
Ambo University

Multimedia System Compiled by Shemsu S 1

Chapter Seven

Lossless Compression Algorithms

7.1 Introduction
the emergence of multimedia technologies has made digital libraries a reality.

Nowadays, libraries, museums, film studios, and governments are converting

more and more data and archives into digital form. Some of the data (e.g.,

precious books and paintings) indeed need to be stored without any loss.

As a start, suppose we want to encode the call numbers of the 120 million or so

items in the Library of Congress (a mere 20 million, if we consider just books).

Why don't we just transmit each item as a 27-bit number, giving each item a

unique binary code (since 227 > 120,000, OOO)?

The main problem is that this "great idea" requires too many bits. And in fact

there exist many coding techniques that will effectively reduce the total number

of bits needed to represent the above information. The process involved is

generally referred to as compression

7.2 Basics of Information Theory
Information theory is defined to be the study of efficient coding and its

consequences. It is the field of study concerned about the storage and

transmission of data. It is concerned with source coding and channel coding.

Source coding: involves compression Channel coding: how to transmit data,

how to overcame noise, etc Data compression may be viewed as a branch of

information theory in which the primary objective is to minimize the amount of

data to be transmitted

Fig Info,nvh++rmation coding and transmission

Ambo University

Multimedia System Compiled by Shemsu S 2

Need for Compression

With more colors, higher resolution, and faster frame rates, you produce better

quality video, but you need more computer power and more storage space for

your video. Doing some simple calculations (see below) it can be shown that

with 24-bit color video, with 640 by 480 resolutions, at 30 fps, requires an

astonishing 26 megabytes of data per second! Not only does this surpass the

capabilities of the many home computer systems, but also overburdens existing

storage systems.

640 horizontal resolution

X= 480 vertical resolution

The calculation shows space required for video is excessive. For video, the way

to reduce this amount of data down to a manageable level is to compromise on

the quality of video to some extent. This is done by lossy compression which

forgets some of the original data.

Compression Algorithms

Compression methods use mathematical algorithms to reduce (or compress)

data by eliminating, grouping and/or averaging similar data found in the signal.

Different Although there are various compression methods, including Motion

JPEG, only MPEG-1 and MPEG-2 are internationally recognized standards for

the compression of moving pictures (video).

A simple characterization of data compression is that it involves transforming a

string of characters in some representation (such as ASCII) into a new string

(of bits, for example) which contains the same information but whose length is

as small as possible.

Ambo University

Multimedia System Compiled by Shemsu S 3

Data compression has important application in the areas of data transmission

and data storage. The proliferation of computer communication networks is

resulting in massive transfer of data over communication links. Compressing

data to be stored or transmitted reduces storage and/or communication costs.

When the amount of data to be transmitted is reduced, the effect is that of

increasing the capacity of the communication channel. Lossless compression is

a method of reducing the size of computer files without losing any information.

That means when you compress a file, it will take up less space, but when you

decompress it, it will still have the exact same information. The idea is to get

rid of any redundancy in the information, this is exactly what happens is used

in ZIP and GIF files. This differs from lossy compression, such as in JPEG files,

which loses some information that isn't very noticeable. Why use lossless

compression?

You can use lossless compression whenever space is a concern, but the

information must be the same. An example is when sending text files over a

modem or the Internet. If the files are smaller, they will get there faster.

However, they must be the same as that you sent at destination. Modem uses

LZW compression automatically to speed up transfers.

There are several popular algorithms for lossless compression. There are also

variations of most of them, and each has many implementations. Here is a list

of the families, their variations, and the file types where they are implemented:

Ambo University

Multimedia System Compiled by Shemsu S 4

Variable Length Encoding

Claude Shannon and R.M. Fano created the first compression algorithm in the

1950's. This algorithm assigns variable number of bits to letters/symbols.

Shannon-Fano Coding

Let us assume the source alphabet S={X1,X2,X3,…,Xn} and

Associated probability P={P1,P2,P3,…,Pn}

The steps to encode data using Shannon-Fano coding algorithm is as follows:

Order the source letter into a sequence according to the probability of

occurrence in nonincreasing order i.e. decreasing order.

ShannonFano(sequence s)

If s has two letters

Attach 0 to the codeword of one letter and 1 to the codeword of another;

Else if s has more than two letter

Divide s into two subsequences S1, and S2 with the minimal difference between

probabilities of each subsequence;

extend the codeword for each letter in S1 by attaching 0, and by attaching 1 to each

codeword for letters in S2;

ShannonFano(S1);

ShannonFano(S2);

Example: Suppose the following source and with related probabilities

S={A,B,C,D,E}

P={0.35,0.17,0.17,0.16,0.15}

Message to be encoded=”ABCDE”

The probability is already arranged in non-increasing order. First we divide the
message
into AB and CDE. Why? This gives the smallest difference between the total
probabilities of the two groups.
S1={A,B} P={0.35,0.17}=0.52
S2={C,D,E} P={0.17,0.17,0.16}=0.46
The difference is only 0.52-0.46=0.06. This is the smallest possible difference when
we
divide the message.
Attach 0 to S1 and 1 to S2.
Subdivide S1 into sub groups.
S11={A} attach 0 to this S12={B}
attach 1 to this

Ambo University

Multimedia System Compiled by Shemsu S 5

Again subdivide S2 into subgroups considering the probability again.
S21={C} P={0.17}=0.17
S22={D,E} P={0.16,0.15}=0.31
Attach 0 to S21 and 1 to S22. Since S22 has more than one letter in it, we have to
subdivide it.
S221={D} attach 0
S222={E} attach 1

Fig Shannon-Fano coding tree
The message is transmitted using the following code (by traversing the tree)
A=00 B=01
C=10 D=110 E=111
Instead of transmitting ABCDE, we transmit 000110110111
Dictionary Encoding
Dictionary coding uses groups of symbols, words, and phrases with corresponding
abbreviation. It transmits the index of the symbol/word instead of the word itself.
There
are different variations of dictionary based coding:
LZ77 (printed in 1977)
LZ78 (printed in 1978)
LZSS
LZW (Lempel-Ziv-Welch)
LZW Compression
LZW compression has its roots in the work of Jacob Ziv and Abraham Lempel. In
1977,
they published a paper on "sliding-window" compression, and followed it with
another
paper in 1978 on "dictionary" based compression. These algorithms were named
LZ77
and LZ78, respectively. Then in 1984, Terry Welch made a modification to LZ78
which
became very popular and was called LZW
The Concept

Many files, especially text files, have certain strings that repeat very often, for

example " the ". With the spaces, the string takes 5 bytes, or 40 bits to encode. But

what if we were to add the whole string to the list of characters? Then every time we

came across " the ",we could send the code instead of 32,116,104,101,32.

This would take less no of bits.

Ambo University

Multimedia System Compiled by Shemsu S 6

This is exactly the approach that LZW compression takes. It starts with a dictionary of

all the single character with indexes 0-255. It then starts to expand the dictionary as

information gets sent through. Then, redundant strings will be coded, and

compression has occurred.

The Algorithm:

LZWEncoding()

Enter all letters to the dictionary;

Initialize string s to the first letter from the input;

While any input is left read

symbol c; if s+c exists in the

dictionary s = s+c;

else

output codeword(s); //codeword for s

enter s+c to dictionary;

s =c;

end loop output

codeword(s);

Example: encode the ff string “aababacbaacbaadaa”

The program reads one character at a time. If the code is in the dictionary, then it adds

the character to the current work string, and waits for the next one. This occurs on the

first character as well. If the work string is not in the dictionary, (such as when the

second character comes across), it adds the work string to the dictionary and sends

over the wire the works string without the new character. It then sets the work string

to the new character.

Example:

Encode the message aababacbaacbaadaaa using the above algorithm

Encoding : Create dictionary of letters found in the message

Ambo University

Multimedia System Compiled by Shemsu S 7

S is initialized to the first letter of message a (s=a)

Read symbol to c, and the next symbol is a (c=a)

Check if s+c (s+c=aa) is found in the dictionary (the one created above in step 1).

It is not found. So add s+c(s+c=aa) to dictionary and output codeword for s(s=a).

The code for a is 1 from the dictionary. Then initialize s to c (s=c=a).

Read the next letter from message to c (c=b)

Check if s+c (ab) is found in the dictionary. It is not found. Then, add s+c (s+c=ab)

into dictionary and output code for c (c=b). The codeword is 2. Then initialize s to c

(s=c=b)

Read the next letter to c (c=a).

Check if s+c (s+c=ba) is found in the dictionary. It is not found.

Then add s+c (s+c=ba)

to the dictionary. Then output the codeword for s (s=b). It is 2.

Then initialize s to c (s=c=b)

Ambo University

Multimedia System Compiled by Shemsu S 8

Read the next message to c (c=a). Then check if s+c (s+c=ab) is found in the
dictionary.
It is there. Then initialize s to s+c (s=s+c=ab).
Read again the next letter to c (c=a). Then check if s+c (s+c=aba) is found in the
dicitionary. It is not there. Then transmit codeword for s (s=ab).
The code is 6. Initialize s to c(s=c=a)

Again read the next letter to c and continue the same way till the end of message. At
last you will have the following encoding table.

Ambo University

Multimedia System Compiled by Shemsu S 9

Table encoding string
Now instead of the original message, you transmit their indexes in the dictionary. The
code for the message is 1126137911451
Decompression
The algorithm:
LZWDecoding()
Enter all the source letters into the dictionary;
Read priorCodeword and output one symbol corresponding to it;
While codeword is still left
read Codeword;
PriorString = string (PriorCodeword);
If codeword is in the dictionary
Enter in dictionary PriorString + firstsymbol(string(codeword));
output string(codeword);
else
Enter in the dictionary priorString +firstsymbol(priorString);
Output priorString+firstsymbol(priorstring); priorCodeword=codeword;
end loop
The nice thing is that the decompressor builds its own dictionary on its side, that
matches
exactly the compressor’s dictionary, so that only the codes need to be sent.

Ambo University

Multimedia System Compiled by Shemsu S 10

Example:
Let us decode the message 1126137911451.
We will start with the following table

Read the first code. It is 1. Output the corresponding letter a

Read the next code. It is 1 and it is found in the dictionary. So add aa to the dictionary
and output a again.

Read the next code which is 2. It is found in the dictionary. We add ab to dictionary
and output b.

Ambo University

Multimedia System Compiled by Shemsu S 11

Read the next code which is 6. It is found in the dictionary. Add ba to dictionary and
output ab

Read the next code. It is 1. 1 is found in the dictionary. Add aba to the dictionary and
output a

Ambo University

Multimedia System Compiled by Shemsu S 12

Read the next code. It is 3 and it is found in the dictionary. Add ac to dictionary and
output c.
Continue like this till the end of code is reached. You will get the following table:

The decoded message is aababacbaacbaadaaa
Huffman Compression
When we encode characters in computers, we assign each an 8-bit code based on an
ASCII chart. But in most files, some characters appear more often than others. So
wouldn't it make more sense to assign shorter codes for characters that appear more
often and longer codes for characters that appear less often? D.A. Huffman published
a paper in 1952 that improved the algorithm slightly and it soon superceded
Shannon-Fano coding with the appropriately named Huffman coding.

Huffman coding has the following properties:
Codes for more probable characters are shorter than ones for less probable characters.
Each code can be uniquely decoded
To accomplish this, Huffman coding creates what is called a Huffman tree, which is a
binary tree.
First count the amount of times each character appears, and assign this as a
weight/probability to each character, or node. Add all the nodes to a list.
Then, repeat these steps until there is only one node left:
 Find the two nodes with the lowest weights.
 Create a parent node for these two nodes. Give this parent node a weight of

the sum of the two nodes.
 Remove the two nodes from the list, and add the parent node.

This way, the nodes with the highest weight will be near the top of the tree, and have
shorter codes

Ambo University

Multimedia System Compiled by Shemsu S 13

Algorithm to create the tree
Assume the source alphabet S={X1, X2, X3, …,Xn} and
Associated Probabilities P={P1, P2, P3,…, Pn}
Huffman()
For each letter create a tree with single root node and order all trees according to the
probability of letter of occurrence;
while more than one tree is left take two trees t1, and t2 with the lowest probabilities
p1,
p2 and create a tree with
probability in its root equal to p1+p2 and with t1 and t2 as its subtrees;
associate 0 with each left branch and 1 with each right branch;
create unique codeword for each letter by traversing the tree the root to the leaf
containing the probability corresponding to this letter and putting all encountered 0s
and
1s together;

Example: Suppose the following source and related probability
S={A,B,C,D,E}
P={0.15,0.16,0.17,0.17,0.35}
Message=”abcde”

Fig Huffman tree

To read the codes from a Huffman tree, start from the root and add a 0 every time you

go left to a child, and add a 1 every time you go right. So in this example, the code for

the character b is 01 and the code for d is 110.

As you can see, a has a shorter code than d. Notice that since all the characters are at

the leafs of the tree, there is never a chance that one code will be the prefix of another

one

(eg. a is 01 and b is 011). Hence, this unique prefix property assures that each code

can be uniquely decoded

The code for each letter is:
a=000 b=001 c=010 d=011
e=1

Ambo University

Multimedia System Compiled by Shemsu S 14

The original message will be encoded to:

abcde=0000010100111

To decode the message coded by Huffman coding, a conversion table had to be

known by the receiver. Using this table, a tree can be constructed with the same path

as the tree used for coding. Leaves store the same path as the tree used for coding.

Leaves store letters instead of probabilities for efficiency purpose.

The decoder then can use the Huffman tree to decode the string by following the paths

according to the string and adding a character every time it comes to one

Fig Huffman tree

The Algorithm

Move left if you get 0

Move right if you get 1

If you get letter (reach leaf node) output that letter.

Go back and start from root again with the remaining code.

Using this algorithm and the above decoding tree, let us decode the encoded message

0000010100111 at destination.

0-move left

0-move left again

0-move left again, and we have reached leaf. Output the letter on the leaf node which

is a.

Go back to root.

0-move left

0-move left

1-move right, and we have reached the leaf. Output letter on the leaf and it is b.

Go back to root.

Ambo University

Multimedia System Compiled by Shemsu S 15

0-move left

1-move right

0-move left, and we reach leaf. Output letter found on the leaf which is c.

Go back to root.

0-move left

1-move right

1-move right, and we reach leaf. Output letter on leaf which is d.

Go back to root.

1-move right, and we reach leaf node. Output the letter on the node which is e. Now

we have finished i.e. no more code remains. Display the letters output as message.

Abcde

How can the encoder let the decoder know which particular coding tree has been

used?

Two ways:

i) Both agree on particular Hufmann tree and both use it for sending any message ii)

The encoder constructs Huffman tree afresh every time a new message is sent and

sends the conversion table along with the message. This is more versatile, but has

additional overload—sending conversion table. But for large data, there is the

advantage. It is also possible to create tree for pairs of letters. This improves

performance.

Example:

S={x, y, z}

P={0.1, 0.2, 0.7}

To get the probability of pairs, multiply the probability of each letter.

xx=0.1*0.1=0.01 xy=0.1*0.2=0.02 xz=0.1*0.3=0.07

yx=0.2*0.1=0.02 yy=0.2*0.2=0.04 yz=0.2*0.7=0.14

zx=0.7*0.1=0.07 zz=0.7*0.7=0.49 zy=0.7*0.2=0.14

Using these probabilities, you can create Huffman tree of pairs the same way as we

did previously.

Arithmetic Coding

The entire data set is represented by a single rational number, whose value is between

0 and 1. This range is divided into sub-intervals each representing a certain symbol.

The number of sub-intervals is identical to the number of symbols in the current set of

symbols and the size is proportional to their probability of appearance.

Ambo University

Multimedia System Compiled by Shemsu S 16

For each symbol in the original data a new interval division takes place, on the basis

of the last subinterval.

Algorithm:

ArithmeticEncoding(message)

CurrentInterval=[0,1); //includes 0 but not 1

while the end of message is not reached

read letter Xi from message;

divide the CurrentInterval into SubInterval IRcureentInterval;

CurrentInterval=SubIntervali in CurrentInterval;

Output bits uniquely identifying CurrentInterval;

Assume the source alphabet s={X1, X2, X3,…, Xn} and associated probability of

P={p1,

p2, p3,…, pn}

To calculate sub interval of current interval [L,R], use the following formula

IR[L,R]={[L, L+(R-L)*P1],[L+(R-L)*P1, L+(R-L)*P2],[L+(R-L)*P2,
L+(R-L)*P3],…,

[L+(R-L)*Pn-1, L+(R-L)*P1)}

Cumulative probabilities are indicated using capital P and single probabilities are

indicated using small p.

Example:

Encode the message abbc# using arithmetic encoding.

s={a,b,c,#} p={0.4,0.3,0.1,0.2}

At the beginning CurentInterval is set to [0,1). Let us calculate subintervals of [0,1).

First let us get cumulative probability Pi

P1=0.4

P2=0.4+0.3=0.7

P3=0.4+0.3+0.1=0.8

P4=0.4+0.3+0.1+0.2=1

Ambo University

Multimedia System Compiled by Shemsu S 17

Next calculate subintervals of [0,1) using the formula given above.

IR[0,1]={[0,0+(1-0)*0.4),[0+(1-0)*0.4, 0+(1-0)*0.7), [0+(1-0)*0.7, 0+(1-0)*0.8),

[0+(1-0)*0.8, 0+(1-0)*1)}

IR[0,1]={[0,0.4),[0.4,0.7),[0.7,0.8),[0.8,1)} - four subintervals

Now the question is, which one of the SubIntervals will be the CurrentInterval? To

determine this, read the first letter of the message. It is a. Look where a is found in the

source alphabet. It is found at the beginning. So the next CurrentInterval will be [0,4)

which is also found at the beginning in the SubIntervals.

Again let us calculate the SubIntervals of CurrentInterval [0,0.4). The cumulative

probability does not change i.e. the same as previous.

IR[0,0.4]={[0,0+(0.4-0)*0.4),[0+(0.4-0)*0.4, 0+(0.4-0)*0.7),[0+(0.4-0)*0.7,

0+(0.40)*0.8), [0+(0.4-0)*0.8, 0+(0.4-0)*1)}

IR[0,0.4]={[0,0.16),[0.16,0.28),[0.28,0.32),[0.32,0.4)}.

Which interval will be the next CurrentInterval? Read the next letter from message. It

is b. B is found in the second place in the source alphabet list. The next

CurrentInterval will be the second SubInterval i.e [0.16,0.28).

Continue like this till there is letter left in the message. You will get the following

result:

IR[0.16,0.28]={[0.16,0.208),[0.208,0.244),[0.244,0.256),[0.256,0.28)}. Next

IR[0.208,0.244]={[0.208,0.2224),[0.2224,0.2332),[0.2332,0.2368),[0.2368,0.242).

Next

IR[0.2332,0.2368]={[0.2332,0.23464),[0.23464,0.23572),[0.23572,0.23608),[0.23608,

0.2368)}

We are done because no more letter remained in the message. The last letter read was

#.

It is the fourth letter in source alphabet. So take the fourth SubInterval as

CurrentInterval

i.e [0.23608, 0.2368]. Now any number between the last CurrentInterval is sent as the

message. So you can send 0.23608 as the encoded message or any number between

0.23608, and 0.2368.

Diagrammatically, calculating SubIntervals look like this

Ambo University

Multimedia System Compiled by Shemsu S 18

Fig sub interval and current interval

DecodingAlgorithm:

ArithmeticDecoding(codeword)

CurrentInterval=[0,1];

While (1)

Divide CurrentInterval into SubIntervals IRcurrentInterval;

Determine the SubIntervali of CurrentInterval to which the codeword belongs;

Output letter Xi corresponding to this SubInterval;

If end of file Return;

CurrentInterval=SubIntervali in IRcurrentInterval; End

of while

Example:

Decode 0.23608 which we previously encoded.

To decode the source alphabet and related probability should be known by destination.

Let us use the above source and probability.

s={a,b,c,#} p={0.4,0.3,0.1,0.2}

Ambo University

Multimedia System Compiled by Shemsu S 19

First set CurrentInterval to [0,1], and then calculate SubInterval for it. The formula to

calculate the SubInterval is the same to encoding. The cumulative probabilities are:

P1=0.4

P2=0.4+0.3=0.7

P3=0.4+0.3+0.1=0.8

P4=0.4+0.3+0.1+0.2=1

IR[0,1]={[0,0+[1-0]*0.4),[0+[1-0]*0.4, 0+[1-0]*0.7),[0+[1-0]*0.7, 0+[1-0]*0.8),

[0+[1-0]*0.8, 0+[1-0]*1)}

IR[0,1]={[0,0.4),[0.4,0.7),[0.7,0.8),[0.8,1)}. Now check in which SubInterval the

encode

message falls. It falls in the first SubInterval i.e [0,0.4]. Output the first letter from

source

alphabet. It is a. Set CurrentInterval to [0,0.4]

IR[0,0.4]={[0,0+(0.4-0)*0.4),[0+(0.4-0)*0.4, 0+(0.4-0)*0.7),[0+(0.4-0)*0.7, 0+(0.4-

0)*0.8), [0+(0.4-0)*0.8, 0+(0.4-0)*1)}

IR[0,0.4]={[0,0.16),[0.16,0.28),[0.28,0.32),[0.32,0.4)}. Again check where 0.23608

falls.

It falls in the second SubInterval i.e [0.16,0.28]. Set CurrentInterval to this

SubInterval.

Output the second letter from source alphabet. It is b.

IR[0.16,0.28]={[0.16,0.208),[0.208,0.244),[0.244,0.256),[0.256,0.28)}. 0.23608 falls

in

the second SubInterval. Output the second letter from source alphabet. It is b.

IR[0.208,0.244]={[0.208,0.2224),[0.2224,0.2332),[0.2332,0.2368),[0.2368,0.242).

falls

in the third SubInterval. Output the third letter from source alphabet. It is c.

IR[0.2332,0.2368]={[0.2332,0.23464),[0.23464,0.23572),[0.23572,0.23608),[0.23608,

0.2368)}. 0.23608 falls in the fourth SubInterval. Output fourth letter which is #. Now

end of the message has been reached.

Disadvantage: arithmetic precision of computer is soon suppressed and hence large

message can’t be encoded

Ambo University

Multimedia System Compiled by Shemsu S 20

Implementation of Arithmetic Coding

To solve the above disadvantage, arithmetic coding is implemented as follows

Ambo University

Multimedia System Compiled by Shemsu S 21

Example:

Encode the message abbc#.

s={a,b,c,#} p={0.4,0.3,0.1,0.2}

The final code will be 001111000111 from the output column of table.

	Chapter Seven

