Ambo University

Chapter Seven

Lossless Compression Algorithms

7.1 Introduction

the emergence of multimedia technologies has made digital libraries a reality. Nowadays, libraries, museums, film studios, and governments are converting more and more data and archives into digital form. Some of the data (e.g., precious books and paintings) indeed need to be stored without any loss.

As a start, suppose we want to encode the call numbers of the 120 million or so items in the Library of Congress (a mere 20 million, if we consider just books). Why don't we just transmit each item as a 27-bit number, giving each item a unique binary code (since $227>120,000, \mathrm{OOO}$)?

The main problem is that this "great idea" requires too many bits. And in fact there exist many coding techniques that will effectively reduce the total number of bits needed to represent the above information. The process involved is generally referred to as compression

7.2 Basics of Information Theory

Information theory is defined to be the study of efficient coding and its consequences. It is the field of study concerned about the storage and transmission of data. It is concerned with source coding and channel coding. Source coding: involves compression Channel coding: how to transmit data, how to overcame noise, etc Data compression may be viewed as a branch of information theory in which the primary objective is to minimize the amount of data to be transmitted

Fig Info,nvh++rmation coding and transmission

Ambo University

Need for Compression

With more colors, higher resolution, and faster frame rates, you produce better quality video, but you need more computer power and more storage space for your video. Doing some simple calculations (see below) it can be shown that with 24-bit color video, with 640 by 480 resolutions, at 30 fps , requires an astonishing 26 megabytes of data per second! Not only does this surpass the capabilities of the many home computer systems, but also overburdens existing storage systems.

640 horizontal resolution
$\mathrm{X}=480$ vertical resolution

$=$	307,200 total pixels per frame
X	3 bytes per pixel
$=$	921,600 total bytes per frame
X	30 frames per second
	$\quad 27,648,000$ total bytes per second $/$
	1,048576 to convert to megabytes

The calculation shows space required for video is excessive. For video, the way to reduce this amount of data down to a manageable level is to compromise on the quality of video to some extent. This is done by lossy compression which forgets some of the original data.

Compression Algorithms

Compression methods use mathematical algorithms to reduce (or compress) data by eliminating, grouping and/or averaging similar data found in the signal. Different Although there are various compression methods, including Motion JPEG, only MPEG-1 and MPEG-2 are internationally recognized standards for the compression of moving pictures (video).

A simple characterization of data compression is that it involves transforming a string of characters in some representation (such as ASCII) into a new string (of bits, for example) which contains the same information but whose length is as small as possible.

Ambo University

Data compression has important application in the areas of data transmission and data storage. The proliferation of computer communication networks is resulting in massive transfer of data over communication links. Compressing data to be stored or transmitted reduces storage and/or communication costs. When the amount of data to be transmitted is reduced, the effect is that of increasing the capacity of the communication channel. Lossless compression is a method of reducing the size of computer files without losing any information. That means when you compress a file, it will take up less space, but when you decompress it, it will still have the exact same information. The idea is to get rid of any redundancy in the information, this is exactly what happens is used in ZIP and GIF files. This differs from lossy compression, such as in JPEG files, which loses some information that isn't very noticeable. Why use lossless compression?
You can use lossless compression whenever space is a concern, but the information must be the same. An example is when sending text files over a modem or the Internet. If the files are smaller, they will get there faster. However, they must be the same as that you sent at destination. Modem uses LZW compression automatically to speed up transfers.

There are several popular algorithms for lossless compression. There are also variations of most of them, and each has many implementations. Here is a list of the families, their variations, and the file types where they are implemented:

Ambo University

Variable Length Encoding

Claude Shannon and R.M. Fano created the first compression algorithm in the 1950's. This algorithm assigns variable number of bits to letters/symbols.

Shannon-Fano Coding

Let us assume the source alphabet $\mathrm{S}=\{\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots, \mathrm{Xn}\}$ and
Associated probability $\mathrm{P}=\{\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3, \ldots, \mathrm{Pn}\}$
The steps to encode data using Shannon-Fano coding algorithm is as follows:
Order the source letter into a sequence according to the probability of occurrence in nonincreasing order i.e. decreasing order.

ShannonFano(sequence s)
If s has two letters
Attach 0 to the codeword of one letter and 1 to the codeword of another;
Else ifs has more than two letter
Divide s into two subsequences S1, and S2 with the minimal difference between
probabilities of each subsequence;
extend the codeword for each letter in S1 by attaching 0, and by attaching 1 to each codeword for letters in S2;

ShannonFano(S1);
ShannonFano(S2);
Example: Suppose the following source and with related probabilities
$\mathrm{S}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$
$\mathrm{P}=\{0.35,0.17,0.17,0.16,0.15\}$
Message to be encoded="ABCDE"
The probability is already arranged in non-increasing order. First we divide the message
into AB and CDE. Why? This gives the smallest difference between the total probabilities of the two groups.
$\mathrm{S} 1=\{\mathrm{A}, \mathrm{B}\} \mathrm{P}=\{0.35,0.17\}=0.52$
$S 2=\{C, D, E\} P=\{0.17,0.17,0.16\}=0.46$
The difference is only $0.52-0.46=0.06$. This is the smallest possible difference when we
divide the message.
Attach 0 to S1 and 1 to S2.
Subdivide S 1 into sub groups.
S11 $=\{A\}$ attach 0 to this $S 12=\{B\}$
attach 1 to this

Ambo University

Again subdivide S 2 into subgroups considering the probability again.
$\mathrm{S} 21=\{\mathrm{C}\} \mathrm{P}=\{0.17\}=0.17$
$S 22=\{D, E\} P=\{0.16,0.15\}=0.31$
Attach 0 to S21 and 1 to S22. Since S22 has more than one letter in it, we have to subdivide it.
S221 $=\{\mathrm{D}\}$ attach 0
S222 $=\{\mathrm{E}\}$ attach 1

Fig Shannon-Fano coding tree
The message is transmitted using the following code (by traversing the tree)
$\mathrm{A}=00 \mathrm{~B}=01$
$\mathrm{C}=10 \mathrm{D}=110 \mathrm{E}=111$
Instead of transmitting ABCDE, we transmit 000110110111
Dictionary Encoding
Dictionary coding uses groups of symbols, words, and phrases with corresponding abbreviation. It transmits the index of the symbol/word instead of the word itself.
There
are different variations of dictionary based coding:
LZ77 (printed in 1977)
LZ78 (printed in 1978)
LZSS
LZW (Lempel-Ziv-Welch)

LZW Compression

LZW compression has its roots in the work of Jacob Ziv and Abraham Lempel. In 1977,
they published a paper on "sliding-window" compression, and followed it with another
paper in 1978 on "dictionary" based compression. These algorithms were named LZ77
and LZ78, respectively. Then in 1984, Terry Welch made a modification to LZ78
which
became very popular and was called LZW
The Concept
Many files, especially text files, have certain strings that repeat very often, for example " the ". With the spaces, the string takes 5 bytes, or 40 bits to encode. But what if we were to add the whole string to the list of characters? Then every time we came across " the ",we could send the code instead of $32,116,104,101,32$.
This would take less no of bits.

Ambo University

This is exactly the approach that LZW compression takes. It starts with a dictionary of all the single character with indexes $0-255$. It then starts to expand the dictionary as information gets sent through. Then, redundant strings will be coded, and compression has occurred.

The Algorithm:
LZWEncoding()
Enter all letters to the dictionary;
Initialize string sto the first letter from the input;
While any input is left read
symbol c; if s+c exists in the
dictionarys $=s+c$;
else
output codeword(s); //codeword for s
enter $s+c$ to dictionary;
$s=c$;
end loop output
codeword(s);
Example: encode the ff string "aababacbaacbaadaa"

The program reads one character at a time. If the code is in the dictionary, then it adds the character to the current work string, and waits for the next one. This occurs on the first character as well. If the work string is not in the dictionary, (such as when the second character comes across), it adds the work string to the dictionary and sends over the wire the works string without the new character. It then sets the work string to the new character.

Example:

Encode the message aababacbaacbaadaaa using the above algorithm
Encoding : Create dictionary of letters found in the message

Ambo University

S is initialized to the first letter of message $a(s=a)$
Read symbol to c, and the next symbol is $a(c=a)$
Check if $s+c(s+c=a a)$ is found in the dictionary (the one created above in step 1).
It is not found. So add $\mathrm{s}+\mathrm{c}(\mathrm{s}+\mathrm{c}=\mathrm{aa})$ to dictionary and output codeword for $\mathrm{s}(\mathrm{s}=\mathrm{a})$.
The code for a is 1 from the dictionary. Then initialize s to $\mathrm{c}(\mathrm{s}=\mathrm{c}=\mathrm{a})$.

Encoder		Dictionary	
Input(s+c)	Output		
	IndexEntry		
	1	a	
		2	b
		3	c
		5	da
aa			

Read the next letter from message to $c(c=b)$
Check if $\mathrm{s}+\mathrm{c}(\mathrm{ab})$ is found in the dictionary. It is not found. Then, $\mathrm{add} \mathrm{s}+\mathrm{c}(\mathrm{s}+\mathrm{c}=\mathrm{ab})$ into dictionary and output code for $\mathrm{c}(\mathrm{c}=\mathrm{b})$. The codeword is 2 . Then initialize s to c ($\mathrm{s}=\mathrm{c}=\mathrm{b}$)

Encoder		Dictionary	
Input($\mathrm{s}+\mathrm{c}$)	Output	Index	Entry
		1	a
		2	b
		3	c
		4	d
aa	1	5	aa
ab	1		

Read the next letter to $\mathrm{c}(\mathrm{c}=\mathrm{a})$.
Check if $\mathrm{s}+\mathrm{c}(\mathrm{s}+\mathrm{c}=\mathrm{ba})$ is found in the dictionary. It is not found.
Then add $\mathrm{s}+\mathrm{c}(\mathrm{s}+\mathrm{c}=\mathrm{ba})$
to the dictionary. Then output the codeword for $\mathrm{s}(\mathrm{s}=\mathrm{b})$. It is 2 .
Then initialize s to $\mathrm{c}(\mathrm{s}=\mathrm{c}=\mathrm{b})$

Ambo University

Encoder			Dictionary
Input(s+c)	Output	Index	Entry
		1	a
		2	b
		3	c
		4	d
	1	5	aa
	1	6	ab
aa ab	2	7	ba
ba	2		

Read the next message to $\mathrm{c}(\mathrm{c}=\mathrm{a})$. Then check if $\mathrm{s}+\mathrm{c}(\mathrm{s}+\mathrm{c}=\mathrm{ab})$ is found in the dictionary.
It is there. Then initialize s to $\mathrm{s}+\mathrm{c}(\mathrm{s}=\mathrm{s}+\mathrm{c}=\mathrm{ab})$.
Read again the next letter to $c(c=a)$. Then check if $s+c(s+c=a b a)$ is found in the dicitionary. It is not there. Then transmit codeword for $\mathrm{s}(\mathrm{s}=\mathrm{ab})$.
The code is 6 . Initialize s to $\mathrm{c}(\mathrm{s}=\mathrm{c}=\mathrm{a})$

Encoder		Dictionary	
Input(s+c)	Output	IndexEntry	
		1	ab
		2	cd
		3	aa
		4	ab
		5	ba
aa	1	6	aba
ab	1	7	
ba	2	8	
aba	6		

Again read the next letter to c and continue the same way till the end of message. At last you will have the following encoding table.

Ambo University

Encoder		Dictionary	
Input(s+c)	Output	Index	Entry
		1	a b c
		2	d aa
	1	3	ab
	1	5	ba
	2	6	aba
	6	7	ac
	1	8	cb
	3	9	baa
aa ab	7	10	acb
ba aba	9	11	da
ac cb	11	12	aa
baa	4	13	
acb	5	14	
baad	1	15	
da aaa		15	
a			

Table encoding string
Now instead of the original message, you transmit their indexes in the dictionary. The code for the message is 1126137911451

Decompression

The algorithm:
LZWDecoding()
Enter all the source letters into the dictionary;
Read priorCodeword and output one symbol corresponding to it;
While codeword is still left
read Codeword;
PriorString = string (PriorCodeword);
If codeword is in the dictionary
Enter in dictionary PriorString + firstsymbol(string(codeword));
output string(codeword);
else
Enter in the dictionary priorString +firstsymbol(priorString);
Output priorString+firstsymbol(priorstring); priorCodeword=codeword;
end loop
The nice thing is that the decompressor builds its own dictionary on its side, that matches
exactly the compressor's dictionary, so that only the codes need to be sent.

Ambo University

Example:
Let us decode the message 1126137911451.
We will start with the following table

Encoder Input	Output	Dictionary
		IndexEntry a 2 b 3 c
		$4 \quad$ d

Read the first code. It is 1 . Output the corresponding letter

	Encoder Input	Output	$\frac{\text { Dictionary }}{\text { IndexEntry }}$
		1 a 2	b
		3 c	
		d	
1	a		

Read the next code. It is 1 and it is found in the dictionary. So add aa to the dictionary and output a again.

Input	Encoder		Output

Read the next code which is 2 . It is found in the dictionary. We add ab to dictionary and output b.

Ambo University

Input	Encoder		Dictionary	
	Output	Index	Entry	
		1	a	
		2	b	
		3	c	
		4	d	
1	a			
1	a	5	aa	
2	b	6	ab	

Read the next code which is 6 . It is found in the dictionary. Add ba to dictionary and output ab

Read the next code. It is 1.1 is found in the dictionary. Add aba to the dictionary and output a

Ambo University

Read the next code. It is 3 and it is found in the dictionary. Add ac to dictionary and output c .
Continue like this till the end of code is reached. You will get the following table:

$\begin{array}{c}\text { Input }\end{array}$	$\begin{array}{c}\text { Encoder } \\ \text { Output }\end{array}$	Dictionary	
IndexEntry			

The decoded message is aababacbaacbaadaaa

Huffman Compression

When we encode characters in computers, we assign each an 8 -bit code based on an ASCII chart. But in most files, some characters appear more often than others. So wouldn't it make more sense to assign shorter codes for characters that appear more often and longer codes for characters that appear less often? D.A. Huffman published a paper in 1952 that improved the algorithm slightly and it soon superceded Shannon-Fano coding with the appropriately named Huffman coding.

Huffman coding has the following properties:
Codes for more probable characters are shorter than ones for less probable characters. Each code can be uniquely decoded
To accomplish this, Huffman coding creates what is called a Huffinan tree, which is a binary tree.
First count the amount of times each character appears, and assign this as a weight/probability to each character, or node. Add all the nodes to a list.
Then, repeat these steps until there is only one node left:
$>$ Find the two nodes with the lowest weights.
$>$ Create a parent node for these two nodes. Give this parent node a weight of the sum of the two nodes.
$>$ Remove the two nodes from the list, and add the parent node.
This way, the nodes with the highest weight will be near the top of the tree, and have shorter codes

Ambo University

Algorithm to create the tree
Assume the source alphabet $\mathrm{S}=\{\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots, \mathrm{Xn}\}$ and
Associated Probabilities $\mathrm{P}=\{\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3, \ldots, \mathrm{Pn}\}$
Huffman()
For each letter create a tree with single root node and order all trees according to the probability of letter of occurrence;
while more than one tree is left take two trees $t 1$, and $t 2$ with the lowest probabilities pl,
p2 and create a tree with
probability in its root equal to $p 1+p 2$ and with $t 1$ and $t 2$ as its subtrees;
associate 0 with each left branch and 1 with each right branch;
create unique codeword for each letter by traversing the tree the root to the leaf containing the probability corresponding to this letter and putting all encountered $0 s$ and 1s together;

Example: Suppose the following source and related probability
$\mathrm{S}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$
$\mathrm{P}=\{0.15,0.16,0.17,0.17,0.35\}$
Message="abcde"

Fig Huffman tree

To read the codes from a Huffman tree, start from the root and add a 0 every time you go left to a child, and add a l every time you go right. So in this example, the code for the character b is 01 and the code for d is 110 .

As you can see, a has a shorter code than d. Notice that since all the characters are at the leafs of the tree, there is never a chance that one code will be the prefix of another one
(eg. a is 01 and b is 011). Hence, this unique prefix property assures that each code can be uniquely decoded

The code for each letter is:
$a=000 \mathrm{~b}=001 \mathrm{c}=010 \mathrm{~d}=011$
$\mathrm{e}=1$

Ambo University

The original message will be encoded to:
abcde $=0000010100111$
To decode the message coded by Huffman coding, a conversion table had to be known by the receiver. Using this table, a tree can be constructed with the same path as the tree used for coding. Leaves store the same path as the tree used for coding. Leaves store letters instead of probabilities for efficiency purpose.

The decoder then can use the Huffman tree to decode the string by following the paths according to the string and adding a character every time it comes to one

Fig Huffman tree

The Algorithm

Move left if you get 0
Move right if you get 1
If you get letter (reach leaf node) output that letter.
Go back and start from root again with the remaining code.
Using this algorithm and the above decoding tree, let us decode the encoded message 0000010100111 at destination.

0 -move left
0 -move left again
0 -move left again, and we have reached leaf. Output the letter on the leaf node which is a .

Go back to root.
0 -move left
0 -move left
1-move right, and we have reached the leaf. Output letter on the leaf and it is b.
Go back to root.

Ambo University

0 -move left
1-move right
0 -move left, and we reach leaf. Output letter found on the leaf which is c .
Go back to root.
0 -move left
1-move right
1-move right, and we reach leaf. Output letter on leaf which is d .
Go back to root.
1-move right, and we reach leaf node. Output the letter on the node which is e. Now we have finished i.e. no more code remains. Display the letters output as message. Abcde

How can the encoder let the decoder know which particular coding tree has been used?

Two ways:
i) Both agree on particular Hufmann tree and both use it for sending any message ii) The encoder constructs Huffman tree afresh every time a new message is sent and sends the conversion table along with the message. This is more versatile, but has additional overload-sending conversion table. But for large data, there is the advantage. It is also possible to create tree for pairs of letters. This improves performance.

Example:
$\mathrm{S}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$
$\mathrm{P}=\{0.1,0.2,0.7\}$
To get the probability of pairs, multiply the probability of each letter.
$\mathrm{xx}=0.1 * 0.1=0.01 \mathrm{xy}=0.1 * 0.2=0.02 \mathrm{xz}=0.1 * 0.3=0.07$
$\mathrm{yx}=0.2 * 0.1=0.02 \mathrm{yy}=0.2 * 0.2=0.04 \mathrm{yz}=0.2 * 0.7=0.14$
$\mathrm{zx}=0.7 * 0.1=0.07 \mathrm{zz}=0.7 * 0.7=0.49 \mathrm{zy}=0.7 * 0.2=0.14$
Using these probabilities, you can create Huffman tree of pairs the same way as we did previously.

Arithmetic Coding

The entire data set is represented by a single rational number, whose value is between 0 and 1. This range is divided into sub-intervals each representing a certain symbol.
The number of sub-intervals is identical to the number of symbols in the current set of symbols and the size is proportional to their probability of appearance.

Ambo University

For each symbol in the original data a new interval division takes place, on the basis of the last subinterval.

Algorithm:

ArithmeticEncoding(message)
CurrentInterval=[0,1); //includes 0 but not 1
while the end of message is not reached
read letter Xi from message;
divide the CurrentInterval into SubInterval IRcureentInterval;
CurrentInterval=SubIntervali in CurrentInterval;
Output bits uniquely identifying CurrentInterval;
Assume the source alphabet $\mathrm{s}=\{\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots, \mathrm{Xn}\}$ and associated probability of $\mathrm{P}=\{\mathrm{p} 1$,
p2, p3,..., pn\}
To calculate sub interval of current interval [L,R], use the following formula
$\operatorname{IR}_{[L, R]}=\{[\mathrm{L}, \mathrm{L}+(\mathrm{R}-\mathrm{L}) * \mathrm{P} 1],[\mathrm{L}+(\mathrm{R}-\mathrm{L}) * \mathrm{P} 1, \mathrm{~L}+(\mathrm{R}-\mathrm{L}) * \mathrm{P} 2],[\mathrm{L}+(\mathrm{R}-\mathrm{L}) * \mathrm{P} 2$,
$\mathrm{L}+(\mathrm{R}-\mathrm{L}) * \mathrm{P} 3], \ldots$,
$\left.\left[\mathrm{L}+(\mathrm{R}-\mathrm{L}) * \mathrm{P}_{\mathrm{n}-1}, \mathrm{~L}+(\mathrm{R}-\mathrm{L}) * \mathrm{P} 1\right)\right\}$

Cumulative probabilities are indicated using capital P and single probabilities are indicated using small p .

EXAMPRE:

Encode the message $\mathfrak{A R}$ using arithmetic encoding.
$s=\{a, b, c, \#\} p=\{0.4,0.3,0.1,0.2\}$
At the beginning CurentInterval is set to $[0,1)$. Let us calculate subintervals of $[0,1)$.
First let us get cumulative probability P_{i}
$\mathrm{P} 1=0.4$
$\mathrm{P} 2=0.4+0.3=0.7$
P3 $=0.4+0.3+0.1=0.8$
$\mathrm{P} 4=0.4+0.3+0.1+0.2=1$

Ambo University

Next calculate subintervals of $[0,1)$ using the formula given above.
$\operatorname{IR}[0,1]=\{[0,0+(1-0) * 0.4),[0+(1-0) * 0.4,0+(1-0) * 0.7),[0+(1-0) * 0.7,0+(1-0) * 0.8)$,
$\left.\left[0+(1-0) * 0.8,0+(1-0)^{*} 1\right)\right\}$
$\operatorname{IR}[0,1]=\{[0,0.4),[0.4,0.7),[0.7,0.8),[0.8,1)\}$ - four subintervals
Now the question is, which one of the SubIntervals will be the CurrentInterval? To determine this, read the first letter of the message. It is a. Look where a is found in the source alphabet. It is found at the beginning. So the next CurrentInterval will be [0,4) which is also found at the beginning in the SubIntervals.

Again let us calculate the SubIntervals of CurrentInterval [0,0.4). The cumulative probability does not change i.e. the same as previous.
$\operatorname{IR}[0,0.4]=\left\{\left[0,0+(0.4-0)^{*} 0.4\right),[0+(0.4-0) * 0.4,0+(0.4-0) * 0.7),[0+(0.4-0) * 0.7\right.$,
$0+(0.40) * 0.8),[0+(0.4-0) * 0.8,0+(0.4-0) * 1)\}$
$\operatorname{IR}[0,0.4]=\{[0,0.16),[0.16,0.28),[0.28,0.32),[0.32,0.4)\}$.
Which interval will be the next CurrentInterval? Read the next letter from message. It is b. B is found in the second place in the source alphabet list. The next

CurrentInterval will be the second SubInterval i.e [0.16,0.28).
Continue like this till there is letter left in the message. You will get the following result:
$\operatorname{IR}[0.16,0.28]=\{[0.16,0.208),[0.208,0.244),[0.244,0.256),[0.256,0.28)\}$. Next
IR[0.208,0.244]=\{[0.208,0.2224),[0.2224,0.2332),[0.2332,0.2368),[0.2368,0.242).
Next
$\operatorname{IR}[0.2332,0.2368]=\{[0.2332,0.23464),[0.23464,0.23572),[0.23572,0.23608),[0.23608$, $0.2368)$ \}

We are done because no more letter remained in the message. The last letter read was \#.

It is the fourth letter in source alphabet. So take the fourth SubInterval as CurrentInterval
i.e $[0.23608,0.2368]$. Now any number between the last CurrentInterval is sent as the message. So you can send 0.23608 as the encoded message or any number between 0.23608 , and 0.2368 .

Diagrammatically, calculating SubIntervals look like this

Ambo University

Fig sub interval and current interval
RERODPM Algorithm:
ArithmeticDecoding(codeword)
CurrentInterval=[0,1];
While (1)
Divide CurrentInterval into SubIntervals IRcurrentInterval;
Determine the SubIntervali of CurrentInterval to which the codeword belongs;
Output letter Xi corresponding to this SubInterval;
If end of file Return;
CurrentInterval=SubIntervali in IR currentInterval; End
of while
Example:
Decode 0.23608 which we previously encoded.
To decode the source alphabet and related probability should be known by destination.
Let us use the above source and probability.
$s=\{a, b, c, \#\} p=\{0.4,0.3,0.1,0.2\}$

Ambo University

First set CurrentInterval to [0,1], and then calculate SubInterval for it. The formula to calculate the SubInterval is the same to encoding. The cumulative probabilities are: $\mathrm{P} 1=0.4$
$\mathrm{P} 2=0.4+0.3=0.7$
$\mathrm{P} 3=0.4+0.3+0.1=0.8$
$\mathrm{P} 4=0.4+0.3+0.1+0.2=1$
$\operatorname{IR}[0,1]=\left\{\left[0,0+[1-0]^{*} 0.4\right),\left[0+[1-0]^{*} 0.4,0+[1-0]^{*} 0.7\right),\left[0+[1-0]^{*} 0.7,0+[1-0]^{*} 0.8\right)\right.$, [$\left.\left.0+[1-0]^{*} 0.8,0+[1-0]^{*} 1\right)\right\}$
$\operatorname{IR}[0,1]=\{[0,0.4),[0.4,0.7),[0.7,0.8),[0.8,1)\}$. Now check in which SubInterval the encode
message falls. It falls in the first SubInterval i.e $[0,0.4]$. Output the first letter from source
alphabet. It is a. Set CurrentInterval to $[0,0.4]$
$\operatorname{IR}[0,0.4]=\{[0,0+(0.4-0) * 0.4),[0+(0.4-0) * 0.4,0+(0.4-0) * 0.7),[0+(0.4-0) * 0.7,0+(0.4-$ $0) * 0.8),[0+(0.4-0) * 0.8,0+(0.4-0) * 1)\}$
$\operatorname{IR}[0,0.4]=\{[0,0.16),[0.16,0.28),[0.28,0.32),[0.32,0.4)\}$. Again check where 0.23608 falls.

It falls in the second SubInterval i.e [0.16,0.28]. Set CurrentInterval to this SubInterval.

Output the second letter from source alphabet. It is b .
$\operatorname{IR}[0.16,0.28]=\{[0.16,0.208),[0.208,0.244),[0.244,0.256),[0.256,0.28)\} .0 .23608$ falls in
the second SubInterval. Output the second letter from source alphabet. It is b.
$\operatorname{IR}[0.208,0.244]=\{[0.208,0.2224),[0.2224,0.2332),[0.2332,0.2368),[0.2368,0.242)$. falls
in the third SubInterval. Output the third letter from source alphabet. It is c .
$\operatorname{IR}[0.2332,0.2368]=\{[0.2332,0.23464),[0.23464,0.23572),[0.23572,0.23608),[0.23608$, $0.2368)\} .0 .23608$ falls in the fourth SubInterval. Output fourth letter which is \#. Now end of the message has been reached.
Disadvantage: arithmetic precision of computer is soon suppressed and hence large message can't be encoded

Ambo University

Implementation of Arithmetic Coding

To solve the above disadvantage, arithmetic coding is implemented as follows

```
Algorithm:
OutputBits()
f
    While(1)
If CurrentInterval
                                [0,0.5)
        Output 0 and bitcount 1s; //and here shows concatenation Bitcount=0;
    Else if CurrentInterval [0.5,1)
        Output 1 and bitcount 0s;
```

$$
\text { Bitcount }=0 \text {; }
$$

Subtract 0.5 from left and right bounds of CurrentInterval;
Else if CurrentInterval $\quad[0.25,0.75)$
Bitcount++;
Subtract 0.25 both left and right bounds of CurrentInterval; Else Break:
Double left and right bounds of CurreentInterval;
\}
FinishArithmeticCoding0
\{bitcount++;
if lowerbound of CurrentInterval <0.25 output 0 and bitcount 1s; else output 1 and bitcount 0 s;
?
ArithmeticEncoding(message)
f
CurrentInterval $=[0,1]$:
Bitcount $=0$;
While the end of message is not reached $\{$ read letter Xi from message; divide CurrentInterval into SubInterval IR Currentmeral:

```
                CurrentInterval =SubIntervali in IR curenImtenal:
                OutputBitsO:
        }
        FinishArithmeticEncodingO:
}
```


Ambo University

Example:

Encode the message abbc\#.
$s=\{a, b, c, \#\} p=\{0.4,0.3,0.1,0.2\}$

CurrentInterval	input	output	bitcount		Subintervals					
$[0,1)$	a		0	$[0,0.4)$	$[0.4,0.7)$	$[0.7,0.8)$	$[0.8,1)$			
$[0,0.4)$		0								
$[0,0.8)$	b			$[0,0.32)$	$[0.32,0.56)$	$[0.56,0.64)$	$[0.64,0.8)$			
$[0.32,0.56$			1							

$[0.14,0.62)$	b			$\left[\begin{array}{l}{[0.14,0.332)[0.332,0.476)[0.476,0.524)} \\ {[0.524,0.62)}\end{array}\right.$
$[0.332,0.476)$		01	0	
$[0.664,0.952)$		1		
$[0.328,0.904)$	c			$[0.328,0.5584)[0.5584,0.7312)[.7312, .7888)$
$[.7312, .788)$		1		
$[.4624, .5776)$		-	1	
$[.4248, .6552)$		-	2	$[.3496, .53392)[.53392, .67216)[.67216, .71824)$
$[.3496, .8104)$	$\#$			
$[.71824, .8104)$		100	0	
$[.43648,6208)$		-	1	
$[.37296, .7416)$		-	2	
$[.24592, .9832)$		0111		

The final code will be 001111000111 from the output column of table.

