
in the set of holes. If the new hole is adjacent to other holes, these adjacent holes
are merged to form one larger hole. At this point, the system may need to check
whether there are processes waiting for memory and whether this newly freed
and recombined memory could satisfy the demands of any of these waiting
processes.

This procedure is a particular instance of the general
which concerns how to satisfy a request of size n from a

There are many solutions to this problem. The
and strategies are the ones most commonly used to select a free hole
from the set of available holes.

First fit. Allocate the first hole that is big enough. Searching can start either
at the beginning of the set of holes or at the location where the previous
first-fit search ended. We can stop searching as soon as we find a free hole
that is large enough.

8.3 327

Best fit. Allocate the smallest hole that is big enough. We must search the
entire list, unless the list is ordered by size. This strategy produces the
smallest leftover hole.

Worst fit. Allocate the largest hole. Again, we must search the entire list,
unless it is sorted by size. This strategy produces the largest leftover hole,
which may be more useful than the smaller leftover hole from a best-fit
approach.

Simulations have shown that both first fit and best fit are better than worst
fit in terms of decreasing time and storage utilization. Neither first fit nor best
fit is clearly better than the other in terms of storage utilization, but first fit is
generally faster.

8.3.3 Fragmentation

Both the first-fit and best-fit strategies for memory allocation suffer from
external As processes are loaded and removed from memory,
the free memory space is broken into little pieces. External fragmentation exists
when there is enough total memory space to satisfy a request but the available
spaces are not contiguous; storage is fragmented into a large number of small
holes. This fragmentation problem can be severe. In the worst case, we could
have a block of free (or wasted) memory between every two processes. If all
these small pieces of memory were in one big free block instead, we might be
able to run several more processes.

Whether we are using the first-fit or best-fit strategy can affect the amount
of fragmentation. (First fit is better for some systems, whereas best fit is better
for others.) Another factor is which end of a free block is allocated. (Which is
the leftover piece-the one on the top or the one on the bottom?) No matter
which algorithm is used, however, external fragmentation will be a problem.

Depending on the total amount of memory storage and the average process
size, external fragmentation may be a minor or a major problem. Statistical
analysis of first fit, for instance, reveals that, even with some optimization,
given N allocated blocks, another 0.5 N blocks will be lost to fragmentation.
That is, one-third of memory may be unusable! This property is known as the

Memory fragmentation can be internal as well as external. Consider a
multiple-partition allocation scheme with a hole of 18,464 bytes. Suppose that
the next process requests 18,462 bytes. If we allocate exactly the requested block,
we are left with a hole of 2 bytes. The overhead to keep track of this hole will be
substantially larger than the hole itself. The general approach to avoiding this
problem is to break the physical memory into fixed-sized blocks and allocate
memory in units based on block size. With this approach, the memory allocated
to a process may be slightly larger than the requested memory. The difference
between these two numbers is internal memory that
is internal to a partition.

One solution to the problem of external fragmentation is The
goal is to shuffle the memory contents so as to place all free n'lemory together
in one large block. Compaction is not always possible, however. If relocation
is static and is done at assembly or load time, compaction cannot be done;
compaction is possible only if relocation is dynamic and is done at execution

328 Chapter 8

8.4

time. If addresses are relocated dynamically, relocation requires only moving
the program and data and then changing the base register to reflect the new
base address. When compaction is possible, we must determine its cost. The
simplest compaction algorithm is to move all processes toward one end of
memory; all holes move in the other direction, producing one large hole of
available memory. This scheme can be expensive.

Another possible solution to the external-fragmentation problem is to
permit the logical address space of the processes to be noncontiguous, thus
allowing a process to be allocated physical memory wherever such memory
is available. Two complementary techniques achieve this solution: paging
(Section 8.4) and segmentation (Section 8.6). These techniques can also be
combined (Section 8.7).

is a memory-management scheme that permits the physical address
space a process to be noncontiguous. Paging avoids external fragmentation
and the need for compaction. It also solves the considerable problem of
fitting memory chunks of varying sizes onto the backin.g store; most memory
management schemes used before the introduction of paging suffered from
this problem. The problem arises because, when some code fragments or data
residing in main memory need to be swapped out, space must be fmmd on
the backing store. The backing store has the same fragmentation problems
discussed in connection with main memory, but access is much slower, so
compaction is impossible. Because of its advantages over earlier methods,
paging in its various forms is used in most operating systems.

physical
address fOOOO •.. 0000

f1111 ... 1111

page table

Figure 8.7 Paging hardware.

1---------1

physical
memory

8.4 329

Traditionally, support for paging has been handled by hardware. However,
recent designs have implemented paging by closely integrating the hardware
and operating system, especially on 64-bit microprocessors.

8.4.1 Basic Method

The basic method for implementing paging involves breaking physical mem
ory into fixed-sized blocks called harnes and breaking logical memory into
blocks of the same size called When a process is to be executed, its
pages are loaded into any available memory frames from their source (a file
system or the backing store). The backing store is divided into fixed-sized
blocks that are of the san1.e size as the memory frames.

The hardware support for paging is illustrated in Figure 8.7. Every address
generated the CPU is divided into two parts: a {p) and a

. The page number is used as an index into a The
page table contains the base address of each page in physical memory. This
base address is combined with the page offset to define the physical memory
address that is sent to the memory unit. The paging model of memory is shown
in Figure 8.8.

The page size (like the frame size) is defined by the hardware. The size
of a page is typically a power of 2, varying between 512 bytes and 16 MB per
page, depending on the computer architecture. The selection of a power of 2 as
a page size makes the translation of a logical address into a page number and
page offset particularly easy. If the size of the logical address space is 2m, and
a page size is 271 addressing units (bytes or wordst then the high-order m- n
bits of a logical address designate the page number, and the n low-order bits
designate the page offset. Thus, the logical address is as follows:

logical
memory

~w
page table

frame
number

physical
memory

Figure 8.8 Paging model of logical and physical memory.

330 Chapter 8

page number page offset

d

m -n n

where p is an index into the page table and d is the displacement within the
page.

As a concrete (although minuscule) example, consider the memory in
Figure 8.9. Here, in the logical address, n= 2 and m = 4. Using a page size
of 4 bytes and a physical memory of 32 bytes (8 pages), we show how the
user's view of memory can be mapped into physical memory. Logical address
0 is page 0, offset 0. Indexing into the page table, we find that page 0 is in frame
5. Thus, logical address 0 maps to physical address 20 [= (5 x 4) + 0]. Logical
address 3 (page 0, offset 3) maps to physical address 23 [= (5 x 4) + 3]. Logical
address 4 is page 1, offset 0; according to the page table, page 1 is mapped to
frame 6. Thus, logical address 4 maps to physical address 24 [= (6 x 4) + O].
Logical address 13 maps to physical address 9.

You may have noticed that paging itself is a form of dynamic relocation.
Every logical address is bound by the paging hardware to some physical
address. Using paging is similar to using a table of base (or relocation) registers,
one for each frame of memory.

~m6 2 1

3 2

page table

logical memory

physical memory

Figure 8.9 Paging example for a 32-byte memory with 4-byte pages.

8.4 331

When we use a paging scheme, we have no external fragmentation: any free
frame can be allocated to a process that needs it. However, we may have some
internal fragmentation. Notice that frames are allocated as units. If the memory
requirements of a process do not happen to coincide with page boundaries,
the last frame allocated may not be completely full. For example, if page size
is 2,048 bytes, a process of 72,766 bytes will need 35 pages plus 1,086 bytes. It
will be allocated 36 frames, resulting in internal fragmentation of 2,048 - 1,086
= 962 bytes. In the worst case, a process would need 11 pages plus 1 byte. It
would be allocated 11 + 1 frames, resulting in internal fragmentation of almost
an entire frame.

If process size is independent of page size, we expect internal fragmentation
to average one-half page per process. This consideration suggests that small
page sizes are desirable. However, overhead is involved in each page-table
entry, and this overhead is reduced as the size of the pages increases. Also,
disk I/0 is more efficient when the amount data being transferred is larger
(Chapter 12). Generally, page sizes have grown over time as processes, data
sets, and main memory have become larger. Today, pages typically are between
4 KB and 8 KB in size, and some systems support even larger page sizes. Some
CPUs and kernels even support multiple page sizes. For instance, Solaris uses
page sizes of 8 KB and 4 MB, depending on the data stored by the pages.
Researchers are now developing support for variable on-the-fly page size.

Usually, each page-table entry is 4 bytes long, but that size can vary as well.
A 32-bit entry can point to one of 232 physical page frames. If frame size is 4 KB,
then a system with 4-byte entries can address 244 bytes (or 16 TB) of physical
memory.

When a process arrives in the system to be executed, its size, expressed
in pages, is examined. Each page of the process needs one frame. Thus, if the
process requires 11 pages, at least 11 frames must be available in memory. If n
frames are available, they are allocated to this arriving process. The first page
of the process is loaded inJo one of the allocated frames, and the frame number
is put in the page table for this process. The next page is loaded into another
frame, its frame number is put into the page table, and so on (Figure 8.10).

An important aspect of paging is the clear separation between the user's
view of memory and the actual physical memory. The user program views
memory as one single space, containing only this one program. In fact, the user
program is scattered throughout physical memory, which also holds other
programs. The difference between the user's view of memory and the actual
physical memory is reconciled by the address-translation hardware. The logical
addresses are translated into physical addresses. This mapping is hidden from
the user and is controlled by the operating system. Notice that the user process
by definition is unable to access memory it does not own. It has no way of
addressing memory outside of its page table, and the table includes only those
pages that the process owns.

Since the operating system is managing physical memory, it must be aware
of the allocation details of physical memory-which frames are allocated,
which frames are available, how many total frames there are, and so on. This
information is generally kept in a data structure called a frame The frame
table has one entry for each physical page frame, indicating whether the latter
is free or allocated and, if it is allocated, to which page of which process or
processes.

332 Chapter 8

free-frame list free-frame list
14 13 15 13 13
18
20 14 14
15

15 15

16 16

17 17

18 18

19 01 19
1 13

20 2 18 20
3.20

21 new-process page table 21

(a) (b)

Figure 8.10 Free frames (a) before allocation and (b) after allocation.

In addition, the operating system must be aware that user processes operate
in user space, and all logical addresses must be mapped to produce physical
addresses. If a user makes a system call (to do I/0, for example) and provides
an address as a parameter (a buffe1~ for instance), that address must be mapped
to produce the correct physical address. The operating system maintains a copy
of the page table for each process, just as it maintains a copy of the instruction
counter and register contents. This copy is used to translate logical addresses to
physical addresses whenever the operating system must map a logical address
to a physical address manually. It is also used by the CPU dispatcher to define
the hardware page table when a process is to be allocated the CPU. Paging
therefore increases the context-switch time.

8.4.2 Hardware Support

Each operating system has its own methods for storing page tables. Most
allocate a page table for each process. A pointer to the page table is stored with
the other register values (like the instruction counter) in the process control
block. When the dispatcher is told to start a process, it must reload the user
registers and define the correct hardware page-table values from the stored
user page table.

The hardware implementation of the page table can be done in several
In the simplest case, the page table is implemented as a set of dedicated

These registers should be built with very high-speed logic to make the
paging-address translation efficient. Every access to memory nlust go through
the paging map, so efficiency is a major consideration. The CPU dispatcher
reloads these registers, just as it reloads the other registers. Instructions to load
or modify the page-table registers are, of course, privileged, so that only the
operating system can change the memory map. The DEC PDP-11 is an example
of such an architecture. The address consists of 16 bits, and the page size is 8
KB. The page table thus consists of eight entries that are kept in fast registers.

8.4 333

The use of registers for the page table is satisfactory if the page table is
reasonably sncall (for example, 256 entries). Most contemporary computers,
however, allow the page table to be very large (for example, 1 million entries).
For these machines, the use of fast registers to implement the page table is
not feasible. Rather, the page table is kept in main memory, and a

points to the page table. Changing page tables requires
changing only this one register, substantially reducing context-switch time.

The problem with this approach is the time required to access a user
memory location. If we want to access location i, we must first index into
the page table, using the value in the PTBR offset by the page number fori. This
task requires a memory access. It provides us with the frame number, which
is combined with the page offset to produce the actual address. We can then
access the desired place in memory. With this scheme, two memory accesses are
needed to access a byte (one for the page-table entry, one for the byte). Thus,
memory access is slowed by a factor of 2. This delay would be intolerable under
most circumstances. We might as well resort to swapping!

The standard solution to this problem is to use a special, small, fast
lookup hardware cache, called a bc.1Her The TLB
is associative, high-speed memory. Each entry in the TLB consists of two parts:
a key (or tag) and a value. When the associative memory is presented with an
item, the item is compared with all keys simultaneously. If the item is found,
the corresponding value field is returned. The search is fast; the hardware,
however, is expensive. Typically, the number of entries in a TLB is small, often
numbering between 64 and 1,024.

The TLB is used with page tables in the following way. The TLB contains
only a few of the page-table entries. When a logical address is generated by
the CPU, its page number is presented to the TLB. If the page number is found,
its frame number is immediately available and is used to access memory. The
whole task may take less than 10 percent longer than it would if an unmapped
memory reference were used.

If the page number is not in the TLB (known as a a memory
reference to the page table must be made. When the frame number is obtained,
we can use it to access memory (Figure 8.11). In addition, we add the page
number and frame number to the TLB, so that they will be found quickly on the
next reference. If the TLB is already full of entries, the operating system must
select one for replacement. Replacement policies range from least recently
used (LRU) to random. Furthermore, some TLBs allow certain entries to be

meaning that they cannot be removed from the TLB. Typically,
TLB entries for kernel code are wired down.

Some TLBs store in each TLB entry. An
ASID uniquely identifies each process and is used to provide address-space
protection for that process. When the TLB attempts to resolve virtual page
numbers, it ensures that the ASID for the currently running process matches the
ASID associated with the virtual page. If the ASIDs do not match, the attempt is
treated as a TLB miss. In addition to providing address-space protection, an ASID
allows the TLB to contain entries for several different processes simultaneously.
If the TLB does not support separate ASIDs, then every time a new table
is selected (for instance, with each context switch), the TLB must
(or erased) to ensure that the next executing process does not use the wrong
translation information. Otherwise, the TLB could include old entries that

334 Chapter 8

TLB hit

TLB

p

TLB miss

page table

Figure 8.11 Paging hardware with TLB.

physical
memory

contain valid virtual addresses but have incorrect or invalid physical addresses
left over from the previous process.

The percentage of times that a particular page number is found in the TLB

is called the An 80-percent hit ratio, for example, means that we
find the desired page number in the TLB 80 percent of the time. If it takes 20
nanoseconds to search the TLB and 100 nanoseconds to access memory, then
a mapped-memory access takes 120 nanoseconds when the page number is
in the TLB. If we fail to find the page number in the TLB (20 nanoseconds),
then we must first access memory for the page table and frame number (100
nanoseconds) and then access the desired byte in memory (100 nanoseconds),
for a total of 220 nanoseconds. To find the effective we
weight the case by its probability:

effective access time = 0.80 x 120 + 0.20 x 220
= 140 nanoseconds.

In this example, we suffer a 40-percent slowdown in memory-access time (from
100 to 140 nanoseconds).

For a 98-percent hit ratio, we have

effective access time = 0.98 x 120 + 0.02 x 220
= 122 nanoseconds.

This increased hit rate produces only a 22 percent slowdown in access time.
We will further explore the impact of the hit ratio on the TLB in Chapter 9.

8.4 335

8.4.3 Protection

Memory protection in a paged environment is accomplished by protection bits
associated with each frame. Normally, these bits are kept in the page table.

One bit can define a page to be read-write or read-only. Every reference
to memory goes through the page table to find the correct frame nuncber. At
the same time that the physical address is being computed, the protection bits
can be checked to verify that no writes are being made to a read-only page. An
attempt to write to a read-only page causes a hardware trap to the operating
system (or memory-protection violation).

We can easily expand this approach to provide a finer level of protection.
We can create hardware to provide read-only, read-write, or execute-only
protection; or, by providing separate protection bits for each kind of access, we
can allow any combination of these accesses. Illegal attempts will be trapped
to the operating system.

One additional bit is generally attached to each entry in the page table: a
bit. When this bit is set to "valid," the associated page is in the

process's logical address space and is thus a legal (or valid) page. When the bit
is set to"invalid," the page is not in the process's logical address space. Illegal
addresses are trapped by use of the valid -invalid bit. The operating system
sets this bit for each page to allow or disallow access to the page.

Suppose, for example, that in a system with a 14-bit address space (0 to
16383), we have a program that should use only addresses 0 to 10468. Given
a page size of 2 KB, we have the situation shown in Figure 8.12. Addresses in

0

frame number j valid-invalid bit

0

10,468

1 2,287 '-----'--'--'-'

page n

Figure 8. i 2 Valid (v) or invalid (i) bit in a page table.

336 Chapter 8

pages 0, 1, 2, 3, 4, and 5 are mapped normally through the page table. Any
attempt to generate an address in pages 6 or 7, however, will find that the
valid -invalid bit is set to invalid, and the computer will trap to flee operating
system (invalid page reference).

Notice that this scheme has created a problem. Because the program
extends only to address 10468, any reference beyond that address is illegal.
Howeve1~ references to page 5 are classified as valid, so accesses to addresses
up to 12287 are valid. Only the addresses from 12288 to 16383 are invalid. This
problem is a result of the 2-KB page size and reflects the internal fragmentation
of paging.

Rarely does a process use all its address range. In fact many processes
use only a small fraction of the address space available to them. It would be
wasteful in these cases to create a page table with entries for every page in the
address range. Most of this table would be unused but would take up valuable
memory space. Some systems provide hardware, in the form of a
length to indicate the size of the page table. value is
checked against every logical address to verify that the address is in the valid
range for the process. Failure of this test causes an error trap to the operating
system.

8.4.4 Shared Pages

An advantage of paging is the possibility of sharing common code. This con
sideration is particularly important in a time-sharing environment. Consider a
system that supports 40 users, each of whom executes a text editor. If the text
editor consists of 150 KB of code and 50 KB of data space, we need 8,000 KB to
support the 40 users. If the code is (or pure however, it
can be shared, as shown in Figure 8.13. Here we see a three-page editor-each
page 50 KB in size (the large page size is used to simplify the figure)-being
shared among three processes. Each process has its own data page.

Reentrant code is non-self-modifying code: it never changes during execu
tion. Thus, two or more processes can execute the same code at the same time.
Each process has its own copy of registers and data storage to hold the data for
the process's execution. The data for two different processes wilt of course, be
different.

Only one copy of the editor need be kept in physical memory. Each user's
page table maps onto the same physical copy of the editor, but data pages are
mapped onto different frames. Thus, to support 40 users, we need only one
copy of the editor (150 KB), plus 40 copies of the 50 KB of data space per user.
The total space required is now 2)50 KB instead of 8,000 KB-a significant
savings.

Other heavily used programs can also be shared -compilers, window
systems, run-time libraries, database systems, and so on. To be sharable, the
code must be reentrant. The read-only nature of shared code should not be
left to the correctness of the code; the operating system should enforce this
property.

The sharing of memory among processes on a system is similar to the
sharing of the address space of a task by threads, described in Chapter 4.
Furthermore, recall that in Chapter 3 we described shared memory as a method

8.5

ed 1

..
ed 2

ed 3

data .1

process P1

process P3

page table
for P1

page table
for P3

8.5

ed 1

ed 2

ed 3

data 2

process P2

0

data 1

2 data 3

3 ed 1

ed 2

ed 3
[

4

5

6

data 2
page table

for P2
7

8

9

10

11

Figure 8.13 Sharing of code in a paging environment.

337

of interprocess corrununication. Some operating systems implement shared
memory using shared pages.

Organizing memory according to pages provides numerous benefits in
addition to allowing several processes to share the same physical pages. We
cover several other benefits in Chapter 9.

In this section, we explore some of the most common techniques for structuring
the page table.

8.5.1 Hierarchical Paging

Most modern computer systems support a large logical address space
(232 to 264). In such an environment, the page table itself becomes excessively
large. For example, consider a system with a 32-bit logical address space. If
the page size in such a system is 4 KB (212), then a page table may consist of
up to 1 million entries (232 /212). Assuming that each entry consists of 4 bytes,
each process may need up to 4MB of physical address space for the page table
alone. Clearly, we would not want to allocate the page table contiguously in
main memory. One simple solution to this problem is to divide the page table
into smaller pieces. We can accomplish this division in several ways.

One way is to use a two-level paging algorithm, in which the page table
itself is also paged (Figure 8.14). For example, consider again the system with

338 Chapter 8

0

page table
memory

Figure 8.14 A two-level page-table scheme.

a 32-bit logical address space and a page size of 4 KB. A logical address is
divided into a page number consisting of 20 bits and a page offset consisting
of 12 bits. Because we page the page table, the page number is further divided
into a 10-bit page number and a 10-bit page offset. Thus, a logical address is as
follows:

page number page offset

d

10 10 12

where p1 is an index into the outer page table and P2 is the displacement
within the page of the outer page table. The address-translation method for this
architecture is shown in Figure 8.15. Because address translation works from
the outer page table inward, this scheme is also known as a

The VAX architecture supports a variation of two-level paging. The VAX is
a 32-bit machine with a page size of 512 bytes. The logical address space of a
process is divided into four equal sections, each of which consists of 230 bytes.
Each section represents a different part of the logical address space of a process.
The first 2 high-order bits of the logical address designate the appropriate
section. The next 21 bits represent the logical page number of that section, and
the final 9 bits represent an offset in the desired page. By partitioning the page

outer page
table

8.5

Figure 8."15 Address translation for a two-level 32-bit paging architecture.

339

table in this manner, the operating system can leave partitions unused until a
process needs them. An address on the VAX architecture is as follows:

section page offset

s p d

2 21 9

where s designates the section number, p is an index into the page table, and d
is the displacement within the page. Even when this scheme is used, the size
of a one-level page table for a VAX process using one section is 221 bits * 4
bytes per entry= 8MB. To further reduce main-memory use, the VAX pages the
user-process page tables.

For a system with a 64-bit logical address space, a two-level paging scheme
is no longer appropriate. To illustrate this point, let us suppose that the page
size in such a system is 4 KB (212). In this case, the page table consists of up
to 252 entries. If we use a two-level paging scheme, then the iml.er page tables
can conveniently be one page long, or contain 210 4-byte entries. The addresses
look like this:

outer page inner page offset

I .. Pl · .. · I P2 ·. I d

42 10 12

The outer page table consists of 242 entries, or 244 bytes. The obvious way to
avoid such a large table is to divide the outer page table into smaller pieces.
(This approach is also used on some 32-bit processors for added flexibility and
efficiency.)

We can divide the outer page table in various ways. We can page the outer
page table, giving us a three-level paging scheme. Suppose that the outer page
table is made up of standard-size pages (210 entries, or 212 bytes). In this case,
a 64-bit address space is still daunting:

2nd outer page outer page inner page offset

I Pr< .·) P2 I P3 I d
32 10 10 12

The outer page table is sti11234 bytes in size.

340 Chapter 8

The next step would be a four-level paging scheme, where the second-level
outer page table itself is also paged, and so forth. The 64-bit UltraSPARC would
require seven levels of paging-a prohibitive number of memory accesses
to translate each logical address. You can see from this example why, for 64-bit
architectures, hierarchical page tables are generally considered inappropriate.

8.5.2 Hashed Page Tables

A common approach for handling address spaces larger than 32 bits is to use
a with the hash value being the virtual page number. Each
entry in the hash table contains a linked list of elements that hash to the same
location (to handle collisions). Each element consists of three fields: (1) the
virtual page number, (2) the value of the mapped page frame, and (3) a pointer
to the next element in the linked list.

The algorithm works as follows: The virtual page number in the virtual
address is hashed into the hash table. The virtual page number is compared
with field 1 in the first element in the linked list. If there is a match, the
corresponding page frame (field 2) is used to form the desired physical address.
If there is no match, subsequent entries in the linked list are searched for a
matching virtual page number. This scheme is shown in Figure 8.16.

A variation of this scheme that is favorable for 64-bit address spaces has
been proposed. This variation uses which are similar to
hashed page tables except that each entry in the hash table refers to several
pages (such as 16) rather than a single page. Therefore, a single page-table
entry can store the mappings for multiple physical-page frames. Clustered
page tables are particularly useful for address spaces, where memory
references are noncontiguous and scattered throughout the address space.

8.5.3 Inverted Page Tables

Usually, each process has an associated page table. The page table has one
entry for each page that the process is using (or one slot for each virtual

hash table

Figure 8.16 Hashed page table.

physical
address

physical
memory

8.5 341

address, regardless of the latter's validity). This table representation is a natural
one, since processes reference pages through the pages' virtual addresses. The
operating system must then translate this reference into a physical memory
address. Since the table is sorted by virtual address, the operating system is
able to calculate where in the table the associated physical address entry is
located and to use that value directly. One of the drawbacks of this method
is that each page table may consist of millions of entries. These tables may
consume large amounts of physical memory just to keep track of how other
physical memory is being used.

To solve this problem, we can use an page An inverted
page table has one entry for each real page (or frame) of memory. Each entry
consists of the virtual address of the page stored in that real memory location,
with information about the process that owns the page. Thus, only one page
table is in the system, and it has only one entry for each page of physical
memory. Figure 8.17 shows the operation of an inverted page table. Compare
it with Figure 8.7, which depicts a standard page table in operation. Inverted
page tables often require that an address-space identifier (Section 8.4.2) be
stored in each entry of the page table, since the table usually contains several
different address spaces mapping physical memory. Storing the address-space
identifier ensures that a logical page for a particular process is mapped to the
corresponding physical page frame. Examples of systems using inverted page
tables include the 64-bit UltraSPARC and PowerPC.

To illustrate this method, we describe a simplified version of the i11verted
page table used in the IBM RT. Each virtual address in the system consists of a
triple:

<process-id, page-number, offset>.

Each inverted page-table entry is a pair <process-id, page-number> where the
process-id assumes the role of the address-space identifier. When a memory

page table

physical
address

Figure 8.17 Inverted page table.

physical
memory

342 Chapter 8

8.6

reference occurs, part of the virtual address, consisting of <process-id, page
number>, is presented to the memory subsystem. The inverted page table
is then searched for a match. If a match is found-say, at entry i-then the
physical address <i, offset> is generated. If no match is found, then an illegal
address access has been attempted.

Although this scheme decreases the amount of memory needed to store
each page table, it increases the amount of time needed to search the table when
a page reference occurs. Because the inverted page table is sorted by physical
address, but lookups occur on virtual addresses, the whole table might need to
be searched for a match. This search would take far too long. To alleviate this
problem, we use a hash table, as described in Section 8.5.2, to limit the search
to one-or at most a few-page-table entries. Of course, each access to the
hash table adds a memory reference to the procedure, so one virtual memory
reference requires at least two real memory reads-one for the hash-table entry
and one for the page table. (Recall that the TLB is searched first, before the hash
table is consulted, offering some performance improvement.)

Systems that use inverted page tables have difficulty implementing shared
memory. Shared memory is usually implemented as multiple virtual addresses
(one for each process sharing the memory) that are mapped to one physical
address. This standard method cannot be used with inverted page tables;
because there is only one virtual page entry for every physical page, one
physical page cannot have two (or more) shared virtual addresses. A simple
technique for addressing this issue is to allow the page table to contain only
one mapping of a virtual address to the shared physical address. This means
that references to virtual addresses that are not mapped result in page faults.

An. important aspect of memory management that became unavoidable with
paging is the separation of the user's view of memory from the actual physical
memory. As we have already seen, the user's view of memory is not the
same as the actual physical memory. The user's view is mapped onto physical
memory. This mapping allows differentiation between logical memory and
physical memory.

8.6.1 Basic Method

Do users think of memory as a linear array of bytes, some containing
instructions and others containing data? Most people would say no. Rather,
users prefer to view memory as a collection of variable-sized segments, with
no necessary ordering among segments (Figure 8.18).

Consider how you think of a program when you are writing it. You think
of it as a main program with a set of methods, procedures, or functions. It
may also include various data structures: objects, arrays, stacks, variables, and
so on. Each of these modules or data elements is referred to by name. You
talk about "the stack," "the math library," "the n1.ain program," without caring
what addresses in memory these elements occupy. You are not concerned
with whether the stack is stored before or after the Sqrt () function. Each
of these segments is of variable length; the length is intrinsically defined by

subroutine

symbol
table

·.

main
program

logical address

8.6

Figure 8.18 User's view of a program.

343

the purpose of the segment in the program. Elements within a segment are
identified by their offset from the begim1.ing of the segment: the first statement
of the program, the seventh stack frame entry in the stack, the fifth instruction
of the Sqrt (), and so on.

is a memory-management scheme that supports this user
view of memory. A logical address space is a collection of segments. Each
segment has a name and a length. The addresses specify both the segment name
and the offset within the segment. The user therefore specifies each address
by two quantities: a segment name and an offset. (Contrast this scheme with
the paging scheme, in which the user specifies only a single address, which is
partitioned by the hardware into a page number and an offset, all invisible to
the programmer.)

For simplicity of implementation, segments are numbered and are referred
to by a segn"lent number, rather than by a segment name. Thus, a logical address
consists of a two tuple:

<segment-number, offset>.

Normally, the user program is compiled, and the compiler automatically
constructs segments reflecting the input program.

A C compiler might create separate segments for the following:

The code

Global variables

The heap, from which memory is allocated

The stacks used by each thread

The standard C library

344 Chapter 8

<

no

segment
table

yes

trap: addressing error

+

Figure 8.19 Segmentation hardware.

physical memory

Libraries that are linked in during compile time might be assign.ed separate
segments. The loader would take all these segments and assign them segment
numbers.

8.6.2 Hardware

Although the user can now refer to objects in the program by a two-dimensional
address, the actual physical memory is still, of course, a one-dimensional
sequence of bytes. Thus, we must define an implementation to map two
dimensional user-defined addresses into one-dimensional physical addresses.
This mapping is effected by a Each entry in the segment table
has a segment base and a segment limit. The segment base contains the startilcg
physical address where the segment resides in memory, and the segment limit
specifies the length of the segment.

The use of a segment table is illustrated in Figure 8.19. A logical address
consists of two parts: a segment number, s, and an offset into that segment, d.
The segment number is used as an index to the segment table. The offset d of
the logical address must be between 0 and the segment limit. If it is not, we trap
to the operating system (logical addressing attempt beyond end of segment).
When an offset is legal, it is added to the segment base to produce the address
in physical memory of the desired byte. The segment table is thus essentially
an array of base-limit register pairs.

As an example, consider the situation shown in Figure 8.20. We have five
segments numbered from 0 through 4. The segments are stored in physical
memory as shown. The segment table has a separate entry for each segment,
giving the beginning address of the segment in physical memory (or base) and
the length of that segment (or limit). For example, segment 2 is 400 bytes long
and begins at location 4300. Thus, a reference to byte 53 of segment 2 is mapped

8.7

subroutine

segment o

segment1

symbol
table

.· segment 4

main
program

segment 2

logical address space

8.7

0

2
3
4

limit base
1000 1400
400 6300
400 4300

1100 3200
1000 4700

segment table

Figure 8.20 Example of segmentation.

14001---1

segment o

2400

3200 1-----1

segment 3

4300 1--~--1
4700 segment 2

segment 4

5700 f--------1

6300 . .
s~gt\1e!it 1

6700
physical memory

345

onto location 4300 +53= 4353. A reference to segment 3, byte 852, is mapped to
3200 (the base of segment 3) + 852 = 4052. A reference to byte 1222 of segment
0 would result in a trap to the operating system, as this segment is only tOOO
bytes long.

Both paging and segmentation have advantages and disadvantages. In fact
some architectures provide both. In this section, we discuss the Intel Pentium
architecture, which supports both pure segmentation and segmentation with
paging. We do not give a complete description of the memory-management
structure of the Pentium in this text. Rather, we present the major ideas on
which it is based. We conclude our discussion with an overview of Linux
address translation on Pentium systems.

In Pentium systems, the CPU generates logical addresses, which are given
to the segmentation unit. The segmentation unit produces a linear address for
each logical address. The linear address is then given to the paging unit, which
in turn generates the physical address in main memory. Thus, the segmentation
and paging units form the equivalent of the memory-management unit (MMU).
This scheme is shown in Figure 8.21.

8.7.1 Pentium Segmentation

The Pentium architecture allows a segment to be as large as 4 GB, and the
maximum number of segments per process is 16 K. The logical-address space

346 Chapter 8

I CPU I

Figure 8.21 Logical to physical address translation in the Pentium.

of a process is divided into two partitions. The first partition consists of up to
8 K segments that are private to that process. The second partition consists of
up to 8 K segments that are shared all the processes. Information about
the first partition is kept in the information about
the second partition is kept in the Each entry
in the LDT and GDT consists of an 8-byte segment descriptor with detailed
information about a particular segment, including the base location and limit
of that segment.

The logical address is a pair (selector, offset), where the selector is a 16-bit
number:

g p

13 2

in which s designates the segment number, g indicates whether the segment is
in the GDT or LDT, and p deals with protection. The offset is a 32-bit number
specifying the location of the byte (or word) within the segment in question.

The machine has six segment registers, allowing six segments to be
addressed at any one time by a process. It also has six 8-byte microprogram
registers to hold the corresponding descriptors from either the LDT or GDT.
This cache lets the Pentium avoid having to read the descriptor from memory
for every memory reference.

The linear address on the Pentium is 32 bits long and is formed as follows.
The segment register points to the appropriate entry in the LDT or GDT. The
base and limit information about the segment in question is used to generate
a First, the limit is used to check for address validity. If the
address is not valid, a memory fault is generated, resulting in a trap to the
operating system. If it is valid, then the value of the offset is added to the value
of the base, resulting in a 32-bit linear address. This is shown in Figure 8.22. In
the following section, we discuss how the paging unit turns this linear address
into a physical address.

8.7.2 Pentium Paging

The Pentium architecture allows a page size of either 4 KB or 4 MB. For 4-KB
pages, the Pentium uses a two-level paging schence in which the division of
the 32-bit linear address is as follows:

page number page offset

d

10 10 12

The address-translation scheme for this architecture is similar to the scheme
shown in Figure 8.15. The Intel Pentium address translation is shown in more

8.7 347

logical address offset

+

32-bit linear address

Figure 8.22 Intel Pentium segmentation.

detail in Figure 8.23. The 10 high-order bits reference an entry in the outern'lost
page table, which the Pentium terms the page directory. (The CR3 register
points to the page directory for the current process.) The page directory entry
points to an inner page table that is indexed by the contents of the innermost
10 bits in the linear address. Finally, the low-order bits 0-11 refer to the offset
in the 4-KB page pointed to in the page table.

One entry in the page directory is the Page Size flag, which-if set
indicates that the size of the page frame is 4 MB and not the standard 4 KB.
If this flag is set, the page directory points directly to the 4-MB page frame,
bypassing the inner page table; and the 22 low-order bits in the linear address
refer to the offset in the 4-MB page frame.

31

CR3->
registe r

page directory

page
directory

page directory

(logical address)

page table

22 21 l 1211

page
table -

I
offset

31 22 21

offset

j

4-KB
page

4-MB
page

Figure 8.23 Paging in the Pentium architecture.

0

0

3L!8 Chapter 8

To improve the efficiency of physical memory use, Intel Pentium page
tables can be swapped to disk. In this case, an invalid bit is used in the page
directory entry to indicate whether the table to which the entry is pointing is
in memory or on disk. If the table is on disk, the operating system can use
the other 31 bits to specify the disk location of the table; the table then can be
brought into memory on demand.

8.7.3 Linux on Pentium Systems

As an illustration, consider the Linux operating system running on the Intel
Pentium architecture. Because Linux is designed to run on a variety of proces
sors-many of which may provide only limited support for segmentation
Linux does not rely on segmentation and uses it minimally. On the Pentium,
Linux uses only six segments:

A segment for kernel code

A segment for kernel data

A segment for user code

A segment for user data

A task-state segment (TSS)

1i A default LDT segment

The segments for user code and user data are shared by all processes
running in user mode. This is possible because all processes use the same logical
address space and all segment descriptors are stored in the global descriptor
table (GDT). Furthermore, each process has its own task-state segment (TSS),
and the descriptor for this segment is stored in the GDT. The TSS is used to store
the hardware context of each process during context switches. The default LDT
segment is normally shared by all processes and is usually not used. However,
if a process requires its own LDT, it can create one and use that instead of the
default LDT.

As noted, each segment selector includes a 2-bit field for protection. Thus,
the Pentium allows four levels of protection. Of these four levels, LimlX only
recognizes two: user mode and kernel mode.

Although the Pentium uses a two-level paging model, Linux is designed
to run on a variety of hardware platforms, many of which are 64-bit platforms
where two-level paging is not plausible. Therefore, Linux has adopted a three
level paging strategy that works well for both 32-bit and 64-bit architectures.

The linear address in Linux is broken into the following four parts:

global
directory

middle
directory

page
table

Figure 8.24 highlights the three-level paging model in Linux.
The number of bits in each part of the linear address varies according

to architecture. However, as described earlier in this section, the Pentium
architecture only uses a two-level paging model. How, then, does Linux apply

8.8

Lglobal directory

global
directory

CR3 __,.c__ ___ __l

register

8.8

(linear address)

middle directory

Figure 8.24 Three-level paging in Linux.

offset

page
frame

349

its three-level model on the Pentium? In this situation, the size of the middle
directory is zero bits, effectively bypassing the middle directory.

Each task in Linux has its own set of page tables and -just as in Figure 8.23
-the CR3 register points to the global directory for the task currently executing.
During a context switch, the value of the CR3 register is saved and restored in
the TSS segments of the tasks involved in the context switch.

Memory-management algorithms for multiprogrammed operating systems
range from the simple single-user system approach to paged segmentation.
The most important determinant of the method used in a particular system is
the hardware provided. Every memory address generated by the CPU must be
checked for legality and possibly mapped to a physical address. The checking
cannot be implemented (efficiently) in software. Hence, we are constrained by
the hardware available.

The various memory-management algorithms (contiguous allocation, pag
ing, segmentation, and combinations of paging and segmentation) differ in
many aspects. In comparing different memory-management strategies, we use
the following considerations:

Hardware support. A simple base register or a base-limit register pair is
sufficient for the single- and multiple-partition schemes, whereas paging
and segmentation need mapping tables to define the address map.

Performance. As the memory-management algorithm becomes more
complex, the time required to map a logical address to a physical address
increases. For the simple systems, we need only compare or add to the
logical address-operations that are fast. Paging and segmentation can be
as fast if the mapping table is implemented in fast registers. If the table is

350 Chapter 8

in memory, however, user memory accesses can be degraded substantially.
A TLB can reduce the performance degradation to an acceptable level.

Fragmentation. A multiprogrammed system will generally perform more
efficiently if it has a higher level of multiprogramming. For a given
set of processes, we can increase the multiprogramming level only by
packing more processes into memory. To accomplish this task, we must
reduce memory waste, or fragmentation. Systems with fixed-sized allo
cation units, such as the single-partition scheme and paging, suffer from
internal fragmentation. Systems with variable-sized allocation units, such
as the multiple-partition scheme and segmentation, suffer from external
fragmentation.

Relocation. One solution to the external-fragmentation problem is com
paction. Compaction involves shifting a program in memory in such a
way that the program does not notice the change. This consideration
requires that logical addresses be relocated dynamically, at execution time.
If addresses are relocated only at load time, we cannot compact storage.

Swapping. Swapping can be added to any algorithm. At intervals deter
mined by the operating system, usually dictated by CPU-scheduling poli
cies, processes are copied from main memory to a backing store and later
are copied back to main memory. This scheme allows more processes to be
run than can be fit into memory at one time.

Sharing. Another means of increasing the multiprogramming level is to
share code and data among different users. Sharing generally requires
that either paging or segmentation be used to provide small packets of
information (pages or segments) that can be shared. Sharing is a means
of running many processes with a limited amount of memory, but shared
programs and data must be designed carefully.

Protection. If paging or segmentation is provided, different sections of a
user program can be declared execute-only, read -only, or read-write. This
restriction is necessary with shared code or data and is generally useful
in any case to provide simple run-time checks for common programming
errors.

8.1 Explain the difference between internal and external fragmentation.

8.2 Compare the memory organization schemes of contiguous memory
allocation, pure segmentation, and pure paging with respect to the
following issues:

a. External fragmentation

b. Internal fragmentation

c. Ability to share code across processes

351

8.3 Why are segmentation and paging sometimes combined into one
scheme?

8.4 Most systems allow a program to allocate more memory to its address
space during execution. Allocation of data in the heap segments of
programs is an example of such allocated memory. What is required
to support dynamic memory allocation in the following schemes?

a. Contiguous memory allocation

b. Pure segmentation

c. Pure paging

8.5 Consider the Intel address-translation scheme shown in Figure 8.22.

a. Describe all the steps taken by the Intel Pentium in translatil<g a
logical address into a physical address.

b. What are the advantages to the operating system of hardware that
provides such complicated memory translation?

c. Are there any disadvantages to this address-translation system? If
so, what are they? If not, why is this scheme not used by every
manufacturer?

8.6 What is the purpose of paging the page tables?

8.7 Explain why sharil<g a reentrant module is easier when segmentation is
used than when pure paging is used.

8.8 On a system with paging, a process cannot access memory that it does
not own. Why? How could the operating system allow access to other
memory? Why should it or should it not?

8.9 Compare the segmented pagil<g scheme with the hashed page table
scheme for handling large address spaces. Under what circumstances is
one scheme preferable to the other?

8.10 Consider a paging system with the page table stored in memory.

a. If a memory reference takes 200 nanoseconds, how long does a
paged memory reference take?

b. If we add TLBs, and 75 percent of all page-table references are found
in the TLBs, what is the effective memory reference time? (Assume
that finding a page-table entry in the TLBs takes zero time, if the
entry is there.)

352 Chapter 8

8.11 Compare paging with segmentation with respect to the amount of
memory required by the address translation structures in order to
convert virtual addresses to physical addresses.

8.12 Consider a system in which a program can be separated into two
parts: code and data. The CPU knows whether it wants an instruction
(instruction fetch) or data (data fetch or store). Therefore, two base
limit register pairs are provided: one for instructions and one for data.
The instruction base-limit register pair is automatically read-only, so
programs can be shared among different users. Discuss the advantages
and disadvantages of this scheme.

8.13 Consider the following process for generating binaries. A compiler is
used to generate the object code for individual modules, and a linkage
editor is used to combine multiple object modules into a single program
bilcary. How does the linkage editor change the bindmg of instructions
and data to memory addresses? What information needs to be passed
from the compiler to the linkage editor to facilitate the memory-binding
tasks of the linkage editor?

8.14 Consider a logical address space of 64 pages of 1,024 words each, mapped
onto a physical memory of 32 frames.

a. How many bits are there in the logical address?

b. How many bits are there in the physical address?

8.15 Consider the hierarchical paging scheme used by the VAX architecture.
How many memory operations are performed when a user program
executes a memory-load operation?

8.16 Given five memory partitions of 100 KB, 500 KB, 200 KB, 300 KB, and 600
KB (ill order), how would the first-fit, best-fit, and worst-fit algorithms
place processes of 212 KB, 417 KB, 112 KB, and 426 KB (in order)? Which
algorithm makes the most efficient use of memory?

8.17 Describe a mechanism by which one segment could belong to the address
space of two different processes.

8.18 Consider a computer system with a 32-bit logical address and 4-KB page
size. The system supports up to 512MB of physical memory. How many
entries are there in each of the following?

a. A conventional single-level page table

b. An inverted page table

353

8.19 Assuming a 1-KB page size, what are the page numbers and offsets for
the following address references (provided as decimal numbers):

a. 2375

b. 19366

c. 30000

d. 256

e. 16385

8.20 Program binaries in many systems are typically structured as follows.
Code is stored starting with a small, fixed virtual address, such as 0. The
code segment is followed by the data segment that is used for storing
the program variables. When the program starts executing, the stack is
allocated at the other end of the virtual address space and is allowed
to grow toward lower virtual addresses. What is the significance of this
structure for the following schemes?

a. Contiguous memory allocation

b. Pure segmentation

c. Pure paging

8.21 Consider the following segment table:

Segment Base Length

0 219 600
1 2300 14
2
90 100
3 1327 580
4 1952 96

What are the physical addresses for the following logical addresses?

a. 0,430

b. 1,10

c. 2,500

d. 3,400

e. 4,112

8.22 Consider a logical address space of 32 pages with 1,024 words per page,
mapped onto a physical memory of 16 frames.

a. How many bits are required in. the logical address?

b. How many bits are required in the physical address?

354 Chapter 8

8.23 Sharing segments among processes without requiring that they have the
same segment number is possible in a dynamically linked segmentation
system.

a. Define a system that allows static linking and sharing of segments
without requiring that the segment numbers be the same.

b. Describe a paging scheme that allows pages to be shared without
requiring that the page numbers be the same.

8.24 Assume that a system has a 32-bit virtual address with a 4-KB page size.
Write a C program that is passed a virtual address (in decincal) on the
command line and have it output the page number and offset for the
given address. As an example, your program would run as follows:

./a.out 19986

Your program would output:

The address 19986 contains:
page number = 4
offset = 3602

Writing this program will require using the appropriate data type to
store 32 bits. We encourage you to use unsigned data types as well.

Dynamic storage allocation was discussed by Knuth [1973] (Section 2.5), who
found through simulation results that first fit is generally superior to best fit.
Knuth [1973] also discussed the 50-percent rule.

The concept of paging can be credited to the designers of the Atlas system,
which has been described by Kilburn et al. [1961] and by Howarth et al.
[1961]. The concept of segmentation was first discussed by Dennis [1965].
Paged segmentation was first supported in the GE 645, on which MULTICS was
originally implemented (Organick [1972] and Daley and Dennis [1967]).

Inverted page tables are discussed in an article about the IBM RT storage
manager by Chang and Mergen [1988].

Address translation in software is covered in Jacob and Mudge [1997].
Hennessy and Patterson [2002] explains the hardware aspects of TLBs,

caches, and MMUs. Talluri et al. [1995] discusses page tables for 64-bit address
spaces. Alternative approaches to enforcing memory protection are proposed
and studied in Wahbe et al. [1993a], Chase et al. [1994], Bershad et al. [1995],
and Thorn [1997]. Dougan et al. [1999] and Jacob and Mudge [2001] discuss

355

tedmiques for managing the TLB. Fang et al. [2001] evaluate support for large
pages.

Tanenbaum [2001] discusses Intel80386 paging. Memory management for
several architectures-such as the Pentiunl II, PowerPC, and UltraSPARC
are described by Jacob and Mudge [1998a]. Segmentation on Lim1X systems is
presented in Bovet and Cesati [2002].

9.1

c ER

In Chapter 8, we discussed various memory-management strategies used in
computer systems. All these strategies have the same goal: to keep many
processes in memory simultaneously to allow multiprogramming. However,
they tend to require that an entire process be in memory before it can execute.

Virtual memory is a tecrucique that allows the execution of processes
that are not completely in memory. One major advantage of this scheme is
that programs can be larger than physical memory. Further, virtual memory
abstracts main memory into an extremely large, uniform array of storage,
separating logical memory as viewed by the user from physical memory.
This technique frees programmers from the concerns of memory-storage
limitations. Virtual memory also allows processes to share files easily and
to implement shared memory. In addition, it provides an efficient mechanism
for process creation. Virtual memory is not easy to implement, however, and
may substantially decrease performance if it is used carelessly. In this chapter,
we discuss virtual memory in the form of demand paging and examine its
complexity and cost.

To describe the benefits of a virtual memory system.

To explain the concepts of demand paging, page-replacement algorithms,
and allocation of page frames.

To discuss the principles of the working-set model.

The memory-management algorithms outlined in Chapter 8 are necessary
because of one basic requirement: The instructions being executed must be
in physical memory. The first approach to meeting this requirement is to place
the entire logical address space in physical memory. Dynamic loading can help
to ease this restriction, but it generally requires special precautions and extra
work by the programmer.

357

358 Chapter 9

The requirement that instructions m.ust be in physical memory to be
executed seems both necessary and reasonable; but it is also unfortunate, since
it limits the size of a program to the size of physical memory. In fact, an
examination of real programs shows us that, in many cases, the entire program
is not needed. For instance, consider the following:

Programs often have code to handle unusual error conditions. Since these
errors seldom, if ever, occur in practice, this code is almost never executed.

Arrays,lists, and tables are often allocated more memory than they actually
need. An array may be declared 100 by 100 elements, even though it is
seldom larger than 10 by 10 elements. An assembler symbol table may
have room for 3,000 symbols, although the average program has less than
200 symbols.

Certain options and features of a program may be used rarely. For instance,
the routines on U.S. government computers that balance the budget have
not been used in many years.

Even in those cases where the entire program is needed, it may not all be
needed at the same time.

The ability to execute a program that is only partially in memory would
confer many benefits:

A program would no longer be constrained by the amount of physical
memory that is available. Users would be able to write programs for an
extremely large virtual address space, simplifying the programming task.

page 0

page 1

page 2

page v

virtual
memory

memory
map

physical
memory

Figure 9.1 Diagram showing virtual memory that is larger than physical memory.

9.1 359

Because each user program could take less physical memory, more
programs could be run at the sance time, with a corresponding increase in
CPU utilization and throughput but with no increase in response time or
turnaround time.

Less I/O would be needed to load or swap user programs into memory, so
each user program would run faster.

Thus, running a program that is not entirely in memory would benefit both
the system and the user.

involves the separation of logical memory as perceived
by users from physical memory. This separation allows an extremely large
virtual memory to be provided for programmers when only a smaller physical
memory is available (Figure 9.1). Virtual memory makes the task of program
ming much easier, because the programmer no longer needs to worry about
the amount of physical memory available; she can concentrate instead on the
problem to be programmed.

The address space of a process refers to the logical (or virtual) view
of how a process is stored in memory. Typically, this view is that a process
begins at a certain logical address-say, address 0-and exists in contiguous
memory, as shown in Figure 9.2. Recall from Chapter 8, though, that in fact
physical memory may be organized in page frames and that the physical page
frames assigned to a process may not be contiguous. It is up to the memory
management unit (MMU) to map logical pages to physical page frames in
memory.

Note in Figure 9.2 that we allow for the heap to grow upward in memory
as it is used for dynamic memory allocation. Similarly, we allow for the stack to
grow downward in memory through successive function calls. The large blank
space (or hole) between the heap and the stack is part of the virtual address

Figure 9.2 Virtual address space.

360 Chapter 9

space but will require actual physical pages only if the heap or stack grows.
Virtual address spaces that include holes are known as sparse address spaces.
Using a sparse address space is beneficial because the holes can be filled as the
stack or heap segments grow or if we wish to dynam.ically link libraries (or
possibly other shared objects) during program execution.

In addition to separating logical memory from physical memory, virtual
memory allows files and memory to be shared by two or more processes
through page sharing (Section 8.4.4). This leads to the following benefits:

System libraries can be shared by several processes through mapping
of the shared object into a virtual address space. Although each process
considers the shared libraries to be part of its virtual address space, the
actual pages where the libraries reside in physical memory are shared by
all the processes (Figure 9.3). Typically, a library is mapped read-only into
the space of each process that is linked with it.

Similarly, virtual memory enables processes to share memory. Recall from
Chapter 3 that two or more processes can communicate through the use
of shared memory. Virtual memory allows one process to create a region
of memory that it can share with another process. Processes sharing this
region consider it part of their virtual address space, yet the actual physical
pages of memory are shared, much as is illustrated in Figure 9.3.

Virtual memory can allow pages to be shared during process creation with
the fork() system calt thus speeding up process creation.

We further explore these-and other-benefits of virtual memory later in
this chapter. First though, we discuss implementing virtual memory through
demand paging.

shared library
shared
pages shared library

Figure 9.3 Shared library using virtual memory.

9.2

9.2 361

Consider how an executable program might be loaded from disk into n'lemory.
One option is to load the entire program in physical memory at program
execution time. However, a problent with this approach is that we may not
initially need the entire program in memory. Suppose a program starts with
a list of available options from which the user is to select. Loading the entire
program into memory results in loading the executable code for all options,
regardless of whether an option is ultimately selected by the user or not. An
alternative strategy is to load pages only as they are needed. This technique is
known as paging and is commonly used in virtual memory systems.
With demand-paged virtual memory, pages are only loaded when they are
demanded during program execution; pages that are never accessed are thus
never loaded into physical memory.

A demand-paging system is similar to a paging system with swapping
(Figure 9.4) where processes reside in secondary memory (usually a disk).
When we want to execute a process, we swap it into memory. Rather than
swapping the entire process into memory, however, we use a A
lazy swapper never swaps a page into memory unless that page will be needed.
Since we are now viewing a process as a sequence of pages, rather than as one
large contiguous address space, use of the term swapper is technically incorrect.
A swapper manipulates entire processes, whereas a is concerned with
the individual pages of a process. We thus use pager, rather than swapper, in
connection with demand paging.

program
A

program
B

main
memory

swap out

so 90100110

120130140150

swap in 16017

Figure 9.4 Transfer of a paged memory to contiguous disk space.

362 Chapter 9

9.2.1 Basic Concepts

When a process is to be swapped in, the pager guesses which pages will be
used before the process is swapped out again. Instead of swapping in a whole
process, the pager brings only those pages into memory. Thus, it avoids reading
into memory pages that will not be used anyway, decreasing the swap time
and the amount of physical memory needed.

With this scheme, we need some form of hardware support to distinguish
between the pages that are in memory and the pages that are on the disk.
The valid -invalid bit scheme described in Section 8.4.3 can be used for this
purpose. This time, however, when this bit is set to "valid/' the associated page
is both legal and in n1.emory. If the bit is set to "invalid/' the page either is not
valid (that is, not in the logical address space of the process) or is valid but
is currently on the disk. The page-table entry for a page that is brought into
memory is set as usuat but the page-table entry for a page that is not currently
in memory is either simply marked invalid or contains the address of the page
on disk. This situation is depicted in Figure 9.5.

Notice that marking a page invalid will have no effect if the process never
attempts to access that page. Hence, if we guess right and page in all and only
those pages that are actually needed, the process will run exactly as though we
had brought in all pages. While the process executes and accesses pages that
are execution proceeds normally.

0

2

3

4

5

6

7

valid-invalid
frame bit

'\. I
0 4 v

logical
memory

physical memory

DOD
D

[1J

[.@JtB]

ODD

Figure 9.5 Page table when some pages are not in main memory.

operating
system

reference

(,;\, page is on
\.:V backing store

®
trap

restart
instruction

page table

®
reset page

table

physical
memory

9.2

0
bring in

missing page

Figure 9.6 Steps in handling a page fault.

363

But what happens if the process tries to access a page that was not brought
into memory? Access to a page marked invalid causes a The paging
hardware, in translating the address through the page table, will notice that
the invalid bit is set, causing a trap to the operating system. This trap is the
result of the operating system's failure to bring the desired page into memory.
The procedure for handling this page fault is straightforward (Figure 9.6):

We check an internal table (usually kept with the process control block)
for this process to determine whether the reference was a valid or an
invalid memory access.

If the reference was invalid, we terminate the process. If it was valid, but
we have not yet brought in that page, we now page it in.

We find a free frame (by taking one from the free-frame list, for example).

We schedule a disk operation to read the desired page into the newly
allocated frame.

When the disk read is complete, we modify the internal table kept with
the process and the page table to indicate that the page is now in memory.

We restart the instruction that was interrupted by the trap. The process
can now access the page as though it had always been in memory.

In the extreme case, we can start executing a process with no pages in
memory. When the operating system sets the instruction pointer to the first

364 Chapter 9

instruction of the process, which is on a non-memory-resident page, the process
immediately faults for the page. After this page is brought into memory, the
process continues to execute, faulting as necessary until every page that it
needs is in memory. At that it can execute with no more faults. This
scheme is never bring a page into memory until it is
required.

Theoretically, some programs could access several new pages of memory
with each instruction execution (one page for the instruction and many for
data), possibly causing multiple page faults per instruction. This situation
would result in unacceptable system performance. Fortunately, analysis of
running processes shows that this behavior is exceedingly unlikely. Programs
tend to have described in Section 9.6.1, which results in
reasonable performance from demand paging.

The hardware to support demand paging is the same as the hardware for
paging and swapping:

Page table. This table has the ability to mark an entry invalid through a
valid -invalid bit or a special value of protection bits.

Secondary memory. This memory holds those pages that are not present
in main memory. The secondary memory is usually a high-speed disk. It is
known as the swap device, and the section of disk used for this purpose is
known as Swap-space allocation is discussed in Chapter 12.

A crucial requirement for demand paging is the ability to restart any
instruction after a page fault. Because we save the state (registers, condition
code, instruction counter) of the interrupted process when the page fault
occurs, we must be able to restart the process in exactly the same place and
state, except that the desired page is now in memory and is accessible. In most
cases, this requirement is easy to meet. A page fault may occur at any memory
reference. If the page fault occurs on the instruction fetch, we can restart by
fetching the instruction again. If a page fault occurs while we are fetching an
operand, we must fetch and decode the instruction again and then fetch the
operand.

As a worst-case example, consider a three-address instruction such as ADD
the content of A to B, placing the result in C. These are the steps to execute this
instruction:

Fetch and decode the instruction (ADD).

Fetch A

Fetch B.

Add A and B.

Store the sum in C.

If we fault when we try to store inC (because C is in a page not currently
in memory), we will have to get the desired page, bring it in, correct the
page table, and restart the instruction. The restart will require fetching the
instruction again, decoding it again, fetching the two operands again, and

9.2 365

then adding again. However, there is not much repeated work (less than one
complete instruction), and the repetition is necessary only when a page fault
occurs.

The major difficulty arises when one instruction may modify several
different locations. For example, consider the IBM System 360/370 MVC (move
character) instruction, which can ncove up to 256 bytes from one location to
another (possibly overlapping) location. If either block (source or destination)
straddles a page boundary, a page fault might occur after the move is partially
done. In addition, if the source and destination blocks overlap, the source
block may have been modified, in which case we cannot simply restart the
instruction.

This problem can be solved in two different ways. In one solution, the
microcode computes and attempts to access both ends of both blocks. If a page
fault is going to occm~ it will happen at this step, before anything is modified.
The move can then take place; we know that no page fault can occur, since all
the relevant pages are in memory. The other solution uses temporary registers
to hold the values of overwritten locations. If there is a page fault, all the old
values are written back into memory before the trap occurs. This action restores
memory to its state before the instruction was started, so that the instruction
can be repeated.

This is by no means the only architectural problem resulting from adding
paging to an existing architecture to allow demand paging, but it illustrates
some of the difficulties involved. Paging is added between the CPU and the
memory in a computer system. It should be entirely transparent to the user
process. Thus, people often assume that paging can be added to any system.
Although this assumption is true for a non-demand-paging environment,
where a page fault represents a fatal errm~ it is not true where a page fault
means only that an additional page must be brought into memory and the
process restarted.

9.2.2 Performance of Demand Paging

Demand paging can significantly affect the performance of a computer system.
To see why, let's compute the effective access time for a demand-paged
memory. For most computer systems, the memory-access time, denoted ma,
ranges from 10 to 200 nanoseconds. As long as we have no page faults, the
effective access time is equal to the memory access time. If, howeve1~ a page
fault occurs, we must first read the relevant page from disk and then access the
desired word.

Let p be the probability of a page fault (0 :::; p :::; 1). We would expect p to
be close to zero-that is, we would expect to have only a few page faults. The
<>t'tP>r'!·nrr-> access is then

effective access time= (1 - p) x ma + p x page fault time.

To compute the effective access time, we must know how much time is
needed to service a page fault. A page fault causes the following sequence to
occur:

Trap to the operating system.

Save the user registers and process state.

366 Chapter 9

Deterncine that the interrupt was a page fault.

Check that the page reference was legal and determine the location of the
page on the disk

Issue a read from the disk to a free frame:

a. Wait in a queue for this device until the read request is serviced.

b. Wait for the device seek and/ or latency time.

c. Begin the transfer of the page to a free frame.

While waiting, allocate the CPU to some other user (CPU scheduling,
optional).

Receive an interrupt from the disk I/0 subsystem (I/0 completed).

Save the registers and process state for the other user (if step 6 is executed).

Determine that the interrupt was from the disk

Correct the page table and other tables to show that the desired page is
now in memory.

Wait for the CPU to be allocated to this process again.

Restore the user registers, process state, and new page table, and then
resume the interrupted instruction.

Not all of these steps are necessary in every case. For example, we are assuming
that, in step 6, the CPU is allocated to another process while the I/O occurs.
This arrangement allows multiprogramming to maintain CPU utilization but
requires additional time to resume the page-fault service routine when the I/0
transfer is complete.

In any case, we are faced with tlu·ee major components of the page-fault
service time:

Service the page-fault interrupt.

Read in the page.

Restart the process.

The first and third tasks can be reduced, with careful coding, to several
hundred instructions. These tasks may take from 1 to 100 microseconds each.
The page-switch time, however, will probably be close to 8 milliseconds.
(A typical hard disk has an average latency of 3 milliseconds, a seek of
5 milliseconds, and a transfer time of 0.05 milliseconds. Thus, the total
paging time is about 8 milliseconds, including hardware and software time.)
Remember also that we are looking at only the device-service time. If a queue
of processes is waiting for the device, we have to add device-queueing time as
we wait for the paging device to be free to service our request, increasing even
more the time to swap.

With an average page-fault service time of 8 milliseconds and a memory
access time of 200 nanoseconds, the effective access time in nanoseconds is

3

9.3

effective access time= (1 - p) x (200) + p (8 milliseconds)
= (1 p) X 200 + p X 8,000,000
= 200 + 7,999,800 X p.

367

We see, then, that the effective access time is directly proportional to the
If one access out of 1,000 causes a page fault, the effective

access time is 8.2 microseconds. The computer will be slowed down by a factor
of 40 because of demand paging! If we want performance degradation to be
less than 10 percent, we need

220 > 200 + 7,999,800 X p,
20 > 7,999,800 X p,
p < 0.0000025.

That is, to keep the slowdown due to paging at a reasonable level, we can
allow fewer than one memory access out of 399,990 to page-fault. In sum,
it is important to keep the page-fault rate low in a demand-paging system.
Otherwise, the effective access time increases, slowing process execution
dramatically.

An additional aspect of demand paging is the handling and overall use
of swap space. Disk I/0 to swap space is generally faster than that to the file
system. It is faster because swap space is allocated in much larger blocks, and
file lookups and indirect allocation methods are not used (Chapter 12). The
system can therefore gain better paging throughput by copying an entire file
image into the swap space at process startup and then performing demand
paging from the swap space. Another option is to demand pages from the file
system initially but to write the pages to swap space as they are replaced. This
approach will ensure that only needed pages are read from the file system but
that all subsequent paging is done from swap space.

Some systems attempt to limit the amount of swap space used through
demand paging of binary files. Demand pages for such files are brought directly
from the file system. However, when page replacement is called for, these
frames can simply be overwritten (because they are never modified), and the
pages can be read in from the file system again if needed. Using this approach,
the file system itself serves as the backing store. Howeve1~ swap space must
still be used for pages not associated with a file; these pages include the stack
and heap for a process. This method appears to be a good compromise and is
used in several systems, including Solaris and BSD UNIX.

In Section 9 .2, we illustrated how a process can start quickly by merely demand
paging in the page containing the first instruction. However, process creation
using the fork() system call may initially bypass the need for demand paging
by using a technique similar to page sharing (covered in Section 8.4.4). This
technique provides for rapid process creation and minimizes the number of
new pages that must be allocated to the newly created process.

368 Chapter 9

physical

Figure 9.7 Before process I modifies page C.

Recall thatthe fork() system call creates a child process that is a duplicate
of its parent. Traditionally, fork() worked by creating a copy of the parent's
address space for the child, duplicating the pages belonging to the parent.
However, considering that many child processes invoke the exec() system
call immediately after creation, the copying of the parent's address space may
be unnecessary. Instead, we can use a technique known as
which works by allowing the parent and child processes initially to share the
same pages. These shared pages are marked as copy-on-write pages, meaning
that if either process writes to a shared page, a copy of the shared page is
created. Copy-on-write is illustrated in Figures 9.7 and Figure 9.8, which show
the contents of the physical memory before and after process 1 modifies page
c.

For example, assume that the child process attempts to modify a page
containing portions of the stack, with the pages set to be copy-on-write. The
operating system will create a copy of this page, nl.apping it to the address space
of the child process. The child process will then modify its copied page and not
the page belonging to the parent process. Obviously, when the copy-on-write
technique is used, only the pages that are modified by either process are copied;
all unmodified pages can be shared by the parent and child processes. Note, too,

process1

physical
memory

Figure 9.8 After process 1 modifies page C.

process2

9.4

9.4 369

that only pages that can be nwdified need be m~arked as copy-on-write. Pages
that cannot be modified (pages containing executable code) can be shared by
the parent and child. Copy-on-write is a common technique used by several
operating systems, including Windows XP, Linux, and Solaris.

When it is determined that a page is going to be duplicated using copy
on-write, it is important to note the location from which the free page will
be allocated. Many operating systems provide a of free pages for such
requests. These free pages are typically allocated when the stack or heap for a
process must expand or when there are copy-on-write pages to be managed.
Operating systems typically allocate these pages using a technique known as
zem-fHl-on-den:1and. Zero-fill-on-demand pages have been zeroed-out before
being allocated, thus erasing the previous contents.

Several versions of UNIX (including Solaris and Linux) provide a variation
ofthe fork() system call-vfork() (for fori()- that operates
differently from fork() with copy-on-write. With vfork(), the parent process
is suspended, and the child process uses the address space of the parent.
Because vfork() does not use copy-on-write, if the child process changes
any pages of the parent's address space, the altered pages will be visible to the
parent once it resumes. Therefore, vf ork () must be used with caution to ensure
that the child process does not modify the address space of the parent. vf or k ()
is intended to be used when the child process calls exec() immediately after
creation. Because no copying of pages takes place, vf ork () is an extremely
efficient method of process creation and is sometimes used to implement UNIX

command-line shell interfaces.

In our earlier discussion of the page-fault rate, we assumed that each page
faults at most once, when it is first referenced. This representation is not strictly
accurate, however. If a process of ten pages actually uses only half of them, then
demand paging saves the I/0 necessary to load the five pages that are never
used. We could also increase our degree of multiprogramming by running
twice as many processes. Thus, if we had forty frames, we could run eight
processes, rather than the four that could run if each required ten frames (five
of which were never used).

If we increase our degree of multiprogramming, we are
memory. If we run six processes, each of which is ten pages in size but
uses only five pages, we have higher CPU utilization and throughput,
ten frames to spare. It is possible, however, that each of these processes, for a
particular data set, may suddenly try to use all ten of its pages, resulting in a
need for sixty frames when only forty are available.

Further, consider that system memory is not used only for holding program
pages. Buffers for I/ 0 also consume a considerable amount of memory. This use
can increase the strain on memory-placement algorithms. Deciding how much
memory to allocate to I/0 and how much to program pages is a significant
challenge. Some systems allocate a fixed percentage of memory for I/0 buffers,
whereas others allow both user processes and the I/0 subsystem to compete
for all system memory.

370 Chapter 9

valid-invalid

PC--::"-_='-~~==: !came f il
logical memory

for user 1
page table
for user 1

valid-invalid
0

frame ~bi~

r---~ v
v

~-------'--'

2

3

logical memory
for user 2

page table
for user 2

0 monitor

2

3

4

5 J

6 A

7 E

physical
memory

Figure 9.9 Need for page replacement

Over-allocation of memory manifests itself as follows. While a user process
is executing, a page fault occurs. The operating system determines where the
desired page is residing on the disk but then finds that there are no free frames
on the free-frame list; all memory is in use (Figure 9.9).

The operating system has several options at this point. It could terminate
the user process. However, demand paging is the operating system's attempt to
improve the computer system's utilization and throughput. Users should not
be aware that their processes are running on a paged system-paging should
be logically transparent to the user. So this option is not the best choice.

The operating system could instead swap out a process, freeing all its
frames and reducing the level of multiprogramming. This option is a good one
in certain circumstances, and we consider it further in Section 9.6. Here, we
discuss the most common solution:

9.4.1 Basic Page Replacement

Page replacement takes the following approach. If no frame is free, we find
one that is not currently being used and free it. We can free a frame by writing
its contents to swap space and changing the page table (and all other tables) to
indicate that the page is no longer in memory (Figure 9.10). We can now use
the freed frame to hold the page for which the process faulted. We modify the
page-fault service routine to include page replacement:

Find the location of the desired page on the disk.

Find a free frame:

a. If there is a free frame, use it.

9.4 371

b. If there is no free frame, use a page-replacement algorithnc to select
a

c. Write the victim frame to the disk; change the page and frame tables
accordingly.

Read the desired page into the newly freed frame; change the page and
frame tables.

Restart the user process.

Notice that, if no frames are free, two page transfers (one out and one in) are
required. This situation effectively doubles the page-fault service time and
increases the effective access time accordingly.

We can reduce this overhead by using a (or When this
scheme is used, each page or frame has a modify bit associated with it in the
hardware. The modify bit for a page is set by the hardware whenever any word
or byte in the page is written into, indicating that the page has been modified.
When we select a page for replacement, we examine its modify bit. If the bit
is set, we know that the page has been modified since it was read in from the
disk. In this case, we must write the page to the disk. If the modify bit is not set,
however, the page has not been modified since it was read into memory. In this
case, we need not write the memory page to the disk: it is already there. This
technique also applies to read-only pages (for example, pages of binary code).
Such pages cannot be modified; thus, they may be discarded when desired.
This scheme can significantly reduce the time required to service a page fault,
since it reduces I/O time by one-half if the page has not been modified.

frame valid-invalid bit

'\. /

physical
memory

Figure 9.10 Page replacement

372 Chapter 9

Page replacement is basic to demand paging. It completes the separation
between logical memory and physical memory. With this mechanism, an
enormous virtual memory can be provided for programn'lers on a smaller
physical memory. With no demand paging, user addresses are mapped into
physical addresses, so the two sets of addresses can be different. All the pages of
a process still must be in physical memory, however. With demand paging, the
size of the logical address space is no longer constrained by physical memory.
If we have a user process of twenty pages, we can execute it in ten frames
simply by using demand paging and using a replacement algorithm to find
a free frame whenever necessary. If a page that has been modified is to be
replaced, its contents are copied to the disk. A later reference to that page will
cause a page fault. At that time, the page will be brought back into memory,
perhaps replacing some other page in the process.

We must solve two major problems to implement demand
develop a algorithm and a '"''"""""-"'"'""l<tcemE~lU ~~F"'-'~~"''H'"
That is, if we have multiple processes in memory, we must decide how many
frames to allocate to each process; and when page replacement is required,
we must select the frames that are to be replaced. Designing appropriate
algorithms to solve these problems is an important task, because disk I/0
is so expensive. Even slight improvements in demand-paging methods yield
large gains in system performance.

There are many different page-replacement algorithms. Every operating
system probably has its own replacement scheme. How do we select a
particular replacement algorithm? In general, we want the one with the lowest
page-fault rate.

We evaluate an algorithm by running it on a particular string of memory
references and computing the number of page faults. The string of memory
references is called a reference We can generate reference strings
artificially (by using a random-number generator, for example), or we can trace
a given system and record the address of each memory reference. The latter
choice produces a large number of data (on the order of 1 million addresses
per second). To reduce the number of data, we use two facts.

First, for a given page size (and the page size is generally fixed by the
hardware or system), we need to consider only the page number, rather than
the entire address. Second, if we have a reference to a page p, then any references
to page p that immediately follow will never cause a page fault. Page p will be in
memory after the first reference, so the immediately following references will
not fault.

For example, if we trace a particular process, we might record the following
address sequence:

0100,0432,0101,0612,0102,0103,0104,0101,0611,0102,0103,
0104,0101,0610,0102,0103,0104,0101,0609,0102,0105

At 100 bytes per page, this sequence is reduced to the following reference
string:

1, 4, 1, 6, 1, 6, 1, 6, 1, 6, 1

9.4 373

16

g) 14
:::J

.;2 12
Q)
Ol 10 cO
0..

0 8
'-
Q)

..0 6 E
:::J
c 4

2

2 3 4 5 6

number of frames

Figure 9.1 i Graph of page faults versus number of frames.

To determine the number of page faults for a particular reference string and
page-replacement algorithm, we also need to know the number of page frames
available. Obviously, as the number of frames available increases, the number
of page faults decreases. For the reference stril'lg considered previously, for
example, if we had three or more frames, we would have only three faults
one fault for the first reference to each page. In contrast, with only one frame
available, we would have a replacement with every reference, resulting in
eleven faults. In general, we expect a curve such as that in Figure 9.11. As the
number of frames increases, the number of page faults drops to some minimal
level. Of course, adding physical memory increases the number of frames.

We next illustrate several page-replacement algorithms. In doing so, we
use the reference string

for a memory with three frames.

9.4.2 FIFO Page Replacement

The simplest page-replacement algorithm is a first-in, first-out (FIFO) algorithm.
A FIFO replacement algorithm associates with each page the time when that
page was brought into memory. When a page must be replaced, the oldest
page is chosen. Notice that it is not strictly necessary to record the time when
a page is brought in. We can create a FIFO queue to hold all pages in memory.
We replace the page at the head of the queue. When a page is brought into
memory, we insert it at the tail of the queue.

For our example reference string, our three frames are initially empty. The
first three references (7, 0, 1) cause page faults and are brought into these empty
frames. The next reference (2) replaces page 7, because page 7 was brought in
first. Since 0 is the next reference and 0 is already in memory, we have no fault
for this reference. The first reference to 3 results in replacement of page 0, since

374 Chapter 9

reference string

7 0 2 0 3 0 4 2 3 0 3 2 2 0 7 0

page frames

Figure 9.12 FIFO page-replacement algorithm.

it is now first in line. Because of this replacement, the next reference, to 0, will
fault. Page 1 is then replaced by page 0. This process continues as shown in
Figure 9.12. Every time a fault occurs, we show which pages are in our three
frames. There are fifteen faults altogether.

The FIFO page-replacement algorithm is easy to Lmderstand and program.
However, its performance is not always good. On the one hand, the page
replaced may be an initialization module that was used a long time ago and is
no longer needed. On the other hand, it could contain a heavily used variable
that was initialized early and is in constant use.

Notice that, even if we select for replacement a page that is in active use,
everything still works correctly. After we replace an active page with a new
one, a fault occurs almost immediately to retrieve the active page. Some other
page must be replaced to bring the active page back into memory. Thus, a bad
replacement choice increases the page-fault rate and slows process execution.
It does not, however, cause incorrect execution.

To illustrate the problems that are possible with a FIFO page-replacement
algorithm, we consider the following reference string:

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Figure 9.13 shows the curve of page faults for this reference string versus the
number of available frames. Notice that the number of faults for four frames
(ten) is greater than the number of faults for three frames (nine)! This most
unexpected result is known as . for some page-replacement
algorithms, the page-fault rate may increase as the number of allocated frames
increases. We would expect that giving more memory to a process would
improve its performance. In some early research, investigators noticed that
this assumption was not always true. Belady's anomaly was discovered as a
result.

9.4.3 Optimal Page Replacement

of Belady's anomaly was the search for an
which has the lowest page-fault rate of all

algorithms and will never suffer from Belady's anomaly. Such an algorithm
does exist and has been called OPT or MIN. It is simply this:

Replace the page that will not be used
for the longest period of time.

9.4 375

16

~
:::5

2 12
CJ)
OJ 10 m
0..

0 8
CJ

_o 6 E
:::5
c 4

2

number of frames

Figure 9.13 Page-fault curve for FIFO replacement on a reference string.

Use of this page-replacement algorithm guarantees the lowest possible page
fault rate for a fixed number of frames.

For example, on our sample reference string, the optimal page-replacement
algorithm would yield nine page faults, as shown in Figure 9.14. The first three
references cause faults that fill the three empty frames. The reference to page
2 replaces page 7, because page 7 will not be used until reference 18, whereas
page 0 will be used at 5, and page 1 at 14. The reference to page 3 replaces
page 1, as page 1 will be the last of the three pages in memory to be referenced
again. With only nine page faults, optimal replacement is much better than
a FIFO algorithm, which results in fifteen faults. (If we ignore the first three,
which all algorithms must suffer, then optimal replacement is twice as good as
FIFO replacement.) Irt fact, no replacement algorithm can process this reference
string in three frames with fewer than nine faults.

Unfortunately, the optimal page-replacement algorithm is difficult to
implement, because it requires future knowledge of the reference string. (We
encountered a similar situation with the SJF CPU-schedulin.g algorithm in
Section 5.3.2.) As a result, the optimal algorithm is used mainly for comparison
studies. For instance, it may be useful to know that, although a new algorithm

reference string

7 0 2 0 3 0 4 2 3 0 3 2 2 0 7 0

page frames

Figure 9.14 Optimal page-replacement algorithm.

376 Chapter 9

is not optimat it is within 12.3 percent of optimal at worst and within 4.7
percent on average.

9.4.4 LRU Page Replacement

lf the optimal algorithm is not feasible, perhaps an approximation of the
optimal algorithm is possible. The key distinction between the FIFO and OPT
algorithms (other than looking backward versus forward in time) is that the
FIFO algorithm uses the time when a page was brought into memory, whereas
the OPT algorithm uses the time when a page is to be used. If we use the
recent past as an approximation of the near future, then we can replace the

that has not been used for the longest period of time. This approach is the

LRU replacement associates with each page the time of that page's last use.
When a page must be replaced, LRU chooses the page that has not been used
for the longest period of time. We can think of this strategy as the optimal
page-replacement algorithm looking backward in time, rather than forward.
(Strangely, if we let sR be the reverse of a reference stringS, then the page-fault
rate for the OPT algorithm on Sis the same as the page-fault rate for the OPT
algorithm on SR. Similarly, the page-fault rate for the LRU algorithm on Sis the
same as the page-fault rate for the LRU algorithm on sR.)

The result of applying LRU replacement to our example reference string is
shown in Figure 9.15. The LRU algorithm produces twelve faults. Notice that
the first five faults are the same as those for optimal replacement. When the
reference to page 4 occurs, however, LRU replacement sees that, of the three
frames in memory, page 2 was used least recently. Thus, the LRU algorithm
replaces page 2, not knowing that page 2 is about to be used. When it then faults
for page 2, the LRU algorithm replaces page 3, since it is now the least recently
used of the three pages in memory. Despite these problems, LRU replacement
with twelve faults is much better than FIFO replacement with fifteen.

The LRU policy is often used as a page-replacement algorithm and
is considered to be good. The major problem is how to implement LRU
replacement. An LRU page-replacement algorithm may require substantial
hardware assistance. The problem is to determine an order for the frames
defined by the time of last use. Two implementations are feasible:

Counters. In the simplest case, we associate with each page-table entry a
time-of-use field and add to the CPU a logical clock or counter. The clock is

reference string

7 0 2 0 3 0 4 2 3 0 3 2 2 0 7 0

page frames

Figure 9.15 LRU page-replacement algorithm.

9.4 377

incremented for every memory reference. Whenever a reference to a page
is made, the contents of the clock register are copied to the ti1ne-of-use
field in the page-table entry for that page. In this way, we always have
the "time" of the last reference to each page. We replace the page with the
smallest time value. This scheme requires a search of the page table to find
the LRU page and a write to memory (to the time-of-use field in the page
table) for each memory access. The times must also be m~aintained when
page tables are changed (due to CPU scheduling). Overflow of the clock
must be considered.

Stack Another approach to implementing LRU replacement is to keep
a stack of page numbers. Whenever a page is referenced, it is removed
from the stack and put on the top. In this way, the most recently used
page is always at the top of the stack and the least recently used page is
always at the bottom (Figure 9.16). Because entries must be removed from
the middle of the stack, it is best to implement this approach by using a
doubly linked list with a head pointer and a tail pointer. Removing a page
and putting it on the top of the stack then requires changing six pointers
at worst. Each update is a little more expensive, but there is no search for
a replacement; the tail pointer points to the bottom of the stack, which is
the LRU page. This approach is particularly appropriate for software or
microcode implementations of LRU replacement.

Like optimal replacement, LRU replacement does not suffer from Belady's
Both belong to a class of page-replacement algorithms, called si:ack

that can never exhibit Belady's anomaly. A stack algorithm is
an algorithm for which it can be shown that the set of pages in memory for n
frames is always a subset of the set of pages that would be in memory with n + 1
frames. For LRU replacement, the set of pages in memory would be the n most
recently referenced pages. If the number of frames is increased, these n pages
will still be the most recently referenced and so will still be in memory.

Note that neither implementation of LRU would be conceivable without
hardware assistance beyond the standard TLB registers. The updating of the

reference string

4 7 0 7

stack
before

a

0 2

stack
after

b

2 7 2

i l
a b

Figure 9.16 Use of a stack to record the most recent page references.

378 Chapter 9

clock fields or stack must be done for every memory reference. If we were to
use an interrupt for every reference to allow software to update such data
structures, it would slow every memory reference by a factor of at least ten,
hence slowing every user process by a factor of ten. Few systems could tolerate
that level of overhead for memory management.

9.4.5 LRU-Approximation Page Replacement

Few computer systems provide sufficient hardware support for true LRU page
replacement. Some systems provide no hardware support, and other page
replacement algorithms (such as a FIFO algorithm) must be used. Many systems
provide some help, however, in the form of a The reference bit
for a page is set by the hardware whenever that page is referenced (either a
read or a write to any byte in the page). Reference bits are associated with each
entry in the page table.

Initially, all bits are cleared (to 0) by the operating system. As a user process
executes, the bit associated with each page referenced is set (to 1) by the
hardware. After some time, we can determine which pages have been used and
which have not been used by examining the reference bits, although we do not
know the order of use. This information is the basis for many page-replacement
algorithms that approximate LRU replacement.

9.4.5.1 Additional-Reference-Bits Algorithm

We can gain additional ordering information by recording the reference bits at
regular intervals. We can keep an 8-bit byte for each page in a table in memory.
At regular intervals (say, every 100 milliseconds), a timer interrupt transfers
control to the operating system. The operating system shifts the reference bit
for each page into the high-order bit of its 8-bit byte, shifting the other bits right
by 1 bit and discarding the low-order bit. These 8-bit shift registers contain the
history of page use for the last eight time periods. If the shift register contains
00000000, for example, then the page has not been used for eight time periods;
a page that is used at least once in each period has a shift register value of
11111111. A page with a history register value of 11000100 has been used more
recently than one with a value of 01110111. If we interpret these 8-bit bytes
as unsigned integers, the page with the lowest number is the LRU page, and
it can be replaced. Notice that the numbers are not guaranteed to be unique,
however. We can either replace (swap out) all pages with the smallest value or
use the FIFO method to choose among them.

The number of bits of history included in the shift register can be varied,
of course, and is selected (depending on the hardware available) to make
the updating as fast as possible. In the extreme case, the number can be
reduced to zero, leaving only the reference bit itself. This algorithm is called
the

9.4.5.2 Second-Chance Algorithm

The basic algorithm of second-chance replacement is a FIFO replacement
algorithm. When a page has been selected, however, we inspect its reference
bit. If the value is 0, we proceed to replace this page; but if the reference bit
is set to 1, we give the page a second chance and move on to select the next

next
victim

9.4

reference pages reference pages
bits bits

circular queue of pages circular queue of pages

(a) (b)

Figure 9.17 Second-chance (clock) page-replacement algorithm.

379

FIFO page. When a page gets a second chance, its reference bit is cleared, and
its arrival time is reset to the current time. Thus, a page that is given a second
chance will not be replaced until all other pages have been replaced (or given
second chances). In addition, if a page is used often enough to keep its reference
bit set, it will never be replaced.

One way to implement the second-chance algorithm (sometimes referred
to as the clock algorithm) is as a circular queue. A poi11ter (that is, a hand on
the clock) indicates which page is to be replaced next. When a frame is needed,
the pointer advances until it finds a page with a 0 reference bit. As it advances,
it clears the reference bits (Figure 9.17). Once a victim page is found, the page
is replaced, and the new page is inserted in the circular queue in that position.
Notice that, in the worst case, when all bits are set, the pointer cycles through
the whole queue, giving each page a second chance. It clears all the reference
bits before selecting the next page for replacement. Second-chance replacement
degenerates to FIFO replacement if all bits are set.

9.4.5.3 Enhanced Second-Chance Algorithm

We can enhance the second-chance algorithm by considering the reference bit
and the modify bit (described in Section 9.4.1) as an ordered pair. With these
two bits, we have the following four possible classes:

(0, 0) neither recently used nor modified -best page to replace

380 Chapter 9

(0, 1) not recently used hut modified-not quite as good, because the
page will need to be written out before replacement

(1, 0) recently used but clean-probably will be used again soon

(1, 1) recently used and modified -probably will be used again soon, and
the page will be need to be written out to disk before it can be replaced

Each page is in one of these four classes. When page replacement is called for,
we use the same scheme as in the clock algorithm; but instead of examining
whether the page to which we are pointing has the reference bit set to 1,
we examine the class to which that page belongs. We replace the first page
encountered in the lowest nonempty class. Notice that we may have to scan
the circular queue several times before we find a page to be replaced.

The major difference between this algorithm and the simpler clock algo
rithm is that here we give preference to those pages that have been modified
to reduce the number of I/Os required.

9.4.6 Counting-Based Page Replacement

There are many other algorithms that can be used for page replacement. For
example, we can keep a counter of the number of references that have been
made to each page and develop the following two schemes.

The least frequently used (LFU) page-replacement algorithm requires
that the page with the smallest count be replaced. The reason for this
selection is that an actively used page should have a large reference count.
A problem arises, however, when a page is used heavily during the initial
phase of a process but then is never used again. Since it was used heavily,
it has a large count and remains in memory even though it is no longer
needed. One solution is to shift the counts right by 1 bit at regular intervals,
forming an exponentially decaying average usage count.

The most frequently used (MFU) page-replacement algorithm is based
on the argument that the page with the smallest count was probably just
brought in and has yet to be used.

As you might expect, neither MFU nor LFU replacement is common. The
implementation of these algorithms is expensive, and they do not approxin'late
OPT replacement well.

9.4.7 Page-Buffering Algorithms

Other procedures are often used in addition to a specific page-replacement
algorithm. For example, systems commonly keep a pool of free frames. When
a page fault occurs, a victim frame is chosen as before. However, the desired
page is read into a free frame from the pool before the victim is written out. This
procedure allows the process to restart as soon as possible, without waiting
for the victim page to be written out. When the victim is later written out, its
frame is added to the free-frame pool.

9.4 381

An expansion of this idea is to maintain a list of modified pages. Whenever
the paging device is idle, a modified page is selected and is written to the disk.
Its modify bit is then reset. This scheme increases the probability that a page
will be clean when it is selected for replacement and will not need to be written
out.

Another modification is to keep a pool of free frames but to remember
which page was in each frame. Since the frame contents are not modified when
a frame is written to the disk, the old page can be reused directly fronc the
free-frame pool if it is needed before that frame is reused. No I/O is needed in
this case. When a page fault occurs, we first check whether the desired page is
in the free-frame pool. If it is not, we must select a free frame and read into it.

This technique is used in the VAX/VMS system along with a FIFO replace
ment algorithm. When the FIFO replacement algorithm mistakenly replaces a
page that is still in active use, that page is quickly retrieved from the free-frame
pool, and no I/O is necessary. The free-frame buffer provides protection against
the relatively poor, but sirnple, FIFO replacement algorithm. This method is
necessary because the early versions of VAX did not implement the reference
bit correctly.

Some versions of the UNIX system use this method in conjunction with
the second-chance algorithm. It can be a useful augmentation to any page
replacement algorithm, to reduce the penalty incurred if the wrong victim
page is selected.

9.4.8 Applications and Page Replacement

In certain cases, applications accessing data through the operating system's
virtual memory perform worse than if the operating system provided no
buffering at all. A typical example is a database, which provides its own
memory management and I/0 buffering. Applications like this understand
their memory use and disk use better than does an operating system that is
implementing algorithms for general-purpose use. If the operating system is
buffering I/0, and the application is doing so as well, then twice the memory
is being used for a set of I/0.

In another example, data warehouses frequently perform massive sequen
tial disk reads, followed by computations and writes. The LRU algorithm would
be removing old pages and preserving new ones, while the application would
more likely be reading older pages than newer ones (as it starts its sequential
reads again). Here, MFU would actually be more efficient than LRU.

Because of such problems, some operating systems give special programs
the ability to use a disk partition as a large sequential array of logical blocks,
without any file-system data structures. This array is sometimes called the raw
disk, and I/O to this array is termed raw I/0. Raw I/0 bypasses all the file
system services, such as file I/0 demand paging, file locking, prefetching, space
allocation, file names, and directories. Note that although certain applications
are more efficient when implementing their own special-purpose storage
services on a raw partition, most applications perform better when they use
the regular file-system services.

382 Chapter 9

9.5

We turn next to the issue of allocation. How do we allocate the fixed amount
of free memory among the various processes? If we have 93 free frames and
two processes, how many frames does each process get?

The simplest case is the single-user system. Consider a single-user system
with 128 KB of memory composed of pages 1 KB in size. This system has 128
frames. The operating system may take 35 KB, leaving 93 frames for the user
process. Under pure demand paging, all 93 frames would initially be put on
the free-frame list. When a user process started execution, it would generate a
sequence of page faults. The first 93 page faults would all get free frames from
the free-frame list. When the free-frame list was exhausted, a page-replacement
algorithm would be used to select one of the 93 in-memory pages to be replaced
with the 94th, and so on. When the process terminated, the 93 frames would
once again be placed on the free-frame list.

There are many variations on this simple strategy. We can require that the
operating system allocate all its buffer and table space from the free-frame list.
When this space is not in use by the operating system, it can be used to support
user paging. We can try to keep three free frames reserved on the free-frame list
at all times. Thus, when a page fault occurs, there is a free frame available to
page into. While the page swap is taking place, a replacement can be selected,
which is then written to the disk as the user process continues to execute.
Other variants are also possible, but the basic strategy is clear: the user process
is allocated any free frame.

9.5.1 Minimum Number of Frames

Our strategies for the allocation of frames are constrained in various ways. We
cannot, for example, allocate more than the total number of available frames
(unless there is page sharing). We must also allocate at least a minimum number
of frames. Here, we look more closely at the latter requirement.

One reason for allocating at least a minimum number of frames involves
performance. Obviously, as the number of frames allocated to each process
decreases, the page-fault rate increases, slowing process execution. In addition,
remember that when a page fault occurs before an executing ilcstruction
is complete, the instruction must be restarted. Consequently. we must have
enough frames to hold all the different pages that any single ilcstruction can
reference.

For example, consider a machine in which all memory-reference instruc
tions may reference only one memory address. In this case, we need at least one
frame for the instruction and one frame for the mernory reference. In addition,
if one-level indirect addressing is allowed (for example, a load instruction on
page 16 can refer to an address on page 0, which is an indirect reference to page
23), then paging requires at least three frames per process. Think about what
might happen if a process had only two frames.

The minimum number of frames is defined by the computer architecture.
For example, the move instruction for the PDP-11 includes more than one word
for some addressing modes, and thus the ilcstruction itself may straddle two
pages. In addition, each of its two operands may be indirect references, for a
total of six frames. Another example is the IBM 370 MVC instruction. Since the

9.5 383

instruction is from storage location to storage location, it takes 6 bytes and can
straddle two pages. The block of characters to move and the area to which it
is to be m.oved can each also straddle two pages. This situation would require
six frames. The worst case occurs when the MVC instruction is the operand of
an EXECUTE instruction that straddles a page boundary; in this case, we need
eight frames.

The worst-case scenario occurs in computer architectures that allow
multiple levels of indirection (for example, each 16-bit word could contain
a 15-bit address plus a 1-bit indirect indicator). Theoretically, a simple load
instruction could reference an indirect address that could reference an indirect
address (on another page) that could also reference an indirect address (on yet
another page), and so on, until every page in virtual memory had been touched.
Thus, in the worst case, the entire virtual memory must be in physical memory.
To overcome this difficulty, we must place a limit on the levels of indirection (for
example, limit an instruction to at most 16levels of indirection). When the first
indirection occurs, a counter is set to 16; the counter is then decremented for
each successive irtdirection for this instruction. If the counter is decremented to
0, a trap occurs (excessive indirection). This limitation reduces the maximum
number of memory references per instruction to 17, requiring the same number
of frames.

Whereas the minimum number of frames per process is defined by the
architecture, the maximum number is defined by the amount of available
physical memory. In between, we are still left with significant choice in frame
allocation.

9.5.2 Allocation Algorithms

The easiest way to split m frames among n processes is to give everyone an
equal share, m/n frames. For instance, if there are 93 frames and five processes,
each process will get 18 frames. The three leftover frames can be used as a
free-frame buffer pool. This scheme is called

An alternative is to recognize that various processes will need differing
amounts of memory. Consider a system with a 1-KB frame size. If a small
student process of 10 KB and an interactive database of 127 KB are the only
two processes running in a system with 62 free frames, it does not make much
sense to give each process 31 frames. The student process does not need more
than 10 frames, so the other 21 are, strictly speaking, wasted.

To solve this problem, we can use in which we
allocate available memory to each process according to its size. Let the size of
the virtual memory for process p; be s;, and define

S="Ls;.

Then, if the total number of available frames is m, we allocate a; frames to
process p;, where a; is approximately

a;= s;/S x m.

384 Chapter 9

Of course, we must adjust each ai to be an integer that is greater than the
ncinimum number of frames required by tl1e instruction set, with a sum not
exceeding m.

With proportional allocation, we would split 62 frames between two
processes, one of 10 pages and one of 127 pages, by allocating 4 frames and 57
frames, respectively, since

10/137 x 62 ~ 4, and
127/137 X 62 ~57.

In this way, both processes share the available frames according to their
"needs," rather than equally.

In both equal and proportional allocation, of course, the allocation may
vary according to the multiprogramming level. If the multiprogramming level
is increased, each process will lose some frames to provide the memory needed
for the new process. Conversely, if the multiprogramming level decreases, the
frames that were allocated to the departed process can be spread over the
remaining processes.

Notice that, with either equal or proportional allocation, a high-priority
process is treated the same as a low-priority process. By its definition, however,
we may want to give the high-priority process more memory to speed its
execution, to the detriment of low-priority processes. One solution is to use
a proportional allocation scheme wherein the ratio of frames depends not on
the relative sizes of processes but rather on the priorities of processes or on a
combination of size and priority.

9.5.3 Global versus Local Allocation

Another important factor in the way frames are allocated to the various
processes is page replacement. With multiple processes competing for frames,
we can classify page-replacement algorithms into two broad categories:

;.no'·'-c'u~''" and local Global replacement allows a process to
a replacement frame from the set of all frames, even if that frame is

currently allocated to some other process; that is, one process can take a frame
from another. Local replacement requires that each process select from only its
own set of allocated frames.

For example, consider an allocation scheme wherein we allow high-priority
processes to select frames from low-priority processes for replacement. A
process can select a replacement from among its own frames or the frames
of any lower-priority process. This approach allows a high-priority process to
increase its frame allocation at the expense of a low-priority process. With a
local replacement strategy, the number of frames allocated to a process does not
change. With global replacement, a process may happen to select only frames
allocated to other processes, thus increasing the number of frames allocated to
it (assuming that other processes do not choose its frames for replacement).

One problem with a global replacement algorithm is that a process cannot
control its own page-fault rate. The set of pages in memory for a process
depends not only on the paging behavior of that process but also on the paging
behavior of other processes. Therefore, the same process may perform quite

9.5 385

differently (for example, taking 0.5 seconds for one execution and 10.3 seconds
for the next execution) because of totally external circuntstances. Such is not
the case with a local replacement algorithm. Under local replacement, the
set of pages in memory for a process is affected by the paging behavior of
only that process. Local replacement might hinder a process, however, by
not making available to it other, less used pages of memory. Thus, global
replacement generally results in greater system throughput and is therefore
the more common method.

9.5.4 Non-Uniform Memory Access

Thus far in our coverage of virtual memory, we have assumed that all main
memory is created equal-or at least that it is accessed equally. On many
computer systems, that is not the case. Often, in systems with multiple CPUs
(Section 1.3.2), a given CPU can access some sections of main memory faster
than it can access others. These performance differences are caused by how
CPUs and memory are interconnected in the system. Frequently, such a system
is made up of several system boards, each containing multiple CPUs and some
memory. The system boards are interconnected in various ways, ranging from
system busses to high-speed network connections like InfiniBand. As you
might expect, the CPUs on a particular board can access the memory on that
board with less delay than they can access memory on other boards in the
system. Systems in which memory access times vary significantly are known
collectively as systems, and without
exception, they are slower than systems in which memory and CPUs are located
on the same motherboard.

Managing which page frames are stored at which locations can significantly
affect performance in NUMA systems. If we treat memory as uniform in such
a system, CPUs may wait significantly longer for memory access than if we
modify memory allocation algorithms to take NUMA into account. Similar
changes must be rnade to the scheduling system. The goal of these changes is
to have memory frames allocated "as close as possible" to the CPU on which
the process is running. The definition of "close" is "with minimum latency,"
which typically means on the same system board as the CPU.

The algorithmic changes consist of having the scheduler track the last CPU
on which each process ran. If the scheduler tries to schedule each process onto
its previous CPU, and the memory-management system tries to allocate frames
for the process close to the CPU on which it is being scheduled, then improved
cache hits and decreased memory access times will result.

The picture is more complicated once threads are added. For example, a
process with many running threads may end up with those threads scheduled
on many different system boards. How is the memory to be allocated in this
case? Solaris solves the problem by creating an entity in the kernel. Each
lgroup gathers together close CPUs and memory. In fact, there is a hierarchy
of lgroups based on the amount of latency between the groups. Solaris tries to
schedule all threads of a process and allocate all memory of a process within
an lgroup. If that is not possible, it picks nearby lgroups for the rest of the
resources needed. In this manner, overall memory latency is minimized, and
CPU cache hit rates are maximized.

386 Chapter 9

9.6

If the number of frames allocated to a low-priority process falls below the
minimum number required by the computer architecture, we must suspend
that process's execution. We should then page out its remaining pages, freeing
all its allocated frames. This provision introduces a swap-in, swap-out level of
intermediate CPU scheduling.

In fact, look at any process that does not have "enough" frames. If the
process does not have the num.ber of frames it needs to support pages in
active use, it will quickly page-fault. At this point, it must replace some page.
However, since all its pages are in active use, it must replace a page that will
be needed again right away. Consequently, it quickly faults again, and again,
and again, replacing pages that it must back in immediately.

This high paging activity is called A process is thrashing if it is
spending more time paging than executing.

9.6.1 Cause of Thrashing

Thrashing results in severe performance problems. Consider the following
scenario, which is based on the actual behavior of early paging systems.

The operating system monitors CPU utilization. If CPU utilization is too low,
we increase the degree of multiprogramming by introducing a new process
to the system. A global page-replacement algorithm is used; it replaces pages
without regard to the process to which they belong. Now suppose that a process
enters a new phase in its execution and needs more frames. It starts faulting and
taking frames away from other processes. These processes need those pages,
however, and so they also fault, taking frames from other processes. These
faulting processes must use the pagin.g device to swap pages in and out. As
they queue up for the paging device, the ready queue empties. As processes
wait for the paging device, CPU utilization decreases.

The CPU scheduler sees the decreasing CPU utilization and increases the
degree of multiprogramming as a result. The new process tries to get started
by taking frames from running processes, causing more page faults and a longer
queue for the paging device. As a result, CPU utilization drops even further,
and the CPU scheduler tries to increase the degree of multiprogramming even
more. Thrashing has occurred, and system throughput plunges. The page
fault rate increases tremendously. As a result, the effective m.emory-access
time increases. No work is getting done, because the processes are spending
all their time paging.

This phenomenon is illustrated in Figure 9.18, in which CPU utilization
is plotted against the degree of multiprogramming. As the degree of multi
programming increases, CPU utilization also ilccreases, although more slowly,
until a maximum is reached. If the degree of multiprogramming is increased
even further, thrashing sets in, and CPU utilization drops sharply. At this point,
to increase CPU utilization and stop thrashing, we must decrease the degree of
multiprogramming.

We can limit the effects of thrashing by using a
(or With local replacement, if one process
starts thrashing, it cannot frames from another process and cause the latter
to thrash as well. However, the problem is not entirely solved. If processes are

9.6 387

degree of multiprogramming

Figure 9.18 Thrashing.

thrashing, they will be in the queue for the paging device most of the time. The
average service time for a page fault will increase because of the longer average
queue for the paging device. Thus, the effective access time will increase even
for a process that is not thrashing.

To prevent thTashing, we must provide a process with as many frames as
it needs. But how do we know how many frames it "needs"? There are several
teclmiques. The working-set strategy (Section 9.6.2) starts by looking at how

frames a process is actually using. This approach defines the locality
of process execution.

The locality model states that, as a process executes, it moves from locality
to locality. A locality is a set of pages that are actively used together (Figure
9.19). A program is generally composed of several different localities, which
may overlap.

For example, when a function is called, it defines a new locality. In this
locality, memory references are made to the instructions of the function call, its
local variables, and a subset of the global variables. When we exit the function,
the process leaves this locality, since the local variables and instructions of the
function are no longer in active use. We may return to this locality later.

Thus, we see that localities are defined by the program structure and its
data structures. The locality model states that all programs will exhibit this
basic memory reference structure. Note that the locality model is the unstated
principle behind the caching discussions so far in this book If accesses to any
types of data were random rather than patterned, caching would be useless.

Suppose we allocate enough frames to a process to accommodate its current
locality. It will fault for the pages in its locality until all these pages are in
memory; then, it will not fault again until it changes localities. If we do not
allocate enough frames to accommodate the size of the current locality, the
process will thrash, since it cannot keep in memory all the pages that it is
actively using.

9.6.2 Working-Set Model

As mentioned, the is based on the assumption of locality.
This model uses a paramete1~ /':,, to define the vrindovv. The idea

388 Chapter 9

32~~----~~==~~~~~WL~~#-~~--~~~-

\jjl:jlli111

28

(j)
(j)

(!:>
""0
""0
(lj

26 I'

c
I" 0
I E

(lJ

E

execution time -------..

Figure 9.19 Locality in a memory-reference pattern.

is to examine the most recent 6 references. The set of pages in the most
recent 6 page references is the (Figure 9.20). If a page is in active
use, it will be in the working set. If it is no longer being used, it will drop from
the working set 6 time units after its last reference. Thus, the working set is an
approximation of the program's locality.

For example, given the sequence of memory references shown in Figure
9.20, if 6 = 10 memory references, then the working set at time t1 is {1, 2, 5,
6, 7}. By time t2, the working set has changed to {3, 4}.

The accuracy of the working set depends on the selection of 6. If 6 is too
small, it will not encompass the entire locality; if 6 is too large, it may overlap

9.6

page reference table

. . . 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4 4 4 3 4 4 4 .

~ ~r ~ r
t1

WS(t1) = {1 ,2,5,6,7}

Figure 9.20 Working-set model.

389

several localities. In the extrem.e, if L. is infinite, the working set is the set of
pages touched during the process execution.

The most important property of the working set, then, is its size. If we
compute the working-set size, WSS;, for each process in the system, we can
then consider that

where Dis the total demand for frames. Each process is actively using the pages
in its working set. Thus, process i needs WSS; frames. If the total demand is
greater than the total number of available frames (D > m), thrashing will occur,
because some processes will not have enough frames.

Once L. has been selected, use of the working-set model is simple. The
operating system monitors the working set of each process and allocates to
that working set enough frames to provide it with its working-set size. If there
are enough extra frames, another process can be initiated. If the sum of the
working-set sizes increases, exceeding the total number of available frames,
the operating system selects a process to suspend. The process's pages are
written out (swapped), and its frames are reallocated to other processes. The
suspended process can be restarted later.

This working-set strategy prevents thrashing while keeping the degree of
multiprogramming as high as possible. Thus, it optimizes CPU utilization.

The difficulty with the working-set model is keeping track of the working
set. The working-set window is a moving window. At each memory reference,
a new reference appears at one end and the oldest reference drops off the other
end. A page is in the working set if it is referenced anywhere in the working-set
window.

We can approximate the working-set model with a fixed-interval timer
interrupt and a reference bit. For example, assum.e that L. equals 10,000
references and that we can cause a timer interrupt every 5,000 references.
When we get a timer interrupt, we copy and clear the reference-bit values for
each page. Thus, if a page fault occurs, we can examine the current reference
bit and two in-memory bits to determine whether a page was used within the
last 10,000 to 15,000 references. If it was used, at least one of these bits will be
on. If it has not been used, these bits will be off. Those pages with at least one
bit on will be considered to be in the working set. Note that this arrangement
is not entirely accurate, because we cannot tell where, within an interval of
5,000, a reference occurred. We can reduce the uncertainty by increasing the
number of history bits and the frequency of interrupts (for example, 10 bits
and interrupts every 1,000 references). However, the cost to service these more
frequent interrupts will be correspondingly higher.

390 Chapter 9

9.7

number of frames

Figure 9.21 Page-fault frequency.

9.6.3 Page-Fault Frequency

The working-set model is successful, and knowledge of the working set can
be useful for prepaging (Section 9.9.1), but it seems a clumsy way to control
thrashilcg. A strategy that uses the takes a more
direct approach.

The specific problem is how to prevent thrashilcg. Thrashing has a high
page-fault rate. Thus, we want to control the page-fault rate. When it is too
high, we know that the process needs more frames. Conversely, if the page-fault
rate is too low, then the process may have too many frames. We can establish
upper and lower bounds on the desired page-fault rate (Figure 9.21). If the
actual page-fault rate exceeds the upper limit, we allocate the process another
frame; if the page-fault rate falls below the lower limit, we remove a frame
from the process. Thus, we can directly measure and control the page-fault
rate to prevent thrashing.

As with the working-set strategy, we may have to suspend a process. If the
page-fault rate ilccreases and no free frames are available, we must select some
process and suspend it. The freed frames are then distributed to processes with
high page-fault rates.

Consider a sequential read of a file on disk using the standard system calls
open (),read (), and write (). Each file access requires a system call and disk
access. Alternatively, we can use the virtual memory techniques discussed
so far to treat file I/0 as routine memory accesses. This approach, known as

a file, allows a part of the virtual address space to be logically
associated with the file. As we shall see, this can lead to significant performance
increases when performing I/0.

9.7 391

WORKING SETS AND PAGE FAULTRATES

There is a directrelationship between the working set of a process and its
page-fault rate. Typically as shown in Figure 9.20, the working set ofa process
changes pver time as references to. data and code sections move from one
locality to another. Assuming there is sufficient memory to store the working
set of .a process (that is, the processis 11.ot thrashing), tbe page-fault rate of
the process will transition between peaks and valleys over time. This general
behavior is shown in Figure 9.22.

page
fault
rate

working set

time

Figure 9.22 Page fault rate over time.

A peak in the page-fault rate occurs when we begin demand-paging a new
locality. However, once the working set of this new locality is in memory,
the page-fault rate falls. When the process moves to a new working set, the
page..:fault rate rises toward a peak once again, returning to a lower rate once
the new working set is loaded into memory. The span oftime between the
start of one peak and the start of thenext peak represents the transition from
one working set to another.

9.7.1 Basic Mechanism

Memory mapping a file is accomplished by mapping a disk block to a page (or
pages) in memory. Initial access to the file proceeds through ordinary demand
paging, resulting in a page fault. However, a page-sized portion of the file
is read from the file system into a physical page (some systems may opt
to read in more than a page-sized chunk of memory at a time). Subsequent
reads and writes to the file are handled as routine memory accesses, thereby
simplifying file access and usage by allowing the system to manipulate files
through memory rather than incurring the overhead of using the read () and
write() system calls. Similarly, as file l/0 is done in memory- as opposed
to using system calls that involve disk I/0 - file access is much faster as well.

Note that writes to the file mapped in memory are not necessarily
imm.ediate (synchronous) writes to the file on disk. Some systems may choose
to update the physical file when the operating system periodically checks

392 Chapter 9

whether the page in memory has been modified. When the file is closed, all the
memory-mapped data are written back to disk and ren"loved from the virtual
memory of the process.

Some operating systems provide memory mapping only through a specific
system call and use the standard system calls to perform all other file I/0.
However, some systems choose to memory-map a file regardless of whether
the file was specified as memory-mapped. Let's take Solaris as an example. If
a file is specified as memory-mapped (using the mmap () system call), Solaris
maps the file into the address space of the process. If a file is opened and
accessed using ordinary system calls, such as open(), read(), and write(),
Solaris still memory-maps the file; however, the file is mapped to the kernel
address space. Regardless of how the file is opened, then, Solaris treats all
file I/0 as memory-mapped, allowing file access to take place via the efficient
memory subsystem.

Multiple processes may be allowed to map the same file concurrently,
to allow sharing of data. Writes by any of the processes modify the data in
virtual memory and can be seen by all others that map the same section of
the file. Given our earlier discussions of virtual memory, it should be clear
how the sharing of memory-mapped sections of memory is implemented:
the virtual memory map of each sharing process points to the same page of
physical memory-the page that holds a copy of the disk block This memory
sharing is illustrated in Figure 9.23. The memory-mapping system calls can
also support copy-on-write functionality, allowing processes to share a file in
read-only mode but to have their own copies of any data they modify. So that

r---

I
I I

1 - r - - ;
I I 1- 1

I -1- I-
I I I I I I

J---r' -rL..-r
I I I I

-r-' I I I I

"1 -1 I I 1- _,.. I I
I I I f-+-=-.:.....c.c~..-'---r~-, I I
- .L- "I" J I I
I 1 I
I I I I I I

I I I L_ ~ I

process A 1 1 1

virtual memory: ~ 1 -

disk file

Figure 9.23 Memory-mapped files.

process B
virtual memory

9.7

memory-mapped
file

Figure 9.24 Shared memory in Windows using memory-mapped 1/0.

393

access to the shared data is coordinated, the processes involved might use one
of the mechanisms for achieving mutual exclusion described in Chapter 6.

In many ways, the sharing of memory-mapped files is similar to shared
memory as described in Section 3.4.1. Not all systems use the same mechanism
for both; on UNIX and Linux systems, for example, memory mapping is
accomplished with the mmap () system call, whereas shared memory is achieved
with the POSIX-compliant shmget () and shmat () systems calls (Section
3.5.1). On Windows NT, 2000, and XP systems, howeve1~ shared memory is
accomplished by memory mapping files. On these systems, processes can
communicate using shared memory by having the communicating processes
memory-map the same file into their virtual address spaces. The memory
mapped file serves as the region of shared memory between the communicating
processes (Figure 9.24). In the following section, we illustrate support in the
Win32 API for shared memory using memory-mapped files.

9.7.2 Shared Memory in the Win32 API

The general outline for creating a region of shared memory using memory
mapped files in the Win32 API involves first creating a file mapping for the file
to be mapped and then establishing a view of the mapped file in a process's
virtual address space. A second process can then open and create a view of
the mapped file in its virtual address space. The mapped file represents the
shared-menwry object that will enable communication to take place between
the processes.

We next illustrate these steps in more detail. In this example, a producer
process first creates a shared-memory object using the memory-mapping
features available in the Win32 API. The producer then writes a message
to shared m.emory. After that, a consumer process opens a mapping to the
shared-memory object and reads the message written by the consum.er.

To establish a memory-mapped file, a process first opens the file to be
mapped with the CreateFile () function, which returns a HANDLE to the
opened file. The process then creates a mapping of this file HANDLE using
the CreateFileMapping() function. Once the file mapping is established, the
process then establishes a view of the mapped file in its virtual address space
with the MapViewDfFile () function. The view of the mapped file represents
the portion of the file being mapped in the virtual address space of the process

394 Chapter 9

#include <windows.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

}

HANDLE hFile, hMapFile;
LPVOID lpMapAddress;

hFile = CreateFile("temp.txt", //file name
GENERICJREAD I GENERIC_WRITE, // read/write access
0, II no sharing of the file
NULL, //default security
OPEN_ALWAYS, //open new or existing file
FILE_ATTRIBUTE_NORMAL, //routine file attributes
NULL); //no file template

hMapFile = CreateFileMapping(hFile, //file handle
NULL, //default security
PAGEJREADWRITE, //read/write access to mapped pages
0, II map entire file
0,
TEXT("SharedObject")); //named shared memory object

lpMapAddress = MapViewDfFile(hMapFile, //mapped object handle
FILEJMAP_ALL_ACCESS, //read/write access
0, II mapped view of entire file
0,
0);

II write to shared memory
sprintf(lpMapAddress,"Shared memory message");

UnmapViewOfFile(lpMapAddress);
CloseHandle(hFile);
CloseHandle(hMapFile);

Figure 9.25 Producer writing to shared memory using the Win32 API.

-the entire file or only a portion of it may be mapped. We illustrate this
sequence in the program shown in Figure 9 .25. (We eliminate much of the error
checking for code brevity.)

The call to CreateFileMapping() creates a named shared-memory object
called SharedObj ect. The consumer process will communicate using this
shared-memory segment by creating a mapping to the same named object.
The producer then creates a view of the memory-mapped file in its virtual
address space. By passing the last three parameters the value 0, it indicates
that the mapped view is the entire file. It could instead have passed values
specifying an offset and size, thus creating a view containing only a subsection
of the file. (It is important to note that the entire mapping may not be loaded

#include <windows.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

HANDLE hMapFile;
LPVOID lpMapAddress;

9.7 395

hMapFile = OpenFileMapping(FILE_MAP_ALL_ACCESS, // R/W access
FALSE, //no inheritance

}

TEXT("SharedObject")); //name of mapped file object

lpMapAddress = MapViewOfFile(hMapFile, //mapped object handle
FILEJMAP_ALL_ACCESS, //read/write access
0, II mapped view of entire file
0,
0);

II read from shared memory
printf("Read message %s", lpMapAddress);

UnmapViewOfFile(lpMapAddress);
CloseHandle(hMapFile);

Figure 9.26 Consumer reading from shared memory using the Win32 API.

into memory when the mapping is established. Rather, the mapped file may be
demand-paged, thus bringing pages into memory only as they are accessed.)
The MapViewOfFile () fm1ction returns a pointer to the shared-memory object;
any accesses to this memory location are thus accesses to the memory-mapped
file. In this ii1stance, the producer process writes the message "Shared memory
message" to shared memory.

A program illustrating how the consumer process establishes a view of
the named shared-memory object is shown in Figure 9.26. This program is
somewhat simpler than the one shown in Figure 9.25, as all that is necessary
is for the process to create a mapping to the existii1g named shared-memory
object. The consumer process must also create a view of the mapped file, just
as the producer process did ii1 the program in Figure 9.25. The consumer then
reads from shared memory the message "Shared memory message" thatwas
written by the producer process.

Finally, both processes remove the view of the mapped file with a call to
UnmapViewOfFile (). We provide a programming exercise at the end of this
chapter using shared memory with memory mapping in the Win32 API.

9.7.3 Memory-Mapped i/0

In the case of I/0, as mentioned in Section 1.2.1, each I/0 controller includes
registers to hold commands and the data being transferred. Usually, special I/0
instructions allow data transfers between these registers and system memory.

396 Chapter 9

9.8

To allow more convenient access to I/0 devices 1 many computer architectures
provide In this case/ ranges of memory addresses are
set aside and are mapped to the device registers. Reads and writes to these
memory addresses cause the data to be transferred to and from the device
registers. This method is appropriate for devices that have fast response times/
such as video controllers. In the IBM PC each location on the screen is mapped
to a n1.emory location. Displaying text on the screen is almost as easy as writing
the text into the appropriate memory-mapped locations.

Memory-mapped I/O is also convenient for other devices/ such as the serial
and parallel ports used to connect modems and printers to a computer. The
CPU transfers data through these kinds of devices by reading and writing a few
device registers/ called an I/0 To send out a long string of bytes through a
memory-mapped serial port1 the CPU writes one data byte to the data register
and sets a bit in the control register to signal that the byte is available. The device
takes the data byte and then clears the bit in the control register to signal that
it is ready for the next byte. Then the CPU can transfer the next byte. If the
CPU uses polling to watch the control bit/ constantly looping to see whether
the device is ready/ this method of operation is called
If the CPU does not poll the control bit/ but instead receives an interrupt when
the device is ready for the next byte/ the data transfer is said to be

When a process running in user rnode requests additional memory/ pages
are allocated from the list of free page frames maintained by the kernel.
This list is typically populated using a page-replacement algorithm such as
those discussed in Section 9.4 and most likely contains free pages scattered
throughout physical memory/ as explained earlier. Remember/ too/ that if a
user process requests a single byte of memory/ internal fragmentation will
result/ as the process will be granted an entire page frame.

Kernel memory/ however1 is often allocated from a free-memory pool
different from the list used to satisfy ordinary user-mode processes. There
are two primary reasons for this:

The kernel requests memory for data structures of varying sizes, some of
which are less than a page in size. As a result1 the kernel must use memory
conservatively and attempt to minimize waste due to fragmentation. This
is especially important because many operating systems do not subject
kernel code or data to the paging system.

2. Pages allocated to user-mode processes do not necessarily have to be in
contiguous physical memory. However/ certain hardware devices interact
directly with physical memory-without the benefit of a virtual memory
interface-and consequently may require memory residing in physically
contiguous pages.

In the following sections/ we examine two strategies for managing free memory
that is assigned to kernel processes: the "buddy system." and slab allocation.

9.8 397

9.8.1 Buddy System

Tbe buddy system allocates memory from a fixed-size segment consisting of
physically contiguous pages. Memory is allocated from this segment using a
power-of-2 allocator, which satisfies requests in units sized as a power of 2
(4 KB, 8 KB, 16 KB, and so forth). A request in units not appropriately sized is
rounded up to the next highest power of 2. For example, if a request for 11 KB
is made, it is satisfied with a 16-KB segment.

Let's consider a simple example. Assume the size of a memory segment
is initially 256 KB and the kernel requests 21 KB of memory. The segment is
initially divided into two buddies-which we will call AL and AR -each 128
KB in size. One of these buddies is further divided into two 64-KB buddies
BLand BR- However, the next-highest power of 2 from 21 KB is 32 KB so either
Bt or BR is again divided into two 32-KB buddies, CL and CR. One of these
buddies is used to satisfy the 21-KB request. This scheme is illustrated in Figure
9.27, where CL is the segment allocated to the 21 KB request.

An advantage of the buddy system is how quickly adjacent buddies can be
combined to form larger segments using a teclmique known as coalescing. In
Figure 9.27, for example, when the kernel releases the CL unit it was allocated,
the system can coalesce C L and C R into a 64-KB segment. This segment, B L, can
in turn be coalesced with its buddy B R to form a 128-KB segment. Ultimately,
we can end up with the original256-KB segment.

The obvious drawback to the buddy system is that rounding up to the
next highest power of 2 is very likely to cause fragmentation within allocated
segments. For example, a 33-KB request can only be satisfied with a 64-
KB segment. In fact, we cannot guarantee that less than 50 percent of the
allocated unit will be wasted due to internal fragmentation. In the following
section, we explore a memory allocation scheme where no space is lost due to
fragmentation.

physically contiguous pages

256 KB

Figure 9.27 Buddy system allocation.

398 Chapter 9

9.8.2 Slab Allocation

A second strategy for allocating kernel memory is known as A
is made up of one or nwre physically contiguous pages. A consists of

one or more slabs. There is a single cache for each unique kernel data structure
-for example, a separate cache for the data structure representing process
descriptors, a separate cache for file objects, a separate cache for semaphores,
and so forth. Each cache is populated with that are instantiations of the
kernel data structure the cache represents. For example, the cache representing
semaphores stores instances of semaphore objects, the cache representing
process descriptors stores instances of process descriptor objects, and so forth.
The relationship between slabs, caches, and objects is shown in Figure 9.28.
The figure shows two kernel objects 3 KB in size and three objects 7 KB in size.
These objects are stored in their respective caches.

The slab-allocation algorithm uses caches to store kernel objects. When a
cache is created, a number of objects-which are initially marked as free-are
allocated to the cache. The number of objects in the cache depends on the size
of the associated slab. For example, a 12-KB slab (made up of three continguous
4-KB pages) could store six 2-KB objects. Initially, all objects in the cache are
marked as free. When a new object for a kernel data structure is needed, the
allocator can assign any free object from the cache to satisfy the request. The
object assigned from the cache is marked as used.

Let's consider a scenario in which the kernel requests memory from the
slab allocator for an object representing a process descriptor. In Linux systems,
a process descriptor is of the type struct task_struct, which requires
approximately 1.7 KB of memory. When the Linux kernel creates a new task,
it requests the necessary memory for the struct task_struct object from its
cache. The cache will fulfill the request using a struct task_struct object
that has already been allocated in a slab and is marked as free.

In Linux, a slab may be in one of three possible states:

kernel objects slabs

3-KB
objects

7-KB
objects

Figure 9.28 Slab allocation.

physically
contiguous
pages

9.9

9.9

Full. All objects in the slab are marked as used.

Empty. All objects in the slab are marked as free.

Partial. The slab consists of both used and free objects.

399

The slab allocator first attempts to satisfy the request with a free object in a
partial slab. If none exist, a free object is assigned from an empty slab. If no
empty slabs are available, a new slab is allocated from contiguous physical
pages and assigned to a cache; memory for the object is allocated from this
slab.

The slab allocator provides two main benefits:

No memory is wasted due to fragmentation. Fragn<entation is not an
issue because each unique kernel data structure has an associated cache,
and each cache is made up of one or more slabs that are divided into
chunks the size of the objects being represented. Thus, when the kernel
requests memory for an object, the slab allocator returns the exact amount
of memory required to represent the object.

Memory requests can be satisfied quickly. The slab allocation scheme
is thus particularly effective for mm<aging memory when objects are
frequently allocated and deallocated, as is often the case with requests
from the kernel. The act of allocating-and releasing-memory can be
a time-consuming process. However, objects are created in advance and
thus can be quickly allocated from the cache. Furthermore, when the
kernel has finished with an object and releases it, it is marked as free and
returned to its cache, thus making it immediately available for subsequent
requests fi·om the kernel.

The slab allocator first appeared in the Solaris 2.4 kernel. Because of its
general-purpose nature, this allocator is now also used for certain user-mode
memory requests in Solaris. Linux originally used the buddy system; however,
beginning with Version 2.2, the Linux kernel adopted the slab allocator.

The major decisions that we make for a paging system are the selections of
a replacement algorithm and an allocation policy, which we discussed earlier
in this chapter. There are many other considerations as well, and we discuss
several of them here.

9.9.1 Prepaging

An obvious property of pure demand paging is the large number of page faults
that occur when a process is started. This situation results from trying to get the
initial locality into memory. The same situation may arise at other times. For
instance, when a swapped-out process is restarted, all its are on the disk,
and each must be brought in by its own page fault. is an attempt to
prevent this high level of initial paging. The strategy is to bring into memory at

400 Chapter 9

one tin1.e all the pages that will be needed. Some operating systerns-notably
Solaris-prepage the page frames for small files.

In a system using the working-set model, for example, we keep with each
process a list of the pages in its working set. If we must suspend a process
(due to an I/0 wait or a lack of free frames), we remember the working set for
that process. When the process is to be resumed (because I/0 has finished or
enough free frames have become available), we automatically bring back into
memory its entire working set before restarting the process.

Prepaging may offer an advantage in some cases. The question is simply
whether the cost of using prepaging is less than the cost of servicing the
corresponding page faults. It may well be the case that many of the pages
brought back into memory by prepaging will not be used.

Assume that s pages are prepaged and a fraction a of these s pages is
actually used (0 :'::: a :'::: 1). The question is whether the cost of the s ".a saved
page faults is greater or less than the cost of prepaging s ". (1 - a) unnecessary
pages. If a is close to 0, prepaging loses; if a is close to 1, prepaging wins.

9.9.2 Page Size

The designers of an operating system for an existing machine seldom have
a choice concerning the page size. However, when new machines are being
designed, a decision regarding the best page size must be made. As you might
expect, there is no single best page size. Rather, there is a set of factors that
support various sizes. Page sizes are invariably powers of 2, generally ranging
from 4,096 (212) to 4,194,304 (222) bytes.

How do we select a page size? One concern is the size of the page table. For
a given virtual memory space, decreasing the page size increases the number
of pages and hence the size of the page table. For a virtual memory of 4 MB
(222), for example, there would be 4,096 pages of 1,024 bytes but only 512 pages
of 8,192 bytes. Because each active process must have its own copy of the page
table, a large page size is desirable.

Memory is better utilized with smaller pages, however. If a process is
allocated memory starting at location 00000 and continuing until it has as much
as it needs, it probably will not end exactly on a page boundary. Thus, a part
of the final page must be allocated (because pages are the units of allocation)
but will be unused (creating internal fragmentation). Assuming independence
of process size and page size, we can expect that, on the average, half of the
final page of each process will be wasted. This loss is only 256 bytes for a page
of 512 bytes but is 4,096 bytes for a page of 8,192 bytes. To minimize internal
fragmentation, then, we need a small page size.

Another problem is the time required to read or write a page. I/0 time is
composed of seek, latency, and transfer times. Transfer time is proportional
to the amount transferred (that is, the page size)-a fact that would seem
to argue for a small page size. Howeve1~ as we shall see in Section 12.1.1,
latency and seek time normally dwarf transfer time. At a transfer rate of 2
MB per second, it takes only 0.2 milliseconds to transfer 512 bytes. Latency
time, though, is perhaps 8 milliseconds and seek time 20 milliseconds. Of
the total I/0 time (28.2 milliseconds), therefore, only 1 percent is attributable
to the actual transfer. Doubling the page size increases I/0 time to only 28.4
milliseconds. It takes 28.4 milliseconds to read a single page of 1,024 bytes but

9.9 401

56.4 milliseconds to read the sam.e amount as two pages of 512 bytes each.
Thus, a desire to minimize 1/0 time argues for a larger page size.

With a smaller page size, though, to tall /0 should be reduced, since locality
will be improved. A smaller page size allows each page to match program
locality more accurately. For example, consider a process 200 KB in size, of
which only half (100 KB) is actually used in an execution. If we have only one
large page, we must bring in the entire page, a total of 200 KB transferred and
allocated. If instead we had pages of only 1 byte, then we could bring in only
the 100 KB that are actually used, resulting in only 100 KB transferred and
allocated. With a smaller page size, we have better allowing us to
isolate only the memory that is actually needed. With a larger page size, we
must allocate and transfer not only what is needed but also anything else that
happens to be in the page, whether it is needed or not. Thus, a smaller page
size should result in less I/0 and less total allocated memory.

But did you notice that with a page size of 1 byte, we would have a page
fault for each byte? A process of 200 KB that used only half of that memory
would generate only one page fault with a page size of 200 KB but 102,400 page
faults with a page size of 1 byte. Each page fault generates the large amount
of overhead needed for processing the interrupt, saving registers, replacing a
page, queueing for the paging device, and updating tables. To minimize the
number of page faults, we need to have a large page size.

Other factors must be considered as well (such as the relationship between
page size and sector size on the paging device). The problem has no best
answer. As we have seen, some factors (internal fragmentation, locality) argue
for a small page size, whereas others (table size, I/0 time) argue for a large
page size. However, the historical trend is toward larger page sizes. Indeed, the
first edition of Operating System Concepts (1983) used 4,096 bytes as the upper
bound on page sizes, and this value was the most common page size in 1990.
Modern systems may now use much larger page sizes, as we will see in the
following section.

9.9.3 TLB Reach

In Chapter 8, we introduced the of the TLB. Recall that the hit ratio
for the TLB refers to the percentage of virtual address translations that are
resolved in the TLB rather than the page table. Clearly, the hit ratio is related
to the number of entries in the TLB, and the way to increase the hit ratio is
by increasing the number of entries in the TLB. This, however, does not come
cheaply, as the associative memory used to construct the TLB is both expensive
and power hungry.

Related to the hit ratio is a similar metric: the The TLB reach refers
to the amount of memory accessible from the TLB and is simply the number
of entries multiplied by the page size. Ideally, the working set for a process is
stored in the TLB. If it is not, the process will spend a considerable amount of
time resolving memory references in the page table rather than the TLB. If we
double the number of entries in the TLB, we double the TLB reach. However,
for some memory-intensive applications, this may still prove insufficient for
storing the working set.

Another approacl1 for increasing the TLB reach is to either increase the size
of the page or provide multiple page sizes. If we increase the page size-say,

402 Chapter 9

from 8 KB to 32 KB-we quadruple the TLB reach. However, this may lead to
an increase in fragmentation for some applications that do not require such
a large page size as 32 KB. Alternatively, an operating system may provide
several different page sizes. For example, the UltraSPARC supports page sizes
of 8 KB, 64 KB, 512 KB, and 4MB. Of these available pages sizes, Solaris uses
both 8-KB and 4-MB page sizes. And with a 64-entry TLB, the TLB reach for
Solaris ranges from 512 KB with 8-KB pages to 256MB with 4-MB pages. For the
majority of applications, the 8-KB page size is sufficient, although Solaris maps
the first 4 MB of kernel code and data with two 4-MB pages. Solaris also allows
applications-such as databases-to take advantage of the large 4-MB page
size.

Providing support for multiple page sizes requires the operating system
-not hardware-to manage the TLB. For example, one of the fields in a
TLB entry must indicate the size of the page frame corresponding to the
TLB entry. Managing the TLB in software and not hardware comes at a cost
in performance. Howeve1~ the increased hit ratio and TLB reach offset the
performance costs. Indeed, recent trends indicate a move toward software
managed TLBs and operating-system support for multiple page sizes. The
UltraSPARC, MIPS, and Alpha architectures employ software-managed TLBs.
The PowerPC and Pentium manage the TLB in hardware.

9.9.4 Inverted Page Tables

Section 8.5.3 introduced the concept of the inverted page table. The purpose
of this form of page management is to reduce the amount of physical memory
needed to track virtual-to-physical address translations. We accomplish this
savings by creating a table that has one entry per page of physical memory,
indexed by the pair <process-id, page-number>.

Because they keep information about which virtual memory page is stored
in each physical frame, inverted page tables reduce the amount of physical
memory needed to store this information. However, the inverted page table
no longer contains complete information about the logical address space of a
process, and that information is required if a referenced page is not currently
in memory. Demand paging requires this information to process page faults.
For the information to be available, an external page table (one per process)
must be kept. Each such table looks like the traditional per-process page table
and contains information on where each virtual page is located.

But do external page tables negate the utility of inverted page tables? Since
these tables are referenced only when a page fault occurs, they do not need to
be available quickly. Instead, they are themselves paged in and out of memory
as necessary. Unfortunately, a page fault may now cause the virtual memory
n1.anager to generate another page fault as it pages in the external page table it
needs to locate the virtual page on the backing store. This special case requires
careful handling in the kernel and a delay in the page-lookup processing.

9.9.5 Program Structure

Demand paging is designed to be transparent to the user program. In many
cases, the user is completely unaware of the paged nature of memory. In other
cases, however, system performance can be improved if the user (or compiler)
has an awareness of the underlying demand paging.

9.9 403

Let's look at a contrived but informative example. Assume that pages are
128 words in size. Consider a C program whose function is to initialize to 0
each element of a 128-by-128 array. The following code is typical:

inti, j;
int [128J [128J data;

for (j = 0; j < 128; j++)
for (i = 0; i < 128; i++)

data[iJ[jJ = 0;

Notice that the array is stored row major; that is, the array is stored
data [OJ [OJ, data [OJ [1J, · · ·, data [OJ [127J, data [1J [OJ, data [1J [1J, · · ·,
data[127J [127J. For pages of 128 words, each row takes one page. Thus,
the preceding code zeros one word in each page, then another word in each
page, and so on. If the operating system allocates fewer than 128 frames to the
entire program, then its execution will result in 128 x 128 = 16,384 page faults.
In contrast, suppose we change the code to

inti, j;
int [128J [128J data;

for (i = 0; i < 128; i++)
for (j = 0; j < 128; j++)

data[iJ[jJ = 0;

This code zeros all the words on one page before starting the next page,
reducing the number of page faults to 128.

Careful selection of data structures and programming structures can
increase locality and hence lower the page-fault rate and the number of pages in
the working set. For example, a stack has good locality, since access is always
made to the top. A hash table, in contrast, is designed to scatter references,
producing bad locality. Of course, locality of reference is just one measure of
the efficiency of the use of a data structure. Other heavily weighted factors
include search speed, total number of memory references, and total number of
pages touched.

At a later stage, the compiler and loader can have a sigicificant effect on
paging. Separating code and data and generating reentrant code means that
code pages can be read-only and hence will never be modified. Clean pages
do not have to be paged out to be replaced. The loader can avoid placing
routines across page boundaries, keeping each routine completely in one page.
Routines that call each other many times can be packed into the same page.
This packaging is a variant of the bin-packing problem of operations research:
try to pack the variable-sized load segments into the fixed-sized pages so that
interpage references are minimized. Such an approach is particularly useful
for large page sizes.

The choice of programming language can affect paging as well. For
example, C and C++ use pointers frequently, and pointers tend to randomize
access to memory, thereby potentially diminishing a process's locality. Some
studies have shown that object-oriented programs also tend to have a poor
locality of reference.

404 Chapter 9

9.9.6 1/0 Interlock

When demand paging is used, we sometimes need to allow some of the pages
to be in n<emory. One such situation occurs when I/0 is done to or from
user (virtual) memory. l/0 is often implemented by a separate I/0 processor.
For example, a controller for a USB storage device is generally given the number
of bytes to transfer and a memory address for the buffer (Figure 9.29). When
the transfer is complete, the CPU is interrupted.

We must be sure the following sequence of events does not occur: A process
issues an I/0 request and is put in a queue for that I/O device. Meanwhile, the
CPU is given to other processes. These processes cause page faults; and one of
them, using a global replacement algorithm, replaces the page containing the
memory buffer for the waiting process. The pages are paged out. Some time
later, when the I/O request advances to the head of the device queue, the I/O
occurs to the specified address. However, this frame is now being used for a
different page belonging to another process.

There are two common solutions to this problem. One solution is never to
execute I/0 to user memory. Instead, data are always copied between system
memory and user memory. I/0 takes place only between system memory
and the I/0 device. To write a block on tape, we first copy the block to system
memory and then write it to tape. This extra copying may result in unacceptably
high overhead.

Another solution is to allow pages to be locked into memory. Here, a lock
bit is associated with every frame. If the frame is locked, it cannot be selected
for replacement. Under this approach, to write a block on tape, we lock into
memory the pages containing the block. The system can then continue as
usual. Locked pages cannot be replaced. When the I/O is complete, the pages
are unlocked.

Figure 9.29 The reason why frames used for 1/0 must be in memory.

9.10

9.10 405

Lock bits are used in various situations. Frequently, some or all of the
operating-system kernel is locked into memory, as many operating systems
cannot tolerate a page fault caused by the kernel.

Another use for a lock bit involves normal page replacement. Consider
the following sequence of events: A low-priority process faults. Selecting a
replacement frame, the paging system reads the necessary page into memory.
Ready to continue, the low-priority process enters the ready queue and waits
for the CPU. Since it is a low-priority process, it may not be selected by the
CPU scheduler for a time. While the low-priority process waits, a high-priority
process faults. Looking for a replacement, the paging system sees a page that
is in memory but has not been referenced or modified: it is the page that the
low-priority process just brought in. This page looks like a perfect replacement:
it is clean and will not need to be written out, and it apparently has not been
used for a long time.

Whether the high-priority process should be able to replace the low-priority
process is a policy decision. After all, we are simply delaying the low-priority
process for the benefit of the high-priority process. However, we are wasting
the effort spent to bring in the page for the low-priority process. If we decide
to prevent replacement of a newly brought-in page until it can be used at least
once, then we can use the lock bit to implement this mechanism. When a page
is selected for replacement, its lock bit is turned on; it remains on until the
faulting process is again dispatched.

Using a lock bit can be dangerous: The lock bit may get turned on but
never turned off. Should this situation occur (because of a bug in the operating
system, for example), the locked frame becomes unusable. On a single-user
system, the overuse of locking would hurt only the user doing the locking.
Multiuser systems must be less trusting of users. For instance, Solaris allows
locking "hints," but it is free to disregard these hints if the free-frame pool
becomes too small or if an individual process requests that too many pages be
locked in memory.

In this section, we describe how Windows XP and Solaris implement virtual
memory.

9.10.1 Windows XP

Windows XP implements virtual memory using demand paging with
Clustering handles page faults by bringing in not only the faultil1.g

page also several pages following the faulting page. When a process is first
created, it is assigned a working-set minimum and maximum. The

is the minimum number of pages the process is guaranteed to
in memory. If sufficient memory is available, a process may be assigned as
many pages as its For most applications, the value
of working-set minimum and working-set maximum is 50 and 345 pages,
respectively. (In some circumstances, a process may be allowed to exceed its
working-set maximum.) The virtual memory manager maintains a list of free
page frames. Associated with this list is a threshold value that is used to

406 Chapter 9

indicate whether sufficient free memory is available. If a page fault occurs for a
process that is below its working-set maximum, the virtual memory manager
allocates a page from this list of free pages. If a process that is at its working-set
rnaximum incurs a page fault, it must select a page for replacement using a
local page-replacement policy.

When the amount of free memory falls below the threshold, the virtual
memory manager uses a tactic known as to
restore the value above the threshold. Automatic working-set trimming works
by evaluating the number of pages allocated to processes. If a process has
been allocated more pages than its working-set minimum, the virtual memory
manager removes pages until the process reaches its working-set minimum. A
process that is at its working-set minimum may be allocated pages from the
free-page-frame list once sufficient free memory is available.

The algorithm used to determine which page to remove from a working set
depends on the type of processor. On single-processor 80x86 systems, Windows
XP uses a variation of the clock algorithm discussed in Section 9.4.5.2. On
Alpha and multiprocessor x86 systems, clearing the reference bit may require
invalidatil<g the entry in the translation look-aside buffer on other processors.
Rather than incurring this overhead, Windows XP uses a variation on the FIFO
algorithm discussed in Section 9.4.2.

9.10.2 Solaris

In Solaris, when a thread incurs a page fault, the kernel assigns a page to
the faulting thread from the list of free pages it maintains. Therefore, it is
imperative that the kernel keep a sufficient amount of free memory available.
Associated with this list of free pages is a parameter-Zotsfree-that represents
a threshold to begin paging. The lotsfree parameter is typically set to 1/64 the
size of the physical memory. Four times per second, the kernel checks whether
the amount of free memory is less than lotsfree. If the number of free pages falls
below lotsfree, a process known as a pageout starts up. The pageout process is
similar to the second-chance algorithm described in Section 9.4.5.2, except that
it uses two hands while scanning pages, rather than one. The pageout process
works as follows: The front hand of the clock scans all pages in memory, setting
the reference bit to 0. Later, the back hand of the clock examines the reference
bit for the pages in memory, appending each page whose reference bit is still set
to 0 to the free list and writing to disk its contents if modified. Solaris maintains
a cache list of pages that have been "freed" but have not yet been overwritten.
The free list contains frames that have invalid contents. Pages can be reclaimed
from the cache list if they are accessed before being moved to the free list.

The pageout algorithm uses several parameters to control the rate at which
pages are scam<ed (known as the scanrate). The scanrate is expressed in pages
per second and ranges from slowscan to fastscan. When free memory falls
below lotsfree, scanning occurs at slowscan pages per second and progresses
to fastscan, depending on the amount of free memory available. The default
value of slowscan is 100 pages per second; fasts can is typically set to the value
(total physical pages)/2 pages per second, with a maximum of 8,192 pages per
second. This is shown in Figure 9.30 (withfastscan set to the maximum).

The distance (in pages) between the hands of the clock is determil<ed by
a system parameter, handspread. The amount of time between the front hand's

9.11

8192
fastscan

Cll
7§
c
(1j
u
en

100
slowscan

minfree desfree

amount of free memory

Figure 9.30 Solaris page scanner.

9.11 407

lotsfree

clearing a bit and the back hand's investigating its value depends on the scanrate
and the handspread. If scam-ate is 100 pages per second and handspread is 1,024
pages, 10 seconds can pass between the time a bit is set by the front hand
and the time it is checked by the back hand. However, because of the demands
placed on the memory system, a scanrate of several thousand is not uncommon.
This means that the amount of time between clearing and investigating a bit is
often a few seconds.

As mentioned above, the pageout process checks memory four times per
second. However, if free memory falls below desfree (Figure 9.30), pageout
will nm 100 times per second with the intention of keeping at least desfree
free memory available. If the pageout process is unable to keep the amount
of free memory at desfree for a 30-second average, the kernel begins swapping
processes, thereby freeing all pages allocated to swapped processes. In general,
the kernel looks for processes that have been idle for long periods of time. If
the system is unable to maintain the amount of free memory at minfree, the
pageout process is called for every request for a new page.

Recent releases of the Solaris kernel have provided enhancements of
the paging algorithm. One such enhancement involves recognizing pages
from shared libraries. Pages belonging to libraries that are being shared by
several processes-even if they are eligible to be claimed by the scanner
are skipped during the page-scanning process. Another enhancement concerns
distinguishing pages that have been allocated to processes from pages allocated
to regularfiles. This is known as and is covered in Section 11.6.2.

It is desirable to be able to execute a process whose logical address space is
larger than the available physical address space. Virtual memory is a technique

408 Chapter 9

that enables us to map a large logical address space onto a smaller physical
menlOry. Virtual memory allows us to run extremely large processes and to
raise the degree of multiprogramming, increasing CPU utilization. Further, it
frees application programmers from worrying about memory availability. In
addition, with virtual memory, several processes can share system libraries
and memory. Virtual memory also enables us to use an efficient type of process
creation known as copy-on-write, wherein parent and child processes share
actual pages of memory.

Virtual memory is commonly implemented by demand paging. Pure
demand paging never brings in a page until that page is referenced. The first
reference causes a page fault to the operating system. The operating-system
kernel consults an internal table to determine where the page is located on the
backing store. It then finds a free frame and reads the page in from the backing
store. The page table is updated to reflect this change, and the instruction that
caused the page fault is restarted. This approach allows a process to run even
though its entire memory image is not in main memory at once. As long as the
page-fault rate is reasonably low, performance is acceptable.

We can use demand paging to reduce the number of frames allocated to
a process. This arrangement can increase the degree of multiprogramming
(allowing more processes to be available for execution at one time) and-in
theory, at least-the CPU utilization of the system. It also allows processes
to be run even though their memory requirements exceed the total available
physical memory. Such processes run in virtual memory.

If total memory requirements exceed the capacity of physical memory,
then it may be necessary to replace pages from memory to free frames for
new pages. Various page-replacement algorithms are used. FIFO page replace
ment is easy to program but suffers from Belady's anomaly. Optimal page
replacement requires future knowledge. LRU replacement is an approxima
tion of optimal page replacement, but even it may be difficult to implement.
Most page-replacement algorithms, such as the second-chance algorithm, are
approximations of LRU replacement.

In addition to a page-replacement algorithm, a frame-allocation policy
is needed. Allocation can be fixed, suggesting local page replacement, or
dynamic, suggesting global replacement. The working-set model assumes that
processes execute in localities. The working set is the set of pages in the current
locality. Accordingly, each process should be allocated enough frames for its
current working set. If a process does not have enough memory for its working
set, it will thrash. Providing enough frames to each process to avoid thrashing
may require process swapping and schedulil<g.

Most operating systems provide features for memory mappil1g files, thus
allowing file I/0 to be treated as routine memory access. The Win32 API
implements shared memory through memory mappil1g files.

Kernel processes typically req1.1ire memory to be allocated using pages
that are physically contiguous. The buddy system allocates memory to kernel
processes in units sized according to a power of 2, which often results in
fragmentation. Slab allocators assign kernel data structures to caches associated
with slabs, which are made up of one or more physically contiguous pages.
With slab allocation, no memory is wasted due to fragmentation, and memory
requests can be satisfied quickly.

409

In addition to reqmnng that we solve the major problems of page
replacement and frame allocation, the proper design of a paging systern
requires that we consider prep aging, page size, TLB reach, inverted page tables,
program structure, I/0 interlock, and other issues.

9.1 Assume there is a 1,024-KB segment where memory is allocated using
the buddy system. Using Figure 9.27 as a guide, draw a tree illustrating
how the following memory requests are allocated:

Request 240 bytes

Request 120 bytes

Request 60 bytes

Request 130 bytes

Next modify the tree for the followilcg releases of memory. Perform
coalescing whenever possible:

Release 240 bytes

Release 60 bytes

Release 120 bytes

9.2 Consider the page table for a system with 12-bit virtual and physical
addresses with 256-byte pages. The list of free page frames is D, E, F
(that is, Dis at the head of the list E is second, and F is last).

410 Chapter 9

Convert the following virtual addresses to their equivalent physical
addresses in hexadecimal. All numbers are given in hexadecimal. (A
dash for a page frame indicates that the page is not in memory.)

9EF

111

700

OFF

9.3 A page-replacement algorithm should minimize the number of page
faults. We can achieve this minimization by distributing heavily used
pages evenly over all of memory, rather than having them compete for
a small number of page frames. We can associate with each page frame
a counter of the number of pages associated with that frame. Then,
to replace a page, we can search for the page frame with the smallest
counter.

a. Define a page-replacement algorithm using this basic idea. Specif
ically address these problems:
i. What is the initial value of the counters?

ii. When are counters increased?
iii. When are counters decreased?
1v. How is the page to be replaced selected?

b. How many page faults occur for your algorithm for the following
reference string with four page frames?

1, 2, 3, 4, 5, 3, 4, 1, 6, 7, 8, 7, 8, 9, 7, 8, 9, 5, 4, 5, 4, 2.

c. What is the minimum number of page faults for an optimal page
replacement strategy for the reference string in part b with four
page frames?

9.4 Consider a demand-paging system with the following time-measured
utilizations:

CPU utilization
Paging disk
Other I/0 devices

20%
97.7%

5%

For each of the following, say whether it will (or is likely to) improve
CPU utilization. Explain your answers.

a. Install a faster CPU.

b. Install a bigger paging disk.

c. Increase the degree of multiprogramming.

d. Decrease the degree of multiprogramming.

411

e. Install more main n1.enl0ry.

f. Install a faster hard disk or multiple controllers with multiple hard
disks.

g. Add prepaging to the page-fetch algorithms.

h. Increase the page size.

9.5 Consider a demand-paged computer system where the degree of mul
tiprogramming is currently fixed at four. The system was recently
measured to determine utilization of the CPU and the paging disk.
The results are one of the following alternatives. For each case, what
is happening? Can the degree of multiprogramming be increased to
increase the CPU utilization? Is the paging helping?

a. CPU utilization 13 percent; disk utilization 97 percent

b. CPU utilization 87 percent; disk utilization 3 percent

c. CPU utilization 13 percent; disk utilization 3 percent

9.6 Consider a demand-paging system with a paging disk that has an
average access and transfer time of 20 milliseconds. Addresses are
translated through a page table in main memory, with an access time of 1
microsecond per memory access. Thus, each memory reference through
the page table takes two accesses. To improve this time, we have added
an associative memory that reduces access time to one memory reference
if the page-table entry is in the associative memory.

Assume that 80 percent of the accesses are in the associative memory
and that, of those remaining, 10 percent (or 2 percent of the total) cause
page faults. What is the effective memory access time?

9.7 A simplified view of thread states is Ready, Running, and Blocked,
where a thread is either ready and waiting to be scheduled, is running
on the processor, or is blocked (i.e. is waiting for I/0.) This is illustrated
in Figure 9.31. Assuming a thread is in the Running state, answer the
following questions: (Be sure to explain your answer.)

a. Will the thread change state if it incurs a page fault? If so, to what
new state?

Figure 9.31 Thread state diagram for Exercise 9.7.

412 Chapter 9

b. Will the thread change state if it generates a TLB miss that is resolved
in the page table? If so, to what new state?

c. Will the thread change state if an address reference is resolved in
the page table? If so, to what new state?

9.8 Discuss the hardware support required to support demand paging.

9.9 Consider the following page reference string:

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

How many page faults would occur for the following replacement
algorithms, assuming one, two, three, four, five, six, and seven frames?
Remember that all frames are initially empty, so your first unique pages
will cost one fault each.

LRU replacement

FIFO replacement

Optimal replacement

9.10 Consider a system that allocates pages of different sizes to its processes.
What are the advantages of such a paging scheme? What modifications
to the virtual memory system provide this functionality?

9.11 Discuss situations in which the most frequently used page-replacement
algorithm generates fewer page faults than the least recently used
page-replacement algorithm. Also discuss under what circumstances
the opposite holds.

9.12 Under what circumstances do page faults occur? Describe the actions
taken by the operating system when a page fault occurs.

9.13 Suppose that a machine provides instructions that can access memory
locations using the one-level indirect addressing scheme. What sequence
of page faults is ilccurred when all of the pages of a program are
currently nonresident and the first instruction of the program is an
indirect memory-load operation? What happens when the operating
system is using a per-process frame allocation technique and only two
pages are allocated to this process?

9.14 Consider a system that provides support for user-level and kernel
level threads. The mapping in this system is one to one (there is a
corresponding kernel thread for each user thread). Does a multithreaded
process consist of (a) a working set for the entire process or (b) a working
set for each thread? Explain.

413

9.15 What is the copy-on-write feature, and under what circumstances is it
beneficial to use this feature? What hardware support is required to
implement this feature?

9.16 Consider the two-dimensional array A:

int A[] [] = new int [100] [100] ;

where A [OJ [OJ is at location 200 in a paged memory system with pages
of size 200. A small process that manipulates the matrix resides in page
0 (locations 0 to 199). Thus, every instruction fetch will be from page 0.

For three page frames, how many page faults are generated by
the following array-initialization loops, using LRU replacement and
assuming that page frame 1 contains the process and the other two
are initially empty?

a. for (int j = 0; j < 100; j++)
for (int i = 0; i < 100; i++)

A[i] [j] = 0;

b. for (int i = 0; i < 100; i++)
for (int j = 0; j < 100; j++)

A [i] [j] = 0;

9.17 Discuss situations in which the least frequently used page-replacement
algorithm generates fewer page faults than the least recently used
page-replacement algorithm. Also discuss under what circumstances
the opposite holds.

9.18 What is the cause of thrashing? How does the system detect thrashing?
Once it detects thrashing, what can the system do to eliminate this
problem?

9.19 Assume that you are monitoring the rate at which the pointer in the
clock algorithm (which indicates the candidate page for replacement)
moves. What can you say about the system if you notice the following
behavior:

a. Pointer is moving fast.

b. Pointer is moving slow.

9.20 The VAX/VMS system uses a FIFO replacement algorithm for resident
pages and a free-frame pool of recently used pages. Assume that the
free-frame pool is managed using the least recently used replacement
policy. Answer the following questions:

a. If a page fault occurs and if the page does not exist in the free-frame
pool, how is free space generated for the newly requested page?

414 Chapter 9

b. If a page fault occurs and if the page exists in the free-frame pool,
how is the resident page set and the free-france pool managed to
make space for the requested page?

c. What does the system degenerate to if the number of resident pages
is set to one?

d. What does the system degenerate to if the number of pages in the
free-frame pool is zero?

9.21 The slab-allocation algorithm uses a separate cache for each different
object type. Assuming there is one cache per object type, explain why
this scheme doesn't scale well with multiple CPUs. What could be done
to address this scalability issue?

9.22 Assume that we have a demand-paged memory. The page table is held in
registers. It takes 8 milliseconds to service a page fault if an empty frame
is available or if the replaced page is not modified and 20 milliseconds if
the replaced page is modified. Memory-access time is 100 nanoseconds.

Assume that the page to be replaced is modified 70 percent of the
time. What is the maximum acceptable page-fault rate for an effective
access time of no more than 200 nanoseconds?

9.23 Segmentation is similar to paging but uses variable-sized "pages." Define
two segment-replacement algorithms based on FIFO and LRU page
replacement schemes. Remember that since segments are not the same
size, the segment that is chosen to be replaced may not be big enough
to leave enough consecutive locations for the needed segment. Consider
strategies for systems where segments cam<ot be relocated and strategies
for systems where they can.

9.24 Which of the following programming techniques and structures are
"good" for a demand-paged environment ? Which are "not good"?
Explain your answers.

a. Stack

b. Hashed symbol table

c. Sequential search

d. Binary search

e. Pure code

f. Vector operations

a Indirection b"

9.25 When a page fault occurs, the process requesting the page must block
while waiting for the page to be brought from disk into physical memory.
Assume that there exists a process with five user-level threads and that
the mapping of user threads to kernel threads is many to one. If one user
thread incurs a page fault while accessing its stack, would the other user
user threads belonging to the same process also be affected by the page
fault-that is, would they also have to wait for the faulting page to be
brought into memory? Explain.

415

9.26 Consider a system that uses pure demand paging.

a. When a process first starts execution, how would you characterize
the page fault rate?

b. Once the working set for a process is loaded into memory, how
would you characterize the page fault rate?

c. Assume that a process changes its locality and the size of the new
working set is too large to be stored in available free memory.
Identify some options system designers could choose from to
handle this situation.

9.27 Assume that a program has just referenced an address in virtual memory.
Describe a scenario in which each of the following can occur. (If no such
scenario can occur, explain why.)

TLB miss with no page fault

TLB miss and page fault

TLB hit and no page fault

TLB hit and page fault

9.28 A certain computer provides its users with a virtual memory space of
232 bytes. The computer has 218 bytes of physical memory. The virtual
memory is implemented by paging, and the page size is 4,096 bytes.
A user process generates the virtual address 11123456. Explain how
the system establishes the corresponding physical location. Distinguish
between software and hardware operations.

9.29 When virtual memory is implemented in a computing system, there are
certain costs associated with the technique and certain benefits. List the
costs and the benefits. Is it possible for the costs to exceed the benefits?
If it is, what measures can be taken to ensure that this does not happen?

9.30 Give an example that illustrates the problem with restarting the move
character instruction (MVC) on the IBM 360/370 when the source and
destination regions are overlapping.

9.31 Consider the parameter 6. used to define the working-set window in
the working-set model. What is the effect of setting 6. to a small value
on the page-fault frequency and the number of active (nonsuspended)
processes currently executing in the system? What is the effect when 6.
is set to a very high value?

9.32 Is it possible for a process to have two working sets, one representing
data and another representing code? Explain.

9.33 Suppose that your replacement policy (in a paged system) is to examine
each page regularly and to discard that page if it has not been used since
the last examination. What would you gain and what would you lose
by using this policy rather than LRU or second-chance replacement?

416 Chapter 9

9.34 Write a program that implements the FIFO and LRU page-replacement
algorithms presented in this chapter. First, generate a random page
reference string where page numbers range from 0 to 9. Apply the
random page-reference string to each algorithm, and record the number
of page faults incurred by each algorithm. Implement the replacement
algorithms so that the number of page frames can vary from 1 to 7.
Assume that demand paging is used.

9.35 The Catalan numbers are an integer sequence C11 that appear in tree
enumeration problems. The first Catalan numbers for n = 1, 2, 3, ... are
1, 2, 5, 14, 42, 132, A formula generating C11 is

1 (2n) (2n)!
ell = (n + 1) --;; = (n + 1)!n!

Design two programs that communicate with shared memory using
the Win32 API as outlined in Section 9.7.2. The producer process will
generate the Catalan sequence and write it to a shared memory object.
The consumer process will then read and output the sequence from
shared memory.

In this instance, the producer process will be passed an integer
parameter on the command line specifying how many Catalan numbers
to produce (for example, providing 5 on the command line means the
producer process will generate the first five Catalan numbers).

Demand paging was first used iil the Atlas system, implemented on the
Manchester University MUSE computer around 1960 (Kilburn et al. [1961]).
Another early demand-paging system was MULTICS, implemented on the GE
645 system (Organick [1972]).

Belady et al. [1969] were the first researchers to observe that the FIFO
replacement strategy may produce the anomaly that bears Belady's name.
Mattson et al. [1970] demonstrated that stack algorithms are not subject to
Belady's anomaly.

The optimal replacement algorithm was presented by Belady [1966] and
was proved to be optimal by Mattson et al. [1970]. Belady' s optimal algorithm is
for a fixed allocation; Prieve and Fabry [1976] presented an optimal algorithm
for situations in which the allocation can vary.

The enl"lanced clock algorithm was discussed by Carr and Hennessy [1981].
The working-set model was developed by Denning [1968]. Discussions

concerning the working-set model were presented by Denning [1980].
The scheme for monitoring the page-fault rate was developed by Wulf

[1969], who successfully applied this technique to the Burroughs BSSOO com
puter system.

Wilson et al. [1995] presented several algoritluns for dynamic memory allo
cation. Jolmstone and Wilson [1998] described various memory-fragmentation

417

issues. Buddy system memory allocators were described in Knowlton [1965L
Peterson and Norman [1977], and Purdom, Jr. and Stigler [1970]. Bonwick
[1994] discussed the slab allocator, and Bonwick and Adams [2001] extended
the discussion to multiple processors. Other memory-fitting algorithms can
be found in Stephenson [1983], Bays [1977], and Brent [1989]. A survey of
memory-allocation strategies can be found in Wilson et al. [1995].

Solomon and Russinovich [2000] and Russinovich and Solomon [2005]
described how Windows implements virtual memory. McDougall and Mauro
[2007] discussed virtual memory in Solaris. Virtual memory techniques in
Linux and BSD were described by Bovet and Cesati [2002] and McKusick
et al. [1996], respectively. Ganapathy and Schimmel [1998] and Navarro et al.
[2002] discussed operating system support for multiple page sizes. Ortiz [2001]
described virtual memory used in a real-time embedded operating system.

Jacob and Mudge [1998b] compared implementations of virtual memory in
the MIPS, PowerPC, and Pentium architectures. A companion article (Jacob and
Mudge [1998a]) described the hardware support necessary for implementation
of virtual memory in six different architectures, including the UltraSPARC.

Part Five

Since main memory is usually too small to accommodate all the data and
programs permanently, the computer system must provide secondary
storage to back up main memory. Modern computer systems use disks
as the primary on-line storage medium for information (both programs
and data). The file system provides the mechanism for on-line storage
of and access to both data and programs residing on the disks. A file
is a collection of related information defined by its creator. The files are
mapped by the operating system onto physical devices. Files are normally
organized into directories for ease of use.

The devices that attach to a computer vary in many aspects. Some
devices transfer a character or a block of characters at a time. Some
can be accessed only sequentially, others randomly. Some transfer
data synchronously, others asynchronously. Some are dedicated, some
shared. They can be read-only or read-write. They vary greatly in speed.
In many ways, they are also the slowest major component of the
computer.

Because of all this device variation, the operating system needs to
provide a wide range of functionality to applications, to allow them to
control all aspects of the devices. One key goal of an operating system's
1/0 subsystem is to provide the simplest interface possible to the rest of
the system. Because devices are a performance bottleneck, another key
is to optimize 1/0 for maximum concurrency.

10.1

R

For most users, the file system is the most visible aspect of an operating system.
It provides the mechanism for on-line storage of and access to both data and
programs of the operating system and all the users of the computer system. The
file system consists of two distinct parts: a collection of files, each storing related
data, and a directory structure, which organizes and provides information about
all the files in the system. File systems live on devices, which we explore fully
irl the following chapters but touch upon here. In this chapter, we consider
the various aspects of files and the major directory structures. We also discuss
the semantics of sharing files among multiple processes, users, and computers.
Finally, we discuss ways to handle file protection, necessary when we have
multiple users and we want to control who may access files and how files may
be accessed.

To explain the function of file systems.

To describe the interfaces to file systems.

To discuss file-system design tradeoffs, including access methods, file
sharing, file locking, and directory structures.

To explore file-system protection.

Computers can store information on various storage media, such as magnetic
disks, magnetic tapes, and optical disks. So that the computer system will
be convenient to use, the operating system provides a uniform logical view
of information storage. The operating system abstracts from the physical
properties of its storage devices to define a logical storage unit, the file. Files are
mapped by the operating system onto physical devices. These storage devices
are usually nonvolatile, so the contents are persistent through power failures
and system reboots.

421

422 Chapter 10

A file is a named collection of related information that is recorded on
secondary storage. From a user's perspective, a file is the smallest allotment
of logical secondary storage; that is, data cannot be written to secondary
storage unless they are within a file. Commonly, files represent programs (both
source and object forms) and data. Data files may be numeric, alphabetic,
alphanumeric, or binary. Files may be free form, such as text files, or may be
formatted rigidly. In general, a file is a sequence of bits, bytes, lines, or records,
the meaning of which is defined by the file's creator and user. The concept of
a file is thus extremely generaL

The information in a file is defined by its creator. Many different types
of information may be stored in a file-source programs, object programs,
executable programs, numeric data, text, payroll records, graphic images,
sound recordings, and so on. A file has a certain defined which
depends on its type. A text file is a sequence of characters organized into
lines (and possibly pages). A source file is a sequence of subroutines and
functions, each of which is further organized as declarations followed by
executable statements. An object file is a sequence of bytes organized in.to
blocks nnderstandable by the system's linker. An executable file is a series of
code sections that the loader can bring into memory and execute.

10.1.1 File Attributes

A file is named, for the convenience of its human users, and is referred to by
its name. A name is usually a string of characters, such as example.c. Some
systems differentiate between uppercase and lowercase characters in names,
whereas other systems do not. When a file is named, it becomes independent
of the process, the user, and even the system that created it. For instance, one
user might create the file example.c, and another user might edit that file by
specifying its name. The file's owner might write the file to a floppy disk, send
it in an e-mail, or copy it across a network, and it could still be called example.c
on the destination system.

A file's attributes vary from one operating system to another but typically
consist of these:

Name. The symbolic file name is the only information kept in human
readable form.

Identifier. This unique tag, usually a number, identifies the file within the
file system; it is the non-human-readable name for the file.

Type. This information is needed for systems that support different types
of files.

Location. This information is a pointer to a device and to the location of
the file on that device.

Size. The current size of the file (in bytes, words, or blocks) and possibly
the maximum allowed size are included in this attribute.

Protection. Access-control information determines who can do reading,
writing, executing, and so on.

10.1 423

Time, date, and user identification. This information may be kept for
creation, last modification, and last use. These data can be useful for
protection, security, and usage monitoring.

The information about all files is kept in the directory structure, which also
resides on secondary storage. Typically, a directory entry consists of the file's
name and its unique identifier. The identifier in turn locates the other file
attributes. It may take more than a kilobyte to record this information for
each file. In a system with many files, the size of the directory itself may be
megabytes. Because directories, like files, must be nonvolatile, they must be
stored on the device and brought into memory piecemeal, as needed.

10.1.2 File Operations

A file is an To define a file properly, we need to consider the
operations that can be performed on files. The operating system can provide
system calls to create, write, read, reposition, delete, and truncate files. Let's
examine what the operating system must do to perform each of these six basic
file operations. It should then be easy to see how other similar operations, such
as renaming a file, can be implemented.

Creating a file. Two steps are necessary to create a file. First, space in the
file system must be found for the file. We discuss how to allocate space for
the file in Chapter 11. Second, an entry for the new file must be made in
the directory.

Writing a file. To write a file, we make a system call specifying both the
name of the file and the information to be written to the file. Given the
name of the file, the system searches the directory to find the file's location.
The system must keep a write pointer to the location in the file where the
next write is to take place. The write pointer must be updated whenever a
write occurs.

Reading a file. To read from a file, we use a system call that specifies the
name of the file and where (in memory) the next block of the file should
be put. Again, the directory is searched for the associated entry, and the
system needs to keep a read pointer to the location in the file where the
next read is to take place. Once the read has taken place, the read pointer
is updated. Because a process is usually either reading from or writing to
a file, the current operation location can be kept as a per-process

. Both the read and write operations use this same
pointer, saving space and reducing system complexity.

Repositioning within a file. The directory is searched for the appropriate
entry, and the current-file-position pointer is repositioned to a given value.
Repositioning within a file need not involve any actual I/0. This file
operation is also kn.own as a file seek.

Deleting a file. To delete a file, we search the directory for the named file.
Having found the associated directory entry, we release all file space, so
that it can be reused by other files, and erase the directory entry.

424 Chapter 10

Truncating a file. The user may want to erase the contents of a file but
keep its attributes. Rather than forcing the user to delete the file and then
recreate it, this function allows all attributes to remain unchanged -except
for file length-but lets the file be reset to length zero and its file space
released.

These six basic operations comprise the minimal set of required file
operations. Other common operations include appending new information
to the end of an existing file and renaming an existing file. These primitive
operations can then be combined to perform other file operations. For instance,
we can create a copy of a file, or copy the file to another I/O device, such as
a printer or a display, by creating a new file and then reading from the old
and writing to the new. We also want to have operations that allow a user to
get and set the various attributes of a file. For example, we may want to have
operations that allow a user to determine the status of a file, such as the file's
length, and to set file attributes, such as the file's owner.

Most of the file operations mentioned involve searching the directory for
the entry associated with the named file. To avoid this constant searching, many
systems require that an open () system call be made before a file is first used
actively. The operating system keeps a small table, called the
containing information about all open files. When a file operation is requested,
the file is specified via an index into this table, so no searching is required.
When the file is no longer being actively used, it is closed by the process, and
the operating system removes its entry from the open-file table. create and
delete are system calls that work with closed rather than open files.

Some systems implicitly open a file when the first reference to it is made.
The file is automatically closed when the job or program that opened the
file terminates. Most systems, however, require that the programmer open a
file explicitly with the open() system call before that file can be used. The
open() operation takes a file name and searches the directory, copying the
directory entry into the open-file table. The open() call can also accept access
mode information-create, read-only, read-write, append-only, and so on.
This mode is checked against the file's permissions. If the request mode is
allowed, the file is opened for the process. The open () system call typically
returns a pointer to the entry in the open-file table. This pointer, not the actual
file name, is used in all I/0 operations, avoiding any further searching and
simplifying the system-call interface.

The implementation of the open() and close() operations is more
complicated in an environment where several processes may open the file
simultaneously. This may occur in a system~ where several different applications
open the same file at the same time. Typically, the operating system uses two
levels of internal tables: a per-process table and a system-wide table. The per
process table tracks all files that a process has open. Stored in this table is
information regarding the use of the file by the process. For instance, the
current file pointer for each file is found here. Access rights to the file and
accounting information can also be included.

Each entry in the per-process table in turn points to a system-wide open-file
table. The system-wide table contains process-independent information, such
as the location of the file on disk, access dates, and file size. Once a file has been
opened by one process, the system-wide table includes an entry for the file.

10.1 425

When another process executes an open() calt a new entry is simply added
to the process's open-file table pointing to the appropriate entry in the system
wide table. Typically, the open-file table also has an open count associated with
each file to indicate how ncany processes have the file open. Each close()
decreases this open count, and when the open count reaches zero, the file is no
longer in use, and the file's entry is removed from the open-file table.

In summary, several pieces of information are associated with an open file.

File pointer. On systems that do not include a file offset as part of the
read() and write() system calls, the systein must track the last read
write location as a current-file-position pointer. This pointer is unique to
each process operating on the file and therefore must be kept separate from
the on-disk file attributes.

File-open count. As files are closed, the operating system must reuse its
open-file table entries, or it could run out of space in the table. Because
multiple processes may have opened a file, the system must wait for the
last file to close before removing the open-file table entry. The file-open
counter tracks the number of opens and closes and reaches zero on the last
close. The system can then remove the entry.

Disk location of the file. Most file operations require the system to modify
data within the file. The information needed to locate the file on disk is
kept in memory so that the system does not have to read it from disk for
each operation.

Access rights. Each process opens a file in an access mode. This information
is stored on the per-process table so the operating system can allow or deny
subsequent I/0 requests.

Some operating systems provide facilities for locking an open file (or
sections of a file). File locks allow one process to lock a file and prevent other
processes from gaining access to it. File locks are useful for files that are shared
by several processes-for example, a system log file that can be accessed and
modified by a number of processes in the system.

FILE LOCKING IN JAVA

In the Java. API, acquiring a. lock requires firstobtaini:ng the F:i..leChannel
fbr thefile to be locked. The loc;k() method of the FileChannel is. used to
acquir(o the lock. The API of the lock() ·method is

FileLock lock{l.ong begin, long end, l;>ooleqn shared)

where begin and end are the h:~gi1iningand ending positions of the region
being locked. Settingshared to true isfb~ shared locks; setting shared
to false acquires the lock exclusively. Tice lock is released by invoking the
release () of the FileLock returned by the lock (} operati?n.

The program in Figure 10.1 illusttates file locking in Java, This program
acquires two locks on thefilefile .. txt>The first half of.the file is acquired as an
exclusive lock~ the lock for the second half is a shared lock.

426 Chapter 10

File locks provide functionality similar to reader-writer locks, covered in
Section 6.6.2. A shared lock is akin to a reader lock in that several processes
can acquire the lock concurrently. An exclusive lock behaves like a writer lock;
only one process at a time can acquire such a lock. It is important to note

10.1 427

that not aU operating systems provide both types of locks; some systems only
provide exclusive file locking.

Furthermore, operating systems may provide either mandatory or advi
sory file-locking mechanisms. If a lock is n1.andatory, then once a process
acquires an exclusive lock, the operating system will prevent any other process
from accessing the locked file. For example, assume a process acquires an
exclusive lock on the file system .log. If we attempt to open system .log
from another process-for example, a text editor-the operating system will
prevent access until the exclusive lock is released. This occurs even if the text
editor is not written explicitly to acquire the lock. Alternatively, if the lock
is advisory, then the operating system will not prevent the text editor from
acquiring access to system .log. Rather, the text editor must be written so that
it manually acquires the lock before accessing the file. In other words, if the
locking scheme is mandatory, the operating system ensures locking integrity.
For advisory locking, it is up to software developers to ensure that locks are
appropriately acquired and released. As a general rule, Windows operating
systems adopt mandatory locking, and UNIX systems employ advisory locks.

The use of file locks requires the same precautions as ordinary process
synchronization. For example, programmers developing on systems with
mandatory locking must be careful to hold exclusive file locks only while
they are accessing the file; otherwise, they will prevent other processes from
accessing the file as well. Furthermore, some measures must be taken to ensure
that two or more processes do not become involved in a deadlock while trying
to acquire file locks.

10.1.3 File Types

When we design a file system-indeed, an entire operating system-we
always consider whether the operating system should recognize and support
file types. If an operating system recognizes the type of a file, it can then operate
on the file in reasonable ways. For example, a common mistake occurs when a
user tries to print the binary-object form of a program. This attempt normally
produces garbage; however, the attempt can succeed if the operating system
has been told that the file is a binary-object program.

A common technique for implementing file types is to include the type as
part of the file name. The name is split into two parts-a name and an extension,
usually separated by a period character (Figure 10.2). In this way, the user and
the operating system can tell from the name alone what the type of a file is.
For example, most operating systems allow users to specify a file name as a
sequence of characters followed by a period and terminated by an extension of
additional characters. File name examples include resume.doc, Server.java, and
ReaderThread. c.

The system uses the extension to indicate the type of the file and the type
of operations that can be done on that file. Only a file with a .com, .exe, or .bat
extension can be executed, for instance. The .com and .exe files are two forms of
binary executable files, whereas a .bat file is a containing, in ASCII
format, commands to the operating system. MS-DOS recognizes only a few
extensions, but application programs also use extensions to indicate file types
in which they are interested. For example, assemblers expect source files to have
an .asm extension, and the Microsoft Word word processor expects its files to

428 Chapter 10

!}:iSnl~1:f'"-~·:,.·j\·. ir~i:tJI ~·· .~.: "''' r,~~:r:::~ ·;· ,'u:~rt~tt~~·~ .. ~\ •·· ... · ... ·.·••·. :'·'>·~··· :. ':·:•c •··
executable exe, com, bin ready~to-run machine-

or none language program

object obj, o compiled, machine
language, not linked

source code c, cc, java, pas, source code in various
asm, a languages

batch bat, sh commands to the command
interpreter

text txt, doc textual data, documents

wo rdprocessor wp,tex, rtf, various wordcprocessor
doc formats

library lib, a, so, dll libraries o.troutines for
.programmers

print or view ps, pdf, jpg ASCII or binary file in a
format for printing or
viewing

archive arc, zip, .tar 1·· related files grouped into
.one file,sometimes com-
pressed, for archiving
or storage

multimedia mpeg, mov, rm, binary file containing
mp3, avi audio or A/V information

Figure 10.2 Common file types.

end with a .doc extension. These extensions are not required, so a user may
specify a file without the extension (to save typing), and the application will
look for a file with the given name and the extension it expects. Because these
extensions are not supported by the operating system, they can be considered
as "hints" to the applications that operate on them.

Another example of the utility of file types comes from the TOPS-20
operating system. If the user tries to execute an object program whose source file
has been modified (or edited) since the object file was produced, the source file
will be recompiled automatically. This function ensures that the user always
runs an up-to-date object file. Otherwise, the user could waste a significant
amount of time executing the old object file. For this function to be possible,
the operating system must be able to discriminate the source file from the
object file, to check the time that each file was created or last modified, and
to determine the language of the source program (in order to use the correct
compiler).

Consider, too, the Mac OS X operating system. In this system, each file has
a type, such as TEXT (for text file) or APPL (for application). Each file also has
a creator attribute containing the name of the program that created it. This
attribute is set by the operating system during the create() call, so its use
is enforced and supported by the system. For instance, a file produced by a
word processor has the word processor's name as its creator. When the user
opens that file, by double-clicking the mouse on the icon representing the file,

10.1 429

the word processor is invoked automatically, and the file is loaded, ready to be
edited.

The UNIX system uses a crude stored at the beginning of
some files to indicate roughly the type of the file-executable program, batch
file (or PostScript file, and so on. Not all files have magic numbers,
so system features cannot be based solely on this information. UNIX does not
record the name of the creating program, either. UNIX does allow file-name
extension hints, but these extensions are neither enforced nor depended on by
the operating system; they are meant mostly to aid users in determining what
type of contents the file contains. Extensions can be used or ignored by a given
application, but that is up to the application's programmer.

10.1.4 File Structure

File types also can be used to indicate the internal structure of the file. As
mentioned in Section 10.1.3, source and object files have structures that match
the expectations of the programs that read them. Further, certain files must
conform to a required structure that is understood by the operating system. For
example, the operating system requires that an executable file have a specific
structure so that it can determine where in memory to load the file and what
the location of the first instruction is. Some operating systems extend this idea
into a set of system-supported file structures, with sets of special operations
for manipulating files with those structures. For instance, DEC's VMS operating
system has a file system that supports three defined file structures.

This point brings us to one of the disadvantages of having the operating
system support multiple file structures: the resulting size of the operating
system is cumbersome. If the operating system defines five different file
structures, it needs to contain the code to support these file structures.
In addition, it may be necessary to define every file as one of the file
types supported by the operating system. When new applications require
information structured in ways not supported by the operating system, severe
problems may result.

For example, assume that a system supports two types of files: text files
(composed of ASCII characters separated by a carriage return and line feed)
and executable binary files. Now, if we (as users) want to define an encrypted
file to protect the contents from being read by unauthorized people, we may
find neither file type to be appropriate. The encrypted file is not ASCII text lines
but rather is (apparently) random bits. Although it may appear to be a binary
file, it is not executable. As a result, we may have to circumvent or misuse the
operating system's file-type mechanism or abandon our encryption scheme.

Some operating systems impose (and support) a minimal number of file
structures. This approach has been adopted in UNIX, MS-DOS, and others. UN1X
considers each file to be a sequence of 8-bit bytes; no interpretation of these bits
is made by the operating systen'l. This scheme provides maximum flexibility
but little support. Each application program must include its own code to
interpret an input file as to the appropriate structure. However, all operating
systems must support at least one structure-that of an executable file-so
that the system is able to load and run programs.

The Macintosh operating system also supports a minimal number of
file structures. It expects files to contain two parts: a and a

430 Chapter 10

10.2

The resource fork contains information of interest to the user.
For instance, it holds the labels of any buttons displayed by the program.
A foreign user may want to re-label these buttons in his own language, and
the Macintosh operating system provides tools to allow modification of the
data in the resource fork. The data fork contains program code or data-the
traditional file contents. To accomplish the same task on a UNIX or MS-DOS
system, the programmer would need to change and recompile the source code,
unless she created her own user-changeable data file. Clearly, it is useful for
an operating system to support structures that will be used frequently and
that will save the programmer substantial effort. Too few structures make
programming inconvenient, whereas too many cause operating-system bloat
and programmer confusion.

10.1.5 Internal File Structure

Internally, locating an offset within a file can be complicated for the operating
system. Disk systems typically have a well-defined block size determined by
the size of a sector. All disk I/0 is performed in units of one block (physical
record), and all blocks are the same size. It is unlikely that the physical record
size will exactly match the length of the desired logical record. Logical records
may even vary in length. Paddng a number of logical records into physical
blocks is a common solution to this problem.

For example, the UNIX operating system defines all files to be simply
streams of bytes. Each byte is individually addressable by its offset from the
begi1ming (or end) of the file. In this case, the logical record size is 1 byte. The
file system automatically packs and unpacks bytes into physical disk blocks
say, 512 bytes per block-as necessary.

The logical record size, physical block size, and packing technique deter
mine how many logical records are in each physical block. The packing can be
done either by the user's application program or by the operating system. In
either case, the file may be considered a sequence of blocks. All the basic I/O
functions operate in terms of blocks. The conversion from logical records to
physical blocks is a relatively simple software problem.

Because disk space is always allocated in blocks, some portion of the last
block of each file is generally wasted. If each block were 512 bytes, for example,
then a file of 1,949 bytes would be allocated four blocks (2,048 bytes); the last
99 bytes would be wasted. The waste incurred to keep everything in units
of blocks (instead of bytes) is All file systems suffer
from internal fragmentation; the larger the block size, the greater the internal
fragmentation.

Files store information. When it is used, this information must be accessed and
read into computer memory. The information in the file can be accessed in
several ways. Some systems provide only one access method for files. Other
systems, such as those of IBM, support many access methods, and choosing the
right one for a particular application is a major design problem.

10.2 431

beginning
current position

end

<];:::::,,,===, rewind~ read or write~

Figure 10.3 Sequential-access file.

10.2.1 Sequential Access

The simplest access method is . Information in the file is
processed in order, one record after the other. This mode of access is by far the
most common; for example, editors and compilers usually access files in this
fashion.

Reads and writes make up the bulk of the operations on a file. A read
operation-read next-reads the next portion of the file and automatically
advances a file pointer, which tracks the I/O location. Similarly, the write
operation-write next-appends to the end of the file and advances to the
end of the newly written material (the new end of file). Such a file can be reset
to the beginning; and on some systems, a program may be able to skip forward
or backward n records for some integer n-perhaps only for n = 1. Sequential
access, which is depicted in Figure 10.3, is based on a tape model of a file and
works as well on sequential-access devices as it does on random-access ones.

10.2.2 Direct Access

(or A file is made up of fixed-
length that allow programs to read and write records rapidly
in no particular order. The direct-access method is based on a disk model of
a file, since disks allow random access to any file block. For direct access, the
file is viewed as a numbered sequence of blocks or records. Thus, we may read
block 14, then read block 53, and then write block 7. There are no restrictions
on the order of reading or writing for a direct-access file.

Direct-access files are of great use for immediate access to large amounts
of information. Databases are often of this type. When a query concerning a
particular subject arrives, we compute which block contains the answer and
then read that block directly to provide the desired information.

As a simple example, on an airline-reservation system, we might store all
the information about a particular flight (for example, flight 713) in the block
identified by the flight number. Thus, the number of available seats for flight
713 is stored in block 713 of the reservation file. To store il1formation about a
larger set such as people, we might compute a hash function on the people's
names or search a small in-ncemory index to determine a block to read and
search.

For the direct-access method, the file operations must be modified to
include the block number as a parameter. Thus, we have read n, where n is
the block number, rather than read next, and ·write n rather than write next. An
alternative approach is to retain read next and write next, as with sequential

432 Chapter 10

Figure 10.4 Simulation of sequential access on a direct-access file.

access, and to add an operation position file to n, where n is the block number.
Then, to effect a read n, we would position to n and then read next.

The block number by the user to the operating system is normally
a A relative block number is an index relative to the
begirm.ing of the file. Thus, the first relative block of the file is 0, the next is
1, and so on, even though the absolute disk address may be 14703 for the
first block and 3192 for the second. The use of relative block numbers allows
the operating system to decide where the file should be placed (called the
allocation problem, as discussed in Chapter 11) and helps to prevent the user
from accessing portions of the file system that may not be part of her file. Some
systems start their relative block numbers at 0; others start at 1.

How, then, does the system satisfy a request for record Nina file? Assuming
we have a logical record length L, the request for record N is turned into an I/0
request for L bytes starting at location L * (N) within the file (assuming the first
record is N = 0). Since logical records are of a fixed size, it is also easy to read,
write, or delete a record.

Not all operating systems support both sequential and direct access for
files. Some systems allow only sequential file access; others allow only direct
access. Some systems require that a file be defined as sequential or direct when
it is created; such a file can be accessed only in a manner consistent with its
declaration. We can easily simulate sequential access on a direct-access file by
simply keeping a variable cp that defines our current position, as shown in
Figure 10.4. Simulating a direct-access file on a sequential-access file, however,
is extremely inefficient and clumsy.

10.2.3 Other Access Methods

Other access methods can be built on top of a direct-access method. These
methods generally involve the construction of an index for the file. The
like an index in the back of a contains pointers to the various blocks. To
find a record in the file, we first search the index and then use the to
access the file directly and to find the desired record.

For example, a retail-price file might list the universal codes (UPCs)
items, with the associated prices. Each record consists a 10-digit UPC and

a 6-digit price, a 16-byte record. If our disk has 1,024 bytes per we
can store 64 records per block. A file of 120,000 records would occupy about
2,000 blocks (2 million bytes). By keeping the file sorted by UPC, we can define
an index consisting of the first UPC in each block. This index would have
entries of 10 digits each, or 20,000 bytes, and thus could be kept in memory. To

10.3

10.3 433

logical record
last name number

Adams

Arthur

Asher • sm!th,jol:iR!social~security[age

. / •
e

..... smith ·· .'. '<:/

index file relative file

Figure 10.5 Example of iRdex and relative files.

find the price of a particular item, we can make a binary search of the index.
From this search, we learn exactly which block contains the desired record and
access that block. This structure allows us to search a large file doing little I/0.

With large files, the index file itself may become too large to be kept in
memory. One solution is to create an index for the index file. The primary
index file would contain pointers to secondary index files, which would point
to the actual data items.

For example, IBM's indexed sequential-access method (ISAM) uses a small
master index that points to disk blocks of a secondary index. The secondary
index blocks point to the actual file blocks. The file is kept sorted on a defined
key. To find a particular item, we first make a binary search of the master index,
which provides the block number of the secondary index. This block is read
in, and again a binary search is used to find the block containing the desired
record. Finally, this block is searched sequentially. In this way, any record can
be located from its key by at most two direct-access reads. Figure 10.5 shows a
similar situation as implemented by VMS index and relative files.

Next, we consider how to store files. Certainly, no general-purpose computer
stores just one file. There are typically thousand, millions, and even billions
of files within a computer. Files are stored on random-access storage devices,
including hard disks, optical disks, and solid state (memory-based) disks.

A storage device can be used in its entirety for a file system. It can also be
subdivided for finer-grained control. For example, a disk can be
into quarters, and each quarter can hold a file system. Storage devices can also
be collected together into RAID sets that provide protection from the failure of
a single disk (as described in Section 12.7). Sometimes, disks are subdivided
and also collected into RAID sets.

Partitioning is useful for limiting the sizes of individual file systems,
putting multiple file-system types on the same device, or leaving part of the
device available for other uses, such as swap space or unformatted (rz;c:.v) disk

434 Chapter 10

directory . directory

partition A
files disk 2

1-7--~~···~ disk 1
directory partition C

files

partition B
files

disk 3

Figure 10.6 A typical file-system organization.

space. Partitions are also known as or (in the IBM world) A file
system can be created on each of these parts of the disk. Any entity containing
a file system is generally known as a The volume may be a subset
of a device, a whole device, or multiple devices linked together into a RAID
set. Each volume can be thought of as a virtual disk. Volumes can also store
multiple operating systems, allowing a system to boot and run more than one
operating system.

Each volume that contains a file system must also contain information
about the files in the system. This information is kept in entries in a

or ~ The device directory (more commonly
known simply as that records information -such as name, location,
size, and type-for all files on that volume. Figure 10.6 shows a typical
file-system organization.

10.3.1 Storage Structure

As we have just seen, a general-purpose computer system has multiple storage
devices, and those devices can be sliced up into volumes that hold file systems.
Computer systems may have zero or more file systems, and the file systems
may be of varying types. For example, a typical Solaris system may have dozens
of file systems of a dozen different types, as shown in the file system list in
Fig1-1re 10.7.

In this book, we consider only general-purpose file systems. It is worth
noting, though, that there are many special-purpose file systems. Consider the
types of file systems in the Solaris example mentioned above:

tmpfs-a "temporary" file system. that is created in volatile main memory
and has its contents erased if the system reboots or crashes

objfs-a "virtual" file system (essentially an interface to the kernel that
looks like a file system) that gives debuggers access to kernel symbols

dfs-a virtual file system that maintains "contract" information to manage
which processes start when the system boots and must continue to run
during operation

10.3 435

I ufs
/devices devfs
/dev dev
I system/ contract ctfs
/proc proc
/etc/mnttab mntfs
I etc/ svc/volatile tmpfs
I system/ object objfs
/lib /libc.so.l lofs
/dev/fd fd
/var ufs
/tmp tmpfs
/var/run tmpfs
/opt ufs
/zpbge zfs
I zpbge/backup zfs
I export/home zfs
/var/mail zfs
/var/spool/Inqueue zfs
/zpbg zfs
/zpbg/zones zfs

Figure 10.7 Solaris File System.

lofs-a "loop back" file system that allows one file system to be accessed
in place of another one

prods-a virtual file system that presents information on all processes as
a file system

ufs, zfs-general-purpose file systems

The file systems of computers, then, can be extensive. Even within a file
system, it is useful to segregate files into groups and manage and act on those
groups. This organization involves the use of directories. In the remainder of
this section, we explore the topic of directory structure.

10.3.2 Directory Overview

The directory can be viewed as a symbol table that translates file names into
their directory entries. If we take such a view, we see that the directory itself
can be organized in many ways. We want to be able to insert entries, to delete
entries, to search for a named entry, and to list all the entries in the directory.
In this section, we examine several schemes for defining the logical structure
of the directory system.

When considering a particular directory structure, we need to keep in mind
the operations that are to be performed on a directory:

Search for a file. We need to be able to search a directory structure to find
the entry for a particular file. Since files have symbolic names, and similar

436 Chapter 10

names may indicate a relationship between files, we may want to be able
to find all files whose names match a particular pattern.

Create a file. New files need to be created and added to the directory.

Delete a file. When a file is no longer needed, we want to be able to remove
it from the directory.

List a directory. We need to be able to list the files in a directory and the
contents of the directory entry for each file in the list.

Rename a file. Because the name of a file represents its contents to its users,
we must be able to change the name when the contents or use of the file
changes. Renaming a file may also allow its position within the directory
structure to be changed.

Traverse the file system. We may wish to access every directory and every
file within a directory structure. For reliability, it is a good idea to save the
contents and structure of the entire file system at regular intervals. Often,
we do this by copyin.g all files to magn.etic tape. This technique provides a
backup copy in case of system failure. In addition, if a file is no longer in
use, the file can be copied to tape and the disk space of that file released
for reuse by another file.

In. the following sections, we describe the most common schemes for defining
the logical structure of a directory.

10.3.3 Single-level Directory

The simplest directory structure is the single-level directory. All files are
contained in the same directory, which is easy to support and understand
(Figure 10.8).

A single-level directory has significant limitations, however, when the
number of files increases or when the system has more than one user. Since all
files are in the same directory, they must have unique names. If two users call
their data file test, then the unique-name rule is violated. For example, in one
programming class, 23 students called the program for their second assignment
prog2; another 11 called it assign2. Although file names are generally selected to
reflect the content of the file, they are often limited in length, complicating the
task of making file names unique. The MS-DOS operating system allows only
11-character file names; UNIX, in contrast, allows 255 characters.

Even a single user on a single-level directory may find it difficult to
remember the names of all the files as the number of files increases. It is not

directory

files

Figure 10.8 Single-level directory.

10.3 437

uncommon for a user to have hundreds of files on one computer system and an
equal number of additional files on another system. Keeping track of so many
files is a daunting task.

10.3.4 Two-Level Directory

As we have seen, a single-level directory often leads to confusion of file names
among different users. The standard solution is to create a separate directory
for each user.

In the two-level directory structure, each user has his own
The UFDs have similar structures, but each lists only the files

of a single user. W11en a user job starts or a user logs in, the system's
is searched. The MFD is indexed by user name or account

number, and each entry points to the UFD for that user (Figure 10.9).
When a user refers to a particular file, only his own UFD is searched. Thus,

different users may have files with the same name, as long as all the file names
within each UFD are unique. To create a file for a user, the operating system
searches only that user's UFD to ascertain whether another file of that name
exists. To delete a file, the operating system confines its search to the local UFD;
thus, it cannot accidentally delete another user's file that has the same name.

The user directories themselves must be created and deleted as necessary.
A special system program is run with the appropriate user name and account
information. The program creates a new UFD and adds an entry for it to the MFD.
The execution of this program might be restricted to system administrators. The
allocation of disk space for user directories can be handled with the teduciques
discussed in Chapter 11 for files themselves.

Although the two-level directory structure solves the name-collision prob
lem, it still has disadvantages. This structure effectively isolates one user from
another. Isolation is an advantage when the users are completely independent
but is a disadvantage when the users want to cooperate on some task and to
access one another's files. Some systems simply do not allow local user files to
be accessed by other users.

If access is to be pennitted, one user must have the ability to name a file
in another user's directory. To name a particular file "Lmiquely in a two-level
directory, we must give both the user name and the file name. A two-level
directory can be thought of as a tree, or an inverted tree, of height 2. The root
of the tree is the MFD. Its direct descendants are the UFDs. The descendants of

user file
directory

Figure i 0.9 Two-level directory structure.

438 Chapter 10

the UFDs are the files themselves. The files are the leaves of the tree. Specifying
a user name and a file name defines a path in the tree from the root (the MFD)
to a leaf (the specified file). Thus, a user name and a file name define a path
name. Every file in the system has a path name. To name a file uniquely, a user
must know the path name of the file desired.

For example, if user A wishes to access her own test file named test, she can
simply refer to test. To access the file named test of user B (with directory-entry
name userb), however, she might have to refer to /userb/test. Every system has
its own syntax for naming files in directories other than the user's own.

Additional syntax is needed to specify the volume of a file. For instance,
in MS-DOS a volume is specified by a letter followed by a colon. Thus, a file
specification might be C:\userb\fest. Some systems go even further and separate
the volume, directory name, and file name parts of the specification. For
instance, in VMS, the file login.com might be specified as: u:[sst.jdeck]login.com;l,
where u is the name of the volume, sst is the name of the directory, jdeck is the
name of the subdirectory, and 1 is the version number. Other systems simply
treat the volume name as part of the directory name. The first name given is
that of the volume, and the rest is the directory and file. For instance, /u/pbg/test
might specify volume u, directory pbg, and file test.

A special case of this situation occurs with the system files. Programs pro
vided as part of the system -loaders, assemblers, compilers, utility routines,
libraries, and so on-are generally defined as files. When the appropriate
commands are given to the operating system, these files are read by the loader
and executed. Many command interpreters simply treat such a command as the
name of a file to load and execute. As the directory system is defined presently,
this file name would be searched for in the current UFD. One solution would
be to copy the system files into each UFD. However, copying all the system files
would waste an enormous amount of space. (If the system files require 5 MB,
then supporting 12 users would require 5 x 12 == 60 MB just for copies of the
system files.)

The standard solution is to complicate the search procedure slightly. A
special user directory is defined to contain the system files (for example, user
0). Whenever a file name is given to be loaded, the operating system first
searches the local UFD. If the file is found, it is used. If it is not found, the system
automatically searches the special user directory that contains the system files.
The sequence of directories searched when a file is named is called the

. The search path can be extended to contain an unlimited list of directories
to search when a command name is given. This method is the one most used
in UNIX and MS-DOS. Systems can also be designed so that each user has his
own search path.

10.3.5 Tree-Structured Directories

Once we have seen how to view a two-level directory as a two-level tree,
the natural generalization is to extend the directory structure to a tree of
arbitrary height (Figure 10.10). This generalization allows users to create their
own subdirectories and to organize their files accordingly. A tree is the most
common directory structure. The tree has a root directory, and every file in the
system has a unique path name.

10.3 439

root

ITITI
0 0

Figure i 0.10 Tree-structured directory structure.

A directory (or subdirectory) contains a set of files or subdirectories. A
directory is simply another file, but it is treated in a special way. All directories
have the same internal format. One bit in each directory entry defines the entry
as a file (0) or as a subdirectory (1). Special system calls are used to create and
delete directories.

In normal use, each process has a current directory. The
should contain most of the files that are of current interest to the process.
When reference is made to a file, the current directory is searched. If a file is
needed that is not in the current directory, then the user usually must either
specify a path name or change the current directory to be the directory holding
that file. To change directories, a system call is provided that takes a directory
name as a parameter and uses it to redefine the current directory. Thus, the
user can change his current directory whenever he desires. From one change
directory system call to the next, all open system calls search the current
directory for the specified file. Note that the search path may or may not
contain a special entry that stands for "the current directory."

The initial current directory of the login shell of a user is designated when
the user job starts or the user logs in. The operating system searches the
accounting file (or some other predefined location) to find an entry for this
user (for accounting purposes). In the accounting file is a pointer to (or the
name of) the user's initial directory. This pointer is copied to a local variable
for this user that specifies the user's initial current directory. From that shell,
other processes can be spawned. The current directory of any subprocess is
usually the current directory of the parent when it was spawned.

Path names can be of two types: absolute and relative. An
begins at the root and follows a down to the specified file, giving

the directory names on the path. A defi11es a path from the
current directory. For example, in the tree-structured file system of Figure 10.10,

440 Chapter 10

if the current directory is root/spell/mail, then the relative path nan<e prt/jirst
refers to the same file as does the absolute path name root/spell/mail/prt/jirst.

Allowing a user to define her own subdirectories permits her to impose
a structure on her files. This structure might result in separate directories for
files associated with different topics (for example, a subdirectory was created
to hold the text of this book) or different forms of information (for example, the
directory programs may contain source programs; the directory bin may store
all the binaries).

An interesting policy decision in a tree-structured directory concerns how
to handle the deletion of a directory. If a directory is empty, its entry in the
directory that contains it can simply be deleted. However, suppose the directory
to be deleted is not ernpty but contains several files or subdirectories. One of
two approaches can be taken. Some systems, such as MS-DOS, will not delete a
directory unless it is empty. Thus, to delete a directory, the user must first delete
all the files in that directory. If any subdirectories exist this procedure must
be applied recursively to them, so that they can be deleted also. This approach
can result in a substantial amount of work. An alternative approach, such as
that taken by the UNIX rm command, is to provide an option: when a request is
made to delete a directory, all that directory's files and subdirectories are also
to be deleted. Either approach is fairly easy to implement; the choice is one
of policy. The latter policy is more convenient, but it is also more dangerous,
because an entire directory structure can be removed with one command. If
that command is issued in error, a large number of files and directories will
need to be restored (assuming a backup exists).

With a tree-structured directory system, users can be allowed to access, in
addition to their files, the files of other users. For example, user B can access a
file of user A by specifying its path names. User B can specify either an absolute
or a relative path name. Alternatively, user B can change her current directory
to be user A's directory and access the file by its file names.

A path to a file in a tree-struch1red directory can be longer than a path
in a two-level directory. To allow users to access programs without having to
remember these long paths, the Macintosh operating system automates the
search for executable programs. One method it uses is to maintain a file, called
the Desktop File, containing the metadata code and the name and location
of all executable programs it has seen. When a new hard disk is added to the
system, or the network is accessed, the operating system traverses the directory
structure, searching for executable programs on the device and recording the
pertinent information. This mechanism supports the double-dick execution
functionality described previously. A double-dick on a file causes its creator
attribute data to be read and the Desktop File to be searched for a match. Once
the match is found, the appropriate executable program is started with the
clicked-on file as its input.

10.3.6 Acyclic-Graph Directories

Consider two programmers who are working on a joint project. The files asso
ciated with that project can be stored in a subdirectory, separating them from
other projects and files of the two programmers. But since both programmers
are equally responsible for the project, both want the subdirectory to be in

10.3 Directory and Disk Structure 441

Figure 10.11 Acyclic-graph directory structure.

their own directories. The common subdirectory should be shared. A shared
directory or file will exist in the file system in two (or more) places at once.

A tree structure prohibits the sharing of files or directories. An acyclic graph
-that is, a graph with no cycles-allows directories to share subdirectories
and files (Figure 10.11). The same file or subdirectory may be in two different
directories. The acyclic graph is a natural generalization of the tree-structured
directory scheme.

It is important to note that a shared file (or directory) is not the same as two
copies of the file. With two copies, each programmer can view the copy rather
than the original, but if one programmer changes the file, the changes will not
appear in the other's copy. With a shared file, only one actual file exists, so any
changes made by one person are immediately visible to the other. Sharing is
particularly important for subdirectories; a new file created by one person will
automatically appear in all the shared subdirectories.

When people are working as a team, all the files they want to share can be
put into one directory. The UFD of each team member will contain this directory
of shared files as a subdirectory. Even in the case of a single user, the user's file
organization may require that some file be placed in different subdirectories.
For example, a program written for a particular project should be both in the
directory of all programs and in the directory for that project.

Shared files and subdirectories can be implemented in several ways. A
common way, exemplified by many of the UNIX systems, is to create a new
directory entry called a link. A link is effectively a pointer to another file
or subdirectory. For example, a link may be implemented as an absolute or a
relative path name. When a reference to a file is made, we search the directory. If
the directory entry is marked as a link, then the name of the real file is included
in the link information. We resolve the link by using that path name to locate
the real file. Links are easily identified by their format in the directory entry
(or by having a special type on systems that support types) and are effectively

442 Chapter 10

indirect pointers. The operating system ignores these links when traversing
directory trees to preserve the acyclic structure of the system.

Another common approach to implementing shared files is simply to
duplicate all information about them in both sharing directories. Thus, both
entries are identical and equal. Consider the difference between this approach
and the creation of a link. The link is clearly different from the original directory
entry; thus, the two are not equal. Duplicate directory entries, however, make
the original and the copy indistinguishable. A major problem with duplicate
directory entries is maintaining consistency when a file is modified.

An acyclic-graph directory structure is more flexible than is a simple tree
structure, but it is also more complex. Several problems must be considered
carefully. A file may now have multiple absolute path names. Consequently,
distinct file names may refer to the same file. This situation is similar to the
aliasing problem for programming languages. If we are trying to traverse the
entire file system-to find a file, to accumulate statistics on all files, or to copy
all files to backup storage-this problem becomes significant, since we do not
want to traverse shared structures more than once.

Another problem involves deletion. When can the space allocated to a
shared file be deallocated and reused? One possibility is to remove the file
whenever anyone deletes it, but this action may leave dangling pointers to the
now-nonexistent file. Worse, if the remaining file pointers contain actual disk
addresses, and the space is subsequently reused for other files, these dangling
pointers may point into the middle of other files.

In a system where sharing is implemented by symbolic links, this situation
is somewhat easier to handle. The deletion of a link need not affect the original
file; only the link is removed. If the file entry itself is deleted, the space for
the file is deallocated, leaving the links dangling. We can search for these links
and remove them as well, but unless a list of the associated links is kept with
each file, this search can be expensive. Alternatively, we can leave the links
until an attempt is made to use them. At that time, we can determine that the
file of the name given by the link does not exist and can fail to resolve the
link name; the access is treated just as with any other illegal file name. (In this
case, the system designer should consider carefully what to do when a file is
deleted and another file of the same name is created, before a symbolic link to
the original file is used.) In the case of UNIX, symbolic links are left when a file
is deleted, and it is up to the user to realize that the orig:llcal file is gone or has
been replaced. Microsoft Windows (all flavors) uses the same approach.

Another approach to deletion is to preserve the file until all references to
it are deleted. To implement this approach, we must have some mechanism
for determining that the last reference to the file has been deleted. We could
keep a list of all references to a file (directory entries or symbolic links). When
a link or a copy of the directory entry is established, a new entry is added to
the file-reference list. When a link or directory entry is deleted, we remove its
entry on the list. The file is deleted when its file-reference list is empty.

The trouble with this approach is the variable and potentially large size of
the file-reference list. However, we really do not need to keep the entire list
-we need to keep only a count of the number of references. Adding a new
link or directory entry increments the reference count; deleting a link or entry
decrements the count. When the count is 0, the file can be deleted; there are
no remaining references to it. The UNIX operating system uses this approach

10.3 443

for nonsymbolic links (or keeping a reference count in the file
information block (or inode; see Appendix A.7.2). By effectively prohibiting
multiple references to directories, we maintain an acyclic-graph structure.

To avoid problems such as the ones just discussed, some systems do
not allow shared directories or links. For example, in MS-DOS, the directory
structure is a tree structure rather than an acyclic graph.

10.3.7 General Graph Directory

A serious problem with using an acyclic-graph structure is ensuring that there
are no cycles. If we start with a two-level directory and allow users to create
subdirectories, a tree-structured directory results. It should be fairly easy to see
that simply adding new files and subdirectories to an existing tree-structured
directory preserves the tree-structured nature. Howeve1~ when we add links,
the tree structure is destroyed, resulting in a simple graph structure (Figure
10.12).

The primary advantage of an acyclic graph is the relative simplicity of the
algorithms to traverse the graph and to determine when there are no more
references to a file. We want to avoid traversing shared sections of an acyclic
graph twice, mainly for performance reasons. If we have just searched a major
shared subdirectory for a particular file without finding it, we want to avoid
searching that subdirectory again; the second search would be a waste of time.

If cycles are allowed to exist in the directory, we likewise want to
avoid searching any component twice, for reasons of correctness as well as
performance. A poorly designed algorithm might result in an infinite loop
continually searching through the cycle and never terminating. One solution
is to limit arbitrarily the number of directories that will be accessed during a
search.

A similar problem exists when we are trying to determine when a file
can be deleted. With acyclic-graph directory structures, a value of 0 in the
reference count means that there are no more references to the file or directory,

Figure 10.12 General graph directory.

444 Chapter 10

10.4

and the file can be deleted. However, when cycles exist, the reference count
may not be 0 even when it is no longer possible to refer to a directory or file.
This anomaly results from the possibility of self-referencing (or a cycle) in the
directory structure. In this case, we generally need to use a garbage-collection
scheme to determine when the last reference has been deleted and the disk
space can be reallocated. Garbage collection involves traversing the entire file
system, marking everything that can be accessed. Then, a second pass collects
everything that is not marked onto a list of free space. (A similar marking
procedure can be used to ensure that a traversal or search will cover everything
in the file system once and only once.) Garbage collection for a disk-based file
system, however, is extremely time consuming and is thus seldom attempted.

Garbage collection is necessary only because of possible cycles in the graph.
Thus, an acyclic-graph structure is much easier to work with. The difficulty
is to avoid cycles as new links are added to the structure. How do we know
when a new lir1k will complete a cycle? There are algorithms to detect cycles
in graphs; however, they are computationally expensive, especially when the
graph is on disk storage. A simpler algorithm in the special case of directories
and links is to bypass links during directory traversal. Cycles are avoided, and
no extra overhead is incurred.

Just as a file must be opened before it is used, a file system must be mounted before
it can be available to processes on the system. More specifically, the directory
structure may be built out of multiple volumes, which must be mounted to
make them available within the file-system name space.

The mount procedure is straightforward. The operating system is given the
name of the device and the location within the file structure
where the file system is to be attached. Some operating systems require that a
file system type be provided, while others inspect the structures of the device
and determine the type of file system. Typically, a mount point is an empty
directory. For instance, on a UNIX system, a file system containing a user's home
directories might be mounted as /home; then, to access the directory structure
within that file system, we could precede the directory names with /home, as
in /home/jane. Motmting that file system under /users would result in the path
name /users/jane, which we could use to reach the same directory.

Next, the operating system verifies that the device contains a valid file
system. It does so by asking the device driver to read the device directory
and verifying that the directory has the expected format. Finally, the operating
system notes in its directory structure that a file system is n1.ounted at the
specified mount point. This scheme enables the operating system to traverse
its directory structure, switching among file systems, and even file systems of
varying types, as appropriate.

To illustrate file mounting, consider the file system depicted in Figure
10.13, where the triangles represent subtrees of directories that are of interest.
Figure 10.13(a) shows an existing file system, while Figure 10.13(b) shows an
unmounted volume residing on /device/ds!c. At this point, only the files on the
existing file system can be accessed. Figure 10.14 shows the effects of mounting

10.4 File-System Mounting 445

bill

(a) (b)

Figure 10.13 File system. (a) Existing system. (b) Unmounted volume.

the volume residing on /device/dsk over /users. If the volume is unmounted, the
file system is restored to the situation depicted in Figure 10.13.

Systems impose semantics to clarify functionality. For example, a system
may disallow a mount over a directory that contains files; or it may make the
mounted file system available at that directory and obscure the directory's
existing files until the file system is unmounted, terminating the use of the file
system and allowing access to the original files in that directory. As another
example, a system may allow the same file system to be mounted repeatedly,
at different mount points; or it may only allow one mount per file system.

Consider the actions of the classic Macintosh operating system. Whenever
the system encounters a disk for the first time (hard disks are found at boot
time, and optical disks are seen when they are inserted into the drive), the
Macintosh operating system searches for a file system on the device. If it finds
one, it automatically mounts the file system at the root level, adding a folder
icon on the screen labeled with the name of the file system (as stored in the

I

Figure 10.14 Mount point.

446 Chapter 10

10.5

device directory). The user is then able to click on the icon and thus display the
newly mounted file system. Mac OS X behaves much like BSD UNIX, on which it
is based. All file systems are mounted under the /Volumes directory. The Mac
OS X GUI hides this fact and shows the file systems as if they were all mounted
at the root level.

The Microsoft Windows family of operating systems (95, 98, NT, small
2000, 2003, XP, Vista) maintains an extended two-level directory structure,
with devices and volumes assigned drive letters. Volumes have a general graph
directory structure associated with the drive letter. The path to a specific file
takes the form of drive-letter:\path \to \file. The more recent versions of Windows
allow a file system to be mounted anywhere in the directory tree, just as
UNIX does. Windows operating systems automatically discover all devices and
mount all located file systems at boot time. In some systems, like UNIX, the
mount commands are explicit. A system configuration file contains a list of
devices and mount points for automatic mounting at boot time, but other
mounts may be executed manually.

Issues concerning file system mounting are further discussed in Section
11.2.2 and in Appendix A.7.5.

In the previous sections, we explored the motivation for file sharing and some of
the difficulties involved in allowing users to share files. Such file sharing is very
desirable for users who want to collaborate and to reduce the effort required
to achieve a computing goal. Therefore, user-oriented operating systems must
accommodate the need to share files in spite of the inherent difficulties.

In this section, we examine more aspects of file sharing. We begin by
discussing general issues that arise when multiple users share files. Once
multiple users are allowed to share files, the challenge is to extend sharing to
multiple file systems, including remote file systems; we discuss that challenge
as well. Finally, we consider what to do about conflicting actions occurring on
shared files. For instance, if multiple users are writing to a file, should all the
writes be allowed to occurf or should the operating system protect the users'
actions from one another?

10.5.1 Multiple Users

When an operating system accommodates multiple users, the issues of file
sharing, file naming, and file protection become preeminent. Given a directory
structure that allows files to be shared by users, the system must mediate the
file sharing. The system can either allow a user to access the files of other users
by default or require that a user specifically grant access to the files. These are
the issues of access control and protection, which are covered in Section 10.6.

To implement sharing and protection, the system must maintain more file
and directory attributes than are needed on a single-user system. Although
many approaches have been taken to meet this requirement, most systems
have evolved to use the concepts of file (or directory) owner (or user) and group.
The owner is the user who can change attributes and grant access and who has
the most control over the file. The group attribute defines a subset of users who

10.5 447

can share access to the file. For example, the owner of a file on a UNIX system
can issue all operations on a file, while members of the file's group can execute
one subset of those operations, and all other users can execute another subset
of operations. Exactly which operations can be executed by group members
and other users is definable by the file's owner. More details on permission
attributes are included in the next section.

The owner and group IDs of a given file (or directory) are stored with the
other file attributes. When a user requests an operation on a file, the user ID can
be compared with the owner attribute to determine if the requesting user is the
owner of the file. Likewise, the group IDs can be compared. The result indicates
which permissions are applicable. The system then applies those permissions
to the requested operation and allows or denies it.

Many systems have multiple local file systems, including volumes of a
single disk or multiple volumes on multiple attached disks. In these cases,
the ID checking and permission matching are straightforward, once the file
systems are mounted.

10.5.2 Remote File Systems

With the advent of networks (Chapter 16), communication among remote
computers became possible. Networking allows the sharing of resources spread
across a campus or even around the world. One obvious resource to share is
data in the form of files.

Through the evolution of network and file technology, remote file-sharing
methods have changed. The first implemented method involves manually
transferring files between machines via programs like ftp. The second major
method uses a (DFS) in which remote directories are
visible from a local machine. In some ways, the third method, the

is a reversion to the first. A browser is needed to gain access to the
remote files, and separate operations (essentially a wrapper for ftp) are used
to transfer files.

ftp is used for both anonymous and authenticated access.
allows a user to transfer files without having an account on the remote

system. The World Wide Web uses anonymous file exchange almost exclusively.
DFS involves a much tighter integration between the machine that is accessing
the remote files and the machine providing the files. This integration adds
complexity, which we describe in this section.

10.5.2.1 The Client-Server Model

Remote file systems allow a computer to mom1.t one or more file systems
from one or more remote machines. In this case, the machine containing the
files is the server, and the machine seeking access to the files is the client. The
client-server relationship is common with networked machines. Generally,
the server declares that a resource is available to clients and specifies exactly
which resource (in this case, which files) and exactly which clients. A server
can serve multiple clients, and a client can use multiple servers, depending on
the implementation details of a given client-server facility.

The server usually specifies the available files on a volume or directory
level. Client identification is more difficult. A client can be specified
network name or other identifier, such as an IP address, but these can be

448 Chapter 10

or imitated. As a result of spoofing, an unauthorized client could be allowed
access to the server. More secure solutions include secure authentication of the
client via encrypted keys. Unfortunately, with security come many challenges,
including ensuring compatibility of the client and server (they must use the
same encryption algorithms) and security of key exchanges (intercepted keys
could again allow unauthorized access). Because of the difficulty of solving
these problems, unsecure authentication methods are most commonly used.

In the case of UNIX and its network file system (NFS), authentication takes
place via the client networking information, by default. In this scheme, the
user's IDs on the client and server must match. lf they do not, the server will
be unable to determine access rights to files. Consider the example of a user
who has an ID of 1000 on the client and 2000 on the server. A request from
the client to the server for a specific file will not be handled appropriately, as
the server will determine if user 1000 has access to the file rather than basing
the determination on the real user ID of 2000. Access is thus granted or denied
based on incorrect authentication information. The server must trust the client
to present the correct user ID. Note that the NFS protocols allow many-to-many
relationships. That is, many servers can provide files to many clients. In fact
a given machine can be both a server to some NFS clients and a client of other
NFS servers.

Once the remote file system is mounted, file operation requests are sent
on behalf of the user across the network to the server via the DFS protocol.
Typically, a file-open request is sent along with the ID of the requesting user.
The server then applies the standard access checks to determine if the user has
credentials to access the file in the mode requested. The request is either allowed
or denied. If it is allowed, a file handle is returned to the client application,
and the application then can perform read, write, and other operations on the
file. The client closes the file when access is completed. The operating system
may apply semantics similar to those for a local file-system mount or may use
different semantics.

10.5.2.2 Distributed Information Systems

To make client-server systems easier to manage,
also known as provide unified access

to the information needed for remote computing. The
provides host-name-to-network-address translations for the entire

Internet (including the World Wide Web). Before DNS became widespread,
files containing the same information were sent via e-mail or ftp between all
networked hosts. This methodology was not scalable. DNS is further discussed
in Section 16.5.1.

Other distributed information systems provide user name/password/user
ID/group ID space for a distributed facility. UNIX systems have employed a wide
variety of distributed-information methods. Sun Microsystems introduced
yellow pages (since renamed or and most of
the industry adopted its use. It centralizes storage of user names, host names,
printer information, and the like. Unfortunately, it uses unsecure authentication
methods, including sending user passwords unencrypted (in clear text) and
identifying hosts by IP address. Sun's NIS+ is a much more secure replacement
for NIS but is also much more complicated and has not been widely adopted.

10.5 449

network
information is used in conjunction with user authentication (user name and
password) to create a that the server uses to decide whether
to allow or deny access to a requested file system. For this authentication
to be valid, the user names m.u.st match from machine to machine (as with
NFS). Microsoft uses two distributed naming structures to provide a single
name space for users. The older naming technology is The newer
technology, available in Windows XP and Windows 2000, is
Once established, the distributed naming facility is used by all clients
servers to authenticate users.

The industry is moving toward use of the
as a secure distributed naming mechanism. In fact, active

is based on LDAP. Sun Microsystems includes LDAP with the
operating system and allows it to be employed for user authentication as
well as system-wide retrieval of information, such as availability of printers.
Conceivably, one distributed LDAP directory could be used by an organization
to store all user and resource information for all the organization's computers.
The result would be for users, who would enter
their authentication information once for access to all computers within the
organization. It would also ease system-administration efforts by combining,
in one location, information that is currently scattered in various files on each
system or in different distributed information services.

10.5.2.3 Failure Modes

Local file systems can fail for a variety of reasons, including failure of the
disk containing the file system, corruption of the directory structure or other
disk-management information (collectively called disk-controller
failure, cable failure, and host-adapter failure. User or system-administrator
failure can also cause files to be lost or entire directories or volumes to be
deleted. Many of these failures will cause a host to crash and an error condition
to be displayed, and human intervention will be required to repair the damage.

Remote file systems have even more failure modes. Because of the
complexity of network systems and the required interactions between remote
machines, many more problems can interfere with the proper operation of
remote file systems. In the case of networks, the network can be interrupted
between two hosts. Such interruptions can result from hardware failure, poor
hardware configuration, or networking implementation issues. Although some
networks have built-in resiliency, including multiple paths between hosts,
many do not. Any single failure can thus interrupt the flow of DFS commands.

Consider a client in the midst of using a remote file system. It has files open
from the remote host; among other activities, it may be performing directory
lookups to open files, reading or writing data to files, and closing files. Now
consider a partitioning of the network, a crash of the server, or even a scheduled
shutdown of the server. Suddenly, the remote file system is no longer reachable.
This scenario is rather common, so it would not be appropriate for the client
system to act as it would if a local file system were lost. Rather, the system can
either terminate all operations to the lost server or delay operations until the
server is again reachable. These failure semantics are defined and in<plemented
as part of the remote-file-system protocol. Termination of all operations can

450 Chapter 10

result in users' losing data-and patience. Thus, most DFS protocols either
enforce or allow delaying of file-system operations to rencote hosts, with the
hope that the remote host will become available again.

To implement this kind of recovery from failure, some kind of
may be maintained on both the client and the server. If both server

and client maintain knowledge of their current activities and open files, then
they can seamlessly recover from a failure. In the situation where the server
crashes but must recognize that it has remotely rnounted exported file systems
and opened files, NFS takes a simple approach, implementing a DFS.
In essence, it assumes that a client request for a file read or write would not
have occurred unless the file system had been remotely mounted and the file
had been previously open. The NFS protocol carries all the information needed
to locate the appropriate file and perform the requested operation. Similarly,
it does not track which clients have the exported volumes mounted, again
assuming that if a request comes in, it must be legitimate. While this stateless
approach makes NFS resilient and rather easy to implement, it also makes it
unsecure. For example, forged read or write requests could be allowed by an
NFS server even though the requisite mount request and permission check
had not taken place. These issues are addressed in the industry standard NFS
Version 4, in which NFS is made stateful to improve its security, performance,
and functionality.

10.5.3 Consistency Semantics

represent an important criterion for evaluating any
file system that supports file sharing. These semantics specify how multiple
users of a system are to access a shared file simultaneously. In particular, they
specify when modifications of data by one user will be observable by other
users. These semantics are typically implemented as code with the file system.

Consistency semantics are directly related to the process-synchronization
algorithms of Chapter 6. However, the complex algorithms of that chapter tend
not to be implemented in the case of file I/0 because of the great latencies and
slow transfer rates of disks and networks. For example, performing an atomic
transaction to a remote disk could involve several network communications,
several disk reads and writes, or both. Systems that attempt such a full set of
functionalities tend to perform poorly. A successful implementation of complex
sharing semantics can be found in the Andrew file system.

For the following discussion, we assume that a series of file accesses (that
is, reads and writes) attempted by a user to the same file is always enclosed
between the open() and close() operations. The series of accesses between
the open() and close() operations makes up a To illustrate the
concept, we sketch several prominent examples of consistency semantics.

10.5.3.1 UNIX Semantics

The UNIX file system (Chapter 17) uses the following consistency semantics:

Writes to an open file by a user are visible immediately to other users who
have this file open.

One mode of sharing allows users to share the pointer of current location
into the file. Thus, the advancing of the pointer by one user affects all

10.6

10.6 451

sharing users. Here, a file has a single image that interleaves all accesses,
regardless of their origin.

In the UNIX semantics, a file is associated with a single physical image that
is accessed as an exclusive resource. Contention for this single image causes
delays in user processes.

10.5.3.2 Session Semantics

The Andrew file system (AFS) (Chapter 17) uses the following consistency
semantics:

Writes to an open file by a user are not visible immediately to other users
that have the same file open.

Once a file is closed, the changes made to it are visible only in sessions
starting later. Already open instances of the file do not reflect these changes.

According to these semantics, a file may be associated temporarily with several
(possibly different) images at the same time. Consequently, multiple users are
allowed to perform both read and write accesses concurrently on their images
of the file, without delay. Almost no constraints are enforced on scheduling
accesses.

10.5.3.3 Immutable-Shared-Files Semantics

A unique approach is that of Once a file is declared
as shared by its creator, it cam1ot be modified. An immutable £ile has two key
properties: its name may not be reused, and its contents may not be altered.
Thus, the name of an immutable file signifies that the contents of the file are
fixed. The implementation of these semantics in a distributed system (Chapter
17) is simple, because the sharing is disciplined (read-only).

When information is stored in a computer system, we want to keep it safe
from physical damage (the issue of reliability) and improper access (the issue
of protection).

Reliability is generally provided by duplicate copies of files. Many comput
ers have systems programs that automatically (or through computer-operator
intervention) copy disk files to tape at regular intervals (once per day or week
or month) to maintain a copy should a file system be accidentally destroyed.
File systems can be damaged by hardware problems (such as errors in reading
or writing), power surges or failures, head crashes, dirt, temperature extremes,
and vandalism. Files may be deleted accidentally. Bugs in the file-system soft
ware can also cause file contents to be lost. Reliability is covered in more detail
in Chapter 12.

Protection can be provided in many ways. For a small single-user system,
we might provide protection by physically removing the floppy disks and
locking them in a desk drawer or file cabinet. In a multiuser system, however,
other mechanisms are needed.

452 Chapter 10

10.6.1 Types of Access

The need to protect files is a direct result of the ability to access files. Systems
that do not permit access to the files of other users do not need protection. Thus,
we could provide complete protection by prohibiting access. Alternatively, we
could provide free access with no protection. Both approaches are too extreme
for general use. What is needed is

Protection mechanisms provide controlled access by limitin.g the types of
file access that can be made. Access is permitted or denied depending on
several factors, one of which is the type of access requested. Several different
types of operations may be controlled:

Read. Read from the file.

Write. Write or rewrite the file.

Execute. Load the file into memory and execute it.

Append. Write new information at the end of the file.

Delete. Delete the file and free its space for possible reuse.

List. List the name and attributes of the file.

Other operations, such as renaming, copying, and editing the file, may also
be controlled. For many systems, however, these higher-level fm1ctions may
be implemented by a system program that makes lower-level system calls.
Protection is provided at only the lower level. For instance, copying a file may
be implemented simply by a sequence of read requests. In this case, a user with
read access can also cause the file to be copied, printed, and so on.

Many protection mechanisms have been proposed. Each has advantages
and disadvantages and must be appropriate for its intended application. A
small computer system that is used by only a few members of a research group,
for example, may not need the same types of protection as a large corporate
computer that is used for research, finance, and personnel operations. We
discuss some approaches to protection in the following sections and present a
more complete treatment in Chapter 14.

10.6.2 Access Control

The most common approach to the protection problem is to make access
dependent on the identity of the user. Different users may need different types
of access to a file or directory. The most general scheme to implement
dependent access is to associate with each file and directory an

(ACJU specifying user names and the types of access allowed for each user.
When a user requests access to a particular file, the operating system checks
the access list associated with that file. If that user is listed for the requested
access, the access is allowed. Otherwise, a protection violation occurs, and the
user job is denied access to the file.

This approach has the advantage of enabling complex access methodolo
gies. The main problem with access lists is their length. If we want to allow
everyone to read a file, we must list all users with read access. This technique
has two undesirable consequences:

10.6 453

Constructing such a list may be a tedious and unrewarding task, especially
if we do not know in advance the list of users in the system.

The directory entry, previously of fixed size, now must be of variable size,
resulting in more complicated space management.

These problems can be resolved by use of a condensed version of the access
list.

To condense the length of the access-control list, many systems recognize
three classifications of users in connection with each file:

Owner. The user who created the file is the owner.

Group. A set of users who are sharing the file and need similar access is a
group, or work group.

Universe. All other users in the system constitute the universe.

The most common recent approach is to combine access-control lists with
the more general (and easier to implement) owner, group, and universe access
control scheme just described. For example, Solaris 2.6 and beyond use the
three categories of access by default but allow access-control lists to be added
to specific files and directories when more fine-grained access control is desired.

To illustrate, consider a person, Sara, who is writing a new book. She has
hired three graduate students (Jim, Dawn, and Jill) to help with the project.
The text of the book is kept in a file named book. The protection associated with
this file is as follows:

Sara should be able to invoke all operations on the file.

Jim, Dawn, and Jill should be able only to read and write the file; they
should not be allowed to delete the file.

All other users should be able to read, but not write, the file. (Sara is
interested in letting as many people as possible read the text so that she
can obtain feedback.)

To achieve such protection, we must create a new group-say, text
with members Jim, Dawn, and Jill. The name of the group, text, must then
be associated with the file book, and the access rights must be set in accordance
with the policy we have outlined.

Now consider a visitor to whom Sara would like to grant temporary access
to Chapter 1. The visitor cannot be added to the text group because that would
give him access to all chapters. Because a file can only be in one group, Sara
cannot add another group to Chapter 1. \Nith the addition of access-control-list
functionality, though, the visitor can be added to the access control list of
Chapter 1.

For this scheme to work properly, permissions and access lists must be
controlled tightly. This control can be accomplished in several ways. For
example, in the UNIX system, groups can be created and modified only by
the manager of the facility (or by any superuser). Thus, control is achieved
through human interaction. In the VMS system, the owner of the file can create

454 Chapter 10

and modify the access-control list. Access lists are discussed further in Section
14.5.2.

With the more limited protection classification, only three fields are needed
to define protection. Often, each field is a collection of bits, and each bit either
allows or prevents the access associated with it. For example, the UNIX system
defines three fields of 3 bits each -rwx, where r controls read access, w controls
write access, and x controls execution. A separate field is kept for the file owner,
for the file's group, and for all other users. In this scheme, 9 bits per file are
needed to record protection information. Thus, for our example, the protection
fields for the file book are as follows: for the owner Sara, all bits are set; for the
group text, the rand w bits are set; and for the universe, only the r bit is set.

One difficulty in combining approaches comes in the user interface. Users
must be able to tell when the optional ACL permissions are set on a file. In the
Solaris example, a"+" appends the regular permissions, as in:

f1l S'/STEtvl

(Ji Users (PBG-LA.PTOF\Users)

Permissions for Gue:;t

Full Contml

h-1odi~,.-·

F;_e a.d g Execute

R.ead

'vi/rite

Spec:ia.l Permissions

A.llo·w

For specia.l permissions orfor advanced settings.
click .A.dva.nced.

.A.dva.nced

Figure 10.15 Windows XP access-control list management.

10.6 455

19 -rw-r--r--+ 1 jim staff 130 May 25 22:13 file1

A separate set of commands, setfacl and getfacl, is used to manage the
ACLs.

Windows XP users typically manage access-control lists via the CUI. Figure
10.15 shows a file-permission window on Windows XP's NTFS file system. In
this example, user "guest" is specifically denied access to the file lO.tex.

Another difficulty is assigning precedence when permission and ACLs
conflict. For example, if Joe is in a file's group, which has read permission,
but the file has an ACL granting Joe read and write permission, should a write
by Joe be granted or denied? Solaris gives ACLs precedence (as they are more
fine-grained and are not assigned by default). This follows the general rule that
specificity should have priority.

10.6.3 Other Protection Approaches

Another approach to the protection problem is to associate a password with
each file. Just as access to the computer system is often controlled by a
password, access to each file can be controlled in the same way. If the passwords
are chosen randomly and changed often, this scheme may be effective in
limiting access to a file. The use of passwords has a few disadvantages,
however. First, the number of passwords that a user needs to remember may

PERMISSIONS IN A UNIX SYSTEM

In the UNIX system, directory protection and file protection are handled
similarly. Associated with each subdirectory are three fields-owner, group,
and universe-each consisting of the three bits rwx. Thus, a user can list
the content of a subdirectory only if the r bit is set in the appropriate field.
Similarly, a user can change his current directory to another current directory
(say, faa) only if the x bit associated with the faa subdirectory is set in the
appropriate field.

A sample directory listing from a UNIX environment is shown in Figure
10.16. The first field describes the protecti.on of the file or directory. Ad as the
first character indicates a s11bdirectory. Also shown are the number of links to
the file, the owner's name, the group's name, the size of the file in bytes, the
date of last modification, and finally the file's name (with optional extension).

-rw-rw-r-- l pbg staff 31200 Sep 30l:UO intro.ps
drwx------ 5 pbg staff 512 Jul 8 09.33 private/
drwxrwxr-x 2 pbg staff 512 Jul8 09:35 doc/
drwxrwx--- 2 pbg student 512 Aug 3 14:13 student-proj/
-rw-r--r-- 1 pbg staff 9423 Feb 24 2003 program.c
-rwxr-xr-x l pbg staff 20471 ·Feb 24 2003 program
drwx~-x--x 4 pbg faculty 512 Jul 31 10:31 lib/
drwx------ 3 pbg staff 1024 Aug 29 06:52 mail/
drwxrwxrwx 3 pbg staff 512 Jul 8 09:35 test/

Figure 10.16 A sample directory listing.

456 Chapter 10

10.7

become large, making the scheme impractical. Second, if only one password is
used for all the files, then once it is discovered, all files are accessible; protection
is on an all-or-none basis. Some systems (for example, TOPS-20) allow a user
to associate a password with a subdirectory, rather than with an individual
file, to deal with this problem. The IBMVM/CMS operating system allows three
passwords for a minidisk-one each for read, write, and nrultiwrite access.

Some single-user operating systencs-such as MS-DOS and versions of the
Macintosh operating system prior to Mac OS X-provide little in terms of file
protection. In scenarios where these older systems are now being placed on
networks file sharing and communication, protection mechanisms
must be into them. Designing a feature for a new operating system
is almost always easier than adding a feature to an existing one. Such updates
are usually less effective and are not seamless.

In a multilevel directory structure, we need to protect not only individual
files but also collections of files in subdirectories; that is, we need to provide
a mechanism for directory protection. The directory operations that must be
protected are somewhat different from the file operations. We want to control
the creation and deletion of files in a directory. In addition, we probably want
to control whether a user can determine the existence of a file in a directory.
Sometimes, knowledge of the existence and name of a file is significant in itself.
Thus, listing the contents of a directory must be a protected operation. Similarly,
if a path name refers to a file in a directory, the user must be allowed access
to both the directory and the file. In systems where files may have numerous
path names (such as acyclic or general graphs), a given user may have different
access rights to a particular file, depending on the path name used.

A file is an abstract data type defined and implemented by the operating
system. It is a sequence of logical records. A logical record may be a byte, a line
(of fixed or variable length), or a more complex data item. The operating system
may specifically support various record types or may leave that support to the
application program.

The major task for the operating system is to map the logical file concept
onto physical storage devices such as magnetic tape or disk. Since the physical
record size of the device may not be the same as the logical record size, it may
be necessary to order logical records into physical records. Again, this task may
be supported by the operating system or left for the application program.

Each device in a file system keeps a volume table of contents or a device
directory listing the location of the files on the device. In addition, it is useful
to create directories to allow files to be organized. A single-level directory
in a multiuser system causes naming problems, since each must have a
unique name. A two-level directory solves this creating a separate
directory for each users files. The directory lists name and includes
the file's location on the disk, length, type, owner, time creation, time of last
use, and so on.

The natural generalization of a two-level directory is a tree-structured
directory. A tree-structured directory allows a user to create subdirectories
to organize files. Acyclic-graph directory structures enable users to share

457

subdirectories and files but complicate searching and deletion. A general graph
structure allows complete flexibility in the sharing of files and directories but
sometimes requires garbage collection to recover unused disk space.

Disks are segmented into one or more volumes/ each containing a
file system or left "raw." File systems may be mounted into the system's
naming structures to make them available. The naming scheme varies by
operating system. Once mounted, the files within the volume are available
for use. File systems may be unmounted to disable access or for maintenance.

File sharing depends on the semantics provided by the system. Files may
have multiple readers, multiple writers, or limits on sharing. Distributed file
systems allow client hosts to mount volumes or directories from servers, as long
as they can access each other across a network Remote file systems present
challenges in reliability, performance, and security. Distributed information
systems maintain user/ host/ and access information so that clients and servers
can share state information to ncanage use and access.

Since files are the main information-storage mechanism in most computer
systems, file protection is needed. Access to files can be controlled separately
for each type of access-read, write, execute, append, delete, list directory,
and so on. File protection can be provided by access lists, passwords, or other
techniques.

10.1 Some systems provide file sharing by maintaining a single copy of a
file; other systems maintain several copies, one for each of the users
sharing the file. Discuss the relative merits of each approach.

10.2 Some systems automatically open a file when it is referenced for the first
time and close the file when the job terminates. Discuss the advantages
and disadvantages of this scheme compared with the more traditional
one, where the user has to open and close the file explicitly.

10.3 In some systems, a subdirectory can be read and written by an
authorized user, just as ordinary files can be.

a. Describe the protection problems that could arise.

b. Suggest a scheme for dealing with each of these protection
problems.

10.4 do some systems keep track of the type of a file, while others leave
it to the user and others simply do not implement multiple file types?
Which system is "better?"

10.5 Consider a system that supports 5,000 users. Suppose that you want to
allow 4,990 of these users to be able to access one file.

a. Howwould specify this protection scheme in UNIX?

b. Can you suggest another protection scheme that can be used more
effectively for this purpose than the scheme provided by UNIX?

458 Chapter 10

10.6 What are the advantages and disadvantages of providing ncandatory
locks instead of advisory locks whose usage is left to users' discretion?

10.7 Explain the purpose of the open () and close () operations.

10.8 The open-file table is used to maintain information about files that are
currently open. Should the operating system maintain a separate table
for each user or just maintain one table that contains references to files
that are currently being accessed by all users? If the same file is being
accessed by two different programs or users, should there be separate
entries in the open-file table?

10.9 Give an example of an application that could benefit from operating
system support for random access to indexed files.

10.10 Discuss the advantages and disadvantages of associating with remote
file systems (stored on file servers) a set of failure semantics different
from that associated with local file systems.

10.11 Could you simulate a multilevel directory structure with a single-level
directory structure in which arbitrarily long names can be used? If your
answer is yes, explain how you can do so, and contrast this scheme with
the multilevel directory scheme. If your answer is no, explain what
prevents your simulation's success. How would your answer change
if file names were limited to seven characters?

10.12 What are the implications of supporting UNIX consistency semantics
for shared access for files stored on remote file systems?

10.13 If the operating system knew that a certain application was going
to access file data in a sequential manner, how could it exploit this
information to improve performance?

10.14 Consider a file system in which a file can be deleted and its disk space
reclaimed while links to that file still exist. What problems may occur if
a new file is created in the same storage area or with the same absolute
path name? How can these problems be avoided?

10.15 Discuss the advantages and disadvantages of supporting links to files
that cross mount points (that is, the file link refers to a file that is stored
in a different volume).

10.16 What are the advantages and disadvantages of recording the name
of the creating program with the file's attributes (as is done in the
Macintosh operating system)?

General discussions concerning file systems are offered by Grosshans [1986].
Golden and Pechura [1986] describe the structure of microcomputer file
systems. Database systems and their file structures are described in full in
Silberschatz et al. [2001].

A multilevel directory structure was first implemented on the MULTICS
system (Organick [1972]). Most operating systems now implement multilevel

459

directory structures. These include Linux (Bovet and Cesati [2002]), Mac OS
X (http:/ /www.apple.com/macosx/), Solaris (McDougall and Mauro [2007]),
and all versions of Windows (Russinovich and Solomon [2005]).

The network file system (NFS), designed by Sun Microsystems, allows
directory structures to be spread across networked computer systems. NFS
is fully described in Chapter 17. NFS Version 4 is described in RFC3505
(http:/ /www.ietf.org/rfc/rfc3530.txt). General discussion of Solaris file sys
tems is found in the Sun System Administration Guide: Devices and File Systems
(http:/ I docs. sun. com/ app I docs/ doc/817-5093).

DNS was first proposed by Su [1982] and has gone through several revisions
since, with Mockapetris [1987] adding several major features. Eastlake [1999]
has proposed security extensions to let DNS hold security keys.

LDAP, also known as X.509, is a derivative subset of the X.SOO distributed
directory protocol. It was defined by Yeong et al. [1995] and has been
implemented on many operating systems.

Interesting research is ongoing in the area of file-system interfaces-in
particular, on issues relating to file naming and attributes. For example, the
Plan 9 operating system from Bell Laboratories (Lucent Technology) makes all
objects look like file systems. Thus, to display a list of processes on a system,
a user simply lists the contents of the /proc directory. Similarly, to display the
time of day, a user need only type the file I dev I time.

11.1

c

As we saw in Chapter 10, the file system provides the mechanism for on-line
storage and access to file contents, including data and programs. The file system
resides permanently on secondary storage, which is designed to hold a large
amount of data permanently. This chapter is primarily concerned with issues
surrounding file storage and access on the most common secondary-storage
medium, the disk. We explore ways to structure file use, to allocate disk space,
to recover freed space, to track the locations of data, and to interface other
parts of the operating system to secondary storage. Performance issues are
considered throughout the chapter.

To describe the details of implementing local file systems and directory
structures.

To describe the implementation of remote file systems.

To discuss block allocation and free-block algorithms and trade-offs.

Disks provide the bulk of secondary storage on which a file system is
maintained. They have two characteristics that make them a convenient
medium for storing multiple files:

A disk can be rewritten in place; it is possible to read a block from the
disk, modify the block, and write it back into the sance place.

A disk can access directly any block of information it contains. Thus, it is
simple to access any file either sequentially or randomly, and switching
from one file to another requires only moving the read-write heads and
waiting for the disk to rotate.

We discuss disk structure in great detail in Chapter 12.

461

462 Chapter 11

To improve I/0 efficiency, I/0 transfers between memory and disk are
performed in units of blocks. Each block has one or more sectors. Depending
on the disk drive, sector size varies from 32 bytes to 4,096 bytes; the usual size
is 512 bytes.

provide efficient and convenient access to the disk by allowing
data to be stored, located, and retrieved easily. A file system poses two quite
different design problems. The first problem is defining how the file system
should look to the user. This task involves defining a file and its attributes,
the operations allowed on a file, and the directory structure for organizing
files. The second problem is creating algorithms and data structures to map the
logical file system onto the physical secondary-storage devices.

The file system itself is generally composed of many different levels. The
structure shown in Figure 11.1 is an example of a layered design. Each level in
the design uses the features of lower levels to create new features for use by
higher levels.

The lowest level, the I/O control, consists of and interrupt
handlers to transfer information between the main memory and the disk
system. A device driver can be thought of as a translator. Its input consists of
high-level commands such as "retrieve block 123." Its output consists of low
level, hardware-specific instructions that are used by the hardware controller,
which interfaces the I/0 device to the rest of the system. The device driver
usually writes specific bit patterns to special locations in the I/0 controller's
memory to tell the controller which device location to act on and what actions
to take. The details of device drivers and the I/O infrastructure are covered in
Chapter 13.

The needs only to issue generic commands to the
appropriate device driver to read and write physical blocks on the disk. Each
physical block is identified by its numeric disk address (for example, drive 1,
cylilcder 73, track 2, sector 10). This layer also manages the memory buffers
and caches that hold various file-system, directory, and data blocks. A block

application programs

~
logical file system

~
file-organization module

~
basic file system

~
1/0 control

devices

Figure 11.1 Layered file system.

11.1 463

in the buffer is allocated before the transfer of a disk block can occur. When
the buffer is full, the buffer m~anager must find more buffer ncemory or free
up buffer space to allow a requested I/O to complete. Caches are used to hold
frequently used file-system metadata to improve performance, so managing
their contents is critical for optimum system performance.

The knows about files and their logical blocks,
as well as physical blocks. By knowing the type of file allocation used and
the location of the file, the file-organization module can translate logical block
addresses to physical block addresses for the basic file system to transfer.
Each file's logical blocks are numbered from 0 (or 1) through N. Since the
physical blocks containing the data usually do not match the logical numbers,
a translation is needed to locate each block. The file-organization module also
includes the free-space manager, which tracks unallocated blocks and provides
these blocks to the file-organization module when requested.

Finally, the f!Je manages metadata information. Metadata
includes all of the file-system structure except the actual data (or contents of the
files). The logical file system manages the directory structure to provide the file
organization module with the information the latter needs, given a symbolic
file name. It maintains file structure via file-control blocks. A flle-corttml

(an in most UNIX file systems) contains information about the
file, including ownership, permissions, and location of the file contents. The
logical file system is also responsible for protection and security, as discussed
in Chapters 10 and 14.

When a layered structure is used for file-system implementation, duplica
tion of code is minimized. The I/O control and sometimes the basic file-system
code can be used by multiple file systems. Each file system can then have its
own logical file-system and file-organization modules. Unfortunately, layering
can introduce more operating system overhead, which may result in decreased
performance. The use of layering, including the decision about how many
layers to use and what each layer should do, is a major challenge in designing
new systems.

Many file systems are in use today. Most operating systems support
more than one. For example, most CD-ROMs are written in the ISO 9660
format, a standard format agreed on by CD-ROM manufacturers. In addition
to removable-media file systems, each operating system has one or more disk
based file systems. UNIX uses the fEe which is based on
the Berkeley Fast File System (FFS). Windows NT, 2000, and XP support disk
file-system formats of FAT, FAT32, and NTFS (or Windows NT File System), as
well as CD-ROM, DVD, and floppy-disk file-system formats. Although Linux
supports over forty different file systerns, the standard Linux file system is
known as the with the most common versions being
ext2 and ext3. There are also distributed file systems in which a file system on
a server is mounted by one or more client computers across a network.

File-system research continues to be an active area of operating-system
design and implementation. Coogle created its own file system to meet the
company's specific storage and retrieval needs. Another interesting project
is the FUSE file-system, which provides flexibility in file-system use by
implementing and executing file systems as user-level rather than kernel-level
code. Using FUSE, a user can add a new file system to a variety of operating
systems and can use that file system to manage her files.

464 Chapter 11

11.2

As was described in Section 10.1.2, operating systems implement open()
and close() systems calls for processes to request access to file contents.
In this section, we delve into the structures and operations used to implement
file-system operations.

11.2.1 Overview

Several on-disk and in-memory structures are used to implement a file system.
These structures vary depending on the operating system and the file system,
but some general principles apply.

On disk, the file system may contain information about how to boot an
operating system stored there, the total number of blocks, the number and
location of free blocks, the directory structure, and individual files. Many of
these structures are detailed throughout the remainder of this chapter; here,
we describe them briefly:

A (per volume) can contain information needed by the
system to boot an operating system from that volume. If the disk does not
contain an operating system, this block can be empty. It is typically the
first block of a volume. In UFS, it is called the b,Jsck; in NTFS, it is the

(per volume) contains volume (or partition)
details, such as the number of blocks in the partition, the size of the blocks,
a free-block count and free-block pointers, and a free-FCB count and FCB
pointers. In UFS, this is called a in NTFS, it is stored in the

A directory structure (per file system) is used to organize the files. In UFS,
this includes file names and associated inode numbers. In NTFS, it is stored
in the master file table.

A per-file FCB contains many details about the file. It has a unique
identifier number to allow association with a directory entry. In NTFS,
this information is actually stored within the master file table, which uses
a relational database structure, with a row per file.

The in-memory in.formation is used for both file-system management and
performance improvement via caching. The data are loaded at mount time,
updated during file-system operations, and discarded at dismount. Several
types of structures may be included.

An in-memory
volume.

contains information about each mounted

An in-memory directory-structure cache holds the directory information
of recently accessed directories. (For directories at which volumes are
mounted, it can contain a pointer to the volume table.)

The contains a copy of the FCB of each open
file, as well as other information.

11.2 465

file dates(create, access, write)

file owner,. group, ACL

file data blocks or pointers to file data blocks

Figure 11.2 A typical file-control block.

The contains a pointer to the appropriate entry
in the system-wide open-file table, as well as other information.

Buffers hold file-system blocks when they are being read from disk or
written to disk.

To create a new file, an application program calls the logical file system.
The logical file system knows the format of the directory structures. To create a
new file, it allocates a new FCB. (Alternatively, if the file-system implementation
creates all FCBs at file-system creation time, an FCB is allocated from the set
of free FCBs.) The system then reads the appropriate directory into memory,
updates it with the new file name and FCB, and writes it back to the disk. A
typical FCB is shown in Figure 11.2.

Some operating systems, including UNIX, treat a directory exactly the same
as a file-one with a "type" field indicating that it is a directory. Other operating
systems, includii<g Windows NT, implement separate system calls for files and
directories and treat directories as entities separate from files. Whatever the
larger structural issues, the logical file system can call the file-organization
module to map the directory I/0 into disk-block numbers, which are passed
on to the basic file system and I/O control system.

Now that a file has been created, it can be used for I/0. First, though, it
must be opened. The open () call passes a file name to the logical file system.
The open() system call first searches the system-wide open-file table to see
if the file is already in use by another process. If it is, a per-process open-file
table entry is created pointing to the existing system-wide open-file table. This
algorithm can save substantial overhead. If the file is not already open, the
directory structure is searched for the given file name. Parts of the directory
structure are usually cached in memory to speed directory operations. Once
the file is found, the FCB is copied into a system-wide open-file table in memory.
This table not only stores the FCB but also tracks the number of processes that
have the file open.

Next, an entry is made in the per-process open-file table, with a pointer
to the entry in the system-wide open-file table and some other fields. These
other fields may include a pointer to the current location in the file (for the next
read() or write() operation) and the access mode in which the file is open.
The open() call returns a pointer to the appropriate entry in the per-process

466 Chapter 11

user space

user space

kernel memory

(a)

kernel memory

(b)

,-:---..,...---:+-t-ilEJ D
DO

secondary storage

secondary storage

Figure 11.3 In-memory file-system structures. (a) File open. (b) File read.

file-system table. All file operations are then performed via this pointer. The
file name may not be part of the open-file table, as the system has no use for
it once the appropriate FCB is located on disk. It could be cached, though, to
save time on subsequent opens of the same file. The name given to the entry
varies. UNIX systems refer to it as a Windows refers to it as a

When a process closes the file, the per-process table entry is removed, and
the system-wide entry's open count is decremented. When all users that have
opened the file close it, any updated metadata is copied back to the disk-based
directory structure, and the system-wide open-file table entry is removed.

Some systems complicate this scheme further by using the file system as an
interface to other system aspects, such as networking. For example, in UFS, the
system-wide open-file table holds the inodes and other information for files
and directories. It also holds similar information for network connections and
devices. In this way, one mechanism can be used for multiple purposes.

The caching aspects of file-system structures should not be overlooked.
Most systems keep all information about an open file, except for its actual data
blocks, in memory. The BSD UNIX system is typical in its use of caches wherever
disk I/0 can be saved. Its average cache hit rate of 85 percent shows that these
techniques are well worth implementing. The BSD UNIX system is described
fully in Appendix A.

The operating structures of a file-system implementation are summarized
in Figure 11.3.

11.2 467

11.2.2 Partitions and Mounting

The layout of a disk can have many variations, depending on the operating
system. A disk can be sliced into multiple partitions, or a volume can span
multiple partitions on multiple disks. The former layout is discussed here,
while the latter, which is more appropriately considered a form of RAID, is
covered in Section 12.7.

Each partition can be either "raw," containing no file system, or "cooked,"
containing a file system. is used where no file system is appropriate.
UNIX swap space can use a raw partition, for example, as it uses its own format
on disk and does not use a file system. Likewise, some databases use raw disk
and format the data to suit their needs. Raw disk can also hold information
needed by disk RAID systems, such as bit maps indicating which blocks are
mirrored and which have changed and need to be mirrored. Similarly, raw disk
can contain a miniature database holding RAID configuration information, such
as which disks are members of each RAID set. Raw disk use is further discussed
in Section 12.5.1.

Boot information can be stored in a separate partition. Again, it has its
own format, because at boot time the system does not have the file-system
code loaded and therefore cannot interpret the file-system format. Rather, boot
information is usually a sequential series of blocks, loaded as an image into
memory. Execution of the image starts at a predefined location, such as the first
byte. This in turn knows enough about the file-system structure to
be able to find and load the kernel and start it executing. It can contain more
than the instructions for how to boot a specific operating system. For instance,
PCs and other systems can be Multiple operating systems can be
installed on such a system. How does the system know which one to boot?
A boot loader that understands multiple file systems and multiple operating
systems can occupy the boot space. Once loaded, it can boot one of the operating
systems available on the disk. The disk can have multiple partitions, each
containing a different type of file system and a different operating system.

The which contains the operating-system kernel and some-
times other system files, is mounted at boot time. Other volumes can be
automatically mounted at boot or manually mounted later, depending on
the operating system. As part of a successful mount operation, the operating
system verifies that the device contains a valid file system. It does so by asking
the device driver to read the device directory and verifying that the directory
has the expected format. If the format is invalid, the partition must have
its consistency checked and possibly corrected, either with or without user
intervention. Finally, the operating system notes in its in-memory mount table
that a file system is mounted, along with the type of the file system. The details
of this function depend on the operating system. Microsoft Windows-based
systems mount each volume in a separate name space, denoted by a letter
and a colon. To record that a file system is mounted at F:, for example, the
operating system places a pointer to the file system in a field of the device
structure corresponding to F: . When a process specifies the driver letter,
the operating system finds the appropriate file-system pointer and traverses
the directory structures on that device to find the specified file or directory.
Later versions of Windows can mount a file system at any point within the
existing directory structure.

468 Chapter 11

On UNIX, file systems can be mounted at any directory. Mounting is
implemented by setting a flag in the in-memory copy of the inode for that
directory. The flag indicates that the directory is a mount point. A field then
points to an entry in the mount table, indicating which device is mounted there.
The mount table entry contains a pointer to the superblock of the file system. on
that device. This scheme enables the operating system to traverse its directory
structure, switching seamlessly among file systems of varying types.

11.2.3 Virtual File Systems

The previous section m.akes it clear that modern operating systems must
concurrently support multiple types of file systems. But how does an operating
system allow multiple types of file systems to be integrated into a directory
structure? And how can users seamlessly move between file-system types
as they navigate the file-system space? We now discuss some of these
implementation details.

An obvious but suboptimal method of implementing multiple types of file
systems is to write directory and file routines for each type. Instead, however,
most operating systems, including UNIX, use object-oriented techniques to
simplify, organize, and modularize the implementation. The use of these
methods allows very dissimilar file-system types to be implemented within
the same structure, including network file systems, such as NFS. Users can
access files that are contained within multiple file systems on the local disk or
even on file systems available across the network.

Data structures and procedures are used to isolate the basic system
call functionality from the implementation details. Thus, the file-system
implementation consists of three major layers, as depicted schematically in
Figure 11.4. The first layer is the file-system interface, based on the open(),
read(), write(), and close() calls and on file descriptors.

The second layer is called the layer. The VFS layer
serves two important functions:

It separates file-system-generic operations from their implementation
by defining a clean VFS interface. Several implementations for the VFS

interface may coexist on the same machine, allowing transparent access
to different types of file systems mounted locally.

It provides a mechanism for uniquely representing a file throughout a
network. The VFS is based on a file-representation structure, called a

that contains a numerical designator for a network-wide unique
file. (UNIX inodes are unique within only a single file system.) This
network-wide uniqueness is required for support of network file systems.
The kernel maintains one vnode structure for each active node (file or
directory).

Thus, the VFS distinguishes local files from remote ones, and local files are
further distinguished according to their file-system types.

The VFS activates file-system-specific operations to handle local requests
according to their file-system types and calls the NFS protocol procedures for
remote requests. File handles are constructed from the relevant vnodes and
are passed as arguments to these procedures. The layer implementing the

11.2 469

network

Figure 11.4 Schematic view of a virtual file system.

file-system type or the remote-file-system protocol is the third layer of the
architecture.

Let's briefly examine the VFS architecture in Linux. The four main object
types defined by the Linux VFS are:

The inode object, which represents an individual file

The file object, which represents an open file

The superblock object, which represents an entire file system

The dentry object, which represents an individual directory entry

For each of these four object types, the VFS defines a set of operations that
must be implemented. Every object of one of these types contains a pointer to
a f1.mction table. The function table lists the addresses of the actual functions
that implement the defined operations for that particular object. For example,
an abbreviated API for some of the operations for the file object include:

int open (. . .) -Open a file.

ssize_t read(. . .) -Read from a file.

ssize_t write (. . .) -Write to a file.

int mmap(...) -Memory-map a file.

An implementation of the file object for a specific file type is required to imple
ment each function specified in the definition of the file object. (The complete
definition ofthe file object is specified in the struct f ile_operat ions, which
is located in the file /usr/include/linux/fs .h.)

470 Chapter 11

11.3

Thus, the VFS software layer can perform an operation on one of these
objects by calling the appropriate function from the object's function table,
without having to know in advance exactly what kind of object it is dealing
with. The VFS does not know, or care, whether an inode represents a disk file,
a directory file, or a remote file. The appropriate function for that file's read()
operation will always be at the same place in its function table, and the VFS
software layer will call that function without caring how the data are actually
read.

The selection of directory-allocation and directory-management algorithms
significantly affects the efficiency, performance, and reliability of the file
system. In this section, we discuss the trade-offs involved in choosing one
of these algorithms.

11.3.1 Linear List

The simplest method of implementing a directory is to use a linear list of file
names with pointers to the data blocks. This method is simple to program
but time-consuming to execute. To create a new file, we must first search the
directory to be sure that no existing file has the same name. Then, we add a
new entry at the end of the directory. To delete a file, we search the directory for
the named file and then release the space allocated to it. To reuse the directory
entry, we can do one of several things. We can mark the entry as unused (by
assigning it a special name, such as an all-blank name, or with a used -unused
bit in each entry), or we can attach it to a list of free directory entries. A third
alternative is to copy the last entry in the directory into the freed location and
to decrease the length of the directory. A linked list can also be used to decrease
the time required to delete a file.

The real disadvantage of a linear list of directory entries is that finding a
file requires a linear search. Directory information is used frequently, and users
will notice if access to it is slow. In fact, many operating systems implement a
software cache to store the most recently used directory information. A cache
hit avoids the need to constantly reread the information from disk. A sorted
list allows a binary search and decreases the average search time. However, the
requirement that the list be kept sorted may complicate creating and deleting
files, since we may have to move substantial amounts of directory information
to maintain a sorted directory. A more sophisticated tree data structure, such
as a B-h·ee, might help here. An advantage of the sorted list is that a sorted
directory listing can be produced without a separate sort step.

11.3.2 Hash Table

Another data structure used for a file directory is a With this
method, a linear list stores the directory entries, but a hash data structure is
also used. The hash table takes a value computed from the file name and returns
a pointer to the file name in the linear list. Therefore, it can greatly decrease the
directory search time. Insertion and deletion are also fairly straightforward,
although some provision must be made for collisions-situations in which
two file names hash to the same location.

11.4

11.4 471

The major difficulties with a hash table are its generally fixed size and the
dependence of the hash function on that size. For example, assume that we
make a linear-probing hash table that holds 64 entries. The hash function
converts file names into integers from 0 to 63, for instance, by using the
remainder of a division by 64. If we later try to create a 65th file, we must
enlarge the directory hash table-say, to 128 entries. As a result, we need
a new hash function that must map file narnes to the range 0 to 127, and we
must reorganize the existing directory entries to reflect their new hash-function
values.

Alternatively, a chained-overflow hash table can be used. Each hash entry
can be a linked list instead of an individual value, and we can resolve collisions
by adding the new entry to the linked list. Lookups may be somewhat slowed,
because searching for a name might require stepping through a linked list of
colliding table entries. Still, this method is likely to be much faster than a linear
search through the entire directory.

The direct-access nature of disks allows us flexibility in the implementation of
files. In almost every case, many files are stored on the same disk. The main
problem is how to allocate space to these files so that disk space is utilized
effectively and files can be accessed quickly. Three major methods of allocating
disk space are in wide use: contiguous, linked, and indexed. Each method has
advantages and disadvantages. Some systems (such as Data General's RDOS
for its Nova line of computers) support all three. More commonly, a system
uses one method for all files within a file-system type.

11.4.1 Contiguous Allocation

requires that each file occupy a set of contiguous blocks
on disk. Disk addresses define a linear ordering on the disk. With this
ordering, assuming that only one job is accessil1.g the disk, accessing block b +
1 after block b normally requires no head movement. When head movement
is needed (from the last sector of one cylil1.der to the first sector of the next
cylinder), the head need only move from one track to the next. Thus, the number
of disk seeks required for accessing contiguously allocated files is minimal, as
is seek time when a seek is finally needed. The IBM VM/CMS operatil1.g system
uses contiguous allocation because it provides such good performance.

Contiguous allocation of a file is defined by the disk address and length (in
block units) of the first block. If the file is n blocks long and starts at location
b, then it occupies blocks b, b + 1, b + 2, ... , b + n - 1. The directory entry for
each file indicates the address of the starting block and the length of the area
allocated for this file (Figure 11.5).

Accessing a file that has been allocated contiguously is easy. For sequential
access, the file system remembers the disk address of the last block referenced
and, when necessary, reads the next block. For direct access to block i of a
file that starts at block b, we can immediately access block b + i. Thus, both
sequential and direct access can be supported by contiguous allocation.

472 Chapter 11

directory

file start length

count 0 2

tr 14 3

mail 19 6

list 28 4

f 6 2

Figure 1 i .5 Contiguous allocation of disk space.

Contiguous allocation has some problems, however. One difficulty is
finding space for a new file. The system chosen to manage free space determines
how this task is accomplished; these management systems are discussed in
Section 11.5. Any management system can be used, but some are slower than
others.

The contiguous-allocation problem can be seen as a particular application
of the general problem discussed in Section 8.3,
which involves to satisfy a request of size n from a list of free holes. First
fit and best fit are the most common strategies used to select a free hole from
the set of available holes. Simulations have shown that both first fit and best fit
are more efficient than worst fit in terms of both time and storage utilization.
Neither first fit nor best fit is clearly best in terms of storage utilization, but
first fit is generally faster.

All these algorithms suffer from the problem of
As files are allocated and deleted, the free disk space is broken into pieces.
External fragmentation exists whenever free space is broken into chunks. It
becomes a problem when the largest contiguous chunk is insufficient for a
request; storage is fragncented into a number of holes, none of which is large
enough to store the data. Depending on the total amount of disk storage and the
average file size, external fragmentation may be a minor or a major problem.

One strategy for preventing loss of significant amounts of disk space to
external fragmentation is to copy an entire file system onto another disk or
tape. The original disk is then freed completely, creating one large contiguous
free space. We then copy the files back onto the original disk by allocating
contiguous space from this one large hole. This scheme effectively
all free space into one contiguous space, solving the fragmentation
However, the cost of this compaction is time and it can be particularly severe for
large hard disks that use contiguous allocation, where compacting all the space

11.4 473

may take hours and may be necessary on a weekly basis. Some systems require
that this function be done with the file system unmounted. During
this normal system operation generally cannot be permitted, so
such compaction is avoided at all costs on production machines. Most modern
systems that need defragmentation can perform it during normal
system operations, but the performance penalty can be substantial.

Another problem with contiguous allocation is determining how much
space is needed for a file. When the file is created, the total amount of space
it will need must be found and allocated. How does the creator (program or
person) know the size of the file to be created? In some cases, this detennination
may be fairly simple (copying an existing file, for example); in general, however,
the size of an output file may be difficult to estimate.

If we allocate too little space to a file, we may find that the file cannot
be extended. Especially with a best-fit allocation strategy, the space on both
sides of the file may be in use. Hence, we cannot make the file larger in place.
Two possibilities then exist. First, the user program can be terminated, with
an appropriate error message. The user must then allocate more space and
run the program again. These repeated runs may be costly. To prevent them,
the user will normally overestimate the amount of space needed, resulting in
considerable wasted space. The other possibility is to find a larger hole, copy
the contents of the file to the new space, and release the previous space. This
series of actions can be repeated as long as space exists, although it can be time
consuming. However, the user need never be informed explicitly about what
is happening; the system continues despite the problem, although more and
more slowly.

Even if the total amount of space needed for a file is known in advance,
preallocation may be inefficient. A file that will grow slowly over a long period
(months or years) must be allocated enough space for its final size, even though
much of that space will be unused for a long time. The file therefore has a large
amount of internal fragmentation.

To minimize these drawbacks, some operating systems use a modified
contiguous-allocation scheme. Here, a contiguous chunk of space is allocated
initially; then, if that amount proves not to be large enough, another chunk of
contiguous space, known as an is added. The location of a file's blocks
is then recorded as a location and a block count, plus a link to the first block
of the next extent. On some systems, the owner of the file can set the extent
size, but this setting results in inefficiencies if the owner is incorrect. Internal
fragm.entation can still be a problem if the extents are too large, and external
fragmentation can become a problem as extents of varying sizes are allocated
and deallocated. The commercial Veritas file system uses extents to optimize
performance. It is a high-performance replacement for the standard UNIX UFS.

11.4.2 Linked Allocation

solves all problems of contiguous allocation. With linked
allocation, each file is a linked list of disk blocks; the disk blocks may be
scattered anywhere on the disk. The directory contains a pointer to the first
and last blocks of the file. For example, a file of five blocks might start at block
9 and continue at block 16, then block 1, then block 10, and finally block 25
(Figure 11.6). Each block contains a pointer to the next block. These pointers

474 Chapter 11

directory

12

16 170180190

20021~_20_.~23_0-4------------~
2402Sc.51:260270

280290300310

Figure i 1.6 Linked allocation of disk space.

are not made available to the user. Thus, if each block is 512 bytes in size, and
a disk address (the poileter) requires 4 bytes, then the user sees blocks of 508
bytes.

To create a new file, we simply create a new entry ile the directory. With
linked allocation, each directory entry has a pointer to the first disk block of the
file. This pointer is initialized to nil (the end-of-list pointer value) to signify an
empty file. The size field is also set to 0. A write to the file causes the free-space
management system to filed a free block, and this new block is written to
and is linked to the end of the file. To read a file, we simply read blocks by
following the pointers from block to block. There is no external fragmentation
with linked allocation, and any free block on the free-space list can be used to
satisfy a request. The size of a file need not be declared when that file is created.
A file can continue to grow as long as free blocks are available. Consequently,
it is never necessary to compact disk space.

Linked allocation does have disadvantages, however. The major problem
is that it can be used effectively only for sequential-access files. To filed the
ith block of a file, we must start at the begirueing of that file and follow the
pointers rnetil we get to the ith block. Each access to a pointer requires a disk
read, and some require a disk seek. Consequently, it is inefficient to support a
direct-access capability for linked-allocation files.

Another disadvantage is the space required for the pointers. If a pointer
requires 4 bytes out of a 512-byte block, then 0.78 percent of the disk is being
used for pointers, rather than for information. Each file requires slightly more
space than it would otherwise.

The usual solution to this problem is to collect blocks into multiples, called
and to allocate clusters rather than blocks. For instance, the file system

may define a cluster as four blocks and operate on the disk only in cluster
units. Pointers then use a much smaller percentage of the file's disk space.
This method allows the logical-to-physical block mapping to remain simple

11.4 475

but improves disk throughput (because fewer disk-head seeks are required)
and decreases the space needed for block allocation and free-list management.
The cost of this approach is an increase in internal fragmentation, because
more space is wasted when a cluster is partially full than when a block is
partially full. Clusters can be used to improve the disk-access time for many
other algorithms as welt so they are used in most file systems.

Yet another problem of linked allocation is reliability. Recall that the files
are linked together by pointers scattered all over the disk, and consider what
would happen if a pointer were lost or damaged. A bug in the operating-system
software or a disk hardware failure might result in picking up the wrong
pointer. This error could in turn result in linking into the free-space list or into
another file. One partial solution is to use doubly linked lists, and another is
to store the file name and relative block number in each block; however, these
schemes require even more overhead for each file.

An important variation on linked allocation is the use of a
(FAT!. This simple but efficient method of disk-space allocation is used

by the MS-DOS and OS/2 operating systems. A section of disk at the beginning
of each volume is set aside to contain the table. The table has one entry for
each disk block and is indexed by block number. The FAT is used in much the
same way as a linked list. The directory entry contains the block number of the
first block of the file. The table entry indexed by that block number contains
the block number of the next block in the file. This chain continues until it
reaches the last block, which has a special end-of-file value as the table entry.
An unused block is indicated by a table value of 0. Allocating a new block to
a file is a simple matter of finding the first 0-valued table entry and replacing
the previous end-of-file value with the address of the new block. The 0 is then
replaced with the end-of-file value. An illustrative example is the FAT structure
shown in Figure 11.7 for a file consisting of disk blocks 217, 618, and 339.

directory entry

name start block
0

217 618

339 -
618 339

number of disk blocks -1

FAT

Figure 11.7 File-allocation table.

476 Chapter 11

The FAT allocation scheme can result in a significant number of disk head
seeks, unless the FAT is cached. The disk head must move to the start of the
volume to read the FAT and find the location of the block in question, then
move to the location of the block itself. In the worst case, both moves occur for
each of the blocks. A benefit is that random-access time is improved, because
the disk head can find the location of any block by reading the information in
the FAT.

11.4.3 Indexed Allocation

Linked allocation solves the external-fragmentation and size-declaration prob
lems of contiguous allocation. However, in the absence of a FAT, linked
allocation cannot support efficient direct access, since the pointers to the blocks
are scattered with the blocks themselves all over the disk and must be retrieved
in order. solves this problem by bringil1.g all the pointers
together into one location: the blo;ct:.

Each file has its own index block, which is an array of disk-block addresses.
The i th entry in the index block points to the i 111 block of the file. The directory
contains the address of the index block (Figure 11.8). To find and read the i 1Jz

block, we use the pointer in the i 1lz index-block entry. This scheme is similar to
the paging scheme described il1. Section 8.4.

When the file is created, all pointers in the index block are set to nil. When
the ith block is first written, a block is obtained from the free-space manage1~
and its address is put in the ith index-block entry.

Indexed allocation supports direct access, without suffering from external
fragmentation, because any free block on the disk can satisfy a request for more
space. Indexed allocation does suffer from wasted space, however. The pointer
overhead of the index block is generally greater than the pointer overhead of
linked allocation. Consider a common case in which we have a file of only one
or two blocks. With linked allocation, we lose the space of only one pointer per

directory

file
jeep

16

Figure 11.8 Indexed allocation of disk space.

11.4 Allocation Methods 477

block. With indexed allocation, an entire index block must be allocated, even
if only one or two pointers will be non-nil.

This point raises the question of how large the index block should be. Every
file must have an index block, so we want the index block to be as small as
possible. If the index block is too small, however, it will not be able to hold
enough pointers for a large file, and a mechanism will have to be available to
deal with this issue. Mechanisms for this purpose include the following:

c Linked scheme. An index block is normally one disk block. Thus, it can
be read and written directly by itself. To allow for large files, we can link
together several index blocks. For example, an index block might contain a
small header giving the name of the file and a set of the first 100 disk-block
addresses. The next address (the last word in the index block) is nil (for a
small file) or is a pointer to another index block (for a large file).

• Multilevel index. A variant of linked representation uses a first-level index
block to point to a set of second-level index blocks, which in tum point to
the file blocks. To access a block, the operating system uses the first-level
index to find a second-level index block and then uses that block to find the
desired data block. This approach could be continued to a third or fourth
level, depending on the desired maximum file size. With 4,096-byte blocks,
we could store 1,024 four-byte pointers in an index block. Two levels of
indexes allow 1,048,576 data blocks and a file size of up to 4GB.

• Combined scheme. Another alternative, used in the UFS, is to keep the
first, say, 15 pointers of the index block in the file's inode. The first 12
of these pointers point to direct blocks; that is, they contain addresses of
blocks that contain data of the file. Thus, the data for small files (of no more
than 12 blocks) do not need a separate index block. If the block size is 4 KB,
then up to 48 KB of data can be accessed directly. The next three pointers
point to indirect blocks. The first points to a single indirect block, which
is an index block containing not data but the addresses of blocks that do
contain data. The second points to a double indirect block, which contains
the address of a block that contains the addresses of blocks that contain
pointers to the actual data blocks. The last pointer contains the address of a
triple indirect block. Under this method, the number of blocks that can be
allocated to a file exceeds the amount of space addressable by the four-byte
file pointers used by many operating systems. A 32-bit file pointer reaches
only 232 bytes, or 4GB. Many UNIX implementations, including Solaris and
IBM's AIX, now support up to 64-bit file pointers. Pointers of this size allow
files and file systems to be terabytes in size. A UNIX inode is shown in
Figure 11.9.

Indexed-allocation schemes suffer from some of the same performance
problems as does linked allocation. Specifically, the index blocks can be cached
in memory, but the data blocks may be spread all over a volume.

11.4.4 Performance

The allocation methods that we have discussed vary in their storage efficiency
and data-block access times. Both are important criteria in selecting the proper
method or methods for an operating system to implement.

478 Chapter 11 Implementing File Systems

Figure 11.9 The UNIX inode.

Before selecting an allocation method, we need to determine how the
systems will be used. A system with mostly sequential access should not use
the same method as a system with mostly random access.

For any type of access, contiguous allocation requires only one access to get
a disk block. Since we can easily keep the initial address of the file in memory,
we can calculate immediately the disk address of the ith block (or the next
block) and read it directly.

For linked allocation, we can also keep the address of the next block in
memory and read it directly. This method is fine for sequential access; for
direct access, however, an access to the ith block might require i disk reads. This
problem indicates why linked allocation should not be used for an application
requiring direct access.

As a result, some systems support direct-access files by using contiguous
allocation and sequential-access files by using linked allocation. For these
systems, the type of access to be made must be declared when the file is
created. A file created for sequential access will be linked and cannot be used
for direct access. A file created for direct access will be contiguous and can
support both direct access and sequential access, but its maximum length must
be declared when it is created. In this case, the operating system must have
appropriate data structures and algorithms to support both allocation methods.
Files can be converted from one type to another by the creation of a new file of
the desired type, into which the contents of the old file are copied. The old file
may then be deleted and the new file renamed.

Indexed allocation is more complex. If the index block is already in memory,
then the access can be made directly. However, keeping the index block in
memory requires considerable space. If this memory space is not available,
then we may have to read first the index block and then the desired data
block. For a two-level index, two index-block reads might be necessary. For an

11.5

11.5 479

extremely large file, accessing a block near the end of the file would require
reading in all the index blocks before the needed data block finally could
be read. Thus, the performance of indexed allocation depends on the index
structure, on the size of the file, and on the position of the block desired.

Some systems combine contiguous allocation with indexed allocation by
using contiguous allocation for small files (up to three or four blocks) and
automatically switching to an indexed allocation if the file grows large. Since
most files are small, and contiguous allocation is efficient for small files, average
performance can be quite good.

For instance, the version of the UNIX operating system from Sun Microsys
tems was changed in 1991 to improve performance in the file-system allocation
algorithm. The performance measurements indicated that the maximum disk
throughput on a typical workstation (a 12-MIPS SPARCstation1) took 50 percent
of the CPU and produced a disk bandwidth of only 1.5 ME per second. To
improve performance, Sun made changes to allocate space in clusters of 56 KB
whenever possible (56 KB was the maximum size of a DMA transfer on Sun
systems at that time). This allocation reduced external fragmentation, and thus
seek and latency times. In addition, the disk-reading routines were optimized
to read in these large clusters. The inode structure was left unchanged. As a
result of these changes, plus the use of read-ahead and free-behind (discussed
in Section 11.6.2), 25 percent less CPU was used, and throughput substantially
improved.

Many other optimizations are in use. Given the disparity between CPU
speed and disk speed, it is not unreasonable to add thousands of extra
instructions to the operating system to save just a few disk-head movements.
Furthermore, this disparity is increasing over time, to the point where hundreds
of thousands of instructions reasonably could be used to optimize head
movements.

Since disk space is limited, we need to reuse the space from deleted files for new
files, if possible. (Write-once optical disks only allow one write to any given
sector, and thus such reuse is not physically possible.) To keep track of free disk
space, the system maintains a The free-space list records all free
disk blocks-those not allocated to some file or directory. To create a file, we
search the free-space list for the required amount of space and allocate that
space to the new file. This space is then removed from the free-space list. When
a file is deleted, its disk space is added to the free-space list. The free-space list,
despite its name, might not be implemented as a list, as we discuss next.

11.5.1 Bit Vector

Frequently, the free-space list is implemented as a or Each
block is represented by 1 bit. If the block is free, the bit is 1; if the block is
allocated, the bit is 0.

For example, consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17,
18, 25, 26, and 27 are free and the rest of the blocks are allocated. The free-space
bit map would be

480 Chapter 11

001111001111110001100000011100000 ...

The main advantage of this approach is its relative simplicity and its
efficiency in finding the first free block or n consecutive free blocks on the
disk. Indeed, many computers supply bit-manipulation instructions that can
be used effectively for that purpose. For example, the Intel family starting with
the 80386 and the Motorola family starting with the 68020 have instructions
that return the offset in a word of the first bit with the value 1 (these processors
have powered PCs and Macintosh systems, respectively). One technique for
finding the first free block on a system that uses a bit-vector to allocate disk
space is to sequentially check each word in the bit map to see whether that
value is not 0, since a 0-valued word contains only 0 bits and represents a set
of allocated blocks. The first non-0 word is scanned for the first 1 bit, which is
the location of the first free block. The calculation of the block number is

(number of bits per word) x (number of 0-value words) +offset of first 1 bit.

Again, we see hardware features driving software functionality. Unfor
tunately, bit vectors are inefficient unless the entire vector is kept in main
memory (and is written to disk occasionally for recovery needs). Keeping it in
main memory is possible for smaller disks but not necessarily for larger ones.
A 1.3-GB disk with 512-byte blocks would need a bit map of over 332 KB to
track its free blocks, although clustering the blocks in groups of four reduces
this number to around 83 KB per disk. A 1-TB disk with 4-KB blocks requires 32
MB to store its bit map. Given that disk size constantly increases, the problem
with bit vectors will continue to escalate. A 1-PB file system would take a 32-GB
bitmap just to manage its free space.

11.5.2 Linked List

Another approach to free-space management is to link together all the free
disk blocks, keeping a pointer to the first free block in a special location on the
disk and caching it in memory. This first block contains a pointer to the next
free disk block, and so on. Recall our earlier example (Section 11.5.1), in which
blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26, and 27 were free and the
rest of the blocks were allocated. In this situation, we would keep a pointer to
block 2 as the first free block. Block 2 would contain a pointer to block 3, which
would point to block 4, which would point to block 5, which would point to
block 8, and so on (Figure 11.10). This scheme is not efficient; to traverse the
list, we must read each block, which requires substantial I/0 time. Fortunately,
however, traversing the free list is not a frequent action. Usually, the operating
system simply needs a free block so that it can allocate that block to a file, so
the first block in the free list is used. The FAT method incorporates free-block
accounting into the allocation data structure. No separate method is needed.

11.5.3 Grouping

A modification of the free-list approach stores the addresses of n free blocks
in the first free block. The first n-1 of these blocks are actually free. The last
block contains the addresses of another n free blocks, and so on. The addresses

11.5 481

Figure 11.10 Linked free-space list on disk.

of a large number of free blocks can now be found quickly, unlike the situation
when the standard linked-list approach is used.

11.5.4 Counting

Another approach takes advantage of the fact that, generally, several contigu
ous blocks may be allocated or freed simultaneously, particularly when space is
allocated with the contiguous-allocation algorithm or through clustering. Thus,
rather than keeping a list of n free disk addresses, we can keep the address of
the first free block and the number (n) of free contiguous blocks that follow the
first block. Each entry in the free-space list then consists of a disk address and
a count. Although each entry requires more space than would a simple disk
address, the overall list is shorter, as long as the count is generally greater than
1. Note that this method of tracking free space is similar to the extent method
of allocating blocks. These entries can be stored in a B-tree, rather than a linked
list for efficient lookup, insertion, and deletion.

11.5.5 Space Maps

Sun's ZFS file system was designed to encompass huge numbers of files,
directories, and even file systems (in ZFS, we can create file-system hierarchies).
The resulting data structures could have been large and inefficient if they had
not been designed and implemented properly. On these scales, metadata I/0
can have a large performance impact. Conside1~ for example, that if the free
space list is implemented as a bit map, bit maps must be modified both when
blocks are allocated and when they are freed. Freeing 1GB of data on a 1-TB
disk could cause thousands of blocks of bit maps to be updated, because those
data blocks could be scattered over the entire disk.

482 Chapter 11

11.6

ZFS uses a combination of techniques in its free-space managem.ent
algorithm to control the size of data structures and minimize the I/0 needed
to manage those structures. First, ZFS creates to divide the space
on the device into chucks of manageable size. A given volume may contain
hundreds of metaslabs. Each metaslab has an associated space map. ZFS uses
the counting algorithm to store information about free blocks. Rather than
write count structures to disk, it uses log-structured file- system techniques
to record them. The space map is a log of all block activity (allocatil<g and
freemg), in time order, in countil<g format. When ZFS decides to allocate or
free space from a metaslab, it loads the associated space map into memory
in a balanced-tree structure (for very efficient operation), indexed by offset,
and replays the log into that structure. The in-memory space map is then an
accurate representation of the allocated and free space in the metaslab. ZFS also
condenses the map as much as possible by combining contiguous free blocks
into a sil<gle entry. Finally, the free-space list is updated on disk as part of
the transaction-oriented operations of ZFS. During the collection and sortmg
phase, block requests can still occur, and ZFS satisfies these requests from the
log. In essence, the log plus the balanced tree is the free list.

Now that we have discussed various block-allocation and directory
management options, we can further consider their effect on performance
and efficient disk use. Disks tend to represent a major bottleneck in system
performance, since they are the slowest main computer component. In this
section, we discuss a variety of techniques used to improve the efficiency and
performance of secondary storage.

11.6.1 Efficiency

The efficient use of disk space depends heavily on the disk allocation and
directory algorithms in use. For instance, UNIX inodes are preallocated on a
volume. Even an "empty" disk has a percentage of its space lost to inodes.
However, by preallocating the inodes and spreading them across the volume,
we improve the file system's performance. This improved performance results
from the UNIX allocation and free-space algorithms, which try to keep a file's
data blocks near that file's inode block to reduce seek time.

As another example, let's reconsider the clustermg scheme discussed in
Section 11.4, which aids in file-seek and file-transfer performance at the cost
of internal fragmentation. To reduce this fragmentation, BSD UNIX varies the
cluster size as a file grows. Large clusters are used where they can be filled, and
small clusters are used for small files and the last cluster of a file. This system
is described in Appendix A.

The types of data normally kept in a file's directory (or inode) entry also
require consideration. Commonly, a "last write date" is recorded to supply
information to the user and to determine whether the file needs to be backed
up. Some systems also keep a "last access date," so that a user can determine
when the file was last read. The result of keeping this information is that,
whenever the file is read, a field in the directory structure must be written

11.6 483

to. That means the block must be read into memory, a section changed, and
the block written back out to disk, because operations on disks occur only in
block (or cluster) chunks. So any time a file is opened for reading, its directory
entry must be read and written as well. This requirement can be inefficient for
frequently accessed files, so we must weigh its benefit against its performance
cost when designing a file system. Generally, every data item associated with a
file needs to be considered for its effect on efficiency and performance.

As an example, consider how efficiency is affected by the size of the pointers
used to access data. Most systems use either 16- or 32-bit pointers throughout
the operating system. These pointer sizes limit the length of a file to either
216 (64 KB) or 232 bytes (4 GB). Some systems implement 64-bit pointers to
increase this limit to 264 bytes, which is a very large number indeed. However,
64-bit pointers take more space to store and in turn make the allocation and
free-space-management methods (linked lists, indexes, and so on) use more
disk space.

One of the difficulties in choosing a pointer size, or indeed any fixed
allocation size within an operating system, is planning for the effects of
changing technology. Consider that the IBM PC XT had a 10-MB hard drive
and an MS-DOS file system that could support only 32 MB. (Each FAT entry
was 12 bits, pointing to an 8-KB cluster.) As disk capacities increased, larger
disks had to be split into 32-MB partitions, because the file system could not
track blocks beyond 32MB. As hard disks with capacities of over 100MB became
common, the disk data structures and algorithms in MS-DOS had to be modified
to allow larger file systems. (Each FAT entry was expanded to 16 bits and later
to 32 bits.) The initial file-system decisions were made for efficiency reasons;
however, with the advent of MS-DOS Version 4, millions of computer users were
inconvenienced when they had to switch to the new, larger file system. Sun's
ZFS file system uses 128-bit pointers, which theoretically should never need
to be extended. (The minimum mass of a device capable of storing 2128 bytes
using atomic-level storage would be about 272 trillion kilograms.)

As another example, consider the evolution of Sun's Solaris operating
system. Originally, many data structures were of fixed length, allocated at
system startup. These structures included the process table and the open-file
table. When the process table became full, no more processes could be created.
When the file table became full, no more files could be opened. The system
would fail to provide services to users. Table sizes could be increased only by
recompiling the kernel and rebooting the system. Since the release of Solaris
2, almost all kernel structures have been allocated dynamically, eliminating
these artificial limits on system performance. Of course, the algorithms that
manipulate these tables are more complicated, and the operating system is a
little slower because it must dynamically allocate and deallocate table entries;
but that price is the usual one for more general functionality.

11.6.2 Performance

Even after the basic file-system algorithms have been selected, we can still
improve performance in several ways. As will be discussed in Chapter 13,
most disk controllers include local memory to form an on-board cache that is
large enough to store entire tracks at a time. Once a seek is performed, the
track is read into the disk cache starting at the sector under the disk head

484 Chapter 11

1/0 using
read() and write()

tile system

Figure 11.11 1/0 without a unified buffer cache.

(reducing latency time). The disk controller then transfers any sector requests
to the operating system. Once blocks make it from the disk controller into main
memory, the operating system may cache the blocks there.

Some systems maintain a separate section of main memory for a
where blocks are kept under the assumption that will be used

again shortly. Other systems cache file data using a The page
cache uses virtual memory techniques to cache file data as pages rather than
as file-system-oriented blocks. Cachii"lg file data using virtual addresses is far
more efficient than caching through physical disk blocks, as accesses interface
with virtual memory rather than the file system. Several systems-including
Solaris, Linux, and Windows NT, 2000, and XP-use caching to cache
both process pages and file data. This is known as

Some versions of UNIX and Linux provide a To
illustrate the benefits of the unified buffer cache, consider the two alternatives
for opening and accessing a file. One approach is to use memory mapping
(Section 9.7); the second is to use the standard system calls read() and
write(). Without a unified buffer cache, we have a situation similar to Figure
11.11. Here, the read() and write() system calls go through the buffer cache.
The memory-mapping call, however, requires using two caches-the page
cache and the buffer cache. A memory mapping proceeds by reading in disk
blocks from the file system and storing them in the buffer cache. Because the
virtual memory system does not interface with the buffer cache, the contents
of the file in the buffer cache must be copied into the page cache. This situation
is known as and requires caching file-system data twice. Not
only does it waste memory but it also wastes significant CPU and I/O cycles due
to the extra data movement within system memory. In addition, inconsistencies
between the two caches can result in corrupt files. In contrast, when a unified
buffer cache is provided, both memory mapping and the read() and write()
system calls use the same page cache. This has the benefit of a voiding double

11.6 485

memory-mapped 1/0

buffer cache

file system

Figure 11.12 1/0 using a unified buffer cache.

caching, and it allows the virtual memory system to manage file-system data.
The unified buffer cache is shown in Figure 11.12.

Regardless of whether we are caching disk blocks or pages (or both), LRU
(Section 9.4.4) seems a reasonable general-purpose algorithm for block or page
replacement. However, the evolution of the Solaris page-caching algorithms
reveals the difficulty in choosil1.g an algorithm. Solaris allows processes and the
page cache to share unused memory. Versions earlier than Solaris 2.5.1 made
no distmction between allocatmg pages to a process and allocating them to
the page cache. As a result, a system performing many I/0 operations used
most of the available memory for caching pages. Because of the high rates
of I/0, the page scanner (Section 9.10.2) reclaimed pages from processes
rather than from the page cache-when free memory ran low. Solaris 2.6 and
Solaris 7 optionally implemented priority paging, in which the page scanner
gives priority to process pages over the page cache. Solaris 8 applied a fixed
limit to process pages and the file-system page cache, preventing either from
forcing the other out of memory. Solaris 9 and 10 again changed the algorithms
to maximize memory use and mmimize thrashing.

Another issue that can affect the performance of I/0 is whether writes to
the file system occur synchronously or asynchronously.
occur in the order in which the disk subsystem receives and the writes
are not buffered. Thus, the calling routine must wait for the data to reach the
disk drive before it can proceed. In an the data are stored
in the cache, and control returns to the caller. Asynchronous writes are done
the majority of the time. However, metadata writes, among others, can be
synchronous. Operating systems frequently include a flag in the open system
call to allow a process to request that writes be performed synchxonously. For
example, databases use this feature for atomic transactions, to assure that data
reach stable storage in the required order.

Some systems optimize their page cache by using different replacement
algorithms, depending on the access type of the file. A file being read or
written sequentially should not have its pages replaced in LRU order, because
the most recently used page will be used last, or perhaps never again. Instead,
sequential access can be optimized by techniques known as free-behind and
read-ahead. removes a page from the buffer as soon as the next

486 Chapter 11

11.7

page is requested. The previous are not likely to be used again and
waste buffer space. With a requested page and several subsequent
pages are read and cached. These pages are likely to be requested after the
current page is processed. Retrieving these data from the disk in one transfer
and caching them saves a considerable ancount of time. One might think that
a track cache on the controller would elincinate the need for read-ahead on a
multiprogrammed system. However, because of the high latency and overhead
involved in making many small transfers from the track cache to main memory,
performing a read-ahead remains beneficial.

The page cache, the file system, and the disk drivers have some interesting
interactions. When data are written to a disk file, the pages are buffered in the
cache, and the disk driver sorts its output queue according to disk address.
These two actions allow the disk driver to minimize disk-head seeks and to
write data at times optimized for disk rotation. Unless synchronous writes are
required, a process writing to disk simply writes into the cache, and the system
asynchronously writes the data to disk when convenient. The user process sees
very fast writes. When data are read from a disk file, the block I/0 system does
some read-ahead; however, writes are much more nearly asynchronous than
are reads. Thus, output to the disk through the file system is often faster than
is input for large transfers, counter to intuition.

Files and directories are kept both in main memory and on disk, and care must
be taken to ensure that a system failure does not result in loss of data or in data
inconsistency. We deal with these issues in this section as well as how a system
can recover from such a failure.

A system crash can cause inconsistencies among on-disk file-system data
structures, such as directory structures, free-block pointers, and free FCB
pointers. Many file systems apply changes to these structures in place. A
typical operation, such as creating a file, can involve many structural changes
within the file system on the disk Directory structures are modified, FCBs are
allocated, data blocks are allocated, and the free counts for all of these blocks
are decreased. These changes can be interrupted by a crash, and inconsistencies
among the structures can result. For example, the free FCB count might indicate
that an FCB had been allocated, but the directory structure might not point to
the FCB. Compounding this problem is the caching that operating systems do
to optimize I/0 performance. Some changes may go directly to disk, while
others may be cached. If the cached changes do not reach disk before a crash
occurs, more corruption is possible.

In addition to crashes, bugs in file-system implementation, disk controllers,
and even user applications can corrupt a file system. File systems have varying
methods to deal with corruption, depending on the file-system data structures
and algorithms. We deal with these issues next.

11.7.1 Consistency Checking

Whatever the cause of corruption, a file system must first detect the problems
and then correct them. For detection, a scan of all the metadata on each file

11.7 487

system can confirm or deny the consistency of the systenL Unfortunately, this
scan can take minutes or hours and should occur every time the system boots.
Alternatively, a file system can record its state within the file-system metadata.
At the start of any metadata change, a status bit is set to indicate that the
metadata is in flux. If all updates to the metadata complete successfully, the file
system can clear that bit. It however, the status bit remains set, a consistency
checker is run.

The systems program such as f s ck in UNIX or
chkdsk in Windows-compares the data in the directory structure with the
data blocks on disk and tries to fix any inconsistencies it finds. The allocation
and free-space-management algorithms dictate what types of problems the
checker can find and how successful it will be in fixing them. For instance, if
linked allocation is used and there is a link from any block to its next block,
then the entire file can be reconstructed from the data blocks, and the directory
structure can be recreated. In contrast the loss of a directory entry on an
indexed allocation system can be disastrous, because the data blocks have no
knowledge of one another. For this reason, UNIX caches directory entries for
reads; but any write that results in space allocation, or other metadata changes,
is done synchronously, before the corresponding data blocks are written. Of
course, problems can still occur if a synchronous write is interrupted by a crash.

11.7.2 Log-Structured File Systems

Computer scientists often fin.d that algorithms and technologies origil1.ally used
in one area are equally useful in other areas. Such is the case with the database
log-based recovery algorithms described in Section 6.9.2. These logging algo-
rithms have been applied successfully to the of consistency '-.il'C'--".ll

The resulting implementations are known as
(or file systems.

Note that with the consistency-checking approach discussed in the pre
ceding section, we essentially allow structures to break and repair them on
recovery. However, there are several problems with this approach. One is that
the inconsistency may be irreparable. The consistency check may not be able to
recover the structures, resulting in loss of files and even entire directories.
Consistency checking can require human intervention to resolve conflicts,
and that is inconvenient if no human is available. The system can remain
unavailable until the human tells it how to proceed. Consistency checking also
takes system and clock time. To check terabytes of data, hours of clock time
may be required.

The solution to this problem is to apply log-based recovery techniques to
file-system metadata updates. Both NTFS and the Veritas file system use this
method, and it is included in recent versions of UFS on Solaris. In fact it is
becoming common on many operating systems.

Fundamentally, all metadata changes are written
Each set of operations for performing a specific task is a
the changes are written to this log, they are considered to be committed,
and the system call can return to the user process, allowing it to continue
execution. Meanwhile, these log entries are replayed across the actual file
system structures. As the changes are made, a pointer is updated to indicate

488 Chapter 11

which actions have completed and which are still incomplete. When an entire
committed transaction is completed, it is removed from the log file, which is
actually a circular buffer. A cb:uL;n· writes to the end of its space and
then continues at the beginning, overwriting older values as it goes. We would
not want the buffer to write over data that had not yet been saved, so that
scenario is avoided. The log may be in a separate section of the file system or
even on a separate disk spindle. It is more efficient, but more complex, to have
it under separate read and write heads, thereby decreasing head contention
and seek times.

If the system crashes, the log file will contain zero or more transactions.
Any transactions it contains were not completed to the file system, even though
they were committed by the operating system, so they must now be completed.
The transactions can be executed from the pointer until the work is complete
so that the file-system structures remain consistent The only problem occurs
when a transaction was aborted -that is, was not committed before the system
crashed. Any changes from such a transaction that were applied to the file
system must be undone, again preserving the consistency of the file system.
This recovery is all that is needed after a crash, elimil<ating any problems with
consistency checking.

A side benefit of using logging on disk metadata updates is that those
updates proceed much faster than when they are applied directly to the on-disk
data structures. The reason for this improvement is found in the performance
advantage of sequential I/0 over random I/0. The costly synchronous random
meta data writes are turned into much less costly synchronous sequential writes
to the log-structured file system's loggil<g area. Those changes in turn are
replayed asynchronously via random writes to the appropriate structures.
The overall result is a significant gain in performance of metadata-oriented
operations, such as file creation and deletion.

11.7.3 Other Solutions

Another alternative to consistency checking is employed by Network Appli
ance's WAFL file system and Sun's ZFS file system. These systems never
overwrite blocks with new data. Rather, a transaction writes all data and meta
data changes to new blocks. When the transaction is complete, the metadata
structures that pointed to the old versions of these blocks are updated to point
to the new blocks. The file system can then remove the old pointers and the old
blocks and make them available for reuse. If the old pointers and blocks are
kept, a is created; the snapshot is a view of the file system before the
last update took place. This solution should require no consistency checking if
the pointer update is done atomically. WAFL does have a consistency checke1~
however, so some failure scenarios can still cause metadata corruption. (See
11.9 for details of the WAFL file system.)

Sun's ZFS takes an even more im<ovative approach to disk consistency.
It never overwrites blocks, just as is the case with WAFL. However, ZFS goes
further and provides check-summing of all metadata and data blocks. This
solution (when combined with RAID) assures that data are always correct. ZFS
therefore has no consistency checker. (More details on ZFS are found in Section
12.7.6.)

11.7 489

11.7.4 Backup and Restore

Magnetic disks sometimes fail, and care must be taken to ensure that the data
lost in such a failure are not lost forever. To this end, system programs can be
used to data from disk to another storage device, such as a floppy
disk, magnetic tape, optical disk, or other hard disk. Recovery from the loss of
an individual file, or of an entire disk, may then be a matter of the
data from backup.

To minimize the copying needed, we can use information from each file's
directory entry. For instance, if the backup program knows when the last
backup of a file was done, and the file's last write date in the directory indicates
that the file has not changed since that date, then the file does not need to be
copied again. A typical backup schedule may then be as follows:

1. Copy to a backup medium all files from the disk. This is called a

to another medium all files changed since day 1. This is an

Day 3. Copy to another medium all files changed since day 2.

Day N. Copy to another medium all files changed since day N-1. Then
go back to Day 1.

The new cycle can have its backup written over the previous set or onto
a new set of backup media. In this manner, we can restore an entire disk
by starting restores with the full backup and continuing through each of the
incremental backups. Of course, the larger the value of N, the greater the
number of media that must be read for a complete restore. An added advantage
of this backup cycle is that we can restore any file accidentally deleted during
the cycle by retrieving the deleted file from the backup of the previous day. The
length of the cycle is a compromise between the amount of backup medium
needed and the number of days back from which a restore can be done. To
decrease the number of tapes that must be read to do a restore, an option is to
perform a full backup and then each day back up all files that have changed
since the full backup. In this way, a restore can be done via the most recent
incremental backup and the full backup, with no other incremental backups
needed. The trade-off is that more files will be modified each day, so each
successive incremental backup involves more files and more backup media.

A user ncay notice that a particular file is missing or corrupted long after
the damage was done. For this reason, we usually plan to take a full backup
from time to time that will be saved "forever." It is a good idea to store these
permanent backups far away from the regular backups to protect against
hazard, such as a fire that destroys the computer and all the backups too.
And if the backup cycle reuses media, we must take care not to reuse the

490 Chapter 11

11.8

media too many times-if the media wear out, it might not be possible to
restore any data from the backups.

Network file systems are commonplace. They are typically integrated with
the overall directory structure and interface of the client system. NFS is a
good example of a widely used, well-implemented client-server network file
system. Here, we use it as an example to explore the implementation details of
network file systems.

NFS is both an implementation and a specification of a software system for
accessing remote files across LANs (or even WANs). NFS is part of ONC+, which
most UNIX vendors and some PC operating systems support. The implementa
tion described here is part of the Solaris operating system, which is a modified
version of UNIX SVR4 running on Sun workstations and other hardware. It uses
either the TCP or UDP /IP protocol (depending on the interconnecting network).
The specification and the implementation are intertwined in our description of
NFS. Whenever detail is needed, we refer to the Sun implementation; whenever
the description is general, it applies to the specification also.

There are multiple versions of NFS, with the latest being Version 4. Here,
we describe Version 3, as that is the one most commonly deployed.

11.8.1 Overview

NFS views a set of interconnected workstations as a set of independent machines
with independent file systems. The goal is to allow some degree of sharing
among these file systems (on explicit request) in a transparent manner. Sharing
is based on a client-server relationship. A machine may be, and often is, both a
client and a server. Sharing is allowed between any pair of machines. To ensure
machine independence, sharing of a remote file system affects only the client
machine and no other machine.

So that a remote directory will be accessible in a transparent manner
from a particular machine-say, from Ml-a client of that machine must
first carry out a mount operation. The semantics of the operation involve
mounting a remote directory over a directory of a local file system. Once the
mount operation is completed, the mounted directory looks like an integral
subtree of the local file system, replacing the subtree descending from the
local directory. The local directory becomes the name of the root of the newly
mounted directory. Specification of the remote directory as an argument for the
mount operation is not done transparently; the location (or host name) of the
remote directory has to be provided. However, fron"l then on, users on machine
Ml can access files in the remote directory in a totally transparent manner.

To illustrate file mounting, consider the file system depicted in Figure 11.13,
where the triangles represent subtrees of directories that are of interest. The
figure shows three independent file systems of machines named U, 51, and
52. At this point, on each machine, only the local files can be accessed. Figure
11.14(a) shows the effects of mounting 81: /usr/shared over U: /usr/local.
This figure depicts the view users on U have of their file system. Notice that
after the mount is complete, they can access any file within the dirl directory

11.8 491

U: S1: S2:

usr usr usr

Figure 11.13 Three independent file systems.

using the prefix /usr /local/ dir1. The original directory /usr /local on that
machine is no longer visible.

Subject to access-rights accreditation, any file system, or any directory
within a file system, can be mounted remotely on top of any local directory.
Diskless workstations can even mount their own roots from servers. Cascading
mounts are also permitted in some NFS implementations. That is, a file system
can be mounted over another file system that is remotely mounted, not local. A
machine is affected by only those mounts that it has itself invoked. Mounting a
remote file system does not give the client access to other file systems that were,
by chance, mounted over the former file system. Thus, the mount mechanism
does not exhibit a transitivity property.

In Figure 11.14(b), we illustrate cascading mounts. The figure shows the
result of mounting S2: /usr /dir2 over U: /usr/local/dir1, which is already
remotely mounted from 51. Users can access files within dir2 on U using the

U: U:

(a) (b)

Figure 11.14 Mounting in NFS. (a) Mounts. (b) Cascading mounts.

492 Chapter 11

prefix /usr/local/dir1. If a shared file system is mounted over a user's home
directories on all machines in a network, the user can log into any workstation
and get his honce environment. This property permits

One of the design goals of NFS was to operate in a heterogeneous environ
ment of different machines, operating systems, and network architectures.
The NFS specification is independent of these media and thus encourages
other implementations. This independence is achieved through the use of
RPC primitives built on top of an external data representation (XDR) proto
col used between two implementation-independent interfaces. Hence, if the
system consists of heterogeneous machines and file systems that are properly
interfaced to NFS, file systems of different types can be mounted both locally
and remotely.

The NFS specification distinguishes between the services provided by a
mount mechanism and the actual remote-file-access services. Accordingly, two
separate protocols are specified for these services: a mount protocol and a
protocol for remote file accesses, the The protocols are specified as
sets of RPCs. These RPCs are the building blocks used to implement transparent
remote file access.

11.8.2 The Mount Protocol

The establishes the initial logical connection between a server
and a client. In Sun's implementation, each machine has a server process,
outside the kernel, performing the protocol functions.

A mount operation includes the name of the remote directory to be
mounted and the name of the server machine storing it. The mount request
is mapped to the corresponding RPC and is forwarded to the mount server
running on the specific server machine. The server maintains an
that specifies local file systems that it exports for mounting, along with names
of machines that are permitted to mount them. (In Solaris, this list is the
I etc/dfs/dfstab, which can be edited only by a superuser.) The specification
can also include access rights, such as read only. To simplify the maintenance
of export lists and mount tables, a distributed naming scheme can be used to
hold this information and make it available to appropriate clients.

Recall that any directory within an exported file system can be mounted
remotely by an accredited machine. A component unit is such a directory. When
the server receives a mount request that conforms to its export list, it returns to
the client a file handle that serves as the key for further accesses to files within
the mounted file system. The file handle contains all the information that the
server needs to distinguish an individual file it stores. In UNIX terms, the file
handle consists of a file-system identifier and an inode number to identify the
exact mounted directory within the exported file system.

The server also maintains a list of the client machines and the corresponding
currently mounted directories. This list is used mainly for administrative
purposes-for instance, for notifying all clients that the server is going down.
Only through addition and deletion of entries in this list can the server state
be affected by the mount protocol.

Usually, a system has a static mounting preconfiguration that is established
at boot time (I etc/vfstab in Solaris); however, this layout can be modified. In

11.8 493

addition to the actual mount procedure, the mount protocol includes several
other procedures, such as unmount and return export list.

11.8.3 The NFS Protocol

The NFS protocol provides a set of RPCs for remote file operations. The
procedures support the following operations:

Searching for a file within a directory

Reading a set of directory entries

Manipulating links and directories

Accessing file attributes

Reading and writing files

These procedures can be invoked only after a file handle for the remotely
mounted directory has been established.

The omission of open() and close() operations is intentional. A promi
nent feature of NFS servers is that they are stateless. Servers do not maintain
information about their clients from one access to another. No parallels to
UNIX's open-files table or file structures exist on the server side. Consequently,
each request has to provide a full set of arguments, including a unique file
identifier and an absolute offset inside the file for the appropriate operations.
The resulting design is robust; no special measures need be taken to recover
a server after a crash. File operations must be idempotent for this purpose.
Every NFS request has a sequence number, allowing the server to determine if
a request is duplicated or if any are missing.

Maintaining the list of clients that we mentioned seems to violate the
statelessness of the server. Howeve1~ this list is not essential for the correct
operation of the client or the server, and hence it does not need to be restored
after a server crash. Consequently, it might include inconsistent data and is
treated as only a hint.

A further implication of the stateless-server philosophy and a result of the
synchrony of an RPC is that modified data (including indirection and status
blocks) must be committed to the server's disk before results are returned to
the client. That is, a client can cache write blocks, but when it flushes them
to the server, it assumes that they have reached the server's disks. The server
must write all NFS data synchronously. Thus, a server crash and recovery
will be invisible to a client; all blocks that the server is managing for the
client will be intact. The consequent performance penalty can be large, because
the advantages of caching are lost. Performance can be increased using
storage with its own nonvolatile cache (usually battery-backed-up memory).
The disk controller ackiwwledges the disk write when the write is stored in
the nonvolatile cache. In essence, the host sees a very fast synchronous write.
These blocks remain intact even after system crash and are written from this
stable storage to disk periodically.

A single NFS write procedure call is guaranteed to be atomic and is not
intermixed with other write calls to the same file. The NFS protocol, however,
does not provide concurrency-control mechanisms. A write () system call may

494 Chapter 11

client server

Figure 11.15 Schematic view of the NFS architecture.

be broken down into several RPC writes, because each NFS write or read call
can contain up to 8 KB of data and UDP packets are limited to 1,500 bytes. As a
result, two users writing to the same remote file may get their data intermixed.
The claim is that, because lock management is inherently stateful, a service
outside the NFS should provide locking (and Solaris does). Users are advised
to coordinate access to shared files using mechanisms outside the scope of NFS.

NFS is integrated into the operating system via a VFS. As an illustration
of the architecture, let's trace how an operation on an already open remote
file is handled (follow the example in Figure 11.15). The client initiates the
operation with a regular system call. The operating-system layer maps this
call to a VFS operation on the appropriate vnode. The VFS layer identifies the
file as a remote one and invokes the appropriate NFS procedure. An RPC call
is made to the NFS service layer at the remote server. This call is reinjected to
the VFS layer on the remote system, which finds that it is local and invokes
the appropriate file-system operation. This path is retraced to return the result.
An advantage of this architecture is that the client and the server are identical;
thus, a machine may be a client, or a server, or both. The actual service on each
server is performed by kernel threads.

11.8.4 Path-Name Translation

in NFS involves the parsing of a path name such as
/usr/local/dir1/file. txt into separate directory entries, or components:
(1) usr, (2) local, and (3) dir1. Path-name translation is done by breaking the
path into component names and perform.ing a separate NFS lookup call for
every pair of component name and directory vnode. Once a n10unt point is
crossed, every component lookup causes a separate RPC to the server. This

11.8 495

expensive path-name-traversal scheme is needed, since the layout of each
client's logical name space is unique, dictated by the mounts the client has
performed. It would be ITluch more efficient to hand a server a path name
and receive a target vnode once a mount point is encountered. At any point,
however, there might be another mount point for the particular client of whicb
the stateless server is unaware.

So that lookup is fast, a directory-name-lookup cache on the client side
holds the vnodes for remote directory names. This cache speeds up references
to files with the same initial path name. The directory cache is discarded when
attributes returned from the server do not match the attributes of the cached
vnode.

Recall that mounting a remote file system on top of another already
mounted remote file system (a cascading mount) is allowed in some imple
mentations of NFS. However, a server cannot act as an intermediary between a
client and another server. Instead, a client must establish a direct client-server
com1ection with the second server by directly mounting the desired directory.
When a client has a cascading mount, more than one server can be involved in a
path-name traversaL However, each component lookup is performed between
the original client and some server. Therefore, when a client does a lookup on
a directory on which the server has mounted a file system, the client sees the
underlying directory instead of the mounted directory.

11.8.5 Remote Operations

With the exception of opening and closing files, there is almost a one-to-one
correspondence between the regular UNIX system calls for file operations and
the NFS protocol RPCs. Thus, a remote file operation can be translated directly
to the corresponding RPC. Conceptually, NFS adheres to the remote-service
paradigm; but in practice, buffering and caching techniques are employed for
the sake of performance. No direct correspondence exists between a remote
operation and an RPC. Instead, file blocks and file attributes are fetched by the
RPCs and are cached locally. Future remote operations use the cached data,
subject to consistency constraints.

There are two caches: the file-attribute (inode-infonnation) cache and the
file-blocks cache. When a file is opened, the kernel checks with the remote
server to determine whether to fetch or revalidate the cached attributes. The
cached file blocks are used only if the corresponding cached attributes are up
to date. The attribute cache is updated whenever new attributes arrive from
the server. Cached attributes are, by default, discarded after 60 seconds. Both
read-ahead and delayed-write techniques are used between the server and the
client. Clients do not free delayed-write blocks until the server confirms that
the data have been written to disk Delayed-write is retained even when a file
is opened concurrently, in conflicting modes. Hence, UNIX semantics (Section
10.5.3.1) are not preserved.

Tuning the system for performance makes it difficult to characterize the
consistency semantics of NFS. New files created on a machine may not be
visible elsewhere for 30 seconds. Furthermore, writes to a file at one site may
or may not be visible at other sites that have this file open for reading. New
opens of a file observe only the changes that have already been flushed to the
server. Thus, NFS provides neither strict emulation of UNIX semantics nor the

496 Chapter 11

11.9

session sen<antics of Andrew (Section 10.5.3.2).ln spite of these drawbacks, the
utility and good performance of the mechanism make it the most widely used
multi-vendor-distributed system in operation.

Disk I/O has a huge impact on system performance. As a result, file-system
design and implementation command quite a lot of attention from system
designers. Some file systems are general purpose, in that they can provide
reasonable performance and functionality for a wide variety of file sizes, file
types, and I/0 loads. Others are optimized for specific tasks in an attempt to
provide better performance in those areas than general-purpose file systems.
The WAFL file system from Network Appliance is an example of this sort of
optimization. WAFL, the write-anywhere file layout, is a powerful, elegant file
system optimized for random writes.

WAFL is used exclusively on network file servers produced by Network
Appliance and so is meant for use as a distributed file system. It can provide
files to clients via the NFS, CIFS, ftp, and http protocols, although it was
designed just for NFS and CIFS. When many clients use these protocols to talk
to a file server, the server may see a very large demand for random reads and
an even larger demand for random writes. The NFS and CIFS protocols cache
data from read operations, so writes are of the greatest concern to file-server
creators.

WAFL is used on file servers that include an NVRAM cache for writes.
The WAFL designers took advantage of running on a specific architecture to
optimize the file system for random I/0, with a stable-storage cache in front.
Ease of use is one of the guiding principles of WAFL, because it is designed
to be used in an appliance. Its creators also designed it to include a new
snapshot functionality that creates multiple read-only copies of the file system
at different points in time, as we shall see.

The file system is similar to the Berkeley Fast File System, with many
modifications. It is block-based and uses inodes to describe files. Each inode
contains 16 pointers to blocks (or indirect blocks) belonging to the file described
by the inode. Each file system has a root inode. All of the metadata lives in
files: all inodes are in one file, the free-block map in another, and the free-inode

root inode

1· free blotk map I

Figure 11.16 The WAFL file layout

11.9 497

map in a third, as shown in Figure 11.16. Because these are standard files, the
data blocks are not limited in location and can be placed anywhere. If a file
system is expanded by addition of disks, the lengths of the metadata files are
automatically expanded by the file systen<.

Thus, a WAFL file system is a tree of blocks with the root inode as its
base. To take a snapshot, WAFL creates a copy of the root inode. Any file or
metadata updates after that go to new blocks rather than overwriting their
existing blocks. The new root inode points to metadata and data changed as a
result of these writes. Meanwhile, the snapshot (the old root inode) still points
to the old blocks, which have not been updated. It therefore provides access to
the file system just as it was at the instant the snapshot was made-and takes
very little disk space to do so! In essence, the extra disk space occupied by a
snapshot consists of just the blocks that have been modified since the snapshot
was taken.

An important change from more standard file systems is that the free-block
map has more than one bit per block. It is a bitmap with a bit set for each
snapshot that is using the block. When all snapshots that have been using the
block are deleted, the bit map for that block is all zeros, and the block is free to
be reused. Used blocks are never overwritten, so writes are very fast, because
a write can occur at the free block nearest the current head location. There are
many other performance optimizations in WAFL as well.

Many snapshots can exist simultaneously, so one can be taken each hour
of the day and each day of the month. A user with access to these snapshots
can access files as they were at any of the times the snapshots were taken.
The snapshot facility is also useful for backups, testing, versioning, and so on.
WAFL's snapshot facility is very efficient in that it does not even require that
copy-on-write copies of each data block be taken before the block is modified.
Other file systems provide snapshots, but frequently with less efficiency. WAFL
snapshots are depicted in Figure 11.17.

Newer versions of WAFL actually allow read-write snapshots, known as
,.HJ'"'-"'"· Clones are also efficient, using the same techniques as shapshots. In
this case, a read-only snapshot captures the state of the file system, and a clone
refers back to that read-only snapshot. Any writes to the clone are stored in
new blocks, and the clone's pointers are updated to refer to the new blocks.
The original snapshot is unmodified, still giving a view into the file system as
it was before the clone was updated. Clones can also be promoted to replace
the original file system; this involves throwing out all of the old pointers and
any associated old blocks. Clones are useful for testing and upgrades, as the
original version is left untouched and the clone deleted when the test is done
or if the upgrade fails.

Another feature that naturally falls from the WAFL file system implementa
tion is the duplication and synchronization of a set of data over a
network to another system. First, a snapshot of a WAFL file system is duplicated
to another system. When another snapshot is taken on the source system, it
is relatively easy to update the remote system just by sending over all blocks
contained in the new snapshot. These blocks are the ones that have changed
between the times the two snapshots were taken. The remote system adds these
blocks to the file system and updates its pointers, and the new system then is a
duplicate of the source system as of the time of the second snapshot. Repeating
this process maintains the remote system as a nearly up-to-date copy of the first

498 Chapter 11

11.10

(a) Before a snapshot.

(b) After a snapshot, before any blocks change.

(c) After block D has changed to o·.

Figure 11.17 Snapshots in WAFL.

system. Such replication is used for disaster recovery. Should the first system
be destroyed, most of its data are available for use on the remote system.

Finally, we should note that Sun's ZFS file system supports similarly
efficient snapshots, clones, and replication.

The file system resides permanently on secondary storage, which is designed to
hold a large amount of data permanently. The most common secondary-storage
medium is the disk.

Physical disks may be segmented into partitions to control media use
and to allow multiple, possibly varying, file systems on a single spindle.
These file systems are mounted onto a logical file system architecture to make
then< available for use. File systems are often implemented in a layered or
modular structure. The lower levels deal with the physical properties of storage
devices. Upper levels deal with symbolic file names and logical properties of
files. Intermediate levels map the logical file concepts into physical device
properties.

Any file-system type can have different structures and algorithms. A VFS

layer allows the upper layers to deal with each file-system type uniformly. Even

499

remote file systems can be integrated into the system's directory structure and
acted on by standard system calls via the VFS interface.

The various files can be allocated space on the disk in three ways:
through contiguous, linked, or indexed allocation. Contiguous allocation can
suffer from external fragmentation. Direct access is very inefficient with
linked allocation. Indexed allocation may require substantial overhead for its
index block. These algorithms can be optimized in many ways. Contiguous
space can be enlarged through extents to increase flexibility and to decrease
external fragmentation. Indexed allocation can be done in clusters of multiple
blocks to increase throughput and to reduce the number of index entries
needed. Indexing in large clusters is similar to contiguous allocation with
extents.

Free-space allocation methods also influence the efficiency of disk-space
use, the performance of the file system, and the reliability of secondary storage.
The methods used include bit vectors and linked lists. Optimizations include
grouping, countilcg, and the FAT, which places the linked list in one contiguous
area.

Directory-management routines must consider efficiency, performance,
and reliability. A hash table is a commonly used method, as it is fast and
efficient. Unfortunately, damage to the table or a system crash can result
in inconsistency between the directory information and the disk's contents.
A consistency checker can be used to repair the damage. Operating-system
backup tools allow disk data to be copied to tape, enabling the user to recover
from data or even disk loss due to hardware failure, operating system bug, or
user error.

Network file systems, such as NFS, use client-server methodology to
allow users to access files and directories from remote machines as if they
were on local file systems. System calls on the client are translated into
network protocols and retranslated into file-system operations on the server.
Networking and multiple-client access create challenges in the areas of data
consistency and performance.

Due to the fundamental role that file systems play in system operation,
their performance and reliability are crucial. Techniques such as log structures
and cachirtg help improve performance, while log structures and RAID improve
reliability. The WAFL file system is an example of optimization of performance
to match a specific I/O load.

11.1 In what situations would using memory as a RAM disk be more useful
than using it as a disk cache?

11.2 Consider a file systenc that uses a modifed contiguous-allocation
scheme with support for extents. A file is a collection of extents,
with each extent corresponding to a contiguous set of blocks. A key
issue in such systems is the degree of variability in the size of the

500 Chapter 11

extents. What are the advantages and disadvantages of the following
schemes?

a. All extents are of the same size, and the size is predetermined.

b. Extents can be of any size and are allocated dynamically.

c. Extents can be of a few fixed sizes, and these sizes are predeter
mined.

11.3 Some file systems allow disk storage to be allocated at different levels
of granularity. For instance, a file system could allocate 4 KB of disk
space as a single 4-KB block or as eight 512-byte blocks. How could
we take advantage of this flexibility to improve performance? What
modifications would have to be made to the free-space management
scheme in order to support this feature?

11.4 What are the advantages of the variant of linked allocation that uses a
FAT to chain together the blocks of a file?

11.5 Consider a file currently consisting of 100 blocks. Assume that the file
control block (and the index block, in the case of indexed allocation)
is already in memory. Calculate how many disk I/0 operations are
required for contiguous, linked, and indexed (single-level) allocation
strategies, if, for one block, the following conditions hold. In the
contiguous-allocation case, assume that there is no room to grow at
the beginning but there is room to grow at the end. Also assume that
the block information to be added is stored in memory.

a. The block is added at the beginning.

b. The block is added in the middle.

c. The block is added at the end.

d. The block is removed from the beginning.

e. The block is removed from the middle.

f. The block is removed from the end.

11.6 Consider a file system that uses inodes to represent files. Disk blocks
are 8 KB in size, and a pointer to a disk block requires 4 bytes. This file
system has 12 direct disk blocks, as well as single, double, and triple
indirect disk blocks. What is the maximum size of a file that can be
stored in this file system?

11.7 Assume that in a particular augmentation of a reinote-file-access
protocol, each client maintains a name cache that caches translations
from file names to corresponding file handles. What issues should we
take into account in implementing the name cache?

11.8 Consider the following backup scheme:

Day 1. Copy to a backup medium all files from the disk.

Day 2. Copy to another m.edium all files changed since day 1.

Day 3. Copy to another medium all files changed since day 1.

501

This differs from the schedule given in Section 11.7.4 by having all
subsequent backups copy all files modified since the first full backup.
What are the benefits of this system over the one in Section 11.7.4?
What are the drawbacks? Are restore operations made easier or more
difficult? Explain your answer.

11.9 Why must the bit map for file allocation be kept on mass storage, rather
than in main memory?

11.10 Consider a file system on a disk that has both logical and physical
block sizes of 512 bytes. Assume that the information about each
file is already in memory. For each of the three allocation strategies
(contiguous, linked, and indexed), answer these questions:

a. How is the logical-to-physical address mapping accomplished
in this system? (For the indexed allocation, assume that a file is
always less than 512 blocks long.)

b. If we are currently at logical block 10 (the last block accessed was
block 10) and want to access logical block 4, how many physical
blocks must be read from the disk?

11.11 Why is it advantageous to the user for an operating system to dynami
cally allocate its internal tables? What are the penalties to the operating
system for doing so?

11.12 Explain why logging metadata updates ensures recovery of a file
system after a file-system crash.

11.13 Fragmentation on a storage device can be eliminated by recompaction
of the information. Typical disk devices do not have relocation or base
registers (such as those used when memory is to be compacted), so
how can we relocate files? Give three reasons why recompacting and
relocation of files are often avoided.

11.14 Consider a system where free space is kept in a free-space list.

a. Suppose that the pointer to the free-space list is lost. Can the
system reconstruct the free-space list? Explain your answer.

b. Consider a file system similar to the one used by UNIX with
indexed allocation. How many disk I/0 operations might be

502 Chapter 11

required to read the contents of a small local file at /a/b/c? Assume
that none of the disk blocks is currently being cached.

c. Suggest a scheme to ensure that the pointer is never lost as a result
of memory failure.

11.15 One problem with contiguous allocation is that the user must preallo
cate enough space for each file. If the file grows to be larger than the
space allocated for it, special actions must be taken. One solution to this
problem is to define a file structure consisting of an initial contiguous
area (of a specified size). If this area is filled, the operating system
automatically defines an overflow area that is linked to the initial
contiguous area. If the overflow area is filled, another overflow area
is allocated. Compare this implementation of a file with the standard
contiguous and linked implementations.

11.16 Discuss how performance optimizations for file systems might result
in difficulties in maintaining the consistency of the systems in the event
of com.puter crashes.

The MS-DOS FAT system is explained in Norton and Wilton [1988], and the OS/2
description can be found in Iacobucci [1988]. These operating systems use
the Intel 8086 CPUs(Intel [1985b], Intel [1985a], Intel [1986], and Intel [1990]).
IBM allocation methods are described in Deitel [1990]. The internals of the
BSD UNL'< system are covered in full in McKusick et al. [1996]. McVoy and
Kleiman [1991] discusses optimizations of these methods made in Solaris. The
Coogle file system is described in Ghemawat et al. [2003]. FUSE can be found
at http:/ /fuse.sourceforge.net/.

Disk file allocation based on the buddy system is covered in Koch
[1987]. A file-organization scheme that guarantees retrieval in one access
is described by Larson and Kajla [1984]. Log-structured file organiza
tions for enhancing both performance and consistency are discussed in
Rosenblum and Ousterhout [1991], Seltzer et al. [1993], and Seltzer et aL
[1995]. Algorithms such as balanced trees (and much more) are covered
by Knuth [1998] and Carmen et aL [2001]. The ZFS source code for space
maps can be found at http://src.opensolaris.org/source/xref/onnv/onnv
gate/usr I src/uts/ common/ fs/ zfs/ space_map.c.

Disk caching is discussed by McKeon [1985] and Smith [1985]. Caching in
the experimental Sprite operating system is described in Nelson et aL [1988].
General discussions concerning mass-storage technology are offered by Chi
[1982] and Hoagland [1985]. Folk and Zoellick [1987] covers the gamut of file
structures. Silvers [2000] discusses implementing the page cache in the NetBSD
operating system.

The network file system (NFS) is discussed in Sandberg et aL [1985],
Sandberg [1987], Sun [1990], and Callaghan [2000]. NFS Version 4 is a stan
dard described at http:/ /www.ietf.org/rfc/rfc3530.txt. The characteristics of

503

workloads in distributed file systems are examined in Baker et al. [1991].
Ousterhout [1991] discusses the role of distributed state in networked file
systems. Log-structured designs for networked file systems are proposed in
Hartman and Ousterhout [1995] and Thekkath et al. [1997]. NFS and the UNIX
file system (UFS) are described in Vahalia [1996] and Mauro and McDougall
[2007]. The Windows NT file system, NTFS, is explained in Solomon [1998]. The
Ext2 file system used in Linux is described in Bovet and Cesati [2002] and
the WAFL file system in Hitz et al. [1995]. ZFS documentation can be found at
http:/ /www.opensolaris.org/ os/ community /ZFS/ docs.

12.1

The file system can be viewed logically as consisting of three parts. In Chapter
10, we examined the user and programmer interface to the file system. In
Chapter 11, we described the internal data structures and algorithms used
by the operating system to implement this interface. In this chapter, we
discuss the lowest level of the file system: the secondary and tertiary storage
structures. We first describe the physical structure of magenetic disks and
magnetic tapes. We then describe disk-scheduling algorithms, which schedule
the order of disk I/ Os to improve performance. Next, we discuss disk formatting
and management of boot blocks, damaged blocks, and swap space. We then
examine secondary storage structure, covering disk reliability and stable
storage implementation. We conclude with a brief description of tertiary
storage devices and the problems that arise when an operating system uses
tertiary storage.

To describe the physical structure of secondary and tertiary storage
devices and its effects on the uses of the devices.

To explain the performance characteristics of mass-storage devices.

To discuss operating-system services provided for mass storage, including
RAID and HSM.

In this section, we present a general overview of the physical structure of
secondary and tertiary storage devices.

12.1.1 Magnetic Disks

provide the bulk of secondary storage for modern computer
systems. Conceptually, disks are relatively simple (Figure 12.1). Each disk
platter has a flat circular shape, like a CD. Common platter diameters range

505

506 Chapter 12

arm assembly

rotation

Figure 12.1 Moving-head disk mechanism.

from 1.8 to 5.25 inches. The two surfaces of a platter are covered with a magnetic
material. We store information by recording it magnetically on the platters.

A read -write head "flies" just above each surface of every platter. The
heads are attached to a that moves all the heads as a unit. The surface
of a platter is logically divided into circular which are subdivided into

The set of tracks that are at one arm position makes up a
There may be thousands of concentric cylinders in a disk drive, and each track
may contain hundreds of sectors. The storage capacity of common disk drives
is measured iil gigabytes.

When the disk is in use, a drive motor spins it at high speed. Most drives
rotate 60 to 200 times per second. Disk speed has two parts. The

is the rate at which data flow between the drive and the computer. The
sometimes called the consists of the

time necessary to move the disk arm to the desired cylinder, called the
and the time necessary for the desired sector to rotate to the disk head,

called the Typical disks can transfer several megabytes of
data per second, and they seek times and rotational latencies of several
milliseconds.

Because the disk head flies on an extremely thin cushion of air (measured
in microns), there is a danger that the head will make contact with the disk
surface. Although the disk platters are coated with a thin protective laye1~ the
head will sometimes damage the magnetic surface. This accident is called a

A head crash normally cannot be repaired; the entire disk must be
replaced.

A disk can be allowing different disks to be mounted as needed.
Removable magnetic disks generally consist of one platter, held in a plastic case
to prevent damage while not in the disk drive. are inexpensive
removable magnetic disks that have a soft plastic case containing a flexible
platter. The head of a floppy-disk drive generally sits directly on the disk

12.1 507

DISK TRANSFER RATES

As with many aspects of computingf published performance numbers for
disks are not the same as real-world performance numbers. Stated transfer
rates are always lower than for example. The transfer
rate may be the rate at which bits can be read from the magnetic media by
the disk head, but that is different from the rate at which blocks are delivered
to the operating system.

surface, so the drive is designed to rotate more slowly than a hard-disk drive
to reduce the wear on the disk surface. The storage capacity of a floppy disk
is typically only 1.44MB or so. Removable disks are available that work much
like normal hard disks and have capacities measured in gigabytes.

A disk drive is attached to a computer by a set of wires called an
Several kinds of buses are available, including

buses. The data transfers on a bus are carried out by special
electronic processors called The is the controller at
the computer end of the bus. A is built into each disk drive. To
perform a disk I/0 operation, the computer places a command into the host
controller, typically using memory-mapped I/0 portsf as described in Section
9.7.3. The host controller then sends the command via messages to the disk
controller, and the disk controller operates the disk-drive hardware to carry
out the command. Disk controllers usually have a built-in cache. Data transfer
at the disk drive happens between the cache and the disk surface, and data
transfer to the host, at fast electronic speeds, occurs between the cache and the
host controller.

12.1.2 Magnetic Tapes

was used as an early secondary-storage medium. Although it
is relatively permanent and can hold large quantities of dataf its access time
is slow compared with that of main memory and magnetic disk. In addition,
random access to magnetic tape is about a thousand times slower than random
access to magnetic disk, so tapes are not very useful for secondary storage.
Tapes are used mainly for backup, for storage of infrequently used information,
and as a medium for transferring information from one system to another.

A tape is kept in a spool and is wound or rewound past a read-write head.
Moving to the correct spot on a tape can take minutes, but once positioned,
tape drives can write data at speeds comparable to disk drives. Tape capacities
vary greatly, depending on the particular kind of tape drive. Typically, they
store from 20GB to 200GB. Some have built-in compression that can more than
double the effective storage. Tapes and their drivers are usually categorized
by width, includil1.g 4, 8f and 19 millimeters and 1/4 and 1/2 inch. Some are
named according to technology, such as LT0-2 and SDLT. Tape storage is further
described in Section 12.9.

508 Chapter 12

12.2

FIRE WIRE

refers to an interface designed for connecting peripheral devices
such as hard drives, DVD drives, and digital video cameras to a computer
system. Fire Wire was first developed by Apple Computer and became
the IEEE 1394 standard in 1995. The originaLFireWire standard provided
bandwidth up to 400 megabits per second. Recently, a new standard
FireWire 2-has emerged and is identified by the IEEE 1394b standard.
FireWire 2 provides double the data rate of the original FireWire-800
megabits per second.

Modern disk drives are addressed as large one-dimensional arrays of
where the logical block is the smallest unit of transfer. The size of

a logical block is usually 512 bytes, although some disks can be
to have a different logical block size, such as 1,024 bytes. This option

is described in Section 12.5.1. The one-dimensional array of logical blocks is
mapped onto the sectors of the disk sequentially. Sector 0 is the first sector
of the first track on the outermost cylinder. The mapping proceeds in order
through that track, then through the rest of the tracks in that cylinder, and then
through the rest of the cylinders from outermost to innermost.

By using this mapping, we can -at least in theory-convert a logical block
number into an old-style disk address that consists of a cylinder number, a track
number within that cylinder, and a sector number within that track. In practice,
it is difficult to perform this translation, for two reasons. First, most disks have
some defective sectors, but the mapping hides this by substituting spare sectors
from elsewhere on the disk. Second, the number of sectors per track is not a
constant on smne drives.

Let's look more closely at the second reason. On media that use
the density of bits per track is uniform. The farther a track

is from the center of the disk, the greater its length, so the more sectors it can
hold. As we move from outer zones to inner zones, the number of sectors per
track decreases. Tracks in the outermost zone typically hold 40 percent more
sectors than do tracks in the innermost zone. The drive increases its rotation
speed as the head moves from the outer to the inner tracks to keep the same rate
of data moving under the head. This method is used in CD-ROM and DVD-ROM
drives. Alternatively, the disk rotation speed can stay constant; in this case, the
density of bits decreases from inner tracks to outer tracks to keep the data rate
constant. This method is used in hard disks and is known as

The number of sectors per track has been increasing as disk technology
improves, and the outer zone of a disk usually has several hundred sectors per
track. Similarly, the number of cylinders per disk has been increasing; large
disks have tens of thousands of cylinders.

12.3

12.3 509

Computers access disk storage in two ways. One way is via I/O ports (or
this is common on small systems. The other way is via

a remote host in a distributed file system; this is referred to as

12.3.1 Host-Attached Storage

Host-attached storage is storage accessed through local I/0 ports. These ports
use several technologies. The typical desktop PC uses an I/0 bus architecture
called IDE or ATA. This architecture supports a maximum of two drives per I/0
bus. A newer, similar protocol that has simplified cabling is SATA. High-end
workstations and servers generally use more sophisticated I/0 architectures,
such as SCSI and fiber charmel (FC).

SCSI is a bus architecture. Its physical medium is usually a ribbon cable with
a large number of conductors (typically 50 or 68). The SCSI protocol supports a
maximum of 16 devices per bus. Generally, the devices include one controller
card in the host (the and up to 15 storage devices (the
to.rgr:::ts). A SCSI disk is a common SCSI target, but the protocol provides the
ability to address up to 8 in each SCSI target. A typical use of
logical unit addressing is to commands to components of a RAID array
or components of a removable media library (such as a CD jukebox sendil<g
commands to the media-changer mechanism or to one of the drives).

FC is a high-speed serial architecture that can operate over optical fiber or
over a four-conductor copper cable. It has two variants. One is a large switched
fabric having a 24-bit address space. This variant is expected to dominate
in the future and is the basis of (SJld',;s), discussed in
Section 12.3.3. Because of the large space and the switched nature of
the communication, multiple hosts and storage devices can attach to the fabric,
allowing great flexibility in I/0 communication. The other FC variant is an

that can address 126 devices (drives and controllers).
A wide variety of storage devices are suitable for use as host-attached

storage. Among these are hard disk drives, RAID arrays, and CD, DVD, and
tape drives. The I/0 commands that initiate data transfers to a host-attached
storage device are reads and writes of logical data blocks directed to specifically
identified storage units (such as bus ID, SCSI ID, and target logical unit).

12.3.2 Network-Attached Storage

A network-attached storage (NAS) device is a special-purpose storage system
that is accessed remotely over a data network (Figure 12.2). Clients access
network-attached storage via a remote-procedure-call interface such as NFS
for UNIX systems or CIFS for Windows machines. The remote procedure calls
(RPCs) are carried via TCP or UDP over an IP network-usually the same
local-area network (LAN) that carries all data traffic to the clients. The network
attached storage unit is usually implemented as a RAID array with software that
implements the RPC interface. It is easiest to thil<k of NAS as simply another
storage-access protocol. For example, rather than using a SCSI device driver
and SCSI protocols to access storage, a system using NAS would use RPC over
TCP /IP.

510 Chapter 12

12.4

LAN/WAN

Figure 12.2 Network-attached storage.

Network-attached storage provides a convenient way for all the computers
on a LAN to share a pool of storage with the same ease of naming and access
enjoyed with local host-attached storage. However, it tends to be less efficient
and have lower performance than some direct-attached storage options.

is the latest network-attached storage protocol. In essence, it uses the
IP network protocol to carry the SCSI protocol. Thus, networks-rather than
SCSI cables-can be used as the interconnects between hosts and their storage.
As a result, hosts can treat their storage as if it were directly attached, even if
the storage is distant from the host.

12.3.3 Storage-Area Network

One drawback of network-attached storage systems is that the storage I/O
operations consume bandwidth on the data network, thereby increasing the
latency of network communication. This problem can be particularly acute
in large client-server installations-the communication between servers and
clients competes for bandwidth with the communication among servers and
storage devices.

A storage-area network (SAN) is a private network (using storage protocols
rather than networking protocols) connecting servers and storage units, as
shown in Figure 12.3. The power of a SAN lies in its flexibility. Multiple hosts
and multiple storage arrays can attach to the same SAN, and storage can
be dynamically allocated to hosts. A SAN switch allows or prohibits access
between the hosts and the storage. As one example, if a host is running low
on disk space, the SAN can be configured to allocate more storage to that host.
SANs make it possible for clusters of servers to share the same storage and for
storage arrays to include multiple direct host com1.ections. SANs typically have
more ports, and less expensive ports, than storage arrays.

FC is the most common SAN interconnect, although the simplicity of iSCSI is
increasing its use. An emerging alternative is a special-purpose bus architecture
named InfiniBand, which provides hardware and software support for high
speed interconnection networks for servers and storage units.

One of the responsibilities of the operating system is to use the hardware
efficiently. For the disk drives, meeting this responsibility entails having

12.4 511

Figure 12.3 Storage-area network.

fast access time and large disk bandwidth. The access time has two major
components (also see Section 12.1.1). The is the time for the disk arm
to move the heads to the cylinder containing the desired sector. The

is the additional time for the disk to rotate the desired sector to the disk
head. The disk is the total number of bytes transferred, divided
by the total time between the first request for service and the completion of
the last transfer. We can improve both the access time and the bandwidth by
managing the order in which disk I/O requests are serviced.

Whenever a process needs I/0 to or from the disk, it issues a system call to
the operating system. The request specifies several pieces of information:

Whether this operation is input or output

What the disk address for the transfer is

What the memory address for the transfer is

What the number of sectors to be transferred is

If the desired disk drive and controller are available, the request can be
serviced immediately. If the drive or controller is busy, any new requests
for service will be placed in the queue of pending requests for that drive.
For a multiprogramming system with many processes, the disk queue may
often have several pending requests. Thus, when one request is completed, the
operating system chooses which pending request to service next. How does
the operating system make this choice? Any one of several disk-scheduling
algorithms can be used, and we discuss them next.

12.4.1 FCFS Scheduling

The simplest form of disk scheduling is, of course, the first-come, first-served
(FCFS) algorithm. This algorithm is intrinsically fair, but it generally does not
provide the fastest service. Consider, for example, a disk queue with requests
for I/0 to blocks on cylinders

98, 183, 37, 122, 14, 124, 65, 67,

512 Chapter 12

queue= 98, 183,37,122, 14,124,65,67
head starts at 53

0 14 37 536567 98 122124

Figure 12.4 FCFS disk scheduling.

183199

in that order. If the disk head is initially at cylinder 53, it will first move from
53 to 98, then to 183, 37, 122, 14, 124, 65, and finally to 67, for a total head
movement of 640 cylinders. This schedule is diagrammed in Figure 12.4.

The wild swing from 122 to 14 and then back to 124 illustrates the problem
with this schedule. If the requests for cylinders 37 and 14 could be serviced
together, before or after the requests for 122 and 124, the total head movement
could be decreased substantially, and performance could be thereby improved.

12.4.2 SSTF Scheduling

It seems reasonable to service all the requests close to the current head position
before moving the head far to service other This assumption is
the basis for the The SSTF algorithm
selects the request with the least seek time from the current head position.
Since seek time increases with the number of cylinders traversed by the head,
SSTF chooses the pending request closest to the current head position.

For our example request queue, the closest request to the initial head
position (53) is at cylinder 65. Once we are at cylinder 65, the next closest
request is at cylinder 67. From there, the request at cylinder 37 is closer than the
one at 98, so 37 is served next. Continuing, we service the request at cylinder 14,
then 98, 122, 124, and finally 183 (Figure 12.5). This scheduling method results
in a total head movement of only 236 cylinders-little more than one-third
of the distance needed for FCFS scheduling of this request queue. Clearly, this
algorithm gives a substantial improvement in performance.

SSTF scheduling is essentially a form of shortest-job-first (SJF) scheduling;
and like SJF scheduling, it may cause starvation of some requests. Remember
that requests may arrive at any time. Suppose that we have two requests in
the queue, for cylinders 14 and 186, and while the request from 14 is being
serviced, a new request near 14 arrives. This new request will be serviced
next, making the request at 186 wait. While this request is being serviced,
another request close to 14 could arrive. In theory, a continual stream of requests
near one another could cause the request for cylinder 186 to wait indefinitely.

12.4

queue= 98, 183, 37, 122, 14, 124, 65, 67

head starts at 53

0 14 37 536567 98 122124

Figure 12.5 SSTF disk scheduling.

513

183199

This scenario becomes increasingly likely as the pending-request queue grows
longer.

Although the SSTF algorithm is a substantial improvement over the FCFS
algorithm, it is not optimal. In the example, we can do better by moving the
head from 53 to 37, even though the latter is not closest, and then to 14, before
turning around to service 65, 67, 98, 122, 124, and 183. This strategy reduces
the total head movement to 208 cylinders.

12.4.3 SCAN Scheduling

In the
toward the end, servicing requests as it reaches each cylinder, until it gets
to the other end of the disk. At the other end, the direction of head movement
is reversed, and servicing continues. The head continuously scans back and
forth across the disk. The SCAN algorithm is sometimes called the

since the disk arm behaves just like an elevator in a building, first
servicing all the requests going up and then reversing to service requests the
other way.

Let's return to our example to illustrate. Before applying SCAN to schedule
the requests on cylinders 98, 183,37, 122, 14, 124, 65, and 67, we need to know
the direction of head movement in addition to the head's current position.
Assuming that the disk arm is moving toward 0 and that the initial head
position is again 53, the head will next service 37 and then 14. At cylinder 0,
the arm will reverse and will move toward the other end of the disk, servicil"lg
the requests at 65, 67, 98, 122, 124, and 183 (Figure 12.6). If a request arrives
in the queue just in front of the head, it will be serviced almost immediately; a
request arriving just behind the head will have to wait until the arm moves to
the end of the disk, reverses direction, and comes back.

Assuming a uniform distribution of requests for cylinders, consider the
density of requests when the head reaches one end and reverses direction. At
this point, relatively few requests are immediately in front of the head, since
these cylinders have recently been serviced. The heaviest density of requests

514 Chapter 12

queue= 98, 183,37,122, 14,124,65,67

head starts at 53

0 14 37 536567 98 122124

Figure 12.6 SCAN disk scheduling.

183199

is at the other end of the disk These requests have also waited the longest so
why not go there first? That is the idea of the next algorithm.

12.4.4 C-SCAN Scheduling

is a variant of SCAN designed to provide
a more uniform wait time. Like SCAN, C-SCAN moves the head from one end
of the disk to the other, servicing requests along the way. When the head
reaches the other end, however, it immediately returns to the beginning of
the disk without servicing any requests on the return trip (Figure 12.7). The
C-SCAN scheduling algorithm essentially treats the cylinders as a circular list
that wraps around from the final cylinder to the first one.

queue= 98, 183, 37, 122, 14, 124, 65, 67

head starts at 53

0 1 4 37 53 65 67 98 1 22 1 24

Figure 12.7 C-SCAN disk scheduling.

183199

12.4

queue = 98, 183, 37, 122, 14, 124, 65, 67

head starts at 53

0 14 37 536567 98 122124

Figure 12.8 C-LOOK disk scheduling.

12.4.5 LOOK Scheduling

515

183199

As we described themf both SCAN and C-SCAN move the disk arm across the
full width of the disk In practicef neither algorithm is often implemented this
way. More commonlyf the arm goes only as far as the final request in each
direction. Then, it reverses direction immediatelyf without going all the way to
the end of the disk Versions of SCAN and C-SCAN that follow this pattern are
called and because they look for a request before
continuing to move in a given direction (Figure 12.8).

12.4.6 Selection of a Disk-Scheduling Algorithm

Given so many disk-scheduling algorithmsf how do we choose the best one?
SSTF is common and has a natural appeal because it increases performance over
FCFS. SCAN and C-SCAN perform better for systems that place a heavy load on
the diskf because they are less likely to cause a starvation problem. For any
particular list of requestsf we can define an optimal order of retrievat but the
computation needed to find an optimal schedule may not justify the savings
over SSTF or SCAN. With any scheduling algoritlunf howeverf performance
depends heavily on the number and types of requests. For instance, suppose
that the queue usually has just one outstanding request. Thenf all scheduling
algorithms behave the samef because they have only one choice of where to
move the disk head: they all behave like FCFS scheduling.

Requests for disk service can be greatly influenced by the file-allocation
method. A program reading a contiguously allocated file will generate several
requests that are close together on the disk, resulting in limited head movement.
A linked or indexed fik in contrastf may include blocks that are widely
scattered on the diskf resulting in greater head movement.

The location of directories and index blocks is also important. Since every
file must be opened to be usedf and opening a file requires searching the
directory structuref the directories will be accessed frequently. Suppose that a
directory entry is on the first cylinder and a filef s data are on the final cylinder. In
this casef the disk head has to move the entire width of the disk If the directory

516 Chapter 12

12.5

entry were on the middle cylinder, the head would have to move only one-half
the width. Caching the directories and index blocks in main memory can also
help to reduce disk-arm movement particularly for read requests.

Because of these complexities, the disk-scheduling algorithm should be
written as a separate module of the operating system, so that it can be replaced
with a different algorithm if necessary. Either SSTF or LOOK is a reasonable
choice for the default algorithm.

The scheduling algorithms described here consider only the seek distances.
For modern disks, the rotational latency can be nearly as large as the
average seek time. It is difficult for the operating system to schedule for
improved rotational latency, though, because modern disks do not disclose the
physical location of logical blocks. Disk manufacturers have been alleviating
this problem by implementing disk-scheduling algorithms in the controller
hardware built into the disk drive. If the operating system sends a batch of
requests to the controller, the controller can queue them and then schedule
them to improve both the seek time and the rotational latency.

If I/O performance were the only consideration, the operating system
would gladly turn over the responsibility of disk scheduling to the disk hard
ware. In practice, however, the operating system may have other constraints on
the service order for requests. For instance, demand paging may take priority
over application I/0, and writes are more urgent than reads if the cache is
running out of free pages. Also, it may be desirable to guarantee the order of a
set of disk writes to make the file system robust in the face of system crashes.
Consider what could happen if the operating system allocated a disk page to a
file and the application wrote data into that page before the operating system
had a chance to flush the modified inode and free-space list back to disk. To
accommodate such requirements, an operating system may choose to do its
own disk scheduling and to spoon-feed the requests to the disk controller, one
by one, for some types of I/0.

The operating system is responsible for several other aspects of disk manage
ment, too. Here we discuss disk initialization, booting from disk, and bad-block
recovery.

12.5.1 Disk Formatting

A new magnetic disk is a blank slate: it is just a platter of a magnetic recording
material. Before a disk can store data, it must be divided into sectors that the
disk controller can read and write. This process is called
or Low-level formatting fills the disk with a special data
structure for each sector. The data structure for a sector typically consists of a
header, a data area (usually 512 bytes in size), and a trailer. The header and
trailer contain information used by the disk controller, such as a sector number
and an . When the controller writes a sector of data
during normal I/0, the ECC is updated with a value calculated from all the bytes
in the data area. When the sector is read, the ECC is recalculated and compared
with the stored value. If the stored and calculated numbers are different, this

12.5 517

mismatch indicates that the data area of the sector has become corrupted and
that the disk sector may be bad (Section 12.5.3). The ECC is an error-correcting
code because it contains enough information, if only a few bits of data have
been corrupted, to enable the controller to identify which bits have changed
and calculate what their correct values should be. It then reports a recoverable

. The controller automatically does the ECC processing whenever a
sector is read or written.

Most hard disks are low-level-formatted at the factory as a part of the
manufacturing process. This formatting enables the manufacturer to test the
disk and to initialize the mapping from logical block numbers to defect-free
sectors on the disk. For many hard disks, when the disk controller is instructed
to low-level-format the disk, it can also be told how many bytes of data space
to leave between the header and trailer of all sectors. It is usually possible to
choose among a few sizes, such as 256,512, and 1,024 bytes. Formatting a disk
with a larger sector size means that fewer sectors can fit on each track; but it
also means that fewer headers and trailers are written on each track and more
space is available for user data. Some operating systems can handle only a
sector size of 512 bytes.

Before it can use a disk to hold files, the operating system still needs to
record its own data structures on the disk. It does so in two steps. The first step
is to the disk into one or more groups of cylinders. The operatiltg
system can treat each partition as though it were a separate disk. For instance,
one partition can hold a copy of the operating system's executable code, while
another holds user files. The second step is icgicz;i or creation of a
file system. In this step, the operating system stores the iltitial file-system data
structures onto the disk. These data structures may include maps of free and
allocated space (a FAT or inodes) and an initial empty directory.

To increase efficiency, most file systems group blocks together into larger
chunks, frequently called Disk I/0 is done via blocks, but file system
II 0 is done via clusters, effectively assuring that II 0 has more sequential-access
and fewer random-access characteristics.

Some operating systems give special programs the ability to use a disk
partition as a large sequential array of logical blocks, without any file-system
data structures. This array is sometimes called the raw disk, and II 0 to this array
is termed raw l/0. For example, some database systems prefer raw IIO because
it enables them to control the exact disk location where each database record is
stored. Raw l/0 bypasses all the file-system services, such as the buffer cache,
file locking, prefetching, space allocation, file names, and directories. We can
make certain applications more efficient by allowing them to implement their
own special-purpose storage services on a raw partition, but most applications
perform better when they use the regular file-system services.

12.5.2 Boot Block

For a computer to start running-for instance, when it is powered up
or rebooted -it must have an initial program to run. This initial bootstrap
program tends to be simple. It initializes all aspects of the system, from CPU
registers to device controllers and the contents of main memory, and then
starts the operating system. To do its job, the bootstrap program finds the

518 Chapter 12

operating-system kernel on disk, loads that kernel into memory, and jumps to
an initial address to begin the operating-system execution.

For most computers, the bootstrap is stored in
This location is convenient, because ROM needs no initialization and is at a fixed
location that the processor can start executing when powered up or reset. And,
since ROM is read only, it cannot be infected by a computer virus. The problem is
that changing this bootstrap code requires changing the ROM hardware chips.
For this reason, most systems store a tiny bootstrap loader program in the boot
ROM whose only job is to bring in a full bootstrap program from disk. The full
bootstrap program can be changed easily: a new version is simply written onto
the disk. The full bootstrap program is stored in the "boot blocks" at a fixed
location on the disk. A disk that has a boot partition is called a or

The code in the boot ROM instructs the disk controller to read the boot
blocks into memory (no device drivers are loaded at this point) and then starts
executing that code. The full bootstrap program is more sophisticated than the
bootstrap loader in the boot ROM; it is able to load the entire operating system
from a non-fixed location on disk and to start the operating system ruru1ing.
Even so, the full bootstrap code may be small.

Let's consider as an example the boot process in Windows 2000. The
Windows 2000 system places its boot code in the first sector on the hard disk
(which it terms the or Furthermore, Windows 2000
allows a hard disk to be divided into one or more partitions; one partition,
identified as the contains the operating system and device
drivers. Bootil1g begins in a Windows 2000 system by running code that is
resident in the system's ROM memory. This code directs the system to read
the boot code from the MBR. In addition to containing boot code, the MBR
contains a table listing the partitions for the hard disk and a flag indicating
which partition the system is to be booted from, as illustrated in Figure 12.9.
Once the system identifies the boot partition, it reads the first sector from that
partition (which is called the and contilmes with the remainder of
the boot process, which includes loading the various subsystems and system
services.

MBR

partition 1

partition 2

partition 3

partition 4

boot
code

partition
table

boot partition

Figure 12.9 Booting from disk in Windows 2000.

12.5 519

12.5.3 Bad Blocks

Because disks have moving parts and small tolerances (recall that the disk
head flies just above the disk surface), they are prone to failure. Sometimes the
failure is complete; in this case, the disk needs to be replaced and its contents
restored from backup media to the new disk. More frequently, one or more
sectors become defective. Most disks even con'le from the factory with

Depending on the disk and controller in use, these blocks are handled
in a variety of ways.

On simple disks, such as some disks with IDE controllers, bad blocks are
handled manually. For instance, the MS-DOS format command performs logical
formatting and, as a part of the process, scans the disk to find bad blocks. If
format finds a bad block, it writes a special value into the corresponding FAT
entry to tell the allocation routines not to use that block. If blocks go bad during
normal operation, a special program (such as chkdsk) must be run manually
to search for the bad blocks and to lock them away. Data that resided on the
bad blocks usually are lost.

More sophisticated disks, such as the SCSI disks used in high-end PCs
and most workstations and servers, are smarter about bad-block recovery. The
controller maintains a list of bad blocks on the disk. The list is initialized during
the low-level formatting at the factory and is updated over the life of the disk.
Low-level formatting also sets aside spare sectors not visible to the operating
system. The controller can be told to replace each bad sector logically with one
of the spare sectors. This scheme is known as or

A typical bad-sector transaction might be as follows:

The operating system tries to read logical block 87.

The controller calculates the ECC and finds that the sector is bad. It reports
this finding to the operating system.

The next time the system is rebooted, a special command is run to tell the
SCSI controller to replace the bad sector with a spare.

After that, whenever the system requests logical block 87, the request is
translated into the replacement sector's address by the controller.

Note that such a redirection by the controller could invalidate any opti
mization by the operating system's disk-scheduling algorithm! For this reason,
most disks are formatted to provide a few spare sectors in each cylinder and
a spare cylinder as well. When a bad block is remapped, the controller uses a
spare sector from the same cylinder, if possible.

As an alternative to sector some controllers can be instructed to
replace a bad block by Here is an example: Suppose that
logical block 17 becomes defective and the first available spare follows sector
202. Then, sector slipping remaps all the sectors front 17 to 202, moving them
all down one spot. That is, sector 202 is copied into the spare, then sector 201
into 202, then 200 into 201, and so on, until sector 18 is copied into sector 19.
Slipping the sectors in this way frees up the space of sector 18, so sector 17 can
be mapped to it.

The replacement of a bad block generally is not totally automatic because
the data in the bad block are usually lost. Soft errors may trigger a process in

520 Chapter 12

12.6

which a copy of the block data is made and the block is spared or slipped.
An unrecoverable howeverf results in lost data. Whatever file was
using th.at block must be repaired (for instancef by restoration from a backup
tape)f and that requires manual intervention.

Swapping was first presented in Section 8.2f where we discussed moving
entire processes between disk and main memory. Swapping in that setting
occurs when the amount of physical memory reaches a critically low point and
processes are moved from memory to swap space to free available memory.
In practicef very few modern operating systems implement swapping in
this fashion. Rathel~ systems now combine swapping with virtual memory
techniques (Chapter 9) and swap pagesf not necessarily entire processes. In
fact some systems now use the terms swapping and paging interchangeablyf
reflecting the merging of these two concepts.

is another low-level task of the operating
system. Virtual memory uses disk space as an extension of main memory.
Since disk access is much slower than memory accessf using swap space
significantly decreases system performance. The main goal for the design and
implementation of swap space is to provide the best throughput for the virtual
memory system. In this sectionf we discuss how swap space is usedf where
swap space is located on diskf and how swap space is managed.

12.6.1 Swap-Space Use

Swap space is used in various ways by different operating systemsf depending
on the memory-management algorithms in use. For instancef systems that
implement swapping may use swap space to hold an entire process imagef
including the code and data segments. Paging systems may simply store pages
that have been pushed out of main memory. The amount of swap space needed
on a system can therefore vary from a few megabytes of disk space to gigabytesf
depending on the amow1.t of physical memoryf the amount of virtual memory
it is backingf and the way in which the virtual memory is used.

Note that it may be safer to overestimate than to underestimate the amount
of swap space requiredf because if a system runs out of swap space it may be
forced to abort processes or may crash entirely. Overestimation wastes disk
space that could otherwise be used for filesf but it does no other harm. Some
systems recommend the amount to be set aside for swap space. Solarisf for
examplef suggests setting swap space equal to the amount by which virtual
memory exceeds pageable physical memory. In the past Linux has suggested
setting swap space to double the amount of physical memoryf although most
Linux systems now use considerably less swap space. In factf there is currently
much debate in the Linux community about whether to set aside swap space
at all!

Some operating systems-including Linux-allow the use of multiple
swap spaces. These swap spaces are usually put on separate disks so that the
load placed on the I/0 system. by paging and swapping can be spread over the
systemfs I/O devices.

12.6 521

12.6.2 Swap-Space Location

A swap space can reside in one of two places: it can be carved out of the
normal file system, or it can be in a separate disk partition. If the swap space
is simply a large file within the file system, normal file-system routines can be
used to create it, name it and allocate its space. This approach, though easy
to implement is inefficient. Navigating the directory structure and the disk
allocation data structures takes time and (possibly) extra disk accesses. External
fragmentation can greatly increase swapping times by forcing multiple seeks
during reading or writing of a process image. We can improve performance
by caching the block location information in physical memory and by using
special tools to allocate physically contiguous blocks for the swap file, but the
cost of traversing the file-system data structures remains.

Alternatively, swap space can be created in a separate partition. No
file system or directory structure is placed in this space. Rather, a separate
swap-space storage manager is used to allocate and deallocate the blocks
from the raw partition. This manager uses algorithms optimized for speed
rather than for storage efficiency, because swap space is accessed much more
frequently than file systems (when it is used). Internal fragmentation may
increase, but this trade-off is acceptable because the life of data in the swap
space generally is much shorter than that of files in the file system. Since
swap space is reinitialized at boot time, any fragmentation is short-lived. The
raw-partition approach creates a fixed amount of swap space during disk
partitioning. Adding more swap space requires either repartitioning the disk
(which involves moving the other file-system partitions or destroying them
and restoring them from backup) or adding another swap space elsewhere.

Some operating systems are flexible and can swap both in raw partitions
and in file-system space. Linux is an example: the policy and implementation
are separate, allowing the machine's administrator to decide which type of
swapping to use. The trade-off is between the convenience of allocation and
management in the file system and the performance of swapping in raw
partitions.

12.6.3 Swap-Space Management: An Example

We can illustrate how swap space is used by following the evolution of
swapping and paging in various UNIX systems. The traditional UNIX kernel
started with an implementation of swapping that copied entire processes
between contiguous disk regions and memory. UNIX later evolved to a
combination of swapping and paging as pagiltg hardware became available.

In Solaris 1 (SunOS), the designers changed standard UNIX methods to
improve efficiency and reflect technological developments. When a process
executes, text-segment pages containing code are brought in from the file
system, accessed in main memory, and thrown away if selected for pageout. It
is more efficient to reread a page from the file system than to write it to swap
space and then reread it from there. Swap space is only used as a backing store
for pages of memory, which includes memory allocated for the
stack, heap, and uninitialized data of a process.

More changes were made in later versions of Solaris. The biggest change
is that Solaris now allocates swap space only when a page is forced out of
physical memory, rather than when the virtual memory page is first created.

522 Chapter 12

12.7

swap partition
or swap file

swap map

1--------- swap area--------1
page

I- slot -1

L---~---~---_L ___ _L __ ~

Figure 12.10 The data structures for swapping on Linux systems.

This scheme gives better performance on modern computers, which have more
physical memory than older systems and tend to page less.

Linux is similar to Solaris in that swap space is only used for anonymous
memory or for regions of memory shared by several processes. Linux allows
one or more swap areas to be established. A swap area may be in either a swap
file on a regular file system or a raw-swap-space partition. Each swap area
consists of a series of 4-KB which are used to hold swapped pages.
Associated with each swap area is a .u1.2.p-an array of integer counters,
each corresponding to a page slot in the swap area. If the value of a counter is 0,
the corresponding page slot is available. Values greater than 0 indicate that the
page slot is occupied by a swapped page. The value of the counter iJ.l.dicates the
number of mappings to the swapped page; for example, a value of 3 indicates
that the swapped page is mapped to three different processes (which can occur
if the swapped page is storing a region of memory shared by three processes).
The data structures for swapping on Linux systems are shown in Figure 12.10.

Disk drives have continued to get smaller and cheaper, so it is now economi
cally feasible to attach many disks to a computer system. Having a large number
of disks in a system presents opportunities for improving the rate at which data
can be read or written, if the disks are operated in parallel. Furthermore, this
setup offers the potential for improving the reliability of data storage, because
redundant information can be stored on multiple disks. Thus, failure of one disk
does not lead to loss of data. A of disk-organization techniques, collec-
tively called disks (RAIDs), are commonly
used to address the performance and reliability issues.

In the past, RAIDs composed of small, cheap disks were viewed as a
cost-effective alternative to large, expensive disks; today, RAIDs are used for
their higher reliability and higher data-transfer rate, rather than for economic
reasons. Hence, the I in RAID, which once stood for "inexpensive/' now stands
for "iJ.l.dependent."

12.7.1 Improvement of Reliability via Redundancy

Let us first consider the reliability of RAIDs. The chance that some disk out of
a set of N disks will fail is much higher than the chance that a specific single

12.7 523

STRUCTURING RAID

RAID storage can be structured in a variety of ways. For example, a system
can have disks directly attached to its buses. In this case, the operating
system or system software can implement RAID flmctionality. Alternatively,
an intelligent host controller can control multiple attached disks and can
implement RAID on those disks in hardware. Finally, a , or

can be used. A RAID array is a standalone unit with its own controller,
cache (usually), and disks. It is attached to the host via one or more standard
ATA SCSI or FC controllers. This common setup allows any operating system
and software without RAID functionality to have RAID-protected disks. It
is even used on systems that do have RAID software layers because of its
simplicity and flexibility.

disk will fail. Suppose that the of a single disk is 100,000
hours. Then the mean time to failure of some disk in an array of 100 disks
will be 100,000/100 = 1,000 hours, or 41.66 days, which is not long at all! If we
store only one copy of the data, then each disk failure will result in loss of a
significant amount of data -and such a high rate of data loss is unacceptable.

The solution to the problem of reliability is to introduce , we
store extra information that is not normally needed but that can be used in the
event of failure of a disk to rebuild the lost information. Thus, even if a disk
fails, data are not lost.

The simplest (but most expensive) approach to introducing redundancy
is to duplicate every disk. This technique is called With mirroring,
a logical disk consists of two physical disks, and every write is carried out
on both disks. The result is called a mirrored volume. If one of the disks in the
volume fails, the data can be read from the other. Data will be lost only if the
second disk fails before the first failed disk is replaced.

The mean time to failure of a mirrored volume-where failure is the loss
of data- depends on two factors. One is the mean time to failure of the
individual disks. The other is the which is the time it
takes (on average) to replace a failed disk and to restore the data on it. Suppose
that the failures of the two disks are that is, the failure of one disk
is not connected to the failure of the other. Then, if the mean time to failure of a
single disk is 100,000 hours and the mean time to repair is 10 hours, the

of a mirrored disk system is 100, 0002 /(2 * 10) = 500 * 106

hours, or 57,000 years!
You should be aware that the assumption of independence of disk failures

is not valid. Power failures and natural disasters, such as earthquakes, fires,
and floods, may result in damage to both disks at the same time. Also,
manufacturing defects in a batch of disks can cause correlated failures. As
disks age, the probability of failure grows, increasing the chance that a second
disk will fail while the first is being repaired. In spite of all these considerations,
however, n1.irrored-disk systems offer much higher reliability than do single
disk systems.

Power failures are a particular source of concern, since they occur far more
frequently than do natural disasters. Even with mirroring of disks, if writes are

524 Chapter 12

in progress to the same block in both disks, and power fails before both blocks
are fully written, the two blocks can be in an inconsistent state. One solution
to this is to write one copy first then the next. Another is to add a

cache to the RAID array. This write-back cache is
protected from data loss during power failures, so the write can be considered
complete at that point, assuming the NVRAM has some kind of error protection
and correction, such as ECC or mirroring.

12.7.2 Improvement in Performance via Parallelism

Now let's consider how parallel access to multiple disks improves perfor
mance. With disk mirroring, the rate at which read requests can be handled is
doubled, since read requests can be sent to either disk (as long as both disks
in a pair are functionat as is almost always the case). The transfer rate of each
read is the same as in a single-disk system, but the number of reads per unit
time has doubled.

With multiple disks, we can improve the transfer rate as well (or instead)
by striping data across the disks. In its simplest form, consists
of the bits of each byte across multiple disks; such striping is called

For example, if we have an array of eight disks, we write bit
i of each byte to disk i. The array of eight disks can be treated as a single disk
with sectors that are eight times the normal size and, more important that have
eight times the access rate. In such an organization, every disk participates in
every access (read or write); so the number of accesses that can be processed
per second is about the same as on a single disk, but each access can read eight
times as many data in the same time as on a single disk.

Bit-level striping can be generalized to include a number of disks that either
is a multiple of 8 or divides 8. For example, if we use an array of four disks,
bits i and 4 + i of each go to disk i. Further, striping need not occur at
the bit level. In for instance, blocks of a file are striped
across multiple disks; with n disks, block i of a file goes to disk (i mod n) + 1.
Other levels of striping, such as bytes of a sector or sectors of a block, also are
possible. Block-level striping is the most common.

Parallelism in a disk system, as achieved through striping, has two main
goals:

Increase the throughput of multiple small accesses (that is, page accesses)
by load balancing.

Reduce the response time of large accesses.

12.7.3 RAID Levels

Mirroring provides high reliability, but it is expensive. Striping provides high
data-transfer rates, but it does not improve reliability. Numerous schemes
to provide redundancy at lower cost by using disk striping combined with
"parity" bits (which we describe next) l1.ave been proposed. These schemes
have different cost-performance trade-offs and are classified according to
levels called We describe the various levels here; Figure 12.11
shows them pictorially (in the figure, P indicates error-correcting bits, and C

12.7 RAID Structure 525

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

(c) RAID 2: memory-style error-correcting codes.

{d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.

{f) RAID 5: block-interleaved distributed parity.

(g) RAID 6: P + Q redundancy.

Figure 12.11 RAID levels.

indicates a second copy. of the data). In all cases depicted in the figure, four
disks' worth of data are stored, and the extra disks are used to store redundant
information for failure recovery.

• RAID level 0. RAID level 0 refers to disk arrays with striping at the level of
blocks but without any redundancy (such as mirroring or parity bits), as
shown in Figure 12.1l(a).

• RAID Ievell. RAID level1 refers to disk mirroring. Figure 12.1l(b) shows
a mirrored organization.

"' RAID level2. RAID level2 is also known as memory-style error-correcting
code (ECC) organization. Memory systems have long detected certain
errors by using parity bits. Each byte in a memory system may have a
parity bit associated with it that records whether the number of bits in the
byte set to 1 is even (parity= 0) or odd (parity= 1). If one of the bits in the

526 Chapter 12

byte is damaged (either a 1 becomes a 0, or a 0 becomes an the parity of
the byte changes and thus does not match the stored parity. Similarly, if the
stored parity bit is damaged, it does not match the computed parity. Thus,
all single-bit errors are detected by the menwry system .. Error-correcting
schemes store two or more extra bits and can reconstruct the data if a
single bit is damaged. The idea of ECC can be ·used directly in disk arrays
via striping of bytes across disks. For example, the first bit of each byte can
be stored in disk 1, the second bit in disk 2, and so on until the eighth bit
is stored in disk 8; the error-correction bits are stored in further disks. This
scheme is shown pictorially in Figure 12.1l(c), where the disks labeled P
store the error-correction bits. If one of the disks fails, the remaining bits
of the byte and the associated error-correction bits can be read from other
disks and used to reconstruct the damaged data. Note that RAID level 2
requires only three disks' overhead for four disks of data, unlike RAID level
1, which requires four disks' overhead.

RAID level 3. RAID level 3, or
improves on level 2 by taking into account the fact that, unlike mem
ory systems, disk controllers can detect whether a sector has been read
correctly, so a single parity bit can be used for error correction as well as
for detection. The idea is as follows: If one of the sectors is damaged, we
know exactly which sector it is, and we can figure out whether any bit in
the sector is a 1 or a 0 by computing the parity of the corresponding bits
from sectors in the other disks. If the parity of the remaining bits is equal
to the stored parity, the missing bit is 0; otherwise, it is 1. RAID level3 is as
good as level 2 but is less expensive in the number of extra disks required
(it has only a one-disk overhead), so level 2 is not used in practice. This
scheme is shown pictorially in Figure 12.1l(d).

RAID level 3 has two advantages over level 1. First, the storage over
head is reduced because only one parity disk is needed for several regular
disks, whereas one mirror disk is needed for every disk in level1. Second,
since reads and writes of a byte are spread out over multiple disks with
N-way striping of data, the transfer rate for reading or writing a single
block is N times as fast as with RAID level 1. On the negative side, RAID
level3 supports fewer l/Os per second, since every disk has to participate
in every I/0 request.

A further performance problem with RAID 3-and with all parity
based RAID levels-is the expense of computing and writing the parity.
This overhead results in significantly slower writes than with non-parity
RAID arrays. To moderate this performance penalty, many RAID storage
arrays include a hardware controller with dedicated parity hardware. This
controller offloads the parity computation from the CPU to the array. The
array has an NVRAM cache as well, to store the blocks while the parity is
computed and to buffer the writes from the controller to the spindles. This
combination can make parity RAID almost as fast as non-parity. In fact, a
caching array doing parity RAID can outperform a non-caching non-parity
RAID.

RAID level 4. RAID level4, or uses
block-level striping, as in RAID 0, and in addition keeps a parity block on a
separate disk for corresponding blocks from N other disks. This scheme is

12.7 527

diagramed in Figure 12.1l(e). If one of the disks fails, the parity block can
be used with the corresponding blocks from the other disks to restore the
blocks of the failed disk.

A block read accesses only one disk, allowing other requests to be
processed by the other disks. Thus, the data-transfer rate for each access
is slowe1~ but multiple read accesses can proceed in parallel, leading to a
higher overall I/0 rate. The transfer rates for large reads are high, since all
the disks can be read in parallel; large writes also have high transfer rates,
since the data and parity can be written in parallel.

Small independent writes cannot be performed in parallel. An operating
system write of data smaller than a block requires that the block be read,
modified with the new data, and written back The parity block has to be
updated as well. This is known as the · sYTi:.e . Thus, a
single write requires four disk accesses: two to read the two old blocks and
two to write the two new blocks.

WAFL (Chapter 11) uses RAID level4 because this RAID level allows disks
to be added to a RAID set seamlessly. If the added disks are initialized with
blocks containing all zeros, then the parity value does not change, and the
RAID set is still correct.

RAID levelS. RAID levelS, or , differs
from level 4 by spreading data and parity among all N + 1 disks, rather
than storing data in N disks and parity in one disk. For each block, one of
the disks stores the parity, and the others store data. For example, with an
array of five disks, the parity for the nth block is stored in disk (n mod 5)+ 1;
the nth blocks of the other four disks store actual data for that block This
setup is shown in Figure 12.11(f), where the Ps are distributed across all
the disks. A parity block cannot store parity for blocks in the same disk,
because a disk failure would result in loss of data as well as of parity, and
hence the loss would not be recoverable. By spreading the parity across
all the disks in the set, RAID 5 avoids potential overuse of a single parity
disk, which can occur with RAID 4. RAID 5 is the most common parity RAID
system.

RAID level 6. RAID level 6, also called the is
much like RAID level 5 but stores extra redundant information to guard
against disk failures. Instead of parity, error-correcting codes such
as the are used. In the scheme shown in Figure
12.11(g), 2 bits of redundant data are stored for every 4 bits of data
compared with 1 parity bit in level 5-and the system can tolerate two
disk failures.

RAID levels 0 + 1 and 1 + 0. RAID level 0 + 1 refers to a combination of RAID
levels 0 and 1. RAID 0 provides the performance, while RAID 1 provides
the reliability. Generally, this level provides better performance than RAID
5. It is common in enviromnents where both performance and reliability
are important. Unfortunately, like RAID 1, it doubles the number of disks
needed for storage, so it is also relatively expensive. In RAID 0 + 1, a set
of disks are striped, and then the stripe is mirrored to another, equivalent
stripe.

528 Chapter 12

stripe

a) RAID 0 + 1 with a single disk failure.

A u
mirror

b) RAID 1 + 0 with a single disk failure.

Figure 12.12 RAID 0 + 1 and 1 + 0.

Another RAID option that is becoming available commercially is RAID
level 1 + 0, in which disks are mirrored in pairs and then the resulti.J.l.g
mirrored pairs are striped. This scheme has some theoretical advantages
over RAID 0 + 1. For example, if a single disk fails in RAID 0 + 1, an entire
stripe is inaccessible, leaving only the other stripe available. With a failure
in RAID 1 + 0, a single disk is unavailable, but the disk that mirrors it is still
available, as are all the rest of the disks (Figure 12.12).

Numerous variations have been proposed to the basic RAID schemes described
here. As a result, some confusion may exist about the exact definitions of the
different RAID levels.

The implementation of RAID is another area of variation. Consider the
following layers at which RAID can be implemented.

Volume-management software can implement RAID within the kernel or
at the system software layer. In this case, the storage hardware can provide
a minimum of features and still be part of a full RAID solution. Parity RAID
is fairly slow when implemented in software, so typically RAID 0, 1, or 0 +
1 is used.

RAID can be implemented in the host bus-adapter (HBA) hardware. Only
the disks directly connected to the HBA can be part of a given RAID set.
This solution is low in cost but not very flexible.

12.7 529

RAID can be implemented in the hardware of the storage array. The storage
array can create RAID sets of various levels and can even slice these sets
into smaller volumes, which are then presented to the operating system.
The operating system need only implement the file system on each of the
volumes. Arrays can have multiple connections available or can be part of
a SAN, allowing multiple hosts to take advantage of the array's features.

RAID can be implemented in the SAN interconnect layer by disk virtualiza
tion devices. In this case, a device sits between the hosts and the storage.
It accepts commands from the servers and manages access to the storage.
It could provide mirroring, for example, by writing each block to two
separate storage devices.

Other features, such as and replication, can be implemented at
each of these levels as well. involves the automatic duplication of
writes between separate sites for redundancy and disaster recovery. Replication
can be synchronous or asynchronous. In synchronous replication, each block
must be written locally and remotely before the write is considered complete,
whereas in asynchronous replication, the writes are grouped together and
written periodically. Asynchronous replication can result in data loss if the
primary site fails, but it is faster and has no distance limitations.

The implementation of these features differs depending on the layer at
which RAID is implemented. For example, if RAID is implemented in software,
then each host may need to carry out and manage its own replication. If
replication is implemented in the storage array or in the SAN intercom1ect,
however, then whatever the host operating system or its features, the host's
data can be replicated.

One other aspect of most RAID implementations is a hot spare disk or disks.
A is not used for data but is configured to be used as a replacement in
case disk failure. For instance, a hot spare can be used to rebuild a mirrored
pair should one of the disks in the pair fail. In this way, the RAID level can be
reestablished automatically, without waiting for the failed disk to be replaced.
Allocating more than one hot spare allows more than one failure to be repaired
without human intervention.

12.7.4 Selecting a RAID Level

Given the many choices they have, how do system designers choose a RAID
level? One consideration is rebuild performance. If a disk fails, the time needed
to rebuild its data can be significant. This may be an important factor if a
continuous supply of data is required, as it is in high-performance or interactive
database systems. Furthermore, rebuild performance influences the mean time
to failure.

Rebuild performance varies with the RAID level used. Rebuilding is easiest
£or RAID level1, since data can be copied from another disk; for the other levels,
we need to access all the other disks in the array to rebuild data in a failed disk.
Rebuild times can be hours for RAID 5 rebuilds of large disk sets.

RAID level 0 is used in high-performance applications where data loss is
not critical. RAID level1 is popular for applications that require high reliability
with fast recovery. RAID 0 + 1 and 1 + 0 are used where both performance and
reliability are important-for example, for small databases. Due to RAID 1's

530 Chapter 12

THE InServ STORAGE ARRAY

Im1ovation, in an effort to provide better, faster, and less expensive solutions,
frequently blurs the lines that separated previous technologies. Consider the
InServ storage array from 3Par. Unlike most other storage arrays, InServ
does not require that a set of disks be configured at a specific RAID level.
Rather, each disk is broken into 256-MB "chunklets." RAm is then applied at
the chunklet level. A disk can thus participate in multiple and various RAID
levels as its chunklets are used for multiple volumes.

InServ also provides snapshots similar to those created by the WAFL file
system. The format of InServ snapshots can be read-write as well as read
only, allowing multiple hosts to mount copies of a given file system without
needing their own copies of the entire file system. Any changes a host makes
in its own copy are copy-on-write and so are not reflected in the other copies.

A further innovation is . Some file systems do not expand
or shrink On these systems, the original size is the only size, and any change
requires copying data. An administrator can configure InServ to provide a
host with a large amount of logical storage that initially occupies only a small
amount of physical storage. As the host starts using the storage, unused disks
are allocated to the host, up to the original logical level. The host thus can
believe that it has a large fixed storage space, create its file systems there, and
so on. Disks can be added or removed from the file system by InServ without
the file systems noticing the change. This feature can reduce the number of
drives needed by hosts, or at least delay the purchase of disks until they are
really needed.

high space overhead, RAID levelS is often preferred for storing large volumes
of data. Level6 is not supported currently by many RAID implementations, but
it should offer better reliability than levelS.

RAID system designers and administrators of storage have to make several
other decisions as well. For example, how many disks should be in a given
RAID set? How many bits should be protected by each parity bit? If more disks
are in an array, data-transfer rates are higher, but the system is more expensive.
If more bits are protected by a parity bit, the space overhead due to parity bits
is lower, but the chance that a second disk will fail before the first failed disk is
repaired is greater, and that will result in data loss.

12.7.5 Extensions

The concepts of RAID have been generalized to other storage devices, including
arrays of tapes, and even to the broadcast of data over wireless systems. When
applied to arrays of tapes, RAID structures are able to recover data even if one
of the tapes in an array is damaged. When applied to broadcast of data, a
block of data is split into short units and is broadcast along with a parity unit;
if one of the units is not received for any reason, it can be reconstructed from the
other units. Comrnonly, tape-drive robots containing multiple tape drives will
stripe data across all the drives to increase throughput and decrease backup
time.

12.7 531

12.7.6 Problems with RAID

Unfortunately, RAID does not always assure that data are available for the
operating system and its users. A pointer to a file could be wrong, for example,
or pointers within the file structure could be wrong. Incomplete writes, if not
properly recovered, could result in corrupt data. Some other process could
accidentally write over a file system's structures, too. RAID protects against
physical media errors, but not other hardware and software errors. As large as
is the landscape of software and hardware bugs, that is how numerous are the
potential perils for data on a system.

The Solaris ZFS file system takes an innovative approach to solving these
problems through the use of - a technique which is used to verify
the integrity of data. ZFS maintains internal checksums of all blocks, including
data and metadata. These checksums are not kept with the block that is being
checksummed. Rathel~ they are stored with the pointer to that block. (See
figure 12.13.) Consider an inode with pointers to its data. Within the inode is
the checksum of each block of data. If there is a problem with the data, the
checksum will be incorrect and the file system will know about it. If the data
are mirrored, and there is a block with a correct checksum and one with an
incorrect checksum, ZFS will automatically update the bad block with the good
one. Similarly, the directory entry that points to the inode has a checksum for the
inode. Any problem in the inode is detected when the directory is accessed.
This checksumming takes places throughout all ZFS structures, providing a
much higher level of consistency, error detection, and error correction than is
found in RAID disk sets or standard file systems. The extra overhead that is
created by the checksum calculation and extra block read-modify-write cycles
is not noticeable because the overall performance of ZFS is very fast.

Another issue with most RAID implementations is lack of flexibility.
Consider a storage array with twenty disks divided into four sets of five disks.
Each set of five disks is a RAID level 5 set. As a result, there are four separate

data 1

Figure 12.13 ZFS checksums all metadata and data.

532 Chapter 12

volumes, each holding a file system. But what if one file system is too large
to fit on a five-disk RAID level 5 set ? And what if another file system needs
very little space? If such factors are known ahead of time, then the disks and
volumes can be properly allocated. Very frequently, however, disk use and
requirements change over time.

Even if the storage array allowed the entire set of twenty disks to be
created as one large RAID set other issues could arise. Several volumes of
various sizes could be built on the set. But some volume managers do not
allow us to change a volume's size. In that case, we would be left with the same
issue described above-mismatched file-system sizes. Some volume n"lanagers
allow size changes, but some file systems do not allow for file-system growth
or shrinkage. The volumes could change sizes, but the file systems would need
to be recreated to take advantage of those changes.

ZFS combines file-system management and volume management into a
unit providing greater functionality than the traditional separation of those
functions allows. Disks, or partitions of disks, are gathered together via RAID
sets into of storage. A pool can hold one or more ZFS file systems. The
entire pool's free space is available to all file systems within that pool. ZFS uses
the memory model of "malloc" and "free" to allocate and release storage for
each file system as blocks are used and freed within the file system. As a result
there are no artificial limits on storage use and no need to relocate file systems
between volumes or resize volumes. ZFS provides quotas to limit the size of a
file system and reservations to assure that a file system can grow by a specified
amount, but those variables may be changed by the file system owner at any
time. Figure 12.14(a) depicts traditional volumes and file systems, and Figure
12.14(b) shows the ZFS model.

I FS I

~
(a) Traditional volumes and file systems.

(b) ZFS and pooled storage.

Figure 12.14 (a) Traditional volumes and file systems. (b) A ZFS pool and file systems.

12.8

12.8 533

In Chapter 6, we introduced the write-ahead log, which requires the availability
of stable storage. By definition, information residing in stable storage is never
lost. To implement such storage, we need to replicate the required information
on multiple storage devices (usually disks) with independent failure modes.
We also need to coordinate the writing of updates in a way that guarantees
that a failure during an update will not leave all the copies in a damaged state
and that, when we are recovering from a failure, we can force all copies to a
consistent and correct value, even if another failure occurs during the recovery.
In this section, we discuss how to meet these needs.

A disk write results in one of three outcomes:

Successful completion. The data were written correctly on disk.

Partial failure. A failure occurred in the midst of transfer, so only some of
the sectors were written with the new data, and the sector being written
during the failure may have been corrupted.

Total failure. The failure occurred before the disk write started, so the
previous data values on the disk remain intact.

Whenever a failure occurs during writing of a block, the system needs to
detect it and invoke a recovery procedure to restore the block to a consistent
state. To do that, the system must maintain two physical blocks for each logical
block. An output operation is executed as follows:

Write the information onto the first physical block.

When the first write completes successfully, write the same inJormation
onto the second physical block.

Declare the operation complete only after the second write completes
successfully.

During recovery from a failure, each pair of physical blocks is examined.
If both are the same and no detectable error exists, then no further action is
necessary. If one block contains a detectable error, then we replace its contents
with the value of the other block. If neither block contains a detectable error,
but the blocks differ in content, then we replace the content of the first block
with that of the second. This recovery procedure ensures that a write to stable
storage either succeeds completely or results in no change.

We can extend this procedure easily to allow the use of an arbitrarily large
number of copies of each block of stable storage. Although having a large
number of copies further reduces the probability of a failure, it is usually
reasonable to simulate stable storage with only two copies. The data in stable
storage are guaranteed to be safe unless a failure destroys all the copies.

Because waiting for disk writes to complete (synchronous I/O) is time
consuming, many storage arrays add NVRAM as a cache. Since the memory is
nonvolatile (it usually has battery power to back up the unit's power), it can
be trusted to store the data en route to the disks. It is thus considered part of

534 Chapter 12

12.9

the stable storage. Writes to it are much faster than to disk, so performance is
greatly improved.

Would you buy a DVD or CD player that had one disk sealed inside? Of course
not. You expect to use a DVD or CD player with many relatively inexpensive
disks. On a computer as well, using many inexpensive cartridges with one
drive lowers the overall cost. Low cost is the defining characteristic of tertiary
storage, which we discuss in this section.

12.9.1 Tertiary-Storage Devices

Because cost is so important, in practice, tertiary storage is built with
The most common examples are floppy disks, tapes, and read-only,

write-once, and rewritable CDs and DVDs. Many any other kinds of tertiary
storage devices are available as well, including removable devices that store
data in flash memory and interact with the computer system via a USB interface.

12.9.1.1 Removable Disks

Removable disks are one kind of tertiary storage. Floppy disks are an example
of removable magnetic disks. They are made from a thin, flexible disk coated
with magnetic material and enclosed in a protective plastic case. Although
common floppy disks can hold only about 1 MB, similar technology is used
for removable magnetic disks that hold more than 1 GB. Removable magnetic
disks can be nearly as fast as hard disks, although the recording stuface is at
greater risk of from scratches.

A is another kind of removable disk. It records data
on a rigid platter coated with magnetic material, but the recording technology
is quite different from that for a magnetic disk. The magneto-optic head flies
much farther from the disk surface than a magnetic disk head does, and the
magnetic material is covered with a thick protective layer of plastic or glass.
This arrangement makes the disk much more resistant to head crashes.

The magneto-optic disk drive has a coil that produces a magnetic field; at
room temperature, the field is too large and too weak to magnetize a bit on the
disk. To write a bit, the disk head flashes a laser beam at the disk surface. The
laser is aimed at a tiny spot where a bit is to be written. The laser heats this
spot, which makes the spot susceptible to the magnetic field. Now the large,
weak magnetic field can record a tiny bit.

The magneto-optic head is too far from the disk surface to read the data by
detecting the tiny magnetic fields in the way that the head of a hard disk does.
Instead, the drive reads a bit using a property of laser light called the

When a laser beam is bounced off of a magnetic spot, the polarization
of the laser beam is rotated clockwise or counterclockwise, dependin~g on the
orientation of the magnetic field. This rotation is what the head detects to read
a bit.

Another category of removable disk is the Optical disks do not
use magnetism at all. Instead, they use special materials that can be altered by
laser light to have relatively dark or bright spots. One exarnple of optical-disk

12.9 535

technology is the which is coated with a material that can
freeze into either a crystalline or an amorphous state. The crystalline state is
more transparent, and hence a laser beam is brighter when it passes through
the lTlaterial and bounces off the reflective layer. The phase-change drive uses
laser light at three different powers: low power to read data, medium power
to erase the disk by melting and refreezing the recording medium into the
crystalline state, and high power to melt the medium into the amorphous state
to write to the disk. The most common examples of this technology are the
re-recordable CD-RW and DVD-RW.

The kinds of disks just described can be used over and over. They are called
In contrast, can

be written only once. An old way to make a WORM disk is to manufacture a thin
aluminum film sandwiched between two glass or plastic platters. To write a
bit, the drive uses a laser light to burn a small hole through the aluminum. This
burning cannot be reversed. Although it is possible to destroy the information
on a WORM disk by burning holes everywhere, it is virtually impossible to alter
data on the disk, because holes can only be added, and the ECC code associated
with each sector is likely to detect such additions. WORM disks are considered
durable and reliable because the metal layer is safely encapsulated between
the protective glass or plastic platters and magnetic fields cannot damage the
recording. A newer write-once technology records on an organic polymer dye
instead of an aluminum layer; the dye absorbs laser light to form marks. This
technology is used in the recordable CD-R and DVD-R.

Read-oniv such as CD-ROM and DVD-ROM, come from the factory
with the data prerecorded. They use technology similar to that of WORM disks
(although the bits are pressed, not burned), and they are very durable.

Most removable disks are slower than their nonremovable counterparts.
The writing process is slower, as are rotation and sometimes seek time.

12.9.1.2 Tapes

Magnetic tape is another type of removable medium. As a general rule, a tape
holds more data than an optical or magnetic disk cartridge. Tape drives and
disk drives have similar transfer rates. But random access to tape is much
slower than a disk seek, because it requires a fast-forward or rewind operation
that takes tens of seconds or even minutes.

Although a typical tape drive is more expensive than a typical disk drive,
the price of a tape cartridge is lower than the price of the equivalent capacity
of magnetic disks. So tape is an economical medium for purposes that do not
require fast random access. Tapes are commonly used to hold backup copies
of disk data. They are also used in large supercomputer centers to hold the
enornwus volumes of data used in scientific research and by large commercial
enterprises.

Large tape installations typically use robotic tape changers that move tapes
between tape drives and storage slots in a tape library. These mechanisms give
the computer automated access to many tape cartridges.

A robotic tape library can lower the overall cost of data storage. A disk
resident file that will not be needed for a while can be to tape, where
the cost per gigabyte is lower; if the file is needed in the future, the computer
can it back into disk storage for active use. A robotic tape library is

536 Chapter 12

sometimes called storage, since it is between the high performance
of on-line magnetic disks and the low cost of off-line tapes sitting on shelves
in a storage room.

12.9.1.3 Future Technology

In the future, other storage technologies may become important. Sometimes old
technologies are used in new ways, as economics change or the technologies
evolve. For example, solid-state disks, or are growing in importance and
becoming more common. Simply described, an SSD is a disk that is used like
a hard drive. Depending on the memory technology used, it can be volatile
or nonvolatile. The memory technology also affects performance. Nonvolatile
SSDs have the same characteristics as traditional hard disks but can be more
reliable because they have no moving parts and faster because they have no
seek time or latency. In addition, they use less energy. However, they are more
expensive per megabyte than traditional hard disks, have lower capacity than
the larger hard disks, and may have shorter life-spans than hard disks; so their
uses are limited. In one example, SSDs are being used in storage arrays to hold
metadata which requires high-performance such as the journal of a journaling
file system. SSDs are also being added to notebook computers to make them
smaller, faster, and more energy efficient.

Another promising storage technology, bologt;;:phk uses laser
light to record holographic photographs on special media. We can think of a
hologram as a three-dimensional array of pixels. Each pixel represents one bit:
0 for black or 1 for white. And all the pixels in a hologram are transferred in one
flash of laser light, so the data transfer rate is extremely high. With continued
development, holographic storage may become commercially viable.

Another technology under active research is based on
(IV!E\1S). The idea is to apply the fabrication

technologies that produce electronic chips to the manufacture of small data
storage machines. One proposal calls for the fabrication of an array of 10,000
tiny disk heads, with a square centimeter of magnetic storage material sus
pended above the array. When the storage material is moved lengthwise over
the heads, each head accesses its own linear track of data on the material. The
storage material can be shifted sideways slightly to enable all the heads to
access their next track. Although it remains to be seen whether this technology
can be successful, it may provide a nonvolatile data-storage technology that is
faster than magnetic disk and cheaper than semiconductor DRAM.

Whether the storage medium is a removable magnetic disk, a DVD, or a
magnetic tape, the operating system needs to provide several capabilities to use
removable media for data storage. These capabilities are discussed in Section
12.9.2.

12.9.2 Operating-System Support

Two major jobs of an operating system are to manage physical devices and
to present a virtual machine abstraction to applications. In this chapter, we
have seen that, for hard disks, the operating system provides two abstractions.
One is the raw device, which is just an array of data blocks. The other is a file
system. For a file system on a magnetic disk, the operating system queues and

12.9 537

schedules the interleaved requests from several applications. Now, we shall see
how the operating system does its job when the storage media are removable.

12.9.2.1 Application Interface

Most operating systems can handle removable disks almost exactly as they do
fixed disks. When a blank cartridge is inserted into the drive (or mounted), the
cartridge must be formatted, and then an empty file system is generated on the
disk. This file system is used just like a file system on a hard disk

Tapes are often handled differently. The operating system usually presents
a tape as a raw storage medium. An application does not open a file on the
tape; it opens the whole tape drive as a raw device. Usually, the tape drive
is then reserved for the exclusive use of that application until the application
exits or closes the tape device. This exclusivity makes sense, because random
access on a tape can take tens of seconds, or even a few minutes, so interleaving
random accesses to tapes from more than one application would be likely to
cause thrashing.

When the tape drive is presented as a raw device, the operating system
does not provide file-system services. The application must decide how to use
the array of blocks. For instance, a program that backs up a hard disk to tape
might store a list of file names and sizes at the beginning of the tape and then
copy the data of the files to the tape in that order.

It is easy to see the problems that can arise from this way of using tape.
Since every application makes up its own rules for how to organize a tape,
a tape full of data can generally be used only by the program that created it.
For instance, even if we know that a backup tape contains a list of file names
and file sizes followed by the file data, we will still find it difficult to use the
tape. How exactly are the file names stored? Are the file sizes in binary or ASCII
form? Are the files written one per block, or are they all concatenated in one
tremendously long string of bytes? We do not even know the block size on the
tape, because this variable is generally one that can be chosen separately for
each block written.

For a disk drive, the basic operations are read(), write(), and seek().
Tape drives have a different set of basic operations. Instead of seek(), a tape
drive uses the locate() operation. The tape locate() operation is more
precise than the disk seek() operation, because it positions the tape to a
specific logical block, rather than an entire track. Locating to block 0 is the
same as rewinding the tape.

For most kinds of tape drives, it is possible to locate to any block that has
been written on a tape. In a partly filled tape, however, it is not possible to
locate into the empty space beyond the written area, because most tape drives
do not manage their physical space in the same way disk drives do. For a disk
drive, the sectors have a fixed size, and the formatting process must be used to
place empty sectors in their final positions before any data can be written. Most
tape drives have a variable block size, and the size of each block is detern<ined
on the fly, when that block is written. If an area of defective tape is encountered
during writing, the bad area is skipped and the block is written again. This
operation explains why it is not possible to locate into the empty space beyond
the written area -the positions and numbers of the logical blocks have not yet
been detennined.

538 Chapter 12

Most tape drives have a read_position() operation that returns the
logical block number where the tape head is currently located. Many tape
drives also support a space() operation for relative motion. So, for example,
the operation space (-2) would locate backward over two logical blocks.

For most kinds of tape drives, writing a block has the side effect of logically
erasing everything beyond the position of the write. In practice, this side effect
means that most tape drives are append-only devices, because updating a
block in the middle of the tape also effectively erases everything beyond that
block. The tape drive implements this appending by placing an end-of-tape
(EOT) mark after a block that is written. The drive refuses to locate past the EOT
mark, but it is possible to locate to the EOT and then start writing. Doing so
overwrites the old EOT mark and places a new one at the end of the new blocks
just written.

In principle, a file system can be implemented on a tape. But many of the
file-system data structures and algorithms would be different from those used
for disks, because of the append-only property of tape.

12.9.2.2 File Naming

Another question that the operating system needs to handle is how to name
files on removable media. For a fixed disk, naming is not difficult. On a PC, the
file name consists of a drive letter followed by a path name. In UNIX, the file
name does not contain a drive letter, but the moLmt table enables the operating
system to discover on what drive the file is located. If the disk is removable,
however, knowing what drive contained the cartridge at some time in the past
does not mean knowing how to find the file. If every removable cartridge in
the world had a different serial number, the name of a file on a removable
device could be prefixed with the serial number, but to ensure that no two
serial numbers are the same would require each one to be about 12 digits in
length. Who could remember the names of her files if she had to memorize a
12-digit serial number for each one?

The problem becomes even more difficult when we want to write data
on a removable cartridge on one computer and then use the cartridge in
another computer. If both machines are of the same type and have the same
kind of removable drive, the only difficulty is knowing the contents and data
layout on the cartridge. But if the machines or drives are different, many
additional problems can arise. Even if the drives are compatible, different
computers may store bytes in different orders and may use different encodings
for binary numbers and even for letters (such as ASCII on PCs versus EBCDIC
on mainframes).

Today's operating systems generally leave the name-space problem
unsolved for removable media and depend on applications and users to figure
out how to access and interpret the data. Fortunately, a few kinds of removable
media are so well standardized that all computers use them the same way. One
example is the CD. Music CDs use a universal format that is understood by any
CD drive. Data CDs are available in only a few different formats, so it is usual
for a CD drive and the operating-system device driver to be programmed to
handle all the comn1on formats. DVD fonnats are also well standardized.

12.9 539

12.9.2.3 Hierarchical Storage Management

A JU enables the computer to change the removable cartridge in a
tape or disk drive without human assistance. Two major uses of this technology
are for backups and hierarchical storage systems. The use of a jukebox for
backups is simple: When one cartridge becomes full, the computer instructs
the jukebox to switch to the next cartridge. Some jukeboxes hold tens of drives
and thousands of cartridges, with robotic arms managing the movement of
tapes to the drives.

A hierarchical storage system extends the storage hierarchy beyond
primary memory and secondary storage (that is, magnetic disk) to incorporate
tertiary storage. Tertiary storage is usually implemented as a jukebox of tapes
or removable disks. This level of the storage hierarchy is larger, cheaper, and
slower.

Although the virtual memory system can be extended in a straightforward
manner to tertiary storage, this extension is rarely carried out in practice. The
reason is that a retrieval from a jukebox can take tens of seconds or even
minutes, and such a long delay is intolerable for demand paging and for other
forms of virtual memory use.

The usual way to incorporate tertiary storage is to extend the file system.
Small and frequently used files remain on magnetic disk, while large and old
files that are not actively used are archived to the jukebox. In some file-archiving
systems, the directory entry for the file continues to exist, but the contents of
the file no longer occupy space in secondary storage. If an application tries to
open the file, the open () system call is suspended until the file contents can
be staged in from tertiary storage. When the contents are again available from
magnetic disk, the open () operation returns control to the application, which
proceeds to use the disk-resident copy of the data.

Today, is usually found in instal-
lations that have large volumes of data that are used seldom, sporadically,

Current work in HSM includes extending it to provide full
Here, data move from disk to tape

and back to disk, as needed, but are deleted on a schedule or according to
policy. For example, some sites save e-mail for seven years but want to be sure
that at the end of seven years it is destroyed. At that point, the data might be
on disk, HSM tape, and backup tape. ILM centralizes knowledge of where the
data are so that policies can be applied across all these locations.

12.9.3 Performance Issues

As with any component of the operating system, the three most important
aspects of tertiary-storage performance are speed, reliability, and cost.

12.9.3.1 Speed

The speed of tertiary storage has two aspects: bandwidth and latency. We
measure the bandwidth in bytes per second. The ·~'L' is
the average data rate during a transfer-that is, the number of bytes
divided by the transfer time. The calculates the average
over the entire l/0 time, including the time for seek() or locate() and any

540 Chapter 12

cartridge-switching time in a jukebox. In essence, the sustained bandwidth is
the rate at which the data stream actually flows, and the effective bandwidth is
the overall data rate provided by the drive. The bandwidth of a drive is generally
understood to mean the sustained bandwidth.

For removable disks, tlce bandwidth ranges from a few megabytes per
second for the slowest to over 40 MB per second for the fastest. Tapes have a
similar range of bandwidths, from a few megabytes per second to over 30MB
per second.

The second aspect of speed is the . By this performance
measure, disks are much faster than tapes. Disk storage is essentially two
dimensional-all the bits are out in the open. A disk access simply moves the
ann to the selected cylinder and waits for the rotational latency, which may
take less than 5 milliseconds. By contrast, tape storage is three-dimensional.
At any time, a small portion of the tape is accessible to the head, whereas most
of the bits are buried below hundreds or thousands of layers of tape wound
on the reel. A random access on tape requires winding the tape reels until
the selected block reaches the tape head, which can take tens or hundreds of
seconds. So we can generally say that random access within a tape cartridge is
more than a thousand times slower than random access on disk.

If a jukebox is involved, the access latency can be significantly higher. For
a removable disk to be changed, the drive must stop spinning, then the robotic
arm must switch the disk cartridges, and then the drive must spin up the new
cartridge. This operation takes several seconds-about a hundred times longer
than the random-access time within one disk. So switching disks in a jukebox
incurs a relatively high performance penalty.

For tapes, the robotic-ann time is about the same as for disks. But for tapes
to be switched, the old tape generally must rewind before it can be ejected, and
that operation can take as long as 4 minutes. And, after a new tape is loaded
into the drive, many seconds can be required for the drive to calibrate itself
to the tape and to prepare for I/0. Although a slow tape jukebox can have a
tape-switch time of 1 or 2 minutes, this time is not enormously greater than the
random-access time within one tape.

To generalize, we can say that random access in a disk jukebox has a
latency of tens of seconds, whereas random access in a tape jukebox has a
latency of hundreds of seconds; switching tapes is expensive, but switching
disks is not. We must be careful not to overgeneralize, though. Some expensive
tape jukeboxes can rewind, eject, load a new tape, and fast-forward to a random
item of data all in less than 30 seconds.

If we pay attention to only the performance of the drives in a jukebox,
the bandwidth and latency seem reasonable. But if we focus our attention
on the cartridges instead, we find a terrible bottleneck. Consider first the
bandwidth. The bandwidth-to-storage-capacity ratio of a robotic library is
much less favorable than that of a fixed disk. To read all the data stored on
a large hard disk could take about an hour. To read all the data stored in a
large tape library could take years. The situation with respect to access latency
is nearly as bad. To illustrate, if 100 requests are queued for a disk drive,
the average waiting time will be about a second. If 100 requests are queued
for a tape library, the average waiting time could be over an hour. The low
cost of tertiary storage results from having many cheap cartridges share a few
expensive drives. But a removable library is best devoted to the storage of

12.9 541

infrequently used data, because the library can satisfy only a relatively small
number of I/0 requests per hour.

12.9.3.2 Reliability

Although we often think good pe1jormance means high speed, another important
aspect of performance is reliability. If we try to read some data and are unable
to do so because of a drive or media failure, for all practical purposes the access
time is infinitely long and the bandwidth is infinitely small. So it is important
to understand the reliability of removable media.

Removable n1.ag:netic disks are somewhat less reliable than are fixed hard
disks, because they are more likely to be exposed to harmful environmental
conditions such as dust, large changes in temperature and humidity, and
mechanical forces such as shock and bending. Optical disks are considered
very reliable, because the layer that stores the bits is protected by a transparent
plastic or glass layer. The reliability of magnetic tape varies widely, depending
on the kind of drive. Some inexpensive drives wear out tapes after a few dozen
uses; other drives are gentle enough to allow millions of reuses. By comparison
with a magnetic-disk head, the head in a magnetic-tape drive is a weak spot.
A disk head flies above the media, but a tape head is in close contact with
the tape. The scrubbing action of the tape can wear out the head after a few
thousands or tens of thousands of hours.

In summary, we can say that a fixed-disk drive is likely to be more reliable
than a removable-disk or tape drive, and an optical disk is likely to be more
reliable than a magnetic disk or tape. But a fixed magnetic disk has one
weakness. A head crash in a hard disk generally destroys the data, whereas
the failure of a tape drive or optical-disk drive often leaves the data cartridge
unharmed.

12.9.3.3 Cost

Storage cost is another important factor. Here is a concrete example of how
removable media may lower the overall storage cost. Suppose that a hard disk
that holds X GB has a price of $200; of this amom1.t, $190 is for the housing,
motor, and controller, and $10 is for the magnetic platters. The storage cost
for this disk is $200/ X per gigabyte. Now, suppose that we can manufacture
the platters in a removable cartridge. For one drive and 10 cartridges, the total
price is $190 + $100, and the capacity is lOX GB, so the storage cost is $291 X per
gigabyte. Even if it is a little more expensive to make a removable cartridge,
the cost per gigabyte of removable storage may well be lower than the cost per
gigabyte of a hard disk, because the expense of one drive is averaged with the
low price of many removable cartridges.

Figures 12.15, 12.16, and 12.17 show cost trends per megabyte for DRAM
memory, magnetic hard disks, and tape drives. The prices in the graphs are
the lowest prices found in advertisements in various computer magazines and
on the World Wide Web at the end of each year. These prices reflect the small
computer marketplace of the readership of these magazines, where prices are
low by comparison with the mainframe and minicomputer markets. In the case
of tape, the price is for a drive with one tape. The overall cost of tape storage
becomes much lower as more tapes are purchased for use with the drive,

542 Chapter 12

co
::;;;
&:5-

160

80

40

20

10

1.2
0.8
0.4

64

KB

32

128MB
512MB

2GB

0 ·02 --'-c-19=':,8.,.-2 -1-"98-cc4--:-19=':c8-=-6 -1~9'::-:88---,19=':c9-=-o -1c-:'91'::-:92--:1 c:':99-4 -c:c19L96---,19c:':9-=-8 -2.,-,o'::-:oo--:2c:':oo-=-2 -2::-::0L.04:--::2c:':oo-=-6 -?:'2oos
Year

Figure 12."15 Price per megabyte of DRAM, from 1981 to 2008.

because the price of a tape is a small fraction of the price of the drive. However,
in a huge tape library containing thousands of cartridges, the storage cost is
dominated by the cost of the tape cartridges. As of 2004, the cost per GB of tape
cartridges was around $.40.

As Figure 12.15 shows, the cost of DRAM fluctuates widely. In the period
from 1981 to 2004, we can see three price crashes (around 1981, 1989, and
1996) as excess production caused a glut in the marketplace. We can also
see two periods (around 1987 and 1993) where shortages in the marketplace
caused sigrtificant price increases. In the case of hard disks (Figure 12.16), the
price decline has been steadier. Tape-drive prices also fell steadily up to 1997
(Figure 12.17). Since 1997, the price per gigabyte of inexpensive tape drives
has ceased its dramatic fall, although the price of mid-range tape technology
(such as DAT /DDS) has continued to fall and is now approaching that of the

co
::;;;

"'

100

50

20

5

2

0.5

0.2

0.05

0.02-

0.004

0.001

0.0005

0.0002

10

20

1982 1984 1986

120

1.2

2

1988 1990 1992

19
GB

GB

GB

1994 1996 1998 2000 2002 2004 2006 2008
Year

Figure 12.16 Price per megabyte of magnetic hard disk, from 1981 to 2008.

12.10

OJ

~

12.10

40

20

8- 60

120

1.2
0.5-

0.1

72GB
0.025

320GB
0.01 320GB

0.0051~9c-c84-1-:L98-:-6 -19:':-88c---cc19~90c---:c19~92:--c-c19L94-c-c19L96,---.,-c19'cc98-2,-JOOc-c0--c2,-J.00,-,-2--:~--:.,J=~2008
Year

Figure 12.17 Price per megabyte of a tape drive, from 1984 to 2008.

543

in.expensive drives. Tape-drive prices are not shown for years prior to 1984,
because, as mentioned, the magazines used in tracking prices are targeted to
the small-computer marketplace, and tape drives were not widely used with
small computers prior to 1984.

We can see from these graphs that the cost of storage has fallen dramatically.
By comparing the graphs, we can also see that the price of disk storage has
plummeted relative to the price of DRAM and tape.

The price per megabyte of magnetic disk storage improved by more than
four orders of magnitude from 1981 to 2004, whereas the corresponding
improvement for main memory was only three orders of magnitude. Main
memory today is more expensive than disk storage by a factor of 100.

The price per megabyte dropped much more rapidly for disk drives than
for tape drives as well. In. fact, the price per megabyte of a magnetic disk drive
is approaching that of a tape cartridge without the tape drive. Consequently,
small- and medium-sized tape libraries have a higher storage cost than disk
systems with equivalent capacity.

The dramatic fall in disk prices has largely rendered tertiary storage
obsolete. We no longer have any tertiary storage technology that is orders
of magnitude less expensive than magnetic disk. It appears that the revival
of tertiary storage must await a revolutionary technology breakthrough.
Meanwhile, tape storage will find its use mostly limited to purposes such
as backups of disk drives and archival storage in enormous tape libraries that
greatly exceed the practical storage capacity of large disk farms.

Disk drives are the major secondary-storage I/0 devices on most computers.
Most secondary storage devices are either magnetic disks or n1.agnetic tapes.
Modern disk drives are structured as large one-dimensional arrays of logical
disk blocks. Generally, these logical blocks are 512 bytes in size. Disks may be
attached to a computer system in one of two ways: (1) through the local I/0
ports on the host computer or (2) through a network cmmection.

544 Chapter 12

Requests for disk I/0 are generated by the file system and by the virtual
memory system. Each request specifies the address on the disk to be referenced,
in the form of a logical block number. Disk-schedLiling algorithms can improve
the effective bandwidth, the average response time, and the variance in
response time. Algorithms such as SSTF, SCAN, C-SCAN, LOOK, and C-LOOK
are designed to make such improvements through strategies for disk-queue
ordering.

Performance can be harmed by external fragmentation. Some systems
have utilities that scan the file system to identify fragmented files; they then
move blocks around to decrease the fragmentation. Defragmenting a badly
fragmented file system can significantly improve performance, but the systenc
may have reduced performance while the defragmentation is in progress.
Sophisticated file systems, such as the UNIX Fast File System, incorporate
many strategies to control fragmentation during space allocation so that disk
reorganization is not needed.

The operating system manages the disk blocks. First, a disk must be low
level-formatted to create the sectors on the raw hardware-new disks usually
come preformatted. Then, the disk is partitioned, file systems are created, and
boot blocks are allocated to store the system's bootstrap program. Finally, when
a block is corrupted, the system must have a way to lock out that block or to
replace it logically with a spare.

Because an efficient swap space is a key to good performance, systems
usually bypass the file system and use raw disk access for paging I/0. Some
systems dedicate a raw disk partition to swap space, and others use a file
within the file system instead. Still other systems allow the user or system
administrator to make the decision by providing both options.

Because of the amount of storage required on large systems, disks are
frequently made redundant via RAID algorithms. These algorithms allow more
than one disk to be used for a given operation and allow continued operation
and even automatic recovery in the face of a disk failure. RAID algorithms
are organized into different levels; each level provides some combination of
reliability and high transfer rates.

The write-ahead log scheme requires the availability of stable storage.
To implement such storage, we need to replicate the needed information on
multiple nonvolatile storage devices (usually disks) with independent failure
modes. We also need to update the information in a controlled manner to
ensure that we can recover the stable data after any failure during data transfer
or recovery.

Tertiary storage is built from disk and tape drives that use removable
media. Many different technologies are available, including magnetic tape,
removable magnetic and magneto-optic disks, and optical disks.

For removable disks, the operating system generally provides the full
services of a file-system interface, including space management and request
queue scheduling. For many operating systems, the name of a file on a
removable cartridge is a combination of a drive name and a file name within
that drive. This convention is simpler but potentially more confusing than is
using a name that identifies a specific cartridge.

For tapes, the operating system generally provides only a raw interface.
Many operating systems have no built-in support for jukeboxes. Jukebox

545

support can be provided by a device driver or by a privileged application
designed for backups or for HSM.

Three important aspects of performance are bandwidth, latency, and
reliability. Many bandwidths are available for both disks and tapes, but the
random-access latency for a tape is generally much greater than that for a disk.
Switching cartridges in a jukebox is also relatively slow. Because a jukebox
has a low ratio of drives to cartridges, reading a large fraction of the data in a
jukebox can take a long time. Optical media, which protect the sensitive layer
with a transparent coating, are generally more robust than magnetic media,
which are more likely to expose the magnetic material to physical damage.
Lastly, the cost of storage has decreased greatly in the past two decades, most
notably for disk storage.

12.1 What would be the effects on cost and performance if tape storage had
the same areal density as disk storage? (Areal density is the number of
gigabits per square inch.)

12.2 It is sometimes said that tape is a sequential-access medium, whereas
a magnetic disk is a random-access medium. In fact the suitability
of a storage device for random access depends on the transfer size.
The term streaming transfer rate denotes the rate for a data transfer
that is underway, excluding the effect of access latency. By contrast, the
effective transfer rate is the ratio of total bytes per total seconds, including
overhead time such as access latency.

Suppose that, in a computer, the level-2 cache has an access latency
of 8 nanoseconds and a streaming transfer rate of 800 megabytes per
second, the main memory has an access latency of 60 nanoseconds and
a streaming transfer rate of 80 megabytes per second, the magnetic disk
has an access latency of 15 milliseconds and a streaming transfer rate
of 5 megabytes per second, and a tape drive has an access latency of 60
seconds and a streaming transfer rate of 2 megabytes per seconds.

a. Random access causes the effective transfer rate of a device to
decrease, because no data are transferred during the access time.
For the disk described, what is the effective transfer rate if an
average access is followed by a streaming transfer of (1) 512 bytes,
(2) 8 kilobytes, (3) 1 megabyte, and (4) 16 megabytes?

b. The utilization of a device is the ratio of effective transfer rate to
streaming transfer rate. Calculate the utilization of the disk drive
for each of the four transfer sizes given in part a.

c. Suppose that a utilization of 25 percent (or higher) is considered
acceptable. Using the performance figures given, compute the
smallest transfer size for disk that gives acceptable utilization.

546 Chapter 12

d. Complete the following sentence: A disk is a random-access
device for transfers larger than ______ bytes and is a sequential-
access device for s1naller transfers.

e. Compute the minimum transfer sizes that give acceptable utiliza
tion for cache, memory, and tape.

f. When is a tape a random-access device, and when is it a
sequential-access device?

12.3 The reliability of a hard-disk drive is typically described in terms of a
quantity called mean time between failures (MTBF). Although this quantity
is called a "time," the MTBF actually is measured in drive-hours per
failure.

a. If a system contains 1,000 disk drives, each of which has a 750,000-
hour MTBF, which of the following best describes how often a
drive failure will occur in that disk farm: once per thousand
years, once per century, once per decade, once per year, once per
month, once per week, once per day, once per hour, once per
minute, or once per second?

b. Mortality statistics indicate that, on the average, a U.S. resident
has about 1 chance in 1,000 of dying between the ages of 20 and 21.
Deduce the MTBF hours for 20-year-olds. Convert this figure from
hours to years. What does this MTBF tell you about the expected
lifetime of a 20-year-old?

c. The manufacturer guarantees a 1-million-hour MTBF for a certain
model of disk drive. What can you conclude about the number of
years for which one of these drives is under warranty?

12.4 Discuss how an operating system could maintain a free-space list
for a tape-resident file system. Assume that the tape technology is
append-only and that it uses EOT marks and locate, space, and read
position commands as described in Section 12.9.2.1.

12.5 Imagine that a holographic storage drive has been invented. The drive
costs $10,000 and has an average access time of 40 milliseconds. It uses
a $100 cartridge the size of a CD. This cartridge holds 40,000 images,
and each image is a square black-and-white picture with a resolution
of 6, 000 x 6, 000 pixels (each pixel stores 1 bit). The drive can read or
write one picture in 1 millisecond. Answer the following questions.

a. What would be some good uses for this device?

b. How would this device affect the l/0 performance of a computing
system?

c. What kinds of storage devices, if any, would become obsolete as
a result of the invention of this device?

547

12.6 The term "Fast Wide SCSI-II" denotes a SCSI bus that operates at a
data rate of 20 megabytes per second when it moves a packet of bytes
between the host and a device. Suppose that a Fast Wide SCSI-II disk
drive spins at 7,200 RPM, has a sector size of 512 bytes, and holds 160
sectors per track

a. Estimate the sustained transfer rate of this drive in megabytes per
second.

b. Suppose that the drive has 7,000 cylinders, 20 tracks per cylinde1~
a head-switch time (from one platter to another) of 0.5 millisec
ond, and an adjacent-cylinder seek time of 2 milliseconds. Use
this additional information to give an accurate estimate of the
sustained transfer rate for a huge transfer.

c. Suppose that the average seek time for the drive is 8 milliseconds.
Estimate the I/0 operations per second and the effective transfer
rate for a random-access workload that reads individual sectors
that are scattered across the disk

d. Calculate the random-access I/0 operations per second and
transfer rate for I/0 sizes of 4 kilobytes, 8 kilobytes, and 64
kilobytes.

e. If multiple requests are in the queue, a scheduling algorithm such
as SCAN should be able to reduce the average seek distance. Sup
pose that a random-access workload is reading 8-kilobyte pages,
the average queue length is 10, and the scheduling algorithm
reduces the average seek time to 3 milliseconds. Now calculate
the I/0 operations per second and the effective transfer rate of the
drive.

12.7 Compare the performance of write operations achieved by a RAID level
5 organization with that achieved by a RAID level1 organization.

12.8 Suppose that a disk drive has 5,000 cylinders, numbered 0 to 4999. The
drive is currently serving a request at cylinder 143, and the previous
request was at cylinder 125. The queue of pending requests, in FIFO
order, is:

86,1470,913,1774,948,1509,1022,1750,130

Starting from the current head position, what is the total distance (in
cylinders) that the disk arm moves to satisfy all the pending requests
for each of the following disk-scheduling algorithms?

a. FCFS

b. SSTF

548 Chapter 12

c. SCAN

d. LOOK

e. C-SCAN

f. C-LOOK

12.9 Elementary physics states that when an object is subjected to a constant
acceleration a, the relationship between distance d and time t is given
by d = ~at2 . Suppose that, during a seek, the disk in Exercise 12.8
accelerates the disk arm at a constant rate for the first half of the seek,
then decelerates the disk arm at the same rate for the second half of the
seek. Assume that the disk can perform a seek to an adjacent cylinder
in 1 n"lillisecond and a full-stroke seek over all 5,000 cylinders in 18
milliseconds.

a. The distance of a seek is the number of cylinders that the head
moves. Explain why the seek time is proportional to the square
root of the seek distance.

b. Write an equation for the seek time as a function of the seek
distance. This equation should be of the form t = x + y~,
where t is the time in milliseconds and L is the seek distance in
cylinders.

c. Calculate the total seek time for each of the schedules in Exercise
12.8. Determine which schedule is the fastest (has the smallest
total seek time).

d. The percentage speedup is the time saved divided by the original
time. What is the percentage speedup of the fastest schedule over
FCFS?

12.10 The accelerating seek described in Exercise 12.9 is typical of hard-disk
drives. By contrast, floppy disks (and many hard disks manufactured
before the mid-1980s) typically seek at a fixed rate. Suppose that the
disk in Exercise 12.9 has a constant-rate seek rather than a constant
acceleration seek, so the seek time is of the form t = x + yL, where t
is the time in milliseconds and L is the seek distance. Suppose that the
time to seek to an adjacent cylinder is 1 millisecond, as before, and the
time to seek to each additional cylinder is 0.5 milliseconds.

a. Write an equation for this seek time as a function of the seek
distance.

b. Using this seek-time function, calculate the total seek time £or
each of the schedules in Exercise 12.8. Is your answer the same as
the one £or Exercise 12.9(c)?

549

c. What is the percentage speedup of the fastest scb.edule over FCFS
in this case?

12.11 Suppose that the disk in Exercise 12.9 rotates at 7,200 RPM.

a. What is the average rotational latency of this disk drive?

b. What seek distance can be covered in the tim.e that you found £or
part a?

12.12 Suppose that a one-sided 5.25-inch optical-disk cartridge has an areal
density of 1 gigabit per square inch. Further suppose that a magnetic
tape has an areal density of 20 megabits per square inch and is 1/2
inch wide and 1,800 feet long. Calculate an estimate of the storage
capacities of these two kinds of storage media. Suppose that an optical
tape exists that has the same physical size as the magnetic tape but the
same storage density as the optical disk. What volume of data could
the optical tape hold? What would be a marketable price for the optical
tape if the magnetic tape cost $25?

12.13 Write a program that simulates the disk-scheduling algorithms dis
cussed in Section 12.4.

12.14 Why is rotational latency usually not considered in disk scheduling?
How would you modify SSTF, SCAN, and C-SCAN to include latency
optimization?

12.15 Remapping bad blocks by sector sparing or sector slipping can influ
ence perfonnance. Suppose that the drive in Exercise 12.6 has a total
of 100 bad sectors at random locations and that each bad sector is
mapped to a spare that is located on a different track within the same
cylinder. Estimate the number of I/0 operations per second and the
effective transfer rate for a random-access workload consisting of 8-
kilobyte reads, assuming a queue length of 1 (that is, the choice of
scheduling algorithm is not a factor). What is the effect of a bad sector
on performance?

12.16 Discuss the relative advantages and disadvantages of sector sparing
and sector slipping.

12.17 Compare the performance of C-SCAN and SCAN scheduling, assuming
a uniform distribution of requests. Consider the average response time
(the time between the arrival of a request and the completion of that
request's service), the variation in response time, and the effective

550 Chapter 12

bandwidth. How does performance depend on the relative sizes of
seek time and rotational latency?

12.18 None of the disk-scheduling disciplines, except FCFS, is truly fair
(starvation may occur).

a. Explain why this assertion is true.

b. Describe a way to modify algorithms such as SCAN to ensure
fairness.

c. Explain why fairness is an important goal in a time-sharing
system.

d. Give three or more examples of circumstances in which it is
important that the operating system be unfair in serving I/O
requests.

12.19 Consider a RAID level 5 organization comprising five disks, with the
parity for sets of four blocks on four disks stored on the fifth disk. How
many blocks are accessed in order to perform the following?

a. A write of one block of data

b. A write of seven continuous blocks of data

12.20 The operating system generally treats removable disks as shared file
systems but assigns a tape drive to only one application at a time. Give
three reasons that could explain this difference in treatment of disks and
tapes. Describe the additional features that an operating system would
need to support shared file-system access to a tape jukebox. Would the
applications sharing the tape jukebox need any special properties, or
could they use the files as though the files were disk-resident? Explain
your answer.

12.21 How would use of a RAM disk affect your selection of a disk-scheduling
algorithm? What factors would you need to consider? Do the same
considerations apply to hard-disk scheduling, given that the file system
stores recently used blocks in a buffer cache in main memory?

12.22 You can use simple estimates to compare the cost and performance
of a terabyte storage system made entirely from disks with one that
incorporates tertiary storage. Suppose that each magnetic disk holds
10GB, costs $1,000, transfers 5MB per second, and has an average access
latency of 15 milliseconds. Also suppose that a tape library costs $10
per gigabyte, transfers 10 MB per second, and has an average access
latency of 20 seconds. Compute the total cost, the maximum total data
rate, and the average waiting time for a pure disk system. If you make

551

any assumptions about the workload, describe and justify them. Now,
suppose that 5 percent of the data are frequently used, so they must
reside on disk, but the other 95 percent are archived in the tape library.
Further suppose that the disk system handles 95 percent of the requests
and the library handles the other 5 percent. What are the total cost,
the maximum. total data rate, and the average waiting time for this
hierarchical storage system?

12.23 Assume that you have a mixed configuration comprising disks orga
nized as RAID levell and RAID levelS disks. Assume that the system
has flexibility in deciding which disk organization to use for storing a
particular file. Which files should be stored in the RAID level 1 disks
and which in the RAID levelS disks in order to optimize performance?

12.24 What are the tradeoffs involved in rereading code pages from the file
system versus using swap space to store them?

12.25 Requests are not usually uniformly distributed. For example, we can
expect a cylinder containing the file-system FAT or inodes to be accessed
more frequently than a cylinder containing only files. Suppose you
know that 50 percent of the requests are for a small, fixed number of
cylinders.

a. Would any of the scheduling algorithms discussed in this chapter
be particularly good for this case? Explain your answer.

b. Propose a disk-scheduling algorithm that gives even better per
formance by taking advantage of this "hot spot" on the disk.

c. File systems typically fil1.d data blocks via an indirection table,
such as a FAT in DOS or inodes in UNIX. Describe one or more ways
to take advantage of this indirection to improve disk performance.

12.26 Discuss the reasons why the operating system might require accurate
information on how blocks are stored on a disk. How could the oper
ating system improve file system performance with this knowledge?

12.27 In a disk jukebox, what would be the effect of having more open files
than the number of drives in the jukebox?

12.28 Compare the throughput achieved by a RAID levelS organization with
that achieved by a RAID levell organization for the following:

a. Read operations on single blocks

b. Read operations on multiple contiguous blocks

552 Chapter 12

12.29 Could a RAID level 1 organization achieve better performance for read
requests than a RAID level 0 organization (with nonredundant striping
of data)? If so, how?

Discussions of redundant arrays of independent disks (RAIDs) are presented
by Patterson et al. [1988] and in the detailed survey of Chen et al. [1994].
Disk-system architectures for high-performance computing are discussed by
Katz et al. [1989]. Enhancements to RAID systems are discussed in. Wilkes
et al. [1996] and Yu et al. [2000]. Teorey and Pinkerton [1972] present an early
comparative analysis of disk-scheduling algorithms. They use simulations that
model a disk for which seek time is linear in the number of cylinders crossed.
For this disk LOOK is a good choice for queue lengths below 140, and C-LOOK
is good for queue lengths above 100. King [1990] describes ways to improve the
seek time by moving the disk ann when the disk is otherwise idle. Seltzer et al.
[1990] and Jacobson and Wilkes [1991] describe disk-scheduling algorithms that
consider rotational latency in addition to seek time. Scheduling optimizations
that exploit disk idle times are discussed in Lumb et al. [2000]. Worthington
et al. [1994] discuss disk performance and show the negligible performance
impact of defect management. The placement of hot data to improve seek
times has been considered by Ruemmler and Wilkes [1991] and Akyurek and
Salen'l [1993]. Ruemmler and Wilkes [1994] describe an accurate performance
model for a modern disk drive. Worthington et al. [1995] tell how to determine
low-level disk properties such as the zone structure, and this work is further
advanced by Schindler and Gregory [1999]. Disk power management issues
are discussed in Douglis et al. [1994L Douglis et al. [1995L Greenawalt [1994L
and Golding et al. [1995].

The I/0 size and randomness of the workload has a considerable influence
on disk performance. Ousterhout et al. [1985] and Ruemmler and Wilkes
[1993] report numerous interesting workload characteristics, including that
most files are smalt most newly created files are deleted soon thereafter, most
files that are opened for reading are read sequentially in their entirety, and most
seeks are short. McKusick et al. [1984] describe the Berkeley Fast File System
(FFS), which uses many sophisticated techniques to obtain good performance
for a wide variety of workloads. McVoy and Kleiman [1991] discuss further
improvements to the basic FFS. Quinlan [1991] describes how to implement
a file system on WORM storage with a magnetic disk cache; Richards [1990]
discusses a file-system approach to tertiary storage. Maher et al. [1994] give an
overview of the integration of distributed file systems and tertiary storage.

The concept of a storage hierarchy has been studied for more than
thirty years. For instance, a 1970 paper by Mattson et al. [1970] describes a
mathematical approach to predicting the performance of a storage hierarchy.
Alt [1993] describes the accommodation of removable storage in a commercial
operating system, and Miller and Katz [1993] describe the characteristics of
tertiary-storage access in a supercomputing environment. Benjamin [1990]
gives an overview of the massive storage requirements for the EOSDIS project
at NASA. Management and use of network-attached disks and programmable

553

disks are discussed in Gibson et al. [1997b t Gibson et al. [1997at Riedel et al.
[1998t and Lee and Thekkath [1996].

Holographic storage technology is the subject of an article by Psaltis and
Mok [1995]; a collection of papers on this topic dating from 1963 has been
assembled by Sincerbox [1994]. Asthana and Finkelstein [1995] describe several
emerging storage technologies, including holographic storage, optical tape,
and electron trapping. Toigo [2000] gives an in-depth description of modern
disk technology and several potential future storage technologies.

13.1

R

The two main jobs of a computer are I/0 and processing. In many cases, the
main job is I/0, and the processing is merely incidental. For instance, when
we browse a Web page or edit a file, our immediate interest is to read or enter
some information, not to compute an answer.

The role of the operating system in computer I/0 is to manage and
control I/0 operations and I/0 devices. Although related topics appear in
other chapters, here we bring together the pieces to paint a complete picture
of I/0. First, we describe the basics of I/O hardware, because the nature of the
hardware interface places constraints on the internal facilities of the operating
system. Next, we discuss the I/0 services provided by the operating system
and the embodiment of these services in the application I/0 interface. Then,
we explain how the operating system bridges the gap between the hardware
interface and the application interface. We also discuss the UNIX System V
STREAMS mechanism, which enables an application to assemble pipelines of
driver code dynamically. Finally, we discuss the performance aspects of I/O
and the principles of operating-system design that improve I/0 performance.

To explore the structure of an operating system's 1/0 subsystem.

To discuss the principles and complexities of 110 hardware.

To explain the performance aspects of 110 hardware and software.

The control of devices connected to the computer is a major concern of
operating-system designers. Because I/O devices vary so widely in their
function and speed (consider a mouse, a hard disk, and a CD-ROM jukebox),
varied methods are needed to control them. These methods form the I/0
subsystem of the kernet which separates the rest of the kernel from the
complexities of managing I/0 devices.

555

556 Chapter 13

13.2

I/O-device technology exhibits two conflicting trends. On the one hand, we
see increasing standardization of software and hardware interfaces. This trend
helps 11s to incorporate improved device generations into existing computers
and operating systems. On the other hand, we see an increasingly broad variety
of 1/0 devices. Some new devices are so unlike previous devices that it is a
challenge to incorporate them into our computers and operating systems. This
challenge is met by a combination of hardware and software techniques. The
basic I/0 hardware elements, such as ports, buses, and device controllers,
accommodate a wide variety of I/0 devices. To encapsulate the details and
oddities of different devices, the kernel of an operating system is structured
to use device-driver modules. The present a uniform device
access interface to the I/0 subsystem, much as system calls provide a standard
interface between the application and the operating system.

Computers operate a great many kinds of devices. Most fit into the general
categories of storage devices (disks, tapes), transmission devices (network
cards, modems), and human-interface devices (screen, keyboard, mouse).
Other devices are more specialized, s11ch as those involved in the steering
of a military fighter jet or a space shuttle. In these aircraft, a human gives input
to the flight computer via a joystick and foot pedals, and the computer sends
output commands that cause motors to move rudders, flaps, and thrusters.
Despite the incredible variety of I/0 devices, though, we need only a few
concepts to understand how the devices are attached and how the software
can control the hardware.

A device communicates with a computer system by sending signals over a
cable or even through the air. The device communicates with the machine via a
connection point, or example, a serial port. If devices use a common
set of wires, the connection is called a bus. A is a set of wires and a rigidly
defined protocol that specifies a set of messages that can be sent on the wires.
In terms of the electronics, the messages are conveyed by patterns of electrical
voltages applied to the wires with defined timings. When device A has a cable
that plugs into device B, and device B has a cable that plugs into device C, and
device C plugs into a port on the computer, this arrangement is called a

A daisy chain usually operates as a bus.
Buses are used widely in computer architecture and vary in their signaling

methods, speed, throughput, and connection methods. A typical PC bus
structure appears in Figure 13.1. This figure shows a (the common
PC system bus) that connects the processor-memory subsystem to the fast
devices and an that connects relatively slow devices, such as
the keyboard and serial and USB ports. In the upper-right portion of the figure,
four disks are c01mected together on a SCSI bus plugged into a SCSI controller.
Other common buses used to interconnect main parts of a computer include

with up to 4.3 GB; (PCie), with throughput up
with throughput up to 20 GB.

is a collection of electronics that can operate a port, a bus,
or a device. A serial-port controller is a simple device controller. It is a single
chip (or portion of a chip) in the computer that controls the signals on the

13.2 557

Figure 13.1 A typical PC bus structure.

wires of a serial port. By contrast, a SCSI bus controller is not simple. Because
the SCSI protocol is complex, the SCSI bus controller is often implemented as
a separate circuit board (or a that plugs into the computer. It
typically contains a processor, microcode, and some private memory to enable
it to process the SCSI protocol messages. Some devices have their own built-in
controllers. If you look at a disk drive, you will see a circuit board attached
to one side. This board is the disk controller. It implements the disk side of
the protocol for some kind of com1ection-SCSI or ATA, for instance. It has
microcode and a processor to do many tasks, such as bad-sector mapping,
prefetching, buffering, and caching.

How can the processor give commands and data to a controller to
accomplish an I/0 transfer? The short answer is that the controller has one
or more registers for data and control signals. The processor communicates
with the controller by reading and writing bit patterns in these registers. One
way in which this communication can occur is through the use of special
I/0 instructions that specify the transfer of a byte or word to an I/0 port
address. The I/0 instruction triggers bus lines to select the proper device and
to move bits into or out of a device register. Alternatively, the device controller
can support In this case, the device-control registers
are mapped into the address space of the processor. The CPU executes I/0
requests using the standard data-transfer instructions to read and write the
device-control registers.

Some systems use both techniques. For instance, PCs use I/0 instructions
to control some devices and memory-mapped I/0 to control others. Figure
13.2 shows the usual I/O port addresses for PCs. The graphics controller has
I/O ports for basic control operations, but the controller has a large memory-

558 Chapter 13

000-00F DMA controller

020-021 interrupt controller

040-043 timer

200-20F game controller

2F8-2FF serial port (secondary)

320-32F hard-disk controller

378-37F parallel port

3D0-3DF graphics controller

3F0-3F7 diskette-drive controller

3F8-3FF serial port (primary)

Figure 13.2 Device 1/0 port locations on PCs (partial).

mapped region to hold screen contents. The process sends output to the screen
by writing data into the memory-mapped region. The controller generates
the screen image based on the contents of this memory. This technique is
simple to use. Moreover, writing millions of bytes to the graphics memory
is faster than issuing millions of I/0 instructions. But the ease of writing
to a memory-mapped I/0 controller is offset by a disadvantage. Because a
common type of software fault is a write through an incorrect pointer to an
unintended region of memory, a memory-mapped device register is vulnerable
to accidental modification. Of course, protected memory helps to reduce this
risk.

An I/0 port typically consists of four registers, called the (1) status, (2)
control, (3) data-in, and (4) data-out registers.

The

The

is read by the host to get input.

is written by the host to send output.

The contains bits that can be read by the host. These bits
indicate states, such as whether the current command has completed,
whether a byte is available to be read from the data-in register, and whether
a device error has occurred.

The can be written by the host to start a command or to
change the nlOde of a device. For instance, a certain bit in the control
register of a serial port chooses between full-duplex and half-duplex
communication, another bit enables parity checking, a third bit sets the
word length to 7 or 8 bits, and other bits select one of the speeds supported
by the serial port.

The data registers are typically 1 to 4 bytes in size. Some controllers have
FIFO chips that can hold several bytes of input or output data to expand the
capacity of the controller beyond the size of the data register. A FIFO chip can
hold a small burst of data until the device or host is able to receive those data.

13.2 559

13.2.1 Polling

The complete protocol for interaction between the host and a controller
can be intricate, but the basic handshaking notion is simple. We explain
handshaking with an example. Assume that 2 bits are used to coordinate
the producer-consumer relationship between the controller and the host. The
controller indicates its state through the busy bit in the status register. (Recall
that to set a bit means to write a 1 into the bit and to clear a bit means to write
a 0 into it.) The controller sets the busy bit when it is busy working and clears
the busy bit when it is ready to accept the next comm.and. The host signals
its wishes via the command-ready bit in the command register. The host sets the
command-ready bit when a command is available for the controller to execute.
For this example, the host writes output through a port, coordinating with the
controller by handshaking as follows.

The host repeatedly reads the busy bit until that bit becomes clear.

The host sets the write bit in the command register and writes a byte into
the data-out register.

The host sets the command-ready bit.

When the controller notices that the command-ready bit is set, it sets the
busy bit.

The controller reads the command register and sees the write command.
It reads the data-out register to get the byte and does the I/O to the device.

The controller clears the command-ready bit, clears the error bit in the status
register to indicate that the device I/O succeeded, and clears the busy bit
to indicate that it is finished.

This loop is repeated for each byte.
In step 1, the host is or it is in a loop, reading the

status register over and over until the busy bit becomes clear. If the controller
and device are fast, this method is a reasonable one. But if the wait may be
long, the host should probably switch to another task. How, then, does the
host know when the controller has become idle? For some devices, the host
must service the device quickly, or data will be lost. For instance, when data
are streaming in on a serial port or from a keyboard, the small buffer on the
controller will overflow and data will be lost if the host waits too long before
returning to read the bytes.

In many computer architectures, three CPU-instruction cycles are sufficient
to poll a device: read a device register, logical-and to extract a status bit, and
branch if not zero. Clearly, the basic polling operation is efficient. But polling
becomes inefficient when it is attempted repeatedly yet rarely finds a device
to be ready for service, while other useful CPU processing remains undone. In
such instances, it may be more efficient to arrange for the hardware controller to
notify the CPU when the device becomes ready for service, rather than to require
the CPU to poll repeatedly for an I/0 completion. The hardware mechanism
that enables a device to notify the CPU is called an

560 Chapter 13

7

CPU

device driver initiates 1/0

CPU executing checks for
interrupts between instructions

CPU resumes
processing of

interrupted task

1/0 controller

4

Figure 13.3 Interrupt-driven 1/0 cycle.

13.2.2 Interrupts

The basic interrupt mechanism works as follows. The CPU hardware has a wire
called the that the CPU senses after executing every
instruction. When the CPU detects that a controller has asserted a signal on
the line, the CPU performs a state save and jumps to the

at a fixed address in memory. The interrupt handler
determines the cause of the interrupt, performs the necessary processing,
performs a state restore, and executes a return from interrupt instruction
to return the CPU to the execution state prior to the interrupt. We say that
the device controller raises an interrupt by asserting a signal on the interrupt
request line, the CPU catches the interrupt and dispatches it to the interrupt
handler, and the handler clears the interrupt by servicing the device. Figure
13.3 summarizes the interrupt-driven I/0 cycle.

This basic interrupt mechanism enables the CPU to respond to an asyn
chronous event, as when a device controller becomes ready for service. In a
modern operating system, however, we need nlOre sophisticated interrupt
handling features.

We need the ability to defer interrupt handling during critical processing.

13.2 561

We need an efficient way to dispatch to the proper interrupt handler for
a device without first polling all the devices to see which one raised the
interrupt.

We need multilevel interrupts, so that the operating system can distin
guish between high- and low-priority interrupts and can respond with
the appropriate degree of urgency.

In modern computer hardware, these three features are provided by the CPU
and by the

Most CPUs have two interrupt request lines. One is the
'""''""""'. which is reserved for events such as unrecoverable memory errors.

The second interrupt line is it can be turned off by the CPU before
the execution of critical instruction sequences that must not be interrupted.
The maskable interrupt is used by device controllers to request service.

The interrupt mechanism accepts an number that selects a
specific interrupt-handling routine from a small set. In most architectures, this
address is an offset in a table called the . This vector contains
the memory addresses of specialized interrupt handlers. The purpose of a
vectored interrupt mechanism is to reduce the need for a single interrupt
handler to search all possible sources of interrupts to determine which one
needs service. In practice, however, computers have more devices (and, hence,
interrupt handlers) than they have address elements in the interrupt vector.
A common way to solve this problem is to use the technique of interrupt
chaining, in which each element in the interrupt vector points to the head of
a list of interrupt handlers. When an il1.terrupt is raised, the handlers on the
corresponding list are called one by one, until one is found that can service
the request. This structure is a compromise between the overhead of a huge
interrupt table and the inefficiency of dispatching to a single interrupt handler.

Figure 13.4 illustrates the design of theinterruptvector for the Intel Pentium
processor. The events from 0 to 31, which are nonmaskable, are used to signal
various error conditions. The events from 32 to 255, which are maskable, are
used for purposes such as device-generated interrupts.

The interrupt mechanism also implements a system of
This mechanism enables the CPU to defer the handling of low-priority

interrupts without maskii1.g off all interrupts and makes it possible for a
high-priority interrupt to preempt the execution of a low-priority interrupt.

A modern operating system interacts with the interrupt mechanism in
several ways. At boot time, the operating system probes the hardware buses
to determine what devices are present and installs the corresponding interrupt
handlers into the interrupt vector. During I/0, the various device controllers
raise interrupts when they are ready for service. These interrupts signify that
output has cornpleted, or that input data are available, or that a failure has
been detected. The interrupt mechanism is also used to handle a wide variety
of such as dividing by zero, accessing a protected or nonexistent
memory address, or attempting to execute a privileged instruction from user
mode. The events that trigger interrupts have a common property: they are
occurrences that induce the CPU to execute an urgent self-contained routine.

An operating system has other good uses for an efficient hardware and
software mechanism that saves a small amount of processor state and then

562 Chapter 13

2
3

4

5

6

7

8

9
10

11

12

13

14

15

16

i?

18

19-31

32-255

breakpoint

INTO-detected overflow

bound range exception

invalid opcode

device not available

double fault

coprocessor segment overrun (reserved)

invalid task state segment

segment not present

stack fault

general protection

page fault

(Intel reserved, do not use)

floating-point error

alignment check

machine check

(Intel reserved, do not use)

maskable interrupts

Figure i3.4 Intel Pentium processor event-vector table.

calls a privileged routine in the kernel. For example, many operating systems
use the interrupt mechanism for virtual memory paging. A page fault is an
exception that raises an interrupt. The interrupt suspends the current process
and jumps to the page-fault handler in the kernel. This handler saves the state
of the process, moves the process to the wait queue, performs page-cache
management, schedules an I/0 operation to fetch the page, schedules another
process to resume execution, and then returns from the interrupt.

Another example is found in the implementation of system calls. Usually,
a program uses library calls to issue system calls. The library routines check
the arguments given by the application, build a data structure to convey the
arguments to the kernel, and then execute a special instruction called a

or . This instruction has an operand that identifies the desired
kernel service. When a process executes the trap instruction, the interrupt
hardware saves the state of the user code, switches to supervisor mode, and
dispatches to the kernel routine that implements the requested service. The
trap is given a relatively low interrupt priority compared with those assigned
to device interrupts-executilcg a system call on behalf of an application is less
urgent than servicing a device controller before its FIFO queue overflows and
loses data.

Interrupts can also be used to manage the flow of control within the kernel.
For example, consider the processing required to complete a disk read. One
step is to copy data from kernel space to the user buffer. This copying is time
consuming but not urgent-it should not block other high-priority interrupt

13.2 563

handling. Another step is to start the next pending l/0 for that disk drive. This
step has higher priority. If the disks are to be used efficiently, we need to start
the next I/O as soon as the previous one completes. Consequently, a pair of
interrupt handlers implen<ents the kernel code that completes a disk read. The
high-priority handler records the l/0 status, clears the device interrupt, starts
the next pending I/0, and raises a low-priority interrupt to complete the work.
Later, when the CPU is not occupied with high-priority work, the low-priority
interrupt will be dispatched. The corresponding handler completes the user
level I/0 by copying data from kernel buffers to the application space and then
calling the scheduler to place the application on the ready queue.

A threaded kernel architecture is well suited to implement multiple
interrupt priorities and to enforce the precedence of interrupt handling over
background processing in kernel and application routines. We illustrate this
point with the Solaris kernel. In Solaris, interrupt handlers are executed
as kernel threads. A range of high priorities is reserved for these threads.
These priorities give interrupt handlers precedence over application code and
kernel housekeeping and implement the priority relationships among interrupt
handlers. The priorities cause the Solaris thread scheduler to preempt low
priority interrupt handlers in favor of higher-priority ones, and the threaded
implementation enables multiprocessor hardware to run several interrupt
handlers concurrently. We describe the interrupt architecture of Windows XP
and UNIX in Chapter 22 and Appendix A, respectively.

In summa:r:y, interrupts are used throughout modern operating systems to
handle asynchronous events and to trap to supervisor-mode routines in the
kernel. To enable the most urgent work to be done first, modern computers
use a system of interrupt priorities. Device controllers, hardware faults, and
system calls all raise interrupts to trigger kernel routines. Because interrupts
are used so heavily for time-sensitive processing, efficient interrupt handling
is required for good system performance.

13.2.3 Direct Memory Access

For a device that does large transfers, such as a disk drive, it seems wasteful
to use an expensive general-purpose processor to watch status bits and to
feed data into a controller register one byte at a time-a process termed

Many computers avoid burdening the main CPU with
PIO by offloading some of this work to a special-purpose processor called a

To initiate a DMA transfer, the host
writes a DMA command block into memory. This block contains a pointer to
the source of a transfer, a pointer to the destination of the transfer, and a count
of the number of bytes to be transferred. The CPU writes the address of this
command block to the DMA controller, then goes on with other work. The DMA
controller proceeds to operate the memory bus directly, placing addresses on
the bus to perform transfers without the help of the main CPU. A simple DMA
controller is a standard component in PCs, and for
the PC usually contain their own high-speed DMA hardware.

Handshaking between the DMA controller and the device controller is
performed via a pair of wires called DMA-request and DMA-acknowledge.
The device controller places a signal on the DMA-request wire when a word
of data is available for transfer. This signal causes the DMA controller to seize

564 Chapter 13

the memory bus, place the desired address on the memory-address wires,
and place a signal on the Dl\IIA -acknowledge wire. When the device controller
receives the DMA-acknowledge signat it transfers the word of data to memory
and removes the DMA-request signal.

When the entire transfer is finished, the DMA controller interrupts the CPU.
This process is depicted in Figure 13.5. When the DMA controller seizes the
memory bus, the CPU is momentarily prevented from accessing main memory
although it can still access data items in its primary and secondary caches.
Although this can slow down the CPU computation, offloading
the data-transfer work to a DMA controller generally improves the total system
performance. Some computer architectures use physical memory addresses for
DMA, but others perform mercwry using virtual
addresses that undergo translation to physical addresses. DVMA can perform
a transfer between two memory-mapped devices without the intervention of
the CPU or the use of main memory.

On protected-mode kernels, the operating system generally prevents
processes from issuing device commands directly. This discipline protects data
from access-control violations and also protects the system from erroneous use
of device controllers that could cause a system crash. Instead, the operating
system exports functions that a sufficiently privileged process can use to
access low-level operations on the underlying hardware. On kernels without
memory protection, processes can access device controllers directly. This direct
access can be used to achieve high performance/ since it can avoid kernel
communication, context switches, and layers of kernelsoftware. Unfortunately,
it interferes with system security and stability. The trend in general-purpose
operating systems is to protect memory and devices so that the system can try
to guard against erroneous or malicious applications.

5. DMA controller
transfers bytes to
buffer X, increasing
memory address
and decreasing C
until C = 0

1. device driver is told
to transfer disk data
to buffer at address X

2. device driver tells L"-'"'-"-~i-"'-'~--'--'
disk controller to
transfer C bytes
from disk to buffer
at address X

6. when C = 0, DMA
interrupts CPU to signal
transfer completion 1:2.'.c~li.ip:2i:.2-J

rc-c~.,.,---J'-=",._--~ 3. disk controller initiates
DMA transfer

c'G!,Or:tt_ront;r"' < I 4. disk controller sends
each byte to DMA
controller

Figure 13.5 Steps in a DMA transfer.

13.3

13.3 565

13.2.4 1/0 Hardware Summary

Although the hardware aspects of I/0 are complex when considered at the
level of detail of electronics-hardware design, the concepts that we have
just described are sufficient to enable us to understand many I/0 features
of operating systen<s. Let's review the main concepts:

A bus

A controller

An I/0 port and its registers

The handshaking relationship between the host and a device controller

The execution of this handshaking in a polling loop or via interrupts

The offloading of this work to a DMA controller for large transfers

We gave a basic example of the handshaking that takes place between a
device controller and the host earlier in this section. In reality, the wide variety
of available devices poses a problem for operating-system implementers. Each
kind of device has its own set of capabilities, control-bit definitions, and
protocols for interacting with the host-and they are all different. How can
the operating system be designed so that we can attach new devices to the
computer without rewriting the operating system? And when the devices
vary so widely, how can the operating system give a convenient, uniform I/0
interface to applications? We address those questions next.

In this section, we discuss structuring techniques and interfaces for the
operating system that enable I/0 devices to be treated in a standard, uniform
way. We explain, for instance, how an application can open a file on a disk
without knowing what kind of disk it is and how new disks and other devices
can be added to a cmnputer without disruption of the operating system.

Like other complex software-engineering problems, the approach here
involves abstraction, encapsulation, and software layering. Specifically, we
can abstract away the detailed differences in I/0 devices by identifying a few
general kinds. Each kind is accessed through a standardized set of
functions-an The differences are encapsulated in kernel modules
called device drivers that internally are custom-tailored to specific devices
but that export one of the standard interfaces. Figure 13.6 illustrates how the
I/O-related portions of the kernel are structured in software layers.

The purpose of the device-driver layer is to hide the differences among
device controllers from the I/O subsystem of the kernel, much as the I/0
system calls encapsulate the behavior of devices in a few generic classes
that hide hardware differences from applications. Making the I/0 subsystem
independent of the hardware simplifies the job of the operating-system
developer. It also benefits the hardware manufacturers. They either design
new devices to be compatible with an existing host controller interface (such as
SCSI-2), or they write device drivers to interface the new hardware to popular

566 Chapter 13

Figure 13.6 A kernel I/O structure.

operating systems. Thus, we can attach new peripherals to a computer without
waiting for the operating-system vendor to develop support code.

Unfortm1ately for device-hardware manufacturers, each type of operating
system has its own standards for the device-driver interface. A given device
may ship with multiple device drivers-for instance, drivers for MS-DOS,
Windows 95/98, Windows NT/2000, and Solaris. Devices vary on many
dimensions, as illustrated in Figure 13.7.

Character-stream or block. A character-stream device transfers bytes one
by one, whereas a block device transfers a block of bytes as a unit.

Sequential or random access. A sequential device transfers data in a fixed
order determined by the device, whereas the user of a random-access
device can instruct the device to seek to any of the available data storage
locations.

Synchronous or asynchronous. A synchronous device performs data
transfers with predictable response times. An asynchronous device
exhibits irregular or unpredictable response times.

Sharable or dedicated. A sharable device can be used concurrently by
several processes or threads; a dedicated device cannot.

Speed of operation. Device speeds range from a few bytes per second to
a few gigabytes per second.

Read -write, read only, or write only. Some devices perform both input
and output, but others support only one data transfer direction.

access method

transfer schedule

I/O direction

13.3

synchronous
asynchronous

dedicated
sharable

latency
seek time
transfer rate
delay between operations

read only
write only
read-write

tape
keyboard

tape
keyboard

CD-ROM

Figure i 3. 7 Characteristics of 1/0 devices.

567

For the purpose of application access, many of these differences are hidden
by the operating system, and the devices are grouped into a few conventional
types. The resulting styles of device access have been found to be useful
and broadly applicable. Although the exact system calls may differ across
operating systems, the device categories are fairly standard. The major access
conventions include block I/0, character-stream I/0, memory-mapped file
access, and network sockets. Operating systems also provide special system
calls to access a few additional devices, such as a time-of-day clock and a timer.
Some operating systems provide a set of system calls for graphical display,
video, and audio devices.

Most operating systems also have an (or that transpar-
ently passes arbitrary conunands from an application to a device driver. In
UNIX, this system call is ioctl () (for "I/0 control"). The ioctl () system call
enables an application to access any functionality that can be implernented by
any device driver, without the need to invent a new system call. The ioctl ()
system call has three arguments. The first is a file descriptor that connects the
application to the driver by referring to a hardware device managed by that
driver. The second is an integer that selects one of the commands implemented
in the driver. The third is a pointer to an arbitrary data structure in memory
that enables the application and driver to communicate any necessary control
information or data.

13.3.1 Block and Character Devices

The captures all the aspects necessary for accessing disk
drives and other block-oriented devices. The device is expected to understand
commands such as read() and write() ;if it is a random-access device, it is also
expected to have a seek() command to specify which block to transfer next.

568 Chapter 13

Applications normally access such a device through a file-system interface.
We can see that read(), write(), and seek 0 capture the essen.tial behaviors
of block-storage devices, so that applications are insulated from the low-level
differences among those devices.

The operating system itself, as well as special applications such as database
management systems, may prefer to access a block device as a simple linear
array of blocks. This mode of access is sometimes called If the
application performs its own buffering, then using a file systen1. would cause
extra, unneeded buffering. Likewise, if an application provides its own locking
of file blocks or regions, then any operating-system locking services would be
redundant at the least and contradictory at the worst. To avoid these conflicts,
raw-device access passes control of the device directly to the application, letting
the operating system step out of the way. Unfortunately, no operating-system
services are then performed on this device. A compromise that is becoming
common is for the operating system to allow a mode of operation on a file that
disables buffering and locking. In the UNIX world, this is called

Memory-mapped file access can be layered on top of block-device drivers.
Rather than offering read and write operations, a memory-mapped interface
provides access to disk storage via an array of bytes in main memory. The
system call that maps a file into memory returns the virtual memory address
that contains a copy of the file. The actual data transfers are performed only
when needed to satisfy access to the memory image. Because the transfers
are handled by the same mechanism as that used for demand-paged virtual
memory access, memory-mapped I/O is efficient. Memory mapping is also
convenient for programmers-access to a memory-mapped file is as simple
as reading from and writing to memory. Operating systems that offer virtual
memory commonly use the mapping interface for kernel services. For instance,
to execute a program, the operating system maps the executable into memory
and then transfers control to the entry address of the executable. The mapping
interface is also commonly used for kernel access to swap space on disk.

A keyboard is an example of a device that is accessed through a
The basic system calls in this interface enable an application

to get() or put() one character. On top of this interface, libraries can be
built that offer line-at-a-time access, with buffering and editing services (for
example, when a user types a backspace, the preceding character is removed
from the input stream). This style of access is convenient for input devices such
as keyboards, mice, and modems that produce data for input "spontaneously"
-that is, at times that cam1.ot necessarily be predicted by the application. This
access style is also good for output devices such as printers and audio boards,
which naturally fit the concept of a linear stream of bytes.

13.3.2 Network Devices

Because the performance and addressing characteristics of network I/0 differ
significantly from those of disk I/0, most operating systems provide a network
I/O interface that is different from the read() -write() -seek() interface used
for disks. One interface available in many operating systerns, including UNIX
and Windows NT, is the network interface.

Think of a wall socket for electricity: any electrical appliance can be plugged
in. By analogy, the system calls in the socket interface enable an application

13.3 569

to create a socket, to connect a local socket to a remote address (which plugs
this application into a socket created by another application), to listen for
any remote application to plug into the local socket, and to send and receive
packets over the connection. To support the implementation of servers, the
socket interface also provides a function called select() that manages a set
of sockets. A call to select () returns information about which sockets have a
packet waiting to be received and which sockets have room to accept a packet
to be sent. The use of select() eliminates the polling and busy waiting that
would otherwise be necessary for network I/0. These functions encapsulate the
essential behaviors of networks, greatly facilitating the creation of distributed
applications that can use any underlying network hardware and protocol stack

Many other approaches to interprocess communication and network
communication have been implemented. For instance, Windows NT provides
one interface to the network interface card and a second interface to the
network protocols (Appendix C.6). In UNIX, which has a long history as a
proving ground for network technology, we find half-duplex pipes, full-duplex
FIFOs, full-duplex STREAMS, message queues, and sockets. Information on UNIX
networking is given in Appendix A.9.

13.3.3 Clocks and Timers

Most computers have hardware clocks and timers that provide three basic
functions:

Give the current time.

Give the elapsed time.

Set a timer to trigger operation X at time T.

These functions are used heavily by the operating system, as well as by time
sensitive applications. Unfortunately, the system calls that implement these
functions are not standardized across operating systems.

The hardware to measure elapsed time and to trigger operations is called
a . It can be set to wait a certain amount of time

generate an interrupt, and it can be set to do this once or to repeat the
process to generate periodic interrupts. The scheduler uses this mechanism to
generate an interrupt that will preempt a process at the end of its time slice.
The disk I/O subsystem uses it to invoke the periodic flushing of dirty cache
buffers to disk, and the network subsystem uses it to cancel operations that are
proceeding too slowly because of network congestion or failures. The operating
system may also provide an interface for user processes to use timers. The
operating system can support more timer requests than the number of timer
hardware chan11els by simulating virtual clocks. To do so, the kernel (or the
timer device driver) maintains a list of interrupts wanted by its own routines
and by user requests, sorted in earliest-time-first order. It sets the timer for the
earliest tince. When the timer interrupts, the kernel signals the requester and
reloads the timer with the next earliest time.

On many computers, the interrupt rate generated by the hardware clock is
between 18 and 60 ticks per second. This resolution is coarse, since a modern
computer can execute hundreds of millions of instructions per second. The

570 Chapter 13

precision of triggers is limited by the coarse resolution of the timer, together
with the overhead of maintaining virtual clocks. Furthermore, if the timer
ticks are used to maintain the system time-of-day clock, the system clock
can drift. In most computers, the hardware clock is constructed from a high
frequency counter. In some computers, the value of this counter can be read
from a device register, in which case the counter can be considered a high
resolution clock. Although this clock does not generate interrupts, it offers
accurate measurements of time intervals.

13.3.4 Blocking and Nonblocking 1/0

Another aspect of the system-call interface relates to the choice between
blocking I/0 and nonblocking I/0. When an application issues a
system call, the execution of the application is suspended. The application
is moved from the operating system's run queue to a wait queue. After the
system call completes, the application is moved back to the run queue, where
it is eligible to resume execution. When it resumes execution, it will receive
the values returned by the system call. The physical actions performed by
I/0 devices are generally asynchronous-they take a varying or unpredictable
amount of time. Nevertheless, most operating systems use blocking system
calls for the application interface, because blocking application code is easier
to understand than nonblocking application code.

Some user-level processes need I/0. One example is a user
interface that receives keyboard and mouse input while processing and
displaying data on the screen. Another example is a video application that
reads frames from a file on disk while simultaneously decompressing and
displaying the output on the display.

One way an application writer can overlap execution with I/0 is to write
a multithreaded application. Some threads can perform blocking system calls,
while others continue executing. The Solaris developers used this technique to
implement a user-level library for asynchronous I/0, freeing the application
writer from that task. Some operating systems provide nonblocking I/0 system
calls. A nonblocking call does not halt the execution of the application for an
extended time. h1.stead, it returns quickly, with a return value that indicates
how many bytes were transferred.

An alternative to a nonblocking system call is an asynchronous system
call. An asynchronous call returns immediately, without waiting for the I/0 to
complete. The application continues to execute its code. The completion of the
I/0 at some future time is communicated to the application, either through the
setting of some variable in the address space of the application or through the
triggering of a signal or software interrupt or a call-back routine that is executed
outside the linear control flow of the application. The difference between
nonblocking and asynchronous system calls is that a nonblocking read()
returns immediately with whatever data are available-the full number of
bytes requested, fewer, or none at all. An asynchronous read () call requests a
transfer that will be performed in its entirety but will complete at some future
time. These two I/0 methods are shown in Figure 13.8.

A good example of nonblocking behavior is the select () system call for
network sockets. This system call takes an argument that specifies a maximum
waiting time. By setting it to 0, an application can poll for network activity

13.4

13.4 571

kernel user user

kernel

(a) (b)

Figure 13.8 Two 1/0 methods: (a) synchronous and (b) asynchronous.

without blocking. But using select() introduces extra overhead, because
the select() call only checks whether I/0 is possible. For a data transfer,
select() must be followed by some kind of read() or write() command.
A variation on this approach, fotmd in Mach, is a blocking multiple-read call.
It specifies desired reads for several devices in one system call and returns as
soon as any one of them completes.

Kernels provide many services related to I/0. Several services-scheduling,
buffering, caching, spooling, device reservation, and error handlil1.g-are
provided by the kernel's I/0 subsystem and build on the hardware and device
driver infrastructure. The I/O subsystem is also responsible for protectil1.g itself
from errant processes and malicious users.

13.4.1 1/0 Scheduling

To schedule a set of I/O requests means to determine a good order in which to
execute them. The order in which applications issue system calls rarely is the
best choice. Scheduling can improve overall system performance, can share
device access fairly among processes, and can reduce the average waiting time
for I/0 to complete. Here is a simple example to illustrate. Suppose that a disk
arm is near the begilming of a disk and that three applications issue blocking
read calls to that disk Application 1 requests a block near the end of the disk,
application 2 requests one near the beginning, and application 3 requests one
in the middle of the disk The operating system can reduce the distance that the
disk ann travels by serving the applications in the order 2, 3, 1. Rearrangil1.g
the order of service in this way is the essence of I/0 scheduling.

Operating-system developers implement scheduling by maintaining a wait
queue of requests for each device. When an application issues a blocking I/0
system call, the request is placed on the queue for that device. The I/0 scheduler
rearranges the order of the queue to improve the overall system efficiency
and the average response time experienced by applications. The operating

572 Chapter 13

Figure 13.9 Device-status table.

system may also try to be fair, so that no one application receives especially
poor service, or it may give priority service for delay-sensitive requests. For
instance, requests from the virtual memory subsystem may take priority over
application requests. Several scheduling algorithms for disk I/0 are detailed
in Section 12.4.

When a kernel supports asynchronous I/0, it must be able to keep track
of many I/0 requests at the same time. For this purpose, the operating system
might attach the wait queue to a :able. The kernel manages this
table, which contains an entry for each I/0 device, as shown in Figure 13.9.
Each table entry indicates the device's type, address, and state (not functioning,
idle, or busy). If the device is busy with a request, the type of request and other
parameters will be stored in the table entry for that device.

One way in which the I/0 subsystem improves the efficiency of the
computer is by scheduling I/0 operations. Another way is by using storage
space in main memory or on disk via teclul.iques called buffering, caching, and
spooling.

13.4.2 Buffering

A is a memory area that stores data being transferred between two
devices or between a device and an application. Buffering is done for three
reasons. One reason is to cope with a speed mismatch between the producer and
consumer of a data stream. Suppose, for example, that a file is being received
via modem for storage on the hard disk The modem is about a thousand
times slower than the hard disk So a buffer is created in main mernory to
accumulate the bytes received from the modem. When an entire buffer of data
has arrived, the buffer can be written to disk in a single operation. Since the
disk write is not instantaneous and the modem still needs a place to store
additional incoming data, two buffers are used. After the modem fills the first
buffer, the disk write is requested. The modem then starts to fill the second
buffer while the first buffer is written to disk By the time the modem has filled

13.4 573

the second buffer, the disk write from the first one should have completed,
so the modem can switch back to the first buffer while the disk writes the
second one. This decouples the producer of data from the
consun1.er, thus relaxing timing requirements between them. The need for this
decoupling is illustrated in Figure 13.10, which lists the enormous differences
in device speeds for typical computer hardware.

A second use of buffering is to provide adaptations for devices that
have different data-transfer sizes. Such disparities are especially common in
computer networking, where buffers are used widely for fragmentation and
reassembly of messages. At the sending side, a large message is fragmented
into small network packets. The packets are sent over the network, and the
receiving side places them in a reassembly buffer to form an image of the
source data.

A third use of buffering is to support copy semantics for application I/0.
An example will clarify the meaning of "copy semantics." Suppose that an
application has a buffer of data that it wishes to write to disk It calls the
write() systemcalt providing a pointer to the buffer and an integer specifying
the number of bytes to write. After the system call returns, what happens if
the application changes the contents of the buffer? With the
version of the data written to disk is guaranteed to be version at the
time of the application system calt independent of any subsequent changes
in the application's buffer. A simple way in which the operating system can
guarantee copy semantics is for the write () system call to copy the application

I System Bus

Hype(~ransport (32,pair) ~~~Iii~~~~~~~~
I

PCI ~xpress 2.0 (><32)
i

lnfi!liband (QDR ;12X) . .

0.00001 0.001 0.1 10 1000 100000 1 E-

Figure 13.10 Sun Enterprise 6000 device-transfer rates (logarithmic).

574 Chapter 13

data into a kernel buffer before returning control to the application. The disk
write is performed from the kernel buffer, so that subsequent changes to the
application buffer have no effect. Copying of data between kernel buffers and
application data space is common in operating systems, despite the overhead
that this operation introduces, because of the clean semantics. The same effect
can be obtained more efficiently by clever use of virtual memory mapping and
copy-on-write page protection.

13.4.3 Caching

A is a region of fast memory that holds copies of data. Access to the cached
copy is more efficient than access to the original. For instance, the instructions
of the currently running process are stored on disk, cached ilc physical memory,
and copied again ill the CPU's secondary and primary caches. The difference
between a buffer and a cache is that a buffer may hold the only existing copy
of a data item, whereas a cache, by definition, holds a copy on faster storage of
an item that resides elsewhere.

Caching and buffering are distinct functions, but sometinces a region
of memory can be used for both purposes. For illstance, to preserve copy
semantics and to enable efficient scheduling of disk I/0, the operating system
uses buffers in maill memory to hold disk data. These buffers are also used as
a cache, to improve the I/O efficiency for files that are shared by applications
or that are being written and reread rapidly. When the kernel receives a file
I/0 request, the kernel first accesses the buffer cache to see whether that region
of the file is already available in main memory. If it is, a physical disk I/O
can be avoided or deferred. Also, disk writes are accumulated ill the buffer
cache for several seconds, so that large transfers are gathered to allow efficient
write schedules. This strategy of delayilcg writes to improve I/O efficiency is
discussed, in the context of remote file access, ill Section 17.3.

13.4.4 Spooling and Device Reservation

A is a buffer that holds output for a device, such as a printer, that cannot
accept ilcterleaved data streams. Although a prillter can serve only one job
at a time, several applications may wish to print their output concurrently,
without having their output mixed together. The operating system solves this
problem by intercepting all output to the printer. Each application's output
is spooled to a separate disk file. When an application finishes printing, the
spooling system queues the correspondilcg spool file for output to the printer.
The spooling system copies the queued spool files to the printer one at a time. In
some operating systems, spooling is managed by a system daemon process. In
others, it is handled by an in-kernel thread. In either case, the operating system
provides a control interface that enables users and system administrators to
display the queue, remove unwanted jobs before those jobs print, suspend
printing while the printer is serviced, and so on.

Some devices, such as tape drives and printers, cannot usefully multiplex
the I/0 requests of multiple concurrent applications. Spooling is one way
operating systems can coordinate concurrent output. Another way to deal with
concurrent device access is to provide explicit facilities for coordination. Some
operating systems (including VMS) provide support for exclusive device access
by enabling a process to allocate an idle device and to deallocate that device

13.4 575

when it is no longer needed. Other operating systems enforce a limit of one
open file handle to such a device. Many operating systems provide functions
that enable processes to coordinate exclusive access among then'lselves. For
instance, Windows NT provides system calls to wait until a device object
becomes available. It also has a parameter to the open () system call that
declares the types of access to be permitted to other concurrent threads. On
these systems, it is up to the applications to avoid deadlock.

13.4.5 Error Handling

An operating system that uses protected memory can guard against many
kinds of hardware and application errors, so that a complete system failure is
not the usual result of each minor mechanical glitch. Devices and I/0 transfers
can fail in many ways, either for transient reasons, as when a network becomes
overloaded, or for "permanent" reasons, as when a disk controller becomes
defective. Operating systems can often compensate effectively for transient
failures. For instance, a disk read() failure results in a read() retry, and
a network send() error results in a res end(), if the protocol so specifies.
Unfortunately, if an important component experiences a permanent failure,
the operating system is unlikely to recover.

As a general rule, an I/0 system call will return one bit of information
about the status of the call, signifying either success or failure. In the UNIX
operating system, an additional integer variable named errno is used to
return an error code-one of about a hundred values-indicating the general
nature of the failure (for example, argument out of range, bad pointer, or
file not open). By contrast, some hardware can provide highly detailed error
information, although many current operating systems are not designed to
convey this information to the application. For instance, a failure of a SCSI
device is reported by the SCSI protocol in three levels of detail: a key that
identifies the general nature of the failure, such as a hardware error or an illegal
request; an that states the category of failure, such as a
bad command parameter or a self-test failure; and an

'X""·'·l"'.l that gives even more detail, such as which command parameter was
in error or which hardware subsystem failed its self-test. Further, many SCSI
devices maintain internal pages of error-log information that can be requested
by the host-but seldom are.

13.4.6 1/0 Protection

Errors are closely related to the issue of protection. A user process may
accidentally or purposely attempt to disrupt the normal operation of a systern
by attempting to issue illegal I/0 instructions. We can use various mechanisms
to ensure that such disruptions cam'lot take place in the system.

To prevent users from performing illegal I/0, we define all I/0 instructions
to be privileged instructions. Thus, users cannot issue I/O instructions directly;
they must do it through the operating system. To do I/0, a user program
executes a system call to request that the operating system perform I/0 on its
behalf (Figure 13.11). The operating system, executing in monitor mode, checks
that the request is valid and, if it is, does the I/0 requested. The operating
system then returns to the user.

576 Chapter 13

CD
trap to
monitor

kernel

®
perform 1/0

®
return

to user

user
program

Figure 13.1"1 Use of a system call to perform 1/0.

In addition, any memory-mapped and I/O port memory locations must
be protected from user access by the memory-protection system. Note that a
kernel cannot simply deny all user access. Most graphics games and video
editing and playback software need direct access to memory-mapped graphics
controller memory to speed the performance of the graphics, for example. The
kernel might in this case provide a locking mechanism to allow a section of
graphics memory (representing a window on screen) to be allocated to one
process at a time.

13.4.7 Kernel Data Structures

The kernel needs to keep state information about the use of I/0 components.
It does so through a variety of in-kernel data structures, such as the open-file
table structure from Section 11.1. The kernel uses many similar structures to
track network connections, character-device communications, and other I/0
activities.

UNIX provides file-system access to a variety of entities, such as user files,
raw devices, and the address spaces of processes. Although each of these
entities supports a read () operation, the semantics differ. For instance, to
read a user file, the kernel needs to probe the buffer cache before deciding
whether to perform a disk I/0. To read a raw disk, the kernel needs to ensure
that the request size is a multiple of the disk sector size and is aligned on
a sector boundary. To read a process image, it is merely necessary to copy
data from memory. UNIX encapsulates these differences within a uniform
structure by using an object-oriented teclucique. The open-file record, shown in

13.4 577

system-wide open-file table

1;.;:.::, .;,.';t;.,'·

file-system record s:·1~iF~ 1:~. " · ... ··
inode pointer +.,;·:,·: . :.'·•
pointer to read and write functions I· >• :: i ...

,;.l,
pointer to select function

;;:;:,:;.~Ti~~~~~ple pointer to ioctl function
file descriptor

pointer to close function .,_ .. :;: \ '':''
n•.:.r ..• :... • : •. .
.. : ··>·: •. ·. . . r;i~~~}~~~kl•:f·•·

user-process memory networking (socket) record I :'~1~t~6~!V'.'.
pointer to network info +f:.;.•·
pointer to read and write.functions

:,·, ·.

~·· .. ··.
pointer to select function

pointer to ioctl function

pointer to close function . . .
kernel memory

Figure 13."12 UNIX 1/0 kernel structure.

Figure 13.12, contains a dispatch table that holds pointers to the appropriate
routines, depending on the type of file.

Some operating systems use object-oriented methods even more exten
sively. For instance, Windows NT uses a message-passing implementation for
I/0. An I/0 request is converted into a message that is sent through the kernel
to the II 0 manager and then to the device driver, each of which may change the
message contents. For output, the message contains the data to be written. For
input, the message contains a buffer to receive the data. The message-passing
approach can add overhead, by comparison with procedural techniques that
use shared data structures, but it simplifies the structure and design of the I/0
system and adds flexibility.

13.4.8 Kernel I/O Subsystem Summary

In summary, the I/0 subsystem coordinates an extensive collection of services
that are available to applications and to other parts of the kernel. The I/0
subsystenc supervises these procedures:

Management of the name space for files and devices

Access control to files and devices

Operation control (for example, a modem cannot seek ())

File-system space allocation

Device allocation

578 Chapter 13

13.5

Buffering, caching, and spooling

I/0 scheduling

Device-status monitoring, error handling, and failure recovery

Device-driver configuration and initialization

The upper levels of the I/O subsystem access devices via the uniform
interface provided by the device drivers.

Earlier, we described the handshaking between a device driver and a device
controller, but we did not explain how the operating system connects an
application request to a set of network wires or to a specific disk sector.
Consider, for example, reading a file from disk. The application refers to the
data by a file name. Within a disk, the file system maps from the file name
through the file-system directories to obtain the space allocation of the file. For
instance, in MS-DOS, the name maps to a number that indicates an entry in the
file-access table, and that table entry tells which disk blocks are allocated to
the file. In UNIX, the name maps to an inode number, and the corresponding
inode contains the space-allocation information. But how is the connection
made from the file name to the disk controller (the hardware port address or
the memory-mapped controller registers)?

One method is that used by MS-DOS, a relatively simple operating system.
The first part of an MS-DOS file name, preceding the colon, is a string that
identifies a specific hardware device. For example, c: is the first part of every
file name on the primary hard disk. The fact that c: represents the primary hard
disk is built into the operating system; c: is mapped to a specific port address
through a device table. Because of the colon separator, the device name space
is separate from the file-system name space. This separation makes it easy
for the operating system to associate extra functionality with each device. For
instance, it is easy to invoke spooling on any files written to the printer.

If, instead, the device name space is incorporated in the regular file-system
name space, as it is in UNIX, the normal file-system name services are provided
automatically. If the file system provides ownership and access control to all
file names, then devices have owners and access control. Since files are stored
on devices, such an interface provides access to the I/O system at two levels.
Names can be used to access the devices themselves or to access the files stored
on the devices.

UNIX represents device names in the regular file-system name space. Unlike
an MS-DOS file name, which has a colon separator, a UNIX path name has no
clear separation of the device portion. In fact, no part of the path name is the
name of a device. UNIX has a that associates prefixes of path names
with specific device names. To resolve a path name, UNIX looks up the name in
the mount table to find the longest ncatchilcg prefix; the corresponding entry
in the mount table gives the device name. This device name also has the form
of a name in the file-system name space. When UNIX looks up this name in
the file-system directory structures, it finds not an inode number but a <major,

13.5 579

minor> device number. The m.ajor device number identifies a device driver
that should be called to handle l/0 to this device. The minor device number
is passed to the device driver to index into a device table. The corresponding
device-table entry gives the port address or the memory-mapped address of
the device controller.

Modern operating systems obtain significant flexibility from the multiple
stages of lookup tables in the path between a request and a physical device
controller. The mechanisms that pass requests between applications and
drivers are general. Thus, we can introduce new devices and drivers into a
computer without recompiling the kernel. In fact, some operating systems
have the ability to load device drivers on demand. At boot time, the system
first probes the hardware buses to determine what devices are present; it then
loads in the necessary drivers, either immediately or when first required by an
I/0 request.

We next describe the typical life cycle of a blocking read request, as depicted
in Figure 13.13. The figure suggests that an I/0 operation requires a great many
steps that together consume a tremendous number of CPU cycles.

A process issues a blocking read () system call to a file descriptor of a file
that has been opened previously.

The system-call code in the kernel checks the parameters for correctness.
In the case of input, if the data are already available irl the buffer cache,
the data are returned to the process, and the I/O request is completed.

Otherwise, a physical I/0 must be performed. The process is removed
from the run queue and is placed on the wait queue for the device, and
the I/0 request is scheduled. Eventually, the I/0 subsystem sends the
request to the device driver. Depending on the operating system, the
request is sent via a subroutine call or an in-kernel message.

The device driver allocates kernel buffer space to receive the data and
schedules the I/0. Eventually, the driver sends commands to the device
controller by writing into the device-control registers.

The device controller operates the device hardware to perform the data
transfer.

The driver may poll for status and data, or it may have set up a DMA
transfer into kernel memory. We assume that the transfer is managed
by a DMA controller, which generates an interrupt when the transfer
completes.

The correct interrupt handler receives the interrupt via the interrupt
vector table, stores any necessary data, signals the device driver, and
returns from the interrupt.

The device driver receives the signal, determines which I/0 request has
completed, determines the request's status, and signals the kernel I/0
subsystem that the request has been completed. ·

The kernel transfers data or return codes to the address space of the
requesting process and moves the process from the wait queue back to
the ready queue.

580 Chapter 13

13.6

system call

device-controller commands

user
process

kernel
1/0 subsystem

kernel
1/0 subsystem

device
driver

interrupt
handler

device
controller

return from system call

interrupt

~-------tim_e~--~-)

Figure 13.13 The life cycle of an 1/0 request.

Moving the process to the ready queue unblocks the process. When the
scheduler assigns the process to the CPU, the process resumes execution
at the completion of the system call.

UNIX System V has an interesting mechanism, called that enables
an application to assemble pipelines of driver code dynamically. A stream is
a full-duplex connection between a device driver and a user-level process. It
consists of a that interfaces with the user process, a ·:id
that controls the device, and zero or more between the stream

user process

13.6

I
STREAMS
modules

_j

Figure 13.14 The STREAMS structure.

581

head and the driver end. Each of these components contains a pair of queues
-a read queue and a write queue. Message passing is used to transfer data
between queues. The STREAMS structure is shown in Figure 13.14.

Modules provide the functionality of STREAMS processing; they are pushed
onto a stream by use of the ioctl () system call. For examplef a process can
open a serial-port device via a stream and can push on a module to handle
input editing. Because messages are exchanged between queues in adjacent
modules, a queue in one module may overflow an adjacent queue. To prevent
this from occurring, a queue may support Without flow control,
a queue accepts all messages and immediately sends them on to the queue
in the adjacent module without buffering them. A queue supporting flow
control buffers messages and does not accept messages without sufficient
buffer space; this process involves exchanges of control messages between
queues in adjacent modules.

A user process writes data to a device using either the write() orputmsg()
system call. The write() system call writes raw data to the stream, whereas
putmsg () allows the user process to specify a message. Regardless of the
system call used by the user process, the stream head copies the data into a
message and delivers it to the queue for the next module in line. This copying of
messages continues until the message is copied to the driver end and hence the
device. Similarly, the user process reads data from the stream head using either
the read() or getmsg () system call. If read() is used, the stream head gets
a message from its adjacent queue and returns ordinary data (an unstructured
byte stream) to the process. If getmsg () is used, a message is returned to the
process.

582 Chapter 13

13.7

STREAMS I/0 is asynchronous (or nonblocking) except when the user
process communicates with the stream~ head. When writing to the stream,
the user process will block, assuming the next queue uses flow controt until
there is room to copy the message. Likewise, the user process will block when
reading from the stream~ until data are available.

As mentioned, the driver end-like the stream head and modules-has
a read and write queue. However, the driver end must respond to interrupts,
such as one triggered when a frame is ready to be read from a network Unlike
the stream head, which may block if it is unable to copy a message to the
next queue in line, the driver end must handle all incoming data. Drivers
must support flow control as well. However, if a device's buffer is fult the
device typically resorts to dropping incoming messages. Consider a network
card whose input buffer is full. The network card must simply drop further
messages until there is ample buffer space to store incoming messages.

The benefit of using STREAMS is that it provides a framework for a
modular and incremental approach to writing device drivers and network
protocols. Modules may be used by different streams and hence by different
devices. For example, a networking module may be used by both an Ethernet
network card and a 802.11 wireless network card. Furthermore, rather than
treating character-device I/O as an unstructured byte stream, STREAMS allows
support for message boundaries and control information when communicating
between modules. Most UNIX variants support STREAMS, and it is the preferred
method for writing protocols and device drivers. For example, System V UNIX
and Solaris implement the socket mechanism using STREAMS.

I/ 0 is a major factor in system performance. It places heavy demands on the CPU
to execute device-driver code and to schedule processes fairly and efficiently
as they block and unblock The resulting context switches stress the CPU and its
hardware caches. I/O also exposes any inefficiencies in the interrupt-handling
mechanisms in the kernel. In addition, I/O loads down the memory bus during
data copies between controllers and physical memory and again durilcg copies
between kernel buffers and application data space. Coping gracefully with all
these demands is one of the major concerns of a computer architect.

Although modern computers can handle many thousands of interrupts per
second, interrupt handling is a relatively expensive task Each interrupt causes
the system to perform a state change, to execute the interrupt handler, and then
to restore state. Programmed I/0 can be more efficient than internJpt-driven
I/0, if the number of cycles spent in busy waiting is not excessive. An I/0
completion typically unblocks a process, leading to the full overhead of a
context switch.

Network traffic can also cause a high context-switch rate. Consider, for
instance, a remote login from one machine to another. Each character typed
on the local machine must be transported to the remote machine. On the local
machine, the character is typed; a keyboard interrupt is generated; and the
character is passed through the interrupt handler to the device driver, to the
kernet and then to the user process. The user process issues a network I/O
system call to send the character to the remote machine. The character then

13.7 583

flows into the local kernel, through the network layers that construct a network
packet, and into the network device driver. The network device driver transfers
the packet to the network controller, which sends the character and generates
an interrupt. The interrupt is passed back up through the kernel to cause the
network l/0 system call to complete.

Now, the remote system's network hardware receives the packet, and an
interrupt is generated. The character is unpacked from the network protocols
and is given to the appropriate network daemon. The network daemon
identifies which remote login session is involved and passes the packet to
the appropriate subdaemon for that session. Throughout this flow, there are
context switches and state switches (Figure 13.15). Usually, the receiver echoes
the character back to the sender; that approach doubles the work.

To eliminate the context switches involved in moving each character
between daemons and the kernel, the Solaris developers reimplemented the

daemon using in-kernel threads. Sun estimates that this improvement

sending system receiving system

Figure 13.15 lntercomputer communications.

584 Chapter 13

increased the maximum number of network logins from a few hundred to a
few thousand on a large server.

Other systems use separate for terminal I/0 to reduce
the interrupt burden on the main CPU. For instance, a
can multiplex the traffic from hundreds of remote terminals into one port on a
large computer. An is a dedicated, special-purpose CPU found in
mainframes and in other high-end systems. The job o£ a channel is to offload
I/0 work from the main CPU. The idea is that the cham1.els keep the data flowing
smoothly, while the main CPU remains free to process the data. Like the device
controllers and DMA controllers found in smaller computers, a channel can
process more general and sophisticated programs, so channels can be tuned
for particular workloads.

We can employ several principles to improve the efficiency of I/0:

Reduce the number of context switches.

Reduce the number of times that data must be copied in memory while
passing between device and application.

Reduce the frequency of interrupts by using large transfers, smart con
trollers, and polling (if busy waiting can be minimized).

Increase concurrency by using DMA-knowledgeable controllers or chan
nels to offload simple data copying from the CPU.

Move processing primitives into hardware, to allow their operation in
device controllers to be concurrent with CPU and bus operation.

Balance CPU, memory subsystem, bus, and I/O performance, because an
overload in any one area will cause idleness in others.

I/0 devices vary greatly in complexity. For instance, a mouse is simple. The
mouse movements and button clicks are converted into numeric values that are
passed from hardware, through the mouse device driver, to the application. By
contrast, the functionality provided by the Windows NT disk device driver is
complex. It not only manages individual disks but also implements RAID arrays
(Section 12.7). To do so, it converts an application's read or write request into a
coordinated set of disk I/0 operations. Moreover, it implements sophisticated
error-handling and data-recovery algorithms and takes many steps to optimize
disk performance.

Where should the I/0 functionality be implemented -in the device hard
ware, in the device driver, or in application software? Sometimes we observe
the progression depicted in Figure 13.16.

Initially, we implement experimental I/0 algorithms at the application
level, because application code is f1exible and application bugs are unlikely
to cause system crashes. Furthermore, by developing code at the applica
tion level, we avoid the need to reboot or reload device drivers after every
change to the code. An application-level implementation can be inefficient,
however, because of the overhead o£ context switches and because the
application cannot take advantage of internal kernel data structures and

13.8

13.8 585

device code (hardware)

Figure 13.16 Device functionality progression.

kernel functionality (such as efficient in-kernel messaging, threading, and
locking).

When an application-level algorithm has demonstrated its worth, we may
reimplement it in the kernel. This can improve performance, but the devel
opment effort is more challenging, because an operating-system kernel is
a large, complex software system. Moreover, an in-kernel implementa
tion must be thoroughly debugged to avoid data corruption and system
crashes.

The highest performance may be obtained through a specialized imple
mentation in hardware, either in the device or in the controller. The
disadvantages of a hardware implementation include the difficulty and
expense of making further improvements or of fixing bugs, the increased
development time (months rather than days), and the decreased flexibility.
For instance, a hardware RAID controller may not provide any means for
the kernel to influence the order or location of individual block reads and
writes, even if the kernel has special information about the workload that
would enable it to improve the I/0 performance.

The basic hardware elements involved in I/0 are buses, device controllers, and
the devices themselves. The work of moving data between devices and main
memory is perform.ed by the CPU as programmed I/0 or is offloaded to a DMA
controller. The kernel module that controls a device is a device driver. The
system-call interface provided to applications is designed to handle several
basic categories of hardware, including block devices, character devices,
memory-mapped files, network sockets, and programmed interval timers. The
system calls usually block the processes that issue them, but nonblocking and

586 Chapter 13

asynchronous calls are used by the kernel itself and by applications that must
not sleep while waiting for an I/0 operation to complete.

The kernel's I/O subsystem provides num.erous services. Among these
are I/0 scheduling, buffering, caching, spooling, device reservation, and error
handling. Another service, name translation, makes the connections between
hardware devices and the symbolic file names used by applications. It involves
several levels of mapping that translate from character-string names, to specific
device drivers and device addresses, and then to physical addresses of II 0 ports
or bus controllers. This mapping may occur within the file-system name space,
as it does in UNIX, or in a separate device name space, as it does in MS-DOS.

STREAMS is an implementation and methodology that provides a frame
work for a modular and incremental approach to writing device drivers and
network protocols. Through streams, drivers can be stacked, with data passing
through them sequentially and bidirectionally for processing.

I/O system calls are costly in terms of CPU consumption because of the
many layers of software between a physical device and an application. These
layers imply overhead from several sources: context switching to cross the
kernel's protection boundary, signal and interrupt handling to service the I/0
devices, and the load on the CPU and memory system to copy data between
kernel buffers and application space.

13.1 Write (in pseudocode) an implementation of virtual clocks, including
the queueing and management of timer requests for the kernel and
applications. Assume that the hardware provides three timer channels.

13.2 What are the advantages and disadvantages of supporting memory
mapped I/0 to device control registers?

13.3 Typically, at the completion of a device I/0, a single interrupt is raised
and appropriately handled by the host processor. In certain settings,
however, the code that is to be executed at the completion of the
I/0 can be broken into two separate pieces. The first piece executes
immediately after the I/0 completes and schedules a second interrupt
for the remaining piece of code to be executed at a later time. What is
the purpose of using this strategy in the design of interrupt handlers?

13.4 Why might a system use interrupt-driven I/0 to manage a single serial
port and polling I/0 to manage a front-end processor, such as a termii1.al
concentrator?

13.5 What are the various kinds of performance overhead associated with
servicing an interrupt?

13.6 UNIX coordinates the activities of the kernel I/0 components by
manipulating shared in-kernel data structures, whereas Windows NT
uses object-oriented message passing between kernel I/O components.
Discuss three pros and three cons of each approach.

587

13.7 In most multiprogrammed systems, user programs access memory
through virtual addresses, while the operating system uses raw phys
ical addresses to access men10ry. What are the implications of this
design for the initiation of I/0 operations by the user program and
their execution by the operating system?

13.8 Polling for an I/0 completion can waste a large number of CPU cycles
if the processor iterates a busy-waiting loop many times before the I/0
completes. But if the I/0 device is ready for service, polling can be much
more efficient than is catching and dispatching an interrupt. Describe
a hybrid strategy that combines polling, sleeping, and interrupts for
I/0 device service. For each of these three strategies (pure polling, pure
interrupts, hybrid), describe a computing environment in which that
strategy is more efficient than is either of the others.

13.9 Consider the following I/0 scenarios on a single-user PC:

a. A mouse used with a graphical user interface

b. A tape drive on a multitasking operating system (with no device
preallocation available)

c. A disk drive containing user files

d. A graphics card with direct bus connection, accessible through
memory-mapped I/0

For each of these scenarios, would you design the operating system
to use buffering, spooling, caching, or a combin_ation? Would you use
polled I/O or interrupt-driven I/0? Give reasons for your choices.

13.10 The example of handshaking in Section 13.2 used 2 bits: a busy bit and a
command-ready bit. Is it possible to implement this handshaking with
only 1 bit? If it is, describe the protocol. If it is not, explain why 1 bit is
insufficient.

13.11 Discuss the advantages and disadvantages of guaranteeing reliable
transfer of data between modules in the STREAMS abstraction.

13.12 Some DMA controllers support direct virtual memory access, where
the targets of I/0 operations are specified as virtual addresses and
a translation from virtual to physical address is performed during
the DMA. How does this design complicate the design of the DMA
controller? What are the advantages of providing such functionality?

13.13 Why is it important to scale up system-bus and device speeds as CPU
speed increases?

13.14 When multiple interrupts from different devices appear at about the
same time, a priority scheme could be used to determine the order in
which the interrupts would be serviced. Discuss what issues need to
be considered in assigning priorities to different interrupts.

588 Chapter 13

13.15 Describe three circumstances under which blocking II 0 should be used.
Describe three circumstances under which nonblocking I/0 should be
used. Why not just implement nonblocking I/0 and have processes
busy-wait until their devices are ready?

Vahalia [1996] provides a good overview of I/O and networking in UNIX.
Leffler et al. [1989] detail the I/O structures and methods employed in
BSD UNIX. Milenkovic [1987] discusses the complexity of I/0 methods and
implementation. The use and programming of the various interprocess
communication and network protocols in UNIX are explored in Stevens
[1992]. Brain [1996] documents the Windows NT application interface. The
I/O implementation in the sample MINIX operating system is described in
Tanenbaum and Woodhull [1997]. Custer [1994] includes detailed information
on the NT message-passing implementation of I/0.

For details of hardware-level II 0 handling and memory-mapping function
ality, processor reference manuals (Motorola [1993] and Intel [1993]) are among
the best sources. Hennessy and Patterson [2002] describe multiprocessor sys
tems and cache-consistency issues. Tanenbaum [1990] describes hardware I/0
design at a low level, and Sargent and Shoemaker [1995] provide a program
mer's guide to low-level PC hardware and software. The IBM PC device I/O
address map is given in IBM [1983]. The March 1994 issue of IEEE Computer is
devoted to I/0 hardware and software. Raga [1993] provides a good discussion
of STREAMS.

Part Six

Protection mechanisms control access to a system by limiting the types
of file access permitted to users. In addition, protection must ensure
that only processes that have gained proper authorization from the
operating system can operate on memory segments, the CPU, and other
resources.

Protection is provided by a mechanism that controls the access of
programs, processes, or users to the resources defined by a computer
system. This mechanism must provide a means for specifying the controls
to be imposed, together with a means of enforcing them.

Security ensures the authentication of system users to protect the
integrity of the information stored in the system (both data and code),
as well as the physical resources of the computer system. The security
system prevents unauthorized access, malicious destruction 01- alteration
of data, and accidental introduction of inconsistency.

14.1

CHAPTER

The processes in an operating system must be protected from one another's
activities. To provide such protection, we can use various mechanisms to ensure
that only processes that have gained proper authorization from the operating
system can operate on the files, memory segments, CPU, and other resources
of a system.

Protection refers to a mechanism for controlling the access of programs,
processes, or users to the resources defined by a computer system. This
mechanism must provide a means for specifying the controls to be imposed,
together with a means of enforcement. We distinguish between protection and
security, which is a measure of confidence that the integrity of a system and
its data will be preserved. In this chapter, we focus on protection. Security
assurance is a much broader topic, and we address it in Chapter 15.

To discuss the goals and principles of protection in a modern computer
system.

" To explain how protection domains, combined with an access matrix, are
used to specify the resources a process may access.

To examine capability- and language-based protection systems.

As computer systems have become more sophisticated and pervasive in their
applications, the need to protect their integrity has also grown. Protection was
originally conceived as an adjunct to multiprogramming operating systems,
so that untrustworthy users might safely share a common logical name space,
such as a directory of files, or share a common physical name space, such as
memory. Modern protection concepts have evolved to increase the reliability
of any complex system that makes use of shared resources.

We need to provide protection for several reasons. The most obvious is the
need to prevent the mischievous, intentional violation of an access restriction

591

592 Chapter 14

14.2

by a user. Of more general importance, however, is the need to ensure that
each program component active in a system uses system resources only in
ways consistent with stated policies. This requirement is an absolute one for a
reliable system.

Protection can improve reliability by detecting latent errors at the interfaces
between component subsystems. Early detection of interface errors can often
prevent contamination of a healthy subsystem by a malfunctioning subsystem.
Also, an unprotected resource cannot defend against use (or misuse) by an
unauthorized or incompetent user. A protection-oriented system provides
means to distinguish between authorized and unauthorized usage.

The role of protection in a computer system is to provide a mechanism for
the enforcement of the policies governing resource use. These policies can be
established in a variety of ways. Some are fixed in the design of the system,
while others are formulated by the management of a system. Still others are
defined by the individual users to protect their own files and programs. A
protection system must have the flexibility to enforce a variety of policies.

Policies for resource use may vary by application, and they may change
over time. For these reasons, protection is no longer the concern solely of
the designer of an operating system. The application programmer needs to
use protection mechanisms as well, to guard resources created and supported
by an application subsystem against misuse. In this chapter, we describe the
protection mechanisms the operating system should provide, but application
designers can use them as well in designing their own protection software.

Note that mechanisms are distinct from policies. Mechanisms determine how
something will be done; policies decide what will be done. The separation
of policy and mechanism is important for flexibility. Policies are likely to
change from place to place or time to time. In the worst case, every change
in policy would require a change in the underlying mechanism. Using general
mechanisms enables us to avoid such a situation.

Frequently, a guiding principle can be used throughout a project, such as
the design of an operating system. Following this principle simplifies design
decisions and keeps the system consistent and easy to understand. A key,
time-tested guiding principle for protection is the It
dictates that programs, users, and even systems be given just enough privileges
to perform their tasks.

Consider the analogy of a security guard with a passkey. If this key allows
the guard into just the public areas that she guards, then misuse of the key
will result in minimal damage. If, however, the passkey allows access to all
areas, then damage from its being lost, stolen, misused, copied, or otherwise
compromised will be much greater.

An operating system following the principle of least privilege implements
its features, programs, system calls, and data structures so that failure or
compromise of a component does the minimum damage and allows the
n1inimum damage to be done. The overflow of a buffer in a system daemon
might cause the daemon process to fail, for example, but should not allow the
execution of code from the daemon process's stack that would enable a remote

14.3

14.3 593

user to gain maximum privileges and access to the entire system (as happens
too often today).

Such an operating system also provides system calls and services that
allow applications to be written with fine-grained access controls. It provides
mechanisms to enable privileges when they are needed and to disable them
when they are not needed. Also beneficial is the creation of audit trails for
all privileged function access. The audit trail allows the prograrnmer, systems
administrator, or law-enforcement officer to trace all protection and security
activities on the system.

Managing users with the principle of least privilege entails creating a
separate account for each user, with just the privileges that the user needs. An
operator who needs to mount tapes and back up files on the system has access
to just those commands and files needed to accomplish the job. Some systems
implement role-based access control (RBAC) to provide this functionality.

Computers implemented in a computing facility under the principle of least
privilege can be limited to running specific services, accessing specific remote
hosts via specific services, and doing so during specific times. Typically, these
restrictions are implemented through enabling or disabling each service and
through using access control lists, as described in Sections 10.6.2 and 14.6.

The principle of least privilege can help produce a more secure computing
environment. Unfortunately, it frequently does not. For example, Windows
2000 has a complex protection scheme at its core and yet has many security
holes. By comparison, Solaris is considered relatively secure, even though it
is a variant of UNIX, which historically was designed with little protection
in mind. One reason for the difference may be that Windows 2000 has more
lines of code and more services than Solaris and thus has more to secure and
protect. Another reason could be that the protection scheme in Windows 2000
is irtcomplete or protects the wrong aspects of the operating system, leaving
other areas vulnerable.

A computer system is a collection of processes and objects. By objects, we mean
both (such as the CPU, memory segments, printers, disks, and
tape drives) and (such as files, programs, and semaphores).
Each object has a unique name that differentiates it from all other objects in the
system, and each can be accessed only through well-defined and meaningful
operations. Objects are essentially abstract data types.

The operations that are possible may depend on the object. For example,
on a CPU, we can only execute. Memory segments can be read and written,
whereas a CD-ROM or DVD-ROM can only be read. Tape drives can be read,
written, and rewound. Data files can be created, opened, read, written, closed,
and deleted; program files can be read, written, executed, and deleted.

A process should be allowed to access only those resources for which it
has authorization. Furthermore, at any time, a process should be able to access
only those reso1Jrces that it currently reqLlires to complete its task. This second
requirement, conunonly referred to as the need-to-know principle, is useful in
limiting the amount of damage a faulty process can cause in the system. For
example, when process p invokes procedure A(), the procedure should be

594 Chapter14

allowed to access only its own variables and the formal parameters passed
to it; it should not be able to access all the variables of process p. Similarly,
consider the case in which process p invokes a compiler to compile a particular
file. The compiler should not be able to access files arbitrarily but should have
access only to a well-defined subset of files (such as the source file, listing file,
and so on) related to the file to be compiled. Conversely, the compiler may have
private files used for accounting or optimization purposes that process p should
not be able to access. The need-to-know principle is similar to the principle of
least privilege discussed in Section 14.2 in that the goals of protection are to
minimize the risks of possible security violations.

14.3.1 Domain Structure

To facilitate the scheme just described, a process operates within a
which specifies the resources that the process may access. Each

domain defines a set of objects and the types of operations that may be invoked
on each object. The ability to execute an operation on an object is an

A domain is a collection of access rights, each of which is an ordered pair
<object-name, rights-set>. For example, if domain D has the access right <file F,
{read, write}>, then a process executing in domain D can both read and write
file F; it cannot, however, perform any other operation on that object.

Domains do not need to be disjoint; they may share access rights. For
example, in Figure 14.1, we have three domains: D1, D2, and D3 . The access
right < 0 4, {print}> is shared by D2 and D3, implying that a process executing
in either of these two domains can print object 0 4 . Note that a process must be
executing in domain D1 to read and write object 0 1, while only processes in
domain D3 may execute object 0 1.

The association between a process and a domain may be either if
the set of resources available to the process is fixed throughout the process's
lifetime, or As might be expected, establishing dynamic protection
domains is more complicated than establishing static protection domains.

If the association between processes and domains is fixed, and we want to
adhere to the need-to-know principle, then a mechanism must be available to
change the content of a domain. The reason stems from the fact that a process
may execute in two different phases and may, for example, need read access
in one phase and write access in another. If a domain is static, we must define
the domain to include both read and write access. However, this arrangement
provides more rights than are needed in each of the two phases, since we have
read access in the phase where we need only write access, and vice versa.
Thus, the need-to-know principle is violated. We must allow the contents of

< 0 3 , {read, write} >
< 0 1,.{read, write}>
< 0 2 , {execute} >

< 0 2, {write}>
<•01, {execute}>
< 0 3 , {read}>

Figure 14.1 System with three protection domains.

14.3 595

a domain to be modified so that the domain always reflects the n1inimum
necessary access rights.

If the association is dynamic, a mechanism is available to allow
enabling the process to switch from one domain to another. We may

also want to allow the content of a domain to be changed. If we cannot change
the content of a domain, we can provide the same effect by creating a new
domain with the changed content and switching to that new domain when we
want to change the domain content.

A domain can be realized in a variety of ways:

Each user may be a domain. In this case, the set of objects that can be
accessed depends on the identity of the user. Domain switching occurs
when the user is changed -generally when one user logs out and another
user logs in.

Each process may be a domain. In this case, the set of objects that can be
accessed depends on the identity of the process. Domain switching occurs
when one process sends a message to another process and then waits for
a response.

Each procedure may be a domain. In this case, the set of objects that can be
accessed corresponds to the local variables defined within the procedure.
Domain switching occurs when a procedure call is made.

We discuss domain switching in greater detail in Section 14.4.
Consider the standard dual-mode (monitor-user mode) model of

operating-system execution. When a process executes in monitor mode, it
can execute privileged instructions and thus gain complete control of the
computer system. In contrast, when a process executes in user mode, it can
invoke only nonprivileged instructions. Consequently, it can execute only
within its predefined memory space. These two modes protect the operating
system (executing in monitor domain) from the user processes (executing
in user domain). In a multiprogrammed operating system, two protection
domains are insufficient, since users also want to be protected from one
another. Therefore, a more elaborate scheme is needed. We illustrate such a
scheme by examining two influential operating systems-UNIX and MULTICS
-to see how they implement these concepts.

14.3.2 An Example: UNIX

In the UNIX operating system, a domain is associated with the user. Switching
the domain corresponds to changing the user identification temporarily.
This change is accomplished tbough the file system as follows. An owner
identification and a domain bit (known as the setuid bit) are associated with
each file. When the setuid bit is on, and a user executes that file, the user ID is
set to that of the owner of the file; when the bit is off, however, the user ID does
not change. For example, when a user A (that is, a user with useriD =A) starts
executing a file owned by B, whose associated domain bit is off, the useriD of
the process is set to A. When the setuid bit is on, the useriD is set to that of
the owner of the file: B. When the process exits, this temporary useriD change
ends.

596 Chapter 14

Other methods are used to change domains in operating systems in which
user IDs are used for domain definition, because almost all systems need
to provide such a mechanism. This mechanism is used when an otherwise
privileged facility needs to be made available to the general user population.
For instance, it might be desirable to allow users to access a network without
letting them write their own networking programs. In such a case, on a UNIX
system, the setuid bit on a networking program. would be set, causing the user
lD to change when the program was run. The user lD would change to that
of a user with network access privilege (such as root, the most powerful user
ID). One problem with this method is that if a user manages to create a file
with user ID root and with its setuid bit on, that user can become root and do
anything and everything on the system. The setuid mechanism is discussed
further in Appendix A.

An alternative to this method used in other operating systems is to place
privileged programs in a special directory. The operating system would be
designed to change the user lD of any program run from this directory, either
to the equivalent of root or to the user lD of the owner of the directory. This
eliminates one security problem with setuid programs in which crackers create
and hide such programs for later use (using obscure file or directory names).
This method is less flexible than that used in UNIX, however.

Even more restrictive, and thus more protective, are systems that simply
do not allow a change of user ID. In these instances, special techniques must
be used to allow users access to privileged facilities. For instance, a

may be started at boot time and run as a special user ID. Users then
run a separate program, which sends requests to this process whenever they
need to use the facility. This method is used by the TOPS-20 operating system.

In any of these systems, great care must be taken in writing privileged
programs. Any oversight can result in a total lack of protection on the system.
Generally, these programs are the first to be attacked by people trying to
break into a system; unfortunately, the attackers are frequently successful.
For example, security has been breached on many UNIX systems because of the
setuid feature. We discuss security in Chapter 15.

14.3.3 An Example: MUL TICS

In the MULTICS system, the protection domains are organized hierarchically
into a ring structure. Each ring corresponds to a single domain (Figure 14.2).
The rings are numbered from 0 to 7. Let D; and Dj be any two domain rings.
If j < i, then D; is a subset of Dj- That is, a process executing in domain Dj
has more privileges than does a process executing in domain D;. A process
executing in domain Do has the most privileges. If only two rings exist, this
scheme is equivalent to the monitor-user n1ode of execution, where monitor
mode corresponds to Do and user mode corresponds to D1.

MULTICS has a segmented address space; each segment is a file, and each
segment is associated with one of the rings. A segm.ent description includes an
entry that identifies the ring number. In addition, it includes three access bits
to control reading, writing, and execution. The association between segments
and rings is a policy decision with which we are not concerned here.

A current-ring-number counter is associated with each process, identifying
the ring in which the process is executing currently. When a process is executing

14.3 597

Figure 14.2 MULTICS ring structure.

in ring i, it cmmot access a segment associated with ring j (j < i). It can access a
segment associated with ring k (k::: i). The type of access, however, is restricted
according to the access bits associated with that segment.

Domain switching in MULTICS occurs when a process crosses from one ring
to another by calling a procedure in a different ring. Obviously, this switch must
be done in a controlled mmmer; otherwise, a process could start executing in
ring 0, and no protection would be provided. To allow controlled domain
switching, we modify the ring field of the segment descriptor to include the
following:

Access bracket. A pair of integers, bl and b2, such that bl ::=: b2.

Limit. An integer b3 such that b3 > b2.

List of gates. Identifies the entry points (or
may be called.

at which the segments

If a process executing in ring i calls a procedure (or segncent) with access bracket
(bl,b2), then the call is allowed if bl ::=: i ::=: b2, and the current ring number of
the process remains i. Otherwise, a trap to the operating system occurs, and
the situation is handled as follows:

If i < bl, then the call is allowed to occur, because we have a transfer to a
ring (or domain) with fewer privileges. However, if parameters are passed
that refer to segments in a lower ring (that is, segments not accessible to
the called procedure), then these segments must be copied into an area
that can be accessed by the called procedure.

If i > b2, then the call is allowed to occur only if b3 is greater than or equal
to i and the call has been directed to one of the designated entry points in
the list of gates. This scheme allows processes with limited access rights to
call procedures in lower rings that have more access rights, but only in a
carefully controlled mmmer.

598 Chapter 14

14.4

The main disadvantage of the ring (or hierarchical) structure is that it does
not allow us to enforce the need-to-know principle. In particular, if an object
must be accessible in domain 0 J but not accessible in domain Oi, then we must
have j < i. But this requirement means that every segment accessible in Oi is
also accessible in 0 1.

The MULTICS protection system is generally more complex and less efficient
than are those used in current operating systems. If protection interferes with
the ease of use of the system or significantly decreases system performance,
then its use must be weighed carefully against the purpose of the system. For
instance, we would want to have a complex protection system on a computer
used by a university to process students' grades and also used by students for
classwork. A similar protection system would not be suited to a computer being
used for number crunching, in which performance is of utmost importance. We
would prefer to separate the mechanism from the protection policy, allowing
the same system to have complex or simple protection depending on the needs
of its users. To separate mechanism from policy, we require a more general
model of protection.

Our model of protection can be viewed abstractly as a matrix, called an
The rows of the access matrix represent domains, and the columns

represent objects. Each entry in the matrix consists of a set of access rights.
Because the column defines objects explicitly, we can omit the object name
from the access right. The entry access(i,j) defines the set of operations that a
process executing in domain Oi can invoke on object OJ.

To illustrate these concepts, we consider the access matrix shown in Figure
14.3. There are four domains and four objects-three files (F1, F2, F3) and one
laser printer. A process executing in domain 0 1 can read files F1 and F3 . A
process executing in domain 0 4 has the same privileges as one executing in
domain 0 1; but in addition, it can also write onto files F1 and F3 . Note that the
laser printer can be accessed only by a process executing in domain 0 2 .

The access-matrix scheme provides us with the mechanism for specifying
a variety of policies. The mechanism consists of implementing the access

01 read read

02 print

03 read execute

04
read read
write write

Figure 14.3 Access matrix.

14.4 599

matrix and ensuring that the semantic properties we have outlined hold.
More specifically, we must ensure that a process executing in domain n can
access only those objects specified in row (and then only as allowed by the
access-matrix entries.

The access matrix can implement policy decisions concerning protection.
The policy decisions involve which rights should be included in the (i,j)th
entry. We must also decide the domain in which each process executes. This
last policy is usually decided by the operating system.

The users normally decide the contents of the access-matrix entries. When
a user creates a new object Oi, the column Oi is added to the access matrix
with the appropriate initialization entries, as dictated by the creator. The user
may decide to enter some rights in some entries in cohum1 j and other rights
in other entries, as needed.

The access matrix provides an appropriate mechanism for defining and
implementing strict control for both the static and dynamic association between
processes and domains. When we switch a process from one domain to another,
we are executing an operation (switch) on an object (the domain). We can
control domain switching by including domains among the objects of the
access matrix. Similarly, when we change the content of the access matrix,
we are performing an operation on an object: the access matrix. Again, we
can control these changes by including the access matrix itself as an object.
Actually, since each entry in the access matrix may be modified individually,
we must consider each entry in the access matrix as an object to be protected.
Now, we need to consider only the operations possible on these new objects
(domains and the access matrix) and decide how we want processes to be able
to execute these operations.

Processes should be able to switch from one domain to another. Switching
from domain D; to domain Di is allowed if and only if the access right switch
E access(i,j). Thus, in Figure 14.4, a process executing in domain D2 can switch
to domain D3 or to domain D4 . A process in domain D4 can switch to D1, and
one in domain D1 can switch to D2-

Allowing controlled change in the contents of the access-matrix entries
requires three additional operations: copy, owner, and control. We examine
these operations next.

01 read read switch

02 print switch switch

03 read execute

04 read read switch
write write

Figure 14.4 Access matrix of Figure 14.3 with domains as objects.

600 Chapter 14

(a)

execute read* execute

execute read

(b)

Figure 14.5 Access matrix with copy rights.

The ability to copy an access right from one domain (or row) of the access
matrix to another is denoted by an asterisk (*) appended to the access right.
The copy right allows the access right to be copied only within the colurrm.
(that is, for the object) for which the right is defined. For example, in Figure
14.5(a), a process executing in domain D2 can copy the read operation into any
entry associated with file F2 . Hence, the access matrix of Figure 14.5(a) can be
modified to the access matrix shown in Figure 14.5(b).

This scheme has two variants:

A right is copied from access(i, j) to access(Jc, j); it is then removed from
access(i, j). This action is a transfer of a right, rather than a copy.

Propagation of the copy right may be limited. That is, when the right
R* is copied from access(i,j) to access(lc,j), only the right R (not R*)
is created. A process executing in domain D~r cannot further copy the
right R.

A system may select only one of these three copy rights, or it may provide all
three by identifying them as separate rights: copy, transfer, and limited copy.

We also need a mechanism to allow addition of new rights and removal of
some rights. The owner right controls these operations. If access(i, j) includes
the owner right, then a process executing in domain Di can add and remove
any right in any entry in column j. For example, in Figure 14.6(a), domain D1

is the owner of F1 and thus can add and delete any valid right in column F1.

Similarly, domain D2 is the owner of F2 and F3 and thus can add and remove
any valid right within these two columns. Thus, the access matrix of Figure
14.6(a) can be modified to the access matrix shown in Figure 14.6(b).

14.4 601

01 owner
write

execute

read*
read*

02 owner
owner

write

03 execute

(a)

01 owner
write

execute

owner read*
02 read* owner

write* write

03 write write

(b)

Figure 14.6 Access matrix with owner rights.

The copy and owner rights allow a process to change the entries in a column.
A mechanism is also needed to change the entries in a row. The control right
is applicable only to domain objects. If access(i, j) includes the control right,
then a process executing in domain Di can remove any access right from
row j. For example, suppose that, in Figure 14.4, we include the control right in
access(D2, D4). Then, a process executil1.g in domain D2 could modify domai11
D4, as shown in Figure 14.7.

read read switch

print switch switch
control

read execute

write write switch

Figure 14.7 Modified access matrix of Figure 14.4.

602 Chapter 14

14.5

The copy and owner rights provide us with a mechanism to limit the
propagation of access rights. However, they do not give us the appropriate tools
for preventing the propagation (or disclosure) of information. The problem. of
guaranteeing that no information initially held in an object can migrate outside
of its execution environment is called the . This problem
is in general unsolvable (see the bibliographical notes at the end of the chapter).

These operations on the domains and the access matrix are not in them
selves important, but they illustrate the ability of the access-matrix model to
allow the implementation and control of dynamic protection requirements.
New objects and new domains can be created dynamically and included in the
access-matrix model. However, we have shown only that the basic mechanism
exists; system designers and users must make the policy decisions concerning
which domains are to have access to which objects in which ways.

How can the access matrix be implemented effectively? In general, the matrix
will be sparse; that is, most of the entries will be empty. Although data
structure techniques are available for representing sparse matrices, they are
not particularly useful for this application, because of the way in which
the protection facility is used. Here, we first describe several methods of
implementing the access matrix and then compare the methods.

14.5.1 Global Table

The simplest implementation of the access matrix is a global table consisting
of a set of ordered triples <domain, object, rights-set>. Whenever an operation
M is executed on an object Oj within domain D;, the global table is searched
for a triple <D;, 0 1, R~c>, with ME R~c. If this triple is found, the operation is
allowed to continue; otherwise, an exception (or error) condition is raised.

This implementation suffers from several drawbacks. The table is usually
large and thus cannot be kept in main memory, so additional I/0 is needed.
Virtual memory techniques are often used for managing this table. In addition,
it is difficult to take advantage of special groupings of objects or domains.
For example, if everyone can read a particular object, this object must have a
separate entry in every domain.

14.5.2 Access Lists for Objects

Each column in the access matrix can be implemented as an access list for
one object, as described in Section 10.6.2. Obviously, the empty entries can be
discarded. The resulting list for each object consists of ordered pairs <domain,
rights-set>, which define all domains with a nonempty set of access rights for
that object.

This approach can be extended easily to define a list plus a default set of
access rights. When an operation M on an object Oi is attempted in domain
D;, we search the access list for object 0 i, looking for an entry < D;, R1c > with
ME RJc. If the entry is found, we allow the operation; if it is not, we check the
default set. If M is in the default set, we allow the access. Otherwise, access is

14.5 603

denied, and an exception condition occurs. For efficiency, we may check the
default set first and then search the access list.

14.5.3 Capability Lists for Domains

Rather than associating the columns of the access matrix with the objects as
access lists, we can associate each row with its domain. A ltst for
a domain is a list of objects together with the operations allowed on tbose
objects. An object is often represented by its physical name or address, called
a To execute operation M on object 0 1, the process executes the
operation M, specifying the capability (or pointer) for object 0 j as a parameter.
Simple of the capability means that access is allowed.

The capability list is associated with a domain, but it is never directly
accessible to a process executing in that domain. Rather, the capability list
is itself a protected object, maintained by the operating system and accessed
by the user only indirectly. Capability-based protection relies on the fact that
the capabilities are never allowed to migrate into any address space directly
accessible by a user process (where they could be modified). If all capabilities
are secure, the object they protect is also secure against unauthorized access.

Capabilities were originally proposed as a kind of secure pointer, to
meet the need for resource protection that was foreseen as multiprogrammed
computer systems came of age. The idea of an inherently protected pointer
provides a fom1dation for protection that can be extended up to the applications
level.

To provide inherent protection, we must distinguish capabilities from other
kinds of objects, and they must be interpreted by an abstract machine on which
higher-level programs run. Capabilities are usually distinguished from other
data in one of two ways:

Each object has a to denote whether it is a capability or accessible
data. The tags themselves must not be directly accessible by an application
program. Hardware or firmware support may be used to enforce this
restriction. Although only one bit is necessary to distinguish between
capabilities and other objects, more bits are often used. This extension
allows all objects to be tagged with their types by the hardware. Thus,
the hardware can distinguish integers, floating-point numbers, pointers,
Booleans, characters, instructions, capabilities, and uninitialized values by
their tags.

Alternatively, the address space associated with a program can be split into
two parts. One part is accessible to the program and contains the program's
normal data and instructions. The other part, containing the capability list,
is accessible only by the operating system. A segmented memory space
(Section 8.6) is useful to support this approach.

Several capability-based protection systems have been developed; we describe
them briefly in Section 14.8. The Mach operating system also uses a version of
capability-based protection; it is described in Appendix B.

604 Chapter 14

14.5.4 A Lock-Key Mechanism

The t "' is a compromise between access lists and capability
lists. Each object has a list of unique bit patterns, called Similarly, each
domain has a list of unique bit patterns, called A process executing in a
domain can access an object only if that domain has a key that matches one of
the locks of the object.

As with capability lists, the list of keys for a domain must be managed
by the operating system on behalf of the domain. Users are not allowed to
examine or modify the list of keys (or locks) directly.

14.5.5 Comparison

As you might expect choosing a technique for implementing an access matrix
involves various trade-offs. Using a global table is simple; however, the table
can be quite large and often cannot take advantage of special groupings of
objects or domains. Access lists correspond directly to the needs of users.
When a user creates an object he can specify which domains can access the
object as well as what operations are allowed. However, because access-rights
information for a particular domain is not localized, determining the set of
access rights for each domain is difficult. In addition, every access to the object
must be checked, requiring a search of the access list. In a large system with
long access lists, this search can be time consuming.

Capability lists do not correspond directly to the needs of users; they
are usefut however, for localizing information for a given process. The
process attempting access must present a capability for that access. Then, the
protection system needs only to verify that the capability is valid. Revocation
of capabilities, however, may be inefficient (Section 14.7).

The lock-key mechanism, as mentioned, is a compromise between access
lists and capability lists. The mechanism can be both effective and flexible,
depending on the length of the keys. The keys can be passed freely from
domain to domain. In addition, access privileges can be effectively revoked by
the simple technique of changing some of the locks associated with the object
(Section 14.7).

Most systems use a combination of access lists and capabilities. When a
process first tries to access an object, the access list is searched. If access is
denied, an exception condition occurs. Otherwise, a capability is created and
attached to the process. Additional references use the capability to demonstrate
swiftly that access is allowed. After the last access, the capability is destroyed.
This strategy is used in the MULTICS system and in the CAL system.

As an example of how such a strategy works, consider a file system in
which each file has an associated access list. When a process opens a file, the
directory structure is searched to find the file, access permission is checked, and
buffers are allocated. All this information is recorded in. a new entry in a file
table associated with the process. The operation returns an index into this table
for the newly opened file. All operations on the file are made by specification
of the index into the file table. The entry in the file table then points to the file
and its buffers. When the file is closed, the file-table entry is deleted. Since the
file table is maintained by the operating system, the user carmot accidentally
corrupt it. Thus, the user can access only those files that have been opened.

14.6

14.6 605

Since access is checked when the file is opened, protection is ensured. This
strategy is used in the UNIX system.

The right to access must still be checked or1 each access, and the file-table
entry has a capability only for the allowed operations. If a file is opened for
reading, then a capability for read access is placed in the file-table entry. If
an attempt is made to write onto the file, the system identifies this protection
violation by com.paring the requested operation with the capability in the
file-table entry.

In Section 10.6.2, we described how access controls can be used on files within a
file system. Each file and directory are assigned an owner, a group, or possibly
a list of users, and for each of those entities, access-control information is
assigned. A similar function can be added to other aspects of a computer
system. A good example of this is found in Solaris 10.

Solaris 10 advances the protection available in the Sun Microsystems
operating system by explicitly adding the principle of least privilege via

This facility revolves around privileges.
A privilege is the right to execute a system call or to use an option within
that system call (such as opening a file with write access). Privileges can be
assigned to processes,limiting them to exactly the access they need to perform
their work. Privileges and programs can also be assigned to Users are
assigned roles or can take roles based on passwords to the roles. In this way a
user can take a role that enables a privilege, allowing the user to run a program
to accomplish a specific task, as depicted in Figure 14.8. This implementation
of privileges decreases the security risk associated with superusers and setuid
programs.

user1

executes with role 1 privileges

~

Figure 14.8 Role-based access control in Solaris 10.

606 Chapter 14

14.7

Notice that this facility is similar to the access matrix described in Section
14.4. This relationship is further explored in the exercises at the end of the
chapter.

In a dynamic protection system, we may sometimes need to revoke access
rights to objects shared by different users. Various questions about revocation
may arise:

Immediate versus delayed. Does revocation occur immediately, or is it
delayed? If revocation is delayed, can we find out when it will take place?

Selective versus general. When an access right to an object is revoked,
does it affect all the users who have an access right to that object, or can
we specify a select group of users whose access rights should be revoked?

Partial versus total. Can a subset of the rights associated with an object be
revoked, or must we revoke all access rights for this object?

Temporary versus permanent. Can access be revoked permanently (that
is, the revoked access right will never again be available), or can access be
revoked and later be obtained again?

With an access-list scheme, revocation is easy. The access list is searched for
any access rights to be revoked, and they are deleted from the list. Revocation
is immediate and can be general or selective, total or partial, and permanent
or temporary.

Capabilities, howeve1~ present a much more difficult revocation problem,
as mentioned earlier. Since the capabilities are distributed throughout the
system, we must find them before we can revoke them. Schemes that implement
revocation for capabilities include the following:

Reacquisition. Periodically, capabilities are deleted from each domain. If
a process wants to use a capability, it may find that that capability has been
deleted. The process may then try to reacquire the capability. If access has
been revoked, the process will not be able to reacquire the capability.

Back-pointers. A list of pointers is maintained with each object, pointing
to all capabilities associated with that object. When revocation is required,
we can follow these pointers, changing the capabilities as necessary. This
scheme was adopted in the MULTICS system. It is quite general, but its
implementation is costly.

Indirection. The capabilities point indirectly, not directly, to the objects.
Each capability points to a unique entry in a global table, which in turn
points to the object. We implement revocation by searching the global table
for the desired entry and deleting it. Then, when an access is attempted,
the capability is found to point to an illegal table entry. Table entries can
be reused for other capabilities without difficulty, since both the capability
and the table entry contain the unique name of the object. The object for a

14.8

14.8 607

capability and its table entry must match. This scheme was adopted in the
CAL system. It does not allow selective revocation.

Keys. A key is a unique bit pattern that can be associated with a capability.
This key is defined when the capability is created, and it can be neither
modified nor inspected by the process that owns the capability. A

is associated with each object; it can be defined or replaced with
the set-key operation. When a capability is created, the current value
of the master key is associated with the capability. When the capability
is exercised, its key is compared with the master key. If the keys match,
the operation is allowed to continue; otherwise, an exception condition
is raised. Revocation replaces the master key with a new value via the
set-key operation, invalidating all previous capabilities for this object.

This scheme does not allow selective revocation, since only one master
key is associated with each object. If we associate a list of keys with each
object, then selective revocation can be implemented. Finally, we can group
all keys into one global table of keys. A capability is valid only if its
key matches some key in the global table. We implement revocation by
removing the matching key from the table. With this scheme, a key can be
associated with several objects, and several keys can be associated with
each object, providing maximum flexibility.

In key-based schemes, the operations of defining keys, inserting them
into lists, and deleting them from lists should not be available to all users.
In particular, it would be reasonable to allow only the owner of an object
to set the keys for that object. This choice, however, is a policy decision
that the protection system can implement but should not define.

In this section, we survey two capability-based protection systems. These
systems differ in their complexity and in the types of policies that can be
implemented on them. Neither system is widely used, but both provide
interesting proving grounds for protection theories.

14.8.1 An Example: Hydra

Hydra is a capability-based protection system that provides considerable
flexibility. The system implements a fixed set of possible access rights, including
such basic forms of access as the right to read, write, or execute a memory
segment. In addition, a user (of the protection system) can declare other rights.
The interpretation of user-defined rights is performed solely by the user's
program, but the system provides access protection for the use of these rights,
as well as for the use of system-defined rights. These facilities constitute a
significant development in protection technology.

Operations on objects are defined procedurally. The procedures that
implement such operations are themselves a form of object, and they are
accessed indirectly by capabilities. The names of user-defined procedures must
be identified to the protection system if it is to deal with objects of the user
defined type. When the definition of an object is made krtOwn to Hydra, the
names of operations on the type become Auxiliary rights

608 Chapter 14

can be described in a capability for an instance of the type. For a process to
perform an operation on a typed object, the capability it holds for that object
must contain the name of the operation being invoked among its auxiliary
rights. This restriction enables discrin"lination of access rights to be made on an
instance-by-instance and process-by-process basis.

Hydra also provides ::'!fnrWk.;:J1o:L This scheme allows a procedure
to be certified as to act on a formal parameter of a specified type
on behalf of any process that holds a right to execute the procedure. The rights
held by a trustworthy procedure are independent oC and may exceed, the
rights held by the calling process. However, such a procedure must not be
regarded as universally trustworthy (the procedure is not allowed to act on
other types, for instance), and the trustworthiness must not be extended to any
other procedures or program segments that might be executed by a process.

Amplification allows implementation procedures access to the representa
tion variables of an abstract data type. If a process holds a capability to a typed
object A, for instance, this capability may include an auxiliary right to invoke
some operation P but does not include any of the so-called kernel rights, such
as read, write, or execute, on the segment that represents A. Such a capability
gives a process a means of indirect access (through the operation P) to the
representation of A, but only for specific purposes.

When a process invokes the operation P on an object A, howeve1~ the
capability for access to A may be amplified as control passes to the code body
of P. This amplification may be necessary to allow P the right to access the
storage segment representing A so as to implement the operation that P defines
on the abstract data type. The code body of P may be allowed to read or to
write to the segment of A directly, even though the calling process cmmot.
On return from P the capability for A is restored to its originat unamplified
state. This case is a typical one in which the rights held by a process for access
to a protected segment must change dynamically, depending on the task to
be performed. The dynamic adjustment of rights is performed to guarantee
consistency of a programmer-defined abstraction. Amplification of rights can
be stated explicitly in the declaration of an abstract type to the Hydra operating
system.

When a user passes an object as an argument to a procedure, we may need
to ensure that the procedure cannot modify the object. We can implement this
restriction readily by passing an access right that does not have the modification
(write) right. Howeve1~ if amplification may occur, the right to modify may
be reinstated. Thus, the user-protection requirement can be circumvented.
In generat of course, a user may trust that a procedure performs its task
correctly. This assumption is not always correct however, because of hardware
or software errors. Hydra solves this problem by restricting amplifications.

The procedure-call mechanism of Hydra was designed as a direct solution
to the problem of mutually suspicious subsystems. This problem is defined as
follows. Suppose that a program is provided that can be invoked as a service
by a number of different users (for example, a sort routine, a compile1~ a
game). When users invoke this service program, they take the risk that the
program will malfunction and will either damage the given data or retain
some access right to the data to be used (without authority) later. Similarly,
the service program may have som.e private files (for accounting purposes,

14.8 609

for example) that should not be accessed directly by the calling user program.
Hydra provides mechanisms for directly dealing with this problem.

A Hydra subsystem is built on top of its protection kernel and may require
protection of its own components. A subsystem interacts with the kernel
through calls on a set of kernel-defined primitives that define access rights to
resources defined by the subsystenl.. The subsystem designer can define policies
for use of these resources by user processes, but the policies are enforceable by
use of the standard access protection afforded by the capability system.

Programmers can make direct use of the protection system after acquaint
ing themselves with its features in the appropriate reference rnanual. Hydra
provides a large library of system-defined procedures that can be called by
user programs. Programmers can explicitly incorporate calls on these system
procedures into their program code or can use a program translator that has
been interfaced to Hydra.

14.8.2 An Example: Cambridge CAP System

A different approach to capability-based protection has been taken in the
design of the Cambridge CAP system. CAP's capability system is simpler and
superficially less powerful than that of Hydra. However, closer examination
shows that it, too, can be used to provide secure protection of user-defined
objects. CAP has two kinds of capabilities. The ordinary kind is called a

. It can be used to provide access to objects, but the only
rights provided are the standard read, write, and execute of the individual
storage segments associated with the object. Data capabilities are interpreted
by microcode in the CAP machine.

The second kind of capability is the so-called which
is protected, but not interpreted, by the CAP microcode. It is interpreted by a
protected (that is, privileged) procedure, which may be written by an application
programmer as part of a subsystem. A particular kind of rights amplification
is associated with a protected procedure. When executing the code body of
such a procedure, a process temporarily acquires the right to read or write the
contents of a software capability itself. This specific kind of rights amplification
corresponds to an implementation of the seal and unseal primitives on
capabilities. Of course, this privilege is still subject to type verification to ensure
that only software capabilities for a specified abstract type are passed to any
such procedure. Universal trust is not placed in any code other than the CAP
machine's microcode. (See Bibliographical Notes for references.)

The interpretation of a software capability is left completely to the sub
system, through the protected procedures it contains. This scheme allows a
variety of protection policies to be implemented. Although programmers can
define their own protected procedures (any of which might be incorrect), the
security of the overall system cannot be compromised. The basic protection
system will not allow an unverified, user-defined, protected procedure access
to any storage segments (or capabilities) that do not belong to the protection
environment in which it resides. The most serious consequence of an insecure
protected procedure is a protection breakdown of the subsystem for which that
procedure has responsibility.

610 Chapter 14

14.9

The designers of the CAP system have noted that the use of software
capabilities allowed them to realize considerable economies in formulating
and implementing protection policies commensurate with the requirements of
abstract resources. However, subsystem designers who want to make use of
this facility cannot simply study a reference manual, as is the case with Hydra.
Instead, they must learn the principles and techniques of protection, since the
system provides them with no library of procedures.

To the degree that protection is provided in existing computer systems, it is
usually achieved through an operating-system kernel, which acts as a security
agent to inspect and validate each attempt to access a protected resource. Since
comprehensive access validation may be a source of considerable overhead,
either we must give it hardware support to reduce the cost of each validation
or we must allow the system designer to compromise the goals of protection.
Satisfying all these goals is difficult if the flexibility to implement protection
policies is restricted by the support mechanisms provided or if protection
environments are made larger than necessary to secure greater operational
efficiency.

As operating systems have become more complex, and particularly as they
have attempted to provide higher-level user interfaces, the goals of protection
have become much more refined. The designers of protection systems have
drawn heavily on ideas that originated in programming languages and
especially on the concepts of abstract data types and objects. Protection systems
are now concerned not only with the identity of a resource to which access is
attempted but also with the functional nature of that access. In the newest
protection systems, concern for the function to be invoked extends beyond
a set of system-defined functions, such as standard file-access methods, to
include functions that may be user-defined as well.

Policies for resource use may also vary, depending on the application,
and they may be subject to change over time. For these reasons, protection
can no longer be considered a matter of concern only to the designer of an
operating system. It should also be available as a tool for use by the application
designe1~ so that resources of an applications subsystem can be guarded against
tampering or the influence of an error.

14.9.1 Compiler-Based Enforcement

At this point, programming languages enter the picture. Specifying the desired
control of access to a shared resource in a system is making a declarative
statement about the resource. This kind of statement can be integrated into a
language by an extension of its typing facility. When protection is declared
along with data typing, the designer of each subsystem can specify its
requirements for protection, as well as its need for use of other resources in a
system. Such a specification should be given directly as a program is composed,
and in the language in which the program itself is stated. This approach has
several significant advantages:

14.9 611

Protection needs are simply declared, rather than programmed as a
sequence of calls on procedures of an operating system.

Protection requirements can be stated independently of the facilities
provided by a particular operating system.

The means for enforcement need not be provided by the designer of a
subsystem.

A declarative notation is natural because access privileges are closely
related to the linguistic concept of data type.

A variety of techniques can be provided by a programming-language
implementation to enforce protection, but any of these must depend on some
degree of support from an underlying machine and its operating system. For
example, suppose a language is used to generate code to run on the Cambridge
CAP system. On this system, every storage reference made on the underlying
hardware occurs indirectly through a capability. This restriction prevents any
process from accessing a resource outside of its protection environment at
any time. However, a program may impose arbitrary restrictions on how
a resource can be used during execution of a particular code segment.
We can implement such restrictions most readily by usin.g the software
capabilities provided by CAP. A language implementation might provide
standard protected procedures to interpret software capabilities that would
realize the protection policies that could be specified in the language. This
scheme puts policy specification at the disposal of the programmers, while
freeing them from implementing its enforcement.

Even if a system does not provide a protection kernel as powerful as those
of Hydra or CAP, mechanisms are still available for implementing protection
specifications given in a programming language. The principal distinction is
that the security of this protection will not be as great as that supported by
a protection kernel, because the mechanism must rely on more assumptions
about the operational state of the system. A compiler can separate references
for which it can certify that no protection violation could occur from those
for which a violation might be possible, and it can treat them differently. The
security provided by this form of protection rests on the assumption that the
code generated by the compiler will not be modified prior to or during its
execution.

What, then, are the relative merits of enforcement based solely on a kernel,
as opposed to enforcement provided largely by a compiler?

Security. Enforcement by a kernel provides a greater degree of security
of the protection system itself than does the generation of protection
checking code by a compiler. In a compiler-supported scheme, security
rests on correctness of the translator, on some underlying mechanism of
storage management that protects the segments from which compiled
code is executed, and, ultimately, on the security of files from which a
program is loaded. Some of these considerations also apply to a software
supported protection kernel, but to a lesser degree, since the kernel may
reside in fixed physical storage segments and may be loaded only from
a designated file. With a tagged-capability system, in which all address

612 Chapter 14

computation is performed either by hardware or by a fixed microprogram,
even greater security is possible. Hardware-supported protection is also
relatively immune to protection violations that might occur as a result of
either hardware or system software malfunction.

Flexibility. There are limits to the flexibility of a protection kernel in
implementing a user-defined policy, although it may supply adequate
facilities for the system to provide enforcement of its own policies.
With a programming language, protection policy can be declared and
enforcem.ent provided as needed by an implementation. If a language
does not provide sufficient flexibility, it can be extended or replaced with
less disturbance of a system in service than would be caused by the
modification of an operating-system kerneL

Efficiency. The greatest efficiency is obtained when enforcement of protec
tion is supported directly by hardware (or microcode). Insofar as software
support is required, language-based enforcement has the advantage that
static access enforcement can be verified off-line at compile time. Also,
since an intelligent compiler can tailor the enforcement mechanism to
meet the specified need, the fixed overhead of kernel calls can often be
avoided.

In summary, the specification of protection in a programming language
allows the high-level description of policies for the allocation and use of
resources. A language implementation can provide software for protection
enforcement when automatic hardware-supported checking is unavailable. In
addition, it can interpret protection specifications to generate calls on whatever
protection system is provided by the hardware and the operating system.

One way of making protection available to the application program is
through the use of a software capability that could be used as an object
of computation. Inherent in this concept is the idea that certain program
components might have the privilege of creating or examining these software
capabilities. A capability-creating program would be able to execute a primitive
operation that would seal a data structure, rendering the latter's contents
inaccessible to any program components that did not hold either the seal or
the unseal privilege. Such components might copy the data structure or pass
its address to other program components, but they could not gain access to
its contents. The reason for introducing such software capabilities is to bring a
protection mechanism into the programming language. The only problem with
the concept as proposed is that the use of the seal and unseal operations takes
a procedural approach to specifying protection. A nonprocedural or declarative
notation seems a preferable way to make protection available to the application
programmer.

What is needed is a safe, dynamic access-control mechanism for distribut
ing capabilities to system resources among user processes. To contribute to the
overall reliability of a system, the access-control mechanism should be safe
to use. To be useful in practice, it should also be reasonably efficient. This
requirement has led to the development of a number of language constructs
that allow the programmer to declare various restrictions on the use of a specific
managed resource. (See the Bibliographical Notes for appropriate references.)
These constructs provide mechanisms for three functions:

14.9 613

Distributing capabilities safely and efficiently among customer processes.
In particular, mechanisms ensure that a user process will use the managed
resource only if it was granted a capability to that resource.

Specifying the type of operations that a particular process may invoke on
an allocated resource (for example, a reader of a file should be allowed
only to read the file, whereas a writer should be able both to read and
to write). It should not be necessary to grant the same set of rights to
every user process, and it should be impossible for a process to enlarge
its set of access rights, except with the authorization of the access-control
mechanism.

Specifying the order in which a particular process may invoke the various
operations of a resource (for example, a file must be opened before it can
be read). It should be possible to give two processes different restrictions
on the order in which they can invoke the operations of the allocated
resource.

The incorporation of protection concepts into programming languages, as
a practical tool for system design, is in its infancy. Protection will likely become
a matter of greater concern to the designers of new systems with distributed
architectures and increasingly stringent requirements on data security. Then
the importance of suitable language notations in which to express protection
requirements will be recognized more widely.

14.9.2 Protection in Java

Because Java was designed to run in a distributed environment, the Java
virtual machine-or JVM-has many built-in protection mechanisms. Java
programs are composed of each of which is a collection of data fields
and functions (called that operate on those fields. The JVM loads a
class in response to a request to create instances (or objects) of that class. One of
the most novel and useful features ofJ ava is its support for dynamically loading
untrusted classes over a network and for executing mutually distrusting classes
within the same JVM.

Because of these capabilities of Java, protection is a paramount concern.
Classes running in the same JVM may be from different sources and may not
be equally trusted. As a result, enforcing protection at the granularity of the
JVM process is insufficient. Intuitively, whether a request to open a file should
be allowed will generally depend on which class has requested the open. The
operating system lacks this knowledge.

Thus, such protection decisions are handled within the JVM. When the
JVM loads a class, it assigns the class to a protection domain that gives
the permissions of that class. The protection domain to which the class is
assigned depends on the URL from which the class was loaded and any digital
signatures on the class file. (Digital signatures are covered in Section 15.4.1.3.)
A configurable policy file determines the permissions granted to the domain
(and its classes). For example, classes loaded from a trusted server might be
placed in a protection domain that allows them to access files in the user's
home directory, whereas classes loaded from an untrusted server might have
no file access permissions at all.

614 Chapter 14

It can be complicated for the JVM to determine what class is responsible for a
request to access a protected resource. Accesses are often performed indirectly,
through system libraries or other classes. For example, consider a class that
is not allowed to open network connections. It could call a system library to
request the load of the contents of a URL. The JVM must decide whether or not
to open a network connection for this request. But which class should be used
to determine if the connection should be allowed, the application or the system
library?

The philosophy adopted in Java is to require the library class to explicitly
permit a network corucection. More generally, in order to access a protected
resource, some method in the calling sequence that resulted in the request must
explicitly assert the privilege to access the resource. By doing so, this method
takes responsibility for the request; presumably, it will also perform whatever
checks are necessary to ensure the safety of the request. Of course, not every
method is allowed to assert a privilege; a method can assert a privilege only if
its class is in a protection domain that is itself allowed to exercise the privilege.

This implementation approach is called Every thread
in the JVM has an associated stack of its ongoing invocations. When
a caller may not be trusted, a method executes an access request within a
doPri vileged block to perform the access to a protected resource directly or
indirectly. doPri vileged () is a static method in the AccessController class
that is passed a class with a run () method to invoke. When the doPri vileged
block is entered, the stack frame for this method is annotated to indicate this
fact. Then, the contents of the block are executed. When an access to a protected
resource is subsequently requested, either by this method or a method it
calls, a call to checkPermissions () is used to invoke stack inspection to
determine if the request should be allowed. The inspection examines stack
frames on the calling thread's stack, starting from the most recently added
frame and working toward the oldest. If a stack frame is first found that has the
doPri vileged () annotation, then checkPermissions () returns immediately
and silently, allowing the access. If a stack frame is first found for which
access is disallowed based on the protection domain of the method's class,
then checkPermissions () throws an AccessControlException. If the stack
inspection exhausts the stack without finding either type of frame, then
whether access is allowed depends on the implementation (for example, some
implementations of the JVM may allow access, while other implementations
may disallow it).

Stack inspection is illustrated in Figure 14.9. Here, the gui () method of
a class in the untrusted applet protection domain performs two operations,
first a get () and then an open () . The former is an invocation of the
get () method of a class in the URL loader protection domain, which is
permitted to open() sessions to sites in the lucent. com domain, in particular
a proxy server proxy .lucent. com for retrieving URLs. For this reason, the
untrusted applet's get() invocation will succeed: the checkPermissions ()
call in the networking library encounters the stack frame of the get()
method, which performed its open() in a doPri vileged block. However,
the untrusted applet's open() invocation will result in an exception, because
the checkPermissions () call finds no doPri vileged annotation before
encountering the stack frame of the gui () method.

14.10

protection
domain:

socket
permission:

class:

none

gui:

get(uri);
open(addr);

14.10

*.lucent.com:80, connect

get(URL u):

doPrivileged {
open('proxy.lucent.com:80');

}
<request u from proxy>

Figure 14.9 Stack inspection.

615

any

open(Addr a):

checkPermission
(a, connect);
connect (a);

Of course, for stack inspection to work, a program must be unable to
modify the annotations on its own stack frame or to do other manipulations
of stack inspection. This is one of the most important differences between
Java and many other languages (including C++). A Java program cannot
directly access memory; it can manipulate only an object for which it has
a reference. References cannot be forged, and the manipulations are made
only through well-defined interfaces. Compliance is enforced through a
sophisticated collection of load-time and run-time checks. As a result, an object
cannot manipulate its run-time stack, because it camlOt get a reference to the
stack or other components of the protection system.

More generally, Java's load-time and run-time checks enforce of
Java classes. Type safety ensures that classes cannot treat integers as pointers,
write past the end of an array, or otherwise access memory in arbitrary ways.
Rather, a program can access an object only via the methods defined on that
object by its class. This is the f01mdation of Java protection, since it enables a
class to effectively - and protect its data and methods from other
classes loaded in the same JVM. For example, a variable can be defined as
private so that only the class that contains it can access it or protected so
that it can be accessed only by the class that contains it, subclasses of that class,
or classes in the same package. Type safety ensures that these restrictions can
be enforced.

Computer systems contain many objects, and they need to be protected from
misuse. Objects may be hardware (such as memory, CPU time, and I/0 devices)
or software (such as files, programs, and semaphores). An access right is
permission to perform an operation on an object. A domain is a set of access
rights. Processes execute in domains and may use any of the access rights in
the domain to access and manipulate objects. During its lifetime, a process may
be either bound to a protection domain or allowed to switch from one domain
to another.

616 Chapter 14

The access matrix is a general model of protection that provides a
mechanisnc for protection without imposing a particular protection policy on
the system or its users. The separation of policy and mechanism is an important
design property.

The access matrix is sparse. It is normally implemented either as access lists
associated with each object or as capability lists associated with each domain.
We can include dynamic protection in the access-matrix model by considering
domains and the access matrix itself as objects. Revocation of access rights in a
dynamic protection model is typically easier to implement with an access-list
scheme than with a capability list.

Real systems are much more limited than the general model and tend to
provide protection only for files. UNIX is representative, providing read, write,
and execution protection separately for the owner, group, and general public
for each file. MULTICS uses a ring structure in addition to file access. Hydra, the
Cambridge CAP system, and Mach are capability systems that extend protection
to user-defined software objects. Solaris 10 implements the principle of least
privilege via role-based access controt a form of the access matrix.

Language-based protection provides finer-grained arbitration of requests
and privileges than the operating system is able to provide. For example, a
single Java JVM can run several threads, each in a different protection class. It
enforces the resource requests through sophisticated stack inspection and via
the type safety of the language.

14.1 Consider a computer system in which "computer games" can be played
by students only between 10 P.M. and 6 A.M., by faculty members
between 5 P.M. and 8 A.M., and by the computer center staff at all
times. Suggest a scheme for implementing this policy efficiently.

14.2 The RC 4000 system, among others, has defined a tree of processes (called
a process tree) such that all the descendants of a process can be given
resources (objects) and access rights by their ancestors only. Thus, a
descendant can never have the ability to do anything that its ancestors
cannot do. The root of the tree is the operating system, which has the
ability to do anything. Assume the set of access rights is represented
by an access matrix, A. A(x,y) defines the access rights of process x to
object y. If xis a descendant of z, what is the relationship between A(x,y)
and A(z,y) for an arbitrary object y?

14.3 How are the access-matrix facility and the role-based access-control
facility similar? How do they differ?

14.4 Discuss the need for rights amplification in Hydra. How does this
practice compare with the cross-ring calls in a ring-protection scheme?

617

14.5 Explain why a capability-based system such as Hydra provides greater
flexibility than the ring-protection scheme in enforcing protection
policies.

14.6 Consider the ring-protection scheme in MULTICS. If we were to imple
ment the system calls of a typical operating system and store them in a
segment associated with ring 0, what should be the values stored in the
ring field of the segment descriptor? What happens during a system
call when a process executing in a higher-numbered ring invokes a
procedure in ring 0?

14.7 Discuss the strengths and weaknesses of implementing an access matrix
using capabilities that are associated with domains.

14.8 Discuss the strengths and weaknesses of implementing an access matrix
using access lists that are associated with objects.

14.9 The access-control matrix can be used to determine whether a process
can switch from, say, domain A to domain B and enjoy the access
privileges of domain B. Is this approach equivalent to including the
access privileges of domain B in those of domain A?

14.10 How can systems that implement the principle of least privilege still
have protection failures that lead to security violations?

14.11 How does the principle of least privilege aid in the creation of protection
systems?

14.12 What protection problems may arise if a shared stack is used for
parameter passing?

14.13 If all the access rights to an object are deleted, the object can no longer
be accessed. At this point the object should also be deleted, and the
space it occupies should be returned to the system. Suggest an efficient
implementation of this scheme.

14.14 Discuss which of the following systems allow module designers to
enforce the need-to-know principle.

a. The MULTICS ring-protection scheme

b. Hydra's capabilities

c. JVM's stack-inspection scheme

618 Chapter 14

14.15 Consider a computing environment where a unique number is associ
ated with each process and each object in the system. Suppose that we
allow a process with number n to access an object with number m only
if n > m. What type of protection structure do we have?

14.16 What is the need-to-know principle? Why is it important for a protec
tion system to adhere to this principle?

14.17 What hardware features does a computer system need for efficient
capability manipulation? Can these features be used for memory
protection?

14.18 Describe how the Java protection model would be compromised if a
Java program were allowed to directly alter the annotations of its stack
frame.

14.19 A Burroughs B7000/B6000 MCP file can be tagged as sensitive data.
When such a file is deleted, its storage area is overwritten by some
random bits. For what purpose would such a scheme be useful?

The access-matrix model of protection between domains and objects was
developed by Lampson [1969] and Lampson [1971]. Popek [1974] and Saltzer
and Schroeder [1975] provided excellent surveys on the subject of protection.
Harrison et al. [1976] used a formal version of this model to enable them to
prove properties of a protection system mathematically.

The concept of a capability evolved from Iliffe's and Jodeit's codewords,
which were implemented in the Rice University computer (Iliffe and Jodeit
[1962]). The term capability was introduced by Dennis and Horn [1966].

The Hydra system was described by Wulf et al. [1981]. The CAP system
was described by Needham and Walker [1977]. Organick [1972] discussed the
MULTICS ring-protection system.

Revocation was discussed by Redell and Fabry [1974], Cohen and Jefferson
[1975], and Ekanadham and Bernstein [1979]. The principle of separation of
policy and mechanism was advocated by the designer of Hydra (Levin et al.
[1975]). The confinement problem was first discussed by Lampson [1973] and
was further examined by Lipner [1975].

The use of higher-level languages for specifying access control was
suggested first by Morris [1973], who proposed the use of the seal and unseal
operations discussed in Section 14.9. Kieburtz and Silberschatz [1978], Kieburtz
and Silberschatz [1983], and McGraw and Andrews [1979] proposed various
language constructs for dealing with general dynamic-resource-management
schemes. Jones and Liskov [1978] considered how a static access-control scheme
can be incorporated in a programming language that supports abstract data
types. The use of minimal operating-system support to enforce protection was
advocated by the Exokernel Project (Ganger et al. [2002], Kaashoek et al. [1997]).

15.1

Protection, as we discussed in Chapter 14, is strictly an internal problem: How
do we provide controlled access to programs and data stored in a computer
system? on the other hand, requires not only an adequate protection
system but also consideration of the external environment within which the
system operates. A protection system is ineffective if user authentication is
compromised or a program is run by an unauthorized user.

Computer resources must be guarded against unauthorized access, mali
cious destruction or alteration, and accidental introduction of inconsistency.
These resources include information stored in the system (both data and code),
as well as the CPU, memory, disks, tapes, and networking that are the com
puter. In this chapter, we start by examining ways in which resources may
be accidentally or purposely misused. We then explore a key security enabler
-cryptography. Finally, we look at mechanisms to guard against or detect
attacks.

To discuss security threats and attacks.

To explain the fundamentals of encryption, authentication, and hashing.

To examine the uses of cryptography in computing.

To describe various countermeasures to security attacks.

In many applications, ensuring the security of the computer system is worth
considerable effort. Large commercial systems containing payroll or other
financial data are inviting targets to thieves. Systems that contain data pertain
ing to corporate operations may be of interest to unscrupulous competitors.
Furthermore, loss of such data, whether by accident or fraud, can seriously
impair the ability of the corporation to function.

In Chapter 14, we discussed mechanisms that the operating system can
provide (with appropriate aid from the hardware) that allow users to protect

621

622 Chapter 15

their resources, including programs and data. These mechanisms work well
only as long as the users conform to the intended use of and access to these
resources. We say that a system is if its resources are used and accessed
as intended under all circumstances. Unfortunately total security cannot be
achieved. Nonetheless, we must have mechanisms to make security breaches
a rare occurrence, rather than the norm.

Security violations (or misuse) of the system. can be categorized as inten
tional (malicious) or accidental. It is easier to protect against accidental misuse
than against malicious misuse. For the most part protection mechanisms are
the core of protection from accidents. The following list includes several forms
of accidental and malicious security violations. We should note that in our
discussion of security, we use the terms intruder and cracker for those attempting
to breach security. In addition, a is the potential for a security violation,
such as the discovery of a vulnerability, whereas an is the attempt to
break security.

Breach of confidentiality. This type of violation involves 1mauthorized
reading of data (or theft of information). Typically, a breach of confiden
tiality is the goal of an intruder. Capturing secret data from a system or
a data stream, such as credit-card information or identity information for
identity theft, can result directly in money for the intruder.

Breach of integrity. This violation involves unauthorized modification
of data. Such attacks can, for example, result in passing of liability to
an innocent party or modification of the source code of an important
commercial application.

Breach of availability. This violation involves unauthorized destruction of
data. Some crackers would rather wreak havoc and gain status or bragging
rights than gain financially. Web-site defacement is a common example of
this type of security breach.

Theft of service. This violation involves unauthorized use of resources.
For example, an intruder (or intrusion program) may install a daemon on
a system that acts as a file server.

Denial of service. This violation involves preventing legitimate use of the
system. or attacks are sometimes accidental. The
original Internet worm turned into a DOS attack when a bug failed to delay
its rapid spread. We discuss DOS attacks further in Section 15.3.3.

Attackers use several standard methods in their attempts to breach
security. The most common is in which one participant in
a communication pretends to be someone (another host or another
person). By masquerading, attackers breach the correctness
of identification; they can then gain access that they would not normally be
allowed or escalate their privileges-obtain privileges to which they would not
normally be entitled. Another common attack is to replay a captured exchange
of data. A consists of the malicious or fraudulent repeat of a
valid data transmission. Sometimes the replay comprises the entire attack-
for example, in a repeat of a to transfer money. But frequently it is
done along with again to escalate privileges. Consider

15.1 623

Normal

attacker

Masquerading

attacker

Man-in-the-middle

attacker

Figure 15.1 Standard security attacks.

the damage that could be done if a request for authentication had a legitimate
user's information with an unauthorized user's. Yet another kind of
attack is the in which an attacker sits in the data
flow of a communication, masquerading as the sender to the receiver, and
vice versa. In a network communication, a man-in-the-middle attack may be
preceded by a in which an active communication session is
intercepted. Several attack methods are depicted in Figure 15.1.

As we have already suggested, absolute protection of the system from
malicious abuse is not possible, but the cost to the perpetrator can be made
sufficiently high to deter most intruders. In some cases, such as a denial-of
service attack, it is preferable to prevent the attack but sufficient to detect the
attack so that cmmtermeasures can be taken.

To protect a system, we must take security measures at four levels:

Physical. The site or sites containing the computer systems must be
physically secured against armed or surreptitious entry by intruders.
Both the machine rooms and the terminals or workstations that have
access to the machines must be secured.

624 Chapter 15

must be done carefully to assure that only
access to the system. Even authorized users/

to let others use their access (in exchange
They may also be tricked into allowing

One type of social-engineering attack
Here, a legitimate-looking e-mail or Web page misleads

a user into entering confidential information. Another teclucique is

Human. Authorization
appropriate users have
however, may be
for a bribe, for
access via
is

a general term for attempting to gather information in
order to gain unauthorized access to the computer (by looking through
trash, finding phone books, or finding notes containing passwords, for
example). These security problems are management and personnel issues,
not problems pertaining to operating systems.

Operating system. The system must protect itself from accidental or
purposeful security breaches. A runaway process could constitute an
accidental denial-of-service attack. A query to a service could reveal pass
words. A stack overflow could the launching of an unauthorized
process. list of possible breaches is almost endless.

Network. Much computer data in modern systems travels over private
leased lines, shared lines like the Internet, wireless connections, or dial-up
lines. Intercepting these data could be just as harmful as breaking into a
computer; and interruption communications could constitute a remote
denial-of-service attack, diminishing users' use of and trust in the system.

at the first two levels must be Inaintained if operating-system
is to be ensured. A weakness at a high security (physical or
allows circumvention of strict low-level (operating-system) security

measures. the old adage that a chaL.'l is as weak as its weakest link is
true of system security. All these aspects must be addressed for

to be maintained.
to allow the

more

is As intruders
countermeasures are created and deployed.

This causes intruders to become more in their attacks. For
incidents include the use of to

Section
tools needed to block the

In the remainder of this

15

15.2 625

ways, ranging from passwords for authentication through guarding against
viruses to detecting intrusions. We start with an exploration of security threats.

Processes, along with the kernel, are the only means of accomplishing work
on a computer. Therefore, writing a program that creates a breach of security,
or causing a normal process to change its behavior and create a breach, is a
common goal of crackers. In fact even most nonprogram security events have
as their goal causing a program threat. For example, while it is useful to log in
to a without authorization, it is quite a lot more useful to leave behind
a daemon that provides information or allows easy access even if
the original exploit is blocked. In this section, we describe common methods

which programs cause security breaches. Note that there is considerable
variation in the naming conventions of security holes and that we use the most
common or descriptive terms.

15.2.1 Horse

systems have mechanisms for allowing programs written by users to
be executed by other users. If these programs are executed in a domain that
provides the access rights of the executing user, the other users may misuse
these rights. A text-editor program, for example, may include code to search
the file to be edited for certairl keywords. If any are found, the entire file
may be to a special area accessible to the creator of the text editor.
A code segment that misuses its environment is called a Long
search paths, as are common on UNIX systems, exacerbate the Trojan-
horse The search path lists the set of directories to search when an

program name is given. The is searched for a file of that
name, and the file is executed. All the directories in such a search path must
be secure, or a horse could be slipped into the user's and executed

consider the use of the"." character in a search path. The"."
to include the current directory in the search. if a user has

"."in her search has set her current to a friend's directory, and
enters the name of a normal system commanct be executed
from the friend's instead. The program would run the user's

to do anything that the user is allowed to
the user's instance.

horse is a that emulates a

What

626 Chapter 15

such as the control-alt-delete conlbination used by all modern Windows
operating systems.

Another variation on the Trojan horse is Spyware sometimes
accompanies a program that the user has chosen to install. Most frequently, it
comes along with freeware or shareware programs, but sometimes it is included
with commercial software. The goal of spyware is to download ads to display
on the user's system, create when certain sites are
visited, or capture information from the user's system and return it to a central
site. This latter is an example of a general category of attacks known as

in which surreptitious communication occurs. For example,
the installation of an innocuous-seeming program on a Windows system could
result in the loading of a spyware daemon. The spyware could contact a central
site, be given a message and a list of recipient addresses, and deliver the spam
message to those users from the Windows machine. This process continues
until the user discovers the spyware. Frequently, the spyware is not discovered.
In 2004, it was estimated that 80 percent of spam was being delivered by this
method. This theft of service is not even considered a crime in most countries!

Spyware is a micro example of a macro problem: violation of the principle
of least privilege. Under most circumstances, a user of an operating system
does not need to install network daemons. Such daemons are installed via
two mistakes. First, a user may run with more privileges than necessary (for
example, as the administrator), allowing programs that she runs to have more
access to the system than is necessary. This is a case of human error-a common
security weakness. Second, an operating system may allow by default more
privileges than a normal user needs. This is a case of poor operating-system
design decisions. An operating system (and, indeed, software in general)
should allow fine-grained control of access and security, but it must also be easy
to manage and understand. Inconvenient or inadequate security measures are
bound to be circumvented, causing an overall weakening of the security they
were designed to implement.

15.2.2 Trap Door

The designer of a program or system might leave a hole in the software that only
he is capable of using. This type of security breach (or was shown in
the movie War Games. For instance, the code Inight check a specific user ID or
password, and it might circumvent normal security procedures. Programmers
have been arrested for embezzling from banks by including rounding errors
in their code and having the occasional half-cent credited to their accounts.
This account credititrg can add up to a large amount of money, considering the
number of transactions that a large bank executes.

A clever trap door could be included in a compiler. The compiler could
generate standard object code as well as a trap door, regardless of the source
code being compiled. This activity is particularly nefarious, since a search of
the source code of the program will not reveal any problems. Only the source
code of the compiler would contain the information.

Trap doors pose a difficult problem because, to detect them, we have to
analyze all the source code for all components of a system. Given that software
systems may consist of millions of lines of code, this analysis is not done
frequently, and frequently it is not done at all!

15.2 627

15.2.3 Logic Bomb

Consider a program that initiates a security incident only under certain
circLtmstances. It would be hard to detect because under normal operations,
there would be no security hole. However, when a predefined set of parameters
were met, the security hole would be created. This scenario is known as a

A programmer, for example, might write code to detect whether
was still employed; if that check failed, a daemon could be spawned to allow
remote access, or code could be launched to cause damage to the site.

15.2.4 Stack and Buffer Overflow

The stack- or buffer-overflow attack is the most common way for an attacker
outside the system, on a network or dial-up connection, to gain unauthorized
access to the target system. An authorized user of the system may also use this
exploit for privilege escalation.

Essentially, the attack exploits a bug in a program. The bug can be a simple
case of poor programming, in which the programmer neglected to code bounds
checking on an input field. In this case, the attacker sends more data than the
program was expecting. By using trial and error, or by examining the source
code of the attacked program if it is available, the attacker determines the
vulnerability and writes a program to do the following:

Overflow an input field, command-line argument, or input buffer-for
example, on a network daemon-wl.til it writes into the stack.

Overwrite the current return address on the stack with the address of the
exploit code loaded in step 3.

Write a simple set of code for the next space in the stack that includes
the commands that the attacker wishes to execute-for instance, spawn
a shell.

The result of this attack program's execution will be a root shell or other
privileged command execution.

For instance, if a Web-page form expects a user name to be entered into a
field, the attacker could send the user name, plus extra characters to overflow
the buffer and reach the stack, plus a new return address to load onto the stack,
plus the code the attacker wants to run. When the buffer-reading subroutine
returns from execution, the return address is the exploit code, and the code
is run.

Let's look at a buffer-overflow exploit in more detail. Consider the simple
C program in Fig1-1re 15.2. This program creates a character array
size BUFFER_SIZE and copies the contents of the parameter provided on the
command line-argv [1]. As long as the size of this parameter is less than
BUFFER_SIZE (we need one byte to store the null terminator), this program
works properly. But consider what happens if the parameter provided on the
command line is longer than BUFFER_SIZE. In this scenario, the strcpy ()
function will begin copying from argv [1] until it encounters a null terminator
(\0) or until the program crashes. Thus, this program suffers from a potential

problem in which copied data overflow the buffer array.

628 Chapter 15

#include <stdio.h>
#define BUFFER_SIZE 256

int main(int argc, char *argv[])
{

}

char buffer[BUFFER_SIZE];

if (argc < 2)
return -1;

else {
strcpy(buffer,argv[1]);
return 0;

}

Figure "15.2 C program with buffer-overflow condition.

Note that a careful programmer could have performed bounds checking
on the size of argv [1] by using the strncpy () function rather than strcpy (),
replacing the line "strcpy(buffer, argv [1]);" with "strncpy(buffer,
argv[1], sizeof(buffer)-1) ;".Unfortunately, good bounds checking is
the exception rather than the norm.

Furthermore, lack of bounds checking is not the only possible cause of the
behavior of the program in Figure 15.2. The program could instead have been
carefully designed to compromise the integrity of the system. We now consider
the possible security vulnerabilities of a buffer overflow.

When a function is invoked in a typical computer architecture, the variables
defined locally to the function (sometimes known as automatic variables), the
parameters passed to the function, and the address to which control returns
once the function exits are stored in a stack frame. The layout for a typical stack
frame is shown in Figure 15.3. Examining the stack frame from top to bottom,
we first see the parameters passed to the function, followed by any automatic
variables declared in the function. We next see the frame pointer, which is
the address of the beginning of the stack frame. Finally, we have the return

bottom ~ frame pointer

grows

top

Figure 15.3 The layout for a typical stack frame.

15.2 629

address, which specifies where to return control once the function exits. The
frame pointer must be saved on the stack, as the value of the stack pointer can
vary during the function call; the saved frame pointer allows relative access to
parameters and automatic variables.

Given this standard memory layout, a cracker could execute a buffer
overflow attack. I-:Ter goal is to replace the return address in the stack frame so
that it now points to the code segment containing the attacking program.

The programmer first writes a short code segment such as the following:

#include <stdio.h>

int main(int argc, char *argv[])
{

execvp(' '\bin\sh'', ''\bin \sh'', NULL);
return 0;

Using the execvp () system call, this code segment creates a shell process.
If the program being attacked runs with system-wide permissions, this newly
created shell will gain complete access to the system. Of course, the code
segment could do anything allowed by the privileges of the attacked process.
This code segment is then compiled so that the assembly language instructions
can be modified. The primary modification is to remove unnecessary features
in the code, thereby reducing the code size so that it can fit into a stack frame.
This assembled code fragment is now a binary sequence that will be at the
heart of the attack.

Refer again to the program shown in Figure 15.2. Let's assume that when
the main () function is called in that program, the stack frame appears as
shown in Figure 15.4(a). Using a debugger, the programmer then finds the

copied

(a) (b)

Figure 15.4 Hypothetical stack frame for Figure 15.2, (a) before and (b) after.

630 Chapter 15

address of buffer [0] in the stack. That address is the location of the code the
attacker wants executed. The binary sequence is appended with the necessary
amount of NO-OP instructions (for NO-OPeration) to fill the stack frame up
to the location of the return address; and the location. of buffer [0], the new
return address, is added. The attack is complete when the attacker gives this
constructed binary sequence as input to the process. The process then copies
the binary sequence from argv [1] to position buffer [0] in the stack frame.
Now, when control returns from main (), instead of returning to the location
specified by the old value of the return address, we return to the modified shell
code, which runs with the access rights of the attacked process! Figure 15.4(b)
contains the modified shell code.

There are many ways to exploit potential buffer-overflow problems. In
this example, we considered the possibility that the program being attacked
the code shown in Figure 15.2-ran with system-wide permissions. However,
the code segment that runs once the value of the return address has been
modified might perform any type of malicious act, such as deleting files,
opening network ports for further exploitation, and so on.

This example buffer-overflow attack reveals that considerable knowledge
and programming skill are needed to recognize exploitable code and then
to exploit it. Unfortunately, it does not take great programmers to launch
security attacks. Rather, one cracker can determine the bug and then write an
exploit. Anyone with rudimentary computer skills and access to the exploit-
a so-called then try to launch the attack at target systems.

The buffer-overflow attack is especially pernicious because it can be run
between systems and can travel over allowed communication channels. Such
attacks can occur within protocols that are expected to be used to communicate
with the target machine, and they can therefore be hard to detect and prevent.
They can even bypass the security added by firewalls (Section 15.7).

One solution to this problem is for the CPU to have a feature that disallows
execution of code in a stack section of memory. Recent versions of Sun's SPARC
chip include this setting, and recent versions of Solaris enable it. The return
address of the overflowed routine can still be modified; but when the return
address is within the stack and the code there attempts to execute, an exception
is generated, and the program is halted with an error.

Recent versions of AMD and Intel x86 chips include the NX feature to prevent
this type of attack The use of the feature is supported in several x86 operating
systems, including Linux and Windows XP SP2. The hardware implementation
involves the use of a new bit in the page tables of the CPUs. This bit marks
the associated page as nonexecutable, so that instructions cannot be read from
it and executed. As this feature becomes prevalent, buffer-overflow attacks
should greatly diminish.

15.2.5 Viruses

Another form of program threat is a A virus is a fragment of code embed
ded in a legitimate program. Viruses are self-replicating and are designed to
"infect" other programs. They can wreak havoc in a system by modifying or
destroying files and causing system crashes and program malfunctions. As
with most penetration attacks, viruses are very specific to architectures, oper
ating systems, and applications. Viruses are a particular problem for users of

15.2 631

PCs. UNIX and other multiuser operating systems generally are not susceptible
to viruses because the executable programs are protected from writing by the
operating system. Even if a virus does infect such a progran:1, its powers usually
are limited because other aspects of the system are protected.

Viruses are usually borne via e-mail, with spam the most comrnon vector.
They can also spread when users download viral programs Internet
file-sharing services or exchange infected disks.

Another common form of virus transmission uses Microsoft Office files,
such as Microsoft Word documents. These documents can contain macros
Visual Basic programs) that programs in the Office suite PowerPoint,
and Excel) will execute automatically. Because these programs run under the
user's own account, the macros can run largely unconstrained (for example,
deleting user files at will). Commonly, the virus will also e-mail itself to others
in the user's contact list. Here is a code sample that shows the simplicity of
writing a Visual Basic macro that a virus could use to format the hard drive of
a Windows computer as soon as the file containing the macro was opened:

Sub AutoOpen ()
Dim oFS

Set oFS = CreateObject(' 'Scripting.FileSystemObject'')
vs =Shell(' 'c: command.com /k format c:' ',vbHide)

End Sub

How do viruses work? Once a virus reaches a target machine, a program
known as a inserts the virus into the system. The virus dropper
is usually a Trojan horse, executed for other reasons but installing the virus
as its core activity. Once installed, the virus may do any one of a number of
things. There are literally thousands of viruses, but they fall into several main
categories. Note that many viruses belong to more than one category.

File. A standard file virus infects a system by appending itself to a file.
It changes the start of the program so that execution jumps to its code.
After it executes, it returns control to the program so that its execution is
not noticed. File viruses are sometimes known as parasitic viruses, as they
leave no full files behind and leave the host program still functional.

Boot. A boot virus infects the boot sector of the system, executing every
time the system is booted and before the operating system is loaded. It
watches for other boatable media (that is, floppy disks) and infects them.
These viruses are also known as memory viruses, because they do not
appear in the file system. Figure 15.5 shows how a boot virus works.

Macro. Most viruses are written in a low-levellanguage, such as assembly
or C. Macro viruses are written in a high-level language, such as Visual
Basic. These viruses are triggered when a program capable of executing
the macro is run. For example, a macro virus could be contained in a
spreadsheet file.

Source code. A source code virus looks for source code and modifies it to
include the virus and to help spread the virus.

632 Chapter 15

Figure i 5.5 A boot-sector computer virus.

Polymorphic. A polymorphic virus changes each time it is installed to
avoid detection by antivirus software. The changes do not affect the virus's
functionality but rather change the virus's signature. A
a pattern that Cili'i be used to identify a virus, typically a series
make up the virus code.

Encrypted. An encrypted virus includes decryption code along with the
encrypted virus, again to avoid detection. The virus first decrypts and then
executes.

Stealth. This tricky virus attempts to avoid detection by modifying parts
of the system that could be used to detect it. For example, it could modify
the read system call so that if the file it has modified is read, the original
form of the code is returned rather than the infected code.

Tunneling. This virus attempts to bypass detection by an anti virus scanner
by installing itself in the interrupt-handler chain. Similar viruses install
themselves in device drivers.

15.3

15.3 633

Multipartite. A virus of this type is able to infect nmltiple parts of a system,
including boot sectors, memory, and files. This makes it difficult to detect
and contain.

Armored. An armored virus is coded to ncake it hard for antivirus
researchers to unravel and understand. It can also be compressed to avoid
detection and disinfection. In addition, virus droppers and other full files
that are part of a virus infestation are frequently hidden via file attributes
or unviewable file names.

This vast variety of viruses is likely to continue to grow. In fact, in 2004
a new and widespread virus was detected. It exploited three separate bugs
for its operation. This virus started by infecting hundreds of Windows servers
(including many trusted sites) running Microsoft Internet Information Server
(IIS). Any vulnerable Microsoft Explorer Web browser visiting those sites
received a browser virus with any download. The browser virus installed
several back-door programs, including a which records
all things entered on the keyboard (including and credit-card
numbers). It also installed a daemon to allow unlimited remote access by
an intruder and another that allowed an intruder to route spam through the
infected desktop computer.

Generally, viruses are the most disruptive security attacks; and because
they are effective, they will continue to be written and to spread. the
active debates within the computing community is whether a JtH'-YHcn;_

in which many systems run the same hardware, operating system, and/ or
application software, is increasing the threat of and damage caused by security
intrusions. This monoculture supposedly consists of Microsoft products, and
part of the debate concerns whether such a monoculture even exists today.

Program threats typically use a breakdown in the protection mechanisms of a
system to attack programs. In contrast, system and network threats involve the
abuse of services and network comcections. System and network threats create
a situation in which operating-system resources and user files are Inisused.
Sometimes a system and network attack is used to launch a program attack,
and vice versa.

The more an operating system is-the more services it has enabled
and the more functions it allows-the more likely it is that a is available
to exploit. Increasingly, operating systems strive to be
For example, Solaris 10 moved from a model in which many services (FTP,
telnet, and others) were enabled by default when the system was installed
to a model in which almost all services are disabled at installation time and
must specifically be enabled system administrators. Such changes reduce
the system's set of ways in which an attacker can to
break into the system.

In the remainder of this section, we discuss some examples of system
and network threats, including worms, port scamcing, and denial-of-service
attacks. It is important to note that masquerading and replay attacks are also

634 Chapter 15

commonly launched over netvvorks between systems. In fact, these attacks
are more effective and harder to counter when multiple systems are involved.
For example, within a computer, the operating system usually can determine
the sender and receiver of a message. Even if the sender changes to the ID of
someone else, there may be a record of that ID change. When multiple systems
are involved, especially systems controlled by attackers, then such tracing is
much more difficult.

In general, we can say that sharing secrets (to prove identity and as keys to
encryption) is required for authentication and encryption, and sharing secrets
is easier in environments (such as a single operating system) in which secure
sharing methods exist. These methods include shared memory and interpro
cess comnmnications. Creating secure communication and authentication is
discussed in Sections 15.4 and 15.5.

15.3.1 Worms

A is a process that uses the mechanism to ravage system
performance. The worm spawns copies of itself, using up system resources
and perhaps locking out all other processes. On computer networks, worms
are particularly potent, since they may reproduce themselves among systems
and thus shut down an entire network. Such an event occurred in 1988 to UNIX
systems on the Internet, causing the loss of system and system-administrator
time worth millions of dollars.

At the close of the workday on November 2, 1988, Robert Tappan Morris,
Jr., a first-year Cornell graduate student, unleashed a worm program on one
or more hosts corm.ected to the Internet. Targeting Sun Microsystems' Sun 3
workstations and VAX computers running variants of Version 4 BSD UNIX, the
worm quickly spread over great distances; within a few hours of its release,
it had consumed system resources to the point of bringing down the infected
machines.

Although Robert Morris designed the self-replicating program for rapid
reproduction and distribution, some of the features of the UNIX networking
environment provided the means to propagate the worm throughout the sys
tem. It is likely that Morris chose for in.itial infection an Internet host left open
for and accessible to outside users. From there, the worm program exploited
flaws in the UNIX operating system's security routines and took advantage
of UNIX utilities that simplify resource sharing in local-area networks to gain
unauthorized access to thousands of other connected sites. Morris's methods
of attack are outlined next.

The worm was made up of two programs, a (also called a
or program and the main program. ll.c, the grappling

hook consisted of 99 lines of C code compiled and run on each machine it
accessed. Once established on the computer system under attack, the grappling
hook connected to the machine where it originated and uploaded a copy of the
main worm onto the hooked system (Figure 15.6). The main program proceeded
to search for other machines to which the newly infected system could connect
easily. In these actions, Morris exploited the UNIX networking utility rsh for
easy remote task execution. By setting up special files that list host-login
name pairs, users can omit entering a password each time they access a remote
account on the paired list. The worm searched these special files for site names

15.3 635

rsh attack

finger attack

sendmail attack

worm sent

target system infected system

Figure 15.6 The Morris Internet worm.

that would allow remote execution without a password. Where remote shells
were established, the worm program was uploaded and began executing anew.

The attack via remote access was one of three infection methods built into
the worm. The other two methods involved operating-system bugs in the UNIX
finger and sendmail programs.

The finger utility functions as an electronic telephone directory; the
command

finger user-name©hostname

returns a person's real and login names along with other information that
the user may have provided, such as office and home address and telephone
number, research plan, or clever quotation. Finger runs as a background
process (or daemon) at each BSD site and responds to queries throughout the
Internet. The worm executed a buffer-overflow attack on finger. The program
queried finger with a 536-byte string crafted to exceed the buffer allocated
for input and to overwrite the stack frame. Instead of returning to the main
routine where it resided before Morris's calt the finger daemon was routed
to a procedure within the invading 536-byte string now residing on the stack
The new procedure executed /bin/ sh, which, if successful, gave the worm a
remote shell on the machine under attack.

The bug exploited in sendmail also involved using a daemon process
for malicious entry. sendmail sends, receives, and routes electronic mail.
Debugging code in the utility permits testers to verify and display the state of
the ncail system. The debugging option was useful to system administrators
and was often left on. Morris included in his attack arsenal a call to debug that
-instead of specifying a user address, as would be normal in testing-issued
a set of cornmands that mailed and executed a copy of the grappling-hook
program.

Once in place, the main worm systematically attempted to discover user
passwords. It began by trying simple cases of no password or passwords
constructed of account-user-name combinations, then used comparisons with
an internal dictionary of 432 favorite password choices, and then went to the

636 Chapter 15

final stage of trying each word in the standard UNIX on-line dictionary as a
possible password. This elaborate and efficient three-stage password-cracking
algorithm enabled the worm to gain access to other user accounts on the
infected system. The wonTt then searched for rsh data files in these newly
broken accounts and used them as described previously to gain access to user
accounts on remote systems.

With each new access, the worm program searched for already active
copies of itself. If it found one, the new copy exited, except in every seventh
instance. Had the worm exited on all duplicate sightings, it might have
remained undetected. Allowing every seventh duplicate to proceed (possibly
to confound efforts to stop its spread baiting with fake worms) created a
wholesale infestation of Sun and VAX systems on the Internet.

The very features of the UNIX network environment that assisted il"l the
worm's propagation also helped to stop its advance. Ease of electronic commu
nication, mechanisms to copy source and binary files to remote machines, and
access to both source code and human expertise allowed cooperative efforts to
develop solutions quickly. By the evening of the next day, November 3, methods
of halting the invading program were circulated to system administrators via
the Internet. Within days, specific software patches for the exploited security
flaws were available.

Why did Morris unleash the worm? The action has been characterized
as both a harmless prank gone awry and a serious criminal offense. Based
on the complexity of the attack, it is unlikely that the worm's release or the
scope of its spread was unintentional. The worm program took elaborate steps
to cover its tracks and to repel efforts to stop its spread. Yet the program
contained no code aimed at damaging or destroying the systems on which it
ran. The author clearly had the expertise to include such commands; in fact,
data structures were present in the bootstrap code that could have been used to
transfer Trojan-horse or virus programs. The behavior of the program may lead
to interesting observations, but it does not provide a sound basis for inferring
motive. What is not open to speculation, however, is the legal outcome: A
federal court convicted Morris and handed down a sentence of three years'
probation, 400 hours of community service; and a $10,000 fine. Morris's legal
costs probably exceeded $100,000.

Security experts continue to evaluate methods to decrease or eliminate
worms. A more recent event; though, shows that worms are still a fact of
life on the Internet. It also shows that as the Internet grows, the damage
that even "harmless" worms can do also grows and can be significant. This
example occurred during August 2003. The fifth version of the "Sobig" worm,
more properly known as "W32.Sobig.F@mm," was released by persons at this
time unknown. It was the fastest-spreading worm released to date, at its peak
mfecting hundreds of thousands of computers and one in seventeen e-mail
messages on the Internet. It clogged e-mail inboxes, slowed networks, and
took a huge number of hours to clean up.

Sobig.F was launched by being uploaded to a pornography newsgroup via
an account created with a stolen credit card. It was disguised as a photo. The
virus targeted Microsoft Windows systems and used its own SMTP engine to
e-mail itself to all the addresses found on an infected system. It used a variety
of subject lines to help avoid detection, including "Thank You!" "Your details,''
and "Re: Approved." It also used a random address on the host as the "From:"

15.3 637

address, making it difficult to determine from the message which machine was
the infected source. Sobig.F included an attachment for the target e-mail reader
to click on, again with a variety of names. If this payload was executed, it stored
a program called WINPPR32.EXE in the default Windows directory, along with
a text file. It also modified the Windows registry.

The code included in the attachment was also programmed to periodically
attempt to connect to one of twenty servers and download and execute a
program from them. Fortunately, the servers were disabled before the code
could be downloaded. The content of the program from these servers has not
yet been determined. If the code was malevolent, untold damage to a vast
number of machines could have resulted.

15.3.2 Port Scanning

Port scanning is not an attack but rather a means for a cracker to detect
a system's vulnerabilities to attack. Port scanning typically is automated,
involving a tool that attempts to create a TCP liP connection to a specific port
or a range of ports. For example, suppose there is a known vulnerability (or
bug) in sendmail. A cracker could launch a port scanner to try to connect, say,
to port 25 of a particular system or to a range of systems. If the connection
was successful, the cracker (or tool) could attempt to communicate with the
answering service to determine if the service was indeed sendmail and, if so,
if it was the version with the bug.

Now imagine a tool in which each bug of every service of every operath<g
system was encoded. The tool could attempt to connect to every port of one
or nwre systems. For every service that answered, it could try to use each
known bug. Frequently, the bugs are buffer overflows, allowing the creation of
a privileged command shell on the system. From there, of course, the cracker
could install Trojan horses, back-door programs, and so on.

There is no such tool, but there are tools that perform subsets of that
functionality. For example, nmap (from http:/ /www.insecure.org/mrtap/) is
a very versatile open-source utility for network exploration and security
auditing. When pointed at a target, it will determine what services are n.1n..Tling,
including application names and versions. It can identify the host operating
system. It can also provide information about defenses, such as what firewalls
are defending the target. It does not exploit any known bugs.

Nessus (from http:/ /www.nessus.org/) performs a similar function, but
it has a database of bugs and their exploits. It can scan a range of systems,
determine the services running on those systems, and attempt to attack all
appropriate bugs. It generates reports about the results. It does not perform
the final step of exploiting the found bugs, but a knowledgeable cracker or a
script kiddie could.

Because port scans are detectable (Section 15.6.3), they frequently are
launched from Such systems are previously compromised,
independent systems that are serving their owners while being used for nefar
ious purposes, including denial-of-service attacks and spam relay. Zombies
make crackers particularly difficult to prosecute because determining the
source of the attack and the person that launched it is challenging. This is
one of many reasons for securing "inconsequential" systems, not just systems
containing "valuable" information or services.

638 Chapter 15

15.3.3 Denial of Service

As mentioned earlier, denial-of-service attacks are aimed not at gaming
information or stealing resources but rather at disrupting legitimate use of
a system or facility. Most such attacks involve systems that the attacker has
not penetrated. Indeed, launching an attack that prevents legitimate use is
frequently easier than breaking into a machine or facility.

Denial-of-service attacks are generally network based. They fall into two
categories. Attacks in the first category use so many facility resources that,
in essence, no useful work can be done. For example, a Web-site click could
download a Java applet that proceeds to use all available CPU time or to pop up
windows infinitely. The second category involves disrupting the network of
the facility. There have been several successful denial-of-service attacks of this
kind against major Web sites. These attacks result from abuse of some of the
fundamental functionality of TCP liP. For instance, if the attacker sends the part
of the protocol that says "I want to start a TCP connection," but never follows
with the standard "The connection is now complete," the result can be partially
started TCP sessions. If enough of these sessions are launched, they can eat up
all the network resources of the system, disabling any further legitimate TCP

connections. Such attacks, which can last hours or days, have caused partial or
full failure of attempts to use the target facility. The attacks are usually stopped
at the network level until the operating systems can be updated to reduce their
vulnerability.

Generally, it is impossible to prevent denial-of-service attacks. The attacks
use the same mechanisms as normal Even more difficult to prevent
and resolve are These attacks
are launched from multiple sites at once, toward a common target, typically
by zombies. DDOS attacks have become more comncon and are sometimes
associated with blackmail attempts. A site comes under attack, and the
attackers offer to halt the attack in exchange for money.

Sometimes a site does not even know it is under attack. It can be difficult
to determine whether a system slowdown is an attack or just a surge in system
use. Consider that a successful advertising campaign that greatly increases
traffic to a site could be considered a DDOS.

There are other interesting aspects of DOS attacks. For example, if an
authentication algorithm locks an account for a period of time after several
incorrect attempts to access the account, then an attacker could cause all
authentication to be blocked by purposely making incorrect attempts to access
all accounts. Similarly, a firewall that automatically blocks certain kinds of
traffic could be induced to block that traffic when it should not. These examples
suggest that programmers and systems managers need to fully understand the
algorithms and technologies they are deploying. Finally, computer science
classes are notorious sources of accidental system DOS attacks. Consider the
first programming exercises in which students learn to create subprocesses
or threads. A common bug involves spawning subprocesses infinitely. The
system's free memory and CPU resources don't stand a chance.

There are many defenses against computer attacks, running the gamut from
methodology to technology. The broadest tool available to system designers

15.4 639

and users is cryptography. In this section, we discuss the details of cryptogra
phy and its use in computer security.

In an isolated computer, the operating system can reliably determine the
sender and recipient of ali interprocess communication, since it controls all
communication channels in the computer. In a network of computers, the
situation is quite different. A networked computer receives bits from the
wire with no immediate and reliable way of determining what machine or
application sent those bits. Similarly, the computer sends bits onto the network
with no of knowing who might eventually receive them.

Commonly, network addresses are used to infer the potential senders
and receivers of network messages. Network packets arrive with a source
address, such as an IP address. And when a computer sends a message, it
names the intended receiver by specifying a destination address. However, for
applications where security matters, we are asking for trouble if we assume
that the source or destination address of a packet reliably determines who sent
or received that packet. A rogue computer can send a message with a falsified
source address, and numerous computers other than the .. one specified by the
destination address can (and typically do) receive a packet. For example, all of
the routers on the way to the destination will receive the packet, too. How, then,
is an operating system to decide whether to grant a request when it cannot trust
the named source of the request? And how is it supposed to provide protection
for a request or data when it cannot determine who will receive the response
or message contents it sends over the network?

It is generally considered infeasible to build a network of any scale in
which the source and destination addresses of packets can be trusted in this
sense. Therefore, the only alternative is somehow to eliminate the need to
trust the network. This is the job of cryptography. Abstractly, ~"''"~.,-ro.rnron~
used to constrain the potential senders and/ or receivers of a message.
cryptography is based on secrets called that are selectively distributed to
computers in a network and used to process messages. Cryptography enables a
recipient of a message to verify that the message was created by some computer
possessing a certain key-the key is the source of the message. Similarly: a
sender can encode its message so that only a computer with a certain key can
decode the message, so that the key becomes the destination. Unlike network
addresses, however, keys are designed so that it is not computationally feasible
to derive them from the messages they were used to generate or from any
other public information. Thus, they provide a much more trustworthy means
of constraining senders and receivers of messages. Note that cryptography is
a field of study unto itself, with large and small complexities and subtleties.
Here, we explore the most important aspects of the parts of cryptography that
pertain to operating systems.

15.4.1 Encryption

Because it solves a wide variety of communication security problems,
is used frequently in many aspects of modern computing. Encryption

a means for constraining the possible receivers of a message. An encryption
algorithm enables the sender of a message to ensure that only a computer
possessing a certain key can read the message. Encryption of messages is an
ancient practice, of course, and there have been many encryption algorithms,

640 Chapter 15

dating back to ancient times. In this section, we describe important modern
encryption principles and algorithms.

Figure 15.7 shows an example of two users communicating securely over
an insecure channel. We refer to this figure throughout the section. Note that the
key exchange can take place directly between the two parties or via a trusted
third party (that is, a certificate authority), as discussed in Section 15.4.1.4.

An encryption algorithm consists of the following components:

A set K of keys.

A set M of messages.

A set C of ciphertexts.

A function E : K --+ (M --+ C). Thatis, for each k E K, E (k) is a function for
generating ciphertexts from messages. Both E and E (lc) for any k should
be efficiently computable functions.

A function D: I< --+ (C --+ M). Thatis, for eachlc E I<, D(k) is a function for
generating messages from ciphertexts. Both D and D(lc) for any k should
be efficiently computable functions.

An encryption algorithm must provide this essential property: given a cipher
text c E C a computer can compute m such that E (lc)(m) = c only if it possesses

write ----1 rnessage rn 1
I

II 12.
0 ~-

z~
-x
~-

read 1 message ml

Figure i5.7 A secure communication over an insecure medium.

15.4 641

D(lc). Thus, a computer holding D(lc) can decrypt ciphertexts to the plaintexts
used to produce them, but a computer not holding D(lc) cannot decrypt cipher
texts. Since ciphertexts are generally exposed (for example, sent on a network),
it is important that it be infeasible to derive D(lc) from the ciphertexts.

There are two main types of encryption algorithms: symmetric and
asymmetric. We discuss both types in the following sections.

15.4.1.1 Symmetric Encryption

In a the same key is used to encrypt and to
decrypt. That is, E can be from D(lc), and vice versa. Therefore, the
secrecy of E (lc) must be protected to the same extent as that of D(lc).

For the past several decades, the most commonly used symmetric encryp
tion algorithm in the United States for civilian applications has been the

adopted by the National Institute of Stan
Techxwlogy (NIST). DES works by taking a 64-bit value and a 56-bit

key and performing a series of transformations. These transformations are
based on substitution and permutation operations, as is generally the case
for symmetric encryption transformations. Some of the transformations are

in that their algorithms are hidden. In fact, these
so-called "S-boxes" are classified by the United States government. Messages
longer than 64 bits are broken into 64-bit chunks. Because DES works on a
chunk of bits at a time, is known as a cipher. If the same key is used
for encrypting an extended anwunt of data, it becomes vulnerable to attack.
Consider, for example, that the same source block would result in the same
ciphertext if the same key and encryption algorithm were used. Therefore,
the chunks are not just encrypted but also exclusive-or'ed (XORed) with the

ciphertext block before encryption. This is known as

DES is now considered insecure for many applications because its keys can
be exhaustively searched with moderate computing resources. Rather than
giving up on DES, though, NIST created a modification called in
which the DES algorithm is repeated three times (two encryptions and one
decryption) on the same plaintext usli'lg two or three keys-for example,
c = E (k3)(D(lc2)(E (K1)(m))). When three keys are used, the effective key length
is 168 bits. Triple DES is in widespread use today.

In 2001, NIST a new encryption algorithm, called the
to replace DES. AES is another symmetric block

cipher. It can use key lengths of 128, 192, and 256 bits and works on 128-bit
blocks. It works by performing 10 to 14 rounds of transformations on a matrix
formed from a block Generally, the algorithm is compact and efficient.

Several other symmetric block encryption algorithms in use today bear
mentioning. The algorithm is fast compact, and easy to implement. It
can use a variable key length of up to 256 bits and works on 128-bit blocks.
can vary in key length, number of transformations, and block size. Because it
uses only basic computational operations, it can run on a wide variety of crus.

is perhaps the most common stream cipher. A is
designed to encrypt and decrypt a stream of bytes or bits rather than a block.
This is useful when the length of a communication would make a block cipher
too slow. The key is input into a pseudo-random-bit generator, which is an

642 Chapter 15

algorithm that attempts to produce random bits. The output of the generator
when fed a key is a keystream. A is an infinite set of keys that can be
used for the input plaintext stream. RC4 is used in encrypting steams of data,
such as in WEP, the wireless LAN protocol. lt is also used in communications
between Web browsers and Web servers, as we discuss below. Unfortunately,
RC4 as used in WEP (IEEE standard 802.11) has been found to be breakable in a
reasonable amount of con1.puter time. In fact RC4 itself has vulnerabilities.

15.4.1.2 Asymmetric Encryption

In an there are different encryption and
decryption keys. Here, we one such algorithm, known as RSA after
the names of its inventors (Rivest, Shamir, and Adleman). The RSA cipher is a
block-cipher public-key algorithm and is the most widely used asymmetrical
algorithm. Asymmetrical algorithms based on elliptical curves are gaining
ground, however, because the key length of such an algorithm can be shorter
for the same amount of cryptographic strength.

It is computationally infeasible to derive D(kd, N) from E (lee, N), and so
E (ke, N) need not be kept secret and can be widely disseminated; thus, E (lee, N)
(or just Ice) is the and D(kd, N) (or just led) is the N is the

write 'I messlge 69/

""0
ill s·
m
~

encryption_...,. 695 mod 91
key k5.91

~-----+

' Gl-
~ Gl
:J c
uc
m m
(f).r:::
-~ 0

' 1----- -)>.

(])

N

read~

Figure 15.8 Encryption and decryption using RSA asymmetric cryptography.

15.4 643

product of two large, randomly chosen prime numbers p and q (for example, p
andq are512bitseach). Theencryptionalgorithmis E(kc, N)(rn) = mk, mod N,
where Icc satisfies leekd mod (p -1)(q -1) = 1. The decryption algorithm is then
D(kd, N)(c) = ckd mod N

An example using small values is shown in Figure 15.8. In this example, we
make p = 7 and q = 13. We then calculate N = 7*13 = 91 and (p-1)(q -1) = 72.
We next select kc relatively prime to 72 and < 72, yielding 5. Finally, we calculate
kd such that kekrt mod 72 = 1, yielding 29. We now have our keys: the public
key, lee, N = 5, 91, and the private key, led, N = 29, 91. Encrypting the message
69 with the public key results in the message 62, which is then decoded by the
receiver via the private key.

The use of asymmetric encryption begins with the publication of the public
key of the destination. For bidirectional communication, the source also must
publish its public key. "Publication" can be as simple as handing over an
electronic copy of the key, or it can be more complex. The private key (or "secret
key") must be jealously guarded, as anyone holding that key can decrypt any
message created by the matching public key.

We should note that the seemingly small difference in key use between
asymmetric and symmetric cryptography is quite large in practice. Asymmetric
cryptography is based on mathematical functions rather than transformations,
Inaking it much more computationally expensive to execute. It is much
faster for a computer to encode and decode ciphertext by using the usual
symmetric algorithms than by using asymmetric algorithms. Why, then, use
an asymmetric algorithm? In truth, these algorithms are not used for general
purpose encryption of large amounts of data. However, they are used not
only for encryption of small amounts of data but also for authentication,
confidentiality, and key distribution, as we show in the following sections.

15.4.1.3 Authentication

We have seen that encryption offers a way of constraining the set of possible
receivers of a message. Constraining the set of potential senders of a message is
called Authentication is thus complementary to encryption. In
fact, sometimes their functions overlap. Consider that an encrypted message
can also prove the identity of the sender. For example, if D(kd, N)(E (ke. N)(m))
produces a valid message, then we know that the creator of the message must
hold ke. Authentication is also useful for proving that a message has not been
modified. In this section, we discuss authentication as a constraint on possible
receivers of a message. Note that this sort of authentication is similar to but
distinct from user authentication, which we discuss in Section 15.5.

An authentication algorithm consists of the following components:

A set K of keys.

A set M of messages.

A set A of authenticators.

A functionS: K ->- (M-+ A). That is, for each k E K, S(k) is a function for
generating authenticators from messages. Both Sand S(k) for any k should
be efficiently computable functions.

644 Chapter 15

A function V : [(-+ (M x A-+ {true, false}). That is, for each lc E K,
V(lc) is a function for verifying authenticators on messages. Both V and
V(lc) for any lc should be efficiently computable functions.

The critical property that an authentication algorithm must possess is this: for a
message m, a computer can generate an authenticator a E A such that V (lc)(m, a)
= true only if it possesses S(lc). Thus, a computer holding S(lc) can generate
authenticators on messages so that any computer possessing V(lc) can verify
them. However, a computer not holding S(lc) cannot generate authenticators
on messages that can be verified using V(lc). Since authenticators are generally
exposed (for example, sent on a network with the messages themselves), it
must not be feasible to derive S(lc) from the authenticators.

Just as there are two types of encryption algorithms, there are two main
varieties of authentication algorithms. The first in understanding these
algorithms is to explore hash functions. A H(m) creates a small,
fixed-sized block of data, known as a or from
a message m. Hash functions work by taking a message in n-bit blocks and
processing the blocks to produce an n-bit hash. H must be collision resistant
on m-that is, it must be infeasible to find an 1111 # m such that H(m) = H(n/).
Now, if H(m) = H(m 1), we know that m m1 -that is, we know that the
message has not been modified. Common message-digest functions include

which produces a 128-bit hash, and which outputs a 160-bit hash.
Message digests are useful for detecting changed messages but are not useful as
authenticators. For example, H(m) can be sent along with a message; but if His
known, then someone could modify m and recompute H(m), and the message
modification would not be detected. Therefore, an authentication algorithm
takes the message digest and encrypts it.

The first main type of authentication algorithm uses symmetric encryption.
In a a cryptographic checksum is gener-
ated from message using a secret key. Knowledge of V(lc) and knowledge
of S(lc) are equivalent: one can be derived from the other, so lc must be kept
secret. A simple example of a MAC defines S(lc)(m) = f(k, H(m)), where f is
a function that is one-way on its first argument (that is, k cam10t be derived
from f(k, H(m))). Because of the collision resistance in the hash function, we
are reasonably assured that no other message could create the same MAC. A
suitable verification algorithm. is then V(lc)(m, a) = (j(lc, m) =a). Note that k
is needed to compute both S(lc) and V(lc), so anyone able to compute one can
compute the other.

The second main type of authentication algorithm is a
and the authenticators thus produced are called

In a digital-signature algorithm, it is computationally to derive S(ks)
from V(lcv); in particular, Vis a one-way function. Thus, kv is the public key
and lc5 is the private key.

Consider as an example the RSA digital-signature algorithm. It is similar
to the RSA encryption algorithm, but the key use is reversed. The digital
signature of a message is derived by computing S(lcs)(m) = H(m)"s mod N.
The key /c5 again is a pair (d, N), where N is the product of two large, randomly
chosen prime numbers p and q. The verification algorithm is then V(kv)(m, a) =
(ak" mod N = H(m)), where kv satisfies lc,)c5 mod (p - 1)(q - 1) = 1.

15.4 645

lf encryption can prove the identity of the sender of a m~essage, then why do
we need separate authentication algorithms? There are three primary reasons.

Authentication algorithms generally require fewer computations (with
the notable exception of H.SA digital signatures). Over large amounts of
plaintext, this efficiency can make a huge difference in resource use and
the time needed to authenticate a message.

The authenticator of a message is almost always shorter than the mes
sage and its ciphertext. This improves space use and transmission time
efficiency.

Sometimes, we want authentication but not confidentiality. For example,
a company could provide a software patch and could "sign" that patch to
prove that it came from the company and that it hasn't been modified.

Authentication is a component of many aspects of security. For example, it
is the core of which supplies proof that an entity performed an
action. A typical example of nonrepudiation involves the filling out of electronic
forms as an alternative to the signing of paper contracts. Nonrepudiation
assures that a person filling out an electronic form cannot deny that he did
so.

15.4.1.4 Key Distribution

Certainly, a good part of the battle between cryptographers (those inventing
ciphers) and cryptanalysts (those trying to break them) involves keys. With
symmetric algorithms, both parties need the key, and no one else should
have it. The delivery of the symmetric key is a huge challenge. Sometimes
it is performed cut-or-band -say, via a paper document or a conversation.
These methods do not scale well, however. Also consider the key-management
challenge. Suppose a user wanted to communicate with N other users privately.
That user would need N keys and, for more security, would need to change
those keys frequently.

These are the very reasons for efforts to create asymmetric key algorithms.
Not only can the keys be exchanged in public, but a given user needs only
one private key, no matter how many other people she wants to communicate
with. There is still the matter of managing a public key for each party to be
communicated with, but since public keys need not be secured, simple storage
can be used for that

Unfortunately, even the distribution of public keys requires some care.
Consider the man-in-the-middle attack shown in Figure 15.9. Here, the person
who wants to receive an encrypted message sends out his public key, but an
attacker also sends her "bad" public key (which matches her private key). The
person who wants to send the encrypted message knows no better and so uses
the bad key to encrypt the message. The attacker then happily decrypts it.

The problem is one of authentication-what we need is proof of who (or
what) owns a public One to solve that problem involves the use
of digital certificates. A is a public key digitally signed by a
trusted party. The trusted party receives proof of identification from some entity

646 Chapter 15

encryption __,.
key kbad

attacker

decryption
key kd __,.

"' . co-u
'<c
;AQ""

CD 0

_ decryption ...,.
key kbad

.,......_read -+message m I

Figure 15.9 A man-in-the-middle attack on asymmetric cryptography.

and certifies that the public key
we can trust the certifier? These have their public keys
i.J.l.cluded within Web browsers (and other consumers of certificates) before they
are distributed. The certificate authorities can then vouch for other authorities
(digitally signing the public keys of these other authorities), and so on, creating
a web of trust. The certificates can be distributed in a standard X.509 digital
certificate format that can be parsed by computer. This scheme is used for
secure Web communication, as we discuss in Section 15.4.3.

15.4.2 Implementation of Cryptography

Network protocols are typically organized in each layer acting as a client
of the one below it. That is, when one protocol generates a message to send
to its protocol peer on another machine, it hands its message to the protocol
below it in the network-protocol stack for delivery to its peer on that machine.
For example, in an IP network, TCP (a transport-layer protocol) acts as a client
of IP (a network-layer protocol): TCP packets are passed down to IP for delivery
to the TCP peer at the other end of the TCP connection. IP encapsulates the TCP

15.4 647

packet in an IP packet, which it similarly passes down to the data-link layer to be
transmitted across the network to its IP peer on the destination computer. This
IP peer then delivers the TCP up to the TCP peer on that machine. All in
all, the which has been almost universally adopted as a
model for data networking, defines seven such protocol layers. (You will read
more about the ISO model of networking in Chapter 16; Figure 16.6 shows a
diagram of the model.)

Cryptography can be inserted at almost any layer in the ISO model. SSL
(Section 15.4.3), for example, provides security at the transport layer. Network
layer security generally has been standardized on which defines IP
packet formats that allow the insertion of authenticators and the encryption
of packet contents. It uses symmetric encryption and uses the protocol
for key IPSec is becoming widely used as the basis for

in which all traffic between two IPSec endpoints
is encrypted to make a private network out of one that may otherwise be
public. Numerous protocols also have been developed for use by applications,
but then the applications themselves must be coded to implement security.

Where is cryptographic protection best placed in a protocol stack? In
general, there is no definitive answer. On the one hand, more protocols benefit
from protections placed lower in the stack. For example, since IP packets
encapsulate TCP packets, encryption of IP packets (using IPSec, for example) also
hides the contents of the encapsulated TCP packets. Similarly, authenticators
on IP packets detect the modification of contaii1.ed TCP header information.

On the other hand, protection at lower layers in the protocol stack may give
insufficient protection to higher-layer protocols. For example, an application
server that runs over IPSec might be able to authenticate the client computers
from which requests are received. However, to authenticate a user at a client
computer, the server may need to use an application-level protocol-for
example, the user may be required to type a password. Also consider the
problem of e-mail. E-mail delivered via the industry standard SMTP protocol is
stored and forwarded, frequently multiple times, before it is delivered. Each of
these transmissions could go over a secure or an insecure network. For e-mail
to be secure, the e-mail message needs to be encrypted so that its security is
independent of the transports that carry it.

15.4.3 An Example: SSL

SSL 3.0 is a cryptographic protocol that enables two computers to corrumJJ1icate
securely-that is, so that each can limit the sender and receiver of
to the other. It is perhaps the most commonly used cryptographic
on the Internet today, since it is the standard protocol by which Web
communicate securely with Web servers. For completeness, we should note that
SSL was designed by Netscape and that it evolved into the industry standard
TLS protocol. In this discussion, we use SSL to mean both SSL and TLS.

SSL is a complex protocol with many options. Here, we present only a
single variation of it, and even then in a very simplified and abstract form,
so as to maintain focus on its use of cryptographic primitives. What we are
about to see is a complex dance in which asymmetric cryptography is used so
that a client and a server can establish a secure)-cey that can be used
for symmetric encryption of the session between the two-all of this while

648 Chapter 15

avoiding man-in-the-middle and replay attacks. For added cryptographic
strength, the session keys are forgotten once a session is completed. Another
communication between the two will generation of new session keys.

The SSL protocol is initiated by a c to communicate securely with a
Prior to the protocol's use, the server s is assumed to have obtained

a certificate, denoted cert, from certification authority CA. This certificate is a
structure containing the following:

Various attributes attrs of the server, such as its unique distinguished name
and its common (DNS) name

The identity of a public encryption algorithm E () for the server

The public key kc of this server

A validity interval interval durirtg which the certificate should be consid
ered valid

A digital signature a on the above information made by theCA-that is,
a= S(kcA)((attrs, E(ke), interval))

In addition, prior to the protocol's use, the client is presumed to have obtained
the public verification algorithm V(kcA) for CA. In the case of the Web, the user's
browser is shipped from its vendor containing the verification algorithms and
public keys of certain certification authorities. The user can add or delete these
for certification authorities as she chooses.

When c connects to s 1 it sends a 28-byte random value nc to the server, which
responds with a random value n5 of its own, plus its certificate cert5 • The client
verifies that V(kcA)((attrs, E (lee), interval), a) =true and that the current time
is in the validity interval interval. If both of these tests are satisfied, the server
has proved its identity. Then the client generates a random 46-byte

and sends cpms = E (ks) (pms) to the server. The server recovers
pms = D(kd)(cpms). Now both the client and the server are in possession of
nc, n5 , and pms, and each can cmnpute a shared 48-byte L"'"'''""c"
f(nc, 715 , pms), where f is a one-way and collision-resistant function.
server and client can compute ms, since only they know pms.
dependence of ms on nc and n5 ensures that ms is a fresh value-that is, a
session key that has not been used in a previous communication. At this point,
the client and the server both compute the keys the ms:

A symmetric encryption key k~[YPt for encrypting messages from
to the server

client

A symmetric encryption
to the client

lc~rypt for encrypting messages from the server

A MAC generation Jc~ac generating authenticators on
from the client to the server

A MAC generation k~~ac for generating authenticators on
from the server to the

To send a message m to the server, the client sends

15.5

15.5 649

Upon receiving c, the server recovers

(m. a)= D(Jc~?pt)(c)

and accepts m if V(lc~ac)(m, a) =true. Similarly, to send a message m to the
client, the server sends

and the client recovers

and accepts m if V(k~ac)(m, a)= true.
This protocol enables the server to limit the recipients of its messages to the

client that generated pms and to limit the senders of the messages it accepts
to that same client. Similarly, the client can limit the recipients of the messages
it sends and the senders of the messages it accepts to the party that knows
S(kd) (that is, the party that can decrypt cpms). In many applications, such
as Web transactions, the client needs to verify the identity of the party that
knows S(lcd). This is one purpose of the certificate cert5 ; in particular, the attrs
field contains information that the client can use to determine the identity
for example, the domain name-of the server with which it is communicating.
For applications in which the server also needs information about the client,
SSL supports an option by which a client can send a certificate to the server.

In addition to its use on the Internet, SSL is being used for a wide variety
of tasks. For example, IPSec VPNs now have a competitor in SSL VPNs. IPSec
is good for point-to-point encryption of traffic-say, between two company
offices. SSL VPNs are more flexible but not as efficient, so they might be used
between an individual employee working remotely and the corporate office.

Our earlier discussion of authentication involves messages and sessions. But
what about users? If a system cannot authenticate a user, then authenticating
that a message can'le from that user is Thus, a major security problem
for operating systems is The protection system depends
on the ability to identify the programs and processes currently executing,
which in turn depends on the ability to identify each user the system. Users

identify themselves. How do we determine a user's
is authentic? Generally, user authentication is based on one or more
things: the user's possession of something (a or card), the user's
of something user identifier and password), an attribute

retina or signature).

15.5.1 Passwords

The most comm.on
When the user

a user is the use of
user ID or account name, she

650 Chapter 15

is asked for a password. I£ the user-supplied password matches the password
stored in the system, the system assumes that the account is being accessed by
the owner of that account.

Passwords are often used to protect objects in the computer system, in
the absence of more complete protection schemes. They can be considered a
special case of either keys or capabilities. For instance, a password may be
associated with each resource (such as a file). Whenever a request is made to
use the resource, the password nmst be given. If the password is correct, access
is granted. Different passwords may be associated with different access rights.
For example, different passwords may be used for reading files, appending
files, and updating files.

In practice, most systems require only one password for a user to gain
full rights. Although more passwords theoretically would be more secure,
such systems tend not to be implemented due to the classic trade-off between
security and convenience. If security makes something inconvenient then the
security is frequently bypassed or otherwise circumvented.

15.5.2 Password Vulnerabilities

Passwords are extremely common because they are easy to understand and use.
Unfortunately, passwords can often be guessed, accidentally exposed, sniffed,
or illegally transferred from an authorized user to an unauthorized one, as we
show next.

There are two common ways to guess a password. One way is for the
intruder (either human or program) to know the user or to have information
about the user. All too frequently, people use obvious information (such as the
names of their cats or spouses) as their passwords. The other way is to use brute
force, trying enumeration-or all possible combinations of valid password
characters (letters, numbers, and punctuation on some systems)-until the
password is found. Short passwords are especially vulnerable to this method.
For example, a four-character password provides only 10,000 variations. On
average, guessing 5,000 times would produce a correct hit. A program that
could try a password every millisecond would take only about 5 seconds to
guess a four-character password. Enumeration is less successful where systems
allow longer passwords that include both uppercase and lowercase letters,
along with numbers and all punctuation characters. Of course, users must take
advantage of the large password space and must not, for example, use only
lowercase letters.

In addition to being guessed, passwords can be exposed as a result of
visual or electronic monitoring. An intruder can look over the shoulder of a
user when the user is logging iil and can learn the password
easily by watching the keyboard. Alternatively, anyone with access to the
network on which a computer resides can seamlessly add a network monitor,
allowing him to watch all data being transferred on the network
including user IDs and passwords. Encrypting the data stream containing the
password solves this problem. Even such a system could have passwords
stolen, however. For example, if a file is used to contain the passwords, it
could be copied for off-system analysis. Or consider a Trojan-horse program
installed on the system that captures every keystroke before sending it on to
the application.

15.5 651

Exposure is a particularly severe problem if the password is written down
where it can be read or lost. As we shall see, some systems force users to select
hard-to-remember or long passwords, which may cause a user to record the
password or to reuse it. As a result, such systems provide much less security
than systems that allow users to select easy passwords!

The final type of password compromise, illegal transfer, is the result of
human nature. Most computer installations have a rule that forbids users to
share accounts. This rule is sometimes implemented for accounting reasons but
is often aimed at improving security. For instance, suppose one user ID is shared
by several users, and a security breach occurs from that user ID. It is impossible
to know who was using the ID at the time the break occurred or even whether
the user was an authorized one. With one user per user ID, any user can be
questioned directly about use of the account; in addition, the user might notice
something different about the account and detect the break-in. Sometimes,
users break account-sharing rules to help friends or to circumvent accounting,
and this behavior can result in a system's being accessed by unauthorized users
-possibly harmful ones.

Passwords can be either generated by the system or selected by a user.
System-generated passwords may be difficult to remember, and thus users may
write them down. As mentioned, however, user-selected passwords are often
easy to guess (the user's name or favorite car, for example). Some systems will
check a proposed password for ease of guessing or cracking before accepting it.
At some sites, administrators occasionally check user passwords and notify a
user if his password is easy to guess. Some systems also age passwords, forcing
users to change their passwords at regular intervals (every three months, for
instance). This method is not foolproof either, because users can easily toggle
between two passwords. The solution, as implemented on some systems, is to
record a password history for each user. For instance, the system could record
the last N passwords and not allow their reuse.

Several variants on these simple password schemes can be used. For
example, the password can be changed more frequently. In the extren:1e, the
password is changed from session to session. A new password is selected
(either by the system or by the user) at the end of each session, and that password
must be used for the next session. In such a case, even if a password is misused,
it can be used only once. When the legitimate user tries to use a now-invalid
password at the next session, he discovers the security violation. Steps can then
be taken to repair the breached security.

15.5.3 Encrypted Passwords

One problem with all these approaches is the difficulty of keeping the password
secret within the computer. How can the system store a password securely yet
allow its use for authentication when the user presents her password? The
UNIX system uses encryption to avoid the necessity of keeping its password
list secret. Each user has a password. The system contains a function that is
extremely difficult-the designers hope impossible-to invert but is simple
to compute. That is, given a value x, it is easy to compute the function value
f(x). Given a function value j(x), however, it is impossible to compute x. This
function is used to encode all passwords. Only encoded passwords are stored.
When a user presents a password, it is encoded and compared against the

652 Chapter 15

stored encoded password. Even if the stored encoded password is seen, it
cam1ot be decoded, so the password cannot be determined. Thus, the password
file does not need to be kept secret. The functionf(x) is typically an encryption
algorithm that has been designed and tested rigorously.

The flaw in this method is that the system no longer has control over
the passwords. Although the passwords are encrypted, anyone with a copy
of the password file can run fast encryption routines against it-encrypting
each word in a dictionary, for instance, and comparing the results against
the passwords. If the user has selected a password that is also a word in the
dictionary, the password is cracked. On sufficiently fast computers, or even
on clusters of slow computers, such a comparison may take only a few hours.
Furthermore, because UNIX systems use a well-known encryption algorithm,
a cracker might keep a cache of passwords that have been cracked previously.
For these reasons, new versions of UNIX store the encrypted password entries in
a file readable only by the The programs that compare a presented
password to the stored password run setuid to root; so they can read this file,
but other users cannot. They also include a "salt," or recorded random number,
in the encryption algorithm. The salt is added to the password to ensure that
if two plaintext passwords are the same, they result in different ciphertexts.

Another weakness in the UNIX password methods is that many UNIX
systems treat only the first eight characters as significant. It is therefore
extremely important for users to take advantage of the available password
space. To avoid the dictionary encryption method, some systems disallow the
use of dictionary words as passwords. A good technique is to generate your
password by using the first letter of each word of an easily remembered phrase
using both upper and lower characters with a number or punctuation mark
thrown in for good measure. For example, the phrase "My mother's name is
Katherine" might yield the password "Mmn.isK!". The password is hard to
crack but easy for the user to remember.

15.5.4 One-Time Passwords

To avoid the problems of password sniffing and shoulder surfing, a system
could use a set of paired When a session begins, the system
randomly selects and presents one part of a password pair; the user must
supply the other part. In this system, the user is challenged and must
with the correct answer to that challenge.

This approach can be generalized to the use of an algorithm as a password.
The algorithm might be an integer function, for example. The system selects
a random integer and presents it to the user. The user applies a function and
replies with the correct result. The system also applies the function. If the two
results match, access is allowed.

Such algorithmic passwords are not susceptible to reuse; that is, a user can
type in a password, and no entity intercepting that password will be able to
reuse it. In this scheme, the system and the user share a secret. The secret is
never transmitted over a medium that allows exposure. Rather, the secret is
used as input to the function, along with a shared seed. A is a random
number or alphanumeric sequence. The seed is the authentication challenge
from the computer. The secret and the seed are used as input to the function
f(secret, seed). The result of this function is transmitted as the password to the

15.5 653

computer. BecaLlSe the computer also knows the secret and the seed, it can
perform the same computation. If the results match, the user is authenticated.
The next time the user needs to be authenticated, another seed is generated,
and the same ensue. This time, the password is different.

In this system, the password is different in each
instance. Anyone capturing the password from one session and trying to reuse
it in another session will faiL One-time passwords are among the only ways to
prevent improper authentication clue to password exposure.

One-time password systems are implemented in various ways. Commer
cial implementations, such as SecuriD, use hardware calculators. Most of these
calculators are shaped like a credit card, a key-chain dangle, or a USB device;
they include a display and may or may not also have a keypad. Some use
the current time as the random seed. Others the user to enter the
shared secret, also known as a or on the
keypad. The display then shows the one-time password. The use of both a
one-time password generator and a PIN is one form of n!Jn-"."'·'-"''"

Two different types of components are needed in this case. Two-factor
authentication offers far better authentication protection than single-factor
authentication.

Another variation on one-time passwords uses a or
which is a list of single-use passwords. Each password on the list is used

once and then is crossed out or erased. The commonly used S/Key system
uses either a software calculator or a code book based on these calculations
as a source of one-time passwords. Of course, the user must protect his code
book.

15.5.5 Biometrics

Yet another variation on the use of passwords for authentication involves
the use of biometric measures. Palm- or hand-readers are commonly used to
secure physical access-for example, access to a data center. These readers
match stored parameters against what is being read from hand-reader pads.
The parameters can include a temperature map, as well as finger length, finger
width, and line patterns. These devices are currently too large and expensive
to be used for normal computer authentication.

Fingerprint readers have become accurate and cost-effective and should
become more common in the future. These devices read finger ridge patterns
and convert them into a sequence of numbers. Over time, they can store a set of
sequences to adjust for the location of the finger on the reading pad and other
factors. Software can then scan a finger on the pad and compare its features
with these stored sequences to determine if they match. Of course, multiple
users can have profiles stored, and the scanner can differentiate among them.
A very accurate two-factor authentication scheme can result from requiring
a password as well as a user name and fingerprint scan. If this information
is encrypted in transit, the system can be very resistant to spoofing or replay
attack.

is better still. Consider how strong authentica
tion can be with a USB device that must be plugged into the system, a PIN, and
a fingerprint scan. Except for the user's having to place her finger on a pad and
plug the USB into the system, this authentication method is no less convenient

654 Chapter 15

15.6

that using normal passwords. Recall, though, that strong authentication by
itself is not sufficient to guarantee the ID of the user. An authenticated session
can still be hijacked if it is not encrypted.

Just as there are myriad threats to system and network security, there are many
security solutions. The solutions run the gamut from improved user education,
through technology, to bug-free software. Most security professionals
subscribe to the theory of which states that more layers
of defense are better than fewer layers. Of course, this theory applies to any
kind of security. Consider the security of a house without a door lock, with
a door lock, and with a lock and an alarm. In this section, we look at the
major methods, tools, and techniques that can be used to improve resistance
to threats.

15.6.1 Security Policy

toward improving the security of any aspect of computing is to
have a . Policies vary widely but generally include a statement
of what is being secured. For example, a policy might state that all outside
accessible applications must have a code review before being deployed, or that
users should not share their passwords, or that all connection points between a
company and the outside must have port scans nm every six months. Without
a policy in place, it is impossible for users and administrators to know what
is permissible, what is required, and what is not allowed. The policy is a road
map to security, and if a site is trying to move from less secure to more secure,
it needs a map to know how to get there.

Once the security policy is in place, the people it affects should know it
well. It should be their guide. The policy should also be a
that is reviewed and updated periodically to ensure that it is still pertinent and
still followed.

15.6.2 Vulnerability Assessment

How can we determine whether a security policy has been correctly imple
mented? The best way is to execute a vulnerability assessment. Such assess
ments can cover broad ground, from social engineering through risk assess
ment to port scans. Rlsl< for example, endeavors to value the
assets of the entity in question (a program, a management team, a system, or
a facility) and determine the odds that a security incident will affect the entity
and decrease its value. When the odds of suffering a loss and the amount of the
potential loss are known, a value can be placed on trying to secure the entity.

The core activity of most vulnerability assessments is a """""'.,-"~'''--
in which the entity is scanned for known vulnerabilities. Because this book
is concerned with operating systems and the software that runs on them, we
concentrate on those aspects of vulnerability assessment.

Vulnerability scans typically are done at times when computer use is
relatively low, to minimize their impact. When appropriate, they are done on

15.6 655

test systems rather than production systems, because they can induce unhappy
behavior from the target systems or network devices.

A scan within an individual system can check a variety of aspects of the
system:

Short or easy-to-guess passwords

Unauthorized privileged programs, such as setuid programs

Unauthorized programs in system directories

Unexpectedly long-running processes

Improper directory protections on user and system directories

Improper protections on system data files, such as the password file, device
drivers, or the operating-system kernel itself

Dangerous entries in the program search path (for example, the Trojan
horse discussed in Section 15.2.1)

Changes to system programs detected with checksum values

Unexpected or hidden network daemons

Any problems found by a security scan can be either fixed automatically or
reported to the managers of the system.

Networked computers are much more susceptible to security attacks than
are standalone systems. Rather than attacks from a known set of access
points, such as directly connected terminals, we face attacks from an unknown
and large set of access points-a potentially severe security problem. To a
lesser extent, systems connected to telephone lines via modems are also more
exposed.

In fact, the U.S. government considers a system to be only as secure as its
most far-reaching connection. For instance, a top-secret system may be accessed
only from within a building also considered top-secret. The system loses its top
secret rating if any form of communication Call. occur outside that environment.
Some government facilities take extreme security precautions. The connectors
that plug a terminal into the secure computer are locked in a safe in the office
when the terminal is not in use. A person must have proper ID to gain access to
the building and her office, must know a physical lock combination, and must
know authentication information for the computer itself to gain access to the
computer-an example of multifactor authentication.

Unfortunately for systems administrators and computer-security profes
sionals, it is frequently impossible to lock a machine in a room and disallow all
remote access. For instance, the Internet network currently connects millions of
computers. It is becoming a mission-critical, indispensable resource for many
companies and individuals. If you consider the Internet a club, then, as in any
club with millions of members, there are many good members and some bad
members. The bad members have many tools they can use to attempt to gain
access to the interconnected computers, just as Morris did with his worm.

Vulnerability scans can be applied to networks to address some of the
problems with network security. The scans search a network for ports that
respond to a request. If services are enabled that should not be, access to them
can be blocked, or they can be disabled. The scans then determine the details of

656 Chapter 15

the application listening on that port and try to determine if it has any known
vulnerabilities. Testing those vulnerabilities can determine if the system is
ncisconfigured or lacks needed patches.

Finally though, consider the use of port scanners in the hands of a cracker
rather than someone trying to improve security. These tools could help crackers
find vulnerabilities to attack. (Fortunately, it is possible to detect port scans
through anomaly detection, as we discuss next.) It is a general challenge to
security that the same tools can be used for good and for harm. In fact, some
people advocate stating that no tools should be
written to test security, because such tools can be used to find (and exploit)
security holes. Others believe that this approach to security is not a valid one,
pointing out, for example, that crackers could write their own tools. It seems
reasonable that security through obscurity be considered one of the layers
of security only so long as it is not the only layer. For example, a company
could publish its entire network configuration; but keeping that information
secret makes it harder for intruders to know what to attack or to determine
what might be detected. Even here, though, a company assuming that such
information will remain a secret has a false sense of security.

15.6.3 Intrusion Detection

and facilities is intimately linked to intrusion detection.
as its name suggests, strives to detect attempted or successful

intrusions into computer systems and to initiate appropriate responses to the
intrusions. Intrusion detection encompasses a wide array of techniques that
vary on a number of axes, including the following:

The time at which detection occurs. Detection can occur in real time (while
the intrusion is occurring) or after the fact.

The types of inputs examined to detect intrusive activity. These may
include user-shell commands, process system calls, and network packet
headers or contents. Some forms of intrusion might be detected only by
correlating information from several such sources.

The range of response capabilities. Simple forms of response include
alerting an administrator to the potential intrusion or somehow halting
the potentially intrusive activity-for example, killing a process engaged
in such activity. In a sophisticated fonn of response; a system might
transparently divert an intruder's activity to a false resource
exposed to the attacker. The resource appears real to the attacker and
enables the system to monitor and gain information about the attack

These degrees of freedom in the design space for detecting intrusions have
a wide range of solutions, known as

and IDS systems raise an alarm
when an intrusion is detected, while IDP systems act as routers, passing traffic
unless an intrusion is detected (at which point that traffic is blocked).

But just what constitutes an intrusion? Defining a suitable specification of
intrusion turns out to be quite difficult, and thus automatic IDSs and IDPs today

settle for one of two less ambitious approaches. In the first, called
system input or network traffic is examined for

15.6 657

specific behavior patterns (or known to indicate attacks. A simple
example of signature-based detection is scanning network packets for the string
/etc/passwd/ targeted for a UNIX systenL Another example is virus-detection
software, which scans binaries or network packets for lmown viruses.

The second approach, typically called attempts
through various techniques to detect anomalous behavior within computer
systen<s. Of course, not all anomalous system activity indicates an intrusion,
but the presumption is that intrusions often induce anomalous behavior. An
example of anomaly detection is monitoring system calls of a daemon process
to detect whether the system-call behavior deviates from normal patterns,
possibly indicating that a buffer overflow has been exploited in the daemon
to corrupt its behavior. Another example is monitoring shell commands to
detect anomalous commands for a given user or detecting an anomalous login
time for a user, either of which may indicate that an attacker has succeeded in
gaining access to that user's account.

Signature-based detection and anomaly detection can be viewed as two
sides of the same coin: Signature-based detection attempts to characterize
dangerous behaviors and to detect when one of these behaviors occurs,
whereas anomaly detection attempts to characterize normal (or non dangerous)
behaviors and to detect when something other than these behaviors occurs.

These different approaches yield IDSs and IDPs with very different proper
ties, however. In particular, anomaly detection can find previously unknown
methods of intrusion (so-called Signature-based detection,
in contrast, will identify only known attacks that can be codified in a rec
ognizable pattern. Thus, new attacks that were not contemplated when the
signatures were generated will evade signature-based detection. This problem
is well known to vendors of virus-detection software, who must release new
signatures with great frequency as new viruses are detected manually.

Anomaly detection is not necessarily superior to signature-based detection,
however. Indeed, a significant challenge for systems that attempt anomaly
detection is to benchmark "normal" system behavior accurately. If the system
has already been penetrated when it is benchmarked, then the intrusive activity
may be included in the "normal" benchmark. Even if the system is bench
Inarked cleanly, without influence from intrusive behaviorf the benchmark
must give a fairly complete picture of normal behavior. Otherwise, the number
of (false alarms) orf worse, (missed intrusions)
will be excessive.

To illustrate the impact of even a marginally high rate of false alarms,
consider an installation consisting of a hundred UNIX workstations from which
security-relevant events are recorded for purposes of intrusion detection. A
small installation such as this could easily generate a million audit records per
day. Only one or two might be worthy of an administrator's investigation. If we
suppose, optimistically, that each actual attack is reflected in ten audit recordsf
we can roughly compute the rate of occurrence of audit records reflecting truly
intrusive activity as follows:

2 intrusions . 10 . recor?s
mtrus10n

0.00002.

658 Chapter 15

Interpreting this as a "probability of occurrence of intrusive records/' we
denote it as P(I); that is, event I is the occurrence of a record reflecting truly
intrusive behavior. Since P(I) = 0.00002, we also know that P(~I) = 1- P(I) =
0.99998. Now we let A denote the raising of an alarm by an IDS. An accurate IDS
should maximize both P(I lA) and P(~I I~A)-that is, the probabilities that an
alarm indicates an intrusion and that no alarm indicates no intrusion. Focusil<g
on P (I I A) for the moment, we can compute it using

P(IIA)
P(I) · P(AII)

P(I) · P(AII) + P(~I) · P(AI~I)

0.00002 · P(AII)

0.00002 · P(AII) + 0.99998 · P(AI~I)

Now consider the impact ofthe false-alarm rate P(AI~I) on P(IIA). Even
with a very good true-alarm rate of P(Ail) = 0.8, a seemingly good false
alarm rate of P(AI~I) = 0.0001 yields P(IIA) ~ 0.14. That is, fewer than one
ill every seven alarms indicates a real intrusion! In systems where a security
administrator ilwestigates each alarm, a high rate of false alarms-called a
"Christmas tree effect"-is exceedingly wasteful and will quickly teach the
admilcistrator to ignore alarms.

This example illustrates a general principle for IDSs and IDPs: For usability,
they must offer an extremely low false-alarm rate. Achieving a sufficiently
low false-alarm rate is an especially serious challenge for anomaly-detection
systems, as mentioned, because of the difficulties of adequately benchmarking
normal system behavior. However, research contil<ues to improve anomaly
detection techniques. Intrusion detection software is evolving to implement
signatures, anomaly algorithms, and other algorithms and to combine the
results to arrive at a more accurate anomaly-detection rate.

15.6.4 Virus Protection

As we have seen, viruses can and do wreak havoc on systems. Protection from
viruses thus is an important security concern. Antivirus programs are often
used to provide this protection. Some of these programs are effective against
only particular known viruses. They work by searching all the programs on
a system for the specific pattern of instructions known to make up the virus.
When they find a known pattern, they remove the instructions,
the program. Antivirus programs may have catalogs of thousands of viruses
for which they search.

Both viruses and antivirus software continue to become more sophisticated.
Some viruses modify themselves as they infect other software to avoid the basic
pattern-match approach of antivirus programs. Antivirus programs ill turn
now look for families of patterns rather than a single pattern to identify a virus.
In fact, some antivirus programs implement a variety of detection algorithms.
They can decompress compressed viruses before checking for a signature.
Some also look for process anomalies. A process opening an executable file
for writing is suspicious, for example, unless it is a compiler. Another popular
teducique is to run a program in a which is a controlled or emulated

15.6 659

THE TRIPWIRE FILE SYSTEM

An example of an anomaly-detection tool is the
checking tool for UNIX, developed at Purdue University. Tripwire operates on
the premise that many intrusions result in modification of system directories
and files. For example, an attacker might modify the system programs,
perhaps inserting copies with Trojan horses, or might insert new programs
into directories commonly found in user-shell search paths. Or an intruder
might remove system log files to cover his tracks. Tripwire is a tool to
monitor file systems for added, deleted, or changed files and to alert system
administrators to these modifications.

The operation of Tripwire is controlled by a configurationfile tw.config
that enumerates the directories and files to be monitored for changes,
deletions, or additions. Each entry in this configuration file includes a
selection mask to specify the file attributes (inode attributes) that will be
monitored for changes. For example, the selection mask might specify that a
file's permissions be monitored but its access time be ignored. In addition, the
selection mask can instruct thatthe file be monitored for changes. Monitoring
the hash of a file for changes is as good as monitoring the file itselt but storing
hashes of files requires far less room than copying the files themselves.

When run initially, Tripwire takes as input the tw.config file and
computes a sign.ature for each file or directory consisting of its monitored
attributes (inode attributes and hash values). These signatures are stored in a
database. When run subsequently, Tripwire inputs both tw.config and the
previously stored database, recomputes the signature for each file or directory
named in tw.conf ig, and compares this signature with the signature (if any)
in the previously compl.J-ted database. Events reported to an administrator
include any monitored file or directory whose signature differs from that in
the database (a changed file), any file or directory in a monitored directory
for which a signature does not exist in the database (an added file), and any
signature in the database for which the corresponding file or directory no
longer exists (a deleted file),

Although effective for a wide class of attacks, Tripwire does have limita
tions. Perhaps the most obvious is the need to protect the Tripwire program
and its associated files, especially the database file, from unauthorized mod
ification. For this reason, Tripwire and its associated files should be stored
on some tamper-proof medium, such as a write-protected disk or a secure
server where logins can be tightly controlled. Unforhm.ately, this makes it
less convenient to update the database after authorized updates to moni
tored directories and files. A second limitation is that some security-relevant
files-for example, system log files-are supposed to change over time, and
Tripwire does not provide a way to distinguish between an authorized and
an unauthorized change. So, for example, an attack that modifies (without
deleting) a system log that would normally change anyway would escape
Tripwire's detection capabilities. The best Tripwire can do in this case is to
detectcertain obvious inconsistencies (for example, a shrinking log file). Free
and commercial versions of Tripwire are available from http:/ /tripwire.org
and.http:/ /tripwire.com.

660 Chapter 15

section of the system. The antivirus software analyzes the behavior of the code
in the sandbox before letting it run unmonitored. Some antivirus programs also
put up a complete shield rather than just scanning files within a file system.
They search boot sectors, menlOry, inbound and outbound e-mail, files as they
are downloaded, files on removable devices or media, and so on.

The best protection against computer viruses is prevention, or the practice
of Purchasing unopened software from vendors and avoiding
free or pirated copies from public sources or disk exchange offer the safest
route to preventing infection. However, even new copies of legitimate software
applications are not immune to virus infection: in a few cases, disgruntled
employees of a software company have infected the master copies of software
programs to do economic harm to the company. For macro viruses, one defense
is to exchange Microsoft Word documents in an alternative file format called

Unlike the native Word format RTF does not include the
capability to attach macros.

Another defense is to avoid opening any e-mail attachments from unknown
users. Unfortunately, history has shown that e-mail vulnerabilities appear as
fast as they are fixed. For example, in 2000, the love bug virus became very
widespread by traveling in e-mail messages that pretended to be love notes
sent by friends of the receivers. Once a receiver opened the attached Visual
Basic script, the virus propagated by sending itself to the first addresses in the
receiver's e-mail contact list. Fortunately, except for clogging e-mail systems
and users' inboxes, it was relatively harmless. It did, however, effectively
negate the defensive strategy of opening attachments only from people known
to the receiver. A more effective defense method is to avoid opening any e-mail
attachment that contains executable code. Some companies now enforce this
as policy by removing all incoming attachments to e-mail messages.

Another safeguard, although it does not prevent infection, does permit
early detection. A user must begin by completely reformatting the hard disk,
especially the boot sector, which is often targeted for viral attack Only secure
software is uploaded, and a signature of each program is taken via a secure
message-digest computation. The resulting filename and associated message
digest list must then be kept free from unauthorized access. Periodically, or
each time a program is run, the operating system recomputes the signature and
compares it with the signature on the original list; any differences serve as a
warning of possible infection. This technique can be combined with others. For
example, a high-overhead antivirus scan, such as a sandbox, can be used; and
if a program passes the test, a signature can be created for it. If the signatures
match the next time the program is run, it does not need to be virus-scanned
again.

15.6.5 Auditing, Accounting, and Logging

Auditing, accounting, and logging can decrease system performance, but they
are useful in several areas, including security. Logging can be general or
specific. All system-call executions can be logged for analysis of program
behavior (or misbehavior). More typically, suspicious events are logged.
Authentication failures and authorization failures can tell us quite a lot about
break-in attempts.

15

15.7 661

Accounting is another potential tool in a security administrator's kit. It
can be used to find performance changes, which in tum can reveal security
problems. One of the early UNIX computer break-ins was detected by Cliff
Stoll when he was exam5ning accounting logs and spotted an anomaly.

We turn next to the question of how a trusted computer can be connected
safely to an untrustworthy network One solution is the use of a firewall to
separate trusted and unh·usted systems. A is a computer, appliance,
or router that sits between the trusted and the untrusted. A network firewall
limits network access between the two and monitors and
logs all connections. It can also limit coru1.ections based on source or destination
address, source or destination port, or direction of the connection. For instance,
Web servers use HTTP to communicate with Web browsers. A firewall therefore
may allow only HTTP to pass from all hosts outside the firewall to the Web
server within the firewalL The Morris Internet worm used the finger protocol
to break into computers, so finger would not be allowed to pass, for example.

In fact, a network firewall can separate a network into multiple domains.
A common implementation has the Internet as the untrusted domain; a
semitrusted and semisecure network, called the
as another domain; and a company's computers as a third domain (Figure
15.10). Coru1.ections are allowed from the Internet to the DMZ computers and
from the company computers to the Internet but are not allowed from the
Internet or DMZ computers to the company computers. Optionally, controlled
commurucations may be allowed between the DMZ and one company computer
or more. For instance, a Web server on the DMZ may need to query a database
server on the corporate network With a firewall, however, access is contained,
and any DMZ systems that are broken into still are unable to access the company
computers.

Internet

Internet access from company's
computers

r---------i company computers

access between DMZ and
company's computers

Figure 15.10 Domain separation via firewall.

662 Chapter 15

15.8

Of course, a firewall itself must be secure and attack-proof; otherwise,
its ability to secure connections can be compromised. Furthermore, firewalls
do not prevent attacks that or travel within protocols or com1ections
that the firewall allows. A buffer-overflow attack to a Web server will not be
stopped by the firewall, for example, because the HTTP connection is allowed;
it is the contents of the HTTP connection that house the attack. Likewise, denial
of-service attacks can affect firewalls as much as any other machines. Another
vulnerability of firewalls is in which an unauthorized host pretends
to be an authorized host by meeting some authorization criterion. For example,
if a firewall rule allows a connection from a host and identifies that host by its
IP address, then another host could send packets using that same address and
be allowed through the firewall.

In addition to the most common network firewalls, there are other, newer
kinds of firewalls, each with its pros and cons. A is a
software layer either included with the operating system or added as an
application. Rather than limiting communication between security domains, it
limits communication to (and possibly from) a given host. A user could add
a personal firewall to her PC so that a Trojan horse would be denied access to
the network to which the PC is connected, for example. An prex-y

understands the protocols that applications speak across the network.
For example, SMTP is used for mail transfer. An application proxy accepts a
com1ection just as an SMTP server would and then initiates a connection to
the original destination SMTP server. It can monitor the traffic as it forwards
the message, watching for and disabling illegal commands, attempts to exploit
bugs, and so on. Some firewalls are designed for one specific protocol. An

for example, has the specific purpose of analyzing XML traffic
and blocking disallowed or malformed XML. sit between
applications and the kernel, monitoring system-call execution. For example,
in Solaris 10, the "least privilege" feature implements a list of more than fifty
system calls that processes may or may not be allowed to make. A process that
does not need to spawn other processes can have that ability taken away, for
instance.

The U.S. Department of Defense Trusted Computer System Evaluation Criteria
specify four security classifications in systems: A, B, C, and D. This specification
is widely used to determine the security of a facility and to model security
solutions, so we explore it here. The lowest-level classification is division D, or
minimal protection. Division D includes only one class and is used for systems
that have failed to meet the requirements of any of the other security classes.
For instance, MS-DOS and Windows 3.1 are in division D.

Division C, the next level of security, provides discretionary protection and
accountability of users and their actions through the use of audit capabilities.
Division C has two levels: C1 and C2. A C1-class system incorporates some
form of controls that allow users to protect private information and to
keep other users from accidentally reading or destroying their data. A C1
environment is one in which cooperating users access data at the same levels
of sensitivity. Most versions of UNIX are C1 class.

15.8 663

The total of all protection systems within a computer system (hardware,
software, firmware) that correctly enforce a security policy is known as a

The TCB of a Cl system controls access between
users and files by allowing the user to specify and control sharing of objects
by named individuals or defined groups. In addition, the TCB requires that the
users identify themselves before they start any activities that the TCB is expected
to mediate. This identification is accomplished via a protected mechanism or
password; the TCB protects the authentication data so that they are inaccessible
to unauthorized users.

A C2-class system adds an individual-level access control to the require
ments of a Cl system. For example, access rights of a file can be specified
to the level of a single individual. In addition, the system adrninistrator can
selectively audit the actions of any one or more users based on individual
identity. The TCB also protects itself from modification of its code or data
structures. In addition, no information produced by a prior user is available
to another user who accesses a storage object that has been released back to
the system. Some speciat secure versions of UNIX have been certified at the C2
level.

Division-B mandatory-protection systems have all the properties of a class
C2 system; in addition, they attach a sensitivity label to each object. The Bl-class
TCB maintains the security label of each object in the system; the label is used
for decisions pertaining to mandatory access control. For example, a user
at the confidential level could not access a file at the more sensitive secret
level. The TCB also denotes the sensitivity level at the top and bottom of each
page of any human-readable output. In addition to the normal user-name
password authentication information, the TCB also maintains the clearance
and authorizations of individual users and will support at least two levels of
security. These levels are hierarchicat so that a user may access any objects
that carry sensitivity labels equal to or lower than his security clearance. For
example, a secret-level user could access a file at the confidential level in the
absence of other access controls. Processes are also isolated through the use of
distinct address spaces.

A B2-class system extends the sensitivity labels to each system resource,
such as storage objects. Physical devices are assigned minimum and maximum
security levels that the system uses to enforce constraints imposed by the
physical environments in which the devices are located. In addition, a B2
system supports covert channels and the auditing of events that could lead to
the exploitation of a covert channel.

A B3-class system allows the creation of access-control lists that denote
users or groups not granted access to a given named object. The TCB also
contains a mechanism to monitor events that may indicate a violation of
security policy. The mechanism notifies the security administrator and, if
necessary, terminates the event in the least disruptive manner.

The highest-level classification is division A. Architecturally, a class-Al
system is functionally equivalent to a B3 system, but it uses formal design
specifications and verification techniques, granting a high degree of assurance
that the TCB has been implemented correctly. A system beyond class Al might
be designed and developed in a trusted facility by trusted personnel.

The use of a TCB merely ensures that the system can enforce aspects of a
security policy; the TCB does not specify what the policy should be. Typically,

664 Chapter 15

15.9

a given computing environment develops a security policy for
and has the plan by a security agency, such as the National
Computer Security Center. Certain computing environments may require other
certification, such as that supplied by TEMPEST, which guards against electronic
eavesdropping. For example, a TEMPEST-certified system has terminals that
are shielded to prevent electromagnetic fields from escaping. This shielding
ensures that equipment outside the room or building where the terminal is
housed camwt detect what information is being displayed by the terminal.

Microsoft Windows XP is a general-purpose operating system designed to
support a variety of security features and methods. In this section, we examine
features that Windows XP uses to perform security functions. For more
information and background on Wilcdows XP, see Chapter 22.

The Windows XP security model is based on the notion of
Windows XP allows the creation of any number of user accounts, which can
be grouped in any manner. Access to system objects can then be permitted or
denied as desired. Users are identified to the system by a unique security ID.
When a user logs on, Windows XP creates a that includes
the security ID for the user, security IDs for any groups of which the user is
a member, and a list of any special privileges that the user has. Examples
of special privileges include backing up files and directories, shutting down
the compute1~ logging on interactively, and changing the system clock. Every
process that Windows XP runs on behalf of a user will receive a copy of the
access token. The system uses the security IDs in the access token to permit or
deny access to system objects whenever the use1~ or a process on behalf of the
user, attempts to access the object. Authentication of a user account is typically
accomplished via a user name and password, although the modular design of
Windows XP allows the development of custom authentication packages. For
example, a retinal (or eye) scanner might be used to verify that the user is who
she says she is.

Windows XP uses the idea of a subject to ensure that programs run by a
user do not get greater access to the system than the user is authorized to have.
A is used to track and manage permissions for each program that a
user runs; it is composed of the user's access token and the program acting
on behalf of the user. Since Windows XP operates with a client-server model,
two classes of subjects are used to control access: simple subjects and server
subjects. An example of a is the typical application program
that a user executes after she logs on. simple subject is assigned a

based on the security access token of the user. A is a
process implemented as a protected server that uses the security context of the
client when acting on the client's behalf.

As mentioned in Section 15.7, auditing is a useful security technique.
Windows XP has bL1ilt-in auditing that allows many common security threats
to be monitored. Examples include failure auditing for login and logoff events
to detect random password break-ins, success auditing for login and logoff
events to detect login activity at strange hours, success and failure write-access
auditing for executable files to track a virus outbreak, and success and failure
auditing for file access to detect access to sensitive files.

15.10

15.10 665

Security attributes of an object in Windows XP are described by a
The security descriptor contains the security ID of the owner

(who can change the access permissions), a group security ID used
the POSIX subsystem, a discretionary access-control list that identifies

users or groups are allowed (and which are not allowed) access, and
a system access-control list that controls which auditing messages the system
will generate. For example, the security descriptor of the file foo.bar might have
owner avi and this discretionary access-control list:

a vi -all access

group cs-read-write access

user cliff-no access

In addition, it might have a system access-control list of audit writes by
everyone.

An access-control list is composed of access-control entries that contain
the security ID of the individual and an access mask that defines all possible
actions on the object, with a value of AccessAllowed or AccessDenied for
each action. Files in Windows XP may have the following access types: Read
Data, WriteData,AppendData, Execute,ReadExtendedAttribute, Write
ExtendedAttribute, ReadAttributes, and Wri teAttributes. We can see
how this allows a fine degree of control over access to objects.

Windows XP classifies objects as either container objects or noncontainer
objects. such as directories, can logically contain other
objects. By default, an object is created within a container object, the new
object inherits permissions from the parent object. Similarly, if the user copies a
file from one directory to a new directory, the file will inherit the permissions of
the destination directory. inherit no other permissions.
Furthermore, if a permission is changed on a directory, the new permissions
do not automatically apply to existing files and subdirectories; the user may
explicitly apply them if she so desires.

The system administrator can prohibit printilig to a printer on the system
for all or part of a day and can use the Windows XP Performance Monitor to
help her spot approaching problems. In general, Windows XP does a good job
of providing features to help ensure a secure computing environment. Many of
these features are not enabled by default, however, which may be one reason
for the myriad security breaches on Windows XP systems. Another reason is
the vast number of services Windows XP starts at system boot tiine and the
number of applications that typically are installed on a Windows XP system.
For a real multiuser environment, the system administrator should formulate
a security plan and implement it, using the features that Windows XP provides
and other security tools.

Protection is an internal problem. Security, in contrast, must consider both
the computer system and the environment-people, buildings, businesses,
valuable objects, and threats-within which the system is used.

666 Chapter 15

The data stored in the computer system must be protected from unautho
rized access, malicious destruction or alteration, and accidental introduction of
inconsistency. It is easier to protect against accidental loss of data consistency
than to protect against malicious access to the data. Absolute protection of the
information stored in a computer system from malicious abuse is not possible;
but the cost to the perpetrator can be made sufficiently high to deter most, if
not all, attempts to access that information without proper authority.

Several types of attacks can be launched against programs and agaiTlSt
individual computers or the masses. Stack- and buffer-overflow techniques
allow successful attackers to change their level of system access. Viruses and
worms are self-perpetuating, sometimes infecting thousands of computers.
Denial-of-service attacks prevent legitimate use of target systems.

Encryption limits the domain of receivers of data, while authentication
limits the domain of senders. Encryption is used to provide confidentiality
of data being stored or transferred. Symmetric encryption requires a shared
key, while asymn'letric encryption provides a public key and a private key.
Authentication, when combined with hashing, can prove that data have not
been changed.

User authentication methods are used to identify legitimate users of a
system. In addition to standard user-name and password protection, several
authentication methods are used. One-time passwords, for example, change
from session to session to avoid replay attacks. Two-factor authentication
requires two forms of authentication, such as a hardware calculator with an
activation PIN. Multifactor authentication uses three or more forms. These
methods greatly decrease the chance of authentication forgery.

Methods of preventing or detecting security incidents include intrusion
detection systems, antivirus software, auditing and logging of system events,
monitoring of system software changes, system-call monitoring, and firewalls.

15.1 Argue for or against the judicial sentence handed down against Robert
Morris, Jr., for his creation and execution of the Internet worm discussed
in Section 15.3.1.

15.2 Discuss a means by which managers of systems connected to the
Internet could design their systems to limit or eliminate the damage
done by worms. What are the drawbacks of making the change that
you suggest?

15.3 What commonly used computer programs are prone to man-in-the
middle attacks? Discuss solutions for preventing this form of attack.

15.4 The UNIX program COPS scans a given system for possible security
holes and alerts the user to possible problems. What are two potential
hazards of using such a system for security? How can these problems
be limited or eliminated?

667

15.5 Make a list of six security concerns for a bank's computer system. For
each item on your list, state whether this concern relates to physicat
human, or operating-system~ security.

15.6 An experimental addition to UNIX allows a user to connect a
program to a file. The watchdog is invoked whenever a program
requests access to the file. The watchdog then either grants or denies
access to the file. Discuss two pros and two cons of using watchdogs
for security.

15.7 Discuss how the asymmetric encryption algorithm can be used to
achieve the following goals.

a. Authentication: the receiver knows that only the sender could
have generated the message.

b. Secrecy: only the receiver can decrypt the message.

c. Authentication and secrecy: only the receiver can decrypt the
message, and the receiver knows that only the sender could have
generated the message.

15.8 Why doesn't D(lce, N)(E(/cd, N)(m)) provide authentication of the
sender? To what uses can such an encryption be put?

15.9 Consider a system that generates 10 million audit records per day. Also
assume that there are on average 10 attacks per day on this system and
that each such attack is reflected in 20 records. If the intrusion-detection
system has a true-alarm rate of 0.6 and a false-alarm rate of 0.0005,
what percentage of alarms generated by the system correspond to real
intrusions?

15.10 What is the purpose of using a "salt" along with the user-provided
password? Where should the "salt" be stored, and how should it be
used?

General discussions concerning security are given by Hsiao et al. [1979L
Landwehr [1981], Deru:1ing [1982], Pfleeger and Pfleeger [2003], Tanenbaum
2003, and Russell and Gangemi [1991]. Also of general interest is the text by
Lobel [1986]. Computer networking is discussed in Kurose and Ross [2005].

Issues concernin~g the design and verification of secure systems are dis
cussed by Rushby [1981] and by Silverman [1983]. A security kernel for a
multiprocessor microcomputer is described by Schell [1983]. A distributed
secure system is described by Rushby and Randell [1983].

Morris and Thompson [1979] discuss password security. Morshedian
[1986] presents methods to fight password pirates. Password authentication

668 Chapter 15

with insecure communications is considered by Lamport [1981]. The issue
of password cracking is examined by Seely [1989]. Cmnputer break-ins are
discussed by Lehmann [1987] and by Reid [1987]. Issues related to trusting
computer programs are discussed in Thompson (1984].

Discussions concerning UNIX security are offered by Grampp and Morris
[1984 L Wood and Kochan [1985], Farrow [1986b], Farrow [1986a], Filipski and
Hanko [1986], Hecht et al. [1988], Kramer [1988], and Garfinkel et al. [2003].
Bershad and Pinkerton [1988] present the watchdog extension to BSD UNIX. The
COPS security-scanning package for UNIX was written by Farmer at Purdue
University. It is available to users on the Internet via the FTP program from
host ftp.uu.net in directory /pub I security I cops.

Spafford [1989] presents a detailed technical discussion of the Internet
worm. The Spafford article appears with three others in a special section on
the Morris Internet worm in Communications of the ACM (Volume 32, Number
6, June 1989).

Security problems associated with the TCP /IP protocol suite are described
in Bellovin [1989]. The mechanisms commonly used to prevent such attacks are
discussed in Cheswick et al. [2003]. Another approach to protecting networks
from insider attacks is to secure topology or route discovery. Kent et al. [2000],
Hu et al. [2002], Zapata and Asokan [2002], and Hu and Perrig [2004] present
solutions for secure routing. Savage et al. [2000] examine the distributed denial
of-service attack and propose IP trace-back solutions to address the problem.
Perlman [1988] proposes an approach to diagnose faults when the network
contains malicious routers.

Information about viruses and worms can be found at
http:/ /www.viruslist.com, as well as in Ludwig [1998] and Ludwig
[2002]. Other Web sites containing up-to-date security information
include http:/ /www.trusecure.com and httpd:/ /www.eeye.com. A
paper on the dangers of a computer monoculture can be found at
http:/ /www.ccianet.org/papers/cyberinsecurity.pdf.

Diffie and Hellman [1976] and Diffie and Hellman [1979] were the first
researchers to propose the use of the public-key encryption scheme. The algo
rithm presented in Section 15.4.1 is based on the public-key encryption scheme;
it was developed by Rivest et al. [1978]. Lempel [1979], Simmons [1979],
Denning and Demting [1979], Gifford [1982], Denning [1982], Ahituv et al.
[1987], Schneier [1996], and Stallings [2003] explore the use of cryptography in
computer systems. Discussions concerning protection of digital signatures are
offered by Akl [1983], Davies [1983], Denning [1983], and Denning [1984].

The U.S. government is, of course, concerned about security. The Depart
ment of Defense Trusted Computer System Evaluation Criteria (DoD [1985]), known
also as the Orange Book, describes a set of security levels and the features that
an operating system must have to qualify for each security rating. Reading
it is a good starting point for understanding security concerns. The Microsoft
Windows NT Workstation Resource Kit (Microsoft [1996]) describes the security
Inodel of NT and how to use that model.

The RSA algorithm is presented in Rivest et al. [1978]. Information about
NIST's AES activities can be found at http:/ /www.nist.gov/aes/; informa
tion about other cryptographic standards for the United States can also
be found at that site. More complete coverage of SSL 3.0 can be found at

669

http:/ /home.netscape.com/eng/ssl3/. In 1999, SSL 3.0 was modified slightly
and presented in an IETF Request for Comments (RFC) under the name TLS.

The example in Section 15.6.3 illustrating the impact of false-alarm rate
on the effectiveness of IDSs is based on Axelsson [1999]. The description of
Tripwire in Section 15.6.5 is based on Kim and Spafford [1993]. Research into
system-call-based anomaly detection is described in Forrest et al. [1996].

Part Seven

A distributed system is a collection of processors that do not share mem
ory or a clock. Instead, each processor has its own local memory, and the
processors communicate with one another through communication lines
such as local-area or wide-area networks. The processors in a distributed
system vary in size and function. Such systems may include small hand
held or real-time devices, personal computers, workstations, and large
mainframe computer systems.

A distributed file system is a file-service system whose users, servers,
and storage devices are dispersed among the sites of a distributed
system. Accordingly, service activity has to be carried out across the
network; instead of a single centralized data repository, there are multiple
independent storage devices.

The benefits of a distributed system include giving users access to
the resources maintained by the system and thereby speeding up com
putation and improving data availability and reliability. Because a system is
distributed, however, it must provide mechanisms for process synchro
nization and communication, for dealing with the deadlock problem, and
for handling failures that are not encountered in a centralized system.

16.1

A distributed system is a collection of processors that do not share memory
or a clock. Instead, each processor has its own local memory. The processors
communicate with one another through various communication networks,
such as high-speed buses or telephone lines. In this chapter, we discuss the
general structure of distributed systems and the networks that interconnect
them. We contrast the main differences in operating-system design between
these systems and centralized systems. In Chapter 17, we go on to discuss
distributed file systems. Then, i11 Chapter 18, we describe the methods
necessary for distributed operating systems to coordinate their actions.

To provide a high-level overview of distributed systems and the networks
that interconnect them.

To discuss the general structure of distributed operating systems.

A is a collection of loosely coupled processors intercon
nected by a communication network. From the point of view of a specific
processor in a distributed system, the rest of the processors and their respective
resources are remote, whereas its own resources are local.

The processors in a distributed system may vary in size and function.
They may include small microprocessors, workstations, minicomputers, and
large general-purpose cornputer systems. These processors are referred to by a
number of names, such as sites, nodes, computers, machines, and hosts, depending
on the context in which they are mentioned. We mainly use site to indicate the
location of a machine and host to refer to a specific system at a site. Generally,
one host at one site, the server, has a resource that another host at another
site, the client (or user), would like to use. A general structure of a distributed
system is shown in Figure 16.1.

673

674 Chapter 16

site A site C

network

communication

site B

Figure 16.1 A distributed system.

D D
D D
l resources l

There are four major reasons for building distributed systems: resource
sharing, computation speedup, reliability, and communication. In this section, we
briefly discuss each of them.

16.1.1 Resource Sharing

If a number of different sites (with different capabilities) are connected to one
another, then a user at one site may be able to use the resources available at
another. For example, a user at site A may be using a laser printer located at
site B. Meanwhile, a user at B may access a file that resides at A. In general,

in a distributed system provides mechanisms for sharing
files at remote sites, processing information in a distributed database, printing
files at remote sites, using remote specialized hardware devices (such as a
high-speed array processor), and performing other operations.

16.1.2 Computation Speedup

If a particular computation can be partitioned into subcomputations that
can run concurrently, then a distributed system allows us to distribute
the subcomputations among the various sites; the subcomputations can be
run concurrently and thus provide In addition, if
a particular site is currently overloaded with jobs, some of them can be
moved to other, lightly loaded sites. This movement of jobs is called

Automated load sharing, in which the distributed operating system
automatically moves jobs, is not yet comnlOn in commercial systems.

16.1.3 Reliability

If one site fails in a distributed system, the remammg sites can continue
operating, giving the system better reliability. If the system is composed of
multiple large autonomous installations (that is, general-purpose computers),
the failure of one of them should not affect the rest. If, however, the system

16.2

16.2 675

is composed of sncall machines, each of which is responsible for some crucial
system function (such as tenninal character I/0 or the file system), then a single
failure may halt the operation of the whole system. In general, with enough
redundancy (in both hardware and data), the system can continue operation,
even if some of its sites have failed.

The failure of a site must be detected by the system, and appropriate action
may be needed to recover from the failure. The system must no longer use the
services of that site. In addition, if the function of the failed site can be taken
over by another site, the system must ensure that the transfer of function occurs
correctly. Finally, when the failed site recovers or is repaired, mechanisms must
be available to integrate it back into the system smoothly. As we shall see in
Chapters 17 and 18, these actions present difficult problems that have many
possible solutions.

16.1.4 Communication

When several sites are connected to one another by a communication network,
users at the various sites have the opportunity to exchange information. At
a low level, are passed between systems, much as messages are
passed between processes in the single-computer message system discussed
in Section 3.4. Given message passing, all the higher-level fLmctionality found
in standalone systems can be expanded to encompass the distributed system.
Such functions include file transfer, login, mail, and remote procedure calls
(RPCs).

The advantage of a distributed system is that these functions can be
carried out over great distances. Two people at geographically distant sites can
collaborate on a project, for example. By transferring the files of the project,
logging in to each other's remote systems to run programs, and exchanging
mail to coordinate the work, users minimize the limitations inherent in long
distance work We wrote this book by collaborating in such a manner.

The advantages of distributed systems have resulted in an industry-wide
trend toward dovmslzing. Many companies are replacing their mainframes
with networks of workstations or personal computers. Companies get a bigger
bang for the buck (that is, better functionality for the cost), more flexibility in
locating resources and expanding facilities, better user interfaces, and easier
maintenance.

In this section, we describe the two general categories of network-oriented
operating systems: network operating systems and distributed operating
systems. Network operating systems are simpler to implement but generally
more difficult for users to access and utilize than are distributed operating
systems, which provide more features.

16.2.1 Network Operating Systems

A operating provides an environment in which users, who are
aware of the multiplicity of machines, can access remote resources by either

676 Chapter 16

logging in to the appropriate remote machine or transferring data from the
remote machine to their own machines.

16.2.1.1 Remote Login

An important function of a network operating system is to allow users to log in
remotely. The Internet provides the telnet facility for this p1.npose. To illustrate
this facility, lets suppose that a user at Westminster College wishes to compute
on "cs.yale.edu," a computer that is located at Yale University. To do so, the
user must have a valid account on that machine. To log in remotely, the user
issues the command

telnet cs.yale.edu

This command results in the formation of a socket connection between the
local machine at Westminster College and the "cs.yale.edu" computer. After this
connection has been established, the networking software creates a transparent,
bidirectional link so that all characters entered by the user are sent to a process
on "cs.yale.edu" and all the output from that process is sent back to the user. The
process on the remote machine asks the user for a login name and a password.
Once the correct information has been received, the process acts as a proxy for
the use1~ who can compute on the remote machine just as any local user can.

16.2.1.2 Remote File Transfer

Another major function of a network operating system is to provide a
mechanism for remote file transfer from one machine to another. In such
an enviromnent, each computer maintains its own local file system. If a user at
one site (say, "cs.uvm.edu") wants to access a file located on another computer
(say, "cs.yale.edu"), then the file must be copied explicitly from the computer
at Yale to the computer at the University of Vermont.

The Internet provides a mechanism for such a transfer with the file transfer
protocol (FTP) program. Suppose that a user on "cs.uvm.edu" wants to copy a
Java program Server. java that resides on "cs.yale.edu." The user must first
invoke the FTP program by executing

ftp cs.yale.edu

The program then asks the user for a login name and a password. Once
the correct information has been received, the user must connect to the
subdirectory where the file Server. java resides and then copy the file by
executing

get Server. java

In this scheme, the file location is not transparent to the user; users must know
exactly where each file is. Moreover, there is no real file sharing, because a user
can only copy a file from one site to another. Thus, several copies of the same
file may exist, resulting in a waste of space. Tn addition, if these copies are
modified, the vario-us copies will be inconsistent.

16.2 677

Notice that, in our example, the user at the University of Vermont must
have login permission on "cs.yale.edu." PTP also provides a way to allow a user
who does not have an account on the Yale computer to copy files remotely. This
remote copying is accomplished through the "anonymous FT'P" method, which
works as follows. The file to be copied (that is, Server. java) must be placed
in a special subdirectory (say, jtp) with the protection set to allow the public
to read the file. A user who wishes to copy the file uses the ftp command as
before. When the user is asked for the login nan'le, the user supplies the name
"anonymous" and an arbitrary password.

Once anonymous login is accomplished, care must be taken by the system
to ensure that this partially authorized user does not access inappropriate
files. Generally, the user is allowed to access only those files that are in the
directory tree of user "anonymous." Any files placed here are accessible to
any anonymous users, subject to the usual file-protection scheme used on
that machine. Anonymous users, however, cam'lot access files outside of this
directory tree.

Implementation of the FTP mechanism is similar to telnet implementation.
A daemon on the remote site watches for requests to coru'lect to the system's PTP

port. Login authentication is accomplished, and the user is allowed to execute
commands remotely. Unlike the telnet daemon, which executes any command
for the user, the PTP daemon responds only to a predefined set of file-related
commands. These include the following:

get-Transfer a file from the remote machine to the local machine.

put-Transfer from the local machine to the remote machine.

ls or dir-List files in the current directory on the remote machine.

cd -Change the current directory on the remote machine.

There are also various commands to change transfer modes (for binary or ASCII
files) and to determine connection status.

An important point about telnet and PTP is that they require the user to
change paradigms. PTP requires the user to know a command set entirely
different from the normal operating-system commands. Telnet requires a
smaller shift: the user must know appropriate commands on the remote system.
For instance, a user on a Windows machine who teh'lets to a UNIX machine
must switch to UNIX commands for the duration of the telnet session. Facilities
are more convenient for users if they do not require the use of a different
set of commands. Distributed operating systems are designed to address this
problem.

16.2.2 Distributed Operating Systems

In a distributed operating system, users access remote resources in the same
way they access local resources. Data and process migration from one site to
another is under the control of the distributed operating system.

16.2.2.1 Data Migration

Suppose a user on site A wants to access data (such as a file) that reside at site
B. The system can transfer the data by one of two basic methods. One approach

678 Chapter 16

to is to transfer the entire file to site A. From that point on, all
access to the file is local. When the user no longer needs access to the file, a
copy of the file (if it has been modified) is sent back to site B. Even if only a
modest change has been made to a large file, all the data must be transferred.
This mechanism can be thought of as an automated FTP system. This approach
was used in the Andrew file system., as we discuss in Chapter 17, but it was
found to be too inefficient.

The other approach is to transfer to site A only those portions of the file
that are actually necessary for the immediate task. If another portion is required
later, another transfer will take place. When the user no longer wants to access
the file, any part of it that has been modified must be sent back to site B. (Note
the similarity to demand paging.) The Sun Microsystems network file system
(NFS) protocol uses this method (Chapter 17), as do newer versions of Andrew.
The Microsoft SMB protocol (running on top of either TCP /IP or the Microsoft
NetBEUI protocol) also allows file sharing over a network. SMB is described in
Appendix C.6.1.

Clearly, if only a small part of a large file is being accessed, the latter
approach is preferable. If significant portions of the file are being accessed,
however, it is more efficient to copy the entire file. In both methods, data
migration includes more than the mere transfer of data from one site to another.
The system must also perform various data translations if the two sites involved
are not directly compatible (for instance, if they use different character-code
representations or represent integers with a different number or order of bits).

16.2.2.2 Computation Migration

In some circumstances, we may want to transfer the computation, rather than
the data, across the system; this approach is called For
example, consider a job that needs to access various large files that reside at
different sites, to obtain a summary of those files. It would be more efficient to
access the files at the sites where they reside and return the desired results to
the site that il<itiated the computation. Generally, if the time to transfer the data
is longer than the time to execute the remote cmmnand, the remote command
should be used.

Such a computation can be carried out in different ways. Suppose that
process P wants to access a file at site A. Access to the file is carried out at
site A and could be il<itiated by an RPC. An RPC uses a
(UDP on the Internet) to execute a routine on a remote system (Section 3.6.2).
Process P invokes a predefilced procedure at site A. The procedure executes
appropriately and then returns the results to P.

Alternatively process P can send a message to site A. The operatil<g system
at site A then creates a new process Q whose function is to carry out the
designated task. When process Q completes its execution, it sends the needed
result back to P via the message system. In this scheme, process P may execute
concurrently with process Q; in fact, it may have several processes running
concurrently on several sites.

Either method could be used to access several files residing at various sites.
One RPC might result in the ilwocation of another RPC or even in the transfer
of messages to another site. Similarly, process Q could, duril<g the course of its

16.3

16.3 679

execution, send a message to another site, which in turn would create another
process. This process might either send a message back to Q or repeat the cycle.

16.2.2.3 Process Migration

A logical extension of computation migration is na","'"'~c"
process is submitted for execution, it is not always executed at
it is initiated. The entire process, or parts of it, may be executed at different
sites. This scheme may be used for several reasons:

Load balancing. The processes (or subprocesses) may be distributed across
the network to even the workload.

Computation speedup. If a single process can be divided into a number
of subprocesses that can run concurrently on different sites, then the total
process turnaround time can be reduced.

Hardware preference. The process may have characteristics that make it
more suitable for execution on some specialized processor (such as matrix
inversion on an array processor) rather than on a microprocessor.

Software preference. The process may require software that is available
at only a particular site, and either the software cannot be moved, or it is
less expensive to move the process.

Data access. Just as in computation migration, if the data being used in the
computation are numerous, it may be more efficient to have a process run
remotely than to transfer all the data.

We use two complementary techniques to move processes in a computer
network. In the first, the system can attempt to hide the fact that the process has
migrated from the client. This scheme has the advantage that the user does not
need to code her program explicitly to accomplish the migration. This method
is usually employed for achieving load balancing and computation speedup
among homogeneous systems, as they do not need user input to help them
execute programs remotely.

The other approach is to allow (or require) the user to specify explicitly
how the process should migrate. This method is usually employed when the
process must be moved to satisfy a hardware or software preference.

You have probably realized that the Web has many aspects of a distributed
computing environment. Certainly it provides data migration (between a Web
server and a Web client). It also provides computation migration. For instance,
a Web client could trigger a database operation on a Web server. Finally, with
Java, it provides a form of process migration: Java applets are sent from the
server to the client, where they are executed. A network operating system
provides most of these features, but a distributed operating system makes
them seamless and easily accessible. The result is a powerful and easy-to-use
facility-one of the reasons for the huge growth of the World Wide Web.

There are basically two types of networks: and
The main difference between the two is the way in

680 Chapter 16

which they are geographically distributed. Local-area networks are composed
of processors distributed over small areas (such as a single building or a number
of adjacent buildings), whereas wide-area networks are composed of a number
of autonomous processors distributed over a large area (such as the United
States). These differences imply major variations in the speed and reliability
of the communications networks, and they are reflected in the distributed
operating-system design.

16.3.1 Local-Area Networks

Local-area networks emerged in the early 1970s as a substitute for large
mainframe computer systems. For many enterprises, it is more economical
to have a number of small computers, each with its own self-contained
applications, than to have a single large system. Because each small computer
is likely to need a full complement of peripheral devices (such as disks
and printers), and because some form of data sharing is likely to occur in
a single enterprise, it was a natural step to connect these small systems into a
network.

LANs, as mentioned, are usually designed to cover a small geographical
area (such as a single building or a few adjacent buildings) and are generally
used in an office environment. All the sites in such systems are close to one
another, so the communication links tend to have a higher speed and lower
error rate than do their cou.rJerparts in wide-area networks. High-quality
(expensive) cables are needed to attain this higher speed and reliability. It is
also possible to use the cable exclusively for data network traffic. Over longer
distances, the cost of using high-quality cable is enormous, and the exclusive
use of the cable tends to be prohibitively expensive.

The most conunon links in. a local-area network are twisted-pair and fiber
optic cabling. The most common configurations are multiaccess bus, ring,
and star networks. Communication speeds range from 1 megabit per second,
for networks such as AppleTalk, infrared, and the new Bluetooth local radio
network, to 1 gigabit per second for Ethernet. Ten megabits per second
is the speed of requires a higher-quality
cable but runs at 100 m~egabits per second and is common. Also growing is the
use of optical-fiber-based FDDI networking. The FDDI network is token-based
and runs at over 100 megabits per second.

A typical LAN may consist of a number of different computers (from
mainframes to laptops or PDAs), various shared peripheral devices (such
as laser printers and magnetic-tape drives), and one or more gateways
(specialized processors) that provide access to other networks (Figure 16.2). An
Ethernet scheme is commonly used to construct LANs. An Ethernet network
has no central controller, because it is a multiaccess bus, so new hosts can be
added easily to the network The Ethernet protocol is defined by the IEEE 802.3
standard.

There has been significant growth in using the wireless spectrum for
designing local-area networks. Wireless (or WiFi) networks allow constructing
a network using only a wireless router for transmitting signals between hosts.
Each host has a wireless adapter networking card which allows it to join and
use the wireless network However, where Ethernet systems often run at 100
megabits per second, WiFi networks typically run at slower speeds. There are

16.3 681

workstation workstation workstation

printer laptop file server

Figure 16.2 Local-area network.

several IEEE standards for wireless networks: 802.11g can theoretically run at 54
megabits per second, although ilc practice data rates are often less than half that
amount. The recent 802.11n standard provides theoretically much higher data
rates than 802.11g, although in actual practice 802.11n networks have typical
data rates of around 75 megabits per second. Data rates of wireless networks
are heavily influenced by the distance between the wireless router and the
host as well as interference in the wireless spectrum. Wireless networks often
have a physical advantage over wired Ethernet networks as no cabling needs
to be run to connect communicatilcg hosts. As a result, wireless networks are
popular in homes as well as public areas such as libraries and Internet cafes.

16.3.2 Wide-Area Networks

Wide-area networks emerged in the late 1960s, mainly as an academic research
project to provide efficient communication among sites, allowing hardware and
software to be shared conveniently and economically by a wide community
of users. The first WAN to be designed and developed was the Arpanet. Begun
in 1968, the Arpanet has grown from a four-site experimental network to a
worldwide network of networks, the Internet, comprising millions of computer
systems.

Because the sites in a WAN are physically distributed over a large geographi
cal area, the communication links are, by default, relatively slow and unreliable.
Typical links are telephone lines, leased (dedicated data) lines, microwave links,
and satellite channels. These communication links are controlled by special

(Figure 16.3), which are responsible for defilcing
the interface through which the sites communicate over the network, as well
as for transferring information among the various sites.

682 Chapter 16

communication
subsystem

H

H

netwot·k host

communication
processor

Figure 16.3 Communication processors in a wide-area network.

For example, the Internet WAN enables hosts at geographically separated
sites to communicate with one another. The host computers typically differ
from one another in type, speed, word length, operatil1.g system, and so
on. Hosts are generally on LANs, which are, in turn, connected to the
Internet via regional networks. The regional networks, such as NSFnet il1.
the northeast United States, are interlinked with (Section 16.5.2) to
form the worldwide network. Connections between networks frequently use a
telephone-system service called T1, which provides a transfer rate of 1.544
megabits per second over a leased line. For sites requiring faster Internet
access, Tls are collected into multiple-T1 units that work in parallel to provide
more throughput. For instance, a T3 is composed of 28 T1 connections and
has a transfer rate of 45 megabits per second. The routers control the path
each message takes through the net. This routing may be either dynamic, to
increase commmlication efficiency, or static, to reduce security risks or to allow
communication charges to be computed.

Other WANs use standard telephone lines as their primary means of com
munication. are devices that accept digital data from the computer
side and convert it to the analog signals that the telephone system uses. A
modem at the destination site converts the analog signal back to digital form,
and the destination receives the data. The UNIX news network, UUCP, allows
systems to communicate with each other at predetermined times, via modems,
to exchange messages. The messages are then routed to other nearby systems
and in this way either are propagated to all hosts on the network (public
messages) or are transferred to specific destinations (private messages). WANs
are generally slower than LANs; their transmission rates range from 1,200 bits

16.4

16.4 683

per second to over 1 megabit per second. UUCP has been superseded by PPP,
the point-to-point protocol. PPP functions over modem coru1ections, allowing
home computers to be fully connected to the Internet.

The sites in a distributed system can be connected physically in a variety of
ways. Each configuration has advantages and disadvantages. We can compare
the configurations by using the following criteria:

Installation cost. The cost of physically linking the sites in the system

Communication cost. The cost in time and money to send a message from
site A to site B

Availability. The extent to which data can be accessed despite the failure
of some links or sites

The various topologies are depicted in Figure 16.4 as graphs whose nodes
correspond to sites. An edge from node A to node B corresponds to a direct
communication link between the two sites. In a fully connected network, each
site is directly connected to every other site. However, the number of links
grows as the square of the number of sites, resulting in a huge installation cost.
Therefore, fully connected networks are impractical in any large system.

In a pc:ntially direct links exist between some-but
not all-pairs of sites. Hence, the installation cost of such a configuration is
lower than that of the fully connected network. However, if two sites A and
B are not directly connected, messages from one to the other must be
through a sequence of communication links. This requirement results in a
higher communication cost.

If a communication link fails, messages that would have been transmitted
across the link must be rerouted. In some cases, another route through the
network may be found, so that the messages are able to reach their destination.
In other cases, a failure may mean that no connection exists between some
pair (or pairs) of sites. When a system is split into two (or more) unconnected
subsystems, it is partitioned. Under this definition, a subsystem (or partition)
may consist of a single node.

The various partially connected network types include tree-structured
networks, ring networks, and star networks, as shown in Figure 16.4. These
types have different failure characteristics and installation and communication
costs. Installation and communication costs are relatively low for a tree
structured network. However, the failure of a single link in such a network
can result in the network's becoming partitioned. In a ring network, at least
two links must fail for partition to occur. Thus, the ring network has a higher
degree of availability than does a tree-structured network. However, the
communication cost is high, since a message may have to cross a large number
of links. In a star network, the failure of a single link results in a network
partition, but one of the partitions has only a single site. Such a partition can be
treated as a single-site failure. The star network also has a low communication
cost, since each site is at most two links away from every other site. Howeve1~

684 Chapter 16

16.5

fully connected network partially connected network

B

D
F

tree-structured network star network

F

ring network

Figure 16.4 Network topology.

if the central site fails, all the sites in the system become disconnected from one
another.

Now that we have discussed the physical aspects of networking, we turn to
the internal workings. The designer of a communication network must address
five basic issues:

Naming and name resolution. How do two processes locate each other to
communicate?

Routing strategies. How are messages sent through the network?

Packet strategies. Are packets sent individually or as a sequence?

Connection strategies. How do two processes send a sequence of mes
sages?

16.5 685

Contention. How do we resolve conflicting demands for the network's
LISe, given that it is a shared resource?

In the following sections, we elaborate on each of these issues.

16.5.1 Naming and Name Resolution

The first component of network communication is the naming o£ the systems
in the network. For a process at site A to exchange information with a process
at site B, each must be able to specify the other. Within a computer system,
each process has a process identifier, and messages may be addressed with the
process identifier. Beca·use networked systems share no memory, however, a
host within the system initially has no knowledge about the processes on other
hosts.

To solve this problem, processes on remote systems are generally identified
by the pair <host name, identifier>, where host name is a name unique within
the network and identifier may be a process identifier or other unique number
within. that host. A host name is usually an alphanumeric identifier, rather than
a number, to make it easier for users to specify. For instance, site A might have
hosts named homer, marge, bart, and lisa. Bart is certainly easier to remember
than is 12814831100.

Names are convenient for humans to use, but computers prefer numbers for
speed and simplicity. For this reason, there must be a mechanism to !-': the
host name into a that describes the destination system to the networking
hardware. This mechanism is similar to the name-to-address binding that
occurs during program compilation, linking, loading, and execution (Chapter
8). In the case of host names, two possibilities exist. First, every host may have a
data file containing the names and addresses of all the other hosts reachable on
the network (similar to binding at compile time). The problem with this model
is that adding or removing a host from the network requires updati.n.g the data
files on all the hosts. The alternative is to distribute the information among
systems on the network. The network must then use a protocol to distribute
and retrieve the information. This scheme is like execution-time binding. The
first method was the one originally used on the Internet; as the Internet

rnArr-,,or it became untenable, so the second method, the domain-name"'~'"""'""
is now in use.

DNS specifies the naming structure of the hosts, as well as name-to-address
resolution. Hosts on the Internet are logically addressed with multipart names
known as IP addresses. The parts of an IP address progress frorn the most
specific to the most general part, with periods separating the fields. For
instance, bob.cs.brown.edu refers to host bob in the DepaTtment of
Science at Brown University within the top-level domain edu.
domains include com for commercial sites and for organizations, as well as

connected to the for systems
the resolves

in reverse order. Each
a a process on a

a name and returns the address of the name server
As the final the name server for the host in
host-id is returned. For a made
communicate with bob.cs.brown.edu would result in

686 Chapter 16

The kernel of system A issues a request to the name server for the edu
domain, asking for the address of the name server for brown.edu. The
name server for the edu domain must be at a known address, so that it
can be queried.

The edu nance server returns the address of the host on which the brown.edu
name server resides.

The kernel on system A then queries the name server at this address and
asks about cs.brown.edu.

An address is returned; and a request to that address for bob.cs.brown.edu
now, finally, returns an host-id for that host (for example,
128.148.31.100).

This protocol may seem inefficient, but local caches are usually kept by each
name server to speed the process. For example, the edu name server would
have brown.edu in its cache and would inform system A that it could resolve
two portions of the name, returning a pointer to the cs.brown.edu name server.
Of course, the contents of these caches must be refreshed over time in case
the name server is moved or its address changes. In fact, this service is so
important that many optimizations have occurred in the protocol, as well as
many safeguards. Consider what would happen if the primary edu name server
crashed. It is possible that no edu hosts would be able to have their addresses
resolved, making them all Lmreachable! The solution is to use secondary,
back-up name servers that duplicate the contents of the primary servers.

Before the domain-name service was introduced, all hosts on the Internet
needed to have copies of a file that contained the names and addresses of each
host on the network. All changes to this file had to be registered at one site (host
SRI-NIC), and periodically all hosts had to copy the updated file from SRI-NIC
to be able to contact new systems or find hosts whose addresses had changed.
Under the domain-name service, each name-server site is responsible for
updating the host information for that domain. For instance, any host changes
at Brown University are the responsibility of the name server for brown.edu
and need not be reported anywhere else. DNS lookups will automatically
retrieve the updated information because they will contact brown.edu directly.
Within domains, there can be autonomous subdomains to further distribute
the responsibility for host-name and host-id changes.

Java provides the necessary API to design a program that maps IP names to
IP addresses. The program shown in Figure 16.5 is passed an IP name (such as
bob.cs.brown.edu) on the command line and either outputs the IP address of the
host or returns a message indicating that the host name could not be resolved.
An InetAddress is a Java class representing an IP name or address. The static
method getByName () belonging to the InetAddress class is passed a string
representation of an IP name, and it returns the corresponding InetAddress.
The program then invokes the getHostAddress () method, which internally
uses DNS to look up the IP address of the designated host.

Generally, the operating system is responsible for accepting from its
processes a message destined for <host name, identifier> and for transferring
that message to the appropriate host. The kernel on the destination host is then
responsible for transferring the message to the process named by the identifier.
This exchange is by no means trivial; it is described in Section 16.5.4.

16.5

I**
* Usage: java DNSLookUp <IP name>
* i.e. java DNSLookUp www.wiley.com
*I

public class DNSLookUp {

}

public static void main(String[] args) {
InetAddress hostAddress;

try {

}

hostAddress = InetAddress.getByName(args[O]);
System.out.println(hostAddress.getHostAddress());

catch (UnknownHostException uhe) {

}
}

System. err. println ("Unknown host: " + args [0]) ;

Figure 16.5 Java program illustrating a DNS lookup.

16.5.2 Routing Strategies

687

When a process at site A wants to communicate with a process at site B, how
is the message sent? If there is only one physical path from A to B (such as
in a star or tree-structured network), the message must be sent through that
path. However, if there are multiple physical paths from A to B, then several
routing options exist. Each site has a indicating the alternative
paths that can be used to send a message to other sites. The table may include
information about the speed and cost of the various communication paths,
and it may be updated as necessary, either manually or via programs that
exchange routing information. The three most common routing schemes are

td~.-i:Ja] and

Fixed routing. A path from A to B is specified in advance and does not
change unless a hardware failure disables it. Usually, the shortest path is
chosen, so that communication costs are minimized.

Virtual routing. A path from A to B is fixed for the duration of one
Different sessions involving messages from A to B may use different paths.
A session could be as short as a file transfer or as long as a remote-login
period.

Dynamic routing. The path used to send a message from site A to site
B is chosen only when the message is sent. Because the decision is made
dynamically, separate messages may be assigned different paths. Site A
will make a decision to send the message to site C; C, in turn, will decide
to send it to siteD, and so on. Eventually, a site will deliver the message
to B. Usually, a site sends a message to another site on whatever link is the
least used at that particular time.

There are tradeoffs among these three schem.es. Fixed routing cannot adapt
to link failures or load changes. In other words, if a path has been established

688 Chapter 16

between A and B, the messages must be sent along this path, even if the path
is down or is used more heavily than another possible path. We can partially
remedy this problem by using virtual routing and can avoid it completely by
using dynamic routing. Fixed routing and virtual routing ensure that ncessages
from A to B will be delivered in the order in which they were sent. In dynamic
routing, messages may arrive out of order. We can remedy this problem by
appending a sequence number to each message.

Dynamic routing is the most complicated to set up and run; however, it is
the best way to manage routing in complicated environments. UNIX provides
both fixed routing for use on hosts within simple networks and dynamic
routing for complicated network environments. It is also possible to mix the
two. Within a site, the hosts may just need to know how to reach the system that
connects the local network to other networks (such as company-wide networks
or the Internet). Such a node is known as a Each individual host has
a static route to the gateway, although the gateway itself uses dynamic routing
to reach any host on the rest of the network.

A router is the entity within the computer network responsible for routing
messages. A router can be a host computer with routing software or a
special-purpose device. Either way, a router must have at least two network
cmmections, or else it would have nowhere to route messages. A router decides
whether any given message needs to be passed from the network on which
it is received to any other network connected to the router. It makes this
determination by examining the destination Internet address of the message.
The router checks its tables to determine the location of the destination host, or
at least of the network to which it will send the message toward the destination
host. In the case of static routing, this table is changed only by manual update
(a new file is loaded onto the router). With dynamic routing, a
is used between routers to inform them of network changes and to allow them
to update their routing tables automatically. Gateways and routers typically
are dedicated hardware devices that run code out of firmware.

16.5.3 Packet Strategies

Messages generally vary in length. To simplify the system design., we com
monly implement communication with fixed-length messages called

or A communication incplemented in one packet can be
sent to its destination in a A connectionless message
can be in which case the sender has no guarantee that, and cannot
tell whether, the packet reached its destination. Alternatively, the packet can
be usually, in this case, a packet is returned from the destination
indicating that the packet arrived. (Of course, the return packet could be lost
along the way.) If a message is too long to fit within one packet, or if the packets
need to How back and forth between the two communicators, a connection is
established to allow the reliable exchange of multiple packets.

16.5.4 Connection Strategies

c~uuc'''~u are able to reach their destinations, processes can institute
to exchange information. Pairs of processes that

want to communicate over the network can be connected in a number of ways.

16.5 689

The three most common schemes are
and

Circuit switching. If two processes want to con1municate, a permanent
physical link is established between them. Tl1is link is allocated for the
duration of the communication session, and no other process can use
that link during this period (even if the two processes are not actively
communicating for a while). This scheme is similar to that used in the
telephone system. Once a communication line has been opened between
two parties (that is, party A calls party B), no one else can use this circuit
until the communication is terminated explicitly (for example, when the
parties hang up).

Message switching. If two processes want to communicate, a temporary
link is established for the duration of one message transfer. Physical
links are allocated dynamically among correspondents as needed and
are allocated for only short periods. Each message is a block of data
with system information-such as the source, the destination, and error
correction codes (ECC)-that allows the communication network to deliver
the message to the destination correctly. This scheme is similar to the
post-office mailing system. Each letter is a message that contains both the
destination address and source (return) address. Many messages (from
different users) can be shipped over the same link.

Packet switching. One logical message may have to be divided into a
number of packets. Each packet may be sent to its destination separately,
and each therefore must include a source and a destination address with its
data. Furthermore, the various packets may take different paths through
the network. The packets must be reassembled into messages as they
arrive. Note that it is not harmful for data to be broken into packets,
possibly routed separately, and reassembled at the destination. Breaking
up an audio signal (say, a telephone communication), in contrast, could
cause great confusion if it was not done carefully.

There are obvious tradeoffs among these schemes. Circuit switching requires
substantial set-up time and may waste network bandwidth, but it incurs
less overhead for shipping each message. Conversely, message and packet
switching require less set-up time but incur more overhead per message. Also,
in packet switching, each message must be divided into packets and later
reassembled. Packet switching is the method most commonly used on data
networks because it makes the best use of network bandwidth.

16.5.5 Contention

Depending on the network topology, a link may cmmect more than two sites
in the computer network, and several of these sites may want to transmit
information over a link simultaneously. This situation occurs mainly in a ring or
multiaccess bus network. In this case, the transmitted information may become
scrambled. If it does, it must be discarded; and the sites must be notified about
the problem so that they can retransmit the information. If no special provisions
are made, this situation may be repeated, resulting in degraded performance.

690 Chapter 16

16.6

Several techniques have been developed to avoid repeated collisions, including
collision detection and token passing.

CSMA/CD. Before transmitting a message over a link, a site must listen
to determine whether another message is currently being transmitted
over that link; this technique is called -uvith

. If the link is free, the site can start transmitting. Otherwise, it must
wait (and continue to listen) until the link is free. If two or more sites begin
transmitting at exactly the same time (each thinking that no other site is
using the link), then they will register a and will
stop transmitting. Each site will try again after some random time interval.
The main problem with this approach is that, when the system is very
busy, many collisions may occur, and thus performance may be degraded.
Nevertheless, CSMA/CD has been used successfully in the Ethernet system,
the most common local area network system. One strategy for limiting the
number of collisions is to limit the number of hosts per Ethernet network.
Adding more hosts to a congested network could result in poor network
throughput. As systems get faster, they are able to send more packets per
time segment. As a result, the number of systems per Ethernet network
generally is decreasing so that networking performance is kept reasonable.

Token passing. A unique message type, known as a continuously
circulates in the system (usually a ring structure). A site that wants to
transmit information must wait until the token arrives. It then removes
the token from the ring and begins to transmit its messages. When the
site completes its round of message passing, it retransmits the token. This
action, in turn, allows another site to receive and remove the token and
to start its message transmission. If the token gets lost, the system must
detect the loss and generate a new token. It usually does that by declaring
an to choose a unique site where a new token will be generated.
Later, in Section 18.6, we present one election algorithm. A token-passing
scheme has been adopted by the IBM and HP I Apollo systems. The benefit
of a token-passing network is that performance is constant. Adding new
sites to a network may lengthen the waiting time for a token, but it will not
cause a large performance decrease, as may happen on Ethernet. On lightly
loaded networks, however, Ethernet is more efficient, because systems can
send messages at any time.

When we are designing a communication network, we must deal with the
inherent complexity of coordinating asynchronous operations communicating
in a potentially slow and error-prone environment. In addition, the systems on
the network must agree on a protocol or a set of protocols for determining
host names, locating hosts on the network, establishing connections, and
so on. We can simplify the design problem (and related implementation)
by partitioning the problem into multiple layers. Each layer on one system
communicates with the equivalent layer on other systems. Typically, each layer
has its own protocols, and communication takes place between peer layers

16.6 691

network environment

ISO environment

real systems environment

Figure 16.6 Two computers communicating via the ISO network model.

using a specific protocol. The protocols may be implemented in hardware or
software. For instance, Figure 16.6 shows the logical communications between
two computers, with the three lowest-level layers implemented in hardware.
Following the International Standards Organization (ISO), we refer to the layers
as follows:

Physical layer. The physical layer is responsible for handling both the
mechanical and the electrical details of the physical transmission of a bit
stream. At the physical layer, the communicating systems must agree on
the electrical representation of a binary 0 and 1, so that when data are
sent as a stream of electrical signals, the receiver is able to interpret the
data properly as binary data. This layer is implemented in the hardware
of the networking device.

Data-link layer. The data-link layer is responsible for handlingfi'ames, or
fixed-length parts of packets, including any error detection and recovery
that occurs in the physical layer.

Network layer. The network layer is responsible for providing connec
ti01cS and for routing packets in the communication network, including
handling the addresses of outgoing packets, decoding the addresses
of incoming packets, and maintaining routing information for proper
response to changing load levels. Routers work at this layer.

Transport layer. The transport layer is responsible for low-level access
to the network and for transfer of messages between clients, including
partitioning messages into packets, maintaining packet order, controlling
flow, and generating physical addresses.

Session layer. The session layer is responsible for implementing sessions,
or process-to-process communication protocols. Typically, these protocols
are the actual communications for remote logins and for file and mail
transfers.

692 Chapter 16

Presentation layer. The presentation layer is responsible for resolving the
differences in formats among the various sites in the network, including
character conversions and half duplex-full duplex modes (character
echoing).

Application layer. The application layer is responsible for interacting
directly with users. This layer deals with file transfe1~ remote-login
protocols, and electronic mail, as well as with schemas for distributed
databases.

Figure 16.7 summarizes the set of cooperating
protocols-showing the physical flow of data. As mentioned, logically each
layer of a protocol stack communicates with the equivalent layer on other
systems. But physically, a message starts at or above the application layer and

end-user application process

distributed information

transfer-syntax negotiation
data-representation transformations

dialog and synchronization
control for application entities

network-independent
message-interchange service J
end-to~end message transfer

(connection management, error control,
fragmentation, flow control)

network routing, addressing,
call set-up and clearing

application layer

presentation layer

session layer

transport layer

network layer

data-link control
(framing, data transparency, error control) link layer

mechanical and electrical
networkcinterface connections

physical connection to
network termination equipment

physical layer

16.7 The ISO protocol stack.

16.6

data-link -layer header

network-layer header

transport-layer header
f-------1

session-layer header
f-------1

presentation layer
f-------1

application layer

message

L_ _ _____j
data-link -layer trailer

Figure 16.8 An ISO network message.

693

is passed through each lower level in turn. Each layer may modify the message
and il1.clude message-header data for the equivalent layer on the receiving
side. Ultimately, the message reaches the data-network layer and is transferred
as one or more packets (Figure 16.8). The data-lil1.k layer of the target system
receives these data, and the message is moved up through the protocol stack;
it is analyzed, modified, and stripped of headers as it progresses. It fu1.ally
reaches the application layer for use by the receiving process.

The ISO model formalizes some of the earlier work done in network
protocols but was developed in the late 1970s and is currently not in widespread
use. Perhaps the most widely adopted protocol stack is the TCP /IP model, which
has been adopted by virtually all Internet sites. The TCP /IP protocol stack
has fewer layers than does the ISO model. Theoretically, because it combilles
several functions ill each layer, it is more difficult to implement but more
efficient than ISO networking. The relationship between the ISO and TCP /IP
models is shown in Figure 16.9. The TCP /IP application layer identifies several
protocols ill widespread use ill the Internet, illcluding HTTP, FTP, Telnet, DNS,
and SMTP. The transport layer identifies the unreliable, connectionless user
datagram protocol (UDP) and the reliable, connection-oriented transmission
control protocol (TCP). The Internet protocol (IP) is responsible for routing IP
datagrams through the Internet. The TCP /IP model does not formally identify
a link or physical laye1~ allowing TCP /IP traffic to run across any physical
network. In Section 16.9, we consider the TCP /IP model running over an
Ethernet network.

Security should be a concern in the design and implementation of any
modern communication protocol. Both strong authentication and encryption
are needed for secure communication. Strong authentication ensures that
the sender and receiver of a communication are who or what they are
supposed to be. Encryption protects the contents of the communication
from eavesdropping. Weak authentication and clear-text communication are
still very common, however, for a variety of reasons. When most of the

694 Chapter 16

16.7

ISO

presentation

session

physical

TCP/IP

HTTP, DNS, Telnet
SMTP, FTP

not defined

not defined

TCP-UDP

not defined

not defined

Figure 16.9 The ISO and TCP/IP protocol stacks.

common protocols were designed, security was frequently less important than
performance, simplicity, and efficiency.

Strong authentication requires a multistep handshake protocol or authen
tication devices, adding complexity to a protocol. Modern CPUs can efficiently
perform encryption, and systems frequently offload encryption to separate
cryptography processors, so system performance is not compromised. Long
distance communication can be made secure by authenticating the endpoints
and encrypting the stream of packets in a virtual private network, as discussed
in 15.4.2. LAN communication remains unencrypted at most sites, but proto
cols such as NFS Version 4, which includes strong native authentication and
encryption, should help improve even LAN security.

A distributed system may suffer from various types of hardware failure. The
failure of a link, the failure of a site, and the loss of a message are the most
common types. To ensure that the system is robust, we must detect any of these
failures, reconfigure the system so that computation can continue, and recover
when a site or a link is repaired.

16.7.1 Failure Detection

In an environment with no shared memory, we are generally unable to
differentiate among link failure, site failure, and message loss. We can usually
detect only that one of these failures has occurred. Once a failure has been

16.7 695

detected, appropriate action must be taken. What action is appropriate depends
on the particular application.

To detect link and site failure, we use a procedure. Suppose
that sites A and B have a direct physical link between them .. At fixed intervals,
the sites send each other an J-am-up m.essage. If site A does not receive this
message within a predetermined time period, it can assume that site B has
failed, that the link between A and B has failed, or that the message from B
has been lost. At this point, site A has two choices. It can wait for another time
period to receive an J-am-up message from B, or it can send an Are-you-up?
message to B.

If time goes by and site A still has not received an J-am-up message, or if site
A has sent an Are-you-up? message and has not received a reply, the procedure
can be repeated. Again, the only conclusion that site A can draw safely is that
some type of failure has occurred.

Site A can try to differentiate between link failure and site failure by sending
an Are-you-up? message to B by another route (if one exists). If and when B
receives this message, it immediately replies positively. This positive reply tells
A that B is up and that the failure is in the direct link between them. Since we
do not know in advance how long it will take the message to travel from A to B
and back, we must use a At the time A sends the Are-you-up?
message, it specifies a time interval during which it is willing to wait for the
reply from B. If A receives the reply message within that time interval, then it
can safely conclude that B is up. If not, however (that is, if a time-out occurs),
then A may conclude only that one or more of the following sih1ations has
occurred:

Site B is down.

The direct link (if one exists) from A to B is down.

The alternative path from A to B is down.

The message has been lost.

Site A cannot, however, determine which of these events has occurred.

16.7.2 Reconfiguration

Suppose that site A has discovered, through the mechanism described in the
previous section, that a failure has occurred. It must then initiate a procedure
that will allow the system to reconfigure and to continue its normal mode of
operation.

If a direct link from A to B has failed, this information must be broadcast to
every site in the system, so that the various routing tables can be updated
accordingly.

If the system believes that a site has failed (because that site can be reached
no longer), then all sites in the system must be so notified, so that they
will no longer attempt to use the services of the failed site. The failure of a
site that serves as a central coordinator for some activity (such as deadlock
detection) requires the election of a new coordinator. Similarly, if the failed

696 Chapter 16

site is part of a logical ring, then a new logical ring must be constructed.
Note that, if the site has not failed (that is, if it is up but camwt be reached),
then we may have the undesirable situation in which two sites serve as the
coordinator. When the network is partitioned, the two coordinators (each
for its own partition) may initiate conflicting actions. For example, if the
coordinators are responsible for implementing mutual exclusion, we may
have a situation in which two processes are executing simultaneously in
their critical sections.

16.7.3 Recovery from Failure

When a failed link or site is repaired, it must be integrated into the system
gracefully and smoothly.

Suppose that a link between A and B has failed. Wlcen it is repaired,
both A and B must be notified. We can accomplish this notification by
continuously repeating the handshaking procedure described in Section
16.7.1.

Suppose that site B has failed. Wlcen it recovers, it must notify all other sites
that it is up again. Site B then may have to receive information from the
other sites to update its local tables; for example, it may need routing-table
information, a list of sites that are down, or mcdelivered messages and
mail. If the site has not failed but simply could not be reached, then this
information is still required.

16.7.4 Fault Tolerance

A distributed system must tolerate a certain level of failure and continue to
function normally when faced with various types of failures. Making a facility
fault tolerant starts at the protocol level, as described above, but continues
through all aspects of the system. We use the term fault tolerance in a broad
sense. Communication faults, machine failures (of type fail-stop where the
machine stops before performing an erroneous operation that is visible to other
processors), storage-device crashes, and decays of storage media should all be
tolerated to some extent. A should continue to function,
perhaps in a degraded form, when faced with such failures. The degradation
can be in performance, in functionality, or in both. It should be proportional,
however, to the failures that caused it. A system that grinds to a halt when only
one of its components fails is certainly not fault tolerant.

Unfortunately, fault tolerance can be difficult and expensive to implement.
At the network layer, multiple redundant communication paths and network
devices such as switches and routers are needed to avoid a cmnmunication
failure. A storage failure can cause loss of the operating system, applications,
or data. Storage units can include redundant hardware components that
automatically take over from each other in case of failure. In addition, RAID
systems can ensure continued access to the data even in the event of one or
more disk failures (Section 12.7).

A system failure without redundancy can cause an application or an entire
facility to stop operation. The Inost simple system failure involves a system
running only stateless applications. These applications can be restarted without

16.8

16.8 697

compromising the operation; so as long as the applications can run on more
than one computer (node), operation can continue. Such a facility is commonly
known as a because it is computation-centric.

In contrast, systems involve running applications that access
and modify shared data. As a result, data-centric computing facilities are more
difficult to make fault tolerant. They failure-monitoring software and
special infrastructure. For instance, such as Veritas
Cluster and Sun Cluster include two or more computers and a set of shared
disks. Any given application can be stored on the computers or on the shared
disk, but the data must be stored on the shared disk. The running application's
node has exclusive access to the application's data on disk. The application is
monitored by the cluster software, and if it fails it is automatically restarted.
If it camwt be restarted, or if the entire computer fails, the node's exclusive
access to the application's data is terminated and is granted to another node
in the cluster. The application is restarted on that new node. The application
loses whatever state information was in the failed system's memory but can
continue based on whatever state it last wrote to the shared disk. From a user's
point of view, a service was interrupted and then restarted, possibly with some
data missing.

Specific applications may improve on this functionality by implementing
lock management along with clustering. With lock management (Section
18.4.1), the application can run on multiple nodes and can use the same data
on shared disks concurrently. Clustered databases frequently implement this
functionality. If anode fails, transactions can continue on other nodes, and users
notice no interruption of service, as long as the client is able to automatically
locate the other nodes in the cluster. Any noncommitted transactions on the
failed node are lost, but again, client applications can be designed to retry
noncommitted transactions if they detect a failure of their database node.

Making the multiplicity of processors and storage devices to the
users has been a key challenge to many designers. Ideally, a distributed system
should look to its users like a conventional, centralized system. The user
interface of a transparent distributed system should not distinguish between
local and remote resources. That is, users should be able to access remote
resources as though these resources were local, and the distributed system
should be responsible for locating the resources and for arranging for the
appropriate interaction.

Another aspect of transparency is user mobility. It would be convenient
to allow users to log into any machine in the system rather than forcing
them to use a specific machine. A transparent distributed system facilitates
user mobility by bringiicg over the user's environment (for example, home
directory) to wherever he logs in. Both the Andrew file system from CMU and
Project Athena from MIT provide this functionality on a large scale; NFS can
provide it on a smaller scale.

Still another issue is L;. -the capability of a system to adapt to
increased service load. Systems have bounded resources and can become
completely saturated under increased load. For example, with respect to a file

698 Chapter 16

system, saturation occurs either when a server's CPU runs at a high utilization
rate or when disks are almost full. Scalability is a relative property, but it can be
measured accurately. A scalable system reacts more gracefully to increased load
than does a nonscalable one. First, its performance degrades more moderately;
and second, its resources reach a saturated state later. Even perfect design
cannot accommodate an ever-growing load. Adding new resources might solve
the problem, but it might generate additional indirect load on other resources
(for example, adding machines to a distributed system can clog the network
and increase service loads). Even worse, expanding the system can call for
expensive design modifications. A scalable system should have the potential
to grow without these problems. In a distributed system, the ability to scale
up gracefully is of special importance, since expanding the network by adding
new machines or interconnecting two networks is commonplace. In short, a
scalable design should withstand high service load, accommodate growth of
the user community, and enable simple integration of added resources.

Scalability is related to fault tolerance, discussed earlier. A heavily loaded
component can become paralyzed and behave like a faulty component. Also,
shifting the load from a faulty component to that component's backup can
saturate the latter. Generally, having spare resources is essential for ensuring
reliability as well as for handling peak loads gracefully. An inherent advantage
of a distributed system is a potential for fault tolerance and scalability because
of the multiplicity of resources. However, inappropriate design can obscure
this potential. Fault-tolerance and scalability considerations call for a design
demonstrating distribution of control and data.

Very large-scale distributed systems, to a great extent, are still only
theoretical. No magic guidelines ensure the scalability of a system. It is easier
to point out why current designs are not scalable. We next discuss several
designs that pose problems and propose possible solutions, all in the context
of scalability.

One principle for designing very large-scale systems is that the service
demand from any component of the system should be bounded by a constant
that is independent of the number of nodes in the system. Any service
mechanism whose load demand is proportional to the size of the system is
destined to become clogged once the system grows beyond a certain size.
Adding more resources will not alleviate such a problem. The capacity of this
mechanism simply limits the growth of the system.

Another principle concerns centralization. Central control schemes and
central resources should not be used to build scalable (and fault-tolerant)
systems. Examples of centralized entities are central authentication servers,
central naming servers, and central file servers. Centralization is a form of
functional asyrrunetry among machines constituting the system. The ideal
alternative is a functionally symmetric configuration; that is, all the component
machines have an equal role in the operation of the system, and hence each
machine has some degree of autonomy. Practically, it is virtually impossible to
comply with such a principle. For instance, incorporating diskless machines
violates functional symmetry, since the workstations depend on a central disk
However, autonomy and symmetry are important goals to which we should
aspire.

Deciding on the process structure of the server is a major problem in
the design of any service. Servers are supposed to operate efficiently in peak

16.9

16.9 699

periods, when hundreds of active clients need to be served simultaneously. A
single-process server is certainly not a good choice, since whenever a request
necessitates disk I/0, the whole service will be blocked. Assigning a process for
each client is a better choice; however, the expense of frequent context switches
between the processes must be considered. A related problem occurs because
all the server processes need to share information.

One of the best solutions for the server architecture is the use of lightweight
processes, or threads, which we discuss in Chapter 4. We can think of a group
of lightweight processes as multiple threads of control associated with some
shared resources. Usually, a lightweight process is not bound to a particular
client. Instead, it serves single requests of different clients. Scheduling of
threads can be preemptive or nonpreemptive. If threads are allowed to run
to completion (nonpreemptive), then their shared data do not need to be
protected explicitly. Otherwise, some explicit locking mechanism must be used.
Clearly, some form of lightweight-process scheme is essential if servers are to
be scalable.

We now return to the name-resolution issue raised in Section 16.5.1 and
examine its operation with respect to the TCF /IF protocol stack on the Internet.
We consider the processing needed to transfer a packet between hosts on
different Ethernet networks.

In a TCF /IF network, every host has a name and an associated IF address
(or host-id). Both of these strings must be unique; and so that the name space
can be managed, they are segmented. The name is hierarchical (as explained
in Section 16.5.1), describing the host name and then the organization with
which the host is associated. The host-id is split into a network number and a
host number. The proportion of the split varies, depending on the size of the
network. Once the Internet adrninistrators assign a network number, the site
with that number is free to assign host-ids.

The sending system checks its routing tables to locate a router to send the
frame on its way. The routers use the network part of the host-id to transfer
the packet from its source network to the destination network. The destination
system then receives the packet. The packet may be a complete message, or it
may just be a component of a message, with more packets needed before the
message can be reassembled and passed to the TCF /UDF layer for transmission
to the destination process.

Now we know how a packet moves from its source network to its
destination. Within a network, how does a packet move from sender (host
or router) to receiver? Ethernet device has a unique byte number, called
the assigned to it for addressing. Two
devices on a LAN communicate with each other only with this number. If
a system needs to send data to another system, the networking software
generates an containing the IF
address of the destination system. This packet is to all other systems
on that Ethernet network.

A broadcast uses a special network address (usually, the maximum
address) to signal that all hosts should receive and process the packet. The

700 Chapter 16

broadcast is not re-sent by gateways, so only systems on the local network
receive it. Only the system whose IP address matches the IP address of the ARP
request responds and sends back its MAC address to the system that initiated
the query. For efficiency, the host caches the IP-MAC address pair in an internal
table. The cache entries are so that an entry is eventually removed from
the cache if an access to that system is not required within a given time. In
this way, hosts that are removed from a network are eventually forgotten. For
added performance, ARP entries for heavily used hosts may be hardwired in
the ARP cache.

Once an Ethernet device has announced its host-id and address, commu
nication can begin. A process may specify the name of a host with which to
communicate. Networking software takes that name and determines the IP
address of the target, using a DNS lookup. The message is passed from the
application laye1~ through the software layers, and to the hardware layer. At
the hardware layer, the packet (or packets) has the Ethernet address at its start;
a trailer indicates the end of the packet and contains a for detection
of packet damage (Figure 16.10). The packet is placed on the network by the
Ethernet device. The data section of the packet may contain some or all of the
data of the original message, but it may also contain some of the upper-level
headers that compose the message. In other words, all parts of the original
message must be sent from source to destination, and all headers above the
802.3layer (data-link layer) are included as data in the Ethernet packets.

If the destination is on the same local network as the source, the system
can look in its ARP cache, find the Ethernet address of the host, and place the
packet on the wire. The destination Ethernet device then sees its address in the
packet and reads in the packet passing it up the protocol stack.

If the destination system is on a network different from that of the source,
the source system finds an appropriate router on its network and sends the
packet there. Routers then pass the packet along the WAN 1-mtil it reaches its

bytes

7

2 or 6

2 or 6

2

0-1500

0-46

4

Pt.e~~n1bh:l.~s.tartfc1Ft:r<=ccll<et(1 each byte pattern 1010101 o

data

pattern 10101011

Ethernet address or broadcast

Ethernet address

length in bytes

message data

message must be> 63 bytes long

for error detection

Figure i 6.10 An Ethernet packet.

16.10

701

destination network. The router that connects the destination network checks
its ARP cache, finds the Ethernet number of the destination, and sends the
packet to that host. Through all of these transfers, the data-link-layer header
may change as the Ethernet address of the next router in the chain is used, but
the other headers of the packet remain the same until the packet is received
and processed by the protocol stack and finally passed to the receiving process
by the kernel.

A distributed system is a collection of processors that do not share memory or
a clock. Instead, each processor has its own local memory, and the processors
communicate with one another through various communication lines, such
as high-speed buses and telephone lines. The processors in a distributed
system vary in size and function. They may include small microprocessors,
workstations, minicomputers, and large general-purpose computer systems.

The processors in the system are connected through a communication
network, which can be configured in a number of ways. The network may
be fully or partially connected. It may be a tree, a star, a ring, or a multiaccess
bus. The communication-network design must include routing and com1ection
strategies, and it must solve the problems of contention and security.

A distributed system provides the user with access to the resources
the system provides. Access to a shared resource can be provided by data
migration, computation migration, or process migration.

Protocol stacks, as specified by network layering models, "massage" the
message, adding information to it to ensure that it reaches its destination. A
naming system (such as DNS) must be used to translate from a host name
to a network address, and another protocol (such as ARP) may be needed
to translate the network number to a network device address (an Ethernet
address, for instance). If systems are located on separate networks, routers are
needed to pass packets from source network to destination network.

A distributed system may suffer from various types of hardware failure.
For a distributed system to be fault tolerant, it must detect hardware failures
and reconfigure the system. When the failure is repaired, the system must be
reconfigured again.

16.1 What are the advantages of using dedicated hardware devices for
routers and gateways? What are the disadvantages of using these
devices compared with using general-purpose computers?

16.2 Why would it be a bad idea for gateways to pass broadcast packets
between networks? What would be the advantages of doing so?

16.3 Consider a network layer that senses collisions and retransmits imme
diately on detection of a collision. What problems could arise with this
strategy? How could they be rectified?

702 Chapter 16

16.4 Even though the ISO model of networking specifies seven layers of
functionality, most computer systems use fewer layers to implement a
network. Why do they use fewer layers? What problems could the use
of fewer layers cause?

16.5 The lower layers of the ISO network model provide datagram service,
with no delivery guarantees for messages. A transport-layer protocol
such as TCP is used to provide reliability. Discuss the advantages and
disadvantages of supporting reliable message delivery at the lowest
possible layer.

16.6 What are the advantages and the disadvantages of making the com
puter network transparent to the user?

16.7 Under what circumstances is a token-passing network more effective
than an Ethernet network?

16.8 Process migration within a heterogeneous network is usually impos
sible, given the differences in architectures and operating systems.
Describe a method for process migration across different architectures
running:

a. The same operating system

b. Different operating systems

16.9 Contrast the various network topologies in terms of the following
attributes:

a. Reliability

b. Available bandwidth for concurrent communications

c. Installation cost

d. Load balance in routing responsibilities

16.10 How does using a dynamic routing strategy affect application behav
ior? For what type of applications is it beneficial to use virtual routing
instead of dynamic routing?

16.11 The original HTTP protocol used TCP /IP as the underlying network
protocol. For each page, graphic, or applet, a separate TCP session was
constructed, used, and torn down. Because of the overhead of building
and destroying TCP liP connections, performance problems resulted
from this implementation method. Would using UDP rather than TCP
be a good alternative? What other changes could you make to improve
HTTP performance?

16.12 What are the advantages and disadvantages of using circuit switching?
For what kinds of applications is circuit switching a viable strategy?

16.13 In what ways is using a name server better than using static host tables?
What problems or complications are associated with name servers?
What methods could you use to decrease the amount of traffic name
servers generate to satisfy translation requests?

703

16.14 Of what use is an address-resolution protocol? Why is it better to use
such a protocol than to make each host read each packet to determine
that packet's destination? Does a token-passing network need such a
protocol? Explain your answer.

16.15 What is the difference between computation migration and process
migration? Which is easier to implement, and why?

16.16 Run the program shown in Figure 16.5 and determine the IP addresses
of the following host names:

www.wiley.com

www.cs.yale.edu

www.apple.com

www.westminstercollege.edu

www.ietf.org

16.17 To build a robust distributed system, you must know what kinds of
failures can occur.

a. List three possible types of failure in a distributed system.

b. Specify which of the entries in your list also are applicable to a
centralized system.

16.18 Explain why doubling the speed of the systems on an Ethernet segment
may result in decreased network performance. What changes could
help solve this problem?

16.19 Name servers are organized in a hierarchical manner. What is the
purpose of using a hierarchical organization?

16.20 Consider a distributed system with two sites, A and B. Consider
whether site A can distinguish among the following:

a. B goes down.

b. The link between A and B goes down.

c. B is extremely overloaded, and its response time is 100 times
longer than normal.

What implications does your answer have for recovery in distributed
systems?

Tanenbaum [2003], Stallings [2000a], and Kurose and Ross [2005] provide
general overviews of computer networks. Williams [2001] covers computer
networking from a computer-architecture viewpoint.

The Internet and its protocols are described in Comer [1999] and Comer
[2000]. Coverage of TCP /IP can be found in Stevens [1994] and Stevens [1995].

704 Chapter 16

UNIX network programming is described thoroughly in Stevens [1997] and
Stevens [1998].

Discussions concerning distributed operating-system structures have been
offered by Coulouris et al. [2001] and Tanenbaum and van Steen [2002].

Load balancing and load sharing are discussed by I-Iarchol-Balter and
Downey [1997] and Vee and I-Isu [2000]. I-Iarish and Owens [1999] describes
load-balancing DNS servers. Process migration is discussed by Jul et al. [1988],
Douglis and Ousterhout [1991], Han and Ghosh [1998], and Milojicic et al.
[2000]. Issues relating to a distributed virtual machine for distributed systems
are examined in Sirer et al. [1999].

17.1

In the previous chapter, we discussed network construction and the low-level
protocols needed to transfer between systems. Now we examine
one use of this infrastructure. A is a distributed
implementation of the classical time-sharing of a file system, where
multiple users share files and storage resources (Chapter 11). The purpose of
a DFS is to support the same kind of sharing when the files are physically
dispersed among the sites of a distributed system.

In this chapter, we describe how a DFS can be designed and implemented.
First, we discuss common concepts on which DFSs are based. Then, we illustrate
our concepts by examining one influential DFS-the Andrew file system (AFS).

To explain the naming mechanism that provides location transparency and
independence.

To describe the various methods for accessing distributed files.

To contrast stateful and stateless distributed file servers.

To show how replication of files on different machines in a distributed file
system is a useful redundancy for improving availability.

To introduce the Andrew file system (AFS) as an example of a distributed
file system.

As we noted in the preceding chapter, a distributed system is a collection
of loosely coupled computers interconnected by a communication network.
These computers can share physically dispersed files by using a distributed
file system (DFS). In this chapter, we use the term DFS to mean distributed file
systems in general, not the commercial Transarc DFS product; we refer to the
latter as Transarc DFS. Also, NFS refers to NFS Version 3, unless otherwise noted.

705

706 Chapter 17

To explain the structure of a DFS, we need to define the terms service, server,
and client. A is a software entity running on one or more machines
and providing a particular type of function to clients. A is the service
software running on a single machine. A is a process that can invoke
a service using a set of operations that form its Sometimes a
lower-level interface is defined for the actual cross-machine interaction; it is
the

Using this terminology, we say that a file system provides file services to
clients. A client interface for a file service is formed by a set of primitive file
operations, such as create a file, delete a file, read from a file, and write to a file.
The primary hardware concponent that a file server controls is a set of local
secondary-storage devices (usually, magnetic disks) on which files are stored
and from which they are retrieved according to the clients' requests.

A DFS is a file system whose clients, servers, and storage devices are
dispersed among the machines of a distributed system. Accordingly, service
activity has to be carried out across the network. Instead of a single centralized
data repository, the system frequently has multiple and independent storage
devices. As you will see, the concrete configuration and implementation of a
DFS may vary from system to system. In some configurations, servers run on
dedicated machines; in others, a machine can be both a server and a client. A DFS
can be implemented as part of a distributed operating system or, alternatively,
by a software layer whose task is to manage the communication between
conventional operating systems and file systems. The distinctive features of a
DFS are the multiplicity and autonomy of clients and servers in the system.

Ideally, a DFS should appear to its clients to be a conventional, centralized
file system. The multiplicity and dispersion of its servers and storage devices
should be made invisible. That is, the client interface of a DFS should not
distinguish between local and remote files. It is up to the DFS to locate the
files and to arrange for the transport of the data. A DFS facilitates
user mobility by bringing a user's environment (that is, home directory) to
wherever the user logs in.

The most important performance measure of a DFS is the amount of time
needed to satisfy service requests. In conventional systems, this time consists of
disk-access time and a small amount of CPU-processing time. In a DFS, however,
a remote access has the additional overhead attributed to the distributed
structure. This overhead includes the time to deliver the request to a server, as
well as the time to get the response across the network back to the client. For
each direction, in addition to the transfer of the information, there is the CPU
overhead of running the communication protocol software. The performance
of a DFS can be viewed as another dimension of the DFS's transparency. That is,
the performance of an ideal DFS would be comparable to that of a conventional
file system.

The fact that a DFS manages a set of dispersed storage devices is the DFS' s
key distinguishing feature. The overall storage space managed by a DFS is
composed of different and remotely located smaller storage spaces. Usually,
these constituent storage spaces correspond to sets of files. A cmnpm1.c:nt
is the smallest set of files that can be stored on a single machine, independently
from other units. All files belonging to the same component unit must reside
in the same location.

17.2

17.2 707

is a mapping between logical and physical objects. For instance,
users deal with logical data objects represented by file nances, whereas the
system manipulates physical blocks of data stored on disk tracks. Usually, a
user refers to a file by a textual name. The latter is mapped to a lower-level
numerical identifier that in turn is mapped to disk blocks. This multilevel
mapping provides users with an abstraction of a file that hides the details of
how and where on the disk the file is stored.

In a transparent DFS, a new dimension is added to the abstraction: that of
hiding where in the network the file is located. In a conventional file system, the
range of the naming mapping is an address within a disk. In a DFS, this range
is expanded to include the specific machine on whose disk the file is stored.
Going one step further with the concept of treating files as abstractions leads
to the possibility of Given a file name, the mapping returns a
set of the locations of this file's replicas. In this abstraction, both the existence
of multiple copies and their locations are hidden.

17.2.1 Naming Structures

We need to differentiate two related notions regarding name mappings in a
DFS:

. The name of a file does not reveal any hint of the
file's physical storage location.

'J'"~'"'''.<,"'·'-'"'· The name of a file does not need to be changed
when the file's physical storage location changes.

Both definitions relate to the level of naming discussed previously,
since files have different names at different levels (that is, user-level textual
names and system-level numerical identifiers). A location-independent nam
ing scheme is a dynamic mapping, since it can map the same file name to
different locations at two different times. Therefore, location independence is
a stronger property than is location transparency.

In practice, most of the current DFSs provide a static, location-transparent
mapping for user-level names. These systems, however, do not support

· that is, changing the location of a file automatically is impossible.
Hence, the notion of location independence is irrelevant for these systems.
Files are associated permanently with a specific set of disk blocks. Files and
disks can be moved between machines manually, but file migration implies an
automatic, operating-system-initiated action. Only AFS and a few experimental
file systems support location independence and file mobility. AFS supports file
mobility mainly for administrative purposes. A protocol provides migration
of AFS component units to satisfy high-level user requests, without changing
either the user-level names or the low-level names of the corresponding files.

A few aspects can further differentiate location independence and static
location transparency:

Divorce of data from location, as exhibited by location independence,
provides a better abstraction for files. A file name should denote the file's

708 Chapter 17

most significant attributes, which are its contents ratber than its location.
Location-independent files can be viewed as logical data containers that
are not attached to a specific storage location. If only static location
transparency is supported, the file name still denotes a specific, although
hidden, set of physical disk blocks.

Static location transparency provides users with a convenient way to share
data. Users can share remote files by simply naming the files in a location
transparent manner, as though the files were local. Nevertheless, sharing
the storage space is cumbersome, because logical names are still statically
attached to physical storage devices. Location independence promotes
sharing the storage space itself, as well as the data objects. When files can
be mobilized, the overall, system-wide storage space looks like a single
virtual resource. A possible benefit of such a view is the ability to balance
the utilization of disks across the system.

Location independence separates the naming hierarchy from the storage
devices hierarchy and from the intercomputer structure. By contrast, if
static location transparency is used (although names are transparent),
we can easily expose the correspondence between component units and
machines. The machines are configured in a pattern similar to the naming
structure. This configuration may restrict the architecture of the system
um1.ecessarily and conflict with other considerations. A server in charge of
a root directory is an example of a structure that is dictated by the naming
hierarchy and contradicts decentralization guidelines.

Once the separation of name and location has been completed, clients
can access files residing on remote server systems. In fact, these clients may
be and rely on servers to provide all files, including the operating
system kernel. Special protocols are needed for the boot sequence, however.
Consider the problem of getting the kernel to a diskless workstation. The
diskless workstation has no kernel, so it cam1.ot use the DFS code to retrieve
the kernel. Instead, a special boot protocol, stored in read-only memory (ROM)
on the client, is invoked. It enables networking and retrieves only one special
file (the kernel or boot code) from a fixed location. Once the kernel is copied
over the network and loaded, its DFS makes all the other operating-system files
available. The advantages of diskless clients are many, including lower cost
(because the client machines require no disks) and greater convenience (when
an operating-system upgrade occurs, only the server needs to be modified).
The disadvantages are the added complexity of the boot protocols and the
performance loss resulting from the use of a network rather than a local disk.

The current trend is for clients to use both local disks and remote file servers.
Operating systems and networking software are stored locally; file systems
containing user data-and possibly applications-are stored on remote file
systems. Some client systems may store commonly used applications, such as
word processors and Web browsers, on the local file system as well. Other, less
commonly used applications may be from the remote file server to the
client on demand. The main reason for providing clients with local file systems
rather than pure diskless systems is that disk drives are rapidly increasing in
capacity and decreasing in cost, with new generations appearing every year
or so. The same cannot be said for networks, which evolve every few years.

17.2 709

Overall, systems are growing more quickly than are networks, so extra work
is needed to limit network access to improve system throughput.

17.2.2 Naming Schemes

There are three main approaches to naming schemes in a DFS. In the simplest
approach, a file is identified by some combination of its host name and local
name, which guarantees a unique system-wide name. In Ibis, for instance,
a file is identified uniquely by the name host: local-name, where Local-name is a
UNIX-like path. This naming scheme is neither location transparent nor location
independent. Nevertheless, the same file operations can be used for both local
and remote files. The DFS is structured as a collection of isolated component
units, each of which is an entire conventional file system. In this first approach,
component 1-mits remain isolated, although means are provided to refer to a
remote file. We do not consider this scheme any further in this text.

The second approach was popularized by Sun's network file system, NFS.
NFS is the file-system component of ONC+, a networking package supported
by many UNIX vendors. NFS provides a means to attach remote directories
to local directories, thus giving the appearance of a coherent directory tree.
Early NFS versions allowed only previously mmmted remote directories to
be accessed transparently. With the advent of the feature, mounts
are done on demand, based on a table of mount points and file-structure
names. Components are integrated to support transparent sharing, although
this integration is limited and is not uniform, because each machine may attach
different remote directories to its tree. The resulting structure is versatile.

We can achieve total integration of the component file systems by using the
third approach. Here, a single global name structure spans all the files in the
system. Ideally, the composed file-system structure is the same as the structure
of a conventional file system. In practice, however, the many special files (for
example, UNIX device files and machine-specific binary directories) make this
goal difficult to attain.

To evaluate naming structures, we look at their
The most complex and most difficult-to-maintain structure is the NFS structure.
Because any rem.ote directory can be attached anywhere onto the local directory
tree, the resulting hierarchy can be highly m1structured. If a server becomes
unavailable, some arbitrary set of directories on different machines becomes
unavailable. In addition, a separate accreditation mechanism controls which
machine is allowed to attach which directory to its tree. Thus, a user might
be able to access a remote directory tree on one client but be denied access on
another client.

17.2.3 Implementation Techniques

Implementation of transparent naming requires a provision for the mapping
of a file naine to the associated location. To keep this mapping manageable,
we must aggregate sets of files into component units and provide the mapping
on a component-unit basis rather than on a single-file basis. This aggregation
serves administrative purposes as well. UNIX-like systems use the hierarchical
directory tree to provide name-to-location mapping and to aggregate files
recursively into directories.

710 Chapter 17

17.3

To enhance the availability of the crucial mapping information, we can use
replication, local caching, or both. As we noted, location independence means
that the mapping changes over time; hence, replicating the mapping makes
a simple yet consistent update of this information impossible. A teclllcique
to overcome this obstacle is to introduce low-level me

Textual file names are mapped to lower-level file identifiers that
indicate to which component unit the file belongs. These identifiers are still
location independent. They can be replicated and cached freely without being
invalidated by migration of component units. The inevitable price is the need
for a second level of mapping, which maps component units to locations and
needs a simple yet consistent update mechanism. Implementing UNIX-like
directory trees using these low-levet location-independent identifiers makes
the whole hierarchy invariant under component-unit migration. The only
aspect that does change is the component-unit location mapping.

A common way to implement low-level identifiers is to use structured
names. These names are bit strings that usually have two parts. The first
part identifies the component unit to which the file belongs; the second part
identifies the particular file within the unit. Variants with more parts are
possible. The invariant of structured names, however, is that individual parts
of the name are unique at all times only within the context of the rest of the
parts. We can obtain uniqueness at all times by taking care not to reuse a name
that is still in use, by adding sufficiently more bits (this method is used in AFS),
or by using a timestamp as one part of the name (as done in Apollo Domain).
Another way to view this process is that we are taking a location-transparent
system, such as Ibis, and adding another level of abstraction to produce a
location-independent naming scheme.

Aggregating files into component units and using lower-level location
independent file identifiers are techniques exemplified in AFS.

Consider a user who requests access to a remote file. The server storing the file
has been located by the nanling scheme, and now the actual data transfer must
take place.

One way to achieve this transfer is through a
whereby requests for accesses are delivered to the server, the server machine
performs the accesses, and their results are forwarded back to the user. One
of the most common ways of implementing remote service is the remote
procedure call (RPC) paradigm, which we discussed in Chapter 3. A direct
analogy exists between disk-access methods in conventional file systems and
the remote-service method in a DFS: using the remote-service method is
analogous to performing a disk access for each access request.

To ensure reasonable performance of a remote-service mechanism, we can
use a form of caching. In conventional file systems, the rationale for caching is
to reduce disk I/0 (thereby increasing performance), whereas in DFSs, the goal
is to reduce both network traffic and disk I/0. In the following discussion, we
describe the implementation of caching in a DFS and contrast it with the basic
remote-service paradigm.

17.3 711

17.3.1 Basic Caching Scheme

The concept of caching is simple. If the data needed to satisfy the access request
are not already cached, then a copy of those data is brought from the server to
the client system. Accesses are performed on the cached copy. The idea is to
retain recently accessed disk blocks in the cache, so that repeated accesses to the
same information can be handled locally, without additional network traffic.
A replacement policy (for example, the least-recently-used algorithm) keeps
the cache size bounded. No direct correspondence exists between accesses and
traffic to the server. Files are still identified with one master copy residing at the
server machine, but copies (or parts) of the file are scattered in different caches.
When a cached copy is modified, the changes need to be reflected on the master
copy to preserve the relevant consistency semantics. The problem of keeping
the cached copies consistent with the master file is the

which we discuss in Section 17.3.4. DFS caching could just as easily
be called , it acts sincilarly to demand-paged virtual
memory, except that the backing store usually is not a local disk but rather a
remote server. NFS allows the swap space to be mounted remotely, so it actually
can implement virtual memory over a network, notwithstanding the resulting
performance penalty.

The granularity of the cached data in a DFS can vary from blocks of a file to
an entire file. Usually, more data are cached than are needed to satisfy a single
access, so that many accesses can be served by the cached data. This procedure
is much like diskread-ahead (Section 11.6.2). AFS caches files in large chunks (64
KB). The other systems discussed in this chapter support caching of individual
blocks driven by client demand. Increasing the caching unit increases the hit
ratio, but it also increases the miss penalty, because each miss requires more
data to be transferred. It increases the potential for consistency problems as
well. Selecting the unit of caching involves considering parameters such as the
network transfer unit and the RPC protocol service unit (if an RPC protocol is
used). The network transfer unit (for Ethernet, a packet) is about 1.5 KB, so larger
units of cached data need to be disassembled for delivery and reassembled on
reception.

Block size and total cache size are obviously of importance for block
caching schemes. In UNIX-like systems, common block sizes are 4 KB and 8
KB. For large caches (over 1MB), large block sizes (over 8 KB) are beneficial. For
smaller caches, large block sizes are less beneficial because they result in fewer
blocks in the cache and a lower hit ratio.

17.3.2 Cache Location

Where should the cached data be stored-on disk or in main memory? Disk
caches have one clear advantage over main-memory caches: they are reliable.
Modifications to cached data are lost in a crash if the cache is kept in volatile
memory. Moreove1~ if the cached data are kept on disk, they are still there during
recovery, and there is no need to fetch them again. Main-memory caches have
several advantages of their own, however:

Main-memory caches permit workstations to be diskless.

Data can be accessed more quickly from a cache in main memory than
from one on a disk.

712 Chapter 17

Technology is moving toward larger and less expensive memory. The
resulting performance speedup is predicted to outweigh the advantages
of disk caches.

The server caches (used to speed up disk I/0) will be in main memory
regardless of where user caches are located; if we use main-memory caches
on the user machine, too, we can build a single caching nl.echanism for use
by both servers and users.

Many remote-access implementations can be thought of as hybrids of
caching and remote service. In NFS, for instance, the implementation is based on
remote service but is augmented with client- and server-side memory caching
for performance. Similarly Sprite's implementation is based on caching; but
under certain circumstances, a remote-service method is adopted. Thus, to
evaluate the two methods, we must evaluate the degree to which either method
is emphasized.

The NFS protocol and most implementations do not provide disk caching.
Recent Solaris implementations ofNFS (Solaris 2.6 and beyond) include a client
side disk-caching option, the - file system. Once the NFS client reads
blocks of a file from the serve1~ it caches them in memory as well as on disk.
If the memory copy is flushed, or even if the system reboots, the disk cache
is referenced. If a needed block is neither in memory nor in the cachefs disk
cache, an RPC is sent to the server to retrieve the block, and the block is written
into the disk cache as well as stored in the memory cache for client use.

17.3.3 Cache-Update Policy

The policy used to write modified data blocks back to the server's master copy
has a critical effect on the performance and reliability. The simplest
policy is to write data to disk as soon as they are placed in any cache.
The advantage of a is reliability: little information is
lost when a client system crashes. However, this policy requires each write
access to wait until the information is sent to the server, so it causes poor write
performance. Caching with write-through is equivalent to using remote service
for write accesses and exploiting caching for read accesses.

An alternative is the also known as
where we delay updates to the master copy. Modifications are written

to the cache and then are written through to the server at a later time. This
policy has two advantages over write-through. First, because writes are made
to the cache, write accesses complete much more quickly. Second, data may
be overwritten before they are written back, in which case only the last update
needs to be written at all. Unfortunately, delayed-write schemes introduce
reliability problems, since unwritten data are lost whenever a user machine
crashes.

Variations of the delayed-write policy differ in when modified data blocks
are flushed to the server. One alternative is to flush a block when it is about to
be ejected from the client's cache. This option can result in good performance,
but some blocks can reside in the client's cache a long time before they are
written back to the server. A compromise between this alternative and the
write-through policy is to scan the cache at regular intervals and to flush
blocks that have been modified since the most recent scan, just as UNIX scans

17.3 713

NFS server

network workstation

Figure 17.1 Cachefs and its use of caching.

its local cache. Sprite uses this policy with a 30-second interval. NFS uses the
policy for file data, but once a write is issued to the server durilcg a cache
flush, the write must reach the server's disk before it is considered complete.
NFS treats meta data (directory data and file-attribute data) differently. Any
metadata changes are issued synchronously to the server. Thus, file-structure
loss and directory-structure corruption are avoided when a client or the server
crashes.

For NFS with cachefs, writes are also written to the local disk cache area
when they are written to the server, to keep all copies consistent. Thus, NFS
with cachefs improves performance over standard NFS on a read request with
a cachefs cache hit but decreases performance for read or write requests with
a cache miss. As with all caches, it is vital to have a high cache hit rate to
gain performance. Figure 17.1 shows how cachefs uses write-through and
write-back caching.

Yet another variation on delayed write is to write data back to the server
when the file is closed. This is used in AFS. In the case
of files that are open for short periods or are modified rarely, this policy
does not significantly reduce network traffic. In addition, the write-on-close
policy requires the closing process to delay while the file is written through,
which reduces the performance advantages of delayed writes. For files that are
open for long periods and are modified frequently, however, the performance
advantages of this policy over delayed write with more frequent flushing are
apparent.

17.3.4 Consistency

A client machine is faced with the problem of deciding whether a locally cached
copy of the data is consistent with the master copy (and hence can be used). If

714 Chapter 17

the client machine determines that its cached data are out of date, accesses can
no longer be served by those cached data. An up-to-date copy of the data needs
to be cached. There are two approaches to verifying the validity of cached data:

Client-initiated approach. The client initiates a validity check, in which it
contacts the server and checks whether the local data are consistent with
the master copy. The frequency of the validity checking is the crux of
this approach and determines the resulting consistency semantics. It can
range from a check before every access to a check only on first access to
a file (on file open, basically). Every access coupled with a validity check
is delayed, compared with an access served immediately by the cache.
Alternatively, checks can be initiated at fixed time intervals. Depending
on its frequency, the validity check can load both the network and the
server.

Server-initiated approach. The server records, for each client, the files
(or parts of files) that it caches. When the server detects a potential
inconsistency, it must react. A potential for inconsistency occurs when
two different clients in conflicting modes cache a file. If UNIX semantics
(Section 10.5.3) is implemented, we can resolve the potential inconsistency
by having the server play an active role. The server must be notified
whenever a file is opened, and the intended mode (read or write) must
be indicated for every open. The server can then act when it detects that
a file has been opened simultaneously in conflicting modes by disabling
caching for that particular file. Actually, disabling caching results in
switching to a remote-service mode of operation.

17.3.5 A Comparison of Caching and Remote Service

Essentially, the choice between caching and remote service trades off poten
tially increased performance with decreased simplicity. We evaluate this
tradeoff by listing the advantages and disadvantages of the two methods:

When caching is used, the local cache can handle a substantial number
of the remote accesses efficiently. Capitalizing on locality in file-access
patterns makes caching even more attractive. Thus, most of the remote
accesses will be served as fast as will local ones. Moreover, servers are
contacted only occasionally, rather than for each access. Consequently,
server load and network traffic are reduced, and the potential for scalability
is enhanced. By contrast, when the remote-service method is used, every
remote access is handled across the network The penalty in network traffic,
server load, and performance is obvious.

Total network overhead is lower for transmitting big chunks of data (as
is done in caching) than for transmitting series of responses to specific
requests (as in the remote-service method). Furthermore, disk-access
routines on the server may be better optimized if it is known that requests
will always be for large, contiguous segments of data rather than for
random disk blocks.

The cache-consistency problem is the major drawback of caching. When
access patterns exhibit infrequent writes, caching is superior. However,

17.4

17.4 715

when writes are frequent, the mechanisms employed to overcome the
consistency problem incur substantial overhead in terms of performance,
network traffic, and server load.

So that caching will confer a benefit, execution should be carried out on
machines that have either local disks or large main memories. Remote
access on diskless, small-memory-capacity machines should be done
through the remote-service method.

In caching, since data are transferred en masse between the server and the
client, rather than in response to the specific needs of a file operation, the
lower-level intermachine interface is different from the upper-level user
interface. The remote-service paradigm, in contrast, is just an extension of
the local file-system interface across the network. Thus, the intermachine
interface mirrors the user interface.

There are two approaches for storing server-side information when a client
accesses remote files: either the server tracks each file being accessed by each
client, or it simply provides blocks as they are requested by the client without
knowledge of how those blocks are used. In the former case, the service
provided is stateful; in the latter case, it is stateless.

The typical scenario involving a is as follows: A client
must perform an open () operation on a file before accessing that file. The server
fetches information about the file from its disk, stores it in its memory, and gives
the client a connection identifier that is unique to the client and the open file.
(In UNIX terms, the server fetches the inode and gives the client a file descriptor,
which serves as an index to an in-core table of inodes.) This identifier is used for
subsequent accesses ru1.til the session ends. A stateful service is characterized
as a connection between the client and the server during a session. Either on
closing the file or through a garbage-collection mechanism, the server must
reclaim the main-memory space used by clients that are no longer active. The
key point regarding fault tolerance in a stateful service approach is that the
server keeps main-memory information about its clients. AFS is a stateful file
service.

A avoids state information by making each request
self-contained. That is, each request identifies the file and the position in the
file (for read and write accesses) in full. The server does not need to keep a
table of open files in main memory, although it usually does so for efficiency
reasons. Moreover, there is no need to establish and terminate a com1.ection
through open() and close() operations. They are totally redundant since
each file operation stands on its own and is not considered part of a session. A
client process would open a file, and that open would not result in the sending
of a remote message. Reads and writes would take place as remote messages
(or cache lookups). The final close by the client would again result in only a
local operation. NFS is a stateless file service.

The advantage of a stateful over a stateless service is increased perfor
mance. File information is cached in main memory and can be accessed easily
via the connection identifier, thereby saving disk accesses. In addition, a stateful

716 Chapter 17

5

server knows whether a file is open for sequential access and can therefore
read ahead the next blocks. Stateless servers cmmot do so, since they have no
knowledge of the purpose of the client's requests.

The distinction between stateful and stateless service becomes more
evident when we consider the effects of a crash that occurs during a service
activity. A stateful server loses all its volatile state in a crash. Ensuring the
graceful recovery of such a server involves restoring this state, usually by a
recovery protocol based on a dialog with clients. Less graceful recovery requires
that the operations that were underway when the crash occurred be aborted.
A different problem is caused by client failures. The server needs to become
aware of such failures so that it can reclaim space allocated to record the state of
crashed client processes. This phenomenon is sometimes referred to as

A stateless computer server avoids these problems, silcce a newly reincar
nated server can respond to a self-contained request without any difficulty.
Therefore, the effects of server failures and recovery are almost unnoticeable.
There is no difference between a slow server and a recovering server from a
client's point of view. The client keeps retransmitting its request if it receives
no response.

The penalty for using the robust stateless service is longer request messages
and slower processing of requests, since there is no in-core i,_'lformation to speed
the processing. In addition, stateless service imposes additional constraints
on the design of the DFS. First, since each request identifies the target file, a
uniform, system-wide, low-level naming scheme should be used. Translating
remote to local names for each request would cause even slower processing
of the requests. Second, since clients retransmit requests for file operations,
these operations must be idempotent; that is, each operation must have the
same effect and return the same output if executed several times consecutively.
Self-contained read and write accesses are idempotent, as long as they use an
absolute byte count to indicate the position withilc the file they access and do
not rely on an incremental offset (as is done in UNIX read() and write()
system calls). However, we must be careful when implementing destructive
operations (such as deleting a file) to make them idempotent, too.

In some environments, a stateful service is a necessity. If the server employs
the server-initiated method for cache validation, it camcot provide stateless
service, since it maintains a record of which files are cached by which clients.

The way UNIX uses file descriptors and implicit offsets is inherently stateful.
Servers must mailctain tables to map the file descriptors to inodes and must
store the current offset within a file. This requirement is why NFS, which
employs a stateless service, does not use file descriptors and does include
an explicit offset in every access.

Replication of files on different machines in a distributed file system is a useful
redundancy for improving availability. Multimachine replication can benefit
performance too: selecting a nearby replica to serve an access request results
in shorter service time.

The basic requirement of a replication scheme is that different replicas of
the same file reside on failure-independent machines. That is, the availability

17.5 717

NFSV4

OurcoV,era.geofNFS thus .far has. 0p1y considered Version 3 (orV3)NF? .. The
mostrecentNPS standard is Version 4 (V 4), and it differs fundanrentalJy from
pr~vious versimi.s. Jhe most significant ch9nge is that the protocol is now
stqteful,meaping tha:tthesetv~er maintains the.state ofthe client session from
thE: time the r~J1lote file is 0pt::ned untiJ itis closed. Th.t1s, theNFS protocol now
provides open() ar;td c1o$e () operations; previous V:ersions of NFS (V\Thich
are stateless) .proyide .np such operations. Furthen))ore, preytous \Cersions
specify s~parate protocols. £or J?:lounting remote fil~ systews and for lockii1g ·
remote· files .. V4 provides ali of.. these features under <l phlgle prqtocol. In
patticular; the 1nrnmt. protocol was elimin<;1.ted, allowing 1\[FS to work with
netWork fitewalls, The nJ.ount protocol was a notorimis security hole in NPS
implem,entations~ . · .. · · · ·
· .Additionally,· V4 has.·enhan¢edthe ability of.dients Jo cache.·file· data

local)y: This. featurE; i~prov~s·tne performapc~ of the disttil:mt(3d file system,
a.s plients are • able to reso~ve more file a9cesses from the loc~l c~che rgther
thanh.<;lVingto gpJhroughthe S~!:Ver. '(:4 ali()WS diel):tSJO req)c!estfile Jocks
from s~rvers as we'll. .If the, senr~r grqrct~. the request,. the client maintains
the loci< ,tmtil it. is released or its lea.st= expires. • (Clier~ts. ar,e als() permitted to
r~new. ex~stil'tg least=s,.) Traditiora11y1 UNIX~ba~~d:systems .provide advisory
Jile locking, whereas Windows operatirg systen1~ use mandat()rylockil1g· To
· alloV\T l'\[PS towm)< wellwithnon-UNIXsyste1fts, V4t1QW.p.rovides mandatory
locking as vvell. The new lockinga11d caching mec~anisms are based. on the
concept ()f d~legaHon, whe~·eby the server delegates responsibilities for a
·file's lockand contents. to .the client thatrequested tnel()ckcrhat delegated
client maintains· in cache. the .current version of .the file., and .. other ·clients ·can

·· ... ask that. deleg21ted client for lock access, a1i.d filt= confentsuntifthe del:egated
client reli11quishesth~lock andde~egation. . •·.·· . .···. ·.
·. Finally, whereas.preyiousversionB ()f NPSarebasedon the UDJ?network
ptqtocol, \[4 is based on .TCP,whioh allows itto betteraclj\lstto varying traffic
loads on. thel}etwork: peleg2lting these responsibilities. to cliel!cts reduces the
•foado11the s.eryet and.i~proves.cache.coherency.

of one replica is not affected by the availability of the rest of the replicas.
This obvious requirement implies that replication management is inherently
a location-opaque activity. Provisions for placing a replica on a particular
machine must be available.

It is desirable to hide the details of replication from users. Mapping a
replicated file name to a particular replica is the task of the naming scheme.
The existence of replicas should be invisible to higher levels. At lower
levels, however, the replicas must be distinguished from one another by
different lower-level names. Another transparency requirement is providing
replication control at higher levels. Replication control includes determination
of the degree of replication and of the placement of replicas. Under certain
circumstances, we may want to expose these details to users. Locus, for
instance, provides users and system administrators with mechanisms to control
the replication scheme.

718 Chapter 17

17.6

The main problem~ associated with replicas is updating. From a user's
point of view, replicas of a file denote the same logical entity, and thus an
update to any replica must be reflected on all other replicas. More precisely,
the relevant consistency sen1antics must be preserved when accesses to replicas
are viewed as virtual accesses to the replicas' logical files. If consistency is not
of primary incportance, it can be sacrificed for availability and performance. In
this fundamental tradeoff in the area of fault tolerance, the choice is between
preserving consistency at all costs, thereby creating a potential for indefinite
blocking, and sacrificing consistency under some (we hope, rare) circumstances
for the sake of guaranteed progress. Locus, for example, employs replication
extensively and sacrifices consistency in the case of network partition for the
sake of availability of files for read and write accesses.

Ibis uses a variation of the primary-copy approach. The domain of the
name mapping is a pair <primary-replica-identifier, local-replica-identifier>. If no
local replica exists, a special value is used. Thus, the mapping is relative to a
machine. If the local replica is the primary one, the pair contains two identical
identifiers. Ibis supports demand replication, an automatic replication-control
policy similar to whole-file caching. Under demand replication, reading of
a nonlocal replica causes it to be cached locally, thereby generating a new
nonprimary replica. Updates are performed only on the primary copy and
cause all other replicas to be invalidated through the sending of appropriate
messages. Atomic and serialized invalidation of all nonprimary replicas is not
guaranteed. Hence, a stale replica may be considered valid. To satisfy remote
write accesses, we migrate the primary copy to the requesting machine.

Andrew is a distributed computing environment designed and implemented
at Carnegie Mellon University. The Andrew file system (AFS) constitutes the
underlying information-sharing mechanism among clients of the environment.
The Transarc Corporation took over development of AFS and then was pur
chased by IBM. IBM has since produced several commercial implementations
of AFS. AFS was subsequently chosen as the DFS for an industry coalition; the
result was part of the distributed computing environment (DCE)
from the OSF organization.

In 2000, IBM's Transarc Lab announced that AFS would be an open-source
product (termed OpenAFS) available under the IBM public license, and Transarc
DFS was canceled as a commercial product. OpenAFS is available under most
commercial versions of UNIX as well as Linux and Microsoft Windows systems.
Many UNIX vendors, as well as Microsoft, support the DCE system and its DFS,
which is based on AFS, and work is ongoing to make DCE a cross-platform,
universally accepted DFS. As AFS and Transarc DFS are very similar~ we describe
AFS throughout this section, unless Transarc DFS is named specifically.

AFS seeks to solve many of the problems of the simpler DFSs, such as
NFS, and is arguably the most feature-rich nonexperimental DFS. It features
a uniform name space, location-independent file sharing, client-side caching
with cache consistency, and secure authentication via Kerberos. It also includes
server-side caching in the form of replicas, with high availability through
automatic switchover to a replica if the source server is unavailable. One of the

17.6 719

most formidable attributes of AFS is scalability: the Andrew system is targeted
to span over 5,000 workstations. Between AFS and Transarc DFS, there are
hundreds of implementations worldwide.

17.6.1 Overview

AFS distinguishes between client machines (sometimes referred to as worksta
tions) and dedicated server machines. Servers and clients originally ran only 4.2
BSD UNIX, but AFS has been ported to many operating systems. The clients and
servers are interconnected by a network of LANs or WANs.

Clients are presented with a partitioned space of file names: a
and a Dedicated servers, collectively called Vice

after the name of the software they run, present the shared name space to the
clients as a homogeneous, identical, and location-transparent file hierarchy.
The local name space is the root file system of a workstation, from which
the shared name space descends. Workstations run the Virtue protocol to
communicate with Vice, and each is required to have a local disk where it
stores its local name space. Servers collectively are responsible for the storage
and management of the shared name space. The local name space is small,
is distinct for each workstation, and contains system programs essential for
autonomous operation and better performance. Also local are temporary files
and files that the workstation owner, for privacy reasons, explicitly wants to
store locally.

Viewed at a finer granularity, clients and servers are structured in clusters
interconnected by a WAN. Each cluster consists of a collection of workstations
on a LAN and a representative of Vice called a and each cluster
is com1.ected to the WAN by a router. The decomposition into clusters is
done primarily to address the problem of scale. For optimal performance,
workstations should use the server on their own cluster most of the time,
thereby making cross-cluster file references relatively infrequent.

The file-system architecture is also based on considerations of scale. The
basic heuristic is to offload work from the servers to the clients, in light
of experience indicating that server CPU speed is the system's bottleneck
Following this heuristic, the key mechanism for remote file operations is to
cache files in large chunks (64 KB). This feature reduces file-open latency and
allows reads and writes to be directed to the cached copy without frequently
involving the servers.

Briefly, here are a few additional issues in the design of AFS:

Client mobility. Clients are able to access any file in the shared name
space from any workstation. A client may notice some initial performance
degradation due to the caching of files when accessil<g files a
workstation other than the usual one.

Security. The Vice interface is considered the boundary of trustworthiness,
because no client programs are executed on Vice machines. Authentication
and secure-transmission functions are provided as part of a connection
based communication package based on the RPC paradigm. After mutual
authentication, a Vice server and a client communicate via encrypted
messages. Encryption is performed by hardware devices or (more slowly)

720 Chapter 17

in software. Information about clients and groups is stored in a protection
database replicated at each server.

Protection. AFS provides for protecting directories and the
regular UNlXbits for file protection. The access list ncay contain information
about those ·users allowed to access a directory, as well as information
about those users not allowed to access it. Thus, it is simple to specify that
everyone except, say, Jim can access a directory. AFS supports the access
types read, write, lookup, insert, administer, lock, and delete.

Heterogeneity. Defining a clear interface to Vice is a key for integration of
diverse workstation hardware and operating systems. So that heterogene
ity is facilitated, some files in the local /bin directory are symbolic links
pointing to machine-specific executable files residing in Vice.

17.6.2 The Shared Name Space

AFS's shared name space is made up of component units called The
volumes are unusually small component units. Typically, they are associated
with the files of a single client. Few volumes reside within a single disk
partition, and they may grow (up to a quota) and shrink in size. Conceptually,
volumes are glued together by a mechanism similar to the UNIX m01mt
mechanism. However, the granularity difference is significant, since in UNIX
only an entire disk partition (containing a file system) can be mounted. Volumes
are a key administrative unit and play a vital role in identifying and locating
an individual file.

A Vice file or directory is identified by a low-level identifier called a fid.
Each AFS directory entry maps a path-name component to a fid. A fid is 96 bits
long and has three equal-length components: a volume number, a vnode number,
and a uniquifier. The vnode number is used as an index into an array containing
the inodes of files in a single volume. The allows reuse of vnode
numbers, thereby keeping certain data structures compact. Fids are location
transparent; therefore, file movements from server to server do not invalidate
cached directory contents.

Location information is kept on a volume basis in a
replicated on each server. A client can identify the location of every

volume in the system by querying this database. The aggregation of files into
volumes makes it possible to keep the location database at a manageable size.

To balance the available disk space and utilization of servers, volumes
need to be migrated among disk partitions and servers. When a volume is
shipped to its new location, its original server is left with temporary forwarding
information, so that the location database need not be updated synchronously.
While the volume is being transferred, the original server can still handle
updates, which are shipped later to the new server. At some point, the volume
is briefly disabled so that the recent modifications can be processed; then, the
new volume becomes available again at the new site. The volume-movement
operation is atomic; if either server crashes, the operation is aborted.

Read-only replication at the granularity of an entire volume is supported
for system-executable files and for seldom-updated files in the upper levels
of the Vice name space. The volume-location database specifies the server

17.6 721

contammg the only read-write copy of a volume and a list of read-only
replication sites.

17.6.3 File Operations and Consistency Semantics

The fundamental architectural principle in AFS is the caching of entire files
from servers. Accordingly, a client workstation interacts with Vice servers
only during opening and closing of files, and even this interaction is not
always necessary. Reading and writing files do not cause remote interaction (in
contrast to the remote-service n"lethod). This key distinction has far-reaching
ramifications for performance, as well as for semantics of file operations.

The operating system on each workstation intercepts file-system calls and
forwards them to a client-level process on that workstation. This process, called
Venus, caches files from Vice when they are opened and stores modified copies
of files back on the servers from which they came when they are closed. Venus
may contact Vice only when a file is opened or closed; reading and writing of
individual bytes of a file are performed directly on the cached copy and bypass
Venus. As a result, writes at some sites are not visible immediately at other
sites.

Caching is further exploited for future opens of the cached file. Venus
assumes that cached entries (files or directories) are valid unless notified
otherwise. Therefore, Venus does not need to contact Vice on a file open to
validate the cached copy. The mechanism to support this policy, called callback,
dramatically reduces the number of cache-validation requests received by
servers. It works as follows. When a client caches a file or a directory, the
server updates its state information to record this caching. We say that the
client has a callback on that file. The server notifies the client before allowing
another client to modify the file. In such a case, we say that the server removes
the callback on the file for the former client. A client can use a cached file for
open purposes only when the file has a callback If a client closes a file after
modifying it, all other clients caching this file lose their callbacks. Therefore,
when these clients open the file later, they have to get the new version from
the server.

Readin.g and writing bytes of a file are done directly by the kernel without
Venus's intervention on the cached copy. Venus regains control when the file is
closed. If the file has been modified locally, it updates the file on the appropriate
server. Thus, the only occasions on which Venus contacts Vice servers are on
opens of files that either are not in the cache or have had their callback revoked
and on closes of locally modified files.

Basically, AFS implements session semantics. The only exceptions are
file operations other than the primitive read and write (such as protection
changes at the directory level), which are visible everywhere on the network
immediately after the operation completes.

In spite of the callback mechanism, a small amount of cached validation
traffic is still present, usually to replace callbacks lost because of machine or
network failures. When a workstation is rebooted, Venus considers all cached
files and directories suspect, and it generates a cache-validation request for the
first use of each such entry.

The callback mechanism forces each server to maintain callback informa
tion and each client to maintain validity information. If the amount of callback

722 Chapter 17

information maintained by a server is excessive, the server can break callbacks
and reclaim some storage by unilaterally notifying clients and revoking the
validity of their cached files. If the callback state maintained by Venus gets
out of sync with the corresponding state maintained by the servers, some
inconsistency may result.

Venus also caches contents of directories and syncbolic links, for path
name translation. Each component in the path name is fetched, and a callback
is established for it if it is not already cached or if the client does not have
a callback on it. Venus does lookups on the fetched directories locally, using
fids. No requests are forwarded from one server to another. At the end of a
path-name traversal, all the intermediate directories and the target file are in
the cache with callbacks on them. Future open calls to this file will involve no
network communication at all, unless a callback is broken on a component of
the path name.

The only exception to the caching policy is a modification to a directory
that is made directly on the server responsible for that directory for reasons
of integrity. The Vice interface has well-defined operations for such purposes.
Venus reflects the changes in its cached copy to avoid re-fetching the directory.

17.6.4 Implementation

Client processes are interfaced to a UNIX kernel with the usual set of system
calls. The kernel is modified slightly to detect references to Vice files in the
relevant operations and to forward the requests to the client-level Venus process
at the workstation.

Venus carries out path-name translation component by component, as
described above. It has a mapping cache that associates volumes to server
locations in order to avoid server interrogation for an already known volume
location. If a volume is not present in this cache, Venus contacts any server
to which it already has a comcection, requests the location information, and
enters that information into the mapping cache. Unless Venus already has
a connection to the server, it establishes a new comcection. It then uses this
connection to fetch the file or directory. Connection establishment is needed for
authentication and security purposes. When a target file is found and cached, a
copy is created on the local disk. Venus then returns to the kernel, which opens
the cached copy and returns its handle to the client process.

The UNIX file system is used as a low-level storage system for both AFS
servers and clients. The client cache is a local directory on the workstation's
disk. Within this directory are files whose names are placeholders for cache
entries. Both Venus and server processes access UNIX files directly by the latter's
inodes to avoid the expensive path-name-to-inode translation routine (namei).
Because the internal inode interface is not visible to client-level processes (both
Venus and server processes are client-level processes), an appropriate set of
additional system calls was added. DFS uses its own journaling file system to
improve performance and reliability over UFS.

Venus manages two separate caches: one for status and the other for data.
It uses a simple least-recently-used (LRU) algorithm to keep each of them
bounded in size. When a file is flushed from the cache, Venus notifies the
appropriate server to remove the callback for this file. The status cache is kept
in virtual memory to allow rapid servicing of stat () (file-status-returning)

17.7

17.7 723

system calls. The data cache is resident on the local disk, but the UNIX I/0
buffering mechanism does some caching of disk blocks in memory that is
transparent to Venus.

A single client-level process on each file server services all file req1.1ests from
clients. This process uses a lightweight-process package with non-preemptible
scheduling to service many client requests concurrently. The RPC package
is integrated with the lightweight-process package, thereby allowing the file
server to concurrently make or service one RPC per lightweight process. The
RPC package is built on top of a low-level datagram abstraction. Whole-file
transfer is implemented as a side effect of the RPC calls. One RPC connection
exists per client, but there is no a priori binding of lightweight processes to these
connections. Instead, a pool of lightweight processes services client requests
on all connections. The use of a single multithreaded server process allows the
caching of data structures needed to service requests. On the negative side,
a crash of a single server process has the disastrous effect of paralyzing this
particular server.

A DFS is a file-service system whose clients, servers, and storage devices are
dispersed among the sites of a distributed system. Accordingly, service activity
has to be carried out across the network; instead of a single centralized data
repository, there are multiple independent storage devices.

Ideally, a DFS should look to its clients like a conventional, centralized
file system. The multiplicity and dispersion of its servers and storage devices
should be made transparent. That is, the client interface of a DFS should not
distinguish between local and remote files. It is up to the DFS to locate the
files and to arrange for the transport of the data. A transparent DFS facilitates
client mobility by bringing the client's environment to the site where the client
logs in.

There are several approaches to naming schemes in a DFS. In the simplest
approach, files are named by some combination of their host name and local
name, which guarantees a unique system-wide name. Another approach,
popularized by NFS, provides a means to attach remote directories to local
directories, thus giving the appearance of a coherent directory tree.

Requests to access a remote file are usually handled by two complementary
methods. With remote service, requests for accesses are delivered to the server.
The server machine performs the accesses, and their results are forwarded
back to the client. With caching, if the data needed to satisfy the access request
are not already cached, then a copy of the data is brought from the server
to the client. Accesses are performed on the cached copy. The idea is to
retain recently accessed disk blocks in the cache, so that repeated accesses
to the same information can be handled locally, without additional network
traffic. A replacement policy is used to keep the cache size bounded. The
problem of keeping the cached copies consistent with the master file is the
cache-consistency problem.

There are two approaches to server-side information. Either the server
tracks each file the client accesses, or it simply provides blocks as the client
requests them without knowledge of their use. These approaches are the
stateful versus stateless service paradigms.

724 Chapter 17

Replication of files on different machines is a useful redundancy for
improving availability. Multimachine replication can benefit performance, too,
since selecting a nearby replica to serve an access request results in shorter
service time.

AFS is a feature-rich DFS characterized by location independence and loca
tion transparency. It also imposes significant consistency semantics. Caching
and replication are used to improve performance.

17.1 Discuss whether AFS and NFS provide the following: (a) location
transparency and (b) location independence.

17.2 Discuss whether clients in the following systems can obtain inconsistent
or stale data from the file server and, if so, under what scenarios this
could occur.

a. AFS

b. Sprite

c. NFS

17.3 Consider AFS, which is a stateful distributed file system. What actions
need to be performed to recover from a server crash in order to preserve
the consistency guaranteed by the system?

17.4 Discuss the advantages and disadvantages of path-name translation
in which the client ships the entire path to the server requesting a
translation for the entire path name of the file.

17.5 Under what circumstances would a client prefer a location
transparent DFS? Under what circumstances would she prefer a
location-independent DFS? Discuss the reasons for these preferences.

17.6 V'lhich of the example DFSs discussed in this chapter would handle a
large, multiclient database application most efficiently? Explain your
answer.

17.7 What are the benefits of mapping objects into virtual memory, as Apollo
Domain does? What are the drawbacks?

17.8 Compare and contrast the teclmiques of caching disk blocks locally, on
a client system, and remotely, on a server.

17.9 What aspects of a distributed system would you select for a system
running on a totally reliable network?

725

Consistency and recovery control for replicated files are examined by Davcev
and Burkhard [1985]. Management of replicated files in a UNIX environncent is
covered by Brereton [1986] and Purdin et al. [1987]. Wah [1984] discusses the
issue of file placement on distributed computer systems. A detailed survey of
mainly centralized file servers appears in Svobodova [1984].

Sun's network file system (NFS) is described by Callaghan [2000] and
Sandberg et al. [1985]. The AFS system is discussed by Morris et al. [1986],
Howard et al. [1988], and Satyanarayanan [1990]. Information about OpenAFS
is available from http:/ /www.openafs.org

Many different and interesting DFSs are not covered in detail in this
text, including UNIX United, Sprite, and Locus. UNIX United is described by
Brownbridge et al. [1982]. The Locus system is discussed by Popek and Walker
[1985]. The Sprite system is described by Ousterhout et al. [1988] and Nelson
et al. [1988]. Distributed file systems for mobile storage devices are discussed in
Kistler and Satyanarayanan [1992] and Sobti et al. [2004]. Considerable research
has also been performed on cluster-based distributed file systems (Anderson
et al. [1995], Lee and Thekkath [1996], Thekkath et al. [1997], and Anderson
et al. [2000]). Distributed storage systems for large-scale, wide-area settings are
presented in Dabek et al. [2001] and Kubiatowicz et al. [2000].

18.1

In. Chapter 6, we described various mechanisms that allow processes to
synchronize their actions. We also discussed a number of schemes to ensure
the atomicity of a transaction that executes either in isolation or concurrently
with other transactions. In Chapter 7, we described various methods that an
operating system can use to deal with the deadlock problem. In this chapter,
we examine how centralized synchronization mechanisms can be extended to
a distributed environment. We also discuss methods for handling deadlocks in
a distributed system.

To describe various methods for achieving mutual exclusion in a distributed
system.

To explain how atomic transactions can be implemented in a distributed
system.

To show how some of the concurrency-control schemes discussed in
Chapter 6 can be modified for use in a distributed environment.

To present schemes for handling deadlock prevention, deadlock avoid
ance, and deadlock detection in a distributed system.

In a centralized system, we can always determine the order in which two
events occurred, since the system has a single common memory and clock.
Many applications may require us to determine order. For example, in a
resource-allocation scheme, we specify that a resource can be used only aft-er
the resource has been granted. A distributed system, however, has no common
memory and no common clock. Therefore, it is sometimes impossible to say
which of two events occurred first. The happened-before relation, discussed
next, is only a partial ordering of the events in distributed systems. Since

727

728 Chapter 18

the ability to define a total ordering is crucial in many applications, we present
a distributed algorithm for extending the happened-before relation to a consistent
total ordering of all the events in the system.

18.1.1 The Happened-Before Relation

Since we are considering only sequential processes, all events executed in a
single process are totally ordered. Also, by the law of causality, a message can
be received only after it has been sent. Therefore, we can define the happened
before relation (denoted by ---+) on a set of events as follows (assuming that
sending and receiving a message constitutes an event):

1. If A and Bare events in the same process, and A was executed before B,
then A ---+ B.

If A is the event of sending a message by one process and B is the event
of receiving that message by another process, then A---+ B.

3. If A---+ Band B---+ C, then A---+ C.

Since an event cannot happen before itself, the ---+ relation is an irreflexive
partial ordering.

If two events, A and B, are not related by the ---+ relation (that is, A did
not happen before B, and B did not happen before A), then we say that these
two events were executed In this case, neither event can causally
affect the other. If, however, A ---+ B, it is possible for event A to affect
event B causally.

A space-time diagram, such as that in Figure 18.1, can best illustrate the
definitions of concurrency and happened-before. The horizontal direction repre
sents space (that is, different processes), and the vertical direction represents
time. The labeled vertical lines denote processes (or processors). The labeled
dots denote events. A wavy line denotes a message sent from one process to
another. Events are concurrent if and only if no path exists between them.

For example, these are some of the events related by the happened-before
relation il< Figure 18.1:

P1 ---+ q2
ro ---+ q4
q3---+ r4
P1 ---+ q4 (sil<ce P1 ---+ q2 and q2 ---+ q4)

These are some of the concurrent events in the system:

qo and p2
ro and q3
ro and P3
q3 and P3

We cannot know which of two concurrent events, such as qo and p2, happened
first. However, since neither event can affect the other (there is no way for one
of them to know whether the other has occurred yet), it is not important which

18.1 729

p 0

Figure 18.1 Relative time for three concurrent processes.

happened first. It is important only that any processes that care about the order
of two concurrent events agree on son1.e order.

18.1.2 Implementation

To determine that an event A happened before an event B, we need either a
common clock or a set of perfectly synchronized clocks. Since neither of these
is available in a distributed system, we must defil<e the happened-before relation
without the use of physical clocks.

First we associate with each system event a We can then define
the requirement: for every pair of events A and B, if A--+ B,
then the timestamp of A is less than the timestamp of B. (Below, we will see
that the converse need not be true.)

How do we enforce the global ordering requirement in a distributed
environment? We define within each process Pi a logical LCi. The
logical clock can be implemented as a simple counter incremented between
any two successive events executed within a process. Since the logical clock
has a increasing value, it assigns a unique number to every
event, and if an event A occurs before event Bin process Pi, then LCi(A) <
LC(B). The timestamp for an event is the value of the logical clock for that
event. This scheme ensures that for any two events in the same process the
global orderil<g requirement is met.

Unfortunately, this scheme does not ensure that the global ordering
requirement is met across processes. To illustrate the problem, consider two
processes P1 and P2 that communicate with each other. Suppose that P1 sends
a message to P2 (event A) with LC1(A) = 200, and P2 receives the message
(event B) with LC2(B) = 195 (because the processor for P2 is slower than the
processor for P1, its logical clock ticks more slowly). This situation violates our
requirement, since A--+ B but the timestamp of A is greater than the timestamp
of B.

To resolve this difficulty, we require a process to advance its logical clock
when it receives a message whose timestamp is greater than the current value
of its logical clock. In particulm~ if process Pi receives a message (event B) with
timestamp t and LC(B):::; t, tlcenit should advance its clock so that LCi(B) = t +
1. Thus, in our example, when P2 receives the message from P1, it will advance
its logical clock so that LC2(B) = 201.

730 Chapter 18

18.2

Finally, to realize a total ordering, we need only observe that, with our
timestamp-ordering scheme, if the timestamps of two events, A and B, are the
same, then the events are concurrent. In this case, we may use process identity
numbers to break ties and to create a total ordering. The use of tirnestamps is
further discussed in Section 18.4.2.

In this section, we present a number of different algorithms for implementing
mutual exclusion in a distributed environment. We assume that the system
consists of n processes, each of which resides at a different processor. To simplify
our discussion, we assume that processes are numbered uniquely from 1 to n
and that a one-to-one mapping exists between processes and processors (that
is, each process has its own processor).

18.2.1 Centralized Approach

In a centralized approach to providing mutual exclusion, one of the processes
in the system is chosen to coordinate the entry to the critical section. Each
process that wants to invoke mutual exclusion sends a request message to the
coordinator. When the process receives a reply message from the coordinator, it
can enter its critical section. After exiting its critical section, the process sends
a release message to the coordinator and proceeds with its execution.

On receiving a request message, the coordinator checks to see whether some
other process is in its critical section. If no process is in its critical section, the
coordinator immediately sends back a reply message. Otherwise, the request
is queued. When the coordinator receives a release message, it removes one
of the request messages from the queue (in accordance with some scheduling
algorithm) and sends a reply message to the requesting process.

It should be clear that this algorithm ensures mutual exclusion. In addition,
if the scheduling policy within the coordinator is fair-such as first-come, first
served (FCFS) scheduling-no starvation can occur. This scheme requires three
messages per critical-section entry: a reques(a reply, and a release.

If the coordinator process fails, then a new process must take its place.
In Section 18.6, we describe some algorithms for electing a unique new
coordinator. Once a new coordinator has been elected, it must poll all the
processes in the system to reconstruct its request queue. Once the queue has
been constructed, the computation can resume.

18.2.2 Fully Distributed Approach

If we want to distribute the decision making across the entire system, then
the solution is far more complicated. One approach, described next, uses an
algorithm based on the event-ordering scheme described in Section 18.1.

When a process g wants to enter its critical section, it generates a new
timestamp, TS, and sends the message request(P;, TS) to all processes in the
system (including itself). On receiving a request message, a process may reply
immediately (that is, send a reply message back to P;), or it may defer sending
a reply back (because it is already in its critical section, for example). A process
that has received a reply message from all other processes in the system can

18.2 731

enter its critical section, queueing incmning requests and deferring them. After
exiting its critical section, the process sends reply messages to all its deferred
requests.

The decision whether process Pi replies immediately to a request(Pj, TS)
message or defers its reply is based on three factors:

If process Pi is in its critical section, then it defers its reply to Pj.

If process Pi does not want to enter its critical section, then it sends a reply
immediately to P j.

If process P; wants to enter its critical section but has not yet entered
it, then it compares its own request timestamp with the timestamp of
the incoming request made by process Pj. If its own request timestamp
is greater than that of the incoming request, then it sends a reply
immediately to Pj (Pj asked first). Otherwise, the reply is deferred.

This algorithm exhibits the following desirable behavior:

Mutual exclusion is obtained.

Freedom from deadlock is ensured.

Freedom from starvation is ensured, since entry to the critical section is
scheduled according to the timestamp ordering. The timestamp ordering
ensures that processes are served in FCFS order.

The number of messages per critical-section entry is 2 x (n-1). This number
represents the minimum number of required messages per critical-section
entry when processes act independently and concurrently.

To illustrate how the algorithm functions, we consider a system consisting
of processes P1, P2, and P3 . Suppose that processes P1 and P3 want to enter
their critical sections. Process P1 then sends a message request (P1, timestamp
= 10) to processes P2 and P3, while process P3 sends a message request (P3,

timestamp= 4) to processes P1 and P2 . (The timestamps 4 and 10 were obtained
from the logical clocks described in Section 18.1.) When process P2 receives
these request messages, it replies immediately. When process P1 receives the
request from process P3, it replies immediately, since the timestamp (10) on its
own request message is greater than the timestamp (4) for process P3. When
process P3 receives the request message from process P1, it defers its reply,
since the timestamp (4) on its request message is less than the timestamp (10)
for the message from process P1 . On receiving replies from both process P1

and process P2, process P3 can enter its critical section. After exiting its critical
section, process P3 sends a reply to process P1, which can then enter its critical
section.

Because this scheme requires the participation of all the processes in the
system, it has three undesirable consequences:

The processes need to know the identity of all other processes in the
system. When a new process joins the group of processes participating in
the mutual-exclusion algorithm, the following actions need to be taken:

732 Chapter 18

a. The process must receive the names of all the other processes in the
gro11p.

b. The name of the new process must be distributed to all the other
processes in the group.

This task is not as trivial as it may seem, since some request and reply
messages may be circulating in the system when the new process joins
the group. The interested reader is referred to the bibliographical notes
at the end of the chapter.

If one process fails, then the entire scheme collapses. We can resolve this
difficulty by continuously monitoring the state of all processes in the
system. If one process fails, then all other processes are notified, so that
they will no longer send request messages to the failed process. When a
process recovers, it must initiate the procedure that allows it to rejoin the
group.

Processes that have not entered their critical section must pause fre
quently to assure other processes that they intend to enter the critical
section.

Because of these difficulties, this protocol is best suited for small, stable sets of
cooperating processes.

18.2.3 Token-Passing Approach

Another method of providilcg mutual exclusion is to circulate a token among
the processes ilc the system. A is a special type of message that is passed
from process to process. Possession of the token entitles the holder to enter the
critical section. Since there is only a single token, only one process can be in its
critical section at a time.

We assume that the processes in the system are logically organized ilc a
The physical communication network need not be a ring. As long as

the processes are connected to one another, it is possible to implement a logical
ring. To implement mutual exclusion, we pass the token around the ring. When
a process receives the token, it may enter its critical section, keeping the token.
After the process exits its critical section, the token is passed around again.
If the process receiving the token does not want to enter its critical section,
it passes the token to its neighbor. This scheme is similar to algorithm 1 in
Chapter 6, but a token is substituted for a shared variable.

If the ring is unidirectional, freedom from starvation is ensured. The
number of messages required to implement mutual exclusion may vary from
one message per entry, in the case of high contention (that is, every process
wants to enter its critical section), to an infinite number of messages, in the case
of low contention (that is, no process wants to enter its critical section).

Two types of failure must be considered. First, if the token is lost an election
must be called to generate a new token. Second, if a process fails, a new logical
ring must be established. In Section 18.6, we present an election algorithm;
others are possible. The development of an algorithm for reconstructing the
ring is left to you in Exercise 18.4.

18.3

18.3 733

In Chapter 6, we introduced the concept of an atomic transaction, which is a
program unit that must be executed . That is, either all the operations
associated with it are executed to completion, or none are performed. When we
are dealing with a distributed system, ensuring the atomicity of a transaction
becomes much more complicated than in a centralized system. This difficulty
occurs because several sites may be participating in the execution of a single
transaction. The failure of one of these sites, or the failure of a communication
link connecting the sites, may result in erroneous computations.

Ensuring that the execution of transactions in the distributed system
preserves atomicity is the function of the Each site has
its own local transaction coordinator, which is responsible for coordinating the
execution of all the transactions initiated at that site. For each such transaction,
the coordinator is responsible for the following:

® Starting the execution of the transaction

Breaking the transaction into a number of subtransactions and distributing
these subtransactions to the appropriate sites for execution

Coordinating the termination of the transaction, which may result in the
transactions being committed at all sites or aborted at all sites

We assume that each local site maintains a log for recovery purposes.

18.3.1 The Two-Phase Commit Protocol

For atomicity to be ensured, all the sites in which a transaction T has executed
must agree on the final outcome of the execution. T must either commit at
all sites, or it must abort at all sites. To ensure this property, the transaction
coordinator of T must execute a Among the simplest and
most widely used commit protocols is the
which we discuss next.

Assume that T is a transaction initiated at site S; and that the transaction
coordinator at S; is C;. When T completes its execution-that is, when all the
sites at which T has executed inform C; that T has completed -then C starts
the 2PC protocol.

Phase 1. C adds the record <prepare T> to the log and forces the record
onto stable storage. It then sends a prepare (T) message to all the sites at
which T has executed. On receiving the message, the transaction manager
at each of these sites determines whether it is willing to commit its portion
ofT. If the answer is no, it adds a record <no T> to the log, and then it
responds by sending an abort (T) message to C;. If the answer is yes, it adds
a record <ready T> to the log and forces all the log records corresponding
to T onto stable storage. The transaction manager then replies with a ready
(T) message to C.

Phase 2. When C; has received responses to the prepare (T) message from
all the sites, or when a pre-specified interval of time has elapsed since the
prepare (T) message was sent out, C; can determine whether the transaction

734 Chapter 18

T can be committed or aborted. Transaction T can be committed if C; has
received a ready (T) m~essage from all the participating sites. Otherwise,
transaction T must be aborted. Depending on the verdict, either a record
<commit T> or a record <abort T> is added to the log and forced onto
stable storage. At this point, the fate of the transaction has been sealed.
Following this, the coordinator sends either a commit (T) or an abort (T)
message to all participating sites. When a site receives that message, it
records the message in the log.

A site at which T has executed can unconditionally abort Tat any time prior
to its sending the message ready (T) to the coordinator. The ready (T) message
is, in effect, a promise by a site to follow the coordinator's order to commit Tor
to abort T. A site can make such a promise only when the needed information
is stored in stable storage. Otherwise, if the site crashes after sending ready (T),
it may be unable to make good on its promise.

Since unanimity is required to commit a transaction, the fate of T is sealed
as soon as at least one site responds with abort (T). Note that the coordinator
site 5; can decide unilaterally to abort T, as it is one of the sites at which
T has executed. The final verdict regarding T is determined at the time the
coordinator writes that verdict (commit or abort) to the log and forces it to
stable storage.

In some implementations of the 2PC protocol, a site sends an acknowledge
(T) message to the coordinator at the end of the second phase of the protocol.
When the coordinator has received the acknowledge (T) message from all the
sites, it adds the record <complete T> to the log.

18.3.2 Failure Handling in 2PC

We now examine in detail how 2PC responds to various types of failures. As
we shall see, one major disadvantage of the 2PC protocol is that coordinator
failure may result in blocking, and a decision either to commit or to abort T
may have to be postponed until the coordinator recovers.

18.3.2.1 Failure of a Participating Site

When a participating site S~c recovers from a failure, it must examine its log
to determine the fate of those transactions that were in the midst of execution
when the failure occurred. Suppose that Tis one such transaction. How will S~c
deal with T? We consider each of the possible alternatives:

The log contain~s a <commit T> record. In this case, the site executes
redo(T).

The log contains an <abort T> record. In this case, the site executes
undo(T).

The log contains a <ready T> record. In this case, the site must consult
C; to determine the fate ofT. If C; is up, it tells S~c whether T committed
or aborted. In the former case, it executes redo(T); in the latter case, it
executes undo(T). If C; is down, S~c must try to find out the fate of T
from other sites. It does so by sending a query-status (T) message to all
the sites in the system. On receiving such a message, a site must consult

18.3 735

its log to determine whether T has executed there and, if so, whether T
committed or aborted. It then notifies s,, about this outcome. If no site has
the appropriate information (that is, whether T corrnni tted or aborted), then
S~c can neither abort nor commit T. The decision concerning Tis postponed
until S1c can obtain the needed information. Thus, S~c must periodically
resend the query-status (T) message to the other sites. It does so until a site
responds with the needed information. The site at which C; resides always
has this inforn1.ation.

The log contains no control records (abort, commit, ready) concerning T.
The absence of control records implies that S1c failed before responding to
the prepare (T) message from C;. Since the failure of S1c means that it could
not have sent such a response, by our algorithm, C; must have aborted T.
Hence, S1c must execute undo(T).

18.3.2.2 Failure of the Coordinator

If the coordinator fails in the midst of the execution of the commit protocol for
transaction T, then the participating sites must decide the fate ofT. We shall see
that, in certain cases, the participating sites cannot decide whether to commit
or abort T, and therefore these sites must wait for the recovery of the failed
coordinator.

If an active site contains a <commit T> record in its log, then T must be
committed.

If an active site contains an <abort T> record in its log, then T must be
aborted.

If some active site does not contain a <ready T> record in its log, then the
failed coordinator C; cannot have decided to commit T. We can draw this
conclusion because a site that does not have a <ready T> record in its log
cannot have sent a ready (T) message to C;. However, the coordinator may
have decided to abort T. Rather than wait for C; to recover, it is preferable
to abort Tin this case.

If none of the preceding cases holds, then all the active sites must have a
<ready T> record in their logs, but no additional control records (such
as <abort T> or <commit T>). Since the coordinator has failed, it is
impossible to determine whether a decision has been made-or, if so,
what that decision is-until the coordinator recovers. Thus, the active
sites must wait for C to recover. As long as the fate ofT remains in doubt,
T may continue to hold system resources. For example, if locking is used,
T may hold locks on data at active sites. Such a situation is undesirable
because hours or days may pass before C; is again active. During this
time, other transactions may be forced to wait for T. As a result, data are
unavailable not only on the failed site (C;) but on active sites as well. The
amount of unavailable data increases as the downtime of C; grows. This
situation is called the blocking problem, because T is blocked pending the
recovery of site C;.

736 Chapter 18

18.4

18.3.2.3 Failure of the Network

When a link fails, the messages in the process of being routed through the
link do not arrive at their destinations intact. From the viewpoint of the sites
connected throughout that link, the other sites appear to have failed. Thus, our
previous schemes apply here as welL

When a number of links fail, the network may partition. In this case,
two possibilities exist. The coordinator and all its participants may remain in
one partition; in this case, the failure has no effect on the commit protocoL
Alternatively, the coordinator and its participants may belong to several
partitions; in this case, messages between the participant and the coordinator
are lost, reducing the case to a link failure.

We move next to the issue of concurrency controL In this section, we show
how certain of the concurrency-control schemes discussed in Chapter 6 can be
modified for use in a distributed environment.

The transaction manager of a distributed database system manages the
execution of those transactions (or subtransactions) that access data stored
in a local site. Each such transaction may be either a local transaction
(that is, a transaction that executes only at that site) or part of a global
transaction (that is, a transaction that executes at several sites). Each transaction
manager is responsible for maintaining a log for recovery purposes and for
participating in an appropriate concurrency-control scheme to coordinate the
concurrent execution of the transactions executing at that site. As we shall
see, the concurrency schemes described in Chapter 6 need to be modified to
accommodate the distribution of transactions.

18.4.1 Locking Protocols

The two-phase locking protocols described in Chapter 6 can be used in a
distributed environment. The only change needed is iil the way the lock
manager is implemented. Here, we present several possible schemes. The first
deals with the case where no data replication is allowed. The others apply
to the more general case where data can be replicated in several sites. As in
Chapter 6, we assume the existence of the shared and

18.4.1.1 Nonreplicated Scheme

If no data are replicated in the system, then the locking schemes described in
Section 6.9 can be applied as follows: Each site maintains a local lock manager
whose function is to administer the lock and unlock requests for those data
items stored in that site. When a transaction wishes to lock data item Qat site
S;, it simply sends a message to the lock manager at site S; requesting a lock
(in a particular lock mode). If data item Q is locked in an incompatible mode,
then the request is delayed until that request can be granted. Once it has been
determined that the lock request can be granted, the lock n1.anager sends a
message back to the initiator indicating that the lock request has been granted.

18.4 737

This scheme has the advantage of simple implementation. It requires two
message transfers for handling lock requests and one ncessage transfer for
handling unlock requests. However, deadlock handling is more complex. Since
the lock and unlock requests are no longer made at a single site, the various
deadlock-handling algorithms discussed in Chapter 7 must be modified; these
modifications are discussed in Section 18.5.

18.4.1.2 Single-Coordinator Approach

Several concurrency-control schemes can be used in systems that allow data
replication. Under the single-coordinator approach, the system maintains a
single lock manager that resides in a single chosen site-say, Si. All lock and
unlock requests are made at site Si. When a transaction needs to lock a data
item, it sends a lock request to Si. The lock manager determines whether the
lock can be granted immediately. If so, it sends a message to that effect to the
site at which the lock request was initiated. Otherwise, the request is delayed
until it can be granted; and at that time, a message is sent to the site at which
the lock request was initiated. The transaction can read the data item from any
one of the sites at which a replica of the data item resides. In the case of a
write operation, all the sites where a replica of the data item resides must be
involved in the writing.

The scheme has the following advantages:

Simple implementation. This scheme requires two messages for handling
lock requests and one message for handling Lmlock requests.

Simple deadlock handling. Since all lock and unlock requests are made
at one site, the deadlock-handling algorithms discussed in Chapter 7 can
be applied directly to this environment.

The disadvantages of the scheme include the following:

Bottleneck The site Si becomes a bottleneck, since all requests must be
processed there.

Vulnerability. If the site Si fails, the concurrency controller is lost. Either
processing must stop or a recovery scheme must be used.

A compromise between these advantages and disadvantages can be
achieved through a in which the lock
manager function is distributed over several sites. Each lock manager adminis
ters the lock and unlock requests for a subset of the data items. This distribution
reduces the degree to which the coordinator is a bottleneck, but it complicates
deadlock handling, since the lock and unlock requests are not made at a single
site.

18.4.1.3 Majority Protocol

The majority protocol is a modification of the nonreplicated data scheme
presented earlier. The system maintains a lock manager at each site. Each
manager controls the locks for all the data or replicas of data stored at that site.
When a transaction wishes to lock a data item Q that is replicated inn different

738 Chapter 18

sites, it must send a lock request to nlore than one-half of then sites in which
Q is stored. Each lock manager detern1.ines whether the lock can be granted
immediately (as far as it is concerned). As before, the response is delayed until
the request can be granted. The transaction does not operate on Q until it has
successfully obtained a lock on a majority of the replicas of Q

This scheme deals with replicated data in a decentralized manner, thus
avoiding the drawbacks of central control. However, it suffers from its own
disadvantages:

Implementation. The majority protocol is more complicated to implement
than the previous schemes. It requires 2(n/2 + 1) messages for handling
lock requests and (n/2 + 1) messages for handling unlock requests.

Deadlock handling. Since the lock and unlock requests are not made
at one site, the deadlock-handling algorithms must be modified (Section
18.5). In addition, a deadlock can occur even if only one data item is being
locked. To illustrate, consider a system with four sites and full replication.
Suppose that transactions T1 and T2 wish to lock data item Q in exclusive
mode. Transaction T1 may succeed in locking Q at sites 51 and 53, while
transaction T2 may succeed in locking Q at sites 52 and 54. Each then must
wait to acquire the third lock, and hence a deadlock has occurred.

18.4.1.4 Biased Protocol

The biased protocol is similar to the majority protocol. The difference is that
requests for shared locks are given more favorable treatment than are requests
for exclusive locks. The system maintains a lock manager at each site. Each
manager manages the locks for all the data items stored at that site. Shared and
exclusive locks are handled differently.

Shared locks. When a transaction needs to lock data item Q, it simply
requests a lock on Q from the lock manager at one site containing a replica
of Q

Exclusive locks. When a transaction needs to lock data item Q, it requests
a lock on Q from the lock manager at each site containing a replica of Q

As before, the response to the request is delayed until the request can be
granted.

The scheme has the advantage of imposing less overhead on read opera
tions than does the majority protocol. This advantage is especially significant
in common cases in which the frequency of reads is much greater than the
frequency of writes. However, the additional overhead on writes is a dis
advantage. Furthermore, the biased protocol shares the majority protocol's
disadvantage of complexity in handling deadlock.

18.4.1.5 Primary Copy

Yet another alternative is to choose one of the replicas as the primary copy.
Thus, for each data item Q, the primary copy of Q must reside in precisely one
site, which we call the primary site of Q. When a transaction needs to lock a data

18.4 739

item Q, it requests a lock at the primary site of Q. Again, the response to the
request is delayed until the request can be granted.

This scheme enables us to handle concurrency control for replicated data
in much the same way as for unreplicated data. Implementation of the method
is simple. However, if the primary site of Q fails, Q is inaccessible even though
other sites containing a replica may be accessible.

18.4.2 Timestamping

The principal idea behind the timestamping scheme discussed in Section 6.9 is
that each transaction is given a unique timestamp, which is used to decide the
serialization order. Our first task, then, in generalizing the centralized scheme to
a distributed scheme is to develop a method for generating unique timestamps.
Our previous protocols can then be applied directly to the nonreplicated
environment.

18.4.2.1 Generation of Unique Timestamps

Two primary methods are used to generate unique timestamps; one is central
ized, and one is distributed. In the centralized scheme, a single site is chosen
for distributing the timestamps. The site can use a logical counter or its own
local clock for this purpose.

In the distributed scheme, each site generates a local unique timestamp
using either a logical counter or the local clock The global unique timestamp
is obtained by concatenation of the local unique timestamp with the site
identifier, which must also be unique (Figure 18.2). The order of concatenation
is important! We use the site identifier in the least sign.ificant position to ensure
that the global timestamps generated in one site are not always greater than
those generated in another site. Compare this technique for generating unique
timestamps with the one presented in Section 18.1.2 for generating unique
na1nes.

We may still have a problem if one site generates local timestamps at a
faster rate than do other sites. In such a case, the fast site's logical counter will
be larger than those of other sites. Therefore, all timestamps generated by the
fast site will be larger than those generated by other sites. A mechanism is
needed to ensure that local timestamps are generated fairly across the system.
To accomplish the fair generation of timestamps, we define within each site Si a
logical clock (LC), which generates the local timestamp (see Section 18.1.2). To
ensure that the various logical clocks are synchronized, we require that a site

local unique timestamp site identifier

ll 0

global unique identifier

Figure 18.2 Generation of unique timestamps.

740 Chapter 18

18.5

Si advance its logical clock whenever a transaction ~ with timestarnp <X,y>
visits that site and xis greater than the current value of LC. In this case, site Si
advances its logical clock to the value x + 1.

If the system clock is used to generate timestamps, then timestamps are
assigned fairly, provided that no site has a system clock that runs fast or slow.
Since clocks may not be perfectly accurate, a technique similar to that used for
logical clocks must be used to ensure that no clock gets far ahead or far behind
another clock.

18.4.2.2 Timestamp-Ordering Scheme

The basic timestamp scheme introduced in Section 6.9.4.3 can be extended in
a straightforward mam'ler to a distributed system. As in the centralized case,
cascading rollbacks may result if no mechanism is used to prevent a transaction
from reading a data item value that is not yet committed. To eliminate cascading
rollbacks, we can con<bine the basic timestamp scheme of Section 6.9 with the
2PC protocol of Section 18.3 to obtain a protocol that ensures serializability
with no cascading rollbacks. We leave the development of such an algorithm
to you.

The basic timestamp scheme just described suffers from the undesirable
property that conflicts between transactions are resolved through rollbacks,
rather than through waits. To alleviate this problem, we can buffer the various
read and write operations (that is, delay them) until a time when we are
assured that these operations can take place without causing aborts. A read(x)
operation by~ must be delayed if there exists a transaction Tj that will perform
a wri te(x) operation but has not yet done so and TS(Tj) < TS(~). Similarly, a
wri te(x) operation by~ must be delayed if there exists a transaction Tj that will
perform either a read(x) or a wri te(x) operation and TS(Tj) < TS(T;). Various
methods are available for this property. One such method, called
the scheme, requires each site to maintain
a read queue and a write queue consisting of all the read and write requests
that are to be executed at the site and that must be delayed to preserve the
property just described. We shall not present the scheme here. Again, we leave
the development of the algorithm to you.

The deadlock-prevention, deadlock-avoidance, and deadlock-detection algo
rithms presented in Chapter 7 can be extended so that they can be used in
a distributed system. In this section, we describe several of these distributed
algorithms.

18.5.1 Deadlock Prevention and Avoidance

The deadlock-prevention and deadlock-avoidance algorithms presented in
Chapter 7 can be used in a distributed system, provided that appropriate
modifications are made. For example, we can use the resource-ordering
deadlock-prevention technique by simply defining a global ordering among
the system resources. That is, all resources in the entire system are assigned
unique numbers, and a process may request a resource (at any processor) with

18.5 741

unique nL1mber i only if it is not holding a resource with a unique number
greater than i. Similarly, we can use the banker's algorithm in a distributed
systen'l by designating one of the processes in the system (the banker) as the
process that maintains the information necessary to carry out the banker's
algorithm. Every resource request must be channeled through the banker.

The global resource-ordering deadlock-prevention scheme is simple to
implement in a distributed environment and requires little overhead. The
banker's algorithm can also be implemented easily, but it may require too
much overhead. The banker may become a bottleneck, since the number of
messages to and from the banker may be large. Thus, the banker's scheme
does not seem to be of practical use in a distributed system.

We turn next to a new deadlock-prevention scheme based on a timestamp
ordering approach with resource preemption. Although this approach can
handle any deadlock situation that may arise in a distributed system, for
simplicity we consider only the case of a single instance of each resource type.

To control the preemption, we assign a unique priority number to each
process. These numbers are used to decide whether a process P; should wait
for a process Pj. For example, we can let P; wait for Pj if P; has a priority higher
than that of Pj; otherwise, P; is rolled back. This scheme prevents deadlocks
because, for every edge P; ---+ Pi in the wait-for graph, P; has a higher priority
than P;. Thus, a cycle cannot exist.

One difficulty with this scheme is the possibility of starvation. Some
processes with extremely low priorities may always be rolled back. This
difficulty can be avoided through the use of timestamps. Each process in the
system is assigned a unique timestamp when it is created. Two complementary
deadlock-prevention schemes using timestamps have been proposed:

1. The wait-die scheme. This approach is based on a nonpreemptive
teclmique. When process P; requests a resource currently held by Pj, P; is
allowed to wait only if it has a smaller timestamp than does Pj (that is, P;
is older than Pj). Otherwise, P; is rolled back (dies). For example, suppose
that processes P1, P2 , and P3 have timestamps 5, 10, and 15, respectively.
If P1 requests a resource held by P2, P1 will wait. If P3 requests a resource
held by P2, P3 will be rolled back.

The wound-wait scheme. This approach is based on a preemptive
technique and is a counterpart to the wait-die approach. When process
P; requests a resource currently held by Pj, P; is allowed to wait only
if it has a larger timestamp than does Pi (that is, P; is younger than
Pi). Otherwise, Pi is rolled back (Pj is wounded by P;). Returning to our
previous example, with processes P1, P2, and P3, if P1 requests a resource
held by P2, then the resource will be preempted from P2, and P2 will be
rolled back. If P3 requests a resource held by P2, then P3 will wait.

Both schemes can avoid starvation provided that, when a process is rolled
back, it is not assigned a new timestamp. Since timestamps always increase, a
process that is rolled back will eventually have the smallest timestamp. Thus,
it will not be rolled back again. There are, however, significant differences in
the way the two schemes operate.

742 Chapter 18

In the wait-die scheme, an older process must wait for a younger one to
release its resource. Thus, the older the process gets, the more it tends to
wait. By contrast, in the wound-wait scheme, an older process never waits
for a younger process.

In the wait-die scheme, if a process Pi dies and is rolled back because it
has requested a resource held by process Pj, then Pi n<ay reissue the same
sequence of requests when it is restarted. If the resource is still held by Pj,
then Pi will die again. Thus, Pi may die several times before acquiring the
needed resource. Contrast this series of events with what happens in the
wound-wait scheme. Process Pi is wounded and rolled back because Pi
has requested a resource it holds. When Pi is restarted and requests the
resource now being held by Pi, Pi waits. Thus, fewer rollbacks occur in
the wound-wait scheme.

The major problem with both schemes is that unnecessary rollbacks may occur.

18.5.2 Deadlock Detection

The deadlock-prevention algorithm may preempt resources even if no dead
lock has occurred. To prevent um<ecessary preemptions, we can use a deadlock
detection algorithm. We construct a wait-for graph describing the resource
allocation state. Since we are assuming only a single resource of each type, a
cycle in the wait-for graph represents a deadlock.

The main problem in a distributed system is deciding how to maintain
the wait-for graph. We illustrate this problem by describing several common
techniques to deal with this issue. These schemes require each site to keep a
local wait-for graph. The nodes of the graph correspond to all the processes
(local as well as nonlocal) currently holding or requesting any of the resources
local to that site. For example, in Figure 18.3 we have a system consisting of two
sites, each maintaining its local wait-for graph. Note that processes P2 and P3

appear in both graphs, indicating that the processes have requested resources
at both sites.

These local wait-for graphs are constructed in the usual manner for local
processes and resources. When a process Pi in site 51 needs a resource held by
process Pj in site 52, a request message is sent by Pi to site 52 . The edge Pi -+
Pj is then inserted in the local wait-for graph of site 52 .

Figure 18.3 Two local wait-for graphs.

18.5 743

Figure 18.4 Global wait-for graph for Figure 18.3.

Clearly, if any local wait-for graph has a cycle, deadlock has occurred. The
fact that we find no cycles in any of the local wait-for graphs does not mean
that there are no deadlocks, however. To illustrate this problem, we consider
the system depicted in Figure 18.3. Each wait-for graph is acyclic; nevertheless,
a deadlock exists in the system. To prove that a deadlock has not occurred, we
must show that the of all local graphs is acyclic. The graph (Figure 18.4)
that we obtain from the union of the two wait-for graphs of Figure 18.3 does
indeed contain a cycle, implying that the system is in a deadlocked state.

A number of methods are available to organize the wait-for graph in a
distributed system. We describe several common schemes here.

18.5.2.1 Centralized Approach

In the centralized approach, a global wait-for graph is constructed as the
tmion of all the local wait-for graphs. It is maintained in a single process:
the Since there is communication delay in
the system, we must distinguish between two types of wait-for graphs. The
real graph describes the real but unknown state of the system at any point
in time, as would be seen by an ormliscient observer. The constructed graph
is an approximation generated by the coordinator during the execution of its
algorithm. The constructed graph must be generated so that, whenever the
detection algorithm is invoked, the reported results are correct. By correct we
mean the following:

If a deadlock exists, then it is reported properly.

If a deadlock is reported, then the system is indeed in a deadlocked state.

As we shall show, it is not easy to construct such correct algorithms.
The wait-for graph may be constructed at three different points in time:

Whenever a new edge is inserted in or removed from one of the local
wait-for graphs

Periodically, when a number of changes have occurred in a wait-for graph

Whenever the deadlock-detection coordinator needs to invoke the cycle
detection algorithm

When the deadlock-detection algorithm is invoked, the coordinator searches
its global graph. If a cycle is found, a victim is selected to be rolled back. The

744 Chapter 18

coordinator must notify all the sites that a particular process has been selected
as victiiTl. The sites, in turn, roll back the victim process.

Next, we consider each of the three graph-construction options listed
above. With option 1, whenever an edge is either inserted in or removed from a
local graph, the local site must also send a message to the coordinator to notify
it of this modification. On receiving such a message/ the coordinator updates
its global graph.

Alternatively (option 2) 1 a site can send a number of such changes in a single
message periodically. Returning to our previous example/ the coordinator
process will maintain the global wait-for graph as depicted in Figure 18.4.
When site 52 inserts the edge P3 -+ P4 in its local wait-for graph/ it also sends
a message to the coordinator. Similarly/ when site 51 deletes the edge P5 -+ P1

because P1 has released a resource that was requested by Ps 1 an appropriate
message is sent to the coordinator.

Note that no matter which of these two options is used/ unnecessary
rollbacks may occur, as a result of two situations:

1. False may exist in the global wait-for graph. To illustrate this point
we consider a snapshot of the system as depicted in Figure 18.5. Suppose
that P2 releases the resource it is holding in site 511 resulting in the deletion
of the edge P1 -+ P2 in site 51. Process P2 then requests a resource held
by P3 at site 521 resulting in the addition of the edge P2 -+ P3 in site 52. If
the insert P2 -+ P3 message from site 52 arrives before the delete P1 -+ P2

message from site 51/ the coordinator may discover the false cycle P1 -+
P2 -+ P3 -+ P1 after the insert (but before the delete). Deadlock recovery
may be initiated, although no deadlock has occurred.

2. Unnecessary rollbacks may also result when a deadlock has indeed
occurred and a victim has been picked1 but at the same time one of the
processes has been aborted for reasons unrelated to the deadlock (as
when a process has exceeded its allocated time). For example/ suppose
that site 51 in Figure 18.3 decides to abort P2. At the same time/ the
coordinator has discovered a cycle and picked P3 as a victim. Both P2 and
P3 are now rolled back1 although only P2 needed to be rolled back

Now consider a centralized deadlock-detection algorithm using option
3 that detects all deadlocks that actually occur and does not detect false
deadlocks. To avoid the report of false deadlocks/ we require that requests

coordinator

Figure 18.5 Local and global wait-for graphs.

18.5 745

from different sites be appended with unique identifiers (or timestamps). When
process P;, at site 511 requests a resource from Pj, at site 52, a request message
with timestamp T5 is sent. The edge P; ~ P1 with the label T5 is inserted in the
local wait-for graph of 51. This edge is inserted in the local wait-for graph of
site 52 only if site 52 has received the request message and cannot immediately
grant the requested resource. A request from P; to P1 in the same site is handled
in the usual manner; no timestamps are associated with the edge P; ~ Pi.

The detection algorithm is as follows:

The controller sends an initiating message to each site in the system.

On receiving this message, a site sends its local wait-for graph to
the coordinator. Each of these wait-for graphs contains all the local
information the site has about the state of the real graph. The graph
reflects an instantaneous state of the site, but it is not synchronized with
respect to any other site.

When the controller has received a reply from each site, it constructs a
graph as follows:

a. The constructed graph contains a vertex for every process in the
system.

b. The graph has an edge P; ~ P1 if and only if there is an edge P; ~
P1 in one of the wait-for graphs or an edge P; ~ Pj with some label
T5 in more than one wait-for graph.

If the constructed graph contains a cycle, then the system is in a deadlocked
state. If the constructed graph does not contain a cycle, then the system was
not in a deadlocked state when the detection algorithm was invoked as result
of the initiating messages sent by the coordinator (in step 1).

18.5.2.2 Fully Distributed Approach

In the all controllers share
equally the responsibility for detecting deadlock. Every site constructs a wait
for graph that represents a part of the total graph, depending on the dynamic
behavior of the system. The idea is that, if a deadlock exists, a cycle will appear
in at least one of the partial graphs. We present one such algorithm, which
involves construction of partial graphs in every site.

Each site maintains its own local wait-for graph. A local wait-for graph in
this scheme differs from the one described earlier in that we add one additional
node Pex to the graph. An arc P; ~ Pex exists in the graph if P; is waiting for a
data item in another site being held by any process. Similarly, an arc Pex ~ Pi
exists in the graph if a process at another site is waiting to acquire a resource
currently being held by P1 in this local site.

To illustrate this situation, we consider again the two local wait-for graphs
of Figure 18.3. The addition of the node Pex in both graphs results in the local
wait-for graphs shown in Figure 18.6.

If a local wait-for graph contains a cycle that does not involve node
Pm then the system is in a deadlocked state. If, however, a local graph
contains a cycle involving Pex, then this implies the possibility of a deadlock.

746 Chapter 18

Figure 18.6 Augmented local wait-for graphs from Figure 18.3.

To ascertain whether a deadlock does exist, we must invoke a distributed
deadlock -detection algorithm.

Suppose that, at site Si, the local wait-for graph contains a cycle involving
node Pex· This cycle must be of the form

which indicates that process Pk, in site Si is waiting to acquire a data item
located in some other site-say, Sj- On discovering this cycle, site Si sends to
site Si a deadlock-detection message containing information about that cycle.

When site Si receives this deadlock-detection message, it updates its
local wait-for graph with the new information. Then it searches the newly
constructed wait-for graph for a cycle not involving Pex· If one exists, a
deadlock is found, and an appropriate recovery scheme is iiwoked. If a cycle
involving Pex is discovered, then Si transmits a deadlock-detection message
to the appropriate site-say, Sk. Site SIC! in return, repeats the procedure.
Thus, after a finite number of rounds, either a deadlock is discovered or the
deadlock-detection computation halts.

To illustrate this procedure, we consider the local wait-for graphs of Figure
18.6. Suppose that site 51 discovers the cycle

Since P3 is waiting to acquire a data item in site 52, a deadlock-detection
message describing that cycle is transmitted from site 51 to site 52 . When site 52

receives this message, it updates its local wait-for graph, obtaining the wait-for
graph of Figure 18.7. This graph contains the cycle

which does not include node Pex· Therefore, the system is in a deadlocked state,
and an appropriate recovery scheme must be invoked.

Note that the outcome would be the same if site 52 discovered the cycle first
in its local wait-for graph and sent the deadlock-detection message to site 51.

In the worst case, both sites will discover the cycle at about the same time, and
two deadlock-detection messages will be sent: one by 51 to 52 and another by
S2 to 51. This situation results in unnecessary message transfer and overhead in
updating the two local wait-for graphs and searching for cycles in both graphs.

18.6

18.6 747

Figure 18.7 Augmented local wait-for graph in site 5.z of Figure 18.6.

To reduce message traffic, we assign to each process Pi a unique identifier,
which we denote ID(Pi). When site Sk discovers that its local wait-for graph
contains a cycle involving node Pex of the form

it sends a deadlock-detection message to another site only if

ID(PI<J < ID(Pr<J.

Otherwise, site S1c continues its normal execution, leaving the burden of
initiating the deadlock-detection algorithm to some other site.

To illustrate this scheme, we consider again the wait-for graphs maintained
at sites 51 and 52 as shown in Figure 18.6. Suppose that

Suppose both sites discover these local cycles at about the same time. The cycle
in site 51 is of the form

Since ID(P3) > ID(P2), site 51 does not send a deadlock-detection message to
site 52 .

The cycle in site 52 is of the form

Since ID(P2) < ID(P3), site 52 does send a deadlock-detection message to site
51, which, on receiving the message, updates its local wait-for graph. Site S1
then searches for a cycle in the graph and discovers that the system is in a
deadlocked state.

As we pointed out in Section 18.3, many distributed algorithms employ a
coordinator process that performs functions needed by the other processes in

748 Chapter 18

the systenc. These functions include enforcing mutual exclusion, maintaining
a global wait-for graph for deadlock detection, replacing a lost token, and
controlling an input or output device in the system. If the coordinator process
fails due to the failure of the site at which it resides, the system can continue
execution only by restarting a new copy of the coordinator on some other site.
The algorithms that determine where a new copy of the coordinator should be
restarted are called

Election algorithms assume that a unique priority number is associated
with each active process in the system. For ease of notation, we assume that
the priority number of process g is i. To simplify our discussion, we assume
a one-to-one correspondence between processes and sites and thus refer to
both as processes. The coordinator is always the process with the largest
priority number. Hence, when a coordinator fails, the algorithm must elect
that active process with the largest priority number. This number must be sent
to each active process in the system. In addition, the algorithm must provide a
mechanism for a recovered process to identify the current coordinator.

In this section, we present examples of election algorithms for two different
configurations of distributed systems. The first algorithm applies to systems
where every process can send a message to every other process in the system.
The second algorithm applies to systems organized as a ring (logically or
physically). Both algorithms require n2 messages for an election, where n is the
number of processes in the system. We assume that a process that has failed
knows on recovery that it has indeed failed and thus takes appropriate actions
to rejoin the set of active processes.

18.6.1 The Bully Algorithm

Suppose that process P; sends a request that is not answered by the coordinator
within a time interval T. In this situation, it is assumed that the coordinator has
failed, and P; tries to elect itself as the new coordinator. This task is completed
through the following algorithm.

Process P; sends an election message to every process with a higher priority
number. Process P; then waits for a time interval T for an answer from any one
of these processes.

If no response is received within time T, P; assumes that all processes with
numbers greater than i have failed and elects itself the new coordinator. Process
P; restarts a new copy of the coordinator and sends a message to inform all
active processes with priority numbers less than i that P; is the new coordinator.

Howeve1~ if an answer is received, P; begins a time interval T', waiting to
receive a message informing it that a process with a higher priority number
has been elected. (That is, some other process is electing itself coordinator and
should report the results within time T.) If no message is received within T',
then the process with a higher number is assumed to have failed, and process
P; should restart the algorithm.

If P; is not the coordinator, then, at any time during execution, P; may
receive one of the following two messages from process Pr

P1 is the new coordinator (j > i). Process P;, in turn, records this
information.

18.6 749

Pi has started an election (j < i). Process P; sends a response to Pi
and begins its own election algorithm, provided that P; has not already
initiated such an election.

The process that completes its algorithm has the highest number and is elected
as the coordinator. It has sent its number to all active processes with lower
numbers. After a failed process recovers, it immediately begins execution of
the same algorithm. If there are no active processes with higher numbers, the
recovered process forces all processes with lower numbers to let it become the
coordinator process, even if there is a currently active coordinator with a lower
number. For this reason, the algorithm is termed the

We can demonstrate the operation of the algorithm with a simple example
of a system consisting of processes P1 through P4 . The operations are as follows:

All processes are active; P4 is the coordinator process.

P1 and P4 fail. P2 determines that P4 has failed by sending a request that
is not answered within time T. P2 then begins its election algorithm by
sending a request to P3 .

P3 receives the request, responds to P2 , and begins its own algorithm by
sending an election request to P4 .

P2 receives P3's response and begins waiting for an interval T'.

P4 does not respond within an interval T, so P3 elects itself the new
coordinator and sends the number 3 to P2 and P1. (P1 does not receive
the number, since it has failed.)

Later, when P1 recovers, it sends an election request to P2 , P3, and P4 .

P2 and P3 respond to P1 and begin their own election algorithms. P3 will
again be elected, through the same events as before.

Finally, P4 recovers and notifies P1, P2, and P3 that it is the current
coordinator. (P4 sends no election requests, since it is the process with
the highest number in the system.)

18.6.2 The Ring Algorithm

The assumes that the links between processes are unidirectional
and that each process sends its messages to the neighbor on the right. The main
data structure used by the algorithm is the lisi:, a list that contains the
priority numbers of all active processes in the system when the algorithm ends;
each process maintains its own active list. The algorithm works as follows:

If process P; detects a coordinator failure, it creates a new active list that
is initially empty. It then sends a message elect(i) to its neighbor on the
right and adds the number i to its active list.

750 Chapter 18

18.7

If Pi receives a message elect(j) from the process on the left, it must respond
in one of three ways:

a. If this is the first elect message it has seen or sent, Pi creates a new
active list with the numbers i and j. It then sends the message elect(i),
followed by the message elect(j).

b. Ifi -::f. j-thatis,ifthe message received does not contain Pi'snumber
-then Pi adds j to its active list and forwards the message to its
neighbor on the right.

c. If i = j-that is, if Pi receives the message elect(i)-then the active
list for Pi now contains the numbers of all the active processes in
the system. Process g can now determine the largest number in the
active list to identify the new coordinator process.

This algorithm does not specify how a recovering process determines the
number of the current coordinator process. One solution requires a recovering
process to send an inquiry message. This message is forwarded around the ring
to the current coordinator, which in turn sends a reply containing its number.

For a system to be reliable, we need a mechanism that allows a set of processes
to agree on a common value. Such an agreement may not take place, for several
reasons. First, the communication medium may be faulty, resulting in lost or
garbled messages. Second, the processes themselves may be faulty, resultilcg
lie unpredictable process behavior. The best we can hope for in this case is that
processes fail in a clean way, stopping their execution without deviating from
their normal execution pattern. In the worst case, processes may send garbled
or incorrect messages to other processes or even collaborate with other failed
processes in an attempt to the integrity of the system.

The provides an analogy for this situation.
Several divisions Byzantine army, each commanded by its own general,
surround an enemy camp. The Byzantine generals must reach agreement on
whether or not to attack the enemy at dawn. It is crucial that all generals agree,
since an attack by only some of the divisions would result lie defeat. The various
divisions are geographically dispersed, and the generals can communicate with
one another only via messengers who run from camp to camp. The generals
may not be able to reach agreement for at least two major reasons:

Messengers may get caught by the enemy and thus may be unable to
deliver their messages. This situation corresponds to unreliable com
munication in a computer system and is discussed further in Section
18.7.1.

Generals may be traitors, trying to prevent the loyal generals from
reaching an agreement. This situation corresponds to faulty processes
lie a computer system and is discussed further in Section 18.7.2.

18.7 751

18.7.1 Unreliable Communications

Let us first assume that, if processes fail, they do so in a clean way and that
the communication medium is unreliable. Suppose that process P; at site 51,

which has sent a message to process Pj at site 52, needs to know whether
P1 has received the message so that it can decide how to proceed with its
computation. For example, P; may decide to compute a functionfoo if Pj has
received its message or to compute a function boo if P1 has not received the
message (because of some hardware failure).

To detect failures, we can use a similar to the one
described in Section 16.7.1. When P; sends out a message, it also specifies
a time interval during which it is willing to wait for an acknowledgment
message from Pi. When Pi receives the message, it immediately sends an
acknowledgment to P;. If P; receives the acknowledgment message within the
specified time interval, it can safely conclude that P1 has received its message.
If, however, a time-out occurs, then P; needs to retransmit its message and
wait for an acknowledgment. This procedure continues until P; either gets the
acknowledgment message back or is notified by the system that site 52 is down.
In the first case, it will compute foo; in the latter case, it will compute boo. Note
that, if these are the only two viable alternatives, P; must wait until it has been
notified that one of the situations has occurred.

Suppose now that P7 also needs to know that P; has received its acknowl
edgment message, so that it can decide how to proceed with its computation.
For example, P1 may want to compute foo only if it is assured that P; got
its acknowledgment. In other words, P; and Pi will compute foo if and only
if both have agreed on it. It turns out that, in the presence of failure, it is
not possible to accomplish this task. More precisely, it is not possible in a
distributed environment for processes P; and P1 to agree completely on their
respective states.

To prove this claim, let us suppose that a minimal sequence of message
transfers exists such that, after the messages have been delivered, both
processes agree to compute foo. Let m' be the last message sent by P; to
Pj- Since g does not know whether its message will arrive at Pj (since the
message may be lost due to a failure), P; will execute foo regardless of the
outcome of the message delivery. Thus, m' could be removed from the sequence
without affecting the decision procedure. Hence, the original sequence was not
minimal, contradicting our assumption and showing that there is no sequence.
The processes can never be sure that both will compute foo.

18.7.2 Faulty Processes

Now let us assume that the communication medium is reliable but that
processes can fail in unpredictable ways. Consider a system of n processes,
of which no more than m are faulty. Suppose that each process P; has some
private value of V;. We wish to devise an algorithm that allows each nonfaulty
process P; to construct a vector X; = (A;,l, A;,2, ... , A;, 11) such that the following
conditions exist:

1. If Pi is a nonfaulty process, then A;,i = Vi-

If P; and P1 are both nonfaulty processes, then X; = x1.

752 Chapter 18

18.8

There are many solutions to this problem, and they share the following
properties:

A correct algorithm can be devised only if n > 3 x m + 1.

The worst-case delay for reaching agreement is proportionate tom + 1
message-passing delays.

The number of messages required for reaching agreement is large. No
single process is trustworthy, so all processes must collect all information
and make their own decisions.

Rather than presenting a general solution, which would be complicated, we
present an algorithm for the simple case where m = 1 and n = 4. The algorithm
requires two rounds of information exchange:

Each process sends its private value to the other three processes.

Each process sends the information it has obtained in the first round to
all other processes.

A faulty process obviously may refuse to send messages. In this case, a
nonfaulty process can choose an arbitrary value and pretend that the value
was sent by the faulty process.

Once these two rounds are completed, a nonfaulty process Pi can construct
its vector X; = (Ai,l, A,2, Ai,3, A4) as follows:

Ai = v;.
For j -1- i, if at least two of the three values reported for process Pj (in
the two rounds of exchange) agree, then the majority value is used to set
the value of Ai,f' Otherwise, a default value-say, nil-is used to set the
value of Ai,f'

In a distributed system with no common memory and no common clock, it
is sometimes impossible to determine the exact order in which two events
occur. The happened-before relation is only a partial ordering of the events in
a distributed system. Timestamps can be used to provide a consistent event
ordering.

Mutual exclusion in a distributed environment can be implemented in a
variety of ways. In a centralized approach, one of the processes in the system
is chosen to coordinate the entry to the critical section. In the fully distributed
approach, the decision making is distributed across the entire system. A
distributed algorithm, which is applicable to ring-structured networks, is the
token-passing approach.

For atomicity to be ensured, all the sites in which a transaction T has
executed must agree on the final outcome of the execution. T either commits at
all sites or aborts at all sites. To ensure this property, the transaction coordinator

753

of T must execute a commit protocol. The most widely used commit protocol
is the 2PC protocol.

The various concurrency-control schemes that can be used in a centralized
system can be modified for use in a distributed environment. In the case
of locking protocols, we need only change the way the lock manager is
implemented. In the case of timestamping and validation schemes, the only
change needed is the development of a mechanism for generating unique
global timestamps. The mechanism can either concatenate a local timestamp
with the site identification or advance local clocks whenever a message arrives
that has a larger timestamp.

The primary method for dealing with deadlocks in a distributed environ
ment is deadlock detection. The main problem is deciding how to maintain the
wait-for graph. Methods for organizing the wait-for graph include a centralized
approach and a fully distributed approach.

Some distributed algorithms require the use of a coordinator. If the
coordinator fails because of the failure of the site at which it resides, the system
can continue execution only by restarting a new copy of the coordinator on
some other site. It can do so by maintaining a backup coordinator that is
ready to assume responsibility if the coordinator fails. Another approach is to
choose the new coordinator after the coordinator has failed. The algorithms
that determine where a new copy of the coordinator should be restarted are
called election algorithms. Two algorithms, the bully algorithm and the ring
algorithm, can be used to elect a new coordinator in case of failures.

18.1 Why is deadlock detection much more expensive in a distributed
environment than in a centralized environment?

18.2 Consider a hierarchical deadlock-detection algorithm in which the
global wait-for graph is distributed over a number of different con
trollers, which are organized in a tree. Each non-leaf controller maintains
a wait-for graph that contains relevant information from the graphs of
the controllers in the subtree below it. In particular, let SA, Sp, and Sc
be controllers such that Sc is the lowest common ancestor of SA and
Sp (Sc must be unique, since we are dealing with a tree). Suppose that
node Ti appears in the local wait-for graph of controllers SA and Sp.
Then ~ must also appear in the local wait-for graph of

Controller Sc

Every controller in the path from Sc to SA

Every controller in the path from Sc to Sp

In addition, if ~ and Tj appear in the wait-for graph of controller So
and there exists a path from Ti to Ti in the wait-for graph of one of the
children of S0 , then an edge ~ -+ Tj must be in the wait-for graph
of So.

Show that, if a cycle exists in any of the wait-for graphs, then the
system is deadlocked.

754 Chapter 18

18.3 Your company is building a comp1.1ter network, and you are asked to
develop a scheme for dealing with the deadlock problem.

a. Would you use a deadlock-detection scheme or a deadlock
prevention scheme?

b. If you used a deadlock-prevention scheme, which one would you
use? Explain your choice.

c. If you used a deadlock-detection scheme, which one would you
use? Explain your choice.

18.4 Derive an election algorithm for bidirectional rings that is more efficient
than the one presented in this chapter. How many messages are needed
for n processes?

18.5 Your company is building a computer network, and you are asked to
write an algorithm for achieving distributed mutual exclusion. Which
scheme will you use? Explain your choice.

18.6 Consider the following failure model for faulty processors. Processors
follow the prescribed protocol but may fail at unexpected points in
time. When processors fail, they simply stop functioning and do not
continue to participate in the distributed system. Given such a failure
model, design an algorithm for reaching agreement among a set of
processors. Discuss the conditions under which agreement could be
reached.

18.7 Under what circumstances does the wait-die scheme perform better
than the wound-wait scheme for granting resources to concurrently
executing transactions?

18.8 Consider a failure that occurs during 2PC for a transaction. For each
possible failure, explain how 2PC ensures transaction atomicity despite
the failure.

18.9 The logical clock timestamp scheme presented in this chapter provides
the following guarantee: if event A happens before event B, then the
timestamp of A is smaller than the timestamp of B. Note, however, that
we cam1.0t order two events based only on their timestamps. The fact
that an event C has a timestamp that is smaller than the timestamp
of event D does not necessarily mean that event C happened before
event D; C and D could be concurrent events in the system. Discuss
ways in which the logical clock timestamp scheme could be extended
to distinguish concurrent events from events that can be ordered by the
happened-before relation.

The distributed algorithm for extending the happened-before relation to a
consistent total ordering of all the events in the system was developed by
Lamport [1978b]. Further discussions of using logical time to characterize the
behavior of distributed systems can be found in Fidge [1991], Raynal and

755

Singhal [1996], Babaoglu and Marzullo [1993], Schwarz and Mattern [1994],
and Mattern [1988].

The first general algorithm for implementing mutual exclusion in a
distributed environment was also developed by Lamport [1978b]. Lamport's
scheme requires 3 x (n - 1) messages per critical-section entry. Subsequently,
Ricart and Agrawala [1981] proposed a distributed algorithm that requires only
2 x (n- 1) messages. Their algorithm is presented in Section 18.2.2. A square
root algorithm for distributed mutual exclusion is described by Maekawa
[1985]. The token-passing algorithm for rilcg-structured systems presented ilc
Section 18.2.3 was developed by Lann [1977]. Carvalho and Roucairol [1983]
discusses mutual exclusion in computer networks, and Agrawal and Abbadi
[1991] describes an efficient and fault-tolerant solution of distributed mutual
exclusion. A simple taxonomy for distributed mutual-exclusion algorithms is
presented by Raynal [1991].

The issue of distributed synchronization is discussed by Reed and Kanodia
[1979] (shared-memory environment), Lamport [1978b], Lamport [1978a], and
Sclmeider [1982] (totally disjoint processes). A distributed solution to the
dilling-philosophers problem is presented by Chang [1980].

The 2PC protocol was developed by Lampson and Sturgis [1976] and Gray
[1978]. Two modified versions of 2PC, called presume commit and presume
abort, reduce the overhead of 2PC by defilling default assumptions regarding
the fate of transactions (Mohan and Lindsay [1983]).

Papers dealing with the problems of implementillg the transaction concept
in a distributed database were presented by Gray [1981], Traiger et al. [1982],
and Spector and Schwarz [1983]. Bernsteill et al. [1987] offer comprehensive
discussions of distributed concurrency control. Rosenkrantz et al. [1978]
report on the timestamp distributed deadlock-prevention algorithm. The
fully distributed deadlock-detection scheme presented ill Section 18.5.2 was
developed by Obermarck [1982]. The hierarchical deadlock-detection scheme
of Exercise 18.1 appears in Menasce and Muntz [1979]. Knapp [1987] and
Singhal [1989] offer surveys of deadlock detection in distributed systems.
Deadlocks can also be detected by takilcg global snapshots of a distributed
system, as discussed ill Chandy and Lamport [1985].

The Byzantine generals problem is discussed by Lamport et al. [1982] and
Pease et al. [1980]. The bully algorithm is presented by Garcia-Molina [1982],
and the election algorithm for a ring-structured system was written by Larue
[1977].

Part Eight

Our coverage of operating-system issues thus far has focused mainly
on general-purpose computing systems. There are, however, special
purpose systems with requirements different from those of many of the
systems we have described.

A real-time system is a computer system that requires not only
that computed results be correct but also that the results be produced
within a specified deadline period. Results produced after the deadline
has passed-even if correct-may be of no real value. For such sys
tems, many traditional operating-system scheduling algorithms must be
modified to meet the stringent timing deadlines.

A multimedia system must be able to handle not only conventional
data, such as text files, programs, and word-processing documents,
but also multimedia data. Multimedia data consist of continuous-media
data (audio and video) as well as conventional data. Continuous-media
data-such as frames of video-must be delivered according to certain
time restrictions (for example, 30 frames per second). The demands of
handling continuous-media data require significant changes in operating
system structure, most notably in memory, disk, and network manage
ment.

19.1

R

Our coverage of operating-system issues thus far has focused mainly on
general-purpose computing systems (for example, desktop and server sys
tems). We now turn our attention to real-time computing systems. The require
ments of real-time systems differ from those of many of the systems we have
described, largely because real-time systems must produce results within cer
tain time limits. In this chapter, we provide an overview of real-time computer
systems and describe how real-time operating systems must be constructed to
meet the stringent timing requirements of these systems.

To explain the timing requirements of real-time systems.

To distinguish between hard and soft real-time systems.

To discuss the defining characteristics of real-time systems.

To describe scheduling algorithms for hard real-time systems.

A real-time system is a computer system that requires not only that the
computing results be "correct" but also that the results be produced within
a specified deadline period. Results produced after the deadline has passed
even if correct-may be of no real value. To illustrate, consider an autonomous
robot that delivers mail in an office complex. If its vision-control system
identifies a wall after the robot has walked into it, despite correctly identifying
the wall, the system has not met its requirement. Contrast this timing
requirement with the much less strict demands of other systems. In an
interactive desktop computer system, it is desirable to provide a quick response
time to the interactive user, but it is not mandatory to do so. Some systems
-such as a batch-processing system-m.ay have no timing requirements
whatsoever.

Real-time systems executing on traditional computer hardware are used
in a wide range of applications. In addition, many real-time systems are

759

760 Chapter 19

19.2

embedded in "specialized devices," such as ordinary home appliances (for
example, microwave ovens and dishwashers), consumer digital devices (for
exarnple, cameras and MP3 players), and communication devices (for example,
cellular telephones and Blackberry handheld devices). They are also present
in larger entities, such as automobiles and airplanes. An embedded system is
a computing device that is part of a larger system in which the presence of a
computing device is often not obvious to the user.

To illustrate, consider an embedded system for controlling a home dish
washer. The embedded system may allow various options for scheduling the
operation of the dishwasher-the water temperature, the type of cleaning
(light or heavy), even a timer indicating when the dishwasher is to start. Most
likely, the user of the dishwasher is unaware that there is in fact a computer
embedded in the appliance. As another example, consider an embedded system
controlling antilock brakes in an automobile. Each wheel in the automobile has
a sensor detecting how much sliding and traction are occurring, and each
sensor continually sends its data to the system controller. Taking the results
from these sensors, the controller tells the braking mechanism in each wheel
how much braking pressure to apply. Again, to the user (in this instance, the
driver of the automobile), the presence of an embedded computer system may
not be apparent. It is important to note, however, that not all embedded systems
are real-time. For example, an embedded system controlling a home furnace
may have no real-time requirements whatsoever.

Some real-time systems are identified as safety-critical systems. In a
safety-critical system, incorrect operation-usually due to a missed deadline
-results in some sort of "catastrophe." Examples of safety-critical systems
include weapons systems, antilock brake systems, flight-management systems,
and health-related embedded systems, such as pacemakers. In these scenarios,
the real-time system must respond to events by the specified deadlines;
otherwise, serious injury-or worse-might occur. However, a significant
majority of embedded systems do not qualify as safety-critical, including FAX
machines, microwave ovens, wristwatches, and networking devices such as
switches and routers. For these devices, missing deadline requirements results
in nothing more than perhaps an unhappy user.

Real-time computing is of two types: hard and soft. A hard real-time
system has the most stringent requirements, guaranteeing that critical real
time tasks be completed within their deadlines. Safety-critical systems are
typically hard real-time systems. A soft real-time system is less restrictive,
simply providing that a critical real-time task will receive priority over other
tasks and that it will retain that priority until it completes. Many commercial
operating systems-as well as Linux-provide soft real-time support.

In this section, we explore the characteristics of real-time systems and address
issues related to designing both soft and hard real-time operating systencs.

The following characteristics are typical of many real-time systems:

Single purpose

Small size

Inexpensively mass-produced

Specific timing requirements

19.2

We next examine each of these characteristics.

761

Unlike PCs, which are put to many uses, a real-time system. typically serves
only a single purpose, such as controlling antilock brakes or delivering music
on an MP3 player. It is unlikely that a real-time system controlling an airliner's
navigation system will also play DVDs! The design of a real-time operating
system reflects its single-purpose nature and is often quite simple.

Many real-time systems exist in environments where physical space is
constrained. Consider the amount of space available in a wristwatch or a
microwave oven-it is considerably less than what is available in a desktop
computer. As a result of space constraints, most real-time systems lack both
the CPU processing power and the amount of memory available in standard
desktop PCs. Whereas most contemporary desktop and server systems use 32-
or 64-bit processors, many real-time systems run on 8- or 16-bit processors.
Similarly, a desktop PC might have several gigabytes of physical memory,
whereas a real-time system might have less than a megabyte. We refer to the
amount of memory required to run the operating system and its applications
as the footprint of a system. Because the amount of memory is limited, most
real-time operating systems must have small footprints.

Next, consider where many real-time systems are implemented: they are
often found in home appliances and consumer devices. Devices such as digital
cameras, microwave ovens, and thermostats are mass-produced in very cost
conscious environments. Thus, the microprocessors for real-time systems must
also be inexpensively mass-produced.

One technique for reducing the cost of an embedded controller is to
use an alternative technique for organizing the components of the computer
system. Rather than organizing the computer around the structure shown in
Figure 19.1, where buses provide the mechanism intercom1ectin.g individual
components, many embedded system controllers use a strategy known as

Here, the CPU, memory (including cache), memory-

mouse keyboard printer

Figure 19.1 Bus-oriented organization.

762 Chapter 19

19.3

management-unit (MMU), and any attached peripheral ports, such as USB ports,
are contained in a single integrated circuit. The SOC strategy is typically less
expensive than the bus-oriented organization of Figure 19.1.

We turn now to the final characteristic identified above for real-time
systems: specific timing requirements. It is, in fact, the defining characteristic
of such systems. Accordingly, the primary task of both hard and soft real-time
operating systems is to support the timing requirements of real-time tasks,
and the remainder of this chapter focuses on this issue. Real-time operating
systems meet tim.ing requirements by using scheduling algorithms that give
real-time processes the highest schedulil1.g priorities. Furthermore, schedulers
must ensure that the priority of a real-time task does not degrade over time.
Another technique for addressing timing requirements is by minimizing the
response time to events such as il1.terrupts.

In this section, we discuss the features necessary for designing an operating
system that supports real-time processes. Before we begin, though, let's
consider what is typically not needed for a real-time system. We begin
by examining several features provided in many of the operatil1.g systems
discussed so far in this text, including Linux, UNIX, and the various versions
of Windows. These systems typically provide support for the following:

A variety of peripheral devices, such as graphical displays, CD drives, and
DVD drives

Protection and security mechanisms

Multiple users

Supporting these features often results in a sophisticated -and large-kernel.
For example, Windows XP has over forty million lines of source code. In
contrast, a typical real-time operating system usually has a very simple design,
often written in thousands rather than millions of lines of source code. We
would not expect these simple systems to il1.clude the features listed above.

But why don't real-time systems provide these features, which are crucial to
standard desktop and server systems? There are several reasons, but three are
most prominent. First, because most real-time systems serve a single purpose,
they simply do not require many of the features found il1. a desktop PC.
Consider a digital wristwatch: it obviously has no need to support a disk drive
or DVD, let alone virtual memory. Furthermore, a typical real-time system
does not include the notion of a user. The system simply supports a small
number of tasks, which often await input from hardware devices (sensors,
vision identification, and so forth). Second, the features supported by standard
desktop operating systems are impossible to provide without fast processors
and large amounts of memory. Both of these are unavailable in real-time
systems due to space constraints, as explained earlier. In addition, many real
time systems lack sufficient space to support peripheral disk drives or graphical
displays, although some systems may support file systems using nonvolatile
memory (NVRAM). Third, supporting features common in standard desktop

19.3

P=L

relocation
register

R

p

physical
memory

Figure 19.2 Address translation in real-time systems.

763

computing environments would greatly increase the cost of real-time systems,
which could make such systems economically impractical.

Additional considerations arise when we consider virtual memory in a
real-time system. Providing virtual memory features as described in Chapter
9 requires that the system include a memory-management unit (MMU) for
translating logical to physical addresses. However, MMUs typically increase
the cost and power consumption of the system. In addition, the time required
to translate logical addresses to physical addresses-especially in the case of a
translation look-aside buffer (TLB) miss-may be prohibitive in a hard real-time
environment. In the following discussion, we examine several approaches for
translating addresses in real-time systems.

Figure 19.2 illustrates three different strategies for managing address
translation available to designers of real-time operating systems. In this
scenario, the CPU generates logical address L, which must be mapped to
physical address P. The first approach is to bypass logical addresses and
have the CPU generate physical addresses directly. This teclmique-kn.own
as real-addressing mode-does not employ virtual memory techniques and
is effectively stating that P equals L. One problem with real-addressil1.g mode
is the absence of memory protection between processes. Real-addressing mode
may also require that programmers specify the physical location where their
programs are loaded into memory. However, the benefit of this approach
is that the system is quite fast, as no time is spent on address translation.
Real-addressing mode is quite common in embedded systems with hard
real-time constraints. In fact, some real-time operating systems rum1.ing on
microprocessors containing an MMU actually disable the MMU to gain the
performance benefit of referencing physical addresses directly.

A second strategy for translating addresses is to use an approach similar
to the dynamic relocation register shown in Figure 8.4. In this scenario, a
relocation register R is set to the memory location where a program is loaded.
The physical address P is generated by adding the contents of the relocation
register R to L. Some real-time systems configure the MMU to perform this way.
The obvious benefit of this strategy is that the MMU can easily translate logical
addresses to physical addresses using P = L + R. However, this system still
suffers from a lack of memory protection between processes.

764 Chapter 19

19.4

The last approach is for the real-time system to provide full virtual memory
functionality as described in Chapter 9. In this instance, address translation
takes place via page tables and a translation look-aside buffer, or TLB. In
addition to allowing a program to be loaded at any memory location, this
strategy also provides memory protection between processes. For systems
without attached disk drives, demand paging and swapping may not be
possible. However, systems may provide such features using NVRAM flash
memory. The LynxOS and On Core Systems are examples of real-time operating
systems providing full support for virtual memory.

Keeping in mind the many possible variations, we now identify the features
necessary for implementing a real-time operating system. This list is by no
means absolute; some systems provide more features than we list below, while
other systems provide fewer.

Preemptive, priority-based scheduling

Preemptive kernel

Minimized latency

One notable feature we omit from this list is networking support. How
ever, deciding whether to support networking protocols such as TCP /IP is
simple: if the real-time system must be connected to a network, the operating
system must provide networking capabilities. For example, a system that
gathers real-time data and transmits it to a server must obviously include
networking features. Alternatively, a self-contained embedded system requir
ing no interaction with other computer systems has no obvious networking
requirencent.

In the remainder of this section, we examine the basic requirements listed
above and identify how they can be implemented in a real-time operating
system.

19.4.1 Priority-Based Scheduling

The most important feature of a real-time operating system is to respond
immediately to a real-time process as soon as that process requires the CPU.
As a result, the scheduler for a real-time operating system must support a
priority-based algorithm with preemption. Recall that priority-based schedul
ing algorithms assign each process a priority based on its importance; more
important tasks are assigned higher priorities than those deemed less impor
tant. If the scheduler also supports preemption, a process currently running
on the CPU will be preempted if a higher-priority process becomes available to
run.

Preemptive, priority-based scheduling algorithms are discussed in detail
in Chapter 5, where we also present examples of the soft real-time scheduling
features of the Solaris, Windows XP, and Linux operating systems. Each of
these systems assigns real-time processes the highest scheduling priority. For

19.4 765

example, Windows XP has 32 different priority levels; the highest levels
priority values 16 to 31-are reserved for real-time processes. Solaris and
Linux have similar prioritization schemes.

Note, however, that providing a preemptive, priority-based scheduler only
guarantees soft real-time functionality. Hard real-time systems must further
guarantee that real-time tasks will be serviced in accord with their deadline
requirem~ents, and making such guarantees may require additional scheduling
features. In Section 19.5, we cover scheduling algorithms appropriate for hard
real-time systems.

19.4.2 Preemptive Kernels

Nonpreemptive kernels disallow preemption of a process running in kernel
mode; a kernel-mode process will run until it exits kernel mode, blocks, or
voluntarily yields control of the CPU. In contrast, a preemptive kernel allows
the preemption of a task running in kernel mode. Designing preemptive
kernels can be quite difficult, and traditional user-oriented applications such
as spreadsheets, word processors, and Web browsers typically do not require
such quick response times. As a result, some commercial desktop operating
systems-such as Windows XP-are nonpreemptive.

However, to meet the timing requirements of real-time systems-in partic
ular, hard real-time systems-preemptive kernels are mandatory. Otherwise,
a real-time task might have to wait an arbitrarily long period of time while
another task was active in the kernel.

There are various strategies for making a kernel preemptible. One approach
is to insert preemption points in long-duration system calls. A preemption
point checks to see whether a high-priority process needs to be nm. If so, a
context switch takes place. Then, when the high-priority process terminates,
the interrupted process continues with the system call. Preemption points
can be placed only at safe locations in the kernel-that is, only where kernel
data structures are not being modified. A second strategy for making a kernel
preemptible is through the use of synchronization mechanisms, discussed in
Chapter 6. With this method, the kernel can always be preemptible, because any
kernel data being updated are protected from modification by the high-priority
process.

19.4.3 Minimizing Latency

Consider the event-driven nature of a real-time system. The system is typically
waiting for an event in real time to occur. Events may arise either in software
-as when a timer expires-or in hardware-as when a remote-controlled
vehicle detects that it is approaching an obstruction. When an event occurs, the
system must respond to and service it as quickly as possible. We refer to event
latency as the amount of time that elapses from when an event occurs to when
it is serviced (Figure 19.3).

Usually, different events have different latency requirements. For example,
the latency requirement for an antilock brake system might be three to five
milliseconds, meaning that from the time a wheel first detects that it is sliding,
the system controlling the antilock brakes has three to five milliseconds to
respond to and control the situation. Any response that takes longer might
result in the automobile's veering out of control. In contrast, an embedded

766 Chapter 19

event E first occurs

event latency

real-time system responds to E

Time

Figure 19.3 Event latency.

system controlling radar in an airliner might tolerate a latency period of several
seconds.

Two types of latencies affect the performance of real-time systems:

Interrupt latency

Dispatch latency

Interrupt latency refers to the period of time from the arrival of an interrupt
at the CPU to the start of the routine that services the interrupt. When an
interrupt occursf the operating system must first complete the instruction it
is executing and determine the type of interrupt that occurred. It must then
save the state of the current process before servicing the interrupt using the
specific interrupt service routine (ISR). The total time required to perform these
tasks is the interrupt latency (Figure 19.4). Obviouslyf it is crucial for real-time

task T running

interrupt

1
determine Or interrupt
type

context O'witoi
interrupt
latency

time

I ISH I

Figure 19.4 Interrupt latency.

19.4 767

operating systems to minimize interrupt latency to ensure that real-time tasks
receive immediate attention.

One important factor contributing to interrupt latency is the amomrt
of time interrupts may be disabled while kernel data structures are being
updated. Real-time operating systems require that interrupts be disabled for
very short periods of time. Howeve1~ for hard real-time systems, interrupt
latency must not only be minimized, it must in fact be bounded to guarantee
the deterministic behavior required of hard real-time kernels.

The amount of time required for the schedulil<g dispatcher to stop one
process and start another is known as dispatch latency. Providing real-time
tasks with immediate access to the CPU mandates that real-time operating
systems minimize this latency. The most effective technique for keeping
dispatch latency low is to provide preemptive kernels.

In Figure 19.5, we diagram the makeup of dispatch latency. The conflict
phase of dispatch latency has two components:

Preemption of any process running in the kernel

Release by low-priority processes of resources needed by a high-priority
process

As an example, in Solaris, the dispatch latency with preemption disabled is
over a hundred milliseconds. With preemption enabled, it is reduced to less
than a millisecond.

One issue that can affect dispatch latency arises when a higher-priority
process needs to read or modify kernel data that are currently beil<g accessed
by a lower-priority process-or a chain of lower-priority processes. As kernel

event response to event

~--------response interval--------+~

process made
interrupt available

processing

!+---- dispatch latency ----1~

_....,.
time

Figure 19.5 Dispatch latency.

real-time
process

execution

768 Chapter 19

19.5

data are typically protected with a lock, the higher-priority process will have to
wait £or a lower-priority one to finish with the resource. The situation becomes
more complicated i£ the lower-priority process is preempted in favor of yet
another process with a higher priority. As an example, assume we have three
processes, L, M, and H, whose priorities follow the order L < M < H. Also
assume that process H requires resource R, which is currently being accessed
by process L. Ordinarily, process H would wait for L to finish using resource R.
Howevet~ now suppose that process M becomes runnable, thereby preempting
process L. Indirectly, a process with a lower priority -process M-has affected
how long process H must wait for L to relinquish resource R.

This problem, known as priority inversion, can be solved by use of the
priority-inheritance protocol. According to this protocol, all processes that
are accessing resources needed by a higher-priority process inherit the higher
priority until they are finished with the resources in question. When they
are finished, their priorities revert to their original values. In the example
above, a priority-inheritance protocol allows process L to temporarily inherit
the priority of process H, thereby preventing process M from preempting its
execution. When process L has finished using resource R, it relinquishes its
inherited priority from H and assumes its original priority. As resource R is
now available, process H -not M -will run next.

Our coverage of scheduling so far has focused primarily on soft real-time
systems. As mentioned, though, scheduling for such systems provides no
guarantee on when a critical process will be scheduled; it guarantees only that
the process will be given preference over noncritical processes. Hard real-time
systems have stricter requirements. A task must be serviced by its deadline;
service after the deadline has expired is the same as no service at all.

We now consider scheduling for hard real-time systems. Before we proceed
with the details of the individual schedulers, however, we must define certain
characteristics of the processes that are to be scheduled. First, the processes
are considered periodic. That is, they require the CPU at constant intervals
(periods). Each periodic process has a fixed processing timet once it acquires
the CPU, a deadline d by which time it must be serviced by the CPU, and a
period p. The relationship of the processing time, the deadline, and the period
can be expressed as 0 :::; t :::; d :::; p. The rate of a periodic task is 1 I p. Figure 19.6

p

d

period1

d

period2

d

~I
lc=J

Figure 19.6 Periodic task.

Time
period3

19.5 769

illustrates the execution of a periodic process over time. Schedulers can take
advantage of this relationship and assign priorities according to the deadline
or rate requirements of a periodic process.

What is unusual about this form of scheduling is that a process may have to
announce its deadline requirements to the scheduler. Then, using a technique
known as an admission-control algorithm, the scheduler either admits the
process, guaranteeing that the process will complete on time, or rejects the
request as impossible if it cannot guarantee that the task will be serviced by its
deadline.

In the following sections, we explore scheduling algorithms that address
the deadline requirements of hard real-time systems.

19.5.1 Rate-Monotonic Scheduling

The rate-monotonic scheduling algorithm schedules periodic tasks using a
static priority policy with preemption. If a lower-priority process is running
and a higher-priority process becomes available to run, it will preempt the
lower-priority process. Upon entering the system, each periodic task is assigned
a priority inversely based on its period. The shorter the period, the higher the
priority; the longer the period, the lower the priority. The rationale behind this
policy is to assign a higher priority to tasks that require the CPU more often.
Furthermore, rate-monotonic scheduling assumes that the processing time of
a periodic process is the same for each CPU burst. That is, every time a process
acquires the CPU, the duration of its CPU burst is the same.

Let's consider an example. We have two processes P1 and P2. The periods
for P1 and P2 are 50 and 100, respectively-that is, Pl =50 and P2 = 100. The
processil1.g times are t1 = 20 for P1 and t2 = 35 for P2 . The deadline for each
process requires that it complete its CPU burst by the start of its next period.

We must first ask ourselves whether it is possible to schedule these tasks
so that each meets its deadlines. If we measure the CPU utilization of a process
Pi as the ratio of its burst to its period -ti I Pi -the CPU utilization of P1 is
20j50 = 0.40 and that of P2 is 35/100 = 0.35, for a total CPU utilization of 75
percent. Therefore, it seems we can schedule these tasks in such a way that
both meet their deadlines and still leave the CPU with available cycles.

First, suppose we assign P2 a higher priority than P1. The execution of P1
and P2 is shown in Figure 19.7. As we can see, P2 starts execution first and
completes at time 35. At this point, P1 starts; it completes its CPU burst at time
55. However, the first deadline for P1 was at time 50, so the scheduler has
caused P1 to miss its deadline.

Now suppose we use rate-monotonic scheduling, in which we assign P1

a higher priority than P2, since the period of P1 is shorter than that of P2.

deadlines

0 1 0 20 30 40 50 60 70 80 90 1 00 11 0 120

Figure 19.7 Scheduling of tasks when P2 has a higher priority than P1 .

770 Chapter 19

deadlines

0 1 0 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Figure '19.8 Rate-monotonic scheduling.

The execution of these processes is shown in Figure 19.8. P1 starts first and
completes its CPU burst at time 20, thereby meeting its first deadline. P2 starts
running at this point and runs until time 50. At this time, it is preempted by
P1, although it still has 5 milliseconds remaining in its CPU burst. P1 completes
its CPU burst at time 70, at which point the scheduler resumes P2 . P2 completes
its CPU burst at time 75, also meeting its first deadline. The system is idle until
time 100, when P1 is scheduled again.

Rate-monotonic scheduling is considered optimal in that if a set of
processes cannot be scheduled by this algorithm, it cannot be scheduled by
any other algorithm that assigns static priorities. Let's next examine a set
of processes that cannot be scheduled using the rate-monotonic algorithm.
Assume that process P1 has a period of p1 = 50 and a CPU burst of t1 = 25.
For P2, the corresponding values are P2 = 80 and t2 = 35. Rate-monotonic
scheduling would assign process P1 a higher priority, as it has the shorter
period. The total CPU utilization of the two processes is (25 /50) +(35 j80) = 0.94,
and it therefore seems logical that the two processes could be scheduled and still
leave the CPU with 6 percent available time. Figure 19.9 shows the scheduling
of processes P1 and P2 . Initially, P1 runs until it completes its CPU burst at
time 25. Process P2 then begins running and n.ms until time 50, when it is
preempted by P1. At this point, P2 still has 10 milliseconds remaining in its
CPU burst. Process P1 n.ms until time 75; consequently, P2 misses the deadline
for completion of its CPU burst at time 80.

Despite being optimal, then, rate-monotonic scheduling has a limitation:
CPU utilization is bounded, and it is not always possible to fully maximize CPU
resources. The worst-case CPU utilization for scheduling N processes is

2(21111 - 1).

With one process in the system, CPU utilization is 100 percent, but it falls to
approximately 69 percent as the number of processes approaches infinity. With
two processes, CPU utilization is bounded at about 83 percent. Combined CPU
utilization for the two processes scheduled in Figures 19.7 and 19.8 is 75 percent;
therefore, the rate-monotonic scheduling algorithm is guaranteed to schedule

deadlines

0 1 0 20 30 40 50 60 70 80 90 1 00 11 0 120 130 140 150 1 60

Figure 19.9 Missing deadlines with rate-monotonic scheduling.

19.5 771

them so that they can meet their deadlines. For the two processes scheduled in
Figure 19.9, combined CPU utilization is approximately 94 percent; therefore,
rate-monotonic scheduling cannot guarantee that they can be scheduled so
that they meet their deadlines.

19.5.2 Earliest-Deadline-First Scheduling

Earliest-deadline-first (EDF) scheduling dynamically assigns priorities accord
ing to deadline. The earlier the deadline, the higher the priority; the later the
deadline, the lower the priority. Under the EDF policy, when a process becomes
runnable, it must announce its deadline requirements to the system. Priorities
may have to be adjusted to reflect the deadline of the newly rmmable process.
Note how this differs from rate-monotonic scheduling, where priorities are
fixed.

To illustrate EDF scheduling, we again schedule the processes shown in
Figure 19.9, which failed to meet deadline requirements under rate-monotonic
scheduling. Recall that P1 has values of p1 = 50 and t1 = 25 and that P2 has
values of p2 = 80 and t2 = 35. The EDF scheduling of these processes is shown
in Figure 19.10. Process P1 has the earliest deadline, so its initial priority is
higher than that of process P2 • Process P2 begins rmming at the end of the
CPU burst for P1. However, whereas rate-monotonic scheduling allows P1 to
preempt P2 at the beginning of its next period at time 50, EDF scheduling allows
process P2 to continue running. P2 now has a higher priority than P1 because
its next deadline (at time 80) is earlier than that of P1 (at time 100). Thus, both
P1 and P2 meet their first deadlines. Process P1 again begins running at time 60
and completes its second CPU burst at time 85, also meeting its second deadline
at time 100. P2 begins rum1ing at this point only to be preempted by P1 at the
start of its next period at time 100. P2 is preempted because P1 has an earlier
deadline (time 150) than P2 (time 160). At time 125, P1 completes its CPU burst
and P2 resumes execution, finishing at time 145 and meeting its deadline as
well. The system is idle until time 150, when P1 is scheduled to run once again.

Unlike the rate-monotonic algorithm, EDF scheduling does not require that
processes be periodic, nor must a process require a constant amount of CPU
time per burst. The only requirement is that a process a1mom1ce its deadline
to the scheduler when it becomes runnable. The appeal of EDF scheduling is
that it is theoretically optimal-theoretically, it can schedule processes so that
each process can meet its deadline requirements and CPU utilization will be
100 percent. In practice, however, it is impossible to achieve this level of CPU
utilization due to the cost of context switching between processes and interrupt
handling.

deadlines

0 1 0 20 30 40 50 60 70 80 90 1 00 11 0 120 130 140 150 160

Figure 19.10 Earliest-deadline-first scheduling.

772 Chapter 19

19.5.3 Proportional Share Scheduling

Proportional share schedulers operate by allocating T shares among all
applications. An application can receive N shares of timef thus ensuring that
the application will have N 1 T of the total processor time. As an examplef
assume that a total ofT = 100 shares is to be divided among three processesf
Af B f and C. A is assigned 50 share sf B is assigned 15 sharesf and C is assigned
20 shares. This scheme ensures that A will have 50 percent o£ total processor
time, B will have 15 percent, and C will have 20 percent.

Proportional share schedulers must work in conjunction with an admission
control policy to guarantee that an application receives its allocated shares
of time. An admission control policy will only admit a client requesting a
particular number of shares if sufficient shares are available. In our current
example, we have allocated 50+ 15 + 20 = 85 shares of the total of 100 shares.
If a new process D requested 30 shares, the admission controller would deny
D entry into the system.

19.5.4 Pthread Scheduling

The POSIX standard also provides extensions for real-time computing
POSIX.1b. In this section, we cover some of the POSIX Pthread API related
to scheduling real-time threads. Pthreads defines two scheduling classes for
real-time threads:

SCHED __FIFO

SCHED_RR

SCHED__FIFO schedules threads according to a first-come, first-served policy
using a FIFO queue as outlined in Section 5.3.1. However, there is no time slicing
among threads of equal priority. Therefore, the highest-priority real-time thread
at the front of the FIFO queue will be granted the CPU until it terminates
or blocks. SCHED_RR (for round-robin) is sincilar to SCHED_FIFO except that
it provides time slicing among threads of equal priority. Pthreads provides
an additional scheduling class-SCHEDDTHER-but its implementation is
undefined and system specific; it may behave differently on different systems.

The Pthread API specifies the following two functions for getting and
setting the scheduling policy:

pthread_attr_getsched_policy(pthread_attr_t *attr, int
*policy)

pthread_attr_setsched_policy(pthread_attr_t *attr, int
policy)

The first parameter to both functions is a pointer to the set of attributes for
the thread. The second parameter is either (1) a pointer to an integer that is
set to the current scheduling policy (for pthread_attr_getsched_policy())
or (2) an integer value (SCHED_FIFO, SCHED_RR, or SCHED_OTHER) for the
pthread_attr _setsched_policy () function. Both functions return non-zero
values if an error occurs.

19.5

#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5

int main(int argc, char *argv[])
{

int i, policy;
pthread_t tid[NUM_THREADS];
pthread_attr_t attr;

I* get the default attributes *I
pthread_attr_init(&attr);

I* get the current scheduling policy *I
if (pthread_attr_getschedpolicy(&attr, &policy) != 0)

fprintf(stderr, "Unable to get policy.\n");
else {

}

if (policy == SCHED_OTHER)
printf("SCHED_OTHER\n");

else if (policy == SCHED_RR)
printf("SCHED_RR\n");

else if (policy == SCHED_FIFO)
printf("SCHED_FIFO\n");

I* set the scheduling policy - FIFO, RR, or OTHER *I

773

if (pthread_attr_setschedpolicy(&attr, SCHED_OTHER) != 0)
fprintf (stderr, "Unable to set policy. \n");

}

I* create the threads *I
for (i = 0; i < NUM_THREADS; i++)

pthread_create(&tid[i] ,&attr,runner,NULL);

I* now join on each thread *I
for (i = 0; i < NUM_THREADS; i++)

pthread_join(tid[i], NULL);

I* Each thread will begin control in this function *I
void *runner(void *param)
{

I* do some work ... *I

pthread_exi t (0);
}

Figure 19.11 Pthread scheduling API.

774 Chapter 19

19.6

In Figure 19.11, we illustrate a Pthread program using this API. This
program first determines the current scheduling policy and then sets the
scheduling algorithm to SCHEDDTHER.

In this section, we describe VxWorks, a popular real-time operating system
providing hard real-time support. VxWorks, commercially developed by Wind
River Systems, is widely used in automobiles, consumer and industrial devices,
and networking equipment such as switches and routers. VxWorks is also used
to control the two rovers-Spirit and Opportunity-that began exploring the
planet Mars in 2004.

The organizationofVxWorks is shown in Figure 19.12. VxWorks is centered
on the Wind microkernel. Recall from our discussion in Section 2.7.3 that
microkernels are designed so that the operating-system kernel provides a bare
minimum of features; additional utilities, such as networking, file systems,
and graphics, are provided in libraries outside of the kernel. This approach
offers many benefits, including minimizing the size of the kernel-a desirable
feature for an embedded system requiring a small footprint.

The Wind microkernel supports the following basic features:

Processes. The Wind microkernel provides support for individual pro
cesses and threads (using the Pthread API). However, similar to Linux,
VxWorks does not distinguish between processes and threads, instead
referring to both as tasks.

embedded real-time application

Figure 19.12 The organization of VxWorks.

19.6 775

TheLinux .. operating·.systent isbe~ng···us~cl incre~singlyinreai-time enviroft~
ments.yve .. hav~ alreadycovered its softr~fil-ti,nteschedv,ling.fe~tur~s (Secti()n
5.6.3),whereby·real-time tasl<sareassignt;d.thehj.ghe~tpriorityi~the s}Cst~m ..
AdditionaUeatures in the 2,6. release ofthe kernel makeLinux even,more
suitilb le. fot·.embedded ··systems. ··Thes~··. features i.nclud~ ia.·fullr pree¢ptive
kernel. an~la. ·more .efficient. sched'-lli11g .. ~l~orith!fl(.•'Vhic}t P.ll1siJ.<·. (){1) tinte
regardless ofthe number .• of tas~s .. ac.tive in the s~.stero .. ·The2.6release also

::k;:r:ei~:::o~J~;t~~;;~~:~enthardlare arc~itecttlresbydi\TlclJng
Another. ·strategy Jew.·. integraH1lg Linux. iftto •reaNill1e·.envirof\me.~ts

involves combini[\g th~ •. Linux operat~S,.systt;IT1."Vith a?mallreal-.ti!fle~er
net tht;reby· .. •providing .•• a systell1•···th~t ~cts as botl:-(.·.<l···•gene~al"7p~rp()s.e ..• (tnd
.~· real-tipte ~ystem. This .is·theappro~c:h.·tctken1:Jy.t}te ~~Lil_1Cux PPt;rat~g
systerrL In .RTLinux, the standard· Lirn.tx kernel run~ as a tas]< in ~ sll1ctll ·
re~l-timeoperating .. · syste1n:. The. real~Htt1eikerl'lelJ)an~les··alliftterrupts.-,-
directing each •• interrupt to··ct·handler in the st~ndarclkerrtel.or••to·anintef~
rupt.randler in. the real7tirl'le ketneL fi1Jrt,h_ermore/ ~TLin~x •. prevents the
sh'tndar\i.Linuxkernel .. from ever disablb;J:g intefrl_lpts, t}tus.ens11rirtg th~t
itc<tl1rlotac1c11atencyto.thereal-timesystem.RJ:Lirtux.ctls0 pr()yi<ies difft;rent
schedulingpolicies(includingrate-'mo1lot<)I1:i('schec1ul~J1g(SecHonJ9.5.1)c;tnd
earliest~deadline-first scheduling (Section19;5.2}

Scheduling. The Wind microkernel provides two separate scheduling
models: preemptive scheduling and nonpreemptive round-robin schedul
ing with 256 different priority levels. The scheduler also supports the POSIX
API for real-time threads(covered in Section 19.5.4.

Interrupts. The Wind microkernel also manages interrupts. To support
hard real-time requirements(interrupt and dispatch latency times are
bounded.

Interprocess communication. The Wind micro kernel provides both shared
memory and message passing as mechanisms for communication between
separate tasks. It also allows tasks to communicate using a technique
known as pipes-a mechanism that behaves in the same way as a FIFO
queue but allows tasks to communicate by writing to a special fik the pipe.
To protect data shared by separate tasks(VxWorks provides semaphores
and mutex locks with a priority inheritance protocol to prevent priority
mversion.

Outside the microkernet VxWorks includes several component libraries
that provide support for POSIX(Java(TCP /IP networking(and the like. All
components are optionat allowing the designer of an embedded system
to customize the system according to its specific needs. For example(if
networking is not required(the TCP /IP library can be excluded from the image
of the operating system. This strategy allows the operating-system designer to

776 Chapter 19

19.7

include only required features, thereby minimizing the size-or footprint-of
the operating system.

VxWorks takes an interesting approach to memory management, support
ing two levels of virtual memory. The first level, which is quite simple, allows
for control of the cache on a per-page basis. This policy enables an application
to specify certain pages as non-cacheable. When data are being shared by
separate tasks running on a multiprocessor architecture, it is possible that
shared data can reside in separate caches local to individual processors. Unless
an architecture supports a cache-coherency policy to ensure that the same
data residing in two caches will not be different, such shared data should not
be cached and should instead reside only in main memory so that all tasks
maintain a consistent view of the data.

The second level of virtual memory requires the optional virtual memory
component VxVMI (Figure 19.12), along with processor support for a memory
management unit (MMU). When this optional component is loaded on a system
with an MMU, VxWorks allows a task to mark certain data areas as private. A
data area marked as private may only be accessed by the task it belongs to.
Furthermore, VxWorks allows pages containing kernel code along with the
interrupt vector to be declared as read-only. This is useful, as VxWorks does
not distinguish between user and kernel modes; all applications run in kernel
mode, giving an application access to the entire address space of the system.

A real-time system is a computer system requiring that results arrive within
a deadline period; results arriving after the deadline has passed are useless.
Many real-time systems are embedded in consumer and industrial devices.
There are two types of real-time systems: soft and hard real-time systems.
Soft real-time systems are the least restrictive, assigning real-time tasks higher
scheduling priority than other tasks. Hard real-time systems must guarantee
that real-time tasks are serviced within their deadline periods. In addition to
strict timing requirements, real-time systems can further be characterized as
having only a single purpose and running on small, inexpensive devices.

To meet timing requirements, real-time operating systems must employ
various techniques. The scheduler for a real-time operating system must sup
port a priority-based algorithm with preemption. Furthermore, the operating
system must allow tasks running in the kernel to be preempted in favor
of higher-priority real-time tasks. Real-time operating systems also address
specific timing issues by minimizing both interrupt and dispatch latency.

Real-time scheduling algorithms include rate-monotonic and earliest
deadline-first scheduling. Rate-monotonic scheduling assignB tasks that
require the CPU more often a higher priority than tasks that require the
CPU less often. Earliest-deadline-first scheduling assigns priority according
to upcoming deadlines-the earlier the deadline, the higher the priority.
Proportional share scheduling uses the technique of dividing up processor
time into shares and assigning each process a number of shares, thus
guaranteeing each process its proportional share of CPU time. The Pthread API
provides various features for scheduling real-time threads as well.

777

19.1 Explain why interrupt and dispatch latency times must be bounded in
a hard real-time system.

19.2 Identify whether hard or soft real-time scheduling is more appropriate
in the following environments:

a. Thermostat in a household

b. Control system for a nuclear power plant

c. Fuel economy system in an automobile

d. Landing system in a jet airliner

19.3 Consider two processes, P1 and P2, where p1 = 50, t1 = 25, p2 = 75,
and t2 = 30.

a. Can these two processes be scheduled using rate-monotonic
scheduling? Illustrate your answer using a Gantt chart such as
the ones in Figures 19.7-19.10.

b. Illustrate the scheduling of these two processes using earliest
deadline-first (EDF) scheduling.

19.4 Discuss ways in which the priority inversion problem could be
addressed in a real-time system. Also discuss whether the solutions
could be implemented within the context of a proportional share
scheduler.

19.5 Under what circumstances is rate-monotonic scheduling inferior to
earliest-deadline-first scheduling in meeting the deadlines associated
with processes?

The scheduling algorithms for hard real-time systems, such as rate monotonic
scheduling and earliest-deadline-first scheduling, are presented in Liu and
Layland [1973]. Other scheduling algorithms and extensions to previous
algorithms are presented in Jensen et al. [1985], Lehoczky et al. [1989], Audsley
et al. [1991], Mok [1983], and Stoica et al. [1996]. Mok [1983] describes a dynamic
priority-assignment algorithm called least-laxity-first scheduling. Stoica et al.
[1996] analyze the proportional share algorithm. Useful information regarding
various popular operating systems used in embedded systems can be obtained
from http:/ /rtlinux.org, http:/ /windriver.com, and http:/ /qnx.com. Future
directions and important research issues in the field of embedded systems are
discussed in a research article by Stankovic [1996].

In earlier chapters, we generally concerned ourselves with how operating
systems handle conventional data, such as text files, programs, binaries, word
processing documents, and spreadsheets. However, operating systems may
have to handle other kinds of data as well. A relatively recent trend in
technology is the incorporation of multimedia data into computer systems.
Multimedia data consist of continuous-media (audio and video) data as well
as conventional files. Continuous-media data differ from conventional data
in that continuous-media data-such as frames of video-must be delivered
(streamed) according to certain time restrictions (for example, 30 frames per
second). In this chapter, we explore the demands of continuous-media data.
We also discuss in more detail how such data differ from conventional data
and how these differences affect the design of operating systems that support
the requirements of multimedia systems.

CHAPTER OBJECTIVES

• To identify the characteristics of multimedia data.

• To examine several. algorithms used to compress multimedia data.

• To explore the operating-:system requirements of multimedia data, includ
ing CPU and disk scheduling and network management.

20.1 What Is Multimedia?

The term multimedia describes a wide range of applications that are in
popular use today. These include audio and video files such as MP3 audio
files, DVD movies, and short video clips of movie previews or news stories
downloaded over the Internet. Multimedia applications also include live
web casts (broadcast over the World Wide Web) of speeches or sporting
events and even live webcams that allow a viewer in Manhattan to observe
customers at a cafe in Paris. Multimedia applications need not be either audio
or video; rather, a multimedia application often includes a combination of
both. For example, a movie may consist of separate audio and video tracks.

779

780 Chapter 20

Nor must multimedia applications be delivered only to desktop personal
computers. Increasingly, they are being directed toward smaller devices,
including personal digital assistants (PDAs) and cellular telephones. For
example, a stock trader may have stock quotes delivered in real time to her
PDA.

In this section, we explore several characteristics of multimedia systems
and examine how multimedia files can be delivered from a server to a client
system. We also look at common standards for representing multimedia video
and audio files.

20.1.1 Media Delivery

Multimedia data are stored in the file system just like any other data. The major
difference between a regular file and a multimedia file is that the multimedia file
must be accessed at a specific rate, whereas accessing the regular file requires
no special timing. Let's use video as an example of what we mean by "rate."
Video is represented by a series of images, formally known as that
are displayed in rapid succession. The faster the frames are displayed, the
smoother the video appears. In general, a rate of 24 to 30 frames per second is
necessary for video to appear smooth to human eyes. (The eye retains the image
of each frame for a short time after it has been presented, a characteristic known
as A rate of 24 to 30 frames per second is fast enough
to appear continuous.) A rate lower than 24 frames per second will result in
a choppy-looking presentation. The video file must be accessed from the file
system at a rate consistent with the rate at which the video is being
We refer to data with associated rate requirements as

Multimedia data may be delivered to a client either from the local file
system or from a remote server. When the data are delivered from the local file
system, we refer to the delivery as Examples include watching
a DVD on a laptop computer or listening to an MP3 audio file on a handheld
MP3 player. In these cases, the data comprise a regular file that is stored on
the local file system and played back (that is, viewed or listened to) from that
system.

Multimedia files may also be stored on a remote server and delivered to a
client across a network using a technique known as A client may be
a personal computer or a smaller device such as a handheld computer, PDA, or
cellular telephone. Data from live continuous media -such as live webcams
-are also streamed from a server to clients.

There are two types of streaming techniques: progressive download and
real-time streaming. With a download, a media file containing
audio or video is downloaded and stored on the client's local file system. As
the file is being downloaded, the client is able to play back the media file
without having to wait for the file to be downloaded in its entirety. Because
the media file is ultimately stored on the client system, progressive download
is most useful for relatively small media files, such as short video clips.

differs from progressive download in that the media
file is streamed to the client but is only played -and not stored -by the client.
Because the media file is not stored on the client system, real-time streaming
is preferable to progressive download for media files that might be too large

20.1 781

for storage on the system, such as long videos and Internet radio and TV
broadcasts.

Both progressive download and real-time streaming may allow a client to
move to different points in the stream, just as you can use the fast-forward and
rewind operations on a DVD controller to move to different points in the DVD
disc. For example, we could move to the end of a 5-minute streaming video or
replay a certain section of a movie clip. The ability to move around within the
media stream is known as

Two types of real-time streaming are available: live streaming and on
demand streaming. is used to deliver an event, such as a concert
or a lecture, live as it is actually occurring. A radio program broadcast over the
Internet is an example of a live real-time stream. In fact, one of the authors of
this text regularly listens to a favorite radio station from Vermont while at his
home in Utah as it is streamed live over the Internet. Live real-time streaming is
also used for applications such as live webcams and video conferencing. Due to
its live delivery, this type of real-time streaming does not allow clients random
access to different poil1.ts in the media stream. In addition, live delivery means
that a client who wishes to view (or listen to) a particular live stream already
in progress will "join" the session "late;' thereby missing earlier portions of
the stream. The same thing happens with a live TV or radio broadcast. If you
start watching the 7:00P.M. news at 7:10P.M., you will have missed the first 10
minutes of the broadcast.

On-demand streaming is used to deliver media streams such as full-length
movies and archived lectures. The difference between live and on-demand
streaming is that on-demand streaming does not take place as the event is
occurring. Thus, for example, whereas watching a live stream is like watching
a news broadcast on TV, watching an on-demand stream is like viewing a movie
on a DVD player at some convenient time-there is no notion of arriving late.
Depending on the type of on-demand streaming, a client may or may not have
random access to the stream.

Examples of well-known streaming media products include RealPlayer,
Apple QuickTime, and Windows Media Player. These products include both
servers that stream the media and client media players that are used for
playback.

20.1.2 Characteristics of Multimedia Systems

The demands of multimedia systems are unlike the demands of traditional
applications. In general, multimedia systems may have the following charac
teristics:

Multimedia files can be quite large. For example, a 100-minute MPEG-1
video file requires approximately 1.125GB of storage space; 100 minutes
of high-defuution television (HDTV) requires approximately 15 GB of
storage. A server storing hundreds or thousands of digital video files
may thus require several terabytes of storage.

Continuous media may require very high data rates. Consider digital
video, in which a frame of color video is displayed at a resolution of
800 x 600. If we use 24 bits to represent the color of each pixel (which
allows us to have 224, or roughly 16 million, different colors), a single

782 Chapter 20

20.2

frame requires 800 x 600 x 24 = 11,520, 000 bits of data. If the frames are
displayed at a rate of 30 frames per second, a bandwidth in excess of 345
Mbps is required.

Multimedia applications are sensitive to timing delays during playback.
Once a continuous-media file is delivered to a client, delivery must
continue at a certain rate during playback of the media; otherwise, the
listener or viewer will be subjected to pauses during the presentation.

20.1.3 Operating-System Issues

For a computer system to deliver continuous-media data, it must guarantee
the specific rate and timing requirements-also known as of
or QoS, requirements-of continuous media.

Providing these QoS guarantees affects several components in a com
puter system and influences such operating-system issues as CPU scheduling,
disk scheduling, and network management. Specific examples include the
following:

Compression and decoding may require significant CPU processing.

Multimedia tasks must be scheduled with certain priorities to ensure
meeting the deadline requirements of continuous media.

Similarly, file systems must be efficient to meet the rate requirements of
continuous media.

Network protocols must support bandwidth requirements while mini
mizing delay and jitter (which we discuss further later in the chapter).

In later sections, we explore these and several other issues related to QoS.
First, however, we provide an overview of various techniques for compressing
multimedia data. As suggested above, compression makes significant demands
on the CPU.

Because of the size and rate requirements of multimedia systems, multimedia
files are often compressed from their original form to a much smaller form.
Once a file has been compressed, it takes up less space for storage and can be
delivered to a client more quickly. Compression is particularly important when
the content is beilcg streamed across a network cormection. In discussing file
compression, we often refer to the which is the ratio of the
original file size to the size of the compressed file. For example, an 800-KB file
that is compressed to 100 KB has a compression ratio of 8:1.

Once a file has been compressed (encoded), it must be decompressed
before it can be accessed. A feature of the algorithm used to compress

the file affects the later decompression. Compression algorithms are classified
as either or With lossy compression, some of the original data
are lost when the file is decoded, whereas lossless compression ensures that

20.2 783

the compressed file can always be restored to its original form. In generat
lossy techniques provide much higher cone pression ratios. Obviously, though,
only certain types of data can tolerate lossy compression-namely, images,
audio, and video. Lossy compression algorithms often work by eliminating
certain data, such as very high or low frequencies that a human ear cannot
detect. Some lossy compression algorithms used on video operate by storing
only the differences between successive frames. Lossless algorithms are used
for compressing text files, such as computer programs (for example,
files), because we want to restore these compressed files to their state.

A number of different lossy compression schemes for continuous-media
data are commercially available. In this section, we cover one used by the
Moving Picture Experts Group, better known as MPEG.

MPEG refers to a set of file formats and compression standards for digital
video. Because digital video often contains an audio portion as well, each of the
standards is divided into three layers. Layers 3 and 2 apply to the audio and
video portions of the media file. Layer 1, known as the layer, contains
timing information to allow the MPEG player to multiplex the audio and video
portions so that they are synchronized during playback. There are three major
MPEG standards: MPEG-1, MPEG-2, and MPEG-4.

MPEG-1 is used for digital video and its associated audio stream. The
resolution of MPEG-1 is 352 x 240 at 30 frames per second with a bitrate of up to
1.5 Mbps. This provides a quality slightly lower than that of conventional VCR
videos. MP3 audio files (a popular medium for storing music) use the audio
layer (layer 3) of MPEG-1. For video, MPEG-1 can achieve a compression ratio of
up to 200:1, although in practice compression ratios are much lower. Because
MPEG-1 does not require high data rates, it is often used to download short
video clips over the Internet.

MPEG-2 provides better quality than MPEG-1 and is used for compressing
DVD movies and digital television (including high-definition television, or
HDTV). MPEG-2 identifies a number of levels and profiles of video compression.
The refers to the resolution of the video; the characterizes the
video's quality. In general, the higher the level of resolution and the better
the quality of the video, the higher the required data rate. Typical bit rates
for MPEG-2 encoded files are 1.5 Mbps to 15 Mbps. Because MPEG-2 requires
higher rates, it is often Lmsuitable for delivery of video across a network and
is generally used for local playback.

MPEG-4 is the most recent of the standards and is used to transmit
audio, video, and graphics, including two-dimensional and three-dimensional
animation layers. Animation makes it possible for end users to interact with
the file during playback. For example, a potential home buyer can download
an MPEG-4 file and take a virtual tour through a home she is considering
purchasing, moving from room to room as she chooses. Another appealing
feature of MPEG-4 is that it provides a scalable level of quality, allowing delivery
over relatively slow network connections such as 56-I<bps modems or over
high-speed local area networks with rates of several megabits per second.
Furthermore, by providing a scalable level of quality, MPEG-4 audio and video
files can be delivered to wireless devices, including handheld computers, PDAs,
and cell phones.

All three MPEG standards discussed here perform lossy compression
to achieve high compression ratios. The fundamental idea behind MPEG

784 Chapter 20

20.3

compression is to store the differences between successive frames. We do not
cover further details of how MPEG performs compression but rather encourage
the interested reader to consult the bibliographical notes at the end of this
chapter.

As a result of the characteristics described in Section 20.1.2, multimedia
applications often require levels of service from the operating system that differ
from the requirements of traditional applications, such as word processors,
compilers, and spreadsheets. Tin1.ing and rate requirements are perhaps the
issues of foremost concern, as the playback of audio and video data demands
that the data be delivered within a certain deadline and at a continuous,
fixed rate. Traditional applications typically do not have such time and rate
constraints.

Tasks that request data at constant intervals-or known as
'""'--;~"'""'"'· For example, an MPEG-1 video might require a rate of 30

frames per second during playback. Maintaining this rate requires that a frame
be delivered approximately every l/301h, or 3.34 hundredths, of a second. To
put this in the context of deadlines, let's assume that frame F1 succeeds frame
Fi in the video playback and that frame Fi was displayed at time T0. The
deadline for displaying frame F i is 3.34 hundredths of a second after time T0. If
the operating system is unable to display the frame by this deadline, the frame
will be omitted from the stream.

As mentioned earlier, rate requirements and deadlines are known as quality
of service (QoS) requirements. There are three QoS levels:

The system makes a best-effort attempt to satisfy the
requirements; however, no guarantees are made.

This level treats different types of traffic in different ways, giving
certain traffic streams higher priority than other streams. However, just
as with best-effort service, no guarantees are made.

The quality-of-service requirements are guaranteed.

Traditional operating systems-the systems we have discussed in this
text so far-typically provide only best-effort service and rely on """',..'"'"'""

that is, they simply assume that the total amount of resources
available will tend to be larger than a worst-case workload would demand. If
demand exceeds resource capacity, manual intervention must take place, and
a process (or several processes) must be removed from the system. However
next-generation multimedia systems cannot make such assumptions. These
systems must provide continuous-media applications with the guarantees
made possible by hard QoS. Therefore, in the remainder of this discussion,
when we refer to QoS, we mean hard QoS. Next, we explore various techniques
that enable multimedia systems to provide such service-level guarantees.

There are a number of parameters defining QoS for multimedia applica
tions, including the following:

20.3 785

Throughput is the total amount of work done during a certain
interval. For multimedia applications, throughput is the required data rate.

. Delay refers to the elapsed time from when a request is first
submitted to when the desired result is produced. For example, the time
from when a client requests a media stream to when the stream is delivered
is the delay.

Jitter is related to delay; but whereas delay refers to the time a
client must wait to receive a stream, jitter refers to delays that occur
during playback of the stream. Certain multimedia applications, such
as on-demand real-time streaming, can tolerate this sort of delay. Jitter
is generally considered unacceptable for continuous-media applications,
howeve1~ because it may mean long pauses-or lost frames-during
playback. Clients can often compensate for jitter by buffering a certain
amount of data-say, 5 seconds' worth-before beginning playback.

Reliability refers to how errors are handled during transmis
sion and processing of continuous media. Errors may occur due to lost
packets in the network or processing delays by the CPU. In these-and
other-scenarios, errors cannot be corrected, since packets typically arrive
too late to be useful.

The quality of service may be between the client and the server.
For example, continuous-media data may be compressed at different levels of
quality: the higher the quality, the higher the required data rate. A client may
negotiate a specific data rate with a server, thus agreeing to a certain level of
quality during playback. Furthermore, many media players allow the client
to configure the player according to the speed of the client's connection to
the network. This allows a client to receive a streaming service at a data rate
specific to a particular connection. Thus, the client is negotiating quality of
service with the content provider.

To provide QoS guarantees, operating systems often use
which is simply the practice of admitting a request for service only if the server
has sufficient resources to satisfy the request. We see admission control quite
often in our everyday lives. For example, a movie theater only admits as
many customers as it has seats in the theater. (There are also many situations in
everyday life where admission control is not practiced but would be desirable!)
If no admission-control policy is used in a multimedia environment, the
demands on the system might become so great that the system becomes unable
to meet its QoS guarantees.

In Chapter 6, we discussed using semaphores as a method of implementing
a simple admission-control policy. In this scenario, there exist a finite number
of nonshareable resources. When a resource is requested, we grant the request
only if sufficient resources are available; otherwise, the requesting process must
wait until a resource becomes available. We can use semaphores to implement
an admission-control policy by first initializing a semaphore to the number of
resources available. Every request for a resource is made through a wait ()
operation on the semaphore; a resource is released with an invocation of
signal() on the semaphore. Once all resources are in use, subsequent calls to
wait() block until there is a corresponding signal().

786 Chapter 20

20.4

Figure 20.1 Resources on a file server.

A common technique for implementing admission control is to use
For example, resources on a file server may include

the CPU, memory, file system, devices, and network (Figure 20.1). Note that
resources may be either exclusive or shared and that there may be either
single or multiple instances of each resource type. To use a resource, a client
must make a reservation request for the resource il1. advance. If the request
cannot be granted, the reservation is denied. An admission-control scheme
assigns a to each type of resource. Requests for resources
have associated QoS requirements-for example, required data rates. When a
request for a resource arrives, the resource manager determines if the resource
can meet the QoS demands of the request. If it cannot, the request may
be rejected, or a lower level of QoS may be negotiated between the client
and the server. If the request is accepted, the resource manager reserves the
resources for the requesting client, thus assuring the client that the desired QoS
requirements will be met. In Section 20.7.2, we examine the admission-control
algorithm used to ensure QoS guarantees in the CineBlitz multimedia storage
server.

19, which covers real-time systems, we distinguished between
and Soft real-time systems

simply give scheduling priority to critical processes. A soft real-time system
ensures that a critical process will be given preference over a noncritical process
but provides no guarantee as to when the critical process will be scheduled.
A typical requirement of continuous media, however, is that data must be
delivered to a client by a certain deadline; data that do not arrive by the deadline
are unusable. Multimedia systems thus require hard real-time scheduling to
ensure that a critical task will be serviced withii1. a guaranteed period of time.

20.5

20.5 787

Another scheduling issue concerns whether a scheduling algorithm uses
or distinction first discussed in Chapter

5. The difference between the two is that the priority of a process will remain
unchanged if the scheduler assigns it a static priority. Scheduling algorithms
that assign dynamic priorities allow priorities to change over time. Most
operating systems use dynamic priorities when scheduling non-real-time tasks
with the intention of giving higher priority to interactive processes. However,
when scheduling real-time tasks, most systems assign static priorities, as the
design of the scheduler is less complex.

Several of the real-time scheduling strategies discussed in Section 19.5 can
be used to meet the rate and deadline QoS requirements of continuous-media
applications.

We first discussed disk scheduling in Chapter 12. There, we focused primarily
on systems that handle conventional data; for these systems, the scheduling
goals are fairness and throughput. As a result, most traditional disk schedulers
employ some form of the SCAN (Section 12.4.3) or C-SCAN (Section 12.4.4)
algorithn"l.

Continuous-media files, however, have two constraints that conventional
data files generally do not have: timing deadlines and rate requirements.
These two constraints must be satisfied to preserve QoS guarantees, and disk
scheduling algorithms must be optimized for the constraints. Unfortunately,
these two constraints are often in conflict. Continuous-media files typically
require very high disk-bandwidth rates to satisfy their data-rate requirements.
Because disks have relatively low transfer rates and relatively high latency
rates, disk schedulers must reduce the latency times to ensure high bandwidth.
However, reducing latency times may result in a scheduling policy that does
not prioritize according to deadlines. In this section, we explore two disk
scheduling algorithms that meet the QoS requirements for continuous-media
systems.

20.5.1 Earliest-Deadline-First Scheduling

We first presented the earliest-deadline-first (EDF) algorithm in Section 19 .5.2 as
an example of a CPU-scheduling algorithm that assigns priorities according to
deadlines. EDF can also be used as a disk-scheduling algorithm; in this context,
EDF uses a queue to order requests according to the time each request must
be completed (its deadline). EDF is similar to shortest-seek-time-first (SSTF),
discussed in Section 12.4.2, except that instead of servicing the request closest
to the current cylinder, we service requests according to deadline-the request
with the closest deadline is serviced first.

A problem with this approach is that servicing requests strictly according
to deadline may result in higher seek tim.es, since the disk heads may move
randomly throughout the disk without any regard to their current position.
For example, suppose a disk head is currently at cylinder 75 and the queue
of cylinders (ordered according to deadlines) is 98, 183, 105. Under strict EDF
scheduling, the disk head will move from 75, to 98, to 183, and then back to

788 Chapter 20

105. Note that the head passes over cylinder 105 as it travels from 98 to 183. It
is possible that the disk scheduler could have serviced the request for cylinder
105 en route to cylinder 183 and still preserved the deadline requirement for
cylinder 183.

20.5.2 SCAN-EDF Scheduling

The fundamental problem with strict EDF scheduling is that it ignores the
position of the read-write heads of the disk; it is possible that the heads will
swil<g wildly to and fro across the disk, leading to unacceptable seek times
that negatively affect disk throughput. Recall that this is the same issue faced
with FCFS scheduling (Section 12.4.1). In the context of CPU scheduling, we can
address this issue by adopting SCAN schedulil<g, whereil< the disk arm moves
in one direction across the disk, servicing requests according to their proximity
to the current cylinder. Once the disk arm reaches the end of the disk, it begins
moving in the reverse direction. This strategy optimizes seek times.

SCAN-EDF is a hybrid algorithm that combines EDF with SCAN scheduling.
SCAN-EDF starts with EDF ordering but services requests with the same deadline
usil<g SCAN order. What if several requests have different deadlines that are
relatively close together? In this case, SCAN-EDF may batch requests, usil<g
SCAN ordering to service requests in the same batch. There are many techniques
for batching requests with similar deadlines; the only requirement is that
reordering requests within a batch must not prevent a request from being
serviced by its deadline. If deadlines are equally distributed, batches can be
organized in groups of a certain size-say, 10 requests per batch.

Another approach is to batch requests whose deadlines fall within a given
time threshold-say, 100 milliseconds. Let's consider an example in which we
batch requests in this way. Assume we have the followil<g requests, each with
a specified deadline (in milliseconds) and a requested cylinder:

~;''• ;"!1:-'-:~:~"' ,,;~[;<, .. ,. '.:r' k'j~•lr ·. ,.·: ,, .•.. , · /1:-1
r·~'i!·~-~~~' k ;. ci ; h ··••.

A 150 25

B 201 112

c 399 95

D 94 31

E 295 185

F 78 85

G 165 150

H 125 101

I 300 85

J 210 90

Suppose we are at time0, the cylinder currently being serviced is 50, and the
disk head is moving toward cylinder 51. According to our batching scheme,
requests D and F will be in the first batch; A G, and H in batch 2; B, E, and
J il< batch 3; and C and I il< the last batch. Requests within each batch will

20.6

789

be ordered according to SCAN order. Thus, in batch 1, we will first service
request F and then request D. Note that we are moving downward in cylinder
nun1.bers, fron< 85 to 31. In batch 2, we first service request A; then the heads
begin moving upward in cylinders, servicing requests Hand then G. Batch 3
is serviced in the order E, B, J. Requests I and Care serviced in the final batch.

Perhaps the foremost QoS issue with multimedia systems concerns preserving
rate requirements. For example, if a client wishes to view a video compressed
with MPEG-1, the quality of service greatly depends on the system's ability to
deliver the frames at the required rate.

Our coverage of issues such as CPU- and disk-scheduling algorithms has
focused on how these techniques can be used to better meet the quality-of
service requirements of multimedia applications. However, if the media file is
being streamed over a network-perhaps the Internet-issues relating to how
the network delivers the multimedia data can also significantly affect how QoS
demands are met. In this section, we explore several network issues related to
the unique demands of continuous media.

Before we proceed, it is worth noting that computer networks in general
-and the Internet in particular- currently do not provide network protocols
that can ensure the delivery of data with timing requirements. (There are
some proprietary protocols-notably those running on Cisco routers-that
do allow certain network traffic to be prioritized to meet QoS requirements.
Such proprietary protocols are not generalized for use across the Internet and
therefore do not apply to our discussion.)

When data are routed across a network, it is likely that the transmission
will encounter congestion, delays, and other network traffic issues-issues
that are beyond the control of the originator of the data. For multimedia data
with timing requirements, any timing issues must be synchronized between
the end hosts: the server delivering the content and the client playing it back.

One protocol that addresses timing issues is the :real-thne
(rrrf'). RTP is an Internet standard for delivering real-time data,

including audio and video. It can be used for transporting media formats
such as MP3 audio files and video files compressed using MPEG. RTF does not
provide any QoS guarantees; rathe1~ it provides features that allow a receiver
to remove jitter introduced by delays and congestion in the network.

In following sections, we consider two other approaches for handling the
unique requirements of continuous media.

20.6.1 Unicasting and Multicasting

In general, there are three methods for delivering content from a server to a
client across a network:

The server delivers the content to a single client. If the content
is being delivered to more than one client, the server must establish a
separate unicast for each client.

790 Chapter 20

"'"-'"',''''"'nh""-· The server delivers the content to all clients, regardless of
whether they wish to receive the content or not.

The server delivers the content to a group of receivers that
indicate they wish to receive the content; this method lies somewhere
between unicasting and broadcasting.

An issue with unicast delivery is that the server must establish a separate
unicast session for each client. This seems especially wasteful for live real-time
streaming, where the server must make several copies of the same content, one
for each client. Obviously, broadcasting is not always appropriate, as not all
clients may wish to receive the stream. (Suffice it to say that broadcasting is
typically only used across local area networks and is not possible across the
public Internet.)

Multicasting appears to be a reasonable compromise, since it allows the
server to deliver a single copy of the content to all clients indicating that they
wish to receive it. The difficulty with multicasting from a practical standpoint is
that the clients must be physically close to the server or to intermediate routers
that relay the content from the originating server. If the route from the server
to the client must cross intermediate routers, the routers must also support
multicasting. If these conditions are not met, the delays incurred during routing
may result in violation of the timing requirements of the continuous media. In
the worst case, if a client is connected to an intermediate router that does not
support multicasting, the client will be unable to receive the multicast stream
at all!

Currently, most streaming media are delivered across unicast channels;
however, multicasting is used in various areas where the organization of
the server and clients is known in advance. For example, a corporation with
several sites across a country may be able to ensure that all sites are connected
to multicasting routers and are within reasonable physical proximity to the
routers. The organization will then be able to deliver a presentation from the
chief executive officer using multicasting.

20.6.2 Real-Time Streaming Protocol

In Section 20.1.1, we described some features of streaming media. As we noted
there, users may be able to randomly access a media stream, perhaps replaying
or pausing, as they would with a DVD controller. How is this possible?

To answer this question, let's consider how streaming media are delivered
to clients. One approach is to stream the media from a standard Web server
using the hypertext transport protocol, or HTTP-the protocol used to deliver
documents from a Web server. Quite often, clients use a such
as QuickTime, RealPlaye1~ or Windows Media Player, to play media
streamed from a standard Web server. Typically, the client first requests a
":,E:caJJ.u:: which contains the location (possibly identified by a uniform resource
locatm~ or URL) of the streaming media file. This metafile is delivered to the
client's Web browser, and the browser then starts the appropriate media player
according to the type of media specified by the metafile. For example, a Real
Audio stream would require the RealPlayer, while the Windows Media Player
would be used to play back streaming Windows media. The media player
then contacts the Web server and requests the streaming media. The stream

20.6 791

Figure 20.2 Streaming media from a conventional Web server.

is delivered from the Web server to the media player using standard HTTP
requests. This process is outlined in Figure 20.2.

The problem with delivering streaming media from a standard Web server
is that HTTP is considered a protocol; thus, a Web server does not
maintain the state (or status) of its connection with a client. As a result, it is
difficult for a client to pause during the delivery of streaming media content,
since pausing would require the Web server to know where in the stream to
begin when the client wished to resume playback

An alternative strategy is to use a specialized streaming server that
is designed specifically for streaming media. One protocol designed for
communication between streaming servers and media players is known as the

or . The significant advantage RTSP provides
over HTTP is a connection between the client and the server, which
allows the client to pause or seek to random positions in the stream~ during
playback. Delivery of streaming media using RTSP is similar to delivery using
HTTP (Figure 20.2) in that the metafile is delivered using a conventional Web
server. However, rather than a Web server, the streami.J.1.g media is delivered
from a streaming server using the RTSP protocol. The operation of RTSP is shown
in Figure 20.3.

RTSP defines several commands as part of its protocol; these commands
are sent from a client to an RTSP streaming server. The commands i.J.1.clude the
following:

. The server allocates resources for a client session .

. The server delivers a stream to a client session established from a
SETUP command.

The server suspends delivery of a stream but maintains the
resources for the session.

The server breaks down the connection and frees up resources
allocated for the session.

792 Chapter 20

20.7

Figure 20.3 Real-time streaming protocol (RTSP).

The commands can be illustrated with a state machine for the server, as shown
in Figure 20.4. As you can see in the figure, the RTSP server may be in one of
three states: and Transitions between these three states are
triggered when the server receives one of the RTSP commands from the client.

Using RTSP rather than HTTP for streaming media offers several other
advantages, but they are primarily related to networking issues and are
therefore beyond the scope of this text. We encourage interested readers to
consult the bibliographical notes at the end of this chapter for sources of further
information.

The CineBlitz multimedia storage server is a high-performance media server
that supports both continuous media with rate requirements (such as video
and audio) and conventional data with no associated rate requirements (such
as text and images). CineBlitz refers to clients with rate requirements as

whereas have no rate constraints. Cine Blitz
guarantees to meet the rate requirements of real-time clients by implementing
an admission controller, admitting a client only if there are sufficient resources
to allow data retrieval at the required rate. In this section, we explore the
CineBlitz disk-schedulu1.g and admission-control algorithms.

SETUP PLAY

TEAR DOWN PAUSE

Figure 20.4 Finite-state machine representing RTSP.

20.7 793

20.7.1 Disk Scheduling

The CineBlitz disk scheduler services requests in At the beginning of
each service cycle, requests are placed inC-SCAN (Section 12.4.4). Recall
from our earlier discussions of C-SCAN that the disk heads move from one end
of the disk to the other. However, rather than reversing direction when they
reach the end of the disk, as in pure SCAN disk scheduling (Section 12.4.3), the
disk heads move back to the beginr1ing of the disk.

20.7.2 Admission Control

The admission-control algorithm in Cil<eBlitz must monitor requests from
both real-time and non-real-time clients, ensuring that both classes of clients
receive service. Furthermore, the admission controller must provide the rate
guarantees required by real-time clients. To ensure fairness, only a fraction p of
time is reserved for real-time clients, while the remainder, 1- p, is set aside for
non-real-time clients. Here, we explore the admission controller for real-time
clients only; thus, the term client refers to a real-time client.

The admission controller in CineBlitz monitors various system resources,
such as disk bandwidth and disk latency, while keeping track of available
buffer space. The CineBlitz admission controller admits a client only if there
is enough available disk bandwidth and buffer space to retrieve data for the
client at its required rate.

CineBlitz queues requests for continuous media files, where
R1, R2, R3, ... , R11 are the requests and r; is the required data rate for a
given request R. Requests in the queue are served in cyclic order in rounds of
time-length T (T being tpically measured in seconds). The scheme is using a
technique known as double wherein a buffer is allocated for each
request R; of size 2 x T x r;.

During each cycle I, the server must for each request R j:

Retrieve the data from disk to buffer (I mod 2).

Transfer data from the ((I+ 1) mod 2) buffer to the client.

This process is illustrated in Figure 20.5. For N clients, the total buffer space B
required is

N

L2 x T x r;.::: B.
i=l

(20.1)

The fundamental idea behil<d the admission controller in CineBlitz is to
bound requests for entry into the queue according to the following criteria:

The service time for each request is first estimated.

A request is admitted only if the sum of the estimated service times for
all admitted requests does not exceed the duration of service cycle T.

LetT x r; bits be retrieved during a cycle for each real-time client R; with rater;.
If R1, R2, ... , R11 are the clients currently active in the system, then the admission
controller must ensure that the total time for retrieving T x r1, T x r2, ... , T x r11

794 Chapter 20

0

f---1
double buffer

total buffer space (B)

Figure 20.5 Double buffering in CineBiitz.

bits for the corresponding real-time clients does not exceed T. We explore the
details of this admission policy in the remainder of this section.

If b is the size of a disk block, then the maximum number of disk blocks
thatcanberetrievedforrequest R1c duringeachcycleis I(T xr~c)/bl +1. The 1 in
this formula comes from the fact that if T x YJc is less than b, then it is possible
for T x r1c bits to span the last portion of one disk block and the beginning
of another, causing two blocks to be retrieved. We know that the retrieval of
a disk block involves (a) a seek to the track contailling the block and (b) the
rotational delay as the data in the desired track arrive under the disk head. As
described, CineBlitz uses a C-SCAN disk-scheduling algorithm, so disk blocks
are retrieved in the sorted order of their positions on the disk.

If tscek and trot refer to the worst-case seek and rotational delay times, the
maximum latency incurred for servicil1g N requests is

N (T x r;)
2 X tseek + L 1-b-l + 1 X trot·

1=1

(20.2)

In this equation, the 2 x tseek component refers to the maximum disk-seek
latency incurred in a cycle. The second component reflects the sum of the
retrievals of the disk blocks multiplied by the worst-case rotational delay.

If the transfer rate of the disk is r dislu then the time to h·ansfer T x Yic bits
of data for request R1c is (T x r~c)/rdisk· As a result, the total time for retrieving
T x r1 , T x r2, ... , T x r11 bits for requests R1 , R2, ... , R11 is the sum of equation
20.2 and

N
T x r; t; raisk

(20.3)

Therefore, the admission controller in CineBlitz only admits a new client R if
at least 2 x T x r; bits of free buffer space are available for the client and the
following equation is satisfied:

N () N T x r; T x r;
2 X tsee/c + L 1-b-l + 1 X trot + L ~ S T.

i=l i=l diOk

(20.4)

20.8

795

Multimedia applications are in common use in modern computer systems.
Multimedia files include video and audio filesf which may be delivered
to systems such as desktop computersf personal digital assistantsf and cell
phones. The primary distinction between multimedia data and conventional
data is that multimedia data have specific rate and deadline requiren<ents.
Because multimedia files have specific timing requirementsf the data must
often be compressed before delivery to a client for playback. Multimedia data
may be delivered either from the local file system or from a multimedia server
across a network connection using a technique known as streaming.

The timing requirements of multimedia data are known as quality
of-service requirementsf and conventional operating systems often cannot
make quality-of-service guarantees. To provide quality of servicef multimedia
systems must provide a form of admission control whereby a system accepts a
request only if it can meet the quality-of-service level specified by the request.
Providing quality-of-service guarantees requires evaluating how an operating
system performs CPU schedulingf disk schedulingf and network management.
Both CPU and disk scheduling typically use the deadline requirements of
a continuous-media task as a scheduling criterion. Network management
requires the use of protocols that handle delay and jitter caused by the network
as well as allowing a client to pause or move to different positions in the stream
during playback.

20.1 Explain why the traditional Internet protocols for transmitting data are
not sufficient to provide the quality-of-service guarantees required for
a multimedia system. Discuss what changes are required to provide
the QoS guarantees.

20.2 Contrast unicastingf multicastingf and broadcasting as techniques for
delivering content across a computer network.

20.3 Assume that we wish to compress a digital video file using MPEG-1
technology. The target bit rate is 1.5 Mbps. If the video is displayed
at a resolution of 352 x 240 at 30 frames per second using 24 bits to
represent each colorf what is the necessary compression ratio to achieve
the desired bit rate?

20.4 Assume that a digital video file is being displayed at a rate of 30 frames
per second; the resolution of each frame is 640 x 480f and 24 bits are
being used to represent each color. Assuming that no compression is
being usedf what is the bandwidth necessary to deliver this file? Next
assuming that the file has been compressed at a ratio of 200: 1f what is
the bandwidth necessary to deliver the compressed file?

20.5 A multimedia application consists of a set containing 100 imagesf 10
minutes of videof and 10 minutes of audio. The compressed sizes of the
imagesf videof and audio are 500 MBf 550 MBf and 8 MBf respectively.
The images were compressed at a ratio of 15 : 1f and the video and

796 Chapter 20

audio were compressed at 200 : 1 and 10 : 1, respectively. What were
the sizes of the images, video, and audio before compression?

20.6 Which of the following types of real-time streaming applications can
tolerate delay? Which can tolerate jitter?

Live real-time streaming

On-demand real-time streaming

20.7 Distinguish between progressive download and real-time streaming.

20.8 The following table contains a number of requests with their associated
deadlines and cylinders. Requests with deadlines occurring within 100
milliseconds of each other will be batched. The disk head is currently
at cylinder 94 and is moving toward cylinder 95. If SCAN-EDF disk
scheduling is used, how are the requests batched together, and what is
the order of requests within each batch?

. o. ,J,c~;)•,;;: ••. ::.;
:~:--:'"': "!,

;·.;.~,"'..Ji,;;_~:3
.··. ,., (~<tp~li~~~~.~·

R1 57 77

R2 300 95

R3 250 25

R4 88 28

R5 85 100

R6 110 90

R7 299 50

R8 300 77

R9 120 12

R10 212 2

20.9 Repeat Exercise 20.8, but this time batch requests that have deadlines
occurring within 75 milliseconds of each other.

20.10 What operating principle is used by the Cine Blitz system in performing
admission control for requests for media files?

20.11 Consider two processes, P1 and P2, where p1 = 50, t1 = 25, p2 = 75,
and t2 = 30.

a. Can these two processes be scheduled using rate-monotonic
scheduling? Illustrate your answer using a Gantt chart.

b. Illustrate the schedulil1.g of these two processes using earliest
deadline-first (EDF) scheduling.

797

Fuhrt [1994] provides a general overview of multimedia systems. Topics related
to the delivery of multimedia through networks can be found in Kurose
and Ross [2005]. Operating-system support for multimedia is discussed in
Steinmetz [1995] and Leslie et al. [1996]. Resource management for resources
such as processing capability and memory buffers is discussed in Mercer et al.
[1994] and Druschel and Peterson [1993]. Reddy and Wyllie [1994] give a
good overview of issues relating to the use of I/0 in a multimedia system.
Discussions regarding the appropriate programming model for developing
multimedia applications are presented in Regehr et al. [2000]. An admission
control system for a rate-monotonic scheduler is considered in Lauzac et al.
[2003]. Bolosky et al. [1997] present a system for serving video data and discuss
the schedule-management issues that arise in such a system. The details of
a real-time streaming protocol can be found at http:/ /www.rtsp.org. Tudor
[1995] gives a tutorial on MPEG-2. A tutorial on video compression techniques
can be found at http:/ /www.wave-report.com/tutorials/VC.htm.

Part Nine

We can now integrate the concepts described in this book by describing
real operating systems. Two such systems are covered in great detaii
Linux and Windows XP. We chose Linux for several reasons: It is popular, it
is freely available, and it represents a full-featured UNIX system. This gives
a student of operating systems an opportunity to read-and modify
rea/ operating-system source code.

We also cover Windows XP in great detail. This recent operating
system from Microsoft is gaining popularity, not only in the stand-alone
machine market, but also in the workgroup-server market. We chose
Windows XP because it provides an opportunity for us to study a mod
ern operating system that has a design and implementation drastically
different from those of UNIX.

In addition, we briefly discuss other highly influential operating sys
tems. We have chosen the order of presentation to highlight the similari
ties and differences among the systems; it is not strictly chronological and
does not reflect the relative importance of the systems.

Finally, we provide on-line coverage of three other systems. The
FreeBSD system is another UNIX system. However, whereas Linux com
bines features from several UNIX systems, FreeBSD is based on the BSD
model of UNIX. FreeBSD source code, like Linux source code, is freely
available. The Mach operating system is a modern operating system that
provides compatibility with BSD UNIX. Windows is another modern oper
ating system from Microsoft for Intel Pentium and later microprocessors;
it is compatible with MS-DOS and Microsoft Windows applications.

21.1

This chapter presents an in-depth examination of the Linux operating system.
By exam.ining a complete, real system, we can see how the concepts we have
discussed relate both to one another and to practice.

Linux is a version of UNIX that has gained popularity in recent years. In this
chapter, we look at the history and development of Linux and cover the user
and programmer interfaces that Linux presents-interfaces that owe a great
deal to the UNIX tradition. We also discuss the internal methods by which Linux
implements these interfaces. Linux is a rapidly evolving operating system.
This chapter describes developments through the Linux 2.6 kernel, which was
released in late 2003.

To explore the history of the UNIX operating system from which Linux is
derived and the principles upon which Linux is designed.

To examine the Linux process model and illustrate how Linux schedules
processes and provides interprocess communication.

To look at memory management in Linux.

To explore how Linux implements file systems and manages 110 devices.

Linux looks and feels much like any other UNIX system; indeed, UNIX
compatibility has been a major design goal of the Linux project. However,
Linux is much younger than most UNIX systems. Its development began in
1991, when a Finnish student, Linus Torvalds, wrote and christened Linux,
a small but self-contained kernel for the 80386 processor, the first true 32-bit
processor in Intel's range of PC-compatible CPUs.

Early in its development, the Linux source code was made available free
on the Internet. As a result, Linux's history has been one of collaboration by
many users from all around the world, corresponding almost exclusively over
the Internet. From an initial kernel that partially implemented a small subset of

801

802 Chapter 21

the UNIX system services, the Linux system has grown to include much UNIX
functionality.

In its early days, Linux development revolved largely around the central
operating-system kernel-the core, privileged executive that n1.anages all
system resources and that interacts directly with the computer hardware.
We need much more than this kernel to produce a full operating systeiTl,
o£ course. It is useful to make the distinction between the Linux kernel and
a Linux system. The is an entirely original piece of software
developed from scratch by the Linux con1.munity. The as we
know it today, includes a multitude of components, some written from scratch,
others borrowed from other development projects, and still others created in
collaboration with other teams.

The basic Linux system is a standard environment for applications and
user programming, but it does not enforce any standard means of managing
the available functionality as a whole. As Linux has matured, a need has arisen
for another layer of functionality on top of the Linux system. This need has
been met by various Linux distributions. A includes all the
standard components of the Linux system, plus a set of administrative tools
to simplify the initial installation and subsequent upgrading of Linux and to
manage installation and removal of other packages on the system. A modern
distribution also typically includes tools for management of file systems,
creation and management of user accounts, administration of networks, Web
browsers, word processors, and so on.

21.1.1 The Linux Kernel

The first Linux kernel released to the public was Version 0.01, dated May
14, 1991. It had no networking, ran only on 80386-compatible Intel processors
and PC hardware, and had extremely limited device-driver support. The virtual
memory subsystem was also fairly basic and included no support for memory
mapped files; however, even this early incarnation supported shared pages
with copy-on-write. The only file system supported was the Minix file system
-the first Linux kernels were cross-developed on a Minix platform. However,
the kernel did implement proper UNIX processes with protected address spaces.

The next milestone version, Linux 1.0, was released on March 14, 1994.
This release culminated three years of rapid development of the LimlX kernel.
Perhaps the single biggest new feature was networking: 1.0 included support
for UNIX's standard TCP liP networking protocols, as well as a BSD-compatible
socket interface for networking programming. Device-driver support was
added for running IP over an Ethernet or (using PPP or SLIP protocols) over
serial lines or modems.

The 1.0 kernel also included a new, much enhanced file system without the
limitations of the original Minix file system and supported a range of SCSI con
trollers for high-performance disk access. The developers extended the virtual
memory subsystem to support paging to swap files and memory mapping of
arbitrary files (but only read-only memory mapping was implemented in 1.0).

A range of extra hardware support was also included in this release.
Although still restricted to the Intel PC platform, hardware support had grown
to include floppy-disk and CD-ROM devices, as well as sound cards, a range
of mice, and international keyboards. Floating-point emulation was provided

21.1 803

in the kernel for 80386 users who had no 80387 math coprocessor; System
V UNIX-style inclLlding shared memory,
semaphores, and message queues, was implemented. Simple support for
dynamically loadable and unloadable kernel modules was supplied as well.

At this point, development started on the 1.1 kernel stream, but numerous
bug-fix patches were released subsequently against 1.0. A pattern was adopted
as the standard numbering convention for Linux kernels. Kernels with an odd
minor-version number, such as 1.1, 1.3, and2.1, are even-
numbered minor-version numbers are stable Updates
against the stable kernels are intended only as remedial versions, whereas the
development kernels may include newer and relatively untested functionality.

In March 1995, the 1.2 kernel was released. This release did not offer
nearly the same improvement in functionality as the 1.0 release, but it did
support a much wider variety of hardware, including the new PCI hardware
bus architecture. Developers added another PC-specific feature-support for
the 80386 CPU's virtual8086 mode-to allow emulation of the DOS operating
system for PC computers. They also updated the networking stack to provide
support for the IPX protocol and made the IP implementation more complete
by including accounting and firewalling functionality.

The 1.2 kernel was the final PC-only Linux kernel. The source distribution
for Linux 1.2 included partially implemented support for SPARC, Alpha, and
MIPS CPUs, but full integration of these other architectures did not begin until
after the 1.2 stable kernel was released.

The Linux 1.2 release concentrated on wider hardware support and more
complete implementations of existing functionality. Much new functionality
was under development at the time, but integration of the new code into the
main kernel source code had been deferred until after the stable 1.2 kernel had
been released. As a result, the 1.3 development stream saw a great deal of new
functionality added to the kernel.

This work was finally released as Linux 2.0 in Jmce 1996. This release
was given a major version-number increment on account of two major new
capabilities: support for multiple architectures, including a 64-bit native Alpha
port, and support for multiprocessor architectures. Linux distributions based
on 2.0 are also available for the Motorola 68000-series processors and for
Sun's SPARC systems. A derived version of Linux running on top of the Mach
microkernel also runs on PC and PowerMac systems.

The changes in 2.0 did not stop there. The memory-management code
was substantially improved to provide a unified cache for file-system data
independent of the caching of block devices. As a result of this change, the
kernel offered greatly increased file-system and virtual memory performance.
For the first time, file-system caching was extended to networked file systems,
and writable memory-mapped regions also were supported.

The 2.0 kernel also included much improved TCP /IP performance, and a
number of new networking protocols were added, including Apple Talk, AX.25
an'lateur radio networking, and ISDN support. The ability to mount remote
netware and SMB (Microsoft LanManager) network volumes was added.

Other major improvements in 2.0 were support for internal kernel threads,
for handling dependencies between loadable modules, and for automatic
loading of modules on demand. Dynamic configuration of the kernel at run
time was much improved through a new, standardized configuration interface.

804 Chapter 21

Additional new features included file-system quotas and POSIX-compatible
real-time process-scheduling classes.

Improvements continued with the release of Linux 2.2 in January 1999. A
port for UltraSPARC systems was added. Networking was enhanced with more
flexible firewalling, better routing and traffic management, and support for
TCP large window and selective acks. Acorn, Apple, and NT disks could now
be read, and NFS was enhanced and a kernel-mode NFS daemon added. Signal
handling, interrupts, and some I/0 were locked at a finer level than before to
improve symmetric multiprocessor (SMP) performance.

Advances in the 2.4 and 2.6 releases of the kernel include increased support
for SMP systems, journaling file systems, and enhancements to the memory
management system. The process scheduler was modified in Version 2.6,
providing an efficient 0(1) scheduling algorithm. In addition, the LimiX 2.6
kernel is now preemptive, allowing a process to be preempted while running
in kernel mode.

21.1.2 The Linux System

In many ways, the Linux kernel forms the core of the Linux project, but other
components make up the complete Linux operating system. Whereas the Linux
kernel is composed entirely of code written from scratch specifically for the
Linux project, much of the supporting software that makes up the Linux
system is not exclusive to Linux but is common to a number of UNIX-like
operating systems. In particular, Linux uses many tools developed as part
of Berkeley's BSD operating system, MIT's X Window System, and the Free
Software Foundation's GNU project.

This sharing of tools has worked in. both directions. The main system
libraries of Linux were originated by the GNU project, but the Linux community
greatly improved the libraries by addressing omissions, li1.efficiencies, and
bugs. Other components, such as the L were already
of sufficiently high quality to be used directly in Linux. The networking
administration tools under Linux were derived from code first developed for
4.3 BSD, but more recent BSD derivatives, such as FreeBSD, have borrowed code
from Linux in return. Examples include the Intel floating-point-emulation math
library and the PC sound-hardware device drivers.

The Linux system as a whole is maintained by a loose network of
developers collaborating over the Internet, with small groups or individuals
having responsibility for maintaining the integrity of specific components.
A small number of public Internet file-transfer-protocol (FTP) archive sites
act as de facto standard repositories for these components. The

document is also maintained by the Linux community
as a means of ensuring compatibility across the various system components.
This standard specifies the overall layout of a standard Linux file system; it
determines under which directory names configuration files, libraries, system
binaries, and run-time data files should be stored.

21.1.3 Linux Distributions

In theory, anybody can install a Linux system by fetching the latest revisions
of the necessary system components from the FTP sites and compiling them.
In Linux's early days, this operation was often precisely what a Linux user

21.1 805

had to carry out. As Linux has matured, however, various individuals and
groups have attempted to make this job less painful by providing standard,
precompiled sets of packages for easy installation.

These collections, or distributions, include much more than just the
basic Linux system. They typically include extra system-installation and
management utilities, as well as precompiled and ready-to-install packages
of many of the common UNIX tools, such as news servers, Web browsers,
text-processing and editing tools, and even games.

The first distributions managed these packages by simply providing
a means of unpacking all the files into the appropriate places. One of
the important contributions of modem dish·ibutions, however, is advanced
package management. Today' s Linux distributions include a package-tracking
database that allows packages to be installed, upgraded, or removed painlessly.

The SLS distribution, dating back to the early days of Linux, was the first
collection of Linux packages that was recognizable as a complete distribution.
Although it could be installed as a single entity, SLS lacked the package
management tools now expected of Linux distributions. The
distribution represented a great improvement in overall quality, even though
it also had poor package management; in fact, it is still one of the most widely
installed distributions in the Linux community.

Since Slackware' s release, many commercial and noncommercial LimlX
distributions have become available. and are particularly
popular distributions; the first comes from a commercial Linux support
company and the second from the free-software Linux community. Other
commercially supported versions of Linux include distributions from Cz,ldera,

and A large Linux following in Germany
has resulted in several dedicated German-language distributions, including
versions from and There are too many Linux distributions in
circulation for us to list all of them here. The variety of distributions does not
prohibit compatibility across Linux distributions, however. The RPM package
file format is used, or at least understood, by the majority of distributions, and
commercial applications distributed in this format can be installed and run on
any distribution that can accept RPM files.

21.1.4 Linux Licensing

The Linux kernel is distributed under the GNU general public license (GPL),
the terms of which are set out the Free Software Fmmdation. Linux is not
public-domain software. implies that the authors have waived
copyright rights in the software, but copyright rights in Linux code are still
held by the code's various authors. Linux is free software, however, in the sense
that people can copy it, modify it, use it in any manner they want, and give
away their own copies, without any restrictions.

The main implications of Linux's licensing terms are that nobody using
Liimx, or creating a derivative of Linux (a legitimate exercise), can make
the derived product proprietary. Software released under the GPL camwt be
redistributed as a binary-only product. If you release software that includes
any components covered by the GPL, then, under the GPL, you must make
source code available alongside any binary distributions. (This resh·iction does

806 Chapter 21

21.2

not prohibit ntaking-or even selling-binary-only software distributions, as
long as anybody who receives binaries is also given the opportunity to get
source code for a reasonable distribution charge.)

In its overall design, Linux resembles any other traditional, nonmicrokernel
UNIX implementation. It is a multiuser, multitasking system with a full set
of UNIX-compatible tools. Linux's file system adheres to traditional UNIX
semantics, and the standard UNIX networking model is implemented fully.
The internal details of Linux' s design have been influenced heavily by the
history of this operating system's development.

Although Linux runs on a wide variety of platforms, it was developed
exclusively on PC architecture. A great deal of that early development was
carried out by individual enthusiasts, rather than by well-funded development
or research facilities, so from the start Linux attempted to squeeze as much
functionality as possible from limited resources. Today, Linux can run happily
on a multiprocessor machine with hundreds of megabytes of main memory
and many gigabytes of disk space, but it is still capable of operating usefully
in under 4 MB of RAM.

As PCs became more powerful and as memory and hard disks became
cheaper, the original, minimalist LimiX kernels grew to implement more
UNIX functionality. Speed and efficiency are still important design goals, but
much recent and current work on Linux has concentrated on a third major
design goal: standardization. One of the prices paid for the diversity of UNIX
implementations currently available is that source code written for one may not
necessarily compile or run correctly on another. Even when the same system
calls are present on two different UNIX systems, they do not necessarily behave
in exactly the same way. The POSIX standards comprise a set of specifications for
different aspects of operating-system behavior. There are POSIX documents for
common operating-system functionality and for extensions such as process
threads and real-time operations. Linux is designed to be compliant with
the relevant POSIX documents; at least two Linux distributions have achieved
official POSIX certification.

Because it gives standard interfaces to both the programmer and the user,
Linux presents few surprises to anybody familiar with UNIX. We do not detail
these interfaces here. The sections on the programmer interface (Section A.3)
and user interface (Section A.4) of BSD apply equally well to Linux. By default,
howeve1~ the Linux programming interface adheres to SVR4 UNIX semantics,
rather than to BSD behavior. A separate set of libraries is available to implement
BSD semantics in places where the two behaviors differ significantly.

Many other standards exist in the UNIX world, but full certification of
Linux with respect to these standards is sometimes slowed because certification
is often available only for a fee, and the expense involved in certifying an
operating system's compliance with most standards is substantial. However,
supporting a wide base of applications is important for any operating system,
so implementation of standards is a major goal for Linux development, even
if the implementation is not formally certified. In addition to the basic POSIX

21.2 807

standard, Linux currently supports the POSIX threading extensions-Pthreads
-and a subset of the POSIX extensions for real-time process control.

21.2.1 Components of a Linux System

The Linux system is composed of three main bodies of code, in line with most
traditional UNIX implementations:

Kernel. The kernel is responsible for maintaining all the important
abstractions of the operating system, including such things as virtual
memory and processes.

System libraries. The system libraries define a standard set of functions
through which applications can interact with the kernel. These functions
implement much of the operating-system functionality that does not need
the full privileges of kernel code.

System utilities. The system utilities are programs that perform individ
ual, specialized management tasks. Some system utilities may be invoked
just once to initialize and configure some aspect of the system; others
known as daemons in UNIX terminology -may run permanently, handling
such tasks as responding to incoming network connections, accepting
logon requests from terminals, and updating log files.

Figure 21.1 illustrates the various components that make up a full Linux
system. The most important distinction here is between the kernel and
everything else. All the kernel code executes in the processor's privileged
mode with full access to all the physical resources of the computer. Linux
refers to this privileged mode as kernel Under Linux, no user-mode
code is built into the kernel. Any operating-system-support code that does not
need to run in kernel mode is placed into the system libraries instead.

Although various modern operating systems have adopted a message
passing architecture for their kernel internals, Linux retains UN'"lX' s historical
model: the kernel is created as a single, monolithic binary. The main reason is
to improve performance. Because all kernel code and data structures are kept
iil a single address space, no context switches are necessary when a process
calls an operating-system function or when a hardware interrupt is delivered.

Linux kernel

loadable kernel modules

Figure 21.1 Components of the Linux system.

808 Chapter 21

This single address space contains not only the core scheduling and virtual
memory code but all kernel code, including all device drivers, file systems, and
networking code.

Even though all the kernel components share this same m.elting pot, there
is still room for modularity. In the san1.e way that user applications can load
shared libraries at run time to pull in a needed piece of code, so the Linux
kernel can load (and unload) modules dynamically at run time. The kernel
does not necessarily need to know in advance which modules may be loaded
-they are truly independent loadable components.

The Linux kernel forms the core of the Linux operating system. It provides
all the functionality necessary to run processes, and it provides system services
to give arbitrated and protected access to hardware resources. The kernel
implements all the features required to qualify as an operating system. On
its own, however, the operating system provided by the Linux kernel looks
nothing like a UNIX system. It is missing many of the extra features of UNIX,
and the features that it does provide are not necessarily in the format in which
a UNIX application expects them to appear. The operating-system interface
visible to running applications is not maintained directly by the kerneL Rather,
applications make calls to the system libraries, which in turn call the operating
system services as necessary.

The system libraries provide many types of functionality. At the simplest
level, they allow applications to make kernel-system service requests. Making
a system call involves transferring control from tmprivileged user mode to
privileged kernel mode; the details of this transfer vary from architecture to
architecture. The libraries take care of collecting the system-call arguments and,
if necessary, arranging those arguments in the special form necessary to make
the system calL

The libraries may also provide more complex versions of the basic system
calls. For example, the C language's buffered file-handling functions are all
implemented in the system libraries, providing more advanced control of file
I/ 0 than the basic kernel system calls. The libraries also provide routines that do
not correspond to system calls at all, such as sorting algorithms, mathematical
functions, and string-manipulation routines. All the functions necessary to
support the running of UNIX or POSIX applications are implemented here in the
system libraries.

The LimiX system includes a wide variety of user-mode programs-both
system utilities and user utilities. The system utilities include all the programs
necessary to initialize the system, such as those to configure network devices
and to load kernel modules. Continually running server programs also com1.t as
system utilities; such programs handle user login requests, incoming network
connections, and the printer queues.

Not all the standard utilities serve key system-administration functions.
The UNIX user environment contains a large number of standard utilities to
do simple everyday tasks, such as listing directories, moving and deleting
files, and displaying the contents of a file. More complex utilities can perform
text-processing functions, such as sorting textual data and performing pattern
searches on input text. Together, these utilities form a standard tool set that
users can expect on any UNIX system; although they do not perform any
operating-system function, they are an important part of the basic LimiX
system.

21.3

21.3 809

The Linux kernel has the ability to load and unload arbitrary sections of kernel
code on demand. These loadable kernel modules run in privileged kernel mode
and as a consequence have full access to all the hardware capabilities of the
machine on which they run. In theory, there is no restriction on what a kernel
module is allowed to do; typically, a module might implement a device driver,
a file system, or a networking protocol.

Kernel modules are convenient for several reasons. Linux' s source code is
free, so anybody wanting to write kernel code is able to compile a modified
kernel and to reboot to load that new functionality; however, recompiling,
relinking, and reloading the entire kernel is a cumbersome cycle to undertake
when you are developing a new driver. If you use kernel modules, you do not
have to make a new kernel to test a new driver-the driver can be compiled
on its own and loaded into the already-rmming kernel. Of course, once a new
driver is written, it can be distributed as a module so that other users can
benefit from it without having to rebuild their kernels.

This latter point has another implication. Because it is covered by the
GPL license, the Linux kernel cannot be released with proprietary components
added to it, unless those new components are also released under the GPL and
the source code for them is made available on demand. The kernel's module
interface allows third parties to write and distribute, on their own terms, device
drivers or file systems that could not be distributed under the GPL.

Kernel modules allow a Linux system to be set up with a standard minimal
kernet without any extra device drivers built in. Any device drivers that
the user needs can be either loaded explicitly by the system at startup or
loaded automatically by the system on demand and unloaded when not in
use. For example, a CD-ROM driver might be loaded when a CD is mounted
and unloaded from memory when the CD is dismounted from the file system.

The module support under Linux has three components:

The allows modules to be loaded into memory and
to talk to the rest of the kernel.

The allows modules to tell the rest of the kernel that
a new driver has become available.

A allows different device drivers to
reserve hardware resources and to protect those resources from accidental
use by another driver.

21.3.1 Module Management

Loading a module requires more than just loading its binary contents into
kernel memory. The system must also make sure that any references the
module makes to kernel symbols or entry points are updated to point to the
correct locations in the kernel's address space. Linux deals with this reference
updating by splitting the job of module loading into two separate sections: the
management of sections of module code in kernel memory and the handling
of symbols that modules are allowed to reference.

810 Chapter 21

Linux maintains an internal syncbol table in the kernel. This symbol table
does not contain the full set of symbols defined in the kernel during the latter's
compilation; rather, a symbol must be exported explicitly by the kernel. The set
of exported symbols constitutes a well-defined interface by which a module
can interact with the kernel.

Although exporting symbols from a kernel function requires an explicit
request by the programmer, no special effort is needed to import those symbols
into a module. A module writer just uses the standard external linking of the
C language: Any external symbols referenced by the module but not declared
by it are simply marked as unresolved in the final module binary produced by
the compiler. When a module is to be loaded into the kernel, a system utility
first scans the module for these unresolved references. All symbols that still
need to be resolved are looked up in the kernel's symbol table, and the correct
addresses of those symbols in the currently running kernel are substituted into
the module's code. Only then is the module passed to the kernel for loading. If
the system utility cannot resolve any references in the module by looking them
up in the kernel's symbol table, then the module is rejected.

The loading of the module is performed in two stages. First, the module
loader utility asks the kernel to reserve a continuous area of virtual kernel
memory for the module. The kernel returns the address of the memory
allocated, and the loader utility can use this address to relocate the module's
machine code to the correct loading address. A second system call then passes
the module, plus any symbol table that the new module wants to export, to the
kernel. The module itself is now copied verbatim into the previously allocated
space, and the kernel's symbol table is updated with the new symbols for
possible use by other modules not yet loaded.

The final module-management component is the module requestor. The
kernel defines a communication interface to which a module-management
program can connect. With this connection established, the kernel will inform
the management process whenever a process requests a device driver, file
system, or network service that is not currently loaded and will give the
manager the opportunity to load that service. The original service request will
complete once the module is loaded. The manager process regularly queries
the kernel to see whether a dynamically loaded module is still in use and
unloads that module when it is no longer actively needed.

21.3.2 Driver Registration

Once a module is loaded, it remains no more than an isolated region of memory
until it lets the rest of the kernel know what new functionality it provides.
The kernel maintains dynamic tables of all known drivers and provides a
set of routines to allow drivers to be added to or removed from these tables
at any time. The kernel makes sure that it calls a module's startup routine
when that module is loaded and calls the module's cleanup routine before that
module is unloaded: these routines are responsible for registering the module's
functionality.

A module may register many types of drivers and may register more than
one driver if it wishes. For example, a device driver might want to register two
separate mechanisms for accessing the device. Registration tables include the
following items:

21.3 811

Device drivers. These drivers include character devices (such as printers/
terminals/ and mice) 1 block devices (including all disk drives) 1 and network
interface devices.

File systems. The file system may be anything that implements Linux's
virtual-file-system calling routines. It might implement a format for storing
files on a disk, but it might equally well be a network file system, such as
NFS1 or a virtual file system whose contents are generated on demand/ such
as Linux's /proc file system.

Network protocols. A module may implement an entire networking
protocot such as IPX1 or simply a new set of packet-filtering rules for a
network firewall.

Binary format. This format specifies a way of recognizing/ and loading/ a
new type of executable file.

In addition/ a module can register a new set of entries in the sysctl and/proc
tables, to allow that module to be configured dynamically (Section 21.7.4).

21.3.3 Conflict Resolution

Commercial UNIX implementations are usually sold to run on a vendor/s
own hardware. One advantage of a single-supplier solution is that the
software vendor has a good idea about what hardware configurations are
possible. PC hardware/ however/ comes in a vast number of configurations,
with large numbers of possible drivers for devices such as network cards,
SCSI controllers/ and video display adapters. The problem of managing the
hardware configuration becomes more severe when modular device drivers
are supported/ since the currently active set of devices becomes dynamically
variable.

Linux provides a central conflict-resolution mechanism to help arbitrate
access to certain hardware resources. Its aims are as follows:

To prevent modules from clashing over access to hardware resources

To prevent aui:oprobes-device-driver probes that auto-detect device
configuration-from interfering with existing device drivers

To resolve conflicts among multiple drivers trying to access the same
hardware-for example, as when both the parallel printer driver and the
parallel-line IP (PUP) network driver try to talk to the parallel printer port

To these ends/ the kernel maintains lists of allocated hardware resources.
The PC has a limited number of possible I/0 ports (addresses in its hardware
I/0 address space), interrupt lines/ and DMA channels. When any device driver
wants to access such a resource, it is expected to reserve the resource with
the kernel database first. This requirement incidentally allows the system
administrator to determine exactly which resources have been allocated by
which driver at any given point.

A module is expected to use this mechanism to reserve in advance any
hardware resources that it expects to use. If the reservation is rejected because
the resource is not present or is already in use, then it is up to the module

812 Chapter 21

21.4

to decide how to proceed. It may fail its initialization and request that it be
unloaded if it cannot continue, or it may carry on, using alternative hardware
resources.

A process is the basic context within which all user-requested activity is
serviced within the operating system. To be compatible with other UNIX
systems, Linux must use a process model similar to those of other versions
of UNIX. Linux operates differently from UNIX in a few key places, however. In
this section, we review the traditional UNIX process model (Section A.3.2) and
introduce Linux's own threading model.

21.4.1 The fork() and exec() Process Model

The basic principle of UNIX process management is to separate two operations:
the creation of a process and the rum1.ing of a new program. A new process
is created by the fork() system call, and a new program is run after a call to
exec(). These are two distinctly separate functions. A new process may be
created with fork() without a new program being run-the new subprocess
simply continues to execute exactly the same program that the first (parent)
process was running. Equally, running a new program does not require that
a new process be created first: any process may call exec() at any time. The
currently rumung program is immediately terminated, and the new program
starts executing in the context of the existing process.

This model has the advantage of great simplicity. It is not necessary to
specify every detail of the environment of a new program in the system call that
runs that program; the new program simply runs in its existing environment.
If a parent process wishes to modify the environment in which a new program
is to be run, it can fork and then, still running the original program in a child
process, make any system calls it requires to modify that child process before
finally executing the new program.

Under UNIX, then, a process encompasses all the information that the
operating system must maintain to track the context of a single execution of a
single program. Under Linux, we can break down this context into a number of
specific sections. Broadly, process properties fall into three groups: the process
identity, environment, and context.

21.4.1.1 Process Identity

A process identity consists mainly of the following items:

Process ID (PID). Each process has a Lmique identifier. The PID is used to
specify the process to the operating system when an application makes a
system call to signal, modify, or wait for the process. Additional identifiers
associate the process with a process group (typically, a tree of processes
forked by a single user command) and login session.

Credentials. Each process must have an associated user ID and one or more
group IDs (user groups are discussed in Section 10.6.2) that determine the
rights of a process to access system resources and files.

21.4 813

Personality. Process personalities are not traditionally found on UNIX
systems, but under Linux each process has an associated personality
identifier that can slightly modify the semantics of certain system calls.
Personalities are primarily used by emulation libraries to request that
system calls be compatible with certain varieties of UNIX.

Most of these identifiers are under the limited control of the process
itself. The process group and session identifiers can be changed if the process
wants to start a new group or session. Its credentials can be changed, subject
to appropriate security checks. Howeve1~ the primary PID of a process is
unchangeable and uniquely identifies that process until termination.

21.4.1.2 Process Environment

A process's environment is inherited from its parent and is composed of two
null-terminated vectors: the argument vector and the enviromnent vector. The
argument vector simply lists the command-line arguments used to invoke the
running program; it conventionally starts with the name of the program itself.
The environment vector is a list of "NAME= VALUE" pairs that associates named
environment variables with arbitrary textual values. The environment is not
held in kernel memory but is stored in the process's own user-mode address
space as the first datum at the top of the process's stack.

The argument and environment vectors are not altered when a new process
is created; the new child process will inherit the environment that its parent
possesses. However, a completely new environment is set up when a new
program is invoked. On calling exec (),a process must supply the environment
for the new program. The kernel passes these enviromnent variables to the next
program, replacing the process's current environment. The kernel otherwise
leaves the environment and command-line vectors alone-their interpretation
is left entirely to the user-mode libraries and applications.

The passing of environment variables from one process to the next and the
inheriting of these variables by the children of a process provide flexible ways
to pass information to components of the user-mode system software. Various
important environment variables have conventional meanings to related parts
of the system software. For example, the TERM variable is set up to name the
type of terminal com1.ected to a user's login session; many programs use this
variable to determine how to perform operations on the user's display, such as
moving the cursor and scrolling a region of text. Programs with multilingual
support use the LANG variable to determine in which language to display
system messages for programs that include multilingual support.

The environment-variable mechanism custom-tailors the operating system
on a per-process basis, rather than for the system as a whole. Users can choose
their own languages or select their own editors independently of one another.

21.4.1.3 Process Context

The process identity and environment properties are usually set up when a
process is created and not changed until that process exits. A process may
choose to change some aspects of its identity if it needs to do so, or it may
alter its environment. In contrast, process context is the state of the running

814 Chapter 21

program at any one time; it changes constantly. Process context includes the
following parts:

Scheduling context. The most important part of the process context is its
scheduling context-the information that the scheduler needs to suspend
and restart the process. This information includes saved copies of all the
process's registers. Floating-point registers are stored separately and are
restored only when needed, so that processes that do not use floating-point
arithmetic do not incur the overhead of saving that state. The scheduling
context also includes information about scheduling priority and about any
outstanding signals waiting to be delivered to the process. A key part of the
scheduling context is the process's kernel stack, a separate area of kernel
memory reserved for use exclusively by kernel-mode code. Both system
calls and interrupts that occur while the process is executing will use this
stack.

Accounting. The kernel maintains accounting information about the
resources currently being consumed by each process and the total resources
consumed by the process in its entire lifetime so far.

File table. The file table is an array of pointers to kernel file structures.
When making file-I/O system calls, processes refer to files by their index
into this table.

File-system context. Whereas the file table lists the existing open files, the
file-system context applies to requests to open new files. The current root
and default directories to be used for new file searches are stored here.

Signal-handler table. UNIX systems can deliver asynchronous signals to
a process in response to various external events. The signal-handler table
defines the routine in the process's address space to be called when a
specific signal arrives.

Virtual memory context. The virtual memory context describes the full
contents of a process's private address space; we discuss it in Section 21.6.

21.4.2 Processes and Threads

Linux provides the fork() system call with the traditional functionality of
duplicating a process. Linux also provides the ability to create threads using the
clone() system call. However, Linux does not distinguish between processes
and threads. In fact, Linux generally uses the term task-rather than process or
thread-when referring to a flow of control within a program. When clone()
is invoked, it is passed a set of flags that determine how much sharing is to
take place between the parent and child tasks. Some of these flags are:

21.5

21.5 815

Thus, if clone() is passed the flags CLONE_FS, CLONE_VM, CLONE_SIGHAND,
and CLONE_FILES, the parent and child tasks will share the same file-system
information (such as the current working directory), the same memory space,
the same signal handlers, and the same set of open files. Using clone() in this
fashion is equivalent to creating a thread in other systems, since the parent task
shares most of its resources with its child task. However, if none of these flags is
set when clone () is invoked, no sharing takes place, resulting in functionality
similar to the fork() system call.

The lack of distinction between processes and threads is possible because
Linux does not hold a process's entire context within the main process data
structure; rather, it holds the context within independent subcontexts. Thus,
a process's file-system context, file-descriptor table, signal-handler table, and
virtual memory context are held in separate data structures. The process data
structure simply contains pointers to these other structures, so any number of
processes can easily share a subcontext by pointing to the same subcontext.

The arguments to the clone () system call tell it which subcontexts to copy,
and which to share, when it creates a new process. The new process always is
given a new identity and a new scheduling context. According to the arguments
passed, however, it may either create new subcontext data struch1res initialized
to be copies of the parent's or set up the new process to use the same subcontext
data structures being used by the parent. The fork() system call is nothing
more than a special case of clone() that copies all subcontexts, sharing none.

Scheduling is the job of allocating CPU time to different tasks within an
operating system. Normally, we think of scheduling as being the running and
interrupting of processes, but another aspect of scheduling is also important
to Linux: the running of the various kernel tasks. Kernel tasks encompass both
tasks that are requested by a running process and tasks that execute internally
on behalf of a device driver.

21.5.1 Process Scheduling

Linux has two separate process-scheduling algorithms. One is a time-sharing
algorithm for fair, preemptive scheduling among multiple processes; the other
is designed for real-time tasks, where absolute priorities are more important
than fairness.

The scheduling algorithm used for routine time-sharing tasks received
a major overhaul with Version 2.5 of the kernel. Earlier versions of the Linux
kernel ran a variation of the traditional UNIX scheduling algorithm, which does
not provide adequate support for SMP systems and does not scale well as the
number of tasks on the system grows. The overhaul of the Linux scheduler with
Version 2.5 of the kernel provides a scheduling algorithm that runs in constant
time-known as 0(1)-regardless of the number of tasks on the system. The
new scheduler also provides increased support for SMP, including processor
affin.ity and load balancing, as well as maintaining fairness and support for
interactive tasks.

816 Chapter 21

numeric
priority

0

99
100

140

relative
priority

highest

lowest

time
quantum

200 ms

10 ms

Figure 21.2 The relationship between priorities and time-slice length.

The Linux scheduler is a preemptive, priority-based algorithm with two
separate priority ranges: a real-time range from 0 to 99 and a nice value ranging
from 100 to 140. These two ranges map into a global priority scheme whereby
numerically lower values indicate higher priorities.

Unlike schedulers for many other systems, the Linux scheduler assigns
higher-priority tasks longer time quanta and lower-priority tasks shorter time
quanta. Because of the unique nature of the scheduler, this is appropriate for
Lim.IX, as we shall soon see. The relationship between priorities and time-slice
length is shown in Figure 21.2.

A rum<able task is considered eligible for execution on the CPU so long as
it has time remaining in its time slice. When a task has exhausted its time slice,
it is considered expired and is not eligible for execution again until all other
tasks have also exhausted their time quanta. The kernel maintains a list of all
runnable tasks in a runqueue data structure. Because of its support for SMP,
each processor maintains its own runqueue and schedules itself independently.
Each runqueue contains two priority arrays-active and expired. The active
array contains all tasks with time remaining in their time slices, and the expired
array contains all expired tasks. Each of these priority arrays includes a list of
tasks indexed according to priority (Figure 21.3). The scheduler chooses the
task with the highest priority from the active array for execution on the CPU.
On multiprocessor machines, this means that each processor is scheduling
the highest-priority task from its own runqueue structure. When all tasks
have exhausted their time slices (that is, the active array is empty), the two
priority arrays are exchanged as the expired array becomes the active array
and vice-versa.

Tasks are assigned dynamic priorities that are based on the nice value plus
or minus a value up to the value 5. W1<ether a value is added to or subtracted
from a task's nice value depends on the interactivity of the task. A task's
interactivity is determined by how long it has been sleeping while waiting
for I/0. Tasks that are more interactive typically have longer sleep times and
therefore are more likely to have adjustments closer to -5, as the scheduler
favors such interactive tasks. Conversely, tasks with shorter sleep times are
often CPU-bound and thus will have their priorities lowered.

A task's dynamic priority is recalculated when the task has exhausted its
time quantum and is to be moved to the expired array. Thus, when the two

active
array

priority
[OJ
[1]

[140]

task lists
o-o
o-o-o

0

21.5

expired
array

priority
[0]
[1]

[140]

task lists
o-o-o
0

o-o

Figure 21.3 List of tasks indexed according to priority.

817

arrays are exchanged, all tasks in the new active array have been assigned new
priorities and corresponding time slices.

Linux' s real-time scheduling is simpler still. Linux implements the two real
time scheduling classes required by POSIX.lb: first-come, first-served (FCFS)
and round-robin (Sections 5.3.1 and 5.3.4, respectively). In both cases, each
process has a priority irt addition to its scheduling class. Processes with
different priorities can compete with one another to some extent in time-sharing
scheduling; in real-time scheduling, however, the scheduler always runs the
process with the highest priority. Among processes of equal priority, it runs
the process that has been waiting longest. The only difference between FCFS
and round-robin scheduling is that FCFS processes continue to nm until they
either exit or block, whereas a round-robill. process will be preempted after a
while and will be moved to the end of the scheduling queue, so round-robin
processes of equal priority will automatically time-share among themselves.
Unlike routine time-sharing tasks, real-time tasks are assigned static priorities.

Linux's real-time scheduling is soft-rather than hard-real time. The
scheduler offers strict guarantees about the relative priorities of real-time
processes, but the kernel does not offer any guarantees about how quickly
a reaHim.e process will be scheduled once that process becomes runnable.

21.5.2 Kernel Synchronization

The way the kernel schedules its own operations is fundamentally different
from the way it schedules processes. A request for kernel-mode execution
can occur in two ways. A running program may request an operating-system
service, either explicitly via a system call or implicitly-for example, when a
page fault occurs. Alternatively, a device controller may deliver a hardware
interrupt that causes the CPU to start executing a kernel-defined handler for
that interrupt.

The problem posed to the kernel is that all these tasks may try to access the
sanl.e internal data structures. If one kernel task is in the middle of accessing
some data structure when an interrupt service routine executes, then that
service routine cannot access or modify the same data without risking data
corruption. This fact relates to the idea of critical sections-portions of code
that access shared data and that must not be allowed to execute concurrently.
As a result, kernel synchronization involves much more than just process
scheduling. A framework is required that allows kernel tasks to run without
violating the integrity of shared data.

818 Chapter 21

Prior to Version 2.6, Linux was a nonpreernptive kernet meaning that a
process running in kernel mode could not be preempted -even if a higher
priority process became available to run. With Version 2.6, the Linux kernel
became fully preemptive; so a task can now be preempted when it is running
in the kernel.

The LimiX kernel provides spinlocks and semaphores (as well as reader
writer versions of these two locks) for locking in the kernel. On SMP machines,
the fundamental locking mechanism is a spinlock; the kernel is designed so that
the spinlock is held only for short durations. On single-processor machines,
spinlocks are inappropriate for use and are replaced by enabling and disabling
kernel preemption. That is, on single-processor machines, rather than holding a
spinlock, the task disables kernel preemption. When the task would otherwise
release the spinlock, it enables kernel preemption. This pattern is summarized
below:

Linux uses an interesting approach to disable and enable kernel preemp
tion. It provides two simple system calls-preempLdisable () and pre
empLenable ()-for disabling and enabling kernel preemption. However, in
addition, the kernel is not preemptible if a kernel-mode task is holding a lock.
To enforce this rule, each task in the system has a thread-info structure that
includes the field preempt_count, which is a counter indicating the number of
locks being held by the task. The counter is incremented when a lock is acquired
and decremented when a lock is released. If the value of preempLcount for the
task currently running is greater than zero, it is not safe to preempt the kernet
as this task currently holds a lock. If the count is zero, the kernel can safely be
interrupted, assuming there are no outstanding calls to preempt_disable ().

Spinlocks-along with enabling and disabling of kernel preemption -are
used in the kernel only when the lock is held for short durations. When a lock
must be held for longer periods, semaphores are used.

The second protection technique used by Linux applies to critical sections
that occur in interrupt service routines. The basic tool is the processor's
interrupt-control hardware. By disabling interrupts (or using spinlocks) during
a critical section, the kernel guarantees that it can proceed without the risk of
concurrent access to shared data structures.

However, there is a penalty for disabling interrupts. On most hardware
architectures, interrupt enable and disable instructions are expensive. Further
more, as long as interrupts remain disabled, all I/0 is suspended, and any
device waiting for servicing will have to wait until interrupts are reenabled; so
performance degrades. The Linux kernel uses a synchronization architecture
that allows long critical sections to run for their entire duration without having
interrupts disabled. This ability is especially useful in the networking code. An
interrupt in a network device driver can signal the arrival of an entire network
packet, which may result in a great deal of code being executed to disassemble,
route, and forward that packet within the interrupt service routine.

21.5 819

kernel-system service routines (preemptible)

user-mode programs (preemptible)

Figure 21.4 Interrupt protection levels.

Linux implements this architecture by separating interrupt service routines
into two sections: the top half and the bottom half. The is a normal
interrupt service routine that runs with recursive interrupts disabled; interrupts
of a higher priority may interrupt the routine, but interrupts of the same
or lower priority are disabled. The of a service routine is run,
with all interrupts enabled, by a miniature scheduler that ensures that bottom
halves never interrupt themselves. The bottom-half scheduler is invoked
automatically whenever an interrupt service routine exits.

This separation means that the kernel can complete any complex processing
that has to be done in response to an interrupt without worrying about being
interrupted itself. If another interrupt occurs while a bottom half is executing,
then that interrupt can request that the same bottom half execute, but the
execution will be deferred until the one currently running completes. Each
execution of the bottom half can be interrupted by a top half but can never be
interrupted by a similar bottom half.

The top-half/bottom-half architecture is completed by a mechanism for
disabling selected bottom halves while executing normal, foreground kernel
code. The kernel can code critical sections easily using this system. Interrupt
handlers can code their critical sections as bottom halves; and when the
foreground kernel wants to enter a critical section, it can disable any relevant
bottom halves to prevent any other critical sections from interrupting it. At
tl1e end of the critical section, the kernel can reenable the bottom halves and
run any bottom-half tasks that have been queued by top-half interrupt service
routines during the critical section.

Figure 21.4 summarizes the various levels of interrupt protection within
the kernel. Each level may be interrupted by code running at a higher level
but will never be interrupted by code running at the same or a lower level;
except for user-mode code, user processes can always be preempted by another
process when a time-sharing scheduling interrupt occurs.

21.5.3 Symmetric Multiprocessing

The Linux 2.0 kernel was the first stable Linux kernel to support
hardware, allowing separate processes to execute in

parallel on separate processors. Originally, the implementation of SMP imposed
the restriction that only one processor at a time could be executing kernel-mode
code.

820 Chapter 21

21.6

In Version 2.2 of the kernel, a single kernel spinlock (sometimes termed
BKL for "big kernel lock") was created to allow multiple processes (running
on different processors) to be active in the kernel concurrently. However, the
BKL provided a very coarse level of locking granularity. Later releases of the
kernel made the SMP implementation more scalable by splitting this single
kernel spinlock into multiple locks, each of which protects only a small subset
of the kernel's data structures. Such spinlocks are described in Section 21.5.2.
The 2.6 kernel provided additional SMP enhancements, including processor
affinity and load-balancing algorithms.

Memory management under Linux has two components. The first deals with
allocating and freeing physical memory-pages, groups of pages, and small
blocks of memory. The second handles virtual memory, which is memory
mapped into the address space of running processes. In this section, we
describe these two components and then examine the mechanisms by which
the loadable components of a new program are brought il"lto a process's virtual
memory in response to an exec() system call.

21.6.1 Management of Physical Memory

Due to specific hardware characteristics, Linux separates physical memory into
three different zones, or regions:

ZONE_DMA

ZONE_NORMAL

ZONE_HIGHMEM

These zones are architecture specific. For example, on the Intel 80x86 archi
tecture, certain ISA (industry standard architecture) devices can only access
the lower 16 MB of physical memory using DMA. On these systems, the
first 16 MB of physical memory comprise ZONLDMA. ZONE_NORMAL identifies
physical memory that is mapped to the CPU's address space. This zone is
used for most routine memory requests. For architectures that do not limit
what DMA can access, ZONLDMA is not present, and ZONE_NORMAL is used.
Finally, ZONE_HIGHMEM (for "high memory") refers to physical memory that is
not mapped into the kernel address space. For example, on the 32-bit Intel
architecture (where 232 provides a 4-GB address space), the kernel is mapped
into the first 896 MB of the address space; the remaining memory is referred
to as high memory and is allocated from ZONE_HIGHMEM. The relationship of
zones and physical addresses on the Intel80x86 architecture is shown in Figure
21.5. The kernel maintains a list of free pages for each zone. When a request for
physical memory arrives, the kernel satisfies the request using the appropriate
zone.

The priinary physical-memory manager in the Lil"lux kernel is the page
allocator. Each zone has its own allocator, which is responsible for allocating
and freeing all physical pages for the zone and is capable of allocating ranges

21.6 821

Figure 21.5 Relationship of zones and physical addresses on the lntel80x86.

of physically contiguous pages on request. The allocator uses a buddy system
(Section 9.8.1) to keep track of available physical pages. In this scheme,
adjacent units of allocatable memory are paired together (hence its name). Each
allocatable memory region has an adjacent partner (or buddy). Whenever two
allocated partner regions are freed up, they are combined to form a larger
region-a buddy heap. That larger region also has a partner, with which it can
combine to form a still larger free region. Conversely, if a small memory request
cannot be satisfied by allocation of an existing small free region, then a larger
free region will be subdivided into two partners to satisfy the request. Separate
linked lists are used to record the free memory regions of each allowable size;
under Linux, the smallest size allocatable under this mechanism is a single
physical page. Figure 21.6 shows an example of buddy-heap allocation. A 4-KB
region is being allocated, but the smallest available region is 16 KB. The region
is broken up recursively until a piece of the desired size is available.

Ultim.ately, all memory allocations in the Linux kernel are ncade either
statically, by drivers that reserve a contiguous area of memory during system
boot time, or dynamically, by the page allocator. However, kernel functions
do not have to use the basic allocator to reserve memory. Several specialized
memory-management subsystems use the underlying page allocator to man
age their own pools of memory. The most important are the virtual memory
system, described in Section 21.6.2; the kmalloc () variable-length allocator;
the slab allocator, used for allocating memory for kernel data structures; and
the page cache, used for caching pages belonging to files.

Many components of the Linux operating system need to allocate entire
pages on request, but often smaller blocks of memory are required. The kernel

8KB 8KB

16KB

4KB

Figure 21.6 Splitting of memory in the buddy system.

822 Chapter 21

provides an additional allocator for arbitrary-sized requests, where the size of
a request is not known in advance and may be only a few bytes. Analogous
to the C language's malloc () function, this kmalloc () service allocates entire
pages on demand but then splits them into smaller pieces. The kernel maintains
lists of pages in use by the kmalloc () service. Allocating memory involves
determining the appropriate list and either taking the first free piece available
on the list or allocating a new page and splitting it up. Memory regions clain'led
by the kmalloc () system are allocated permanently until they are freed
explicitly; the kmalloc () system cannot reallocate or reclaim these regions
in response to memory shortages.

Another strategy adopted by Linux for allocating kernel memory is known
as slab allocation. A slab is used for allocating memory for kernel data
structures and is made up of one or more physically contiguous pages. A
consists of one or more slabs. There is a single cache for each unique kernel data
structure -a cache for the data structure representing process descriptors, a
cache for file objects, a cache for semaphores, and so forth. Each cache is
populated with that are instantiations of the kernel data structure
the cache represents. For example, the cache representing semaphores stores
instances of semaphore objects, and the cache representing process descriptors
stores instances of process descriptor objects. The relationship among slabs,
caches, and objects is shown in Figure 21.7. The figure shows two kernel
objects 3 KB in size and three objects 7 KB in size. These objects are stored
in the respective caches for 3-KB and 7-KB objects.

The slab-allocation algorithm uses caches to store kernel objects. When a
cache is created, a number of objects are allocated to the cache. The number of
objects in the cache depends on the size of the associated slab. For example,
a 12-KB slab (made up of three contiguous 4-KB pages) could store six 2-KB
objects. Initially, all the objects in the cache are marked as free. When a new
object for a kernel data structure is needed, the allocator can assign any free

kernel objects

3-KB I
objects l

7-KB
objects

Figure 21.7 Slab allocator in Linux.

physically
contiguous
pages

21.6 823

object from the cache to satisfy the request. The object assigned from the cache
is marked as used.

Let's consider a scenario in which the kernel requests memory from the
slab allocator for an object representing a process descriptor. In Linux systems,
a process descriptor is of the type struct task_struct, which requires
approximately 1.7 KB of memory. When the Linux kernel creates a new task,
it requests the necessary memory for the struct task_struct object from its
cache. The cache will fulfill the request using a struct task_struct object
that has already been allocated in a slab and is marked as free.

In Linux, a slab may be in one of three possible states:

1. Full. All objects in the slab are marked as used.

Empty. All objects in the slab are marked as free.

Partial. The slab consists of both used and free objects.

The slab allocator first attempts to satisfy the request with a free object in a
partial slab. If none exist, a free object is assigned from an empty slab. If no
empty slabs are available, a new slab is allocated from contiguous physical
pages and assigned to a cache; memory for the object is allocated from this
slab.

Two other main subsystems in Linux do their own management of physical
pages: the page cache and the virtual memory system. These systems are closely
related to one another. The page cache is the kernel's main cache for block
devices (Section 21.8.1) and memory-mapped files and is the main mechanism
through which I/0 to these devices is performed. Both the native Linux disk
based file systems and the NFS networked file system use the page cache.
The page cache stores entire pages of file contents and is not limited to block
devices; it can also cache networked data. The virtual memory system manages
the contents of each process's virtual address space. These two systems interact
closely with one another because reading a page of data into the page cache
requires mapping pages in the page cache using the virtual memory system. In
the following section, we look at the virtual memory system in greater detail.

21.6.2 Virtual Memory

The Limn virtual memory system is responsible for maintaining the address
space visible to each process. It creates pages of virtual memory on demand
and manages loading those pages from disk and swapping them back out to
disk as required. Under Linux, the virtual memory manager maintains two
separate views of a process's address space: as a set of separate regions and as
a set of pages.

The first view of an address space is the logical view, describing instructions
that the virtual memory system has received concerning the layout of the
address space. In this view, the address space consists of a set of non
overlapping regions, each region representing a continuous, page-aligned
subset of the address space. Each region is described internally by a single
vm_area_struct structure that defines the properties of the region, including
the process's read, write, and execute permissions in the region as well as
information about any files associated with the region. The regions for each

824 Chapter 21

address space are linked into a balanced binary tree to allow fast lookLlp of the
region corresponding to any virtual address.

The kernel also n"laintains a second, physical view of each address space.
This view is stored in the hardware page tables for the process. The page
table entries identify the exact current location of each page of virtual mernory,
whether it is on disk or in physical memory. The physical view is managed by a
set of routines, which are invoked from the kernel's software-interrupt handlers
whenever a process tries to access a page that is not currently present in the page
tables. Each vm_area_struct in the address-space description contains a field
that points to a table of functions that implement the key page-management
functions for any given virtual memory region. All requests to read or write
an unavailable page are eventually dispatched to the appropriate handler
in the function table for the vm_area_struct, so that the central memory
management routines do not have to know the details of managing each
possible type of memory region.

21.6.2.1 Virtual Memory Regions

Linux implements several types of virtual memory regions. One property
that characterizes virtual memory is the backing store for the region, which
describes where the pages for the region come from. Most memory regions
are backed either by a file or by nothing. A region backed by nothing is the
simplest type of virtual memory region. Such a region represents demand-zero
memory: when a process tries to read a page in such a region, it is simply given
back a page of memory filled with zeros.

A region backed by a file acts as a viewport onto a section of that file.
Whenever the process tries to access a page within that region, the page table
is filled with the address of a page within the kernel's page cache corresponding
to the appropriate offset in the file. The same page of physical memory is used
by both the page cache and the process's page tables, so any changes made to
the file by the file system are immediately visible to any processes that have
mapped that file into their address space. Any number of processes can map
the same region of the same file, and they will all end up using the same page
of physical memory for the purpose.

A virtual memory region is also defined by its reaction to writes. The
mapping of a region into the process's address space can be either private or
shared. If a process writes to a privately mapped region, then the pager detects
that a copy-on-write is necessary to keep the changes local to the process. In
contrast, writes to a shared region result in updating of the object mapped into
that region, so that the change will be visible immediately to any other process
that is mapping that object.

21.6.2.2 Lifetime of a Virtual Address Space

The kernel will create a new virtual address space in two situations: when a
process runs a new program with the exec() system call and when a new
process is created by the fork() system call. The first case is easy. When a
new program is executed, the process is given a new, completely empty virtual
address space. It is up to the routines for loading the program. to populate the
address space with virtual memory regions.

21.6 825

The second case, creating a new process with fork(), involves creating
a concplete copy of the existing process's virtual address space. The kernel
copies the parent process's vm_area_struct descriptors, then creates a new set
of page tables for the child. The parent's page tables are copied directly into
the child's, and the reference count of each page covered is incremented; thus,
after the fork, the parent and child share the same physical pages of memory
in their address spaces.

A special case occurs when the copying operation reaches a virtual memory
region that is mapped privately. Any pages to which the parent process has
written within such a region are private, and subsequent changes to these pages
by either the parent or the child must not update the page in the other process's
address space. When the page-table entries for such regions are copied, they
are set to be read only and are marked for copy-on-write. As long as neither
process modifies these pages, the two processes share the same page of physical
memory. However, if either process tries to modify a copy-on-write page, the
reference count on the page is checked. If the page is still shared, then the
process copies the page's contents to a brand-new page of physical memory
and uses its copy instead. This mechanism ensures that private data pages
are shared between processes whenever possible; copies are made only when
absolutely necessary.

21.6.2.3 Swapping and Paging

An important task for a virtual memory system is to relocate pages of memory
from physical memory out to disk when that Inemory is needed. Early UNIX
systems performed this relocation by swapping out the contents of entire
processes at once, but modern versions of UNIX rely more on paging-the
movement of individual pages of virtual memory between physical memory
and disk. Linux does not implement whole-process swapping; it uses the newer
paging mechanism exclusively.

The paging system can be divided into two sections. First, the
decides which to write out to disk and when to write them.

Second, the carries out the transfer and pages data back
into physical memory when they are needed again.

Linux's pageuut policy uses a modified version of the standard clock (or
second-chance) algorithm described in Section 9.4.5.2. Under Linux, a multiple
pass clock is used, and every page has an age that is adjusted on each pass of
the clock. The age is more precisely a measure of the page's youthfulness, or
how much activity the page has seen recently. Frequently accessed pages will
attain a higher age value, but the age of infrequently accessed pages will drop
toward zero with each pass. This age valuing allows the pager to select pages
to page out based on a least frequently used (LFU) policy.

The paging mechanism supports paging both to dedicated swap devices
and partitions and to normal files, although swapping to a file is significantly
slower due to the extra overhead incurred by the file system. Blocks are
allocated from the swap devices according to a bitmap of used blocks, which
is maintained in physical memory at all times. The allocator uses a next-fit
algorithm to try to write out pages to continuous runs of disk blocks for
improved performance. The allocator records the fact that a page has been
paged out to disk by using a feature of the page tables on modern processors:

826 Chapter 21

the page-table entry's page-not-present bit is set, allowing the rest of the page
table entry to be filled with an index identifying where the page has been
written.

21.6.2.4 Kernel Virtual Memory

Linux reserves for its own internal use a constant, architecture-dependent
region of the virtual address space of every process. The page-table entries
that map to these kernel pages are marked as protected, so that the pages are
not visible or modifiable when the processor is running in user mode. This
kernel virtual memory area contains two regions. The first is a static area that
contains page-table references to every available physical page of memory
in the system, so that a simple translation from physical to virtual addresses
occurs when kernel code is run. The core of the kernel, along with all pages
allocated by the normal page allocator, resides in this region.

The remainder of the kernel's reserved section of address space is not
reserved for any specific purpose. Page-table entries in this address range
can be modified by the kernel to point to any other areas of memory. The
kernel provides a pair of facilities that allow processes to use this virtual
memory. The vmalloc () function allocates an arbitrary number of physical
pages of memory that may not be physically contiguous into a single region of
virtually contiguous kernel memory. The vremap () function maps a sequence
of virtual addresses to point to an area of memory used by a device driver for
memory-mapped I/0.

21.6.3 Execution and Loading of User Programs

The Linux kernel's execution of user programs is triggered by a call to
the exec() system call. This exec() call commands the kernel to run a
new program within the current process, completely overwriting the current
execution context with the initial context of the new program. The first job of
this system service is to verify that the calling process has permission rights to
the file being executed. Once that matter has been checked, the kernel invokes
a loader routine to start running the program. The loader does not necessarily
load the contents of the program file into physical memory, but it does at least
set up the mapping of the program into virtual memory.

There is no single routine in Linux for loadil1.g a new program. Instead,
Linux maintains a table of possible loader functions, and it gives each such
function the opportunity to try loading the given file when an exec() system
call is made. The initial reason for this loader table was that, between the
releases of the 1.0 and 1.2 kernels, the standard format for Linux's binary files
was changed. Older Linux kernels understood the a. out format for binary
files-a relatively simple format common on older UNIX systems. Newer
Linux systems use the more modern ELF format, now supported by most
current UNIX implementations. ELF has a number of advantages over a. out,
including flexibility and extensibility. New sections can be added to an ELF
binary (for example, to add extra debugging information) without causing
the loader routines to become confused. By allowing registration of multiple
loader routines, Linux can easily support the ELF and a. out binary formats in
a single rmming system.

21.6 827

In Sections 21.6.3.1 and 21.6.3.2, we concentrate exclusively on the loading
and running of ELF-format binaries. The procedure for loading a. out binaries
is simpler but is similar in operation.

21.6.3.1 Mapping of Programs into Memory

Under Linux, the binary loader does not load a binary file into physical memory.
Rather, the pages of the binary file are mapped into regions of virtual memory.
Only when the program tries to access a given page will a page fault result in
the loading of that page into physical memory using demand paging.

It is the responsibility of the kernel's binary loader to set up the initial
memory mapping. An ELF-format binary file consists of a header followed by
several page-aligned sections. The ELF loader works by reading the header and
mapping the sections of the file into separate regions of virtual memory.

Figure 21.8 shows the typical layout of memory regions set up by the ELF
loader. In a reserved region at one end of the address space sits the kernet in
its own privileged region of virtual memory inaccessible to normal user-mode
programs. The rest of virtual memory is available to applications, which can use
the kernel's memory-mapping functions to create regions that map a portion
of a file or that are available for application data.

The loader's job is to set up the initial memory mapping to allow the
execution of the program to start. The regions that need to be initialized il1.clude
the stack and the program's text and data regions.

The stack is created at the top of the user-mode virtual memory; it
grows downward toward lower-numbered addresses. It includes copies of the
arguments and environment variables given to the program il1. the exec 0
system call. The other regions are created near the bottom end of virtual
memory. The sections of the binary file that contail1. program text or read-only

~~~~~~~~~~~++~ 

i memory invisible to user-mode code 

Figure 21.8 Memory layout for ELF programs. 



828 Chapter 21 

21.7 

data are mapped into memory as a write-protected region. Writable initialized 
data are mapped next; then any uninitialized data are mapped in as a private 
demand-zero region. 

Directly beyond these fixed-sized regions is a variable-sized region that 
programs can expand as needed to hold data allocated at run time. Each 
process has a pointer, brk, that points to the current extent of this data region, 
and processes can extend or contract their brk region with a single system call 
-sbrkO. 

Once these mappings have been set up, the loader initializes the process's 
program-counter register with the starting point recorded in the ELF header, 
and the process can be scheduled. 

21.6.3.2 Static and Dynamic Linking 

Once the program has been loaded and has started running, all the necessary 
contents of the binary file have been loaded into the process's virtual address 
space. However, most programs also need to run functions from the system 
libraries, and these library functions must also be loaded. In the simplest 
case, the necessary library functions are embedded directly in the program's 
executable binary file. Such a program is statically linked to its libraries, and 
statically linked executables can commence running as soon as they are loaded. 

The main disadvantage of static linking is that every program generated 
must contain copies of exactly the same common system library functions. It is 
much more efficient, in terms of both physical memory and disk-space usage, 
to load the system libraries into lTl.emory only once. Dynamic linking allows 
this single loading to happen. 

Linux implements dynamic linking in user mode through a special linker 
library. Every dynamically linked program contains a small, statically linked 
function that is called when the program starts. This static function just maps 
the link library into memory and runs the code that the function contains. The 
link library determines the dynamic libraries required by the program and the 
names of the variables and functions needed from those libraries by reading the 
information contained in sections of the ELF binary. It then maps the libraries 
into the middle of virtual memory and resolves the references to the symbols 
contained in those libraries. It does not matter exactly where in memory these 
shared libraries are mapped: they are compiled into position-independent 
code (PIC), which can run at any address in memory. 

Linux retains UNIX's standard file-system model. In UNIX, a file does not have 
to be an object stored on disk or fetched over a network from a remote file 
server. Rather, UNIX files can be anything capable of handling the input or 
output of a stream of data. Device drivers can appear as files, and interprocess
communication channels or network connections also look like files to the 
user. 

The Linux kernel handles all these types of files by hiding the implemen
tation details of any single file type behind a layer of software, the virtual file 



21.7 829 

systen1 (VFS). Here, we first cover the virtual file system and then discuss the 
standard Linux file system-ext2fs. 

21.7 .1 The Virtual File System 

The Linux VFS is designed around object-oriented principles. It has two 
components: a set of definitions that specify what file-system objects are 
allowed to look like and a layer o£ software to manipulate the objects. The 
VFS defines four main object types: 

An inode object represents an individual file. 

A file object represents an open file. 

A superblock object represents an entire file system. 

A dentry object represents an il"ldividual directory entry. 

For each of these four object types, the VFS defines a set of operations. 
Every object of one of these types contains a pointer to a function table. The 
function table lists the addresses of the actual functions that implement the 
defined operations for that object. For example, an abbreviated API for some of 
the file object's operations includes: 

int open ( . . . ) - Open a file. 

ssize_t read(. . . ) -Read from a file. 

ssize_t write (. . . ) - Write to a file. 

int mmap ( . . . ) - Memory-map a file. 

The complete definition of the file object is specified in the struct 
file_operations, which is located in the file /usr/include/linux/fs.h. 
An irnplementation of the file object (for a specific file type) is required to 
implement each function specified il"l the definition of the file object. 

The VFS software layer can perform an operation on one of the file-system 
objects by calling the appropriate function from the object's function table, 
without havil<g to know in advance exactly what kind of object it is dealing 
with. The VFS does not know, or care, whether an inode represents a networked 
file, a disk file, a network socket, or a directory file. The appropriate function 
for that file's read() operation will always be at the same place in its function 
table, and the VFS software layer will call that function without caring how the 
data are actually read. 

The inode and file objects are the mechanisms used to access files. An inode 
object is a data structure containing pointers to the disk blocks that contain the 
actual file contents, and a file object represents a point of access to the data in an 
open file. A process cannot access an inode' s contents without first obtaining a 
file object pointing to the inode. The file object keeps track of where in the file 
the process is currently reading or writing, to keep track of sequential file l/0. It 
also remembers whether the process asked for write permissions when the file 
was opened and tracks the process's activity if necessary to perform adaptive 



830 Chapter 21 

read-ahead, fetching file data into memory before the process requests the data, 
to improve performance. 

File objects typically belong to a single process, but inode objects do not. 
Even when a file is no longer being used by any processes, its inode object 
may still be cached by the VFS to improve performance if the file is used again 
in the near future. All cached file data are linked onto a list in the file's inode 
object. The inode also maintains standard information about each file, such as 
the owner, size, and time most recently modified. 

Directory files are dealt with slightly differently from other files. The UNIX 
programming interface defines a number of operations on directories, such as 
creating, deleting, and renaming a file in a directory. The system calls for these 
directory operations do not require that the user open the files concerned, 
unlike the case for reading or writing data. The VFS therefore defines these 
directory operations in the inode object, rather than in the file object. 

The superblock object represents a connected set of files that form a 
self-contained file system. The operating-system kernel maintains a single 
superblock object for each disk device mounted as a file system and for each 
networked file system currently connected. The main responsibility of the 
superblock object is to provide access to inodes. The VFS identifies every 
inode by a unique file-system/inode number pair, and it fil<ds the inode 
corresponding to a particular inode number by asking the superblock object to 
return the inode with that number. 

Finally, a dentry object represents a directory entry that may include the 
name of a directory in the path name of a file (such as /usr) or the actual file 
(such as stdio. h). For example, the file /usr I include/ stdio. h contains the 
directory entries (1) /, (2) usr, (3) include, and (4) stdio. h. Each one of these 
values is represented by a separate dentry object. 

As an example of how dentry objects are used, consider the situ
ation in which a process wishes to open the file with the pathname 
/usr I include/ stdio. h using an editor. Because Linux treats directory names 
as files, translating this path requires first obtaining the inode for the root
/. The operating system must then read through this file to obtain the inode 
for the file include. It must continue this process until it obtains the inode for 
the file stdio. h. Because path-name translation can be a time-consuming task, 
Linuxmaintains a cache of dentry objects, which is consulted during path-name 
translation. Obtaining the inode from the dentry cache is considerably faster 
than having to read the on-disk file. 

21.7.2 The Linux ext2fs File System 

The standard on-disk file system used by Linux is called ext2fs, for historical 
reasons. Linux was originally programmed with a Minix-compatible file 
system, to ease exchanging data with the Minix development system, but 
that file system was severely restricted by 14-character file-name limits and a 
maximum file-system size of 64 MB. The Minix file system was superseded by 
a new file system, which was christened the extended file system (extfs). A 
later redesign of this file system to improve performance and scalability and 
to add a few missing features led to the second extended file system (ext2fs). 

Linuxs ext2fs has much in common with the BSD Fast File System (FFS) 

(Section A.7.7). It uses a similar mechanism for locating the data blocks 



21.7 831 

belonging to a specific file, storing data-block pointers in indirect blocks 
throughout the file system with up to three levels of indirection. As in FFS, 

directory files are stored on disk just like normal files, although their contents 
are interpreted differently. Each block in a directory file consists of a linked list 
of entries; each entry contains the length of the entry, the name of a file, and 
the inode number of the inode to which that entry refers. 

The main differences between ext2fs and FFS lie in their disk-allocation 
policies. In FFS, the disk is allocated to files in blocks of 8 KB. These blocks are 
subdivided into fragments of 1 KB for storage of small files or partially filled 
blocks at the ends of files. In contrast, ext2fs does not use fragments at all but 
performs all its allocations in smaller units. The default block size on ext2fs is 
1 KB, although 2-KB and 4-KB blocks are also supported. 

To maintain high performance, the operating system must try to perform 
I/0 operations in large chunks whenever possible by clustering physically 
adjacent l/0 requests. Clustering reduces the per-request overhead incurred 
by device drivers, disks, and disk-controller hardware. A 1-KB I/0 request size 
is too small to maintain good performance, so ext2fs uses allocation policies 
designed to place logically adjacent blocks of a file into physically adjacent 
blocks on disk, so that it can submit an I/0 request fm several disk blocks as a 
single operation. 

The ext2fs allocation policy comes in two parts. As in FFS, an ext2fs file 
system is partitioned into multiple block groups. FFS uses the similar concept 
of cylinder groups, where each group corresponds to a single cylinder of a 
physical disk However, modern disk-drive technology packs sectors onto the 
disk at different densities, and thus with different cylinder sizes, depending 
on how far the disk head is from the center of the disk. Therefore, fixed-sized 
cylinder groups do not necessarily correspond to the disk's geometry. 

When allocating a file, ext2fs must first select the block group for that file. 
For data blocks, it attempts to allocate the file to the block group to which the 
file's inode has been allocated. For inode allocations, it selects the block group 
in which the file's parent directory resides, for nondirectory files. Directory 
files are not kept together but rather are dispersed throughout the available 
block groups. These policies are designed not only to keep related information 
within the same block group but also to spread out the disk load among the 
disk's block groups to reduce the fragmentation of any one area of the disk. 

Within a block group, ext2fs tries to keep allocations physically contiguous 
if possible, reducing fragmentation if it can. It maintains a bitmap of all free 
blocks in a block group. When allocating the first blocks for a new file, it 
starts searching for a free block from the beginning of the block group; when 
extending a file, it continues the search from the block most recently allocated 
to the file. The search is performed in two stages. First, ext2fs searches for an 
entire free byte in the bitmap; if it fails to find one, it looks for any free bit. 
The search for free bytes aims to allocate disk space in chunks of at least eight 
blocks where possible. 

Once a free block has been identified, the search is extended backward until 
an allocated block is encountered. When a free byte is found in the bitmap, this 
backward extension prevents ext2fs from leaving a hole between the most 
recently allocated block in the previous nonzero byte and the zero byte found. 
Once the next block to be allocated has been found by either bit or byte search, 
ext2fs extends the allocation forward for up to eight blocks and preallocates 



832 Chapter 21 

allocating scattered free blocks 

allocating continuous free blocks 

block in use 

D Ieee block 

fJ block selected [J by allocator 

___,. bitmap search 

bit boundary 

byte boundary 

Figure 21.9 ext2fs block-allocation policies. 

these extra blocks to the file. This preallocation helps to reduce fragmentation 
during in.terleaved writes to separate files and also reduces the CPU cost of 
disk allocation by allocating multiple blocks simultaneously. The preallocated 
blocks are returned to the free-space bitmap when the file is closed. 

Figure 21.9 illustrates the allocation policies. Each row represents a 
sequence of set and unset bits in an allocation bitmap, indicating used and 
free blocks on disk. In the first case, if we can find any free blocks sufficiently 
near the start of the search, then we allocate them no matter how fragmented 
they may be. The fragmentation is partially compensated for by the fact that 
the blocks are close together and can probably all be read without any disk 
seeks, and allocating them all to one file is better in the long run than allocating 
isolated blocks to separate files once large free areas become scarce on disk. In 
the second case, we have not immediately found a free block close by, so we 
search forward for an entire free byte in the bitmap. If we allocated that byte 
as a whole, we would end up creating a fragmented area of free space between 
it and the allocation preceding it so before allocating we back up to make this 
allocation flush with the allocation preceding it, and then we allocate forward 
to satisfy the default allocation of eight blocks. 

21.7.3 Journaling 

One popular feature in a file system is journaling, whereby modifications 
to the file system are sequentially written to a journal. A set of operations 
that performs a specific task is a transaction. Once a transaction is written to 
the journat it is considered to be committed, and the system call modifying 
the file system (write()) can return to the user process, allowing it to 
continue execution. Meanwhile, the journal entries relating to the transaction 
are replayed across the actual file-system structures. As the changes are made, a 



21.7 833 

pointer is updated to indicate which actions have completed and which are still 
incomplete. When an entire committed transaction is concpleted, it is removed 
from the journal. The journal, which is actually a circular buffer, may be in a 
separate section of the file system, or it may even be on a separate disk spindle. 
It is more efficient, but more complex, to have it under separate read-write 
heads, thereby decreasing head contention and seek times. 

If the system crashes, some transactions may remain in the journal. Those 
transactions were never completed to the file system even though they were 
committed by the operating system, so they must be completed once the system 
recovers. The transactions can be executed from the pointer until the work is 
complete, and the file-system structures remain consistent. The only problem 
occurs when a transaction has been aborted -that is, it was not committed 
before the system crashed. Any changes from those transactions that were 
applied to the file system must be undone, again preserving the consistency of 
the file system. This recovery is all that is needed after a crash, eliminating all 
problems with consistency checking. 

Journaling file systems are also typically faster than non-journaling sys
tems, as updates proceed much faster when they are applied to the in-memory 
journal rather than directly to the on-disk data structures. The reason for this 
improvement is found in the performance advantage of sequential I/0 over 
random I/0. Costly synchronous random writes to the file system are turned 
into much less costly synchronous sequential writes to the file system's journal. 
Those changes in turn are replayed asynchronously via random writes to the 
appropriate structures. The overall result is a significant gain in performance 
of file-system metadata-oriented operations, such as file creation and deletion. 

Journaling is not provided in ext2fs. It is provided, however, in another 
common file system available for Linux systems, ext3, which is based on ext2fs. 

21.7 .4 The Unux Process File System 

The flexibility of the Linux VFS enables us to implement a file system that does 
not store data persistently at all but rather provides an interface to some other 
functionality. The Linux process file system, known as the /proc file system, 
is an example of a file system whose contents are not actually stored anywhere 
but are computed on demand according to user file I/0 requests. 

A /proc file system is not unique to Linux. SVR4 UNIX introduced a /proc 
file system as an efficient interface to the kernel's process debugging support. 
Each subdirectory of the file system corresponded not to a directory on any 
disk but rather to an active process on the current system. A listing of the file 
system reveals one directory per process, with the directory name being the 
ASCH decimal representation of the process's unique process identifier (PID). 

Linux implements such a /proc file system but extends it greatly by 
adding a number of extra directories and text files under the file system's root 
directory. These new entries correspond to various statistics about the kernel 
and the associated loaded drivers. The /proc file system provides a way for 
programs to access this information as plain text files; the standard UNIX user 
environment provides powerful tools to process such files. For example, in 
the past, the traditional UNIX ps command for listing the states of all running 
processes has been implemented as a privileged process that reads the process 
state directly from the kernel's virtual memory. Under Lim1X, this command 



834 Chapter 21 

21.8 

is implemented as an entirely unprivileged program that simply parses and 
formats the information from /proc. 

The /proc file system must implement two things: a directory structu.re 
and the file contents within. Because a UNIX file system is defined as a set of file 
and directory inodes identified by their inode numbers, the /proc file system 
nmst define a unique and persistent inode number for each directory and the 
associated files. Once such a mapping exists, the file system can use this inode 
number to identify just what operation is required when a user tries to read 
from a particular file inode or to perform a lookup in a particular directory 
inode. When data are read from one of these files, the /proc file system will 
collect the appropriate information, format it into textual form, and place it 
into the requesting process's read buffer. 

The mapping from inode number to information type splits the inode 
number into two fields. In Linux, a PID is 16 bits wide, but an inode number is 
32 bits. The top 16 bits of the inode number are interpreted as a PID, and the 
remaining bits define what type of information is being requested about that 
process. 

A PID of zero is not valid, so a zero PID field in the inode number is 
taken to mean that this inode contains global-rather than process-specific
information. Separate global files exist iil /proc to report information such as 
the kernel version, free memory, performance statistics, and drivers currently 
numing. 

Not all the inode numbers in this range are reserved. The kernel can allocate 
new /proc inode mappings dynamically, maintaining a bitmap of allocated 
in ode numbers. It also maintains a tree data structure of registered global I pro c 
file-system entries. Each entry contains the file's in ode number, file name, and 
access permissions, along with the special functions used to generate the file's 
contents. Drivers can register and deregister entries in this tree at any time, 
and a special section of the tree-appearing under the /proc/sys directory
is reserved for kernel variables. Files under this tree are managed by a set 
of common handlers that allow both reading and writing of these variables, 
so a system administrator can tune the value of kernel parameters simply by 
writing the new desired values out in ASCII decimal to the appropriate file. 

To allow efficient access to these variables from within applications, the 
/proc/sys subtree is made available through a special system call, sysctl (), 
that reads and writes the same variables in binary, rather than in text, without 
the overhead of the file system. sysctl () is not an extra facility; it simply reads 
the /proc dynamic entry tree to identify the variables to which the application 
is referring. 

To the user, the I/O system in Linux looks much like that in any UNIX system. 
That is, to the extent possible, all device drivers appear as normal files. Users 
can open an access channel to a device in the same way they opens any 
other file-devices can appear as objects within the file system. The system 
administrator can create special files within a file system that contain references 
to a specific device driver, and a user opening such a file will be able to read 
from and write to the device referenced. By using the normal file-protection 



device 
driver driver 

21.8 

user application 

character 
device file 

character 
device 
driver 

r:1etwork· 
socket 

·I 
... llnE-l. • .. · : protocol 
dlsciptlne' 1 driver 

.'-' 
network· 
device 
driver 

Figure 21.10 Device-driver block structure. 

835 

system, which determines who can access which file, the administrator can set 
access permissions for each device. 

Linux splits all devices into three classes: block devices, character devices, 
and network devices. Figure 21.10 illustrates the overall structure of the 
device-driver system. 

include all devices that allow random access to completely 
independent, fixed-sized blocks of data, including hard disks and floppy disks, 
CD-ROMs, and flash memory. Block devices are typically used to store file 
systems, but direct access to a block device is also allowed so that programs 
can create and repair the file system that the device contains. Applications can 
also access these block devices directly if they wish; for example, a database 
application may prefer to perform its own, fine-tuned laying out of data onto 
the disk, rather than using the general-purpose file system. 

include most other devices, such as mice and keyboards. 
The fundamental difference between block and character devices is random 
access-block devices may be accessed randomly, while character devices are 
only accessed serially. For example, seeking to a certain position in a file might 
be supported for a DVD but makes no sense to a pointil1.g device such as a 
mouse. 

are dealt with differently from block and character 
devices. Users cannot directly transfer data to network devices; instead, 
they must communicate indirectly by opening a connection to the kernel's 
networking subsystem. We discuss the interface to network devices separately 
in Section 21.10. 

21.8.1 Block Devices 

Block devices provide the main interface to all disk devices in a system. 
Performance is particularly important for disks, and the block-device system 
must provide functionality to ensure that disk access is as fast as possible. This 
functionality is achieved through the scheduling of I/0 operations. 

In the context of block devices, a block represents the unit with which the 
kernel performs I/0. Wl1en a block is read into memory, it is stored in a buffer. 
The request manager is the layer of software that manages the reading and 
writing of buffer contents to and from a block-device driver. 

A separate list of requests is kept for each block-device driver. Traditionally, 
these requests have been scheduled according to a unidirectional-elevator 



836 Chapter 21 

(C-SCAN) algorithm that exploits the order in which requests are inserted in 
and removed from the lists. The request lists are maintained in sorted order of 
increasing starting-sector number. When a request is accepted for processing 
by a block-device driver, it is not removed fronc the list. It is rernoved only after 
the I/O is complete, at which point the driver continues with the next request 
in the list, even if new requests have been inserted into the list before the active 
request. As new I/0 requests are made, the request ncanager attempts to merge 
requests in the lists. 

The scheduling of I/0 operations changed somewhat with Version 2.6 of 
the kernel. The fundamental problem with the elevator algorithm is that I/0 
operations concentrated in a specific region of the disk can result in starvation 
of requests that need to occur in other regions of the disk. The deadline 
I/O scheduler used in Version 2.6 works similarly to the elevator algorithm 
except that it also associates a deadline with each request, thus addressing 
the starvation issue. By default, the deadline for read requests is 0.5 second, 
and that for write requests is 5 seconds. The deadline sched~uler maintains a 
sorted queue of pending I/0 operations ordered by sector number. However, 
it also maintains two other queues-a read queue for read operations and a 
write queue for write operations. These two queues are ordered according to 
deadline. Every I/0 request is placed in both the sorted queue and either the 
read or the write queue, as appropriate. Ordinarily, I/0 operations occur from 
the sorted queue. However, if a deadline expires for a request in either the read 
or the write queue, I/O operations are scheduled from the queue containing the 
expired request. This policy ensures that an I/0 operation will wait no longer 
than its expiration time. 

21.8.2 Character Devices 

A character-device driver can be almost any device driver that does not offer 
random access to fixed blocks of data. Any character-device drivers registered 
to the Lim.JX kernel must also register a set of functions that implement the 
file I/0 operations that the driver can handle. The kernel performs almost no 
preprocessing of a file read or write request to a character device; it simply 
passes the request to the device in question and lets the device deal with the 
request. 

The main exception to this rule is the special subset of character-device 
drivers that implement terminal devices. The kernel maintains a standard 
interface to these drivers by means of a set of tty _struct structures. Each of 
these structures provides buffering and flow control on the data stream from 
the terminal device and feeds those data to a line discipline. 

A is an interpreter for the information from the terminal 
device. The most common line discipline is the tty discipline, which glues the 
terminal's data stream onto the standard input and output streams of a user's 
running processes, allowing those processes to communicate directly with the 
user's terminal. This job is complicated by the fact that several such processes 
may be running simultaneously, and the tty line discipline is responsible for 
attaching and detaching the terminal's input and output from the various 
processes connected to it as those processes are suspended or awakened by the 
user. 



21.9 

21.9 837 

Other line disciplines also are implemented that have nothing to do with 
I/0 to a user process. The PPP and SUP networking protocols are ways of 
encoding a networking connection over a terminal device such as a serial 
line. These protocols are implemented under Linux as drivers that at one end 
appear to the terminal system as line disciplines and at the other end appear 
to the networking system as network-device drivers. After one of these line 
disciplines has been enabled on a terminal device, any data appearing on that 
terminal will be routed directly to the appropriate network-device driver. 

Linux provides a rich environment for processes to communicate with each 
other. Communication may be just a matter of letting another process know 
that some event has occurred, or it may involve transferring data from one 
process to another. 

21.9.1 Synchronization and Signals 

The standard Lim.IX mechanism for informing a process that an event has 
occurred is the Signals can be sent from any process to any other 
process, with restrictions on signals sent to processes owned by another user. 
However, a limited number of signals are available, and they cannot carry 
information. Only the fact that a signal has occurred is available to a process. 
Sigrl.als are not generated only by processes. The kernel also generates signals 
internally; for example, it can send a signal to a server process when data 
arrive on a network channel, to a parent process when a child terminates, or to 
a waiting process when a timer expires. 

Internally, the Linux kernel does not use signals to communicate with 
processes ruml.ing in kernel mode. If a kernel-mode process is expecting an 
event to occm~ it will not normally use signals to receive notification of that 
event. Rather, communication about incoming asynchronous events within 
the kernel takes place through the use of scheduling states and wai t_queue 
structures. These mechanisms allow kernel-mode processes to inform one 
another about relevant events, and they also allow events to be generated 
by device drivers or by the networking system. Whenever a process wants to 
wait for some event to complete, it places itself on a wait queue associated with 
that event and tells the scheduler that it is no longer eligible for execution .. Once 
the event has completed, it will wake up every process on the wait This 
procedure allows multiple processes to wait for a single event. For 
if several processes are trying to read a file from a disk, then they will 
awakened once the data have been read into memory successfully. 

Although signals have always been the main mechanism for commu
nicating asynchronous events among processes, Linux also implements the 
semaphore mechanism of System V UNIX. A process can wait on a semaphore 
as easily as it can wait for a signal, but semaphores have two advantages: Large 
numbers of semaphores can be shared among multiple independent processes, 
and operations on multiple semaphores can be performed atomically. Inter
nally, the standard Linux wait queue mechanism synchronizes processes that 
are communicating with semaphores. 



838 Chapter 21 

21.10 

21.9.2 Passing of Data Among Processes 

Linux offers several mechanisms for passing data among processes. The stan
dard UNIX mechanism allows a child process to inherit a communication 
channel from its parent; data written to one end of the pipe can be read at the 
other. Under Lim.JX, pipes appear as just another type of inode to virtual-file
system software, and each pipe has a pair of wait queues to synchronize the 
reader and writer. UNIX also defines a set of networking facilities that can send 
streams of data to both local and remote processes. Networking is covered in 
Section 21.10. 

Another process communications method, shared memory, offers an 
extremely fast way to communicate large or small amounts of data. Any data 
written by one process to a shared memory region can be read immediately by 
any other process that has mapped that region into its address space. The main 
disadvantage of shared memory is that, on its own, it offers no synchronization. 
A process can neither ask the operating system whether a piece of shared 
memory has been written to nor suspend execution until such a write occurs. 
Shared memory becomes particularly powerful when used in conjunction with 
another interprocess-communication mechanism that provides the missing 
synchronization. 

A shared-memory region in Linux is a persistent object that can be created 
or deleted by processes. Such an object is treated as though it were a small, 
independent address space. The Linux paging algorithms can elect to page 
out to disk shared-memory pages, just as they can page out a process's data 
pages. The shared-memory object acts as a backing store for shared-memory 
regions, just as a file can act as a backing store for a memory-mapped memory 
region. When a file is mapped into a virtual-address-space region, then any 
page faults that occur cause the appropriate page of the file to be mapped into 
virtual memory. Similarly, shared-memory mappings direct page faults to map 
in pages from a persistent shared-memory object. Also just as for files, shared
memory objects remember their contents even if no processes are currently 
mapping them into virtual memory. 

Networking is a key area of functionality for Linux. Not only does Linux 
support the standard Internet protocols used for most UNIX-to-UNIX com
munications, but it also implements a number of protocols native to other, 
non-UNIX operating systems. In particular, since Linux was originally imple
mented primarily on PCs, rather than on large workstations or on server-class 
systems, it supports many of the protocols typically used on PC networks, such 
as AppleTalk and IPX. 

Internally, networking in the Linux kernel is implemented by three layers 
of software: 

The socket interface 

Protocol drivers 

Network-device drivers 



21.10 839 

User applications perform all networking requests through the socket 
interface. This interface is designed to look like the 4.3 BSD socket layer, so 
that any programs designed to make use of Berkeley sockets will run on Linux 
without any source-code changes. This interface is described in Section A.9.1. 
The BSD socket interface is sufficiently general to represent network addresses 
for a wide range of networking protocols. This single interface is used in Linux 
to access not just those protocols implemented on standard BSD systems but all 
the protocols supported by the system. 

The next layer of software is the protocol stack, which is similar in 
organization to BSD' sown framework. Whenever any networking data arrive at 
this laye1~ either from an application's socket or from a network-device driver, 
the data are expected to have been tagged with an identifier specifying which 
network protocol they contain. Protocols can communicate with one another 
if they desire; for example, within the Internet protocol set, separate protocols 
manage routing, error reporting, and reliable retransmission of lost data. 

The protocol layer may rewrite packets, create new packets, split or 
reassemble packets into fragments, or simply discard incoming data. Ulti
mately, once the protocol layer has finished processing a set of packets, it 
passes them on, upward to the socket interface if the data are destined for 
a local connection or downward to a device driver if the data need to be 
transmitted remotely. The protocol layer decides to which socket or device it 
will send the packet. 

All communication between the layers of the networking stack is per
formed by passing single skbuff (socket buffer) structures. Each of these 
structures contains a set of pointers into a single continuous area of memory, 
representing a buffer inside which network packets can be constructed. The 
valid data in a skbuff do not need to start at the beginning of the skbuff's 
buffer, and they do not need to run to the end. The networking code can 
add data to or trim data from either end of the packet, as long as the result 
still fits into the skbuff. This capacity is especially important on modern 
microprocessors, where improvements in CPU speed have far outstripped the 
performance of main memory. The skbuff architecture allows flexibility in 
manipulating packet headers and checksums while avoiding any unnecessary 
data copying. 

The most important set of protocols in the Linux networking system is the 
TCP /IP protocol suite. This suite comprises a number of separate protocols. 
The IP protocol implements routing between different hosts anywhere on the 
network. On top of the routing protocol are built the UDP, TCP, and ICMP 
protocols. The UDP protocol carries arbitrary individual datagrams between 
hosts. The TCP protocol implements reliable connections between hosts with 
guaranteed in-order delivery of packets and automatic retransmission of lost 
data. The ICMP protocol is used to carry various error and status messages 
between hosts. 

Each packet (skbuff) arriving at the networking stack's protocol software 
is expected to be already tagged with an internal identifier indicating the 
protocol to which the packet is relevant. Different networking-device drivers 
encode the protocol type in different ways; thus, the protocol for incoming 
data must be identified in the device driver. The device driver uses a hash table 
of known networking-protocol identifiers to look up the appropriate protocol 



840 Chapter 21 

21.11 

and passes the packet to that protocol. New protocols can be added to the hash 
table as kernel-loadable modules. 

Incoming IP packets are delivered to the IP driver. The job of this layer 
is to perform routing. After deciding where the packet is to be sent, the IP 
driver forwards the packet to the appropriate internal protocol driver to be 
delivered locally or injects it back into a selected network-device-driver queue 
to be forwarded to another host. It performs the routing decision using two 
tables: the persistent forwarding information base (FIB) and a cache of recent 
routing decisions. The FIB holds routing-configuration information and can 
specify routes based either on a specific destination address or on a wildcard 
representing multiple destinations. The FIB is organized as a set of hash tables 
indexed by destination address; the tables representing the most specific routes 
are always searched first. Successful lookups from this table are added to 
the route-caching table, which caches routes only by specific destination; no 
wildcards are stored in the cache, so lookups can be ncade quickly. An entry in 
the route cache expires after a fixed period with no hits. 

At various the IP software passes packets to a separate section 
of code for management-selective filtering of packets according 
to arbitrary criteria, usually for purposes. The firewall manager 
maintains a number of separate chain§ and allows a skbuff to be 
matched against any chain. Chains are reserved for separate purposes: one is 
used for forwarded packets, one for packets being input to this host, and one 
for data generated at this host. Each chain is held as an ordered list of rules, 
where a rule specifies one of a number of possible firewall-decision functions 
plus some arbitrary data for matching purposes. 

Two other functions performed by the IP driver are disassembly and 
reassembly of large packets. If an outgoing packet is too large to be queued to 
a device, it is simply split up into smaller fragments, which are all queued to 
the driver. At the receiving host, these fragments must be reassembled. The IP 
driver maintains an ipfrag object for each fragment awaiting reassembly and 
an ipq for each datagram being assembled. Incoming fragments are matched 
against each known ipq. If a match is found, the fragment is added to it; 
otherwise, a new ipq is created. Once the final fragment has arrived for a 
ipq, a completely new skbuff is constructed to hold the new packet, and this 
packet is passed back into the IP driver. 

Packets identified by the IP as destined for this host are passed on to one 
of the other protocol drivers. The UDP and TCP protocols share a means of 
associating packets with source and destination sockets: each connected pair 
of sockets is uniquely identified by its source and destination addresses and 
by the source and destination port numbers. The socket lists are linked to 
hash tables keyed on these four address-port values for socket lookup on 
incoming packets. The TCP protocol has to deal with unreliable connections, so 
it maintains ordered lists of unacknowledged outgoing packets to retransmit 
after a timeout and of incoming out-of-order packets to be presented to the 
socket when the missing data have arrived. 

Linux's security model is closely related to typical UNIX security mechanisms. 
The security concerns can be classified in two groups: 



21.11 841 

Authentication. Making sure that nobody can access the system without 
first proving that she has entry rights 

Access control. Providing a mechanism for checking whether a user has 
the right to access a certain object and preventing access to objects as 
required 

21.11.1 Authentication 

Authentication in UNIX has typically been performed through the use of a 
publicly readable password file. A user's password is combined with a random 
"salt" value, and the result is encoded with a one-way transformation function 
and stored in the password file. The use of the one-way function means that 
the original password cam1ot be deduced from the password file except by 
trial and error. When a user presents a password to the system, the password is 
recombined with the salt value stored in the password file and passed through 
the same one-way transformation. If the result matches the contents of the 
password file, then the password is accepted. 

Historically, UNIX implementations of this mechanism have had several 
problems. Passwords were often limited to eight characters, and the number 
of possible salt values was so low that an attacker could easily combine a 
dictionary of commonly used passwords with every possible salt value and 
have a good chance of matching one or more passwords in the password 
file, gaining "Lmauthorized access to any accounts compromised as a result. 
Extensions to the password mechanism have been introduced that keep the 
encrypted password secret in a file that is not publicly readable, that allow 
longer passwords, or that use more secure methods of encoding the password. 
Other authentication mechanisms have been introduced that limit the times 
during which a user is permitted to connect to the system. Also, mechanisms 
exist to distribute authentication information to all the related systems in a 
network. 

A new security mechanism has been developed by UNIX vendors to 
address authentication problems. The 

system is based on a shared library that can be used by any system 
component that needs to authenticate users. An implementation of this system 
is available under Linux. PAM allows authentication modules to be loaded on 
demand as specified in a system-wide configuration file. If a new authentication 
mechanism is added at a later date, it can be added to the configuration file, 
and all system components will immediately be able to take advantage of it. 
PAM modules can specify authentication methods, account restrictions, session
setup functions, and password-changing functions (so that, when users change 
their passwords, all the necessary authentication mechanisms can be updated 
at once). 

21.11.2 Access Control 

Access control under UNIX systems, including Linux, is performed through the 
use of unique numeric identifiers. A user identifier (UID) identifies a single user 
or a single set of access rights. A group identifier (GID) is an extra identifier 
that can be used to identify rights belonging to more than one user. 



842 Chapter 21 

Access control is applied to various objects in the system. Every file 
available in the system is protected by the standard access-control mecha
nism. In addition, other shared objects, such as shared-memory sections and 
semaphores, employ the same access system. 

Every object in a UNIX system under user and group access control has a 
single UID and a single GID associated with it. User processes also have a single 
UID, but they may have more than one GID. If a process's UID matches the UID 
of an object, then the process has or to that object. 
If the UIDs do not match but any GID of the process matches the GID, 
then are conferred; otherwise, the process has to the 
object. 

Linux performs access control by assigning objects a that 
specifies which access modes-read, write, or execute-are to be granted to 
processes with owner, group, or world access. Thus, the owner of an object 
might have full read, write, and execute access to a file; other users in a certain 
group might be given read access but denied write access; and everybody else 
might be given no access at all. 

The only exception is the privileged UID. A process with this special 
UID is granted automatic access to any object in the system, bypassing 
normal access checks. Such processes are also granted permission to perform 
privileged operations, such as reading any physical memory or opening 
reserved network sockets. This mechanism allows the kernel to prevent normal 
users from accessing these resources: most of the kernel's key internal resources 
are implicitly owned by the root UID. 

Linux implements the standard UNIX setuid mechanism described in 
Section A.3.2. This mechanism allows a program to run with privileges different 
from those of the user running the program. For example, the lpr program 
(which submits a job to a print queue) has access to the system's print queues 
even if the user running that program does not. The UNIX implementation of 
setuid distinguishes between a process's real and effective UID. The real UID 
is that of the user running the program; the effective UID is that of the file's 
owner. 

Under Linux, this mechanism is augmented in two ways. First, Linux 
implements the POSIX specification's saved user-id mechanism, which 
allows a process to drop and reacquire its effective UID repeatedly. For security 
reasons, a program may want to perform most of its operations in a safe 
mode, waiving the privileges granted by its setuid status; but it may wish 
to perform selected operations with all its privileges. Standard UNIX imple
mentations achieve this capacity only by swapping the real and effective UIDs; 
the previous effective UID is remembered, but the program's real UID does not 
always correspond to the UID of the user running the program. Saved UIDs 
allow a process to set its effective UID to its real UID and then back to the 
previous value of its effective UID without having to modify the real UID at any 
time. 

The second enhancement provided by Linux is the addition of a process 
characteristic that grants just a subset of the rights of the effective UID. The 

and process properties are used when access rights are granted 
to files. The appropriate property is set every time the effective UID or GID is 
set. However, the fsuid and fsgid can be set independently of the effective ids, 
allowing a process to access files on behalf of another user without taking on the 



21.12 

21.12 843 

identity of that other user in any other way. Specifically, server processes can 
use this mechanism to serve files to a certain user without becoming vulnerable 
to being killed or suspended by that user. 

Finally, Linux provides a mechanism for flexible passing of rights from 
one program to another-a mechanism that has become common in modern 
versions of UNIX. When a local network socket has been set up between any 
two processes on the system, either of those processes may send to the other 
process a file descriptor for one of its open files; the other process receives a 
duplicate file descriptor for the same file. This mechanism allows a client to 
pass access to a single file selectively to some server process without granting 
that process any other privileges. For example, it is no longer necessary for a 
print server to be able to read all the files of a user who submits a new print 
job; the print client can simply pass the server file descriptors for any files to 
be printed, denying the server access to any of the user's other files. 

Linux is a modern, free operating system based on UNIX standards. It has been 
designed to run efficiently and reliably on common PC hardware; it also runs 
on a variety of other platforms. It provides a programming interface and user 
interface compatible with standard UNIX systems and can run a large number of 
UNIX applications, including an increasing number of comm.ercially supported 
applications. 

Linux has not evolved in a vacuum. A complete Linux system includes 
many components that were developed independently of Linux. The core 
Linux operating-system kernel is entirely original, but it allows much existing 
free UNIX software to run, resulting in an entire UNIX-compatible operating 
system free from proprietary code. 

The Linux kernel is implemented as a traditional monolithic kernel for 
performance reasons, but it is modular enough in design to allow most drivers 
to be dynamically loaded and unloaded at run time. 

Linux is a multiuser system, providing protection between processes and 
running multiple processes according to a time-sharing scheduler. Newly 
created processes can share selective parts of their execution environment 
with their parent processes, allowing multithreaded programming. Interpro
cess communication is supported by both System V mechanisms-message 
queues, semaphores, and shared memory-and BSD's socket interface. Multi
ple networking protocols can be accessed simultaneously through the socket 
interface. 

The memory-management system uses page sharing and copy-on-write 
to minimize the duplication of data shared by different processes. Pages are 
loaded on demand when they are first referenced and are paged back out to 
backing store according to an LFU algorithm if physical memory needs to be 
reclaimed. 

To the user, the file system appears as a hierarchical directory tree that 
obeys UNIX semantics. Internally, Linux uses an abstraction layer to manage 
multiple file systems. Device-oriented, networked, and virtual file systems are 
supported. Device-oriented file systems access disk storage through a page 
cache that is unified with the virtual memory system. 



844 Chapter 21 

21.1 What are the advantages and disadvantages of making only some of the 
symbols defined inside a kernel accessible to a loadable kernel module? 

21.2 The Linux scheduler implements soft real-time scheduling. What fea
tures necessary for certain real-time programming tasks are missing? 
How might they be added to the kernel? 

21.3 In what ways does the Linux setuid feature differ from the setuid feature 
in standard Unix? 

21.4 What socket type should be used to implement an intercomputer 
file-transfer program? What type should be used for a program that 
periodically tests to see whether another computer is up on the 
network? Explain your answer. 

21.5 What scenarios would cause a page of memory to be mapped into a user 
program's address space with the copy-on-write attribute enabled? 

21.6 What extra costs are incurred in the creation and scheduling of a 
process, compared with the cost of a cloned thread? 

21.7 Linux runs on a variety of hardware platforms. What steps must 
Linux developers take to ensure that the system is portable to different 
processors and memory-management architectures and to minimize 
the ammmt of architecture-specific kernel code? 

21.8 Multithreading is a commonly used programming technique. Describe 
three different ways to implement threads, and compare these three 
methods with the Linux clone() mechanism. When might using each 
alternative mechanism be better or worse than using clones? 

21.9 The Linux source code is freely and widely available over the Inter
net and from CD-ROM vendors. What are three implications of this 
availability for the security of the Linux system? 

21.10 Under what circumstances would a user process request an operation 
that results in the allocation of a demand-zero memory region? 

21.11 What are the primary goals of the conflict-resolution mechanism used 
by the Linux kernel for loading kernel modules? 

21.12 What are the advantages and disadvantages of writing an operating 
system in a high-level language, such as C? 

21.13 In Linux, shared libraries perform many operations central to the 
operating system. What is the advantage of keeping this functionality 
out of the kernel? Are there any drawbacks? Explain your answer. 

21.14 The Linux kernel does not allow paging out of kernel memory. What 
effect does this restriction have on the kernel's design? What are two 
advantages and two disadvantages of this design decision? 



845 

21.15 The directory structure of a Linux operating system could include files 
corresponding to several different file systems, including the Linux 
/proc file system. How might the need to support different file-system 
types affect the structure of the Linux kernel? 

21.16 Would you classify Linux threads as user-level threads or as kernel-level 
threads? Support your answer with the appropriate arguments. 

21.17 At one time, UNIX systems used disk-layout optimizations based 
on the rotation position of disk data, but modern implementations, 
including Linux, simply optimize for sequential data access. Why do 
they do so? Of what hardware characteristics does sequential access 
take advantage? Why is rotational optimization no longer so useful? 

21.18 Discuss how the clone() operation supported by Linux is used to 
support both processes and threads. 

21.19 In what circumstances is the system-call sequence fork() exec() most 
appropriate? When is vfork() preferable? 

The Linux system is a product of the Internet; as a result, much of the 
available documentation on Linux is available in some form on the Internet. 
The following key sites reference most of the useful information available: 

The Linux Cross-Reference Pages (http:/ /lxr.linux.no/) maintain current 
listil1.gs of the Linux kernel, browsable via the Web and fully cross
referenced. 

Linux-HQ (http:/ /www.linuxhq.com/) provides a large amount of infor
mation relating to the Linux 2.x kernels. This site also includes lil1.ks to the 
home pages of most Linux distributions, as well as archives of the major 
mailing lists. 

The Linux Documentation Project (http:/ /sunsite.unc.edu/linux/) lists 
many books on Linux that are available in source format as part of the 
Linux Documentation Project. The project also hosts the Linux How-To 
guides, which contain hints and tips relating to aspects of Linux. 

The Kernel Hackers' Guide is an Internet-based guide to kernel 
internals in general. This constantly expandil1.g site is located at 
http:/ /www.redhat.com:8080/HyperNews/get/khg.html. 

The Kernel Newbies website (http:/ /www.kernelnewbies.org/) provides 
a resource for introducing the Linux kernel to newcomers. 

Many mailing lists devoted to Linux are also available. The most important 
are maintained by a mailing-list manager that can be reached at the e-mail 
address maj ordomo©vger. rutgers. edu. Send e-mail to this address with the 
single line "help" in the mail's body for information on how to access the list 
server and to subscribe to any lists. 



846 Chapter 21 

Finally the Linux system itself can be obtained over the Internet. Complete 
Linux distributions can be obtained from the home sites of the companies 
concerned, and the Linux community also maintains archives of current system 
components at several places on the Internet. The most important are these: 

ftp:/ /tsx-ll.mit.edu/pub/linux/ 

ftp:/ /sunsite.unc.edu/pub/Linux/ 

ftp: I /linux.kernel.org/pub /linux/ 

In addition to investigating Internet resources, you can read about the 
internals of the Linux kernel in Bovet and Cesati [2002] and Love [2004]. 



22.1 

The Microsoft Windows XP operating system is a 32-I 64-bit preemptive 
multitasking operating system for AMD K6/K7, Intel IA32/IA64, and later 
microprocessors. The successor to Windows NT and Windows 2000, Windows 
XP is also intended to replace the Windows 95/98 operating system. In this 
chapter, we discuss the key goals of Windows XP, the layered architecture of 
the system that has made it so easy to use, the file system, the networking 
features, and the programming interface. 

To explore the principles underlying Windows XP's design and the specific 
components of the system. 

To explain how Windows XP can run programs designed for other operating 
systems. 

To provide a detailed discussion of the Windows XP file system. 

To illustrate the networking protocols supported in Windows XP. 

To describe the interface available to system and application programmers. 

In the mid-1980s, Microsoft and IBM cooperated to develop the OS/2 operating 
system, which was written in assembly language for single-processor Intel 
80286 systems. In 1988, Microsoft decided to make a fresh start and to develop 
a "new technology" (or NT) portable operating system that supported both the 
OS/2 and POSIX application-programming interfaces (APis). In October 1988, 
Dave Cutler, the architect of the DEC VAX/VMS operating system, was hired 
and given the charter of building this new operating system. 

Originally, the team planned to use the OS/2 API as NTs native environment, 
but during development, NT was changed to use the 32-bit Windows API (or 
Win32 API), reflecting the popularity of Windows 3.0. The first versions of NT 
were Windows NT 3.1 and Windows NT 3.1 Advanced Server. (At that time, 

847 



848 Chapter 22 

16-bit Windows was at version 3.1.) Windows NT Version 4.0 adopted the 
Windows 95 user interface and incorporated Internet Web-server and Web
browser software. In addition, user-interface routines and all graphics code 
were moved into the kernel to improve performance, with the side effect of 
decreased system reliability. Although previous versions of NT had been ported 
to other microprocessor architectures, the Windows 2000 version, released 
in February 2000, supported only Intel (and compatible) processors due to 
marketplace factors. Windows 2000 incorporated significant changes. It added 
Active Directory (an X.SOO-based directory service), better networking and 
laptop support, support for plug-and-play devices, a distributed file system, 
and support for more processors and more memory. 

In October 2001, Windows XP was released as both an update to the 
Windows 2000 desktop operating system and a replacement for Windows 
95/98. In 2002, the server versions of Windows XP became available (called 
Windows .Net Server). Windows XP updated the graphical user interface 
(GUI) with a visual design that took advantage of more recent hardware 
advances and many new Numerous features were added 
to automatically repair problems in applications and the operating system 
itself. As a result of these changes, Windows XP provides better networking and 
device experience (including zero-configuration wireless, instant messaging, 
streaming media, and digital photography /video), dramatic performance 
improvements for both the desktop and large multiprocessors, and better 
reliability and security than earlier Windows operating systems. 

Windows XP uses a client-server architecture (like Mach) to implement 
multiple operating-system personalities, such as Win32 API and POSIX, with 
user-level processes called subsystems. The subsystem architecture allows 
enhancements to be made to one operating-system personality without affect
ing the application compatibility of any others. 

Windows XP is a multiuser operating system, supporting simultaneous 
access through distributed services or through multiple instances of the 
graphical user interface via the Windows terminal server. The server versions 
of Wil,dows XP support simultaneous terminal server sessions from Windows 
desktop systems. The desktop versions of terminal server multiplex the 
keyboard, mouse, and monitor between virtual terminal sessions for each 
logged-on user. This feature, called fast user switching, allows users to preempt 
each other at the console of a PC without having to log off and onto the system. 

Windows XP was the first version of Windows to ship a 64-bit version. 
The native NT file system~ and many of the Win32 APis have always 
used 64-bit integers where appropriate-so the major extension to 64-bit in 
Wil,dows XP was support for large addresses. 

There are two desktop versions of Windows XP. Windows XP Professional 
is the premium desktop system for power users at work and at home. Windows 
XP Personal provides the reliability and ease of use of Windows XP but lacks 
the more advanced features needed to work seamlessly with Active Directory 
or run POSIX applications. 

The mernbers of the Windows .Net Server family use the same core 
components as the desktop versions but add a range of features needed for 
uses such as webserver farms, print/ file servers, clustered systems, and large 
datacenter machines. The large datacenter machines can have up to 64GB of 



22.2 

22.2 849 

memory and 32 processors on IA32 systems and 128 GB and 64 processors on 
IA64 systems. 

Microsoffs design goals for Windows XP included security, reliability, Win
dows and POSIX application compatibility, high performance, extensibility, 
portability, and international support. We discuss each of these goals in the 
following sections. 

22.2.1 Security 

Windows XP goals required more than just adherence to the design 
standards that had enabled Windows NT 4.0 to receive a C-2 security classifica
tion from the U.S. government (which signifies a moderate level of protection 
from defective software and malicious attacks). Extensive code review and 
testing were combined with sophisticated automatic analysis tools to identify 
and investigate potential defects that might represent security vuh1erabilities. 

22.2.2 Reliability 

Windows 2000 was the most reliable, stable operating system Microsoft had 
ever shipped to that point. Much of this reliability came from maturity in the 
source code, extensive stress testing of the and automatic detection 
of many serious errors in drivers. The requirements for Windows 
XP were even more stringent. Microsoft used extensive manual and automatic 
code review to identify over 63,000 lines in the source files that might contain 
issues not detected by testing and then set about reviewing each area to verify 
that the code was indeed correct. 

Windows XP extended driver verification to catch more subtle bugs, 
improved the facilities for catching programming errors in user-level code, 
and subjected third-party applications, drivers, and devices to a rigorous 
certification process. Furthermme, Windows XP added facilities for monitoring 
the health of the PC, including downloading fixes for problems before they 
are encountered by users. The perceived reliability of Windows XP was also 
improved by making the graphical user interface easier to use through better 
visual design, simpler menus, and measured improvements in the ease with 
which users can discover how to perform common tasks. 

22.2.3 Windows and POSIX Application Compatibility 

As mentioned, Windows XP was not only an update of Windows 2000 but 
also a replacement for Windows 95/98. Windows 2000 focused primarily on 
compatibility for business applications. The requirements for Windows XP 
included a much higher with the consumer applications that ran 
on Windows 95/98. is difficult to achieve because 
each application checks for a particular version of Windows, may depend to 
some extent on the quirks of the implementation of APis, may have latent 
application bugs that were masked in the previous system, and so forth. 



850 Chapter 22 

Windows XP introduced a compatibility layer that falls between appli
cations and the Win32 APis. This layer makes Windows XP look (almost) 
bug-for-bug compatible with previuus versions of Windows. Windows XPf 
like earlier NT releasesf maintains support for running many 16-bit applica
tions using a thunkingf or conversionf layer that translates 16-bit API calls into 
equivalent 32-bit calls. Similarlyf the 64-bit version of Windows XP provides a 
thunking layer that translates 32-bit API calls into native 64-bit calls. In additionf 
POSIX support in Windows XP was much improved by a new POSIX subsystem 
called Interix. Most available UNIX-compatible software compiles and runs 
under Interix without modification. 

22.2.4 High Performance 

Windows XP was designed to provide on desktop systems 
(which are largely constrained by I/0 performance), server systems (where the 
CPU is often the bottleneck), and large multithreaded and multiprocessor envi
ronments (where locking and cache-line management are keys to scalability). 
To satisfy performance requirements, NT used a variety of techniques, such 
as asynchronous I/0, optimized protocols for networks, kernel-based graph
ics, and sophisticated caching of file-system data. The memory-management 
and synchronization algorithms were designed with an awareness of the 
performance considerations related to cache lines and multiprocessors. 

Windows XP further improved performance by reducing the code-path 
length in critical functionsf using better algorithms and per-processor data 
structures, using memory coloring for NUMA (non-uniform n1emory access) 
machines, and implementing more scalable locking protocols, such as queued 
spinlocks. The new locking protocols helped reduce system bus cycles and 
included lock-free lists and queues, atomic read-modify-write operations 
(like interlocked increment), and other advanced locking techniques. 

The subsystems that constitute Windows XP communicate with one another 
efficiently through a local procedure call (LPC) facility that provides high
performance message passing. Except while executing in the kernel dispatcherf 
threads in the subsystems of Windows XP can be preempted by higher
priority threads. Thus, the system responds quickly to external events. In 
addition, Windows XP was designed for symmetrical multiprocessing; on a 
multiprocessor computer, several threads can run at the same time. 

22.2.5 Extensibility 

refers to the capacity of an operating system to keep up with 
advances in computing technology. To facilitate change over tim.e, the devel
opers implemented Windows XP using a layered architecture. The Windows 
XP executive runs in kernel or protected mode and provides the basic system 
services. On top of the executive, several server subsystems operate in user 
mode. Among them are that emulate different 
operating systems. Thus, programs written for MS-DOS, Microsoft Windowsf 
and POSIX all run on Windows XP in the appropriate environment. (See Section 
22.4 for more information on environmental subsystems.) Because of the mod
ular structure, additional environmental subsystems can be added without 
affecting the executive. In addition, Windows XP uses loadable drivers in the 
I/0 system, so new file systems, new kinds of I/0 devices, and new kinds of 



22.3 

22.3 851 

networking can be added while the system" is running. Windows XP uses a 
client-server model like the Mach operating system and supports distributed 
processing by remote procedure calls (RPCs) as defined by the Open Software 
Foundation. 

22.2.6 Portability 

An operating system is if it can be moved from one hardware 
architecture to another with relatively few changes. Windows XP was designed 
to be portable. Like the UNIX operating system, Windows XP is written 
primarily in C and C++. Most processor-dependent code is isolated in a 
dynamic link library (DLL) called the (HAL). A 
DLL is a file that is mapped into a process's address space in such a way that 
any functions in the DLL appear to be part of the process. The upper layers of the 
Windows XP kernel depend on the HAL interfaces rather than on the underlying 
hardware, bolstering Windows XP portability. The HAL manipulates hardware 
directly, isolating the rest of Windows XP from hardware differences among 
the platforms on which it runs. 

Although for market reasons Windows 2000 shipped only on Intel IA32-
compatible platforms, it was also tested on IA32 and DEC Alpha platforms until 
just prior to release to ensure portability. Windows XP runs on IA32-compatible 
and IA64 processors. Microsoft recognizes the importance of multiplatform 
development and testing, since, as a practical matter, maintaining portability 
is a matter of "use it or lose it." 

22.2.7 International Support 

Windows XP was also designed for 
provides support for different locales via the 

The NLS API provides specialized routines to format dates, time, and money 
in accordance with national customs. String comparisons are specialized to 
acc01mt for varying character sets. UNICODE is Windows XP' s native character 
code. Windows XP supports ANSI characters by converting them to UNICODE 
characters before manipulating them (8-bit to 16-bit conversion). System text 
strings are kept in resource files that can be replaced to localize the system 
for different languages. Multiple locales can be used concurrently, which is 
important to multilingual individuals and businesses. 

The architecture of Windows XP is a layered system of modules, as shown in 
Figure 22.1. The main layers are the HAL, the kernel, and the executive, all 
of which run in protected mode, and a collection of subsystems and services 
that run in user mode. The user-mode subsystems fall into two categories: 
the environmental subsystems, which emulate different operating systems, 
and the which provide security functions. One of 
the chief advantages of type of architecture is that interactions between 
modules are kept simple. The remainder of this section describes these layers 
and subsystems. 



852 Chapter 22 

auth.entication 
package 

t 
security account 

manq.ger database 

Figure 22.1 Windows XP block diagram. 

22.3.1 Hardware-Abstraction Layer 

The HAL is the layer of software that hides hardware differences from upper 
levels of the operating system, to help make Windows XP portable. The HAL 
exports a virtual machine interface that is used by the kernel dispatcher, the 
executive, and the device drivers. One advantage of this approach is that only 
a single version of each device driver is required-it runs on all hardware 
platforms without porting the driver code. The HAL also provides support 
for symmetric multiprocessing. Device drivers map devices and access them 
directly, but the administrative details of mapping memory, configuring I/0 
buses, setting up DMA, and coping with motherboard-specific facilities are all 
provided by the HAL interfaces. 

22.3.2 Kernel 

The kernel of Windows XP has four main responsibilities: thread scheduling, 
interrupt and exception handling, low-level processor synchronization, and 
recovery after a power failure. The kernel is object oriented. An object type in 
Windows 2000 is a system-defined data type that has a set of attributes (data 
values) and a set of methods (for example, functions or operations). An object is 
an instance of an object type. The kernel performs its job by using a set of kernel 
objects whose attributes store the kernel data and whose methods perform the 
kernel activities. 



22.3 853 

22.3.2.1 Kernel Dispatcher 

The kernel dispatcher provides the foundation for the executive and the sub
systems. Most of the dispatcher is never paged out of ncemmy and its execution 
is never preempted. Its main responsibilities are thread sched"Llling, implemen
tation of synchronization primitives, timer managencent, software interrupts 
(asynchronous and deferred procedure calls), and exception dispatching. 

22.3.2.2 Threads and Scheduling 

Like many other modern operating systems, Windows XP uses processes and 
threads for executable code. Each process has one or more threads, and each 
thread has its own scheduling state, including actual priority, processor affinity, 
and CPU-usage information. 

There are six possible thread states: ready, standby, running, waiting, 
transition, and terminated. indicates that the thread is waiting to run. 
The highest-priority ready thread is moved to the state, which means 
it is the next thread to run. In a multiprocessor system, each process keeps 
one thread in a standby state. A thread is when it is executing on 
a processor. It runs until it is preempted thread, until it 
terminates, until its allotted execution time ends, or until it blocks 
on a dispatcher object, such as an event signaling I/0 completion. A thread is 
in the state when it is waiting for a dispatcher object to be signaled. A 
new thread is in the state while it waits for resources necessary for 
execution. A thread enters the state when it finishes execution. 

The dispatcher uses a 32-level priority scheme to determine the order of 
thread execution. Priorities are divided into two classes: variable class and 
real-time class. The variable class contains threads having priorities from 0 to 
15, and the real-time class contains threads with priorities ranging from 16 
to 31. The dispatcher uses a queue for each scheduling priority and traverses 
the set of queues from highest to lowest until it finds a thread that is ready 
to run. If a thread has a particular processor affinity but that processor is not 
available, the dispatcher skips past it and continues looking for a ready thread 
that is willing to run on the available processor. If no ready thread is found, 
the dispatcher executes a special thread called the idle thread. 

When a thread's time quantum runs out, the clock interrupt queues a 
quantum-end deferred procedure call (DPC) to the processor in order to 
reschedule the processor. If the preempted thread is in the variable-priority 
class, its priority is lowered. The priority is never lowered below the base 
priority. Lowering the thread's priority tends to limit the CPU consumption of 
compute-bound threads. When a variable-priority thread is released from a 
wait operation, the dispatcher boosts the priority. The amount of the boost 
depends on the device for which the thread was waiting; for example, a 
thread waiting for keyboard I/0 would get a large priority increase, whereas 
a thread waiting for a disk operation would get a moderate one. This strategy 
tends to give good response times to interactive threads using a mouse and 
windows. It also enables I/O-bound threads to keep the I/O devices busy while 
permitting compute-bound threads to use spare CPU cycles in the background. 
This strategy is used by several time-sharing operating systems, including 
UNIX. In addition, the thread associated with the user's active GUI window 
receives a priority boost to enhance its response time. 



854 Chapter 22 

Scheduling occurs when a thread enters the ready or wait state, when 
a thread terminates, or when an application changes a thread's priority or 
processor affinity. If a higher-priority real-tince thread becomes ready while 
a lower-priority thread is running, the lower-priority thread is preempted. 
This preemption gives a real-time thread preferential access to the CPU when 
the thread needs such access. Windows XP is not a hard real-time operating 
system, however, because it does not guarantee that a real-time thread will 
start to execute within a particular time limit. 

22.3.2.3 Implementation of Synchronization Primitives 

Key operating-system data structures are managed as objects using common 
facilities for allocation, reference counting, and security. 
control dispatching and synchronization in the system. 

Examples of these objects include the following: 

The is used to record an event occurrence and to synchronize 
this occurrence with some action. Notification events signal all waiting 
threads, and synchronization events signal a single waiting thread. 

The provides kernel-mode or user-mode mutual exclusion with 
the notion of ownership. 

The available only in kernel mode, provides deadlock-free mutual 
exclusion. 

The Defsemaphore object acts as a counter or gate to control the number 
of threads that access a resource. 

The is the entity that is scheduled by the kernel dispatcher 
and is associated with a which encapsulates a virtual 
address space. 

The is used to keep track of time and to signal timeouts when 
operations take too long and need to be interrupted or when a periodic 
activity needs to be scheduled. 

Many of the dispatcher objects are accessed from user mode via an open 
operation that returns a handle. The user-mode code polls or waits on handles 
to synchronize with other threads as well as with the operating system (see 
Section 22.7.1). 

22.3.2.4 Software Interrupts: Asynchronous and Deferred Procedure Calls 

The dispatcher implements two types of software interrupts: asynchronous 
procedure calls and deferred procedure calls. An asynchronous procedure call 
(APC) breaks into an executing thread and calls a procedure. APCs are used to 
begin execution of new threads, terminate processes, and deliver notification 
that an asynchronous I/0 has completed. APCs are queued to specific threads 
and allow the system to execute both system and user code within a process's 
context. 

Deferred procedure calls (DPCs) are used to postpone interrupt processing. 
After handling all blocked device-interrupt processes, the interrupt service 
routine (ISR) schedules the remaining processing by queuing a DPC. The 



22.3 855 

dispatcher schedules software interrupts at a lower priority than the device 
interrupts so that DPCs do not block other lSRs. In addition to deferring device
interrupt processing, the dispatcher uses DPCs to process timer expirations and 
to preempt thread execution at the end of the scheduling quantum. 

Execution of DPCs prevents threads from being scheduled on the current 
processor and also keeps APCs from signaling the completion of I/0. This is 
done so that completion of DPC routines does not take an extended anwunt of 
time. As an alternative, the dispatcher maintains a pool of worker threads. ISRs 
and DPCs queue work itencs to the worker threads. DPC routines are restricted 
so that they cannot take page faults (be paged out of memory), call system 
services, or take any other action that might possibly result in an attempt to 
block execution of a dispatcher object. Unlike APCs, DPC routines make no 
assumptions about what process context the processor is executing. 

22.3.2.5 Exceptions and Interrupts 

The kernel dispatcher also provides trap handling for exceptions and interrupts 
generated by hardware or software. Windows XP defines several architecture
independent exceptions, including: 

Memory-access violation 

Integer overflow 

Floating-point overflow or underflow 

Integer divide by zero 

Floating-point divide by zero 

Illegal instruction 

Data misalignment 

Privileged instruction 

Page-read error 

Access violation 

Paging file quota exceeded 

Debugger breakpoint 

Debugger single step 

The trap handlers deal with simple exceptions. Elaborate exception handling 
is performed by the kernel's exception dispatcher. The neve• D.,.,,., 

creates an exception record containing the reason for the exception 
an exception handler to deal with it. 

When an exception occurs in kernel mode, the exception dispatcher simply 
calls a routine to locate the exception handler. If no handler is found, a fatal 
system error occurs and the user is left with the infamous "blue screen of death" 
that signifies system failure. 

Exception handling is more complex for user-mode processes, because 
an environmental subsystem (such as the POSIX system) sets up a debugger 
port and an exception port for every process it creates. If a debugger port 



856 Chapter 22 

is registered, the exception handler sends the exception to the port. If the 
debugger port is not found or does not handle that exception, the dispatcher 
attempts to find an appropriate exception handler. If no handler is found, the 
debugger is called again to catch the error for debugging. If no debugger 
is running, a message is sent to the process's exception port to give the 
environmental subsystem a chance to translate the exception. For example, 
the POSIX environment translates Windows XP exception messages into POSIX 
signals before sending them to the thread that caused the exception. Finally, 
if nothing else works, the kernel simply terminates the process containing the 
thread that caused the exception. 

The interrupt dispatcher in the kernel handles interrupts by calling either 
an interrupt service routine (ISR) supplied by a device driver or a kernel 
trap-handler routine. The interrupt is represented by an interrupt object that 
contains all the information needed to handle the interrupt. Using an interrupt 
object makes it easy to associate interrupt-service routines with an interrupt 
without having to access the interrupt hardware directly. 

Different processor architectures, such as Intel and DEC Alpha, have 
different types and numbers of interrupts. For portability, the interrupt 
dispatcher maps the hardware interrupts into a standard set. The interrupts 
are prioritized and are serviced in priority order. There are 32 interrupt request 
levels (IRQLs) in Windows XP. Eight are reserved for use by the kernel; the 
remaining 24 represent hardware interrupts via the HAL (although most IA32 
systems use only 16). The Windows XP interrupts are defined in Figure 22.2. 

The kernel uses an to bind each interrupt level to 
a service routine. In a multiprocessor compute1~ Windows XP keeps a separate 
interrupt-dispatch table for each processm~ and each processor's IRQL can be set 
independently to mask out interrupts. All interrupts that occur at a level equal 
to or less than the IRQL of a processor are blocked until the IRQL is lowered by a 
kernel-level thread or by an ISR returning from interrupt processing. Windows 
XP takes advantage of this property and uses software interrupts to deliver 
APCs and DPCs, to perform system functions such as synchronizing threads 
with I/0 completion, to start thread dispatches, and to handle timers. 

30 

29 

28 
27 

3-26 
2 

0 

machine check or bus error 

power fail 

interprocessor notification (request another processor 
to act; e.g., dispatch a process or update the TLB) 

clock (used to keep track of time) 

traditional PC. IRQ hardware interrupts 

dispatch and deferred procedure call (DPC) (kernel) 

asynchronoUs procedure ca. II (A PC) 

passive 

Figure 22.2 Windows XP interrupt request levels. 



22.3 857 

22.3.3 Executive 

The Windows XP executive provides a set of services that all enviromnental 
subsystems use. The services are grouped as follows: object manager, virtual 
memory manager, process manager, local procedure call facility, I/O man
ager, cache manager, security reference monitor, plug-and-play and power 
managers, registry, and booting. 

22.3.3.1 Object Manager 

For managing kernel-mode entities, Windows XP uses a generic set of interfaces 
that are manipulated by user-mode programs. Windows XP calls these entities 
objects, and the executive component that manipulates them is the 

Each process has an object table containing entries that track the 
objects used by the process. User-mode code accesses these objects using an 
opaque value called a handle that is returned by many APis. Object handles can 
also be created by duplicating an existing handle, either from the same process 
or from a different process. Examples of objects are semaphores, mutexes, 
events, processes, and threads. These are all dispatcher objects. Threads can 
block in the kernel dispatcher waiting for any of these objects to be signaled. 
The process, thread, and virtual memory APis use process and thread handles 
to identify the process or thread to be operated on. Other examples of objects 
include files, sections, ports, and various internal I/O objects. File objects are 
used to maintain the open state of files and devices. Sections are used to map 
files. Open files are described in terms of file objects. Local-communication 
endpoints are implemented as port objects. 

The object manager maintains the Windows XP internal name space. In 
contrast to UNIX, which roots the system name space in the file system, 
Windows XP uses an abstract name space and connects the file systems as 
devices. 

The object manager provides interfaces for defining both object types 
and object instances, translating names to objects, maintaining the abstract 
name space (through internal directories and symbolic links), and managing 
object creation and deletion. Objects are typically managed through the use 
of reference counts in protected-mode code and handles in user-mode code. 
Howeve1~ some kernel-mode components use the same APis as user-mode code 
and thus use handles to manipulate objects. If a handle needs to exist beyond 
the lifetime of the current process, it is marked as a kernel handle and stored 
in the object table for the system process. The abstract name space does not 
persist across reboots but is built up from configuration information stored in 
the system registry, plug-and-play device discovery, and creation of objects by 
system components. 

The Windows XP executive allows any object to be given a One 
process ncay create a named object while a second process opens a handle to 
the object and shares it with the first process. Processes can also share objects 
by duplicating handles between processes, in which case the objects need not 
be named. 

A name can be either permanent or temporary. A perrnanent name 
represents an entity, such as a disk drive, that remains even if no process 
is accessing it. A temporary nance exists only while a process holds a handle 
to the object. 



858 Chapter 22 

Object names are structured like file path names in MS-DOS and UNIX. Name 
space directories are represented by a that contains the names 
of all the objects in the directory. The object name space is extended by the 
addition of device objects representing volumes containing file systems. 

Objects are manipulated by a set of virtual functions with implementa
tions provided for each object type: create(), open(), close(), delete(), 
query.Jlame (),parse(), and security(). The latter three functions may need 
some explanation: 

query Jlame () is called when a thread has a reference to an object but 
wants to know the object's name. 

parse() is ~used by the object manager to search for an object given the 
object's name. 

security() is called to make security checks on all object operations, such 
as when a process opens or closes an object, makes changes to the security 
descriptor, or duplicates a handle for an object. 

The parse procedure is used to extend the abstract name space to include 
files. The translation of a path name to a file object begins at the root of 
the abstract name space. Path-name components are separated by whack 
characters (\) rather than the slashes (/) used in UNIX. Each component is 
looked up in the current parse directory of the name space. Internal nodes 
within the name space are either directories or symbolic links. If a leaf object 
is found and there are no path-name components remaining, the leaf object 
is returned. Otherwise, the leaf object's parse procedure is invoked with the 
remaining path name. 

Parse procedures are only used with a small number of objects belonging 
to the Wilcdows GUI, the configuration manager (registry), and -most notably 
-device objects representing file systems. The parse procedure for the device 
object type allocates a file object and mitiates an open or create I/O operation 
on the file system. If successful, the file object fields are filled in to describe the 
file. 

In summary, the path name to a file is used to traverse the object-manager 
namespace, translatilcg the original absolute path name into a (device object, 
relative path name) pair. This pair is then passed to the file system via the I/0 
manager, which fills in the file object. The file object itself has no name but is 
referred to by a handle. 

UNIX file systems have that permit multiple nicknames-
or aliases-for the same file. The implemented by the 
Windows XP object manager is within the abstract name space, not to 
provide files with aliases. Even so, symbolic links are very useful. They are 
used to organize the name space, similar to the organization of the /devices 
directory in UNIX. They are also used to map standard MS-DOS drive letters to 
drive names. Drive letters are symbolic links that can be remapped to suit the 
convenience of the user or administrator. 

Drive letters are one place where the abstract name space in Windows XP 

is not global. Each logged-on user has his or her own set of drive letters so 
that users can avoid interfering with one another. In contrast, terminal server 
sessions share all processes within a session. BaseNamedObj ects contain the 
named objects created by most applications. 



22.3 859 

Although the name space is not directly visible across a network, the object 
manager's parse() method is used to help access a named object on another 
system. When a process attencpts to open an object that resides on a remote 
computer, the object manager calls the parse method for the device object 
corresponding to a network redirector. This results in an I/0 operation that 
accesses the file across the network. 

As mentioned, objects are instances of an The object type 
specifies how instances are to be allocated, the definitions of the data fields, 
and the implementation of the standard set of virtual functions used for all 
objects. These functions implement operations such as mapping names to 
objects, closing and deleting, and applying security. 

The object manager keeps track of two counts for each object. The pointer 
count is the number of distinct references made to an object. Protected-mode 
code that refers to objects must keep a reference on the objects to ensure that 
an object is not deleted while in use. The handle count is the number of handle 
table entries referring to an object. Each handle is also reflected in the reference 
count. 

When a handle for an object is closed, the object's close routine is called. In 
the case of file objects, this call causes the I/0 manager to do a cleanup operation 
at the close of the last handle. The cleanup operation tells the file system that the 
file is no longer accessed by user mode so that sharing restrictions, range locks, 
and other states specific to the corresponding open routine can be removed. 

Each handle close removes a reference from the pointer count, but internal 
system components may retain additional references. When the final reference 
is removed, the object's delete procedure is called. Again using file objects as an 
example, the delete procedure causes the I/0 manager to send the file system a 
close operation on the file object. This causes the file system to deallocate any 
internal data structures that were allocated for the file object. 

After the delete procedure for a temporary object completes, the object is 
deleted from memory. The object manager can make an object permanent (at 
least with respect to the current boot of the system) by taking an extra reference 
against the object. Thus, permanent objects are not deleted even when the last 
reference outside the object manager is removed. When a permanent object is 
made temporary again, the object manager removes the extra reference. If this 
was the last reference, the object is deleted. Permanent objects are rare, used 
mostly for devices, drive-letter mappings, and the directory and symbolic link 
objects. 

The job of the object manager is to supervise the use of all managed objects. 
When a thread wants to use an object, it calls the object manager's open() 
method to get a reference to the object. If the object is being opened from a 
user-mode API, the reference is inserted into the process's object table, and a 
handle is returned. 

A process gets a handle by creating an object, by opening an existing 
object, by receiving a duplicated handle from another process, or by inheriting 
a handle from a similar to the way a UNIX process gets a file 
descriptor. These handles are all stored in the process's An entry 
in the object table contains the access rights and states whether the 
handle should be inherited by When a process terminates, 
Windows XP automatically closes all the process's open handles. 



860 Chapter 22 

are a standardized interface to all kinds of objects. Like a file 
descriptor in UNIX, an object handle is an identifier unique to a process that 
confers the ability to access and manipulate a system resource. Handles can 
be duplicated within a process or between processes. The latter case is used 
whert child processes are created and when out-of-process execution contexts 
are implemented. 

Since the object manager is the only entity that generates object handles, 
it is the natural place to check security. The object manager checks whether 
a process has the right to access an object when the process tries to open the 
object. The object manager also enforces quotas, such as the maximum amount 
of memory a process may use, by charging a process for the memory occupied 
by all its referenced objects and refusing to allocate more memory when the 
accumulated charges exceed the process's quota. 

When the login process authenticates a user, an access token is attached to 
the user's process. The access token contains information such as the security 
ID, group IDs, privileges, primary group, and default access-control list. The 
services and objects a user can access are determined by these attributes. 

The token that controls access is associated with the thread making the 
access. Normally, the thread token is missing and defaults to the process token, 
but services often need to execute code on behalf of their clients. Windows XP 

allows threads to impersonate a client temporarily by using a client's token. 
Thus, the thread token is not necessarily the same as the process token. 

In Windows XP, each object is protected by an access-control list that 
contains the security IDs and access rights granted. When a thread attempts 
to access an object, the system compares the security ID in the thread's access 
token with the object's access-control list to determine whether access should 
be permitted. The check is performed only when an object is opened, so it is not 
possible to deny access after the open occurs. Operating-system components 
executing in kernel mode bypass the access check, since kernel-mode code 
is assumed to be trusted. Therefore, kernel-mode code must avoid security 
vulnerabilities, such as leaving checks disabled while creating a user-mode
accessible handle in an untrusted process. 

Generally, the creator of the object determines the access-control list for 
the object. If none is explicitly supplied, one may be set to a default by the 
object type's open routine, or a default list may be obtained from the user's 
access-token object. 

The access token has a field that controls auditing of object accesses. 
Operations that are being audited are logged to the system's security log with 
an identification of the user. An administrator monitors this log to discover 
attempts to break into the system or to access protected objects. 

22.3.3.2 Virtual Memory Manager 

The executive component that manages the virtual address space, physical 
memory allocation, and paging is the The 
design of the VM manager assumes that the underlying hardware supports 
virtual-to-physical mapping, a paging mechanisnc, and transparent cache 
coherence on multiprocessor systems, as well as allowing multiple page
table entries to map to the same physical page frame. The VM manager in 
Windows XP uses a page-based management scheme with a page size of 4 KB on 



22.3 861 

lA32-compatible processors and 8 KB on the IA64. Pages of data allocated to a 
process that are not in physical memory are either stored in the on 
disk or mapped directly to a regular file on a local or remote file system. Pages 
can also be marked zero-fill-on-demand, which fills the page with zeros before 
they are allocated, thus erasing the previous contents. 

On lA32 processors, each process has a 4-GB virtual address space. The 
upper 2 GB are mostly identical for all processes and are used by Windows XP 
in kernel mode to access the operating-system code and data structures. Key 
areas of the kernel-mode region that are not identical for all processes are the 

and The hardware references 
a process's page using physical page-frame numbers. The VM manager 
maps the page tables into a single 4-MB region in the process's address space 
so they are accessed through virtual addresses. Hyperspace maps the current 
process's working-set information into the kernel-mode address space. 

Session space is used to share the Win32 and other session-specific drivers 
among all the processes in the same terminal-server session, rather than all the 
processes in the system. The lower 2 GB are specific to each process and are 
accessible by both user- and kernel-mode threads. Certain configurations of 
Windows XP reserve only 1 GB for operating-system use, allowing a process to 
use 3GB of address space. Rum1ing the system in 3-GB mode drastically reduces 
the amount of data caching in the kernel. However, for large applications 
that manage their own I/0, such as SQL databases, the advantage of a larger 
user-mode address space may be worth the loss of caching. 

The Windows XP VM manager uses a two-step process to allocate user 
memory. The first step reserves a portion of the process's virtual address space. 
The second step commits the allocation by assigning virtual memory space 
(physical memory or space in the paging files). Windows XP limits the amount 
of virtual memory space a process consumes by enforcing a quota on committed 
memory. A process decommits memory that it is no longer using to free up 
virtual memory for use by other processes. The APis used to reserve virtual 
addresses and commit virtual memory take a handle on a process object as a 
parameter. This allows one process to control the virtual memory of another. 
Environmental subsystems manage the memory of their client processes in this 
way. 

For performance, the VM manager allows a privileged process to lock 
selected pages in physical memory, thus ensuring that the pages are not paged 
out to the paging file. Processes also allocate raw physical mernory and then 
map regions into its virtual address space. IA32 processors with the physical 
address extension (PAE) feature can have up to 64GB of physical memory on a 
system. This memory cannot all be mapped in a process's address space at once, 
but Windows XP makes it available using the address windowing extension 
(AWE) APis, which allocate physical memory and then map regions of virtual 
addresses in the process's address space onto part of the physical memory. 
The AWE facility is used primarily by very large applications such as the SQL 
database. 

Windows XP implements shared memory by defining a 
After getting a handle to a section object, a process maps the memory portion 
it needs into its address space. This portion is called a . A process redefines 
its view of an object to gain access to the entire object, one region at a time. 



862 Chapter 22 

A process can control the use of a shared-memory section object in many 
ways. The maximum size of a section can be bounded. The section can be 
backed by disk either in the system-paging file or in a regular file (a 

A section can be based, meaning the section appears 
at the same virtual address for all processes attempting to access it. Finally, 
the memory protection of pages in the section can be set to read-only, read 
-write, read-write-execute, execute-only, no access, or copy-on-write. Let's 
look more closely at the last two of these protection settings: 

A no-access page raises an exception if accessed; the exception is used, for 
example, to check whether a faulty program iterates beyond the end of 
an array. Both the user-mode memory allocator and the special kernel 
allocator used by the device verifier can be configured to map each 
allocation onto the end of a page followed by a no-access page to detect 
buffer overruns. 

The copy-on-write mechanism enables the VM manager to use physical 
memory more efficiently. When two processes want independent copies of 
an object, the VM manager places a single shared copy into virtual memory 
and activates the copy-on-write property for that region of memory. If one 
of the processes tries to modify data in a copy-on-write page, the VM 
manager makes a private copy of the page for the process. 

The virtual address translation in Windows XP uses a multilevel page 
table. For IA32 processors without the physical address extensions enabled, 
each process has a that contains 1,024 
{PDEs) 4 bytes in size. Each PDE points to a that contains 1,024 

4 bytes in size. Each PTE points to a 4-KB 
in physical memory. The total size of all page tables for a process is 4MB, so the 
VM manager pages out individual tables to disk when necessary. See Figure 
22.3 for a diagram of this structure. 

The page directory and page tables are referenced by the hardware via 
physical addresses. To improve performance, the VM manager self-maps 
the page directory and page tables into a 4-MB region of virtual addresses. 
The self-map allows the VM manager to translate a virtual address into the 
corresponding PDE or PTE without additional memory accesses. When a process 
context is changed, a single page-directory entry must be changed to map the 
new process's page tables. For a variety of reasons, the hardware requires that 
each page directory or page table occupy a sii<gle page. Thus, the number of 
PDEs or PTEs that fit in a page determine how virtual addresses are translated. 

We next consider how virtual addresses are translated into physical 
addresses on IA32-compatible processors (without PAE enabled). A 10-bit value 
can represent all the values from 0 to 1,023. Thus, a 10-bit value can select any 
entry in the page directory or in a page table. This property is used when a 
virtual address pointer is translated to a byte address in physical memory. A 
32-bit virtual-memory address is split into three values, as shown in Figure 
22.4. The first 10 bits of the virtual address are used as an index into the page 
directory. This address selects one page-directory entry (PDE), which contains 
the physical page frame of a page table. The memory-management unit (MMU) 
uses the next 10 bits of the virtual address to select a PTE from the page table. 



22.3 863 

Figure 22.3 Page table layout. 

The PTE specifies a page frame in physical memory. The remaining 12 bits of 
the virtual address are the offset of a specific byte in the page frame. The MMU 
creates a pointer to the specific byte in physical memory by concatenating the 
20 bits from the PTE with the lower 12 bits from the virtual address. Thus, 
the 32-bit PTE has 12 bits to describe the state of the physical page. The IA32 
hardware reserves 3 bits for use by the operating system. The rest of the bits 
specify whether the page has been accessed or written, the caching attributes, 
the access mode, whether the page is globat and whether the PTE is valid. 

IA32 processors running with PAE enabled use 64-bit PDEs and PTEs in 
order to represent the larger 24-bit page-frame number field. Thus, the second
level page directories and the page tables contain only 512 PDEs and PTEs, 
respectively. To provide 4 GB of virtual address space requires an extra level of 
page directory containing four PDEs. Translation of a 32-bit virtual address uses 
2 bits for the top-level directory index and 9 bits for each of the second-level 
page directories and the page tables. 

To avoid the overhead of translating every virtual address by looking 
up the PDE and PTE, processors use a 
which contains an associative memory cache for mapping virtual pages to 
PTEs. Unlike the IA32 architecture, in which the TLB is maintained by the 

31 0 

Figure 22.4 Virtual-to-physical address translation on IA32. 



864 Chapter 22 

hardware MMU, the TA64 invokes a software-trap routine to supply translations 
missing from the TLB. This gives the VM manager flexibility in choosing the 
data structures to use. In Windows XP, a three-level tree structure is chosen for 
rnapping user-mode virtual addresses on the IA64. 

On IA64 processors, the page size is 8 KB, but the PTEs occupy 64 bits, so a 
page still contains only 1,024 (10 bits' worth) of PDEs or PTEs. Therefore, with 
10 bits of top-level PDEs, 10 bits of second-level PDEs, 10 bits of page table, and 
13 bits of page offset, the user portion of the process's virtual address space 
for Windows XP on the IA64 is 8 TB (43 bits' worth). The 8-TB limitation in the 
current version of Windows XP does not take full advantage of the capabilities 
of the IA64 processor but represents a tradeoff between the number of memory 
references required to handle TLB misses and the size of the user-mode address 
space supported. 

A physical page can be in one of six states: valid, free, zeroed, modified, 
standby, bad, or in transition. 

A valid page is in use by an active process. 

A free page is a page that is not referenced in a PTE. 

A zeroed page is a free page that has been zeroed out and is ready for 
immediate use to satisfy zero-on-demand faults. 

A modified page has been written by a process and must be sent to the disk 
before it is allocated for another process. 

A standby page is a copy of information already stored on disk. Standby 
pages can be pages that were not modified, modified pages that have 
already been written to the disk, or pages that were prefetched to exploit 
locality. 

A bad page is unusable because a hardware error has been detected. 

Finally, a transition page is on its way in from disk to a page frame allocated 
in physical memory. 

When the valid bit in a PTE is zero, the VM manager defines the format of 
the other bits. Invalid pages can have a number of states represented by bits in 
the PTE. Page-file pages that have never been faulted in are marked zero-on
demand. Files mapped through section objects encode a pointer to that section 
object. Pages that have been written to the page file contain enough information 
to find the page on disk, and so forth. 

The actual structure of the page-file PTE is shown in Figure 22.5. The PTE 
contains 5 bits for page protection, 20 bits for page-file offset, 4 bits to select the 
paging file, and 3 bits that describe the page state. A page-file PTE is marked to 
be an invalid virtual address to the MMU. Since executable code and memory
mapped files already have a copy on disk, they do not need space in a paging 
file. I£ one of these pages is not in physical memory, the PTE structure is as 
follows: the most significant bit is used to specify the page protection, the next 
28 bits are used to index into a system data structure that indicates a file and 
offset within the file for the page, and the lower 3 bits specify the page state. 

Invalid virtual addresses can also be in a number of temporary states that 
are part of the paging algorithms. When a page is removed from a processs 



22.3 865 

31 0 

Figure 22.5 Page-file page-table entry. The valid bit is zero. 

working set, it is moved either to the modified list (to be written to disk) or 
directly to the standby list. If written to the standby list, the page is reclaimed 
without being read from disk if it is needed again before it is moved to the free 
list. When possible, the VM manager uses idle CPU cycles to zero pages on the 
free list and move them to the zeroed list. Transition pages have been allocated 
a physical page and are awaiting the completion of the paging I/0 before the 
PTE is marked as valid. 

Windows XP uses section objects to describe pages that are sharable 
between processes. Each process has its own set of virtual page tables, but 
the section object also includes a set of page tables containing the master (or 
prototype) PIEs. When a PTE in a process page table is marked valid, it points 
to the physical page frame containing the page, as it must on IA32 processors, 
where the hardware MMU reads the page tables directly from memory. But 
when a shared page is made invalid, the PTE is edited to point to the prototype 
PTE associated with the section object. 

The page tables associated with a section object are virtual insofar as they 
are created and trimmed as needed. The only prototype PIEs needed are 
those that describe pages for which there is a currently mapped view. This 
greatly improves performance and allows more efficient use of kernel virtual 
addresses. 

The prototype PTE contains the page-frame address and the protection 
and state bits. Thus, the first access by a process to a shared page generates a 
page fault. After the first access, further accesses are performed in the normal 
manner. If a process writes to a copy-on-write page marked read-only in the 
PTE, the VM manager makes a copy of the page and marks the PTE writable, 
and the process effectively does not have a shared page any longer. Shared 
pages never appear in the page file but are instead found in the file system. 

The VM manager keeps track of all pages of physical m.emory in a 
There is one entry for every page of physical memory in 

system. The entry points to the PTE, which in. turn points to the page frame, so 
the VM n1.anager can maintain the state of the page. Page frames not referenced 
by a valid PTE are linked to lists according to page type, such as zeroed, 
modified, or free. 

If a shared physical page is marked as valid for any process, the page 
cannot be removed from memory. The VM manager keeps a count of valid PIEs 
for each page in the page-frame database. When the count goes to zero, the 
physical page can be reused once its contents have been written back to disk 
(if it was marked dirty). 

When a page fault occurs, the VM manager finds a physical page to hold 
the data. For zero-on-demand pages, the first choice is to find a page that has 



866 Chapter 22 

already been zeroed. If none is available, a page from the free list or standby 
list is chosen, and the page is zeroed. If the faulted page has been marked as in 
transition, it is either already being read in fron1 disk or has been unmapped or 
trimmed and is still available on the standby or modified list. The thread either 
waits for the l/0 to complete or, in the latter cases, reclaims the page from the 
appropriate list. 

Otherwise, an I/0 must be issued to read the page in from the paging file or 
file systein. The VM manager tries to allocate an available page from either the 
free list or the standby list. Pages in the modified list cannot be used until they 
have been written back to disk and transferred to the standby list. If no pages 
are available, the thread blocks until the working-set manager trims pages from 
memory or until a page in physical memory is unmapped by a process. 

Windows XP uses a per-process first-in, first-out (FIFO) replacement policy 
to take pages from processes as appropriate. When a process is started, it 
is assigned a default minimum working-set size of 50 pages. Windows XP 
monitors the page faulting of each process that is at its minimum working-set 
size and adjusts the working-set size accordingly. The VM manager replaces 
and trims pages in the working set of a process according to their age. The age 
of a page is determin.ed by how many trimming cycles have occurred without 
the PTE. Trimmed pages are moved to the standby or modified list, depending 
on whether the modified bit is set in the page's PTE. 

The VM manager does not fault in only the page immediately needed. 
Research shows that the memory referencing of a thread tends to have a 

property; when a page is used, it is likely that adjacent pages will 
be referenced in the near future. (Think of iterating over an array or fetching 
sequential instructions that form the executable code for a thread.) Because of 
locality, when the VM manager faults in a page, it also faults in a few adjacent 
pages. This prefetching tends to reduce the total number of page faults. Writes 
are also clustered to reduce the number of independent T/0 operations. 

In addition to managing committed memory, the VM manager manages 
each process's reserved memory, or virtual address space. Each process has an 
associated splay tree that describes the ranges of virtual addresses in use and 
what the uses are. This allows the VM manager to fault in page tables as needed. 
If the PTE for a faulting address does not exist, the VM manager searches for 
the address in the process's tree of and 
uses this information to fill in the missing PTE and retrieve the page. In some 
cases, a page-table page itself may not exist; such a page must be transparently 
allocated and initialized by the VM manager. 

22.3.3.3 Process Manager 

The Windows XP process manager provides services for creating, deleting, and 
using processes, threads, and jobs. It has no kn.owledge about parent-child 
relationships or process hierarchies; those refinements are left to the particular 
environmental subsystem that owns the process. The process manager is also 
not involved in the scheduling of processes, other than setting the priorities and 
affinities in processes and threads when they are created. Thread scheduling 
takes place in the kernel dispatcher. 

Each process contains one or more threads. Processes themselves can be 
collected into large units called ·the use of job objects allows limits to 



22.3 867 

be placed on CPU usage, working-set size, and processor affinities that control 
multiple processes at once. Job objects are used to manage large data-center 
machines. 

An example of process creation in the Win32 API environncent is as follows: 

A Win32 API application calls CreateProcess (). 

A message is sent to the Win32 API subsystem to notify it that the process 
is being created. 

CreateProcess () in the original process then calls an API in the process 
manager of the NT executive to actually create the process. 

The process manager calls the object manager to create a process object 
and returns the object handle to Win32 API. 

Win32 API calls the process manager again to create a thread for the process 
and returns handles to the new process and thread. 

The Windows XP APis for manipulating virtual memory and threads and 
for duplicating handles take a process handle, so subsystems can perform 
operations on behalf of a new process without having to execute directly in 
the new process's context. Once a new process is created, the initial thread 
is created, and an asynchronous procedure call is delivered to the thread to 
prompt the start of execution at the user-mode image loader. The loader is an 
ntdll.dll, which is a link library automatically mapped into every newly created 
process. Windows XP also supports a UNIX fork() style of process creation in 
order to support the POSIX environmental subsystem. Although the Win32 API 
environment calls the process manager from the client process, POSIX uses the 
cross-process nature of the Windows XP APis to create the new process from 
within the subsystem process. 

The process manager also implements the queuing and delivery of asyn
chronous procedure calls (APCs) to threads. APCs are used by the system to 
initiate thread execution, complete I/0, terminate threads and processes, and 
attach debuggers. User-mode code can also queue an APC to a thread for 
delivery of signal-like notifications. To support POSIX, the process manager 
provides APis that send alerts to threads to unblock them from system calls. 

The debugger support in the process manager includes the capability to 
suspend and resume threads and to create threads that begin in a suspended 
mode. There are also process-manager APis that get and set a thread's register 
context and access another process's virtual memory. 

Threads can be created in the current process; they can also be injected into 
another process. Within the executive, existing threads can temporarily attach 
to another process. This method is used by worker threads that need to execute 
in the context of the process originating a work request. 

The process manager also supports impersonation. A thread running in a 
process with a security token belonging to one user can set a thread-specific 
token belonging to another user. This facility is fundamental to the client
server computing model, where services need to act on behalf of a variety of 
clients with different security IDs. 



868 Chapter 22 

22.3.3.4 Local Procedure Call Facility 

The implementation of Windows XP ~uses a client-server nlOdel. The environ
n<ental subsystems are servers that implement particular operating-system 
personalities. The client-server model is used for implementing a variety 
of operating-system services besides the environmental subsystems. Security 
management, printer spooling, Web services, network file systems, plug-and
play, and many other features are implemented using this model. To reduce the 
memory footprint, multiple services are often collected into a few processes, 
which then rely on the user-mode thread-pool facilities to share threads and 
wait for messages (see Section 22.3.3.3). 

The operating system uses the local procedure call (LPC) facility to pass 
requests and results between client and server processes within a single 
machine. In particular, LPC is used to request services from the various 
Windows XP subsystems. LPC is similar in many respects to the RPC mech
anisms used by many operating systems for distributed processing across 
networks, but LPC is optimized for use within a single system. The Windows 
XP implementation of Open Software Foundation (OSF) RPC often uses LPC as 
a transport on the local machine. 

LPC is a message-passing mechanism. The server process publishes a 
globally visible connection-port object. When a client wants services from a 
subsystem, it opens a handle to the subsystem's corn1.ection-port object and 
sends a connection request to the port. The server creates a channel and returns 
a handle to the client. The charn1.el consists of a pair of private communication 
ports: one for client-to-server messages and the other for server-to-client 
messages. Communication channels support a callback mechanism, so the 
client and server can accept requests when they would normally be expecting 
a reply. 

When an LPC channel is created, one of three message-passing tecl111.iques 
must be specified. 

The first technique is suitable for small messages (up to a few hundred 
bytes). In this case, the port's message queue is used as intermediate 
storage, and the messages are copied from one process to the other. 

The second technique is for larger messages. In this case, a shared
memory section object is created for the channel. Messages sent through 
the port's message queue contain a pointer and size information referring 
to the section object. This avoids the need to copy large messages. The 
sender places data into the shared section, and the receiver views them 
directly. 

The third teclu<ique uses APis that read and write directly into a process's 
address space. The LPC provides functions and synchronization so that a 
server can access the data in a client. 

The Win32 API window manager uses its own form of message passing, 
which is independent of the executive LPC facilities. When a client asks for 
a connection that uses window-manager messaging, the server sets up three 
objects: (1) a dedicated server thread to handle requests, (2) a 64-KB section 
object, and (3) an event-pair object. An event-pair object is a synchronization 



22.3 869 

object used by the Win32 API subsysten< to provide notification when the client 
thread has copied a message to the Win32 API server, or vice versa. The section 
object passes the messages, and the event-pair object performs synchronization. 

Window-manager messaging has several advantages: 

The section object eliminates message copying, since it represents a region 
of shared memory. 

The event-pair object eliminates the overhead of using the port object to 
pass messages containing pointers and lengths. 

The dedicated server thread eliminates the overhead of determining which 
client thread is calling the server, since there is one server thread per client 
thread. 

The kernel gives scheduling preference to these dedicated server threads 
to improve performance. 

22.3.3.5 I/0 Manager 

The is responsible for file systems, device drivers, and network 
drivers. It keeps track of which device drivers, filter drivers, and file systems 
are loaded, and it also manages buffers for I/O requests. It works with the 
VM manager to provide memory-mapped file I/0 and controls the Windows 
XP cache manager, which handles caching for the entire I/0 system. The 
I/0 manager is fundamentally asynchronous, providing synchronous I/0 by 
explicitly waiting for an I/0 operation to complete. The I/O manager provides 
several models of asynchronous I/0 completion, including setting of events, 
delivery of APCs to initiating threads, and use of I/0 completion ports, which 
allow a single thread to process I/0 completions from many other threads. 

Device drivers are arranged in a list for each device (called a driver or 
I/0 stack). The I/0 manager converts the requests it receives into a standard 
form called an . It then forwards the IRP to the first 
driver in the stack for processing. After a driver processes the IRP, it calls the 
I/0 manager either to forward the IRP to the next driver in the stack or, if all 
processing is finished, to complete the operation on the IRP. 

The I/0 request may be completed in a context different from the one in 
which it was made. For example, if a driver is performing its part of an I/0 
operation and is forced to block for an extended time, it may queue the IRP to 
a worker thread to continue processing in the system context. In the original 
thread, the driver returns a status indicating that the I/0 request is pending 
so that the thread can continue executing in parallel with the I/0 operation. 
An IRP may also be processed in interrupt-service routines and completed in 
an arbitrary context. Because some final processing may need to take place 
in the context that initiated the I/0, the I/0 manager uses an APC to do final 
I/O-completion processing in the context of the originating thread. 

The stack model is very flexible. As a driver stack is built, various drivers 
have the opportunity to insert themselves into the stack as 
Filter drivers can examine and potentially modify each l/0 operation. Mount 
management, partition management, and disk striping and mirroring are all 
examples of functionality implemented using filter drivers that execute beneath 
the file system in the stack. File-system filter drivers execute above the file 



870 Chapter 22 

system and have been used to implement functionalities such as hierarchical 
storage management single instancing of files for remote boot, and dynamic 
forncat conversion. Third parties also use file-system filter drivers to implement 
virus detection. 

Device drivers for Windows XP are written to the Windows Driver Model 
(WDM) specification. This model lays out all the requirements for device drivers, 
including how to layer filter drivers, share common code for handling power 
and plug-and-play requests, build correct cancellation logic, and so forth. 

Because of the richness of the WDM, writing a full WDM device driver 
for each new hardware device can involve an excessive amount of work. 
Fortunately, the port/miniport model makes it unnecessary to do this. Within 
a class of similar devices, such as audio drivers, SCSI devices, or Ethernet 
controllers, each instance of a device shares a common driver for that class, 
called a The port driver implements the standard operations for 
the class and then calls device-specific routines in the device's 
to implement device-specific functionality. 

22.3.3.6 Cache Manager 

In many operating systems, caching is done by the file system. Instead, 
Windows XP provides a centralized caching facility. The works 
closely with the VM manager to provide cache services for all components 
under the control of the I/0 manager. Caching in Windows XP is based on files 
rather than raw blocks. 

The size of the cache changes dynamically according to how much free 
memory is available in the system. Recall that the upper 2GB of a process's 
address space comprise the system area; it is available in the context of all 
processes. The VM manager allocates up to one-half of this space to the system 
cache. The cache manager maps files into this address space and uses the 
capabilities of the VM manager to handle file I/0. 

The cache is divided into blocks of 256 KB. Each cache block can hold a 
view (that is, a memory-mapped region) of a file. Each cache block is described 
by a control block (VACB) that stores the virtual address and 
file offset for the view, as well as the number of processes using the view. The 
VACBs reside in a single array maintained by the cache manager. 

For each open file, the cache manager maintains a separate VACB index 
array that describes the caching for the entire file. This array has an entry for 
each 256-KB chunk of the file; so, for instance, a 2-MB file would have an S-entry 
VACB index array. An entry in the VACB index array points to the VACB if that 
portion of the file is in the cache; it is null otherwise. When the I/0 manager 
receives a file's user-level read request, the I/0 manager sends an IRP to the 
device-driver stack on which the file resides. The file system attempts to look 
up the requested data in the cache manager (unless the request specifically asks 
for a noncached read). The cache manager calculates which entry of that file's 
VACB index array corresponds to the byte offset of the request. The entry either 
points to the view in the cache or is invalid. If it is invalid, the cache manager 
allocates a cache block (and the corresponding entry in the VACB array) and 
maps the view into the cache block. The cache manager then attempts to copy 
data from the mapped file to the caller's buffer. If the copy succeeds, the 
operation is completed. 



22.3 871 

cached 1/0 

page fault 

Figure 22.6 File 1/0. 

If the copy fails, it does so because of a page fault, which causes the VM 
manager to send a non cached read request to the I/ 0 manager. The I/ 0 manager 
sends another request down the driver stack, this time requesting a paging 
operation, which bypasses the cache manager and reads the data from the file 
directly into the page allocated for the cache manager. Upon completion, the 
VACB is set to point at the page. The data, now in the cache, are copied to the 
caller's buffer, and the original I/0 request is completed. Figure 22.6 shows an 
overview of these operations. 

When possible, for synchronous operations on cached files, I/0 is handled 
by the mechanism. This mechanism parallels the normal IRP-based 
I/0 but calls into the driver stack directly rather than passing down an IRP. 
Because no IRP is involved, the operation should not block for an extended 
period of time and cannot be queued to a worker thread. Therefore, when the 
operation reaches the file system and calls the cache manager, the operation 
fails if the information is not already in cache. The I/0 manager then attempts 
the operation using the normal IRP path. 

A kernel-level read operation is similar, except that the data can be accessed 
directly from the cache, rather than being copied to a buffer in user space. 
To use file-system metadata (data structures that describe the file system), 
the kernel uses the cache manager's mapping interface to read the metadata. 
To the metadata, the file system uses the cache manager's pinning 
interface. a page locks the page into a physical-memory page frame 
so that the VM manager cannot move or page out the page. After updating 
the metadata, the file system asks the cache manager to unpin the page. A 
modified page is marked dirty, and so the VM manager flushes the page to 
disk. The metadata are stored in a regular file. 

To improve performance, the cache manager keeps a small history of read 
requests and from this history attempts to predict future requests. If the cache 
manager finds a pattern in the previous three requests, such as sequential access 
forward or backward, it prefetches data into the cache before the next request is 
submitted by the application. In this way, the application finds its data already 



872 Chapter 22 

cached and does not need to wait for disk I/0. The Win32 APT OpenFile () and 
CreateFile () functions can be passed the FILE_FLAG_SEQUENTIALSCAN flag, 
which is a hint to the cache manager to try to prefetch 192 KB ahead of the 
thread's requests. Typically, Windows XP performs I/0 operations in chunks of 
64 KG, or 16 pages; thus, this read-ahead is three times the normal amount. 

The cache manager is also responsible for telling the VM manager to flush 
the contents of the cache. The cache manager's default behavior is write-back 
caching: it accumulates writes for 4 to 5 seconds and then wakes up the cache
writer thread. When write-through caching is needed, a process can set a flag 
when opening the file, or the process can call an explicit cache-flush function. 

A fast-writing process could potentially fill all the free cache pages before 
the cache-writer thread had a chance to wake up and flush the pages to disk. 
The cache writer prevents a process from flooding the system in the following 
way. W11en the amount of free cache memory becomes low, the cache manager 
temporarily blocks processes attempting to write data and wakes the cache
writer thread to flush pages to disk. If the fast-writing process is actually a 
network redirector for a network file system, blocking it for too long could 
cause network transfers to time out and be retransmitted. This retransmission 
would waste network bandwidth. To prevent such waste, network redirectors 
can instruct the cache manager to limit the backlog of writes in the cache. 

Because a network file system needs to move data between a disk and the 
network interface, the cache manager also provides a DMA interface to move 
the data directly. Moving data directly avoids the need to copy data through 
an intermediate buffer. 

22.3.3.7 Security Reference Monitor 

Centralizing management of system entities in the object manager enables 
Windows XP to use a uniform mechanism to perform run-time access validation 
and audit checks for every user-accessible in the system. Whenever a 
process opens a handle to an object, the 
checks the process's security token and the object's access-control list to see 
whether the process has the necessary rights. 

The SRM is also responsible for manipulating the privileges in security 
tokens. Special privileges are required for users to perform backup or restore 
operations on file systems, debug processes, and so forth. Tokens can also be 
marked as being restricted in their privileges so that they cannot access objects 
that are available to most users. Restricted tokens are primarily used to restrict 
the damage that can be done by execution of untrusted code. 

Another responsibility of the SRM is logging security audit events. A C-2 
security rating requires that the system have the ability to detect and log all 
attempts to access system resources so that it is easier to trace attempts at 
unauthorized access. Because the SRM is responsible for making access checks, 
it generates most of the audit records in the security-event log. 

22.3.3.8 Plug-and-Play and Power Managers 

The operating system uses the plug--and-play to recognize 
and adapt to changes in the hardware configuration. For PnP to work, both 
the device and the driver must support the PnP standard. The PnP manager 
automatically recognizes installed devices and detects changes in devices as the 



22.3 873 

system operates. The manager also keeps track of resources used by a device, 
as well as potential resources that could be used, and takes care of loading 
the appropriate drivers. This management of hardware resources-primarily 
interrupts and I/O memory ranges-has the goal of determining a hardware 
configuration in which all devices are able to operate. 

For example, if device B can use interrupt 5 and device A can use 5 or 7, 
then the PnP manager will assign 5 to Band 7 to A. In previous versions, the 
user might have had to remove device A and reconfigure it to use interrupt 7 
before installing device B. The user thus had to study system resources before 
installing new hardware and had to determine which devices were using which 
hardware resources. The proliferation of PCMCIA cards, laptop docks, and USB, 
IEEE 1394, Infiniband, and other hot-pluggable devices also dictates the support 
of dynamically configurable resources. 

The PnP manager handles dynamic reconfiguration as follows. First, it 
gets a list of devices from each bus driver (for example, PCI, USB). It loads 
the installed driver (or installs one, if necessary) and sends an add-device 
request to the appropriate driver for each device. The PnP manager figures out 
the optimal resource assignments and sends a start-device request to each 
driver, along with the resource assignment for the device. If a device needs to 
be reconfigured, the PnP manager sends a query-stop request, which asks the 
driver whether the device can be temporarily disabled. If the driver can disable 
the device, then all pending operations are completed, and new operations are 
prevented from starting. Next, the PnP manager sends a stop request; it can 
then reconfigure the device with another start-device request. 

The PnP manager also supports other requests, such as query-remove. 
This request which is used when the user is getting ready to eject a PCCARD 
device, operates in a fashion similar to query-stop. The surprise-remove 
request is used when a device fails 01~ more likely, when a user removes a 
PCCARD device without stopping it first. The remove request tells the driver to 
stop using the device and release all resources allocated to it. 

Windows XP supports sophisticated power management. Although this 
feature is useful for home systems to reduce power consumption, it is primarily 
useful in promoting ease of use (quicker access) and extending the battery life of 
laptops. The system and individual devices can be moved to low-power mode 
(called standby or sleep mode) when not in use, so the battery is primarily 
directed at physical memory (RAM) data retention. The system can turn itself 
back on when packets are received from the network, a phone line to a modem 
rings, or a user opens a laptop or pushes a soft power button. Windows XP can 
also hibernate a system by storing physical memory contents to disk, completely 
shutting down the machine, and then restoring the system at a later point before 
execution continues. 

Further strategies for reducing power consumption are supported as well. 
Rather than allowing it to spin in a processor loop when the CPU is idle, 
Windows XP moves the system to a state requiring lower power consumption. 
If the CPU is underutilized, Windows XP reduces the CPU clock speed, which 
can save significant power. 

22.3.3.9 Registry 

Windows XP keeps much of its configuration information in an internal 
database called the A registry database is called a There are 



874 Chapter 22 

22.4 

separate hives for system information, default user preferences, software 
installation, and security. Because the information in the is 
required to boot the system, the registry manager is implemented as a 
component of the executive. 

Every time the system successfully boots, it saves the system hive as last 
known good. If the user installs software, such as a device driver, that produces 
a system-hive configuration that will not boot, the user can usually boot using 
the last-known-good configuration. 

Damage to the system hive from installing third-party applications and 
drivers is so common that Windows XP has a component called 
that periodically saves the hives, as well as other software states like driver 
executables and configuration files, so that the system can be restored to 
a previously working state in cases where the system boots but no longer 
operates as expected. 

22.3.3.10 Booting 

The booting of a Windows XP PC begins when the hardware powers on and 
the BIOS begins executing from ROM. The BIOS identifies the 
to be booted and loads and executes the bootstrap loader from the front of 
the disk. This loader knows enough about the file-system format to load the 
NTLDR program from the root directory of the system device. NTLDR is used to 
determine which contains the operating system. Next, the NTLDR 
loads in the HAL library, the kernel, and the system hive from the boot device. 
From the system hive, it determines what device drivers are needed to boot 
the system (the boot drivers) and loads them. Finally, NTLDR begins kernel 
execution. 

The kernel initializes the system and creates two processes. The 
contains all the internal worker threads and never executes in user 

mode. The first user-mode process created is SMSS, which is similar to the 
INIT (initialization) process in UNIX. SMSS does further initialization of the 
system, including establishing the paging files and loading device drivers, and 
creates the WINLOGON and CSRSS processes. CSRSS is the Win32 API subsystem. 
WINLOGON brings up the rest of the system, including the LSASS security 
subsystem and the remaining services needed to run the system. 

The system optimizes the boot process by pre-loading files from disk based 
on previous boots of the system. Disk access patterns at boot are also used to 
lay out system files on disk to reduce the number of I/0 operations required. 
The processes required to start the system are reduced by grouping services 
into one process. All of these approaches contribute to a dramatic reduction in 
system boot time. Of course, system boot time is less important than it once 
was because of the sleep and hibernation capabilities of Windows XP, which 
allow users to power down their computers and then quickly resume where 
they left off. 

Environmental subsystems are user-mode processes layered over the native 
Windows XP executive services to enable Windows XP to run programs 



22.4 875 

developed for other operating systems, including 16-bit Windows, MS-DOS, 
and POSIX. Each environmental subsystem provides a single application 
en vironm.en t. 

Windows XP uses the Win32 API subsysten1. as the main operating envi
ronment, and thus this subsystem starts all processes. When an application is 
executed, the Win32 API subsystem calls the VM manager to load the appli
cation's executable code. The memory manager returns a status to Win32 
indicating the type of executable. If it is not a native Win32 API executable, the 
Win32 API environment checks whether the appropriate environmental sub
system is running; if the subsystem is not running, it is started as a user-mode 
process. The subsystem then takes control over the application startup. 

The environmental subsystems use the LPC facility to provide operating
system services to client processes. The Windows XP subsystem architecture 
keeps applications from mixing API routines from different environments. For 
instance, a Win32 API application cam1.ot make a POSIX system call, because 
only one environmental subsystem can be associated with each process. 

Since each subsystem is run as a separate user-mode process, a crash in one 
has no effect on other processes. The exception is Win32 API, which provides 
all keyboard, mouse, and graphical display capabilities. If it fails, the system is 
effectively disabled and requires a reboot. 

The Win32 API environment categorizes applications as either graphical or 
character based, where a character-based application is one that thinks interactive 
output goes to a character-based (command) window. Win32 API transforms 
the output of a character-based application to a graphical representation in the 
command window. This transformation is easy: whenever an output routine 
is called, the environmental subsystem calls a Win32 routine to display the 
text. Since the Win32 API environment performs this function for all character
based windows, it can transfer screen text between windows via the clipboard. 
This transformation works for MS-DOS applications, as well as for POSIX 
command-line applications. 

22.4.1 MS-DOS Environment 

The MS-DOS environment does not have the complexity of the other Windows 
XP environmental subsystems. It is provided by a Win32 API application called 
the Since the VDM is a user-mode process, it is 

and dispatched like any other Windows XP application. The VDM has 
to execute or emulate Intel 486 instructions. 

VDM also provides routines to emulate the MS-DOS ROM BIOS and 
"int 21" software-interrupt services and has virtual device drivers for the screen, 
keyboard, and communication ports. The VDM is based on MS-DOS 5.0 source 
code; it allocates at least 620 KB of memory to the application. 

The Windows XP command shell is a program that creates a window that 
looks like an MS-DOS environment. It can run both 16-bit and 32-bit executables. 
When an MS-DOS application is run, the command shell starts a VDM process 
to execute the program. 

If Windows XP is running on a IA32-compatible processor, MS-DOS graphical 
applications run in full-screen mode, and character applications can run full 
screen or in a window. Not all MS-DOS applications run under the VDM. For 
example, some MS-DOS applications access the disk hardware directly, so they 



876 Chapter 22 

fail to run on Windows XP because disk access is restricted to protect the file 
system. In general, MS-DOS applications that directly access hardware will fail 
to operate under Windows XP. 

Since MS-DOS is not a multitasking environment, some applications have 
been written in such a way as to "hog" the CPU. For instance, the use of busy 
loops can cause time delays or pauses in execution. The scheduler in the kernel 
dispatcher detects such delays and automatically throttles the CPU usage, but 
this may cause the offending application to operate incorrectly. 

22.4.2 16-Bit Windows Environment 

The Win16 execution environment is provided by a VDM that incorporates 
additional software called Windows on Windows (WOW32 for 16-bit applica
tions); this software provides the Windows 3.1 kernel routines and stub routines 
for window-manager and graphical-device-interface (GDI) functions. The 

call the appropriate Win32 API subroutines-converting, or thunlcing, 
16-bit addresses into 32-bit addresses. Applications that rely on the internal 
structure of the 16-bit window manager or GDI may not work, because the 
underlying Win32 API implementation is, of course, different from true 16-bit 
Windows. 

WOW32 can multi task with other processes on Windows XP, but it resembles 
Windows 3.1 in many ways. Only one Win16 application can run at a time, all 
applications are single tlueaded and reside in the same address space, and all 
share the same input queue. These features imply that an application that stops 
receivil1.g input will block all the other Win16 applications, just as ill Wi11.dows 
3.x, and one Win16 application can crash other Win16 applications by corrupt
ing the address space. The user can enable multiple Win16 environments to 
coexist, however, by usil1.g the command start /separate win16application from 
the command line. 

There are relatively few 16-bit applications that users need to continue to 
run on Wmdows XP, but some of them mclude common installation (setup) 
programs. Thus, the WOW32 environment conti11.ues to exist primarily because 
a number of 32-bit applications cannot be il1.stalled on Windows XP without it. 

22.4.3 32-Bit Windows Environment on IA64 

The native environment for Windows on IA64 uses 64-bit addresses and the 
native IA64 il1.struction set. To execute IA32 programs in this environment 
requires a thunking layer to translate 32-bit Win32 API calls into the correspond
ing 64-bit calls-just as 16-bit applications require translation on IA32 systems. 
Thus, 64-bit Windows supports the WOW64 environment. The implementations 
of 32-bit and 64-bit Windows are essentially identical, and the IA64 processor 
provides direct execution of IA32 instructions, so WOW64 achieves a higher level 
of compatibility than WOW32. 

22.4.4 Win32 Environment 

As mentioned earlier, the main subsystem in Windows XP is the Win32 API, 
which runs Win32 API applications and manages all keyboard, mouse, and 
screen I/0. Since it is the controlling environment, it is designed to be extremely 
robust. Several features of the Win32 API contribute to this robushl.ess. Unlike 



22.4 877 

processes in the Win16 environment, each Win32 process has its own input 
queue. The window manager dispatches all input on the system to the 
appropriate process's input queue, so a failed process does not block input 
to other processes. 

The Windows XP kernel also provides preemptive multitasking, which 
enables the user to terminate applications that have failed or are no longer 
needed. The Win32 API also validates all objects before using them, to prevent 
crashes that could otherwise occur if an application tried to use an invalid or 
wrong handle. The Win32 API subsystem verifies the type of the object to which 
a handle points before using the object. The reference counts kept by the object 
manager prevent objects from being deleted while they are still being used and 
prevent their use after they have been deleted. 

To achieve a high level of compatibility with Windows 95/98 systems, 
Windows XP allows users to specify that individual applications be run 
using a which modifies the Win32 API to better approximate 
the behavior expected by old applications. For example, some applications 
expect to see a particular version of the system and fail on new versions. 
Frequently, applications have latent bugs that become exposed due to changes 
in the implementation. Running an application with the Windows 95/98 shims 
enabled causes the system to provide behavior much closer to Windows 95/98 
-though with reduced performance and limited interoperability with other 
applications. 

22.4.5 POSIX Subsystem 

The POSIX subsysten1 is designed to nm POSIX applications written to follow 
the POSIX standard, which is based on the UNIX model. POSIX applications can 
be started by the Win32 API subsystem or by another POSIX application. POSIX 
applications use t.~e POSIX subsystem server PSXSS. EXE, the POSIX dynamic 
link library PSXDLL. DLL, and the POSIX console session manager PO SIX. EXE. 

Although tl1e POSIX standard does not specify printing, POSIX applications 
can use printers transparently via the Windows XP redirection mechanism. 
POSIX applications have access to any file system on the Windows XP system; 
the POSIX environment enforces UNIX-like permissions on directory trees. 

Due to scheduling issues, the POSIX system in Windows XP does not ship 
with the system but is available separately for professional desktop systems 
and servers. It provides a much higher level of compatibility with UNIX 
applications than previous versions of NT. Of the commonly available UNIX 
applications, most compile and run without change with the latest version of 
Interix. 

22.4.6 Logon and Security Subsystems 

Before a user can access objects on Windows XP, that user must be authenticated 
by the logon service, WINLOGON. WINLOGON is responsible for responding 
to the secure attention sequence (Control-Alt-Delete). The secure attention 
sequence is a required n1echanism for keeping an application from acting 
as a Trojan horse. Only WINLOGON can intercept this sequence in order to 
put up a logon screen, change passwords, and lock the workstation. To be 
authenticated, a user must have an account and provide the password 



878 Chapter 22 

22.5 

that account. Alternatively, a user logs on by using a smart card and personal 
identification number, subject to the security policies in effect for the domain. 

The local security authority subsystem (LSASS) is the process that generates 
access tokens to represent users on the system. It calls an 

to perform authentication using information from the logon subsystem 
or network server. Typically, the authentication package simply looks up the 
account information in a local database and checks to see that the password is 
correct. The security subsystem then generates the access token for the user ID 
containing the appropriate privileges, quota limits, and group IDs. Whenever 
the user attempts to access an object in the system, such as by opening a handle 
to the object, the access token is passed to the security reference monitor, which 
checks privileges and quotas. The default authentication package for Windows 
XP domains is Kerberos. LSASS also has the responsibility for implementing 
security policy, such as strong passwords; for authenticating users; and for 
performing encryption of data and keys. 

Historically, MS-DOS systems have used the file-allocation table (FAT) file 
system. The 16-bit FAT file system has several shortcomings, including internal 
fragmentation, a size limitation of 2GB, and a lack of access protection for files. 
The 32-bit FAT file system has solved the size and fragmentation problems, 
but its performance and features are still weak by comparison with modern 
file systems. The NTFS file system is much better. It was designed to include 
many features, including data recovery, security, fault tolerance, large files and 
file systems, multiple data streams, UNICODE names, sparse files, encryption, 
journaling, volume shadow copies, and file compression. 

Windows XP uses NTFS as its basic file system, and we focus on it here. 
Windows XP continues to use FAT16, however, to read floppies and other 
removable media. And despite the advantages of NTFS, FAT32 continues to 
be important for interoperability of media with Windows 95/98 systems. 
Windows XP supports additional file-system types for the common formats 
used for CD and DVD media. 

22.5.1 NTFS Internal Layout 

The fundamental entity in NTFS is a volume. A volume is created by the 
Windows XP logical disk management utility and is based on a logical disk 
partition. A volume may occupy a portion of a disk, may occupy an entire 
disk, or may span several disks. 

NTFS does not deal with individual sectors of a disk but instead uses clusters 
as the units of disk allocation. A is a number of disk sectors that is a 
power of 2. The cluster size is configured when an NTFS file system is formatted. 
The default cluster size is the sector size for volumes up to 512MB, 1 KB for 
volumes up to 1 GB, 2 KB for volumes up to 2 GB, and 4 KB for larger volumes. 
This cluster size is much smaller than that for the 16-bit FAT file system, and 
the small size reduces the amount of internal fragmentation. As an example, 
consider a 1.6-GB disk with 16,000 files. If you use a FAT -16 file system, 400 MB 



22.5 879 

may be lost to internal fragmentation because the cluster size is 32 KB. Under 
NTFS, only 17MB wo11ld be lost when storing the same files. 

NTFS uses as disk addresses. It assigns them 
by numbering from the beginning of the disk to the end. Using this 
scheme, the system can calculate a physical disk offset (in bytes) by multiplying 
the LCN by the cluster size. 

A file in NTFS is not a simple byte stream as it is in MS-DOS or UNIX; rather, it 
is a structured object consisting of typed Each attribute of a file is an 
independent byte stream that can be created, deleted, read, and written. Some 
attribute types are standard for all files, including the file name (or names, 
if the file has aliases, such as an MS-DOS shortname), the creation time, and 
the security descriptor that specifies access control. User data is stored in data 
attributes. 

Most traditional data files have an unnamed data attribute that contains all 
the file's data. However, additional data streams can be created with explicit 
names. For instance, in Macintosh files stored on a Windows XP server, the 
resource fork is a named data stream. The IProp interfaces of the Component 
Object Model (COM) use a named data stream to store properties on ordinary 
files, including thumbnails of images. In general, attributes may be added as 
necessary and are accessed using a file-name:attribute syntax. NTFS returns the 
size of the unnamed attribute only in response to file-query operations, such 
as when rmming the dir command. 

Every file in NTFS is described by one or more records in an array stored in a 
special file called the master file table (MFT). The size of a record is determined 
when the file system is created; it ranges from 1 to 4 KB. Small attributes 
are stored in the MFT record itself and are called Large 
attributes, such as the unnamed bulk data, are called 
and are stored in one or more contiguous on the disk; a pointer to 
each extent is stored in the MFT record. For a small file, even the data attribute 
may fit inside the MFT record. If a file has many attributes-or if it is highly 
fragmented, so that many pointers are needed to point to all the fragments 
-one record in the MFT might not be large enough. In this case, the file is 
described by a record called the which contains pointers to 
overflow records that hold the additional pointers and attributes. 

Each file in an NTFS volume has a unique ID called a . The file 
reference is a 64-bit quantity that consists of a 48-bit file number and a 16-bit 
sequence number. The file number is the record number (that is, the array slot) 
in the MFT that describes the file. The sequence number is incremented every 
time an MFT entry is reused. The sequence number enables NTFS to perform 
internal consistency checks, such as catching a stale reference to a deleted file 
after the MFT entry has been reused for a new file. 

22.5.1.1 NTFS B+ Tree 

As in MS-DOS and UNIX, the NTFS namespace is organized as a hierarchy of 
directories. Each directory uses a data structure called a to store an 
index of the file names in that directory. In a B+ tree, the length of every path 
from the root of the tree to a leaf is the same, and the cost of reorganizing the 
tree is eliminated. The of a directory contains the top level of the 
B+ tree. For a large directory, this top level contains pointers to disk extents 



880 Chapter 22 

that hold the remainder of the tree. Each entry in the directory contains the 
name and file reference of the file, as well as a copy of the update timestamp 
and file size taken from the file's resident attributes in the MFT. Copies of this 
information are stored in the directory, so a directory listing can be efficiently 
generated. Because all the file names, sizes, and update times are available 
from the directory itself, there is no need to gather these attributes from the 
MFT entries for each of the files. 

22.5.1.2 NTFS Metadata 

The NTFS volume's metadata are all stored in files. The first file is the MFT. The 
second file, which is used during recovery if the MFT is damaged, contains a 
copy of the first 16 entries of the MFT. The next few files are also special in 
purpose. They include the files described below. 

The records all metadata updates to the file system. 

The contains the name of the volume, the version of NTFS that 
formatted the volume, and a bit that tells whether the volume may have 
been corrupted and needs to be checked for consistency. 

The indicates which attribute types are used in 
the volume and what operations can be performed on each of them. 

The is the top-level directory in the file-system hierarchy. 

indicates which clusters on a volume are allocated to files 
and which are free. 

The contains the startup code for Windows XP and must be located 
at a particular disk address so that it can be found easily by a simple ROM 
bootstrap loader. The boot file also contains the physical address of the 
MFT. 

The keeps track of any bad areas on the volume; NTFS uses 
this record for error recovery. 

22.5.2 Recovery 

In many simple file systems, a power failure at the wrong time can damage 
the file-system data structures so severely that the entire volume is scrambled. 
Many versions of UNIX store redundant metadata on the disk, and they recover 
from crashes by using the f sck program to check all the file-system data 
structures and restore them forcibly to a consistent state. Restoring them 
often involves deleting damaged files and freeing data clusters that had been 
written with user data but not properly recorded in the file system's metadata 
structures. This checking can be a slow process and can cause the loss of 
significant amounts of data. 

NTFS takes a different approach to file-system robustness. In NTFS, all file
system data-structure updates are performed inside transactions. Before a data 
structure is altered, the transaction writes a log record that contains redo and 
undo information; after the data structure has been changed, the transaction 
writes a commit record to the log to signify that the transaction succeeded. 



22.5 881 

After a crash, the system can restore the file-system data structures to 
a consistent state by processing the log records, first redoing the operations 
for committed transactions and then undoing the operations for transactions 
that did not commit successfully before the crash. Periodically (usually every 
5 seconds), a checkpoint record is written to the log. The system does not 
need log records prior to the checkpoint to recover from a crash. They can be 
discarded, so the log file does not grow without bounds. The first time after 
system_ startup that an NTFS volume is accessed, NTFS automatically performs 
file-system recovery. 

This scheme does not guarantee that all the user-file contents are correct 
after a crash; it ensures only that the file-system data structures (the metadata 
files) are undamaged and reflect some consistent state that existed prior to the 
crash. It would be possible to extend the transaction scheme to cover user files, 
and Microsoft may do so in the future. 

The log is stored in the third metadata file at the beginning of the volume. 
It is created with a fixed maximum size when the file system is formatted. It 
has two sections: the which is a circular queue of log records, 
and the which holds context information, such as the position in 
the logging area where NTFS should start reading during a recovery. In fact, 
the restart area holds two copies of its information, so recovery is still possible 
if one copy is damaged during the crash. 

The logging functionality is provided by the Windows XP '-"''"'---L"''" 
In addition to writing the log records and performing recovery actions, the 
log-file service keeps track of the free space in the log file. If the free space gets 
too low, the log-file service queues pending transactions, and NTFS halts all 
new I/O operations. After the in-progress operations complete, NTFS calls the 
cache manager to flush all data and then resets the log file and performs the 
queued transactions. 

22.5.3 Security 

The security of an NTFS volume is derived from the Windows XP object model. 
Each NTFS file references a security descriptor, which contains the access token 
of the owner of the file, and an access-control list, which states the access 
privileges granted to each user having access to the file. 

In normal operation, NTFS does not enforce permissions on traversal 
of directories in file path names. However, for compatibility with POSIX, 
these checks can be enabled. Traversal checks are inherently more expensive, 
since modem parsing of file path names uses prefix matching rather than 
component-by-component opening of directory names. 

22.5.4 Volume Management and Fault Tolerance 

FtDisk is the fault-tolerant disk driver for Windows XP. When installed, it 
provides several ways to combine multiple disk drives into one logical volume 
so as to improve performance, capacity, or reliability. 

22.5.4.1 Volume Set 

One way to combine multiple disks is to concatenate them logically to form 
a large logical volume, as shown in Figure 22.7. In Windows XP, this logical 



882 Chapter 22 

disk 1 (2.5 GB) disk 2 (2.5 GB) 

D disk C: (FAT) 2GB 

ILCNs 128001-7833611 

D logical drive D: (NTFS) 3 GB 

Figure 22.7 Volume set on two drives. 

volume, called a can consist of up to 32 physical partitions. A 
volume set that contains an NTFS volume can be extended without disturbance 
of the data already stored in the file system. The bitmap metadata on the NTFS 
volume are simply extended to cover the newly added space. NTFS continues 
to use the same LCN mechanism that it uses for a single physical disk, and the 
FtDisk driver supplies the mapping from a logical-volume offset to the offset 
on one particular disk. 

22.5.4.2 Stripe Set 

Another way to combine multiple physical partitions is to interleave their 
blocks in round-robin fashion to form a as shown in Figure 22.8. 
This scheme is also called RAID level 0, or FtDisk uses a stripe 
size of 64 KB. The first 64 KB of the logical volume are stored in the first 

disk 1 (2GB) disk 2 (2GB) 

LCNs 0-15 LCNs 16-31 

LCNs 32-47 LCNs 48-63 

LCNs 64-79 LCNs 80-95 

. • 

. . 
.. • 

D logical drive C: 4 GB 

Figure 22.8 Stripe set on two drives. 



22.5 883 

disk 1 (2 GB) disk 2 (2GB) disk 3 (2GB) 

D logical drive C: 4 GB 

Figure 22.9 Stripe set with parity on three drives. 

physical partition, the second 64 KB in the second physical partition, and so 
on, until each partition has contributed 64 KB of space. Then, the allocation 
wraps ar01md to the first disk, allocating the second 64-KB block. A stripe set 
forms one large logical volume, but the physical layout can improve the I/0 
bandwidth, because, for a large I/0, all the disks can transfer data in parallel. 

22.5.4.3 Stripe Set with Parity 

A variation of this idea is the , which is shown in Figure 
22.9. This scheme is also called RAID levelS. Suppose that a stripe set has eight 
disks. Seven of the disks will store data stripes, with one data stripe on each 
disk, and the eighth disk will store a parity stripe for each data stripe. The parity 
stripe contains the byte-wise exclusive or of the data stripes. If any one of the 
eight stripes is destroyed, the system can reconstruct the data by calculating the 
exclusive or of the remaining seven. This ability to reconstruct data makes 
the disk array much less likely to lose data in case of a disk failure. 

Notice that an update to one data stripe also requires recalculation of 
the parity stripe. Seven concurrent writes to seven different data stripes thus 
require updates to seven parity stripes. If the parity stripes were all on the 
same disk, that disk could have seven times the I/0 load of the data disks. To 
avoid creating this bottleneck, we spread the parity stripes over all the disks by 
assigning them in round-robin style. To build a stripe set with parity, we need 
a minimum of three equal-sized partitions located on three separate disks. 

22.5.4.4 Disk Mirroring 

An even more robust scheme is called or RAID level 1; it is 
depicted in Figure 22.10. A comprises two equal-sized partitions 
on two disks. When an application writes data to a mirror set, FtDisk writes 
the data to both partitions, so that the data contents of the two partitions are 
identical. If one partition fails, FtDisk has another copy safely stored on the 
mirror. Mirror sets can also improve performance, because read requests can 



884 Chapter 22 

disk 1 (2GB) disk 2 (2GB) 

drive C: 2GB copy of drive C: 2GB 

Figure 22.10 Mirror set on two drives. 

be split between the two mirrors, giving each mirror half of the workload. To 
protect against the failure of a disk controller, we can attach the two disks of a 
mirror set to two separate disk controllers. This arrangement is called a 

22.5.4.5 Sedor Sparing and Cluster Remapping 

To deal with disk sectors that go bad, FtDisk uses a hardware technique called 
sector sparing, and NTFS uses a software technique called cluster remapping. 

is a hardware capability provided by many disk drives. When 
is formatted, it creates a map from logical block numbers to good 

sectors on the disk. It also leaves extra sectors unmapped, as spares. If a sector 
fails, FtDisk instructs the disk drive to substitute a spare. 
is a software technique performed by the file system. If a disk goes 
bad, NTFS substitutes a different, unallocated block by changing any affected 
pointers in the MFT. NTFS also makes a note that the bad block should never be 
allocated to any file. 

When a disk block goes bad, the usual outcome is a data loss. But sector 
sparing or cluster remapping can be combined with fault-tolerant volumes to 
mask the failure of a disk block. If a read fails, the system reconstructs the 
missing data by reading the mirror or by calculating the exclusive or parity 
in a stripe set with parity. The reconstructed data are stored in a new location 
that is obtained by sector sparing or cluster remapping. 

22.5.5 Compression and Encryption 

NTFS can perform data compression on individual tlles or on all data files in 
a directory. To compress a file, NTFS divides the file's data into 

which are blocks of 16 contiguous clusters. When a compression unit 
is written, a data-compression algoritln11 is applied. If the result fits into 



22.5 885 

fewer than 16 clusters, the compressed version is stored. When reading, NTFS 
can determine whether data have been compressed: if they have been, the 
length of the stored compression unit is less than 16 clusters. To improve 
performance when reading contiguous compression units, NTFS prefetches 
and decompresses ahead of the application requests. 

For sparse files or files that contain mostly zeros, NTFS uses another 
technique to save space. Clusters that contain only zeros because they have 
never been written are not actually allocated or stored on disk. Instead, gaps 
are left in the sequence of virtual-duster numbers stored in the MFT entry for 
the file. When reading a file, if NTFS finds a gap in the virtual-duster numbers, 
it just zero-fills that portion of the caller's buffer. This technique is also used 
by UNIX. 

NTFS supports encryption of files. Individual files or entire directories can 
be specified for encryption. The security system manages the keys used, and a 
key-recovery service is available to retrieve lost keys. 

22.5.6 Mount Points 

Mount points are a form of symbolic link specific to directories on NTFS. They 
provide a mechanism for organizing disk volumes that is more flexible than 
the use of global names (like drive letters). A mount point is implemented 
as a symbolic link with associated data that contain the true volume name. 
Ultimately, mount points will supplant drive letters completely, but there 
will be a long transition due to the dependence of many applications on the 
drive-letter scheme. 

22.5.7 Change Journal 

NTFS keeps a journal describing all changes that have been made to the 
file system. User-mode services can receive notifications of changes to the 
journal and then identify what files have changed. The content-indexing service 
uses the change journal to identify files that need to be re-indexed. The file
replication service uses it to identify files that need to be replicated across the 
network. 

22.5.8 Volume Shadow Copies 

Windows XP implements the capability of bringing a volume to a known state 
and then creating a shadow copy that can be used to back up a consistent view 
of the volume. Making a shadow copy of a volume is a form of copy-on-write, 
where blocks modified after the shadow copy is created are stored in their 
original form in the copy. To achieve a consistent state for the volume requires 
the cooperation of applications, since the system cannot know when the data 
used by the application are in a stable state from which the application could 
be safely restarted. 

The server version of Windows XP uses shadow copies to efficiently 
maintain old versions of files stored on file servers. This allows users to see 
documents stored on file servers as they existed at earlier points in time. The 
user can use this feature to recover files that were accidentally deleted or simply 
to look at a previous version of the file, all without pulling out a backup tape. 



886 Chapter 22 

22.6 

Windows XP supports both peer-to-peer and client-server networking. It 
also has facilities for network management. The networking components in 
Windows XP provide data transport, i11terprocess communication, file sharing 
across a network, and the ability to send print jobs to remote printers. 

22.6.1 Network Interfaces 

To describe networking in Windows XP, we must first mention two of the 
internal networking interfaces: the 

and the 
developed in 1989 by Microsoft and 3Com to separate network adapters 
from transport protocols so that either could be changed without affecting 
the other. NDIS resides at the interface between the data-link and network 
layers in the ISO model and enables many protocols to operate over many 
different network adapters. In terms of the ISO model, the TDI is the interface 
between the transport layer (layer 4) and the session layer (layer 5). This 
interface enables any session-layer component to use any available transport 
mechanism. (Similar reasoning led to the streams mechanism in UNIX.) The 
TDI supports both connection-based and connectionless transport and has 
functions to send any type of data. 

22.6.2 Protocols 

Windows XP implements transport protocols as drivers. These drivers can be 
loaded and unloaded from the system dynamically, although in practice the 
system typically has to be rebooted after a change. Windows XP comes with 
several networking protocols. Next, we discuss a number of the protocols 
supported in Windows XP to provide a variety of network functionality. 

22.6.2.1 Server-Message Block 

The protocol was first introduced in MS-DOS 3.1. 
The system uses the protocol to send II 0 requests over the network. The SMB 
protocol has four message types. Session control messages are commands 
that start and end a redirector corLDection to a shared resource at the server. A 
redirector uses File messages to access files at the server. Printer messages 
are used to send data to a remote print queue and to receive status information 
from the queue, and Message messages are used to communicate with another 
workstation. The SMB protocol was published as the 

(CIFS) and is supported on a number of operating systems. 

22.6.2.2 Network Basic Input/Output System 

The is a hardware-abstraction 
interface for networks, analogous to the BIOS hardware-abstraction interface 
devised for PCs running MS-DOS. NetBIOS, developed in the early 1980s, 
has becmne a standard network-programming interface. NetBIOS is used to 
establish logical names on the network; to establish logical connections, or 

between two logical names on the network; and to support reliable 
data transfer for a session via either NetBIOS or SMB requests. 



22.6 887 

22.6.2.3 NetBIOS Extended User Interface 

The was introduced by IBM in 
1985 as a simple, efficient networking protocol for up to 254 machines. It is 
the default protocol for Windows 95 peer networking and for Windows for 
Workgroups. Windows XP uses NetBEUI when it wants to share resources with 
these networks. Among the limitations of NetBEUI are that it uses the actual 
name of a computer as the address and that it does not support routing. 

22.6.2.4 Transmission Control Protocol/Internet Protocol 

The transmission control protocol/Internet protocol (TCP liP) suite that is used 
on the Internet has become the de facto standard networking infrastructure. 
Windows XP uses TCP liP to connect to a wide variety of operating systems 
and hardware platforms. The Windows XP TCP liP package includes the simple 
network-management protocol (SNM), dynamic host-configuration protocol 
(DHCP), Windows Internet name service (WINS), and NetBIOS support. 

22.6.2.5 Point-to-Point Tunneling Protocol 

is a protocol provided by 
XP to communicate remote-access server modules running 

on Windows XP server machines and other client systems that are connected 
over the Internet. The remote-access servers can encrypt data sent over the 
connection, and they support multi-protocol (VPNs) 
over the Internet. 

22.6.2.6 Novell NetWare Protocols 

TheN ovell N etWare protocols (IPX datagram service on the SPX transport layer) 
are widely used for PC LANs. The Windows XP NWLink protocol connects 
the NetBIOS to NetWare networks. In combination with a redirector (such 
as Microsoft's Client Service for NetWare or Novell's NetWare Client for 
Windows), this protocol enables a Windows XP client to connect to a NetWare 
server. 

22.6.2.7 Web-Distributed Authoring and Versioning Protocol 

Web-distributed authoring and versioning (WebDAV) is an http-based protocol 
for collaborative authoring across a network Windows XP builds a WebDAV 
redirector into the file system. Building this support directly into the file system 
enables WebDAV to work with other features, such as encryption. Personal files 
can now be stored securely in a public place. 

22.6.2.8 AppleTalk Protocol 

The p;:·oi:ocoi was designed as a low-cost connection by Apple to 
allow Macintosh computers to share files. Windows XP systems can share files 
and printers with Macintosh computers via Apple Talk if a Windows XP server 
on the network is running the Windows Services for Macintosh package. 



888 Chapter 22 

22.6.3 Distributed-Processing Mechanisms 

Although Windows XP is not a distributed operating system, it does support 
distributed applications. Mechanisms that support distributed processing on 
Windows XP include NetBIOS, named pipes and mailslots, Windows sockets, 
RPCs, the Microsoft Interface Definition Language, and COM. 

22.6.3.1 NetBIOS 

In Windows XP, NetBIOS applications can communicate over the network using 
NetBEUI, NWLink, or TCP /IF. 

22.6.3.2 Named Pipes 

are a connection-oriented messaging mechanism. Named pipes 
were originally developed as a high-level interface to NetBIOS connections over 
the network. A process can also use named pipes to communicate with other 
processes on the same machine. Since na1ned pipes are accessed through the 
file-system interface, the security mechanisms used for file objects also apply 
to named pipes. 

The format of pipe names follows the 
A UNC name looks like a typical remote file name. format is 

\ \server_name\share_name\x\y\z, where server_name identifies a server 
on the network; share_name identifies any resource that is made available 
to network users, such as directories, files, named pipes, and printers; and 
\x\y\z is a normal file path name. 

22.6.3.3 Mailslots 

are a connectionless messaging mechanism. They are unreliable 
when accessed across the network, in that a message sent to a mailslot may be 
lost before the intended recipient receives it. Mailslots are used for broadcast 
applications, such as finding components on the network; they are also used 
by the Windows computer browser service. 

22.6.3.4 Winsock 

is the Windows XP sockets API. Winsock is a session-layer interface 
that is largely compatible with UNIX sockets but has some added Windows XP 
extensions. It provides a standardized interface to many transport protocols 
that may have different addressing schemes, so that any Winsock application 
can run on any Winsock-compliant protocol stack. 

22.6.3.5 Remote Procedure Calls 

A remote procedure call (RPC) is a client-server mechanism that enables an 
application on one machine to n<ake a procedure call to code on another 
machine. The client calls a local procedure-a stub routine-which packs its 
arguments into a message and sends them across the network to a particular 
server process. The client-side stub routine then blocks. Meanwhile, the server 
unpacks the message, calls the procedure, packs the return results into a 
message, and sends them back to the client stub. The client stub unblocks, 



22.6 889 

receives the message, unpacks the results of the RPC and returns them to the 
caller. This packing of argun'lents is sometimes called 

The Windows XP RPC mechanism follows the widely 
computing-environment standard for RPC messages, so programs written to 
use Windows XP RPCs are highly portable. The RPC standard is detailed. It 
hides many of the architectural differences among computers, such as the sizes 
of binary numbers and the order of bytes and bits in computer words, by 
specifying standard data formats for RPC messages. 

Windows XP can send RPC messages using NetBIOS, or Winsock on TCP /IP 
networks, or named pipes on LAN Manager networks. The LPC facility, 
discussed earlie1~ is similar to RPC, except that in the case of LPC the messages 
are passed between two processes running on the same computer. 

22.6.3.6 Microsoft Interface Definition Language 

It is tedious and error-prone to write the code to marshal and transmit 
arguments in the standard format, to unmarshal and execute the remote 
procedure, to marshal and send the return results, and to unmarshal and return 
them to the caller. Fortunately, howeve1~ much of this code can be generated 
automatically from a simple description of the and return results. 

Windows XP provides the to 
describe the remote procedure names, arguments, and results. The compiler 
for this language generates header files that declare the stubs for the remote 
procedures, as well as the data types for the arguments and return-value 
messages. It also generates source code for the stub routines used at the client 
side and for an unmarshaller and dispatcher at the server side. When the 
application is linked, the stub routines are included. When the application 
executes the RPC stub, the generated code handles the rest. 

22.6.3.7 Component Object Model 

The ·JbjecJ is a mechanism for interprocess commu-
nication was developed for Windows. COM objects provide a well-defined 
interface to manipulate the data in the object. For instance, COM is the infras-
tructure used by Microsoft's technology 
for inserting spreadsheets into Microsoft documents. XP has a 
distributed extension called that can be used over a network utilizing 
RPC to provide a transparent method of developing distributed applications. 

22.6.4 Redirectors and Servers 

In Windows XP, an application can use the Windows XP I/O API to access 
files from a remote computer as though they were locat provided that the 
remote computer is running a CIFS server, such as is provided by Windows 
XP and earlier Windows systems. A is the client-side object that 
forwards I/0 requests to remote files, where they are satisfied by a server. For 
performance and security, the redirectors and servers run in kernel mode. 

In more detait access to a remote file occurs as follows: 

The application calls the I/O manager to request that a file be opened with 
a file name in the standard UNC format. 



890 Chapter 22 

The I/0 manager builds an I/0 request packet, as described in Section 
22.3.3.5. 

The I/0 manager recognizes that the access is for a remote file and calls a 
driver called a 

The MUP sends the I/O request packet asynchronously to all registered 
redirectors. 

A redirector that can satisfy the request responds to the MUP. To avoid 
asking all the redirectors the same question in the future, the MUP uses a 
cache to remember which redirector can handle this file. 

The redirector sends the network request to the remote system. 

The remote-system network drivers receive the request and pass it to the 
server driver. 

The server driver hands the request to the proper local file-system driver. 

The proper device driver is called to access the data. 

The results are returned to the server driver, which sends the data back 
to the requesting redirector. The redirector then returns the data to the 
calling application via the I/O manager. 

A similar process occurs for applications that use the Win32 API network API, 
rather than the UNC services, except that a module called a multi-provider router 
is used instead of a MUP. 

For portability, redirectors and servers use the TDI API for network 
transport. The requests themselves are expressed in a higher-level protocol, 
which by default is the SMB protocol mentioned in Section 22.6.2. The list of 
redirectors is maintained in the system registry database. 

22.6.4.1 Distributed File System 

UNC names are not always convenient, because multiple file servers may be 
available to serve the same content, and UNC names explicitly include the name 
of the server. Windows XP supports a protocol 
that allows a network administrator to serve up files multiple servers 
using a single distributed name space. 

22.6.4.2 Folder Redirection and Client-Side Caching 

To improve the PC experience for business users who frequently switch among 
computers, Windows XP allows administrators to give users 
which keep users' preferences and other settings on servers. 
is then used to auton'latically store a user's documents and other files on a 
server. 

This works well until one of the computers is no longer attached to the 
network, as when a user takes a laptop onto an airplane. To give users off-line 
access to their redirected files, Windows XP uses 
esc is used when the computer is online to keep copies of the server files 
on the local machine for better performance. The files are pushed up to the 
server as they are changed. If the computer becomes disconnected, the files are 



22.6 891 

still available, and the update of the server is deferred until the next tin'le the 
computer is online. 

22.6.5 Domains 

Many networked environments have natural groups of users, such as students 
in a computer laboratory at school or employees in one department in a 
business. Frequently, we want all the members of the group to be able to 
access shared resources on their various computers in the group. To manage 
the global access rights within such groups, Windows XP uses the concept of 
a domain. Previously, these domains had no relationship whatsoever to the 
domain-name system (DNS) that maps Internet host names to IP addresses. 
Now, however, they are closely related. 

Specifically, a Windows XP domain is a group of Windows XP workstations 
and servers that share a common security policy and user database. Since 
Windows XP now uses the Kerberos protocol for trust and authentication, a 
Windows XP domain is the same thing as a Kerberos realm. Previous versions 
of NT used the idea of primary and backup domain controllers; now all servers 
in a domain are domain controllers. In addition, previous versions required 
the setup of one-way trusts between domains. Windows XP uses a hierarchical 
approach based on DNS and allows transitive trusts that can flow up and 
down the hierarchy. This approach reduces the number of trusts required for 
n domains from n * (n - 1) to O(n). The workstations in the domain trust the 
domain controller to give correct information about the access rights of each 
user (via the user's access token). All users retain the ability to restrict access to 
their own workstations, however, no matter what any domain controller may 
say. 

22.6.5.1 Domain Trees and Forests 

Because a business may have many departments and a school may have 
many classes, it is often necessary to manage multiple domains within a 
single organization. A is a contiguous DNS naming hierarchy 
for managing multiple domains. For example, bell-labs.com might be the root of 
the tree, with research.bell-labs.com and pez.bell-labs.com as children-domains 
research and pez. A is a set of noncontiguous names. An example would 
be the trees bell-labs.conz andlucent.com. A forest may be made up of only one 
domain tree, however. 

22.6.5.2 Trust Relationships 

Trust relationships may be set up between domains in three ways: one-way, 
transitive, and cross-link. Versions of NT through 4.0 allowed only one-way 
trusts. A is exactly what its name implies: domain A is told it 
can trust domain B. However, B will not trust A unless another relationship is 
configured. Under a if A trusts Band B trusts C, then A B, and 
Call trust one another, since transitive trusts are two-way by default. Transitive 
trusts are enabled by default for new domains in a tree and can be configured 
only among domains within a forest. The third type, a is useful 
to cut down on authentication traffic. Suppose that domains A and B are leaf 
nodes and that users in A often use resources in B. If a standard transitive trust 



892 Chapter 22 

22.7 

is used, authentication requests must traverse up to the common ancestor of 
the two leaf nodes; but if A and B have a cross-linking trust the authentications 
are sent directly to the other node. 

22.6.6 Active Directory 

,.,.,cu•i.n'·" is the Windows XP implementation of 
services. Active Directory stores the topology infor

mation about the domain, keeps the doncain-based user and group accounts 
and passwords, and provides a domain-based store for technologies like 

and 
Administrators use group policies to establish uniform standards for 

desktop preferences and software. For many corporate information-technology 
groups, uniformity drastically reduces the cost of computing. Intellimirror is 
used in conjunction with group policies to specify what software should be 
available to each class of user, even automatically installing it on demand from 
a corporate server. 

22.6.7 Name Resolution in TCP/IP Networks 

On an IP network, is the process of converting a computer 
name to an IP address, such as resolving www.bell-labs.com to 135.104.1.14. 
Windows XP provides several methods of name resolution, including Win
dows Internet name service (WINS), broadcast-name resolution, domain-name 
system (DNS), a hosts file, and an LMHOSTS file. Most of these methods are used 
by many operating systems, so we describe only WINS here. 

Under WINS, two or more WINS servers maintain a dynamic database of 
name-to-IF address bindings, along with client software to query the servers. 
At least two servers are used, so that the WINS service can survive a server 
failure and so that the name-resolution workload can be spread over multiple 
machines. 

WINS uses the dynamic host-configuration protocol (DHCP). DHCP updates 
address configurations automatically in the WINS database, without user 
or administrator intervention, as follows. When a DHCP client starts up, it 
broadcasts a discover message. Each DHCP server that receives the message 
replies with an offer message that contains an IP address and configuration 
information for the client. The client chooses one of the configurations and 
sends a request message to the selected DHCP server. The DHCP server 
responds with the IP address and configuration information it gave previously 
and with a for that address. The lease gives the client the right to use the 
IP address for a specified period of time. When the lease time is half expired, the 
client attempts to renew the lease for the address. If the lease is not renewed, 
the client must obtain a new one. 

The Win32 API is the fundamental interface to the capabilities of Windows 
XP. This section describes five main aspects of the Win32 API: access to 
kernel objects, sharing of objects between processes, process management, 
interprocess communication, and memory management. 



22.7 

SECURITY_ATTRIBUTES sa; 
sa.nlength = sizeof(sa); 
sa.lpSecurityDescriptor = NULL; 
sa.binheritHandle =TRUE; 
Handle a_semaphore = CreateSemaphore(&sa, 1, 1, NULL); 
char comand_line[132]; 
ostrstream ostring(command_line, sizeof(command_line)); 
ostring << a_semaphore << ends; 
CreateProcess ("another _process. exe", command_line, 

NULL, NULL, TRUE, ... ); 

Figure 22.11 Code enabling a child to share an object by inheriting a handle. 

22.7.1 Access to Kernel Objects 

893 

The Windows XP kernel provides many services that application programs 
can use. Application programs obtain. these services by manipulating ker
nel objects. A process gains access to a kernel object named XXX by calling 
the CreateXXX function to open a handle to XXX. This handle is unique to 
the process. Depending on which object is being opened, if the Create() 
function fails, it may return 0, or it may return a special constant named 
INVALID.J1ANDLLVALUE. A process can close any handle by calling the Close
Handle() function, and the system may delete the object if the count of 
processes using the object drops to 0. 

22.7.2 Sharing Objects between Processes 

Windows XP provides three ways to share objects between processes. The first 
way is for a child process to inherit a handle to the object. When the parent 
calls the CreateXXX function, the parent supplies a SECURITIES__ATTRIBUTES 
structure with the blnheri tHandle field set to TRUE. This field creates an 
inheritable handle. Next, the child process is created, passing a value of TRUE 
to the CreateProcess () function's binheri tHandle argument. Figure 22.11 
shows a code sample that creates a semaphore handle inherited by a child 
process. 

Assuming the child process knows which handles are shared, the parent 
and child can achieve interprocess communication through the shared objects. 
In the example in Figure 22.11, the child process gets the value of the handle 
from the first command-line argument and then shares the semaphore with 
the parent process. 

The second way to share objects is for one process to give the object a name 
when the object is created and for the second process to open the name. This 
method has two drawbacks: Windows XP does not provide a way to check 
whether an object with the chosen name already exists, and the object name 
space is global, without regard to the object type. For instance, two applications 
1nay create an object named pipe when two distinct-and possibly different
objects are desired. 

Named objects have the advantage that unrelated processes can readily 
share them. The first process calls one of the CreateXXX functions and supplies 
a name in the lpszName parameter. The second process gets a handle to share 



894 Chapter 22 

II Process A 

HANDLE a_semaphore CreateSemaphore(NULL, 1, 1, "MySEM1"); 

II Process B 

HANDLE b_semaphore OpenSemaphore(SEMAPHORE_ALL_ACCESS, 
FALSE, "MySEM1"); 

Figure 22.12 Code for sharing an object by name lookup. 

the object by calling OpenXXX () (or CreateXXX) with the same name, as shown 
in the example of Figure 22.12. 

The third way to share objects is via the DuplicateHandle () function. 
This method requires some other method of interprocess communication to 
pass the duplicated handle. Given a handle to a process and the value of a 
handle within that process, a second process can get a handle to the same 
object and thus share it. An example of this method is shown in Figure 22.13. 

22.7.3 Process Management 

In Windows XP, a is an executing instance of an application, and 
a is a unit of code that can be scheduled by the operating system. 
Thus, a process contains one or more threads. A process is started when 
some other process calls the CreateProcess () routine. This routine loads 
any dynamic link libraries used by the process and creates a 
Additional threads can be created by the CreateThread () function. Each 

II Process A wants to give Process B access to a semaphore 

II Process A 
HANDLE a_semaphore = CreateSemaphore(NULL, 1, 1, NULL); 
II send the value of the semaphore to Process B 
II using a message or shared memory object 

II Process B 
HANDLE process_a = OpenProcess(PROCESS_ALL_ACCESS, FALSE, 

process_id_of....A); 
HANDLE b_semaphore; 
DuplicateHandle(process_a, a_semaphore, 

GetCurrentProcess(), &b_semaphore, 
0, FALSE, DUPLICATE_SAME_ACCESS); 

II use b_semaphore to access the semaphore 

Figure 22.13 Code for sharing an object by passing a handle. 



22.7 895 

thread is created with its own stack, which defaults to 1 MB unless specified 
otherwise in an argument to Create Thread(). Because some C run-time 
functions maintain state in static variables, such as errno, a multithread 
application needs to guard against unsynchronized access. The wrapper 
function beginthreadex () provides appropriate synchronization. 

22.7.3.1 Instance Handles 

Every dynamic link library or executable file loaded into the address space of 
a process is identified by an; The value of the instance handle 
is actually the virtual address where the file is loaded. An application can get 
the handle to a module in its address space by passing the name of the module 
to GetModuleHandle (). If NULL is passed as the name, the base address of 
the process is returned. The lowest 64 KB of the address space are not used, 
so a faulty program that tries to de-reference a NULL pointer gets an access 
violation. 

Priorities in the Win32 API environment are based on the Windows XP 
scheduling model, but not all priority values may be chosen. Win32 API uses 
four priority classes: 

IDLE_PRIORITY _CLASS (priority level4) 

NORMAL_PRIORITY _CLASS (priority level 8) 

HIGH_PRIORITY _CLASS (priority levell3) 

REAL TIME_PRIORITY _CLASS (priority level24) 

Processes are typically members of the NORMALPRIORITY _CLASS unless the 
parent of the process was of the IDLLPRIDRITY _CLASS or another class was 
specified when CreateProcess was called. The priority class of a process 
can be changed with the SetPriori tyClass () function or by passing of 
an argument to the START command. For example, the command START 
/REALTIME cbserver. exe would run the cbserver program in the REAL
TIME_PRIDRITY _CLASS. Only users with the increase scheduling priority privilege 
can move a process into the REALTIMLPRIORITY_CLASS. Administrators and 
power users have this privilege by default. 

22.7.3.2 Scheduling Rule 

When a user is running an interactive program, the system needs to provide 
especially good performance for the process. For this reason, Windows XP has a 
special scheduling rule for processes in the NORMALPRIORITY _CLASS. Windows 
XP distinguishes between the foreground process that is currently selected on 
the screen and the background processes that are not currently selected. When 
a process moves into the foreground, Windows XP increases the scheduling 
quantum by some factor-typically by 3. (This factor can be changed via the 
performance option in the system section of the control panel.) This increase 
gives the foreground process three times longer to run before a time-sharing 
preemption occurs. 



896 Chapter 22 

22.7.3.3 Thread Priorities 

A thread starts with an initial priority determined by its class. The priority 
can be altered by the SetThreadPriori ty() function. This function takes an 
argument that specifies a priority relative to the base priority of its class: 

THREAD_PRIORITY _LOWEST: base 2 

THREAD_PRIORITY _BELOW_NORMAL: base - 1 

THREAD_PRIORITY _NORMAL: base + 0 

THREAD_PRIORITY _ABOVE_NORMAL: base + 1 

THREAD_PRIORITY _HIGHEST: base+ 2 

Two other designations are also used to adjust the priority. Recall from 
Section 22.3.2.1 that the kernel has two priority classes: 16-31 for the real
time class and 0-15 for the variable-priority class. THREAD_PRIORITY _IDLE sets 
the priority to 16 for real-time threads and to 1 for variable-priority threads. 
THREAD_PRIDRITLTIMLCRITICAL sets the priority to 31 for real-time threads 
and to 15 for variable-priority threads. 

As we discussed in Section 22.3.2.1, the kernel adjusts the priority of a 
thread dynamically depending on whether the thread is I/0 bound or CPU 
bound. The Win32 API provides a method to disable this adjustment via 
SetProcessPriori tyBoost () and SetThreadPriori tyBoost () functions. 

22.7.3.4 Thread Synchronization 

A thread can be created in a the thread does not execute 
until another thread makes it eligible via the ResumeThread() function. The 
Suspend Thread () function does the opposite. These functions set a counter so 
that if a thread is suspended twice, it must be resumed twice before it can nm. 
To synchronize the concurrent access to shared objects by threads, the kernel 
provides synchronization objects, such as semaphores and mutexes. 

In addition, synchronization of threads can be achieved by use of the Wait
ForSingleObject() and WaitForMultipleObjects() functions. Another 
method of synchronization in the Win32 API is the critical section. A critical 
section is a synchronized region of code that can be executed by only one thread 
at a time. A thread establishes a critical section by calling Ini tializeCri t
icalSection(). The application must call EnterCri ticalSection () before 
entering the critical section and LeaveCri ticalSection () after exiting. These 
two routines guarantee that, if multiple threads attempt to enter the critical 
section concurrently, only one thread at a time will be permitted to proceed; the 
others will wait in the EnterCri ticalSection () routine. The critical-section 
mechanism is faster than using kernel-synchronization objects because it does 
not allocate kernel objects until it first encounters contention for the critical 
section. 

22.7.3.5 Fibers 

A is user-mode code that is scheduled according to a user-defined 
scheduling algorithm. A process may have multiple fibers in it, just as it may 



22.7 897 

have multiple threads. A major difference between threads and fibers is that 
whereas threads can execute concurrently, only one fiber at a tin1e is permitted 
to execute, even on multiprocessor hardware. This mechanism is included in 
Windows XP to facilitate the porting of those legacy UNIX applications that 
were written for a fiber-execution modeL 

The system creates a fiber by calling either ConvertThreadToFi ber () 
or CreateFiber(). The primary difference between these functions is that 
CreateFiber () does not begin executing the fiber that was created. To begin 
execution, the application must call Swi tchToFiber (). The application can 
terminate a fiber by calling DeleteFiber (). 

22.7.3.6 Thread Pool 

Repeated creation and deletion of threads can be expensive for applications and 
services that perform small amounts of work in each instantiation. The thread 
pool provides user-mode programs with three services: a queue to which work 
requests may be submitted (via the QueueUserWorkitern() API), an API that 
can be used to bind callbacks to waitable handles (RegisterWai tForSin
gleObj ect ()),and APis to bind callbacks to timeouts (CreateTirnerQueue () 
and CreateTirnerQueueTirner () ). 

The thread pool's goal is to increase performance. Threads are relatively 
expensive, and a processor can only be executing one thing at a time no matter 
how many threads are used. The thread pool attempts to reduce the number of 
outstanding threads by slightly delaying work requests (reusing each thread 
for many requests) while providing enough threads to effectively utilize the 
machine's CPUs. The wait and timer-callback APis allow the thread pool to 
further reduce the number of threads in a process, using far fewer threads than 
would be necessary if a process were to devote one thread to servicing each 
waitable handle or timeout. 

22.7.4 lnterprocess Communication 

Win32 API applications handle interprocess communication in several ways. 
One way is by sharing kernel objects. Another way is by passing messages, 
an approach that is particularly popular for Windows GUI applications. One 
thread can send a message to another thread or to a window by calling 
PostMessage(), PostThreadMessage(), SendMessage(), SendThreadMes
sage (),or SendMessageCallback ().Posting a message and sending a message 
differ in this way: The post routines are asynchronous; they return immediately, 
and the calling thread does not know when the message is actually delivered. 
The send routines are synchronous; they block the caller until the message has 
been delivered and processed. 

In addition to sending a message, a thread can send data with the message. 
Since processes have separate address spaces, the data must be copied. The 
system copies data by calling SendMessage () to send a message of type 
WM_COPYDATA with a COPYDATASTRUCT data structure that contains the length 
and address of the data to be transferred. When the message is sent, Windows 
XP copies the data to a new block of memory and gives the virtual address of 
the new block to the receiving process. 

Unlike threads in the 16-bit Windows environment, every Win32 API thread 
has its own input queue from which it receives messages. (All input is received 



898 Chapter 22 

II allocate 16MB at the top of our address space 
void *buf = VirtualAlloc(O, Ox1000000, MEM_RESERVE I MEM_TOP_DOWN, 

P AGE_READWRITE) ; 
II commit the upper 8MB of the allocated space 
VirtualAlloc(buf + Ox800000, Ox800000, MEM_COMMIT, PAGE_READWRITE); 
II do something with the memory 

II now decommit the memory 
VirtualFree(buf + Ox800000, Ox800000, MEM_DECOMMIT); 
II release all of the allocated address space 
VirtualFree(buf, 0, MEM_RELEASE); 

Figure 22.14 Code fragments for allocating virtual memory. 

via messages.) This structure is more reliable than the shared input queue of 
16-bit Windows, because, with separate queues, it is no longer possible for 
one stuck application to block input to the other applications. If a Win32 API 
application does not call GetMessage () to handle events on its input queue, the 
queue fills up; and after about five seconds, the system marks the application 
as "Not Responding". 

22.7.5 Memory Management 

The Win32 API provides several ways for an application to use memory: virtual 
memory, memory-mapped files, heaps, and thread-local storage. 

22.7.5.1 Virtual Memory 

An application calls VirtualAlloc () to reserve or commit virtual memory and 
VirtualFree () to decommit or release the memory. These functions enable 
the application to specify the virtual address at which the memory is allocated. 
They operate on multiples of the memory page size, and the starting address of 
an allocated region must be greater than Ox10000. Examples of these functions 
appear in Figure 22.14. 

A process may lock some of its committed pages into physical memory 
by calling VirtualLock(). The maximum number of pages a process can lock 
is 30, unless the process first calls SetProcessWorkingSetSize () to increase 
the maximum working-set size. 

22.7.5.2 Memory-Mapping Files 

Another way for an application to use memory is by memory-mapping a file 
into its address space. Memory mapping is also a convenient way for two 
processes to share memory: both processes map the same file into their virtual 
memory. Memory mapping is a multistage process, as you can see in the 
example in Figure 22.15. 

If a process wants to map some address space just to share a memory 
region with another process, no file is needed. The process calls Create
FileMapping() with a file handle of Oxffffffff and a particular size. The 
resulting file-mapping object can be shared by inheritance, by name lookup, or 
by duplication. 



22.7 899 

II open the file or create it if it does not exist 
HANDLE hfile = CreateFile("somefile", GENERIC_READ I GENERIC_WRITE, 

FILE_SHARE_READ I FILE_SHARE_WRITE, NULL, 
OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL); 

II create the file mapping 8MB in size 
HANDLE hmap = CreateFileMapping(hfile, PAGE_READWRITE, 

SEC_COMMIT, 0, Ox800000, "SHM_l") ; 
II now get a view of the space mapped 
void *buf = MapViewOfFile(hmap, FILE_MAP_ALL_ACCESS, 

0, 0, 0, Ox800000); 
II do something with the mapped file 

II now unmap the file 
UnMapViewOfFile(buf); 
CloseHandle(hmap); 
CloseHandle(hfile); 

Figure 22.15 Code fragments for memory mapping of a file. 

22.7.5.3 Heaps 

Heaps provide a third way for applications to use memory. A heap in the Win32 
environment is a region of reserved address When a Win32 API process 
is initialized, it is created with a 1-MB Since many Win32 API 
functions use the default heap, access to the heap is synchronized to protect 
the heap's space-allocation data structures from being damaged by concurrent 
updates by multiple threads. 

Win32 API provides several heap-management functions so that a 
process can allocate and manage a private heap. These functions are 
HeapCreate (), HeapAlloc (), HeapRealloc (), HeapSize (), HeapFree (), 
and HeapDestroy(). The Win32 API also provides the HeapLock() and 
HeapUnlock() functions to enable a thread to gain exclusive access to a heap. 
Unlike VirtualLock (), these functions perform only synchronization; they 
do not lock pages into physical memory. 

22.7.5.4 Thread-Local Storage 

The fourth way for applications to use memory is through a thread-local 
storage mechanism. Functions that rely on global or static data typically fail 
to work properly in a multithreaded environment. For instance, the C run
time function strtok () uses a static variable to keep track of its current 
position while parsing a string. For two concurrent threads to execute strt ok () 
correctly, they need separate current position variables. The thread-local storage 
mechanism allocates global storage on a per-thread basis. It provides both 
dynamic and static methods of creating thread-local storage. The dynamic 
method is illustrated in Figure 22.16. 

To use a thread-local static variable, the application declares the variable 
as follows to ensure that every thread has its own private copy: 

__ declspec (thread) DWORD cur_pos = 0; 



900 Chapter 22 

22.8 

II reserve a slot for a variable 
DWORD var_index = T1sAlloc(); 
II set it to the value 10 
T1sSetValue(var_index, 10); 
II get the value 
int var T1sGetValue(var_index); 
II release the index 
T1sFree(var_index); 

Figure 22.16 Code for dynamic thread-local storage. 

Microsoft design.ed Windows XP to be an extensible, portable operating system 
-one able to take advantage of new techniques and hardware. Windows XP 
supports multiple operating environments and symmetric multiprocessing, 
including both 32-bit and 64-bit processors and NUMA computers. The use of 
kernel objects to provide basic services, along with support for client-server 
computing, enables Windows XP to support a wide variety of application envi
ronments. For instance, Windows XP can run programs compiled for MS-DOS, 
Winl6, Windows 95, Windows XP, and POSIX. It provides virtual memory, 
integrated caching, and preemptive scheduling. Windows XP supports a secu
rity model stronger than those of previous Microsoft operating systems and 
includes internationalization features. Windows XP nms on a wide variety of 
computers, so users can choose cu1.d upgrade hardware to match their budgets 
and performance requirements without needing to alter the applications they 
run. 

22.1 Describe the booting process for a Windows XP system. 

22.2 What is a process, and how is it managed in Windows XP? 

22.3 Describe some of the ways in which an application can use memory 
via the Windows32 API. 

22.4 Describe a useful application of the no-access page facility provided in 
Windows XP. 

22.5 Under what circumstances would one use the deferred procedure calls 
facility in Windows XP? 

22.6 Describe the three main architectural layers of Windows XP. 

22.7 What is the purpose of the Win16 execution environment? What limita
tions are imposed on the programs executing inside this environment? 
What are the protection guarantees provided between different appli
cations executing inside the Win16 environment? What are the protec
tion guarantees provided between an application executing inside the 
Win16 environment and a 32-bit application? 



901 

22.8 What is the fiber abstraction provided by Windows XP? How does it 
differ from the threads abstraction? 

22.9 Describe two user-mode processes that enable Windows XP to run 
programs developed for other operating systems. 

22.10 Describe the management scheme of the virtual memory manager. How 
does the VM manager improve performance? 

22.11 Describe the three techniques used for communicating data in a local 
procedure call. What settings are most conducive to the application of 
the different message-passing teclll'liques? 

22.12 How does NTFS handle data structures? How does NTFS recover from 
a system crash? What is guaranteed after a recovery takes place? 

22.13 Describe two user-mode processes that Windows XP provides to enable 
it to run programs developed for other operating systems. 

22.14 What is the job of the object manager? 

22.15 The IA64 processors contain registers that can be used to address a 64-bit 
address space. However, Windows XP limits the address space of user 
programs to 8 TB, which corresponds to 43 bits' worth. Why was this 
decision made? 

22.16 How does the NTFS directory structure differ from the directory 
structure used in UNIX operating systems? 

22.17 What are the responsibilities of the I/O manager? 

22.18 What manages caching in Windows XP? How is caching managed? 

22.19 What is a handle, and how does a process obtain a handle? 

Solomon and Russinovich [2000] give an overview of Windows XP and 
considerable technical detail about system internals and components. Tate 
[2000] is a good reference on using Windows XP. The Microsoft Windows XP 
Server Resource Kit (Microsoft [2000b]) is a six-volume set helpful for using and 
deploying Windows XP. The Microsoft Developer Network Library (Microsoft 
[2000a]), issued quarterly, supplies a wealth of information on Windows XP 
and other Microsoft products. 

Iseminger [2000] provides a good reference on the Windows XP Active 
Directory. Richter [1997] gives a detailed discussion on writing programs that 
use the Win32 API. Silberschatz et al. [2001] contains a good discussion of B+ 
trees. 





23.1 

Now that you understand the fundamental concepts of operating systems (CPU 
scheduling, memory management, processes, and so on), we are in a position 
to examine how these concepts have been applied in several older and highly 
influential operating systems. Some of them (such as the XDS-940 and the THE 
system) were one-of-a-kind systems; others (such as OS/360) are widely used. 
The order of presentation highlights the similarities and differences of the 
systems; it is not strictly chronological or ordered by importance. The serious 
student of operating systems should be familiar with all these systems. 

As we describe early systems, we include references to further reading. 
The papers, written by the designers of the systems, are important both for 
their technical content and for their style and flavor. 

To explain how operating-system features migrate over time from large 
computer systems to smaller ones. 

To discuss the features of several historically important operating systems. 

One reason to study early architectures and operating systems is that a feature 
that once ran only on huge systems may eventually have made its way i11.to very 
small systems. Indeed, an examination of operating systems for mainframes 
and microcomputers shows that many features once available only on main
frames have been adopted for microcomputers. The same operating-system 
concepts are thus appropriate for various classes of computers: mainframes, 
minicomputers, microcomputers, and handhelds. To understand modern oper
ating systems, then, you need to recognize the theme of feature migration and 
the long history of many operating-system features, as shown in figure 23.1. 

A good example of feature migration started with the Multiplexed Infor
mation and Computing Services (MULTICS) operating system. MULTICS was 
developed from 1965 to 1970 at the Massachusetts Institute of Technology() as 

903 



904 Chapter 23 

23.2 

Figure 23.1 Migration of operating-system concepts and features. 

a computing . It ran on a large, complex mainframe computer (the GE 645). 
Many of the ideas that were developed for MULTICS were subsequently used at 
Bell Laboratories (one of the original partners in the development of MULTICS) 
in the design of UNIX. The UNIX operating system was designed around 1970 
for a PDP-11 minicomputer. Around 1980, the features of UNIX became the basis 
for UNIX-like operating systems on microcomputers; and these features are 
included in several more recent operatirlg systems for microcomputers, such 
as Microsoft Windows, Windows XP, and the Mac OSX operating system. Linux 
includes some of these same features, and they can now be found on PDAs. 

We turn our attention now to a historical overview of early computer systems. 
We should note that the history of computing starts far before "computers" 
with looms and calculators, as described in Frah [2001] and shown graphically 
in Frauenfelder [2005]. We begin our discussion, however, with the computers 
of the twentieth century. 

Before the 1940s, computing devices were designed and implemented to 
perform specific, fixed tasks. Modifying one of those tasks required a great deal 
of effort and manual labor. All that changed in the 1940s when Alan Turing and 
John von Neumann (and colleagues), both separately and together, worked on 
the idea of a more general-purpose computer. Such a machine 



23.2 905 

has both a program store and a data store, where the program store provides 
instructions about what to do to the data. 

This fundamental computer concept quickly generated a number of 
general-purpose computers, but much of the history of these machines is 
blurred by time and the secrecy of their development during World War II. It 
is likely that the first working stored-program general-purpose computer was 
the Manchester Mark 1, which ran successfully in 1949. The first commercial 
computer was its offspring, the Ferranti Mark 1, which went on sale in 1951. 
These early computing efforts are described by Rojas and Hashagen [2000] and 
Ceruzzi [1998]. 

Early computers were physically enormous machines run from consoles. 
The programmer, who was also the operator of the computer system, would 
write a program and then would operate the program directly from the 
operator's console. First, the program would be loaded manually into memory 
from the front panel switches (one instruction at a time), from paper tape, or 
from punched cards. Then the appropriate buttons would be pushed to set the 
starting address and to start the execution of the program. As the program ran, 
the programmer I operator could monitor its execution by the display lights on 
the console. If errors were discovered, the programmer could halt the program, 
examine the contents of memory and registers, and debug the program directly 
from the console. Output was printed or was punched onto paper tape or cards 
for later printing. 

23.2.1 Dedicated Computer Systems 

As time went on, additional software and hardware were developed. Card 
readers, lil1.e printers, and magnetic tape became commonplace. Assemblers, 
loaders, and linkers were designed to ease the programming task. Libraries 
of common functions were created. Common functions could then be copied 
into a new program without having to be written again, providing software 
reusability. 

The routines that performed I/O were especially important. Each new I/O 
device had its own characteristics, requiring careful programming. A special 
subroutine-called a device driver-was written for each II 0 device. A device 
driver knows how the buffers, flags, registers, control bits, and status bits for 
a particular device should be used. Each type of device has its own driver. 
A simple task, such as reading a character from a paper-tape reader, might 
involve complex sequences of device-specific operations. Rather than writil1.g 
the necessary code every time, the device driver was simply used from the 
library. 

Later, compilers for FORTRAN, COBOL, and other languages appeared, 
making the programming task much easier but the operation of the computer 
more complex. To prepare a FORTRAN program for execution, for example, 
the programmer would first need to load the FORTRAN compiler into the 
computer. The compiler was normally kept on magnetic tape, so the proper 
tape would need to be mounted on a tape drive. The program would be read 
through the card reader and written onto another tape. The FORTRAN compiler 
produced assembly-language output, which then had to be assembled. This 
procedure required mounting another tape with the assembler. The output of 
the assembler would need to be linked to supporting library routines. Finally, 



906 Chapter 23 

the binary object form of the program would be ready to execute. It could be 
loaded into memory and debugged from the console, as before. 

A significant amount of could be involved in the running of a 
job. Each job consisted of many separate steps: 

Loading the FORTRAN compiler tape 

Running the compiler 

Unloading the compiler tape 

Loading the assembler tape 

Running the assembler 

Unloading the assembler tape 

Loading the object program 

Running the object program 

If an error occurred during any step, the programmer/operator might have 
to start over at the beginning. Each job step might involve the loading and 
unloading of magnetic tapes, paper tapes, and punch cards. 

The job set-up time was a real problem. While tapes were being mounted 
or the programmer was operating the console, the CPU sat idle. Remember that, 
in the early days, few computers were available, and they were expensive. A 
computer might have cost millions of dollars, not including the operational 
costs of power, cooling, programmers, and so on. Thus, computer time was 
extremely valuable, and owners wanted their computers to be used as much 
as possible. They needed high to get as much as they could from 
their investments. 

23.2.2 Shared Computer Systems 

The solution was twofold. First, a professional computer operator was hired. 
The programmer no longer operated the machine. As soon as one job was 
finished, the operator could start the next. Since the operator had more 
experience with mounting tapes than a programmer, set-up time was reduced. 
The programmer provided whatever cards or tapes were needed, as well as a 
short description of how the job was to be run. Of course, the operator could 
not debug an incorrect program at the console, since the operator would not 
understand the program. Therefore, in the case of program error, a dump of 
memory and registers was taken, and the programmer had to debug from the 
dump. Dumping the memory and registers allowed the operator to continue 
immediately with the next job but left the programmer with the more difficult 
debugging problem. 

Second, jobs with similar needs were batched together and run through the 
computer as a group to reduce set-up time. For instance, suppose the operator 
received one FORTRAN job, one COBOL job, and another FORTRAN job. If she ran 
them in that order, she would have to set up for FORTRAN (load the compiler 
tapes and so on), then set up for COBOL, and then set up for FORTRAN again. If 
she ran the two FORTRAN programs as a batch, however, she could set up only 
once for FORTRAN, saving operator time. 



23.2 907 

monitor 

Figure 23.2 Memory layout for a resident monitor. 

But there were still problems. For example, when a job stopped, the 
operator would have to notice that it had stopped (by observing the console), 
determine why it stopped (normal or abnormal termination), dump memory 
and register (if necessary), load the appropriate device with the next job, and 
restart the computer. During this transition from one job to the next, the CPU 
sat idle. 

To overcome this idle time, people developed 
with this technique, the first rudimentary operating systems were 
A small program, called a moni"lOJ', was created to transfer control 
automatically from one job to the next (Figure 23.2). The resident monitor is 
always in memory (or resident). 

When the computer was turned on, the resident monitor was invoked, 
and it would transfer control to a program. When the program terminated, it 
would return control to the resident monitor, which would then go on to the 
next program. Thus, the resident monitor would automatically sequence from 
one program to another and from one job to another. 

But how would the resident monitor know which program to execute? 
Previously, the operator had been given a short description of what programs 
were to be run on what data. were introduced to provide this 
information directly to the monitor. The idea is simple. In addition to the 
program or data for a job, the programmer included the control cards, which 
contained directives to the resident monitor indicating what program to run. 
For example, a normal user program might require one of three programs to 
run: the FORTRAN compiler (FTN), the assembler (ASM), or the user's program 
(RUN). We could use a separate control card for each of these: 

$FTN-Execute the FORTRAN compiler. 
$ASM-Execute the assembler. 
$RUN-Execute the user program. 

These cards tell the resident monitor which program to run. 



908 Chapter 23 

We can use tvw additional control cards to define the boundaries of each 
job: 

$JOB-First card of a job 
$END-Final card of a job 

These two cards might be useful in accounting for the machine resources used 
by the programmer. Parameters can be used to defirte the job name, account 
number to be charged, and so on. Other control cards can be defined for other 
ftmctions, such as asking the operator to load or unload a tape. 

One problem with conh·ol cards is how to distinguish them from data or 
program cards. The usual solution is to identify them by a special character or 
pattern on the card. Several systems used the dollar-sign character ($) in the 
first colun:m to identify a control card. Others used a different code. IBM's Job 
Control Language (JCL) used slash marks(!/) in the first two columns. Figure 
23.3 shows a sample card-deck setup for a simple batch system. 

A resident monitor thus has several identifiable parts: 

The is responsible for reading and carrying out 
the insh·uctions on the cards at the point of execution. 

The is invoked by the control-card interpreter to load system 
programs an.d application programs into memory at intervals. 

The are used by both the control-card interpreter and the 
loader for the system's I/0 devices. Often, the system and application 
programs are linked to these same device drivers, providing continuity in 
their operation/ as well as saving memory space and programming time. 

These batch systems work fairly well. The resident monitor provides 
automatic job sequencing as indicated by the control cards. When a control 
card indicates that a program is to be run, the monitor loads the program 
into memory and transfers control to it. When the program completes, it 

Figure 23.3 Card deck for a simple batch system. 



23.2 909 

transfers control back to the monitor; which reads the next control card, loads 
the appropriate program, and so on. This cycle is repeated until all control 
cards are interpreted for the job. Then the monitor automatically continues 
with the next job. 

The switch to batch systems with automatic job sequencing was made 
to improve performance. The problem, quite simply, is that humans are 
considerably slower than the computer. Consequently, it is desirable to replace 
human operation with operating-system software. Automatic job sequencing 
elim.inates the need for human set-up time and job sequencing. 

Even with this arrangement, however, the CPU is often idle. The problem 
is the speed of the mechanical I/0 devices, which are intrinsically slower 
than electronic devices. Even a slow CPU works in the n"licrosecond range, 
with thousands of instructions executed per second. A fast card reader, in 
contrast, might read 1,200 cards per minute (or 20 cards per second). Thus, the 
difference in speed between the CPU and its I/0 devices may be three orders of 
magnitude or more. Over time, of course, improvements in technology resulted 
in faster I/0 devices. Unfortunately, CPU speeds increased even faster, so that 
the problem was not only unresolved but also exacerbated. 

23.2.3 Overlapped 1/0 

One common solution to the I/0 problem was to replace slow card readers 
(input devices) and line printers (output devices) with magnetic-tape units. 
Most computer systems in the late 1950s and early 1960s were batch systems 
reading from card readers and writing to line printers or card punches. The CPU 
did not read directly from cards/ however; instead, the cards were first copied 
onto a magnetic tape via a separate device. When the tape was sufficiently full, 
it was taken down and carried over to the computer. When a card was needed 
for input to a program, the equivalent record was read from the tape. Similarly, 
output was written to the tape, and the contents of the tape were pri:n.ted later. 
The card readers and lilce printers were operated off-line, rather than the 
main computer (Figure 23.4). 

An obvious advantage of off-line operation was that the mam computer 
was no longer constrained by the speed of the card readers and line printers 
but was limited only by the speed of the much faster magnetic tape units. 

card reader line printer 

(a) 

card reader tape drives tape drives iine printer 

Figure 23.4 Operation of 1/0 devices (a) online and off-line. 



910 Chapter 23 

The technique of using magnetic tape for alll/0 could be applied with any 
similar equipment (such as card readers, card punches, plotters, paper tape, 
and printers). 

The real gain in off-line operation comes from the possibility of using 
multiple reader-to-tape and tape-to-printer systems for one CPU. If the CPU 
can process input twice as fast as the reader can read cards, then two readers 
working simultaneously can produce enough tape to keep the CPU busy. There 
is a disadvantage, too, however-a longer delay in getting a particular job run. 
The job must first be read onto tape. Then it must wait until enough additional 
jobs are read onto the tape to "fill" it. The tape must then be rewound, unloaded, 
hand-carried to the CPU, and mounted on a free tape drive. This process is not 
unreasonable for batch systems, of course. Many similar jobs can be batched 
onto a tape before it is taken to the computer. 

Although off-line preparation of jobs continued for some time, it was 
quickly replaced in most systems. Disk systems became widely available and 
greatly improved on off-line operation. The problem with tape systems was 
that the card reader could not write onto one end of the tape while the CPU 
read from the other. The entire tape had to be written before it was rewound 
and read, because tapes are by nature devices. Disk systems 
eliminated this problem by being Because the head is 
moved from one area of the disk to another, it can switch rapidly from the area 
on the disk being used by the card reader to store new cards to the position 
needed by the CPU to read the "next" card. 

In a disk system, cards are read directly from the card reader onto the 
disk. The location of card images is recorded in a table kept by the operating 
system. When a job is executed, the operating system satisfies its requests for 
card-reader input by reading from the disk. Similarly, when the job requests the 
printer to output a line, that line is copied into a system buffer and is written 
to the disk. When the job is cmTtpleted, the output is actually printed. This 
form of processing is called spooling (Figure 23.5); the name is an acronym for 
simultaneous peripheral operation on-line. Spooling, in essence, uses the disk 
as a huge buffer for reading as far ahead as possible on input devices and for 
storing output files until the output devices are able to accept them. 

disk 

line printer 

Figure 23.5 Spooling. 



23.3 

23.3 911 

Spooling is also used for processing data at remote sites. The CPU sends 
the data via communication paths to a remote printer (or accepts an entire 
input job from a remote card reader). The remote processing is done at its own 
speed, with no CPU intervention. The CPU just needs to be notified when the 
processing is completed, so that it can spool the next batch of data. 

Spooling overlaps the I/O of one job with the computation of other jobs. 
Even in a simple systen"l, the spooler may be reading the input of one job while 
printing the output of a different job. During this time, still another job (or 
other jobs) may be executed, reading its "cards" from disk and "printing" its 
output lines onto the disk. 

Spooling has a direct beneficial effect on the performance of the system .. 
For the cost of some disk space and a few tables, the computation of one job 
and the I/0 of other jobs can take place at the same time. Thus, spooling can 
keep both the CPU and the I/0 devices working at much higher rates. Spooling 
leads naturally to multiprogramming, which is the foundation of all modern 
operating systems. 

The Atlas operating system (Kilburn et al. [1961], Howarth et al. [1961]) was 
designed at the University of Manchester in England in the late 1950s and 
early 1960s. Many of its basic features that were novel at the time have become 
standard parts of modern operating systems. Device drivers were a major 
part of the system. In addition, system calls were added by a set of special 
instructions called extra codes. 

Atlas was a batch operating system with spooling. Spooling allowed the 
system to schedule jobs according to the availability of peripheral devices, such 
as magnetic tape units, paper tape readers, paper tape punches, fuce printers, 
card readers, and card punches. 

The most remarkable feature of Atlas, however, was its memory manage
ment. Core was new and expensive at the time. Many computers, 
like the IBM 650, used a drum for primary memory. The Atlas system used a 
drum for its main memory, but it had a small amount of core memory that was 
used as a cache for the drum. Demand paging was used to transfer information 
between core memory and the drum automatically. 

The Atlas system used a British computer with 48-bit words. Addresses 
were 24 bits but were encoded in decimal, which allowed only 1 million words 
to be addressed. At that time, this was an extremely large address space. The 
physical memory for Atlas was a 98-KB-word drum and 16-KB words of core. 
Memory was divided into 512-word pages, providing 32 frames in physical 
memory. An associative memory of 32 registers implemented the mapping 
from a virtual address to a physical address. 

If a page fault occurred, a page-replacement algorithm was invoked. One 
memory frame was always kept empty, so that a drum transfer could start 
immediately. The page-replacement algorithm attempted to predict future 
memory-accessing behavior based on past behavior. A reference bit for each 
frame was set whenever the frame was accessed. The reference bits were read 
into memory every 1,024 instructions, and the last 32 values of these bits were 



912 Chapter 23 

23.4 

retained. This history was used to define the time since the most recent reference 
(t1) and the interval between the last two references (t2). Pages were chosen for 
replacement in the following order: 

Any page with t1 > t2 + 1; such a page is considered to be no longer 
in use. 

Iff] :=: t2 for all pages, then replace the page with the largest t2- t1 . 

The page-replacement algorithm assumes that programs access memory in 
loops. If the time between the last two references is t2, then another reference is 
expected t2 time units later. If a reference does not occur (t1 > t2), it is assumed 
that the page is no longer being used, and the page is replaced. If all pages 
are still in use, then the page that will not be needed for the longest time is 
replaced. The time to the next reference is expected to be t2 t1 . 

The XDS-940 operating system (Lichtenberger and Pirtle [1965]) was designed 
at the University of California at Berkeley. Like the Atlas system, it used paging 
for memory management. Unlike the Atlas system, it was a time-shared system. 
The paging was used only for relocation; it was not used for demand paging. 
The virtual memory of any user process was made up of 16-KB words, whereas 
the physical memory was made up of 64-KB words. Each page was made up of 
2-KB words. The page table was kept in registers. Since physical memory was 
larger than virtual memory, several user processes could be in memory at the 
same time. The number of users could be increased by sharing of pages when 
the pages contained read-only reentrant code. Processes were kept on a drum 
and were swapped in and out of memory as necessary. 

The XDS-940 system was constructed from a modified XDS-930. The mod
ifications were typical of the changes made to a basic computer to allow an 
operating system to be written properly. A user-monitor lTlode was added. 
Certain instructions, such as I/0 and halt, were defined to be privileged. An 
attempt to execute a privileged instruction in user mode would trap to the 
operating system. 

A system-call instruction was added to the user-mode instruction set. 
This instruction was used to create new resources, such as files, allowing the 
operating system~ to manage the physical resources. Files, for example, were 
allocated in 256-word blocks on the drum. A bit map was used to manage 
free drum blocks. Each file had an index block with pointers to the actual data 
blocks. Index blocks were chained together. 

The XDS-940 system also provided system calls to allow processes to create, 
start, suspend, and destroy subprocesses. A programmer could construct a 
system of processes. Separate processes could share memory for communica
tion and synchronization. Process creation defined a tree structure, where a 
process is the root and its subprocesses are nodes below it in the tree. Each of 
the subprocesses could, in turn, create more subprocesses. 



23.5 

23.6 

23.6 913 

The THE operating system (Dijkstra [1968], McKeag and Wilson [1976]) was 
designed at the Technische Hogeschool at Eindhoven in the Netherlands. It 
was a batch system running on a Dutch computer, the EL XS, with 32 KB of 
27-bit words. The system was mainly noted for its clean design, particularly 
its layer structure, and its use of a set of concurrent processes employing 
semaphores for synchronization. 

Unlike those in the XDS-940 system, however, the set of processes in the 
THE system was static. The operating system, itself was designed as a set of 
cooperating processes. In addition, five user processes were created that served 
as the active agents to compile, execute, and print user programs. When one 
job was finished, the process would return to the input queue to select another 
job. 

A priority CPU-scheduling algorithm was used. The priorities were recom
puted every 2 seconds and were inversely proportional to the amount of CPU 
time used recently (in the last 8 to 10 seconds). This scheme gave higher priority 
to I/O-bound processes and to new processes. 

Memory management was limited by the lack of hardware support. How
ever, since the system was limited and user programs could be written only in 
Algol, a software paging scheme was used. The Algol compiler automatically 
generated calls to system routines, which made sure the requested information 
was in memory, swapping if necessary. The backing store was a 512-KB-word 
drum. A 512-word page was used, with an LRU page-replacement strategy. 

Another major concern of the THE system was deadlock control. The 
banker's algorithm was used to provide deadlock avoidance. 

Closely related to the THE system is the Venus system (Liskov [1972]). 
The Venus system was also a layer-structured design, using semaphores to 
synchronize processes. The lower levels of the design were implemented in 
microcode, howeve1~ providing a much faster system. The memory manage
ment was changed to paged-segmented memory. The system was also designed 
as a time-sharing system, rather than a batch system. 

The RC 4000 system, like the THE system, was notable primarily for its design 
concepts. It was designed for the Danish 4000 computer by Regnecentralen, 
particularly by Brinch-Hansen (Brinch-Hansen [1970], Brinch-Hansen [1973]). 
The objective was not to design a batch system, or a time-sharing system, or 
any other specific system. Rathel~ the goal was to create an operating-system 
nucleus, or kernel, on which a complete operating system could be built. Thus, 
the system structure was layered, and only the lower levels-comprising the 
kernel-were provided. 

The kernel supported a collection of concurrent processes. A round-robin 
CPU scheduler was used. Although processes could share memory, the primary 
communication and synchronization ITl.echanism was the 
provided by the kernel. Processes could communicate with each other by 
exchanging fixed-sized rnessages of eight words in length. All messages were 



914 Chapter 23 

23.7 

stored in buffers from a common buffer pool. When a ncessage buffer was no 
longer required, it was returned to the common pool. 

A message queue was associated with each process. It contained all the 
messages that had been sent to that process but had not yet been received. 
Messages were removed from the queue in FIFO order. The system supported 
four primitive operations, which were executed atomically: 

send-message (in receiver, in message, out buffer) 

wait-message (out sender, out message, out buffer) 

send-answer (out resul( in message, in buffer) 

wait-answer (out result, out message, in buffer) 

The last two operations allowed processes to exchange several messages at 
a time. 

These primitives required that a process service its message queue in 
FIFO order and that it block itself while other processes were handling its 
messages. To remove these restrictions, the developers provided two additional 
communication primitives that allowed a process to wait for the arrival of the 
next message or to answer and service its queue in any order: 

wait-event (in previous-buffer, out next-buffer, out result) 

get-event (out buffer) 

I/O devices were also treated as processes. The device drivers were code 
that converted the device interrupts and registers into messages. Thus, a 
process would write to a terminal by sending that terminal a message. The 
device driver would receive the message and output the character to the 
terminal. An input character would interrupt the system and transfer to 
a device driver. The device driver would create a message from the input 
character and send it to a waiting process. 

The Compatible Time-Sharing System (CTSS) (Corbato et al. [1962]) was 
designed at MIT as an experimental time-sharing system. It was implemented 
on an IBM 7090 and eventually supported up to 32 interactive users. The 
users were provided with a set of interactive commands that allowed them 
to manipulate files and to compile and run programs through a terminal. 

The 7090 had a 32-KB memory made up of 36-bit words. The monitor used 
5-KB words, leaving 27 KB for the users. User memory images were swapped 
between memory and a fast drum. CPU scheduling employed a multilevel
feedback-queue algorithm. The time quantum for level i was 2 * i time units. 
If a program did not finish its CPU burst in one time quantum, it was moved 
down to the next level of the queue, giving it twice as much time. The program 
at the highest level (with the shortest quantum) was run first. The initial level 
of a program was determined by its size, so that the time quantum was at least 
as long as the swap time. 



23.8 

23.9 

23.9 IBM OS/360 915 

CTSS was extremely successful and was in use as late as 1972. Although 
it was limited, it succeeded in demonstrating that time sharing was a con
venient and practical mode of computing. One result of CTSS was increased 
development of time-sharing systems. Another result was the development of 
MULTICS. 

The MULTICS operating system (Corbato and Vyssotsky [1965], Organick [1972]) 
was designed at MIT as a natural extension of CTSS. CTSS and other early 
tin<e-sharing systems were so successful that they created an immediate 
desire to proceed quickly to bigger and better systems. As larger computers 
became available, the designers of CTSS set out to create a time-sharing utility. 
Computing service would be provided like electrical power. Large computer 
systems would be connected by telephone wires to terminals in offices and 
homes throughout a city. The operating system would be a time-shared system 
running continuously with a vast file system of shared programs and data. 

MULTICS was designed by a team from MIT, GE (which later sold its 
computer department to Honeywell), and Bell Laboratories (which dropped 
out of the project in 1969). The basic GE 635 computer was modified to a 
new computer system called the GE 645, mainly by the addition of paged
segmentation memory hardware. 

In MULTICS, a virtual address was composed of an 18-bit segment number 
and a 16-bit word offset. The segments were then paged in 1-KB-word pages. 
The second-chance page-replacement algorithm was used. 

The segmented virtual address space was merged into the file system; each 
segment was a file. Segments were addressed by the name of the file. The file 
system itself was a multilevel tree structure, allowing users to create their own 
subdirectory structures. 

Like CTSS, MULTICS used a multilevel feedback queue for CPU scheduling. 
Protection was accomplished through an access list associated with each file 
and a set of protection rings for executing processes. The system, which was 
written almost entirely in PL/l, comprised about 300,000 lines of code. It was 
extended to a multiprocessor system, allowing a CPU to be taken out of service 
for maintenance while the system continued running. 

The longest line of operating-system development is undoubtedly that of IBM 
computers. The early IBM computers, such as the IBM 7090 and the IBM 7094, are 
prime examples of the development of common l/0 subroutines, followed by 
development of a resident monitor, privileged instructions, memory protection, 
and simple batch processing. These systems were developed separately, often 
at independent sites. As a result, IBM was faced with many different computers, 
with different languages and different system software. 

The IBM/360 was designed to alter this situation. The IBM/360 was designed 
as a family of computers spanning the complete range from small business 
machines to large scientific machines. Only one set of software would be 



916 Chapter 23 

needed for these systems, which all used the same operating system: OS/360 
(Mealy et al. [1966]). This arrangement was intended to reduce maintenance 
problems for IBM and to allow users to move programs and applications freely 
from~ one IBM system to another. 

Unfortunately, OS/360 tried to be all things for all people. As a result, it 
did none of its tasks especially well. The file system included a type field 
that defined the type of each file, and different file types were defined for 
fixed-length and variable-length records and for blocked and unblocked files. 
Contiguous allocation was used, so the user had to guess the size of each output 
file. The Job Control Language (JCL) added parameters for every possible 
option, making it incomprehensible to the average user. 

The memory-management routines were hampered by the architecture. 
Although a base-register addressing mode was used, the program could access 
and modify the base register, so that absolute addresses were generated by the 
CPU. This arrangement prevented dynamic relocation; the program was bound 
to physical memory at load time. Two separate versions of the operating system 
were produced: OS/MFT used fixed regions and OS/MVT used variable regions. 

The system was written in assembly language by thousands of program
mers, resulting in millions of lines of code. The operating system itself required 
large amounts of memory for its code and tables. Operating-system overhead 
often consumed one-half of the total CPU cycles. Over the years, new versions 
were released to add new features and to fix errors. However, fixing one error 
often caused another in some remote part of the system, so that the number of 
known errors in the system remained fairly constant. 

Virtual memory was added to OS/360 with the change to the IBM 370 
architecture. The underlying hardware provided a segmented-paged virtual 
memory. New versions of OS used this hardware in different ways. OS/VSl 
created one large virtual address space and ran OS/MFT lie that virtual memory. 
Thus, the operating system itself was paged, as well as user programs. OS/VS2 
Release 1 ran OS/MVT in virtual memory. Finally, OS/VS2 Release 2, which is 
now called MVS, provided each user with his own virtual memory. 

MVS is still basically a batch operating system. The CTSS system was run 
on an IBM 7094, but the developers at MIT decided that the address space of the 
360, IBM's successor to the 7094, was too small for MULTICS, so they switched 
vendors. IBM then decided to create its own time-sharing system, TSS/360 (Lett 
and Konigsford [1968]). Like MULTICS, TSS/360 was supposed to be a large, 
time-shared utility. The basic 360 architecture was modified in the model 67 to 
provide virtual memory. Several sites purchased the 360 I 67 in anticipation of 
TSS/360. 

TSS/360 was delayed, however, so other tiine-sharing systems were devel
oped as temporary systems until TSS/360 was available. A time-sharing option 
(TSO) was added to OS/360. IBM's Cambridge Scientific Center developed CMS 
as a single-user system and CP /67 to provide a virtual machine to run it on 
(Meyer and Seawright [1970], Parmelee et al. [1972]). 

When TSS/360 was eventually delivered, it was a failure. It was too large 
and too slow. As a result, no site would switch from its temporary system to 
TSS/360. Today, time sharing on IBM systems is largely provided either by TSO 
under MVS or by CMS under CP I 67 (renamed VM). 

Neither TSS/360 nor MULTICS achieved commercial success. What went 
wrong? Part of the problem was that these advanced systems were too large 



23.13 919 

those systems and more useful for many purposes. Minicomputers died 
out, replaced by general and special-purpose "servers." Although personal 
computers continue to increase in capacity and performance, servers tend to 
stay ahead of them in amount of memory, disk space, and number and speed of 
available CPUs. Today, servers typically run in data centers or machine rooms, 
while personal computers sit on or next to desks and talk to each other and 
servers across a network 

The desktop rivalry between Apple and Microsoft continues today, with 
new versions of Windows and Mac OS trying to outdo each other in features, 
usability and application functionality. Other operating systems, such as 
AmigaOS and OS/2, have appeared over time but have not been long-term 
competitors to the two leading desktop operating systems. Meanwhile, Linux 
in its many forms continues to gain in popularity among more technical users 
-and even with nontechnical users on systems like the One per 

children's connected computer network (http: I /laptop. org/). 
For more information on these operating systems and their history, see 

Freiberger and Swaine [2000]. 

23.13 

The Mach operating system traces its ancestry to the Accent operating system 
developedatCarnegieMellon University (CMU) (Rashid and Robertson [1981]). 
Mach's communication system and philosophy are derived from Accent but 
many other significant portions of the system (for example, the virtual memory 
system and task and thread management) were developed from scratch (Rashid 
[1986], Tevanian et al. [1989L and Accetta et al. [1986]). The Mach scheduler was 
described in detail by Tevanian et al. [1987a] and Black [1990]. An early version 
of the Mach shared-memory and memory-mapping system was presented by 
Tevanian et al. [1987b]. 

The Mach operating system was designed with the following three critical 
goals in mind: 

1. Emulate 4.3BSD UNIX so that the executable files from a UNIX system can 
run correctly under Mach. 

Be a modern operating system that supports many memory models, as 
well as parallel and distributed computing. 

3. Have a kernel that is simpler and easier to modify than is 4.3BSD. 

Mach's development followed an evolutionary path from BSD UNIX sys
tems. Mach code was initially developed inside the 4.2BSD kernet with BSD 
kernel components replaced by Mach components as the Mach components 
were completed. The BSD components were updated to 4.3BSD when that 
became available. By 1986, the virtual memory and communication subsys
tems were running on the DEC VAX computer family, including multiprocessor 
versions of the VAX. Versions for the IBM RT /PC and for SUN 3 workstations 
followed shortly. Then, 1987 saw the completion of the Encore Multimax and 
Sequent Balance multiprocessor versions, including task and thread support, 
as well as the first official releases of the system, Release 0 and Release 1. 



920 Chapter 23 

23.14 

Through Release 2, Mach provided compatibility with the corresponding 
BSD systems by including much o£ BSD' s code in the kernel. The new features 
and capabilities of Mach made the kernels in these releases larger than the 
corresponding BSD kernels. Mach 3 moved the BSD code outside the kernet 
leaving a much smaller microkernel. This system implements only basic 
Mach features in the kernel; all UNIX-specific code has been evicted to run 
in user-mode servers. Excluding UNIX-specific code £rom the kernel allows 
the replacement of BSD with another operating system or the simultaneous 
execution of multiple operating-system interfaces on top of the microkernel. In 
addition to BSD, user-mode implementations have been developed for DOS, the 
Macintosh operating system, and OSF/1. This approach has similarities to the 
virtual machine concept but here the virtual machine is defined by software 
(the Mach kernel interface), rather than by hardware. With Release 3.0, Mach 
became available on a wide variety of systems, including single- processor SUN, 
Intet IBM, and DEC machines and multiprocessor DEC, Sequent, and Encore 
systems. 

Mach was propelled to the forefront of industry attention when the Open 
Software Foundation (OSF) announced in 1989 that it would use Mach 2.5 as 
the basis for its new operating system, OSF/1. (Mach 2.5 was also the basis for 
the operating system on the NeXT workstation, the brainchild of Steve Jobs, of 
Apple Computer fame.) The initial release of OSF /1 occurred a year later, and 
this system competed with UNIX System V, Release 4, the operati.J.l.g system 
of choice at that time among UNIX International (UI) members. OSF members 
i.J.l.cluded key technological companies such as IBM, DEC and HP. OSF has since 
changed its direction, and only DEC l.JN"IX is based on the Mach kernel. 

Unlike UNIX, which was developed without regard for multiprocessing, 
Mach incorporates multiprocessing support throughout. This support is also 
exceedingly flexible, ranging £rom shared-memory systems to systems with 
no memory shared between processors. Mach uses lightweight processes, 
in the form of multiple threads of execution within one task (or address 
space), to support multiprocessing and parallel computation. Its extensive 
use of messages as the only communication method ensures that protection 
mechanisms are complete and efficient. By integrating messages with the 
virtual memory system, Mach also ensures that messages can be handled 
efficiently. Finally, by having the virtual memory system use messages to 
communicate with the daemons managing the backing store, Mach provides 
great ±1exibility in the design and implementation of these memory-object
managing tasks. By providing low-level, or primitive, system calls from which 
more complex functions can be buik Mach reduces the size of the kernel 
while permitting operating-system emulation at the user levet much like IBM's 
virtual-machine systems. 

Some previous editions of Operating System Concepts included an entire 
chapter on Mach. This chapter, as it appeared in the fourth edition, is available 
on the Web (http: I lwww. os-book. com). 

There are, of course, other operating systems, and most of them have inter
esting properties. The MCP operating system for the Burroughs computer 



921 

family (McKeag and Wilson [1976]) was the first to be written in a system.
programming language. It supported segmentation and multiple CPUs. The 
SCOPE operating system for the CDC 6600 (McKeag and Wilson [1976]) was 
also a multi-CPU system. The coordination and synchronization of the multiple 
processes were surprisingly well designed. 

History is littered with operating systems that suited a purpose for a time 
(be it a long or a short time) and then, when faded, were replaced by operating 
systems that had more features, supported newer hardware, were easier to use, 
or were better marketed. We are sure this trend will continue in the future. 

23.1 Consider the page replacement algorithm used by Atlas. In what ways 
is it different from the clock algorithm discussed in Section 9.4.5.2? 

23.2 Consider the multilevel feedback queue used by CTSS and MULTICS. 
Suppose a program consistently uses seven time units every time it 
is scheduled before it performs an l/0 operation and blocks. How 
many time units are allocated to this program when it is scheduled for 
execution at different points in time? 

23.3 What optimizations were used to minimize the discrepancy between 
CPU and I/O speeds on early computer systems? 

23.4 What conclusions can be drawn about the evolution of operating 
systems? What causes some operating systems to gain in popularity 
and others to fade? 





[Accetta et al. 1986] M. Accetta, R. Baron, W. Bolosky, D. B. Golub, R. Rashid, A. Tevanian, and 
M. Young, "Mach: A New Kernel Foundation for UNIX Development", Proceedings of the Summer 
USENIX Conference (1986), pages 93-112. 

[Adl-Tabatabai et al. 2007] A.-R. Adl-Tabatabai, C. Kozyrakis, and B. Saha, "Unlocking Concur-
rency", Queue, Volume 4, Number 10 (2007), pages 24-33. 

[Agrawal and Abbadi 1991] D. P. Agrawal and A. E. Abbadi, "An Efficient and Fault-Tolerant 
Solution of Distributed Mutual Exclusion", ACM Transactions on Computer Systems, Volume 9, 
Number 1 (1991), pages 1-20. 

[Agre 2003] P. E. Agre, "P2P and the Promise of Internet Equality", Communications of the ACM, 
Voh.une 46, Number 2 (2003), pages 39-42. 

[Ahituv et al. 1987] N. Ahituv, Y. Lapid, and S. Neumann, "Processing Encrypted Data", Communi-
cations of the ACM, Volume 30, Number 9 (1987), pages 777-780. 

[Ahmed 2000] I. Ahmed, "Cluster Computing: A Glance at Recent Events", IEEE Concurrency, 
Volmne 8, Number 1 (2000). 

[Ald 1983] S. G. Akl, "Digital Signatures: A Tutorial Survey", Computer, Volume 16, Number 2 (1983), 
pages 15-24. 

[Akyurek and Salem 1993] S. Akyurek and K. Salem, "Adaptive Block Rearrangement", Proceedings 
of the International Conference on Data Engineering (1993), pages 182-189. 

[Alt 1993] H. Alt, "Removable Media in Solaris", Proceedings of the Winter USENIX Conference (1993), 
pages 281-287. 

[Anderson 1990] T. E. Anderson, "The Performance of Spin Lock Alternatives for Shared-Money 
Multiprocessors", IEEE Trans. Parallel Distrib. Sysl., Volume 1, Number 1 (1990), pages 6-16. 

[Anderson et al. 1989] T. E. Anderson, E. D. Lazowska, and H. M. Levy, "The Performance 
Implications of Thread Management Alternatives for Shared-Memory Multiprocessors", IEEE 
Transactions on Computers, Volume 38, Number 12 (1989), pages 1631-1644. 

[Anderson et al. 1991] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy, "Scheduler 
Activations: Effective Kernel Support for the User-Level Management of Parallelism", Proceedings of 
the ACM Symposium on Operati11g Systems Principles (1991), pages 95-109. 

[Anderson et al. 1995] T. E. Anderson, M. D. Dahlin, f. M. Neefe, D. A. Patterson, D. S. Roselli, 
and R. Y. Wang, "Serverless Network File Systems", Proceedings of the ACM Symposium on Operating 
Systems Principles (1995), pages 109-126. 

[Ande1·son et al. 2000] D. Anderson, J. Chase, and A. Vahdat, "Interposed Request Routing for 
Scalable Network Storage", Proceedings of the Fourth Symposium on Operating Systems Design and 
Implementalion (2000). 

[Apple 1987] Apple Technical Introduction lo the Macintosh Family. Addison-Wesley (1987). 
[As thana and Finkelstein 1995] P. Asthana and B. Finkelstein, "Superdense Optical Storage", IEEE 

Spectrum, Volume 32, Number 8 (1995), pages 25-31. 
[Audsley et al. 1991] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings, "Hard Real-

Time Scheduling: The Deadline Monotonic Approach", Proceedings of the IEEE Workshop on Real-Time 
Operating Systerns and Software (1991). 

923 



924 

[Axelsson 1999] S. Axelsson, "The Base-Rate Fa.llacy and Its Implications for Intrusion Detection'', 
Procwiings of the ACM Conference on Computer and Commuuications (1999), pages 1-7. 

[Babaoglu and Marzullo 1993] 0. Babaoglu and K. Marzullo. '·Consistent Global States of Dis-
tributed Systems: Fundamental Concepts and Mechanisms··, pages 55-96. Addison-Wesley (1993). 

[Bach 1987] M. J. Bach, The Design of the UNIX Operating System, Prentice HaH (1987). 
[Back et al. 2000] G. Back, P. Tullman, L. Stoller, W. C. Hsieh, and J. Lepreau, "Techniques for the 

Design of Java Operating Systems", 2000 US EN IX Annual Tee/uri cal Confermce (2000). 
[Baker et al.1991] M.G. Baker, J. H. Hartman, M.D. K11pfer, K. W. Shirriff, and J. K. Uusterhout, 

"Measurements of a DistribL1ted File System··, Proceedings of the ACM S tjnzposiwn on Operating Systems 
Principles (1991), pages 198-212. 

[Balakrishnan et al. 2003] H. Balakrishnan, lVI. F. Kaashoek, D. Karge1~ R. Morris, and I. Stoica, 
"Looking up Data in P2P Systems", Communications of the ACM, Volume 46, Number 2 (2003), pages 
43-48. 

[Baldwin 2002] J. Baldwin, "'Locking in the Multithreaded FreeBSD Kernel'', USENIX BSD (2002). 
[Barnes 1993] G. Barnes, ""A Method for Implementing Lock-Free Shared Data Structures", Proceed-

ings of the ACM Symposium on Pam/lei Algorithms and Architectures (1993), pages 261-270. 
[Barrera 1991] J. S. Barrera, "A Fast Mach Network IPC Implementation", of the US EN IX 

Mach Symposium (1991), pages 1-12. 
[Basu et al. 1995] A. Basu, V. Buch, W. Vogels, and T. von Eicken, "U-Net: A User-Level Network 

Interface for Parallel and Distributed Computing··, Proceedings of tlze ACM Sy1nposium on Operating 
Systems Principles (1995). 

[Bays 1977] C. Bays, ·'A Comparison of Next-Fit, First-Fit and Best-Fit", Communications of the ACM, 
Volume 20, Number 3 (1977), pages 191-192. 

[Belady 1966] L.A. Belady, "A Study of Replacement Algorithms for a Virtual-Storage Computer", 
IBM Systems journal, Volume 5, Number 2 (1966), pages 78-101. 

[Belady et al. 1969] L. A. Be lady, R. A. Nelson, and G. S. Shedler, '·An Anomaly in Space-Time 
Characteristics of Certain Programs Running in a Paging Machine", Communications of tlze ACM, 
Volume 12, Number 6 (1969), pages 349-353. 

[Bellovin 1989] S. M. Bellovin, "Security Problems in the TCP liP Protocol Suite", Computer 
Comnzunication.s Reuiew, Volume 19:2, (1989), pages 32-48. 

[Ben-Ari 1990] M. Ben-Ari, Principles of Concurrent and Distributed Programming, Prentice Hall (1990). 
[Benjamin 1990] C. D. Benjamin, "The Role of Optical Storage Technology for NASA'', Proceedings, 

Storage and Retrieval Systems and Applimtions (1990), pages 10-17. 
[Bernstein and Goodman 1980] P. A. Bernstein and N. Goodman, "Time-Stamp-Based Algorithms 

for Concurrency Control in Distributed Database Systems", Proceedings of the International Conference 
on Very Large Databases (1980), pages 285-300. 

[Bernstein et aL 1987] A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and 
Recovery in Database Systems, Addison-Wesley (1987). 

[Bershad 1993] B. Bershad, "Practical Considerations for Non-Blocking Concurrent Objects", IEEE 
International Conference on Distributed Computing Systems (1993), pages 264-273. 

[Bershad and Pinkerton 1988] B. N. Bershad and C. B. Pinkerton, "Watchdogs: Extending the Unix 
File System", of tlze Winter USENIX Conference (1988). 

[Bershad et aL 1990] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy, "Lightweight 
Remote Procedure Call", ACM Transactions on Computer Systems, Volume 8, Number 1 (1990), pages 
37-55. 

[Bershad et aL 1995] B. N. Bershad, S. Savage, P. Pard yak, E. G. Sirer, M. Fiuczynski, D. Becke1~ 
S. Eggers, and C. Chambers, "Extensibility, Safety and Performance in the SPlN Operating System", 

"''·"''"·'"of tile ACM Symposium on Operating StJstems Principles (1995), pages 267-284. 
[Beveridge and Wiener 1997] J. Beveridge and R. Wiener, Mutlithreading in Win32, 

Addison-Wesley (1997). 
[Binding 1985] C. Binding, ""Cheap Concurrency inC", SIGPLAN Notices, Volume 20, Number 9 

(1985), pages 21-27. 
[Birrell1989] A. D. Birrell, "An Introduction to Programming with Threads··, Technical report, 

DEC-SRC (1989). 
[Birrell and Nelson 1984] A. D. Birrell and B. J. Nelson, ''Implementing Remote Procedure Calls", 

ACM Transactions on. Computer Systems, Volume 2, Number 1 (198,1), pages 39-59. 
[Blaauw and Brooks 1997] G. Blaauw and F. Brooks, Computer Architecture: Concepts and Evolution, 

Addison-Wesley (1997). 
[Black 1990] D. L. Black, ·'Scheduling Support for Concurrency and Parallelism in the Mach 

Operating System", IEEE Computer, Volume 23, Number 5 (1990), pages 35-43. 



925 

[Bobrow et al.l972] D. G. Bobrow, J.D. Burchfiel, D. L. Murphy, and R. S. Tomlinson, "'TENEX, a 
Paged Time Sharing System for the PDP-10", Co111munications of the ACM, Volume 15, Number 3 
(1972). 

[Bolosky eta!. 1997] W. J. Bolosky, R. [J. Fitzgerald, and J. R. Douceur, '"Distributed Schedule 
Management in the Ttger Vtdeo .Fileserver", Proceedings of the ACM Symposiwn on Operating Systems 
Principles (1997), pages 212-223. 

[Bonwick 1994] J. Bonwick, '"The Slab Allocator: An Object-Caching Kernel Memory Allocator"', 
USENIX Summer (1994), pages 87-98. 

[Bonwick and Adams 2001] J. Bonwick and J. Adams, "Magazines and Vmem: Extending the Slab 
Allocator to Many CPUs and Arbitrary Resources", Proceedings of the 2001 USE NIX Annual Technical 
Conference (2001). 

[Bovet and Cesati 2002] D. P. Bovet and M. Cesati, Understanding the Linux Kemel, Second Edition, 
O'Reilly & Associates (2002). 

[Bovet and Cesati 2006] D. Bovet and M. Cesati, Understanding the Limtx Kernel, Third Edition, 
O'Reilly & Associates (2006). 

[Brain 1996] M. Brain, Win32 System Services, Second Edition, Prentice Hall (1996). 
[B1·ent 1989] R. Brent, "Efficient Implementation of tbe .First-Fit Strategy for Dynamic Storage 

Allocation", ACM Transactions on Programming Languages and Systems, Volume 11, Number 3 (1989), 
pages 388-403. 

[Brereton 1986] 0. P. Brereton, ·'Management of Replicated Files in a UNIX Environment"', Software 
-Practice and Experience, Volume 16, (1986), pages 771-780. 

[Brinch-Hansen 1970] P. Brinch-Hansen, ··The Nucleus of a Multiprogramming System"', Com7!1lt-
nications of the ACM, Volume 13, Number 4 (1970), pages 238-241 and 250. 

[Brinch-Hansen 1972] P. Brinch-Hansen, ''Structured Multiprograrm11ing'·, Communications of tlze 
ACM, Volume 15, Number 7 (1972), pages 574-578. 

[Brinch-Hansen 1973] P. Bri.nch-Hansen, Operating System Principles, Prentice Hall (1973). 
[Brookshear 2003] J. G. Brookshear, Computer Science: An Overview, Seventh Edition, Addison-Wesley 

(2003). 
[Brownbridge eta!. 1982] D. R. Brownbridge, L. F. Marshall, and B. Randell, "'The Newcastle 

Connection or UNIXes of the World Unite!", Software- Practice and Experience, Volume 12, Number 
12 (1982), pages 1147-1162. 

[Burns 1978] J. E. Burns, ·'Mutual Exclusion with Linear Waiting Using Binary Shared Variables'", 
SIGACT News, Volume 10, Number 2 (1978), pages 42-47. 

[Butenhof 1997] D. Butenhof, Programming with POSJX Threads, Addison-Wesley (1997). 
[Buyya 1999] R. Buyya, High Pe7formance Cluster Computing: Architectures and Systems, Prentice Hall 

(1999). 
[Callaghan 2000] B. Callaghan, NFS Illustrated, Addison-Wesley (2000). 
[Can trill eta!. 2004] B. M. Cantril!, M. W. Shapiro, and A. H. Leventhal, "'Dynamic Instrumation of 

Production Systems'", 2004 USE NIX Annual Technical Conference (2004). 
[Carr and Hennessy 1981] W. R. Carr and J. L. Hennessy, "WSC!ock- A Simple and Effective 

Algoritlun for Virtual Memory Management"', Proceedings of the ACM Symposium on Operating 
Systems Principles (1981), pages 87-95. 

[Carvalbo and Roucairol1983] 0. S. Carvallio and G. Roucairol, ·'On Mutual Exclusion in Com-
puter Networks"', Communications of the ACM, Volume 26, Number 2 (1983), pages 146-147. 

[Ceruzzi 1998] P. E. Ceruzzi, A History of Modem Computing, MIT Press (1998). 
[Chandy and Lamport 1985] K. M. Chandy and L. Lamport, '·Distributed Snapshots: Determining 

Global States of Distributed Systems", ACM Transactions on Computer Systems, Volume 3, Number 1 
(1985), pages 63-75. 

[Chang 1980] E. Chang, "N-Philosophers: An Exercise in Distributed Control", Computer Networlcs, 
Volume 4, Number 2 (1980), pages 71-76. 

[Chang and Mergen 1988] A. Chang and M. F. Mergen, "801 Storage: Architecture and Program-
ming'', ACM Transactions on Computer Systems, Volume 6, Number 1 (1988), pages 28-50. 

[Chase eta!. 1994] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska, "Sharing and Protection 
in a Single-Address-Space Operating System'', ACM Transactions on Computer Systems, Volume 12, 
Number 4 (1994), pages 271-307. 

[Chen eta!. 1994] P.M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson, ·'RAID: 
High-Performance, Reliable Secondary Storage", ACM Computing Surveys, Volume 26, Number 2 
(1994), pages 145-185. 

[Cheriton 1988] D. Cheriton, '"The V Distributed System", Communications of the ACM, Volume 31, 
Number 3 (1988), pages 314-333. 



926 

[Cheriton et al. 1979] D. R. Cheriton, M.A. Malcolm, L. S. Me len, and G. R. Sager, ·'Thoth, a Portable 
Real-Time Operating System", Communications of the ACM, Volume 22, Number 2 (1979), pages 
105-115. 

[Cheswick et al. 2003] W. Cheswick, S. Bellovin, and A Rubin, Firewalls and Internet Security: 
Repelling the Wily Hacker, second edition, Addison-Wesley (2003). 

[Cheung and Loong 1995] W. H. Cheung and A H. S. Loong, "Exploring Issues of Operating 
Systems Structuring: From Microkemel to Extensible Systems"', Operating Systems Review, Volume 
29, Number 4 (1995), pages 4-16. 

[Chi 1982] C. S. Chi, "Advances in Computer Mass Storage Technology", Computer, Volume 15, 
Number 5 (1982), pages 60-74. 

[Coffman et al. 1971] E. G. Coffman, M. J. Elphick, and A Shoshani, "System Deadlocks"', Computing 
Surveys, Volume 3, Number 2 (1971), pages 67-78. 

[Cohen and Jefferson 1975] E. S. Cohen and D. Jefferson, "Protection in the Hydra Operating 
System", Proceedings of the ACM Symposium on Operating Systems Principles (1975), pages 141-160. 

[Cohen and Woodring 1997] A Cohen and M. Woodring, Win32 Multithreaded Programming, 
O'Reilly & Associates (1997). 

[Comer 1999] D. Comer, Internetworlcing with TCP/IP, Volume II, Third Edition, Prentice Hall (1999). 
[Comer 2000] D. Comer, Intemetworlcing with TCP/IP, Volume I, Fourth Edition, Prentice Hall (2000). 
[Corbato and Vyssotsky 1965] F. J. Corbato and V. A Vyssotsky, "Introduction and Overview of the 

MULTICS System", Proceedings of the AFIPS Fall Joint Computer Conference (1965), pages 185-196. 
[Corbato et al. 1962] F. J. Corbato, M. Merwin-Daggett, and R. C. Daley, "An Experimental Time-

Sharing System", Proceedings of the AFlPS Fall Joint Computer Conference (1962), pages 335-344. 
[Carmen et al. 2001] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to 

Algorithms, Second Edition, MIT Press (2001). 
[Coulouris et al. 2001] G. Coulouris, J. Dollimore, and T. Kind berg, Distributed Systems Concepts and 

Designs, Third Edition, Addison Wesley (2001). 
[Courtois et al. 1971] P. J. Courtois, F. Heymans, and D. L. Parnas, "Concurrent Control with 

'Readers' and 'Writers"', Communications of the ACM, Volume 14, Number 10 (1971), pages 667-668. 
[Culler et al. 1998] D. E. Culler, J. P. Singh, and A Gupta, Parallel Computer Architecture: A 

Hardware/Software Approach, Morgan Kaufmann Publishers Inc. (1998). 
[Custer 1994] H. Custer, Inside the Windows NT File System, Microsoft Press (1994). 
[Dabek et al. 2001] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, "Wide-Area 

Cooperative Storage with CFS", Proceedings of the ACM Symposium on Operating Systems Principles 
(2001), pages 202-215. 

[Daley and Dennis 1967] 
in Multics", Proceedings 
121-128. 

R. C. Daley and J. B. Dermis, "Virtual Memory, Processes, and Sharing 
of the ACM Symposium on Operating Systems Principles (1967), pages 

[Davcev and Burkhard 1985] D. Davcev and W. A Burkhard, "Consistency and Recovery Control 
for Replicated Files", Proceedings of the ACM Symposium on Operating Systems Principles (1985), pages 
87-96. 

[Davies 1983] D. W. Davies, "Applying the RSA Digital Signature to Electronic Mail", Computer, 
Volume 16, Number 2 (1983), pages 55-62. 

[deBruijn 1967] N. G. deBruijn, "Additional Comments on a Problem in Concurrent Programming 
and Control", Communications of the ACM, Volume 10, Number 3 (1967), pages 137-138. 

[Deitel1990] H. M. Deitel, An Introduction to Operating Systems, Second Edition, Addison-Wesley 
(1990). 

[Denning 1968] P. J. Denning, "The Working Set Model for Program Behavior", Communications of 
the ACM, Volume 11, Number 5 (1968), pages 323-333. 

[Denning 1980] P. J. Denning, "Working Sets Past and Present", IEEE Transactions on Software 
Engineering, Volume SE-6, Number 1 (1980), pages 64--84. 

[Denning 1982] D. E. Derming, Cryptography and Data Security, Addison-Wesley (1982). 
[Denning 1983] D. E. Denning, "Protecting Public Keys and Signature Keys", Computer, Volume 16, 

Number 2 (1983), pages 27-35. 
[Denning 1984] D. E. Denning, "Digital Signatures with RSA and Other Public-Key Cryptosys-

tems", Conzmunications of the ACM, Volume 27, Number 4 (1984), pages 388-392. 
[Denning and Denning 1979] D. E. Denning and P. J. Denning, "Data Security", ACM Computing 

Surveys, Volume 11, Number 3 (1979), pages 227-249. 
[Dennis 1965] J. B. Dennis, "Segmentation and the Design of Multiprogrammed Computer Sys-

tems", Communications of the ACM, Volume 8, Number 4 (1965), pages 589-602. 



927 

[Dennis and Horn 1966] J. B. Dennis and E. C. V. Horn, "Programming Semantics for Mu.lti-
programmed Computations'', Communications of the ACM, Volume 9, Number 3 (1966), pages 
H3-155. 

[Di Pietro and Mancini 2003] R. Di Pietro and L. V. Mancini, "Security and Privacy Issues o£ 
Handheld and Wearable Wireless Devices", Communicalions of the ACM, Volume 46, Number 9 
(2003), pages 74-79. 

[Diffie and Hellman1976] W. Diffie and M. E. Hellman, "New Directions in Cryptography", IEEE 
Transactions on Information Theory, Volume 22, Number 6 (1976), pages 644-654. 

[Diffie and Hellman 1979] W. Diffle and M. E. Hellman, "Privacy and Authentication", Proceedings 
of the IEEE (1979), pages 397-427. 

[Dijkstra 1965a] E. W. Dijkstra, "Cooperating Sequential Processes", Teclmical report, Teclmological 
University, Eindhoven, the Netherlands (1965). 

[Dijkstra 1965b] E. W. Dijkstra, "Solution of a Problem in Concurrent Programming Control", 
Communications of the ACM, Volume 8, Number 9 (1965), page 569. 

[Dijkstra 1968] E. W. Dijkstra, "The Sh·ucture of the THE Multiprogramming System", Communica-
tions of the ACM, Volume 11, Number 5 (1968), pages 341-346. 

[Dijkstra 1971] E. W. Dijkstra, "Hierarchical Ordering of Sequential Processes", Acta Informatica, 
Volume 1, Number 2 (1971), pages 115-138. 

[DoD 1985] Trusted Computer System Evaluation Criteria. Department of Defense (1985). 
[Dougan et al. 1999] C. Dougan, P. Mackerras, and V. Yodaiken, "Optimizing the Idle Task and 

Other MMU Tricks"', Proceedings of the Symposium on Operating System Design and Implementation 
(1999). 

[Douglis and Ousterhout 1991] F. Doughs and J. K. Ousterhout, "Transparent Process Migration: 
Design Alternatives and the Sprite Implementation", Software- Practice and Experience, Volume 21, 
Number 8 (1991), pages 757-785. 

[Douglis et al. 1994] F. Doughs, F. Kaashoek, K. Li, R. Caceres, B. Marsh, and J. A Taube1~ "Storage 
Alternatives for Mobile Computers", Proceedings of the Symposium on Operating Systems Design and 
Implementation (1994), pages 25-37. 

[Douglis et al. 1995] F. Doughs, P. Krishnan, and B. Bershad, "Adaptive Disk Spin-Down Policies 
for Mobile Computers", Proceedings of the USENIX Symposium on Mobile and Location Independent 
Computing (1995), pages 121-137. 

[Druschel and Peterson 1993] P. Druschel and L. L. Peterson, "Fbufs: A High-Bandwidth Cross-
Domain Transfer Facility", Proceedings of the ACM Symposium on Operating Systems Principles (1993), 
pages 189-202. 

[Eastlake 1999] D. Eastlake, "Domain Name System Security Extensions", Network Working Group, 
Request for Comm.ents: 2535 (1999). 

[Eisenberg and McGuire 1972] M. A Eisenberg and M. R. McGuire, "Further Comments on 
Dijksh·a's Concurrent Programming Control Problem··, Communications of the ACM, Volume 15, 
Number 11 (1972), page 999. 

[Ekanadham and Bernstein 1979] K. Ekanadham and A J. Bernstein, "Conditional Capabilities", 
IEEE Transactions on Software Engineering, Volume SE-5, Number 5 (1979), pages 458-464. 

[Engelschall2000] R. Engelschall, "Portable Multithreading: The Signal Stack Trick For User-Space 
Thread Creation"', Proceedings of the 2000 USENIX Annual Technical Conference (2000). 

[Eswaran et al. 1976] K. P. Eswaran, J. N. Gray, R. A Lorie, and I. L. Traiger, "The Notions of 
Consistency and Predicate Locks in a Database System", Communications of the ACM, Volume 19, 
Number 11 (1976), pages 624-633. 

[Fang et al. 2001] Z. Fang, L. Zhang, J. B. Carter, W. C. Hsieh, and S. A McKee, "Reevaluating 
Online Superpage Promotion witl1 Hardware Support", Proceedings of the International Symposium on 
High-PeJformance Computer Architecture, Volume 50, Number 5 (2001). 

[Farrow 1986a] R. Farrow, "Security for Superusers, or How to Break the UNIX System", UNIX 
World (May 1986), pages 65-70. 

[Farrow 1986b] R. Farrow, "Security Issues and Strategies for Users", UNIX World (April 1986), 
pages 65-71. 

[Fidge 1991] C. Fidge, "Logical Time in Distributed Computing Systems", Computer, Volume 24, 
Number 8 (1991), pages 28-33. 

[Filipski and Hanko 1986] A Filipski and J. Hanko, "Making UNIX Secure", Byte (April 1986), 
pages 113-128. 

[Fisher 1981] J. A. Fisher, "Trace Scheduling: A Technique for Global Microcode Compaction", IEEE 
Transactions on Computers, Volume 30, Number 7 (1981), pages 478-490. 



928 

[Folk and Zoellick 1987] M. J. Folk and B. Zoellick, File Slructures, Addison-Wesley (1987). 
[Forrest eta!. 1996] S. Forrest, S. A. Hofmey1~ and T. A. Longstaff, ·'A Sense of Sel£ for U NTX 

Processes'", Proceedings of lite IEEE Sy1uposiwn on Security and (1996), pages 120-128. 
[Fortier 1989] P. J. Fortier, Handbook of LAN Technology, McCraw-H.ill (1989). 
[Frah 2001] C. Frah, The Universal History ofCol!lpuling, John Wiley and Sons (2001). 
[Frauenfelder 2005] M. Frauenfelder, The Computer-An Illustrated Histon;, Carlton Books (2005). 
[Freedman 1983] D. H. Freedman, "Searching for Denser Disks"', Jnfosyslcms (1983), page 56. 
[Freiberger and Swaine 2000] P. Freiberger and M. Swaine, Fire in the Valley- The of the 

Personal Computer, McGraw-Hill (2000). 
[Fuhrt 1994] B. Fuhrt, ""Multimedia Systems: An Overview"', IEEE MultiMedia, Volume 1, Number 

1 (199'1), pages 47-59. 
[Fujitani 1984] L. Fujitani, "Laser Optical Disk: The Coming Revolution in On-Line Storage", 

Communications of the ACM, Volume 27, Number 6 (1984), pages 546-554. 
[Gait 1988] J. Gait, "The Optical File Cabinet: A Random-Access File System for Write-On Optical 

Disks", Computer, Volume 21, Number 6 (1988). 
[Ganapathy and Schimmel1998] N. Canapathy and C. Schimmel, "General Purpose Operating 

System Support for Multiple Page Sizes"', Proceedings of the USENIX Technical Conference (1998). 
[Ganger et al. 2002] C. R. Gange1~ D. R. Engle1~ M. F. Kaashoek, H. M. Briceno, R. Hunt, and 

T. Pinckney, ·'Fast and Flexible Application-Level Networking on Exokernel Systems·', ACM 
Transactions on Computer Systems, Volume 20, Number 1 (2002), pages 49-83. 

[Garcia-Molina 1982] H. Garcia-Molina, "Elections in Distributed Computing Systems'", IEEE 
Transactions 011 Computers, Volum.e C-31, Number 1 (1982). 

[Garfinkel et al. 2003] S. Garfinkel, G. Spafford, and A Schwartz, Practical UNIX & lntemel 
O'Reilly & Associates (2003). 

[Chemawat et al. 2003] S. Chemawat, H. Gobiof£, and S.-T. Leung, ""The Coogle File System", 
Proceedings of tlze ACM St;1nposiwn on Operating Systems Principles (2003). 

[Gibson et al. 1997a] C. Gibson, D. Nagle, K. Amiri, F. Chang, H. Cobiof£, E. Riedel, D. Rochberg, 
and J. Zelenka, ·'Filesystem s for Network-Attached Secure Disks", Teclmical report, Carnegie-Mellon 
University (1997). 

[Gibson et al.1997b] G. A Gibson, D. Nagle, K. Amiri, F. W. Chang, E. M. Feinberg, H. Gobio££, 
C. Lee, B. Ozceri, E. Riedel, D. Rochberg, andJ. Zelenka, "File Server Scaling with Network-Attached 
Secure Disks", Measurement and Modeling of Computer Systems (1997), pages 272-284. 

[Gifford 1982] D. K. Gifford, "Cryptographic Sealing for Infonnation Secrecy and Authentication"', 
Comnw.nications of the ACM, Volume 25, Number 4 (1982), pages 274-286. 

[Goetz et al. 2006] B. Goetz, T. Peirls, J. Bloch, J. Bow beer, D. Holmes, and D. Lea, Java Concurrency 
in Practice, Addison-Wesley (2006). 

[Goldberg et al. 1996] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewe1~ "A Secure Environment 
for Untrusted Helper Applications", Proceedings of the 6th Usenix Security Syrnposiwn (1996). 

[Colden and Pechura 1986] D. Golden and M. Pechura, 'The Structure o£ Microcomputer File 
Systems", Communications of the ACM, Volume 29, Number 3 (1986), pages 222-230. 

[Golding et al. 1995] R. A. Golding, P. B. II, C. Staelin, T. Sullivan, and J. Wilkes, "Idleness is Not 
Sloth", USENIX Winter (1995), pages 201-212. 

[Cohn et al. 2002] M. Golm, M. Felser, C. Wawersich, and J. Kleinoder, '"The JX Operati11g System·•, 
2002 USENIX Annual Technical Conference (2002). 

[Gong 2002] L. Gong, "Peer-to-Peer Networks in Action", IEEE Internet Computini<:, Volume 6, 
Nwnber 1 (2002). 

[Gong et al. 1997] L. Gong, M. Muelle1~ H. Prafullchandra, and R. Schemers, "Going Beyond 
the Sandbox: An Overview of the New Security Architecture in the Java Development Kit 1.2", 
Proceedings of the USENIX Synzposium on Internet Technologies and Systems (1997). 

[Goodman eta!. 1989] J. R. Goodman, M. K. Vernon, and P. J. Woest, "Efficient Synchronization 
Primitives for Large-Scale Cache-Coherent Multiprocessors", Proceedings of the International Con
ference on Architectural Support for Programming Languages and Operaling St;sterrJs (1989), pages 
64-75. 

[Gosling et al. 1996] 
(1996). 

J. Gosling, B. Joy, and C. Steele, TlzeJava Language Specification, Addison-Wesley 

[Covindan and Anderson 1991] R. Govindan and D. P. Anderson, "Scheduling and IPC Mecha-
nisms for Continuous Media", Proceedings of the ACM Sy1nposium on Operating Systems 
(1991), pages 68-80. 

[Crampp and Morris 1984] F. T. Crampp and R H. Morris, "UNIX Operating-System Security'·, 
AT&T Bell Laboratories Technical Journal, Volume 63, Number 8 (1984), pages 1649-1672. 



929 

[Gray 1978] J. N. Gray, 'Notes on Data Base Operating Systems", in [Bayer et al. 1978] (1978), pages 
393-'181. 

[Gray 1981] J. N. G1·ay, ''The Transaction Concept: Virtues and Limitations'', Proceedings of the 
International Conference on Very Large Databases (1981), pages 144-154. 

[Gray 1997] ). Gray, lnlerprocess Communications in UNIX, Prentice Hall (1997). 
[Gray et aL 1981] ). N. Gray, P.R. Mc)ones, and M. Blasgen, "The Recovery Manager of the System 

R Database Manager", ACM Computing Surveys, Volume 13, Number 2 (1981), pages 223-2-12. 
[Greenawalt 1994] P. Greenawalt, "Modeling Power Management for Hard Disks", Proceedings of 

the Symposium on Modeling and Simulation of Computer Telecomnnmimtion Systems (1994), pages 62-66. 
[Grosshans 1986] D. Grosshans, File Systems Design and Implementation, Prentice Hall (1986). 
[Habermann 1969] A. N. Habermann, "Prevention of System Deadlocks", Communications of tlze 

ACM, Volume 12, Number 7 (1969), pages 373-377,385. 
[Hallet al. 1996] L. Hall, D. Shmoys, and J. Wein, "Scheduling To Minimize Average Completion 

Time: Off-line and On-line Algorithms", SODA: ACM-S!AM Symposium on Discrete Algorithms (1996). 
[Hamacher et al. 2002] C. Hamacher, Z. Vranesic, and S. Zaky, Computer Organization, Fifth Edition, 

McGraw-Hill (2002). 
[Han and Ghosh 1998] K. Han and S. Ghosh, "A Comparative Analysis of Virtual Versus Physical 

Process-Migration Strategies for Distributed Modeling and Simulation of Mob.ile Computing 
Networks'', Wireless Networks, Volume 4, Number 5 (1998), pages 365-378. 

[Harchol-Balter and Downey 1997] M. Harchol-Balter and A. B. Downey, ·'Exploiting Process 
Lifetime Distributions for Dynamic Load Balancing", ACM Transactions 011 Computer Systems, Volume 
15, Number 3 (1997), pages 253-285. 

[Harish and Owens 1999] V. C. Harish and B. Owens, "Dynamic Load Balancing DNS", Limtx 
Journal, Volume 1999, Number 64 (1999). 

[Harker et aL 1981] J. M. Harker, D. W. Brede, R. E. Pattison, G. R. Santana, and L. G. Taft, "A Quarter 
Century of Disk File Imwvation'', IBM Journal of Research and Development, Volume 25, Number 5 
(1981), pages 677-689. 

[Harold 2005] E. R. Harold, Java Network Programming, Third Edition, O'Reilly & Associates (2005). 
[Harrison et al. 1976] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, "Protection in Operating 

Systems'', Communicatio11s of the ACM, Volume 19, Number 8 (1976), pages 461-471. 
[Hart 2005] J. M. Hart, Windows System Programming, Tlzird Edition, Addison-Wesley (2005). 
[Hartman and Ousterhout 1995] J. H. Hartman and J. K. Ousterhout, "The Zebra Striped Network 

File System'', ACM TI·ansactions 011 Computer Systems, Volume 13, Number 3 (1995), pages 274-310. 
[Havender 1968] J. W. Havender, "Avoiding Deadlock in Multitasking Systems'', IBM Systems 

Joumal, Volume 7, Number 2 (1968), pages 74-84. 
[Hecht et al. 1988] M.S. Hecht, A. Johri, R. Aditham, and T. J. Wei, '·Experience Adding C2 Security 

Features to UNIX", Proceedings of the Summer USE NIX Conference (1988), pages 133-146. 
[Hennessy and Patterson 2002] J. L. He1messy and D. A. Patterson, Computer Architecture: A 

Quantitative Approach, Third Edition, Morgan Kaufmann Publishers (2002). 
[Hennessy and Patterson 2007] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative 

Approach, Fourth Edition, Morgan Kaufmann (2007). 
[Henry 1984] G. Henry, "The Fair Share Scheduler'', AT&T Bell Labomtories Technical Joumal (1984). 
[Herlihy 1993] M. Herlihy, "A Methodology for Implementing Highly Concurrent Data Objects", 

ACM Transactions on Programming and Systems, Volume 15, Number 5 (1993), pages 
745-770. 

[Herlihy and Moss 1993] M. Herlihy and J. E. B. Moss, "Transactional Memory: Architectural 
Support For Lock-Free Data Structures", Proceedings of !he Twentiefh Annual Intemational Symposium 
on Computer Architeclure (1993). 

[Hitz et al. 1995] D. Hitz, J. Lau, and M. Malcolm, "File System Design for an NFS File Server 
Appliance", Technical report, NetApp (http://www.netapp.com/techJibrary /3002.html) (1995). 

[Hoagland 1985] A. S. Hoagland, "Infonnation Storage Tedmology-A Look at the Future", 
Cornputer, Volume 18, Number 7 (1985), pages 60-68. 

[Hoare 1972] C. A. R. Hoare, "Towards a Theory of Parallel Programming", in [Hoare and Perrott 
1972] (1972), pages 61-71. 

[Hoare 1974] C. A. R. Hoare, "Monitors: An Operating System Structuring Concepf', Comllwnica-
tions ofL-lie ACM, Volume 17, Number 10 (1974), pages 549-557. 

[Holt 1971] R. C. Holt, ''Comments on Prevention of System Deadlocks", Conmiunicalions of the 
ACM, Volume 14, Number 1 (1971), pages 36-38. 

[Holt 1972] R. C. Holt, "Some Deadlock Properties of Computer Systems", Computing Surve!fS, 
Volume 4, Number 3 (1972), pages 179-196. 



930 

[Holub 2000] A. Holub, Yarning Java Threads, Apress (2000). 
[Howard eta!. 1988] J. H. Howard, M. L. Kazat~ S. G. Menees, D. A. Nichols, M. Satyanarayanan, 

and R. N. Sidebotham, "Scale and Performance in a Distributed File System.", ACM Transactions on 
Computer Systems, Volume 6, Number I (1988), pages 55-81. 

[Howarth et al. 1961] D. J. Howarth, R. B. Payne, and F. H. Sunmer, "The Manchester University 
Atlas Operating System, Part II: User's Description", Computer Journal, Volume 4, Number 3 (1961), 
pages 226-229. 

[Hsiao eta!. 1979] D. K. Hsiao, D. S. Kerr, and S. E. Maclnick, Computer Security, Academic Press 
(1979). 

[Hu and Perrig 2004] Y.-C. Hu and A. Pe1-rig, "SPV: A Secure Path Vector Routing Scheme for 
Securing BGP", Proceedings of ACM SIGCOMM Conference on Data Communication (2004). 

[Hu eta!. 2002] Y.-C. Hu, A. Perrig, and D. Johnson, "Ariadne: A Secure On-Demand Routing 
Protocol for Ad Hoc Networks", Proceedings oft he Annual International Conference on Mobile Computing 
and Networking (2002). 

[Hyman 1985] D. Hyman, The Columbus Chicken Statute and More Bonehead Legislation, S. Greene 
Press (1985). 

[Iacobucci 1988] E. Iacobucci, OS/2 Programmer's Guide, Osborne McGraw-Hill (1988). 
[IBM 1983] Technical Reference. IBM Corporation (1983). 
[Iliffe and Jodeit 1962] J. K. Iliffe andJ. G. Jodeit, "A Dynamic Storage Allocation System", Computer 

Journal, Volume 5, Number 3 (1962), pages 200-209. 
[Intel1985a] iAPX 286 Programmer's Reference Manual. Intel Corporation (1985). 
[Intel1985b] iAPX 86/88, 186/188 User's Manual Programmer's Reference. Intel Corporation (1985). 
[Intel1986] iAPX 386 Programmer's Reference Manual. Intel Corporation (1986). 
[Intel1990] i486 Microprocessor Programmer's Reference Manual. Intel Corporation (1990). 
[lntel1993] Pentium Processor User's Manual, Volume 3: Architecture and Programming Manual. Intel 

Corporation (1993). 
[Iseminger 2000] D. Iseminger, Active Directory Services for Microsoft Windows 2000. Technical 

Reference, Microsoft Press (2000). 
[Jacob and Mudge 1997] B. Jacob and T. Mudge, "Software-Mm1aged Address Translation", Pro-

ceedings of the International Symposium on High Performance Computer Architecture and Implementation 
(1997). 

[Jacob and Mudge 1998a] B. Jacob and T. Mudge, "Virtual Memory in Contemporary Microproces-
sors", IEEE Micro Magazine, Volume 18, (1998), pages 60-75. 

[Jacob and Mudge 1998b] B. Jacob and T. Mudge, "Virtual Memory: Issues of Implementation", 
IEEE Computer Magazine, Volume 31, Number 6 (1998), pages 33-43. 

[Jacob and Mudge 2001] B. Jacob and T. Mudge, "Uniprocessor Virtual Memory Without TLBs", 
IEEE Transactions on Computers, Volume 50, Number 5 (2001). 

[Jacobson and Wilkes 1991] D. M. Jacobson and J. Wilkes, "Disk Scheduling Algorithms Based on 
Rotational Position", Teclmical report, Hewlett-Packard Laboratories (1991). 

[Jensen et al. 1985] E. D. Jensen, C. D. Locke, and H. Tokuda, "A Time-Driven Scheduling Model 
for Real-Time Operating Systems", Proceedings of the IEEE Real-Time Systems Symposium (1985), pages 
112-122. 

[Johnstone and Wilson 1998] M. S. Jolmstone and P. R. Wilson, "The Memory Fragmentation 
Problem: Solved?", Proceedings of the First International Symposium on Memory Management (1998), 
pages 26-36. 

[Jones and Liskov 1978] A. K Jones and B. H. Liskov, "A Language Extension for Expressing 
Constraints on Data Access", Communications of the ACM, Volume 21, Nmnber 5 (1978), pages 
358-367. 

[Jul et al. 1988] E. Jul, H. Levy, N. Hutchinson, and A. Black, "Fine-Grained Mobility in the Emerald 
System", ACM Transactions on Computer Systerns, Volume 6, Number 1 (1988), pages 109-133. 

[Kaashoek eta!. 1997] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Briceno, R. Hunt, 
D. Mazieres, T. Pinckney, R. Grimm, J. Jannotti, and K. Mackenzie, "Application Performance and 
Flexibility on Exokernel Systems", Proceedings of the ACM Symposium on Operating Systems Principles 
(1997), pages 52-65. 

[Katz et al. 1989] R. H. Katz, G. A. Gibson, and D. A. Patterson, "Disk System Architectures for 
High Performance Computing"', Proceedings of the IEEE (1989). 

[Kay and Lauder 1988] J. Kay and P. Lauder, "A Fair Share Scheduler", Communications of the ACM, 
Volume 31, Number 1 (1988), pages 44-55. 

[Kenah et al. 1988] L. J. Kenah, R. E. Goldenberg, and S. F. Bate, VAX/VMS Internals and Data 
Structures, Digital Press (1988). 



931 

[Kent el al. 2000] S. Kent, C. Lynn, and K. Seo, "Secure Border· Gateway Protocol (Secure-BGP)", 
IEEE joumal on Selected Areas in Comrnunications, Volume 18, Number 4 (2000), pages 582-592. 

[Kerrville 1982] R. F. Kenv[lle, "Optical Disk Data Storage", Computer, Volume 15, NLtmber 7 (1982), 
pages 21-26. 

[Kessels 1977] J. L. W. Kessels, ''An Alternative to Event Queues for Synchronization in Monitors", 
Communications of the ACM, Volume 20, Number 7 (1977), pages 500-503. 

[Kieburtz and Silberschatz 1978] R. B. Kieburtz and A. Silberschatz, '"Capability Managers", IEEE 
Transactions on Software Engineering, Volume SE-4, Number 6 (1978), pages 467-477. 

[Kieburtz and Silberschatz 1983] R. B. Kieburtz and A. Silberschatz, "Access Right Expressions", 
ACM Transactions on Programming Languages and Syslems, Volume 5, Number 1 (1983), pages 78-96. 

[Kilburn et al. 1961] T. Kilburn, D. J. Howarth, R. B. Payne, and E H. Sumner, "The Manchester 
University Atlas Operating System, Part I: Internal Organization", Computer Journal, Volume 4, 
Number 3 (1961), pages 222-225. 

[Kim and Spafford 1993] G. I-L Kim and E. H. Spafford, "The Design and Implementation of 
Tripwire: A File System Integrity Checker", Technical report, Purdue University (1993). 

[King 1990] R. P. King, "Disk Arm Movement in Anticipation of Future Requests'', ACM Il·ansactions 
on Computer Systems, Volw11e 8, Number 3 (1990), pages 214-229. 

[Kistler and Satyanarayanan 1992] J. Kistler and M. Satyanarayanan, "Disconnected Operation in 
the Coda File System", ACM Transactions on Computer Systems, Volume 10, Number 1 (1992), pages 
3-25. 

[Kleinrock 1975] L. Kleinrock, Queueing Systems, Volume II: Computer Applications, Wiley-
Interscience (1975). 

[Knapp 1987] E. Knapp, '"Deadlock Detection in Distributed Databases", Computing Surveys, 
Volume 19, Number 4 (1987), pages 303-328. 

[Knowlton 1965] K. C. Knowlton, "'A Fast Storage Allocator", Communications of the ACM, Volume 
8, Number 10 (1965), pages 623-624. 

[Knuth 1966] D. E. Knuth, "Additional Comments on a Problem in Concurrent Programming 
Control", Communications of the ACM, Volume 9, Number 5 (1966), pages 321-322. 

[Knuth 1973] D. E. Knuth, The Art of Computer Programming, Volume 1: Fundamental Algorithms, 
Second Edition, Addison-Wesley (1973). 

[Knuth 1998] D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching, Second 
Edition, Addison-Wesley (1998). 

[Koch 1987] P. D. L. Koch, "Disk File Allocation Based on the Buddy System", ACM TI·ansactions on 
Computer Systems, Volume 5, Number 4 (1987), pages 352-370. 

[Kongetira et al. 2005] P. Kongetira, K. Aingaran, and K. Olukotun, "Niagara: A 32-Way Multi-
threaded SPARC Processor··, IEEE Micro Magazine, Volume 25, Number 2 (2005), pages 21-29. 

[Kopetz and Reisinger 1993] H. Kopetz and J. Reisinge1~ "The Non-Blocking Write Protocol NBW: 
A Solution to a Real-Time Synchronisation Problem", IEEE Real-Time Systems Symposium (1993), 
pages 131-137. 

[Kosaraju 1973] S. Kosaraju, "'Limitations of Dijkstra's Semaphore Primitives and Petri Nets'', 
Operating Systems Review, Volume 7, Number 4 (1973), pages 122-126. 

[Kozierok 2005] C. Kozierok, The TCP/IP Guide, No Starch Press (2005). 
[Kramer 1988] S. M. Kramer, "'Retaining SUID Programs in a Secure UNIX", Proceedings of the 

Summer USENJX Conference (1988), pages 107-118. 
[Kubiatowicz et al. 2000] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, 

R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, "'OceanStore: An 
Architecture for Global-Scale Persistent Storage", Proc. of Architectural Support for Programming 
Languages and Operating Systems (2000). 

[Kurose and Ross 2005] J. Kurose and K. Ross, Computer Networking-A Top-Down Approach Fea-
turing the Intemet, Third Edition, Addison-Wesley (2005). 

[Lamport 1974] L. Lamport, '·A New Solution of Dijkstra's Concurrent Progra1mning Problem", 
Communications of the ACM, Volume 17, Number 8 (1974), pages 453-455. 

[Lamport 1976] L. Lamport, "'Synchronization of Independent Processes'', Acta Informatica, Volume 
7, Number 1 (1976), pages 15-34. 

[Lamport 1977] L. Lamport, "'Concurrent Reading and Writing", Communications of the ACM, 
Volume 20, Number 11 (1977), pages 806-811. 

[Lamport 1978a] L. Lamport, "The Implementation of Reliable Distributed Multiprocess Systems", 
Computer Networks, Volume 2, Number 2 (1978), pages 95-114. 

[Lamport 1978bj L. Lamport, "Time, Clocks and the Ordering of Events in a Distributed System", 
Communications of the ACM, Volume 21, Number 7 (1978), pages 558-565. 



932 

[Lamport 1981] L. Lamport, "Password Authentication with lnsecure Communications", Cornmu-
nicalion.s of the ACM, Volume 24, Number 11 (1981), pages 770-772. 

[Lamport 1986] L. Lamport, "The Mutual Exclusion Problem", Comnumimlions of the ACM, Volume 
33, Number 2 (1986), pages 313-348. 

[Lamport 1987] L. Lamport, "A Fast Mutual ExclL!Sion Algorithm", ACM Transactions on Computer 
Systems, Volume 5, Number 1 (1987), pages 1-11. 

[Lamport 1991] L. Lamport, "The Mutual Exclusion Problem Has Been Solved", Connmmicalions of 
the ACM, Volume 34, Number 1 (1991), page 110. 

[Lamport et al. 1982] L. Lamport, R. Shostak, and M. Pease, "The Byzantine Generals Problem", 
ACM IJ·ansactions on Progrmnming Languages and Systems, Volume '1, Number 3 (1982.), pages 382-401. 

[Lampson 1969] B. W. Lampson, "Dynamic Protection Stmctures", Proceedings of tlze AFIPS Fall Joint 
Computer (1969), pages 27-38. 

[Lampson 1971] B. W. Lampson, "Protection", of the Fifth Annual Princeton Conference on 
Information Systems Science (1971), pages 437-443. 

[Lampson 1973] B. W. Lampson, "A Note on the Confinement Problem", ConzmunicntioHS of the 
ACM, Volume 10, Number 16 (1973), pages 613-615. 

[Lampson and Redell1979] B. W. Lampson and D. D. Redell, "Experience with Processes and 
Monitors in Mesa", Proceedings of the 7th ACM Symposium on Operating Systems Principles (SOSP) 
(1979), pages 43-44. 

[Lampson and Sturgis 1976] B. Lampson and H. Sturgis, "Crash Recovery in a Distributed Data 
Storage System", Technical report, Xerox Research Center (1976). 

[Landwehr 1981] C. E. LandwehT, "Formal Models of Computer Security", Computing Surveys, 
Volume 13, Number 3 (1981), pages 247-278. 

[Lann 1977] C. L. Lann, "Distributed Systems-Toward a Formal Approach", Proceedings of" the IFJP 
(1977), pages 155-160. 

[Larson and Kajla 1984] P. Larson and A Kajla, "File Organization: Implementation of a Method 
Guaranteeing Retrieval in One Access", Communications of the ACM, Volume 27, Number 7 (1984), 
pages 670-677. 

[Lauzac et al. 2003] S. Lauzac, R. Melhem, and D. Mosse, "An Improved Rate-Monotonic Admission 
Control and Its Applications", IEEE TI-ansnctions on Computers, Volume 52, Number 3 (2003). 

[Lee 2003] J. Lee, "An End-User Perspective on File-Sharing Systems", Communications of the ACM, 
Volume 46, Number 2 (2003), pages 49-53. 

[Lee and Thekkath 1996] E. K. Lee and C. A Thekkath, "Petal: Distributed Virtual Disks'·, Proceed-
ings of the Seventh International Conference on Architectural Support for Programming and 
Operating Systems (1996), pages 84-92. 

[Leffler et al. 1989] S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman, Tlze Design and 
Implementation of the 4.3BSD UNIX Operating System, Addison-Wesley (1989). 

[Lehmann 1987] F. Lehmann, "Computer Break-Ins'', Communications of the ACM, Volume 30, 
Number 7 (1987), pages 584-585. 

[Lehoczky et al. 1989] J. Lehoczky, L. Sha, andY. Ding, "The Rate 'Yionotonic Scheduling Algorithm: 
Exact Characterization and Average Case Behaviour", Proceedings of 10th IEEE Real-Time SijStenzs 
Stjmposiwn (1989). 

[Lempel1979] A Lempel, "Cryptology in Transition", Computing Surveys, Volume 11, Number 4 
(1979), pages 286-303. 

[Leslie et al. 1996] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. T. Barham, D. Evers, R. Fairbairns, 
and E. Hyden, "The Design and Implementation of an Operating System to Support Distributed 
Multimedia Applications", IEEE Journal of Selected Areas in Communications, Volume 14, Number 7 
(1996), pages 1280-1297. 

[Lett and Konigsford 1968] A. L. Lett and W. L. Konigsford, "TSS/360: A Time-Shared Operating 
System", Proceedings of the AFIPS Fall Joint Computer Conference (1968), pages 15-28. 

[Levin et aL 1975] R Levin, E. S. Cohen, W. M. Corwin, F. J. Pollack, and W. A. Wulf, ·'Policy I 
Mechanism Separation in Hydra", Proceedings of the ACM Symposium on Operating Systems Principles 
(1975), pages 132-140. 

[Levine 2003] C. Levine, "Defining Deadlock", Operating Systems Review, Volume 37, Number 1 
(2.003). 

[Levy 1994] S. Levy, Backers, Penguin Books (1994). 
[Lewis and Berg 1998] B. Lewis and D. Berg, Multithreaded Progrmmning with ?threads, Sun 

Microsystems Press (1998). 
[Lewis and Berg 2000] B. Lewis and D. Berg, Multithreaded Progrmmning with Jaw Technology, Sun 

Microsystems Press (2000). 



933 

[Lichtenberger and Pirtle 1965] W. W. Lichtenberger and l'vl. W. Pirtle, ·'A Facility for Experimen-
tation in Man-Machine Interaction", Proceedings of the AFlPS Fall Joirll Computer Conference (1965), 
pages 589-598. 

[Lindholm and Yellin 1999] T. Lindholm and P. Yellin, The java Virtuallvlachine Specificalioll, Second 
Edition, Addison-Wesley (1999). 

[Ling et al. 20001 Y. Ling, T. Mullen, and X. Lin, "Analysis of Optimal Thread Pool Size", Opera/ ing 
St;slcl/1 Review, Volume 3'1, NLtmbet" 2 (2000). 

[Lipner 1975] S. Lipne1~ ·'A Comment on the Confinement Problem", Operating St;stcm Review, 
Volume 9, Number 5 (1975), pages 192-196. 

[Lipton 1974] R. Lipton, On Synchronization Primitive Systems. PhD thesis, Carnegie-Mellon 
University (1974). 

[Liskov1972] B. H. Liskov, ''The Design of the Venus Operating System··, Conunur1.ications of the 
ACM, Volume 15, Number 3 (1972), pages 144-149. 

[Liu and Layland 1973] C. L. Liu andJ. W. Layland, '"SchedulingAlgorithmsforMultiprogramming 
in a Hard Real-Time Environment'', Conmnmicalions of the ACM, Volume 20, Number 1 (1973), pages 
46-61. 

[Lobel1986] J. Lobel, Foiling the System Breakers: Computer Security and Access Control, McGraw-Hill 
(1986). 

[Loo 2003] A W. Loo, "The Future of Peer-to-Peer Computing··, Comnnmicalions of the ACM, Volume 
46, Number 9 (2003), pages 56-61. 

[Love 2004] R. Love, Linux Kernel Development, Developer's Library (2004). 
[Love 2005] R. Love, Linux Kemel Development, Second Edition, Developer's Library (2005). 
[Lowney et al. 1993] P. G. Lowney, S. M. Freudenberger, T. J. I<arzes, W. D. Lichtenstein, R. P. 

Nix, J. S. O'Donnell, and J. C. Ruttenberg, "The Multiflow Trace Scheduling Compiler'', Journal of 
Supercomputing, Volume 7, Number 1-2 (1993), pages 51-142. 

[Ludwig 1998] M. Ludwig, The Giant Black Book of Computer Viruses, Second Edition, American Eagle 
Publications (1998). 

[Ludwig 2002] M. Ludwig, The Little Black Book of Email Viruses, American Eagle Publications (2002). 
[Lumb et al. 2000] C. Lumb, J. Schindler, G. R. Ganger, D. F. Nagle, and E. Riedel, "Towards Higher 

Disk Head Utilization: Extracting Free Bandwidth From Busy Disk Drives", Symposium 011 Operating 
Systems Design and Implementation (2000). 

[Maekawa 1985] M. Maekawa, "A Square Root Algorithm for Mutual Exclusion in Decentralized 
Systems'', ACM Ti·ansnctions on Computer Systems, Volume 3, Number 2 (1985), pages 145-159. 

[MaheT et al. 1994] C. Mahet~ J. S. Goldick, C. Kerby, and B. Zumach, "The Integration of Distributed 
File Systems and :VIass Storage Systems·', Proceedings of the IEEE Symposium 011 Mass Storage Systems 
(1994), pages 27-31. 

[Marsh et al. 1991] B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P. Markatos, "First-Class User-Level 
Threads'' of the 13th ACM Symposium on Operating Systems Principle (1991), pages 110-121. 

[Mattern 1988] F. Mattern, "Virtual Time and Global States of Distributed Systems··, Workshop on 
Para/leland Distributed Algorithms (1988). 

[Mattson et al. 1970] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, "Evaluation Techniques 
for Storage Hierarchies", IBM Systems journal, Volume 9, Number 2 (1970), pages 78-117. 

[Mauro and McDougall2007] J. Mauro and R. McDougall, Solar is Internals: Core Kernel Arcl1itecture, 
Prentice [-!all (2007). 

[McCanne and Jacobson 1993] S. McCanne and V. Jacobson, ·'The BSD Packet Filter: A New 
Architecture for User-level Packet Capture", LTSENIX Winter (1993), pages 259-270. 

[McDougall and Laudon 2006] R. McDougall and J. Laudon, "Multi-Core Processors are Here'', 
USENJX ;login: The USENJX Magazine, Volume 31, Number 5 (2006), pages 32-39. 

[McDougall and Mauro 2007] R. McDougall and]. Mauro, Solaris Jntemals, Second Edition, Prentice 
Hall (2007). 

[McGraw and Andrews 1979] J. R. McGraw and G. R. Andrews, "Access Control in Parallel 
Programs'', IEEE Transactions on Software Volume SE-5, Number 1 (1979), pages 1-9. 

[McKeag and Wilson 1976] R. M. McKeag and R. Wilson, Studies in Operating Systems, Academic 
Press (1976). 

[McKeon 1985] B. McKeon, "An Algorithm for Disk Caching with Limited Memory", Byte, Volume 
10, Number 9 (1985), pages 129-138. 

[McKusick and Neville-Neil 2005] M. K. McKusick and G. V. Neville-Neil, The Design and Imple-
111Cl1talion of l11e FrceBSD UNIX Operating System, Addison Wesley (2005). 

[McKusick et al. 1984] l\11. K. McKusick, W. N. Joy, S. ]. Leffler, and R. S. Fabry, "A Fast File System 
for UNlX", ACM Transaclions 011 Computer St;slcms, Volume 2, Number 3 (1984), pages 181-197. 



934 

[McKusick et al. 1996] M. K. McKusick, K. Bostic, and M. J. Karels, The Design and Implementation 
of the 4.4 BSD UNIX System, John Wiley and Sons (1996). 

[McNairy and Bhatia 2005] C. McNairy and R. Bhatia, "Montecito: A Dual-Core, Dual-Threaded 
ltanium Processor"', IEEE Micro Magazine, Volume 25, Number 2 (2005), pages 10-20. 

[McVoy and Kleiman 1991] L. W. McVoy and S. R. Kleiman, "Extent-like Performance from a UNIX 
File System", of the Winter USENIX Conference (1991), pages 33-44. 

[Mealy et al. 1966] G. FL Mealy, B. I. Witt, and W. A Clark, "The Functional Structure of OS/360", 
IBM Journal, Volume 5, Number 1 (1966). 

[Mellor-Crummey and Scott 1991] J. M. Mellor-Crummey and M. L. Scott, "Algorithms for Scalable 
Synchronization on Shared-Memory Multiprocessors", ACM Transactions on Computer Systems, 
Volume 9, Number I (1991), pages 21-65. 

[Menasce and Muntz 1979] D. Menasce and R. R. Muntz, "Locking and Deadlock Detection in 
Distributed Data Bases", IEEE Transactions on Software Volume SE-5, Number 3 (1979), 
pages 195-202. 

[Mercer et al. 1994] C. W. Merce1~ S. Savage, and H. Tokuda, "Processor Capacity Reserves: 
Operating System Support for Multimedia Applications", International Conference on Mu!tim.edia 
Computing and Systems (1994), pages 90-99. 

[Meyer and Seawright 1970] R. A Meyer and L. H. Seawright, "A Virtual Machine Time-Sharing 
System", IBM Systems Journal, Volume 9, Number 3 (1970), pages 199-218. 

[Microsoft 1986] Microsoft MS-DOS User's Reference and Microsoft MS-DOS Programmer's Reference. 
Microsoft Press (1986). 

[Microsoft 1996] Microsoft Windows NT Workstation Resource Kit. Microsoft Press (1996). 
[Microsoft 2000a] Microsoft Developer Network Development Library. Microsoft Press (2000). 
[Microsoft 2000b] Microsoft Windows 2000 Server Resource Kit. Microsoft Press (2000). 
[Milenkovic 1987] M. Milenkovic, Operating Systems: Concepts and Design, McGraw-Hill (1987). 
[Miller and Katz 1993] E. L. Miller and R. H. Katz, "'An Analysis of File Migration in a UNIX 

Supercomputing Environment", Proceedings of the Winter USENIX Conference (1993), pages 421-434. 
[Milojicic et al. 2000] D. S. Milojicic, F. Douglis, Y. Paindaveine, R. Wheele1~ and S. Zhou, "Process 

Migration", ACM Computing SurVClJS, Volume 32, Number 3 (2000), pages 241-299. 
[Mockapetris 1987] P. Mockapetris, "Domain Names-Concepts and Facilities", Network Working 

Group, Request for Comments: 1034 (1987). 
[Mohan and Lindsay 1983] C. Mohan and B. Lindsay, "Efficient C01=1it Protocols for the Tree of 

Processes Model of Distributed Transactions", Proceedings of the ACM Symposium on Principles of 
Database Systems (1983). 

[Mok 1983] A K. Mok, Fundamental Design Problems of Distributed Systems for the Hard Real-Time 
Environment. PhD thesis, Massachusetts Institute of Teclmology, MA (1983). 

[Morris 1973] J. H. Morris, "Protection in Programming Languages", Communications of the ACM, 
Volume 16, Number 1 (1973), pages 15-21. 

[Morris and Thompson 1979] R. Morris and K. Thompson, "Password Security: A Case History", 
Communications of the ACM, Volm11e 22, Number 11 (1979), pages 594-597. 

[Morris et al. 1986] J. H. Morris, M. Satyanarayanan, M. H. Co1mer, J. H. Howard, D. S. H. Rosenthal, 
and F. D. Smith, "Andrew: A Distributed Personal Computing Environment", Communications of the 
ACM, Volume 29, Number 3 (1986), pages 184-201. 

[Morshedian 1986] D. Morshedian, "How to Fight Password Pirates", Computer, Volume 19, 
Number 1 (1986). 

[Motorola 1993] Power PC 601 RISC Microprocessor User's Manual. Motorola Inc. (1993). 
[Mullender 1993] S. MullendeJ~ Distributed Systems, Third Edition, Addison-Wesley (1993). 
[Myers and Beigl2003] B. Myers and M. Beigl, "Handheld Cornputing", Computer, Volume 36, 

Number 9 (2003), pages 27-29. 
[Navarro et al. 2002] J. Navarro, S. Lyer, P. Druschel, and A Cox, "Practical, Transparent Operating 

System Support for Superpages", Proceedings of the USENIX on Operating Systems Design 
and Implementation (2002). 

[Needham and Walker 1977] R. M. Needham and R. D. H. Walker, "The Cambridge CAP Computer 
and Its Protection System", Proceedings of the Sixth. Symposium on Operating System Principles (1977), 
pages 1-10. 

[Nelson et al. 1988] M. Nelson, B. Welch, and J. K. Ousterhout, "Caching in the Sprite Network File 
System", ACM Transactions on Computer Systems, Volume 6, Number 1 (1988), pages 134-154. 

[Norton and Wilton 1988] P. Norton and R. Wilton, The New Peter Norton Programmer's Guide to the 
IBM PC & PS/2, Microsoft Press (1988). 



935 

[Nutl2004] G. Nutt, Operating Systems: A Modem Perspective, Third Edition, Addison-Wesley (2004). 
[Oaks and Wong 1999] S. Oaks and H. Wong, Java Threads, Second Edition, O'Reilly & Associates 

(1999). 
[Obermarck 1982] R. Obermarck, '"Distributed Deadlock Detection Algorithm", ACM Transactions 

on Database Systerns, Volume 7, Number 2 (1982), pages] 87-208. 
[O'Leary and Kitts 1985] B. T. O'Leary and D. L. Kitts, "Optical Device for a Mass Storage System", 

Computer, Volume 18, Nurnber 7 (1985). 
[Olsen and Kenley 1989] R. P. Olsen and G. Kenley, "Virtual Optical Disks Solve the On-Line 

Storage Crunch", Computer Design, VolmTte 28, Number 1 (1989), pages 93-96. 
[Organick 1972] E. I. Organick, The Multics System: An Examination of Its Structure, MIT Press (1972). 
[Ortiz 2001] S. Ortiz, "Embedded OSs Gain the Inside Track", Computer, Volume 34, Number 11 

(2001). 
[Ousterhout 1991] f. Ousterhout. 'The Role of Distributed State". In CMU Computer Science: a 

25th Anniversary Commemorative (1991), R. F. Rashid, Ed., Addison-Wesley (1991). 
[Ousterhout et al. 1985] f. K. Ousterhout, H. D. Costa, D. Harrison, J. A. Kunze, M. Kupfe1~ and 

J. G. Thompson, "A Trace-Driven Analysis of the UNIX 4.2 BSD File System", Proceedings of the ACM 
Symposium on Operating Systems Principles (1985), pages 15-24. 

[Ousterhout et al. 1988] J. K. Ousterhout, A. R. Cherenson, F. Doughs, M. N. Nelson, and B. B. 
Welch, "The Sprite Network-Operating System", Computer, Volume 21, Number 2 (1988), pages 
23-36. 

[Parameswaran et al. 2001] M. Parameswaran, A. Susarla, and A. B. Whinston, "P2P Networking: 
An Information-Sharing Alternative", Computer, Volume 34, Number 7 (2001). 

[Parmelee et al. 1972] R. P. Parmelee, T. I. Peterson, C. C. Tillman, and D. Hatfield, "Virtual Storage 
and Virtual Machine Concepts"', IBM Systems Journal, Volume 11, Number 2 (1972), pages 99-130. 

[Parnas 1975] D. L. Parnas, "On a Solution to the Cigarette Smokers' Problem Without Conditional 
Statements", Communications of the ACM, Volume 18, Number 3 (1975), pages 181-183. 

[Patil1971] S. Patil, "Limitations and Capabilities of Dijkstra' s Semaphore Primitives for Coordina-
tion Among Processes", Technical report, Massachusetts Institute of Technology (1971). 

[Patterson et al. 1988] D. A. Patterson, G. Gibson, and R. H. Katz, "A Case for Redundant Arrays 
of Inexpensive Disks (RAID)", Proceedings of the ACM SIGMOD International Conference on tlze 
Management of Data (1988). 

[Pease et al. 1980] M. Pease, R. Shostak, and L. Lamport, "Reaching Agreement in the Presence of 
Faults'", Communications of the ACM, Volume 27, Number 2 (1980), pages 228-234. 

[Pechura and Schoeffler 1983] M.A. Pechura and J. D. Schoeffler, "Estimating File Access Time of 
Floppy Disks'·, Communications of the ACM, Volume 26, Number 10 (1983), pages 754-763. 

[Perlman 1988] R. Perlman, Network Layer Protocols with Byzantine Robustness. PhD thesis, Mas-
sachusetts Institute of Technology (1988). 

[Peterson 1981] G. L. Peterson, "Myths Aboutthe Mutual Exclusion Problem", Information Processing 
Letters, Volume 12, Number 3 (1981). 

[Peterson and Norman 1977] J. L. Peterson and T. A. Norman, "Buddy Systems", Communications 
of the ACM, Volume 20, Number 6 (1977), pages 421-431. 

[Pfleeger and Pfleeger 2003] C. Pfleeger and S. Pfleeger, Security in Computing, Third Edition, Prentice 
Hall (2003). 

[Philbin et al. 1996] J. Philbin, J. Edler, 0. J. Anshus, C. C. Douglas, and K. Li, '"Thread Scheduling 
for Cache Locality", Archit:ectura/ Support for Programrning Languages and Operating Systems (1996), 
pages 60-71. 

[Pinilla and Gill2003] R. Pinilla and M. Gill, "JVM: Platform Independent vs. Performance Depen-
dent", Operating System Review (2003). 

[Popek 1974] G. J. Popek, "Protection Structures·', Computer, Volume 7, Number 6 (1974), pages 
22-33. 

[Popek and Walker 1985] G. Popek and B. Walker, editors, The LOCUS Distributed System Arclzilec-
turc, MIT Press (1985). 

[Prieve and Fabry 1976] B. G. Prieve and R. S. Fabry, '·VMIN-An Optimal Variable Space 
Page-Replacement Algoritlun", Communications of the ACM, Volume 19, Number 5 (1976), pages 
295-297. 

[Psaltis and Mok 1995] D. Psaltis and F. Mok, "Holographic Memories", Scientific American, Volume 
273, Number 5 (1995), pages 70-76. 

[Purdin et al. 1987] T. D. M. Purdin, R. D. Schlichting, and G. R. Andrews, "A File Replication 
Facility for Berkeley UNIX", Software-Practice and Experience, Volume 17, (1987), pages 923-940. 



936 

[Purdom, Jr. and Stigler 1970] P. W. Purdorn,jr. andS. M. Stigler, "Statistical Propertieso.f the Buddy 
System",]. ACM, Volume 17, Number 4 (1970), pages 683-697. 

[Quinlan 1991] S. Quinlan, "A Cached WORM'", and Experience, Volume 21, 
Number 12 (1991), pages 1289-1299. 

[Rago 1993] S. Raga, UNIX System V Network Prograrmning, Addison-Wesley (1993). 
[Rashid 1986] R F. Rashid, "From RIG to Accent to Mach: The Evolution of a Network Operating 

System", of the ACM/!EEE Computer Society, Fall joint Computer Conference (1986). 
[Rashid and Robertson 1981] R. Rashid and G. Robertson, ··Accent: A Conm1Unication-Oriented 

Network Operating System Kernel", Proceedings of the ACM Symposium on Operating System 
(1981). 

[Raymond 1999] E. S. Raymond, The Cathedral & the Bazaar, O'Reilly & Associates (1999). 
[Raynal1986] M. Raynal, Algorithms for Mutual Exclusion, MIT Press (1986). 
[Raynal1991] M. Raynal, "A Simple Taxonomy for Distributed Mutual Exclusion Algorithms", 

Operating Systems Review, Volume 25, Number 1 (1991), pages 47-50. 
[Raynal and Singhal1996] M. Raynal and M. Singhal, "Logical Time: Capturing Causality in 

Distributed Systems", Computer, Volume 29, Number 2 (1996), pages 49-56. 
[Reddy and Wyllie 1994] A. L. N. Reddy and J. C. Wyllie, "1/0 issLtes in a Multimedia System", 

Computer, Volume 27, Number 3 (1994), pages 69-74. 
[Redell and Fabry 1974] D. D. Redell and R S. Fabry, '·Selective Revocation of Capabilities", 

Proceedings of the IRIA Tntemotional Workshop on Protection in Operating Systems (1974), pages 
197-210. 

[Redell eta!. 1980] D. D. Redell, Y. K. Dalal, T. R Horsley, H. C. Lauer, W. C. Lynch, P. R 
McJones, H. G. Murray, and S. P. Purcell, "Pilot: An Operating System for a Personal Computer"', 
Communimtions of the A.CM, Volume 23, Number 2 (1980), pages 81-92. 

[Reed 1983] D. P. Reed, "Implementing Atomic Actions on Decentralized Data", ACM Transactions 
on Computer Volume 1, Number 1 (1983), pages 3-23. 

[Reed and Kanodia 1979] D. P. Reed and R K. Kanodia, "Synchronization with Eventcounts and 
Sequences", Communications of !:he ACM, Volume 22, Number 2 (1979), pages 115-123. 

[Regehr et al. 2000] J. Rcgeh.1~ M. B. Jones, and J. A. Stankovic, '·Operating System Support for 
Multimedia: The Programming Model Matters", Teclmical report, Microsoft Research (2000). 

[Reid 1987] B. Reid, ·'Reflections on Some Recent Widespread Computer Break-Ins", Communica-
tions of the ACM, Volume 30, Number 2 (1987), pages 103-105. 

[Ricart and Agrawala 1981] G. Ricart and A. K. Agrawala, ·'An Optimal Algoritlun for Mutual 
Exclusion in Computer Networks", Com1nunications of the ACM, Volume 24, Number 1 (1981), pages 
9-17. 

[Richards 1990] A. E. Richards, "A File System Approach for Integrating Removable Media Devices 
and Jukeboxes"', Optical Information Systems, Volume 10, Number 5 (1990), pages 270-274. 

[Richter 1997] J. Richter, Advanced Windows, Microsoft Press (1997). 
[Riedel et al. 1998] E. Riedel, G. A. Gibson, and C. Faloutsos, "Active Storage for Large-Scale Data 

Mining and Multimedia··, Proceedings of 24th lnternntional Conference on Very Large Data Bases (1998), 
pages 62-73. 

[Ripeanu et aL 2002] M. Ripeanu, A. Immnitchi, and 1. Foster, '·Mapping the Gnutella Nenqork", 
IEEE Internet Volume 6, Number 1 (2002). 

[Rivest et al. 1978] R. L. Rivest, A. Shamir, and L. Adleman, ''On Digital Signatures and Public Key 
Cryptosystems", Communications of the ACM, Volume 21, Number 2 (1978), pages 120-126. 

[Robbins and Robbins 2003] K. Robbins and S. Robbins, Unix S1;stems Programming: Conmtunicn-
tion, Concurrenct; and Threads, Second Edition, Prentice Hall (2003). 

[Roberson 2003] J. Roberson, '·ULE: A Modern Scheduler For FreeBSD", of tlze USENIX 
BSDCon Conference (2003). 

[Rodeheffer and Schroeder 1991] T. L. Rodeheffer and M. D. Schroedet~ "Automatic .Reconfigura-
tion in Autonet", of !he ACM Symposium on Opeml"ing Systenzs Principles (1991), pages 
183-97. 

[Rojas and Hashagen 2000] R. Rojas and U. Hashagen, The First and Architec-
tures, MIT Press (2000). 

[Rosenblum and Ousterhout 1991] M. Rosenblum and J. K. Ousterhout, "The Design and Imple-
mentation of a Log-Structured File System"', Proceedings of the ACM Symposiunt Oil Opera ling Systems 
Principles (1991), pages 1-15. 

[Rosenkrantz et al. 1978] D. J. Rosenkrantz, R E. Stearns, and P.M. Lewis, "System Level Concur-
rency Control for Distributed Database Systems'', ACM Transactions on Database Systems, Volume 3, 
Number 2 (1978), pages 178-198. 



937 

[Ruemmler and Wilkes 1991] C. Ruemmler and J. Wilkes, "Disk Shuffling··, Technical report (1991). 
[Ruemmler and Wilkes 1993] C. Ruemmler a11d J. Wilkes, "Unix Disk Access Patterns··, Proceedin8s 

oft he Wiuler USENJX Confereuce (1993), pages 405-120. 
[Ruemmler and Wilkes 1994] C. Ruemmler and j. Wilkes, ''An Introduction to Disk Drive Model-

ing", Computer, Volttme 27, Nttmber 3 (1994), pages 17-29. 
!Rush by 1981] J. M. Rush by, "Design and Verification of Secure Systems'·, Proceedings of the ACM 

Sr;mposiwn on Opemti11g SrjstcuJs Principles (1981), pages 12-21. 
[Rushby and Randell1983] ). Rushby and B. Randell, '·A Distributed Secure System", Computer, 

Volume 16, Number 7 (1983), pages 55-67. 
[Russell and Gangemi 1991] D. Russell and G. T. Gangemi, Computer Security Basics, O'Reilly & 

Associates (1991). 
[Russinovich and Solomon 2005] M. E. Russinovich and D. A. Solomon, Microsofl Windows Inter-

nals, Fourth Edition, Microsoft Press (2005). 
[Saltzer and Schroeder 1975] J. H. Saltzer and M. D. Schroeder, "The Protection of Information in 

Computer Systems··, Proceedings of tile IEEE (1975), pages 1278-1308. 
[Sandberg 1987] R. Sandberg, The Sun Network File System: Design, Implementation and Experience, 

Sun Microsystems (1987). 
[Sandberg et al. 1985] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon, "Design and 

Implementation of the Sun Nelwork Filesystem'', Proceedings of the Summer USENIX Conference 
(1985), pages 119-130. 

[Sargent and Shoemaker 1995] M. Sargent and R. Shoemaker, The Personal Computer from the Inside 
Out, Tlzird Edition, Addison-Wesley (1995). 

[Sarisky 1983] L. Sarisky, "Will Removable Hard Disks Replace the Floppy?", Byte (1983), pages 
110-117. 

[Satyanarayanan 1990] M. Satyanarayanan, "Scalable, Secure and Highly Available Distributed File 
Access·', Computer, Volume 23, Number 5 (1990), pages 9-21. 

[Savage et al. 2000] S. Savage, D. Wetherall, A. R. Karlin, and T. Anderson, "Practical Network 
Support for IP Traceback'·, of ACM SIGCOMM Conference on Data Communication (2000), 
pages 295-306. 

[Schell1983] R. R. Schell, "A Security Kernel for a Multiprocessor Microcomputer", Computer (1983), 
pages 47-53. 

[Schindler and Gregory 1999] J. Schindler and G. Gregory, "Automated Disk Drive Characteriza-
tion", Technical report (1999). 

[Schlichting and Schneider 1982] R. D. Schlichting and F. B. Schneider, "Understanding and Using 
Asynchronous Message Passing Primitives", Proceedings of the Symposium on Principles of Distributed 
Computing (1982), pages 141-147. 

[Schneider 1982] F. B. Schneide1~ "Synchwnization in Distributed Programs··, ACM Transactions on 
Programming Languages and Systems, Volume 4, Number 2 (1982), pages 125-148. 

[Schneier 1996] B. Sclmeier, Applied Cryptography, Second Edition, John Wiley and Sons (1996). 
[Schrage 1967] L. E. Schrage, "The Queue M/G/l with Feedback to Lower Priority Queues", 

Management Science, Volume 13, (1967), pages 466-474. 
[Schwarz and Mattern 1994] R. Schwarz and F. Mattern, "Detecting Causal Relationships i11 Dis-

tributed Computations: In Search of the Holy Grail'', Distributed Computing, Volume 7, Number 3 
(1994), pages 149-174. 

[Seely 1989] D. Seely, ·'Password Cracking: A Game of Wits", Conummicalious of the ACM, Volume 
32, Number 6 (1989), pages 700-704. 

[Seltzer et al. 1990] M. Seltzer, P. Cl1en, and J. Ousterhout, "Disk Scheduling Revisited", 
of tliC Winter USE NIX Conference (1990), pages 313-323. 

[Seltzer et al. 1993] M. I. Seltze1~ K. Bostic, M. K. McKusick, and C. Staelin, ·'An Implementation of 
a Log-Structured File System for UNIX', USENfX Winter (1993), pages 307-326. 

[Seltzer et al. 1995] M. !. Seltzer, I<. A. Smith, H. Balakrishnan, j. Chang, S. McMains, and Y. N. 
Padmanabhan, "File System Logging Versus Clustering: A Performance Comparison", USEN1X 
Winter (1995), pages 249-264. 

[Shrivastava and Panzieri 1982] S. K. Shrivastava and F. Panzieri, "The Design of a Reliable Remote 
Procedure Call Mechanism", IEEE Transactions on Computers, Volume C-31, Number 7 (1982), pages 
692-697. 

[Siddha et al. 2007] S. Siddha, V. Pallipadi, and A. Mallick, "Process Scheduling Challenges in the 
Era of Multi-Core Processors", fntd Technology Journal, Volume 11, (2007). 

[Silberschatz et al. 2001] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database Systen1 Concepts, 
Fourth Edition, McGraw-Hill (2001). 



938 

[Silverman 1983] J. M. Silverman, "Reflections on the Verification of the Security of an Operating 
System Kernel", Proceedings of the ACM Symposium on Operating Systems Principles (1983), pages 
143-154. 

[Silvers 2000] C. Silvers, "UBC: An Efficient Unified l/0 and Memory Caching Subsystem for 
NetBSD", USENIX Annual Technical Conference-FREENJX Tracie (2000). 

[Simmons 1979] G. J. Sim.mons, "Symmetric and Asymmetric Encryption", Computing Surveys, 
Volume 11, Number 4 (1979), pages 304-330. 

[Sincerbox 1994] G. T. Sincerbox, editor, Selected Papers on Holographic Storage, Optical Engineering 
Press (1994). 

[Singh 2007] A Singh, Mac OS X Internals :A Systerns Approach, Addison-Wesley (2007). 
[Singhal1989] M. Singhal, "Deadlock Detection in Distributed Systems", Computer, Volume 22, 

Number 11 (1989), pages 37-48. 
[Sirer et al. 1999] E. G. Sirer, R. Grimm, A J. Gregory, and B. N. Bershad, "Design and Implementa-

tion of a Distributed Virtual Machine for Networked Computers", Symposium on Operating Systems 
Principles (1999), pages 202-216. 

[Smith 1982] A J. Smith, "Cache Memories", ACM Computing Surveys, Volume 14, Number 3 (1982), 
pages 473-530. 

[Smith 1985] A J. Smith, "Disk Cache-Miss Ratio Analysis and Design Considerations", ACM 
Transactions on Computer Systems, Volume 3, Number 3 (1985), pages 161-203. 

[Sobti et al. 2004] S. Sobti, N. Garg, F. Zheng, J. Lai, Y. Shao, C. Zhang, E. Ziskind, A Krishnamurthy, 
and R. Wang, "Segank: A Distributed Mobile Storage System", Proceedings of the Third USENIX 
Conference on File and Storage Technologies (2004). 

[Solomon 1998] D. A Solomon, Inside Windows NT, Second Edition, Microsoft Press (1998). 
[Solomon and Russinovich 2000] D. A Solomon and M. E. Russinovich, Inside Microsoft Windows 

2000, Third Edition, Microsoft Press (2000). 
[Spafford 1989] E. H. Spafford, "The Internet Worm: Crisis and Aftermath", Communications of the 

ACM, Volume 32, Number 6 (1989), pages 678-687. 
[Spector and Schwarz 1983] A Z. Spector and P. M. Schwarz, "Transactions: A Construct for 

Reliable Distributed Computing", ACM SIGOPS Operating Systems Review, Volume 17, Number 
2 (1983), pages 18-35. 

[Stallings 2000a] W. Stallings, Local and Metropolitan Area Networks, Prentice Hall (2000). 
[Stallings 2000b] W. Stallings, Operating Systems, Fourth Edition, Prentice Hall (2000). 
[Stallings 2003] W. Stallings, Cryptography and Network Security: Principles and Practice, Third Edition, 

Prentice Hall (2003). 
[Stankovic 1982] J. S. Stankovic, "'Softvvare Communication Mechanisms: Procedure Calls Versus 

Messages", Computer, Volume 15, Number 4 (1982). 
[Stankovic 1996] J. A Stankovic, "Strategic Directions in Real-Time and Embedded Systems", ACM 

Computing Surveys, Volume 28, Number 4 (1996), pages 751-763. 
[Staunstrup 1982] J. Staunsh·up, "Message Passing Communication Versus Procedure Call Com-

munication", Software-Practice and Experience, Volume 12, Nmnber 3 (1982), pages 223-234. 
[Steinmetz 1995] R. Steinmetz, "Analyzing the Multimedia Operating System", IEEE MultiMedia, 

Volume 2, Number 1 (1995), pages 68-84. 
[Stephenson 1983] C. J. Stephenson, "Fast Fits: A New Method for Dynamic Storage Allocation", 

Proceedings of the Nintlz Symposium on Operating Systems Principles (1983), pages 30-32. 
[Stevens 1992] R. Stevens, Advanced Programming in the UNIX Environment, Addison-Wesley (1992). 
[Stevens 1994] R. Stevens, TCP/IP Illustrated Volume I: The Protocols, Addison-Wesley (1994). 
[Stevens 1995] R. Stevens, TCP/IP Illustrated, Volume 2: The Implementation, Addison-Wesley (1995). 
[Stevens 1997] W. R. Stevens, L[NIX Network Programming- Volume I, Prentice Hall (1997). 
[Stevens 1998] W. R. Stevens, UNIX Network Programming-Volume II, Prentice Hall (1998). 
[Stevens 1999] W. R. Stevens, UNIX Network Programrning Inter process Communications- Volume 2, 

Prentice Hall (1999). 
[Stoica et al. 1996] I. Stoica, H. Abdei-Wahab, K. Jeffay, S. Baruah, J. Gehrke, and G. Plaxton, "A 

Proportional Share Resource Allocation Algorithm for Real-Time, Time-Shared Systems", IEEE 
Real-Tim.e Systems Symposium (1996). 

[Stokes 2007] J. Stokes, Inside the Machine, No Starch Press (2007). 
[Su 1982] Z. Su, "A Distributed System for Internet Name Service", Network Working Group, Request 

for Comments: 830 (1982). 
[Sugerman et al. 2001] J. Sugerman, G. Venkitachalam, and B. Lim, "Virtualizing I/0 Devices on 

VMware Workstation's Hosted Virtual Machine Monitor", 2001 USENIX Annual Technical Conference 
(2001). 



939 

[Sun 1990] Network Programming Guide. Sun Microsystems (1990). 
[Svobodova 1984] L. Svobodova, "File Servers for Network-Based Distributed Systems"", ACM 

Computing Surveys, Volume ·1 6, Number 4 (1984), pages 353-398. 
[Tall uri et al. 1995] M. Tall uri, M.D. Hill, andY. A. Khalidi, "A New Page Table for 64-bit Address 

Spaces", Proceedings of the ACM Symposium on Operating Systems Principles (1995). 
[Tamches and Miller 1999] A. Tamches and B. P. Mille!~ "Fine-Grained Dynamic Instrumentation 

of Commodity Operating System Kernels", USENJX Symposium on Operating Systems Design and 
Tmplementation (1999). 

[Tanenbaum 1990] A. S. Tanenbaum, Structured Computer Organization, Third Edition, Prentice Hall 
(1990). 

[Tanenbaum 2001] A. S. Tanenbaum, Modem Operating Systerns, Prentice HaH (2001). 
[Tanenbaum 2003] A. S. Tanenbaum, Computer Networks, Fourth Edition, Prentice Hall (2003). 
[Tanenbaum and Van Renesse 1985] A. S. Tanenbaum and R. Van Renesse, "Distributed Operating 

Systems", ACM Computing Surveys, Volume 17, Number 4 (1985), pages 419-470. 
[Tanenbaum and van Steen2002] A. Tanenbaum and M. van Steen, Distributed Systems: Principles 

and Paradigms, Prentice Hall (2002). 
[Tanenbaum and Woodhull1997] A. S. Tanenbaum and A. S. Woodhull, Operating System Design 

and Implementation, Second Edition, Prentice Hall (1997). 
[Tate 2000] S. Tate, Windows 2000 Essential Reference, New Riders (2000). 
[Tay and Ananda 1990] B. H. Tay and A. L. Ananda, "A Survey of Remote Procedure Calls", 

Operating Systems Review, Volume 24, Number 3 (1990), pages 68-79. 
[Teorey and Pinkerton 1972] T. f. Teorey and T. B. Pinkerton, "A Comparative Analysis of Disk 

Scheduling Policies", Communications of the ACM, Volume 15, Number 3 (1972), pages 177-184. 
[Tevanian et al. 1987a] A. Tevanian, Jr., R. F. Rashid, D. B. Golub, D. L. Black, E. Cooper, and M. W. 

Young, "Mach Threads and the Unix Kernel: The Battle for Control", Proceedings of the Summer 
USENIX Conference (1987). 

[Tevanian et al. 1987b] A. Tevanian, Jr., R. F. Rashid, M. W. YoLmg, D. B. Golub, M. R. Thompson, 
W. Bolosky, and R. Sanzi, "A UNIX Interface for Shared Memory and Memory Mapped Files Under 
Mach'", Teclmical report, Carnegie-Mellon University (1987). 

[Tevanian et al. 1989] A. Teva.nian, Jr., and B. Smith, "Mach: The Model for Future Unix", Byte 
(1989). 

[Thekkath et al. 1997] C. A. Thekkath, T. Maim, ailed E. K. Lee, "Frangipani: A Scalable Distributed 
File System'", Symposium on Operating Systems Principles (1997), pages 224-237. 

[Thompson 1984] I<. Thompson, "Reflections on Trusting Trust", Communications of ACM, Volume 
27, Nmnber 8 (1984), pages 761-763. 

[Thorn 1997] T. Thorn, ·'Programming Languages for Mobile Code", ACM Computing Surveys, 
Volume 29, Number 3 (1997), pages 213-239. 

[Toigo 2000] J. Toigo, "Avoiding a Data Crunch"', Scientific American, Volume 282, Number 5 (2000), 
pages 58-74. 

[Traiger et al. 1982] I. L. Traiger, J. N. Gray, C. A. Galtieri, and B. G. Lindsay, "Transactions and 
Consistency in Distributed Database Management Systems"', ACM Transactions on Database Systems, 
Volume 7, Number 3 (1982), pages 323-342. 

[Tudor 1995] P. N. Tudor. "MPEG-2 Video Compression Tutorial". IEEE Coloquium on MPEG-2-
What it Is and What it Isn't (1995). 

[Vahalia 1996] U. Vahalia, Unix Internals: The New Frontiers, Prentice Hall (1996). 
[Vee and Hsu 2000] V. Vee and W. Hsu, ""Locality-Preserving Load-Balancing Mechanisms for Syn-

chronous Simulations on Shared-Memory Multiprocessors"', Proceedings of the Fourteenth Workshop 
011 Parallel and Distributed Simulation (2000), pages 131-138. 

[Venners 1998] B. Venners, Inside the Java Virtual Machine, McGraw-Hill (1998). 
[Wah 1984] B. W. Wah, "File Placement on Distributed Computer Systems", Computer, Volume 17, 

Number 1 (1984), pages 23-32. 
[Wahbe et al. 1993a] R. Wahbe, S. Lucca, T. E. Anderson, and S. L. Graham, ''Efficient Software-

Based Fault Isolation", ACM SIGOPS Operating Systems Review, Volume 27, Number 5 (1993), pages 
203-216. 

[Wahbe et al. 1993b] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, "Efficient Software-
Based Fault lsolation'', ACM SIGOPS Operating Systems Review, Volume 27, Number 5 (1993), pages 
203-216. 

[Wallach et al. 1997] D. S. Wallach, D. Balfanz, D. Dean, and E. W. Felten, "Extensible Secu-
rity Architectures for Java", Proceedings of the ACM Symposium 011 Operating Systems Principles 
(1997). 



940 

[Wilkes et al. 1996] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan, "The HP AutoRAlD Hierar-
chical Storage System", ACM Transacl"ions on Computer Volume 14, Number 1 (1996), pages 
108-136. 

[Williams 2001] 
Wesley (2001). 

R. Williams, Computer Systems Architec/.ure-A Networ!cing Approach, Addison-

[Williams 2002] N. Williams, "An Implementation o£ SchedLLler Activations on the NetBSD Oper-
ating System", 2002 USENIX Annual Technical Conference, FREEN! X Track (2002). 

[Wilson et al. 1995] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, "Dynamic Storage 
Allocation: A Survey and Critical Review", Proceedings of the Jntcnwtional Workshop on Memory 
Mmwgcment (1995), pages 1-116. 

[Wolf 2003] W. WoLf, "A Decade of Hardware/Software Codesign", Computer, Volume 36, Number 
4 (2003), pages 38-43. 

[Wood and Kochan 1985] P. Wood and S. Kochan, UNIX System Security, Hayden (1985). 
[Woodside 1986] C. Woodside, "Controllability of Computer Performance Tradeoffs Obtained 

Using Controlled-Share Queue Schedulers", iEEE Transactions on Software Engineering, Volume SE-12, 
Number 10 (1986), pages 1041-1048. 

[Worthington et al. 1994] B. L. Worthington, G. R. Ganger, andY. N. Patt, "Scheduling Algoritlm1s 
for Modern Disk Drives", of the ACM Conference on Measurernent and Modeling 
of Computer Systems (1994), pages 241-251. 

[Worthington et al. 1995] B. L. Worthington, G. R. Ganger, Y N. Patt, and J. Wilkes, "On-Line 
Extraction of SCSI Disk Drive Parameters", Proceedings of the ACM Sigmetrics on 
Measurement and Modeling of Computer Systems (1995), pages 146-156. 

[Wulf 1969] W. A Wul£, '"Performance Monitors for Multiprogramming Systems'·, of the 
ACM Symposium on Operating Systems (1969), pages 175-181. 

[Wulf et al. 1981] W. A Wulf, R. Levin, and S. P. Harbison, An Experimental Computer 
Systern, McGraw-Hill (1981). 

[Yeong et al. 1995] W. Yeong, T. Howes, and S. Kille, "Lightweight Directory Access Protocol", 
Network Working Group, Request for Cormnents: 1777 (1995). 

[Young et al. 1987] M. Young, A. Tevanian, R. Rashid, D. Golub, and J. Eppinge1~ 'The Duality 
of Memory and Communication in the Implementation of a Multiprocessor Operating System", 
Proceedings of the ACM Symposium on Operating Principles (1987), pages 63-76. 

[Yu et al. 2000] X. Yu, B. Gum, Y. Chen, R. Y. Wang, K. Li, A Krishnamurthy and T. E. Anderson, 
'"Trading Capacity for Performance in a Disk Array", Proceedings of the 2000 Symposium on Operating 
Systems and (2000), pages 243-258. 

[Zabatta and Young 1998] F. Zabatta and K. Young, "A Thread Performance Comparison: Windows 
NT and Solaris on a Symmetric Multiprocessor", of the 2nd USENIX Windows NT 
Synzposium (1998). 

[Zapata and Asokan 2002] M. Zapata and N. Asokan, "'Securing Ad Hoc Routing Protocols", Proc. 
2002 ACM Worlcshop on Wireless Security (2002). 



Figure 1.11: From Hermesy and Patterson, Computer Architecture: A Quantitative 
Approach, Third Edition, © 2002, Morgan Kaufmam1 Publishers, Figure 5.3, p. 394. 
Reprinted with permission of the publisher. 

Figure 5.13 adapted with permission from Sun Microsystems, Inc. 

Figure 9.18: From IBM Systems Journal, Vol. 10, No.3,© 1971, International 
Business Machines Corporation. Reprinted by permission of IBM Corporation. 

Figure 11.9: From Leffler/McKusick/Karels/Quarterman, The Design and 
Implementation of the 4.3BSD UNIX Operating System,© 1989 by Addison-Wesley 
Publishing Co., Inc., Reading, Massachusetts. Figure 7.6, p. 196. Reprinted with 
permission of the publisher. 

Figure 13.4: From Pentiwn Processor User's Manual: Architecture and Programming 
Manual, Volume 3, Copyright 1993. Reprinted by permission of Intel Corporation. 

Figures 16.6, 16.7, and 16.9: From Halsall, Data Communications, Computer 
Networks, and Open Systems, Third Edition,© 1992, Addison-Wesley Publishing 
Co., Inc., Reading, Massachusetts. Figure 1.9, p. 14, Figure 1.10, p. 15, and Figure 
1.11, p. 18. Reprinted with permission of the publisher. 

Figure 19.5: From I<hanna/Sebree/Zolnowsky, "Realtime Scheduling in SunOS 
5.0," Proceedings of Winter USENIX, January 1992, San Francisco, California. 
Derived with permission of the authors. 

Figure 23.6: is due to Dan Murphy (http:/ /tenex.opost.com/kapix.html). 

Sections of Chapter 6 and Chapter 18: From Silberschatz/Korth, Database Systern 
Concepts, Third Edition, Copyright 1997, McGraw-Hill, Inc., New York, New York. 
Section 13.5, p. 451-454,14.1.1, p. 471-742,14.1.3, p. 476-479, 14.2, p. 482-485, 
15.2.1, p. 512-513, 15.4, p. 517-518, 15.4.3, p. 523-524, 18.7, p. 613-617, 18.8, p. 
617-622. Reprinted with permission of the publisher. 

941 





2PC protocol, see two-phase commit protocol 
lOBaseT Ethernet, 681 
16-bit Windows environment, 876 
32-bit Windows environment, 876-877 
50-percent rule, 327 
lOOBaseT Ethernet, 681 

aborted transactions, 259 
absolute code, 318 
absolute path names, 439 
abstract data type, 423 
access: 

anonymous, 447 
controlled, 452 
file, see file access 

access control, in Linux, 841-843 
access-control list (ACL), 452 
access latency, 540 
access lists (NFS V4), 720 
access matrix, 598-602 

and access control, 605-606 
defined, 598 
implementation of, 602-605 
and revocation of access rights, 606-607 

access rights, 594, 606-607 
accounting (operating system service), 51 
accreditation, 664 
ACL (access-control list), 452 
active array (LimlX), 816 
Active Directory (Windows XP), 892 
active list, 7 49 
acyclic graph, 441 
acyclic-graph directories, 440-443 
adaptive mutex, 254 
additional-reference-bits algorithm, 378 
additional sense code, 575 
additional sense-code qualifier, 575 
address(es): 

defined, 56] 
Internet, 686 
linear, 346 
logical, 319 
physical, 319 
virtual, 319 

address binding, 318-319 

address resolution protocol (ARP), 699 
address space: 

logical vs. physical, 319-320 
virtual, 359, 824-825 

address-space identifiers (ASIDs), 333 
administrative complexity, 709 
admission control, 785, 793-794 
admission-control algorithms, 769 
advanced encryption standard (AES), 641 
advanced technology attachment (ATA) buses, 507 
advisory file-locking mechanisms, 427 
AES (advanced encryption standard), 641 
affinity, process01~ 202-203 
aging, 193, 700 
allocation: 

buddy-system, 397 
of disk space, 471-479 

contiguous allocation, 471-473 
indexed allocation, 476-477 
linked allocation, 473-476 
and performance, 477-479 

equal, 383 
as problem, 432 
proportional, 383 
slab, 398-399 

analytic evaluation, 213 
Andrew file system (AFS), 718-723 

file operations in, 721-722 
implementation of, 722-723 
shared name space in, 720-721 

anomaly detection, 657 
anonymous access, 447 
anonymous memory, 521 
anonymous pipes, 136-137 
APCs, see asynchronous procedure calls 
API, see application program interface 
Apple Computers, 53 
Apple Macintosh computer, 918 
AppleTalk protocol, 887 
Application Domain, 83 
application interface (I/0 systems), 

565-571 
block and character devices, 567-568 
blocking and nonblocking I/0, 570-571 
clocks and timers, 569-570 
network devices, 568-569 

application layer, 692 

943 



944 

application programs, 4, 6, 67 
disinfection of, 658-660 
multistep processing of, 318, 319 
processes vs., 24 
system utilities, 66-67 
with virtual machines, 78 

application program interface (API), 56-57 
application proxy firewalls, 662 
arbitrated loop (FC-AL), 509 
architecture(s), 12-18 

clustered systems, 16-18 
multiprocessor systems, 13-16 
single-processor systems, 12-13 
of Windows XP, 851 

archived to tape, 535 
areal density, 551 
argument vector, 813 
armored viruses, 633 
ARP (address resolution protocol), 699 
arrays, 358 
ASIDs, see address-space identifiers 
assignment edge, 287 
asymmetric clustering, 17 
asymmetric encryption, 642-643 
asymmetric multiprocessing, 14, 15, 202 
asynchronous devices, 566, 567 
asynchronous (nonblocking) message passing, 122 
asynchronous procedure calls (APCs), 168, 854-855 
asynchronous thread cancellation, 166 
asynchronous writes, 485 
ATA buses, 507 
Atlas operating system, 911-912 
atomicity, 733-736 
atomic transactions, 232, 257-267 

and checkpoints, 261-262 
concurrent, 262-267 

and locking protocols, 264-265 
and serializability, 262-264 
and timestamp-based protocols, 265-267 

system model for, 257-260 
write-ahead logging of, 260-261 

attacks, 622-623. See also denial-of-service attacks 
man-in-the-middle, 623 
replay, 622 
zero-day, 657 

attributes, 879 
authentication: 

breaching of, 622 
and communication protocols, 693, 694 
and encryption, 643-645 
in Linux, 841 
two-factor, 653 
in Windows, 878 

automatic job sequencing, 907 
automatic variables, 628 

automatic work-set trimming (Windows XPlt 4-6 
automount feature, 709 
autoprobes, 811 
auxiliary rights (Hydra), 607-608 

back door, 567 
background processes, 196 
backing store, 322 
backups, 489 
bad blocks, 519-520 
bandwidth: 

disk, 511 
effective, 539-540 
sustained, 539 

banker's algorithm, 298 
base file record, 879 
base register, 316, 317 
basic file systems, 462 
batch files, 427 
batch interface, 50 
Bayes' theorem, 658 
Belady's anomaly, 374 
Beowulf clusters, 17 
best-fit strategy, 327 
biased protocol, 738 
binary semaphore, 234 
binding, 318 
biometrics, 653-654 
bit(s): 

defined, 6 
mode, 21 
nl.odify (dirty), 371 
reference, 378 
valid-invalid, 335-336 

bit-interleaved parity organization, 526 
bit-level striping, 524 
bit vector (bit maplt 479 
black-box transformations, 641 
blade servers, 16 
block(s), 58, 326, 430 

bad, 519-520 
boot, 90, 517-518 
boot control, 464 
defined, 835 
direct, 477 
file-control, 463 
index, 476 
index to, 432-433 
indirect, 477 
logical, 508 
volume control, 464 

block ciphers, 641 
block devices, 566-568, 835 



block groups, 831 
blocking, indefinite, 193 
blocking I/0, 570-571 
blocking (synchronous) message passing, 122 
block-interleaved distributed parity, 527 
block-interleaved parity organization, 526-527 
block-level striping, 524 
block number, relative, 432 
boot block, 90, 464, 517-518 
boot control block, 464 
boot disk (system diskt 90, 518 
booting, 89-90, 874 
boot partition, 518 
boot sector, 518 
bootstrap programs (bootstrap loaders), 8, 89-90, 

517-518, 634 
boot viruses, 631 
bottlenecks, 84 
bottom half interrupt service routines, 819 
bounded-buffer problem, 240 
bounded capacity (of queue), 122-123 
Bourne shell command interpreter, 53 
breach of availability, 622 
breach of confidentiality, 622 
breach of integrity, 622 
broadcasting, 699, 790 
BSD UNIX, 39-40 
B1 tree (NTFS), 879-880 
buddy heap (Linux), 821 
buddy system (Linuxlt 821 
buddy-system allocation, 397 
buffer, 835 

circular, 488 
defined, 572 

buffer cache, 484 
buffering, 122-123, 572-574, 793 
buffer-overflow attacks, 627-630 
bugs, 84 
bully algorithm, 748-749 
bus, 507 

defined, 556 
expansion, 556 
PCI, 556 

bus architecture, 12 
bus-mastering I/0 boards, 563 
busy waiting, 235, 559 
byte, 6 
bytecode, 82 
Byzantine generals problem, 750 

cache, 483-484 
buffer, 484 
defined, 574 

in Linux, 822 
as memory buffer, 317 
nonvolatile RAM, 524 
page, 484 
and performance improvement, 483-484 
and remote file access: 

and consistency, 713-714 
location of cache, 711-712 
update policy, 712, 713 

slabs in, 398 
unified buffer, 484-485 
in Windows XP, 870-872 

cache coherency, 29 
cache-consistency problem, 711 
cachefs file system, 712 
cache management 27 
caching, 27-29, 574 

client-side, 890 
double, 484 
remote service vs., 713-714 
write-back, 712 

callbacks, 721 
Cambridge CAP system, 609-610 
cancellation, thread, 166-167 
cancellation points, 167 
capability(-ies), 603, 609 

945 

capability-based protection systems, 607-610 
Cambridge CAP system, 609-610 
Hydra, 607-609 

capability lists, 603 
carrier sense with multiple access (CSMA), 690 
cascading termination, 116 
CAV (constant angular velocity), 508 
CD, see collision detection 
central processing unit, see under CPU 
certificate authorities, 646 
certification, 664 
challenging (passwords), 652 
change journal (Windows XP), 885 
character devices (Linux), 836-837 
character-stream devices, 566-568 
checkpoints, 261-262 
checksums, 531, 700 
child processes, 859 
children, 110 
CIFS (common internet file system), 449 
CineBlitz, 792-794 
cipher-block chaining, 641 
circuit switching, 689 
circular buffer, 488 
circular SCAN (C-SCAN) scheduling 

algorithm, 514 
circular-wait condition (deadlocks), 292-294 
claim edge, 296-297 
classes (Java), 613 



946 

class loader, 82 
CLI (DTrace command-line interface), 50 
C library, 62 
client(s): 

defined, 706 
diskless, 708 
in SSL, 648 

client interface, 706 
client-server model, 447-448 
client-side caching (CSC), 890 
client systems, 35-36 
clocks, 569-570, 729 
clock algorithm, see second-chance 

page-replacement algorithm 
clones, 497 
C-LOOK scheduling algorithm, 515 
closed-source operating systems, 37 
close() operation, 424 
clusters, 17, 517, 696-697, 878 
clustered page tables, 340 
clustered systems, 16-18 
clustering, 696-697 

asymmetric, 17 
in Windows XP, 405 

cluster remapping, 884 
cluster server, 719 
CLV (constant linear velocity), 508 
coarse-grained multithreading, 205 
code: 

absolute, 318 
reentrant, 336 

code books, 653 
collisions (of file names), 470 
collision detection (CD), 690 
COM, see component object model 
combined scheme index block, 477 
command interprete1~ 52-53 
commit protocol, 733 
committed transactions, 259 
common internet file system (CIFS), 449 
communication(s): 

direct, 120 
i11 distributed operating systems, 675 
indirect, 121 
interprocess, see interprocess communication 
systems programs for, 66-67 
unreliable, 751 

communications (operating system service), 51 
communication links, 120 
communication processors, 681 
communications sessions, 688 
communication system calls, 65-66 
compaction, 327-328, 472-473 
compiler-based enforcement, 610-613 
compile time, 318 

complexity, administrative, 709 
component object model (COM), 889 
component units, 706 
compression: 

in multimedia systems, 782-784 
in Windows XP, 884-885 

compression ratio, 782 
compression units, 884 
computation migration, 678-679 
computation speedup, 674 
compute clusters, 697 
computer environments, 34-37 

client-server computing, 35-36 
peer-to-peer computing, 36 
traditional, 34-35 
Web-based computing, 37 

computer programs, see application programs 
computer system(s): 

architecture of: 
clustered systems, 16-18 
multiprocessor systems, 13-16 
single-processor systems, 12-13 

distributed systems, 30-31 
file-system management in, 25-26 
I/0 structure in, 11-13 
memory management in, 24-25 
operating system viewed by, 5 
operation of, 7-9 
process management in, 23-24 
protection in, 29-30 
secure, 622 
security in, 29-30 
special-purpose systems, 32-34 

handheld systems, 33-34 
multimedia systems, 33 
real-tim.e embedded systems, 32-33 

storage in, 9-11 
storage management in, 25-29 

caching, 27-29 
I/0 systems, 29 
mass-storage management, 26-27 

threats to, 633-638 
computing, safe, 660 
concurrency control, 736-740 

with locking protocols, 736-739 
with timestamping, 739-740 

concurrency-control algorithms, 262 
conditional-wait construct, 251 
confidentiality, breach of, 622 
confinement problem, 602 
conflicting operations, 263 
conflict phase (of dispatch latency), 767 
conflict resolution module (Linux), 811-812 
connectionless messages, 688 
connectionless (UDP) sockets, 129 



connection-oriented (TCP) sockets, 129 
conservative timestamp-ordering scheme, 740 
consistency, 713-714 
consistency checker, 487 
consistency checking, 486-487 
consistency semantics, 450 
consolidation, system, 78 
constant angular velocity (CAY), 508 
constant linear velocity (CLV), 508 
consumers (DTrace), 86 
container objects (Windows XP), 665 
containers (Solaris 10), 79 
contention, 689-690 
contention scope, 199-200 
context (of process), 110 
context switches, 110, 582-583 
contiguous disk space allocation, 471-473 
contiguous memory allocation, 325 
continuous-media data, 780 
control cards, 59, 907 
control-card interpreter, 908 
controlled access, 452 
controller(s), 507, 556-557 

defined, 556 
direct-memory-access, 563 
disk, 507 
host, 507 

control programs, 5 
control register, 558 
convenience, 3 
convoy effect, 189 
cooperating processes, 116 
cooperative scheduling, 186 
copylefting, 38 
copy-on-write technique, 367-369 
copy protection, 38 
copy semantics, 573 
core dump, 84 
core memory, 911 
cores, 15-16 
counting, 481 
counting-based page replacement 

algorithm, 380 
counting semaphore, 234 
covert channels, 626 
CP/M, 917 
CPU (central processing unit), 4, 315-317 
CPU-bound processes, 109 
CPU burst, 184 
CPU clock, 316 
CPU-I/O burst cycle, 184-185 
CPU schedule1~ see short-term scheduler 
CPU scheduling, 20 

a bout, 183-184 
algorithms fm~ 187-199 

criteria, 187-188 
evaluation of, 213-217 

947 

first-come, first-served scheduling of, 188-189 
implementation of, 217 
multilevel feedback-queue scheduling of, 

198-199 
multilevel queue scheduling of, 196-197 
priority scheduling of, 192-193 
round-robin scheduling of, 194-196 
shortest-job-first scheduling of, 189-192 

dispatcher, role of, 187 
and I/O-CPU burst cycle, 184-185 
models for, 213-217 

deterministic modeling, 213-215 
and implementation, 217 
queueing-network analysis, 215 
simulations, 216 

in multimedia systems, 786-787 
multiprocessor scheduling, 200-206 

approaches to, 202 
and load balancing, 204 
and processor affinity, 202-203 

preemptive scheduling, 185-186 
in real-time systems, 768-774 
earliest-deadline-first schedufu1g, 771 
proportional share scheduling, 772 
Pthread scheduling, 772-774 
rate-monotonic scheduling, 769-771 
short-term schedule1~ role of, 185 

crackers, 622 
crashes, 84 
crash dumps, 84 
creation: 

of files, 423 
process, 110-115 

critical sections, 227 
critical-section problem, 227-229 

Peterson's solution to, 229-230 
and semaphores, 234-239 

deadlocks, 238 
implementation, 235-238 
priority inversion, 238-239 
starvation, 238 
usage, 234-235 

and synchronization hardware, 231-234 
cross-link trust, 891 
cryptography, 638-639 

and encryption, 639-646 
implementation of, 646-647 
SSL example of, 647-649 

esc (client-side caching), 890 
C-SCAN scheduling algorithm, 514 
CSMA, see carrier sense with multiple access 
CTSS operating system, 914-915 
current directory, 439 



948 

current-file-position pointer, 423 
cycles: 

in CineBlitz, 793 
CPU-I/O burst, 184-185 

cycle stealing, 564 
cylinder groups, 831 

d (page offset), 329 
daemon process, 596 
daisy chain, 556 
data: 

multimedia, 33 
recovery of, 486-490 
tluead-specific, 170 

database systems, 257 
data capability, 609 
data-encryption standard (DES), 641 
data files, 422 
data fork, 430 
datagrams, 688 
data-in register, 558 
data-link layer, 691 
data loss, mean time to, 523 
data migration, 677-678 
data-out register, 558 
data section (of process), 102 
data striping, 524 
DCOM, 889 
DDOS attacks, 622 
deadline I/0 scheduler, 836 
deadlock(s), 238, 740-747 

avoidance of, 290, 294-300 
with banker's algorithm, 298 
with resource-allocation-graph algorithm, 296-297 
with safe-state algorithm, 295-296 

defined, 283 
detection of, 301-304, 742-747 

algorithm usage, 303-304 
several instances of a resource type, 301-303 
single instance of each resource type, 301 

methods for handling, 290-291 
with mutex locks, 285-286 
necessary conditions £01~ 285-287 
prevention/avoidance of, 740-742 
prevention of, 290-294 

and circular-wait condition, 292-294 
and hold-and-wait condition, 291-292 
and mutual-exclusion condition, 291 
and no-preemption condition, 292 

recovery from, 304-306 
by process termination, 304-305 
by resource preemption, 305-306 

system model for, 283-285 
system resource-allocation graphs for describing, 

287-289 
deadlock-detection coordinator, 743 
debuggers, 59, 84 
debugging, 65, 84-88 

defined, 84 
failure analysis, 84 
and performance tuning, 84-85 
using DTrace for, 85-88 

dedicated devices, 566, 567 
default signal handlers, 167 
deferred procedure calls (DPCs), 854-855 
deferred thread cancellation, 167 
degree of multiprogramming, 108 
delay, 785 
delay-write policy, 712 
delegation (NFS V4), 717 
deletion, file, 423 
demand paging, 361-367 

basic mechanism, 362-364 
defined, 361 
with inverted page tables, 402 
and I/0 interlock, 404-405 
and page size, 400-401 
and performance, 365-367 
and prepagil<g, 399-400 
and program structure, 402-403 
pure, 364 
and restartil1g instructions, 364-365 
and TLB reach, 401-402 

demand-zero memory, 824 
demilitarized zone (DMZ), 661 
denial-of-service (DOS) attacks, 622, 638 
density, areal, 551 
dentry objects, 469, 829 
DES (data-encryption standard), 641 
design of operating systems: 

distributed operating systems, 697-699 
goals, 68 
Lilmx, 805-808 
mechanisms and policies, 68-69 
Windows XP, 849-851 

desktop, 53 
deterministic modeling, 213-215 
development kernels (Linux), 803 
device controllers, 7, 579. See also I/0 system(s) 
device directory, 434. See also directories 
device drivers, 12, 462, 556, 579, 908 
device-management system calls, 64 
device queues, 107-108 
device reservation, 574-575 
DFS, see distributed file system 
digital certificates, 645-646 



Digital Rights Management (DRM), 38 
digital signatures, 644 
digital-signature algorithm, 644 
dining-philosophers problem, 242-244, 

248-249 
direct access (files), 431-432 
direct blocks, 477 
direct communication, 120 
direct I/0, 568 
direct memory access (DMA), 12, 563-564 
direct-memory-access (DMA) controlle1~ 563 
directories, 434-444 

acyclic-graph, 440-443 
general graph, 443-444 
implementation of, 470-471 
recovery of, 486-490 
single-level, 436-437 
tree-sh·uctured, 438-440 
two-level, 437-438 

directory objects (Windows XP), 858 
direct virtual memory access (DVMA), 564 
dirty bits (modify bits), 371 
disinfection, program, 658-660 
disk(s), 505-507. See also mass-storage structure 

allocation of space on, 471-479 
contiguous allocation, 471-473 
indexed allocation, 476-477 
linked allocation, 473-476 
and performance, 477-479 

bad blocks, 519-520 
boot, 90, 518 
boot block, 517-518 
efficient use of, 482-483 
electronic, 11 
floppy, 506-507 
formatting, 516-517 
free-space management for, 479-481 
host-attached, 509 
low-level formatted, 508 
magnetic, 10 
magneto-optic, 534 
mini-, 434 
network-attached, 509-510 
performance improvement for, 483-486 
phase-change, 535 
raw, 381, 433, 467 
read-only, 535 
read-write, 535 
removable, 534-535 
scheduling algorithms, 510-516 

C-SCAN, 514 
FCFS, 511-512 
LOOK, 515 
SCAN, 513-514 

selecting, 515-516 
SSTF, 512-513 

solid-state, 28 
storage-area network, 510 
structure of, 508 
system, 518 
WORM, 535 

disk ann, 506 
disk controller, 507 
diskless clients, 708 
disk mirroring, 883-884 
disk scheduling: 

CineBlitz, 793 
in multimedia systems, 787-789 

disk striping, 882 
dispatched process, 107 
dispatcher, 187 
dispatcher objects, 255 

Windows XP, 854 
in Windows XP, 857 

dispatch latency, 187, 767 
distributed coordination: 

and atomicity, 733-736 
and concurrency control, 736-740 
and deadlocks, 740-747 

detection, 742-747 
prevention/ avoidance, 740-7 42 

election algorithms for, 747-750 
and event ordering, 727-730 
and mutual exclusion, 730-732 
reaching algorithncs for, 750-752 

949 

distributed denial-of-service (DDOS) attacks, 622 
distributed file systems (DFSs), 447, 

705-706 
AFS example of, 718-723 

file operations, 721-722 
implementation, 722-723 
shared name space, 720-721 

defined, 705 
naming in, 707-710 
remote file access in, 710-715 

basic scheme for, 711 
and cache location, 711-712 

distributed file systems (DFSs) (contd.) 

and cache-update policy, 712, 713 
and caching vs. remote service, 714-715 
and consistency, 713-714 

replication of files in, 716-718 
stateful vs. stateless service in, 715-716 
stateless, 449-450 
Windows XP, 890 

distributed information systems (distributed 
naming services), 448 

distributed lock manager (DLM), 17 



950 

distributed naming services, see distributed 
information systems 

distributed operating systems, 677-679 
distributed-processing mechanisms, 888-889 
distributed systems, 30-31 

benefits of, 673-675 
defined, 673 
distributed operating systems as, 677-679 
network operating systems as, 675-677 

distributions (GNU/Linux), 38 
DLLs, see dynamic link libraries 
DLM (distributed lock manager), 17 
DMA, see direct memory access 
DMA controller, see direct-memory-access 

controller 
DMCA (U.S. Digital Millennium Copyright 

Act), 38 
DMZ (demilitarized zone), 661 
domains, 449, 891-892 
domain-name system (DNS), 448, 685 
domain switching, 595 
domain trees, 891 
DOS attacks, see denial-of-service attacks 
double buffering, 573, 793-794 
double caching, 484 
double indirect blocks, 477 
downsizing, 675 
down time, 473 
DPCs (deferred procedure calls), 854-855 
DRAM (dynamic random-access memory), 9 
driver end (STREAM), 580-581 
driver registration module (Linux), 810-811 
DRM (Digital Rights Management), 38 
DTrace, 85-88 
DTrace command-line interface (CLI), 50 
dual-booted systems, 467 
dual-core design, 16 
dumpster diving, 624 
duplex set, 884 
DVMA (direct virtual memory access), 564 
dynamic linking, 828 
dynamic link libraries (DLLs), 321-322, 851 
dynamic loading, 320-321 
dynamic priority, 787 
dynamic protection, 594 
dynamic random-access memory (DRAM), 9 
dynamic routing, 687 
dynamic storage-allocation problem, 326, 472 

earliest-deadline-first (EDF) scheduling, 771, 
787-788 

ease of use, 4 
ease of use features, 848 

ECBs (enabling control blocks), 87 
ECC, see error-correcting code 
EDF scheduling, see earliest-deadline-first 

scheduling 
effective access time, 365 
effective bandwidth, 539-540 
effective memory-access lime, 334 
effective UID, 30 
efficiency, 3, 482-483 
EIDE buses, 507 
election, 690 
election algorithms, 747-750 
electronic disk, 11 
elevator algorithm, see SCAN scheduling 

algorithm 
embedded systems, 760 
emulation, 78-79 
emulators, 69 
enabling control blocks (ECBs), 87 
encapsulation (Java), 615 
encoded files, 782 
encrypted passwords, 651-652 
encrypted viruses, 632 
encryption, 639-646 

asymmetric, 642-643 
authentication, 643-645 
key distribution, 645-646 
symmetric, 641-642 
Windows XP, 884-885 

enhanced integrated drive electronics (EIDE) 
buses, 507 

entry section, 227 
entry set, 253 
environmental subsystems, 850-851 
environment vector, 813 
EPROM (erasable programmable read-only 

memory), 90 
equal allocation, 383 
erasable programmable read-only mem01y 

(EPROM), 90 
error(s), 575 

hard, 520 
soft, 517 

error conditions, 358 
error-correcting code (ECC), 515-516, 525-526 
error detection, 51 
escalate privileges, 30 
escape (operating systems), 567 
events, 255 
event latency, 765-766 
event objects (Windows XP), 854 
event ordering, 727-730 
exceptions (with interrupts), 561 
exclusive lock mode, 736 
exclusive locks, 426 



exec() system call, 165-166 
executable files, 102, 422 
execution of user programs, 826-827 
execution time, 318 
exit section, 227 
expansion bus, 556 
expired array (Linux), 816 
expired tasks (Linux), 816 
exponential average, 191 
export list, 493-494 
ext2fs, see second extended file system 
extended file system, 463, 830 
extent (contiguous space), 473 
extents, 879 
external data representation (XDR), 132 
external fragmentation, 327-328, 472 

failure: 
detection of, 694-695 
mean time to, 523 
recovery from, 696 
during writing of block, 533-534 

failure analysis, 84 
failure handling (2PC protocol), 734-736 
failure modes (directories), 449-450 
false negatives, 657 
false positives, 657 
fast I/0 mechanism, 871 
FAT (file-allocation table), 475-476 
fault tolerance, 14, 696-697, 881-884 
fault-tolerant systems, 696-697 
FC (fiber channel), 509 
FC-AL (arbitrated loop), 509 
FCB (file-control block), 463 
FC buses, 507 
FCFS scheduling algorithm, see first-come, 

first-served scheduling algorithm 
feature migration, 903-904 
fibers, 896-897 
fiber channel (FC), 509 
fiber channel (FC) buses, 507 
fids (NFS V4), 720 
FIFOs, 139 
FIFO page replacement algorithm, 373-375 
50-percent rule, 327 
file(s), 25-26, 421-422. See also directories 

accessing information on, 430-433 
direct access, 431-432 
sequential access, 431 

attributes of, 422-423 
batch, 427 
defined, 422 
executable, 102 

internal structure of, 429-430 
locking open, 425-427 
operations on, L123-427 
protecting, 451-456 

via file access, 451-456 
via passwords/permissions, 455-456 

recovery of, 486-490 
storage structure for, 434-435 

file access, 425, 451-456 
file-allocation table (FAT), 475-476 
file-control block (FCB), 463 
file descriptor, 466 
file extensions, 427-428 
file handle, 466 
FileLock (Java), 425 
file management, 67 
file-management system calls, 64 
file mapping, 393 
file migration, 707 
file modification, 67 
file objects, 469, 829 
file-organization module, 463 
file pointers, 425 
file reference, 879 
file replication (distributed file systems), 

716-718 
file session, 450 
file sharing, 446-451 

and consistency semantics, 450-451 
with multiple users, 446-447 
with networks, 448-450 

and client-server model, 447-448 

951 

and distributed information systems, 448-449 
and failure modes, 449-450 

file systems, 421, 461-463 
basic, 462 
creation of, 436 
design problems with, 462 
distributed, see distributed file systems 
extended, 462 
imple1nentation of, 464-470 

mounting, 467-468 
partitions, 467-468 
virh1al systems, 468-470 

levels of, 462 
Linux, 828-834 
log-based transaction-oriented, 487-488 
logical, 462 
mounting of, 444-446 
network, 490-496 
remote, 447 
WAFL, 496-498 

File System Hierarchy Standard 
document, 804 

file-system management, 25-26 



952 

file-system manipulation (operating system 
service), 50 

file transfe1~ 676-677 
file transfer protocol (FTP), 447, 676-677 
file viruses, 631 
filter drivers, 869-870 
fine-grained multithreading, 205 
firewalls, 35, 661-662 
firewall chains, 840 
firewall management, 840 
FireWire, 508 
firmware, 8, 90 
first-come, first-served (FCFS) scheduling 

algorithm, 188-189, 511-512 
first-fit strategy, 326 
fixed-partition scheme, 324 
fixed routing, 687 
floppy disks, 506-507 
flow control, 581 
flushing, 333 
folders, 53 
footprint, 761 
foreground processes, 196 
forests, 891 
fork() and exec() process model (Linux), 

812-814 
fork() system call, 165-166 
formatting, 516-517 
forwarding, 519 
forward-mapped page tables, 338 
fragments, packet, 840 
fragmentation, 327-328 

external, 327-328, 472 
internal, 327, 430 

frame(s), 329, 688, 780 
stack, 628-629 
victim, 371 

frame allocation, 382-385 
equal allocation, 383 
global vs. local, 384-385 
proportional allocation, 383-384 

frame-allocation algorithm, 372 
frame pointers, 628-629 
free-behind technique, 485-486 
free objects, 398, 822 
Free Software Foundation (FSF), 38 
free-space list, 479 
free-space management (disks), 479-482 

bit vectm~ 479-480 
counting, 481 
grouping, 480-481 
linked list, 480 
and space maps, 481-482 

front-end processors, 584 

FSF (Free Software Foundation), 38 
FTP, see file transfer protocol 
full backup, 489 
fully distributed deadlock-detection algorithm, 

745-747 
FUSE file-system, 463 

Gantt chart, 189 
garbage collection, 82, 444 
gateways, 688 
GB (gigabyte), 6 
gee (GNU C compiler), 804 
GDT (global descriptor table), 346 
general graph directories, 443-444 
gigabyte (GB), 6 
global descriptor table (GDT), 346 
global ordering, 729 
global replacement, 384 
GNU C compiler (gee), 804 
GNU General Public License (GPL), 38 
GNU/Linux, 38-39 
GNU Portable Threads, 158 
GPL (GNU General Public License), 38 
graceful degradation, 14 
graphs, acyclic, 441 
graphical user interfaces (GUis), 52-54 
grappling hook, 634 
Green threads, 158 
group identifiers, 30 
grouping, 480-481 
group policies, 892 
group rights (Linux), 842 
guest, 76 
guest operating systems, 81 
GUis, see graphical user interfaces 

HAL, see hardware-abstraction layer 
handheld computers, 5 
handheld systems, 33-34 
handles, 857, 860 
handshaking, 559, 578 
hands-on computer systems, see interactive 

computer systems 
happened-before relation, 728-729 
hard affinity, 202 
hard-coding techniques, 120-121 
hard errors, 520 
hard links, 443 
hard real-time systems, 760, 786 
hardware, 4 



l/0 systems, 556-565 
direct memory access, 563-SM 
interrupts, 560-563 
polling, 559 

for storing page tables, 332-334 
synchronization, 231-234 
for virtualization, 80 

hardware-abstraction layer (HAL), 
851, 852 

hardware objects, 593 
hashed page tables, 340 
hash functions, 644 
hash tables, 470-471 
hash value (message digest), 644 
heaps, 102, 899 
heavyweight processes, 153 
hierarchical paging, 337-340 
hierarchical storage management (HSM), 539 
high availability, 16 
high-availability clusters, 697 
high performance, 850 
high-performance computing, 17 
hijacking, session, 623 
hit ratio, 334, 401 
hive, 873-874 
hold-and-wait condition (deadlocks), 291-292 
holes, 326-327 
holographic storage, 536 
homogeneity, 202 
host, 76 
host adapter, 557 
host-attached storage, 509 
host controller, 507 
host-id, 685 
hot spare disks, 529 
hot-standby mode, 17 
HSM (hierarchical storage 

management), 539 
human security, 624 
Hydra, 607-609 
hyperspace, 861 

IBM OS/360, 915-917 
identifiers: 

file, 422 
group, 30 
use1~ 30 

idle threads, 209 
IDSs, see intrusion-detection systems 
IKE protocol, 647 
ILM (information life-cycle management), 539 
immutable shared files, 451 

implementation: 
of CPU scheduling algorithms, 217 
of operating systems, 69-70 
of real-time operating systems, 764-768 

and minimizing latency, 765-768 
and preemptive kernels, 765 
and priority-based scheduling, 764-765 

of transparent naming techniques, 709-710 
of virtual machines, 80 

incremental backup, 489 
indefinite blocking (starvation), 193, 238 
independence, location, 707 
independent disks, 523 
independent processes, 116 
index, 432 
index block, 476 
indexed disk space allocation, 476-477 
index root, 879-880 
indirect blocks, 477 
indirect communication, 121 
information life-cycle management 

(ILM), 539 
information-maintenance system calls, 65 
inode, 463 
inode objects, 469, 829 
input/output, see under I/0 
input queue, 318 
InServ storage array, 530 
instance handles, 895 
instruction-execution cycle, 9-10, 315-316 
instruction-execution unit, 875 
instruction register, 9 
integrity, breach of, 622 
intellimirrm~ 892 
Intel Pentium processor, 345-348 
interactive (hands-on) computer 

systems, 19 
interface(s): 

batch, 50 
client, 706 
defined,565 
intermachine, 706 
Windows XP networking, 886 

interlock, I/0, 404-405 
intermachine interface, 706 
internal fragmentation, 327, 430 
international use, 851 
Internet address, 686 
Internet Protocol (IP), 646-647 
interprocess communication (IPC), 116-123 

in client-server systems, 128-140 
remote procedure calls, 131-134 
sockets, 128-130 

in Linux, 803, 837-838 

953 



954 

interprocess communication (IPC) (contd.) 
Mach example of, 124-126 
in message-passing systems, 119-120 
POSIX shared-memory example of, 123-124 
in shared-memory systems, 117-119 
Windows XP example of, 127-128 

interrupt(s), 8-9, 560-563 
defined, 560 
in Linux, 818-819 

interrupt chaining, 561 
interrupt-controller hardware, 561 
interrupt-dispatch table (Windows XP), 856 
interrupt-driven data transfe1~ 396 
interrupt-driven operating systems, 20-23 
interrupt-handler routine, 560 
interrupt latency, 766-767 
interrupt priority levels, 561 
interrupt-request line, 560 
interrupt vector, 8-9, 324, 561 
intruders, 622 
intrusion detection, 656-658 
intrusion-detection systems (IDSs), 656-658 
intrusion-prevention systems (IPSs), 656 
inverted page tables, 340-342, 402 
I/0 (input/output), 4, 11-13 

memory-mapped, 395-396 
overlapped, 909-911 
programmed, 396 

I/O-bound processes, 109 
I/0 burst, 184 
I/0 channel, 584 
I/0 interlock, 404-405 
1/0 manager, 869 
I/0 operations (operating system service), 

50-51 
I/0 ports, 396 
I/0 request packet (IRP), 869 
I/0 subsystem(s), 29 

kernels in, 571-578 
procedures supervised by, 577-578 

I/0 system(s), 555-556 
application interface, 565-571 

block and character devices, 567-568 
blocking and nonblocking I/0, 570-571 
clocks and timers, 569-570 
network devices, 568-569 

hardware, 556-565 
direct memory access, 563-564 
interrupts, 560-563 
polling, 559 

kernels, 571-578 
buffering, 572-574 
caching, 574 
data structures, 576-577 
error handling, 575 

I/0 scheduling, 571-572 
and l/0 subsystems, 577-578 
protection, 575-576 
spooling and device reservation, 574-575 

Linux, 834-837 
block devices, 835-836 
character devices, 836-837 

STREAMS mechanism, 580-582 
and system performance, 582-585 
transformation of requests to hardware 

operations, 578-580 
IP, see Internet Protocol 
IPC, see interprocess communication 
IPSec, 647 
IPSs (intrusion-prevention systems), 656 
IRP (I/0 request packet), 869 
ISCSI, 510 
ISO protocol stack, 692-693 
ISO Reference Model, 647 

Java: 
file locking in, 425--426 
language-based protection in, 613-615 
monitors in, 253 

Java threads, 162, 164-165 
Java Virtual Machine (JVM), 82, 84 
JIT compiler, 82, 84 
jitter, 785 
jobs, processes vs., 102-103 
job objects, 866-867 
job pool, 20 
job queues, 105 
job scheduler, 108 
job scheduling, 20 
journaling, 832-833 
journaling file systems, see log-based 

transaction-oriented file systems 
just-in-time (JIT) compiler, 82, 84 
JVM (Java Virtual Machine), 82, 84 

KB (kilobyte), 6 
Kerberos, 878 
kernel(s), 6, 571-578 

buffering, 572-574 
caching, 574 
data structures, 576-577 
error handling, 575 
I/0 scheduling, 571-572 
and I/0 subsystems, 577-578 
Linux, 807, 808 
multimedia systems, 784-786 



nonpreemptive, 228-229 
preemptive, 228-229, 765 
protection, 575-576 
real-time, 762-764 
spooling and device reservation, 574-575 
task synchronization (in Linux), 817-819 
Windows XP, 852-856, 893 

kernel extensions, 76 
kernel memory allocation, 396-399 
kernel mode, 21, 807 
kernel modules, 809-812 

conflict resolution, 811-812 
driver registration, 810-811 
management of, 809-810 

kernel threads, 157 
Kernighan's Law, 85 
Kerr effect, 534 
keys, 369, 604, 607 

private, 642 
public, 642 

key distribution, 645-646 
key ring, 645 
keystreams, 642 
keystroke logger, 633 
kilobyte (KB), 6 

language-based protection systems, 610-615 
compiler-based enforcement, 610-613 
Java, 613-615 

LANs, see local-area networks 
latency, in real-time systems, 765-768 
layers (of network protocols), 646 
layered approach (operating system structure), 

71-73 
lazy swapper, 361 
LCNs (logical cluster numbers), 879 
LDAP, see lightweight directory-access protocol 
LDT (local descriptor table), 346 
least-frequently used (LFU) page-replacement 

algorithm, 380 
least privilege, principle of, 592-593 
least-recently-used (LRU) page-replacement 

algorithm, 376-378 
levels, 783 
LFU page-replacement algorithm, 380 
lgroups, 385 
libraries: 

Linux system, 807, 808 
shared, 322, 360 

licenses, software, 272 
lightweight directory-access protocol (LDAP), 

449, 892 
limit register, 316, 317 

linear addresses, 346 
linear lists (files), 470 
line discipline, 836 
link(s): 

communication, 120 
defined, 441 
hard, 443 
resolving, 441 
symbolic, 858 

linked disk space allocation, 473-476 
linked lists, 480 
linked scheme index block, 477 
linking, dynamic vs. static, 321-322, 828 
Linux, 38-40, 801-843 

adding system call to Linux kernel 
(project), 95-97 

design principles for, 805-808 
file systems, 828-834 

ext2fs, 830-832 
journaling, 832-833 
process, 833 
virtual, 829-830 

history of, 801-806 
distributions, 804-805 
first kernel, 802-804 
licensing, 805-806 
system description, 804 

interprocess communication, 837-838 
I/0 system, 834-837 

block devices, 835-836 
character devices, 836-837 

kernel modules, 809-812 
memory management, 820-828 

955 

execution and loading of user programs, 826-827 
physical memory, 820-823 
virtual memory, 823-826 

network structure, 838-840 
on Pentium systems, 348-349 
process management, 812-815 

fork() and exec() process model, 812-814 
processes and threads, 814-815 

process representation in, 106 
real-time, 775 
scheduling, 815-820 

kernel synchronization, 817-819 
process, 815-817 
symmetric multiprocessing, 819-820 

scheduling example, 211-213 
security model, 840-843 

access control, 841-843 
authentication, 841 

swap-space rnanagernent in, 522 
synchronization in, 256-257 
threads example, 173-174 

Linux distributions, 802, 804-805 



956 

Linux kernel, 802-804 
LimlX system, components of, 802, 807-808 
lists, 358 
Little's formula, 215 
LiveCD, 38-39 
LiveDVD, 39 
live streaming, 781 
load balancers, 37 
load balancing, 203-204 
loade1~ 908 
loading: 

dynamic, 320-321 
in Linux, 826-828 

load sharing, 200, 674 
load time, 318 
local-area networks (LANs), 16, 31, 679-681 
local descriptor table (LDT), 346 
locality model, 387 
locality of reference, 364 
local name space, 719 
local playback, 780 
local procedure calls (LPCs), 850, 868-869 
local replacement, 384 
local replacement algorithm (priority replacement 

algorithm), 386 
location, file, 422 
location independence, 707 
location-independent file identifiers, 710 
location transparency, 707 
lock(s), 231, 604 

acquire, 61-62 
advisory, 427 
exclusive, 426 
in Java API, 425-426 
mandatory, 427 
mutex, 235 
reader-writer, 241-242 
release, 61-62 
shared, 426 

locking protocols, 264-265, 736-739 
lock-key scheme, 604 
lock() operation, 425 
log-based transaction-oriented file systems, 

487-488 
log files, 84 
log-file service, 881 
logging, write-ahead, 260-261 
logging area, 881 
logical address, 319 
logical address space, 319-320 
logical blocks, 508 
logical clock, 729 
logical cluster numbers (LCNs), 879 
logical file system, 463 

logical formatting, 517 
logical memory, 20, 359. See also virtual memory 
logical records, 431 
logical units, 509 
login, network, 449 
long-term scheduler (job scheduler), 108 
LOOK scheduling algorithm, 515 
loopback, 130 
lossless compression, 782-783 
lossy compression, 782-783 
low-level formatted disks, 508 
low-level formatting (disks), 516 
LPCs, see local procedure calls 
LRU-approximation page replacement 

algorithm, 378-380 

MAC (message-authentication code), 644 
MAC (medium access control) address, 699 
Mach operating system, 73-74, 124-126, 919-920 
Macintosh operating system, 429-430, 918-919 
macro viruses, 631 
magic number (files), 429 
magnetic disk(s), 10, 505-507. See also disk(s) 
magnetic tapes, 507, 535-536 
magneto-optic disks, 534 
mailboxes, 121 
mailbox sets, 126 
mailslots, 888 
mainframes, 5 
main memory, 9-10 

and address binding, 318-319 
contiguous allocation of, 324-325 

and fragmentation, 327-328 
mapping, 325 
methods, 325-327 
protection, 325 

and dynamic linking, 321-322 
and dynamic loading, 320-321 
and hardware, 316-318 
Intel Pentium example: 

with Linux, 348-349 
paging, 346-348 
segmentation, 345-348 

and logical vs. physical address space, 
319-320 

paging for nwnagement of, 328-341 
basic method, 329-332 
hardware, 332-334 
hashed page tables, 340 
hierarchical paging, 337-340 
Intel Pentium example, 346-348 
inverted page tables, 340-342 



protection, 335-336 
and shared pages, 336-337 

segmentation for management of, 342-345 
basic method, 3Ll2-345 
hardware, 344-345 
Intel Pentium example, 345-348 
and swapping, 322-324 

majority protocol, 737-738 
MANs (metropolitan-area networks), 31 
mandatory file-locking mechanisms, 427 
man-in-the-middle attack, 623 
many-to-many multithreading model, 158-159 
many-to-one multithreading model, 157-158 
marshalling, 889 
Mars Pathfinder, 239 
maskable interrupts, 561 
masquerading, 622 
mass-storage management, 26-27 
mass-storage structure, 505-508 

disk attachment: 
host-attached, 509 
network-attached, 509-510 
storage-area network, 510 

disk management: 
bad blocks, 519-520 
boot block, 517-518 
formatting of disks, 516-517 

disk scheduling algorithms, 510-516 
C-SCAN, 514 
FCFS, 511-512 
LOOK, 515 
SCAN, 513-514 
selecting, 515-516 
SSTF, 512-513 

disk structure, 508 
extensions, 530 
magnetic disks, 505-507 
magnetic tapes, 507 
RAID structure, 522-532 

performance improvement, 524 
problems with, 531-532 
RAID levels, 524-529 
reliability improvement, 522-524 

stable-storage implementation, 533-534 
swap-space management, 520-522 
tertiary-storage, 534-543 

future tedmology for, 536-537 
magnetic tapes, 535-536 
and operating system support, 536-538 
performance issues with, 539-543 
removable disks, 534-535 

master book record (MBR), 518 
master file directory (MFD), 437 
master file table, 464 

master key, 607 
master secret (SSL), 648 
matchmakers, 133 
matrix product, 178 
MB (megabyte), 6 
MBR (master book record), 518 
MCP operating system, 920-921 
mean time to data loss, 523 
mean time to failure, 523 
mean time to repair, 523 
mechanisms, 68-69 
media players, 790 
medium access control (MAC) address, 699 
medium-term schedule1~ 109 
megabyte (MB), 6 
memory: 

anonymous, 521 
core, 911 
direct memory access, 12 
direct virtual memory access, 564 
logical, 20, 359 
ncain, see main memory 
over-allocation of, 369 
physical, 20 
secondary, 364 
semiconductor, 10 
shared, 116, 360 
unified virtual memory, 484 
virtual, see virtual memory 

memory-address register, 319 
memory allocation, 325-327 
memory management, 24-25 

in Linux, 820-828 
execution and loading of user programs, 

826-828 
physical memory, 820-823 
virtual memory, 823-826 

in Windows XP, 898-899 
heaps, 899 
memory-mapping files, 898 
thread-local storage, 899 
virtual memory, 898 

957 

memory-management unit (MMU), 319-320, 
862-863 

memory-mapped files, 862 
memory-mapped I/0, 395-396, 557 
memory mapping, 325, 390-396 

basic mechanism, 391-393 
defined, 390 
I/0, memory-mapped, 395-396 
in Linux, 827-828 
in Win32 API, 393-395 

memory-mapping files, 898 
memory protection, 325 



958 

memory-resident pages, 362 
memory stall, 204 
memory-style error-correcting organization, 

525-526 
memory transactions, 258 
MEMS (micro-electronic mechanical systems), 536 
messages: 

connectionless, 688 
in distributed operating systencs, 675 

message-authentication code (MAC), 644 
message digest (hash value), 644 
message modification, 622 
message passing, 116, 148-152 
message-passing model, 65, 119-120 
message queue, 914 
message switching, 689 
metadata, 449, 880 
metafiles, 790 
metaslabs, 482 
methods (Java), 613 
metropolitan-area networks (MANs), 31 
MFD (master file directory), 437 
MFU page-replacement algorithm, 380 
micro-electronic mechanical systems (MEMS), 536 
microkernels, 73-75 
Microsoft Interface Definition Language, 889 
Microsoft Windows, 324, 918-919. See also under 

Windows 
migration: 

computation, 678-679 
data, 677-678 
file, 707 
process, 679 

minicomputers, 5 
minidisks, 434 
miniport driver, 870 
mirroring, 523 
mirror set, 883 
MMU, see memory-management unit 
mobility, user, 492 
mode bit, 21 
modify bits (dirty bits), 371 
modules, 74-76, 580-581 
monitors, 244-252 

dining-philosophers solution using, 248-249 
implementation of, using semaphores, 250 
resumption of processes within, 250-252 
usage of, 245-247 

monitor calls, see system calls 
monoculture, 633 
monotonic, 729 
Morris, Robert, 634-636 
most-frequently used (MFU) page-replacement 

algorithm, 380 

mounting, 467-468 
mount points, 444, 885 
mount protocol, 492-493 
mount table, 467, 578 
MPEG files, 783-784 
MS-DOS, 875-876, 917 
multicasting, 790 
multicore processors, 204-205 
multicore programming, 156-157 
MULTICS operating system, 596-598, 903, 

904, 915 
multilevel feedback-queue scheduling 

algorithm, 198-199 
multilevel index, 477 
multilevel queue scheduling algorithm, 

196-197 
multimedia, 779-780 

operating system issues with, 782 
as term, 779-780 

multimedia data, 33, 780-781 
multimedia systems, 33, 779 

characteristics of, 781-782 
CineBlitz example, 792-794 
compression in, 782-784 
CPU scheduling in, 786-787 
disk scheduling in, 787-789 
kernels in, 784-786 
network management in, 789-792 

multinational use, 851 
multipartite viruses, 633 
multiple-coordinator approach 

(concurrency control), 737 
multiple-partition method, 326 
multiple universal-naming-convention 

provider (MUP), 890 
multiprocessing: 

asymmetric, 14, 15, 202 
memory access model for, 15 
symmetric, 14-15, 202, 819-820 

multiprocessor scheduling, 
200-206 

approaches to, 202 
examples of: 

Linux, 211-213 
Solaris, 206-208 
Windows XP, 208-211 

and load balancing, 203-204 
and nTulticore processors, 204-205 
and processor affinity, 202-203 
and virtualization, 205-206 

multiprocessor systems (parallel systems, 
tightly coupled systems), 13-16 

multiprogramming, 18-20, 108 
multitasking, see time sharing 



multithreading: 
benefits of, 155 
cancellation, thread, 166-167 
coarse-grained, 205 
and exec() system call, 165-166 
fine-grained, 205 
and fork() system call, 165-166 
n10dels of, 157-159 
pools, thread, 168-170 
and scheduler activations, 170-171 
and signal handling, 167-168 
and thread-specific data, 170 

MUP (multiple universal-naming-convention 
provider), 890 

mutex: 
adaptive, 254 
in Windows XP, 854 

mutex locks, 235, 285-286 
mutual exclusion, 285-286, 730-732 

centralized approach to, 730 
fully-distributed approach to, 730-732 
token-passing approach to, 730 

mutual-exclusion condition 
(deadlocks), 291 

names: 
resolution of, 685, 892 
in Windows XP, 857-858 

named pipes, 888 
naming, 120-122, 448-449 

defined, 707 
domain name system, 448 
of files, 422 
lightweight directory-access protocol, 449 
and network communication, 685-686 

national-language-support (NLS) API, 851 
NDIS (network device interface 

specification), 886 
near-line storage, 536 
negotiation, 785 
NetBEUI (NetBIOSextended user interface), 887 
NetBIOS (network basic input/output system), 

886, 888 
NetBIOSextended user interface (NetBEUI), 887 
.NET Framework, 83 
network(s). See also local-area networks (LANs); 

wide-area networks (WANs) 
communication protocols in, 690-694 
communication structure of, 684-690 

and connection strategies, 688-689 
and contention, 689-690 
and naming/name resolution, 685-686 

and packet strategies, 688 
and routing strategies, 687 

defined, 31 
design issues with, 697-699 
example, 699-701 
in Linux, 838-840 
metropolitan-area (MANs), 31 
robustness of, 694-697 
security in, 624 
small-area, 31 
threats to, 633-638 
topology of, 683-684 
types of, 679-680 
in Windows XP, 886-892 

Active Directory, 892 

959 

distributed-processing mechanisms, 888-889 
domains, 891-892 
interfaces, 886 
name resolution, 892 
protocols, 886 
redirectors and servers, 889-891 

wireless, 35 
network-attached storage, 509-510 
network basic input/output system, 

see NetBIOS 
network computers, 34 
network devices, 568-569, 835 
network device interface specification 

(NDIS), 886 
network file systems (NFS), 490-496 

mount protocol, 492-493 
NFS protocol, 493-494 
path-name translation, 494-495 
remote operations, 495 

network information service (NIS), 448 
network layer, 691 
network-layer protocol, 646 
network login, 449 
network management, in multimedia 

systems, 789-792 
network operating systems, 31, 675-677 
network virtual memory, 711 
new state, 103 
NFS, see network file systems 
NFS protocol, 493-494 
NFS V4, 717 
nice value (Linux), 211, 816 
NIS (network information service), 448 
NLS (national-language-support) API, 851 
nonblocking I/0, 570-571 
nonblocking (asynchronous) message passing, 122 
noncontainer objects (Windows XP), 665 
nonmaskable interrupt, 561 
nonpreemptive kernels, 228-229 



960 

nonpreemptive scheduling, 186 
non-real-time clients, 792 
nonrepudialion, 645 
nonresident attributes, 879 
nonserial schedule, 263 
nonsignaled state, 255 
non-uniform memory access (NUMA), 15, 385 
nonvolatile RAM (NVRAM), 11 
nonvolatile RAM (NVRAM) cache, 524 
nonvolatile storage, 10-11, 260 
no-preemption condition (deadlocks), 292 
Novell NetWare protocols, 887 
NTFS, 878-880 
NUMA, see non-uniform memory access 
NVRAM (nonvolatile RAM), 11 
NVRAM (nonvolatile RAM) cache, 524 

objects: 
access lists for, 602-603 
in cache, 398 
free, 398 
hardware vs. software, 593 
in Linux, 822 
used, 398 
in Windows XP, 857-860 

object files, 422 
object linking and embedding (OLE), 889 
object table, 859 
object types, 469, 859 
off-line compaction of space, 473 
OLE, see object linking and embedding 
OLPC (One Laptop per Child), 919 
on-demand streaming, 781 
One Laptop per Child (OLPC), 919 
one-time pad, 653 
one-time passwords, 653 
one-to-one multithreading model, 158 
one-way trust, 891 
on-line compaction of space, 473 
open-file table, 424 
open() operation, 424 
open-source operating systems, 7, 37-40 
Open Virtual Machine Format, 78 
operating system(s): 

dosed-source, 37 
defined, 3, 5-6 
design goals for, 68 
early, 904-911 

dedicated computer systems, 905-906 
overlapped I/0, 909-911 
shared computer systems, 906-909 

feature migration with, 903-904 
features of, 3 

functioning of, 3-6 
guest, 81 
i1nplementation of, 69-70 
interrupt-driven, 20-23 
mechanisms for, 68-69 
network, 31 
open-source, 37-40 
operations of: 

modes, 21-23 
and time1~ 23 

policies for, 68-69 
real-time, 32-33 
as resource allocatm~ 5 
security in, 624 
services provided by, 49-52 
structure of, 18-20, 70-75 

layered approach, 71-73 
microkernels, 73-75 
modules, 74-76 
simple structure, 70-71 

study of, 7 
system's view of, 5 
user interface with, 4-5, 52-55 

optimal page replacement algorithm, 374-376 
ordering, event, see event ordering 
orphan detection and elimination, 716 
OS/2 operating system, 847 
out-of-band key delivery, 645 
over allocation (of memory), 369 
overlapped I/0, 909-911 
overprovisioning, 784 
owner rights (Linux), 842 

p (page number), 329 
packets, 688, 840 
packet switching, 689 
packing, 430 
pages: 

defined, 329 
shared, 336-337 

page allocator (Linux), 820 
page-buffering algorithms, 380-381 
page cache, 484, 823 
page directory, 862 
page-directory entries (PDEs), 862 
page .fault, 363 
page-fault-frequency (PFF), 390-391 
page-fault rate, 367 
page frames, 862 
page-frame database, 865 
page number (p), 329 
page offset (d), 329 
pageout (Solaris), 406 



pageout policy (Linux), 825 
pager (term), 361 
page replacement, 369-381. See also frame allocation 

and application performance, 38] 
basic mechanism, 370-373 
counting-based page replacement, 380 
FIFO page replacement, 373-375 
global vs. local, 384 
LRU-approximation page replacement, 378-380 
LRU page replacement, 376-378 
optimal page replacement, 374-376 
and page-buffering algorithms, 380-381 

page replacement algorithm, 372 
page size, 400-401 
page slots, 522 
page table(s), 329-332, 364, 862 

clustered, 340 
forward-mapped, 338 
hardware for storing, 332-334 
hashed, 340 
inverted, 340-342, 402 

page-table base register (PTBR), 333 
page-table length register (PTLR), 336 
page-table self-map, 861 
paging, 328-341 

basic method of, 329-332 
hardware support for, 332-334 
hashed page tables, 340 
hierarchical, 337-340 
Intel Pentium example, 346-348 
inverted, 340-342 
in Linux, 825-826 
and memory protection, 335-336 
priority, 407 
and shared pages, 336-337 
swapping vs., 520 

paging files (Windows XP), 861 
paging mechanism (LimlX), 825 
paired passwords, 652 
PAM (pluggable authentication modules), 841 
parallelization, 17 
parallel systems, see multiprocessor systems 
para-virtualization, 79 
parent process, 110, 859 
partially connected networks, 683-684 
partition(s), 325-326, 433, 434, 467-468 

boot, 518 
raw, 521 
root, 467 

partition boot sector, 464 
partitioning, disk, 517 
passwords, 649-653 

encrypted, 651-652 
one-time, 652-653 
vulnerabilities of, 650-651 

path name, 438 
path names: 

absolute, 439 
relative, 439-440 

path-name translation, 494-495 
PCBs, see process control blocks 
PCI bus, 556 
PCS (process-contention scopet 199-200 
PC systems, 3 
PDAs, see personal digital assistants 
PDEs (page-directory entries), 862 
peer-to-peer computing, 36 
penetration test, 654 
performance: 

and allocation of disk space, 477-479 
and I/0 system, 582-585 
with tertiary-storage, 539-543 

cost, 541-543 
reliability, 541 
speed, 539-541 

of Windows XP, 850 
performance improvement, 483-486, 524 
performance tuning, 84-85 
periods, 784 
periodic processes, 784 
permissions, 455 
per-process open-file table, 465 
persistence of vision, 780 
personal computer (PC) systems, 3 
personal digital assistants (PDAs), 11, 33 
personal firewalls, 662 
personal identification number (PIN), 653 
Peterson's solution, 229-230 
PFF, see page-fault-frequency 
phase-change disks, 535 
phishing, 624 
physical address, 319 
physical address space, 319-320 
physical formatting, 516 
physical layer, 691 
physical memory, 20, 357-358, 820-823 
physical security, 623 
PIC (position-independent code), 828 
pid (process identifier), 110-111 
PIN (personal identification number), 653 
pinning, 871 
PIO, see programmed 1/0 
pipes, 134-140 

anonymous, 136-137 
named, 137-139 
ordinary, 134-137 
use of, 140 

pipe mechanism, 838 
platter (disks), 505-506 

961 

plug-and-play and (PnP) managers, 872-873 



962 

pluggable authentication modules (PAM), 841 
PnP managers, sec plug-and-play and managers 
point-to-point tunneling protocol (PPTP), 887 
policy(ies), 68-69 

group, 892 
security, 654 

policy algorithm (Linux), 825 
polling, 559 
polymorphic viruses, 632 
pools: 

of free pages, 369 
of storage, 532 
thread, 168-170 

pop-up browser windows, 626 
ports, 396, 556 
portability, 851 
portals, 34 
port driver, 870 
port scanning, 637 
position-independent code (PIC), 828 
positioning time (disks), 506 
POSIX, 847, 850 

interprocess communication example, 123-124 
message passing in, 148-152 
in Windows XP, 877 

possession (of capability), 603 
power-of-2 allocator, 397 
PPTP (point-to-point tunneling protocol), 887 
P 1 Q redundancy scheme, 527 
preemption points, 765 
preemptive kernels, 228-229, 765 
preemptive scheduling, 185-186 
premaster secret (SSL), 648 
prepaging, 399-400 
presentation layer, 692 
primary thread, 894 
principle of least privilege, 592-593 
priority-based scheduling, 764-765 
priority-inheritance protocol, 239, 254-255, 768 
priority inversion, 238-239, 254, 768 
priority number, 251 
priority paging, 407 
priority replacement algorithm, 386 
priority scheduling algorithm, 192-193 
private keys, 642 
privileged instructions, 22 
privileged mode, see kernel mode 
probes (DTrace), 86 
process(es), 20 

background, 196 
communication between, see interprocess 

communication 
components of, 102-103 
context of, 110, 813-814 
and context switches, 110 

cooperating, 116 
defined, 101 
environment of, 813 
faulty, 751-752 
foreground, 196 
heavyweight, 153 
independent, 116 
I/O-bound vs. CPU-bound, 109 
job vs., 102 
in Linux, 814-815 
multithreaded, see multithreading 
operations on, 110-115 

creation, 110-115 
termination, 115-116 

programs vs., 24, 102-103 
scheduling of, 105-110 
single-threaded, 153 
state of, 103 
as term, 101-102 
threads performed by, 104-105 
in Windows XP, 894 

process-contention scope (PCS), 199-200 
process control blocks (PCBs, task control 

blocks), 103-104 
process-control system calls, 60-64 
process file systems (Linux), 833-834 
process identifier (pid), 110-111 
process identity (Linux), 812-813 
process management, 23-24 

in Linux, 812-815 
fork() and exec() process model, 812-814 
processes and threads, 814-815 

process manager (Windows XP), 866-867 
process migration, 79 
process mix, 109 
process objects (Windows XP), 854 
processor affinity, 202-203 
processor sets, 202 
processor sharing, 195 
process representation (Linux), 106 
process scheduler, 105 
process scheduling: 

in Linux, 815-817 
thread scheduling vs., 183 

process synchronization: 
about, 225-227 
and atomic transactions, 257-267 

checkpoints, 261-262 
concurrent transactions, 262-267 
log-based recovery, 260-261 
system model, 257-260 

bounded-buffer problem, 240 
critical-section problem, 227-229 

hardware solution to, 231-234 
Peterson's solution to, 229-230 



dining-philosophers problem, 242-24L1, 248-249 
examples of: 

Java, 253 
Linux, 256-257 
Pthreads, 257 
Solaris, 253-255 
Windows XP, 255-256 

monitors for, 244-252 
dining-philosophers solution, 248-249 
resumption of processes within, 250-252 
semaphores, implementation using, 250 
usage, 245-247 

readers-writers problem, 241-242 
semaphores for, 234-239 

process termination, deadlock recovery by, 304-305 
production kernels (Linux), 803 
profiles, 783 
profiling (DTrace), 85-86 
programs, processes vs., 102-103. 

See also application programs 
program counters, 24, 102 
program execution (operating system service), 50 
program files, 422 
program loading and execution, 67 
programmable interval timer, 569 
programmed I/0 (PIO), 396, 563 
programming-language support, 67 
program threats, 625-633 

logic bombs, 627 
stack- or buffer overflow attacks, 627-630 
trap doors, 626 
Trojan horses, 625-626 
viruses, 630-633 

progressive download, 780 
projects, 208 
proportional allocation, 383 
proportional share scheduling, 772 
protection, 66, 591 

access control for, 451-456 
access mah·ix as model of, 598-602 

control, access, 605-606 
implementation, 602-605 

capability-based systems, 607-610 
Cambridge CAP system, 609-610 
Hydra, 607-609 

in computer systen1s, 29-30 
domain of, 593-598 

MULTICS example, 596-598 
structure, 594-595 
UNIX example, 595-596 

error handling, 575 
file, 422 
of file systems, 451-456 
goals of, 591-592 
l/0, 575-576 

language-based systems, 610-615 
compiler-based enforcement, 610-613 
Java, 613-615 

as operating system service, 51-52 
in paged environment, 335-336 
permissions, 455 
and principle of least privilege, 592-593 
retrofitted, 456 
and revocation of access rights, 606-607 
security vs., 621 
static vs. dynamic, 594 
from viruses, 658-660 

protection domain, 594 
protection mask (Linux), 842 

963 

protection subsystems (Windows XP), 851 
protocols, Windows XP networking, 886-887 
providers (DTrace), 86 
PTBR (page-table base register), 333 
Pthreads, 160-161 

scheduling, 200-201 
synchronization in, 257 

Pthread scheduling, 772-774 
PTLR (page-table length register), 336 
public domain, 805 
public keys, 642 
pull migration, 203-204 
pure code, 336 
pure demand paging, 364 
push migration, 203-204, 708 

quantum, 853 
queue(s), 105-108 

capacity of, 122-123 
input, 318 
message, 914 
ready, 105-107, 323 

queueing diagram, 107 
queueing-network analysis, 215 

race condition, 227 
RAID (redundant arrays of inexpensive disks), 

522-532 
levels of, 524-529 
performance improvement, 524 
problems with, 531-532 
reliability improvement, 522-524 
structuring, 523 

RAID array, 523 
RAID levels, 524-529 
RAM (random-access memory), 9 
random access, 781 



964 

random-access devices, 566, 567, 910 
random-access memory (RAM), 9 
random-access time (disks), 506 
rate-monotonic scheduling algorithm, 769-771 
raw disk, 381, 433, 467 
raw I/0, 568 
raw partitions, 521 
RBAC (role-based access control), 605 
RC 4000 operating system, 913-914 
reaching algorithms, 750-752 
read-ahead technique, 486 
read-end (of pipe), 134 
readers, 241 
reader-writer locks, 241-242 
readers-writers problem, 241-242 
reading files, 423 
read-modify-write cycle, 527 
read only devices, 566, 567 
read-only disks, 535 
read-only memory (ROM), 90, 518 
read queue, 836 
read-write devices, 566, 567 
read-write disks, 535 
ready queue, 105-107, 323 
ready state, 103 
ready thread state (Windows XP), 853 
real-addressing mode, 763 
real-time class, 209 
real-time clients, 792 
real-time operating systems, 32-33 
real-time range (LimlX schedulers), 816 
real-time streaming, 780, 790-792 
real-time systems, 32-33, 759-760 

address translation in, 763-764 
characteristics of, 760-762 
CPU scheduling in, 768-774 
defined, 759 
features not needed in, 762-763 
footprint of, 7 61 
hard, 760, 786 
implementation of, 764-768 

and minimizing latency, 765-768 
and preemptive kernels, 765 
and priority-based scheduling, 764-765 

soft, 760, 786 
VxWorks example, 774-776 

real-time transport protocol (RTP), 789 
real-time value (Linux), 211 
reconfiguration, 694-695 
records: 

logical, 431 
master boot, 518 

recovery: 
backup and restore, 489-490 

and consistency checking, 486-487 
from deadlock, 304-306 

by process termination, 304-305 
by resource preemption, 305-306 

from failure, 696 
of files and directories, 486-490 
Windows XP, 880-881 

redirectors, 889 
redundancy, 523. See also RAID 
redundant arrays of inexpensive disks, see RAID 
Reed-Solomon codes, 527 
reentrant code (pure code), 336 
reference bits, 378 
Reference Model, ISO, 647 
reference string, 372 
register(s), 58 

base, 316, 317 
limit, 316, 317 
memory-address, 319 
page-table base, 333 
page-table length, 336 
for page tables, 332-333 
relocation, 320 

registry, 67, 873-874 
relative block number, 432 
relative path names, 439-440 
relative speed, 228 
release() operation, 425 
reliability, 688 

of distributed operating systems, 674-675 
in multimedia systems, 785 
of Windows XP, 849 

relocation register, 320 
remainder section, 227 
remote file access (distributed file systems), 710-715 

basic scheme for, 711 
and cache location, 711-712 
and cache-update policy, 712, 713 
and caching vs. remote service, 714-715 
and consistency, 713-714 

remote file systems, 447 
remote file transfer, 676-677 
remote login, 676 
remote operations, 495 
remote procedure calls (RPCs), 888-889 
remote-service mechanism, 710 
removable storage media, 537-538 

application interface with, 537-538 
disks, 534-535 
and file naming, 538 
and hierarchical storage management, 539 
magnetic disks, 505-507 
magnetic tapes, 507, 535-536 

rendezvous, 122 



repair, mean time to, 523 
replay attacks, 622 
replication, 497, 498, 529 
repositioning (in files), 423 
request edge, 287 
request manager, 835 
resident attributes, 879 
resident monitor, 907 
resolution: 

name, 685 
and page size, 401 

resolving links, 441 
resource allocation (operating system service), 51 
resource-allocation graph algorithm, 296-297 
resource allocato1~ operating system as, 5 
resource fork, 429-430 
resource manager, 786 
resource preemption, deadlock recovery by, 

305-306 
resource-request algorithm, 299 
resource reservations, 786 
resource sharing, 155, 674 
resource utilization, 4 
response time, 19, 187-188 
restart area, 881 
restore: 

data, 489-490 
state, 110 

retrofitted protection mechanisms, 456 
reverse engineering, 37 
revocation of access rights, 606-607 
rich text format (RTF), 660 
rights amplification (Hydra), 608 
ring algorithm, 749-750 
ring structure, 732 
risk assessment, 654-656 
roaming profiles, 890 
robotic jukebox, 539 
robustness, 694-697 
roles, 605 
role-based access control (RBAC), 605 
rolled-back transactions, 259 
roll out, roll in, 323 
ROM, see read-only memory 
root partitions, 467 
root uid (Linuxt 842 
rotational latency (diskst 506, 511 
round-robin (RR) scheduling algorithm, 194-196 
routing: 

and network communication, 687-688 
in partially cmmected networks, 683-684 

routing protocols, 688 
routing table, 687 
RPCs (remote procedure calls), 888-889 

RR scheduling algorithm, see round-robin 
scheduling algorithm 

RTF (rich text format), 660 
R-timestamp, 266 
RTP (real-time transport protocol), 789 
running state, 103 
running system, 90 
running thread state (Windows XP), 853 
runqueue data structure, 212, 816 
RW (read-write) format, 26 

safe computing, 660 
safe sequence, 295 
safety algorithm, 298-299 
safety-critical systems, 760 
sandbox (Tripwire file system), 658 
SANs, see storage-area networks 
SATA buses, 507 
save, state, 110 
scalability, 155, 697-698 

965 

SCAN (elevator) scheduling algorithm, 513-514, 
788-798 

schedules, 262 
scheduler(s), 108-109 

long-term, 108 
medium-term, 109 
short-term, 108 

scheduler activation, 170-171 
scheduling: 

cooperative, 186 
CPU, see CPU scheduling 
disk scheduling algorithms, 510-516 

C-SCAN, 514 
FCFS, 511-512 
LOOK, 515 
SCAN, 513-514 
selecting, 515-516 
SSTF, 512-513 

earliest-deadline-first, 771 
I/0, 571-572 
job, 20 
in Linux, 815-820 

kernel synchronization, 817-819 
process, 815-817 
symmetric multiprocessing, 819-820 

multiprocessor, see multiprocessor scheduling 
nonpreemptive, 186 
preemptive, 185-186 
priority-based, 764-765 
proportional share, 772 
Pthread, 772-774 
rate-monotonic, 769-771 



966 

scheduling: (contd.) 
thread, 199-201 
in Windows XP, 853-854, 895-897 

scheduling rules, 895 
SCOPE operating system, 921 
script kiddies, 630 
SCS (system-contention scope), 199 
SCSI (small computer-systems interface), 12 
SCSI buses, 507 
SCSI initiator, 509 
SCSI targets, 509 
search path, 438 
secondary memory, 364 
secondary storage, 10, 461. See also disk(s) 
second-chance page-replacement algorithm (clock 

algorithm), 378-379 
second extended file system (ext2fs), 830-832 
section objects, 127 
sectors, disk, 506 
sector slipping, 519 
sector sparing, 519, 884 
secure single sign-on, 449 
secure systems, 622 
security. See also file access; program threats; 

protection; user authentication 
classifications of, 662-664 
in computer systems, 29-30 
and firewalling, 661-662 
implementation of, 654-661 

and accounting, 660-661 
and auditing, 660-661 
and intrusion detection, 656-658 
and logging, 660-661 
and security policy, 654 
and virus protection, 658-660 
and vulnerability assessment, 654-656 

levels of, 623-624 
in Linux, 840-843 

access control, 841-843 
authentication, 841 

as operating system service, 51 
as problem, 621-625 
protection vs., 621 
and system/network threats, 633-638 

denial of service, 638 
port scanning, 637 
worms, 634-637 

use of cryptography for, 638-649 
and encryption, 639-646 
implementation, 646-647 
SSL example, 647-649 

via user authentication, 649-654 
biometrics, 653-654 
passwords, 649-653 

Windows XP, 881 
in Windows XP, 664-665, 849 

security access tokens (Windows XP), 664 
security context (Windows XP), 664-665 
secu.rity descriptor (Windows XP), 665 
security domains, 661 
security policy, 654 
security reference monitor (SRM), 872 
security-through-obscurity approach, 656 
seeds, 652-653 
seek, file, 423 
seek time (disks), 506, 511 
segmentation, 342-345 

basic method, 342-345 
defined, 343 
hardware, 344-345 
Intel Pentium example, 345-348 

segment base, 344 
segment limit, 344 
segment tables, 344 
semantics: 

consistency, 450-451 
copy 573 
immutable-shared-files, 451 
session, 451 

semaphore(s), 234-239 
binary, 234 
counting, 234 
and deadlocks, 238 
defined, 234 
implementation, 235-238 
implementation of monitors using, 250 
and priority inversion, 238-239 
and starvation, 238 
usage of, 234-235 
Windows XP, 854 

semiconductor memory, 10 
sense key, 575 
sequential access (files), 431 
sequential-access devices, 910 
sequential devices, 566, 567 
serial ATA (SATA) buses, 507 
serializability, 262-264 
serial schedule, 263 
server(s), 5 
cluste1~ 719 
defined, 706 
in SSL, 648 

server-message-block (SMB), 886 
server subject (Windows XP), 664 
services, operating system, 49-52 
session hijacking, 623 
session layer, 691 
session object, 861 



session semantics, 451 
session space, 861 
sharable devices, 566, 567 
shares, 208 
shared files, immutable, 451 
shared libraries, 322, 360 
shared lock, 426 
shared lock mode, 736 
shared memory, 116, 360 
shared-memory model, 66, 117-119 
shared name space, 719 
sharing: 

load, 200, 674 
and paging, 336-337 
resource, 674 
time, 19 

shells, 52 
shell script, 429 
shortest-job-first (SJF) scheduling algorithm, 

189-192 
shortest-remaining-time-first scheduling, 192 
shortest-seek-time (SSTF) scheduling algorithm, 

512-513 
short-term scheduler (CPU scheduler), 108, 185 
shoulder surfing, 650 
signals: 

Linux, 837 
UNIX, 167-168 

signaled state, 255 
signal handlers, 167-168 
signatures, 656-657 
signature-based detection, 656-657 
simple operating system structure, 

70-71 
simple subject (Windows XP), 664 
simulation(s), 78-79, 216 
single indirect blocks, 477 
single-level directories, 436-437 
single-processor systems, 12-13, 183 
single-threaded processes, 153 
SJF scheduling algorithm, see shortest-job-first 

scheduling algorithm 
slab allocation, 398-399, 821-822 
Sleeping-Barber Problem, 274-280 
slices, 434 
small-area networks, 31 
small computer-systems interface, see under SCSI 
SMB, see server-message-block 
SMP, sec symmetric multiprocessing 
snapshots, 488 
sniffing, 650 
social engineering, 624 
sockets, 128-130 
socket interface, 568 

SOC strategy, see system-on-chip strategy 
soft affinity, 202 
soft error, 517 
soft real-time systems, 760, 786 
software capability, 609 
software interrupts (traps), 561 
software objects, 593 
Solaris, 40 

and processor affinity, 202 
scheduling example, 206-208 
swap-space management in, 521-522 
synchronization in, 253-255 
virtual memory in, 406-407 

solid-state disks (SSDs), 28, 536 
sorted queue, 836 
source-code viruses, 631 
source files, 422 
space maps, 481-482 
sparseness, 340, 360 
special-purpose computer systems, 32-34 

handheld systems, 33-34 
multimedia systems, 33 
real-time embedded systems, 32-33 

speed: 
of operations (I/0 devices), 566, 567 
relative, 228 

spinlock, 236 
spoofed client identification, 447-448 
spoofing, 662 
spool, 574 
spooling, 574-575, 910-911 
spyware, 626 
SRM, see security reference monitor 
SSDs, see solid-state disks 
SSL 3.0, 647-649 
SSTF scheduling algorithm, 

967 

sec shortest-seek-time scheduling algorithm 
stable storage, 260, 533-534 
stack, 58, 102 
stack algorithms, 377 
stack frame, 628-629 
stack inspection, 614 
stack-overflow attacks, 627-630 
stage (magnetic tape), 535 
stalling, 316 
standby thread state (Windows XP), 853 
starvation, see indefinite blocking 
state (of process), 103 
stateful file service, 715 
stateless DFS, 450 
stateless file service, 715 
stateless protocols, 791 
state restore, 110 
state save, 110 



968 

static linking, 321-322, 828 
static priority, 787 
static protection, 594 
status information, 67 
status register, 558 
stealth viruses, 632 
storage, 9-11. See also mass-storage structure 

definitions and notations, 6 
holographic, 536 
nonvolatile, 10-11, 260 
secondary, 10, 461 
stable, 260 
tertiary, 27 
utility, 530 
volatile, 10, 259 

storage-area networks (SANs), 18, 509, 510 
storage array, 523 
storage management, 25-29 

caching, 27-29 
I/0 systems, 29 
mass-storage management, 26-27 

stored program computers, 904-905 
stream ciphers, 641-642 
stream head, 580 
streaming, 780-781 
stream modules, 580-581 
STREAMS mechanism, 580-582 
string, reference, 372 
stripe set, 882-883 
stubs, 321 
stub routines, 888 
SunOS, 40 
superblock, 464 
superblock objects, 469, 829 
supervisor mode, see kernel mode 
suspended state, 896 
sustained bandwidth, 539 
swap map, 522 
swapper (term), 361 
swapping, 20, 109, 322-324, 361 

in Linux, 825-826 
paging vs., 520 

swap space, 364 
swap-space management, 520-522 
switch architecture, 12 
switching: 

circuit, 689 
domain, 595 
message, 689 
packet, 689 

symbolic links, 858 
symbolic-link objects, 858 
symmetric encryption, 641-642 
symmetric mode, 17 

symmetric multiprocessing (SMP), 14-15, 202, 
819-820 

synchronization, 122. See also process 
synchronization 

synchronous devices, 566, 567 
synchronous message passing, 122 
synchronous writes, 485 
SYSGEN, sec system generation 
system boot, 89-90 
system calls (monitor calls), 8, 55-58 

and API, 56-57 
for communication, 65-66 
for device management, 64 
for file management, 64 
functioning of, 55-56 
for information maintenance, 65 
for process control, 60-64 

system-call firewalls, 662 
system-call interface, 57 
system-contention scope (SCS), 199 
system device, 874 
system disk, see boot disk 
system files, 438 
system generation (SYSGEN), 88-89 
system hive, 874 
systems layer, 783 
system libraries (Linux), 807, 808 
system mode, see kernel mode 
system-on-chip (SOC) strategy, 761, 762 
system process (Windows XP), 874 
system programs, 66-67 
systems programs, 6 
system resource-allocation graph, 287-289 
system restore, 874 
system utilities, 66-67, 807, 808 
system-wide open-file table, 464 

table(s), 358 
file-allocation, 475-476 
hash, 470-471 
m.aster file, 464 
mount, 467, 578 
object, 859 
open-file, 424 
page, 364,862 
per-process open-file, 465 
routing, 687 
segment, 344 
system-wide open-file, 464 

tags, 603 
tapes, magnetic, 507, 535-536 
target thread, 166 



tasks: 
Linux, 814-815 
VxWorks, 774 

task control blocks, see process control blocks 
TCB (trusted computer base), 663 
TCP/IP, sec Transmission Control 

Protocol/Internet Protocol 
TCP sockets, 129 
TDI (transport driver interface), 886 
telnet, 676 
terminal concentrators, 584 
terminated state, 103 
terminated thread state (Windows XP), 853 
termination: 

cascading, 116 
process, 110-116, 304-305 

tertiary-storage, 534-543 
future technology fm~ 536 
and operating system support, 536-538 
performance issues with, 539-543 
removable disks, 534-535 
tapes, 535-536 

tertiary storage devices, 27 
text files, 422 
text section (of process), 102 
theft of service, 622 
THE operating system, 913 
thrashing, 386-387 

cause of, 386-387 
defined, 386 
and page-fault-frequency Sh"ategy, 390-391 
and working-set model, 387-389 

threads. See also multithreading 
cancellation, thread, 166-167 
components of, 153 
functions of, 153-156 
idle, 209 
kernel, 157 
in Linux, 173-174, 814-815 
and multicore programming, 156-157 
pools, thread, 168-170 
and process model, 104-105 
scheduling of, 199-201 
target, 166 
use1~ 157 
in Windows XP, 171-173, 853-854, 894-897 

thread libraries, 159-165 
about, 159-160 
Java tlueads, 162, 164-165 
Pthreads, 160-161 
Win32 threads, 162-163 

thread pool, 897 
thread scheduling, 183 
thread-specific data, 170 

threats, 622. See also program threats 
throughput, 187, 785 
thunking, 876 
tightly coupled systems, see multiprocessor 

systems 
time: 

compile, 318 
effective access, 365 
effective memory-access, 334 
execution, 318 
of file creation/ use, 423 
load, 318 
response, 19, 187-188 
turnaround, 187 
waiting, 187 

time-out schemes, 695, 751 
time profiles, 65 
time quantum, 194 
timer: 

programmable interval, 569 
variable, 23 

timers, 569-570 
timer objects, 854 
time sharing (multitasking), 19 
timestamp-based protocols, 265-267 
timestamping, 739-740 
timestamps, 729 
TLB, see translation look-aside buffer 
TLB miss, 333 
TLB reach, 401-402 
tokens, 690, 732 
token passing, 690, 732 
top half interrupt service routines, 819 
topology, network, 683-684 
TOPS-20, 917 
Torvalds, Linus, 801 
trace tapes, 216 
tracks, disk, 506 
traditional computing, 34-35 

969 

transactions, 257-258. See also atomic transactions 
defined, 832 
in Linux, 832-833 
in log-structured file systems, 487-488 

transactional memory, 258-259 
Transarc DFS, 718 
transfer rate (disks), 506, 507 
transition thread state (Windows XP), 853 
transitive trust, 891 
translation coordinator, 733 
translation look-aside buffer (TLB), 333, 863-864 
transmission control protocol (TCP), 693 
Transmission Control Protocol/Internet Protocol 

(TCPIIP), 887 
transparency, 697, 706, 707 



970 

transport driver interface (TDI), 886 
transport layer, 691 
transport-layer protocol (TCP), 646 
traps, 20-21, 363, 562 
trap doors, 626 
tree-structured directories, 438-440 
triple DES, 641 
triple indirect blocks, 477 
Tripwire file system, 658-659 
Trojan horses, 625-626 
trusted computer base (TCB), 663 
trust relationships, 891-892 
tunneling viruses, 632 
turnaround time, 187 
turnstiles, 254 
two-factor authentication, 653 
twofish algorithm, 641 
two-level directories, 437-438 
two-phase commit (2PC) protocol, 733-734 
two-phase locking protocol, 265 
two tuple, 343 
type safety (Java), 615 

UDP (user datagram protocol), 693 
UDP sockets, 129 
UFD (user file directory), 437 
UFS (UNIX file system), 463 
UI, see user interface 
UMA (uniform memory access), 15 
unbounded capacity (of queue), 123 
UNC (uniform naming convention), 888 
unicasting, 789 
UNICODE, 851 
unified buffer cache, 484, 485 
unified virtual memory, 484 
uniform memory access (UMA), 15 
uniform naming convention (UNC), 888 
universal serial buses (USBs), 507 
UNIX file system (UFS), 463 
UNIX operating system: 

consistency semantics fm~ 450--451 
domain switching in, 595-596 
feature migration with, 903, 904 
and Linux, 801 
permissions in, 455 
signals in, 167-168 
swapping in, 324 

unreliability, 688 
unreliable communications, 751 
upcalls, 171 
npcall handler, 171 
U.S. Digital Millennium Copyright Act (DMCA), 38 
USBs, see universal serial buses 

used objects, 398, 823 
users, 4-5, 446-447 
user accounts, 664 
user authentication, 649-654 

with biometrics, 653-654 
with passwords, 649-653 

user datagram protocol (UDP), 693 
user-defined signal handlers, 167 
user file directory (UFD), 437 
user identifiers (user IDs), 30 

effective, 30 
for files, 423 

user interface (UI), 50-55 
user mobility, 492 
user mode, 21 
user programs (user tasks), 101-102, 826-827 
user rights (Linux), 842 
user threads, 157 
utilities, 904 
utility storage, 530 
utilization, 906 

VACB, see virtual address control block 
VADs (virtual address descriptors), 866 
valid-invalid bit, 335 
variable class, 208-209 
variables, automatic, 628 
variable timer, 23 
VDM, see virtual DOS machine 
vector programs, 634 
vforkO (virtual memory fork), 369 
VFS, sec virtual file system 
victim frames, 371 
views, 861 
virtual address, 319 
virtual address control block (VACB), 870, 871 
virtual address descriptors (VADs), 866 
virtual address space, 359, 824-825 
virtual DOS machine (VDM), 875-876 
virtual file system (VFS), 468-470, 829-830 
virtualization: 

hardware fm~ 80 
and multiprocessor scheduling, 205-206 

virtual machines, 76-84 
basic idea of, 76 
benefits of, 77-78 
history of, 76-77 
implementation of, 80 
Java Virtual Machine as example of, 82 
VMware as example of, 81-82 

virtual memory, 20, 357-360 
and copy-on-write technique, 367-369 
demand paging for conserving, 361-367 



972 

Windows XP (contd.) 
history of, 84,7-849 
interprocess communication example, 127-128 
networking, 886-892 

Active Directory, 892 
distributed-processing lTtechanisms, 888-889 
domains, 891-892 
interfaces, 886 
name resolution, 892 
protocols, 886-887 
redirectors and servers, 889-891 

performance of, 850 
portability of, 851 
programmer interface, 892-899 

interprocess communication, 897-898 
kernel object access, 893 
memory management, 898-899 
process management, 894-897 
sharing objects between processes, 893-894 

reliability of, 849 
scheduling example, 208-211 
security, 877-878 
security in, 849 
synchronization in, 255-256 
system components for, 851-874 

executive, see Windows XP executive 
hardware-abstraction layer, 852 
kernel, 852-856 

tlu·eads example, 171-173 
virtual memory in, 405---406 

Windows XP executive, 857-874 
booting, 874 
cache manager, 870-872 
I/0 manager, 869-870 
local procedure call facility, 868-869 
object manager, 857-860 
plug-and-play and power managers, 872-873 
process managet~ 866-867 
registry, 873-874 
security reference monitor, 872 
virtual memory manager, 860-866 

Winsock, 888 
wireless (WiFi) networks, 35, 680-681 
wirte-on-close policy, 713 

Witness, 293 
word, 6 
working sets, 387, 391 
working-set maximum (Windows XP), 405 
working-set minimum (Windows XP), 405 
working-set model, 387-389 
workstations, 5 
world rights (Linux), 842 
World Wide Web, 447 
worms, 634-637 
WORM disks, see write-once, read-many-times 

disks 
WORM (write-once, read-many) format, 26 
worst-fit strategy, 327 
wound-wait scheme, 741-742 
write-ahead logging, 260-261 
write-back caching, 712 
write-end (of pipe), 134 
write-once, read-many-times (WORM) disks, 535 
write only devices, 566, 567 
write queue, 836 
writers, 241 
write-through policy, 712 
writing files, 423 
W-timestamp, 266 

XDR (external data representation), 132 
XDS-940 operating system, 912 
Xerox, 53 
XML firewalls, 662 

zero capacity (of queue), 122 
zero-day attacks, 657 
zero-fill-on-demand technique, 369 
ZFS file system, 481-482, 488 
zipped files, 783 
zombie systems, 637 
zones (Linux), 820 
zones (Solaris 10), 79 



basic mechanism, 362-364 
with inverted page tables, 402 
and l/0 interlock, 404-405 
and page size, 400-401 
and performance, 365-367 
and prepaging, 399-400 
and program structure, 402-403 
pure demand paging, 364 
and restarting instructions, 364-365 
and TLB reach, 401-402 

direct virtual memory access, 564 
and france allocation, 382-385 

equal allocation, 383 
global vs. local allocation, 384-385 
proportional allocation, 383-384 

kernel, 826 
and kernel memory allocation, 396-399 
in Linux, 823-826 
and memory mapping, 390-396 

basic mechanism, 391-393 
I/0, memory-mapped, 395-396 
in Win32 API, 393-395 

network, 711 
page replacement for conserving, 369-381 

and application performance, 381 
basic mechanism, 370-373 
counting-based page replacement, 380 
FIFO page replacement, 373-375 
LRU-approximation page replacement, 378-380 
LRU page replacement, 376-378 
optimal page replacement, 374-376 
and page-buffering algorithms, 380-381 

separation of logical memory from physical 
memory by, 359 

size of, 358 
in Solaris, 406-407 
and tlu·ashing, 386-387 

cause, 386-387 
page-fault-frequency strategy, 390-391 
worki1cg-set model, 387-389 

unified, 484 
in Windows XP, 405-406 

virtual memory fork, 369 
virtual memory (VM) manager, 860-866 
virtual memory regions, 824 
virtual private networks (VPNs), 647, 887 
virtual routing, 687 
viruses, 630-633, 658-660 
virus droppe1~ 631 
VM manager, sec virtual memory manager 
VMware, 81-82 
VMware Workstation, 80-82 
vnode, 468 
vnode number (NFS V4), 720 
volatile storage, 10, 259 

971 

volumes, 434, 720 
volume control block, 464 
volume-location database (NFS V4), 720 
volume management (Windows XP), 881-884 
volume set, 881-882 
volume shadow copies, 885 
volume table of contents, 434 
von Neumann architecture, 9 
VPNs, see virtual private networks 
vulnerability scans, 654-656 
VxWorks, 774-776 

WAFL file system, 488, 496-498 
wait-die scheme, 741-742 
waiting state, 103 
waiting thread state (Windows XP), 853 
waiting time, 187 
wait queue, 837 
WANs, see wide-area networks 
Web-based computing, 37 
web clipping, 34 
Web distributed authoring and versioning 

(WebDAV), 887 
wide-area networks (WANs), 17, 31, 681-683 
WiFi networks, see wireless networks 
Win32 API, 393-395, 847-848, 877 
Win32 thread library, 162-163 
Windows 2000, 849, 851 
Windows NT, 847-848 
Windows XP, 847-900 

application compatibility of, 849-850 
design principles for, 849-851 
desktop versions of, 848 
environmental subsystems for, 874-878 

16-bit Windows, 876 
32-bit Windows, 876-877 
logon, 877-878 
MS-DOS, 875-876 
POSIX, 877 
security, 877-878 
Wi.n32, 876-877 

extensibility of, 850-851 
file systems, 878-885 

change journal, 885 
compression and encryption, 884-885 
mount points, 885 
NTFS B1 tree, 879-880 
NTFS internal layout, 878-879 
NTFS metadata, 880 
recovery, 880-881 
security, 881 
volume management and fault tolerance, 881-884 
volume shadow copies, 885 


	Cover
	Preface
	Contents
	Part One - Overview
	Introduction
	System structures

	Part Two - Process Management 
	Process concepts
	Multithreaded Programming
	Process Scheduling

	Part Three - Process Coordination
	Synchrozination
	Deadlocks

	Part Four - Memory Management
	Memory Management Strategies
	Virtual Memory Management

	Part Five - Storage Management
	File System
	Implementing File Systems
	Secondary-Storage Structure
	I/O Systems

	Part Six - Protection and Security
	System Protection
	System Security

	Part Seven - Distributed Systems
	Distributed Operating Systems
	Distributed File Systems
	Distributed Synchrozination

	Part Eight - Special Purpose Systems
	Real Time Systems
	Multimedia Systems

	Part Nine - Case Studies 
	The Linux System
	Windows XP
	Influential Operating Systems

	Bibliography
	Credits
	Index

