

INTRODUCTION

TO ALGORITHMS

A Creative Approach

INTRODUCTION

TO ALGORITHMS

A Creative Approach

UDIMANBER
University of Arizona

\342\226\274\342\226\274

ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts \342\200\242Menlo Park, California \342\200\242New York

Don Mills, Ontario \342\200\242
Wokingham, England \342\200\242Amsterdam

Bonn \342\200\242
Sydney

\342\200\242
Singapore

\342\200\242
Tokyo

\342\200\242Madrid \342\200\242San Juan

Library of Congress Cataloging-in-PublicationData

Manber, Udi.

Introduction to algorithms.

Includes bibliographiesand index.

1. Data structures (Computer science)
2. Algorithms.

I. Title.

QA76.9.D35M36 1989 005.7 ' 3 88-2186
ISBN 0-201-12037-2

Reproduced by Addison-Wesley from camera-ready copysuppliedby the author.

The programs and applications presented in this book have been included for their

instructional value. They have been tested with care, but are not guaranteed for any

purpose. The publisher does not offer any warranties or representation, nor does it accept

any liabilities with respect to the programs or applications.

Reprinted with corrections October, 1989

Copyright \302\2511989 by Addison-Wesley Publishing Company Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval

system, or transmitted, in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without prior written permission of the publisher.

Printed in the United States of America. Published simultaneously in Canada.

EFGHIJ-DO-943210

To my parents Eva and Meshulam

PREFACE

This book grew out of my frustrations with not being able to explain algorithms clearly.
Likemany other teachers, I discovered that not only is it hard for some students to solve

(what seemed to me) simple problemsby themselves, but it is also hard for them to

understand the solutions that are given to them. I believe that these two parts \342\200\224the

creation and the explanation
\342\200\224are related and should not be separated. It is essential to

follow the steps leading to a solution in order to understand it fully. It is not sufficient to

look at the finished product.

This book emphasizes the creative side of algorithm design. Its main purpose is to

show the reader how to design a new algorithm. Algorithms are not described in a

sequence of '
'problem X, algorithm A, algorithm A\\ program P, program P\\\" and so on.

Instead, the sequence usually (although not always) looks more like \"problem X, the

straightforward algorithm, its drawbacks, the difficulties overcoming these drawbacks,

first attempts at a better algorithm (including possible wrong turns), improvements,

analysis, relation to other methods and algorithms,\" and so on. The goal is to presentan

algorithm not in a way that makes it easier for a programmer to translate into a program,
but rather in a way that makes it easier to understand the algorithm's principles. The

algorithms are thus explained through a creativeprocess,rather than as finished products.
Our goals in teaching algorithms are to show not only how to solve particular problems,

but also how to solve new problems when they arise in the future. Teaching the thinking

involved in designing an algorithm is as important as teaching the details of the solution.

To further help the thinking process involved in creating algorithms, an

\"old-new\" methodology for designing algorithms is used in this book. This
methodology covers many known techniques for designing algorithms, and it also

provides an elegant intuitive framework for explaining the design of algorithms in more

depth. It does not, however, cover all possible ways of designing algorithms, and we do
not use it exclusively. The heart of the methodology lies in an analogy between the
intellectual process of proving mathematical theorems by induction and that of designing
combinatorial algorithms. Although these two processes serve different purposes and

achieve different types of results, they are more similar than they may appear to be. This
analogy has been observed by many people. The novelty of this book is the degree to

which this analogy is exploited. We show that the analogy encompasses many known

algorithm-design techniques,and helps considerably in the process of algorithm creation.

The methodology is discussed briefly in Chapter 1 and is introduced more formally in

Chapter 5.

vi Preface

Consider the following analogy. Suppose that you arrive at an unfamiliar city, rent

a car, and want directions to get to your hotel. You would be quite impatient if you were

told about the history of the city, its general layout, the traffic patterns, and so on. You

would rather have directions of the form \"go straight for two blocks, turn right, go

straight for three miles,\" and so on. However, your outlook would change if you

planned to live in that city for a long time. You could probably get around for a while

with directions of the second form (if you find someone who gives you those directions),

but eventually you will need to know more about the city. This book is not a source of

easy directions. It does contain explanations of how to solve many particular problems,
but the emphasis is on general principles and methods. As a result, the book is

challenging. It demands involvement and thinking. I believe that the extra effort is well

worthwhile.

The design of efficient nonnumeric algorithms is becoming important in many

diverse fields, including mathematics, statistics, molecular biology, and engineering.

This book can serve as an introduction to algorithms and to nonnumeric computations in

general. Many professionals, and even scientists not deeply involved with computers,

believe that programming is nothing more than grungy nonintellectual work. It

sometimes is. But such a beliefmay lead to straightforward, trivial, inefficient solutions,

where elegant, more efficient solutions exist. One goal of this book is to convince
readersthat algorithm design is an elegant discipline, as well as an important one.

The bookis self-contained. The presentation is mostly intuitive, and technicalities

are either kept to a minimum or are separated from the main discussion. In particular,
implementation details are separated from the algorithm-design ideas as much as

possible. There are many examples of algorithms that were designed especially to

illustrate the principles emphasized in the book. The material in this book is not

presented as something to be mastered and memorized. It is presented as a series of
ideas, examples, counterexamples, modifications, improvements, and so on.
Pseudocodesfor most algorithms are given following the descriptions. Numerous exercises and
a discussionof further reading, with a relevant bibliography, follow each chapter. In

most chapters, the exercises are divided into two classes, drill exercises and creative
exercises. Drill exercises are meant to test the reader's understanding of the specific
examplesand algorithms presented in that chapter. Creative exercisesare meant to test
the reader's ability to use the techniques developed in that chapter, in addition to the

particular algorithms, to solve new problems. Sketches of solutions to selected exercises
(those whose numbers are underlined) are given at the end of the book. The chapters
also include a summary of the main ideas introduced.

The book is organizedas follows. Chapters 1 through 4 present introductory
material. Chapter 2 is an introduction to mathematical induction. Mathematical
induction is, as we will see, very important to algorithm design. Experience with
induction proofs is thereforevery helpful. Unfortunately, few computer-science students

get enough exposure to induction proofs. Chapter 2 may be quite difficult for some
students. We suggestskipping the more difficult examples at first reading, and returning
to them later. Chapter 3 is an introduction to the analysis of algorithms. It describes the

process of analyzing algorithms, and gives the basic toolsone needs to be able to perform

Preface vii

simple analysis of the algorithms presented in the book. Chapter 4 is a brief introduction

to data structures. Readers who are familiar with basic data structures and who have a

basic mathematical background can start directly from Chapter 5 (it is always a good idea
to read the introduction though). Chapter 5 presents the basic ideas behind the approach
of designing algorithms through the analogy to induction proofs. It gives several

examples of simple algorithms, and describes their creation. If you read only one chapter
in this book, read Chapter 5.

There are two basic ways to organize a book on algorithms. One way is to divide
the book according to the subject of the algorithms, for example, graph algorithms,

geometric algorithms. Another way is to divide the book according to design techniques.
Even though the emphasis of this book is on design techniques, I have chosenthe former

organization. Chapters 6 through 9 present algorithms in four areas: algorithms for

sequences and sets (e.g., sorting, sequence comparisons, data compression),graph

algorithms (e.g., spanning trees, shortest paths, matching), geometric algorithms (e.g.,
convex hull, intersection problems), and numerical and algebraic algorithms (e.g., matrix

multiplication, fast Fourier transform). I believe that this organization is clearer and

easier to follow.
Chapter 10 is devoted to reductions. Although examples of reductions appear in

earlier chapters, the subject is unique and important enough to warrant a chapter of its

own. This chapteralso servesas an opening act to Chapter 11, which deals with the

subject of NP-completeness.This aspect of complexity theory has become an essential

part of algorithm theory. Anyone who designs algorithms should know about NP-

completeness and the techniques for proving this property. Chapter 12is an introduction

to parallel algorithms. It contains several interesting algorithms under different models

of parallel computation.
The material in this book is more than can be covered in a one-semester course,

which leaves many choices for the instructor. A first course in algorithm design should

include parts of Chapters 3, 5, 6, 7, and 8 in some depth, although not necessarily all of

them. The more advanced parts of these chapters, along with Chapters 9, 10, 11, and 12,

are optional for a first course, and can be used as a basisfor a more advanced course.

Acknowledgments
First and foremost I thank my wife Rachel for helping me in more ways than I can list

here throughout this adventure. She was instrumental in the development of the

methodology on which the book is based. Shecontributed suggestions, corrections, and
\342\200\224more important than anything else \342\200\224sound advice. I could not have done it without

her.

Special thanks are due to Jan van Leeuwen for an excellent and thorough review of
a large portion of this book. His detailed comments, numerous suggestions, and many
corrections have improved the book enormously. I also thank Eric Bach, Darrah Chavey,
Kirk Pruhs, and Sun Wu, who read parts of the manuscript and made many helpful
comments, and the reviewers Guy T. Almes (Rice University), Agnes H. Chan

(Northeastern University), Dan Gusfield (University of California, Davis),David Harel

(Weizmann Institute, Israel), Daniel Hirschberg (University of California, Irvine),

viii Preface

Jefferey H. Kingston (University of Iowa), Victor Klee (University of Washington),

Charles Martel (University of California, Davis), Michael J. Quinn (University of New

Hampshire), and Diane M.Spresser(James Madison University).

I thank the people at Addison-Wesley who failed to supply pie with any examples
of horror stories that authors are so fond of telling. They were very helpful and

incredibly patient and understanding. In particular, I thank my production supervisor

Bette Aaronson, my editor Jim DeWolf, and my copy editor Lyn Dupr6, who not only

guided me but also let me do things my way even when they knew better. I also thank

the National Science Foundation for financial support, through a Presidential Young

Investigator Award, and AT&T, Digital Equipment Corporation, Hewlett Packard, and

Tektronix, for matching funds.

The book was designed and typeset by me. It was formatted in troff, and printed

on a Linotronic 300 at the Department of Computer Science, University of Arizona. I

thank Ralph Griswold for his advice, and John Luiten, Allen Peckham, and Andrey

Yeatts for technical help with the typesetting. The figures were preparedwith gremlin
\342\200\224

developed at the University of California,Berkeley\342\200\224
except for Fig. 12.22, which was

designed and drawn by Gregg Townsend. The index was compiled with the help of a

system by Bentley and Kernighan [1988]. I thank Brian Kernighan for supplying me the

code within minutes after I (indirectly) requestedit. The cover was done by Marshall

Henrichs, basedon an idea by the author.

I must stress, however, that the final manuscript was prepared by the typesetter.

He was the one who decided to overlook many comments and suggestions of the people

listed here. And he is the one who should bear the consequences.

Tucson, Arizona Udi Manber
(Internet address: udi@arizona.edu.)

CONTENTS

Chapter 1

Chapter2

Chapter 3

Introduction l

Mathematical Induction 9

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8

2.9

2.10

2.11

2.12
2.13
2.14

Introduction

Three Simple Examples

Counting Regions in the Plane

A Simple Coloring Problem
A More Complicated Summation Problem

A Simple Inequality

Euler's Formula
A Problem in Graph Theory
Gray Codes

Finding Edge-Disjoint Paths in a Graph
Arithmetic versus Geometric Mean Theorem

Loop Invariants: Converting a Decimal Number to Binary

Common Errors

Summary

Bibliographic Notes and Further Reading

Exercises

Analysis of Algorithms 37

3.1
3.2
3.3
3.4
3.5

3.6
3.7

Introduction

The 0 Notation

Time and SpaceComplexity

Summations

Recurrence Relations

3.5.1 Intelligent Guesses

3.5.2 Divide and Conquer Relations
3.5.3 Recurrence Relations with Full History
Useful Facts

Summary

Bibliographic Notes and Further Reading
Exercises

9
11
13
14
15
16
17
18
20
23
24

26

28

29

30
31

37
39
42
43
46
47
50
51
53
55
55
56

IX

x Contents

Chapter 4 Data Structures 61

4.1
4.2

Introduction

Elementary Data Structures

4.2.1 Elements

Arrays

Records

Linked Lists

4.3

4.2.2
4.2.3
4.2.4
Trees

4.3.1

4.3.2

4.3.3

4.3.4

4.4
4.5
4.6
4.7

Representation of Trees

Heaps

Binary Search Trees
AVL Trees

Hashing

The Union-Find Problem

Graphs
Summary

Bibliographic Notes and Further Reading
Exercises

Chapter 5 Designof Algorithms by Induction 91

5.1 Introduction

5.2 Evaluating Polynomials
5.3 Maximal InducedSubgraph

5.4 Finding One-to-One Mappings
5.5 The Celebrity Problem

5.6 A Divide-and-Conquer Algorithm: The Skyline Problem

5.7 Computing BalanceFactors in Binary Trees

5.8 Finding the Maximum Consecutive Subsequence
5.9 Strengthening the Induction Hypothesis
5.10 Dynamic Programming: The Knapsack Problem

5.11 Common Errors
5.12 Summary

Bibliographic Notes and Further Reading
Exercises

Chapter 6 Algorithms Involving Sequences and Sets 119

6.1 Introduction

6.2 Binary Search and Variations

6.3 Interpolation Search

6.4 Sorting

6.4.1 Bucket Sort and Radix Sort

6.4.2 Insertion Sort and Selection Sort

6.4.3 Mergesort

61
62
62
63
63
64
66
67
68
71
75

78

80

83

84

85
86

91
92
95
96
98

102
104
106
107

108

111

112

113
114

119
120
125
127
127
130
130

Contents xi

6.4.4 Quicksort 131
6.4.5 Heapsort 137
6.4.6 A Lower Bound for Sorting 141

6.5 Order Statistics 143

6.5.1 Maximum and Minimum Elements 143

6.5.2 Finding the fcth-Smallest Element 144

6.6 DataCompression 145

6.7 String Matching 148
6.8 SequenceComparisons 155

6.9 Probabilistic Algorithms 158
6.9.1 Random Numbers 160

6.9.2 A Coloring Problem 161
6.9.3 A Technique for Transforming Probabilistic

Algorithms into Deterministic Algorithms 161

6.10 Finding a Majority 164

6.11 Three ProblemsExhibiting Interesting Proof Techniques 167

6.11.1 LongestIncreasing Subsequence 167

6.11.2 Finding the Two Largest Elements in a Set 169

6.11.3 Computing the Mode of a Multiset 171
6.12 Summary 173

Bibliographic Notes and Further Reading 173

Exercises 175

Chapter 7 Graph Algorithms 185

7.1 Introduction 185

7.2 Eulerian Graphs 187

7.3 Graph Traversal 189
7.3.1 Depth-First Search 190

7.3.2 Breadth-First Search 198
7.4 Topological Sorting 199

7.5 Single-Source Shortest Paths 201

7.6 Minimum-Cost Spanning Trees 208
7.7 All Shortest Paths 212

7.8 Transitive Closure 214
7.9 Decompositions of Graphs 217

7.9.1 Biconnected Components 217
7.9.2 Strongly Connected Components 226

7.9.3 Examples of the Use of Graph Decomposition 230
7.10 Matching 234

7.10.1 Perfect Matching in Very Dense Graphs .234
7.10.2 Bipartite Matching 235

7.11 Network Flows 238
7.12 Hamiltonian Tours 243

7.12.1 Reversed Induction 244

xii Contents

7.12.2 Finding Hamiltonian Cycles in Very Dense Graphs
7.13 Summary

Bibliographic Notes and Further Reading
Exercises

Chapter 8 GeometricAlgorithms 265

8.1

8.2

8.3

8.4

8.5
8.6
8.7

Introduction

Determining Whether a Point Is Insidea Polygon

Constructing Simple Polygons
Convex Hulls

8.4.1 A Straightforward Approach
8.4.2 Gift Wrapping

8.4.3 Graham's Scan

Closest Pair
Intersectionsof Horizontal and Vertical Line Segments
Summary

Bibliographic Notes and Further Reading
Exercises

244
246
247
248

265
266
270
273

273

274

275

278

281
285
286
287

Chapter 9 Algebraic and Numeric Algorithms 293

9.1
9.2
9.3
9.4
9.5

9.6
9.7

Introduction

Exponentiation

Euclid's Algorithm
Polynomial Multiplication

Matrix Multiplication

9.5.1 Winograd's Algorithm

9.5.2 Strassen's Algorithm
9.5.3 Boolean Matrices
The Fast Fourier Transform

Summary
Bibliographic Notesand Further Reading

Exercises

Chapter 10 Reductions 321

10.1 Introduction

10.2 Examples of Reductions
10.2.1 A Simple String-Matching Problem

10.2.2 Systems of Distinct Representatives

10.2.3 A Reduction Involving Sequence Comparisons
10.2.4 Finding a Triangle in Undirected Graphs

10.3 Reductions Involving Linear Programming
10.3.1 Introduction and Definitions

10.3.2 Examples of Reductions to Linear Programming

293

294

297

298

301
301
301
304

309

316

316

317

321
323
323

323

324

325

327
327
329

Contents xiii

10.4 Reductions for Lower Bounds 331
10.4.1A Lower Bound for Finding Simple Polygons 331
10.4.2Simple Reductions Involving Matrices 333

10.5 Common Errors 334
10.6 Summary 336

Bibliographic Notes and Further Reading 336

Exercises 337

Chapter 11 NP-Completeness 341

11.1 Introduction 341

11.2 Polynomial-Time Reductions 342
11.3 Nondeterminism and Cook's Theorem 344
11.4 Examplesof NP-Completeness Proofs 347

11.4.1 Vertex Cover 348
11.4.2 Dominating Set 348

11.4.3 3SAT 350
11.4.4 Clique 351
11.4.53-Coloring 352

11.4.6 General Observations 355
11.4.7 More NP-Complete Problems 356

11.5 Techniques For Dealingwith NP-Complete Problems 357

11.5.1 Backtracking and Branch-and-Bound 358
11.5.2 Approximation Algorithms with Guaranteed

Performance 363
11.6 Summary 368

Bibliographic Notes and Further Reading 368

Exercises 370

Chapter 12 ParallelAlgorithms 375

12.1

12.2

12.3

12.4

Introduction

Models of Parallel Computation
Algorithms for Shared-Memory Machines

12.3.1 Parallel Addition

12.3.2 Maximum-Finding Algorithms
12.3.3 The Parallel-PrefixProblem

12.3.4 Finding Ranks in Linked Lists

12.3.5 The Euler's TourTechnique

Algorithms for Interconnection Networks
12.4.1 Sorting on an Array
12.4.2 Sorting Networks

12.4.3 Finding the fcth-SmallestElement on a Tree

12.4.4 Matrix Multiplication on the Mesh
12.4.5 Routing in a Hypercube

375

376
378
379
380
382
385

387

389

390

393
396
398
401

xiv Contents

12.5

12.6

References

Index

SystolicComputation

12.5.1 Matrix-Vector Multiplication
12.5.2 The Convolution Problem

12.5.3 Sequence Comparisons

Summary
Bibliographic Notesand Further Reading

Exercises

tions to Selected Exercises 417

445

465

404

404

405
407
409
409
411

CHAPTER 1

INTRODUCTION

Great importance has been rightly attached to this process
of \"construction,\" and some claim to see in it the

necessary and sufficient condition of the progress of the

exact sciences. Necessary, no doubt, but not sufficient!
For a construction to be useful and not mere waste of
mental effort, for it to serve as a stepping-stone to higher

things, it must first of all possess a kind of unity enabling us
to see something more than the juxtaposition of its

elements.

Henri Poincare, 1902

The Webster's Ninth New Collegiate dictionary defines an algorithm as \"a procedure for

solving a mathematical problem (as of finding the greatest common divisor) in a finite

number of steps that frequently involves a repetition of an operation; or broadly, a step-
by-stepprocedure for solving a problem or accomplishingsomeend.\"We will stick to

the broad definition. The design of algorithms is thus an old field of study. People have

always been interested in finding better methods to achieve their goals, whether those be

starting fires, building pyramids, or sorting the mail. The study of computer algorithms is

of course new. Some computer algorithms use methods developed before the invention

of computers, but most problemsrequire new approaches. For one thing, it is not enough
to tell a computer to \"look over the hill and sound the alarm if an army is advancing.\"
A computer must know the exact meaning of \"look,\" how to identify an army, and how

to sound the alarm (for some reason, sounding an alarm is always easy). A computer
receives its instructions via well-defined, limited primitive operations. It is a difficult

process to translate regular instructions to a language that a computer understands. This

necessary process,called programming, is now performed on one level or another by

millions of people.

2 Introduction

Programming
a computer, however, requires more than just translating well-

understood instructions to a language a computer can understand. In most cases, we need

to devise totally new methods for solving a problem. It is not just learning the weird

language in which we \"talk\" to a computer that makes it hard to program; it is knowing

what to say. Computers executenot only operations that were previously performed by

humans; with their enormous speed, computers can do much more than was ever

possible. Algorithms of the past dealt with dozens, maybe hundreds of items, and, at

most, with thousands of instructions. Computers can deal with billions, or even trillions,

of bits of information, and can perform millions of (their primitive) instructions per
second. Designing algorithms on this order of magnitude is something new. It is in

many respects counterintuitive. We are used to thinking in terms of things we can see

and feel. As a result, there is a tendency when designing an algorithm to use the

straightforward approach that works very well for small problems. Unfortunately,

algorithms that work well for small problemsmay be terrible for large problems. It is

easy to lose sight of the complexity and inefficiency of an algorithm when applied to

large-scalecomputations.

There is another aspect to this problem. The algorithms we perform in our daily

life are not too complicated and are not performed too often. It is usually not worthwhile

to expend a lot of effort to develop the perfect algorithm. The payoff is too small. For

example, consider the problem of unpacking grocery bags. There are obviously less
efficient and more efficient ways of doing it, depending on the contents of the bags and

the way the kitchen is organized. Few people spend time even thinking about this

problem, much less developing algorithms for it. On the other hand, people who do

large-scale commercial packing and unpacking must develop good methods. Another

example is mowing the lawn. We can improve the mowing by minimizing the number of
turns, the total time for mowing, or the length of the trips to the garbage cans. Again,
unless one really hates mowing the lawn, one would not spend an hour figuring out how

to save a minute of mowing. Computers, on the other hand, can deal with very

complicated tasks, and they may have to perform those tasks many times. It is

worthwhile to spend a lot of time designing better methods, even if the resulting

algorithms are more complicatedand harder to understand. The potential of a payoff is
much greater. (Of course,we should not overoptimize, spending hours of programming
time to save overall a few seconds of computer time.)

These two issues \342\200\224the need for counterintuitive approaches to large-scale
algorithms and the possible complexities of thesealgorithms

\342\200\224
point to the difficulties in

learning this subject. First, we must realize that straightforward intuitive methods are not

always the best. It is important to continue the search for better methods. To do that, we

need of course, to learn new methods. This book surveys and illustrates numerous

methods for algorithm design. But it is not enough to learn even a large number of

methods, just as it is not enough to memorize many games of chess in order to be a good
player. One must understand the principles behind the methods. One must know how to

apply them and, more important, when to apply them.
A design and implementation of an algorithm is analogous to a design and

Introduction 3

construction of a house. We start with the basic concepts, basedon the requirements for

the house. It is the architect's job to present a plan that satisfies the requirements. It is

the engineer's job to make sure that the plan is feasible and correct (so that the house will

not collapse after a short while). It is then the builder's job to construct the house based

on these plans. Of course,all along the way, the costs associatedwith each step must be

analyzed and taken into account. Each job is different, but they are all related and

intertwined. A design of an algorithm also starts with the basic ideas and methods.
Then,a plan is made. We must prove the correctness of the plan and make sure that its

cost is effective. The last step is to implement the algorithm for a particular computer.
Risking oversimplification, we can divide the process into four steps: design, proof of

correctness, analysis, and implementation. Again, each of these steps is different, but

they are all related. None of them can be made in a vacuum, without a regard to the

others. One rarely goes through these steps in linear order. Difficulties arise in all

phases of the construction. They usually require modifications to the design, which in

turn require another feasibility proof, adjustment of costs, and changeof implementation.

This book concentrates on the first step, the design of algorithms. Following our

analogy, the book could have been entitled The Architecture of Algorithms. However,

computer architecture has a different meaning, so using this term would be confusing.

The book does not, however, ignore all the other aspects. A discussion of correctness,

analysis, and implementation follows the description of most algorithms
\342\200\224in detail for

some algorithms, briefly for others. The emphasis is on methods of design.
It is not enough to learn many algorithms to be a good architect and to be able to

design new algorithms. One must understand the principles behind the design. We

employ a different way of explaining algorithms in this book. First, we try to lead the

reader to find his or her own solution; we strongly believe that the best way to learn how

to create something is to try to create it. Second, and more important, we follow a

methodology for designing algorithms that helps this creative process. The methodology,
introduced in Manber [1988], provides an elegant intuitive framework for explaining the

design of algorithms in more depth. It also provides a unified way to approach the

design. The different methods that are encompassed by this methodology, and their

numerous variations, are instances of the same technique. The process of choosing

among those many possible methods and applying them becomes more methodical.This

methodology does not cover all possible ways of designing algorithms. It is useful,

however, for a great majority of the algorithms in this book.

The methodology is based on mathematical induction. The heart of it lies in an

analogy between the intellectual process of proving mathematical theorems and that of

designing combinatorial algorithms. The main idea in the principle of mathematical

induction is that a statement need not be proven from scratch: It is sufficient to show that

the correctness of the statement follows from the correctness of the same statement for

smaller instances and the correctness of the statement for a small basecase. Translating

this principle to algorithm design suggestsan approach that concentrates on extending

1
The two wonderful books by Tracy Kidder, The Soul of a New Machine (Little Brown, 1981), and House

(Houghton Mifflin, 1985), inspired this analogy.

4 Introduction

solutions of small problems to solutions of large problems. Given a problem, if we can

show how to solve it by using a solution of the same problem for smaller inputs, then we

are done. The basic idea is to concentrate on extending a solution rather than on building

it from scratch. As we will show in the following chapters, there are many ways of doing

this, leading to many algorithm design techniques.

We use mathematical induction mainly as a tool for explaining and designing

high-level algorithms. We make little attempt to formalize or axiomizethe approach.

This has been done by several people, including Dijkstra [1976], Manna [1980], Gries

[1981], Dershowitz [1983], and Paull [1988], among others. This book complements
these other books. Our goal is mainly pedagogical, but of course whenever something

can be explained better it is usually understood better. Among the proof techniques we

discuss are strengthening the induction hypothesis, choosing the induction sequence

wisely, double induction, and reverse induction. The significance of our approach is

two-fold. First, we collect seemingly different techniques of algorithm design under one

umbrella; second, we utilize known mathematical proof techniques for algorithm design.

The latter is especially important, since it opens the door to the use of powerful

techniques that have been developed for many years in another discipline.
One notable weaknessof this approach is that it is not a universal approach. Not

all algorithms can or should be designed with induction in mind. However, the principle
of induction is so prevalent in the design of algorithms that it is worthwhile to

concentrate on it. The other principles are not ignored in this book. A common criticism

of almost any new methodology is that, although it may present an interesting way to

explain things that were already created, it is of no help in creating them. This is a valid

criticism, since only the future will tell how effective a certain methodology is and how

widely used it becomes. I strongly believe that induction is not only just another tool for

explaining algorithms, but it is necessary in order to understand them. Personally, even
though I had a good experience in developing algorithms without following this

methodology, I found it helpful, and, at least in two cases, it led me to develop new

algorithms more quickly (Manber and McVoy [1988], Manber and Myers [1989]).

Notation for Describing Algorithms
In addition to describing the algorithms through the creative process of their

development, we also include pseudocodes for many algorithms. The purpose of

including programs is to enhance the descriptions. We have not made a great effort to

optimize the programs, and we do not recommend simply copying them. In some cases,

we made a consciousdecisionnot to include the most optimized version of the program,

because it introduces additional complexity, which distracts from the main ideas of the

algorithm. We sometimesdo not explain in detail how we translate the algorithmic ideas
into a program. Such translations sometimes are obvious and sometimes are not. The

emphasis in this book, as we mentioned, is on the principles of algorithm design.

For the most part, we use a Pascal-like language (sometimes even pure Pascal). In

many cases, we include high-level descriptions(such as \"insert into a table,\" or \"check
whether the set is empty\") inside a Pascal code to make it more readable. One notable
exceptionwe make to the rules of Pascal is the use of begin and end to encompass

Exercises 5

blocks. We include these statements only at the beginning and end of the programs, and

let the indentation separate the blocks. This convention saves space without causing

ambiguities. We usually do not include precise declarations of variables and data types

in cases where such declarations are clear(e.g.,we may say that G is a graph, or that T is

a tree).

Exercises

Exerciseswhose numbers are underlined have solutions at the back of the book. Exercisesthat are

marked by a star are judged by the author to be substantially more difficult than other exercises.

Theexercisesin this chapter do not require any previous knowledge of algorithms. They address

relatively simple problems for specific inputs. The reader is asked to find the answers by hand.

The main purpose of these exercises is to illustrate the difficulty in dealing with a very large
number of possibilities. In other words, one of the goals of these exercises is to cause frustration

with straightforward methods. The problems given here will be discussed in the following

chapters.

1.1 Write down the numbers 1 to 100 each on a separate card. Shuffle the cards and rearrange

them in order again.

1.2 Write down the following 100 numbers each on a separate card and sort the cards. Think
about the differences between this exercise and Exercise 1.1.

32918 21192 11923423388231 8312 11 72 971 82342223849283 3295

29347 3102 32883 20938293016823 9234 9236 29372 2218 922221202
83721 9238 8221 30234 93920 811021011181522831 29133 9229 10039

9235 48395283237927 73492 8402 48201 38024 2800321552273 82930

2221 3841 311 30223809929920 28349 74212 7011 182390329919335

29123 28910 29281 3772 200127045830572 38013 72032 28001 83835
3017 9262673825 29263 2017 262 8362 77302 85933826 9374 2001

83261 48402 4845 79794 27271 3999222836 444 2937 37201 37322
49472113292253

1.3 Consider the following list of numbers. Your job is to erase as few of those numbers as

possible such that the remaining numbers appear in increasing order. For example,erasing

everything except the first two numbers leaves an increasing sequence; erasing everything

except for first, third, sixth, and eighth numbers, does the same (but fewer numbers are

erased).

9 44 32 12 7 42 34 92 3537 41 8 20 27 83 6461 28 39 93 29 17 13 1455

21 66 72 23 7399 1 2 88 77 3 65 8384 62 5 11 74 68 76 78 67 756970 22

7124 25 26

1 -4 Solve Exercise 1.3, such that the remaining numbers are in decreasing order.

1-5 Suppose that in a strange country there are five types of coins with denominations of 15, 23,
29, 41,and 67 (all cents). Find a combination of these coins to pay the sum of 18dollars

and 8 cents (1808 cents).You have enough coins of each type in your pocket.

Introduction

The input is a list of pairs of integers given below. The meaning of a pair (jt, y) is that x is

waiting for an answer from y. When x is waiting, it cannot do anything else, and, in

particular, it cannot answer any questions from others that may be waiting for it. The

problem is to find a sequence of pairs (x | jc2), (x2 x^), \342\200\242\342\200\242
\342\200\242,(**_, xk\\ (xk x |), for some k > 1

(any k will do). If such a sequenceexists,then there is a deadlock. No one can proceed,

since everyone is waiting for someone else.

You can use a pencil and a piece of paper, and make any kind of computation, involving

numbers (e.g., comparisons, creating tables); however, you cannot draw any kind of a

figure. (You may draw figures, unrelated to this particular input, to help you design a

general method of solving such a problem.)

I 16, 2 21, 2 25, 2 22,23 50, 23 47, 24 1,25 10,35 7, 36 45, 36 37,3842,

39 41, 12 37, 1223,123, 12 20, 14 25,41 9, 423, 43 5,43 22, 29 2, 3048,

31 15,32 17,6 45,6 1,5 35,520,528,511,484,48 10,49 32,7 31,7 4,
5 33,6 29,6 12, 6 11, 6 3, 6 17,4527, 47 34, 48 20, 7 40, 7 34, 8 11, 9 19,
II 30, 11 4, 11 22, 1125,20 24, 21 23, 21 46, 2247, 23 49, 3 39, 3 34,4
14,4 37, 5 42, 5 8, 15 2, 1550,154, 1537, 16 13, 17 38, 1828,198, 26

15, 26 42, 27 18,28 35, 13 36, 13 50, 1334, 13 22, 29 34, 29 38,29 30, 29

16, 44 33,44 36, 44 7, 44 3, 44 32,44 21, 33 9, 33 21,3335, 33 19, 33 41,
26 10,2644,2616,2639,2617

The input is the two-dimensional 15by 15 table given in Fig. 1.1. The /th row and the /th

column (for any /) correspond to the same place. Each entry in the table indicates the direct

distance between the places in the corresponding row and column. The \"-\"
symbol

indicates that there is no direct link between the two places. The direct distance may not be
the shortest distance. There may be a shorter path between two places going through a third

place (or several places). For example, the shortest route between 1 and 6 is through 5 and

12. Find the shortest route between 1 and 15, between 4 and 3, and between 15 and 8.

Consider the table in Fig. 1.1. Find the shortest route between 5 and all other places.

Consider the graph shown in Fig. 1.2. Find a closed route along the edges of the graph

which includes every vertex exactly once. (This graph corresponds to the edges of a

dodecahedron; this puzzle was first described by the Irish mathematician Sir William R.

Hamilton, and we discuss it further in Section 7.12.)

The following is a regular maze problem, with the exception that the maze is given in

numeric representation (rather than a picture). The maze is contained in a rectangle with 11

rows and columns, numbered from 0 to 10. The maze is traversed along the rows and
columns \342\200\224

up, down, right, or left. The starting point is 0,0 and the target is 10,10. The
following points are obstacles you cannot traverse through:

(3,2) (6,6)(7,0)(2,8)(5,9) (8,4) (2,4) (0,8) (1,3) (6,3)(9,3)(1,9)(3,0) (3,7)

(4,2) (7,8) (2,2) (4,5) (5,6)(10,5)(6,2) (6,10) (4,0) (7,5) (7,9) (8,1) (5,7)
(4,4)(8,7) (9,2) (10,9) (2,6)

a. Find a path from the starting point to the target that does not include any of the obstacles.

b. Find a shortest path from the starting point to the target that does not include any of the
obstacles.

Exercises 7

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

0

7

8

-

9

3

2

1

4

-

3

3

7

2

2

2

?

0

-

8

-

2

-

1

-

-

8

-

-

9

9

3

3

?
0
-

8

-

-

-

9

-

7

1

3

6

2

4

-

-

8

0

-

3

2
-
-
-

1

2

1

-

1

5

1

-

9

-

0

6

8

2

2

1

-

8

6

7

-

6

9
-
3

5

3

0

-

3

9
8
-

1

-

-

-

7

6

-

6
4
?
5

0

8

-

-

3

1

-

9

1

8

2

2

8

-

7

3

6

0
2
7

8

-

2

-

-

9

1

1

5

-

5

2

2

-

0

1

-

5

-

3

4

10

7

6
7

1

8

-

-

1

4

0

-

1

3

-

3

n

4
9
-
1

-

8

8

1

9

3

0

9
-

1

6

12

2

1

8

9

1

7

8

-

3

-

2

0
9
1

5

13

8

7

-

-

-

2

2

2

-

-

9

2

0
9
1

14

3

2

3

8

4
-
-

7

-

-

2

-

2

0

-

15
-

8
-
-
2

8

4

-

-

2

1

9

-

-

0

Figure 1.1 The table for Exercises 1.7 and 1.8.

1.11 Find the greatest common divisor of 225277and 178794. (The greatest common divisor

of two integers is the largest number that divides both of them.)

1.12 Compute the value of 2M. Try to find a way to minimize the number of multiplications.

Figure 1.2 Hamilton's puzzle.

8 Introduction

1.13 The following list represents the number of electoral votes for each state in the 1988

Presidential election (the candidate receiving the majority of the votes in a state collects all

the electoral votes for that state). There are altogether 538 electoralvotes. Determine

whether it is (mathematically) possible for the election to end up in a tie. (This problem is

known as the partition problem, and it is a special case of the knapsack problem

discussed in Section 5.10.)

Alabama

Arkansas
Connecticut

Georgia

Illinois

Kansas

Maine

Michigan

Missouri

Nevada

New Mexico
North Dakota

Oregon
South Carolina
Texas
Virginia

West Virginia

9

6
8
12
24
7

4

20

11

4
5
3
7
8
29
12
6

Alaska

California

Delaware

Hawaii

Indiana

Kentucky

Maryland
Minnesota

Montana
New Hampshire

New York

Ohio

Pennsylvania

South Dakota

Utah

Washington
Wisconsin

3

47

3

4
12
9
10
10
4
4
36

23

25

3

5
10
11

Arizona

Colorado

Florida

Idaho

Iowa
Louisiana

Massachusetts

Mississippi
Nebraska

New Jersey
North Carolina

Oklahoma

Rhode Island
Tennessee
Vermont

Washington, D.C.

Wyoming

7

8

21
4
8
10
13

7

5

16

13
8
4
11
3

3

3

CHAPTER 2

MATHEMATICAL INDUCTION

No one believes an hypothesis except its originator, but

everyone believes an experiment except the experimenter.
Anon

Obviousness is always the enemy of correctness.

Bertrand Russell (1872-1970)

2.1 Introduction

We will see in the following chapters that induction plays a major role in algorithm

design. In this chapter, we presenta brief introduction to mathematical induction through

examples. The examples range from easy to quite difficult. Readers who have not seen

many induction proofs may find this chapter to be relatively hard. We claim that the

processes of constructing proofs and constructing algorithms are similar, and thus

experience with induction proofs is very helpful.

Mathematical induction is a very powerful proof technique. It usually works as
follows. Let T be a theorem that we want to prove. Suppose that T includes a parameter
n whose value can be any natural number (a natural number is a positive integer).

Instead of proving directly that T holds for all values of ny we prove the following two

conditions:

1. T holds for n = 1

2. For every n > 1, if T holds for n - 1, then T holdsfor n

The reason these two conditions are sufficient is clear. Conditions1 and 2 imply directly
that T holds for n = 2. If T holds for n = 2, then condition 2 implies that T holds for n = 3,
and so on. The induction principle itself is so basic that it is usually not proved; rather, it

9

10 Mathematical Induction

is stated as an axiom in the definition of the natural numbers.

Condition 1 is usually simple to prove. Proving condition 2 is easier in many cases

than proving the theorem directly, since we can use the assumption that T holds for n - 1.

This assumption is called the induction hypothesis. In some sense, we get the induction

hypothesis for free. It is enough to reduce the theorem to one with smaller value of ny

rather than proving it from scratch. We concentrate on this reduction. Let's start right

away with an example.

\342\226\241Theorem 2.1

For all natural numbers x and n, xn - 1 is divisible by x - 1.

Proof: The proof is by induction on n. The theorem is trivially true for n = 1. We

assume that the theorem is true for n - 1; namely, we assume that xn~x - 1 is divisible by

x- 1 for all natural numbers x. We now have to prove that xn -\\ is divisible by x- 1.

The idea is to try to write the expression xn -\\ using xn~{ -1, which, by the induction

hypothesis, is divisible by x - 1:

xn-\\=x(xn-l-\\) + (x-\\).

But the left term is divisible by x - 1 by the induction hypothesis, and the right term is

just jc \342\200\2241. \342\226\241

The induction principle is thus defined as follows:

If a statement P, with a parameter n, is true for n = \\, and if for every n > 1,

the truth of P for n - 1 implies its truth for n, then P is true for all natural

numbers.

Instead of using n -1 and \302\253,we sometimes use n and /i + l, which is completely
equivalent:

Ifa statement P, with a parameter n, is true for n = \\, and if for every n>\\,
the truth of P for n implies its truth for n + \\, then P is true for all natural

numbers.

The proof of Theorem 2.1 illustrates a simple application of induction. Over the years,

many variations of induction have been developed. For example, the following variation,

called strong induction, is very common.

Ifa statement P, with a parameter n, is true for n = \\, and if for every n > 1,

the truth of P for all natural numbers < n implies its truth for n, then P is
true for all natural numbers.

The differenceis that we can use the assumption that the statement is true for all numbers

< n in proving the statement for n. In many cases, this stronger assumption can be very

useful. Another simple variation is the following:

2.2 Three Simple Examples 11

If a statement P, with a parameter n, is true for n = 1 and for n=2, and if,

for every n>2, the truth ofP for n-2 implies its truth for n, then P is true

for all natural numbers.

This variation ''works\" in two parallel tracks. The basecasefor n = 1 and the induction

step imply P for all odd numbers; the base case for n =2 and the induction step imply P

for all even numbers. Another common variation is the following:

If a statement P, with a parameter n, is true for n = 1, and if, for every n> \\,

such that n is an integer power of 2, the truth of P for n/2 implies its truth

for n, then P is true for all natural numbers that are integer powers of 2.

This variation follows from the first one by writing the parameter n as 2k, and carrying

out the induction for the parameter k (starting from k = 0).
Induction can also be used in many different ways to prove propertiesof structures

other than numbers. In most cases, the induction is on some number n that measures the

size of the instance of the problem. Finding the right measure to which the induction

should be applied is not straightforward. (For example, we could have appliedinduction

to x in the previous example,rather than to n\\ this would have made the proof much

more complicated.) Sometimes, this measure is not natural, and it has to be invented just

for the purpose of the induction. The common thread to all these proofsis the extension

of claims for smaller structures to claims for larger structures.

2.2 Three Simple Examples

The problem is to find the expression for the sum of the first n natural numbers

S(n)= 1 + 2 + \342\200\242\342\200\242\342\200\242+n. We prove the following theorem.

\342\226\241Theorem 2.2

The sum of the first n natural numbers is n{n + \\)l2.

Proof: The proof is by induction on n. If n- 1, then the claim is true because
S(l)=l = l-(1+ l)/2. We now assume that the sum of the first n natural numbers S(n)
is n (n + l)/2, and prove that this assumption implies that the sum of the first n + 1 natural

numbers is S(/i + 1)= (/i + 1)(/i+2)/2. We know from the definition of S(n) that

S(\302\253+ l) =
S(\302\253)+ \302\253+1. But, by the assumption, 5(\302\253)

=
\302\253(\302\253+1)/2, and therefore

S(/i + 1)=/i(/i+ 1)/2 + /i + 1 =
(\302\253+2)(\302\253+ l)/2, which is exactly what we wanted to

prove. \342\226\241

We continue with a slightly more complicated sum. Suppose that we want to

compute the sum T(n) = $ + 13+18+ 23+ \342\200\242\342\200\242\342\200\242
+(3 + 5\302\253). The sum in the previous

example,S(\302\253),is equal to n2l2 + nl2. Each of the elements in the current example is

slightly more than f\\\\e times the corresponding element in the previous example. Hence,
it is reasonable to guess that T(n) is also a quadratic expression. Let's try the implicit

guess G(n) = cln2 +c2n+c3.That is, we introduce the parameters c,, c2, and c3, and

determine their values when it is convenient to do so. For example, we can determine the

12 Mathematical Induction

parameters by checking the first few terms. If n = 0, the sum is 0, so c3 must be 0. For

n = 1 and n - 2, we get the following two equations:

(1) l-c, + lc2 = 8

(2) 4-c, + 2-c2
= 13 + 8

If we multiply (1) by 2 and subtract it from (2), we get 2c, =5, which implies that

Cj=2.5, and c2 =5.5. We therefore guess that G(n) = 2.5n2+5.5n is the right

expression. We now try to prove that G(n) = T(n) by induction. We have already
verified a base case. We assume that G(n) = T(n), and we try to prove that

C(/? + l) = 7,(/i+ l):

7,(/? + l) = 7\302\273+ 5(/? + l) + 3 =
(by induction) C(/i) + 5(/i+l) + 3

= 2.5a?2 + 5.5\302\253+5\302\253+ 8 = 2.5\302\2532+ 5\302\253+ 2.5 + 5.5\302\253+5.5

= 2.5(/i + l)2 +5.5(/i + 1)=C(/i+ 1).

We have proved the following theorem.

\342\226\241Theorem 2.3

77^ 5\302\253wfl/f/je series

8+ 13+ 18+ 23+ \342\200\242\342\200\242\342\200\242
+(3 + 5\302\253)

is2.5\302\2532 + 5.5\302\253. \342\226\241

We end this section with another simple example.

\342\226\241Theorem 2.4

Ifn is a natural number and 1 +jc> 0, then

(\\+x)n> 1+fljt. (2.1)

Proof: The proof is by induction on n. If n = 1, then both sides of (2.1)are equal

to 1 +*. We assume that (1 +jc)\"> 1 +\302\253jcfor all x such that 1 +jc>0, and consider the
case of n + 1. We have to prove that (1 + jc)/,+i > 1 + (n + 1)a\\ for all x such that 1 + x> 0:

(1+xy?+l = (i +JC)(i +JC)\302\253
> (by induction) (1 +jc)(1 +\302\253jc)

= 1 + (n + 1)jc+ nx2 > 1 + (n + 1)jc.

Notice that we were able to multiply the inequality (implied by the induction) by (1 +jc)
because of the assumption that l+*>0. The last step was possible because nx2 is

clearly nonnegative. \342\226\241

2.3 Counting Regions in the Plane 13

2.3 Counting Regions in the Plane

A set of lines in the plane is said to be in general position if no two lines are parallel and

no three lines intersect at a common point. The next problem is to compute the number

of regions in the plane formed by n lines in general position. Good hints for the right

guess can be obtained from small cases. When n = 1, there are 2. Two intersecting lines

form 4 regions; three lines that do not intersect at a point form 7 regions. It seems, at

least for / < 3, that the /th line adds / regions. If this is true for all /, then the number of

regions can be easily computed from S(n), which was computed in the previous section.

Therefore, we concentrate on the growth of the number of regionswhen one more line is

added. The claim we are trying to prove is the following:

Guess: Adding one more line to n-\\ lines in general position in the plane
increasesthe number of regions by n.

As we have already seen, the guess is true for n <3. We can now use the guess as our

induction hypothesis, and try to prove that adding one line to n lines in general position
increases the number of regions by n +1. Notice that the hypothesis does not deal

directly with the number of regions, but rather with the growth of the number of regions

when one line is added. Even if the hypothesis is true, we will still need to compute the

total number of regions, but this part will be straightforward.

How can a new line increase the number of regions? Consider Fig. 2.1. Sinceall

lines are in general position, a line cannot just touch a region at the border; it can either

cut a region into two parts (in which case one more region is formed), or be disjoint from

it. Consequently, we need only to prove that the (rt + l)th line intersects exactly \302\253+ l

existing regions. It is possible to prove the theorem directly at this point, but we want to

illustrate another technique of induction proofs. Let's remove for the moment the \302\253th

line. By the induction hypothesis, without the Arth line, the (n + l)th line is adding n new

regions. Thus, we need only to prove that the presence of the nth line causes the (n + l)th

line to add one additional region. Let's put the Arth line back. Since all lines are in

general position, the nth and (n + l)th lines intersect at a point /?, which must be inside a

Figure 2.1 n + 1 lines in general position.

14 Mathematical Induction

region R. Both lines thus intersect R. Each line separately cuts R into two pieces, but

together they cut R into four pieces! So, the addition of the (n + l)th line, when the nth

line is not present, cuts R into two regions. But, the addition of the (n + l)th line, when

the nth line is present, affects R by adding two more regions (R is cut from two to four

regions) instead of just adding one. Furthermore, R is the only region so affected, since

the two lines meet at only one point. Hence, the n + 1th line adds n regions without the

presence of the nth line, but it adds n + 1 regions with the A?th line, and the proof is

complete.

\342\226\241Theorem 2.5

The number of regionsin the plane formed by n lines in general position is

/?(/i+ l)/2+l.

Proof:We have already proved that the nth line adds n more regions. The first

line introduces two regions; hence, the total number of regions (for a?>1) is
2+2+ 3 + 4 + 5+ \342\200\242\342\200\242\342\200\242+/!.We have seen in the previous section that

1+2 + 3+ \342\200\242\342\200\242-
+n=n(n + l)/2; therefore, the total number of regions is n(n + l)/2+ 1.\342\226\241

Comments There are two interesting points in this proof. First, the hypothesis dealt

with the growth of the function we were after, rather than directly with the function. As

a result, the induction proof concentrated on the growth of the growth of the function.

There is no need to define the hypothesis such that it proves the theorem directly. We
can achieve the proof in two or more steps. As long as we are learning more about the

situation, we are making progress. There is no need to hurry, or to attempt too much too

quickly. Patience usually pays. Second, the same induction hypothesis was used twice
in two different configurations: once for the A?th line and once for the (\302\253+ l)th line

4'acting\" as an A?th line. This double use is not uncommon, and the lesson it teaches is

that we should utilize our assumptions to their fullest.

2.4 A Simple Coloring Problem

Consider again n distinct lines in a plane, this time not necessarily in general position.
We are interested in assigning colors to the regions formed by these lines such that

neighboring regions have different colors (two regions are considered neighbors if and

only if they have an edge in common). We will say that \"it is possible to color\" the

regions if we can follow this rule, and we call the assignment of colors a valid coloring.
In general, it is possible to color any planar map with four colors (the proof of this fact
has occupied mathematicians for about a hundred years, and was found only recently).
The regionsformed by (infinite) lines, however, have specialcharacteristics, as is shown
in the next theorem.

\342\226\241Theorem 2.6

It is possible to color the regions formed by any number of lines in the plane
with only two colors.

2.5 A More Complicated Summation Problem 15

Proof: We use the natural induction hypothesis.

Induction hypothesis:It is possible to color the regions formed by < n

lines in the plane with only two colors.

It is clear that two colors are necessary and sufficient for n = 1. Assume the induction

hypothesis, and consider n lines. Again, the only question is how to modify the coloring
when the nth line is added. Dividethe regions into two groups according to which side

of the nth line they lie. Leave all regions on one sidecolored the same as before, and

reverse the colors of all regions on the other side. To prove that this is a valid coloring,
we considertwo neighboring regions R \\ and R2. If both are on the same side of the A?th

line, then they were colored differently before the line was added (by the induction

hypothesis). They may have the reverse colors, but they are still different. If the edge
between them is part of the nth line, then they belonged to the same region before the line

was added. Since the color of one region was reversed, they are now colored differently.

\342\226\241

Comments The general method illustrated in this example is the search for

flexibility, or for more degreesof freedom. The idea is usually to stretch the hypothesis
as much as possible in order to get the most out of it. In this case, the key idea was that,

given a valid coloring, we can reverse all colors and still have a valid coloring. This idea
was used to handle the formation of new regions by the added line.

2.5 A More Complicated Summation Problem
The next example is more complicated. Considerthe following triangle.

1 = 1

3 + 5 =8
7 + 9 + 11 = 27

13+15+17+19 = 64
21+23+25+27+29 = 125

The problem is to find an expression for the sum of the ith row, and prove its correctness.

The sums of the rows seem to follow a regular pattern; They look like a sequence
of cubes.

Induction hypothesis: The sum of row i in the triangle is i3.

The problem and the hypothesis are definedin terms of a picture. It is not easy to define
the problem precisely, let alone to solve it. In practice, it is not uncommon for problems
to be vaguely defined. A major part of any solution is to extract the right problem.

Therefore, we will make some assumptions that are consistent with the picture, and solve
the problem accordingly. (It is possible to make other assumptions.) The zth row

contains i numbers. The numbers are the odd numbers in order. Again, let's concentrate
on the difference between two consecutive rows. To prove that the sum of row i is

indeed z3, we need only to show that the difference between row z'+l and row i is
(z+ l)3 - z3 (we have already seen that the hypothesis is true for i <4).

16 Mathematical Induction

What is the difference betweenthe first number in row i + 1 and the first number in

row /? Since the numbers are the odd numbers in order and there are i of them in row i,

the difference is 2/. This is also the difference between the second number in row i + 1

and the second number in row i, the third number, the fourth number, and so on. Overall,

there are / differences, each of size 2i. There is also the last element at the end of row

i+l, which is not matched to any number in the previous row. Hence, the difference

between the two rows is 2/2 plus the value of the last number in row i + l. Since

(/ + l)3
- z'3 = 3/2 + 3/+ 1, we need only to prove that the value of the last number in row

i + 1 is 3/2 + 3/ + 1 - 2/2 = i2 + 3i + 1. This is where the guess that the sum is i3 comes to

play. We have reduced the problem of finding the sum to a problem of finding an

element. We prove the last statement again by induction.

Nested induction hypothesis:The last number in row i + 1 is i2 + 3/ + 1.

The claim is true for i = 1. Now, it is sufficient, by induction, to check only the

differences. That is, we have to provethat the difference between the last number in row

i + 1 and the last number in row i is equal to

[i2 + 3/ + 1]
- [(i - 1 f + 3(i - 1)+ 1]

= 2/ + 2.

But we already know that the difference betweenany corresponding numbers in row i + 1
and / is 2i. The guess has thus been established.

Comments This proof illustrates again that we should not always try to achieve the

whole proof in one step. It is a good policy to advance in stages, as long as we are
making progress. This proof also illustrates the method of \"going backward\" to arrive
at a proof. Instead of starting from a simpler problem and working our way toward the

final problem, we start with the final problem and simplify it by reducing it to simpler and

simpler problems. Thisis a very common method (not only in mathematics).

2.6 A Simple Inequality

In this section, we prove the following inequality.

\342\226\241Theorem 2.7

foralln>\\}

Proof: We want to prove the theorem by induction. The theorem is clearly true

for n-\\. We assume that (2.2) is true for \302\253,and we consider /i + l. The only
information we get from the induction hypothesis is that the sum of the first n terms is

'This inequality is usually written as a fact about convergence of infinite series, but we do not assume any

knowledge of series; this formulation is completely finite.

2.7 Eulers Formula 17

less than 1. How can we extend it to include the n + 1th term? Adding l/2\"+l to the left

hand side may potentially increase the sum to more than 1. The trick here is to apply the

induction in a different order. Given the sum

1 1 1 1 1

*y\\ ^fl
+ l

we look at the last n terms:

1 1
\342\200\224+ \342\200\224+
4 8

1 1
+ \342\200\224+ r

1 1 1

2+4+I+ 2\"

by the induction hypothesis. But now we can add 1/2 to both sides and get the expression
(2.2)for\302\253+l. \342\226\241

Comments It is not necessary to consider the last element as the (n + l)th element in

the induction proof. Sometimes it is easier to consider the first element. There are other

instances where it is better to let the (\302\253+ l)th element be a special element satisfying

some special properties. If you run into problems, be flexible, and consider as many

options as you can. The following examples extend this notion further.

2.7 Eulers Formula

The next proof is for a theorem known as Euler's Formula. Consider a connected

planar map with V vertices, E edges, and F faces. (A face is an enclosed region. The
outside region is counted as one face, so, for example, a square has four vertices four

edges and two faces.) The map in Fig. 2.2 has 11 vertices, 19edges,and 10 faces. Two

vertices of a map are said to be connected if it is possible to go from one vertex to the

other by traversing edges of the map. A map is called connectedif every two vertices in

it are connected. Intuitively, a map is connectedif it consists of one part.

\342\226\241Theorem 2.8

The number of vertices(V), edges (E), and faces (F) in an arbitrary

connected planar map are related by the formula V + F = E + 2.

Figure 2.2 A planar map with 11 vertices, 19 edges, and 10 faces.

18 Mathematical Induction

Proof: We will prove this theorem by a variation of induction known as double

induction. The induction proceeds first on the number of vertices and then on the

number of faces.

Consider first a map with only one face. Such a map does not contain a cycle

because, otherwise, the cycle would form at least one face and the outside would form

another face. A connected map without a cycle is called a tree. We first prove that, for

all trees, V+ l=\302\243+ 2.

First induction hypothesis: A tree with n vertices has n - 1 edges.

The base case is trivial. Assume that trees with n vertices have n - 1 edges, and consider

trees with n + 1 vertices. There must be at least one vertex v connected to only one edge.
Otherwise,if all vertices are connected to at least two edges and if we traverse the tree

along the edge, starting from any vertex, then we are guaranteed to return to a vertex

already visited without getting stuck. But this means that there is a cycle, which is a

contradiction. We can remove the vertex v along with the edge connected to it. The

resulting map is still connected; thus, it is still a tree. But it has one less vertex and one
lessedge,which implies the claim.

This serves as a basecasefor an induction on the number of faces.

Main induction hypothesis: Any planar map with n faces has E edgesand
V vertices such that V + n = E + 2.

Considera map with n + 1 faces. It must have a face/, which is a neighbor of the outside

face. Since /is a face, it is surrounded by a cycle. Removing one edge of this cycle will

not disconnect the map. We removeone of the edges that separates / from the outside.

We now have one lessface and one less edge and the theorem follows. \342\226\241

Comments This theorem included three parameters. The proof used induction on

one parameter (the number of faces), but the base case required another induction on

another parameter (the number of vertices). The proof shows that we have to be careful

about choosing the right sequence of induction. Sometimes, the induction switches from
one parameter to another; sometimes, it is based on a combined value of several

parameters; and sometimes, it is applied to two different parameters at the same time.
Choosingthe right sequence can make a big differencein the difficulty of the proof. As

we will see in the following chapters, choosing the right sequence of induction can also

make a big difference in efficiency of algorithms.

2.8 A Problem in Graph Theory
We first need to introduce some basic concepts of graph theory (these concepts are
discussedin detail in Chapter 7). A graph G = (V, E) consistsof a set V of vertices and a
set E of edges. Each edge corresponds to a pair of distinct vertices. A graph can be
directed or undirected. The edges in a directed graph are ordered pairs: The order

between the two vertices the edge connects is important. In this case, we draw an edge

as an arrow pointing from one vertex (the tail) to another (the head). The edges in an

2.8 A Problem in Graph Theory 19

undirected graph are unordered pairs. We deal with directed graphs in this section. The
degree of a vertex v is the number of edges incident to v. A path is a sequenceof

vertices Vj, v2, \342\200\242\342\200\242\342\200\242,v* that are connected by the edges (Vj, v2), (v2, v3),..., (v*_j, vk)

(these edges are also usually considered to be part of the path). Vertex u is said to be
reachablefrom vertex v if there is a path from v to u. Let G=

(V, E) be a graph, and U a

set of vertices U c:V. The subgraph induced by U is a subgraph H =
(\302\243/,F) such that F

consists of all the edges in E both of whosevertices belong to U. An independent set 5
in a graph G =(V, E) is a set of vertices such that no two vertices in 5 are adjacent.

\342\226\241Theorem 2.9

Let G =
(V, E) be a directed graph. Thereexistsan independent set S(G) in

G such that every vertex in G can be reached from a vertex in S(G) by a

path of length at most 2.

Proof: The proofis by induction on the number of vertices.

Induction hypothesis: The theorem is true for all directed graphs with < n

vertices.

The theorem is trivial for n <3. Let v be an arbitrary vertex in V. Let N(v) = {v| ^j
[w e V | (v, w)e E). N(v) is the neighborhood of v. The graph H induced by the set of

vertices V-N(v) has fewer vertices than does G; thus, we can use the induction

hypothesis for H. Let S(H) be the independent set of H implied by the induction

hypothesis. There are two cases.

1. S(H) u {v| is independent. In this case, we can set 5(G) to be S(H) u {v|,
because every vertex in N(v) is reachable from v with distance 1. The vertices not

in N(v) are reachable from a vertex in S(H) with distance at most 2 by the

induction hypothesis.

2. S(H) u {v| is not independent. In this case, there must be a vertex w e S(H) that

is adjacent to v. Now, we S(H) implies that we V-/V(v), which implies that

(v, w) is not an edge of G. But, since we assumedthat w is adjacent to v, (w, v)

must be an edge of G. In that case, however, every vertex in N(v) can be reached
from w (through v) with distance at most 2. We can set 5(G) to be S(H) {j {vv|,
which completes the proof. \342\226\241

Comments The amount of \"reduction\" in this proof was not fixed. That is, we
reduced the size of the problem from n to a smaller number depending on the instance of
the problem. Furthermore, the smaller problem was not an arbitrary problem of smaller
size. It depended heavily on the particular larger problem. We removed just enough

vertices to make the proof feasible. There is a very fine balance in such proofs between
removing too many vertices, in which case the hypothesis is too weak, and removing too

few vertices, in which case the hypothesis is too strong. Finding this balance is, in many

cases, the heart of the induction proof. Notice also that we used the strong induction

principle, because it was required to assume the theorem for all instances of smaller size.

20 Mathematical Induction

2.9 Gray Codes

We are given a set of n objects and we want to name them. Each name is represented by

a unique string of bits. There may be many different objectives for a \"good\" naming

scheme. We deal with only one objective in this example. We would like to arrange the

names in a circular list such that each name can be obtained from the previous name by

changing exactly one bit. Such a scheme is called a Gray code.2There are several

applications of Gray codes. For example,a sensormay scan some objects. It is better to

be able to change representations quickly from one object to the next. The purpose of

this section is to find out whether it is possible to construct a Gray code for any number

of objects. The objects themselves play no part in the problem; we care only about their

number.

A good way to visualize the relationship between the names is by using graphs.
The names correspond to the vertices of the graph, and two names are connectedif they

differ by only one bit. A Gray code corresponds to a cyclecontaining all the vertices.

We start by trying small values of n. Thecasesof n = 1 and n = 2 are trivial. What

about n = 3? It is not hard to see that it is impossible to find a Gray code of length 3. If

we start with any string and change one bit twice, we either get the same string or another

string with a two-bit difference; we cannot get the same string after three changes. In

fact, this observation implies that it is impossible to construct a Gray code of any odd

length. What about a? =4? The following is a Gray codeof length 4: 00, 01, 11, 10. The

corresponding graph is of course a square. We are now ready for our first attempt.

\342\226\241Theorem 2.10

There exists a Gray code of length 2k for any positive integer k.

Proof: The proof is by induction on k. The case of k = 1 is trivial. Assume that

there exists a Gray code of size 2k and consider 2(k + 1). Let s \\ ,j2\302\273\342\200\224\302\273^2itcorrespond to

a Gray code of size2k. Clearly, if we add a leading 0 or a leading 1 to all the strings, the

result is still a Gray code. The following is thus a Gray code of size 2k + 2 (see Fig. 2.3):

Ojj, ljj, \\s2, 0s2, 0s3, 0j4, ..., 0s2k- I-,

Although the proof is complete, the construction is not very satisfactory. The
length of each string in the code is at least one-half of the number of objects. In general,
it is possible to represent n objects with |~log2rtl bits. Can we construct Gray codes of

size n with fewer than n/2 bits? To achieve a logarithmic number of bits, we need to add
one bit whenever the number of objectsis doubled. Let's assume that we know how to
construct Gray codes for all even numbers 2k, such that k < n. Given 2n objects, we try

to construct the code from two smaller codes each of size n.
We immediately run into a problem. Although 2n is even, and thus there is a Gray

code of that size, n may be odd, and there is no odd-sizeGray code. Consequently, we

2
Gray codes usually refer to the case where the number of objects is a power of 2. We use it for all values of n.

2.9 Gray Codes 21

IS, 05,
o

o_

lj2 052

Figure 2.3 Constructing a Gray code of size Ik.

may not be able to use the induction hypothesis whenever n is odd. Let's restrict

ourselves to values of n that are powers of 2. We assume that we know how to construct

short (we will see later how short) Gray codes for all powers of 2 less than n, and

consider n. Let j j,j2,...,j\342\200\236/2 correspond to a Gray code of size nil. We can again add

leading 0s or Is, such that the two sequences 0j j,0j2,...,0j\342\200\236/2, and l51,l52,..,l^/2 also

correspond to Gray codes. We can then merge these two sequences into one in the

following way (see Fig. 2.4):

l52,052,053,...,0^/2,05!,l5,, lj\342\200\236/2,l^\342\200\236/2-l ls2-

For example, we can extendthe Gray code for n =4 to a Gray code for n =8 as follows.
The two sequences are 000, 001, 011, 010, and 100, 101, 111, 110. The combined
sequenceis 101,001,011,010,000,100,110,111.We constructed a Gray code for n

with only one more bit than we used for the Gray code for nil. Hence, the length of each

string will be log2w.

Figure 2.4 Constructing a Gray code from two smaller ones.

22 Mathematical Induction

How do we extend this construction to any even value of nl Recall that the

problem with constructing odd Gray codeswas that it was impossible to close the cycle.

Looking back at Fig. 2.4, we can seethat it is not necessary to have two closed cycles; it

is sufficient to have two open sequences. If we can construct an open Gray code

(namely, one with exactly two names that differ by more than one bit) of odd length, then

it may be sufficient for the general construction. We now have two cases.

\342\226\241Theorem 2.11

There exist Gray codes of length \\\\og2k] for any positive integer k. The

Gray codesfor the even values of k are closed,and the Gray codes for odd

values ofk are open.

Proof: We prove both cases with one stronger induction hypothesis.

Induction hypothesis: There exist Gray codes of length \\\\og2k\\ for all

values k < n. Ifk is even, then the code is closed: ifk is odd, then the code

is open.

The base of the induction is trivial. We now construct a Gray code of size n. There are

two cases:

1. a? is even: The reduction in this case is similar to the reduction for the case where n

was a power of 2. By the induction hypothesis, there exists a Gray code of length
nil (either open or closed).We can construct two copies of this code, one with

leading Os and one with leading Is, and connect them into a cycle (as in Fig. 2.4).

Also by the induction hypothesis, the number of bits in the smaller codes is

[log2(w/2)]. We add one bit and double the number of objects; thus, the number of

bits for the new code is |\"log2(rt/2)]+ 1=
[\"log2\302\253)l.

2. n is odd: Let n =2k + 1. Construct two Gray codes of size k, and connect them in

the same way as before. If 2k is not a power of 2, then there are some strings of
length |~log2(2/:)l, which have not been used as names. One of these strings is
connected to one of the strings that has been used. We can now break the cycle of
length 2k by adding this new string, resulting in an open path of length 2k + 1 (see
Fig. 2.5). The number of bits satisfies the condition. If 2k is a power of 2, there

are no unused strings left, and we need to add one more bit to the code. The total

number of bits is thus |~log2(2A:)1 +1. But since 2k is a power of 2,

riog2(2*)l = log2(2*), and log2(2*)+ 1 =[log2(2\302\243 + 1)]. \342\226\241

Comments In this example, we had a theorem with two distinct cases. The natural

thing to do is to considereach case separately. However, this is not always the best thing
to do. Even though the two cases were different, it was easier to consider them together

and to include both of them in one induction hypothesis. This way, the solution of one

case benefited from the induction hypothesis concerning the other case. It is much like

climbing with two feet. We do not plan the steps of each foot separately. Each foot

benefits from the steps taken by the other foot. It is sometimes better to define the

induction hypothesis such that it covers a more general problem. In this example, the

generalized problem merely included two cases. In the next section, we present an

2.10 Finding Edge-Disjoint Paths in a Graph 23

Figure 2.5 Constructing an open Gray code.

example where it is easier to solve the problem by solving an extended problem dealing
with more general structures. The advantage to working on a more general problem is
that the induction hypothesis is stronger and can be used more effectively. There is an

obvious tradeoff. We need to prove the induction statement for n + 1 assuming that the

statement for n is correct. If the statement for n is stronger, then it is easier to use it in

the proof. But, on the other hand, there is more to prove. We discuss this issue further in

the next section and in Section 5.10. Notice also that we included in the hypothesis all

values less than 2\302\253,rather than just 2n-2.

2.10 Finding Edge-Disjoint Paths in a Graph
Let G=(V, E) be a connected undirected graph. Two paths in G are said to be edge
disjoint, if they do not contain the same edge. Let O be the set of vertices in V with odd

degrees. We first claim that the number of verticesin O is even. To prove this claim, we

notice that, by summing up the degrees of all vertices,we get exactly twice the number
of edges (sinceeach edge is counted twice). But, since all vertices of even degree
contribute an even number to this sum, there must be an even number of vertices of odd
degree.We now prove the following theorem.

\342\226\241Theorem 2.12

Let G =(V, E) be a connected undirected graph, and let O be the set of

vertices with odd degrees. We can divide the vertices in O into pairs and
find edge-disjoint paths connecting vertices in each pair.

Proof: The proof is by induction on the number of edges. The theorem is clearly
true for m = 1.

Induction hypothesis: The theorem is true for all connected undirected

graphs with < m edges.

24 Mathematical Induction

Considera connected undirected graph G with m edges, and let O be the set of odd

vertices. If O is empty, then the theorem is trivially true. Otherwise, take any two

vertices in O. Since G is connected, there is a path connecting them. Remove the whole

path from G. The remaining graph has fewer edges. We would like to use the induction

hypothesis,
to find the paths for the rest of the odd vertices, and to complete the proof.

The problem, however, is that, by removing the path, we may have disconnected the

graph. The induction hypothesis applied only to connected graphs. We have to be very
careful about using the induction hypothesis correctly. We can avoid this difficulty in

this case in an ingenious way \342\200\224we will change the hypothesis and adapt it to our needs!
The problem we encountered was with the connectivity requirement. Let's remove

it. We now have the following induction hypothesis:

Revised induction hypothesis: The theorem is true for all undirected

graphs having < m edges.

This is obviously a stronger theorem.Its proof, on the other hand, is simpler. Consider

again an undirected graph with m edges, and O as before. The graph may not be
connected. In this case, the graph is partitioned into several connected components. We
will take two odd vertices from the same component. Since each component is a
connected graph by itself, it must have an even number of odd vertices. Hence, if there

are any odd vertices, we can find two of them in the same component. So now we are

basically done. Since the two chosen vertices are in the same component, we can
connect them by a path. We then remove the path. The graph has now less than m

edges, and we can use the induction hypothesis because it does not require connectivity.

Thus, in the remaining graph, we can pair the odd vertices in edge disjoint paths. We can

then add the path we removed and complete the proof.

We actually proved a stronger theorem than the one we sought! We proved that

the connectivity requirement is unnecessary. And the proof was easier. \342\226\241

Comments This is an example of a very powerful technique we call strengthening
the induction hypothesis. It is similar in some sense to the method used in the previous
section. The main trick is to change the hypothesis to fit our needs. Even though the

theorem becomes stronger, the proof may be easier to obtain. Polya calls this principle

the inventor paradox (Polya [1954]). The reason we can achieve this apparent paradox
is that, although we attempt to prove more, we have more on which to base the proof,
because the induction hypothesis is also stronger. We will see additional examples of
this method of strengthening the induction hypothesis throughout the book. This method

is very important.

2.11 Arithmetic versus Geometric Mean Theorem

The next example is a beautiful proof, attributed to Cauchy, of the arithmetic versus

geometric mean theorem. It employs an elegant nonstandard use of induction, which we

will use later.

2.11 Arithmetic versus Geometric Mean Theorem 25

\342\226\241Theorem 2.13

Ifx i, *2,..., jc\342\200\236are all positive numbers, then

(jr,jr2 \342\200\242\342\200\242\342\200\242*\342\200\236)\"*-
^

-\342\226\240 (2-3)

Proof: The proof is by induction on \302\253.The induction hypothesis is identical to

(2.3). The interesting part of the proof comes from the fact that the induction proceeds

backward. Instead of proving a base case and then extending an assumption for smaller
values of n to one for larger values of n, we use the following reversed induction

principle:

If a statement P is true for an infinite subset of the natural numbers, and if
its truth for n implies its truth for n-\\, then P is true for all natural

numbers.

This principle holds because the fact that the statement holds for an infinite set

guarantees that for every natural number k, there is a greaternumber m in the set; we can
then use the reversed induction step to go backward from m to k.

We will prove the theorem in two steps. In the first step, we use regular induction

to prove the theorem only for values of n that are powers of 2. The powers of 2 is the

infinite set we need. In the second step, we use reversedinduction to prove the theorem

for all n. Consider first all values of n that are powers of 2. The theorem is trivial for

n = \\. Considers =2. The claim becomes

^[x^x~2~<

x\\ +*2

which we can verify easily by squaring both sides. Assume now that (2.3) is true for

n =2*, and consider 2n =2*+l. We rewrite the left-hand side of (2.3)as follows:

JL /I JL

(x\\x2\" 'x2n)
\"

=y(x\\x2'''xn)n(xn + \\xn+2\"'x2n)n-
(2.4)

We can now use the theorem for n=2 with y{
= (x{x2 '''xn)xin, and

^2 = (x,,+\\xn+2
'''

x2n)1'\"- The expression (2.4) becomes

i

(x{x2 \"-x2n)2n =^y~2<
y\\ +:v2

2

But, by the induction hypothesis for a?, we have

*1 +*2 + ' ' '
+xn xn + \\ +xn+2 + ' ' ' + x2n

y\\ +^2 n n

2
\"

2

and the claim follows immediately.

26 Mathematical Induction

We are now ready to use reversed induction to prove the theorem for all n.

Assume that (2.3) is true for an arbitrary a?, and consider n - 1. Define

Z =
n-\\

The theorem is assumedto be true for any n positive numbers, so, in particular, it is true

forjC!,Jc2,..;X\342\200\236-*z-
That is,

Ul*2-\"*i.-l*)\" ^ \" = \" = Z-

(z was chosen especially to \"collapse\" the right-hand side of this expression.) Hence,
we have

(xxx2'-xn_xz)n <z,

which implies that

XXX2 -'X\342\200\236-XZ<Zn,

and

l , , ,

(xXX2'\"Xn.x)n <Z =
n-\\

which is exactly the same as (2.3) for n - 1. \342\226\241

2.12 Loop Invariants: Converting a Decimal Number
to Binary

Induction is very useful for proving correctness of algorithms. Consider a program that

contains a loop that is supposed to compute a certain value. We want to prove that the
result of executing the loop is indeed the intended result. We can use induction on the

number of times the loop is executed. The induction hypothesis should reflect the

relationships between the variables during the loop execution. Such an induction

hypothesis is called a loop invariant. We illustrate the use of loop invariants with the

algorithm in Fig. 2.6, which converts a decimal number n into a binary number

represented by the array b (which is initially zero).

Algorithm Convert_to_Binary consists of one loopwith three statements. The first

statement increments k, which is an index to the array b. The second statement computes
t mod 2, which is the reminder of the division of t by 2 (namely, 1 if t is odd, and 0
otherwise). The third statement divides t by 2, using an integer division (namely,
ignoring fractions).

\342\226\241Theorem 2.14

When Algorithm ConvertJo Binary terminates, the binary representation

ofn is stored in the array b.

2.12 Loop Invariants: Convertinga Decimal Number to Binary 27

Algorithm Convert Jo _Binary (n);

Input: n (a positive integer).

Output: b (an array of bits corresponding to the binary representation of n).

begin
t := n ; { we use a new variable t to preserve n }

k := 0 ;
while t> 0 do

k:=k + 1 ;
b[k] :=tmod2 ;

t :=tdiv2 ;
end

Figure 2.6 Algorithm Convert Jo _Binary.

Proof: The proof is by induction on k, the number of times the loop is executed.
The induction hypothesis does not have to be the same as the theorem statement. It can

apply to only a part of the algorithm. In this case, the main part is the loop, and we use

the induction hypothesis to verify the execution pattern of the loop. The hypothesis, in

this case, can be thought of as an invariant. It is a statement about the variables that is

correct independent of the number of times we execute the loop. The most difficult part
of the proof is finding the right induction hypothesis. Consider the following hypothesis.

Induction hypothesis: If m is the integer represented by the binary array
b[\\..k],then n=t-2k+m.

The expression t-2k+m is the heart of the loop invariant, and is also the heart of the

algorithm. The hypothesis states that the value of this expression is independent of the

number of times the loop is executed. It captures the idea behind the algorithm. At step

k of the loop, the binary array represents the k least significant bits of a?, and the value of

t, when shifted by k, corresponds to the rest of the bits.
To prove the correctness of this algorithm, we have to prove three conditions: (1)

the hypothesis is true at the beginning of the loop, (2) the truth of the hypothesis at step k

implies its truth for step k + 1, and (3) when the loop terminates, the hypothesis implies
the correctness of the algorithm. At the beginning of the loop, k = 0, m = 0 (by definition,

since the array is empty), and n=t. Assume that n =t \342\200\2422k +m at the start of the \302\243thloop,

and consider the corresponding values at the end of the kth loop. There are two cases.
First, assume that t is even at the start of the kih loop. In this case, t mod 2 is 0. Thus,
there is no contribution to the array (namely, m is unchanged), / is divided by 2, and k is

incremented. Hence, the hypothesis is still true. Second, assumethat m is odd. In this
case, b [k + 1] is set to 1, which contributes 2k to w, / is changed to (/- l)/2, and k is

incremented. So, at the end of the &th loop, the corresponding expression is

(f-l)/2-2A+I +w+2* = (r-l)-2* + /w+2* = t-2k+m=n, which is exactly what we

28 Mathematical Induction

need to prove. Finally, the loop terminates when f = 0, which implies, by the hypothesis,

thatA?=0-2*+w=w. \342\226\241

2.13 Common Errors

We finish this chapter with a few warnings and examples of common traps one can easily
fall into by using induction hastily. Many wrong proofs come from strong convictions.

If one believes strongly in the theorem, one tends to take as evident certain seemingly
trivial \"facts\" implied by it. In induction proofs, this phenomenon often takes the

following form. Since the theorem is \"evident,\" one sometimes implicitly adds to the

hypothesis several evident \"facts.\" The proof of the step from n to n +1 uses these

assumptions. Thus, the induction hypothesis is implicitly strengthened, but the stronger

assumptions are never proven. For example, one may overlook the fact that the graphs in

the theorem were assumed to be connected,and forget to check the reduced graphs for

connectivity. Such an omission could be very subtle, and, of course, could lead to a very

wrong proof. It is important to state the induction hypothesis precisely.
Another common error is the following. The main step in an induction proof is

showing that the truth of the theorem for n implies its truth for n + l. We can either start

with the n +1 instance and show that it follows from the n instance, or start with the n

instance and show that it implies the n +1 instance. Both approaches are valid.

However, the n + l instance must be an arbitrary instance! The proof will be wrong if

we start with an n instance and extend it to an n +1 instance that has some special

properties. For example,considerthe following wrong proof of Theorem 2.8. We start

with an arbitrary map with n faces, and assume, by induction, that V + n=E +2. We take

an arbitrary face and add a new edge with two new vertices that cuts the face in two.

Adding two new vertices \"cuts\" two old edges, each one into two new edges. Overall,
we added one more face, three more edges, and two more vertices. But,
V + 2 + a? + 1=\302\243,+ 3 + 2, and the claim is true for n +1 faces. The reason this is not a

valid proof is that the addition of the edge was done in a special way. An edge can also
be added between existing vertices, or between one existing vertex and one new vertex.
In fact, the graphs we get by adding edges only between new vertices have vertices only
of degree3 or less, so they are very special indeed. In general, it is safer to start with an

arbitrary instance and try to prove it using the induction hypothesis, rather than the other

way around.

Another dangerous trap involves exceptionsto the theorem. It is common to have
minor exceptions of the form n > 3, or \"a? is not a prime less than 30.\" The induction

principle depends on the ability to imply the hypothesis for a? =2 from the hypothesis for
n = l, the hypothesis for a? =3 from the hypothesis for a? =2, and so on. If even one of

these steps fails, the whole proof fails. We present two examples of this trap. The first

example is a simple amusing anecdote; the second example is a more serious one.
Consider the following claim.

Ridiculous claim: Given n lines in the plane, no two of which are parallel
to each other, all linesmust have one point in common.

2.14 Summary 29

This claim is clearlywrong, but let's look at a ''proof\" of it. The claim is obviously true

for one line. Let's even be a little more careful and consider two lines; the claim is still

true. Assume that the claim is true for n lines, and consider n +1 lines. By the

hypothesis, the first n lines have a point in common. But, also by the hypothesis, the last
n lines (including the (n + l)th line) have a point in common. The common point of the

first n lines and the last n lines must be common to all n + 1 lines, because lines having
two points in common are equal. But, in that case, the (n + l)th line passes through the
same point, and the claim is proven.

What is wrong with this proof? Actually very little. The only wrong step is that

the proof unintentionally (or in this case very intentionally) ignores the fact that n must

be at least 3 for the argument to work. That is, the claim is true for n - 1, n = 2, and also,
if it is true for a? =3, 4,

\342\200\242\342\200\242
\342\200\242,then it is true for n + 1 = 4, 5, \342\200\242\342\200\242

\342\200\242.The only problem is the

step from a? =2 to a? =3. This small exception is enough to make the whole proof, and the

claim in this case, very wrong. The reader may think that this example is too obvious to

miss. Let's look at another example that is not so obvious

Consider the following claim:

/? = \\ 1 + (/? - 1) \\ 1 + n Vl + (a? + 1)VT+ (a? +2)
\342\200\242\342\200\242

\342\200\242.

(The expression goes to infinity.) Here is a proof of (2.5)by induction. First, we have to
show that the expression converges for all a?, so that the claim is meaningful. We omit

this part (it is correct). If n = 1, then (2.5) becomes 1 = \\1 +0(\342\200\242\342\226\240
\342\200\242),which is true (since

the expression in parenthesis converges). Assume that (2.5) is correct for a?, and consider

n + 1. If we squareboth sides of (2.5) we get

n2 = 1 +(/i-l)\\l +Wl +(/i + l)Vl + (/?+2)---.

Rearranging terms, we get

-5-^i = n + 1 = \\1 + n Vl + (a? + 1 Wl + (a? +2) ^,
A7-1

which is exactly (2.5) for n + 1. The proof is now complete. Or is it? The only wrong

step was dividing by n - 1 without verifying that this value is not 0. But, n - 1 =0 when

n = 1, which is the first step in the induction! Again, everything works except for one
implication

\342\200\224the one that goes from n = 1 to a? =2 \342\200\224and this is enough to invalidate the

whole proof. In this case, by the way, the claim is correct, but the proof is not that easy.

2.14 Summary

Mathematical induction is a rich technique. We have seen many variations of induction,
and explored some of the methods for using it. The first step is to define the induction

hypothesis. We have to decide to which parameter we apply the induction. In many

cases, there is only one parameter, and the choice is clear. In other cases, however, we

30 MathematicalInduction

have a fair amount of flexibility. The parameter may be even a newly defined one,

introduced especially for the proof. As we have seen, the induction hypothesis does not

always follow directly from the theorem statement. Sometimes,we apply induction in

several steps, each leading us closer to the proof. At other times, we strengthen the

hypothesis
such that it implies a stronger theorem.

There are two steps in every induction proof: the base case and the reduction step.

The base case is usually, but not always, easy. Because it is easy, there is a tendency to

ignore it. The reduction step is the heart of the induction proof. There are many ways to

achieve the reduction. The most common way is to reduce a claim involving n to the

same claim involving n-\\. It is also common to \"go\" from n + \\ to n. A strong
induction reduces a claim involving n to one or several claims involving values smaller

than n (but not necessarily n-\\). Other variations include going from 2n to a?, and

reversed induction, in which the claim for n is implied from a claim for n + 1 and a base

case consisting of an infinite set is proved. The key to any reduction is that it must

preserve the exact statement of the claim. No additional assumptions can be made about

the reduced claim, unless they are specifically included in the induction hypothesis.
The reduction step can also be regarded as an extension step. We extend the claim

from a smaller value of the parameter to a larger value. We have to ensure that the

extension ''covers\" all possible values of the parameter, and that the extended claim is a

general claim of the theorem without any additional assumptions or constraints. In

Chapter 5, we will see that there is a direct analogy between the variations of induction

introduced in this chapter and several algorithm design techniques.

Bibliographic Notes and Further Reading
The discovery of the mathematical induction principle is attributed to the Italian

mathematician Franciscus Maurolycus (b. 1494). The history of mathematical induction
is described in Bussey [1917] (see also Vacca [1909]). It is interesting to note that a

principle very similar to mathematical induction was used in the 12th century in

interpretation to the Talmud (this observation is due to J. Gillis). The problem was to

interpret a rule that specifies a date as \"3 days beforea holiday.\" At the time of the

writing of the Talmud, it was not uncommon, when one said \"xdays before a holiday,\"
to include the holiday itself as part of the x days. The question was whether or not the

holiday should be included as part of the 3 days specified in the rule. The interpretation
was that the 3 days do not include the holiday because doing so would lead to

ambiguities. An inductive argument was used to arrive at that conclusion. The base case
was 1 day. It makes no sense to say \"1 day before a holiday\" when we mean the

holiday itself. Therefore, \"1 day before a holiday\" does not include the holiday. Now,
\"2 days before a holiday\" must also exclude the holiday, because otherwise it will have

the same meaning as \"1 day before a holiday.\" Therefore, \"3 days before a holiday\"

does not include the holiday. This is clearlyan inductive argument.
The summation problem given in Section 2.5 is from Polya [1957]. A brilliant

discussion on the generalization of Euler's formula to three-dimensional objects is given
by Lakatos [1976]. It is warmly recommended. The example in Section 2.8 is from

Exercises 31

Lovasz [1979]. Gray codes were introduced by Gray [1953]. More on coding theory can

be found in Hamming [1986]. The proof of the arithmetic versus geometric mean
theorem is due to Cauchy (see, for example, Polya and Szego [1972] or Beckenbach and

Bellman [1961]). A bibliography for graph theory is given in Chapter 7. More on loop
invariants can be found in Gries [1981]. The example of the proof of (2.5) was shown to

us by Darrah Chavey.
Further material on mathematical induction can be found in Polya's wonderful

books [1954; 1957; 1981].Additional examples can be found in Sominskii [1963],

Golovina and Yaglom [1963],and, of course, throughout this book.

Exercises

2.1 Prove that x\" -y\" is divisible byx-y for all natural numbers jc,y (x *y), and n.

2.2 Extend the solution in Section 2.2 to general arithmetic sums. That is, find the sum

a, +tf2+ \342\200\242* *
+an, where #\342\200\236

= c1/i+c,2, andc,,c2 are constants.

2.3 Find the following sum and prove your claim:

1-2 + 2-3+ \342\200\242\342\200\242\342\200\242
+/i(rt + l).

2.4 Find the following sum and prove your claim:

111 1
\342\200\224+ \342\200\224+ \342\200\224+ \342\200\242\342\200\242\342\200\242+ \342\200\224

2 4 8 2\"

2.5 Find the sum of the squares of the first n natural numbers and prove your claim.

2.6 Prove that

l2 -22 + 32 -42 \342\200\242\342\200\242\342\200\242+ (-I)*\"1*2 = (-l)*-'*(* + l)/2.

2.7 Given a set of n + 1 numbers out of the first In natural numbers l,2,...,2/i, prove that there

are two numbers in the set, one of which divides the other.

2.8 Let a, b, and n be positive integers. Prove that

V-\\an+bn)>{a+b)n.

2.9 Prove by induction that a number, given in its decimal representation, is divisible by 3 if and

only if the sum of its digits is divisible by 3.

2.10 Find an expression for the sum of the ith row of the following triangle, which is called the
Pascal triangle, and prove the correctness of your claim. The sides of the triangle are Is,
and each other entry is the sum of the two entries directly above it.

1

1 1

1 2 1

13 3 1

14 6 4 1

32 Mathematical Induction

2.11 Find an expression for the sum of the /th row of the following triangle, and prove the

correctness of your claim. Each entry in the triangle is the sum of the three entries directly

above it (a nonexisting entry is considered 0).

2.12 Prove that, for all n > 1,

L ' +...+_L
n+\\ n+2 In

*
2.13 Prove that, for all n > 1,

1 + i + i+...+i..
2 3 n

1

1 4

13

k_

m
'

1

1 1 1

12 3 2 1

3 6 7 6 3 1

10 16 19 16 10 4 1

where k is an odd number and m is an even number.

2.14 Considerthe following series, 1, 2, 3, 4, 5, 10,20, 40, ..., which starts as an arithmetic

series, but after the first 5 terms becomes a geometric series. Prove that any positive integer
can be written as a sum of distinct numbers from this series.

2.15 Considerthe following series, 1, 2, 3, 6, 12,24, 54, 84, 114,..., which starts as an arithmetic

series, after the first 3 terms it becomes a geometric series, and then, after 3 more terms, it

becomes an arithmetic series again. Does your proof of Exercise 2.14 fit this problem? If it

does, find the error in it since, for example, 81 cannot be written as a sum of distinct

numbers this series. What is the subtle point in the proof of Exercise 2.14?

2.16 Considern >3 lines in general position in the plane. Prove that at least one of the regions

they form is a triangle.

2.17 Considern >3 lines in general position in the plane. Prove that these lines form at least
n - 2 triangles.

2.18 Given a set of n points in the plane such that any three of them are contained in a unit-size

cycle, prove that all n points are contained in a unit-size cycle.

2.19 Prove that the regions formed by n circles in the plane can be coloredwith two colors such
that any neighboring regions are coloreddifferently.

2.20 Prove that the regions formed by n circles in the plane, each with one chord (see Fig. 2.7),
can be colored with three colorssuch that any neighboring regions are coloreddifferently.

2.21 Prove that the regions formed by a planar map all of whose vertices have even degreecan be

colored with two colors such that no two neighboring regions have the same color.

2.22 Prove that a planar map can be coloredwith three colors, such that every two neighboring
regions are coloredwith different colors, if and only if each region has an even number of

neighboring regions. Two regions are considered neighbors if they have an edge in

common.

Exercises 33

Figure 2.7 Circleswith one chord.

*
2.23 The lattice points in the plane are the points with integer coordinates. Let P be a polygon

that does not cross itself (such a polygon is called simple) such that all of its vertices are
lattice points (see Fig. 2.8). Let p be the number of lattice points that are on the boundary of
the polygon (including its vertices), and let q be the number of lattice points that are inside
the polygon. Prove that the area of the polygon is p/2 + q - 1.

2.24 We can define anti-Gray codes in the following way. Instead of minimizing the difference

between two consecutive strings, we can try to maximize it. Is it possible to design an

encoding for any even value of objects such that each two consecutive strings differ by k

Figure 2.8 A simple polygon on the lattice points.

34 Mathematical Induction

bits (where is k is the number of bits in each string)? How about k - 1 bits (or k -2, k - 3,
etc.)?If it is possible, find an efficient construction.

2.25 Given a tree T and k subtrees of T such that each pair of subtrees has at least one vertex in

common, prove that there is at least one vertex in common to all the subtrees.

2.26 Letdx,d2,...,d\342\200\236,n >2, be positive integers. Prove that, if

di+d2+
'\342\200\242\342\200\242

+d\342\200\236=2n-2,

then there exists a tree with n vertices whose degrees are exactly dx, d2,..., dn.

2.27 Put n points on the boundary of a circle,and connect each point to all the others by a line

segment. Assume that no three line segments meet at a point. Calculate the number of

regions formed by these line segments inside the circle, and prove your claim.
*
2.28 Let T = {V, E) be an undirected tree. Let /be a function that maps vertices to vertices,

which satisfies the following condition: If (v, w) is an edge in \302\243,then either (f (v),/(w)) is
an edge in \302\243or/ (v) =/ (w). In other words, the function either maps an edge to an edge, or

it contracts an edge to a single vertex. Prove that there exists either a vertex v in V such that

/(v) = v, or an edge (v, w) in E such that /(v) = w and f(w) = v (in other words, there is
either a vertex or a edge that the function maps to itself).

2.29 The pigeonhole principle (in its simplest variation) states the following: If n+\\ balls (n > 1)
are put inside n boxes, then at least one box will contain more than one ball. Prove this

principle by induction.

2.30 A complete binary tree is defined inductively as follows. A complete binary tree of height
0 consists of 1 node which is the root. A complete binary tree of height h + 1 consists of

two complete binary trees of height h whose roots are connected to a new root. Let T be a
complete binary tree of height h. The height of a node in T is h minus the node's distance

from the root (e.g., the root has height /?, whereas a leaf has height 0). Prove that the sum of
the heights of all the nodes in T is 2/,+l -h-2.

2.31 Let F(n) be the nth Fibonacci number, which is defined inductively as follows:

F(1) = F(2)=1. F(/i) =F(/i-1) +F(/i-2), for n>2. Prove that F(n)2 + F(/i + l)2 =

F(2n + 1). (Hint: Strengthen the induction hypothesis by proving two seemingly separate
theorems at the same time, as is done in the section on Gray codes.)

2.32 Let n and m be integers such that \\<m<n. Prove by induction that

n2 -m(n + \\) + 2n + m2 < n2 + n.

(Hint: Use a \"two sided\" induction on m. Prove two base cases, m = 1 and m =/i, and go
either forward from m = 1 or backward from m = n.)

2.33 A bridge in an undirected graph is an edge whose removal disconnects the graph. Let

G=(V,E) be a connected undirected graph without a bridge. Prove that G has the

following \"ear decomposition\" (see Fig. 2.9). The edges of G can be partitioned into

disjoint sets \302\243|,\302\2432,...,\302\243*\302\273such that \302\243,is a cycle, and, for each z, 1 <i<k, \302\243,is a path
whose endpoints are vertices that already appear in a previous \302\243,,j < /, and its other
vertices (if any) have not appeared in previous \302\243,s.(The path may be a closedone, in

which case it includes only one previous vertex.)

Exercises 35

Figure 2.9 An ear decomposition.

2.34 LetK\342\200\236denote the complete undirected graph with n vertices (namely, every two vertices are
connected), and let n be an even number. Prove that the edges of Kn can be partitioned into

exactly nil spanning trees. (A spanning tree is a connected subgraph that contains all

vertices and no cycles.)
*
2.35 Given an undirected graph G = (V, F), a matching is a set of edgesno two of which have a

vertex in common. A perfect matching is one in which all vertices are matched. Construct

a graph G with In vertices and n2 edges such that G has exactly one unique perfect

matching.

2.36 Let a,, a2,..., an be positive real numbers such that a j a2
- \342\200\242-

a\342\200\236
= \\. Prove, without using

the arithmetic versus geometric inequality, that

(l+fli)(l+fl2)
\342\200\242\342\200\242\342\200\242

(l+a\342\200\236)>2\\

(Hint: Try a reduction by introducing another variable that replaces two specially chosen
numbers from the sequence.)

2.37 Considerthe recurrence relation for Fibonacci numbers F (/i) = F (/i - 1)+ F (/i
- 2). Without

solving this recurrence, compare F(n) to G(n) defined by the recurrence

G (n) =G (n
- 1) + G (n - 2)+ 1. It seems obvious that G(n)>F(n) (becauseof the extra 1).

Yet the following is a seemingly valid proof (by induction) that G{n) = F(n)-\\. We
assume,by induction, that G(k) = F(k)-\\ for all k such that 1 <k<ny and we consider
G(/i + l):

G(/i + l) = G(/i) + G(/i-1)+1 = F(/i)-1+F(/i-1)-1 + 1 = F(/i + l)-l.

What is wrong with this proof?

2.38 The following is another proof of the arithmetic versus geometric mean inequality. The

proof has a major weakness, which makes it incomplete in general. Describe this weakness
and then define the restrictions on the theorem that are needed to make this proof correct.

Let S =xt +x2+ \342\200\242\342\200\242\342\200\242
+x\342\200\236.To find a contradiction to the theorem, we need to exhibit n

numbers whose sum is 5 and whose geometric mean is larger than Sin. It makes sense to

36 Mathematical Induction

look for a set of numbers whose sum is S and whose product is maximum over all such sets.

In other words, we fix the sum (5) and try to maximize the product. Let {jt|v*2,...,*\342\200\236I be a

set that maximizes the product, and whose sum is S. If jc, *jc2, then we can replace both jc,

and x2 with their average (jc,+jt2)/2. The sum remains the same, but the product grows,

because

I Xi +X>>

X\\X2<

with equality holding only if jc, =x2. If all the numbers are equal, then the theorem holds.
Otherwise, this is a contradiction to the maximality assumption of the set.

2.39 Design an algorithm to convert an binary number to a decimal number. The algorithm
should be the opposite of algorithm Convert to_Binary (see Fig. 2.6). The input is an array
of bits b of length k, and the output is a number n. Prove the correctness of your algorithm

by using a loop invariant.

2.40 Modify algorithm ConvertJo _Binary (see Fig. 2.6) such that it converts a number given in

base 6 to a binary number. The input is an array of base-6 digits, and the output is an array

of bits. Prove the correctness of your algorithm by using a loop invariant.

CHAPTER 3

ANALYSIS OF ALGORITHMS

It does not depend on size,or a cow would catch a rabbit.

Pennsylvania German Proverb

He is afoolwho looks at the fruit of lofty trees,
but does not measure their height.

Quintus Curtius Rufus

3.1 Introduction

The purpose of algorithm analysis is to predict the behavior, especially the running time,
of an algorithm without implementing it on a specific computer. The advantages of

doing so are clear. It is much more convenient to have simple measures for the

efficiency of an algorithm than to implement the algorithm and test the efficiency every
time a certain parameter in the underlying computer system changes. Furthermore, a

complicated program usually includes many different ''small\" algorithms. It would be
toomuch work to test thoroughly all different alternatives for each part of the program.

Unfortunately, it is usually impossible to predict the exact behavior of an

algorithm. There are too many influencing factors. Instead, we try to extract the main

characteristics of the algorithm. We define certain parameters and certain measuresthat

are the most important for the analysis. Many details concerning the exact

implementation are ignored. The analysis is thus only an approximation', it is not

perfect. On the other hand, even a rough approximation can yield significant information

about the algorithm. Most important, using this analysis, we can compare different

algorithms to determine the best one for our purposes. We can use an analogy to car

mileage claims, and attach a disclaimer saying \"Use for comparisononly
\342\200\224

your

running times may vary.\"

ti

38 Analysis of Algorithms

In this chapter, we describe one methodology for predicting the approximate
running times of algorithms and for comparing different algorithms. The main feature of

this approach is that we ignore constant factors and concentrate on the behavior of the

algorithm as the size of the input goes to infinity. For example, if the input is an array of

size \302\253,and if the algorithm consists of \\00n steps, then we ignore the constant 100 and

say that the running time is approximately n (we will introduce precise notation shortly).

If the number of stepsis 2n2 +50, then we ignore the constants 2 and 50 and say that the

running time is approximately n2. Since n2 is larger than \302\253,we say that the second

algorithm is slower, even though for \302\253=5, for example, the first algorithm requires 500

steps,whereas the second one requires only 100 steps. This approximation is valid,

however, if n is large enough. The secondalgorithm is indeed slower than the first one

for all n >50. On the other hand, suppose that the running time of the first algorithm was

100\302\2531,8. Again, the first algorithm seems better, since nx% is smaller than n2. In this

case, however, n will have to be approximately 300,000,000 for 100\302\25318 to be smaller

than 2\302\2532+50. Fortunately, most algorithms have small constants in the expression of

their running times. Thus, even though the asymptotic approach can be misleading
sometimes,it works well in practice. In most cases, looking at only the asymptotic

behavior is sufficient as a first approximation and indication of efficiency.
The result of our analysis should indicate how long the algorithm in question is

expected to run for a particular input. However, we cannot list the precise running times
for all inputs, unless the algorithm is very simple. The number of different possibilities

of inputs is enormous, and most algorithms behave differently for different inputs.

Instead, we attach a measureto the input, called the size of the input, and present analysis
relative to that size. The algorithm will not behave exactly the same for all inputs of

equal size, but we hope that the variation will be reasonable. The size is usually defined

as a measure of the amount of space required to store the input. We will not try to

introduce one general definition of size of the input for all algorithms, because we will be

mainly interested in comparing different algorithms for the same problem. In most cases,
the definition of size will be straightforward. We will see some examples shortly.
Unless specifiedotherwise, the size will be denoted by n.

Given a problem and a definition of size, we want to find an expression that gives

the running time of the algorithm relative to the size. (Theprecisedefinition of
'
'running

time\" will be given in Section 3.3.) As we said earlier, there is usually not just one value
for all inputs of equal size. Consequently, we must choose, among all inputs of the same
size, the input we want to use as our indicator. The most common choice is the worst-

case input. This may seem peculiar. Why not use the best input, or the average input?
The best input is usually ruled out because, in most cases, it is not representative;

there is usually an input for which the problem is trivial. The average-case input may be
a goodchoice,but it is sometimes very hard to measure effectively. First, it is generally
not clear what an \"average\" input is. We can average over many different parameters in

many different ways. If we are not careful, the average can contain many cases that

never occur in practice, thus making this measure irrelevant. Another serious problem
with taking the average case is the mathematical difficulty in analyzing average-case
performance. We are still very far from

having comprehensive, relatively easy-to-use

3.2 The O Notation 39

techniques for average-case analysis. We will discuss average-case analysis for few

problems, but we will mainly resort to worst-case analysis. Choosing the worst input as
an indicator turns out to be very useful. In some cases, the worst input is very close to
the average input and to experimental observations. In other cases, even though the

worst input is substantially different from the average input, the algorithm that achieves

the best performancefor the worst input also performs very well for all cases. Unless

specifiedotherwise, we will use worst-case analysis throughout this book.

In summary, both asymptotic analysis and worst-case analysis are only

approximations of the running time of a particular algorithm under a particular input.

They definitely do not give the whole story. They are, however, very good indicators in

most cases.

3.2 The O Notation

As we have already said, our approach will be to ignore constant factors when trying to

evaluate the running time of a particular algorithm. To do that effectively we need

special notation. We say that a function g(n) is 0(f(n)) for another function f(n)

(pronounced \"Oh,\" or sometimes\"BigOh,\"of/(\302\253)), if there exist constants c and /V,

such that, for all n >N, we have g(n)<cf(n). In other words, for large enough a?, the

function g (n) is no more than a constant times the function/ (n). The function g (n) may
be less than cf (\302\253),even substantially less; the O notation bounds it only from above. For

example, 5\302\2532+15 = 0{n2), since 5n2 + \\5<6n2 for n>4. At the same time,
5n2 + 15=

0(\302\2533), since 5n2 + 15<n3 for all n >6.

The O notation allows us to ignore constants conveniently. Although we can

include constants within the O notation, there is no reason to do that. We always write

0(n) instead of, say, 0(5n+4). Similarly, we write 0(\\ogn) without specifying the

base of the logarithm, because changing bases changes the logarithm only by a constant.

We write 0{\\) to denote a constant. We can also use the O notation if we want to

specify the constants only in parts of the expression. For example, we may write

T(n) = 3n2 + 0 (n),orS(n)=2n\\og2n +5n +0 (\\).
In general, determining whether a certain function g(n) is 0(f(n)) may not be

easy. Most of the functions involved in the analysis of algorithms in this book are

relatively simple. With some simple rules, we can cover the majority of (but not all)

cases. The most useful rule is the following: We say that a function f(n) is

monotonically growing if n j >n2 implies that/(a? ,)>/(\302\2532)-

\342\226\241Theorem 3.1

For all constantsc > 0 and a > 1, and for all monotonically growing

functions f(n),

(f(n)Y=0(a^n)).

In other words, an exponential function grows faster than does a
polynomial function. \342\226\241

40 Analysis of Algorithms

This rule can be used to compare many functions. For example, if we substitute n for

/ (n) in Theorem 3.1, we get that, for all constants c > 0 and a > 1,

n(=0(a\.") (3.1)

Another example comes from substituting log\342\200\236A?for f(n). For all constants c>0 and

a>\\

(\\ogany=0(aloSl\")
= 0(n). (3.2)

We can add and multiply with the O notation using the following rules.

\342\226\241Lemma 3.2

/. If fin) = 0(s(n))andg(n)= 0(r(n))then fin) + g(n) = 0(s(n) + r(n)).
2)If fin)

= 0(s(n)) and g(n) = 0(r(n)) then fin)g(n)
= 0(s(n)r(n)).

Proof: By definition, there are constants c\\, N\\, c2, and N2, such that

f(n)<C\\s(n) for a?>/V,, and g(n)<c2r(n) for n>N2. The largest of c, and c2, and the

largest of N, and N2 can be used to show both claims. \342\226\241

Since the O notation corresponds to the \"<\" relation, however, it is not possible to

subtract or divide. That is, it is not true in general that f(n) = 0(s(n)) and

g(n) =0(r(n)) imply that f(n)-g(n) = 0(s(n)-r(n)) or that f(n)/g(n) =

0(s(n) I r{n)) (seeExercises3.15and 3.16).

The importance of concentrating on the asymptotic behavior is illustrated in Table

3.1, which contains several typical running times and the time the corresponding

algorithms consume for a problem of size n = 1000 for different computer speeds. The

speeds differ by a constant of 2 from column to column, from 1000 steps per second to
8000 stepsper second.We can clearly see the improvements we gain by speeding up the

computer (or the algorithm) by a constant factor versus the improvements we gain by

changing to a faster asymptotic algorithm (i.e., going up the table). An exponential

algorithm will require astronomical time (billions and billions of years) to handle
n = 1000 (unless the base is very close to 1).

The O notation is used to denote upper bounds on the running times of algorithms;

however, using only upper bounds is not sufficient. All the algorithms in this book, for

example, have running times of 0(2\.") That is, they do not require more than

exponential time. However, 0(2\") is a very crude upper bound for most of these

algorithms
\342\200\224

they are much faster than that. We are interested not only in upper bounds,
but also in an expression that is as close to the actual running time as possible. In cases

where it is too difficult to find the exact expression, we would like to find at least upper
and lower bounds for it. Obtaining lower bounds is more difficult than is obtaining upper

bounds. An upper bound on the running time of an algorithm implies only that there
exists some algorithm that does not use more time than indicated. A lower bound must

imply that no algorithm can achieve a better bound for the problem. It is impossible, of
course, to consider all possible algorithms one by one. We need mechanisms to model
problemsand algorithms in a way that enables us to prove lowerbounds. Lower bounds

are discussed further in Section 6.4.6. There is a similar notation to handle lower bounds

3.2 The O Notation 41

running times

1 log2\302\253

n

n log2\302\253

\342\200\236..5

n2

n3

1.1\"

time |
1000steps/sec

0.010
1

10
32

1,000
1,000,000

1039

time 2

2000 steps/sec

0.005
0.5
5

16
500

500,000
1039

time 3

4000 steps/sec

0.003
0.25
2.5
8

250
250,000

1038

time 4

8000 steps/sec

0.001
0.125
1.25

4

125

125,000

1038

Table 3.1 Running times (in seconds) under different assumptions (n=1000).

while ignoring constants. If there exist constants c and N, such that for all n>N the

number of steps T(n) required to solve the problem for input size n is at least eg (\302\253),then

we say that T(n) =
\302\243l(g(n)). So, for example, n2=Cl(n2- 100), and also n=Q(n\302\260'9).

The Q notation thus correspond to the \">\" relation.

If a certain function f(n) satisfies both f(n) = 0(g(n)) and f(n)
=

\302\243l(g(n)), then

we say that f(n) = &(g(n)). For example, 5a? log2fl - 1O=
0(a? log a?). (The base of the

logarithm can be omitted in the expression &(n log/;), since different bases change the

logarithm only by a constant factor.) The constants used to prove the O part and the Q

part need not be the same.

The 0, Q, and 0 correspond (loosely) to \"<\", \">\", and \"=\". Sometimes we

need notation corresponding to \"<\" and \">\". We say that/(\302\253)
= o(g(n)) (pronounced

tt/(A7)islittleohofg(A?),,)if

lim^ =o.

For example, n/\\og2n=o(n), but n/\\0*o(n). Similarly, we say that f (n) = (o(g(n)) if

g(n) = o(f(n)).
We can strengthen Theorem 3.1 by replacing big O with little o:

\342\226\241Theorem 3.3

For all constants c >0 and a > 1, and for all monotonically growing

functions f(n), we have (f (n))c=o(aJ{n)).In other words, an exponential
function grows faster than does a polynomial function. \342\226\241

The OO Symbol

The O notation has received a lot of criticism over the years. The main objection to it is,

of course, that in reality constants do matter. The wide use of the O notation makes it

convenient to forget about constants altogether. It is essential to remember that the O

notation gives only a first approximation. As such, it serves a useful purpose, and its use

42 Analysis of Algorithms

has prompted the development of many algorithms that are practical by all measures. It

was also instrumental in the development of complexity theory, which sheds light on

many aspects of algorithm efficiency.
It is, however, important to distinguish between the case where the constants

ignored by the O notation are prohibitively large and the case where they are small and

the corresponding algorithm is efficient in practice. To make this distinction, we

introduce in this book a new symbol. It is not meant to be a precisemathematically

defined notation \342\200\224it is meant only to replace someprose that accompanies (or at least

should accompany) some algorithms whose running times, as measured by the O

notation, are of theoretical value only. We suggest to denote by CO(f(n)) (pronounced
\"Oh Oh of/(\302\253)\") a function that is O (/(\302\253)), but with constants that are too large for

most practical uses. (This notation should be easy to remember since it resembles a big

oo.)
The use of the CD notation should be left to the judgment of the writer. Whether or

not a certain constant leads to a \"practical use\" is not well defined. We have no

intention of attempting to tighten our definition. The main purpose is to indicate to the

reader the opinion of the writer in a concise form. Another goal in introducing this

symbol is to stressthat the O notation is not the whole story.

3.3 Time and Space Complexity

How do we analyze an algorithm's running time without running the algorithm? We
need to count the number of steps the algorithm performs. The problem is that there are

many different types of steps, and each may require a different amount of time. For

example, a division may take longer to compute than an addition does. One way to

analyze an algorithm is to count the number of different steps separately. But listing all

the types of steps separately will be, in most cases, too cumbersome. Furthermore, the

implementation of the different steps depends on the specific computer or the

programming language used in the implementation. We are trying to avoid that

dependency.
Instead of counting all steps, we focus on the one type of step that seems to us to

be the major step. For example, if we are analyzing a sorting algorithm, then we choose

comparisons as the major step. Intuitively, comparing elements is the essence of sorting;
all the rest can be regarded as overhead. Of course, we have to make sure that

comparisons indeed constitute the major part of the algorithm. Since we will ignore

constant factors anyway, it suffices to check that the number of all other operations is

proportional to the number of comparisons. If this is true, and if 0(f(n)) is a bound for

the number of comparisons, then 0(f(n)) is also a bound for the total number of steps.
We say that the time complexity of the algorithm, or the running time, is 0(f(n)).
This approach also solves the problem of different steps that require different

computation time, as long as the difference is no more than a constant.

The space complexity of an algorithm indicates the amount of temporary storage

required for running the algorithm. In most cases, we do not count the storage required
for the input or for the output as part of the space complexity. This is so, because the

3.4 Summations 43

spacecomplexity is used to compare different algorithms for the same problem, in which

case the input/output requirements are fixed. Also, we cannot do without the input or

output, and we want to count only the storage that may be saved. We also do not count

the storage required for the program itself, since it is independent of the size of the input.

Like time complexity, space complexity refers to worst case, and it is usually denoted as

an asymptotic expression in the size of the input. Thus, an 0(\302\253)-space algorithm

requires a constant amount of memory per input primitive. An 0(l)-space algorithm

requires a constant amount of space independent of the size of the input.

Counting the number of major steps may not be easy. In the next sections we

discuss briefly several mathematical techniques for computing running times. In

contrast, estimating the space complexity of a particular algorithm is usually

straightforward, and, in most cases, we will not discuss it.

3.4 Summations

If an algorithm is composed of several parts, then its complexity is the sum of the

complexities of its parts. In many cases, this is not as simple as it sounds. The algorithm

may consist of a loop executed many times, each time with a different complexity. We

need techniques for summing expressions in order to analyze such cases. Probably the

simplest case is a loop of size \302\253,such that the /th step (i<n) requires / operations. The
total number of operations is thus 1+2+ \342\200\242\342\200\242\342\200\242

+\302\253.We denote sums with the sigma
n

notation. The above sum is written as
\302\243/,

which means \"sum of the term /, where /

goes from 1 to \302\253.\"As we have seen in Section 2.2, this sum is equal to n (n + l)/2. We

can comparethis sum to the case where each step requires exactly n operations, and we

observe that, by cutting the running time of the /th step from n to /, we save a factor of

about 2.

\342\226\241Example 3.1

Consider now the case of executing a loop in which the /th step requires i2 operations. In

other words, we are looking for the summation

S2(/i)=ii2.

It is clear that S2(n)<n3, since n3 is equal to running the loop for n2 operations in each

step. Judging from this example, we can guess that the differences between S2(n) and n3

are within a constant. We can prove our guess, and find the constants, by induction. We
guess that S2(n)

= P(n) = an3+bn2 +cn+d. P(n) must satisfy P(\\)=\\ and the
induction step P (n + 1)=P(n)+ (n + 1)2. The induction step implies that

a(\302\253+ l)3+/?(\302\253 + l)2+c(\302\253 + l) + ^-(a\302\2533+/7\302\2532+c\302\253+^) = \302\2532+ 2\302\253+ l,

which implies (since coefficientsof the same power of n must be equal) that

44 Analysis of Algorithms

3a +b-b = 1 the coefficient of n2 ,

3a + 2b + c - c =2 the coefficient of \302\253,

and

a+b+c+d-d = 1 the coefficient of 1 .

These equations imply that a = 1/3, b = 1/2, and c = 1 /6. The value of d comes from the

initial condition (P (1)= 1),which implies that a+b+c+d=\\. Hence d =0. Combining

all the terms, we get

S2(n) =
T

+
T

+
g- g

\342\200\242 (3.3)

Again, it is interesting to note that by reducing the size of the ith step from n2 to /2, we
savea factor of about 3. \342\226\241

There is another way to arrive at expression (3.3). It is a general technique that we

will use several times. If we guess that S2(n) is a third-degree polynomial, then we can

try to express S2(n)as a combination of such polynomials. We then arrive at the solution

for S2(n) by solving an equation involving it and other explicit polynomials. Consider
the sum

S3(n)=i,i\\ (3.4)

We will first write (3.4) in a different way:

S3(n) = i,i3 = X(/-l + l)3 = X0' + l)3 = X(/3+3/2 + 3/+l). (3.5)

In other words, we shift the summation, so that the sum goes from 0 to n - 1 instead of
from 1 to n. This shift is illustrated in Fig. 3.1. We can now equate the left side and the

right side of (3.5),and expand:

X/3=I(/3+3/2+3/+l). (3.6)

The / terms for / ranging from 1 to n - 1 are common to both sides of (3.6), and can be
canceled.We then write an equation involving the rest of the terms from both sides.

I3 + 23 + + (/i-D3 + n3

(0+1)3 + (l+l)3 + (2+1)3 + + (\302\253-l+l)3

Figure 3.1 Computing a summation by shifting.

3.4 Summations 45

n-\\

\342\200\2363=03+ X (3i2 + 3/ + l).

n-\\ n-\\

We already know that J)/
= n(n- l)/2, and it is clear that

\302\243/2=S2(n)-n2 (the only

difference is in the \302\253thterm). Hence,

n3 = 3(S2(n)-n2) + 3/i (n
- l)/2 + /i.

We can now solve for S2(n):

n3 -3n(n-\\)/2-n=3(S2(n)-n2),

which implies that

r/, \302\2533-
3\302\253(\302\253-1)/2 -\302\253 2 \302\2533 3\302\2532 \302\253 /i(/i + 1)(2/i + 1)

S2(\302\253)
=

j
+ \"2 =

T
+ -T +

i
=

6
\342\200\242

which is, of course, exactly the same expression as (3.3).
The main trick in this derivation was to use a particular sum (S3(n) in this

example) in two different ways, such that they mostly cancel each other. Many other

sums exhibit the same behavior. If we consider the difference between a sum

f\\ +/2 + '' ' +//i and a shifted sum f2+fi+
'' '

+/\342\200\236+i,we see that most of the

coefficients cancel each other. Only the boundary terms are left. We presentthree more

examples of this technique.

\342\226\241Example 3.2

We want to compute the following sum:

/r(/i) =
\302\2432'\"

= 1+2 + 4+ \342\200\242\342\200\242\342\200\242+2\".

We would like to compare F(n) to another expression involving F(n) by shifting terms

and by canceling most of them. The difference between consecutive terms in F(n) is a

factor of 2, solet'smultiply the whole expression by 2 (which will allow us to shift):

2F(\302\253)
= 2 + 4 + 8+ \342\200\242\342\200\242\342\200\242+2,?+2\"+l.

We can now get an expression involving F(n):

2F(n)-F(n) = 2\"+l -1.

But, this implies that F(n) = 2n+[- 1. \342\226\241

\342\226\241Example 3.3

Consider now the following slightly more difficult sum:

G(/i) = 2'2'\"= l-2l +2-22+ 3-23+ \342\200\242\342\200\242\342\200\242
+/i-2\\

We can apply the same technique:

46 Analysis of Algorithms

2G(\302\253)=l-22 + 2-23+3-24+ \342\200\242\342\200\242\342\200\242+ n-2n^

(we simply incremented the power). By subtracting the two expressions, we eliminate

the effect of the i factor:

G(n) = 2G(n)-G(n) = n-2n+l -(1-21 + 1'22+ \342\200\242\342\200\242\342\200\242
+1-2\

= n-2n+{ -(2\"+I -2) = (n-\\)2n+l+2.

D Example 3.4

Finally, we consider the following sum, which will appear in Section 6.4.5 in the analysis

of heapsort:

G(\302\253)
=

\302\243i2#\"\"=l-2#|-1 +2-2\"-2 + 3-2',-3+ \342\200\242\342\200\242\342\200\242
+/i-2\302\260.

We can apply the same technique:

2G(\302\253)=l\342\200\2422',+2\342\200\2422',-,+3-2\"-2+ \342\200\242\342\200\242\342\200\242
+\302\253-2!.

Again, by subtracting the two expressions, we eliminate the effect of the / factor:

G(n) = 2G(n)-G(n) = 2n + \\'2n-1 + l-2\"-2 + \342\200\242\342\200\242\342\200\242+ 1-21 -/i-2\302\260.

3.5 Recurrence Relations

A recurrence relation is a way to define a function by an expression involving the same
function. Probably the most famous recurrence relation is the one defining the Fibonacci

numbers

F(n) = F(n-\\) +F(n-2), F(l)=l, F(2)=\\. (3.7)

This expression uniquely defines the function. We can compute from this expression the

value of the function at every number k. For example, F(3)=/r(2)+ F(l) = 2,
F (4) = F (3)+F(2)=3, and so on. However, if we compute the value of the function by

following the definition, we would need k-2 steps to compute F(k). It is much more

convenient to have an explicit (or closed-form) expression for F(n). That would enable

us to compute F(n) quickly, and to compare F(n) to other known functions. This is

called solving the recurrence relation. We sometimes call a recurrence relation simply a

recurrence.

Recurrence relations appear frequently in the analysis of algorithms. We briefly

discuss here a useful technique for solving recurrence relations, and present general
solutions of two classes of recurrences that are among the most common recurrences

involved in analyzing algorithms. These recurrences will be used later in the book.

3.5 Recurrence Relations 47

3.5.1 Intelligent Guesses

Guessing a solution may seem like a nonscientific method, but, keeping our pride aside, it

works very well for a wide class of recurrence relations. It works even better when we

are trying to find not the exact solution, but only an upper bound. The main reason that

guessing is useful is that proving that a certain bound is valid is easier than computing the

bound. Consider the following recurrence which is defined only for values of n that are

powers of 2:

7(2/i)<27(/i) +2/i-l, 7(2)= 1. (3.8)

We wrote this recurrence as an inequality rather than equality. This is consistentwith

our modest goal of finding only an upper bound (in the form of the O notation), and with

the fact that the right-hand side represents the worst case. We want to find a function

/(/?) such that T(n) = 0(f(n)), but we also want to make sure that /(/?) is not too far

from the actual T(n).

Given a guess for / (n), say f (n) = n2, we prove that 7(n) = O(/(/?))by induction

on n. First, we check the base of the induction. In this case, 7(2) = 1</ (2)=4. We then

prove that T(n)<f(n) implies that 7(2/2) < / (2/2). We need to prove that

T(n)<n2 implies 7(2n) <
(2n f.

The proof is as follows:

7 (2/2)
< 27 (n) + 2/2 - 1, (by the definition of the recurrence)

< 2/22+ 2/2 - 1, (by the induction hypothesis)

<(2/2)2,

which is exactly what we wanted to prove. Thus, T(n) =0(n2). Is n2 a good estimate

for T{n)l In the last step of the proof, 2/22 + 2/2- 1 was substituted by the greater An2.

But there is a substantial gap (about 2n2) between these two expressions, which gives us
a hint that maybe n2 is a high estimate for T(n).

Let's try a smaller estimate, say, f(n) = cn for some constant c. It is clear,

however, that en grows more slowly than T(n) does, since c2n=2cn, and there is no

room for the extra 2/2-1. Hence, T(n) is somewhere betweenen and n2.

Let's try now T(n)<n \\og2n. Clearly, 7(2) < 21og22.Assume that T(n)<n log2/2,
and consider 7(2/2):

7(2/2)<27(n)+ 2/2 - 1, (by the definition of the recurrence)

< 2/2 log2/2 + 2/2 - 1, (by the induction hypothesis)

< 2/2(log22/2),

which is exactly what we wanted to prove. The leeway in the proof is only 1 now, so we

are very close. Later, we will prove that this is actually the exact solution to within a

constant.

48 Analysis of Algorithms

The recurrence relation (3.8) is defined only for values of n that are powers of 2.
We can define a similar recurrence for all values of n in the following way:

r(/i)<2r(L/i/2j) + /i-l, 7(2)=1. (3.9)

(Notice that the floor symbol is necessary, becauseT(n) is defined only for integers.)

The recurrence relation (3.9) is more general than (3.8), since it is defined for all values

of \302\253,but, for values of n that are powers of 2, (3.9) is exactly the same as (3.8).

Therefore, we already know that, for values of n that are powers of 2, T(n)=O (n logn).

We now show that the same bound applies to all values of T(n). It is clear that T(n) is a

monotonically increasing function. If n is not a power of 2, T(n) is no more than 7(2*),

where 2k is the first power of 2 that is greater than n. That is, let 2*_l < n < 2k\\ clearly,

7(2*_l) < T(n) < 7(2*).We proved that 7(2*)<c2*log22* for some constant c. Hence,

T(n)<c2k\\og22k<c(2n)\\og2(2n) <
cxn\\og2n.

for another constant c\\, which implies that T(n) = O(n logn) for all n. It is usually

sufficient to assume that n is a power of 2 when we are looking for an asymptotic

expression.

Let's summarize the steps used in an inductive proof of a solution to a recurrence

relation. Suppose that we have a general recurrence relation of the following form:

T(g(n)) =
E(T9n)9 (3.10)

where g (n) is a function of n (which defines the growth of the recurrence), and E is some

expression involving T(n) and n. For example, in (3.8), g(n) = 2n, and E(T,n) =
2T(n)+2n - 1. Suppose further that we guess that 7 (\302\253)</(\302\253),for some function f(n).
To prove our guess, we need to substitute g(n) for n in/(\302\253), then to substitute f(n) for
each occurrenceof T(n) in E. We then have to show that f(g(n)) is greater than or

equal to the value substituted for \302\243(7,n). In other words, we have to provethat

f(g(n))>E(f,n). (3.11)

For example, in (3.8) we guessed that f (n) = n \\og2n; thus, we had to show that

(2/i)(log2(2/i)) > 2(/i \\og2n) + 2/i - 1.
A common mistake is to try to prove the opposite \342\200\224that is, to replace

'
'greater

than\" with \"less than.\" An intuitive, and easy to remember, explanation is the

following. We are trying to prove that/(\302\253) grows more quickly than T(n) does. Hence,
if we substitute g(n) for n in /(\302\253), we should get a value larger than what we get by

substituting g(n) for n in T(n). But, T(g(n)) = E(T, n) (this is exactly the recurrence

relation); thus, we can replace T(g(n)) with \302\243(/,n). This process may have to be
repeatedseveral times with different functions (guesses) until the proof of the inequality

becomes reasonably tight.
Another common mistake is to use the O notation when guessing. That is, we

guess that the solution is O (f (\302\253)),and we try to substitute 0(f(n)) for n. However, the

O notation cannot be used in that way. The problem with using the O notation is that,

even though we do not care about the constants at the end, we cannot ignore them

through the proof. For example, if we try to prove that the solution of (3.8) is O (\302\253),by

3.5 Recurrence Relations 49

substituting O (n) for \302\253,we get the following (the base caseis trivial):

T(2n) < 2T(n) + 2n - 1, (by the definition of the recurrence)

< O(n) + 2n - 1, (by the induction hypothesis)

= 0(/i),

which is wrong, as we have seenearlier. The error lies in the fact that different constants

were used(or rather ignored) at different stages of the ''proof.\" The correct approach is

to include the constants explicitly. When we want to guess that the solution is 0(f(n)),

we guess that it is cf (n) for some constant c, and determine the value of c later.

Let's try now to solve the Fibonacci relation by guessing. Again, we are given that

F{n) = F{n-\\) +F{n-2), F(l)=l, F(2)=l. (3.12)
Since the value of F(n) is the sum of two previous values, a reasonable guess would be

that F(n) is doubled every time; namely, it is approximately 2\". Let's try F(n) = c2n.

Substituting c2n in (3.12), we get

c2\"=c2\"-1 + c2n~2.

This equality is clearly impossible, sincec is canceled and the left side is always greater

than the right side. So we learned that c2n is too large, and that the multiplicative
constant c plays no role in the induction step.

The next attempt could be another exponential function, but with a smaller base.
Instead of guessingdifferent bases, it is easier to introduce a parameter as a base and to

compute its value through the verification. We will try F(n) = a\", where a is a constant.

Substituting a\" in (3.12), we get

an=an-1 +an~\\

which implies that

a2=a + l. (3.13)

The two solutions for (3.13) are ax =(l+\\5)/2 anda2=(l ~
V5)/2. So, in particular, we

now know that F(n) = 0((a\\)n), since {ax)n satisfies the recurrence, and we can easily
find a constant c such that c(a {)n is greater than the given values for n = 1 and n = 2.

If we want to find the exact value for F(n), we will need to consider the initial

values more carefully. Since both {ax)n and {a2)n solve the recurrence, any linear

combination of them does. So the general solution of the recurrence is

c,(a,r+c2(a2r.

We need to compute the values of c \\ and c 2 so that the expression fits the values of F (1)
and F (2). It is a simple exerciseto verify that c, = 1 /\\5, and c2 =-1 / V5. Therefore, the

exact solution of the Fibonacci relation is

50 Analysis of Algorithms

F(\302\273)=-p
V5

1 + V? 1

^5

i-V?

The equation a2 = a + 1, which we encountered in our search for a solution to the

recurrence relation (3.12), is called the characteristic equation of the recurrence

relation. The same technique is the basis for solving any recurrence of the form

F{n) = b{F{n-\\) + b2F(n-2)+
\342\200\242\342\200\242\342\200\242+ bkF{n-k)

for a constant k.

3.5.2 Divide and Conquer Relations

In a divide-and-conquer algorithm, the problem is divided into smaller subproblems, each

subproblem is solved recursively,and a combine algorithm is used to solve the original

problem. Assume that there are a subproblems, each of size Mb of the original problem,

and that the algorithm used to combine the solutions of the subproblems runs in time cnk,
for someconstants 0, b, c, and k. The running time T(n) of the algorithm thus satisfies

T(n) = aT(n/b) + cnk. (3.14)

We assume, for simplicity, that n =bm, so that nib is always an integer (b is an integer

greater than 1). We first try to expand (3.14) a coupleof times to get the feel of it:

T(n) =a(aT(n/b2)+ c(n/b)k) + cnk=a(a(aT(n/b3) + c(n/b2)k) +c(n/b)k)+ cnk.

In general, if we expand all the way to nlbm = 1, we get

T(n) =a(a(\342\200\242\342\200\242\342\200\242
T{nlbm)^c{nlbm^)k) + \342\200\242\342\200\242

\342\200\242)+ c:/!*.

Let's assume that T(\\) = c (a different value would change the end result by only a

constant). Then,

T(n) = cam +cam-[bk +cam-2b2k + \342\200\242\342\200\242\342\200\242
+cftm*,

which implies that

m m fok
i

T{n) =
c^am-lbik =

cam%(\342\200\224)
\342\200\242

/=o /=o a

But, this is a simple geometric series. There are three cases, depending on whether

(bk/a) is less than, greater than, or equal to 1.

Case 1: a > bk

In this case, the factor of the geometric series is less than 1, so the series converges to a
constant even if m goes to infinity. Therefore, T(n) = 0(am). Since m = \\oghn, we get
am = a \302\260Sh\"

=nlog\"a (the last equality can be easily proven by taking logarithm of base b
of both sides). Thus,

T(n) = 0(n^ha).

3.5 RecurrenceRelations 51

Case 2: a=bk

In this case, the factor of the geometric series is 1, and thus T(n) = 0(am m). Noticethat

a = bk implies that \\ogha
= kand m-0(logn). Thus,

T(n) = 0(nk\\ogn).

Case3: a < bk

In this case, the factor of the geometric series is greater than 1. We use the standard

expression for summing a geometric series. Denote bkla by F (F is a constant). Since
the first element of the series is am, we obtain

pm + l _ i

T(n) = am\302\243 -=0(amFm) = 0((bk)m) = 0((bm)k)=0(nk).F-1
These three cases are summarized in the following theorem.

\342\226\241Theorem 3.4

The solution of the recurrence relation 7(n) = aT(nlb)+ cnk, where a and

b are integer constants,a > 1,b > 2, and c and k are positive constants, is

0(n^a) if a>bk

T(n)= <j 0(nk\\ogn) ifa=bk.

0(nk) ifa<bk
\342\226\241

The result of Theorem 3.4 applies to many divide-and-conquer algorithms. It

should be memorized.This result is also very helpful in the design stage, since it can be

used to predict the running time. Generalizations of this formula are given in the

exercises.

3.5.3 Recurrence Relations with Full History
A full-history recurrence relation is one that depends on all the previous values of the

function, not just on a few of them. One of the simplest full-history recurrence relations

is

r(/!) = c +
\302\243r(i), (3.15)

where c is a constant and 7(1) is given. We can solve this recurrence by using the same

method we used to compute sums. We will try to write the recurrence in such a way that

most of the terms will be canceled. (This method is sometimes called elimination of

history.) For the recurrence (3.15),we compare T(n + 1) to T(n):

T(n + \\) = c + ZT(i). (3.16)

If we subtract (3.15) from (3.16), we get T(n + \\)-T(n) =T(n). So,T(n + 1) =
27(\302\253),

which clearly implies that T(n + l) =r(l)2\". (This claim is true for 7(1), and, by

52 Analysis of Algorithms

induction, if the claim is true for T{n), then it is true for T(n +1), since we double the

value every time.)
This argument may be ''clear,\" but it is incorrect! We can, for example, set

7(1)= 1 and c = 5, and see that 7(2) = 6*27(1). This is another example of carelessly

going through an induction proof ignoring the base case. The error results from the fact

that the proof does not work for T(2), since 7(1) is not necessarily canceled by c. One

should be very suspicious when a parameter (c in this case) that appears in the expression

does not appear in the final solution. To solve this problem correctly, we note that

7(2)
= 7(l) + c* (by definition), and that the proof above is correct for all n>2. Hence,

7(\342\200\236+ l) = (7(l) + c)2''-1.
This recurrence is very simple. The next one is not so simple, but it is very

important. It appears in the analysis of the average case of quicksort which we discuss in

Section 6.4.4. The recurrence relation is

7(/i) = /i-1 + -
\302\2437(1), (for\302\253>2). 7(1) = 0. (3.17)

n i=\\

We use the shifting and canceling terms technique. We want to cancel most of the T(i)

terms. Let's look at the corresponding expression for T(n + 1):

7(\302\253+ l) =
(\302\253+ l)-l +

-^yX7(/)
(n>2). (3.18)

For convenience, we multiply both sides of (3.17)by \302\253,and both sides of (3.18) by n + 1:

n-\\

nT(n) = n(n-\\) + 2
\302\2437(/) (n>2). (3.19)

(/i + l)r(/i + l) =
(/i + l)/i+2 2;r(i) (n>2). (3.20)

/ = !

We can now subtract (3.19) from (3.20), and obtain

(n + \\)T{n +1) -
nT(n)

= (n + \\)n
- n (n - 1)+ 2T(n) = 2n + 2T{n) (n >2),

which implies that

r(\302\253+ l) =
^7(\302\253)+

-^- (n>2).
n+\\ n+\\

This recurrence is easier to solve. First, we substitute 2 for , and get a close
\302\253+ l

approximation:

r(\302\253+ l)<-^_7(\302\253) + 2 (n>2). (3.21)
n +1

If we expand (3.21), we get

3.6 Useful Facts 53

7\302\273<2 +
\302\253+ l

2 +
n-\\

2 + n-\\
n-2

4_

3

= 2

= 2

\302\253+l \302\253+l
1 + +

n n + \\ n n-\\

n n-\\ n n-\\ n-2

\302\253+ l \302\253+ l \302\253+ l \302\253+ l
1 + + + + \342\200\242\342\200\242\342\200\242+ \342\200\224\342\200\224-

\342\226\240+ \342\200\242\342\200\242\342\200\242+

= 2(/i + l)

n-\\ n-2

111 1
+ \342\200\224+ + \342\200\242\342\200\242\342\200\242+ \342\200\224

n +1 n n-\\ 3

n + \\ n n-\\

n n-\\ n-2

=
2(/i + l)(//(\302\253 + 1)-1.5),

where H(n)= 1+ 1/2+ 1/3+ \342\200\242\342\200\242\342\200\242+ \\ln is the Harmonic series. The Harmonic series has

a simple approximation, which we will not prove, H(n) = \\nn + y+0(\\/n), where

7=0.577.. is Euler's constant. Hence,the solution for T(n) is

7\302\273
< 2(/i + l)(ln/i +7- 1.5)+ O (1) = O(n \\ogn).

3.6 Useful Facts

In this section, we present, without proof, several equalities and inequalities that are

useful in analyzing algorithms.

Arithmetic series

1+2 + 3 + + \302\253= /!(/! +1)

More generally, if an =an_\\ +c\\ where c is a constant, then

n(an+a{)
ax +02+03+

\342\200\242\342\200\242\342\200\242
+0\342\200\236

= .

Geometric series

1+2 + 4+ \342\200\242\342\200\242\342\200\242+2\"=2\"+1-l.

More generally, if an =can_\\, where c*\\ is a constant, then

cn-\\
ai+a2+fl3+

'*' +an=a\\ c-\\

(3.22)

(3.23)

(3.24)

(3.25)

If 0 < c < 1,then the sum of the infinite geometric series is

54 Analysis of Algorithms

2>
=

-TT-
/ = 1

Sum of squares

\"
., h(h + 1)(2h + 1)

h\" 6

Harmonic series

//\342\200\236
=

\302\243j
= ln/i+Y + 0(l/\302\273),

where y= 0.577.. is Euler's constant.

Basic rules involving logarithms

(3

\\ogha
=

loga* =

1

\\ogab

log/,*

>og/,a

Sum of logarithms

ILlog2'J =(\302\273+ !)Llog2\"J -2Llog!\"J
+ 1

+2 =
0(wlog\302\253).

1=1

Bounding a summation by an integral
If f(x) is a monotonically increasing continuous function, then

\342\200\236 .v=n+l

I/cos J /(*)</*.
/=! ,v=l

Stirling's approximation

n! = \\2tw (1+0(1//i)).

In particular, Stirling's approximation implies that log2(w!) = 0(w logn).

(3

(3

(3

(3

(3

(3

(3

(3

(3

BibliographicNotes and Further Reading 55

3.7 Summary

NielsBohr once said that \"it is very hard to predict; especiallythe future.\" It is not that

hard to predict the behavior of an algorithm, but it is far from being easy. The main

method we use is approximation. We ignore many details and attempt to extract only the

most important characteristics of the algorithm. The O notation is useful in that respect,
but we must never forget that it is only a first approximation. On the other hand, the

difficulty in analyzing algorithms should not deter the algorithm designer from

attempting this task. It is essential to get at least some indication of the efficiency of an

algorithm.
In many cases, especially when recursion is used, we get a recurrence relation.

The first thing we should do with a recurrence relation is to look at the first few terms.

This will give us some idea of the behavior of the relation, but it is by no means enough.
The first few terms help in making the first pass at guessing a solution. Another useful

step is to expand the recurrence several times, as we did in Section 3.5.2. Guessing and

verifying is a good technique for solving recurrence relations, but it is usually just a first

step. We must be careful not to \"overguess\"
\342\200\224that is, to try an upper bound that is

correct, but too pessimistic. There are many other techniques. Fortunately, most

algorithms that appear in practice lead to one of a very few classes of recurrence
relations, most of which are described in this chapter. It is usually sufficient to assume, as

a first step, that n has a specialform \342\200\224in particular, that n is a powerof 2.

Bibliographic Notes and Further Reading

The idea of asymptotic analysis was promoted in the early 1970's, and it was met with

some resistance. It is by now the major measure for algorithm efficiency. There are

several books \342\200\224
mainly on discrete mathematics and combinatorics \342\200\224that cover

techniques for evaluating summations, recurrence relations, and other expressions needed
for analyzing algorithms. Brualdi [1977], Bavel [1982],Roberts [1984], and Graham,

Knuth, and Patashnik [1989] are just a few examples. There are fewer books that are

devoted entirely to algorithm analysis. Knuth [1973a] providesa rich source of material.

Additional books and survey papers include Greene and Knuth [1982], Lueker [1980],
Purdom and Brown [1985a], Flajolet and Vitter [1987], and Hofri [1987].

Knuth [1976] discusses the relatives of the O notation. Additional techniques for

solving recurrence relations can be found in Lueker [1980], and Bentley, Haken, and
Saxe [1980]. (The latter contains the solutions to Exercises 3.23 and 3.24.) Tarjan

[1985] discusses amortized complexity, which is an elegant method for analyzing the

running times of certain algorithms in a more precise way; if a certain part of the

algorithm is performed several times, each time with a different running time, then,

instead of taking the worst case every time, we amortized the different costs. The

recurrence relation in Exercise 3.19 is from Manber [1986]. Exercise3.21is from

Purdom and Brown [1985a].

56 Analysis of Algorithms

Drill Exercises

3.1 Prove that, if P (n) is a polynomial in /i, then O (log (P (/i))) = O (log n).

3.2 Prove that, if f(n) = o(g(n)), then f(n) = 0(g(n)). Is the opposite true?

3.3 Prove, by using Theorem 3.1, that

/i(log3/i)5=0(/i12).

3.4 Prove, by using Theorem 3.1, that for all constants a, b > 0

(\\og2ny
= 0(nb).

3.5 Compare the following pairs of functions in terms of order of magnitude. In each case, say
whether f(n) =0(g(n)),f(n) =

Q(g (n)), and/or f(n) = Q(g (n)).

fin)

a. 100/1+log/i

b. log n

n2
c.

log/i

d. (log/i)log\"

e. nL

f. n 2\"

3-6 Solve the following recurrence relation. Give an exact solution.

T(n) = T(n-\\) + n/2\\ T(\\)= 1.

3.7 Solve the following recurrence relation. Give an exact solution.

T(n) = ST(n-\\)- \\5T(n-2); T(\\)=\\\\ 7(2) = 4.

3.8 Prove that T(n), which is defined by the recurrence relation

7,(/7)= 27,(L/i/2j)+ 2/ilog2/T, T(2) = 4,

satisfies T(n) = 0(n log2/?).

3.9 The following recurrence relation describes the running time of a recursive algorithm for
matrix multiplication ([Pan 1978]). What is the asymptotic running time of this algorithm?

S(\

n + (log /i)2

log (/i2)

n (log n)2

/i

log /i

(log/i)5

3\"

Creative Exercises 57

T(n)= \\43640T(n/10)+ O(n2\\ T(\\)=\\.

3.10 Find the mistake in the following analysis. Let A be an algorithm that works on complete

binary trees (namely, binary trees in which all the leafs are at the same depth). Suppose that

A performs 0(k) steps for each leaf in the tree, where k is a parameter that has to do with

the amount of information stored in the leafs (but is otherwise independent of the tree), and

constant time c per each internal node. We claim that the total running time of the

algorithm is 0(k).

Wrong proof:The '
'proof\" is by induction on /i, the number of nodes in the tree. If n = 1,

then the total number of steps is obviously 0(k). Assume that the claim is true for all

complete binary trees with < n nodes, and consider a tree with n nodes. Such a tree consists

of a root and two subtrees, each of size (n
- l)/2. By the induction hypothesis, the running

time for the two subtrees is O(k). Hence,the running time for the tree is 0(k) +0(k) +c.
But this is equal to O (&), and the proof is complete.

3.11 Solvethe following full-history recurrence relation:

7\302\273= max inO),

where 7(1)= 1.

3.12 Solve the following full-history recurrence relation:

n-\\

r(/i) = /i + Sr(/)f

where T(\\)= 1.

3.13 Use(3.34) to prove that, for every positive integer &,

2i*
= 0(/i*+I).

/=i

3.14 Use (3.34) to prove that, for every positive integer k,

Zik\\og2i
= 0(nk+l\\ogn).

i = \\

Creative Exercises

3.15 Find a counterexample to the following claim: f(n) =0(s(n)) and g(n) = 0(r(n)) imply

that f(n)-g(n) = 0(s(n)-r(n)).

3.16 Find a counterexample to the following claim: f(n) =0(s(n)) and g(n) = 0(r(n)) imply

that f (n) I g(n) =0{s{n)I r{n)).
*

3.17 Find two functions/(n) and g (n), both monotonically increasing, such that f(n)*0(g(n))
and g(n)*0(f(n)).

58 Analysis of Algorithms

3.18 Consider the recurrence relation

T(n) = 2T(n/2)+\\, T(2)=\\.

We try to prove that T(n) = 0(n) (we limit our attention to powers of 2). We guess that

T(n)<cn for some(as yet unknown) constant c, and substitute en in the expression (see
Section 3.5.1). We have to show that en >2e(n/2) + 1. But this is clearly not true. Find the

correct solution of this recurrence (you can assume that n is a power of 2), and explain why

this attempt failed.

3.19 Find the asymptotic behavior of S (n), which satisfies the following recurrence relation:

S (mn)< cm log 2mS(n) + 0(mn\\ 5(2)= 1,

where m and c are constant parameters. (The solution should be a function of /i, m, and c.)

3.20 Prove that the asymptotic solution for the recurrence relation

T(n) = 2T(n-c) +k,

where both c and k are integer constants, is T(n) = O (dn) for some constant d.

3.21 The following recurrence relation appears in divide-and-conquer algorithms in which the

problem is divided into unequal size parts:
it

T(n) = 2,aiT(n/bi) + cn.
i = \\

All the tf,s and 6,s are constants, and they satisfy

k

i-2>iA->\302\260-
1=1

Find the asymptotic behavior of this recurrence relation (by guessing and verifying).

3.22 Solve the following two recurrence relations. It is sufficient to find the asymptotic behavior
of T(n).

a. r(/i) =

4rf[^l]
+ l; T(2)= 1.

b. 7\"(/i) = 27\"
rr^TJ]

H-2/i; T(2)= 1.

(Hint: Substitute another variable for n.)

3.23 Prove that the solution of the recurrence relation

T(n) = kT(n/2)+f(n\\ T(\\) =c

is

T(n) = nlogk(c+g(2) + g(4)+ \342\226\240\342\226\240\342\200\242
+*(/!\302\273,

where g(m) is defined as /(m)/wlogA. You can assume that n is a power of 2. (This is a

more general solution than the one given in Section 3.5.2, since it applies to any function

/(\\342\200\242)

3.24 Prove that the solution of the recurrence relation

Creative Exercises 59

T{n)= kT{nld)+f{n\\ T(\\) = c,

T(n) = nlogdk(c+g(d) + g(d2)+ \342\200\242\342\200\242\342\200\242+ g(n)\\

where g (m) is defined as / (m)lm
og

. You can assume that n is a power of d.

3.25 Find the asymptotic behavior of the function T(n) defined by the recurrence relation

T(n) = T(nl2)+ T(\\y[n\\) + n, T(\\)= 1, T(2)= 2.

You can consider only values of n that are powers of 2.

3.26 Find the asymptotic behavior of the function T(n) defined by the recurrence relation

7>) = 7>/2) + Vrt~, T(\\) = 1.

You can consider only values of n that are powers of 2.

3.27 Find the asymptotic behavior of the function T(n) defined by the recurrence relation

n
T(n) = T(n/2) + T\\

\\og2n

+ n (n>2), T(\\)= 1, T(2)=2.

You can consider only values of n that are powers of 2.

3.28 Find the solution of the following recurrence relation. It is sufficient to find the asymptotic
behavior of T(n). You should give convincing evidence that the function f(n) you find

satisfies f (n) =Q(T(\302\253)).

T(n) =
2T\\

log2fl

+ 3/i (n>2), T(\\)= 1, T(2) = 2.

3.29 Although in general it is sufficient to evaluate recurrence relations only for powers of 2, that

is not always the case. Consider the following relation:

T(n/2)+ 1 if n is even
T(n) =

2T((n-\\)/2) if n is odd,

with T(\\)= 1.

a. Prove that the solution of this recurrence for powers of 2 is T(2k)=k+ 1 (namely, for

powers of 2, T(n) = O (log n)).

b. Show that, for an infinite number of values of /i, T(n) = Q(n). Discuss why the usual

assumption about the relative behavior for powers of 2 and nonpowers of 2 breaks down
for this recurrence.

3.30 Use (3.34)to prove that

s(/o=i;riog2(/i//)i

satisfies S(n) =0(n).

3.31 Compute the following sum precisely:

Analysis of Algorithms

5(/i)=snog2(/i/oi.

You can assume that n is a power of 2.

The Fibonacci numbers F(n) can be extended to negative values of n using the same

definition: F(/i+2) = F(/i +l) + F(/i), and F(l)=l, F(0) = 0 (e.g.,F(-l)=l, F(-2)= -l,

and so on). Let G(n) be defined as F(-n). Write a recurrence relation for G{n), and

suggest a way to solve it.

Prove that G(/i) = (-l)\"+,F(/0.

CHAPTER 4

A BRIEF INTRODUCTION TO

DATA STRUCTURES

Science is nothing but trained and organized common sense.

T.H.Huxley, 1878

/ hate intellectuals; they are from the top down;

I am from the bottom up.

Frank Lloyd Wright (1869-1959)

4.1 Introduction

Data structures are the building blocks of computer algorithms. A design of an algorithm
is like a designof a building. One has to put all the rooms together in a way that is the

most effective for the intended use of the building. To do that, it is not enough to know

about functionality, efficiency, form, and beauty. One needs a thorough knowledge of

construction techniques. Putting a room in midair may achieve the desired effect, but it

is not possible. Other ideas may be possible, but too expensive. In the same way, a

design of an algorithm must be based on a thorough understanding of data structure

techniques and costs.
In this short chapter, we review only the basic data structures used throughout the

book. We do not intend this chapter to provide a comprehensivetreatment of data

structures. That would require (at least) a whole book, and indeed, there are many
excellent such books. We expect that most readers have already studied data structures

in some depth. This chapteris intended mostly for quick review.

\302\243^k

62 Data Structures

A useful notion in the study of data structures is that of an abstract data type.
Normally, when we write a program, we have to specify the data type (e.g., integers,

reals, characters).But, in some cases, the data type is not important for the design of the

algorithm. For example,we may want to maintain a first-in first-out (FIFO) queue of

items. The required operations are insertions of items into the queue, and removals of

items from the queue. In case of removals,the items must be removed in the same order

in which they were inserted. It is more convenient and more general to design the

algorithms for these operationswithout specifying the data type of the items. We specify

only the required operations. We call the abstract data type that supports these operations
a FIFOqueue. The most important part of an abstract data type is a list of operations that

we want to support. Another example of an abstract data type is a queue in which the

items have priorities. The removals are not according to the order of insertions, but

according to the priorities. That is, the first item to be removed in each step is the item of

highest priority among the items in the queue. This abstract data type is called a priority

queue. Again, we do not specify the data type of the items. (In this case, we do not even
have to specify the data type of the priorities; we need only to assume that the priorities
are totally ordered and that we can determine that order.)

By concentrating on the operational nature of a data structure, and not on a precise
implementation for a particular problem, we make the design more general. The

techniques for implementing a priority queue, for example, are for the most part

independent of the exact data type. If we realize that our needs correspond to the

definition of the abstract data type, we can immediately use it. Abstract data types allow
us to make the algorithm-design process more modular.

4.2 Elementary Data Structures

4.2.1 Elements
We use the notion of an element throughout this book as a generic name for an

unspecified data type. An element can be an integer, a set of integers, a file of text, or

another data structure. We use this term whenever the discussion is independent of the

type of data. Consider,for example, sorting algorithms. If the only steps the algorithm
takes are comparing elements and moving them around, then the same algorithm can be
used for sorting integers or names (strings of characters). The implementation (that is,
the program) may be slightly different, but the ideas are the same. Since we often

concentrate on the ideas rather than on the implementation, it is reasonable to ignore the

types of the elements.
The only assumptions we make about elements are the following:

1. Elements can be comparedfor equality.

2. Elements are taken from a totally ordered set, and it is possible to tell whether one
element is \"less than\" another. We usually are not concerned with the exact
definition of the relation \"less than,\" as long as it is a valid total order.

3. Elements can be copied.

4.2 Elementary Data Structures 63

All these operations are counted as taking one unit of time. Although the unit is relative
to the size of the actual elements, we usually will regard these operations as taking

constant time. Most of the time, it is easier to think of an element simply as an integer,

even though the algorithm may also work for more complicatedstructures.

4.2.2 Arrays

An array is a row of elements of the same type. The sizeof an array is the number of
elementsin that array. This size must be fixed. Since the size of the array is fixed, and

all the elements are of the same type, the amount of memory that should be allocated to

store the array is known a priori. For example, if the elements are names with 8

characters each, if each character requires 1 byte of storage,and if the size of the array is

100, then 800 bytes are required to store the array. The storage for an array is always
consecutive. If the first byte of the array is stored at location x in memory, then the fcth

byte of the array is stored at location x + k- 1. Consequently,it is easy to compute the

starting location of the storage of each element in the array. In our example, if the

starting location of the array is at 10000, then the 55th name starts at the 433rd byte,
which is stored at location 10432, assuming locations are numbered by bytes. (This
calculationcan be easily modified if locations are numbered differently.)

Arrays are very efficient and very common data structures. Every element of an

array can be accessed in constant time. The algorithm designer who uses a high-level

language is rarely concerned with location calculations \342\200\224
they are done by the compiler.

As a rule of thumb, arrays should be used whenever possible. The main drawbacks for

using arrays are their restrictions. Arrays cannot be used to store elements of different

types (or sizes), and the size of an array cannot be changeddynamically. We deal with

these two restrictions in the following subsections.

4.2.3 Records

Records are similar to arrays, except that we do not assume that all elements are of the

same type. A record is thus a list of elements of different types. The exact combination
of types is fixed. Like that of an array, the storage size of a record is known in advance.

Each element in a record can be accessed in constant time. This is accomplished by

keeping an array with the same number of elements, such that for each element the array

contains its starting location. This array is needed only to enable a constant time access

to any record element. Such access is achieved by consulting the array for the location of

the element. The exact program that maintains the array is created automatically by the

compiler.
For example, a record may consist of 2 integers, 3 arrays of 20 integers each, 4

more integers,and 2 names each containing 12characters. (Note that the two array types
in the record are considered now to be elements by themselves.) This recordis defined in

Fig. 4.1. The array stored with the record contains the starting relative locations of all the

elements. Thus, if each integer is stored in 4 bytes, Int6, which is the ninth element in the

record, starts at byte number 261 (2-4 +3-20-4+ 3-4+1). Since the sizes of all the

elements in the records are known, it is possible to compute the location of each element

64 Data Structures

recordexample!
begin

Intl : integer ;

Int2 : integer;
Arl : array [1 ..20] of integer ;
Ar2 : array [1..20] of integer ;
Ar3 : array [1..20] of integer ;
lnt3 : integer;

Int4 : integer;
Int5 : integer ;

Int6 : integer ;

Namel : array [1..12] of character ;

Name2 : array [I. .12] of character

end

Figure 4.1 Definition of a record.

in constant time. Like that for arrays, the storage for a record is always consecutive;
similarly, it is not possible to add elementsdynamically.

4.2.4 Linked Lists

There are many applications in which the number of elementsis changing dynamically as

the algorithm progresses. It is possible to define all the elements as arrays (or records)
large enough to ensure sufficient storage space. This is often a good solution, but, of
course, it is not very efficient to demand storage according to the worst case (and, in

many cases, the worst case is unknown). Furthermore, there are cases where there is a
need for insertions and deletions in the middle of the list. If we use arrays and we need to
insert an element in the middle, we have to shift all other elements. This inefficiency is
inherent in the consecutive representation of arrays; thus, arbitrary insertions and
deletions are very costly for large arrays. For these cases we need dynamic data

structures. We use dynamic data structures extensively throughout this book; a

familiarity with them is essential.

Linked lists are the simplest form of dynamic data structures. Suppose we have a
list of elements and we want to be able to insert new elements and to delete old elements

efficiently. The idea is to abandon the consecutive representation of arrays. Instead,
each element is represented separately, and all elements are connected through the use of

pointers. A pointer is simply a variable that holds as its value the address of another

element. A linked list is a list of pairs, each consisting of an element and a pointer, such
that each pointer contains the address of the next pair. Each such pair is represented by a

record. A linked list can be scanned by following the addresses in the pointers. Such a
scan must be a linear scan. That is, it is not possible to access each element directly

\342\200\224

we must traverse the list in order.

4.2 Elementary Data Structures 65

There are two major drawbacks to the linked-list representation. First, it requires

more space. There is one additional pointer per element. Second, if we want to look at

the 30th element, for example, we need to start at the beginning and look at 29 pointers,

one at a time. With arrays, we could make a simple calculationand find the 30th element

directly. On the other hand, there is one major advantage to this representation. Suppose
that we find the 30th element and we now want to insert a new 31st element.1 All we

need to do is to set the pointer associated with the new 31st element to the address of the

previous 31st element(this address is stored in the 30th pointer), and set the 30th pointer

to point to the new 31st element (see Fig. 4.2). Only two operations are required. With

arrays, all elements following the 30th element would need to be moved. A delete

operation is also simple. If we want to delete the 31st element, we simply set the 30th

pointer to point to the 32nd element, by copying the address stored at the 31st pointer

(see Fig. 4.3). Only two operations are required.
The discussionof insertions and deletions in linked lists has ignored several

important details that tend to make the implementation of linked lists a little more

complicated. The main problem is how to detect the end of the list. Usually, a special

N H M ooo

30th

M M N OOO

30th

-1 >

Figure 4.2 Inserting a new element into a linked list.

30th

1 \342\200\224n 1

\342\200\242I1\342\200\224\342\200\224MI J

ooo \342\200\224H

30th

OOO \342\200\224H
M

Figure 4.3 Deleting an element from a linked list.

The number system is consecutive in nature. It is thus confusing to talk about the new 31st and the old 31st
element. We often uses \"30a\" to denote an insertion after 30. This notation causes many problems. If we
insert again after the 30th,we may run out of notation (30aa?). This is a good example of the need for dynamic
data structures.

66 Data Structures

address,called nil, is provided, such that a nil pointer is a pointer to nowhere; it can be

used to indicate an end of a list. Another possibility is to introduce a regular record, but

to include in it a key that will guarantee that the search will end there. This additional

record, sometimescalled a dummy record, makes the program simpler, since there are

fewer special cases. Dummy records are useful for a variety of data structures.

4.3 Trees

The only structure that arrays and linked lists can capture is the order of the elements

they represent. There are numerous applications that require more structure. Trees

represent hierarchical structures. They can also serve as a more efficient data structure

for certain operations on linear structures. In this section, we will be concerned with only
hierarchical trees,also known as rooted trees or arborescences. A rooted tree is a set of
elements, which we call nodes (or vertices),together with a set of edges that connect the

elements in a special way (see Fig. 4.4). One node is the root of the tree (the top of the

hierarchy). The root is connected to other nodes,which are at level 1 of the hierarchy;

they, in turn, are connectedto nodes at level 2, and so on. All the connections are thus

between nodes and their direct unique \"supervisors\" (usually called parents after

genealogical trees). Only the root has no parent. The main property of trees is that they

do not have cycles. As a result, there is a unique path between any two nodes of a tree.
A node is connected to its parent and to several underlings (again, following the

genealogical terminology, we will call the latter children). The maximal number of

children of any node in the tree is called the degree of the tree. We usually order the

children of every node, then identify them by their index in that order (the first, second,

and so on). In the special case of trees of degree2, called binary trees, we identify the
children by left (for first) and right (for second). A node with no children is called a leaf
(this time, the terminology comes from real trees). A node that is not a leaf is called an

internal node. The height of a tree is the maximal level of the tree, namely, the

Figure 4.4 A rooted tree.

4.3 Trees 67

maximal distance between the root and a leaf. Each node has a key, which comes from a

totally ordered set (for example,a real number or an integer). We will interchangeably

refer to the key and the node as the same when no confusion can arise. For convenience,
we assume that we deal with unique keys. Otherwise, we can link together all the

elements with the same key in a linked list and have one node with a pointer to that list.
Each node usually has a data field containing the data (or a pointer to the data) that is

associated with the node. The data field depends on the application, and we will

generally not deal with it.

In this section, we concentrate on two uses of trees: search trees, and heaps. In

both cases, binary trees are used. We start with a discussion of the representation of trees

in memory.

4.3.1 Representation of Trees

There are two main representations of trees, an implicit representation and an explicit

representation. In the explicit representation, the connection of one tree node to another

is done by a pointer. A node with k children is a record containing an array of k pointers.
(In some applications, a node also contains a pointer to its parent.) It is usually more

convenient to have all the nodes of the same type. Hence, all nodes have m pointers,

where m is the maximal number of children in the tree. Alternately, it is possible to
associateonly two pointers per node in the following way. The first pointer points to the

first child, and the second pointer points to the next sibling. Figure 4.5 illustrates the two

representations of the same tree. The main drawback of the second representation is that,
to get hold of all the children of a node, we have to traverse a linked list.

No pointers are used in the implicit representation. An array is used to store all the

nodes of the tree, and the connections are implied by the positions of the nodes in the

array. The most common way of implementing an implicit tree representation is the

following. Consider a binary tree T. The root of T is stored in y4 [1]. The left and right

children of the root are stored in A [2] and A [3]; the two children of the left child of the

root are stored in A [4] and A [5]; and so on. The array represents a traversal of the tree

Figure 4.5 Binary representation of a nonbinary tree.

68 Data Structures

from left to right, level by level. We can define the representation by induction: (1) The

root is storedat A [1] (the base case). (2) The left child of a node v that is stored in A [i]

is stored in A[2i], and v's right child is stored in >4[2/+l]. The advantage of this

representation
is that no pointers are required, which saves storage. On the other hand, if

the tree is unbalanced, namely, if some leavesare much farther away from the root than

others are, then many nonexisting nodes must be represented. An unbalanced tree is

shown in Fig. 4.6; the numbers below each node indicate its position in the array. An

array of size 30 is neededto represent 8 nodes. The implicit representation thus may or

may not save storage, depending on the tree. Also, since arrays are used, dynamic

operations in the middle of the tree are costly. On the other hand, dynamic operations
canbe reasonably supported if they are limited to nodes that correspond to the end of the

array.

4.3.2 Heaps

A heap is a binary tree whose keys satisfy the following heap property:

The key of every node is greater than or equal to the key of any of its

children.

By the transitivity law, the heap property implies that the key of every node is greater

than or equal to the keys of all that node's descendants. Heaps are useful in

implementing a priority queue, which is an abstract data type defined by the following
two operations:

Insert(x): insert a key x into the data structure.

Remove{)\\ remove the largest key from the data structure.

Heaps can be implemented with either the explicit or the implicit tree representation. We
will use the implicit representation, since we can ensure that the heaps will be balanced.

We assume that the array is i4[l..\302\243], where k is an upper bound on the number of
elements the heap will ever contain (if an upper bound is not known, then a linked

Figure 4.6 Implicit representation of an unbalanced tree.

4.3 Trees 69

representation
is required). Let n denote the current number of elements in the heap;

namely, only the array A [\\..n] is of interest at any moment. We now proceed to describe

how to implement insert and remove efficiently with the use of heaps.
We start with the Remove operation. By the heap property, the node with the

largest key in a heap is the root, A[\\]. So, a Remove operation always removes the key
from the root. The problem is to restore the heap property after the key of the root has

been deleted. We now have an array A [2..n], which corresponds to two separate heaps.
We first take the leaf A [n], delete it, and put it in place of the root. That is, we let A [1]

:= A [n], and decrement the value of n by one. Denote the value of the new A [1] by jc.

We still have two separate heaps plus a value on top, which may or may not satisfy the

heap property. (The only way for jc to satisfy the heap property at this point is if the

whole path from the root to where jc was contained the value jc.) To restore the heap

property, we now propagate jc down the tree, until it reaches a subtree for which it is a

maximum. This is done by comparing jc with the values of its two children 04 [2] and

A [3]) and, if jc is not the maximal among the three, by exchanging A [1] with the largest

of them. Assume that A [2] is the maximal. Then,A [2] is clearly the maximal key in the

whole heap, so it can be put in the root position. Furthermore, the subtree rooted at A [3]
remains unchanged, and thus it also satisfies the heap property. We have to worry only

about the subtree rooted at A [2] (because now it has jc in its root). But now we can

continue inductively in the same way. Assume that we continue for / steps, and that the

key jc is now atA[j]. Only the tree rootedatA[j] may not satisfy the heap property. We

again compare jc to its two new children, A[2j] and A[2j+\\] (if they exist), and

exchange if jc is not the maximal. The algorithm terminates either when jc becomes the

maximal of a subtree,or when it reaches a leaf. The maximal number of comparisons

required for a deletionis 2|\"log2\302\253~|, which is twice the height of the tree. The algorithm

for removing a maximum element from a heap is given in Fig. 4.7.

An Insert operation is similar. We first increment n by one, and insert the new key
as the new leaf A [n]. We then compare the new leaf with its parent, and exchange if the

new leaf is larger than its parent. At this point, the new key is the maximal of its subtree

(since the parent was the maximal and it was found to be larger). We assume,

inductively, that the tree rooted?xA[j] (initially A [n]) satisfies the heap condition, and

that if we remove this tree the rest of the heap satisfies the heap property. We continue
this process, promoting the new key up the tree, until the new key is not larger than its

parent (or until it reaches the root). At this point, the whole tree is a valid heap. The

maximal number of comparisonsrequired for an insertion is riog2\302\253l, which is the height
of the tree. The algorithm for inserting an element into a heap is given in Fig. 4.8.

Overall, we can perform any sequence of Insert and Remove operations in time
O

(\\ogn) per operation. On the other hand, it is not possible to perform other operations
efficiently with a heap. For example, if we want to search for a given key, the hierarchy

given by the heap is not useful. A Heap is a good exampleof an implementation of an

abstract data type. A heap supports a limited number of specific operations very

efficiently. Whenever we need these particular operations, we can impose the heap

structure on the data whatever its type is.

70 Data Structures

Algorithm Remove_MaxJrom_Heap (A, n);

Input: A (an array of size n representing a heap).

Output: Top_of_the_Heap (the maximal element of the heap), A (the new

heap), and n (the new size of the heap; if n = 0, then the heap is empty).

begin
ifn = 0 then print \"the heap is empty\"

else

Top_of_the_Heap :=A[\\];

A[\\]:=A[n];
n := n -1 ;

parent := 1 ;
child := 2 ;

while child <n -1 do

ifA[child] < A[child+J] then

child := child+ / ;
ifA[child] > A[parent] then

swap(A[parent], A [child]) ;

parent := child;
child := 2*child ;

else child := n {to stop the loop }
end

Figure 4.7 Algorithm RemoveJAaxJromJieap.

Algorithm Insert Jo _Heap (A,n,x);
Input: A (an array of size n representing a heap), and x (a number).

Output: A (the new heap), and n (the new size of the heap).

begin

n := n + 1 ; { we assume that the array does not overflow }

A [n] := x ;
child := n ;

parent := n div 2 ;
while parent > 1 do

if A[parent]< A[child] then

swap(A [parent], A[child]); {seealsoExercise4.6}
child := parent ;

parent := parent div 2 ;

else parent := 0 {to stop the loop }
end

Figure 4.8 Algorithm Insert jojieap.

4.3 Trees 71

4.3.3 Binary Search Trees

Binary search trees implement efficiently the following operations:

search(x)\\ find the key x in the data structure, or determine that x is not

there (for simplicity, we will assume that each key appears at most once).

insert(x): insert the key x into the data structure (unless it is already there).

delete(x):deletethe key x from the data structure if it is there.

Abstract data types that handle these three operationsare called dictionaries. Binary
search trees implement dictionaries efficiently, as well as other more complicated
operations. We will use the explicit representation of trees in this section, since dynamic
insertions and deletions are important parts of binary search trees. We do not want to

limit ourselves to a given upper bound for the number of elements. We assume that each

node in the tree is a record containing at least three fields: key, left, and right, such that

key holds the key associated with the node, and left and right are pointers to other nodes

(or to nil). Binary search trees are more complicatedthan heaps, because in heaps only

leaves are added or removed and keys exchanged, whereas in binary search trees, any

node may be removed and the pointers may be manipulated in many other ways. For

simplicity, we assume that all keys are distinct.

Search

As its name suggests,a search tree is a structure to facilitate searching. The structure

becomes clear once the search procedureis understood. Assume that we have a key x

and we want to know whether it is currently a key of a node in the tree, and if it is, we

want to find that node. This operation is called a search. We first compare x against the

root of the tree, whose value is, say, r. If x = r, then we are done. If x <r, then we

continue the search from the left child; otherwise, we continue the search from the right

child. Each key in the search tree serves to divide the range of the keys below it: the

keys in the left subtree are all smaller than it, and the keys in the right subtree are all

greater than it. This rule defines search trees. We say that the tree is consistent if all the

keys satisfy this condition. A simple recursive program for searching in a binary search

tree is presented in Fig. 4.9.

Insertion

Insertions into binary search trees are also quite simple. Given a key x to insert, a search

for x is performed first. If x is already in the tree, then it will be found and the insertion

will be aborted. (We assume that we do not want several nodes with the same key.)

Otherwise, the search ends (unsuccessfully) at a leaf. A node containing the new key can
then be inserted below that leaf (as either a right child or a left child, depending on the

value of x). The tree remains consistent, since subsequent searches for a will get to the

same leaf and through it to the new node. The search program must be changed slightly

so that we find the leaf. We use this opportunity to write a nonrecursive search program,

which is given in Fig. 4.10.

72 Data Structures

Algorithm BST_Search (root, x) ;

Input: root (a pointer to a root of a binary search tree), and x (a number).

Output: node (a pointer to the node containing the key jc, or nil if no such

node exists).

begin

if root = nil or root\".key
= x then node := root

{root\" is the record that the pointer root is pointing to.}
else

ifx < root\".key then BST_Search(root\".left, x)

else BST_Search(root\".right, x)

end

Figure 4.9 Algorithm BST_search.

Algorithm BSTJnsert (root, x);
Input: root (a pointer to a root of a binary search tree), and x (a number).

Output: The tree is changed by inserting a node with the key x pointed to by

the pointer child; if there is already a node with key jc, then child = nil.

begin

if root = nil then

create a new node pointedto by child ;

root := child ;
root\".key := x

else

node := root;
child := root; { to initialize it so that it is not nil}

while node * nil and child * nil do

if node\".key
= x then child := nil

else

parent := node ;
ifx < node\".key then node := node\".left
else node := node\".right ;

if child * nil then

create a new node pointedto by child ;

child\".key := x ;
child\".left := nil; child>ight := nil;
ifx < parent\".key then parentleft := child

else parent\".right := child

end

Figure 4.10 Algorithm BSTJnsert.

4.3 Trees 73

Deletion

Deletionsare generally more complicated. It is easy to delete a leaf; we need only to

change the pointer to it to be nil. It is also not hard to delete a node that has only one

child; the pointer to the node is changed to point to its child. However, if the node we

want to delete has two children, then we need to find a place for the two pointers. Let B

be a nodewith two children whose key we want to delete (see Fig. 4.11). In the first step,
we exchange the key of B with a key of another node X, such that (1) X has at most one

child, and (2) deleting X (after the exchange) will leave the tree consistent. In the second

step, we delete X, which now has the key of B which we wanted to delete. We can easily

delete X, because it has at most one child. To preserve the consistency of the tree, the

key of X must be at least as large as all the keys in the left subtree of B, and must be

smaller than all the keys in the right subtree of B. Notice that the key of X in Fig. 4.11

satisfies these constraints: it is the largest among the keys in the left subtree of B. X is
called the predecessor of B in the tree. X cannot have a right child, since otherwise it

would not have the largest key in that subtree. The deletion algorithm is presented in Fig.
4.12.

Complexity The running times of search, insert, and delete depend on the shape of

the tree and the location of the relevant node. In the worst case, the search path would

take us all the way to the bottom. All the other steps in the algorithms require only
constant time (e.g., the actual insertion, the exchange of keys in the deletion). So, the

worst-case running time is the maximal length of a path from the root to a leaf, which is

the height of the tree. If the tree is reasonably balanced(we will define balance shortly),
then its height is approximately log2fl, where n is the number of nodes in the tree. All the

operations are efficient in this case. If the tree is unbalanced, then these operations are

much less efficient.
If the keys are inserted into a binary search tree in a random order, then the

expected height of the tree is 0(\\ogn) \342\200\224more precisely, 2ln n. In this case, the search
and insert operations are efficient. In the worst case, however, the height of the tree can
be n (when the tree is a simple linked list). Trees with long paths can result, for example,
from insertions in a sorted, or close to sorted,order. Also, deletions may cause problems
even if they occur in a random order. The main reason for that is the asymmetry of

always using the predecessor to replace a deleted node. If there are frequent deletions,

\302\243

Figure 4.11 Deleting a node with two children.

74 Data Structures

Algorithm BST_Delete (root, x);

Input: root (a pointer to a root of a binary search tree), and x (a number).

Output: The tree is changed by deleting a node with the key x, if it exists.

(We assume that the root is never deleted,and that all keys are distinct)

begin

node := root ;
while node * nil and node\".key *xdo

parent := node ;

ifx < node\".key then node :- node\".left

else node :- node\".right ;

if node = nil then print(\"x is not in the tree\") ; halt ;

if node * root then

if node\".left
= nil then

ifx <
parent\".key then

parent\".left := node \".right

else parent\".right := node\".right
else if node\".right

- nil then

ifx <
parent\".key then

parent\".left := node\".left
else parent\".right := node\".left

else {the two children case }
node! := node\".left;
parent!:= node ;

while nodel \".right * nil do

parent I := node!;
nodel := nodel \".right ;

{ now comes the actual deletion }
parentl\".right := nodel \".left;

node\".key := nodel \".key

end

Figure 4.12 Algorithm BSTjdelete.

followedby insertions, the tree may have a height of O (\\\302\253),even for random insertions
and deletions. This asymmetry can be avoided if, instead of always choosing the

predecessor of the deleted node, we alternate between the predecessor and the successor

(which is a smallest key in the right subtree). Fortunately, there are ways to prevent the

creation of long paths in binary search trees. We describe one such method in the next

section.

4.3 Trees 75

4.3.4 AVL Trees

AVL trees (named after AdePson-VePskii and Landis [1962]) were the first data

structures to guarantee 0(\\ogn) running time for search, insert, and delete in the worst

case (n is the number of elements). The main idea in AVL trees (and in most other tree

structures that achieve logarithmic bounds) is to spend additional time when inserting and

deleting to balance the tree, such that the height of the tree is always bounded by

0(\\ogn). The time devoted to balancing must not exceed 0(\\ogn), or else insertions

and deletions will be too expensive.The idea is to define balance in such a way that it is

easy to maintain.

Definition: An AVL tree is a binary search tree such that, for every node,
the difference between the heights of its left and right subtrees is at most 1

(the height of an empty tree is defined as 0).

This definition guarantees a maximal height of O (logn), as is shown in the next theorem.

\342\226\241Theorem 4.1

The height h of an AVL tree with n internal nodes satisfies

h < 1.4404 log2(>z+ 2) -0.328.

Proof: Left as an exercise. \342\226\241

This theorem implies that search in an AVL tree requires 0(\\ogn) comparisons.The

problem is how to perform insertions and deletions and still to maintain the AVL

property. We start with insertions; again, we assume that all the keys are distinct.

Let x be a new key that we wish to insert into an AVL tree. First, we insert x at the

bottom of the tree in the usual way. If, after the insertion, the tree remains an AVL tree,
then we are done. Otherwise, we need to rebalance the tree. There are four possibilities
\342\200\224two of them are illustrated in Fig. 4.13; the other two are symmetric (to the right).

In part (a) of Fig. 4.13, the new node was inserted into the left subtree, making the

height of B equal to h +2, whereas the height of C is h. To remedy this unbalance, we

perform a rotation: We move B to the top and change the rest of the tree according to the

binary search property (Fig. 4.14). The height of the new subtree, rooted at B, is now

h + 2, which is the same as the height of the original subtree before the insertion. As a

result, no more balancing is required. This rotation is called a single rotation. It will not

help in part (b) of Fig. 4.13; a doublerotation is required (Fig. 4.15). Again, the new

subtree has the same height as the original one, so no more balancing is required. An

important property of AVL trees is that one rotation (single or double) is always

sufficient after an insertion. We omit the proof.

The node A in both examples is called the critical node. It is the root of the

smallest subtree that becomes a non-AVL subtree as a result of the insertion. To perform
the insertion, we have to find the critical node and to determine which of the cases is
involved. We maintain in each node a balance factor, which is equal to the difference

between the heights of the left and right subtrees of this node. For AVL trees, the

76 Data Structures

/\302\273+/

h-l h-I

new

(a)

new

(b)

Figure 4.13 Insertions that invalidate the AVL property.

balance factor of each node is 1, -1, or 0. An insertion into a subtree requires

rebalancing if the balance factor was either 1 or -1, and the insertion increases the height

of a subtree in the ''wrong\" direction. That implies that the critical node must have a

nonzero balance factor. Moreover,if a lower node has a nonzero balancefactor, then,

after balancing, the heights from that node will be the same as they were before the

h+1
h-l h+l

h-I

new

(a) (b)

Figure 4.14 A single rotation: (a) Before, (b) After.

4.3 Trees 77

new

(a) (b)

Figure 4.15 A double rotation: (a) Before, (b) After.

insertion (recall that the balancing retains the old heights from the critical node). Hence,

the critical node is the lowest ancestor of the new node with nonzero balance factor. On
the way down the tree, we look at the balance factors, remembering the last nonzero one.

When we reach the leaf, we can easily determine whether we insert to the \"right\" or

\"wrong\" direction. We then make another pass (either bottom up or top down \342\200\224

preferably bottom up, since that usually involves less nodes), readjust the balance factors,

and perform a rotation if necessary. We omit the details.

Deletions are, as usual, more complicated. It is no longer true that the tree can be
rebalancedwith only one single or double rotation after a deletion. There are cases
where 0(\\ogn) rotations are required, where n is the number of nodes in the tree.

Fortunately, each rotation requires only constant number of steps; thus, the worst-case

running time of a deletion is still O (log n). Again, we omit the details.

Comments AVL trees form an efficient data structure. They perform well in the

worst case, requiring at most 45% more comparisons than optimal trees, and even better
in the average case. Empirical studies have shown the average search time to be

approximately log2fl+0.25 comparisons (see Knuth [1973], pp. 460]). The main

disadvantages of AVL trees are the need for extra storage for the balance factors, and the
fact that the program that implements them is rather complicated. Many other schemes
for balanced-search trees have been proposed, including 2-3 trees, B-trees, weight-

balance trees, and red-black trees.

78 Data Structures

4.4 Hashing

Hashing is one of the most (if not the most) useful data structures for computer

algorithms. Hashing is used mainly for insertions and searches, and some variations of it

can also be used for deletions. The idea behind hashing is simple. Designing a data

structure for storing data with keys numbered from 1 to n is easy: The data can be stored

in an array of size n, such that key / is stored at location /. Any key can thus be accessed

immediately. If there are n unique keys in the range 1 to In, for example,then it is still

usually best to store them in an array of size 2w, even though the storage utilization is

now only 50 percent. The accessis so efficient that it is usually worth the extra space.

However, if the keys are integers, say, in the range 1 to M, where M is the maximal

integer that can be representedin the particular computer, we cannot afford to allocate

space of size M. For example,if there are 250 students identified by their social-security

number, we will not allocate an array of size 1 billion to store information about them

(there are 1 billion possible social-security numbers). Instead, we can use the last three

digits of the numbers, in which case we need only an array of size 1000. This is not a

foolproof method. There may be students with the same last three digits (in fact, with

250 students, the probability of that is quite high). We will show how to handle such

duplicates shortly. We can also use the last four digits, or the last three digits and the first

letter of the student's name, to minimize duplicates even further. However, using more

digits requires a larger-size table and results in a smaller utilization.

We assume that we are given a set of n keys taken from a large set U of sizeM,
such that M is much larger than n. We want to store the keys in a table of size m, such

that m is not much larger than n. The ideais to use a function, called a hash function, to

map the keys, which are in the range 1 to M, to new keys in the range 1 to m, so we can

store everything in an array of size m. Taking the last three digits of a large integer is

such a function. It maps a large set U of size 1 billion to a set of size 1000. Each

possible key is thus given a place (index)in a table of size m. We will attempt to store
the key in that particular place in the table. If the function is easy to compute,then

accessing the key is also easy. However, since the set U is large and the table is small,
no matter what function we use, many keys will be mapped into the same place in the
table. When two keys are mapped to the same location in the table, we call it a collision.

We are thus faced with two problems: (1) finding a hash function that minimizes the

likelihood of collisions, and (2) handling collisions.

Even though the set U is much larger than the size of the table, the actual set of
keys we handle is usually not too large. A good hash function should map the keys

uniformly in the table. Of course, no hash function can map all possible sets of keys
without collisions. If the size of U is M and the size of the hash table is w, then there
must be at least M/m keys that are mapped into the same place. If the mapping is

uniform, each location will have approximately M/m keys mapped into it. Hash

functions should transform a set of keys uniformly to a set of random locationsin the

range 1 to m. The uniformity and randomness are the essence in hashing. For example,
instead of taking the last three digits of the social-security number, we could take the last

three digits of the student's year of birth. It is clear that this is an inferior hash function,

4.4 Hashing 79

since it is much more likely that many students were born in the same year than it is that

many students have the same last three digits of the social-security number.

Hash Functions

We assumethat the keys are integers, and that the size of the hash table is m. A simple
and effective hash function is h (x) = x mod m, where m is a prime number. If the size of

the table cannot be adjusted easily to be a prime (it is convenient sometimes to have a
size that is a power of 2, for example),then the following hash function can be used:
h (x) = (xmodp) mod m, where p is a prime, and p>m (p should be sufficiently larger

than m to be effective,but it should also be sufficiently smaller than | U |).
As we have already mentioned, no hash function can be good for all inputs. Using

primes as described is fairly safe, since most data in practice have no structure related to

prime numbers. On the other hand, it is always possible (although unlikely) that, in a

certain application, one will want to store results of someexperiments made on integers
all of which are of the form r + kp for a constant r. All these numbers of coursewill have

the same hash values if p is usedas described.We can take the idea of scrambling data

with hashing one step further, and use a random procedure to selecta hash function! For

example, the prime p can be selected at random from a list of primes in the appropriate

range. Finding a large list of primes, however,is not easy. Another possibility is the

following: At random, select two numbers a and /?, such that a,b <p, and a *0, and let

h(x) = [ax + bmodp]modm. This function is more complicated to compute than the

previous one is, but it has the advantage that it is very good on the average for all inputs.
Of course, the same hash function must be used for all accesses to the same table. In

many cases, however, there is a need for many independent tables, or tables that are

created and destroyed frequently. In those cases, a different hash function can be used

every time a different table is created. The random hash functions described above have
certain other desirableproperties.

Handling Collisions
The simplest way to handle collisions is to usea method called separate chaining. Each

entry in the hash table serves as a head of a linked list containing all the keys that are

hashed into that entry. To access a key, we hash it and then perform linear search on the

appropriate linked list. A new key can be inserted into the beginning of the list (but the

list must be searched to ensure that the key is not a duplicate). A search may be
inefficient if some lists are long. The lists will be long if the size of the table is small

compared to the actual number of keys or if the hash function is bad. Thus, hashing is

not a good dynamic structure. It is important to have a good estimate on the number of

keys. The main problem with separate chaining is that it requires dynamic memory
allocation and more space for the pointers (even if the number of keys is not too large,
and the pointers are not used). On the other hand, if for some reason the estimate of the

appropriate table size is wrong, separate hashing will still work, whereas other static
methods will fail.

Another simple method is linear probing. The size of the table is fixed, and there

are no pointers. The hash function determines the place of the key in the table. If that

80 Data Structures

place is already occupied, that is, if a collision occurs, then the first empty place after it is

taken instead. A search for the key follows the same procedure. (The table is considered

in a cyclic order; if the last place is reached and it is full, then the first place is considered

next.) An unsuccessful search thus ends at the first empty place. When the table is

relatively empty, this simple method works well. If the table is relatively full, there will

be many secondary collisions, which are collisions that are caused by keys with different

hash values. We cannot avoid collisions with keys that have the same hash function,

because such keys are mapped into the same place. We should, however, try to minimize

secondary collisions. Let's look at an example. Suppose that the /th place is full and that

the (/ + l)th place is empty. A new key, which is mapped to /, will cause a collision, and

will be inserted into /+1. This case is efficient, since the collision is resolved with

minimal effort. However, if a new key is now mapped to / + 1, there will be a secondary

collision and /' + 2 will become full (if it is not full already). Any new key mapped to /, to
/ + 1,or to /+ 2 will not only encounter secondary collisions, but will also increase the

size of the full segment, causing more secondary collisionslater. This effect is called

clustering. When the table is almost full, the number of secondary collisions with linear

probing will be very high, and the search will degrade to linear search.

Deletions cannot be implemented efficiently with linear probing. If an insertion

4'passes\" through a key on its way to an empty slot, and if that key is later deleted, then a

future search will be unsuccessful, since it will stop in the new empty slot. If deletions

are required, we must have a collision-resolution scheme using pointers.

The clustering effect can be reduced with double hashing. When a collision
occurs,a secondhash value h2{x) is computed. Instead of searchingin a linear order,

namely, / +1, /' + 2, and so on, we searchthe places i + h2{x), i + 2h2{x),and so on (all in

a cyclic order). When another key y is mapped to, say, / +h2(x), the next attempt will be
at i + h2(x) + h2(y), instead of at i + 2h2(x). If h2{x) is independent of h2(y), then

clustering is eliminated. We must be careful, however, to choose the second hash value

such that the sequence / + h2{x), i + 2h2(x)...,i +nh2(x) spans the whole table (which

will happen if the numbers h2{x) and n are relatively prime).
The main disadvantage of double hashing is that it requires more computation

(namely, the selection of a second hash value) for the search. One way to save extra

computation is to select a secondhash value that is not completely independent of the

first hash value, but that still reduces clustering. One such method is to set h2{x) = 1 if
h\\(x)

= 0, and h2(x) = m-hx{x) otherwise (we assume that m is prime and that

h{(x) =xmodm).

4.5 The Union-Find Problem

The union-find problem (also known as the equivalence problem) is a good example of
the use of nonstraightforward data structures to improve the efficiency of algorithms.

The problem is the following. There are n elements jc,, jc2, ...,xn. The elements are

divided into groups. Initially, each element is in a group by itself. There are two kinds

of operations performed on the elements and the groups in an arbitrary order:

4.5 The Union-FindProblem 81

find (/): returns the name of the group that contains xt

union 04, B): combines group A with group B to form a new group with a

unique name (any name distinct from the other names will do).

The goal is to design a data structure that will support any sequence of these two

operations as efficiently as possible.

Since all the elements are known ahead of time (and they are indexed from 1 to n),
it is possible to allocate an array X[\\..n] for them. The straightforward method of

solving the problem is to store the identity of the group containing the /th element in

X[i]. A find operation is thus trivial \342\200\224we simply look at the array. A union operation
takes more time. Assume that union(/l, B) results in a combined group called A. Then, it

is necessary to change all the entries containing Bio A.

We now present a different approach to this problem. Instead of making the find

operation simple, we make the union operation simple. We use indirect addressing.

Each entry in the array is a record with the identity of the element and a pointer to

another record. Initially all pointers are nil. We perform the operation union(/l, B) by

changing the pointer in the record for B to point to the record containing ,4, or vice versa

(we will discuss this choice shortly). After several unions, the data structure is a set of

trees as in Fig. 4.16. Each tree corresponds to a group, and each node corresponds to an

element. The element at the root of each tree serves as the name of the group. To find the

group that contains element G, we follow the path from G's pointer until we reach the

root, which is a record whose pointer is nil. This process is similar to someone changing

addresses \342\200\224instead of notifying everyone, it is simpler to leave a forwarding address.

Of course, finding the right address is more difficult now, namely, the find operations are

less efficient. They areespeciallyinefficient if the union operations form tall trees.

The idea behind the efficient union-find data structure is to balance and collapse

the trees. We have already seen that it is worthwhile to expend additional effort to

balance the data structure. Consider union(/l, B) in Fig. 4.16. We have two possibilities.

We can set ZTs pointer to point to /I, or we can set /Ts pointer to point to B. It is clear

that the first option leads to a more balanced tree. This idea is formalized in the

G

A nil

C

11

D

B nil

F

Figure 4.16 The representation for the union-find problem.

82 Data Structures

following way. We store with each record that corresponds to a root not only the name

of the group, but also the number of elementsin it.

Balancing: when a union operation is performed, the pointer of the smaller

group is set to point to the record of the larger group (ties are broken

arbitrarily). The size of the combined group is also computed and placed in

the appropriate field in the root.

If the union operation utilizes balancing, then the height of the trees is never more than

log2\302\253,as is shown in the following theorem.

\342\226\241Theorem 4.2

// balancing is used, then any tree of height h must contain at least 2h

elements.

Proof: The proof is by induction on the number of union operations. The theorem

is clearly true for the first union, which results in a tree of height 1 with two elements.

Consider union(/4, B)y and assume that A is the larger group, so that B will point to A.

Denote by h(A) and h(B) the heights of the trees corresponding to groups A and By

respectively. The height of the combined tree is the maximum of h{A) and h(B)+ 1. If

h(A) is larger, then the combined tree has the same height as A's tree with even more

elements; hence, the theorem obviously holds. Otherwise, the combined tree has at least

twice as many elements as ZTs tree (since B was assumedto be smaller than ,4), and its

height is one more than ZTs original height. Again, the theorem is satisfied. \342\226\241

Theorem 4.2 implies that a find operation never follows more than log2\302\253pointers. A

union operation always take constant time. Consequently, any sequence of m either find

or union operations, such that m >ny takes at most O (m \\ogn) steps.

It is possible to improve the efficiency of the union-find data structure with the

following idea. Consider again the mail-forwarding analogy. If several changes of
addressesoccur, then the mail will go from one address to another until it reaches the

final destination. At that point, it would be a good idea to notify all the forwarding
stations about the final destination, so that they can forward the mail directly. After we

traverse the pointers from a recordto the root of its tree, we changethose pointers on the

path to point directly to the root (see Fig. 4.17). This is called path compression.
Traversing the path again only doubles the number of steps; therefore, the asymptotic

time complexity of a find operation remains the same. We can use path compression

every time a find operation is performed. The following theorem, which we will not

prove, gives a good bound on the worst case complexity.

\342\226\241Theorem 4.3

// both balancing and path compression are used, then the total number of
steps in the worst case for any sequence ofm>n operations (either find or

union) is 0(m\\og*n), where log*n is the iterated logarithm function,

defined below. \342\226\241

4.6 Graphs 83

(a) (b)

Figure 4.17 Path compression: (a) Before, (b) After.

The function log*\302\253is defined recursively as follows, log* 1 = log*2 = 1. For any n > 2,

\\og*n
= 1 +log*([log2\302\253]). For example, log*4 = 1+log*2= 2, log* 14 = 1 + log*4 = 3, and

log* 60000 = 1+log* 16 = 4. For any number \302\253,such that a?<265536, which covers

virtually all practical purposes, we have \\ogn <5. Thus, the complexity of any sequence

of unions and finds is almost linear (and is linear in practice). Notice that one particular

find operation may still require 0{\\ogn) steps, but, overall, O(n) of them require
0(n \\og*n) steps. This is an excellent example of amortized analysis, which involves

counting all steps together rather than bounding each step separately. Whether it is

possible to design a linear time algorithm for this problem is still an open problem.

4.6 Graphs

We devote a whole chapter (Chapter 7) to graph algorithms. In this section, we discuss
the data structures used to represent graphs. A graph G =(V, E) consists of a set V of

vertices (also called nodes), and a set E of edges. Eachedgecorresponds to a pair of

vertices. The edgesrepresent relationships among the vertices. For example,the graph

may represent a set of people,and the edges may connect any two persons who know
each other. A graph can be directed, or undirected. The edges in a directed graph are

ordered pairs \342\200\224the order between the two vertices the edge connects is important. In

this case we specify an edge as an arrow pointing from one vertex (the tail) to another

(the head). The edges in an undirected graph are unordered pairs. Trees are simple

examples of graphs. If we want to indicate a hierarchy in a tree, we can orient all the

edges to point away from the root. Such trees are sometimes called rooted trees, since it

is enough to specify the root in order to define the direction of all the edges. We can also

consider undirected trees (sometimescalled free trees), which do not correspond to a

hierarchy.

84 Data Structures

We will use two main representations of graphs in this book. The first

representation uses the adjacency matrix of a graph. Let |V|=\302\253. The adjacency

matrix of G is an n x n matrix A such that a^
= 1 if and only if (v,, v7-)

e E. The /th row of

the matrix is thus an array of size n which has a 1 in the yth position if there is an edge

leading from v, to
v7-,

and a 0 otherwise. Adjacency matrices have one major drawback

they require space of size n2 no matter how many edges are in the graph. For

example, the number of edges in a tree is n - 1, and these edges can be represented by

one or two pointers per vertex (depending on whether we want to go up or down the

tree). With adjacency matrices, each vertex has an associated array of size n. In other

words, if the number of edgesis small, most of the entries in the adjacency matrix will be

Os.

Instead of having an explicit representation for all of those Os, we can link the

actual number of Is (representing the edges) in a linked list. There will be one pointer

per edge. This secondrepresentation is called the adjacency list. In the adjacency-list

representation, each vertex is associatedwith a linked list consisting of all the edges

adjacent to this vertex. This list is usually sorted according to the labels of the heads of
the corresponding edges. The whole graph is represented by an array of lists. Eachentry

in the array includes the label (or index) of the vertex, and a pointer to the beginning of

its list of edges. If the graph is static \342\200\224that is, if no insertions or deletions are allowed
\342\200\224the lists can be represented by arrays in the following way. We assignan array of size

| V | + | E |. The first | V | entries correspond to the vertices (in order). Each such entry

contains the index in the array where the list of edges emanating from this vertex is
started. For example, if there are 20 vertices and 50 edges and vertex 1 has 4 edges

emanating from it, then the first entry will be 21 (it is always | V | +1), and the second

entry will be 25. The entries corresponding to the edges contain the heads of theseedges.
In the example above, if the second edge of the second vertex points to the fifth vertex,

then entry 26 is equal to 5. Theedgesare usually stored in a sorted order,although this is

not always required. All three representations are illustrated in Fig. 4.18. Adjacency
matrices are usually easier to handle than are adjacency lists, and the programs using
them are usually simpler. However, adjacency lists are more efficient when the graph
has few edges. In practice, most graphs have much fewer than the maximal n (n - l)/2
undirected or n (n - 1)directed edges. Thus, adjacency lists are more common.

4.7 Summary

Data structures can be divided into static and dynamic structures. Arrays are static

structures. The size of an array, or at least a good bound on it, has to be known before

we start using it, and it cannot be extended. On the other hand, accessing an array is very

efficient. Linked lists are dynamic. They can easily be extended and reduced in size.

They can support any size (within the constraints of the total available memory).
Data structures can also be divided into one-dimensional structures and

multidimensional structures. Arrays and linked lists are one-dimensional. The only

structure they represent is the possible order among the elements. Trees represent a little

Bibliographic Notes and Further Reading 85

/

2

3

4

5

0

1

1

0

0

0

0

1

0

I

0

0

0

0

0

1

0

1

0

0

0

0

1

1

0

(a) (b)

6 7 8 12 13 4 1 1 2 4 5 5 2

10 11 12 13

(c)

Figure 4.18 Graph representations.

more than one-dimensional structure \342\200\224
they represent hierarchy. Graphs can represent

even more elaborate structures. Of course, we can also build multidimensional arrays or

multidimensional linked lists.
The concept of abstract data types is very useful. It allows us to concentrate on the

operations required from the data structure, and to postpone implementation details that

are dependent on the specific data type. We have described implementations for

dictionaries, priority queues, and union-find data structures.
If we need only to store data without any structure imposed on them, then hashing

is the best option. Hashing cannot be used if the access dependson something besides

the explicit key of the element. For example, if we wish to find the minimal key in a

hash table, then the whole table must still be scanned.

Bibliographic Notes and Further Reading
The study of data structures is now considered a basic part of computer science
education. As a result, many books on data structures have been written. Knuth [1973a]
and Knuth [1973b] contain a wealth of information about data structures. Other books
include Standish [1980], Aho, Hopcroft, and Ullman [1983], Reingold and Hansen
[1983], Gonnet [1984], and Wirth [1986]. A more advanced monograph on data
structures and algorithms is by Tarjan [1983].

86 Data Structures

A comparative study of many data structures for priority-queues was done by

Jones [1986]. Jones's paper also includesa comprehensive bibliography on priority

queues. The algorithms for insertions and deletions in binary search trees were

described, among others, by Hibbard [1962]. This paper proved that the average path

length after n random insertions is 21n/?. For more information, see Knuth [1973b]. An

empirical study on the effects of random insertions and deletions in binary search trees

was performed by Eppinger [1983], who conjectured that the length of the average path

may be as high as 0(log3A?). Culberson[1985]proved that, under certain conditions,

random deletions and insertions cause the length of the average path to be O(yn). A

comparison between different balancing schemes is presented in Baer and Schwab

[1977]. Balanced trees are also described in Knuth [1973b] and Tarjan [1983]. Sleator

and Tarjan [1985] present several new methods for maintaining self-adjusting trees.
The idea is to adjust the tree by moving the most currently accessed node to the top after

every access. Although the trees are not always balanced, they exhibit good performance
characteristics in the amortized sense; namely, a singleoperation may be slow, but over a

long period, the average time for each operation is small.
More information about hashing can again be found in Knuth [1973b], and in

Gonnet [1984]. A book by Vitter and Chen [1987] describes in great detail one strategy
called coalesced hashing. Classesof random hash functions called universal hash
functions are describedby Carter and Wegman [1979]. Several interesting applications

of this concept can alsobe found in Wegman and Carter [1979], Karlin and Upfal [1986],

and Kurtz and Manber [1987]. There are also extendible hashing schemes that allow

dynamic growth of the tables; see, for example, Fagin, Nievergelt, Pippenger, and Strong

[1979] and Litwin [1980].

The union-find data structure was first studied by Galler and Fischer [1964], and

also by Fischer [1972], and Hopcroft and Ullman [1973] (who obtained the result

mentioned in Theorem 4.3), among others. Tarjan [1975] improved the running time to

0{ma{my a?)),where a(n) is the inverse Ackerman's function, which grows even slower
than log*a?. Tarjan and van Leeuwen [1984] studied several simpler variations of path

compression that achieve the same running time. For information on graphs, see Chapter
7 and its bibliography.

Drill Exercises

4.1 Write a program to delete an element from a linked list.

4.2 Write a program to reverse the direction of a given linked list. In other words, the pointers
should all point backward.

4.3 Convert the simple recursive search procedure for binary search trees to a nonrecursive

procedure.

4.4 Design an algorithm to list in order all the keys in a given binary search tree.

Creative Exercises 87

^5 Let A [1.. 16] be an array that represents a heap (using the implicit representation). What is

the minimal number of heap elements that can occupy an array of size 16?

4.6 Algorithm Insert to Heap may swap elements many times up the heap. Modify the

algorithm so that at most one swap will be performed (0(log/i) comparisons are still

allowed).

4.7 Suppose that we want to use AVL trees as a priority-queue data structure. What is the

complexity of all the operations?

4.8 Show the AVL tree formed by inserting the numbers 1 to 20 in order.

4.9 Show an AVL tree with a node whose deletion results in a non-AVL tree, such that the

resulting tree cannot be made an AVL tree by only one (single or double) rotation. Draw

the tree, specify the node, and explain why the resulting tree cannot be balanced with one

rotation.

Creative Exercises

4.10 Design an implementation of an abstract data type that supports the following operations:

Insert(x): the insertion should be performed even if x is already in the data

structure. In other words, the data structure should hold duplicates.

Removeiy): remove any element from the data structure and assign it to y.

Again, any element will do. If there are several copiesof the same element

only one of them should be removed.

This abstract data type is called a pool (ora bag). It is useful for storing jobs, for example.

New jobs are generated and inserted into the pool, and when a worker becomes available a

job is removed. All the operations should take 0(1) time.

4.11 Modify the pool data type of Exercise 4.10 in the following way: Assume now that every
element can appear at most once in the data structure. An insertion must now check for

duplicates. Implement the same operations as before, but with duplicate checking. What is

the complexity of each operation in the worst case? What is a good data structure for the

average case?

4-12 Another variant of the pool data type (see Exercises 4.10 and 4.11) is the following: Assume

now that all the elements are identified by integers in the range 1 to /i, and that n is small

enough that you can allocate memory of sizeO(n). Each element can appear at most once.
Design algorithms for insert and remove (as defined in Exercise 4.10) that work in 0(1)
time.

4J_3 Design an algorithm to construct one heap that contains all the elements of two given heaps
of sizes n and m, respectively. The heaps are given in a linked-list representation (each
node has links to its two children). The running time of the algorithm should be
O (log (m + n)) in the worst case.

4.14 Design an algorithm to construct one heap that contains all the elements of k given heaps.
What is the complexity of the algorithm?

88 Data Structures

4.15 Design an implementation of an abstract data type that supports the following operations:

lnsert(x)\\ insert the key x into the data structure only if it is not already there.

Delete(x): delete the key x from the data structure (if it is there).

Find_Next{x): find the smallest key in the data structure that is greater than x.

All these operations should take 0(\\ogn) time in the worst case, where n is the number of

elements in the data structure.

4.16 Design an implementation of an abstract data type that supports the following operations:

Insertix): insert the key x into the data structure only if it is not already there.

Deleteix): delete the key x from the data structure (if it is there).

Find_Smallest{k): find the fcth smallest key in the data structure.

All these operations should take 0(\\ogn) time in the worst case, where n is the number of
elements in the data structure.

4.17 Design an implementation of an abstract data type that supports the following operations:

Insert(x): insert the key x into the data structure only if it is not already there.

Delete(x): delete the key x from the data structure (if it is there).

Find_Next(x, k): find the &th \"right\"neighbor smallest key among the keys
in the data structure that are larger than .v.

All these operations should take 0(\\ogn) time in the worst case,where n is the number of
elements in the data structure.

*
4.18 TheAVL algorithms that were presented in Section 4.3.4 require balanced factors with three

possible values, 1, 0, or -1. Torepresent three values we need 2 bits. Suggest a method for

implementing these algorithms (with only a slight modification) with only 1 extra bit per
node.

4.19 A concatenate operation take two sets, such that all the keys in one set are smaller than all

the keys in the other set, and merges them together. Design an algorithm to concatenate two

binary search trees into one binary search tree. The worst-case running time should be

O (/?), where h is the maximal height of the two trees.

4.20 Design an algorithm to concatenate (as defined in Exercise 4.19) two AVL trees into one

valid AVL tree. The worst-case running time should be 0(h\\ where h is the maximal

height of the two trees.

4.21 Consideran AVL tree formed by a fairly random sequence of insertions and deletions.

Assume that each possible balance factor appears with the same probability (namely, a

probability of 1/3 for each possibility). Prove that the average length of the path from the
critical node to the place of insertion is a constant independent of the size of the tree.

4.22 Determine the general structure of the AVL tree formed by inserting the numbers 1 to n in
order. What is the height of this tree?

4.23 Find the \"worst AVL tree.\" That is, construct an AVL tree of height h with the minimal

Creative Exercises 89

number of nodes. Usethis worst AVL tree to prove Theorem 4.1 (Section 4.3.4) regarding

the maximal height of an AVL tree with n nodes. (Hint: Try a recursive construction.)

4.24 Let 7, and T2 be two arbitrary trees, each having n nodes. Prove that it is sufficient to apply

at most In rotations to 7, so that it becomes equal to T2.

4.25 A join of two undirected graphs G = (V, E) and H =(U, F) is a new graph J = (W, D) such

that W = V \\^j U (namely, the vertices of the new graph include the vertices of both graphs),

and D=E\\<jF \\^jVxU (namely, the edges include all the previous edges plus an edge

from each vertex in V to each vertex in U). Suggest a good representation for graphs that

allows join operations to be performed efficiently.

4.26 Let S = [s\\,s2,..., sm) be a very large set, and assume that S is partitioned into k blocks.
Assume that you have a procedure called which block such that given an element s,,

whichblock(Sj) = number of the block that contains s,; which block works in constant time

(e.g., S may correspond to all street addressesin the United States, and the blocks may

correspond to zip codes). You want to maintain a small subset of S, T, and to perform the

following operations on T:

Insert(Sj).

Delete(Sj).

Delete_block(j): delete all elements in T that belong to block j.

Initially, T is empty. Each operation should take O (logn) time in the worst case, where n is

the number of elements currently in T. Delete block only removes (disconnects) the

elements from the data structure; it need not physically remove eachand every one of them.

Both m and k are too large, so you cannot afford to use a table of size m or k. However, n is

relatively small, and you can use O (n) space.
*

4.27 Let A [\\..n] be an array of real numbers. Design algorithms to perform any sequence of the

following two operations:

Add{i, y): add the value y to the /'th number.

Partial_sum(i)\\ return the sum of the first / numbers, \302\243A [/'].
i

Notice that the number of elements remains fixed (there are no insertions or deletions); the

only changes are to the values. Each operation should take 0(\\ogn) steps. You can use

one more array of size n as a work space.
*
4.28 Extend the data structure for the problem in Exercise 4.27 to support insertions and

deletions. Each element now has a key and a value. An element is accessedby its key. The
addition operation applies to the values (but the elements are accessedby their keys). The
Partial sum operation is different.

Partial sumiy): return the sum of all the elements currently in the set whose
value is less than y, \302\243a,.

\342\226\240V|<V

The worst-case running time should still be 0(n\\ogn) for any sequence of O(n)
operations.

90 Data Structures

4.29 Design a data structure to maintain a set of elements, each with a key and a value. The

following operations should be supported:

Find_value(x): find the value associated with the element x (nil if x is not in the

set).

Insert(x, y).

Delete(x).

Add(x, y): add the value y to the current value of the element with key x.

Add_all{y)\\ add the value y to the values of all the elements in the set.
The worst-case running time should be O (log/i) for each of these operations.

4.30 (True story.) A programmer named Guy once encountered an error message from a new

compiler he was using indicating that the compiler had run out of memory space while

compiling a program. The programmer was baffled, since the program did not use much

space. He was able to pinpoint the problem to a certain case statement, which is given
below. Without this case statement, the program compiled flawlessly. With it, the compiler
ran out of space. Determine what data structure the compiler was using that was causing
the problem. (The case statement is correct and valid; the problem lies with the compiler,
which was unable to compile the case statement.)

case /' of

1: Statement(l);
2: Statement(2);
4: Statement(3);

256: Statement(4);

65535: Statement(5);

CHAPTER 5

DESIGN OF ALGORITHMS

BY INDUCTION

Nothing is more important than to see the sources of
invention, which are, in my opinion, more interesting
than the inventions themselves.

G.W.Leibniz (1646-1716)

Invention breeds invention.

R.W.Emerson (1803-1882)

5.1 Introduction

In this chapter, we introduce our approach to algorithm design using the analogy to

mathematical induction. We include relatively simple examples, and present the basic

principles and techniques on which the method is based. The analogous induction

techniques have been described in Chapter 2. When appropriate, we repeat the

discussion here to make this chapter self contained.

Mathematical induction is based on a domino principle. Imagine that we have a
line of upended dominoes, and that we wish to knock down all of them by knocking
down only the first. To make sure that all dominoes will fall down, we need only to

verify that we have pushed the first one and that each domino will topple the next one as
it falls. We need not collapse the whole arrangement every time we add a new domino to

verify that the new arrangement will work. The same principle can be applied to

algorithm design.

ai

92 Designof Algorithms by Induction

It is not necessary to design the steps required to solve the problem
from scratch; it is sufficient to guarantee that (1) it is possible to solve a
small instance of the problem (the basecase),and (2) a solution to every
problem can be constructed from solutions of smaller problems (the
inductive step).

With this principle in mind, we should concentrate on reducing the problem to a smaller

problem (or to a set of smaller problems). The trouble is that it is usually not easy to find

a way to reduce the problem. In this chapter, we present severaltechniques to facilitate

this process. The examplesin this chapter were chosen not because of their importance

(some of them have limited applicability), but because they are simple and yet they

illustrate the principles we want to emphasize. We will present numerous other examples
of this approach throughout the book.

5.2 Evaluating Polynomials

We start with a simple algebraic problem \342\200\224
evaluating a given polynomial at a given

point.

The Problem Given a sequenceof real numbers an, an_\\,..., a \\, a0,

and a real number x, compute the value of the polynomial Pn{x) =
anxn

+ an_\\Xn~l + \342\200\242\342\200\242\342\200\242+ a{x + a0.

This problem may not seem to be a natural candidate for an inductive approach.
Nevertheless,we will show that induction can lead directly to a very good solution to the

problem. We start with the most simple (almost trivial) approach, then find variations of
it that lead to better solutions.

The problem involves n+2 numbers. The inductive approach is to solve this

problem in terms of a solution to a smaller problem. In other words, we try to reduce the

problem to one with smaller size, which we then solve recursively, or, as we call it, by

induction. The first natural attempt is to reduce the problem by removing a\342\200\236.We are left

with the problem of evaluating the polynomial

Pn-\\(x) =
an-\\xn~{ +tf\342\200\236-2-*\"~2+

'\342\200\242\342\200\242+ a\\X+a0.

This is the same problem, except that it has one less parameter. Therefore, we can solve
it by induction.

Induction hypothesis: We know how to evaluate a polynomial represented
by the input an_\\, ..., a\\, a0, at the point x (i.e., we know how to compute

We can now use the hypothesis to solve the problem by induction. First, we have to

solve the base case, which is computing a{); this is trivial. Then, we must show how to

5.2 Evaluating Polynomials 93

solve the original problem (computing Pn(x)) with the aid of the solution to the smaller

problem (which is the value of Pn_\\(x)). This stepis straightforward in this case; simply
compute xn, multiply it by an, and add the result to Pn_{ (x):

Pn{x)=
Pn_x{x) + anxn-

At this point it may seem that the use of induction in this problem is frivolous \342\200\224it

just complicates a very simple solution. The algorithm implied by the preceding
discussion is merely evaluating the polynomial from right to left as it is written. In a

moment, however, we will see the power of our approach.
Although the algorithm is correct, it is not efficient. It requires

n +n-\\+n-2 + \342\200\242\342\200\242\342\200\242
+1=a?(a? + 1)/2 multiplications and n additions. We now use

induction a little differently to obtain a better solution.

We make the first improvement by observing that there is a great deal of redundant

computation: The powers of x are computed from scratch. We can save many

multiplications by using the value of xn~x when we compute xn. We make this change

by including the computation of xk in the induction hypothesis.

Stronger induction hypothesis: We know how to compute the value of the

polynomial Pn_x (jc), and we know how to compute xn~x.

This induction hypothesis is stronger, since it requires computing xn~\\ but it is easier to

extend (since it is now easier to compute x\.") We need to perform only one

multiplication to compute xn, then one more multiplication to get an xn, then one addition

to complete the computation. (The induction hypothesis is not too strong, since we need
to compute x\"~l anyway.) Overall, there are 2n multiplications and n additions. It is

interesting to note that, even though the induction hypothesis requires more computation,

it leads to less work overall. We will return to this point later. This algorithm looks good
by all measures. It is efficient, simple, and easy to implement. However, a better

algorithm exists. We discover it by using induction in yet another different way.

Reducing the problem by removing the last coefficient, an, is the straightforward

step, but it is not the only possible reduction. We can also remove the first coefficient,

a{). The smaller problem becomesthe evaluation of the polynomial represented by the

coefficients an, an_{,..., a {,which is

P'n_{(x) = anx\"-{+an_{x\"-2+ \342\200\242\342\200\242\342\200\242+*!.

(Notice that an is now the (n- l)th coefficient, an_{ is the (a?
\342\200\224

2)th coefficient, and so

on.) So we have a new induction hypothesis.

Induction hypothesis (reversedorder):We know how to evaluate the

polynomial represented by the coefficients a,nan_{ ,...,# \\ at the point x (i.e.,
we know how to compute P'n-\\ (x)).

This hypothesis is more suited to our purposes, because it is easier to extend. Clearly,
PnW=X'P'n-\\(x)+a{). Therefore, only one multiplication and one addition are

required to compute Pn(x) from P'n-\\(x). The complete algorithm can be describedby

the following expression:

94 Design of Algorithms by Induction

anxn+an-xxn
x

+ \342\200\242\342\200\242\342\200\242
+tf1* + tf0 = (('-((anx+<*n-\\)x+<tn-2)' -)x + a\\)x+ao.

This algorithm is known as Horner's rule after the English mathematician W.G. Horner.

(It was also mentioned by Newton, see [Knuth 1981], page 467.) The program to
evaluate the polynomial is given in Fig. 5.1.

Algorithm PolynomialJEvaluation (a, x);

Input: a=a0,a^a2, ..-,an (coefficients of a polynomial), and x (a real
number).

Output: P (the value of the polynomial at x).

begin

for i := 1ton do
p :=x*P+an-i

end

Figure 5.1 Algorithm Polynomial^Evaluation.

Complexity The algorithm requires only n multiplications, n additions, and one extra

memory location. Even though the previous solutions seemed very simple and very
efficient, we have found it worthwhile to pursue a better algorithm. Not only is this

algorithm faster than those described previously, but also its corresponding program is

simpler.

Comments Induction allows us to concentrate on extending solutions of smaller

subproblems to those of larger problems. Suppose that we want to solve P (n), which is a

problem P that depends on a parameter n (usually its size). We start with an arbitrary
instance of P(n\\ and try to solve it by using the assumption that P(n -1) has already
beensolved. There are many possible ways to define the induction hypothesis and many
possible ways to use it. We will survey several of these methods, and will show their

power in designing algorithms.

This simple example illustrates the flexibility we have when we use induction. The
trick that led to Horner's rule was merely considering the input from left to right, instead
of the intuitive right to left. Another common possibility is comparing top down versus

bottom up (when a tree structure is involved). It is also possibleto go in increments of 2
(or more) rather than 1, and there are numerous other possibilities. Moreover, sometimes
the best induction sequence is not the same for all inputs. It may be worthwhile to design
an algorithm just to find the best way to perform the reduction. We will see examples of
all these possibilities.

5.3 Maximal Induced Subgraph 95

5.3 Maximal Induced Subgraph

Consider the following problem. You are arranging a conference of scientists from

different disciplines and you have a list of people you want to invite. You assume that

everyone on the list will agree to come under the condition that there will be ample

opportunity to exchange ideas. For each scientist, you write down the names of all other

scientists on the list with whom interaction is likely. You would like to invite as many

people on the list as possible,but you want to guarantee that each one will have at least k

other people with whom to interact (k is a fixed number, independent of the number of
invitees). You do not have to arrange the interactions; in particular, you do not have to

make sure that there is enough time for them to occur. You just want to lure everyone to
the conference. How do you decide whom to invite? This problem corresponds to the

following graph-theoretic problem. Let G =(V, E) be an undirected graph. An induced

subgraph of G is a graph H=(U, F) such that i/c V and F includes all edges in E both of

whose incident vertices are in U. A degree of a vertex is the number of vertices adjacent
to that vertex. The vertices of the graph correspond to the scientists, and two vertices are

connected if there is a potential for the two corresponding scientists to exchangeideas.
An induced subgraph corresponds to a subsetof the scientists.

The Problem Given an undirected graph G =(V, E) and an integer

k, find an induced subgraph //=(\302\243/, F) of G of maximum size such that

all vertices of H have degree> k (in //), or conclude that no such

induced subgraph exists.

A direct approach to solving this problem is to remove verticeswhose degree is < k. As
vertices are removed with their adjacent edges, the degrees of other vertices may be
reduced. When the degree of a vertex becomes less than k, that vertex should be
removed. The order of removals, however, is not clear. Should we remove all the

vertices of degree < k first, then deal with vertices whose degreeswere reduced? Should

we remove first one vertex of degree < k, then continue with affected vertices? (These
two approaches correspond to breadth-first search versus depth-first search, which are

discussed in detail in Section 7.3.) Will both approaches lead to the same result? Will

the
resulting graph be of maximum size? All these questions are easy to answer; the

approach we will describe makes answering them even easier.

Instead of thinking about our algorithm as a sequence of steps that a computer has
to take to calculate a result, think of proving a theorem that the algorithm exists. We do
not suggest attempting a formal proof (at least not at this first stage). The idea is to

imitate the steps we take in proving a theorem, in order to gain insight into the problem.
We need to find the maximum induced subgraph that satisfies the given conditions. Here
is a \"proof\" by induction.

96 Design of Algorithms by Induction

Induction hypothesis: We know how to find maximum induced subgraphs
all of whose vertices have degrees > k, provided that the number of vertices
is< n.

We need to prove that this ' 'theorem\" is true for a base case, and that its truth for n - 1

implies its truth for n. The first nontrivial base case occurs when n =k + 1, because if

n <k, then all the degrees are lessthan k. If n -k + 1, then the only way to have all the

degrees equal to k is to have a complete graph (namely, all vertices are connected),

which we can detect. So, assume now that G =(V, E) is a graph with n > k + 1 vertices.
If all the vertices have degrees >k, then the whole graph satisfies the conditions and we

are done. Otherwise,there exists a vertex v with degree < k. It is obvious that the degree
of v remains < k in any induced subgraph of G; hence,v does not belong to any subgraph

that satisfies the conditions of the problem. Therefore, we can remove v and its adjacent

edges without affecting the conditions of the theorem. After v is removed, the graph has

n-\\ vertices \342\200\224and, by the induction hypothesis, we know how to solve the problem.
We are now done. The algorithm and the answers to the questions we raised

earlier are now clear. Any vertex of degree < k can be removed. The order of removals
is immaterial. The graph remaining after all these removals must be of maximum size

because these removals are mandatory. It is also clear that the algorithm is correct,
because we designedit by proving its correctness!

Comments The best way to reduce a problem is to eliminate some of its elements.

In this example, the application of induction was straightforward, mainly because it was
clear which vertices we should eliminate and how we should eliminate them. The
reduction follows immediately. In general, however, the elimination process may not be

straightforward. We will see examples of combining two elements into one, causing the

number of elements to be reduced (Section6.6); of eliminating restrictions on the

problem rather than eliminating parts of the input (Section 7.7); and of designing a
special algorithm to find which elements can be eliminated (Section 5.5). Another

example of eliminating the right elements is presented next. It is interesting to note that,

if we replace \">\" with \"<\" in the statement of the problem (that is, if we look for a
maximal induced subgraph all of whose degrees are at most k), the problem becomes
much more difficult (see Exercise 11.12).

5.4 Finding One-to-One Mappings

Let/bea function that maps a finite set A into itself (i.e., every elementof A is mapped
to another element of ,4). For simplicity, we denote the elements of A by the integers 1 to
n. We assumethat the function /is represented by an array / [1..n] such that / [i] holds
the value of/(/) (which is an integer between 1 and n). We call /a one-to-onefunction

if, for every element y, there is at most one elementi that is mapped to j. The function /
can be represented by a diagram, as shown in Fig. 5.2, where both sides correspondto the

same set and the edges indicate the mapping. The function in Fig. 5.2 is clearly not a

one-to-one function.

5.4 Finding One-to-One Mappings 97

6,/ - 6

7^^ .7

Figure 5.2 A mapping from a set into itself (both sides represent the same set).

The Problem Given a finite set A and a mapping /from A to itself,

find a subset 5c A with the maximum number of elements,such that (1)

the function / maps every elementof S to another element of S (i.e.,/
maps S into itself), and (2) no two elements of S are mapped to the same

element (i.e.,/is one-to-one when restricted to 5).

If / is originally one-to-one, then the whole set A satisfies the conditions of the problem,

and A is definitely maximal. If, on the other hand, f(i)=f(j) for some i*j, then S

cannot contain both / and j. For example, the set S that solves the problem given in Fig.

5.2 cannot contain both 2 and 3 since / (2)=/(3)= 1. The choice of which one of them

to eliminate cannot be arbitrary. Suppose, for example, that we decide to eliminate 3.

Since 1 is mapped to 3, we must eliminate 1 as well (the mapping must be into S and 3 is
no longer in 5). But if 1 is eliminated, then 2 must be eliminated as well (for the same

reason). But, this subset is not maximal, since it is easy to see that we could have

eliminated 2 alone. (The solution for Fig. 5.2 is the subset {1,3,5}.) The problem is to
find a general method to decide which elements to include.

Fortunately, we have some flexibility in deciding how to reduce the problem to a

smaller one. We can reduce the size of the problem by finding either an element that

belongs to S or an element that does not belong to S. We will do the latter. We use the

straightforward induction hypothesis.

Induction hypothesis: We know how to solve the problem for sets of n-\\
elements.

The base case is trivial: If there is only one element in the set, then it must be mapped to
itself, which is a one-to-one mapping. Assume now that we have a set A of n elements
and we are looking for a subset S that satisfies the conditions of the problem. We claim

98 Design of Algorithms by Induction

that any element / that has no other element mappedto it cannot belong to S. (In other

words, an element / in the right side of the diagram, which is not connected to any edge,

cannot be in 5.) Otherwise, if / e S and S has, say, k elements, then those k elements are

mapped into at most k-\\ elements; therefore, the mapping cannot be one-to-one. If there

is such an /, then we simply remove it from the set. We now have a set A'=A-{i) with

n - 1 elements, which /maps into itself; by the induction hypothesis, we know how to

solve the problem for A'. If no such / exists, then the mapping is one-to-one, and we are

done.

The essence of this solution is that we must remove /. We proved that / cannot

belong to S. This is the strength of induction: Once we remove an element and reduce

the size of the problem, we are done. We have to be careful, however, that the reduced

problem is exactlythe same (except for size) as the original problem. The only condition

on the set A and the function / was that / maps A into itself. This condition is still

maintained for the set A-[i}, since there was nothing that was mapped to /. The

algorithm terminates when no more elements canbe removed.

Implementation We described the algorithm as a recursive procedure. In each

step, we found an element such that no other element is mapped to it, removed it, and

continued recursively. The implementation, however, need not be recursive. We can

maintain a counter c [i] with each element /. Initially, c [i] should be equal to the number

of elements that are mapped to /'. We can compute c [/], for all /, in n steps by scanning
the array and incrementing the appropriate counters. We then put all the elements that

have a zero counter in a queue. In each step, we removean element j from the queue
(and the set), decrement c[f(J)], and, if c[f(j)]=0, we put /(/) in the queue. The
algorithm terminates when the queue is empty. The algorithm is given in Fig. 5.3.

Complexity The initialization part requires 0{n) operations. Every element can be

put on the queue at most once, and the steps involved in removing an element from the

queue take constant time. The total number of steps is thus O (n).

Comments In this example, we reduced the size of the problem by eliminating

elements from a set. Therefore,we tried to find the easiest way to remove an element
without changing the conditions of the problem. Because the only requirement we made
was that the function maps A into itself, the choice of an element to which no other

element is mapped is natural.

5.5 The Celebrity Problem

The next example is a popular exercise in algorithm design. It is a nice example of a

problem that has a solution that does not require scanning all the data (or even a
significant part of them). Among n persons, a celebrity is defined as someonewho is

known by everyone but does not know anyone. The problem is to identify the celebrity,
if one exists, by asking questions only of the form,

' 'Excuse me, do you know the person
over there?\" (The assumption is that all the answers are correct, and that even the

celebrity will answer.) The goal is to minimize the number of questions. Since there are

5.5 The Celebrity Problem 99

Algorithm Mapping (f, n);
Input: /(an array of integers whose values are between1and n).

Output: S (a subset of the integers from 1 to n, such that /is one-to-one on S).

begin
S :=A; { A is the set of numbers from 1 to n (

for j := 1 to ndo c[j] := 0;

for j := 1to n do increment c [f [j]];
forj := 1 to n do

ifc[J]=0 then put j in Queue;
while Queue is not empty do

remove/ from the top of the queue;
S:=S-{i);
decrement c [/\"[/]];

if elf U]] = 0 then put / [/] in Queue

end

Figure 5.3 Algorithm Mapping.

n(n- l)/2 pairs of persons,there is potentially a need to ask n(n- 1)questions, in the

worst case, if the questions are asked arbitrarily. It is not clear that we can do better in

the worst case.

We can use a graph-theoretical formulation. We can build a directedgraph with

the vertices corresponding to the persons and an edge from person A to person B if A

knows B. A celebrity corresponds to a sink of the graph (no pun intended). A sink is a

vertex with indegree n -1 and outdegree 0. Notice that a graph can have at most one

sink. The input to the problem corresponds to an n x n adjacency matrix (whose ij entry
is 1 if the /th person knows the yth person, and 0 otherwise).

The Problem Given an n xn adjacency matrix, determine whether

there exists an / such that all the entries in the /th column (except for the

/7th entry) are 1, and all the entries in the /th row (except for the //th

entry) are 0.

The base case of two persons is simple. Consider as usual the difference between the
problem with n -1 persons and that with n persons. We assume that we can find the

celebrity among the first n - 1 persons by induction. Since there is at most one celebrity,
there are three possibilities:(1) the celebrity is among the first a?- 1, (2) the celebrity is
the rtth person, and (3) there is no celebrity. The first case is the easiest to handle. We
needonly to check that the nth person knows the celebrity, and that the celebrity does not

100 Design of Algorithms by Induction

know the Mh person. The other two cases are more difficult because, to determine

whether the mh person is the celebrity, we may need to ask 2(n - 1)questions. If we ask

2(/7
\342\200\2241) questions in the mh step, then the total number of questions will be n{n-\\)

(which is what we tried to avoid). We need another approach.

The trick here is to consider the problem ''backward.\" It may be hard to identify a

celebrity, but it is probably easier to identify someone as a noncelebrity. After all, there

are definitely more noncelebrities than celebrities. If we eliminate someone from

consideration, then we reduce the size of the problem from n to n - 1. Moreover,we do

not need to eliminate someonespecific;anyone will do. Suppose that we ask Alice

whether she knows Bob. If she does, then she cannot be a celebrity; if she does not, then

Bob cannot be a celebrity. We can eliminate one of them with one question.

We now consider again the three cases with which we started. We do not just take

an arbitrary person as the mh person. We use the idea in the last paragraph to eliminate

either Alice or Bob, then solve the problem for the other n -1 persons. We are

guaranteed that case 2 will not occur, since the person eliminated cannot be the celebrity.
Furthermore, if case 3 occurs \342\200\224

namely, there is no celebrity among the n - 1 persons \342\200\224

then there is no celebrity among the n persons. Only case 1 remains, but this case is easy.
If there is a celebrity among the n - 1 persons, it takes two more questions to verify that

this is a celebrity for the whole set. Otherwise, there is no celebrity.
The algorithm proceeds as follows. We ask A whether she knows \302\243,and eliminate

either A or B accordingto the answer. Let's assume that we eliminate A. We then find

(by induction) a celebrity among the remaining n - 1 persons. If there is no celebrity, the

algorithm terminates; otherwise, we check that A knows the celebrity and that the

celebrity does not know A.

Implementation As was the case with the algorithm in the previous section, it is

more efficient to implement the celebrity algorithm iteratively, rather than recursively.

The algorithm is divided into two phases. In the first phase, we eliminate all but one
candidate, and in the second phase we check whether this candidate is indeed the

celebrity. We start with n candidates, and, for the purpose of this discussion, let's
assumethat they are stored in a stack. For each pair of candidates,we can eliminate one

candidate by asking one question \342\200\224whether one of them knows the other. We start by

taking the first two candidates from the stack, and eliminating one of them. Then, in each

step, we have one remaining candidate, and, as long as the stack is nonempty, we take
one additional candidate from the stack, and eliminate one of these two candidates.

When the stack becomes empty, one candidate remains. We then check that this

candidate is indeed the celebrity. The algorithm is presented in Fig. 5.4 (notice that the
stack is implemented explicitly by the use of the indices /, j, and next).

Complexity At most 3(a?-1) questions will be asked: n -1 questions in the first

phase to eliminate n -1 persons, and then at most 2{n - 1) questions to verify that the
candidate is indeed a celebrity. Notice that the size of the input is not \302\253,but rather

n (n - 1)(the number of entries of the matrix). This solution shows that it is possible to

identify a celebrity by looking at only O(n) entries in the adjacency matrix, even though

a priori the solution may be sensitiveto each of the n (n - 1)entries.

5.5 The Celebrity Problem 101

Algorithm Celebrity (Know);

Input: Know (an nxn Boolean matrix).

Output: celebrity.

begin
i := 1 ;
j:=2;
next := 3 ;

{in the first phase we eliminate all but one candidate }
while next < n + 1 do

if Know[i, j] then i := next

else j := next;
next := next + / ;
{one of either i or j is eliminated }

ifi = n + 1 then

candidate := j
else

candidate := i;
{Now we check that the candidate is indeedthe celebrity }

wrong .-false ;
k := J ;

Know [candidate, candidate]:=false;
{a dummy variable to pass the test}

while not wrong and k<ndo

if Know [candidate, k] then wrong := true ;

if not Know[k, candidate] then

if candidate * k then wrong := true ;
k:=k + l ;

if not wrong then celebrity := candidate
else celebrity := 0 { no celebrity }

end

Figure 5.4 Algorithm Celebrity.

Comments The key idea in this elegant solution is to reduce the size of the problem
from n to n - 1 in a clever way. This example shows that it sometimes pays to expend
someeffort (in this case \342\200\224one question) to perform the reduction more effectively. Do
not start by simply considering an arbitrary input of size n - 1 and attempting to extend
it. Select a particular input of size n - 1. We will see more examples where we spend
substantial time just constructing the right order of induction \342\200\224and that time is well

spent.

102 Design of Algorithms by Induction

5.6 A Divide-and-Conquer Algorithm: The Skyline
Problem

So far, we have seen examples from graph theory and numerical computation. This

example deals with a problem of drawing shapes.

The Problem Given the exact locations and shapes of several
rectangular buildings in a city, draw the skyline (in two dimensions) of
these buildings, eliminating hidden lines.

An example of an input is given in Fig. 5.5(a); the corresponding output is given in Fig.

5.5(b). We are interested in only two-dimensional pictures. We assume that the bottoms

of all the buildings lie on a fixed line (i.e., they share a common horizon). Building Bt is

represented by a triple (L,, //,, /?,). L, and Rt denote the left and right x coordinates of the

building, respectively, and //, denotes the building's height. A skyline is a list of x

coordinates and the heights connecting them arranged in order from left to right. For

example, the buildings in Fig. 5.5(a) correspond to the following input:

(1,11,5), (2,6,7), (3,13,9), (12,7,16),(14,3,25),(19,18,22),(23,13,29),and

(24,4,28).

(The numbers in boldface type are the heights.) The skyline in Fig. 5.5(b) is represented
as follows:

(1,11,3,13,9,0,12,7,16,3,19,18,22,3,23,13,29,0).

(Again, the numbers in boldface type are heights.)
The straightforward algorithm for this problem is based on adding one building at a

time to the skyline. The induction hypothesis is the simple one. We assume that we

know how to solve the problem for n -1 buildings, and then we add the nth building.

J

15 10 15 20 25 30 15 10 15 20 25 30

(a) (b)

Figure 5.5 The skyline problem: (a) The input, (b) The skyline.

5.6 A Divide-and-Conquer Algorithm: The Skyline Problem 103

The problem is trivial for one building. To add a building Bn to the skyline, we need to
intersectit with the existing skyline (see Fig. 5.6). Let Bn be (5,9,26). We first scan the

skyline from left to right to find where the left side of Bn fits (i.e., we search for the

appropriate x coordinate \342\200\2245 in this example). In this case, the horizontal line that

\"covers\" 5 is the one from 3 to 9, and its height is 13. We can now scan the skyline,

looking at one horizontal line after another, and adjusting whenever the height of Bn is

higher than the existing height. We stop when we reach an x coordinate that is greater

than the right side of Bn. For this example, we do not adjust the height from 3 to 9, but

we do adjust it all the way from 9 to 19, then adjust it once more from 22 to 23. The new

skyline is represented by

(1,11,3,13,9,9,19,18,22,9,23,13,29,0).

This algorithm is clearly correct,but it is not necessarily efficient. In the worst case, the
scan for Bn requires 0{n) steps. Hence, the total number of steps will be

0(/i) + 0(/i-1)+ \342\200\242\342\200\242\342\200\242
+<9(1) =

<9(\302\2532).

To improve the performance of this algorithm, we use a well-known technique

called divide and conquer. Insteadof using the simple induction principle of extending

the solution for n - 1 to a solution for \302\253,we extend a solution for n/2 to a solution for n.

(Again, the base case of one building is trivial.) Divide-and-conquer algorithms divide

the inputs into smaller subsets,solve (conquer) each subset recursively, and merge the

solutions together. Generally, it is more efficient to divide the problem into subproblems
of about equal size. As we saw in Chapter 3, the solution of the recurrence relation

T(n) = T(n-\\) + 0(n) is T(n) = 0(n2), whereas that of T(n) = 2T(n/2) + 0(n) is
T(n) =0(n logn). Therefore, if we divide the problem into two equal-sized

subproblems, then combine the solutions in linear time, the algorithm runs in time

0(n\\ogn). The divide-and-conquer technique is very useful, and we will see many

examples of it.

Bn

15 10 15 20 25 30

Figure5.6 Addition of a building (dotted line) to the skyline of Figure 5.5(b) (solid lines).

104 Design of Algorithms by Induction

The key idea behind the divide-and-conquer algorithm in this example is the

observation that, in the worst case, it takes linear time to merge one building with the

skyline, and also linear time to merge two different skylines. In about the same time, we

achieve more using the latter approach. Two skylines can be merged with basically the

same algorithm that merges one building into a skyline (Fig. 5.7). We scan the two

skylines together from left to right, match x coordinates, and adjust heights when

necessary. The merge can be achieved in linear time, and therefore the complete

algorithm runs in time O(n logn) in the worst case. This algorithm is similar to

mergesort, which is discussed in detail in Section 6.4.3. Therefore, we do not give the

precise algorithm for the skyline algorithm here.

Comments Always try to get more for your money. There is nothing mysterious or
technicalabout this principle. If the algorithm includes a step that is more general than

required, consider applying this step to a more complicatedpart of the problem. The

reason the divide-and-conquer approach is so useful is that it uses the combine step to its

fullest. The recurrencerelations given in Section 3.5.2 cover the most common divide-

and-conquer algorithms. You should memorize these recurrence relations.

5.7 Computing Balance Factors in Binary Trees

Let T be a binary tree with root r. The height of a node v is the distance between v and

the farthest leaf down the tree. The balance factor of a node v is defined as the

difference between the height of the node's left subtree and the height of the node's right

subtree (we assume that the children of a node are labeled by left or right). In Chapter 4,
we discussed AVL trees, in which all nodes have balancefactors of -1, 0, or 1. In this

section, we consider arbitrary binary trees. Figure 5.8 shows a tree in which each node is
labeled with numbers representing hlb, where h is the node's height and b is its balance
factor.

15 10 15 20 25 30

Figure 5.7 Merging two skylines.

5.7 Computing Balance Factors in Binary Trees 105

Figure 5.8 A binary tree. The numbers represent hlb, where h is the height and b is the

balance factor.

The Problem Given a binary tree T with n nodes, compute the

balance factors of all the nodes.

We use the regular inductive approach with the straightforward induction hypothesis.

Induction hypothesis: We know how to compute balance factors of all

nodes in trees that have < n nodes.

The basecaseof n = 1 is trivial. Given a tree with n > 1 nodes, we remove the root, then

solve the problem (by induction) for the two subtrees that remain. We chose to remove
the root because the balance factor of a node depends on only the nodes belowthat node.

We now know the balance factors of all the nodes, except for the root. The root's

balance factor, however, dependsnot on the balance factors of the root's children, but

rather on their height. Hence, simple induction does not work in this case. We need to

know the heights of the children of the root. The idea is to include the height-finding

problem within the original problem:

Stronger induction hypothesis: We know how to compute balance factors
and heights of all nodes in trees that have < n nodes.

Again, the base case is trivial. Now, when we consider the root, we can determine its

balance factor easily by calculating the difference between the heights of its children.

Furthermore, we can also determine the height of the root \342\200\224it is the maximal height of

the two children plus 1.

The key to the algorithm is that it solves a slightly extended problem. Insteadof

computing only balance factors, we also compute heights. The extended problem turns

out to be an easier one to solve, because the heights are easy to compute. In many cases,

solving a stronger problem is easier. With induction, we need only to extend a solution

of a small problem to a solution of a larger problem. If the solution is broader (because
the problem is extended), then the induction step may be easier, sincewe have more with

106 Design of Algorithms by Induction

which to work. It is a common error to forget that there are two different parameters in

this problem, and that each one should be computed separately. We will present several

examples of such errorslater in the book.

5.8 Finding the Maximum Consecutive Subsequence

The following problem is from Bentley [1986] (it also appeared in Bates and Constable

[1985]).

The Problem Given a sequence jc,, jc2, -~,x\342\200\236of real numbers (not

necessarily positive) find a subsequence xh xi+l, ...,jcy- (of consecutive
elements) such that the sum of the numbers in it is maximum over all

subsequences of consecutive elements.

We call such a subsequence a maximum subsequence. For example,in the sequence (2,

-3, 1.5,-1, 3, -2, -3, 3), the maximum subsequence is (1.5, -1, 3); its sum is 3.5. There

may be several maximum subsequences in a given sequence. If all the numbers are

negative, then the maximum subsequence is empty (by definition, the sum of the empty
subsequence is 0). We would like to have an algorithm that solves the problem and reads

the sequence in order only once.

The straightforward induction hypothesis is as follows:

Induction hypothesis:We know how to find the maximum subsequence in

sequences of size<n.

If n = 1, then the maximum subsequence consists of the single number if that number is

nonnegative, or the empty subsequence otherwise. Consider a sequence
S=U,,*2, \342\200\242\342\200\242\342\200\242,-*,,)of size n>\\. By induction, we know how to find a maximum
subsequencein S' = (x,, x2,..., *\342\200\236_i).If that maximum subsequence is empty, then all the

numbers in S' are negative, and we need to consider only xn. Assume that the maximum

subsequence found by induction in S' is S'M=
(xh xi+l,..., jcy), for certain / and j such that

1 ^i^j<n- 1. If j = n- 1 (namely, the maximum subsequence is & suffix), then it is easy
to extend the solution to S: \\i xn is positive, then it extends S'M\\ otherwise, S'yv/ remains

maximum. However, if j < n- 1, then there are two possibilities. Either o m remains

maximum, or there is another subsequence, which is not maximum in S\\ but is maximum
in S when xn is added to it.

The key idea here is to strengthen the induction hypothesis. We first illustrate

the technique by using it to solve the maximum-subsequence problem, then discuss it in

more generality in the next section. The problem we had with the straightforward
induction hypothesis was that xn may extend a subsequence that is not maximum in S\\

and thus may create a new maximum subsequence. Knowing only the maximum

subsequence in S' is thus not sufficient. However, xn can extend only a subsequence that

5.9 Strengthening the Induction Hypothesis 107

ends at n -1 \342\200\224that is, a suffix of S'. Suppose that we strengthen the induction

hypothesis to include the knowledge of the maximum suffix, denoted by

S'e =(xk'Xk+ \\'\342\200\224'Xn-\\)-

Stronger induction hypothesis: We know how to find, in sequences of size

<n,a maximum subsequence overall,and the maximum subsequence that is

a suffix.

If we know both subsequences, the algorithm becomes clear. We add xn to the maximum

suffix. If the sum is more than the global maximum subsequence, then we have a new

maximum subsequence (as well as a new suffix). Otherwise, we retain the previous

maximum subsequence. We are not done yet. We also need to find the new maximum

suffix. It is not true that we always simply add xn to the previous maximum suffix. It

could be that the maximum suffix ending at xn is negative. In that case, it is better to take

the empty set as the maximum suffix (such that later xn+{ will be considered by itself).
The algorithm for finding the sum of the maximum subsequence is given in Fig. 5.9.

Algorithm Maximum_Consecutive_Subsequence (X, n) ;
Input: X (an array of size n).

Output: GlobalJAax (the sum of the maximum subsequence).

begin
GlobalJAax:= 0 ;
Suffix JAax := 0 ;

fori := J to n do

ifx U] + Suffix JAax > GlobalJAax then

Suffix JAax := Suffix JAax + x [i] ;

GlobalJAax .= Suffix JAax
else ifx [i] + Suffix JAax > 0 then

Suffix JAax :=x[i] + Suffix JAax

else Suffix JAax := 0
end

Figure 5.9 Algorithm Maximum jOonsecutive_Subsequence.

5.9 Strengthening the Induction Hypothesis

Strengthening the induction hypothesis is one of the most important techniques for

proving mathematical theorems with induction. When attempting an inductive proof, we
often encounter the following scenario. Denote the theorem by P. The induction

hypothesis can be denoted by P (< \302\253),and the proof must conclude that P(<n)=>P(n).

In many cases, we can add another assumption, call it Q, under which the proof becomes
easier. That is, it is easier to prove [P and Q](<n) => P(n) than it is to prove

108 Design of Algorithms by Induction

/>(< h)=> P(n). The assumption seems correct, but it is not clear how we can prove it.

The trick is to include Q in the induction hypothesis. We now have to prove that [P and

Q](<n)
=> [P and Q](n). P and Q is a stronger theorem than just P, but often stronger

theorems are easierto prove. This process can be repeatedand, with the right added

assumptions, the proof becomes tractable. The maximum-subsequence problem is a

goodexample of how this principle is used to improve algorithms.

A nice analogy to this principle is a well-known phenomenon: It is easier to add $1

million to profits that are based on $100million of sales, than it is to add $1 thousand to

profits that are based on $10of sales.

The most common error peoplemake while using this technique is to ignore the

fact that an additional assumption was added and to forget to adjust the proof. In other

words, they prove that [P and Q](<n) =>/>(\302\253), without even noticing that Q was

assumed. This oversight corresponds to forgetting to compute the new maximum suffix

in the maximum-subsequence example. In the balance factorsexample, it corresponds to

forgetting to compute the heights separately
\342\200\224which, unfortunately, is a common error.

We cannot overemphasize this fact:

It is crucial to follow the induction hypothesisprecisely.

We will present more complicated examples of strengthening the induction hypothesis in

Sections 6.11.3, 6.13.1, 7.5, 8.3, and 12.3.1 (among others).

5.10 Dynamic Programming: The Knapsack Problem

Suppose that we are given a knapsack and we want to pack it fully with items. There

may be many different items of different shapes and sizes, and our only goal is to pack
the knapsack as full as possible. The knapsack may correspond to a truck, a ship, or a
silicon chip, and the problem is to package items. There are many variations of this

problem; we consider only a simple one dealing with one-dimensional items. Other

variations of the knapsack problem are presented in the exercises, and in Chapter 11.

The Problem Given an integer K and n items of different sizes such

that the /th item has an integer size kh find a subset of the items whose

sizes sum to exactly K, or determine that no such subset exists.

We denote the problem by P(n, K), such that n denotes the number of items and K

denotes the size of the knapsack. We will implicitly assume that the n items are those

that are given as the input to the problem, and we will not include their sizes in the

notation of the problem. Thus, />(/, k) denotes the problem with the first / items and a

knapsack of size k. For simplicity, we first concentrate on only the decision problem,
which is to determine whether a solution exists. We start with the straightforward
induction approach.

5.10 Dynamic Programming: The Knapsack Problem 109

Induction hypothesis(first attempt): We know how to solve P(n - 1,K).

The base case is easy; there is a solution only if the single element is of sizeK. If there

is a solution to P(n - 1,K)
\342\200\224that is, if there is a way to pack some of the n - 1 items

into the knapsack
\342\200\224then we are done; we will simply not use the nth item. Suppose,

however, that there is no solution for P{n-\\, K). Can we use this negative result? Yes
\342\200\224it means that the nth item must be included. In this case, the rest of the items must fit

into a smaller knapsack of size K-kn. We have reduced the problem to two smaller

subproblems: P{n-\\,K) and P(n -1, K -kn). To complete the solution, we have to

strengthen the hypothesis. We need to solve the problem not only for knapsacks of size
K, but also for knapsacks of all sizesat most K.

Induction hypothesis (second attempt): We know how to solve P{n-\\,k)
forallO<k<K.

The previous reduction did not depend on a particular value of K\\ it will work for any k.

We can use this hypothesis to solve P{n, k) for all 0<k <K. The base case P(\\, k) can
be easily solved: If k=0, then there is always a (trivial) solution. Otherwise, there is a

solution only if the first item is of size k. We now reduce P(n, k) to the two problems

P(n-l,k) and P(n- \\,k-kn). If k-kn <0, then we ignore the second problem. Both

problems can be solved by induction. This is a valid reduction, and we now have an

algorithm; however, the algorithm may be inefficient. We reduceda problem of size n to

two subproblems of size n-\\\\ (We also reduced the value of k in one subproblem.)

Each of these two subproblems may be reduced to two other subproblems, leading to an

exponential algorithm.

Fortunately, it is possible in many cases to improve the running time for these

kinds of problems. The main observation is that the total number of possible problems
may not be too high. In fact, we introduced the notation of P{i,k) especially to

demonstrate this observation. There are n possibilities for the first parameter and K

possibilities for the second one. Overall, there are only nK different possible problems!
The exponential running time resulted from doubling the number of problems after every
reduction, but if there are only nK different problems, then we must have generatedthe

same problem many many times. The solution is to remember all the solutions and never

solve the same problem twice. This approach is a combination of strengthening the

induction hypothesis and using strong induction (which is using the assumption that all

solutions to smaller cases,and not only that for n - 1, are known). Let's seenow how to

implement this approach.
We store all the known results in an n xK matrix. The (/, k)th entry in the matrix

contains the information about the solution of P(i, k). The reduction from the second-

attempt hypothesis basically computes the nth row of the matrix. Each entry in the nth

row is computed from two of the entries above it. If we are interested in finding the

actual subset, then we can add to each entry a flag that indicates whether the

corresponding item was selected in that step. This flag can then be traced back from the

(\302\253,K)th entry, and the subset can be recovered. The algorithm is given in Fig. 5.10.

Figure 5.11 shows the complete matrix for a given input.

110 Design of Algorithms by Induction

Algorithm Knapsack (S, K);

Input: S (an array of size n storing the sizes of the items),

and K (the size of the knapsack).

Output: P (a two-dimensional array such that P [/, k].exist = true if there

exists a solution to the knapsack problem with the first / elements and a

knapsack of sizek, and P [/, k].belong = true if the /th element belongs
to that solution).

(See Exercise 5.15 for suggestions about improving this program. (

begin
P [090].exist:= true ;

fork:= 1 to K do

P[0,k].exist :=false ;

{ there is no need to initialize P [/, 0] for / > 1,becauseit will

be computed from P [0,0]}
fori :=J to n do

fork:=0toKdo
P [/', k].exist .-false ; {thedefault value }

ifP[i-\\,k].existthen

P[i, k].exist := true ;

P[i, k].belong :=false
else if k-S[i]>0 then

ifP[i-\\,k-S [i]].exist then

P[i, k].exist := true ;
P[i, k].belong:= true

end

Figure 5.10 Algorithm Knapsack.

*,=2
*2=3

it 3 =5

*4=6

0

O

O

0
0

1

-

-

-

-

2

I

o

o

o

3

I

o

o

4

-

-

-

5

I

O

O

6

-
I

7

I

O

8

I

O

9

-

I

10

I

o

11

I

12

-

13

I

14

I

15

-

16

I

Figure 5.11 An example of the table constructed for the knapsack problem. The input

consists of four items of sizes2, 3,5, and 6. The symbols in the table are the following:
\"I\": a solution containing this item has been found; \"O\": a solution without this item has

been found; \"-\": no solution has not yet been found. (If the symbol \"-\"
appears in the

last line, then there is no solution for a knapsack of this size.)

5.11 Common Errors 111

The method we just used is an instance of a general technique called dynamic
programming. The essence of dynamic programming is to build large tables with all

known previous results. The tables are constructed iteratively. Each entry is computed
from a combination of other entries above it or to the left of it in the matrix. The main

problem is to organizethe construction of the matrix in the most efficient way. Another

example of dynamic programming is presented in Section 6.8.

Complexity There are nK entries in the table, and each one is computed in constant

time from two other entries. Hence,the total running time is O (nK). If the sizes of the

items are not too large, then K cannot be too large and nK is much better than an

exponential expression in n. (If K is very large or if the sizes are real numbers, then this

approach will not work; we discuss this issue in Chapter 11.) If we are interested only in

determining whether a solution exists, then the answer is in P [\302\253,K]. If we are interested

in finding the actual subset, then we can trace back from the (\302\253,K)th entry, using, for

example, the belong flag in the knapsack program, and recover the subset in O (n) time.

Comments The dynamic programming approach is effective when the problem can

be reduced to several smaller, but not small enough, subproblems. All possible

subproblems are computed. We do this computation by maintaining a large matrix.

Hence, dynamic programming can work only if the total number of possible subproblems
is not too large. Even then, dynamic programming requires building large matrices, and

thus it usually requires a large space. (In some cases,as in the program in Fig. 5.10, it is

possible to use less spaceby storing only a small part of the matrix at any moment.) The

running times are usually at least quadratic.

5.11 Common Errors

In this section, we briefly mention some common errors in the use of induction to design
algorithms. We have already discussed common errors in induction proofs in Section

2.13. All those errors have analogous errors here. For example, forgetting the base case
is common. In the case of a recursive procedure, a basecaseis essential to terminate the

recursion. Another common error is to extend a solution for n to a solution of a special
instance of the problem for n + 1, instead of an arbitrary instance.

Changing the hypothesis unintentionally is another common mistake. Here is a

typical example of it. A graph G = (V, E) is called bipartite if its set of vertices can be
partitioned into two subsets such that there is no edge connecting two vertices from the

same subset. If the graph is connected and bipartite, then the partition is unique (we omit

the proof of this fact).

The Problem Given a connected undirected graph G=(V, \302\243),

determine whether it is bipartite and, if it is, partition the vertices

accordingly.

112 Design of Algorithms by Induction

A wrong solution: Remove a vertex v and partition the rest of the graph, if possible, by

induction. We call the first subset red, and the second subset blue. If v is connected to

only red vertices,add it to the blue subset. If v is connected to only blue vertices, add it

to the red subset. If v is connected to vertices from both subsets, then the graph is not

bipartite (since the partition is unique).
The main error in this attempted solution, and the one we want to illustrate, is that

after we have removeda vertex the graph may not be connected. Hence, the smaller

instance of the problem is not the same as the original instance, and induction cannot be

used. Had we removed a vertex that does not disconnect the graph, this solution would

have been valid. This problem has a better solution, which does not depend on the graph

being connected; we leave that solution to the reader (Exercise 7.32). For a similar

example and further discussion of this common error, see Section7.5. A result related to

this incorrect algorithm is included in Exercise 5.24.

Changing the hypothesis is sometimes very tempting. If the hypothesis is

something of the form \"we know how to find such and such,\" then we are tempted to

think that we can find other simple things with the same effort. But we cannot use any

such assumption unless it is included specifically in the induction hypothesis. One way

to avoid changing the hypothesis unintentionally is to think of it as a black box. Do not

make any changes to that black box, unless you are ready to open it (namely, to redefine

it explicitly).

5.12 Summary

Several techniques for designing algorithms, all of which are variations of the same

approach, were introduced in this chapter. These are by no means all the known methods

for designing algorithms. Additional techniques and numerous examples are presentedin

the following chapters. The best way to learn these techniques is to use them to solve

problems. The rest of this book is devoted to precisely that purpose. The principles

presented in this chapter are as follows:

\342\200\242We can use the principle of induction to design algorithms by reducing an instance

of a problem to one or more of smaller size. If the reduction can always be

achieved, and the base case can be solved,then the algorithm follows by induction.
The main idea is to concentrate on reducing a problem, rather than on solving it

directly.

\342\200\242One of the easiest ways to reduce the size of a problem is to eliminate some of its

elements. That technique should be the first line of attack. The elimination can

take many forms. In addition to simply eliminating elements that clearly do not

contribute (as in Section 5.3), it is possible to mergetwo elements into one, to find

elements that can be handled by special (easy) cases, or to introduce a new element

that takes on the role of two or more original elements (Section 6.6).
\342\200\242We can reduce the size of the problem in many ways. Not all reductions, however,

lead to the same efficiency. As a result, all possibilities for reductions should be

considered. In particular, it is worthwhile to consider different orders for the

Bibliographic Notes and Further Reading 113

induction sequence. We have seen examples where it is better to take the largest

element first. Sometimes, it is better to take the smallest element first. We will see

examples of starting from the middle (Section 6.2). We also will see examples of

induction on trees in which the root is removed first (top down), and examples in

which the leaves are removed first (bottom up) (Section 6.4.4).
\342\200\242One of the most efficient ways to reduce the size of a problem is to divide it into

two (or more) equal parts. Divide and conquer works effectively if the problem

can be divided such that the output of the subproblems can easily generate the

output for the whole problem. Divide-and-conquer algorithms are given in

Sections 6.4, 6.5, 8.2, 8.4,9.4,and 9.5.

\342\200\242Since a reduction can change only the size of the problem, but not the problem

itself, we should look for smaller subproblems that are as independent as possible.
For example,the problem of finding some ordering among several items can be

reduced to finding (and removing) the item that is first in the order; the relative

order of the rest of the items is independent of the first item (see Sections 6.4 and

7.5).

\342\200\242There is one way, however, to overcomethe limitation that the reduced problem
must be identical to the original problem: Change the problem statement. This is a

very important method that we will use often. Sometimes, it is better to weaken

the hypothesis and to arrive at a weaker algorithm, which can be usedas a step in

the complete algorithm (see Section 6.10).
\342\200\242Finally, we can use all these techniques together, or in various combinations. For

example, we can use the divide-and-conquer approach with strengthening the

induction hypothesis, so that the different subproblems become easier to combine

(seeSection8.4).

Bibliographic Notes and Further Reading
The method presented in this chapter was developedby the author (Manber [1988]). It is

by no means new. The use of induction, and in general mathematical proof techniques,

in the algorithms area has its origin in the flowcharts of Goldstineand von Neumann (see
von Neumann [1963]), but was first fully developed by Floyd [1967]. Dijkstra [1976],
Manna [1980], Gries [1981], and Dershowitz [1983] present methodologies similar to

ours to develop programs together with their proof of correctness. Their approach

addresses program design in a much more rigorous and detailed fashion than the

presentation in this chapter. The use of loop invariants, described in Section 2.12, canbe
considered,in some sense, to be equivalent to the use of induction in this chapter.

Recursion, of course, has been used extensively in algorithm design (see, for example,
Burge [1975]and Paull [1988]).

The celebrity problem was first suggested by Aanderaa (see Rosenberg [1973]). It

is possible to save an additional |_l\302\260g2wJ questions by being careful not to repeat, in the
verification phase, questions asked during the elimination phase (King and Smith-
Thomas [1982]).Strengthening the induction hypothesis is probably a very old trick.

Polya [1957]calls this technique the inventor's paradox (because it is easier to invent,

114 Designof Algorithms by Induction

or prove, something that is stronger). It is also sometimescalled generalization.
Dynamic programming was introduced and formalized by Bellman [1957]. It has

numerous applications, and many variations. For a detailed description of dynamic

programming see, for example, Dreyfus and Law [1977], or Denardo [1982]. The
observation leading to Exercise 5.24 was pointed out to us by Tom Trotter.

Drill Exercises

5.1 Design a divide-and-conquer algorithm for polynomial evaluation. How many additions
and multiplications does your algorithm require? Can you think of an advantage this

algorithm has over Homer's rule?

5.2 Try to follow the steps of inductive reasoning that were used in Section 5.3 to solve the

following maximal induced subgraph problem: Given a graph G=(V, E), we are looking

for the maximal induced subgraph G' such that all the degrees in G' are at most k (as

opposed to \"at least\" in the problem in Section 5.3). This version is much more difficult

than the original version, and the approach taken for the original version does not work

here. Discuss why it does not work. (See Chapter 11 for a discussion of this problem for

the simple caseof k = 0.)

5.3 Consider algorithm Mapping (Fig. 5.3). Is it possible that the set S will become empty at the

end of the algorithm? Show an example, or prove that it cannot happen.

5.4 Write the appropriate loop invariant for the first while loop in algorithm Celebrity (Fig. 5.4).

5.5 You are given a binary tree T. T is called an AVL tree (see also Section4.3.4)if the

balance factors of all its nodes are 0, 1, or -1. Assume that the nodes do not have enough

space to store the balance factor. Design an efficient algorithm to solve the following

decision problem. Given a tree T, the algorithm should determine whether or not T is an

AVL tree. The answer should be only yes or no.

5.6 Modify algorithm Maximum Consecutive Subsequence (Fig. 5.9) such that it finds the
actual subsequence and not only the sum.

5.7 Write a program to recover the solution to a knapsack problem using the belong flag.

5.8 In algorithm Knapsack, we first checked whether the /th item is unnecessary (by checking
PV-Uj]). If there is a solution with the i-\\ items, we take this solution. We can also
make the opposite choice, which is to take the solution with the /th item if it exists (i.e.,
check P[i,j-kj] first). Which version do you think will have a better performance?

Redraw Fig. 5.11 to reflect this choice.

5.9 A given knapsack problem may have many different solutions. What are the special
characteristics of the solution obtained from algorithm Knapsack? What separates this

solution from all the rest? How does your answer change if the choice is made according to

the policy of Exercise5.7?

Creative Exercises 115

Creative Exercises

5.10 Solve the following extended skyline problem. Suppose that the buildings in the skyline
have roofs. Each building is a rectangle with a triangular roof on top. (You can assume for

simplicity that all the roofs have 45-degree angles with the buildings.) Again, all the

buildings have a common horizon. Design an algorithm to draw the skyline in this case.

5.11 Supposethat there are two different (maybe proposed) skylines: One is projected on a

screen with a blue color, and the other is superimposed on the first one with a red color.

Design an efficient algorithm to compute the shape that will be coloredpurple. In other

words, compute the intersection of two skylines.

5.12 Letx,, jc2, ..., x\342\200\236be a sequence of real numbers (not necessarily positive). Design an O (n)

algorithm to find the subsequence xh *,+,, ...,*, (of consecutive elements) such that the

product of the numbers in it is maximum over all consecutive subsequences. The product of

the empty subsequence is defined as 1.

5.13 Suppose that a given tree is not an AVL tree. We call a node an AVL node if its balance

factor is 0, 1,or -1. Design an algorithm to mark the nodes in T that are not AVL nodes, but

all of whose descendents are AVL nodes.

5.14 LetG =
(V, E) be a binary tree with n vertices. We want to construct an n x n matrix whose

//th entry is equal to the distance between v, and
vjm (Since the tree is undirected, the matrix

will be symmetric.) Design an O (n2) algorithm to construct such a matrix for a tree that is

given in the adjacency-list representation.

5.15 Let G =(V, E) be a binary tree. The distance between two vertices in G is the length of the

path connecting these two vertices (neighbors have distance 1). The diameter of G is the

maximal distance over all pairs of vertices. Design a linear-time algorithm to rind the

diameter of a given tree.

5.16 Improve the space utilization in algorithm Knapsack (Section 5.10). Is there a need for a

complete n x K matrix? What is the space complexity of the improved algorithm?

5.17 Solve the following variation of the knapsack problem: The assumptions are identical to

those of Section 5.10,exceptthat there is an unlimited supply of each item. In other words,

the problem is to pack items of given sizes in a given-sized knapsack, but each item may

appear many times.

5.18 Here is another variation of the knapsack problem: The assumptions are the same as in

Exercise 5.17 (n items, unlimited supply, fixed-sized knapsack), but now each item has an

associated value. Design an algorithm to find how to pack the knapsack fully, such that the

items in it have the maximal value among all possible ways to pack the knapsack.

5.19 Hereis the most common variation of the knapsack problem: The assumptions are the same

as in Exercise 5.17 (n items with sizes and values, unlimited supply, fixed-sized knapsack,
and the goal of maximizing the value), but now we are not restricted to rilling the knapsack
exactly to capacity. We are interested only in maximizing the total value, subject to the
constraint that there is enough room for the chosen items in the knapsack.

116 Design of Algorithms by Induction

5.20 Let x i, x2,..., xn be a set of integers, and let S =
\302\243a,.Design an algorithm to partition the

/=i

set into two subsets of equal sum, or determine that it is impossible to do so. The algorithm

should run in time O (nS).

5.21 Supposethat you are given an algorithm as a black box \342\200\224
you cannot see how it is designed

\342\200\224that has the following properties: If you input any sequence of real numbers, and an

integer k, the algorithm will answer \"yes\" or \"no,\" indicating whether there is a subset of

the numbers whose sum is exactly k. Show how to use this black box to find the subset
whose sum is k, if it exists. You should use the black box O (n) times (where n is the size of
the sequence).

5.22 The towers of Hanoi puzzle is a standard example of a nontrivial problem that has a simple
recursive solution. There are n disks of different sizes arranged on a peg in decreasing

order of sizes. There are two other empty pegs, (see Fig. 5.12). The purpose of the puzzle

is to move all the disks, one at a time, from the first peg to another peg in the following

way. Disks are moved from the top of one peg to the top of another. A disk can be moved

to a peg only if it is smaller than all other disks on that peg. In other words, the ordering of

disks by decreasing sizes must be preserved at all times. The goal is to move all the disks in

as few moves as possible.

a. Design an algorithm (by induction) to find a minimal sequence of movesthat solves the

towers of Hanoi problem for n disks.

b. How many moves are used in your algorithm? Construct a recurrence relation for the

number of moves,and solve it.

c. Prove that the number of moves in part b is optimal; that is, prove that there cannot exist

any other algorithm that uses less moves.

5.23 Write a nonrecursive program for the towers of Hanoi problem (defined in Exercise 5.22).

5.24 The following is a variation of the towers of Hanoi problem (see Exercise5.22).We no

longer assume that all the disks are initially on one peg. They may be arbitrarily distributed

among the three pegs, as long as they are ordered in decreasing sizes on each peg. The

purpose of the puzzle remains to move all disks to one specified peg, under the same

constraints as the original problem, with as few moves as possible. Design an algorithm to

find a minimal sequence of movesthat solves this version of the towers of Hanoi problem
for n disks.

A A A

Figure 5.12 The towers of Hanoi puzzle.

Creative Exercises 117

5.25 This exercise is related to the wrong algorithm for determining whether a graph is bipartite,

described in Section 5.11. In some sense, this exercise shows that not only is the algorithm

wrong, but also the simple approach cannot work. Considerthe more general problem of

graph coloring: Given an undirected graph G=(V, \302\243),a valid coloring of G is an

assignment of colors to the vertices such that no two adjacent vertices have the same color.
The problem is to find a valid coloring, using as few colors as possible. (In general, this is a

very difficult problem; it is discussed in Chapter 11.) Thus, a graph is bipartite if it can be
coloredwith two colors.

a. Prove by induction that trees are always bipartite.

b. We assume that the graph is a tree (which means that the graph is bipartite). We want to

find a partition of the vertices into the two subsets such that there are no edges connecting

vertices within one subset. Consideragain the wrong algorithm for determining whether

a graph is bipartite, given in Section 5.11: We take an arbitrary vertex, remove it, color

the rest (by induction), and then color the vertex in the best possible way. That is, we

color the vertex with the oldest possible color,and add a new color only if the vertex is
connected to vertices of all the old colors. Prove that, if we color one vertex at a time

regardless of the global connections, we may need up to 1 +log2/i colors. You should

design a construction that maximizes the number of colors for every order of choosing
vertices. The construction can depend on the order in the following way. The algorithm

picks a vertex as a next vertex and starts checking the vertex's edges. At that point, you
are allowed to add edges incident to this vertex as you desire, provided that the graph

remains a tree, such that, at the end, the maximal number of colors will be required. You

cannot removean edge after it is put in (that would be cheating the algorithm, which has

already seen the edge). The best way to achieve this construction is by induction.

Assume that you know a construction that requires <k colors with few vertices, and build

one that requires k + 1 colors without adding too many new vertices.

CHAPTER 6

ALGORITHMS INVOLVING

SEQUENCES AND SETS

Order is a lovely thing;
on disarray it lays its wing,

teaching simplicity to sing.

Anna Hempstead Branch (1875-1937)

6.1 Introduction

In this chapter, we deal with inputs that are either finite sequences or finite sets. The
difference between sequences and sets is that in sequences the order in which the

elements are given is important whereas in sets it is not. Also, in sets we assume that an

element does not appear more than once, whereas there is no such assumption for

sequences. Since inputs are usually given in some order, we can regard them as

sequences. Nevertheless, we may call an input a set when we are not interested in the

given order. Throughout this chapter, unless specified otherwise, the representation of

the input is assumed to be an array, and we assume that the size of the array is known.

The elements in the sequences or sets are assumedto be taken from a totally ordered set

(e.g., integers, reals), so that they can be compared. In this chapter, we consider

problems in which the elements are all of the same type. We study issues such as

maximality, order, specialsubsequences,data compression, and similarities of sequences.
This chapter contains many different algorithms with a variety of applications.

Our purposeis to give more examples of the design methodology introduced in Chapter

5, and, at the same time, to describe some important algorithms. We include algorithms

120 Algorithms Involving Sequences and Sets

that are very important and universally applicable (binary search and sorting, for

example), algorithms that are very important but have specific applications (file

compressionand sequence comparisons), and algorithms that are not very important but

illustrate interesting techniques (finding the two largest elements in a set, and the

stuttering-subsequence problem).
The first example in this chapter is binary search \342\200\224a basic and elegant algorithm

that comes in many forms and appears in many situations. We then discuss sorting
\342\200\224

one of the most extensively studied algorithmic problems
\342\200\224order statistics, data

compression, two problems involving text manipulation, and probabilistic algorithms.

We end this chapter with several examples of elegant algorithms illustrating interesting

design techniques.

6.2 Binary Search and Variations

Binary search is to algorithms what a wheel is to mechanics: It is simple, elegant, and

immensely important, and it is rediscovered frequently. The basic idea behind binary

search is to cut the search space in half (or approximately so) by asking only one

question. In this section, we describe several variations of binary search and show its

versatility.

Pure Binary Search

The Problem
that jc, <jc2<

* \342\200\242

z appears in the

Xj=Z.

Let

<xn.
A-,,*2 \342\200\224

Given a

sequence, and,

, xn be a sequence
real number z

if it does, to
, we

find

of real numbers such

want to find whether

an index / such that

For simplicity, we look for only one index / such that .v,=z. In general, we may be
interested in finding all such indices, the smallest one, the largest one, and so on. The

idea is to cut the search space in half by checking first the middle number. Assume, for

simplicity that n is even. If z is less than xnl2+\\, then z is clearly in the first half of the

sequence; otherwise, z is in the second half. Finding z in either half is a problem of size
nil, which can be solved by induction. We handle the base case of n = 1 by directly

comparing z to the element. The algorithm is given in Fig. 6.1.

Complexity Each time a comparisonis made, the range is cut by one half; therefore,

the number of comparisons required to find a given number in a sequence of size n with

binary search is 0(logA?). This version of binary search delays the equality comparisons
to the end. The alternative is to check equality with z in each step. The disadvantage of
the version we present is that there is no hope for stopping the search early; the

advantage is that only one comparison is made in every step (instead of one equality

comparison and one inequality comparison). This searchis thus usually faster. Although

6.2 Binary Search and Variations 121

Algorithm Binary_Search (X, n, z);

Input: X (a sorted array in the range 1 to a?), and z (the search key).
Output: Position (an index / such that X[i] = z, or 0 if no such index exist).

begin
Position := Find(z, 1, n);

end

function Find (z, Left,Right): integer ;

begin

if Left =
Right then

ifX [Left] = z then Find := Left
else Find := 0

else
Middle :=\\ f/2(Left+Right)] ;

ifz<X[Middle]then
Find := Find (z, Left, Middle-1)

else
Find := Find (z, Middle, Right)

end

Figure 6.1 Algorithm Binary_Search.

it is more convenient to write the program as a recursive program, we can easily convert

it to a nonrecursive program. Binary search is not as effective for small values of n as it

is for large ns. If n is small, then it is better simply to search the sequence linearly.

Binary Search in a Cyclic Sequence
A sequence x\\,x2,...,xn is said to be cyclicallysorted if the smallest number in the

sequence is a, for some unknown /, and the sequence xhxi+\\,...,xn,x{,..., a*,_j is sorted

in increasing order.

The Problem Given a cyclically sorted list, find the position of the
minimal element in the list (we assume, for simplicity, that this position

is unique).

To find the minimal element jc, in the sequence, we use the idea of binary search to
eliminate half the sequence with one comparison. Take any two numbers xk and xm, such
that k <m. If xk <x\342\200\236nthen / cannot be in the range k <i<m, since xt is minimal in the
whole sequence. (Noticethat we cannot exclude xk.) On the other hand, if xk >xm, then i

122 Algorithms Involving Sequences and Sets

must be in the range k<i<m, since the order is switched somewhere in that range.

Thus, with one comparison, we can eliminate many elements. By choosing k and m

appropriately, we can find i in O (log n) comparisons.The algorithm is given in Fig. 6.2.

Algorithm Cyclic_Binary_Search (X, n,z);

Input: X (a cyclically sortedarray in the range 1 to a? of distinct elements).

Output: Position (the index of the minimal element in I).

begin

Position := CyclicJ ind(\\y n);

end

function Cyclic Jind (Left,Right): integer ;

begin

if Left =
Right then Cyclic Jind := Left

else
Middle := ['A (Left + Right)] ;

ifX [Middle] < X [Right] then

Cyclic Jind := Cyclic Jind (Left, Middle)
else

CyclicJind := Cyclic Jind (Middle+1, Right)
end

Figure 6.2 Algorithm Cyclic Jinary Jearch.

Binary Search for a Special Index
In the following search problem, the key is not given; instead, we are looking for an

index that satisfies a specialproperty.

The Problem Given a sorted sequence of distinct integers
a i, a2>..., an, determine whether there exists an index / such that a{ -i.

Pure binary search is not applicable here, becausethe value of the searched element is
not given. However, the property we seek is adaptableto the binary search principle.
Consider the value of anl2 (assume again that n is even). If this value is exactly nil, then

we are done. Otherwise, if it is less than nil, then, since all numbers are distinct, the

value of an/2-\\ is less than nil - 1,and so on. No number in the first half of the sequence

can satisfy the property, and we can continue searching the second half. The same

argument holds if the answer is \"greater than.\" The algorithm is given in Fig 6.3.

6.2 Binary Search and Variations 123

Algorithm Special_Binary_Search (A, n);

Input: X(a sorted array in the range 1 to n of distinct integers).

Output: Position (the index satisfying A [Position] =Position, or 0 if no

such index exists).

begin
Position:= Special_Find(\\, n) ;

end

function SpecialJFind (Left,Right): integer ;

begin

if Left =
Right then

if A [Left] = Left then SpecialJind := Left
else Special_Find := 0 {unsuccessful search }

else

Middle :=\\'/2{Left+Right)\\ ;
if A [Middle] < Middle then

Special_Find := Special_Find (Middle + 1,Right)

else

Special_Find := Special_Find (Left, Middle)
end

Figure 6.3 Algorithm Special_Binary_Search.

Binary Search in Sequences of Unknown Size
Sometimes we use a procedure much like binary search to double the search spacerather

than to halve it. Consider the regular search problem, but suppose that the size of the

sequence is unknown. We cannot halve the search range, since we do not know its

boundaries. Instead,we look for an element jc, that is greater than or equal to z. If we
find such an element, then we can perform binary search in the range 1 to i. We first

compare z to jc i. If z < x j, then z can only be equal to jc i. Assume, by induction, that we

know that z >
jc,-

for some j
;> 1. If we comparez to jc2y, then we double the search space

with one comparison. If z<xlr then we know that jc, <z<jc27 and we can find z with

O (logy) additional comparisons. Overall, if i is the smallest index such that z<xh then it

takes 0(log/) comparisons to find an
jc,

such that z<jc,, and another 0(log/)

comparisons to find i.

The same algorithm can alsobe usedwhen the size of the sequence is known, but

we suspect that / is very small. This algorithm is an improvement over regular binary

search in such cases becauseits running time is O (log /) rather than O (logn). However,
there is an extra factor of 2 in the running time of this algorithm, since we perform two

binary search like procedures. Therefore, this algorithm is better only when i = 0(yn).

124 Algorithms Involving Sequences and Sets

The Stuttering-Subsequence Problem

The principle of binary search appears even in problems that do not seem to require any

search. Let A and B be two sequences of characters from a finite alphabet

A = axa2
'' '

an and\302\243=/?j/?2
' ' '

b\342\200\236nsuch that m<n. We say that\302\243 is a subsequence of

A if there are indices /, < i2 < ''' <im such that, for all j, \\<j<m, we have bj=dj. In

other words, B is a subsequence of A if we can embed B inside A in the same order but

with possible holes. It is simple to determine whether B is a subsequence of A. We scan
A until we find the first occurrence (if any) of b\\, continue from there until we find b2,

and so on. The proof that this algorithm is correct is easy by induction, and we leave it as

an exercise. Since the algorithm involves one linear scan of A and B, its running time is

clearly0(m+n). Given a sequence #, we define B' to be the sequence B with each

character appearing / times consecutively. For example, if B=xyzzx, then

B3 =xxxyyyzzzzzzxxx.

The Problem Given two sequences A and B, find the maximal

value of / such that B' is a subsequence of A.

This problem is called the stuttering-subsequence problem. It may seem difficult at

first, but it can be solved easily with binary search.

For each given value of /, we can construct the sequence B' easily. Hence, we can
determine whether B' is a subsequence of A for any specific value of /. Furthermore, if

Bj is a subsequence of ,4, then B' is a subsequence of A, for 1 </ <j. The maximal value
of / that needs to be considered cannot exceed nlm, since in that case the sequence B

would be longer then A. So, we can use binary search. We first set i=\\nlm\\l2, and

check whether Bl is a subsequence of A. We then continue with binary search,

eliminating the lower range if the answer is yes and the upper range otherwise. It will

take \\\\og2(n/m)\\ tests to determine the maximal /. The overall running time is thus

0{{n+m)\\og{nlm)) = 0(n\\og(n/m)). Sequencecomparison problems are also

discussed in Section 6.8.

This solution suggests a general technique. Whenever we are looking for the

maximal / that satisfies some property, it may be sufficient to find an algorithm that

determines whether a given i satisfies that property. We can do the rest by binary search
if we have an upper bound for /, and if the property is such that, whenever / satisfies it,

then j satisfiesit, for 1 <j </. If we do not know an upper bound for /, we can use the

doubling scheme. That is, we can start at / = 1 and double the value of / until we find the

right range. This search will take longer, but, unless the desired / is extremely large, it

will still be efficient. The resulting algorithm, however, may not be optimal. In many

cases, such as the stuttering-subsequence problem, it is possible to eliminate the extra

O (log n) factor.

6.3 Interpolation Search 125

Solving Equations

This subject area doesnot conform to the subject of this chapter, but it deserves a short

mention here. Suppose that we want to find a solution to the equation / (a) = 0, where /is

a continuous function which we can compute. We are given that x is in the range [a, b]

(i.e., a<x<b), and that f (a) 'f(b) <0 (i.e., one of f (a) and f(b) is positive and the

other one is negative). We want to find a solution to the equation within a given

precision.
Since the function is continuous, a solution must exist in the range [a, b]. We can

use a variation of binary search, known as bisection or the Bolzano method, which

works as follows. The function/is evaluated at a*j =(a+b)/2. If/(jtj) = 0 (within the

required precision), then we have a solution. Otherwise, we can select one of the

subranges [0, Jtj] or Uj,/?], each being one half the size of the original, in which a

solution is guaranteed to exist. The selectionis done such that the values of the function

are positive at one end and negative at the other. We continue in this way until the

desired precision is achieved. After k steps, the size of the region that contains a solution

\\$(b-a)l2k.

6.3 Interpolation Search

In binary search, the search space is always cut in half, which guarantees the logarithmic

performance. However, if during the search we find a value that is very close to the

search number z, it seems more reasonable to continue the search in that

\"neighborhood\" instead of blindly going to the next half point. In particular, if z is very

small, we should start the search somewhere in the beginning of the sequence instead of
at the halfway point.

Consider the way we open a book when we are searching for a certain page
number. Say the page number is 200 and the book looks like an 800-page book. Page
200 is thus around the one-fourth mark, and we use this knowledge as an indication of

where to open the book. We will probably not hit page 200 on the first try; suppose that

we get page 250 instead. We now cut the search to a range of 250 pages, and the desired

page is at about the 80 percent mark between page 1 and 250. We now try to go back

about one-fifth of the way. We can continue this process until we get close enough to

page 200, that we can flip one page at a time. This is exactly the idea behind

interpolation search. Instead of cutting the search space by a fixed half, we cut it by an

amount that seems the most likely to succeed. This amount is determined by

interpolation, which is illustrated in Fig. 6.4. The first guess is at X [8], which turns out to
be larger than z. Another interpolation leads to X[5], and then another finally leads to

X14]. The algorithm, including the precise expression used for the interpolation, is given
in Fig. 6.5.

Complexity The performance of interpolation search depends not only on the size of

the sequence, but also on the input itself. There are inputs for which interpolation search
checks every number in the sequence (see Exercise 6.4). However, interpolation search

is very efficient for inputs consisting of relatively uniformly distributed elements (the

Algorithms Involving Sequences and Sets

r& ,OH -r--&-

X[i]

I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

i

Figure 6.4 Interpolation search.

Algorithm Interpolation_Search (X, n,z);

Input: X (a sorted array in the range 1 to \302\253),and z (the search key).
Output: Position (an index / such that X[i] = z, or 0 if no such index exist).

begin

ifz < X [1] or z > X [n] then Position := 0

{ unsuccessful search }

else Position := Int_Find(z, 1, n)

end

function Int_Find(z, Left,Right): integer ;

begin

ifX [Left] = z then IntJFind := Left
else if Left =

Right or X [Left] = X [Right] then

IntJFind := 0
else

(z-X[Left])(Right-Left)
X [Right]-X [Left]

ifz<X[Next_Guess] then

IntJFind := IntJFind (z, Left, Next Guess -
\\)

else

Int_Find := Int_Find (z, NextjGuess,Right)

Next Guess := Left + -

end

Figure 6.5 Algorithm Interpolation JSearch.

6.4 Sorting 127

pagesof a book are, of course, uniformly distributed). It can be shown that the average
number of comparisonsperformed by interpolation search, where the average is taken

over all possible sequences,is 0(loglog\302\253). Although this seems to be an order of

magnitude improvement over the performance of binary search (due to the extra

logarithm), interpolation search is not much better than binary search in practice for two

main reasons. First, unless n is very large, the value of log2\302\253is small enough that the

logarithm of it is not much smaller. Second,interpolation search requires more elaborate

arithmetic.

6.4 Sorting

Sorting is one of the most extensively studied problems in computer science. It is the

basis for many algorithms, and it consumes a large proportion of computing time for

many typical applications. There are numerous variations of the sorting problem, and

dozens of sorting algorithms. We cannot cover in this section even a small part of this

subject. We mention only several common techniques. As usual, we concentrate on the

principles behind the algorithms that can be useful for other problems. We will go into

more detail than usual in this section.

The Problem
creasing

l<ii,/2,

order.

...,/*<>

Given

In other

n numbers x

words,
i, such that

jc^
<x

find
<

,*2.\" \302\273-*fl\302\273

a sequence
''

**i.

arrange them in in-

of distinct indices

For simplicity, unless specified otherwise,we assume that the numbers are distinct. All

the methods described in this section are valid for nondistinct numbers as well. A sorting

algorithm is called in-place if no additional work space is used besidesthe initial array

that holds the elements.

6.4.1 Bucket Sort and Radix Sort

Perhaps the simplest sorting technique is the \"mailroom\" sort: allocate a sufficient

number of ''boxes\" \342\200\224we call them buckets \342\200\224and put each element in the

corresponding bucket. This method is calledbucket sort. If the elements are letters and

they need to be sorted accordingto states, for example, then allocating one bucket per
state is sufficient and the resulting algorithm is very efficient. On the other hand, if the
letters need to be sorted by zip codes (with 5 digits), then this method requires 100,000
boxes and a very large mailroom. Thus, bucket sort works very well only for elements
from a small, simple range that is known in advance. A more detailed description of
bucket sort follows.

We assume that there are n elements, all of which are integers in the range 1 to m.

We allocate m buckets, and then, for each /, we put jc, in the bucket corresponding to its

128 Algorithms Involving Sequences and Sets

value. At the end, we scan the buckets in order and collect all the elements. The

complexity of this simple algorithm is obviously 0(m+n). If m=0(n), then we get a

linear-time sorting algorithm. On the other hand, if m is very large relative to n (as may

be the case with zip codes), then O(m) is too large. In addition, the algorithm requires

0{m) storage,which is an even more serious problem for large m.

A natural extension of this idea is radix sort. Consider the zip-code example

again. Using bucket sort for zip codes is not effective because the range of zip codesis
too large to handle. Can we do something to reduce the range? We use induction on the

range in the following way. We use severalstages.First, we use 10 buckets and sort

everything according to only the first digit of the zip code. Each bucket now covers

10,000 different zip codes (correspondingto the remaining four digits). The running

time for this stage is O (n). At the end of the first stage, we have 10 buckets, each with

elements corresponding to a smaller range. We can now solve the problem for each
bucket by induction. Since we reduce the range by a factor of 10 in each stage, and since

all zip codes have 5 digits, only 5 stages will be required. Once the buckets are sorted, it

is easy to put them together into a sorted list. We leave the details of this algorithm to the

reader (Exercise 6.5),sincewe want to show another variation of the same idea. We note
that the range can be divided in any convenient way. In the zip-code example,the range

is divided according to the zip codes' decimal representation. If the keys are strings of
characters that need to be sorted in a lexicographic order, we can considerone character

at a time, leading to a lexicographicsort. Both algorithms are similar. The version of
radix sort presented here (namely, a left to right scan) is known as radix-exchange sort.

A straightforward recursive implementation of radix-exchange sort requires
temporary buckets (about 50 buckets will be needed in the zip-code example;see also

Exercise 6.5). Another way to achieve radix sort is to apply the induction in the opposite
order. That is, the sorting is done from right to left, starting with the least significant

parts instead of the most significant parts. We assume that the elements are large integers
represented by k digits, and each digit is in the range 0 to d - 1. The induction hypothesis
is the straightforward one.

Induction hypothesis: We know how to sort elements with < k digits.

The difference betweenthis method and the previous radix-exchange sort is the way we

extend the hypothesis. (This idea of applying induction in the opposite order is similar to
the one for Horner's rule in Section 5.2.) Given elements with k digits, we first ignore
the most significant digit and sort the elements according to the rest of the digits by

induction. We now have a list of elements sortedaccording to their k - 1 least significant

digits. We scan all the elements again and use bucket sort, on the most significant digit,
with d buckets. Then, we collect all the buckets in order. This algorithm is called

straight-radix sort. We want to argue that the elements are now sorted according to k

digits.
We claim that two elements that are put in different buckets in the last step are

arranged in the right order. We do not even need the induction hypothesis for this case,

since, by the lexicographic ordering, the most significant digit is the one that determines
the order regardlessof the other digits. On the other hand, if two elements have the same

6.4 Sorting 129

most significant digit, then, by the induction hypothesis, they are in the right order before

the last step. Thus, we have to make sure that they stay in the right order. This is the

only subtle part of the algorithm, and it is a good example of the use of the inductive

approach to make sure the algorithm is correct. It is essential that elements that are put in

the same bucket remain in the same order. This can be achieved by using a queue for

each bucket, and by appending the d queues at the end of a stage to form one global

queue of all elements (sorted according to the / least significant digits). The precise

algorithm is given in Fig. 6.6.

Algorithm Straight_Radix (X, n, k);

Input; X (an array of integers, each with k digits, in the range 1 to n).

Output: X (the array in sorted order).

begin
We assume that all elements are initially in a global queue GQ ;
{We use GQfor simplicity; it can be implemented through X }

fori := 1 toddo
{dis the number of possible digits; d = 10in case of decimal numbers }

initialize queue Q [i] to be empty ;

for i := k downto I do

while GQ is not empty do

pop xfrom GQ ;
d := the ith digit of x ;
insert x into Q[d] ;

fort:- I tod do
insert Q[t] into GQ ;

for i := 1 to n do

pop X[i] from GQ
end

Figure6.6 Algorithm Straight Radix.

Complexity It takes n steps to put all the elements in the queue GC, and d steps to

initialize the queues Q[i]. The main loop of the algorithm, which is executed k times,
pops each element from GC and pushes it into one of the Q [/]s. It also concatenates all

the Q [i]s together. The overall running time of the algorithm is O (nk).

In the remainder of this section, we consider sorting techniques that use direct

comparisons betweenthe elements without regard to the \"structure\" of their keys. Each
comparisonwill thus involve the whole key. These algorithms are more general since

they make no assumptions about the types of elements, except that two elements can be

compared.

130 Algorithms Involving Sequences and Sets

6.4.2 Insertion Sort and Selection Sort

We use a straightforward induction. Suppose that we know how to sort n -1 numbers

and we are given n numbers. We can sort the \302\253\342\200\2241 numbers and then put the nth number

in its correct placeby scanning the n - 1 sorted numbers until the correct place to insert is

found. This procedure is appropriately called insertion sort. It is simple and effective

for small values of n. However,it is not an efficient algorithm for large n. In the worst

case, the nth number is compared to all the previous n - 1 numbers. The total number of

comparisons for sorting n numbers may be as high as l+2+-+\302\253-l =

i/2(n- \\){n-2) = 0(n2). Furthermore, inserting the nth number in its correct place

involves moving other elements. In the worst case, n - 1 elementsare moved in the nth

step; hence, the number of elementmovements is also 0(n2). We can improve insertion

sort by storing the elements in an array, and using binary search on the n -1 sorted

numbers to find the correct place to insert. The searchtakes only 0(\\ogn) comparisons

per insertion, leading to 0(n \\ogn) comparisons overall. However, the number of data

movements remains unchanged, so this is still a quadratic-time algorithm.
We can improve the straightforward induction by selecting a specialnth number.

For example, we can select the maximal number as the nth number. The maximal is a

goodchoicebecausewe know where to put it \342\200\224it belongs at the end of the array. The

algorithm consists of first selecting the maximal, then putting it in the right place (by

swapping it with whatever is there), and then recursively sorting the rest. This algorithm

is called selection sort. The advantage of selection sort over insertion sort is that only
n - 1 data movements (swaps in this case) are required versus O(n2) in the worst case for
insertion sort. On the other hand, since it takes n -1 comparisonsto find the maximal

element (finding the maximal is discussed in Section 6.5), the total number of

comparisons is always 0{n2), whereas insertion sort with binary search requires only

O (n \\ogn) comparisons.
It is also possible to use balancedtrees for efficient insertion or selection (see

Chapter 4). Using AVL trees, for example, each insertion requires 0(\\ogn) time.

Scanning an AVL tree to get a list of its numbers in order takes O(n) time. If we assume

by induction that we know how to build an AVL tree for n - 1 numbers, then all we need
to do is to insert, which takes O (\\ogn) time. Overall, it takes O (n \\ogn) time to insert n

numbers into an empty AVL tree, and O(n) time at the end to list them in sorted order.

For large \302\253,this is a much better solution than insertion sort or selection sort, but it

requires more space to hold the pointers. It is clearly not an in-place algorithm. It is also
quite complicated, and it is not as good as the algorithms we present next. The programs
for insertion and selection sorts are simple and are left as exercises.

6.4.3 Mergesort

To improve the efficiency of insertion sort, we notice that in the time it takes to scan the
sorted numbers to find the correct place to insert one number, we can find the correct

place for many numbers. We have already used this idea in Section 5.6. If we have two

sets of numbers that are already sorted, we can merge them together with one scan. The
merge involves considering the numbers of the second set in order and finding the correct

6.4 Sorting 131

place in the first set for the smallest number, the second smallest, and so on. More

precisely, denote the first set by a\\, a2, \342\200\242..,an, and the second set by b\\, b2,..., b\342\200\236nand

assume that both sets are sorted in increasing order. Scan the first set until the right place

to insert b{ is found, and insert it; then continue the scan from that place until the right

place to insert b2 is found, and so on. Sincethe bs are sorted, we never have to go back.
The total number of comparisons, in the worst case, is the sum of the sizes of the sets.

What about data movements? It is inefficient to move elements each time an insertion is

performed, since the same elements will be moved many times. Instead, since the merge
producesthe elements one by one in sorted order, we copy them to a temporary array;

each element is copied exactlyonce. Overall, merging two sorted sequences of sizes n

and m can be done with 0{n+m) comparisons and data movements (provided that

additional storage is available).
The merge procedure that we just described can be used as a basisfor a divide-

and-conquer sorting algorithm, known as mergesort. The algorithm works as follows.

First, the sequence is divided into two equal or close-to-equal (in case of an odd size)

parts. Second, each part is sorted separately recursively. Third, the two sorted parts are

mergedinto one sorted sequence, as described above. The precise algorithm is given in

Fig. 6.7. An example of mergesortis shown in Fig. 6.8 (the copying is not shown).

Complexity Let T(n) be the number of comparisons required by mergesort in the

worst case. Let's assume, for simplicity, that n is a powerof 2. To calculate T(n), we

need to solvethe following recurrence relation:

T{2n) = 2T(n) +0{n), 7(2)=1.
The solution of this recurrence relation is T(n) = 0(n \\ogn) (see Chapter 3), which is

asymptotically better than the 0(n2) running time required for insertion sort or selection
sort. The number of data movements is also 0(n log\302\253), which is more than the O(n)
data movements required by selection sort.

Although mergesort is better than insertion sort for large \302\253,it still has several

drawbacks. First, mergesort is not as easy to implement. Second, the merging step
requires additional storage to copy the merged set. Thus, mergesort is not an in-place
algorithm. (There are more complicated versions of mergesort that use only constant

amounts of extra storage;see the bibliography section.) This copying must be done

every time two smaller sets are merged, which makes the procedure slower.

6.4.4 Quicksort

Mergesort and its analysis demonstrate the efficiency of divide and conquer. If we can
divide the problem into two equal-sized subproblems,solve each subproblem separately,
and combine the solutions, we can get an O (n \\ogn) algorithm, provided that the division

step and the combining step take O(n). The problem with mergesort was the need for
extra storage, since the merging is arbitrary and we cannot predict where each element

will end up in the order. Canwe somehow perform a different divide and conquer so that

the position of the elements can be determined? The ideaof quicksort is to spend most of
the effort in the divide step and very little in the conquer step.

Algorithms Involving Sequences and Sets

Algorithm Mergesort (X, n);

Input: X (an array in the range 1 to n).

Output: X (the array in sorted order).

begin

M_Sort(l,n)
end

procedureM_Sort(Left, Right) ;

begin

if Right
- Left = 1 then

{ checking for this case is not necessary, because it will be handled

correctly anyway, but it makes the program more efficient}
ifX[Left]> X[Right] then swap (X[Left], X[right])

elseif Left * Right then

Middle := \\ l/i (Left + Right)] ;

M_Sort(Left,Middle-l) ;
M_Sort(Middle, Right) ;

{ we now merge the two sorted sequences aboveinto one sorted

sequence}

i:=Left;

j := Middle ;

k := 0 ;
while (i < Middle -\\)and (j< Right) do

k:=k + J;
ifX[i]<X[j]then

TEMP[k]:=X[i];
i :=i + /

else

TEMP[k]:=X[j];

if j > Right then

{ move the rest of the left side to the end of the array }

{ifi> Middle, then the right side is already in the right place }
for t := 0 to Middle -\\-ido

X [Right-t]:=X [Middle -\\-t];

{ we now copy TEMP back into X }

fort :=0tok-1 do
X [Left+ t]:= TEMP [t]

end

Figure 6.7 Algorithm Mergesort.

6.4 Sorting 133

6

(2)

2

(2)

2

2

2

\302\251

\302\251

2

(6)

6

(5)

5

5

5

\302\251

2

2

2

2

2

2

2

\302\251

8

8

(5)

(6)

6

6

6

\302\251

5

5

5

5

5

5

5

\302\251

5

5

(8)

<\302\253)

8

8

8

\302\251

6

6

6

6

6

6

6

\302\251

10

10

10

10

(9)

9

(0

\302\251

8

8

8

8

8

8

8

\302\251

9

9

9

9

do)

10

(9)

\302\251

9

9

9

9

9

9

9

\302\251

12

12

12

12

12

(0

(.0)

\302\251

10

10

10

10

10

10

10

\302\251

(\342\226\2402)

(\342\226\2402)

\302\251

12

12

12

12

12

12

12

\302\251

15

15

15

15

15

15

15

15

\302\251

7

\302\251

3

3

3

\302\251

\302\251

7

7

7

7

7

7

7

7

\302\251

15

\302\251

7

7

7

\302\251

\302\251

3

3

3

3

3

3

3

3

3

\302\251

\302\251

13

13

13

\302\251

\302\251

13

13

13

13

13

13

13

13

13

\302\251

\302\251

15

15

15

\302\251

\302\251

4

4

4

4

4

4

4

4

4

4

4

\302\251

4

\302\251

\302\251

\302\251

11

11

11

11

11

11

11

11

11

11

11

\302\251

11

\302\251

\302\251

\302\251

16

16

16

16

16

16

16

16

16

16

16

16

\302\251

\302\251

\302\251

\302\251

14

14

14

14

14

14

14

14

14

14

14

14

\302\251

\302\251

\302\251

\302\251

Figure 6.8 An example of mergesort. The first row is in the initial order. Each row

illustrates either an exchange operation or a merge. The numbers that are involved in the

current operation are circled.

Supposethat we know a number x such that one-half of the elements are greater
than or equal to x and one-half of the elements are smaller than x. We can compare all

elements to x and partition the sequence into two parts according to the answer. This
partition requires n - 1 comparisons. Since the two parts are equal in size, one part can

occupy the first half of the array and the other the second half. Furthermore, this

partition can be accomplished without additional space, as will be shown shortly. This is
the divide step. We can now sort each subsequence recursively. The combinestep is
trivial since the two parts already occupy the correct positions in the array. Therefore, no

additional space is required.
Thus far, we have assumed that we know the value of .v, which we usually do not.

It is easy to see, however, that the same algorithm will work no matter which number is

used for the partition. We call the number used in the partition the pivot. Our purposeis
to partition the array into two parts, one with numbers greater than the pivot and the other
with numbers less than or equal to the pivot. We can achieve this partition with the

following algorithm. We use two pointers to the array, L and R. Initially, L points to the

left side of the array and R points to the right side of the array. The pointers \"move\" in

134 Algorithms Involving Sequences and Sets

opposite directions toward each other. The following induction hypothesis (or loop

invariant) guarantees the correctness of the partition.

Induction hypothesis: At step k of the algorithm, pivot >x^ for all i such

that i <L, and pivot <
Xj for all j such that j >R.

The hypothesis is trivially true at the beginning (since no / or j satisfies the conditions).

Our goal is to move either L to the right or R to the left at step k + 1 without invalidating

the hypothesis.
When L =/?, the partition is almost completed except possiblyfor xL, with which

we deal later. Let's assume that L<R. There are two cases. If either xL<pivot or

xR > pivot, then the corresponding pointer(s)can move and the hypothesis is preserved.
Otherwise,we have xL > pivot and xR

< pivot. In this case, we can exchange xL with xR

and move both pointers inward. Both cases involve the movement of at least one of the

pointers; hence, the pointers will eventually meet and the algorithm will terminate.

We are left with the problems of choosing a good pivot and dealing with the last

step of the algorithm in which the two pointers meet. Divide-and-conquer algorithms
work best when the parts have equal sizes,which suggests that the closer the pivot is to

the middle, the faster the algorithm runs. It is possible to find the median of the sequence
(wediscussmedian finding in the next section), but it is not worth the effort. As we shall
see in the analysis, choosing a random element from the sequence is a good choice. If

the sequence is in a random order, then we might as well choose the first element as the

pivot. We make this choice, mainly for simplicity, in the algorithm presented in Fig. 6.9.

Algorithm Partition (X, Left, Right) ;

Input: X (an array), Left (the left boundary of the array), and Right

(the right boundary).

Output: X and Middle such that X[i]<X [Middle] for all i <Middle

and X [j] > X [Middle] for all j > Middle.

begin

pivot :=X[Left] ;
L ;= Left; R := Right ;
whileL <Rdo

while X [L] < pivot and L <
Right do L

while X [R] > pivot and R > Left do R

ifL < R then

exchange X [L] with X[R] ;

Middle := R ;

exchange X [Left] with X [Middle]

end

:=L + 1 ;
= R-1 ;

Figure 6.9 Algorithm Partition.

6.4 Sorting 135

When the first element is chosen as the pivot, we can exchange it with xL at the last

step of the partition, which will put the pivot in the middle of the partition as required.
We mention other policies in the complexity discussion. In any case, any pivot chosen
from the sequence can be exchanged with the first element, and then the algorithm in Fig.
6.9 canbe used.

An example of algorithm Partition is given in Fig. 6.10. The pivot is the first

number (6). The circled numbers are those that have just been exchanged. After three

exchanges, ph points to X [6] = 1, and pt points to X [7] = 12. The last exchange involves

the middle point (1) and the pivot (6). After this exchange, everything to the left of the

pivot is less than or equal to it, and everything to the right is greater than it. The two

subsequences (from 1 to 6 and from 7 to 16) can be sorted recursively. Quicksort is thus

an in-place algorithm. The algorithm for quicksort is given in Fig. 6.11, and an example
of it is presented in Fig. 6.12.

Complexity The running time of quicksort depends on the particular input and on
the selection of the pivot. If the pivot always partitions the sequence into two equal parts,

6

6

6

6

\302\251

2

2

2

2

2

8

0
4

4

4

5

5

5

5

5

10

10

\302\251

3

3

9

9

9

\302\251

\302\251

12

12

12

12

12

1

1

1

0

9

15

15

15

15

15

7

7

7

7

7

3

3

0
10

10

13

13

13

13

13

4

0
8

8

8

16

16

16

16

16

14

14

14

14

14

Figure 6.10 Partition of an array around the pivot 6.

Algorithm Quicksort (X, n);
Input: X (an array in the range 1 to n).
Output: X (the array in sorted order).

begin

Q_Sort(l,n)
end

procedureQ_Sort(Left, Right);

begin

if Left < Right then

Partition(X, Left, Right);

Q_Sort(Left,Middle- \\) ;

Q_Sort(Middle + 1, Right)

end

Figure 6.11 Algorithm Quicksort.

136 Algorithms Involving Sequences and Sets

6

1

CD

\302\251

\302\251

\302\251

1\302\251

!\302\251

\302\251

\302\251

\302\251

2

2

2

0)

\302\251

\302\251

\302\251

\302\251

\302\251

\302\251

\302\251

8

4

4

4

3

3

3

3

3

3

3

5

5

5

5

\302\251

\302\251

\302\251

\302\251

\302\251

\302\251

\302\251

10

3

3

3

5

5

5

5

5

5

5

9

(?)

(?)

(?)

\302\251

\302\251

\302\251

\302\251

\302\251

\302\251

\302\251

12

12

12

12

12

8

7

7

7

7

7

1

9

9

9

9

9

\302\251

\302\251

\302\251

\302\251

\302\251

15

15

15

15

15

11

11

10

9

9

9

7

7

7

7

7

7

9

9

\302\251

\302\251

\302\251

3

10

10

10

10

10

10

\302\251

\302\251

\302\251

\302\251

13

13

13

13

13

\302\251

\302\251

\302\251

\302\251

\302\251

\302\251

4

8

8

8

8

13

13

13

13

\302\251

\302\251

11

11

11

11

11

15

15

15

15

15

14

16

16

16

16

16

16

16

16

16

16

\302\251

14

14

14

14

14

14

14

14

14

14 1

16 1

Figure 6.12 An example of quicksort. The first line is the initial input. A new pivot is
selected in each line. The pivots are circled. When a single number appears between
two pivots it is obviously in the right position.

then the recurrence relation is 7(/i) = 27(/i/2)+0(/i), 7(2)=1, which implies

T(n) = 0(n \\ogn). We will see that we get an 0(n \\ogn) running time even under much

weaker conditions. However, if the pivot is very close to one side of the sequence, then
the running time is much higher. For example,if the pivot is the smallest elementin the

sequence, then the first partition requires n - 1 comparisonsand places only the pivot in

the right place. If the sequence is already in increasing order, and we always select the

first element as the pivot, then the running time of the algorithm is 0(n2). We can
eliminate the quadratic worst case for sequences that are sorted or almost sorted by

comparing the first, last, and middle elements,and then taking the median of these three

(namely, the second largest) as the pivot. An even safer method is to choosepivots from

among the elements in the sequence at random. The running time of quicksort will still

be 0(n2) in the worst case, because there is still a chance that the pivot is the smallest

element in the sequence. However,the likelihood that this worst case occur is very

small. We now analyze this case.

We assume that each of the jcf- has the same probability of being selectedas the

pivot. The running time 7(a?)of quicksort if the ith smallest element is the pivot is

T(n) = n-\\ +7(i-1) +7(/i-i).
(It takes n - 1 comparisons for the partition, and we need to sort two smaller sequences of
sizes i - 1 and n-i.) If each element has the same probability of being selected, then the

average running time is

6.4 Sorting 137

r(\302\273)
= \302\273-l + -\302\243(T(i-l) + T(/i-i))

\302\273/-i

= \302\273-1+ -
\302\243n;-1) + -

\302\243r(n -i)

\" ,=0

This is a recurrencerelation with full history. We discussed this particular relation in

Section 3.5.3, and its solution was shown there to be T(n)=0 (n log\302\253). Hence, quicksort

is indeed quick on the average.

In practice, quicksort is very fast, so it well deserves its name. A major reason for

its quickness, besides the elegant divide and conquer, is that many elements are

compared against the same element (the pivot). The pivot is thus stored in a register and

there is no need for a data movement from memory. In most computers, this saves

considerable time.

One way to improve the running time of quicksort is to use a technique we call

choosing the base of the induction wisely. The idea is to start the induction not always
from 1. Quicksort,as describedabove, is called recursively until the base case, which

consists of sequencesof size 1. However, simple sorting techniques, such as insertion

sort or selectionsort, perform very well for small sequences,whereas the efficiency of

quicksort shows only for large sequences. Therefore, we can define the base case for

quicksort to be of size larger than 1 (it seems that 10 to 20 is a good size,but that

depends on the specific implementation), and handle the base case by insertion sort. (In
other words, we replace the check \"if Left < Right\" by \"if Left < Right

- Threshold\"

and add an \"else\" part which runs insertion sort.) This change leads to an improvement

of the running time of quicksort by a small constant. In Section 6.11.3, we will see how

to use the principle of selecting the base of the induction to improve asymptotically the

running time of an algorithm.

6.4.5 Heapsort

Heapsort is another fast sorting algorithm. In practice, it is usually not quite as fast as

quicksort for large \302\253,but it is not much slower. On the other hand, unlike quicksort, its

performance is guaranteed. Like mergesort, the worst-case running time of heapsort is
0(n \\ogn). Unlike mergesort, heapsort is an in-place sorting algorithm. In this section,
we emphasizeone part of heapsort \342\200\224

building the heap. The algorithm for building the

heap illustrates the way design and analysis of algorithms should be interleaved.

Heaps were discussedin Chapter 4. We assume here an implicit representation;

specifically, the elements are given in an array A [\\..n], which corresponds to a tree in

the following wayi The root of the tree is stored in A [1], and the children of any node

A [i] (if there are any) are stored in A [2/] and A [2/ + 1]. Such an array satisfies the heap

property if the value of each node is greater than or equal to the values of its children.

138 Algorithms Involving Sequences and Sets

Heapsort works as follows. The input is an array A [l../i]. First, the elements in

the array are rearranged to form a heap. We will discuss how to build a heap later. If A

is a heap, then A [1] is the maximal elementof the array. We exchange A [1] with A [n]

so that A [n] now contains the correct element. We then consider the array A[\\..n-\\].

Again, we rearrange the array to form a heap (we have to worry only about the new

A [1]), exchange A[\\] with A [n - 1], and continue with A [l../i -2]. Overall,there is one

initial step of building a heap, and n - 1 stepsof exchanging elements and rearranging the

heap. Rearranging the heap after an exchange is basically the same as algorithm

Remove Maxjromjieap, given in Section 4.3.2. Building a heap is an interesting

problem on its own, and it is described in detail below. Overall, the running time of

heapsort is 0(n \\ogn) (0(\\ogn) per exchange), plus the running time of the algorithm

for building the heap. Heapsort is clearlyan in-place sorting algorithm. The algorithm

for heapsort is given in Fig. 6.13.

Algorithm Heapsort (X, n);
Input: X (an array in the range 1 to n).
Output: X (the array in sorted order).

begin
BuildHeap (X); {seetext below }

for i := n downto 2 do

swap(A[\\lA[i]);

Rearrange Heap (i-l)
{basically the same procedure as RemoveJAaxJrom Heap
in Fig. 4.7 }

end

Figure 6.13 Algorithm Heapsort.

Building a Heap

We now concentrate on the problem of building a heap from an arbitrary array.

The Problem Given an array A [\\..n] of elements in an arbitrary

order, rearrange the elements so that the array satisfies the heap

property-

There are two natural ways to build a heap \342\200\224
top down and bottom up. They correspond

respectivelyto scanning the array representing the heap either from left to right or from

right to left. Figure 6.14 illustrates both methods. We first describe both methods with

the use of induction. We then show that there is a substantial difference in performance

6.4 Sorting 139

Figure 6.14 Top down and bottom up heap construction.

betweenthe two methods.

Consider scanning the array from left to right (corresponding to top down).

Induction hypothesis(top down):The array A[\\..i] is a heap.

The basecase is trivial, since A [1] by itself is always a heap. The main part of the

algorithm is to incorporate A [/+ 1] into the heap A [1../]. But, this is exactly the same as

inserting A [/ + 1] into the heap (see Chapter 4). A [/+ 1] is compared to its parent, and

exchanges are made until the new parent is larger. The number of comparisons in the
worst case is |_ log2(/ + 1)J.

Consider now scanning the array from right to left (corresponding to bottom up).
We would like to say that the array A[i+l..n] is a heap and to consider adding the
element A[i]. But the array A[i + \\..n] does not correspond to one heap; it corresponds

to a collection of heaps. (Note that we consider A [i + 1..n] as part of the tree represented
by A[\\..n], and not as an array by itself.) Therefore, the induction hypothesis is slightly
more complicated.

Induction hypothesis (bottom up): All the trees representedby the array

A [i + \\..n] satisfy the heap condition.

A[n] by itself is obviously a heap, so the base case is satisfied. We can do better,

however. The whole array A [[n/2\\ + \\..n] represents leaves in the tree. Hence, the

trees corresponding to A [[n/2\\ + \\..n] are all singletons, so they satisfy the heap

property trivially. We need to start the induction process only at |_fl/2_|. This is a good
hint that the bottom-up approach may be better. After all, half the work is trivial. (This

is also another example for the importance of selecting the base of the induction with

care.)
Consider now A[i]. It has at most two children (A[2/ + l] and A [2/]), both

serving as roots to valid heaps (by the induction hypothesis). Incorporating A [i] into a

heap is straightforward. A [i] is compared to the maximal of its children, and, if

140 Algorithms Involving Sequences and Sets

necessary, it is exchanged with the larger child. This is similar to a deletion in a heap

(see Chapter4). The exchanges continue down the tree until the old value of A[i]

reaches a place where it is larger than both its children. A bottom-up construction is

illustrated in Fig. 6.15. Since the height of A[i] is [\\og2(n/i)\\, the number of

comparisons in the worst case is 2|_log2(\302\253//)J.

Complexity (top down) The /th step requires at most |_log2'J^l^g2n\\
comparisons; hence, the running time is 0(n\\ogn). Moreover,0(n\\ogn) is not an

overestimation of the running time, as the following argument shows.

il\\og2i\\
> XLlog2/J >\302\253/2Llog2(\302\253/2)J

= Q(/ilog/i).
, = 1 i=n/2

Complexity (bottom Up) The number of comparisons involved in each step is at

most twice the height of the corresponding node (since each node may have to be

comparedwith its two children, exchanged, and so on down the tree). Therefore, the

complexity is at most twice the sum of the heights of all nodes in the tree. We want to

evaluate this sum. Let's look at complete trees first, and denote by //(/) the sum of

heights of all nodes in the complete binary tree of height /. We can derive a recurrence
relation for //(/), noting that a tree of height i consists of two trees of height i - 1 and a
root. Hence,//(/)=2//(/- l)+ i, and //(0) = 0. We can verify (by induction) that the

solution of this recurrence is //(i) =2/+l-(i+2). Since the number of nodes in a

complete binary tree of height i is 2/+l -1, it follows that the complexity of bottom-up

heap construction is O(n) for complete binary trees (namely, heaps with 2k -1 nodes).

The complexity for a heap with n nodes such that 2k <n < 2k+l - 1 is no more than that

for a heap with 2*+l - 1 nodes, which is still O(n). (A more careful analysis showsthat

the constant is not increased; see Exercise6.32.)The reason the bottom-up approach is

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6

2

2

2

2

2

2

2

\302\251

2

6

6

6

6

6

6

\302\251

15

8

8

8

8

8

8

\302\251

16

\302\251

5

5

5

5

5

\302\251

15

\302\251

14

10

10

10

10

10

10

10

10

10

9

9

9

\302\251

13

13

13

13

\302\251

12

12

\302\251

16

16

16

\302\251

12

12

1

\302\251

14

14

14

14

14

\302\251

6

15

15

15

15

15

\302\251

5

5

5

7

7

7

7

7

7

7

7

7

3

3

3

3

3

3

3

3

3

13

13

13

\302\251

9

9

9

9

\302\251

4

4

4

4

4

4

4

4

4

11

11

11

11

11

11

11

11

11

16

16

\302\251

12

12

12

\302\251

8

8

14

\302\251

1

1

1

1

1

1

1

Figure 6.15 An example of building a heap bottom up. The numbers on top are the
indices. The circled numbers are those that have been exchanged on that step.

6.4 Sorting 141

faster than the top-down approach is that there are many nodes at the bottom of the tree
and few at the top. Thus, it is better to minimize the work for the bottom nodes rather

than to minimize the work for the top nodes.
This is another example where trying a different order of induction leads to a better

algorithm. The top-down method is the more straightforward and intuitive, but the

bottom-up method turns out to be superior.

Comments It is hard to summarize sorting in one paragraph. The main techniques
that were described in this section are variations of divide and conquer. We have seen
that it is worthwhile to spend time for the divide in order to make the conquer easier. In

the induction analogy, this translates into trying different orders of induction, and, in

particular, applying the induction to special subsets rather than to arbitrary elements. We
have also seen that the analysis must go hand in hand with the design. With some

experience one learns to develop intuition about efficiency of algorithms even before the

analysis is performed. This intuition is helpful in directing the search for a better

algorithm. The truth is usually (but not always!) not far removed from the intuition.

6.4.6 A Lower Bound for Sorting

We have started with an 0(n2) algorithm for sorting and improved it to an 0(n log a?)

algorithm. Is it possible to improve it even further? A lower bound for a particular

problem is a proof that no algorithm can solve the problem better. It is much harder to

prove a lower bound, since we have to address all possiblealgorithms and not just one

approach. We need to define a model that corresponds to an arbitrary (unspecified)
algorithm and to prove that the running time of any algorithm that fits the model must be

higher than or equal to the lower bound. In this section, we discuss one such model

called a decision tree. Decision trees model computations that consist mainly of

comparisons. Decision trees are not general models of computation, as are Turing

machines or random-access machines \342\200\224hence, lower bounds using them are weaker\342\200\224

but they are simpler in many respects and are easier to work with. There are many
variations of decisiontrees,and many known lower bound proofs utilizing them.

We define decision trees as binary trees with two types of nodes\342\200\224internal nodes

and leaves. Each internal node is associated with a query whose outcome is one of two

possibilities, each associated with one of the emanating branches. Each leaf is associated

with a possible output. We assume that the input is a sequence of numbers x \\, jc2, ..., xn.
The computation starts at the root of the tree. At each node, the query is applied to the

input and, according to the outcome of the query, either the left or the right branch is

taken. When a leaf is reached, the output associated with the leaf is the output of the

computation. The worst-caserunning time associated with a tree T is the height of 7\\

which is the maximal number of queries required by an input. A decision tree thus

corresponds to an algorithm. Although decision trees cannot model every algorithm (for

example, we cannot compute a square root of a number with a decision tree), they are
reasonable models of comparison-based algorithms. A lower bound obtained for

decision trees implies that no algorithm of that form can perform better. We now use
decision trees to prove a lower bound for sorting.

142 Algorithms Involving Sequences and Sets

\342\226\241Theorem 6.1

Every decision tree algorithm for sorting has height Q,(nlog a?).

Proof: The input for sorting is a sequenceX\\,x2,...,*\342\200\236.The output is the same

sequencein the sorted order. Another way to look at the output is that it is a permutation

of the input; namely, the output indicates how to rearrange the elements such that they

become sorted. Every permutation is a possible output, since the input can be in any

order. A sorting algorithm is correct if it handles all possible inputs. Thus, every

permutation (rearrangement) of (1, 2,..., n) should be represented as a possible output in

the decision tree for sorting. The output in a decision tree is associatedwith the leaves.

Since two different permutations correspond to different outputs, they must be associated

with different leafs. Therefore, there must be at least one leaf for every possible
permutation.

The total number of permutations on n elements is n!. Since we assume

that the tree is a binary tree, the height of the tree is at least log2(fl!). By Stirling's

formula

n\\ = ^2nn(-)\"(\\+0(\\/n)).e

Hence,log2(fl !) =
\302\243l(nlog a?), which completes the proof. \342\226\241

This kind of a lower bound is called an information-theoretic lower bound,

because it does not depend at all on the computation (notice that we have not even
defined the kind of queries we allow), but only on the amount of information contained in

the output. What the lower bound says in this case is that every sorting algorithm

requires Q,(n log a?)comparisons in the worst case, since it needs to distinguish between
n! different cases and it can distinguish between only two possibilities at a time. We

could have defined a decision tree as a tree with three children (corresponding, for

example, to \"<,\" \"=,\" and \">\.") In this case, the height would have been at least

log3A?!, which is still Q(a? log a?). In other words, the Q,(nlog a?) lower bound applies to

any decision tree with constant number of branches per node.
This lower bound proof implies only that no comparison-based sorting algorithm

can be faster than Q(a? log a?). It may be possible to sort more quickly by utilizing special

properties of the keys and performing algebraic manipulations on the keys. For example,
if there are n elements, all integers with values between 1 and 4a?, then bucket sort will

produce a sorted list in 0{n) time. This is not a contradiction to the lower bound, since

bucket sort does not use comparisons. It uses the fact that the values of the numbers can

be used efficiently as addresses (buckets).
When discussing decisiontrees,we usually ignore their sizes, and concentrate only

on their heights. As a result, even simple linear-time algorithms may correspond to
decisiontrees with an exponential number of nodes. The size is not important, since we

do not intend actually to construct the tree. We use the tree only as a tool for lower
bound proofs. Ignoring the size makes the proofs more powerful, since they may apply
to programs of exponential size. On the other hand, the technique may be too powerful,

rendering it useless for deriving lower bounds for problems that cannot be solved by

practical-sized programs, but can be solved with an exponential-sized program (e.g., a

6.5 Order Statistics 143

program with a table for all the possible solutions). Decision trees are nonuniform

models of computation. The tree dependson \302\253,the size of the input. We can potentially
build different trees for different values of n. This is not just a whimsical worry. It turns

out that we can build decision trees of polynomial height
\342\200\224but exponential size \342\200\224for

problems that probably require exponential running time, so decision trees are too
optimistic sometimes. That is, a decision tree lower bound may fall far below the actual

complexity of the problem. On the other hand, if the lower bound is equal to the upper
bound of a particular algorithm \342\200\224as is the case with sorting

\342\200\224then the lower bound

implies that even if we use a lot more space, we cannot improve the algorithm.

It is interesting to note that the average running time of any comparison based

sorting algorithm is also \302\243l(nlog n). We omit the proof, which is much more

complicated(seefor example Aho, Hopcroft, and Ullman [1974]).

6.5 Order Statistics

Given a sequence S =x {,jc2,...,xn of elements, we say that Xj has rank k in S if Xj is the

\302\243th-smallest element in S. We can easily determine the ranks of all elements in a

sequence by sorting the elements. However, there are many questions about ranks that

can be answeredwithout sorting. In this section, we deal with such questions. We start
with the problem of finding the maximum and minimum elements, then consider the

general problem of finding the kih smallest element.

6.5.1 Maximum and Minimum Elements

Finding the maximum or the minimum element of a sequenceis straightforward. If we

know the maximum of a sequenceof size n-\\, then we need only to compare this

maximum to the nth element to find the maximum of a sequence of size n (finding the

maximum of a sequenceof size 1 is trivial). This process takes one comparison per

element, starting with the second element; hence, the number of comparisons is /i \342\200\2241.

Suppose now that we want to find both the maximum and the minimum elements.

The Problem Find the maximum and minimum elements in a given

sequence.

The straightforward solution is to solve both problems independently. The total number

of comparisons will be 2n -3: n-\\ to find the maximum and then a?-2 to find the
minimum (because the maximum need not be considered). Can we do better? Consider
again an inductive approach. Assume that we know how to solve the problem for n - 1

elements, and that we want to find the solution for n elements (the base case is trivial).
We have to compare the additional element to the maximum and minimum elements

found so far. This requires two comparisons, which implies that the total number of

comparisons will again be 2\302\253-3, since no comparison is required for the first element,

144 Algorithms Involving Sequences and Sets

and only one comparison is required for the second element. We cannot improve the

solution by scanning the elements in a different order, because the position of the

elements in the sequence is irrelevant to the problem.

The next attempt can be to extend the solution by more than one element at a time.

Let's try to extend the solution by two elements at a time. That is, assume that we know

how to solve the problem for n -2 elements, and try to solve it for n. (For this approach

to be complete, we need two base cases, n = 1 and n =2, so that extending by two will

cover all natural numbers.) Consider xn_x and xn, and let MAX {min) be the maximum

(minimum) of the first n-2 elements (known by induction). It is easy to see that finding

the new maximum and minimum requires only three comparisons. We first compare xn_x

to xn, then compare the larger of these two values to MAX, then compare the smaller of

them to min. So, overall, we have an algorithm with approximately 3\302\253/2comparisons

instead of In comparisons! Can we do better by adding three (or four) elements at a

time? Following the same approach leads to the same number of comparisons. It turns

out that we cannot reduce the number of comparisons for this problem by any method. It

is interesting to note that a divide-and-conquer approach also leads to about 3\302\253/2

comparisons (Exercise 6.14).

6.5.2 Finding the Ath-Smallest Element

We now consider the general problem.

The Problem Given a sequence S=jtj,jt2, ...,xn of elements,and

an integer k such that \\<k<n, find the \302\243th-smallest element in S.

This problem is calledorder statistics or selection. If k is very close to 1 or very close
to \302\253,then we can find the /:th-smallest element by running the algorithm for finding the
minimum (maximum) element k times. This approach requires approximately kn

comparisons. Sorting would be better than this naive algorithm, unless k is 0(\\ogn) or
n -OQogn). There is, however, another algorithm that finds efficiently the kth smallest

element for any value of k.

The idea is to use divide and conquer in the same way as it is done in quicksort,

except that only one subproblem has to be solved. In quicksort, the sequence is

partitioned by a pivot into two subsequences. The two subsequences are then sorted

recursively. Here, we need only to determine which subsequence contains the kth

smallest element, and then to continue the algorithm recursively only for this

subsequence. The rest of the elements can be ignored. The algorithm is given in Fig.
6.16.

Complexity As in quicksort, choosing poor pivots leads to a quadratic algorithm.

Since only one subproblem has to be solved in each recursive call, the running time of

this algorithm is lower than that of quicksort. The average number of comparisons is

6.6 Data Compression 145

Algorithm Selection (X, n, k) ;
Input: X (an array in the range 1 to \302\253),and k (an integer).
Output: S (the kih smallest element; the array X is changed).

begin

if(k<l) or (k > n) then print \"error\"

else

S :=Select(l,n,k)
end

procedure Select (Left, Right, k);

begin

if Left =
Right then

Select := Left
else

Partition (X, Left, Right); { see Fig.6.9}
Let Middle be the output of Partition ;

if Middle -Left+\\ >k then

Select (Left, Middle, k)
else

Select(Middle + 1, Right, k -
(Middle

- Left + 1))
end

Figure 6.16 Algorithm Selection.

O (a?), but we will not prove that here. It is also possible to find the kth smallest in O(n)

steps in the worst case. However, in practice, the algorithm presented in Fig. 6.16 is

more efficient.

Comments Most applications of order statistics require finding the median, that is,
the A?/2-smallest element. Algorithm Selection is an excellent median-finding algorithm.
There is no simpler algorithm for finding only medians. In other words, extending the

median-finding problem to finding any \302\243th-smallest element makes the algorithm
simpler! This is another example of strengthening the induction hypothesis since the

recursion requires arbitrary values of k.

6.6 Data Compression

Data compression is an important technique for saving storage. Given a file, which we

consider as a string of characters,we want to find a compressed file, as small as possible,
such that the original file can be reconstructed from the information in the compressed
file. Data compressionis useful, for example, when access to the file is infrequent, so the

work involved in compressing and uncompressing is justified by the storage savings. It is

146 Algorithms Involving Sequences and Sets

also important in communication problems where the cost of sending information is

greater than the cost of processing it. Data compression has many more applications, and

it is a very developed field. In this section, we describe only one algorithm for one

particular aspect of data compression.
For simplicity the file is assumed to be a sequenceof English letters. Each of the

26 characters is represented by a unique string of bits, called the encoding of the

character. If the length of all encodings is the same (as is the case for most standard

encodings), the number of bits representing the file depends only on the number of

characters in that file. On the other hand, it is possible to choose smaller bit

representations
for characters (such as A) that appear more often and larger

representations for characters (such as Z) that appear rarely. For example, in ASCII

(American Standard Code for Information Interchange), all characters are represented by

bit strings of size 7. A is represented by the bit string 1000001, B by 1000010, and so on.

(There is room for 128 characters, including lower-case and special characters.) The
word \"AND\" (and any other word with three letters) requires 21 bits. If we changethe

representation of A to, say 1001, we save 3 bits every time A appears. However, not

every set of encodings is valid. There may be ambiguities. For example, we cannot

choose 1001as an encoding for A and leave the encoding of M as 1001101, because
when we read 1001 we cannot determine whether it is A or is part of M. We could use

specialdelimiters to separate characters, but that would only add to the representation. In

general, the prefixes of an encoding of one character must not be equal to a complete
encoding of another character. We call this constraint the prefix constraint. Whenever
we shorten the encoding of one character, we may have to lengthen the encodings of
others. The problem is to find the best balance, assuming we know the frequency of

appearances of the different characters.

The Problem Given a text (a sequence of characters), find an

encoding for the characters that satisfies the prefix constraint and that

minimizes the total number of bits needed to encodethe text.

First, we have to compute the number of times each character appearsin the text; we call
this value the frequency of the character. (In many cases, we can use standard frequency

tables computed for typical texts, instead of computing the exact frequency table for the

particular text.) Denote the characters by C \\, C2,..., Cn, and denote their frequencies by

/i>/2> \342\200\242\342\200\242\342\200\242>/\342\200\236\342\200\242Given an encoding E in which a bit string S, of length j, represents C,, the

length of the file F compressed by using encoding E is

L(E,F)= isrfi.
1=1

Our goal is to find an encoding E that satisfies the prefix constraint and minimizes

L(\302\243,F).

6.6 Data Compression 147

The prefix constraint is needed to make the decoding unambiguous, so let's look at

a decoding procedure. We need to scan the sequence of bits one by one until we get a

sequencethat is equal to an encoding of one of the characters. Consider a binary tree in

which each node has either two emanating edges labeled by 1 and 0, or no emanating
edges. The leaves in this tree correspond to the characters. The sequence of 0s and Is on

the path from the root to a leaf corresponds to the character's encoding (see Fig. 6.17).
The prefix constraint says that all characters must correspond to leaves. When the

encoded file is scanned and a leaf is reached, we can safely determine the corresponding

character. Our problem is to construct such a tree that minimizes L(\302\243,F). The tree

representation is not necessary in order to solve the problem. It is useful, however, to
have a graphic illustration of the problem (and its constraints).

The algorithm is based on a reduction of a problem with n characters to a problem
with n -1 characters (the base case is trivial). As usual, the main difficulty is how to

define the induction hypothesis and in which order to eliminate characters. The reduction

here is different from the ones we have seen so far. Instead of simply eliminating one

character from consideration, we introduce a new \"artificially made\" character in place

of two existing characters. This technique is a little more complicated, but it serves the

same purpose \342\200\224the size of the input is reduced. Let C, and Cj be two characters with

minimal frequency (if there are more than two such characters, then ties are broken

arbitrarily). We claim that there exists a tree that minimizes L{E, F) in which these

characters correspond to leaves with the maximal distance from the root. Otherwise, if

there is a characterwith higher frequency lower in the tree, it can be exchangedwith C,

or Cj decreasing L(\302\243,F). (If its frequency is equal, it can still be exchanged without

changing L (\302\243,F).) Since each node in the tree has either two children or no children (or
else we can shorten the tree), we can assume that C, and Cj are together. We now

replace C, and Cj with a new character, called C,7,whosefrequency is the sum/) +/y.
The problem now has n - 1 characters (n-2 old and one new), and as such can be

solved by the induction hypothesis. We obtain the solution of the original problem by

substituting an internal node in the reduced problem with two leaves corresponding to C,
and

Cj in place of the leaf corresponding to C,y. We leave the proof of optimality as an

exercise.

010 Oil

Figure 6.17 The tree representation of encoding.

148 Algorithms Involving Sequences and Sets

Impl6ni6ntati0n The operationsrequired for Huffman's encoding are (1) insertions

into a data structure, (2) deletionsof the two characters with minimal frequency from the

data structure, and (3) building the tree. A heap is a good data structure for the first two

operations, each of which requires 0(\\ogn) steps in the worst case. The algorithm is

given in Fig. 6.18. This compression technique is known as Huffman's encoding after

D. Huffman [1952], who proposed this algorithm.

Algorithm Huffman_Encoding (S, f);
Input; S (a string of characters), and/(an array of frequencies).
Output; T (the Huffman tree for S).

begin
insert all characters into a heap H according to their frequencies ;

while H is not empty do

ifH contains only one character X then

make X the root ofT
else

pick two characters X and Y with lowest frequencies
and delete them from H ;

replace X and Y with a new character Z whose frequency is

the sum of the frequencies ofX and Y ;

insert ZtoH ;
make X and Y children ofZ inT {Z has no parent yet}

end

Figure 6.18 Algorithm Huffman Encoding.

\342\226\241Example 6.1

Suppose that the data contains six characters 4, \302\243,C, D, E, and F, with frequencies 5, 2,

3, 4, 10,and 1, respectively The Huffman tree correspondingto these characters is given
in Fig. 6.19. The internal nodes are numbered according to the time they were created. \342\226\241

Complexity Building the tree takes constant time per node. Insertions and deletions
take O (log n) steps each. Overall,the running time of the algorithm is O (n log n).

6.7 String Matching

Let A -a \\ a2
\342\200\242\342\200\242\342\200\242

an and B=bxb2
\342\200\242\342\200\224

bm, m<n, be two strings of characters. We

assume that the characters come from a finite set. (It is convenient to think of English

characters, although it is not necessary.) A substring of a string A is a consecutive

sequence of characters atai+\\
\342\200\242\342\200\242\342\200\242

a} from A We denote by A(i) (B(i)) the special
substring a i a2

' ' ' a{ (h\\ b2
' ' ' bt).

6.7 StringMatching 149

Figure 6.19 The Huffman tree for example 6.1.

The Problem Given two strings A and \302\243,find the first occurrence

(if any) of B in A. In other words, find the smallest k such that, for all /,
1 < / < w, we have ak+i

= bt.

The most obvious exampleof this problem is a search for a certain word or pattern in a

text file.1 Any text editor must contain commands to find patterns. The problem also has

applications to other areas \342\200\224
including molecular biology, where it is useful to find

certain patterns inside large RNA or DNA molecules.

This problem seems simple at first. We can try to match B inside A by starting at

the first character of A that matches bx and continuing (comparing to b2 and so on) until

we either complete the match or find a mismatch. In the latter case, however, we must go

back to the place from which we started and start again. This process is illustrated in Fig.
6.20 by an example that we will use throughout this section. In this example,
A =

AyxxyxyxyyAyxyxyyxyxyxx, and B=xyxyyxyxyxx. The first mismatch occurs at a 4
since b4*aA. We now must start comparing b{ to a2, which leads to a mismatch right

away. Next, we start at a3, which is a match, but a4*b2. The next attempt is more
promising: We have a match from a4 to a-,, only to have a mismatch at a%. Now, we
need to backtrack severalstepsand to compare bx to a5 (mismatch), then b{ to a6, and
so on. Eventually, we find a match starting at a ,3. We may have to backtrack and

compare again a substantial number of times, leading to O(mn) number of comparisons

'At least, that is the most obvious one to me, as I am currently editing a text file.

150 Algorithms Involving Sequences and Sets

A = xyxxyxyxyyxyxyxyyxyxyxx. B =
xyxyyxyxyxx.

123456789 10 1112 13 14151617 18 19 20 2122 23

xyxxyxyxyyxyxyxyyxyxyxx

xyxy- \342\200\242

x \342\200\242\342\200\242'

x y
\342\200\242\342\200\242

x y x y y
-

x - \342\200\242\342\200\242

xyxyyxyxyxx
x - - -

x y x - - -

x \342\200\242\342\200\242\342\200\242

x - - -

x y x y y
\342\200\242\342\200\242\342\200\242

x - - -

xyxyyxyxyxx

Figure 6.20 An example of a straightforward string matching.

in the worst case. Noticethat a lot of the work is redundant. For example, we find twice

that the subpattern xyxy fits inside A starting at au (lines 6 and 11). In the example of

finding a word in a text file, the number of backtracking steps will be very small, since
most of the time the mismatch will occur early on. This simple algorithm is fairly good
for such applications. In other cases, where the alphabet is small and the patterns have

many repetitions, the number of backtracking steps may be large. The algorithm above

may compare the same subpattern to the same place in the text many times. We would

like to find an algorithm that avoids such worst cases. The problem is to arrange the

information we learn throughout the algorithm such that it can be usedefficiently later on

when the same matches occur in other places.
To improve the straightforward algorithm we must first understand the reasons for

its inefficiency. The bad case we discussed was caused by the need to backtrack. A

particular bad case will occur if the pattern is yyyyyx and the text is yyyyyyyyyyyyx. We

will compare the five ys in the pattern to the text, find the mismatch with the jc, move one

step to the right, and make four redundant comparisons again and again. (This simple
case is easy to handle, but it illustrates the general problem.) On the other hand, consider

the pattern xyyyyy. To match this pattern in the text, we look for occurrences of x
followed by five ys. If the number of ys is not sufficient, there is no need to backtrack.
We will need to find the next x, and all the matched ys will not help. The straightforward
algorithm, adapted to the pattern xyyyyy, runs in linear time since no backtracking is

needed.

1:

2:

3:
4:
5:
6:
7:
8:
9:
10:
11:
12:

13:

6.7 String Matching 151

Let's return now to the original pattern B =xyxyyxyxyxx. Suppose that a mismatch
occurswhen the fifth character of B is scanned(as it is when a% is compared to it in line

4 of Fig. 6.20). The preceding two characters in A must have been xy (since they

matched). But, xy are also the first characters of B. We now want to \"slide\" B to the

right and compare the current character in A to some characterin the middle of B (taking

into account the previous matches). We would like to slide B as far to the right as

possible (to savecomparisons) without bypassing potential matches. In this case, we can

slide B two steps to the right. We continue the match by comparing the same character in

A that caused the mismatch (a 8 in the example) to b3, sincewe already know that b { and

b2 matched. (In fact, that is exactly what we did later on, in line 6 of Fig. 6.20, except
that it took us three more redundant comparisons \342\200\224jcin line 5, and xy at the beginning of

line 6 \342\200\224to get there.) Notice that this whole discussion is completely independent of A!

We know the last few characters in A since they have matched B so far.

In the following discussion, we will not assume that there are only two characters

in the text (and pattern), even though, for simplicity, the examples will contain only two

characters. It is possible (and that is the subject of Exercise 6.45) to make the algorithm
even more efficient in this case.

Let's look at another example by continuing the match. The mismatch at line 6 of
Fig.6.20is at the last character of \302\243,b {{. We can now do a lot more sliding. Consider
the subpattern B(\\0) = b{ b2

''' bw. We know that \302\243(10) is exactly the same as the

preceding 10 characters in A; that is, B(\\0)=A [6..15], becausethey matched. We want

to determine exactly how many steps B can be shifted to the right until there is some

hope of another match. We determine this number by looking for a maximum suffix of

#(10) that is equal to a prefix of B. In this case, that suffix is of length 3 (xyx), as is

illustrated in Fig. 6.21. In the figure, \302\243(10) is shifted, one step at a time, and is

compared to itself, until a prefix matches a suffix. (The last character, bn, is ignored
since it is the cause of the mismatch.) Since we know that \302\243[1..3]=\302\243[8..10], we can

continue by comparing a{6 to b4, and so on, until the complete match occurs. We save

all the comparisons on lines 7 to 12 and half those on line 13. The only difference

between Fig. 6.21 and Fig. 6.20 is that the information in Fig. 6.21 depends only on B.

This is important because we can preprocess B once,and find all the relevant information

about it regardless of the text A. We now can take advantage of all the matches done in

line 6 of Fig. 6.20; none of them will be repeated.

B= xyxyyxyxyxx
x

x y x

x

x

x y x y y
x

x y x

Figure 6.21 Matching the pattern against itself.

152 Algorithms Involving Sequences and Sets

The preprocessing ofB is the essence of the improved algorithm. We will study all

the repeating patterns of B and devise a way to handle mismatches when they occur

without backtracking. Our scheme is the following. The string A is always scanned

forward; there is no backtracking in A, although the same character of A may be

compared to several charactersof B (when there are mismatches). When a mismatch is

encountered, we consult a table to find how far in B we must backtrack. There is an entry
in the table for each character in B corresponding to the amount of backtracking (or the

number of shifts) required when there is a mismatch involving this character. In a

moment, we will show how to construct this table efficiently. We first define the table

precisely and show how we use it for the string-matching problem.

The idea behind the table should be clear now. For each b{ we want to find the

largest suffix of B (/ - 1)that is equal to a prefix of B(i-\\). If the length of this suffix is

j\\ then the mismatched character in A can be matched against bj+l directly, without going

through all the other redundant matches. We already know that the most recent j
characters in A match the beginning of B. Furthermore, since this suffix is the largest

among those that are equal to a prefix, we know that B cannot fit into A any farther to the

left. The table is called next, and here is a precise definition of the values of its entries:

next(i) = the maximum j (0<7 < i \342\200\224
1) such that

fe/__/-fe/_y+1
\342\200\242\342\200\242\342\200\242

bj_{
=

B (J), and 0 if no such j exists.

For convenience we define next(\\) = -\\ to distinguish this case. It is clear that next(2) is

always equal to 0 (sincethere is no j satisfying 0 <j <2- 1).The values of the next table
for the pattern B in Fig. 6.21 are given in Fig. 6.22. These values can be computed in a

brute force way, as was done in Fig. 6.22. However, there is an elegant way to compute
all these values in time 0(m). Let's first assume that the values of next are given to us,

and see how to perform the matching. Afterwards, we will describe how to compute
next.

The matching proceeds as follows. The characters in A are compared to those in B

until there is a mismatch. At that point, say at bh the next table is consulted and the same

character in A is compared against bnext{j)+l (since the first next(i) characters already
match). If this is a mismatch too, then the next comparison is against ^W (\302\253\302\253\342\200\242.\302\253(/hi hi > anc*

so on. The only exception to this rule is when the mismatch is against b {; in this case,

1= 1 2 3 4 5 6 7 8 9 10 11

B = x y x v y x y x y x x

next= -1001201234 3

Figure 6.22 The values of next.

6.7 String Matching 153

we want to proceed in A. This case can be determined by the special value of next(\\),
which is -1. The program for string matching is given in Fig. 6.23.

Algorithm String_Match (A, n, B, m) ;

Input: A (a string of size n), and B (a string of size m).
{ We assume that next has been computed;seeFig.6.25)

Output: Start (the first index such that B is a substring of A starting

at A [Start]).

begin

Start := 0 ;
while Start = 0 and i<ndo

ifB[j]=A[i]then

i := i + I

else

j :=next[j] + 1 ;
ifj =0 then

/:=/ + /;
ifj = m + 1 then Start := i - m

end

Figure 6.23 Algorithm StringMatch.

It remains to find an algorithm to compute the values of the next table. We use

induction. As we mentioned, next (2) = 0, which takes care of the base case. We assume
that the values of next for 1, 2,...,/- 1 have been computed, and we consider next (i). At

best, next(i) can be next(i- \\) + \\, which will happen if bj_\\
=

bnext{i_])+\\. In other

words, the largest suffix that is equal to a prefix is extended by bj_{. This is the easy

case. The difficult case is when b(_{ *bnext{i_i)+i. We need to find a new suffix that is

equal to a prefix. However,we already know how to fit the largest suffix of B(i-2): It

fits in b{b2
\342\200\242\342\200\242\342\200\242

JVvf(/-i) (see Fig. 6.24). But having bi_x *bnexni-\\)+\\ is exactly the

same as having a regular mismatch at bnext{i.\\)+\\\\ And we already know what to do

about that. If there is a mismatch at index j\\ we go to next (J). So, we have a mismatch
at index next(i- 1)+ 1,and we go to next (next (/- 1)+ 1). That is, we try to match bj_\\

to
bnext(nextu-\\)+\\)+\\ - ^ tnev match, we set next (/) = next (next (i - 1)+ 1) + 1. Otherwise,

we continue in the same fashion until we either get a match or we return to the beginning.

\342\226\241Example 6.2

Let B =
xyxyyxyxyxx (the same as in Fig. 6.21), and consider next(\\ 1). We first look at

next(\\Q), which is 4, and compare bw to b5. If they had been the same, then the largest

154 Algorithms Involving Sequences and Sets

next(j)+l next(i-l)+l

Figure 6.24 Computing next(i).

prefix that is equal to a suffix would have been 5, but they are not. So, we have a
mismatch at b5y and we look at next(5) which is 2. We now compare b 10 to b3y and they

happen to be the same. Hence, next(\\ 1)= 3, which can easily be verified by hand. \342\226\241

The algorithm for computing the next table is difficult to understand, but it is not difficult

to implement. The program is given in Fig. 6.25.

Algorithm Compute_Next (B,m) ;

Input: B (a string of size m).

Output: next (an array of size m).

begin
next(\\) :=-l ;

next(2):=0;

for i := 3 to m do

j:=next{i-\\)+\\ ;

whilebi_x *bj and j>0do

j:=next(j)+\\ ;

next(i):=j
end

Figure 6.25 Algorithm Compute Next.

Complexity A character of A may be compared against many characters of B. If

there is a mismatch, then the same character of A is compared against the character of B
pointed to by the next table. If there is another mismatch, then we continue comparing
against the same character of .4 until there is either a match or we reach the beginning of

B. Nevertheless, we claim that the running time of this algorithm is still O(n). How

many times can we backtrack for one characterfrom A> say aft Let's assume that the

first mismatch involved bk. Since each backtrack leads us to a smaller index in By we can

backtrack only k times. However, to reach bk we must have gone forward k times

without any backtracking! If we assign the costs of backtracking to the forward moves,

then we at most double the cost of the forward moves. But there are exactlyn forward

moves, so the number of comparisonsis O(n). \302\273

6.8 Sequence Comparisons 155

This algorithm was developed by Knuth, Morris, and Pratt [1977J, and it is known

as the KMP algorithm. Another fast algorithm for this problem was developedby

Boyer and Moore [1977]. We sketch it briefly. The difference between the algorithms is

that the Boyer-Moore algorithm scans B from the end rather than from the beginning.
That is, the first comparison will be of bm against am. If there is a match, then the next

comparison will be of bm_\\ against am_x, and so on. If there is a mismatch, we use the

information, much as we did in the previous algorithm, to shift the whole pattern to the

right. For example, if am
- \"Z,\" and Z does not appear at all in B, then the whole

pattern
can be shifted to the right by m steps, and the next comparison will be of a2m

against bm. If Z does appear in \302\243,say at bh then we can shift by m-i steps. The

decision how much to shift becomes more complicatedwhen there are several partial
matches. On the one hand, we want to utilize the matches already found. On the other

hand, it is more efficient to shift the whole pattern as far as possible, even if the same

comparisonsmay have to be performed twice. We omit the details. The interesting

characteristic of this algorithm is that it is likely to make fewer than n comparisons (in

regular text)! This is because one bad mismatch allows us to shift, without any more

comparisons, by m.

6.8 Sequence Comparisons

The subject of sequence comparisons has received a lot of attention lately. The main

reason for that attention is the applications to problems in molecular biology. We

concentrate here on only one problem
\342\200\224

finding the minimum number of edit steps
required to change one string into another. The main technique used throughout this

section is dynamic programming (discussedin Section 5.10).

Let A=a{a2
'\"

an and B-b\\b2
\"'

bm be two strings of characters. We

assume that the characters come from a finite set (English characters, for example). We

would like to change A character by character such that it becomes equal to B. We allow

three types of changes (or edit steps),and we assign a cost of 1 to each: (1) insert \342\200\224

insert a character into the string, (2) delete \342\200\224delete a character from the string, and (3)

replace \342\200\224
replace one character with a different character. For example, to change the

string abbe into the string babb, we can delete the first a, forming the string bbc\\ then

insert an a between the two bs (babe), and then replace the last c with a b for a total of

three changes. However, we can also insert a new b at the beginning (forming babbc),

and then delete the last c, for a total of two changes. Our goal is to minimize the number

of single-character changes.
The string-edit problem has also applications to file comparisons and revisions

maintenance. We may have a text file (or a program) and another file that is a
modification of the first one. It is convenient to extract the differences between the two
nles. Theremay be several versions of the same program, and, if the versions are similar
and they need to be archived, it is more efficient to store only the differences instead of

storing the whole programs. In such cases, we may allow only insertions and deletions.
In other cases, we may assign different costs to each of the edit steps.

156 Algorithms Involving Sequences and Sets

There are quite a few possible changes,and it seems difficult to find the best one.

As usual, we try induction. We denote by A (/) (B (/)) the prefix substrings a { a2
' ''

a{

(b\\b2
'''

hi)- Our problem is to change A (n) to B (m) with a minimum number of edit

steps. Supposethat we know the best way to change A (n- 1) to B(m) by induction.

(There may be several different best solutions; we assume only that we know one of

them.) With one more deletion, that of an, we have a way to change A (n) to B (m). But

this may not be the best way of doing it. It could be that it is better to replace an with bm,

or better yet, an may even be equal to bm.
We need to consider all the different possibilities of constructing the minimum

change from A to B with the aid of the best changes of smaller sequences involving A and

B. Denote by C (/, j) the minimum cost of changing A (/) to B (J). Let's assume for now

that we are interested only in finding the cost of changing A to B and not in the change

itself. We are interested in finding a relation between C(n, m) and C(/, y)s for some
combination of smaller is and js. It is not hard to see that there are four possibilities,

corresponding to the three different edit steps and to doing nothing:

delete: if an is deleted in the minimum change from A to \302\243,then the

scenario above holds. The best change would be the one from A (n - 1) to

B(m) and then one more deletion. In other words,

C(/i, m) = C(fl-l,m)+l.

insert:if the minimum change from A to B involves insertion of a character

to match bm, then we have C(n, m) = C(n, m- 1)+ 1. That is, we find (by
induction) the minimum change from A(n) to B(m-\\) and insert a

character equal to bm.

replace: if an is replacing bm, then we first need to find the minimum

change from A (n - 1) to B (m
- 1) and then to add 1 if a\342\200\236* bm.

match: if an is equal to bm, then C(n, m) = C(n - 1,m- 1).
Denote

f o if ai = bj
'<''\342\200\242\302\273

=|l ifai*bj.

We can now combine these four cases into the following recurrence relation.

C(rt, m) = mini

C(A?-l,m)+l (deleting a\342\200\236)

C(a?, m- 1)+ 1 (inserting for bm)

C(n - 1,m - l) + c(rt, m) (replacing V matching a\342\200\236),

withC(/, 0) = / for all/, 0</<a?, and C(0J)=j for all y, 0<j<m.

It is not difficult to prove that these possibilities are the only ones. Consider an. It

must be handled somehow. It is either deleted, which is handled by the first case, or it is

mapped into some character in B. In the latter case, either an is mapped into bnn which is

6.8 Sequence Comparisons 157

handled by the third or fourth case, or it is mapped into a character appearing before bm,

in which case something must be inserted after an.

The problem with this approach is that we used induction too many times! We

reduced a problem of size (a?, m) to three problems of only slightly smaller sizes. If we

use recursionseparately for each smaller problem, we triple the work every time we

reduce the size by a constant. That leads to an exponential algorithm. Fortunately, in

this case there is no need to solve each subproblem separately. The key to this

observation is that there are not too many different subproblems altogether. Each

possiblesubproblem involves computing C (/, j) for some/ and j in the ranges 0 </ <n,

and 0<j<m. There are nm combinations of such /s and ys, so there should not be a need

for more than nm subproblems. This is the same phenomenon we observed in the

knapsack problem (Section 5.11). To overcome it, we use strong induction. Instead of
just extending a problem of size n-\\ to a problem of size n, we extend all subproblems
of size < n to the problem of size n. This is a two-dimensional problem, so we have to

extend all subproblems of sizes<(n,m) to the problem of size (n, m). The notation

<(a?, m) means \"any combination of (/, j) such that at least one of these values is less
than the corresponding bound and the other one is no greater than its bound.\"

We will be able to use strong induction if the solutions of all the subproblems are

available to us. We create a table with the results of all subproblems. Consider Fig. 6.26.
To compute the value of C(/, j), we need the three other values indicated by shading in

the figure. We want to scan the matrix so that, whenever we arrive at an entry, we have

already visited the three other entries necessary for its computation. In this case, a row-
order traversal (i.e., row by row from left to right) is sufficient. This two-dimensional

version of the approach is an example of dynamic programming.

Implementation We maintain a matrix C[\\..n, \\..m\\. Each entry C[i,j] of the

matrix holds the value of C(/, j). Let M [/, j] denote the last move (change) that leads to

the minimum value of C[/, j]. The reason we need only the last change is that we can

backtrack and find all the changes from the matrix. This move is any one of delete(i),

j

?/fPYZ:

fK%-T<

' * \\','

C(iJ)

Figure 6.26 The dependenciesof C (/, j).

158 Algorithms Involving Sequences and Sets

insertij), or replaced,j). To compute C [/, j], we need to know the values of C [i- 1,7],
q [/ y

- 1], and C [/ - 1,j - 1]. The last change can be determined according to which of

the possibilities leads to the minimum value for C[/, j]. The algorithm is given in Fig.

6.27.

Algorithm Minimum_Edit_Distance (A, n, B, m);

Input: A (a string of size n), and B (a string of size m).

Output: C (the cost matrix).

Begin

fori:=OtondoC[i,0] := /;
forj:= 1 tomdoC[0J] :=j;

for i := 1 to n do

forj := 1 torn do

x:=C[i-\\J]+\\;

y:=C[U-l]+l;

ifdj=bj then

z:=C[i-\\J-\\]

else

z:=C[i-l,y-l]+l;
C[/,y] :=min (*,>>, z)

{ A/ [/, 7] can be set appropriately)

end

Figure 6.27 Algorithm Minimum_Edit_Distance.

Complexity It is clear from the program in Fig. 6.27 that the running time is O (nm).
One major drawback is the need for an O (nm) space as well.

Comments Dynamic programming is useful in cases where the solution of a
problem depends on many solutions of slightly smaller problems. The use of a table to

store previous results is common in dynamic programming. The table is usually scanned

in some order (usually row order), which leads to at least quadratic running times. Thus
the dynamic programming approach is usually less efficient than, say, the divide-and-

conquer approach.

6.9 Probabilistic Algorithms

The algorithms we discussed so far were deterministic \342\200\224
every step was predetermined.

If we use a deterministic algorithm twice for the same input, we will get two identical
execution patterns and results. Probabilistic algorithms are different. They include steps
that depend not only on the input but also on results of some random events. There are

many variations of probabilisticalgorithms. We will discuss two of them. We start with

6.9 Probabilistic Algorithms 159

a simple example and continue with a more formal treatment.

Suppose that we have a set of numbers x {, jc2, ..., *\342\200\236,and we want to select one of

them that belongs to the \"upper half\" (i.e., it is greater than or equal to the median). For

example, we may want to select a \"good\" student according to her or his grades. One

option is to select the maximum (which is, of course, always in the upper half). We have

already seen that finding the maximum requires n - 1 comparisons. Another possibility is

to start the maximum-finding algorithm and to stop just after the halfway point is

reached. A number that is greater than one-half of the numbers is definitely in the upper
half. This algorithm requires about nil comparisons. Can we do better? It is not difficult

to prove that it is impossible to guarantee that a number belongs to the upper half by

making less than nil comparisons. So, it may seem that we found an optimal algorithm.
This algorithm, however, is an optimal algorithm only if we insist on a guarantee.

In many cases, a guarantee is not required; a good likelihood that the solution is correct is

enough. For example,in hashing we could not guarantee that no collisions would occur,
but we were able to handle them if they did. (Hashing can also be considereda
probabilistic algorithm, as will become apparent shortly.) If we do not insist on a

guarantee, then a better algorithm exists for finding an element in the upper half. Let's
take two random numbers from the set, xt and

jcy,
such that / *j. Assume that jc, >Xj. The

probability that a random number from the set belongs to the upper half is at least 1/2 (it
will be more than 1/2 if many numbers are equal to the median). So, the probability that

both Xj and Xj do not belong to the upper half is at most 1/4. But, since jc,>jc7, this

probability is the same as the probability that jc, does not belong to the upper half. Thus,

the probability that xt belongs to the upper half is at least 3/4.
Being correctwith a probability of 3/4 is usually not good enough. However, the

same principle can be easily extended. We can select k numbers at random and pick the

maximal among them. By the same argument, the probability that the maximal of the k

elements belongs to the upper half is at least 1 -Tk. For example, if k = 10,we have a

success probability of 0.999. If \302\243= 20, we have a successprobability of 0.999999. If

k = 100, the probability of error is, for all practical purposes,negligible.The probability

of a programming error, of a hardware error, or of an earthquake for that matter, exceeds

that. We now have an algorithm that selects a number in the upper half, with

overwhelming probability, using at most 100 comparisonsregardlessof the size of the

input. (We assume that choosing an element at random can be done in one operation; we

discuss random-number generation in Section 6.9.1.)

This type of algorithm is sometimes called a Monte Carlo algorithm. It may give
a wrong result with very small probability, but its running time may be better than that of

the best deterministic algorithm. Another type of a probabilistic algorithm is one that

never gives a wrong result, but its running time is not guaranteed. It may terminate

quickly or it may run for an arbitrarily long time. This type of algorithm, which is
sometimes calleda LasVegas algorithm, is useful if its expected running time is low. In

Section 6.9.2, we show a Las Vegas algorithm that solves a certain coloring problem. In

Section 6.9.3, we describe an elegant technique for transforming some Las Vegas

algorithms into deterministic algorithms. We apply the technique to obtain an efficient

deterministic algorithm for the coloring problem of Section 6.9.2. This technique,

160 Algorithms Involving Sequences and Sets

however, cannot transform every efficient Las Vegas algorithm into an efficient

deterministic algorithm.
The idea of probabilistic algorithms has direct analogies to mathematical proof

techniques. Using probability to prove combinatorial properties is a powerful technique.
In a nutshell, the idea is to prove that, among a set of objects, the probability that an

object has certain properties is greaterthan 0, which is an indirect proof that there exists

an object with these properties. This method translates to algorithms in the following

way. Suppose that we are searchingfor an object with certain properties, and we know

that if we generate a random object it will satisfy the desired properties with nonzero

probability (this is a probabilistic proof that the desired object exists). We try to follow

the probabilistic proof by generating random events when appropriate, then finding the

object with some positive probability. We can repeat this process many times until we

succeed. If the probabilities work in our favor, we end up with an effective Las Vegas
algorithm.

6.9.1 Random Numbers

Probabilistic algorithms require that we select numbers at random. We must find

efficient methods for doing that. However, any deterministic procedure will generate

numbers according to some fixed scheme,depending on the steps of the procedure. If the

scheme is completely deterministic, then the numbers generated cannot be random in the

true sense of the word. They will relate to one another in a specific way. Fortunately, this

is not a major practical problem. In practice, it is sufficient to use pseudorandom
numbers.These numbers are generated by a deterministic procedure\342\200\224and thus are not

truly random \342\200\224but the procedure makes any relationship among the numbers
unnoticable by most applications.

It is beyond the scope of this book to discuss this issue in depth. We restrict the

discussion to one very effective method, called the linear congruential method, for

generating pseudorandom numbers. The first step is to choose an integer seed r(l),
which is a number selected at random by some external means (e.g., the current time in

microseconds, the current record of one's favorite team). The rest of the numbers are

computed according to the following rule:

r(/) = (r(i - 1)-ft+1)mod f,

where ft and t are constants. The selectionof ft and t must be done carefully. Knuth

[1981] suggests the following guidelines: t should be quite large, in the millions at least,
and can be a power of 2 (or 10)if that is convenient; b should be about one digit less than

t, and its decimal representation should end with a*21, with x even. These (strange)
guidelines are designedto avoid hitting some bad cases that cause many repetitions of the

same numbers. The numbers generated by the linear congruential method are in the

range 0 to t- 1. We can achieve a different range by multiplying the numbers by the

appropriate factor (t should be chosen to be a multiple of that range).

6.9 Probabilistic Algorithms 161

6.9.2 A Coloring Problem

LetS be a set with n elements, let S\\,S2,..., Sk be a collection of distinct subsets of S,

each containing exactly r elements, such that k<2'~2.

The Problem Color each elementof S with one of two colors, red

or blue, such that each subset S, contains at least one red and at least one

blue element.

A coloring that satisfies this condition is called a valid coloring. It turns out that, under

the given conditions on the subsets, there is always a valid coloring. We present a simple

probabilistic algorithm that is adapted from a probabilistic proof of existence of such a

coloring. The algorithm is almost as simple as possible:

Take every element of S and color it either red or blue at random (with

probability 1/2) independently of the coloring of the other elements.

This algorithm obviously does not always lead to a valid coloring. Let's calculate the

probability of failure. The probability that all elements of S, are coloredred is 2\"r. The

probability that at least one of the k subsets is colored only red is no more than

kl~r < 1 /4 (because of the bound on k). Hence, the probability that a random coloring is

not valid is at most 1/2 (sincethere is also a probability of at most 1/4 of a subset entirely

colored blue). This is a proof that a valid coloring always exists (otherwise the

probability of failure must be exactly 1). It also implies that the random algorithm is

very good. We can easily test the validity of a particular coloring. We simply check the

elements of each subset until we find two of different colors. We have a 50-50 chanceof

success. If we fail, we simply try again. The expected number of times we need to run

the algorithm to get a valid coloring is 2. The algorithm is clearly a Las Vegas algorithm,

because we check each coloring and terminate only when we find a valid one. This is a

simple application of probabilistic methods. Unfortunately, probabilistic algorithms are
often not so simple. Next, we show that this algorithm can be modified such that it finds

a valid coloring deterministically.

6.9.3 A Technique for Transforming Probabilistic Algorithms
into Deterministic Algorithms2

We now show how to use induction to transform the probabilistic coloring algorithm into

a deterministic algorithm. The technique we presentdoesnot work for every Las Vegas
algorithm. We do not believe that it is possible to transform efficiently every Las Vegas
algorithm into a deterministic algorithm. This technique is interesting, however, because

2
This section can be skipped at first reading.

162 Algorithms Involving Sequences and Sets

it employs the idea of strengthening the induction hypothesis in a powerful way. The

resulting algorithm will not only be efficient and deterministic, but will also solve a more

general problem, removing some of the restrictions imposed on the original problem.

Let S be again a set of n elements, and S 1,^2, ...,\302\243*be a collection of distinct

subsets of S. The probabilistic algorithm was based on the fact that the probability that

we get a valid coloring by coloring each element at random is at least 1/2. Supposethat

we can color an element either blue or red such that the probability that we get a valid

coloring of the rest of the elements by a random coloring is nonzero. We claim that this

will lead to an algorithm by induction on n. If we can color one element such that

probability of successremains nonzero, then we can color all elementsby induction.

Since we are trying to handle one element at a time, we must strengthen the

induction hypothesis such that we no longer require that all subsets be of the same size.

The most important condition is that the probability of success remain nonzero. Let s(
denote the size of subset Sh The probability that S, is colored with only one color is

2~s,
+

l. The probability of failure (i.e., the probability that a random coloring of all

elements is not a valid coloring) is no more than

F(/i) =
\302\2432-5'

+
I.

This probability F(n) is a function of the sizes of the sets, but we write it as a function of
n for convenience. We are on solid grounds as long as F(n) < 1. Let'stry the following

induction hypothesis.

Induction hypothesis: We know how to color a set S with < n elements,

provided that F(n) < 1.

If one of the subsets has only one element, then this element contributes 1 to F(n), so

F(n) cannot be less than 1. If a? =2, then, since the subsets are assumed to be distinct,

there can be only one subset with the two elements, and we can color one element blue

and one element red. Hence, the base case is established. We now try to reduce the

coloring problem for n elements to one for n - 1 elements.

Let a be an arbitrary element of S. There are two possible ways to color a* \342\200\224blue

or red. Suppose that x is colored blue. What is the probability that a random coloring of
the other n - 1 elements is valid? A subset S, that does not include x has the same

probability of failure \342\200\224
namely 2~s,+ . A subset Sj that includes a has one fewer

element,and it only needs to have at least one red-colored element (it already has a
blue-coloredelement). Thus, the probability of failing to color subset Sj is 2 s'

Noticethat this probability is the same as it was before we colored a! Therefore,F(n)
remains less than 1, and we now have to color only n - 1 elements. Does that mean that

we now have an algorithm? No. It means only that the first choice can be made

arbitrarily. After the first choice is made, the problem is different.
We can no longer use the same induction hypothesis, because, after we color the

first element, some of the subsets need to be colored with two colors, and some of them

need to be colored with only one color. We have to strengthen the induction hypothesis
further to reflect this change. Suppose that some elements are already colored. A subset

6.9 Probabilistic Algorithms 163

may be in one of four states: (1) the subset has red and blue elements, in which case we
do not have to consider it any further; (2) the subset has at least one red element but no

blue elements, in which case at least one of the uncolored elementsmust be colored blue;

(3) the subset has at least one blue elementbut no red elements, in which case at least one

of the uncolored elements must be colored red; and (4) the subset has no colored
elements. We call a subset in state (2) a red subset, a subset in state (3) a blue subset,

and a subset in state (4) a neutral subset. Let ut be the number of uncolored elementsof

subset 5,-. If St is in state (1), then it is already colored successfully.If 5/ is red or blue,
then the probability of failure in coloring it randomly is 2~u>. If 5/ is neutral, then the

probability of failure in coloring it randomly is 2~M,+ . Let/ denote the probability of

failure in coloring subset S, randomly. We have to maintain the property that

k

F(n) = 2fi<l. (6.1)
/=i

The induction hypothesis must reflect the status of all subsets. We extend the

problem to include arbitrary red, blue, and neutral subsets. In other words, the input is

now a collection of subsets,each labeled red, blue, or neutral. We assume that condition

(6.1) is satisfied.

The Problem Color each element of 5 with one of two colors, red
or blue, such that each red subset contains at least one blue element,
each blue subsetcontains at least one red element, and each neutral

subset contains at least one red elementand at least one blue element.

The induction hypothesis is the straightforward hypothesis for this (nonstraightforward)

extension of the problem.

Induction hypothesis:We know how to color a set S with < n elements to

satisfy the conditions of the problem, providedthat (6.1) is satisfied.

The base case is similar to the previous base case. Given a set 5 with n elements such

that (6.1) is satisfied, weneed to color one element of 5 and to leave (6.1) satisfied.
We again pick an arbitrary element x e S. There are two possible ways to color jc,

each leading to different statuses of the subsets. If we color x red, then all red subsets

containing x remain red (but with one less uncoloredelement), all blue subsets containing
x become successfullycolored(and can be removed), and all neutral subsets containing x

become red subsets. Subsetsthat do not contain x are not changed. Coloring x blue leads
to similar changes. We can now compute the value of F(n- 1), which we denote by

FR(n - 1), to indicate that we color x red. We also denote by FB(n - 1)the corresponding

value of F(n- 1) in the case when x is colored blue. The key to the algorithm is the

following lemma.

164 Algorithms Involving Sequences and Sets

\342\226\241Lemma 6.2

Let F(n) be the probability of failure initially, let FR(n-\\) be the

probability of failure after coloring x red, and let FB(n-\\) be the

probability of failure after coloring x blue. Then, FR(n-\\) +

FB(n-\\)<2F(n).
Proof:A subset that does not contain x remains unchanged. Its contribution to

/^(fl-i), FB(n-\\), and F(n) is the same, which is consistent with the claim. We

consider now the subsets that contain x. There are three possibilities, according to the

subset status. (1) A red subset contributes nothing to FB(n-\\), because it is now

successfully colored; its contribution to FR(n-\\) is twice as much as that to F(n),
because it has one fewer element. Again, this is consistent with the claim. (2) The case
of a blue subset is the same as that of a red subset. (3) A neutral subset with w, elements

contributes 2~\"'
+'

to F(n). This subset becomeseither red or blue with one less element.

Thus, it contributes 2~(M_1) to both FR(n-\\) and FB(n-\\). In either case, its

contribution to F(n), FR(n - 1),and FB(n
- 1) is the same, establishing the claim. \342\226\241

Lemma 6.2 leads directly to the algorithm. The base case of one element is simple,

because, for (6.1) to be satisfied, there can be only one red or one blue subset containing
the element. If there is only one subset, then we can color the element with the other

color. If FR(n-\\) +FB(n-\\)<2F(n\\then either FR(n- \\)<F(n) or FB(n- \\)<F(n)
(or both). We can compute these values and color x blue if FB(n-\\) is less than

FR(n- 1), and color x red otherwise. By Lemma 6.2, condition (6.1) in the induction

hypothesis is satisfied, and the algorithm follows. We leave the implementation of this

algorithm to the reader.

6.10 Finding a Majority

Let \302\243be a sequence of integers x {, jc2, ...,xn. The multiplicity of x in E is the number of
times x appears in E. A number z is a majority in E if its multiplicity is greater than nil.

The Problem Given a sequenceof numbers, find the majority in the

sequence or determine that none exists.

For example, an integer can represent a vote in an election, and the problem is to find

whether someone won the election. If the number of candidates is small, then bucket sort

can be used effectively to solve the problem in O(n) time. However, if the number of

possible candidates is very large (the sign of the times), then bucket sort cannot be used.
We assume here that there is no limit on the number of possible candidates,and that they

are represented as arbitrary integers. Voting is also performed in computer systems, for

example, to achieve consistencyof decisions.

6.10 Finding a Majority 165

This problem is an excellent example of a straightforward problem whose

straightforward solutions are not as efficient as an elegant solution that requires some

thinking but is more efficient and simpler to implement. We first discuss several

straightforward approaches to the problem, and then present the elegant algorithm.
The most straightforward way to solve this problem is to use sorting. Once the

votes are sorted, it is easy to count how many votes each candidate got. Sorting,
however, requires O (n logn) comparisons in the worst case. We will see that it is

possible to do better. We can also use a median-finding algorithm. If there is a majority,

then it must be equal to the median (the median is the (n/2)th smallest element, and the

majority appears more than nil times). Therefore,once the median is found, we can
count the number of times it appears, and if the median is not a majority, then there is no

majority. Since finding the median is easier than sorting, this is a better approach.
Another approach is to use a probabilistic algorithm. We can pick a small random

sample of the votes, take the majority of the sample, and count the number of times this

sample majority appears in the whole list. However, although it is easy to verify that a

given vote is a majority, it is impossible with this algorithm to prove that there is no

majority. The outcomeof such an algorithm may be \"undecided.\" (Thisis the method

used for public-opinion polls; someelection predictions are indeed \"too close to call.\
It is also not easy to determine the appropriate size of the sample.

We now present a linear-time algorithm to find a majority that can handle any
number of candidates. The algorithm is faster and simpler than the median-finding

algorithm. As we did in the algorithm for finding a celebrity (Section5.5),we first try to

eliminate as many elements as we can from being candidates for majority. It turns out

that we can eliminate all but one element. Finding this one candidate is helped by the

following observation, which allows us to reduce the problem to a smaller one:

If Xi * Xj and we eliminate both of these elements from the list, then the

majority in the original list remains a majority in the new list.

(Notice that the opposite is not true: the list 1,2,5,5,3 has no majority, but if we remove 1

and 2, then 5 becomes a new majority.)

So, if we find two unequal votes, we eliminate both, find the majority in the smaller

list, and check whether it is a majority in the original list. What if we do not find unequal

votes? If we scan the votes and they are all equal, then we have to keep track of only one

possible candidate; once we find a vote that is not equal to this one candidate, we can use
the observation above. If all the remaining votes are equal, then we have to check only

one candidate. This is the seed of the idea; we now show how to implement it.

The votes are scanned in the order they appear. We use two variables, C

(candidate) and M (multiplicity). When we consider xh C is the only candidate for

majority among x,, x2,...,*/_i, and M is the number of times C appeared so far

excluding the times C was eliminated. In other words, the votes x{,x2, ...,*/-i can be

divided into two groups of sizes 2k and M, such that 2\302\243+M = /-l, the first group

contains k pairs of unequal votes (which can be eliminated by the observation), and the
second group contains C appearing M times. If there is a majority among x i, x2, \342\200\242\342\200\242.,*,_! ,

then it must \"survive\" this elimination scheme, and so it must be equal to C. (Notice

166 Algorithms Involving Sequences and Sets

again
that the opposite is not true; C may survive the elimination without being the

majority.) When we consider jc,- we compare it to C, and either increment or decrement

the multiplicity depending on whether or not Xj is equal to C. We also have to take care

of the case of having no candidate (which will happen, for example, at x3 if jc2 ^-^1)-

This case occurswhen M is equal to 0, and we simply set C =
jc, and M = 1. At the end,

we have only one candidate C, and we can count the number of times C appears in the

list and determine whether it is the majority or whether there is no majority. The

algorithm
is given in Fig. 6.28.

Algorithm Majority (X, n) ;

Input: X (an array of size n of positive numbers).

Output: Majority (the majority in X if it exists, or -1 otherwise).

begin

C:=X[1];

M:=l ;

{ first scan; eliminate all but one candidate C }

for i := 2 to n do

ifM = 0 then

C:=X[i];

M := 1
else

ifC =X[i]thenM:=M+1
else M :- M - 1 ;

{ second scan; check whether C is a majority }
ifM-0 then Majority := -1

else

Count := 0 ;
for i :=I to n do

ifX[i] = C then Count := Count + 1 ;
if Count > nil then Majority := C
elseMajority := -1

end

Figure 6.28 Algorithm Majority.

Complexity We use n - 1 comparisons to find a candidate and n - 1 comparisons, in

the worst case, to determine whether this candidate is a majority. Thus, overall, there are
at most 2az-2 comparisons. It is possible to reduce the number of comparisons to
3n/2+ 1, and that is optimal (Fischer and Salzberg [1982]). In any case, since there are
constant number of other operations per comparison,the overall running time is O (n).

6.11 ThreeProblems Exhibiting Interesting Proof Techniques 167

6.11 Three Problems Exhibiting Interesting Proof
Techniques3

In this section, we present three unrelated problems involving sequences and multisets.
Each algorithm is an example of a different proof technique. The first algorithm utilizes

the principle of strengthening the induction hypothesis. We strengthen the induction

hypothesis four times during the development of this solution, leading to an efficient

algorithm. The second algorithm is an example of an obvious technique
\342\200\224

improving

the \"theorem\" by eliminating all unnecessary assumptions. The example shows that this

principle is not always straightforward. This third example shows how to improve an

algorithm by choosing the base of the induction wisely.

6.11.1 Longest Increasing Subsequence

Let 5 be a sequence of distinct integers xx,x2,...,xn. An increasing subsequence (IS)
of 5 is a subsequence xit, jc,2 ,..., xik, with ix<i2<

''' < /*, such that, for all 1 <j < k, we

have Xi<xir A longest increasing subsequence (LIS) of 5 is an increasing

subsequence of maximum length.

The Problem Find a longest increasingsubsequenceof a given

sequence of distinct integers.

The algorithm we develop in this section is an excellent example of the principle of
strengthening of the induction hypothesis. We will strengthen the hypothesis several

times, each time as a result of problems encounteredin the previous attempt. Consider
first the straightforward induction.

Induction hypothesis (first attempt): Given a sequence of size < m, we

know how to find a longest increasing subsequence of it.

The base case consists of sequencesof size 1 for which the problem is trivial. Given a

sequence of size m, we find an LIS of its first m - 1 elements, and consider xm. If xm is

greater than the last element in the LIS, given by the induction, then xm can be appended
to the LIS, creating a new longer LIS, and we are done. Otherwise, however, it is not

clear how to proceed. For example, there may be several different LISs and xm may

extend one of them, but not necessarily the one found by the induction. The next step

seems to be a strengthening of the induction hypothesis as follows:

Induction hypothesis (second attempt): Given a sequenceof size < m,
we know how to find all the longest increasing subsequences of it.

*
This section can be skipped at first reading.

168 Algorithms Involving Sequences and Sets

The base case is still trivial. We use induction in the same way, except that now we can

check xm against all of the LISs and find whether a longer IS exists. This attempt solves

the previous problem, but it introduces another problem \342\200\224we now have to find all LISs.

If xm cannot extend any LIS, then there may still be an IS of length 1 less than the

longest, and xm can extend it, which will create a new LIS. It seems that we have gotten

ourselves into a hole, because we now have to find all ISs of largest and second largest

length. But to find all the second largest ISs, we will need to find all the third largest ISs,

then all fourth largest, and so on. This is a good example where strengthening the

induction hypothesis is overdone.

Let's look back at the stronger induction hypothesis. Do we really needall LISs?
We need only to know whether xm can extend one of them. Can we somehow find the

\"best\" one in terms of potential of extension? The answer is positive. The best LIS is
the one that ends with the smallest number! If we can extend any LIS, we can surely
extend this one. (There may be several different LISs that end with the same number,

and they are all equivalent in terms of extension potential. For simplicity, we talk about

\"the best one\" instead of \"an arbitrary best one.\") Let's try another induction

hypothesis, this one a little weaker than the last one:

Induction hypothesis (third attempt): Given a sequence of size < m, we

know how to find a longest increasing subsequence of it, such that no other

longest increasingsubsequenceof it has a smaller last number.

The basecaseis still trivial. Given jcm, we can determine whether it can be appended to
the LIS found by the induction. Assume that the LIS is of length s. If xm can be added,
then we have a new LIS, which is longer than the previous one; thus, this new LIS is

unique, so it is definitely the \"best\" one, and we are done. Otherwise, we know that no

longer increasing subsequence exists. But we are still not done. It may be the case that

xm cannot be added to the best LIS (since it is smaller than the last number in that LIS),

but it can be added to an IS of length s - 1,making the latter an LIS with a smaller last

number. To accountfor this possibility, we need to know the best IS of length s - 1. But

then again, if the induction hypothesis states that we know the best IS of length 5-1,

then xm may extend an IS of length s-2 making it the new best IS of length s- 1. We
will have to be able to determine whether xm extends such an IS in order to proceed with

the induction. So, we will need to know the best IS of length s - 2, s - 3, and so on down

to the best IS of length 1, which is simply the smallest number in the sequence so far.

(Even without using induction, one can see that shorter ISs cannot be discarded
arbitrarily

\342\200\224there is always the possibility that one of these ISs is the start of the final

LIS.)

Yet again we try to strengthen the induction hypothesis. We denote by BIS(\302\243) the

best increasing subsequence of length k \342\200\224
namely, the one that ends with the smallest

number (if there is more than one such subsequence we take an arbitrary one). We

denote by B\\S(k).last the last number in the sequence BIS(\302\243).

Induction hypothesis (fourth attempt): Given a sequenceof size < m, we
know how to find BIS(k)for all k <m-\\, if they exist.

6.11 Three Problems Exhibiting Interesting Proof Techniques 169

The base case remains trivial. Given xnn we have to find which of the BISs it can

change. xm extends a certain BIS(\302\243)if and only if the following two conditions occur: (1)

xm > B\\S(k).last, so xm can be added to BIS(\302\243), and (2) xm < BIS(\302\243+ \\).last, so BIS(\302\243)

with xm at the end is better than BIS(\302\243+ 1). We claim that BIS(l)./atf < B\\S(2).last<
\342\200\242\342\200\242\342\200\242< BIS(s)./as/, where s is the size of the LIS. This claim is true because, if

B\\S(J).last < B\\S(J- \\).last for some y, then the first j- 1 numbers of BIS(/) would be
better than BIS(y

\342\200\224
1). The algorithm proceeds as follows. Given jtm, we look at the

values of B\\S(i).last,for i = s9 s- 1, s-2, and so on, until we find one, say B\\S(J).last,
which is smaller than xm. If no such j exists, then xm is the smallest number in the

sequence so far, and it becomes BIS(l). If j = s, then we extend BIS(s) with xm, creating

a new BIS(s+l). (The previous BIS(^) remains unchanged.) Otherwise, we have

B\\S(j).last<xm< BIS(/+ 1).last. We then replace BIS(/ + 1)with BIS(/>m.

This is basically the whole algorithm, and it is quite simple once we use the right

induction. Notice that the search can be performed by binary search, because we are

searchinga sorted set. Hence, each xm adds at most O (logm) comparisons,and the total

running time is 0(n\\ogn). We leave it to the reader to complete the details of this

algorithm, which is not a straightforward task.

6.11.2 Finding the Two LargestElementsina Set
A common technique, which is important in proving almost any theorem, is to search the

proof thoroughly for assumptions or steps that are not essential. Removing such

assumptions results in a better theorem. Having inessential assumptions is also

sometimes an indication that the proof may be wrong. Quoting Polya and Szego [1927]:
\"One should scrutinize each proof to see if one has in fact made use of all the

assumptions; one should try to get the same consequence from fewer assumptions . .. and
one should not be satisfied until counterexamples show that one has arrived at the

boundaries of the possibilities.\" The same is true for algorithms. This principle sounds

simple,but many times it is not, as seen in the next example.

The Problem Given a setS of n numbers x \\, jc2, ..., xn, find the first

and second largest of them.

We are looking for an algorithm that minimizes only the number of comparisons of
elements from the set. We ignore other operations. Furthermore, for simplicity, we

assume that a? is a power of 2.
We try the usual divide-and-conquer technique, by dividing the set S of size n into

two subsets P and Q of size nil. If we use straightforward induction, we assume that we
know the first and second largest elements of P and Q, denote them by p ,, p2, and q\\,q2

respectively, and we try to find the first and second largest elementsof S. It is easy to see
that two more comparisons are necessary and sufficient to find the first and second largest
elements of S. One comparison is between the two maximals p x and q x, and the other

170 Algorithms Involving Sequences and Sets

one is betweenthe \"loser\" and the second largest of the \"winner\" (see Fig. 6.29). This

approachleads to the recurrence relation T(2n) = 2T(n)+2, 7(2)=1,whose solution is

T(n) = 3n/2-2. Thisis better than the straightforward 2n -3 comparisons,and it is very

similar to the problem of finding the maximal and minimal elements presented in Section

6.5.1. We want to do evenbetter.

If the two comparisons are necessaryfor the inductive step, then how can we

improve the total number of comparisons? Looking carefully at the comparisons in Fig.

6.29, we see that q2 will not be used further in the algorithm. Therefore, the computation

leading to its discovery was unnecessary.If we can avoid this computation, then we will

save significant number of comparisons. However, until we compare p { to q {, we do not

know whether p2 or q2 can be ignored. If we had known which subset was going to

\"lose,\" then we could have used the regular maximum-finding algorithm for this subset,

saving many comparisons. So, we suspectthat quite a few comparisons can be avoided,

but we do not know which ones they are.

The trick is to delay the computation of the second largest element until the end.

We keep only a list of candidates for second largest,and we do not assume that we know

the second largest element in the induction hypothesis:

Induction hypothesis: Given a set of size < n, we know how to find the
maximum element and a 'lsmall' set of candidates for the second maximum

element.

We have not defined a value for \"small\" in the hypothesis. We will discover the

appropriate value when we develop the algorithm.
The algorithm proceeds as follows. Given a set 5 of size az, we divide it into two

subsets P and Q of sizen/2. By the induction hypothesis, we know the largest elements

of the two sets, p { and q i, plus a set of candidates for the second largest, CP and Cq.
We

compare p, and q, and take the largest, say p x, to be the maximum of 5. We then

pi

p2

\302\2532

Figure 6.29 Finding the largest and second largest elements (the dashed lines
correspond to the comparisons).

6.11 Three Problems Exhibiting Interesting Proof Techniques 171

discard Cq, sinceall elements of Cq are less than q { which is at most the second largest,

and add only q x to CP. At the end, we get the largest element and a set of candidates

from which we choose the second largest element directly. The number of comparisons

for finding the maximum satisfiesthe recurrence relation T(n) = 2T(n/2) + 1, 7(2)=1,
which implies that T(n) = n- 1. It is easy to see that log2Ai is a sufficient size for the

candidate set, because we add one more elementto the candidate set when we double the

size of the set we consider. Therefore, finding the second largest element requires
\\og2n -1 additional comparisons. The total number of comparisons is thus

n- 1 +log2Ai-1, which, incidently, is the best possible (see [Knuth 1973b]). The
induction hypothesis, for the case when n is equal to a powerof 2, is thus as follows.

Induction hypothesis:Given a set of size < n, we know how to find the

maximum element and a set of at most \\og2n candidates for the second

maximum element.

Comments Once an algorithm is constructed, it is a good idea to examine it

carefully for parts that do not contribute to the final result. Often, these parts can be
eliminated. Even if the redundant operations cannot be eliminated, they may be replaced
by simpler operations, which are more efficient.

6.11.3 Computing the Modeofa Multiset
Let 5 = (jc!, jc2, ...,*\342\200\236)be a multiset of (not necessarily distinct) elements from a totally
ordered set. A mode of a multiset is defined as an element that occurs most frequently in

the multiset (there may be more than one mode). The number of times an element occurs

is called its multiplicity. The mode is thus the element with the highest multiplicity.

The Problem Find a mode of a given multiset S.

Our goal is to minimize the number of comparisons. One possible way to find the mode
is to use sorting. Once the elements are sorted, we can scan the sorted sequence and
count the multiplicities (equal elements will be consecutive in the sorted sequence). We

will see that sorting is not always necessary. The reason for thinking that sorting may not
be required is that finding the majority (Section 6.12) can be done in linear time, whereas

sorting requires 0(n log a?) time. This leads us to suspect that, if the multiplicity of the

mode is high, then there may be a fast way of finding it without sorting.

Let's try the straightforward induction approach. We assume that we know the

mode of a multiset with n - 1 elements, and try to find the mode of an n element multiset.

This is not easy since there may be several elementswith the highest multiplicity; the nth

element may break the tie. Supposethat the induction hypothesis states that we know all

the elements with the highest multiplicity. Then, we can determine whether the nih

element breaks the tie, but it may also increase the multiplicity of another number, which

172 Algorithms Involving Sequences and Sets

now has to be added to the list. We have already seen (Section6.13.1)that keeping track

of all different \"best\" solutions is possible, but the cost will probably be too high. On

the other hand, it is not necessary that the Arth element be arbitrary \342\200\224we can choose a

special one. Supposethat the Arth element is the maximum element. We still have

basically the same problemsas before, but now we are closer to a solution. We can

reduce the size of the problem by removing not one but all occurrences of the maximal

element. We then solve the reduced problem, and compare the multiplicity of the mode

of the reduced multiset with the multiplicity of the maximal element.

We now have an algorithm, but unfortunately, it is still too slow. Finding the

maximum of a multiset of n elements requires n - 1 comparisons. If the multiset contains

quite a few distinct elements, then too many maximum computations will have to be

performed. In particular, if the multiset is in fact a set (i.e., all the elements are distinct),
then this algorithm is basically the same as the 0(n2) selection sort.

To improve the performance of the algorithm, we resort to the divide-and-conquer

technique. Instead of using one element or a small set of elements in the induction, we

try to divide the multiset into two parts of about the same size. The two parts should be

disjoint, so that they lead to independent subproblems. How do we divide a multiset into

two approximately equal disjoint parts? We can first find the median of the multiset and

then split the multiset into three parts \342\200\224less than, equal to, and greater than the median.

We have already seen how to find a median in O(n) expected number of comparisons

(Section 6.5). It is also possible to find the median in O(n) time in the worst case,

although we have not proved this result. We use the median-finding algorithm as a step
in our algorithm. Given a multiset of size n, we first find the median and perform the

splitting, then solve two subproblems of size no more than nil. The mode of the original

multiset can be easily determined from the modes of the two smaller multisets, since the
smaller multisets are disjoint. Since finding the median and splitting can be done in

linear time, we get the familiar recurrence relation

T(n)<2T(n/2) + 0(n)9 7(2)= 1,
which implies that T(n) = 0(n \\ogn). But this is no better than sorting. In fact, if the

splitter element is chosen at random instead of being the exact median, then this

algorithm is basically the same as quicksort.
We now come to the heart of this algorithm. To improve the performance, we look

at the base of the induction. Suppose that the multiplicity of the mode is M. We claim

that we can start the induction from submultisets of size M. In other words, we do not

have to continue splitting the multiset into parts smaller than M. Since all parts are
disjoint, one of the parts of sizeM must contain only the mode. At this point, the mode
will be discovered because the multiplicity of all other elements cannot exceed M.
Therefore, there is no need to divide the multiset any further.

The implementation of this algorithm is not straightforward. We cannot use
recursion, because we do not know beforehand how far to carry out the recursion. The

recursion should be terminated when the size of the multiset becomes at most M, but the

value of M is found during the execution of the algorithm by checking all the smaller

multisets. In each step, all the submultisets are checked, and, if none of them contains

Bibliographic Notesand Further Reading 173

only one distinct element, then all of them are further divided. If any of the submultisets

contains only one distinct element, then we can terminate. We leave the implementation

details to the reader.

Complexity The resulting recurrence relation is modified only in its base:

T(n)<2T(nl2) + 0(n\\ T(M)=0(M),
which implies that the number of comparisons is 0(n \\og(n/M)). An intuitive

explanation of this expression is that the recursion is carriedout only until a multiset of
size M is encountered, which is a total of \\og(n/M) times. Each time it takes a linear

number of comparisonsto divide and check all subproblems. In particular, if M = cn for
some constant c, then this is a linear-time algorithm. If M is a constant, then this is an

0(n log a?) algorithm. This algorithm is thus superior to sorting only if M is fairly high

and if the cost of comparisons is also high (there is a significant overhead for

remembering subproblems).

6.12 Summary

We touched on quite a few subjects in the this chapter \342\200\224
searching, sorting, order

statistics, data compression, string manipulation, probabilistic algorithms, and others.
We presented only one or two basic problems in each subject. In practice, problems are

often not as clean and simple to define as are the problems presented in this chapter. One
should therefore try to abstract the main parts of a given problem. The techniques that

we employed in this chapter are quite similar to those introduced in Chapter 5. Induction

again plays a major role.

Many of the problems discussed in this chapter have straightforward solutions that

can be obtained with little effort \342\200\224linear search and selection sort are two examples. If

the size of the input is small, these solutions are most often not only good enough, but

they are also better than sophisticated solutions. Whenever the size of the input is not

small (e.g., over 100),it is important to attempt to find better solutions. The use of
linear-search and quadratic-sorting algorithms, for example, is quite common.

Unfortunately, these and other inefficient algorithms are used too often for large inputs.4

Bibliographic Notes and Further Reading

A wealth of material about sorting and searching, including their history, can be found in

Knuth [1973b]. Additional algorithms involving sequences and sets, as well as topics in

combinatorics, are presented in Stanton and White [1986]. A formal derivation of a

binary-search paradigm can be found in Manna and Waldinger [1987]. The stuttering-

subsequence problem of Section 6.2 is from Mirzaian [1987], where a linear-time

4A recent example highlighted this issue unexpectantly when the virus (or worm) that attacked over 6(XX)

computers across the United Stateson November 2, 1988, slowed down those computers considerably, partly

because all the search algorithms in it used linear search (see Spafford [1988]).

174 Algorithms Involving Sequences and Sets

algorithm
is presented. The average performance of interpolation search was studied by

Perl, Itai, and Avni [1978], and some empirical results are given by van der Nat [1979].

Mergesort was probably first developed by von Neumann in 1945, and it was one

of the first stored programs to be implemented. An in-place version of mergesort was

first developed by Kronrod [1969]; see also Huang and Langston [1988], and Dvorak and

Durian [1988]. Quicksort is due to Hoare [1962]. A detailed study of quicksort appears
in Sedgewick [1978]. Heapsort was developed by Williams [1964]. A wonderful film

containing descriptions of nine major sorting techniques all shown with beautiful

animation was produced by the computer graphics group at the University of Toronto

[1981]. Even though sorting has been studied extensively for many years, there are still

many open problems. The exact number of comparisons required for sorting n numbers

is still unknown. The algorithm outlined in Exercise 6.30 is by Ford and Johnson [1959].
It was the \"champion\" for some time in terms of number of comparisons,but it was

proved not to be optimal by Manacher [1979]. Another widely used sorting algorithm is

shellsort invented by Shell [1959]. Shellsort is simple and very easy to implement.
However, its complexity is still unknown; see Incerpiand Sedgewick [1987] for recent

results and empirical observations. Decision trees have been used successfully to prove

lower bounds for several basicproblems; Moret [1982] presents a survey of their uses.

An analysis of the probabilistic selection algorithm was given by Floyd and Rivest

[1975]. A linear-time deterministic algorithm for order statistics was first developed by

Blum, Floyd, Pratt, Rivest, and Tarjan [1972]. However, the running time is in fact

CD(n) since the constant is very high. Schbnhage, Paterson, and Pippenger [1976]

presents a median finding algorithm with at most 3n comparisons. The best-known lower

bound (on the number of comparisons) for finding the median is 2n (Bent and John

[1985]). This paper contains results for the general order statistic problem; the

expressions for the general lower bounds are more complicated.

Data compression has been studied widely due to its great importance. The
algorithm in Section 6.6 is due to Huffman [1952] (see also Knuth [1973a]). Variations

of Huffman's algorithm that use only one pass are described by Knuth [1985] and Vitter

[1985]. Another effective and popular algorithm is due to Ziv and Lempel [1978]. More

on data compression in general can be found in Lynch [1985].

The string-matching algorithms presented in Section 6.7 are due to Knuth, Morris,

and Pratt [1977], and to Boyer and Moore [1977]. Galil [1979]improved the worst-case

running time of the Boyer-Moore algorithm. More on the complexity of the

Boyer-Moore algorithm can be found in Guibas and Odlyzko [1980] and in Schaback

[1988]. Empirical comparisons betweenvarious string matching algorithms can be found

in Smit [1982]. A probabilistic string matching algorithm was developed by Karp and

Rabin [1987]. This algorithm uses the idea of fingerprinting to make short

representations of large strings so that they can be comparedefficiently. It can also be
used with two-dimensional patterns. The string matching problem can be extended to
look for patterns more complicated than just strings. For example, \"wild cards\" are
useful; we may want to search for all occurrences of strings of the form B*C, where B
and C are given strings and

* denotes any string. A more general problem is to look for
any regular sets of strings. For more on these problems see Aho and Corasick [1975].

Drill Exercises 175

Another important problem is to search for strings in a fixed text that has been

preprocessed. Suffix trees (Weiner [1973], McCreight [1976]) and Suffix Arrays

(Manber and Myers [1990]) allow fast search.

Sequence comparisons and their many applications are covered in a book edited by

Sankoff and Kruskal [1983]. Various problems involving strings are included in a book

edited by Apostolico and Galil [1985]. The algorithm given in Section 6.8 is due to

Wagner and Fischer [1974]. This algorithm can be improved in many ways, including

savings of storage(Hirschberg[1975]),improved running times when the alphabet is

very large (Hunt and Szymanski [1977]), and when the sequences are close (Ukkonen

[1985] and Myers [1986]). A survey of relevant results appears in Hirschberg [1983].

The probabilistic algorithm that finds an element in the upper half is due to Yao

[1977]. Random number generation is covered in detail in Knuth [1981]. The

probabilistic coloringalgorithm given in Section 6.9.2 is based on a probabilistic proofof

existence given in Bollobas [1986]. The technique for converting probabilistic

algorithms to deterministic algorithms, which was illustrated in Section 6.9.3, is due to

Raghavan [1986]. The use of this technique to solve the coloring problem of Section
6.9.2was pointed out to us by K. Pruhs. The general problem of finding a valid coloring

for arbitrary-sized subsets is NP-complete(Lovasz [1973]). Erdos and Spencer [1974]
present many examples of probabilistic techniques for proving combinatorial properties.

The majority problem was studied, for example,by Misra and Gries [1982]. Using

a more sophisticated data structure than the one presented in Section 6.10, Fischer and

Salzberg [1982] showed that the number of comparisons (but not the number of other

steps) canbe reduced to 3/7/2+ 1 in the worst case, and that this bound is optimal.
An excellent description of a solution to the longest increasing subsequence

problem (from which we borrowed heavily) is given by Gries [1981]. Erdos and

Szekeres [1935] proved, by a very elegant use of the pigeonhole principle, that every

sequence of distinct elements of length n2 + \\ must have either an increasing or a

decreasingsubsequenceof length n + 1. The problem of finding the largest and second

largest elements in a set was first suggested, in the context of arranging tennis

tournaments, by Lewis Carroll (see [Knuth 1973b]). Another algorithm for finding the

mode is given in Dobkin and Munro [1980] (see alsoGonn 't [1984]).

The solution to Exercise 6.27 is discussedin Aho, Hopcroft, and Ullman [1974].
Exercise6.34is from Karp, Saks, and Wigderson [1986]. A solution to Exercise 6.39 is

given in Rodeh [1982]. The subject of Exercise6.42is discussed in Choueka, Fraenkel,

Klein, and Perl [1985]. The notion of realizable sequences(Exercise 6.64) was

introduced by Ryser [1957].

Drill Exercises

6.1 Design a good strategy for the following well-known game: One player thinks of a number

in the range 1 to //. The other player attempts to find the number by asking questions of the
form \"is the number less than (greater than) a?\" The object is to ask as few questions as

possible. (Assume that nobody cheats.)

176 Algorithms Involving Sequences and Sets

6.2 Find a strategy to the guessing game in Exercise 6.1 when the range of choiceis unknown

\342\200\224that is, the chosen number may be any positive number.

6.3 Suppose that you are using a program that handles large texts, for example, a word

processing program. The program takes as input a text, represented as a sequenceof
characters, and produces some output. Once in a while, the program encounters an error

from which it cannot recover. Not only that, but it cannot even indicate what error it is, or
where it is. In other words, the only action the program takes is to halt and to output

4'Error.\" Assume that the error is local; in other words, it results only from a particular

string in the text which the program, for some unknown reason, does not like. The error is

independent of the context in which the offending string appears. Suggest a strategy to

locate the source of the error.

6.4 Construct an example for which interpolation search will use Q(n) comparisons for

searching in a table of sizen.

6.5 Write the complete program for radix-exchange sort. The input is a sequence of n integers,

each with k digits. Each digit is in the range 1 to m. You can assume that O(m) space is

available. First, write the program as a recursive procedure. Determine the amount of extra

space required by the recursive procedure. Then, design a nonrecursive program and try to

minimize the amount of extra space.

6.6 Write the complete programs for insertion sort (with linear search and binary search) and

selection sort.

6.7 Count the number of comparisons used to sort the input in Fig. 6.8 (by mergesort), and in

Fig. 6.11 (by quicksort). Compute the number of comparisons for the same input for

insertion sort and selection sort.

6.8 Prove, by using a loop invariant, that the first if statement in algorithm Mergesort (Fig. 6.7)
is not necessary. In other words, prove that the result of the algorithm will not change if we

remove this if statement, and start the algorithm with the if statement \"if Left * Right.\"

6.9 Comparemergesort with the solution to the skyline problem in Chapter 5. Try to formalize

the similarities. Will it be possible to use one solution almost as a \"black box\" to solve the

other problem?

6.10 Write the appropriate loop invariant for the main loop in Algorithm Partition (Fig. 6.9), and

prove the correctness of the algorithm.

6.11 Construct an example for which quicksort will use Q(n2) comparisons when the pivot is

chosen by taking the median of the first, last, and middle elements of the sequence.

6.12 In some cases, the input for a sorting algorithm is already almost sorted, which means that

the number of out-of-order elements is small. Describehow the different sorting algorithms
suggested in Section 6.4 perform for almost sorted inputs. Which algorithm would you use?

(You are encouraged to design your own.)

6.13 Construct a table similar to that in Fig. 6.15 for building a heap top down.

6.14 Design a divide-and-conquer algorithm to find the minimal and maximal elements in a set.
The algorithm should use at most 3n/2 comparisons (for n=2k). Can you pinpoint the

reason this algorithm requires less than the straightforward In - 3 comparisons algorithm?

Creative Exercises 177

6.15 Build the Huffman tree for the set of characters in this question. Include all characters.

How many bits are saved in the storage of this question using Huffman trees versus a

storage based on a fixed-length encoding?

6.16 Construct the next table (Section 6.7) for the string aabbaabababbaabbaabb.

6.17 Construct the matrices C and M obtained by comparing the sequences aabccbbaabca to

baacbabaccaba using algorithm Minimum Edit Distance of Fig. 6.27.

6.18 Write the appropriate loop invariant for the first loop in Algorithm Majority (Fig. 6.28), and

prove the correctness of the first phase of the algorithm.

Creative Exercises

Unless specified otherwise, sequences and sets are assumed to be of size n, and to consist of

elements that are real numbers. Algorithms are said to run in linear time if they run in time O (n).
All the running times are worst case.

6.19 Given an array of integers j4[1..h], such that, for all /, \\<i<n, we have

|A [i] -A [i + 1] |
< 1. Let A [1] = x and A [n] =y, such that x < v. Design an efficient search

algorithm to find j such that A \\j] = z for a given value z, x <z < v. What is the maximal

number of comparisons to z that your algorithm makes?

6.20 Prove by using decision trees that the algorithm you developed for Exercise 6.19 is optimal
in the worst case (or improve your algorithm until you can prove that it is optimal).

6.21 The input is a set S with n real numbers. Design an 0(n) time algorithm to find a number

that is not in the set. Prove that Q(n) is a lower bound on the number of steps required to

solve this problem.

6.22 The input is a set S containing n real numbers, and a real number x.

a. Design an algorithm to determine whether there are two elements of S whose sum is

exactly x. The algorithm should run in time O (n log n).

b. Supposehow that the set S is given in a sorted order. Design an algorithm to solve this

problem in time O (n).

6.23 Given two sets S, and S2, and a real number jc, find whether there exists an element from S,
and an element from S2 whose sum is exactly x. The algorithm should run in time
O (n log n\\ where n is the total number elements in both sets.

6.24 Design an algorithm to determine whether two sets are disjoint. State the complexity of

your algorithm in terms of the sizes m and n of the given sets. Make sure to consider the
case where m is substantially smaller than n.

6.25 Design an algorithm to compute the union of two given sets, both of size O (n). The sets are
given as arrays of elements. The output should be an array of distinct elements that form

the union of the sets. No element should appear more than once. The worst-case running

time of the algorithm should be O (n log n).

178 Algorithms Involving Sequences and Sets

6.26 The input is a sequence of real numbers Jt,,*2, ...\302\273\342\226\240*\342\200\236\302\273such that n is even. Design an

algorithm to partition the input into nil pairs in the following way. For each pair, we

compute the sum of its numbers. Denote by 5,, s2, \342\200\224^n/2tnese n^ sums. The algorithm

should find the partition that minimizes the maximum sum.

*6.27 Modify lexicographic sort to work for variable-length strings. In other words, you can no

longer assume that all numbers have exactly k digits. Some numbers may be long and some
short. It is possible of course to \"pad\" all numbers by adding \"dummy\" (0) digits to make
them all of the same length. Find an algorithm that avoids doing that and achieves a

running time linear in the total number of digits.

6.28 The input is a sequencex,, jc2, ..., xn of integers in an arbitrary order, and another sequence
a,,02,..., tf\342\200\236of distinct integers from 1 to n (namely ax,a2,...,a\342\200\236 is a permutation of

1,2,..., n). Both sequences are given as arrays. Design an 0(n logn) algorithm to order

the first sequence according to the order imposed by the permutation. In other words, for

each z, jc, should appear in the position given in ar For example, if x - 17, 5, 1,9, and a =

3, 2, 4, 1,then the outcome should be x = 9,5, 17,1. The algorithm should be in-place, so

you cannot use an additional array.

6.29 The input is d sequencesof elements such that each sequence is already sorted, and there is
a total of n elements. Design an 0(n logd) algorithm to merge all the sequences into one
sorted sequence.

6.30 The following is a brief and incomplete description of a sorting algorithm known as the Ford
and Johnson sorting.

1. Arbitrarily form nil distinct pairs of elements
2. Comparethe elements in each pair
3. Recursively sort the nil larger elements
4. Insert in some order the nil remaining elements into the sorted list of larger elements

This algorithm uses fewer comparisons than almost any other algorithm, provided that the

insertions in step 4 are done in a \"good\" order. Consider the cases of n = 5, 6, and 8. Find

a good order in which to insert in step 4. You should end up with an optimal sorting
algorithm (in terms of the number of comparisons) for these values of n (in fact, you will

get an optimal algorithm for any n < 12 with this algorithm).

6-31 The input is a sequence of n integers with many duplications, such that the number of
distinct integers in the sequence is 0(\\ogn).

a. Design a sorting algorithm to sort such sequences using at most O (n log logn)
comparisons in the worst case.

b. Why is the lower bound of Q(n logn) not satisfied in this case?

6.32 Prove that the sum of the heights of all nodes in a balanced binary tree with n nodes is at

most n -1. (A balanced binary tree with n nodes is one that corresponds to an implicit
representation using an array of size n.) Show a tree whose sum of heights is exactly n - 1.

6.33 The sum of the heights of all nodes in a heap (see Section 6.4.5)can alsobe computed

directly by noting that the height of the node corresponding to position / in the array (of size

n) is at most [log2(\302\253
- / + 1)1\342\200\242Find the sum of heights by using this method.

Creative Exercises 179

6.34 The input is a heap of sizen (in which the largest element is on top), given as an array, and a
real number x. Design an algorithm to determine whether the fan largest element in the

heap is less than or equal to x. The worst-case running time of your algorithm should be
0(k\\ independent of the size of the heap. You can use 0(k) space.(Notice that you do
not have to find the fan largest element; you need only determine its relationship to x.)

6.35 The weighted selection problem is the following. The input is a sequenceof distinct

numbers jc,, jc2, ..., xn such that each number jc, has a positive weight w(x() associated with

it. Let W be the sum of all weights. The problem is to find, given a value X, 0 < X < W, the

number
Xj

such that

2>(jcf-) < X,

Xj > Xt

and

w(xj)+ 5>(jc,) > X.

Xj > Xt

Design an efficient algorithm to solve the weighted selection problem. (Notice that when

all weights are 1, this problem becomes the regular selection problem.)

6.36 Let A be an algorithm that finds the fan largest of n elements by a sequence of comparisons.
Prove that A collects enough information to determine which elements are greater than the

fan largest and which elements are less than it. (In other words, you can partition the set
around the fan largest element without making more comparisons.)

6.37 Considerthe problem of finding the fan largest element, and suppose that we are interested

only in minimizing space. Each element fills one memory cell. The input is a sequence of

elements, given one at a time, inserted into a fixed cell C. That is, in the ith input step x-, is

put into C (and C's previous content is erased). You can perform any computation between

two input steps (including, of course,moving the content of C to a temporary location).

The purpose is to minimize the extra number of cells required by the algorithm. Give an

upper bound and a lower bound on the number of memory cells needed to find the fan

largest element.

6.38 The goal of this problem is to find the fan smallest element, as in Exercise 6.37,but this time

we want to minimize the running time as well as to use very little space (although not

necessarily minimal space). The input is again a sequence of elements xx, x2,..., x,n given

one at a time. Design an O (n) expected time algorithm to compute the fan smallest element

using only 0(k) memory cells. The value of k is known ahead of time (so that sufficient

amount of memory can be allocated), but the value of n is not known until the last element
is seen.

6.39 Let A and B be two sets, both with n elements, such that A resides in computer P and B in Q.

P and Q can communicate by sending messages, and they can perform any kind of local

computation. Design an algorithm to find the nth smallest element of the union of A and B
(i.e., the median). You can assume, for simplicity, that all the elements are distinct. Your

goal is to minimize the number of messages, where a messagecan contain one element or
one integer. What is the number of messagesin the worst case?

6.40 Given a set of integers S = [xx,x2,...\302\273x\342\200\236),find a nonempty subset /?c5, such that

180 Algorithms Involving Sequences and Sets

\302\243Jt, = 0 (modulo n).
x,&R

6.41 Use the idea of the information-theoretic bound to prove a lower bound of Q(logrt)

comparisons for the problem of finding the value of z such that x, = i in the sequence

jt,,Jt2, ...,-*\342\200\236,or determining that no such / exists. (This problem is discussed in Sections

6.2 and 6.4.6.)

6.42 Supposethat you want to use Huffman's encoding but that you do not use a programming
language that lets you access bits. You can read the sequence of bits as a sequence of bytes

(or any other blocks of sizek depending on the machine). Each byte (block) corresponds to
an integer, and the encoding thus corresponds to a sequence of integers (each less than 28).
Design a method to translate the sequence of integers such that you can use the Huffman

tree and decode the corresponding sequence of bits. Do it by building a table of sizek x 2*,

where k is the size of the block (8 in the case of bytes). The table depends on the tree

(which is given to you). You can use only multiplication, addition, and subtraction of

integers; you cannot use bit operations. The table should allow you to access any bit in a

number z taken from the sequence of integers. Now solve the problem again, but this time

use a table of size 2x2*.

6.43 Assume that a Huffman's encoding has been applied to a certain text. The Huffman tree has

been constructed and it is available to you. The frequencies of all characters in the text are

also known. Assume now that the text has been changed slightly such that the frequency of
one (existing) character X has been increased by 1. You want to update the tree so that it

remains optimal for the modified text. A friend makes the following suggestion for an

algorithm to modify the tree.

First, he notes that an important property of a Huffman tree is that the frequencies
associatedwith the nodes are nondecreasing as the nodes are closer to the root. (In other

words, a node with lower frequency cannot be higher in the tree than a node with higher
frequency.) The frequency of an internal node v is defined as the sum of all the frequencies
of the characters associatedwith external nodes that are descendants of v. Consequently, he

suggests checking whether the increased frequency still satisfies that property by checking

the next higher level. If there is no node in the next higher level with a frequency smaller
than the frequency of X, then leave X in its place. Otherwise, replace X with the character at

the higher level whose frequency is now smaller than that of X. This algorithm may

sometimes work, but it is generally incorrect. Describe why it is incorrect and how it can be

corrected. You should mention not only what is missing in the algorithm but, more

important, discuss why the algorithm does not work, as is, in general. That is, either
construct a counterexample under which this algorithm does not construct an optimal tree,
or show that, had the algorithm been correct, it would have led to a contradiction (or to

some highly suspicious implications). It is not enough to point out that the algorithm does
not deal with some cases. It could be that those cases can be ignored. You need to show
that the algorithm is definitely wrong.

6.44 The input is two strings of characters A =ax a2 \342\200\242\342\200\242\342\200\242
a\342\200\236and B=blb2

\342\200\242\342\200\242\342\200\242
bn. Design an

O(n) time algorithm to determine whether B is a cyclic shift of A. In other words, the

algorithm should determine whether there exists an index \302\243,1 < k < n such that

fli
= fcot+owm for all /, 1 <i<n.

6.45 The KMP string matching algorithm can be improved for binary strings in the following

Creative Exercises 181

way: When constructing the next table, in addition to looking at the suffix of the string seen
so far, we can add the mismatched character. That is, we look for the longest suffix of

B(i- \\)bj that matches a prefix of B. (fr, is the complement character of b(.) That way,

every character in A is compared to a character in B exactly once.

a. Give a precisedefinition of the modified next table, and show its new values for the

example in Fig. 6.21.

b. Modify the string matching algorithm to take advantage of this change.

6.46 An on-line string matching algorithm: Suppose that the pattern is input one character at a

time at a relatively slow pace (e.g.,by typing), but the text is already given. We would like

to proceedwith the matching as much as we can, without waiting until all the pattern is
known. In other words, when the fan character is input, we would like to be at the first

place in the text that matches the first k -1 characters in the pattern. Modify the KMP

algorithm to achieve that goal.

6.47 Modify the KMP string matching algorithm to find the largest prefix of B that matches a

substring of A. In other words, you do not need to match all of B inside A; instead, you
want to find the largest match (but it has to start with b x).

6.48 Let T and P be two sequences f,, t2,..., t\342\200\236and P\\,p2, ...,p* of characters, such that k<n.

Design an O(n) algorithm to determine whether P is a subsequence of T. (P is a

subsequence of T if there exist a sequence of indices 1 </1 <i2 < \342\200\242\342\200\242\342\200\242< i* \302\243flsuch that for

all y, 1 <j < k, we have t(=pr)

6.49 Design an algorithm for Exercise 6.48 such that, if there are many subsequences in T that

are equal to f\\ then the algorithm finds the subsequence whose sum of indices is maximum.

That is, find the sequence of indices 1 < i, < i2 < \342\200\242\342\200\242\342\200\242
<ik^n sucn tnat f\302\260rall .A 1 \302\243./\302\243*,we

have tj -pr and \302\243/,is maximized.

6.50 Consider Exercise6.48;assume that the ith character of T has a positive cost c (/) associated
with it. Find the matching subsequence that maximizes the sum of costs. That is, find the

sequence of indices 1 </, < i2 < ''' <ik^n sucn that f\302\260rall j, \\<j<k, we have f, =py,

and
\302\243c(/y)

is maximized.
y=i

6.51 The largest common subsequence(LCS)of two sequences T and P is the largest sequence
L such that L is a subsequence of both T and P. The smallest common supersequence

(SCS) of two sequences T and P is the smallest sequenceL such that both T and P are

subsequences of L.

a. Design efficient algorithms to find the LCS and SCS of two given sequences.

b. Let d(T, P)be the smallest edit distance between T and P such that no replacements are
allowed (in other words, we have to insert and delete). Prove that

d(T, P)= | SCS(7\\ P)\\-\\ LCS(T,P) |, where | SCS(7\\ P) \\ (| LCS(7\\ P) \\) is the

size of the smallest SCS (LCS) of T and P.

6.52 Generalize the minimal-edit-distance problem presented in Section 6.8 to the case where
insertions at the beginning or the end of one of the sequences are not counted. In other

words, if B fits inside A, then we do not count the insertions needed to enlarge B; we count

182 Algorithms Involving Sequences and Sets

only the edit distance of B to the subsequence of A to which it fits. (Notice that, if you

insert at the beginning of B without cost, you must count the insertions at the end of A, and

vice versa.)

6.53 The sequence comparison problem can be generalized to three (or more) sequencesin the

following way. In each step, we are allowed to insert, delete, or replacecharacters from any

of the sequences. The costof a step is 0 if the corresponding characters in all sequences are

equal, and 1 otherwise (even if two sequences match and only one insertion or deletion is

necessary). For example, suppose that the sequences are aabb, bbb, and ebb. One possible
edit sequence is inserting a in front of bbb and ebb (which costs 1),replacing a b in bbb and

a e in ebb with an a, and then the rest matches; the total cost is 2. Design an 0(n3)

algorithm to find the minimal edit distance between three given sequences.

6.54 Let A = a, a2 '''
an and B = b, b2 '''

bm be two strings of characters. Denote by A [i] the

string 0,-0/+i \342\200\242\342\200\242\342\200\242
a\342\200\236(namely, the zth suffix of A). Let d(be the minimal edit distance

between B and A [i]. Design an 0(n2) algorithm to find the minimum value of d, (among

all i, 1 <i<n).

6.55 The input is a sequence of numbers jc,,jc2, ...,*\342\200\236.Prove that any deterministic algorithm

that selects a number from the set which is in the upper half (i.e., greater than or equal to the

median) must make at least \\j/2 n\\ comparisons.

6.56 Determine the expected number of steps required by the probabilistic coloring algorithm of
Section 6.9.2,in terms of both k and r.

6.57 Assume that you have a procedure for generating random numbers in the range 1 to k, for

every k < n. Design an algorithm to generate a random permutation of n numbers. Each

possible permutation should be selectedwith equal probability.

6.58 Public-opinion polls are examples of probabilistic algorithms. Suppose that there are two

candidates and n voters. A common algorithm is to ask k random voters and take the

average response. Assume that exactly one-half of the voters favor each of the candidates.

What is the probability that the results of the survey (with k voters) are in the range of 45

percent to 55 percent? (The result should be an expression with n, k, and the percentages as

parameters.)

6.59 The results of public-opinion polls are usually given with an \"error\" range. For example,
they may indicate that candidate X has x percent of the vote, and add that the poll has a \302\2613

percent margin of error. Discuss why stating the bounds on the percentage of error as
absolute bounds is not precise. What would be the precise way to define the error?

6.60 Thepurpose of this exercise is to compare Monte Carlo algorithms to Las Vegas algorithms.
In a nutshell, Monte Carlo algorithms guarantee the running time, but cannot guarantee

correctness; Las Vegas algorithms, on the other hand, guarantee correctness, but cannot
guarantee the running time. Suppose that the problem we consider is a decision problem, so

the answer is either yes or no. Assume that the error probability in the Monte Carlo
algorithm is at most 1/4. (This is enough since we can simply run the algorithm many times

and take the majority as the answer, thereby reducing the probability of error significantly.)

Which type of algorithm is more powerful? In other words, is it possible to convert one
type of algorithm to the other?

6.61 Design an algorithm that, given a list of n elements, finds all the elements that appear more

Creative Exercises 183

than nlA times in the list. The algorithm should use O(n) comparisons. (Hint: Modify the

majority algorithm.)

6.62 You are asked to design a schedule for a round-robin tennis tournament. There are n =2k

players. Each player must play every other player, and each player must play one match per
day for n - 1 days. Denote the players by P\\ ,/>2,..,/>\342\200\236.Output the schedule for each player.

(Hint: Use divide and conquer in the following way. First, divide the players into two equal

groups and let them play within the groups for the first n/2-\\ days. Then, design the

games between the groups for the other nil days.)

6.63 Design an algorithm to arrange a round-robin tennis tournament (see Exercise 6.62) for any

number of players. If the number of players is odd, then in each round one player does not

participate.
*
6.64 Letr!, r2,...,rn and cx,c2,..., cn be two sequencesof integers whose sum is equal; namely,

n n

Such sequences are called realizable if there is an n x n matrix all of whose elements are
either 0 or 1, such that, for all /, the sum of the ith row is exactly r, and the sum of the ith

column is exactly c,. Not all sequences are realizable. For example,the two sequences 0,2
and 0,2 are not realizable since only the second element of the second row can be nonzero,

but it cannot be more than 1. Design an algorithm to determine whether two given

sequences are realizable, and construct a matrix with the corresponding row and column
sums if they are. (Hint: First, strengthen the induction hypothesis to extend the problem to
n xm matrices. Then, use induction on n (the number of rows). Try to place Is in the first

row so that the problem for the other n -1 rows can be solved if and only if the original

problem can be solved.)

CHAPTER 7

GRAPH ALGORITHMS

A shortcut is the longest distance between two points.

Anon

7.1 Introduction

In the previous chapter, we discussed algorithms involving sets and sequences of objects.
The relationships we studied were limited to ordering, multiplicities, overlappings, and so

on. In this chapter, we discuss more involved relationships among objects. We use
graphs to model these relationships. Graphs can model a large variety of situations, and

they have been used in diverse fields ranging from archaeology to socialpsychology. We

present several important basic algorithms to manipulate graphs and to compute certain

graph properties.

First let's see examples of modeling by graphs.
1. Finding a good route to a restaurant in a city is a graph-theoretical problem. The

streets correspond to the edges (directededgesin the case of one-way streets), and

the intersections to the vertices. Eachvertex and each edge (street segment) can be
associatedwith an expected time delay, and the problem is to find the \"quickest\"

path between two vertices.

2. Some programs can be partitioned into states. From each state the program may

have several possibilities to proceed. Some of the states may be considered
undesirable.The problem of finding which states can lead to an undesirable state
is a graph-theoretical problem in which the states correspond to the vertices and an

edge indicates a possiblemove from one state to another.
3. The problem of scheduling classes in a university can be viewed as a graph-

theoretical problem. The vertices correspond to the classes, and two classes are
connectedif there is a student who wishes to take them both or they are both taught

by the same professor. The problem is to schedule the classes such that the

186 Graph Algorithms

conflicts are minimized. This is a difficult problem and good solutions to it are

hard to find.

4. Consider a computer system with several user accounts. Each user has a security

permission to access his or her account. Users may want to cooperate and to give

one another permission to use their account. However, if A has permission to use
\302\243'saccount, and B has permission to use C's account, then A may be able to use
C's account as well. The problem of identifying which users can access which

accounts is a graph-theoretical problem. The users correspond to the vertices in

this case, and there is a directed edge from user A to user B if A gives B

permission to use his or her account.

There are quite a few textbookson graph theory (see the Bibliography section), and

numerous other applications.
Representationsof graphs were discussed in Section 4.6. For the most part, we

will use the adjacency list representation, which is more efficient for sparse graphs (i.e.,

graphs with relatively few edges). We begin by introducing standard terminology. A

graph G - (V, E) consistsof a set V of vertices (alsocallednodes),and a set E of edges.
Each edge correspondsto a pair of distinct vertices. (Sometimesself-loops,which are

edges from a vertex to itself, are allowed;we will assume that they are not allowed.) A

graph can be directed or undirected.The edges in a directed graph are ordered pairs;
the order betweenthe two vertices the edge connects is important. In this case, we draw

an edge as an arrow pointing from one vertex (the tail) to another (the head). The edges
in an undirected graph are unordered pairs; we draw them simply as line segments. A

multigraph is a graph with possibly several edges between the same pair of vertices (i.e.,
\302\243is a multiset). Graphs that are not multigraphs are sometimes called simplegraphs.

Unless specified otherwise, we will assume that the graphs we deal with are simple. The

degree d(v) of a vertex v is the number of edges incident to v. In a directed graph, we

also distinguish between the indegree, which is the number of edges for which v is the

head, and the outdegree, which is the number of edges for which v is the tail.
A path from V! to v* is a sequence of vertices v1(v2,..., v* that are connected by

the edges (v1(v2), (v2, v3),..., (vk_{, vk) (these edges are also usually considered to be

part of the path). A path is called simple if each vertex appears in it at most once.
Vertex u is said to be reachable from vertex v if there is a path (directed or undirected,

depending on the graph) from v to u. A circuit is a path whose first and last vertices are
the same. A circuit is called simple if, except for the first and last vertices, no vertex

appears more than once. A simple circuit is also called a cycle. (Circuits are sometimes

called cycles even if they are not simple; we will assume that cycles are always simple.)
The undirected form of a directed graph G=(V, E) is the the same graph without
directions on the edges. A graph is called connected if (in its undirected form) there is a

path from any vertex to any other vertex. A forest is a graph that (in its undirected form)
does not contain a cycle. A tree is a connected forest. A rooted tree (also known as an

arborescence) is a directedtree with one distinguished vertex called the root, such that

all the edges are pointing away from the root.
A subgraph of a graph G =

(V, E) is a graph // = (\302\243/,F) such that UQV and

F \302\243E. A spanning tree of an undirected graph G is a subgraph of G that is a tree and

7.2 Eulerian Graphs 187

that contains all the vertices of G. A spanning forest of an undirected graph G is a

subgraph of G that is a forest and that contains all the vertices of G. A vertex-induced

subgraph of a graph G = (V, E) is a subgraph H = (U, F) such that (/cV and F consists

of all the edges in E both of whosevertices belong to U. A vertex-induced subgraph is

usually simply called an induced subgraph. If a graph G =
(V, E) is not connected, then

it can be partitioned in a unique way into a set of connected subgraphs called the

connected componentsof G. A connected component of G is a connected subgraph of

G such that no other connected subgraph of G contains it. In other words, a connected
component is a maximal connected subgraph. A bipartite graph is a graph whose

vertices can be divided into two sets such that all edges connect verticesfrom one set to

vertices in the other set. A weighted graph is a graph with weights (or costs, or lengths)

associated with the edges.

Many definitions for directed and undirected graphs are similar, except for some
obvious differences. For example, directed paths and undirected paths are defined in

exactly the same way, but, of course, the directions of the edges in directed paths are

specified. When we discuss one type of graph we will not specifically use a different

notation. So, for example, when we talk about paths in the context of directed graphs we

will mean directed paths.
We start with a simple example that is considered to be the first problem in graph

theory
\342\200\224

walking the bridges of Kbnigsberg. We then discuss how to traverse a graph,

how to order a graph, how to find shortest paths in a graph, how to partition the graph

into blocks satisfying certain properties, and other problems. Chapter 10 includes a

discussion on the relationships of graph algorithms and matrix algorithms. Several more

graph algorithms are presented there.

7.2 Eulerian Graphs

The notion of Eulerian graphs is involved in what is considered to be the first solved

problem of graph theory. The Swiss mathematician Leonhard Euler encounteredthe

following puzzle in 1736. The town of Kbnigsberg (now Kaliningrad) lay on the banks

and on two islands of the Pregel river, as is shown in Fig. 7.1. The city was connected by
seven bridges. The question (which many townspeople attempted to solve) was whether

it was possible to start walking from anywhere in town and return to the starting point by

crossing all bridges exactlyonce. The solution is obtained by abstracting the problem.

The graph in Fig. 7.2 is equivalent, for the purpose of the problem, to the layout of Fig.
7.1. The question becomes the graph-theoretical problem of whether it is possible to find

a circuit in the graph that contains each edge exactly once. Another way to pose the

question is to ask whether it is possible to draw the graph in Fig. 7.2 \342\200\224and end at the
same place from which we started \342\200\224without lifting the pencil. Euler solved this

problem by proving that such a traversal is possible if and only if the graph is connected
and all its vertices have even degrees. Such graphs are called Eulerian graphs. Since
the graph in Fig. 7.2 contains vertices of odd degrees,it follows that the Kbnigsberg
bridges problem is impossibleto solve. A proof of this theorem by induction, which

corresponds to an efficient algorithm for constructing the closed path, is given next.

188 Graph Algorithms

B

Figure 7.1 The Kbnigsberg bridges problem.

A

B

Figure 7.2 The graph corresponding to the Kbnigsberg bridges problem.

The Problem Given an undirected connected graph G = (V, E) such

that all the vertices have even degrees,find a closed path P such that

each edge of E appears in P exactly once.

It is easy to prove that all vertices must have even degreefor such a closed path to exist:
When traversing a closed path, we enter and leave each vertex the same number of times.

Since each edge is used exactly once, the number of edges adjacentto each vertex must
be even. To prove by induction that the condition is sufficient, we first have to decide

7.3 GraphTraversals 189

which parameter to apply the induction. The first consideration is to be able to reduce the

problem without changing it. If we remove a vertex or an edge, the resulting graph may

not satisfy the even-degree property. We should remove a set of edges S such that, for

each vertex v in the graph, the number of edgesfrom S adjacent to v is even (possibly 0).

Any circuit satisfies this requirement, so the question is whether an Eulerian graph

always contains a circuit. Suppose that we start traversing the graph, without going

through any edge more than once, from an arbitrary vertex v in an arbitrary order. We

claim that the traversal will eventually return to v because, whenever we enter another

vertex, we reduce the degree of that vertex by 1, making it odd, and therefore we can

always leave it. (Note that this circuit may not include all the edges.)
We are now ready to state the induction hypothesis and prove the theorem.

Induction hypothesis:A connected graph with < m edges, all of whose

vertices have even degrees, containsa closedpath that includes each edge

exactly once, and we know how to find that path.

(It is easier to state the induction hypothesis in terms of the number of edges rather than

the number of closed paths, even though the induction is performed on paths.) Consider
a graph G = (V, E) with m edges. Let P be a closedpath in G. Let G' be the graph

resulting from removals of all the edges of P from G. The degreesof all vertices in G'

must be even, since the number of removed edges adjacent to any vertex is even. But we

cannot simply apply the induction hypothesis yet, since G' may not be connected. Let

G\\,G\\,...,G\\ be the connected components of G'. In each component, the degrees of
all vertices are even. Furthermore, the number of edges in each component (indeed, in

all of them together) is < m. Hence, we can now apply the induction hypothesis to each

component.That is, by the induction hypothesis, each component has a closedpath that

includes every edge exactly once, and we know how to find it. Denote these k closed

paths by P! ,/>2,...,/>a- We now need to merge all these paths to one closed path covering
the whole graph G. We start with any vertex in P and traverse P until we meet the first

vertex
vy belonging to one of the components G'y. At this point, we traverse the path P}

returning to vy. We can continue this way, traversing the paths of the components the

first time we meet them, until we return to the starting vertex. At this point, all edges will

have been traversed exactly once. This closedpath is called an Eulerian circuit. The
algorithm is not yet complete. We still need to find an efficient method to identify the

connected components, and an efficient method to traverse the graph. Both of those
issues are discussednext. The implementation of the Eulerian circuit algorithm is left as
an exercise.

7.3 Graph Traversals

The first problem we encounter when trying to design a graph algorithm is how to look at

the input. This was a trivial problem in the previous chapter because of the one-

dimensionality of the input
\342\200\224

sequences and sets can be easily scanned in linear order.

Scanning a graph, or traversing it, as we call it, is not straightforward. We present two

traversal algorithms
\342\200\224

depth-first search (DFS), and breadth-first search (BFS).Most

190 Graph Algorithms

of the algorithms in this chapter depend, in one way or another, on one of these

techniques.

7.3.1 Depth-First Search

The depth-first
search algorithms for directed graphs and undirected graphs are almost

identical. However, since we also want to explore several graph properties that are

different in directed graphs and in undirected graphs, we divide the discussion into two

parts.

Undirected Graphs

Supposethat the undirected graph G =
(V, E) corresponds to an art gallery consisting of

an arrangement of corridorswhere the paintings are hung. The edgesof G correspond to

the corridors, and the vertices correspond to the intersections of the corridors. We want

to walk through the gallery and see all the paintings. We assume that we can see both

sides of a corridor when we walk through it in any direction. If the graph is Eulerian,

then it is possible to walk throughout the gallery visiting each corridorexactly once. We

do not assume here that the graph is Eulerian, and we allow each edge to be traversed
more than once (as it turns out, each edge will be traversed exactly twice). The idea

behind depth-first search is the following. We walk through the gallery trying to enter
new corridors whenever we can. The first time we visit an intersection, we leave a
pebble there, and we continue from another corridor (unless it is a deadend). When we

arrive at an intersection that already has a pebble, we return through the same corridor
from which we came, and try another corridor. If all the corridors leading from the

intersection have already been visited, then we remove the pebble from this intersection,

and return through the corridor from which we first entered. We will not visit this

intersection again. (Removing the pebbles is done only to clean the gallery; it is not an

essential part of the algorithm.) We always try to explore new corridors; we return from
the corridor from which we first entered an intersection, only if we tried all other
corridors. We call this approach depth-first search (DFS)to indicate that we first try to

visit new edges (going deeper into the gallery). The main reasons for the usefulness of

DFS is the way it divides the graph and its adaptability to recursive algorithms.

The description we gave of DFS was in terms of walking and putting down

pebbles. Let's see now how DFS is implemented for undirected graphs given in the

adjacency list representation. The traversal is started from an arbitrary vertex r, which is

called the root of the DFS. The root is marked as visited. An arbitrary (unmarked)

vertex rx, connected to r, is then picked and a DFS starting from r{ is performed
(recursively). The recursion stops when it reaches a vertex v such that all the vertices
connectedto v are already marked. If, after the DFS for r { terminates, all the vertices

adjacent to r are marked, then the DFS for r terminates. Otherwise,another arbitrary

unmarked vertex r2 connected to r is picked,a DFSstarting from r2 is performed, and so

on.

There is generally a purpose for traversing the graph. To incorporate different

applications with the DFS framework, we associatetwo types of work, preWORK and

postWORK, with visiting a vertex or an edge; preWORK is performed at the time the

7.3 Graph Traversals 191

vertex is marked, and postWORK is performed after we backtrack from an edge or find

that the edge leads to a marked vertex. Both preWORK and postWORK dependon the

application of DFS. This notation allows us to present several applicationsby defining

only preWORK and postWORK. The DFSprogram is given in Fig. 7.3. The starting

vertex of the recursive call is v. For simplicity, we first assume that the graph is

connected. An example is given in Fig. 7.4, where the numbers associated with the

vertices indicate the order in which the vertices could be traversedby DFS.

Algorithm Depth_First_Search (G, v);
Input: G=

(V, E) (an undirected connected graph), and v (a vertex of G).
Output: dependson the application.

begin
mark v ;

perform preWORK onv ; {preWORK depends on the application of DFS}
foralledges (v, w) do

ifw is unmarked then Depth First Search(Gf w) ;
perform postWORK for (v, w)

{postWORKdependson the application of DFS; it is sometimes

performed only on edges leadingto newly marked vertices.}
end

Figure 7.4 Algorithm Depth First_Search.

\342\226\241Lemma 7.1

// G is connected, then all its vertices will be marked by algorithm

Depth First Search,and all its edges will be looked at at least onceduring

the execution of the algorithm.

Figure 7.4 A DFS for an undirected graph.

192 Graph Algorithms

Proof: Suppose the contrary, and let U denote the set of unmarked vertices

remaining at the end of the algorithm. Since G is connected, at least one vertex from U

must be connected to at least one marked vertex. But this situation cannot happen, since

whenever a vertex is visited, all the unmarked vertices adjacent to it are visited (hence

marked) too. Sinceall vertices are visited, and since whenever a vertex is visited all its

edges areconsidered,all edges are considered. \342\226\241

If a graph G=(V, E) is not connected, we have to modify DFS slightly. If all

vertices are marked after the first try, then the graph is connected and we are done.
Otherwise, we start with an arbitrary unmarked vertex, perform another DFS, and so on.

Thus, we can use DFSto determine whether or not a graph is connected and to find its

connected components. The corresponding algorithm is given in Fig 7.5. We will

generally consider only connected graphs, because otherwisewe can usually deal with

each connected component separately. Thus, we will use DFS as it is described in Fig.
7.3, without specifically mentioning that it may have to be run several times as in Fig.

7.5.

Algorithm ConnectedjComponents (G);
Input: G =(V, E) (an undirected graph).
Output: v.Component is set to the number of the component containing v,

for every vertex v.

begin
Component Number := 1 ;

while there is an unmarked vertex v do

Depth First_Search{G, v);
(using the following preWORK:

v.Component .= Component Number ;)

Component Number :- Component Number + 7

end

Figure 7.5 Algorithm Connected Components.

Complexity It is easy to see that each edge is looked at exactly twice (once from
each end). Therefore, the running time is proportional to the number of edges. However,
since the graph may contain many vertices that are not connected to anything (and all of

them must be examined), we must include 0(\\V |) in the expression for the running

time. Therefore, the overall running time is O (| V | + | E |).

Constructing the DFS Tree

Next, we present two simple uses of DFS\342\200\224
numbering the vertices with DFS numbers,

and building a special spanning tree, called the DFS tree. The DFSnumbers and the

DFS tree exhibit special properties that are useful for many algorithms. Even if the tree

7.3 Graph Traversals 193

is not built explicitly, it is easier to understand many algorithms by considering it. To

describe these algorithms, we need only to describe either preWORK or postWORK. The

algorithm for numbering the vertices with DFS numbers is given in Fig. 7.6, and the

algorithm for building the DFS tree is given in Fig. 7.7. These two algorithms need not

be performed separately.

Algorithm DFS_Numbering (G, v);

Input: G =
(V, E) (an undirected graph), and v (a vertex of G).

Output: for every vertex v, v.DFS is set to the DFS number of v.

Initially DFS Number := 1 ;
UseDFSwith the following preWORK:

preWORK:
v.DFS := DFSNumber;
DFSNumber := DFSNumber + 1 ;

Figure 7.6 Algorithm DFS Numbering.

Algorithm Build_DFS_Tree (G, v) ;

Input: G = (V, E) (an undirected graph), and v (a vertex of G).
Output: T (a DFS tree of G; T is initially empty).

Use DFS with the following postWORK:

postWORK:
ifw was unmarked then add the edge (v, w) to T ;
{thestatement above can be included in the if statement (line 4) of

algorithm Depth First Search }

Figure 7.7 Algorithm Build DFS Tree.

A vertex v is called an ancestor of a vertex w in a tree T with root r, if v is on the

unique path from w to r in T. If v is an ancestor of u\\ then w is called a descendant of v.

\342\226\241Lemma 7.2 (The main property of undirected DFS trees)

Let G=
(V, E)be a connected undirected graph, and let 7=(V, F) be a DFS

tree of G constructed by algorithm Build DFS Tree. Every edge eeE

either belongs to T (i.e.,eeF), or connects two vertices of G, one of which

is the ancestor of the other in T.

Proof: Let (v, u) be an edge of G, and suppose that v is visited by DFS before u.

After v is marked, we perform DFS starting from all neighbors of v that have not been
marked yet. Since u is a neighbor of v, the DFS will either start from w, in which case
(v, u) will belong to 7, or the DFS will visit u before it backtracks from v, in which case
u is a descendant of v in T. \342\226\241

194 Graph Algorithms

In other words, DFS avoids crossedges,which are edges connecting vertices

sideways across the tree. Avoiding cross edges is important for recursive procedures

performed on the graph, as we will see later.

Since DFS is a very important program, we also include its nonrecursive version.

The main tool for implementing a recursiveprogram is a stack, which keeps information

needed to \"unfold\" the recursive calls. A compiler maintains all the local data
associatedwith every instance of the recursive procedureon the stack. Hence, when one
recursiveinstance ends, we can get back to the exact point (with the exact information) in

the calling procedure (which may be another instance of the same recursive procedure).

Frequently, not all local data need to be maintained on the stack, which is one reason

why using nonrecursive procedures is more efficient. The nonrecursive version we give
next is a good example of a translation from a recursive to a nonrecursive program.

One major difficulty we face in translating a recursive version into a nonrecursive

version is that we need explicit bookkeeping. We called DFSrecursively inside a for

loop, and expected the program to remember the right place in the loop from which to

continue after the end of the recursive call. In a nonrecursive version, we must maintain

this information explicitly. We assumethat each vertex v has a linked list of its incident

edges in a certain order (DFS will follow this order). The list is pointed to by v.First.

Each item in the list is a recordcontaining two variables: Vertex and Next. Vertex is the

name of the vertex on the other side of the edge, and Next points to the next item. Next of
the last edge on the list points to nil. DFS proceeds as before, traversing down the tree
until no new vertices are found. A stack is maintained throughout the search. The stack
contains all the vertices on the path from the root to the current vertex (in the order of the

path). Between every two vertices Parent and Child, the stack contains a pointer to the

edge from Parent that is the next one DFS traverses when it backtracks from Child. The
nonrecursive version of DFSis given in Fig. 7.8.

Directed Graphs
The procedure for DFS for directed graphs is identical to that for undirected graphs.
However,directed DFS trees have different properties. It is no longer true that there are

no cross edges, as can be seen in Fig. 7.9. There are now four types of edges \342\200\224tree

edges, back edges, forward edges, and cross edges. The first three types of edges
connect two vertices one of which is a descendant of the other in the tree: Tree edges
connect parents to children in the tree, back edges connect descendantsto ancestors, and

forward edges connect ancestorsto descendants. Only cross edges connect verticesnot

\"related\" in the tree. Cross edges, however, must cross from \"right to left,\" as is

shown in the next lemma.

\342\226\241Lemma 7.3 (The main property of directed DFS trees)

Let G = (V, E) be a directed graph, and let T=(V, F) be a DFStree ofG. If

(v, w) is an edge in E such that v.DFS _N umber < w.DFSNumber, then w

is a descendant ofv in the tree T.

7.3 Graph Traversals

Algorithm Nonrecursive_Depth_First_Search (G, v) ;

Input: G =(V, E) (an undirected connected graph), and v (a vertex of G).

Output: dependson the application.

(We use the Pascal pointer symbolA explicitly here;

we will not do that in the rest of this chapter. }

begin

while there is an unmarked vertex v do

mark v ;

perform preWORK on v ;

Edge := v.First ;
push v and Edge to the top of the stack ;
Parent := v ;

{ initialization up to here; now comes the main loop of the recursion }

while the stack is not empty do

remove Edge from the top of the stack ;
while Edge * nil do

Child := Edge*.Vertex ;

if Child is unmarked then

mark Child;

perform preWORK on Child ;
push Edge*.Next to the top of the stack ;

{ so that we can return to the next edge when we are done
with Child}

Edge := Child.First ;
Parent := Child ;

push Parent to the top of the stack ;
else {Edge is a back edge }

perform postWORKfor(Parent, Child) ;

{this step is skippedif we perform postWORK only on

tree edges}
Edge := Edge*.Next;

remove Child from the top of the stack ;
if the stack is not empty then

{the stack becomes empty when Child is the root}
let Edge and Parent be at the top of the stack ;

{ do not remove them }

perform postWORKfor (Parent,Child)

end

Figure 7.8 Algorithm Nonrecursive_Depth_First_Search.

196 GraphAlgorithms

Figure 7.9 A DFS tree for a directed graph.

Proof: Since the DFS number of w is greater than that of v, w was visited after v.

Since (v, w) is an edge in \302\243,(v, w) must be considered during the DFS of v. If at that

time w was unmarked, (v, w) would be added to the tree; hence, (v, w)e F, and the
condition is satisfied. Otherwise, w was marked after v during the recursive call of DFS
from v. Hence, w must be a descendant of v in the tree T. \342\226\241

DFS for connected undirected graphs, starting from any vertex, traverses the whole

graph. This is not so for directed graphs. Consider the directed graph in Fig. 7.10. If
DFS starts at a, for example, then only the left column will be traversed. DFS will

traversed the whole graph of Fig. 7.10only if it starts at v. If v and its two incident edges
are deletedfrom the graph, then there is no vertex from which a DFS traverses the whole

graph. We must start again from an unmarked vertex, and continue doing so until all

vertices are marked. Therefore, whenever we talk about DFS for directed graphs, we
assume that it is run until all the vertices are marked and all the edges are considered.

a v

#4 +* f

<L <L i

*< #< #

Figure 7.10 An example of a directed DFS that does not traverse the whole graph.

7.3 Graph Traversals 197

As an example, we show how to use DFS to determine whether or not a graph is

acyclic.

The Problem Given a directed graph G =(V, \302\243),determine

whetherit contains a (directed) cycle.

\342\226\241Lemma 7.4

Let G =(V, E) be a directedgraph, and let T be a DFS tree ofG. Then, G

contains a directed cycle if and only if G contains a backedge(relative to

n

Proof: If there is a backedge,then it leads to a vertex higher up in the tree, so it

completes a cycle. Conversely, let C be a cycle in G and let v be the vertex in C with the

lowest DFS number. We claim that the edge (u\\ v) leading to v in C is a back edge. It

cannot be a forward or a tree edge, since it leads from a higher DFS-numbered vertex to

a lower DFS-numberedvertex. Suppose that v is not an ancestor of w in the tree, and let
u be the lowest common ancestor of v and w. Since v has a lower DFS number than that

of u\\ it is in a subtree of u that was visited before the subtree of u that contains w. This

implies that the only way to reach w from v is through u or an ancestor of u (since it is

impossible to go \"from left to right\.") But, C contains a path from v to u\\ and C cannot

contain an ancestor of v since v has the lowest DFS number in C \342\226\241

The algorithm for determining whether a directed graph is acyclic is given in Fig. 7.11.

Algorithm Find_a_Cycle (G) ;
Input: G =(V, E) (a directed graph).
Output: FindaCycle (true if G contains a cycle and false otherwise).

Use DFS, starting from an arbitrary vertex, with the following preWORK

andpostWORK:

preWORK:
v.on_the_path := true ;

{x.onjhejpath is true ifx is on the path from the root to the current vertex}

{ initially x.onjhejpath
= false for all vertices,and FindaCycle is false }

postWORK:

ifw.onjhejpath then FindjijCycle := true ; halt ;

ifw is the last vertex on v's list then v.onjhe_path :=false ;

Figure 7.11 Algorithm Findji_Cycle.

198 Graph Algorithms

7.3.2 Breadth-First Search

Breadth-first search (BFS) traverses the graph in what seems like a more organizedorder

\342\200\224it does so level by level. If we start from a vertex v, then all v's children are visited
first. The second level includes a visit to all the \"grandchildren,\" and so on (see Fig.

7.12). The traversal is implemented similarly to the nonrecursive implementation of

DFS, except that the stack is replaced by a queue. We can associate BFS numbers with

vertices similarly to DFS numbers. That is, a vertex w has BFS number k if it was the kih

vertex to be marked by BFS. We can build a BFS tree by including only edges that lead

to newly visited vertices. The BFS algorithm is given in Fig. 7.13. (The notion of

postWORK is not as well defined for BFS as it is for DFS, since intuitively the search

does not proceed \"down and up,\" but only down; we therefore omit it.)

\342\226\241Lemma 7.5

If an edge (u,w) belongs to a BFS tree, such that u is a parent ofw, then u

has the minimal BFS number among vertices with edges leading to w.

Proof: The claim follows from the first-in-first-out property of the queue. \342\226\241

\342\226\241Lemma 7.6

For each vertex w, the path from the root to w in T is a shortestpath from

the root to w in G.

Proof: Left to the reader. \342\226\241

The level of a vertex w is the length of the path in the tree from the root to w. BFS
traverses the graph level by level.

Figure 7.12 A BFS tree for a directed graph.

7.4 Topological Sorting 199

Algorithm Breadth_First_Search (G, v);
Input: G = (V, E) (an undirected connected graph), and v (a vertex of G).
Output: depends on the application.

begin
mark v ;

put v in a queue {First In First Out};
while the queue is not empty do

remove the first vertex wfrom the queue ;

perform preWORK on w ;

{ preWORK depends on the application ofBFS }

for all edges(u\\ x) such that x is unmarked do

mark x;

add (u\\ x) to the tree T ;
put x in the queue

end

Figure 7.13 Algorithm Breadth_First_Search.

\342\226\241Lemma 7.7

// (v,w) is an edge in E that does not belong to T, then it connects two

vertices whose level numbers differ by at most 1.

Proof: Left to the reader. \342\226\241

Now that we know how to traverse a graph, we present several algorithms involving

graphs. We again use the design-by-induction technique very heavily.

7.4 Topological Sorting

Suppose that there is a set of tasks that need to be performed one at a time. Some tasks

depend on other tasks and they cannot be started until the other tasks are completed. All

the dependencies are known, and we want to arrange a schedulefor performing the tasks

which is consistent with the dependencies (i.e., every task is scheduled to be performed

only after all the tasks on which it is dependent are completed). We want to design a fast

algorithm to generate such a schedule. This problem is called topological sorting. We

can associate a directed graph with the tasks and their dependencies in the following
way. Each task is associated with a vertex and there is a directededgefrom task x to task
y if y cannot start until x is finished. Obviously, the graph must be acyclic; otherwise,
sometaskscan never be started.

200 Graph Algorithms

The Problem Given a directedacyclic graph G = (V, E) with n

vertices, label the vertices from 1 to n such that, if v is labeled k, then all

vertices that can be reached from v by a directed path are labeledwith

labels >k.

The straightforward induction hypothesis is the following.

Induction hypothesis: We know how to label all directed acyclic graphs

with < n vertices according to the conditions above.

The base case of one vertex is trivial. As usual, we consider a graph with n vertices,

remove one vertex, apply the induction hypothesis, and try to extend the labeling. We
are free to choose any vertex as the rtth vertex. Therefore, we should choose a vertex that

will simplify our work. We need to label vertices. Which vertex is the easiest to label?
It is clearly a vertex (task) with no dependencies

\342\200\224
namely, a vertex whose indegree is

zero.This vertex can be labeled 1 without any problems. Can we always find a vertex of

indegree zero? The answer is intuitively yes, since we must be able to start somewhere.
The following lemma establishes this fact.

\342\226\241Lemma 7.8

A directed acyclic graph always containsa vertex with indegree 0.

Proof: If all the vertices had positive indegrees, then we could traverse the graph

\"backward\" and never have to stop. Sincethere are finitely many vertices, however, we
must go through a cycle, which is impossible in an acyclic graph. (By the same

argument, there is a vertex with outdegree 0.) \342\226\241

We will see shortly how to find a vertex with indegree 0. Once we find it, we label
it 1, remove it with its adjacent edges, and label the rest of the graph \342\200\224which is still

acyclic, of course \342\200\224with labels 2 to n. (To be completely precise, the induction

hypothesis assumed labelsof 1 to n - 1 instead of 2 to n, but this causes no problems.)
Notice that once we decided to select a vertex of indegree 0 for the reduction, the

algorithm followed with little effort.

Implementation The only implementation problems are how to find a vertex with

indegree 0 and how to adjust the indegrees when a vertex is removed. We associatea
variable Indegree with each vertex, such that initially v.Indegree is equal to v's indegree.
The Indegree variables can be initialized by traversing all the edges in any order (using
DFS, for example), and incrementing w.Indegree whenever an edge (v, w) is traversed.

The vertices with indegree 0 are put in a queue (a stack will do just as well). By Lemma
7.8, there is at least one vertex v with indegree 0. It is easy to find v \342\200\224it is simply
removed from the queue. Then, for each edge (v, w) coming out of v, the counter of w is

decreased by 1. When a counter becomes 0, the vertex is put on the queue. A removal of
v leaves the graph still acyclic. Therefore, by Lemma 7.8, there must be at least one

7.5 Single-Source Shortest Paths 201

vertex of indegree 0 in the remaining graph. The algorithm terminates when the queue
becomes empty, in which case all the vertices have been labeled. The algorithm is given
in Fig. 7.14.

Complexity Initializing the Indegree variables requires 0(|V| + |\302\243|) time.

Finding a vertex with indegree 0 takes constant time (accessinga queue). Each edge

(v, w) is considered once (when v is taken from the queue). Thus, the number of times

the variables need to be updated is exactly equal to the number of edges in the graph.

The running time of the algorithm is therefore O (| V \\ + \\E |), which is linear in the size

of the input.

7.5 Single-Source Shortest Paths

In this section, we deal with weighted graphs. Let G =(V, E) be a directed graph with

nonnegative weights associated with the edges. We will call the weights lengths in this

section, because traditionally the problem is called the shortest path problem (rather than

the lightest path problem). (Length of a path also sometimes denotes the number of

edges in the path; we will be careful to avoid confusion.) If the graph is undirected, we

can think of it as a directed graph such that each undirected edge correspondsto two

directed edges (in opposite directions)with the same length. Thus, the discussion in this

section applies to undirected graphs as well. The length of a path is the sum of the

lengths of its edges.

Algorithm Topological^Sorting (G) :

Input: G =(V, E) (a directed acyclic graph).

Output: The Label field indicates a topological sorting of G.

begin

Initialize v.Indegree for all vertices ; {e.g.,by DFS }

GJabel := 0 ;
fori :=Hondo

ifVj.Indegree
= 0 then put v, in Queue ;

repeat
remove vertex v from Queue ;

GJabel := GJabel + I ;

v.label := GJabel ;
for alledges(v, w) do

w.Indegree := w.Indegree - I ;
if w.Indegree

= 0 then put w in Queue ;
until Queue is empty

end

Figure 7.14 Algorithm Topological_Sorting.

202 GraphAlgorithms

The Problem Given a directed graph G = (V, E) and a vertex v, find

shortest paths from v to all other vertices of G.

For simplicity, we discuss only how to find the length of the shortest paths. The

algorithms can be extended to find the actual paths. There are many examples of shortest

path problems. For example,the graph may correspond to a road map, and the length of

a segment may correspond to its actual length, to the expected time it takes to travel

through it, or to the cost of constructing it, depending on the problem.

The Acyclic Case
Let'sfirst assume that the graph G is acyclic. The problem is easier in this case, and its
solution will help us to find a solution to the general case. We try induction on the
number of vertices. The base case is trivial. Let | V \\

\342\200\224n. We can use topological
sorting as discussed in the previous section. If the label of v is k, then all vertices with

labels <k need not be considered. There is no way to reach these vertices from v.

Furthermore, the order imposed by the topological sorting is a good order for the

induction. Consider the last vertex, namely, the vertex z with label n. Suppose

(inductively) that we already know the shortest paths from v to all vertices except for z.
Denote the length of the shortest path from v to w by w.SP. To find z.SP, we need only to
check those vertices w with edges leading to z. Since the shortest paths to all other
vertices are already known, z.SP is equal to the minimum, over all w with an edge to z, of
w.SP+ length (w\\ z). Are we done? We have to be careful that adding z does not shorten

the distance to other vertices. But, since z is the last vertex in the topological order, no
other vertex in the graph can be reached from z, so no other path is affected. Therefore,

by removing z, computing the shortest paths without it, then putting it back, we have
solved the problem. The corresponding induction hypothesis is the following.

Induction hypothesis: Given a topological ordering, we know how to find

the lengths of the shortest pathsfrom v to the first n - 1 vertices.

Given an acyclic graph with n vertices in a topological order, we remove the /2th vertex,

solve the reduced problem by induction, then take the minimum of the values

w.SP + length (w, z) over all w such that (w\\ z)e E. The algorithm is given in Fig. 7.15.

We now improve the algorithm such that the topological ordercan be found hand in hand

with the shortest paths. In other words, we want to combine the two passes, one for the

topological sorting and one for the shortest paths, into one pass.
Considerthe way the algorithm will be executed recursively (after the topological

order is found). Assume, for simplicity, that the label of v in the topological order is 1.
The first step is the call to the recursive procedure. It will call itself repeatedly until v is

reached. At that time, the length of the shortest path to v is set to 0, and the recursion

starts to unfold. The vertex u with label 2 will be considered next, and the length of its
shortest path will be set to the length of the edge from v to u if it exists; otherwise, there
is no path from v to u. The next step will be to check the vertex x with label 3. In this

7.5 Single-Source Shortest Paths 203

Algorithm Acyclic_Shortest_Paths (G, v, n) ;

Input: G =(V, E) (aweighted acyclic graph), v (a vertex),
and n (the number of vertices).

Output: For every vertex w e V, w.SP is the length of the shortest path

from v to w.

{ We assume that a topological sort has already beenperformed. An improved

algorithm, which computes the topological order as well, is given in Fig. 7.16.)

begin

let z be the vertex labeled n { in the topological order };

ifz * v then

Acyclic _Shorte st_Paths (G-z,v,n-\\);
{G-z results from removing z with its incident edges from G }
for all w such that (u\\ z) e E do

if w.SP+ lengthfw, z) < z.SP then

z.SP := w.SP + length(w, z) ;

else vSP := 0
end

Figure7.15Algorithm Acyclic Shortest Paths.

case, there may be edges to x from v and/or from w, and the corresponding paths will be

compared. Instead of applying recursion in some sense \"backward,\" we now try to

execute the same steps in increasing order of labels.
The induction is applied in increasing order of labels starting from v. This order

will eliminate the need to know the labels in advance, and we will be able to run both

algorithms at the same time. We assume that the lengths of the shortest paths to vertices

labeled 1 to m are known, and we consider the vertex labeled m + 1, call it z. To find the

shortest path to z, we need to check all edges coming into z. The topologicalorder

guarantees that all such edges come from vertices with smaller labels. By the induction

hypothesis, these vertices have already beenconsidered;hence, the lengths of the shortest

paths to them are already known. For each such edge (u\\ z), we know the length of the

shortest path to u\\ w.SP, hence the shortest path through this edge to z is w.SP +
length (w\\ z). Therefore, the length of the shortest path to z is the minimum, over all w>

of w.SP + length (w, z). Furthermore, as before, we need not worry about adjusting
shortest paths to vertices with lower labels, since there is no way to reach any of them

from z. The improved algorithm is given in Fig. 7.16.

Complexity Each edge is checkedonce in the initialization of the indegrees and

once when its tail is removed from the queue. The queue is accessed in constant time.
Each vertex is considered only once. Therefore, the worst-case running time is

0(|V| + |\302\243|).

204 Graph Algorithms

Algorithm Improved_Acyclic_Shortest_Paths (G, v);
Input: G = (V, E) (a weighted acyclic graph), v (a vertex of G).
Output: For every vertex vt\\ w.SP is the length of the shortest path from v to w.

{ This is a nonrecursive version of the previous algorithm, and it includes

topological sorting }

begin

for all vertices w do

w.SP := oo ;
Initialize v.indegree for all vertices ; {e.g.,by DFS }

fori := 1 to n do

ifvj.indegree = 0 then put v, in Queue ;
v.SP:= 0 ;
repeat

remove vertex wfrom Queue ;
for all edges(w\\ z) do

if w.SP + length(w, z) < z.SP then
z.SP := w.SP+ length(w, z);

z.indegree := z.indegree - 1 ;

ifz.indegree ^ 0 then put z in Queue ;
until Queue is empty

end

Figure 7.16 Algorithm Improved_Acyclic_Shortest_Paths.

The General Case

When the graph is not acyclic, there is no such thing as a topological order, and the

algorithms we just discussed cannot be applied directly. It may be possible, however, to
use the ideas of these algorithms for the general case. The simplicity of the algorithms

we presented is a result of the following feature of topologicalorder:

If z is a vertex with label k, then (I) there are no paths from z to vertices

with labels < k, and (2) there are no paths from vertices with labels > k to
z.

This feature enables us to find the shortest path from v to z without having to consider the

vertices that are after z in the topological order. Can we somehow define an order on the

vertices of a general graph that will allow us to do something similar?
The ideais to consider the vertices of the graph in the order imposed by the lengths

of their shortest paths from v. We do not know these lengths initially, of course; we will

find them during the execution of the algorithm. First, we check all the edges coming out
of v. Let (v, x) be the edge of minimum length among them. Since all lengths are
positive, the shortest path from v to x is the edge (v, x). All other paths from v are at least

7.5 Single-Source Shortest Paths 205

as long. So, we know the shortest path to jc, and this can serve as the base case for the

induction. Let's try one more step. How can we find the shortest path to one more
vertex? We choose the vertex that is second closestto v (x is the first closest). The only

paths we need to considerare other edges from v or paths consisting of two edges
\342\200\224the

first edge is (v, jc) and the second is an edge from x. We choose the minimum of

length (vy y) (y*x) or length (v, jc) + length (xyz) (z*v). Again, we do not need to

consider any other paths, since this is the shortest way to get out of v (except to x). Here
is the general induction hypothesis.

Induction hypothesis: Given a graph and a vertex v, we know the k

vertices that are closestto v and the lengths of the shortest paths to them.

Notice that the induction is on the number of vertices whose shortest paths have already

been computed and not on the size of the graph. Furthermore, it assumes that these are

the closest vertices to v and that we can identify them. We know how to find the closest

vertex (x above), so the base case, with k = 1,is solved. When k = | V \\
- 1, the complete

problem is solved.
Denote the set containing v and the k closest vertices to v by Vk. The problem is to

find a vertex w that is closest to v among the vertices not in Vk> and to find the shortest

path from v to w. The shortest path from v to w can go through only the vertices in Vk. It

cannot include vertices not in Vk, since they would then be closer to v than w. Therefore,

to find vt\\ it is sufficient to consider only edges connecting vertices from Vk to vertices

not in Vk; all other edges can be ignored for now. Let (w, z) be an edge such that u is in

Vk and z is not. Such an edge corresponds to a path from v to z, which consists of the

shortest path from v to u (already known by induction) and the edge (w, z). We need only
to compare all such paths, and take the shortest among them.

The algorithm implied by the induction hypothesis is the following. At each
iteration, a new vertex is added. It is the vertex w such that the length

min (u.SP + length (w, w)) <n i \\

is the minimal over all w not in Vk. By the arguments above, w is indeed the (k+ l)th

closest vertex to v; thus, adding it extends the induction hypothesis.

The algorithm is complete now, but its efficiency can be improved. The main step

of the algorithm involves finding the next closest vertex. This is done by computing the

minimal path length according to (7.1). However, it is not necessary to check all the

values u.SP + length (w, w) in every step. Most of these values are not changed when a

new vertex is added; only those that correspond to paths that go through the new vertex

may change. We can maintain the lengths of the known shortest paths to all vertices in

Vky and update them only when Vk is extended. The only way to find better shortest
paths when w is added to Vk is to go through w. Therefore, we need to check all edges
coming out of w to vertices not in Vk. For each such edge (u\\ z), we check the length of

w.SP + length (u\\ z), and update z.SP if necessary. Thus, each iteration involves finding
a vertex with minimum SP value, and updating the SP values of some of the remaining

vertices. This algorithm is known as Dijkstra's algorithm.

206 Graph Algorithms

Implementation
We need to be able to find a minimum among a set of path lengths,

and to update path lengths frequently. A heap is a good data structure for finding

minimum elements and updating lengths of elements. Since we need to find the vertex

with minimum path length, we keep all verticesnot yet in Vk in a heap with their current

known shortest path lengths from v as their keys. Initially, all but one of the path lengths

are \302\253>,so the heap is ordered in no particular order (except that v is on top). Finding w is

easy; we can simply take it from the top of the heap. All the edges (u>, w) can be checked

and the path lengths can be updated without difficulty. However, when a path length to,

say, z is updated, z's place in the heap may change. We need to be able to modify the

heap accordingly. To do that, we need to know z's position in the heap. (Remember that

a heap is not a search structure; it does not provide any facilities to locate an element.)

Locating z in the heap can be done with another data structure connected to the heap.

Since the identities of all verticesare known ahead of time, we can put them in an array

with pointers to their location in the heap. Finding a vertex in the heap thus requires only

accessing the array. Since the elements of the heap are the vertices of the graph, the

space requirement is only O (| V |), which is reasonable. Path lengths only decrease. If

an element of the heap becomes smaller than its parent, it can be exchanged and moved

up until its appropriate position is found. This is exactly the same as the regular heap

maintenance procedures (e.g., insert). The shortest paths algorithm is given in Fig. 7.17.

Algorithm Single_Source_Shortest_Paths (G, v);
Input: G =(V, E) (a weighted directed graph), and v (the source vertex).
Output: for each vertex u>, w.SP is the length of the shortest path from v to w.

(all lengths are assumed to be nonnegative.)

begin

for all vertices w do

w.mark := false ;
W.SP:= oo ;

v.SP := 0;

while there exists an unmarked vertex do

let w be an unmarked vertex such that w.SP is minimal;
w.mark := true ;

for all edges (w, z) such that z is unmarked do

ifwSP + length(u\\ z) < z.SP then
zSP :=w.SP+ length(u\\ z)

end

Figure 7.17 Algorithm Single_Source_Shortest_Paths.

Complexity Updating the length of a path takes 0(log m) comparisons, where m is
the size of the heap. There are | V | iterations, leading to | V | deletions from the heap.
There are also at most | E | updates (since each edge can cause at most one update),

7.5 Single-SourceShortest Paths 207

leading to O (| E | log | V |) comparisons in the heap. Hence, the running time is

O ((| E | + | V |) log | V |). Notice that this algorithm is slower than the same algorithm
for acyclic graphs, since the next vertex in the latter algorithm was taken from the

(arbitrarily ordered) queue, and no updates were required.

\342\226\241Example 7.1

An example of algorithm Single_Source_Shortest_Paths is given in Fig. 7.18. The first

line includes only paths of one edge from v. The shortest path is chosen, in this case,
leading to vertex a. The second line shows the update of the paths including now all

paths of one edge from either v or ay and the shortest path now leads to c. A new vertex

is chosen in each line, and the current known shortest paths from v are listed to every
vertex. Thecircleddistances are those that are known to be the shortest. \342\226\241

Comments This type of algorithm is sometimes called priority search \342\200\224each

vertex is assigned a priority (e.g., the current known distance from the source), and

vertices are traversed according to that priority. When a vertex is considered,all its

a 1 v
5 b

++ f \342\226\272#

-\342\226\272#

4
h

a

c

b

d

e

h

g

f

V

0

0

0

0

0

0

0

0

a

1

\302\251

\302\251

\302\251

\302\251

\302\251

\302\251

\302\251

b

5

5

5

\302\251

\302\251

\302\251

\302\251

\302\251

c

oo

3

\302\251

\302\251

\302\251

\302\251

\302\251

\302\251

d

9

9

7

7

\302\251

\302\251

\302\251

\302\251

e

oo

oo

oo

8

8

\302\251

\302\251

\302\251

/

oo

oo

12

12

12

12

12

12

8

oo

oo

oo

oo

11

11

11

\302\251

h

oo

oo

oo

oo

oo

9

\302\251

\302\251

Figure 7.18 An example of the single-source shortest-paths algorithm.

208 Graph Algorithms

adjacent edges are checked. That check may trigger a change in some priorities. The

procedure for making that change is what distinguishes one priority search from another.

Priority search is more expensivethan regular search. It is useful for problems involving

weighted graphs.
We found the shortest paths from v to all other vertices by finding one path at a

time. Each additional path was identified by one edge, which led from a previously
known shortest path to a new vertex. All those edges together form a tree with v as its

root (Exercise 7.6). This tree, called the shortest path tree, is important in dealing with

a variety of path problems.

7.6 Minimum-Cost Spanning Trees

Consider a network of computers connected through bidirectional links. There is a

positive costassociatedwith sending a message on each of the links. We assume that the

cost of sending a message on a specific link does not depend on the direction. We want

to broadcast a message to all the computers starting from an arbitrary computer. We

assume that the cost of the broadcast is the sum of the costs of the links used to forward

the message. (Another possible definition of cost is the time it takes to complete the

broadcast; see Exercise 7.63.) The network can be represented by an undirected graph

with positive costs on the edges. The problem is to find a fixed connected subgraph
(corresponding to the links used in the broadcast), containing all the vertices, such that

the sum of the costs of the edges in the subgraph is minimum. It is not difficult to see
that this subgraph must be a tree. If any cycle had been present, then we could have

broken it by deleting one of its edges; the graph would still be connected, but the cost
would be smaller since all costs are positive. This subgraph is called the minimum-cost
spanning tree (MCST), and it has many uses besides broadcasts.Our goal is to find an

efficient algorithm to find an MCST.1 For simplicity, we assume that the costs are

distinct. This assumption implies that the MCST is unique (Exercise 7.11), which makes
the problem easier to discuss. The algorithm remains the same without this assumption,

except that, when equal-cost edges are encountered, any one of them can be chosen(i.e.,
ties are broken arbitrarily). The proof of correctnessis more complicated in this case.

The Problem Given an undirected connected weighted graph

G = (V, \302\243),find a spanning tree T of G of minimum cost.

(Notice that we now call the weights costs.) The straightforward induction hypothesis is

the following.

1
We assume here that the whole graph is known to us. The complete topology of a communication network

and all current costsare usually unknown only at the local sites; therefore, a distributed algorithm is needed.

7.6 Minimum-Cost Spanning Trees 209

Induction hypothesis 1: We know how to find the MCST for connected
graphs with < m edges.

The base case is trivial. Given the MCST problem with m edges, how do we reduce it to

a problem with < m edges? We claim that the minimum-cost edge must be included in

the MCST. If it is not included, then adding it to the MCST would create a cycle;
removing any other edge from this cycle creates a tree again, but with smaller cost,

which is a contradiction to the minimality of the MCST. So, we now know one edge that

belongs to the MCST. We can remove this edge from the graph, and apply induction to

the rest of the graph, which now contains less edges. Is that a valid use of induction?

This is not a valid use of induction, because, after we remove an edge, the problem
we need to solveis not the same as the original problem. First, the selection of oneedge
limits the selection of other edges. Second,after we remove an edge, the graph may not

be connected any more. We cannot emphasize this issue too strongly \342\200\224the induction

hypothesis has to be preciselydefined and followed.

The solution is to adjust the induction hypothesis. We know how to select the first

edge, but we cannot simply remove it and forget about it, since the rest of the selections

depend on it. Therefore,instead of removing it, we mark it as being selected and use this

fact (its selection) for the algorithm. The algorithm proceeds by selecting one edge at a

time to the MCST. Thus, the induction is not on the size of the graph, but rather on the

number of edges already selected in a given fixed graph.

Induction hypothesis 2: Given a connected graph G=(V, E), we know

how to find a subgraph T ofG with k edges (k<\\V\\-\\), such that T is a

tree that is a subgraph of the MCST ofG.

We have already discussed the base case for this hypothesis, which is choosing the first

edge. We assume that we have already found the tree T satisfying the induction

hypothesis, and we need to extend T by one more edge. How can we find another edge

that is guaranteed to be in the MCST? We apply the same argument that was used to find

the first edge. T is already known to be part of the MCST. Hence, there must be at least

one edge in the MCST connecting T to vertices not in T. We will try to find one such

edge. Let Ek be the set of all edges connectingT to vertices not in T. We claim that the

edge with minimum cost in Ek belongs to the MCST. Denote this edge by (w, w) (see

Fig. 7.19). Since the MCST is a spanning tree, it contains a unique path from u to w

(there exists a unique path between every two vertices in a tree). If (w, w) does not

belong to the MCST, then it is not included in that path from u to w. But, since u does

belong to T and w does not belong to 7, there must be at least one edge (jc, y) in this path
that connects T to a vertex not in T. The cost of this edge is higher than the cost of
(w, w), since (w, w) has the minimum cost among all such edges. But now we can use the

same argument that we applied to the first selected edge. If we add (w, w) to the MCST
and remove the edge (jc,y), we get another spanning tree with smaller cost, which is a

contradiction.

Implementation This algorithm is very similar to the single-source shortest-path

algorithm presented in the previous section. The first chosen edge is the edge with

210 Graph Algorithms

gf

(

w

f

\342\200\224i

1

>u

\342\200\224# \342\200\242

^
1

> \342\200\242

Figure 7.19 Finding the next edge of the MCST.

minimum cost. T is then defined as a tree with only this edge. In each iteration, we need

to find the minimum-cost edge connecting T to verticesoutside of T. In the shortest-path

algorithm we found the minimum-length path leading outside of T. Hence, the only

difference between the MCST algorithm and the shortest-path algorithm is that the

minimum is taken not on the length of a path but on the cost of an edge. Tue rest of the

algorithm is virtually the same. We maintain, for each vertex w not included in 7, the

minimum-cost edge leading to w from a vertex in T (or \302\253>if no such edge exists). In each

iteration, we choose the minimum-cost edge and connect the corresponding vertex w to
T. We then check all the edges incident to w. If the cost of any such edge (u\\ z) (for z
not in T) is smaller than the cost of the current best edge leading to z, we update z's cost.

The algorithm is presented in Fig. 7.20.

Complexity The complexity of this algorithm is identical to that of the single-source

shortest-path algorithm presented in the previous section. The worst-case running time is

0((|V| + |\302\243|)log|V|).

\342\226\241Example 7.2

An example of algorithm MCST is illustrated in Fig. 7.21. The vertex in the first column

of the table is the one that is added at that step. The first vertex is v, and the edges
connectedto v are listed along with their costs. The vertex with the minimum-cost edge
is chosen in each line. The current best edges (and their costs) leading to unmarked

vertices are updated at each step (only the tails of the edges are listed). \342\226\241

Comments The algorithm for finding an MCST is an example, although not a pure
one, of a method called the greedy method. Suppose that we are dealing with a set of

elements, each with an associated cost, and that we are interested in finding the set of
elements with maximum (or minimum) cost satisfying some constraints. In the MCST

7.6 Minimum-Cost Spanning Trees 211

Algorithm MCST (G);
Input: G (a weighted undirected graph).
Output: T (a minimum-cost spanning tree of G).

begin
Initially T is the empty set;
for all vertices w do

w.Mark :=false ; {w.Mark is true ifw is in T}

W.CoSt .= oo ;
let (jc, y) be a minimum cost edge in G ;

x.Mark := true ; { y will be marked in the main loop }
for alledges(jc, z) do

z.Edge := (xy z); { a minimum cost edge from T to z }
z.Cost := cost(x,z); {the cost of z.Edge }

while there exists an unmarked vertex do
let w be an unmarked vertex such that w.Cost is minimal ;

ifw. Cost= oo then

print \"G is not connected\";
halt

else

w.Mark := true ;
add w.Edgeto T ;

{ we now update the costs of unmarked vertices connectedtow}
foralledges (w, z) do

if not z.Mark then

if cost(w, z) < z.Costthen

z.Edge := (V, z);
z.Cost := cost(w, z)

end

Figure 7.20 Algorithm MCST.

problem, the elements were the edges of the graph, and the constraint was that the edges
correspond to a spanning tree. The greedy method is to be greedy and take the

maximal-cost possible element at any step. In the MCST algorithm, we introduced some

more constraints on the selection of edges, specifically,we considered only edges that

were connected to the current tree. Therefore, the MCST algorithm is not purely greedy.
We can also, however, find the MCST by selecting, at each step, the minimum-cost edge
anywhere in the graph, provided that this edge does not form a cycle (Exercise7.59).
The greedy method does not always lead to an optimal solution. It is usually just a
heuristic to find suboptimal solutions. Sometimes, however, as in the MCST example,
the greedy method does lead to the best solution.

212 GraphAlgorithms

a 1

C t

V
6 /?

2 9

4 1 7 ,
i e

d] T
70 72 5

\342\200\242 \342\200\242 \342\200\242

f 13 g 11 h

V

a

c

d

b

e
h

f

8

V

-

-

-

-

-

-

-

-

-

a

v(D
-
-
-
-
-
-
-
-

b
v(6)

v(6)

v(6)

v(6)
-

-
-
-
-

c
oo

a{2)

-

-

-

-

-

-

-

d

v(9)

v(9)
c(4)

-
-
-
-
-
-

e
oo

oo

oo

d{l)

6(3)
-
-
-
-

/
oo

oo

c(10)

c(10)

c(10)

c(10)
c(10)

-
-

/?

oo

oo

oo

rf(12)

</(12)

</(12)

MID

MID
-

/i

oo

oo

oo

oo

oo

*(5)
-

-
-

Figure 7.21 An example of the minimum-cost spanning-tree algorithm.

7.7 All Shortest Paths

We now consider the problem of computing shortest paths between all pairs of vertices
in a graph.

The Problem Given a weighted graph G = (V, E) (directedor
undirected) with nonnegative weights, find the minimum-length paths
between all pairs of vertices.

Again, since we are talking about shortest paths, we refer to the weights as lengths. This

problem is called the all-pairs shortest-paths problem. For simplicity, we discuss how

to find only the lengths of the shortest paths, rather than the paths themselves. We
assume that the graph is directed; the same arguments hold for undirected graphs. We

assume throughout this section that all weights are nonnegative; Exercise 7.73dealswith

negative lengths.

7.7 All Shortest Paths 213

As usual, let's start with straightforward induction. We can use induction either on

the edges or on the vertices. What is involved in terms of shortest paths in adding a new

edge, say (w, w), to a graph? First, the edge may form a shorter path between u and w.

Furthermore, there may be other shorter paths that use (w, w). In the worst case, we need

to check, for every pair of vertices V! and v2, whether the length of the shortest path

from v, to u plus the length of (w, w) plus the length of the shortest path from w to v2 is

shorter than the known path from v, to v2. Overall, for every new edge, we may have to
make O (| V |2) checks, leading to a worst-case running time of O (| E \\ \\ V |2). (Since

the number of edges may be as largeas O(| V |2), this is an O (| V |4) algorithm.)

What is involved in terms of shortest paths in adding a new vertex u to a graph?
We first need to find the lengths of the shortest paths from u to all other vertices and from

all other vertices to w. Since all shortest paths that do not involve u are already known,

we can find the shortest path from u to w in the following way. We need only to

determine the first edge out of u in this path. If this edge is (w, v), then the length of the

path from u to w is the length of (w, v) plus the length of the shortest path from v to w

(which is already known). We thereforecompare these lengths for all vertices adjacent
to w, and take the minimum length. The shortest path from w to u can be found similarly.

But again, this is not enough. We still have to check, for any pair of vertices, whether

there exists a shorter path between the two using the new vertex w. For each pair of

vertices v and w\\ we check the length of getting from v to u plus the length of getting

from u to w\\ and we compare this length to the length of the previously known shortest

path. Overall 0(|V|2) comparisons and additions are needed for each added vertex,

leading to an 0(|V|3) algorithm. The induction on vertices is thus better than the

induction on edges, but there exists an even better induction method for this problem.
The trick is to leave the number of edgesand vertices fixed, and to put restrictions

on the type of paths allowed. The induction addresses the removals of these restrictions
on the paths until, at the end, all possiblepaths are considered. We label the vertices

from 1 to | V |. A path from u to w is called a k-path if, except for u and w\\ the highest-

labeled vertex on the path is labeled k. In particular, a 0-path is an edge (since no other

vertices can appear on the path).

Induction hypothesis: We know the lengths of the shortest paths between

all pairs of vertices such that only k-paths,for some k < m, are considered.

The baseof the induction is m = 1, in which case only direct edges can be consideredand

the solution is obvious. We assumethe induction hypothesis for m, and we try to extend
it to m + 1. We now have to consider all &-paths such that k < m + 1. So, the only new

paths that we need to consider are m-paths. We have to find the shortest m-paths
between all pairs of vertices, and to check whether they improve on the &-paths for k < m.
Denote by vm the vertex labeled m. Any shortest w-path must include vm exactly once.

The shortest w-path between u and w is the shortest \302\243-path(for some k < m) betweenu

and vm appended by the shortest y-path (for some j < m, where j need not be equal to k)
betweenvm and w. By induction, we already know the lengths of all shortest A:-paths for

k <m\\ hence, we need only to sum the two lengths above to find the shortest m-path
between u to w. Not only is this algorithm faster (by a constant factor) than the one using

214 Graph Algorithms

the straightforward induction on vertices, but it is also simple to program. The algorithm

is given in Fig. 7.22.

Algorithm All_Pairs_Shortest_Paths (Weight);

Input: Weight (an n x n adjacency matrix representing a weighted graph).

{ Weight [a\\ y] is the weight of the edge (jc,y) if it exists, or \302\260\302\260otherwise;

Weight [jc, jc] is 0, for all x)

Output: At the end, the matrix Weight contains the lengths of the

shortest paths.

begin

for m:= 1 to ndo {the induction sequence }
forx := I to n do

fory := I to n do

ifWeight[x, m] + Weight[m, y] < Weight[x, y] then

Weight[x, y] := Weight[x, m] + Weight[m, y]
end

Figure 7.22 Algorithm All_Pairs_Shortest Paths.

The inner two loops of the algorithm are used to check all pairs of vertices. Notice
that this check can be applied to the pairs of vertices in any order, since each check is

independent of the others. Such flexibility is important, for example, for parallel
algorithms.

Complexity For each m, the algorithm involves only one sum and one comparison

per pair of vertices. The induction sequence is of length | V |, so the total number of

additions (and comparisons) is at most | V |3. Recall that the running time of the single-

source algorithm is O (| E | log | V |). If the graph is dense such that the number of edges
is Q(a?2), then using this algorithm is better than using the single-source algorithm for

every vertex. Although it is possible to implement the single-source algorithm in time
O (| V |2) (Exercise 7.43.), which will lead to an O (| V \\3) algorithm for all-pairs shortest

paths, the algorithm in this section is better for dense graphs because it is so simple to
implement. On the other hand, if the graph is relatively sparse, then the running time of
O (| E | | V | log | V |), resulting from using the single-source algorithm | V \\ times, is

better.

7.8 Transitive Closure

Given a directed graph G=(V, \302\243),the transitive closure C=(V, F) of G is a directed

graph such that there is an edge (v, w) in C if and only if there is a directedpath from v to

w in G. The transitive closure is related, for example, to the user-accounts security

problem mentioned at the beginning of this chapter. The vertices correspondto the users,

and the edges correspondto permissions. The transitive closure identifies for each user

7.8 Transitive Closure 215

all the other users with permission (either directly or indirectly) to use his or her account.
Thereare many other applications of the transitive closure, and so finding it efficiently is

important.

The Problem Given a directed graph G =
(V, \302\243),find its transitive

closure.

We solve this problem by using a reduction. That is, we transform any instance of the

transitive closure problem to an instance of another problem that we already know how

to solve. We then transform the solution of the other problem to a solution of the

transitive closure problem. The reduction is from the all-pairs shortest-paths problem.
Let G'= (V, E') be a complete directed graph (i.e., all vertices are connected in

both directions). Each edge e in E' is assigned the length 0 if e e \302\243,and 1 otherwise. We

now solve the all-pairs shortest-paths problem for G'. If there is a path from v to w in G,
then its length in G' is 0, since all edges of G have length 0 in G'. Therefore, there is a

path between v and w if and only if the length of the shortest path between v and w in G'

is 0. Thus, an answer to the all-pairs shortest-paths problem can be transformed directly

into an answer for the transitive closure problem.
The idea of using reductions between two problems is explored in detail in Chapter

10. We used reduction here mainly to illustrate the technique with a simple example. It

is easy to modify the all-pairs shortest-paths algorithm directly to a transitive closure

algorithm, as is shown in Fig 7.23.

Algorithm TransitivejClosure (A) ;

Input: A (an n x n adjacency matrix representing a directedgraph).

{ A [jc, v] is true if the edge (jc, v) belongsto the graph, and false otherwise;
A [jc, jc] is true for all jc }

Output: At the end, the matrix A represents the transitive closure of the graph.

begin

for m:= 1 to ndo { the induction sequence }

forx := 1 to ndo

fory := 1 to ndo

if A [jc, m] and A [my v] then A [jc, v] ;= true

{this step is improved in the next algorithm }
end

Figure 7.23 Algorithm TransitiveJClosure.

The fact that we can reduceone problem to another means that the solution of the
first problem is general enough to embody the solution of the other. But, more general

216 Graph Algorithms

solutions are usually more expensive. We have seen cases where a more general
problem

is easier to solve; in many cases, however, the more you get the more you have

to pay
for it. When a reduction is used we should always try to improve the resulting

solution by using the special characteristicsof the problem.

Consider the main step of the algorithm: the {/statement. It consists of two checks,

for A[x, m] and for A[my y]. An action is taken only if both of these checks are

satisfied. This if statement is performed n times for each pair of vertices. Any

improvement of this statement would lead to a substantial improvement of the algorithm.

Do we really need to perform the two checks all the time? The first check depends on

only x and m, whereas the second check dependson only m and y. Therefore, we can

perform the first check only once for a certain x and a certain m. If the first check fails,

then there is no need to perform the second check for any value of y. If the first check

succeeds, then there is no need to perform it again. This change is incorporated in the

(improved) algorithm presented in Fig. 7.24. The asymptotic complexity remains

unchanged, but this algorithm will run about twice as fast.

Algorithm Improved_Transitive_Closure (A) ;

Input: A (an n xn adjacency matrix representing a directed graph).
{ A [jc, y] is true if the edge (jc, y) belongs to the graph, and false otherwise;
A [jc, x] is true for all x }

Output: At the end, the matrix A represents the transitive closure of G.

begin

for m:= 1 to ndo { the induction sequence }

forx := Hondo
ifA [jc, m] then

fory :- I to ndo

if A [my y] then A [jc,y] := true

end

Figure 7.24 Algorithm Improved Transitive Closure.

Implementation The implementation of the algorithm is straightforward. Notice,

however, that the last line has the same effect as an or operation on the jcth row of the
matrix. Each entry (jc, y) in the jcth row is set to the value of itself or that of (m, y)-
These operations are equivalent to setting the jcth row to be the or of the jcth row and the
mth row. Since many computers can perform an or operation on many bits at the same

time, a row or operation can be performed faster than several bit-by-bit operations. So,
in practice, the number of steps for this algorithm is 0(az3/u>), where w is the word size

(the number of bits that can be or'd together in one step). This is a very simple example

of a parallel algorithm. This issue is also discussed in Section 9.5.3.

7.9 Decompositions of Graphs 217

7.9 Decompositions of Graphs
We have already seen one form of graph decomposition

\342\200\224the partition into connected

components. In general, the idea of graph decomposition is to partition the graph into

subgraphs such that each of the subgraphs satisfies a certain desirable property. Then,

when we need to design an algorithm that manipulates the graph, it may be possible to

consider each subgraph separately and to use its desirable property. For example, we

have seen severalalgorithms that require that the graph be connected. By partitioning the

graph into its connected components, we were able to apply these algorithms to each

component separately,and thus to avoid many complications. This sectionpresentstwo

other decompositions
\342\200\224biconnected components and strongly connected components.

The first one applies to undirected graphs and the second one to directed graphs. Both

are useful in designing algorithms. In particular, both decompositions depend heavily on

the cycles in the graph (undirected and directed cycles respectively). Therefore,

whenever there is a problem that involves cycles in one way or another (and many graph

problems involve cycles), it is a good idea to consider these decompositions. They are
not always useful, but they should at least be considered. We assume throughout this

section that the graphs are connected.

7.9.1 Biconnected Components

The notion of biconnectivity extends the regular connectivity concept in a natural way.

An undirected graph is connected if there is a path from every vertex to every other
vertex. An undirected graph is biconnected if there are at least two vertex disjoint paths
from every vertex to every other vertex. Biconnected graphs thus exhibit a higher level

of connectivity: If for some reason one of the paths connecting two vertices can no

longer be used,then the two vertices are still connected. It turns out that, if a graph is not

biconnected, then it can be partitioned into subgraphs, each of which is biconnected. We

will be mainly interested in that partition. In general, an undirected graph is called k-
connected if there are at least k vertex disjoint paths between every two vertices. We

first study several properties of ^-connectedgraphs.
The first important property of ^-connected graphs is a theorem due to Menger

[1927]that relates the number of vertex disjoint paths between vertices to the number of

vertices required to disconnect the graph.

\342\226\241Menger's Theorem

Let G = (V, E) be an undirected connected graph, and let u and v be two

nonadjacent verticesin G. The minimum number of verticeswhose removal

from G disconnects u from v is equal to the maximal number of vertex

disjoint paths from u to v. (When a vertex is removed, all its incident edges

are removed as well.) \342\226\241

A simple corollary of Menger's theorem is the following, due to Whitney [1932].

218 Graph Algorithms

\342\226\241Whitney's Theorem

An undirected graph is k-connected if and only if at least k vertices must be

removed in order to disconnect the graph. \342\226\241

Since the condition in Whitney's theorem is equivalent to the condition defining k-

connectivity, we can use either one of these conditions. For a proof of these theorems,

see for example Chartrand and Lesniak [1986]. (One side of the theorems is clear: If

there are k vertices whose removal disconnects the graph, then there cannot be more than

k vertex disjoint paths; the other direction is more complicated.)
Menger's theorem is one of the most important theorems in graph theory. For our

purposes,the main implication of the two theorems is that a graph is not biconnected if

and only if there is a vertex whose removal disconnects the graph. Such a vertex is

called an articulation point. Figure 7.25 illustrates the structure of a nonbiconnected

graph. Such a graph contains one or more articulation points. The blocks,
*

'between\"

the articulation points, which are highlighted in the figure, are by themselves

biconnected. These blocks form the biconnected components of the graph. We make

this notion more precise next.

Definition: A biconnected component is a maximal subset of the edges

such that its induced subgraph is biconnected (namely, there is no subset
that contains it and induces a biconnectedgraph).

A biconnected component is defined as a set of edges. A vertex can belong to several
components. Indeed, each articulation point belongs to more than one component. (In

Figure 7.25 The structure of a nonbiconnected graph.

7.9 Decompositionsof Graphs 219

fact, this description providesanother characterization of articulation points.) The set of

edges of every graph can be partitioned into biconnected components in a unique way.
Each edge belongs to exactly one component. The following two claims prove the

existence of the partition and its uniqueness.

\342\226\241Lemma 7.9

Two edges e andf belong to the same biconnected component if and only if

there is a cycle containing both of them. (Note that a biconnected

component may consist of only one edge; this claim addresses only

biconnected components with at least two edges.)

Proof: First, we show that a cycle is always entirely contained in one biconnected

component. If the cycle contains edges from more than one biconnected component,
then we can extend each of these components by adding the rest of the cycle. The
extended subgraph is still biconnected since a cycle cannot be disconnected by one

vertex. This contradicts the maximality of the component. For the other side of the

theorem, if the two edges belong to the same biconnected component, then we can obtain

the cycle containing them in the following way. We add two new (artificial) vertices to

the \"middle\" of e and /. (That is, if e = (v, u>), we add a new vertex z and replace e by
the two edges (v, z) and (z, w)\\ we do the same for/.) The component, as a subgraph,
remains biconnected since it still contains no articulation points. (Removing any of the

new vertices is the same as removing the old edges, which cannot disconnect the

component; removing an old vertex has the same effectas before.) Therefore, there are

two vertex-disjoint paths between the two new vertices, but these paths exactly complete
a cycle containing e and /. \342\226\241

\342\226\241Lemma 7.10

Each edge belongsto exactly one biconnected component.

Proof: Each edge definitely belongs to at least one biconnectedcomponent

(possibly containing only itself). It cannot belong to more than one biconnected

component, since there would be cycles containing it and edges from both components.
A combination of the two cycles is one larger cycle containing edges of two components.

We have already seen that this is impossible. \342\226\241

We want to find the partition into biconnected components. Let's start as usual

with the straightforward induction hypothesis.

Induction hypothesis: We know how to find the biconnected componentsof

connected graphs with < m edges.

A connected graph with one edge is biconnected.Considera graph with m edges and

pick an arbitrary edge x. We remove x from the graph and find, by induction, the

biconnected components. We now have to determine what effect adding x would have
on the partition. The easiest case is when x connects two vertices from the same

component (for example the edge (a, n) in Fig. 7.25). In this case, adding x has no effect

220 Graph Algorithms

on the partition (it only makes that one particular component even more connected).

Another easy case is when x completely disconnects the graph (for example the edges

(h, i) and (az, o) in Fig. 7.25). In this case, it is clear that both of jc's endpoints are
articulation points and, as a result, x is a biconnected component by itself. (Such an edge
is appropriately

called a bridge.) Obviously, none of the other components is changed.
The difficult case is when x does not disconnect the graph and connects verticesfrom two

different components. An example of such an edge is edge (b, e) in Fig. 7.25. We also

illustrated this case in Fig. 7.26(a). It is clear that x merges the two components it

connects, plus several other components that are \"in between,\" into one larger
component.The problem is thus to find all the \"in-between\" components and to merge

them efficiently.

Looking back at Fig. 7.25 and Fig. 7.26, we can see that the biconnected

components define a tree in the following way. Each biconnected component is
associatedwith a node (we call them nodes to distinguish them from the original
vertices). We start with an arbitrary component R as the root of the tree (the component

containing a, b, and h in Fig. 7.25). The children of/? are those biconnected components
that have common articulation points with R\\ the grandchildren are those biconnected
components that have not been included in the tree yet, which have common articulation

points with the children, and so on. In other words, we construct the trees in a breadth-
first fashion. We cannot simply say that two biconnected components are connected if

they have an articulation point in common, because an articulation point may be common

to more than two biconnected components, and we do not want to form cycles. It is not

difficult to prove that a tree is always formed by this construction (Exercise 7.17). This

(a) (b)

Figure 7.26 An edge that connects two different biconnected components, (a) The

components corresponding to the graph of Fig. 7.25with the articulation points indicated, (b)
The biconnected component tree.

7.9 Decompositions of Graphs 221

tree is called the biconnected tree. Figure 7.26(a) shows the biconnected components of
the graph in Fig. 7.25, and Fig. 7.26(b) shows the corresponding biconnectedtree. The

edge x in Fig. 7.26 illustrates the addition of an edge; it can correspond, for example, to

an edge connecting a and k in the original graph.
If we think of the biconnected tree now, we see that an edge connecting vertices

from two different components generates a cycle in the tree. All the nodes

(correspondingto components) in that cycle must be merged into one component. So we

now have an algorithm. We add to the induction hypothesis the assumption that we

know how to construct the tree, and then we can handle each of the three cases we
discussedearlier. We omit the details because there is a better algorithm.

The problem with the algorithm we just described is the time it takes to find the

cycle generated by the added edge in the biconnected tree. Finding a cycle in a tree may

require traversing the whole tree, which in the worst case requires looking at all the edges
of the tree. There may be as many as O (| V |) edges in the tree, and we have to perform
this step for each edge of the original graph. Thus, this algorithm may require

O (| V |
\342\200\242

| E |) time (this is not a precise analysis). We would like to avoid searching for

a cycle in each step.

One common way to improve a straightforward inductive algorithm is to choose

carefully the order of induction. In the preceding discussion, we picked an arbitrary

edge. We may be able to improve the algorithm if we pick the edges in an order that will

make it easier to handle the biconnected tree. A natural first attempt would be to use a
goodgraph traversal. It turns out, as we shall see in a moment, that DFS is excellent for

this purpose. Consider again Fig. 7.25. Assume that DFS starts at vertex a, and consider

the articulation point b. Let B be the component \"below\" b which the DFS visits first

after visiting b. (In Fig 7.25, this component consists of the edges connectingvertices b,

c\\ d, e, f and g.) How can we determine that b is indeed an articulation point? By
definition, if all paths from B to the rest of the graph pass through b, then b is an

articulation point. So, we want to determine whether there are any edges coming out of
B to the rest of the graph.

Assume that the vertices in B are visited next by the DFS. If there are no edgesout

of \302\243,the traversal will be local to B. All of \302\243'sedges will be traversed and b will be

reached again. Furthermore, since DFS eliminates cross edges, the only edges that may
connect B to the rest of the graph are back edges. In other words, b disconnects B if and
only if there are no back edgesout ofB that reach the tree aboveb. (The only exception
to this rule occurs at the root of the DFS tree; we discuss this case later.) Let's see now

how we can determine this fact.

We want to know how high in the DFS tree we can reach from a subtree. We

traverse the graph using DFS. At each vertex \\\\ we first visit one whole subtree below v,

then another, and so on. Let Tx be a subtree rooted at a child of v such that the DFS
visits this child first. Suppose that we find not only all the biconnected componentsin

7*1, but also the highest vertex in the tree that is connected to T] by a back edge. (This is

really just strengthening the induction hypothesis, as will be seen in a moment.) Let's
denote by High(v) the highest vertex in the DFS tree that is connected, by a back edge,
to either v or a descendent of v (in the DFS tree). Assume that the children of v in the

222 Graph Algorithms

DFS tree are w {, u>2, \342\200\242\342\200\242\342\200\242,wk (see Fig. 7.27). We can easily compute High (v) if we know

High(Wj) for all wt: It is simply the highest among all High{wt) and among all the back

edges from v. (We will describe shortly how to determine efficiently whether one vertex

is higher than another.) So, if we perform DFS, we can easily compute all the High

values. For example, in Fig. 7.27, High(wl) = rJ High(w2)
= v, and High(w2) =

w$; the

highest back edge from v goes to q, hence High (v) = r.

Now suppose that we have computed all the High values. We claim that a vertex v

is an articulation point if and only if there is a child u>, of v such that High(Wj) is not

higher than v. Indeed, if such w, exists, then there are no edges from vertices in the

subtree rooted at u>, to vertices higher than v in the tree; hence, v is an articulation point.

(The beauty of DFS is that it traverses the graph in exactly the right order for our

purposes.)
Computing the High values goes hand in hand with the DFS, according to the

following induction hypothesis.

Induction hypothesis: When we visit the kth vertex by DFS, we know how
to find the High values of vertices that have already been visited and are
below this vertex.

The order of the induction follows the order of DFS. When we reach a vertex v, we

perform (recursively) a DFSfor all children of v, find (by induction) their High values,
and compute High(y) according to the definition. At the same time, we can decide
whether a vertex is an articulation point.

Figure 7.27 Computing the High values.

7.9 Decompositions of Graphs 223

The root of the DFS tree presentsa specialcase. Obviously, no High value can
exceed the root. It is easy to see that the root is an articulation point if and only if it has

more than one child in the DFS tree. Of course, this is easy to determine.
The key to the efficiency of the algorithm for computing the High values is that all

the necessary information is available when DFS is performed. The only problem we

have is how to decide whether one vertex is higher than another in the DFS tree. We use

DFS numbers to make this determination. All the vertices involved in the computation of

the High values are ancestors in the tree. Therefore, they already have a DFSnumber.

Furthermore, the higher an ancestor is, the lower its number is! This is not true for

vertices that are not related in the tree; fortunately, however, we care only about back

edges. So, a practical way to manipulate the High values is to use the DFS numbers. We

define High(v) as before, except that it refers not to the highest vertex itself, but to that

vertex's DFS number. It is confusing to describe the algorithm in terms of DFS numbers,

because higher vertices correspond to lower DFS numbers. Therefore, we define

decreasing DFS numbers: the root has a DFS number of | V | and the number is

decreased every time we visit a new vertex. We can also use negative numbers: we

assign the root a DFS number of-1, and we decrement the number every time we visit a

new vertex. The advantage of the latter scheme is that the value of | V | need not be

known in advance.

The only remaining task is to find the actual biconnected components. We could
find them by brute force, but there is also an elegant way. Let's look back at Fig. 7.25.
Noticethat, at the point where the algorithm determined that b is an articulation point, the

edges of B were the most recent to be traversed. During the traversal, we put the new

vertices on a stack and add the edges as they are encountered. When a vertex is found to

be an articulation point, we can remove from the stack all the top edges going back in the

stack until that vertex is reached. This is exactly the biconnected component! We can
now remove those edges from the graph and continue in the same way. The complete
program for biconnected components is given in Fig. 7.28. (The algorithm can be
defined merely in terms of preWORK and postWORK of DFS, but, for completeness, we

presentit fully.)

Complexity Clearly, the extra amount of work, in addition to the work involved in

the DFS, is constant per vertex. Hence, the running time of this algorithm is
O (| V | + | E |). The space requirements are also O (| V | + | E |) since the components

must be remembered as they are traversed.

\342\226\241Example 7.3

An example of algorithm Biconnected^Components for the graph in Fig. 7.25, which is

repeated here, is given in Fig. 7.29. The first line gives the vertices and the second line

gives their (decreasing) DFS Numbers. Each successive line presentsthe High numbers

as updated when a new call to the recursive procedure is made. A vertex is circled when
it is discovered to be an articulation point. \342\226\241

Graph Algorithms

Algorithm BiconnectedjComponents (G, v, n)

Input: G = (V, E) (an undirected connected graph), v (a vertex serving as

the root of the DFS tree), and n (the number of vertices in G).

Output: the biconnected components are marked and the High values are

computed.

begin

for every vertex vofGdo
v.DFS Number := 0 ;

{the DFS numbers will also serve to indicate whether or not the

corresponding vertices have beenvisited }

DFSN := n ;

{we usedecreasingDFSnumbers; see the explanation in the text.}

BC(v)

end

procedure BC(v);

begin

v.DFSNumber := DFSN ;
DFSN := DFSN -1 ;
insert v into Stack ; {Stackis initially empty }

v.High := v.DFSNumber ; { initial value }

for all edges (v, w) do

insert (v, w) into Stack ;

{ each edge will be inserted twice (for both directions)}

ifw is not the parent ofv then

if w.DFS Number = 0 then

BC(w) ;
if w.High

< v.DFSNumber then

{ v disconnects wfrom the rest of the graph }

remove all edges and vertices from Stack until v is

reached, and mark the subgraph they form
as a biconnectedcomponent ;

insert v back into Stack ;
{v is part ofw's component and possiblyothers }

v.High := max (v.High , w.High)

else { (v, w) is a back edge or a forward edge }

v.High := max (v.High , w.DFSNumber)

end

Figure 7.28 Algorithm Biconnected Components.

7.9 Decompositions of Graphs

J
9e V wk wl

a
b

c

d

e

d

f

d

c

g

c

00
h

i

J

k

J

1

J

CO

00
b

a

m

n

0

00
P

n

m

\302\251

a

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

b

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

16

15

15

15

15

15

15

15

15

15

c

14

14
14
14
14
14
14
15
15
15
15
15
15
15
15
15
15
15
15

15
15
15
15
15
15
15
15
15
15
15

d

13

13

13

15
15
15
15
15
15
15
15
15
15
15
15
15
15
15

15
15
15
15
15
15
15
15
15
15
15

e
12

15
15
15
15
15
15
15
14
15
15
15
15
15
15
15
15

15
15
15
15
15
15
15
15
15
15
15

f

11

14

14

14

14

14

13

14
14
14
14
14
14
14
14

14
14
14
14
14
14
14
14
14
14
14

g

10

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

h

9

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

i

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

J

7

7

7

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

k

6

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

1

5

-

-

8

8

8

8

8

8

8

8

8

8

8

8

8

8

m

4

-

-

-

-

-

-

-

-

4

4

4

4

4

4

16

16

n

3

-
-
-
-
-
-
-
-
-

16

16

16

16

16

16

16

0

2

-

-

-

-

-

-

-

-

-

-

2

2

2

2

2

2

P

1

-

-

-

-

-

-

-

-

-

-

-

-

16

16

16

16

Figure 7.29 An example of computing High values and biconnected components.

226 Graph Algorithms

7.9.2 Strongly Connected Components
In this section, we discuss only directed graphs. A directed graph is strongly connected

if, for every pair of vertices v and u\\ there is a path from v to w and a path from w to v.

In other words, it is possible to reachany vertex from any other vertex.

Definition:A strongly connected component is a maximal subset of the

vertices such that its induced subgraph is strongly connected (i.e., there is

no subset that contains it and induces a strongly connected graph).

Notice that, unlike biconnected components, a strongly connected component is defined
as a set of vertices. The vertices of every graph can be partitioned into strongly

connected components in a unique way. Each vertex belongs to exactly one component.

An edge in the graph may belong to one component, or it may connect two separate

components. We prove the existence of the partition by the following two claims, which

are similar to the biconnected component case in the previous section.

\342\226\241Lemma 7.11

Two vertices belongto the same strongly connected component if and only

if there is a circuit containing both of them. (Recall that a circuit is a

closed directedpath that is not necessarily simple; that is, it may include a
vertex more than once. A cycle is a simple circuit.)

Proof: A circuit is by itself strongly connected. A strongly connected component

cannot include only a subset of the vertices of a circuit, since it would not be maximal

(we can add all the other vertices of the circuit to the component). Now, given any two

vertices v and w from the same strongly connected component, we claim that they are

contained in a circuit. By the definition of strong connectivity, there is a path from v to w

and a path from w to v. Putting together these two paths results in a circuit (but not

necessarily in a cycle, since the paths may not be vertex disjoint). \342\226\241

\342\226\241Lemma 7.12

Each vertex belongs to exactly one strongly connected component.

Proof: If a vertex v belongs to more than one strongly connected component, then

there are circuits containing v and vertices from the other components. However,
combining those circuits results in another circuit, which, by Lemma 7.11, must be

contained in only one strongly connected component. This is a contradiction. \342\226\241

We can define the strongly connected component (SCC)graph similarly to the

biconnected component tree. (This graph is also called a condensation graph.) The

nodes of the SCC graph (we call them nodes to distinguish them from the original
vertices) correspondto the strongly connected components; there is a directed edge from
node a to node b if there is a directededge(in the original graph) from any vertex in the

component that corresponds to a to any vertex in the component that corresponds to b.

The SCC graph is acyclic since cycles cannot involve more than one component. Figure

7.30 presents a directed graph G and its SCC graph.

7.9 Decompositions of Graphs 227

Figure7.30A directed graph and its strongly connected component graph.

As was the case with biconnected components, we can design an algorithm by

induction.

Induction hypothesis: We know how to find the strongly connected

components of graphs with < m edges, and how to construct their SCC

graphs.

Thebasecaseis trivial. Consider a graph with m edges and pick an arbitrary edge x. We

remove x from the graph and find, by induction, the strongly connected components. We

now have to determine what effect adding x would have on the partition. Again, the easy
case is when x connects two vertices from the same component. In this case, adding x

has no effect on the partition or on the SCC graph. The difficult case is when x connects
verticesfrom two different components. This case is illustrated in Fig. 7.31, in which an

edge x is connecting two components in the SCC graph of Fig. 7.30. Clearly, x merges
these two components if and only if it completes a (directed) cycle in the SCC graph. In

this case, all the components corresponding to the nodes in the cycle are combined into

one component, and we are done. If x does not complete a cycle in the SCC graph, then
no changes are made to the component. As was the case with biconnected components,
we can improve this algorithm by considering the edges in a particular order. Again,

DFS plays a major role.
Let's try to follow the same steps as we did in the biconnected component

algorithm, and modify them when necessary. When we visit a vertex through DFS, we

want to determine whether it is part of a circuit with other vertices \342\200\224in particular,

vertices that are higher than it in the DFS tree. The notion of High values can be used in

228 Graph Algorithms

Figure 7.31 Adding an edge connecting two different strongly connected components.

a similar way. We are looking for vertices such that there is no way to reach other parts
of the graph from them or from their descendants. We need a mechanism by which we

can identify the \"breakpoints\" in a similar way to the articulation points. Consider the

DFS tree. The strongly connected componentsoccupy connected parts of the tree
(Exercise7.88).That is, all the vertices in a strongly connected component must belong

to one connected subtree of the DFS tree. For a given component, considerits highest

vertex in the tree; we call this vertex the root of the component. The root is the first

vertex of the component to be visited by the DFS. (For example, the roots in Fig. 7.30
are a, d, #, and /.) If we can identify the roots similarly to the way we identified

articulation points, then we can find the partition. We will see that the roots are similar to

articulation points.
The algorithm is based on induction that follows the order of DFS. Let r be the

root of the first component visited in its entirety by the DFS. It is the lowest leftmost

component in the usual picture of DFS (r -d in Fig. 7.30). The component must consist

of all of r's descendantsin the tree (none of the descendants can belong to a smaller

component, since that component's traversal would have been completed first). If,

during the DFS, we can identify r as the first root, then we can identify the component,
removeit from the graph, and continue by induction. This is not as simple as we stated

it, but this is the main idea. Let's first see if we can identify r.

First, for a vertex r to be a root of a component, there cannot be any back edges

leading from a descendantof r to a vertex higher than r. Such a back edge completes
a

cycle with the higher vertex, which implies that the higher vertex belongs to the same

component as r. We can determine whether such back edges exist similarly to the

biconnected component case \342\200\224
using the High values. However, we need to be more

careful here since DFS in directed graphs does not eliminate crossedges.Consider Fig.

7.32. Vertex g does not have any back edges, but it has a cross edge to e, which is

contained in a cycle with a higher vertex h. Consequently, g's parent (/) is not a root of a
component, even though there is no back edge from any of its descendants. Thus, we

7.9 Decompositionsof Graphs 229

Figure 7.32 The effectof cross edges.

must consider the cross edges as well.

What is the effect of cross edges? Crossedgesmust go from right to left; in other

words, they must point to vertices that have already been visited. Rememberthat we are

looking for the first root. If there is a crossedgefrom g to e and the root has not been
found yet, then we claim that it cannot be /. It must be a vertex which is an ancestor of

both / and e. If it had not been an ancestor of /, then it would have been discovered
beforewe reached /. In particular, the fact that the component containing e has not been

discovered yet means that there is a way to go higher from e. So,a crossedgefrom g to

a vertex that was visited before /implies that /is not a root. But this is just as easy to
take into account as a back edge \342\200\224we need only to consider DFS numbers! When

considering the effect of the edge from g to e, it is not important whether this edge is a

back edge. Only the DFS number of e (and its value relative to that of/) is important.

We can define the High values as in the biconnected component case by looking for an

edge leading to a vertex with the lowest DFS number. The High value of a vertex is the

highest among those of its children and among its back edgesor crossedges.A vertex is

the first root if it is the first vertex whose High value is not higher than itself. Notice that

the High values do not really point to the highest vertices. The High value of g will be

the DFS number of e, even though it is possible to reach b from e (and thus from g). We

care only whether we can reacha vertex higher than g (or /); it is not important to know

the identity of the highest vertex. (Nor do we want to chase pointers once a back edge is
encountered.)

Once we find the first root, we can find the first strongly connected component \342\200\224it

consists of all the descendants of the root in the DFS tree. We can then remove this

component from the graph. This is done by deleting all the component's vertices and

edges, and all the edges that point to them from other vertices. We can ignore edges

230 Graph Algorithms

from other vertices, since there is no way to get outside of the component. The rest can

be done by induction since we now have a smaller graph! (The reader should carefully

verify that all the assumptions are still valid.) Notice that the definition of the High

values is dynamic. Since we remove the edges pointing to the newly discovered

component, they will play no part in the computation of the High values later. (This is

different from the \"static\" definition of the High values for the biconnected component
case, which did not depend on any of the previous components.) In practice, there is no

need to actually remove either vertices or edges. We can simply mark the vertices of
each component as they are discovered, and later on ignore edges pointing to marked

vertices. The strongly connected component algorithm is given in Fig. 7.33 (we use

decreasing DFSnumbers again to avoid confusion).

Complexity The algorithm is similar to the biconnected componentalgorithm and its

complexity is the same. The time and space complexitiesare O (| V | + | E |).

\342\226\241Example 7.4

An example of algorithm StronglyjConnectedComponents for the graph in Fig. 7.32,

which is repeated here, is given in Fig. 7.34. The first line gives the vertices and the

second line their (decreasing) DFS numbers. Each successive line presents the High

numbers as updated when a new call to the recursive procedure is made. A vertex is

circled when it is discovered to be a root of a strongly connected component. \342\226\241

7.9.3 Examples of the Use of Graph Decomposition
In this short section, we present two examples where the use of graph decomposition

significantly simplifies the solutions. The first problem involves undirected graphs and

the second one involves directed graphs.

The Problem Given a connected undirected graph G=(V, \302\243),

determine whether it contains a cycleof even length.

We have seen that a cycle must be contained in a biconnected component. Hence, we

can first partition the graph into its biconnected components, then consider each

component separately. In other words, we can now assume that the graph is biconnected!
If the graph is biconnected and it contains more than one edge, then it contains at least
one cycle (in fact, every two edges are containedin a cycle). Let's find an arbitrary cycle
C l

= v,, v2,..., v*, v,. If A: is even, we are done. If there are no more edges
\342\200\224that is,

the graph consists of exactly one odd cycle \342\200\224then the answer is obviously negative.
Otherwise,there is an edge not in the cycle such that one of its vertices is in the cycle.
Let that edge be (v,, u>). Since the graph is biconnected, the edges (v,, w) and (v,, v,+i)
are contained in another cycle C2. We traverse C2 starting at w until we meet C{ again

7.9 Decompositions of Graphs

Algorithm Strongly_Connected_Components (G, v, n)

Input: G =(V, E) (a directed graph), v (a vertex serving as the root

of the DFS tree), and n (the number of vertices in G).

Output: marking the strongly connected components, and computing
the High values.

{ As is always the case with directed DFS, this procedure may
have to be calledseveral times until all vertices have beenvisited. }

begin

for every vertex vofGdo
v.DFS Number := 0 ;

v.Component := 0 ;
Current Component := 0 ;

DFS_N := n ;

{ we use decreasing DFS numbers; see the explanation in Section 7.9.1.}
while there exists a vertex v such that v.DFS Number = 0 do

SCC(v)
end

procedure SCC(v);

begin

v.DFSNumber := DFS_N ;

DFSN := DFS_N
- 1 ;

insert v into STACK ;
v.High := v.DFS Number ; {the initial value }

for all edges (v, w) do

if w.DFS Number = 0 then

SCC(w);

v.High := max (v.High , w.High)

else

if w.DFS Number > v.DFSNumber and w.Component = 0 then

{ (v, w) is a crossedgeora back edge that we need to consider }
v.High := max (v.High , w.DFS Number) ;

if v.High = v.DFS Number then { v is a root ofa component}

Current Component := Current Component + 1 ;
repeat { mark the vertices of the new component}

remove xfrom the top of STACK ;

x.Component := Current Component;

until x = v

end

Figure 7.33 Algorithm Strongly Connected ^Components.

3
<\302\273\"
c

3

>3
a>
x
&)

3
\"2.
cd*

o
\342\200\242-h
O
O
3

\342\200\242a
c

5'
CFQ

3Q
IS\"

<

CD

&3
3
a.

o3
OS.

o
o
33
CD
o
cd
a.
o
o
3

\342\200\242a
o
3
CD
3

0- -\302\251
61 0

o a. a a. o a* o\302\273

oooooooooooooooooooo

ooooooooooooooo sO sO sO sO

oooooooooooooooo^

ooooooooooooooooo

-J -J -J -\302\253J-J ^J ^J -J ^J ^J

~~-&>-^-&>*\302\273>.P>*\302\273>

z \342\200\224\342\200\224z z w w

QTQ
o
1

3
C/5

7.9 Decompositions of Graphs 233

at, say, v7 (see Fig 7.35). Clearly, v, ^ v7. The path v,, u>,...,w, v7 defines two cycles, as is
shown in Fig. 7.35. It is easy to see that one of the three cycles in the figure must be
even. We have proved the following theorem.

\342\226\241Theorem 7.13

Every biconnected graph that has more than one edge and is not merely an

odd-length cycle contains an even-length cycle.

The second problem is a similar one, but for directed graphs.

\342\226\241

The Problem Given a directedgraph G = (V, \302\243),determine

whetherit contains a (directed) cycle of odd length.

Again, we know that a cycle must be contained in a strongly connected component, so

we might as well assume that the graph is strongly connected. We perform DFS starting

from an arbitrary vertex r and we mark vertices with either even or odd. We mark r as

even, then, for each edge (v, u>), we mark w with the opposite mark of v. Since r can be
reached from any vertex (by the strong-connectivity assumption), we claim that there is a

cycle of odd length if and only if we try to mark a vertex that is already marked by the

opposite mark (the most notable example is if we reach r again and try to mark it as odd).

We leave the proof of this fact to the reader. It is strongly dependent on the strong

connectivity assumption.
Both of these problems are much more difficult to solve without the

decomposition. Since both decompositions canbe achieved efficiently in linear time, it is

usually worthwhile to start thinking about a given problem with the extra assumption that

the graphs in questions are either biconnected or strongly connected. This is especially

v*

vi+\\

Figure 7.35 Finding an even-length cycle.

234 Graph Algorithms

true for problems that involve cycles. It is interesting to note that the problem of

efficiently determining whether a directed graph contains an even-length cycle is still

open (see the Bibliography section).

7.10 Matching

Given an undirected graph G = (V, \302\243),a matching is a set of edgesno two of which have

a vertex in common. The reason for the name is that an edge can be thought of as a

match of its two vertices. We insist that no vertex belongs to more than one edge from

the matching so that it is a monogamous matching. A vertex that is not incident to any

edge in the matching is called unmatched. We also say that the vertex does not belong

to the matching. A perfect matching is one in which all vertices are matched. A

maximum matching is one with the maximum number of edges. A maximal matching,

on the other hand, is a matching that cannot be extendedby the addition of an edge.
Problems involving matching occur in many situations (besides social). Workers may be

matched to jobs, machines to parts, and so on. Furthermore, many problems that seem

unrelated to matching have equivalent formulations in terms of matching problems.

Matching in general graphs is a difficult problem. In this section, we limit our

discussion to two specific matching problems. The first problem is not so important; it

involves finding perfect matchings in special very dense graphs. The solution to this

problem, however, illustrates an interesting approach, which we then generalize to solve

an important problem concerningmatching in bipartite graphs.

7.10.1 Perfect Matching in Very Dense Graphs
In this example, we consider a very restricted case of the perfect matching problem. Let

G = (V, E) be an undirected graph such that | V \\ -In and the degree of each vertex is at

least n. We present an algorithm to find a perfect matching in such graphs. As a

corollary,we show that, under these conditions, a perfect matching always exists.

We use induction on the size m of the matching. The base case, m = 1, is handled

by taking any arbitrary edge as a matching of size one. We will show that we can extend
any matching that is not perfect either by adding another edge or by replacing an existing

edge with two new edges. In either case, the size of the matching is increased, and the

result follows.

Consider a matching M in G with m edges such that m < n. We first check all the

edges not in M to see whether any of them can be added to M. If we find such an edge,
then we aredone. Otherwise, M is a maximal matching. Since M is not perfect, there are

at least two nonadjacent vertices, v, and v2, that do not belong to M. These two vertices

have at least In distinct edges coming out of them. All of these edges lead to vertices
that are covered by M, since otherwisesuch an edge could be added to M. Sincethe

number of edges in M is < n and there are 2n edges from v, and v2 adjacent to them, at

least one edge from M \342\200\224
say (\302\253i,w2) \342\200\224is adjacent to three edges from v, and v2.

Assume, without loss of generality, that those three edges are (\302\253,,v,), (\302\253i,v2), and

(w2, v,) (see Fig. 7.36(a)). It is easy to see that, by removing the edge (\302\253,,w2) from M

7.10 Matching 235

\342\200\242^ ^#

fa)

Figure 7.36 Extending a matching.

and adding the two edges (w,, v2), and (m2, v i), we get a larger matching (Fig. 7.36(b)).

We leave the implementation of this algorithm as an exercise (7.21). This

algorithm is another example of a greedy approach. At most three edges were involved
in each step in the extension of one matching to a larger one. This was sufficient in this

case, but, in general, finding a good matching is more difficult. A choice of one edge

may affect choices of other edges far away in the graph. Next, we show how to

generalize this approach to other matching problems.

7.10.2 Bipartite Matching

Let G =
(V, \302\243,U) be a bipartite graph, such that V and U are two disjoint sets of vertices,

and \302\243is a set of edges connectingvertices from V to vertices in U.

The Problem Find a maximum-cardinality matching in a bipartite

graph G.

We can formulate this problem in terms of real matching: V is a set of girls, U is a set of

boys, and \302\243is a set of \"possible\" pairings; we want to match boys to girls so as to

maximize the number of matched boysand girls.

A straightforward approach is to try to match according to some strategy until no

more matches are possible,in the hope that the strategy will guarantee optimality, or at

least come close. We can try different strategies. For example, we can try a greedy

approach by first matching the vertices with small degrees, hoping that the other vertices
will be more likely to have unmatched partners later on. (In other words, first match the

boys that are the most difficult to match, and worry about the rest later.) Instead of trying

to analyze such strategies (which is hard), we try the approach used in the previous

problem. Suppose that we start with a maximal matching, which is not necessarily a
maximum matching. Can we somehow improve it? Consider Fig. 7.37(a), in which the

----.Jw' v,

236 Graph Algorithms

matching is depicted by bold lines. It is clear that we can improve the matching by

replacing the edge 2A with the edges 1A and 2B. This is similar to the transformation we

applied in the previous problem. But we are not restricted to replacing one edge with two

edges. If we find a similar situation where k edges can be replacedby k + 1 edges, then

we have an improvement. For example, we can improve the matching further by

replacing the edges 3D and 4E with the edges iC, 4D, and 5E (Fig. 737(b)).

Let's study these transformations. Our goal is to add more matched vertices. We

start with an unmatched vertex v and try to find a match for it. If we already have a
maximal matching, then all of v's neighbors are already matched, so we must try to break

up a match. We choose another vertex w, adjacent to v, which was previously matched

to, say, w. We match v to u and break up the match between u and w. We now have to

find a match for w. If w is connected to an unmatched vertex, then we are done (this was

the first case above); if not, we can continue this way by breaking matches and trying

rematches. To translate this attempt into an algorithm, we have to do two things. First,

we have to make sure that this procedure terminates, and second, we have to show that, if

there is an improvement, then this procedure will find it. First, we formalize this idea.

An alternating path P for a given matching M is a path from a vertex v in V to a

vertex u in U, both of which are unmatched in A/, such that the edges of P are

alternatively in E -M and in M. That is, the first edge (v, w) of P does not belong to M

(since v does not belong to A/), the second edge (w, x) belongsto A/, and so on, until the

last edge of />, (z, w), which does not belong to A/. Notice that alternating paths are

exactlywhat we used already to improve a matching. The number of edges in P must be

odd since P starts in V and ends in U. Furthermore, there is exactly one more edge of P

in E-M than there is in A/. Therefore, if we replace all the edges of P that belong to M

by the edges that do not belong to A/, we get another matching with one more edge. For

example, the first alternating path we used to improve the matching in Fig. 7.37(a) was
(M, A2, 2\302\243),which was used to replace the edge A2 with the edges 1A and 2B\\ the

second alternating path was (C5, 3D, D4, 4E, \302\2435),which was used to replace the edges

3D and 4E with the edges C5, D4, and E5.

12 3 4 5 6 12 3 4 5 6

A B C D E F A B C D E F

(a) (b)

Figure7.37
Extending a bipartite matching.

7.10 Matching 237

It should be clear now that, if there is an alternating path for a given matching A/,

then M is not maximum. It turns out that the opposite is also true.

\342\226\241Alternating-Path Theorem

A matching is maximum if and only if it has no alternating paths. \342\226\241

This claim will be proved, in the context of a more generaltheorem, in the next section.
The alternating path theorem immediately suggests an algorithm, because any

matching that is not maximum has an alternating path and any alternating path can extend

a matching. We start with the greedy algorithm, adding as many edges to the matching

as possible, until we get a maximal matching. We then search for an alternating path,

and modify the matching accordingly until no more alternating paths can be found. The

resulting matching is maximum. Sinceeach alternating path extends a matching by one

edge and there are at most nil edges in any matching (where n is the number of vertices),

the number of iterations is at most nil. The only remaining problem is how to find

alternating paths. We solve this problem as follows. We transform the undirected graph
G to a directedgraph G' by directing the edges in M to point from U to V and directing

the edges not in M to point from V to U. Figure 7.38(a) shows the matching obtained for

the graph in Fig. 7.37(a), and Fig. 7.38(b)shows the directed graph G'. An alternating

path corresponds exactly to a directed path from an unmatched vertex in V to an

unmatched vertex in U. Such a directed path can be found by any graph-search

procedure, for example, DFS. The complexity of a search is O (| V \\ + \\E |); hence, the

complexity of the algorithm is O (| V | (| V \\ + \\E |)).

An Improvement

Since a search can traverse the whole graph in the same worst-case running time that it

traverses one path, we might as well try to find several alternating paths with one search.

We have to make sure, however, that these paths do not modify one another. One way to

guarantee the independence of such alternating paths is to restrict them to be vertex

U U

12 3 4 5 6 12 3 4 5 6

A B C D E F A B C D E F

V V

(a) (b)

Figure 7.38 Finding alternating paths.

238 Graph Algorithms

disjoint. If the paths are vertex disjoint, they modify different vertices, so they can be

applied concurrently. The new improved algorithm for finding alternating paths is the

following. First, we perform BFS in G' from the set of all unmatched vertices in V, level

by level, until a level in which unmatched vertices in U are found. Then, we extract from

the graph induced by the BFS a maximal set of vertex disjoint paths in G' (which are

alternating paths in G). This is done by finding any path, removing its vertices, finding

another path, removing its vertices, and so on. (The result is not a maximum set, but

merely a maximal set.) We choosea maximal set in order to maximize the number of

edges added to the matching with one search (each vertex-disjoint alternating path adds

one edge to the matching). Finally, we modify the matching using this set of alternating

paths. This process is repeated until no more alternating paths can be found (i.e., the new

directed graph G' disconnects the unmatched vertices in V from the unmatched vertices

inU).

Complexity It turns out that the number of iterations of the improved algorithm is

0(v\\V\\) in the worst case. We omit the proof, which is due to Hopcroft and Karp

[1973]. The overall worst-case running time is thus O ((| V \\ + \\E |)V|V |).

7.11 Network Flows

The problem of network flows is a basic problem in graph theory and combinatorial

optimization. It has been studied extensively for the last 35 years, and many algorithms

and data structures have been developed for it. It has many variations and extensions.

Furthermore, many seemingly unrelated problems can be posed as network-flow

problems. The basic variation of the network-flow problem is defined as follows. Let

G=(V, E) be a directed graph with two distinguished vertices, s (the source) with

indegree 0, and / (the sink) with outdegree 0. Eachedgee in E has an associated positive
weight c (e), called the capacity of e. The capacity measures the amount of flow that can

pass through an edge. We call such a graph a network. For convenience we assign a
capacity of 0 to nonexisting edges. A flow is a function / on the edges of the network
that satisfies the following two conditions:

1. 0<f(e)<c(e): The flow through an edge cannot exceed the capacity of

that edge.
2. For all veV-{s, /), \302\243/(m, v) =

\302\243/(v, w): The total flow entering a
u w

vertex is equal to the total flow exiting this vertex (exceptfor the source and

sink).

These two conditions imply that the total flow leaving s is equal to the total flow entering
t. The problem is to maximize this flow. (If the capacities are real numbers, then it is not
even clear that maximum flows exist; we will show that they indeed always exist.) One

way to visualize this problem is to think of the network as a network of water pipes. The

goal is to push as much water through the pipes as possible. If too much water is pushed
to the wrong area, the pipes will burst.

7.11 Network Flows 239

First, we show that the problem of bipartite matching, discussed in the previous
section, can be posed as a network-flow problem. This may seem to be a fruitless

exercise, since we already know how to solve the matching problem, but we do not know

how to solve the network-flow problem (namely, the reduction is in the wrong direction).
The reason we present this wrong-order reduction is that the techniques for solving the

network-flow problem are similar to those for solving the bipartite matching problem.
Understanding the similarities can be helpful in understanding network-flow algorithms.

Given a bipartite graph G = (V, \302\243,U) in which we want to find a maximum-

cardinality matching, we add two new vertices s and f, connect s to all verticesin V, and

connect all vertices in U to t. We also direct all the edges in E from V to U (see Fig.
7.39, in which all edges are directed from left to right). We now assign capacities of 1 to

all the edges, and we have a valid network-flow problem on the modified graph G'. Let

M be a matching in G. There is a natural correspondence between M and a flow in G\\

We assign a flow of 1 to all the edges in M and to all the edges connecting s or Mo
matched vertices in M. All the other edges are assigneda flow of 0. The total flow is

thus equal to the number of edges in the matching. It turns out that M is a maximum

matching if and only if the corresponding flow is a maximum flow in G\\ One side is

clear: If the flow is maximum and it corresponds to a matching, then we cannot have a

larger matching, since it would correspond to a larger flow. For the other side of the

claim we somehow have to adapt the idea of alternating paths to network flows, and to

show that, if there are no alternating paths, then the corresponding flow is maximum. We

proceed to do just that.

An augmenting path with respect to a given flow / is a directed path from s to t

which consists of edgesfrom G, but not necessarily in the same direction; each of these
edges(v, u) satisfies exactly one of the following two conditions:

1. (v, u) is in the same direction as it is in G, and /(v, w)<c(v, w). In this

case, the edge (v, u) is called a forward edge. A forward edge has room for

Figure 7.39 Reducing bipartite matching to network flow (the directions of all the

edges are from left to right).

240 Graph Algorithms

more flow. The difference c(v, w)-/(v, u) is calledthe slack of the edge.
2. (v, u) is in the opposite direction in G (namely, (w, v)e \302\243),and /(w, v) > 0.

In this case, the edge (v, u) is called a backwardedge. It is possible to

borrow some flow from a backward edge.

Augmenting paths are extensions of alternating paths, and they serve the same

purpose for network flows as alternating paths do for bipartite matching. If there exists

an augmenting path with respect to a flow / (we say that / admits an augmenting path),
then /is not maximum. We can modify /by moving more flow through the augmenting

path in the following way. If all the edges of the path are forward edges, then more flow

can be moved through them, and all the constraints are still satisfied. The extra flow in

that case is exactly the minimum slack of the edges in the path. The case of backward

edges is a little more complicated. Consider Fig. 7.40. Eachedgeis marked with two

numbers alb, such that a is the capacity and b is the current flow. It is clear that no more
flow can be pushed forward, since there is no path from s to t that consists of only

forward edges. However, there is a way to extend the flow.

The path s-v-u-w-t is an augmenting path. An additional flow of 2 can reach u

from s through this path (2 is the minimum slack over all forward edges until w). We can

deduct a flow of 2 from / (w, w). The conservationconstraint is now satisfied for w, since

u had an additional flow of 2 coming in through the augmenting path, and a flow of 2

deducted from the backward edge. We now have an extra flow of 2 at w that needs to be

pushed,which is exactly what we want. We can continue pushing flow from w in the
same way, pushing it forward on forward edges, and deducting it from backward edges.
In this case, there is one forward edge (w, t) that reaches f, and we are done. Since only

forward edges can leave s and enter r, the total flow is increased. The increase is equal to

the minimum of either the minimal slack of forward edges or the minimal current flow

through backward edges. Figure 7.41 shows the same network with the modified flow.

(This flow is in fact maximum.)

Figure 7.40 An example of a network with a (nonmaximum) flow.

7.11 Network Flows 241

Figure7.41The result of augmenting the flow of Fig. 7.40.

The arguments above establish that if there is an augmenting path, then the flow is

not maximum. The opposite is also true:

\342\226\241The Augmenting-Path Theorem

A flow f is maximum if and only if it admits no augmenting path.

Proof: We have already shown one direction of the theorem \342\200\224if the flow admits

an augmenting path, then it is not maximum. Let's assume now that a flow /admits no

augmenting path, and prove that/is maximum. We use the concept of cuts. Intuitively,

a cut is a set of edgesthat separate s from t. More precisely,let A be a set of verticesof

V such that s e A and 14 A. Denote the rest of the vertices by B = V -A. A cut is the set
of edges {(v, w) e E] such that v e A and we B. The capacity of the cut is defined as the

sum of the capacities of its edges. It is clear that no flow can exceed the capacity of any
cut. (If you disconnect the pipes, no water can flow through them.) Hence, if we find a

flow whose value is equal to the capacity of a (any) cut, then this flow must be maximum.
We proceed to prove that, if a flow admits no augmenting paths, then it is equal to the

capacity of a cut, and hence it is maximum.
Let / be a flow that admits no augmenting path. Let A c V be the set of vertices

such that for each v e A there is an augmenting path, with respect to the flow / from s to
v. Clearly, seA, and t$A (since we assumed that /admits no augmenting path).
Therefore, A defines a cut. We claim that, for all edges (v, w) in that cut,

/(v, w) = c(v, w). Otherwise, (v, w) would be a forward edge and there would be an

augmenting path to u>, contrary to our assumption that w $ A. By the same argument,

there cannot be an edge (w, v) such that w$ A and v e A, and/ (w, v) >0 (sinceit would

be a backward edge and it could extend an augmenting path). Hence, the value of the

flow /is equal to the capacity of the cut defined by A, and /is maximum. \342\226\241

242 Graph Algorithms

We have provedthe following fundamental theorem.

\342\226\241Max-Flow Min-Cut Theorem

The value of a maximum flow in a network is equal to the minimum capacity

of a cut. \342\226\241

The augmenting-path theorem also implies the following theorem.

\342\226\241The Integral-Flow Theorem

// the capacities of all edges in the network are integers, then there is a

maximum flow whose value is an integer.

Proof: The theorem follows directly from the augmenting-path theorem. In fact,

any algorithm that uses only augmenting paths will lead to an integral flow if all the

capacities are integers. This is obvious since we start with a flow of 0, and each

augmenting path adds an integer to the total flow. \342\226\241

We now return to the bipartite-matching problem. Clearly, any alternating path in

G corresponds to an augmenting path in G\\ and vice versa. The augmenting-path

theorem implies the alternating-path theorem given in the previous section. If M is a
maximum matching, then there is no alternating path for it, which implies that there is no

augmenting path in G', which implies that the flow is maximum. On the other hand,

there is a maximum integral flow, and it clearly corresponds to a matching since each

vertex in V is connected by only one edge (with capacity 1) to s; hence, each vertex of V

can support a flow of only 1. The same argument holds for the vertices of U. This

matching must be maximum since, if it could be extended, then there would be a larger
flow.

The augmenting-path theorem immediately suggests an algorithm. We start with a

flow of 0, searchfor augmenting paths, and augment the flow accordingly, until there are
no more augmenting paths. We are always making progress since we are increasing the

flow. Searching for augmenting paths can be done in the following way. We define the

residual graph, with respect to a network G=(V, E) and a flow /, as the network
R = (V, F) with the same vertices, the same sourceand sink, and the same edges, but with

possibly different directions and different capacities. The edges in the residual graph

correspond to the possible edges in an augmenting path. Their capacities correspond to
the possible augmenting flow through those edges. More precisely, an edge (v, w)

belongs to F if it is either a forward edge, in which case its capacity is c(v, w)-/(v, w),
or a backward edge, in which case its capacity is/(v, w). An augmenting path is thus a

regular directed path from s to t in the residual graph. Constructing the residual graph

requires \\E | steps since each edge has to be checkedexactly once.

Unfortunately, selecting augmenting paths in an arbitrary way may lead to a very

slow algorithm. The worst-case running time of such an algorithm may not even be a

function of the size of the graph. Consider the network in Fig. 7.42. The maximum flow

is obviously 2Af. However, one might start with the path s-a-b-t, which can support a

flow of only 1. Then, one might take the augmenting path s-b-a-t, which again

7.12 Hamiltonian Tours 243

Figure 7.42 A bad example of network flow.

augments the flow by only 1. This processcan be repeated 2M times, where M may be

very large, even though the graph has only four vertices and five edges. (Since the value

of M can be representedby O(logM) bits, this algorithm is exponential, in the worst

case, in the size of the input.)

Although the scenario above may be unlikely, we have to take precautions to avoid
it. Furthermore, we want to minimize the number of augmentations in order to speed up
the algorithm. Edmonds and Karp [1972], for example,suggested(among other things)

selecting the next augmenting path by taking the augmenting path with the minimum

number of edges. They proved that, if this policy is maintained, then at most

(IV 13-
IV I)/4 augmentations are required. This leads to an algorithm whose worst

case is polynomial in the size of the input. Many different algorithms have been

suggestedsince then. Some are complicated; others are relatively simple (none are really

simple). An upper bound of 0(|V|3) on the complexity of network flow has been
achievedby several of these algorithms. We will not describe these algorithms here
(referencesare given in the Bibliography section).

7.12 Hamiltonian Tours

We started this chapter with a discussion of a tour containing all edges of a graph. We

end the chapter with a discussion of a tour containing all the vertices of a graph. This is

also a famous problem, named after the Irish mathematician Sir William R. Hamilton,

who designed a popular game based on this problem in 1857.

The Problem Given a graph G=(V, \302\243),find a simple cycle in G

that includes every vertex of V exactly once.

244 Graph Algorithms

Such a cycle is calleda Hamiltonian cycle. Graphs containing such cycles are called
Hamiltonian graphs. The problem has a directed and an undirected version; we will

consider only the undirected version.
Unlike the Eulerian-tour problem, the problem of finding Hamiltonian cycles (or

characterizing Hamiltonian graphs) is very difficult. It belongs to the class of NP-

complete problems discussed in Chapter 11. In this section, we present a simple example
in which we find Hamiltonian cycles in only special graphs that are very dense. The

most interesting part of this example is the use of an interesting technique called

reversed induction.

7.12.1 Reversed Induction

We have already seen reversed induction in Section 2.11. The idea is to use an infinite

set S (e.g., S = [2k),k = 1, 2,...) as the base case for the induction. That is, we prove that

the theorem P(n) holds for all values of n that belong to S. Then, we go \"backward,\"

proving that the validity of P(n) implies the validity of P(n-\\). Usually in

mathematics, going from n to n - 1 is not easier than going from n-\\ to w, and proving

an infinite base case is much more difficult than a simple one. When designing

algorithms on the other hand, it is almost always easy to go from nton-\\, namely, to

solve the problem for smaller inputs. For example,we can introduce \"dummy\" inputs
that do not affect the outcome. As a result, it is sufficient in many cases to design the

algorithm not for inputs of all sizes, but only for sizes taken from an infinite set. The

most common use of this principle is designing algorithms only for inputs of size n which

is a power of 2. It makes the design much cleaner and eliminates many \"dirty\" details.

Obviously, thesedetails will have to be resolved eventually. But it is more convenient to
solve the main problem first. We use the assumption that n is a power of 2 in several

algorithms throughout the book (e.g., Sections 8.2, and 9.4).

The same method is also useful when there is a bound on the number of possible
elements. The base case of the theorem can be the instance with the maximal number of
elements(rather than the minimal number). The proof can then \"go backward.\" For

example, supposethat we want to prove a theorem about graphs and we want to apply

induction on the number of edges. We can start with the complete graph, which has the

maximal number of edges for a fixed number of vertices. We can then prove that the
theorem continues to hold even if we remove an edge (as opposedto the usual adding of
an edge). This gives us extra flexibility in applying induction. The next algorithm

illustrates this principle.

7.12.2 Finding Hamiltonian Cycles in VeryDenseGraphs
Let G=(V, E) be a connected undirected graph, and let d(y) denote the degree of the

vertex v. The following problem involves finding Hamiltonian cycles in very dense

graphs. We will show that the conditions of the problem guarantee that the graph is

Hamiltonian. We introduce the problem to illustrate the principle of reversedinduction.

7.12 Hamiltonian Tours 245

The Problem Given a connected undirected graph G =
(V, E) with

n > 3 vertices, such that each pair of nonadjacent vertices v and w

satisfies d(v) + d(w)>n, find a Hamiltonian cycle in G.

The algorithm is based on reversedinduction on the number of edges. The basecaseis

the complete graph. Every complete graph with at least three vertices contains a
Hamiltonian cycle and it is easy to find one (put all vertices in an arbitrary order and

connect them in a cycle).

Induction hypothesis: We know how to find a Hamiltonian cycle in graphs

satisfying the given conditions with > m edges.

We have to show how to find a Hamiltonian cycle in a graph with m -1 edges that

satisfies the conditions of the problem. Let G =(V, E) be such a graph. Take any pair of

nonadjacent vertices v and w in G, and consider the graph G', which is the same as G

except that v and w are connected. By the induction hypothesis, we know how to find a

Hamiltonian cycle in G'. Let x{, jc2,...,Jt\342\200\236,xxbe such a cycle in G' (see Fig. 7.43). If

the edge (v, w) is not included in the cycle, then the same cycle is contained in G and we

are done. Otherwise,without loss of generality, we can assume that v=x{ and w=xn.

By the conditions given for G, d(v) + d(w)>n. The stage is now set to find a new

Hamiltonian cycle.
Consider all the edges in G coming out of v and w. There are at least n of them (by

the conditions of the problem). But G contains n-2 other vertices. Therefore,there are

two vertices jc, and jc/+1 , which are neighbors in the cycle, such that v is connected to jc,+1
and w is connected to xh Using the edges (v, jc/+1) and (w, *,), we can now find a new

Hamiltonian cycle that does not use the edge (v, w). It is the cycle
v(=x!), xi+l,*/+2,...,w(=xn\\ xh */_!,..., v (see Fig. 7.43).

Figure 7.43 Modifying Hamiltonian cycles.

246 Graph Algorithms

Implementation The straightforward implementation of this proof starts with the

complete graph and replaces one edge at a time. We can do better by starting with a

much smaller graph as follows. Take the input graph G, find a large path (e.g., by DFS),

and add the edges (not from G) necessary to complete this path to a Hamiltonian cycle.
We now have a larger graph G', which has a Hamiltonian cycle. Usually, only few edges
will be added. However, even in the worst case, at most n - 1 edges will be added. We
can apply the proof above iteratively, starting with G', until a Hamiltonian path is

obtained for G. The total number of steps to replace an edge is O(n). There are 0(n)
edgesto replace; hence, the algorithm runs in time 0(n2).

7.13 Summary

Graphs are used to model relationships among pairs of objects.Sincemost algorithms

require an examination of the whole input, the first issue involved in graph algorithms is

frequently graph traversal. We studied two types of graph traversals: depth-first search

(DFS), and breadth-first search (BFS). We saw several exampleswhere DFS was more

suitable than BFS. Therefore, we suggest trying DFS first (although there are many

examples where BFS is superior). DFS is especiallysuited for recursive algorithms on

graphs. BFS also usually requires more space (although again, this is not a rule \342\200\224it

depends on the graph). We have also seen an example of priority search, which was

used to compute shortest paths from a single source. Priority search is more expensive
than regular search. It is useful for optimization problems involving weighted graphs.

Cycles usually cause major difficulties for graph algorithms. Therefore, algorithms

for trees or directed acyclic graphs are usually much easier to design and faster to

execute. It is important to realize that graphs with even a small number of edges can

have many different cycles (Exercise 7.54). Algorithms that require checking all or a

large fraction of the cycles in a graph can be very slow for most graphs.
Graph decomposition is very useful. Fortunately, it is also usually reasonably

inexpensive. We have seen decompositionsinto connected components, biconnected

components, and strongly connected components. Decomposition basically allowsus to

assume certain properties (such as connectivity), even though the graphs under

consideration may not have them.
Another useful technique for graph algorithms is reduction. Since graphs can be

represented by matrices there is a natural relationship between graph and matrix

algorithms. We discuss this relationship and reductions in general in Chapter 10.

Network-flow problems and matching problems are excellent source for reductions.
Reductions also help us to determine whether a problem is difficult. In Chapter 11, we

discuss a class of problems, called NP-complete problems, which probably cannot be

solved by algorithms whose running times are polynomial in the size of the input in the

worst case. This class includes numerous graph problems. The differences betweeneasy
problems and hard problems sometimes seem minuscule. For example,we have seen an

efficient algorithm to determine whether a directed graph contains a simple cycle of odd
length; the same problem with the extra constraint that the cycle contains a given vertex

(or edge) is NP-complete. It is essential to understand and develop an intuitive feeling

Bibliographic Notesand Further Reading 247

for these differences. Thus, the material in Chapter 11 is very important for

understanding graph algorithms.

Bibliographic Notes and Further Reading

Graph theory is a relatively new field in mathematics. Most of the basic results were

discovered only in this century. Nevertheless, by now graph theory is a developedand

well-understood field, with thousands of results. Many books on graph theory have been
published, among them Berge [1962], Ore [1963],Harary [1969], Berge [1973], Deo

[1974], Bondy and Murty [1976], Chartrand [1977], Capobiancoand Molluzzo [1978],

Bollobas [1979], Tutte [1984], and Chartrand and Lesniak [1986]. There are also several

books devoted to graph algorithms, including Even [1979], Golumbic [1980] (which

emphasizes perfect graphs and related classes of graphs), Gondran and Minoux [1984]
(which emphasizes optimization problems), Gibbons [1985], Nishizeki and Chiba [1988]

(which is devoted to planar graphs), and a survey paper by van Leeuwen [1986].
The notion of Eulerian graphs is due to Euler [1736], and it is regarded as the first

result in graph theory. An algorithm for finding Eulerian paths can be obtained quite
easily from the proof (see, for example, Even [1979] or Ebert [1988]). Depth-first search

was first described by Lucas [1882] (describing work by Tr6maux) and Tarry [1895],
where it was used to design algorithms to traverse a maze. The importance of depth-first

search was made evident in the work of Tarjan [1972], who also presented the algorithms
for biconnected and strongly connected components.

The minimum-cost spanning tree problem has been studied extensively. The
algorithm presented in Section 7.6 (although not its implementation) is due to Prim

[1957]. Another algorithm (which is the subject of Exercise7.59)is due to Kruskal

[1956]. Other algorithms for finding the minimum-cost spanning tree were developed by
Yao [1975], Cheriton and Tarjan [1976], Fredman and Tarjan [1987], and Gabow, Galil,
Spencer,and Tarjan [1986]

The algorithm for single-source shortest paths presented in Section 7.5 was

developed by Dijkstra [1959]. The implementation using a heap is due to Johnson [1977]
(seealsoTarjan [1983]). When the graph is sparse, as is usually the case in practice, this

is a fast algorithm. If the number of edges is proportional to | V |2, then the running time

of this algorithm is O (| V | 2log | V \\. A better implementation for dense graphs, with a

running time of 0(\\V |2), is the subject of Exercise 7.43. The best-known asymptotic

running time for this problem (using quite complicated data structures) is

0(\\E | + |V|log |V|), a result due to Fredman and Tarjan [1987]. The all-pair

shortest-paths algorithm presented in Section 7.7 is due to Floyd [1962]. It works

correctly for weighted graphs with possibly negative weights, provided that there are no

negative weight cycles (Exercise 7.73). It is possible to find all the shortest paths faster
on the average

\342\200\224
Spira [1973] presented an algorithm whose average running time is

0(| V |2 log2 | V |), and Moffat and Takaoka [1987] used a hybrid of Spira's algorithm
and an earlier algorithm by Dantzig [1960] to obtain an algorithm whose average running

time is 0(\\ V |2 log | V |). For more information on shortest-path algorithms see the

survey by Deo and Pang [1984] (which includes, among other things, 222 references).

248 GraphAlgorithms

The transitive closure algorithm presented in Section 7.8 is due to Warshall [1962].

The augmenting-path theorem and its application to network flows were

discovered by Ford and Fulkerson [1956]. An excellent description of the data structures

and combinatorial algorithms for network flows is given in Tarjan [1983]. A new

algorithm
for network flow was recently developed by Goldberg and Tarjan [1988].

More information on the network-flow problem and many of its extensions can be found

in Ford and Fulkerson [1962], Hu [1969], Christofides [1975], Lawler [1976], Minieka

[1978], Papadimitriou and Steiglitz [1982], and Gondran and Minoux [1984]. A book by

Lovasz and Plummer [1986] covers both the mathematical foundations of matching

theory and algorithms for various matching problems. Galil [1986] presents a survey of

matching algorithms in bipartite and general graphs. The algorithm in Section 7.12.2 for

finding Hamiltonian cycles in dense graphs is based on a theorem (and its proof) by Ore

[I960].
Two important subjects in graph algorithms were not discussed here: planarity and

graph isomorphism. The problem of characterizing planar graphs and embedding them
in the plane is one of the oldest problems in graph theory. Early algorithms for this

problem were developed by Auslander and Parter [1961] and Lempel, Even, and

Cederbaum [1966]. A linear-time algorithm to determine whether a graph is planar was

developed by Hopcroft and Tarjan [1974]. It uses a linear-time (DFS-based) algorithm to

decompose a graph into 3-connected components (Hopcroft and Tarjan [1973]). This

algorithm motivated the development of many other algorithms and data structures. A

polynomial-time algorithm for graph isomorphism has not been found yet. Graph
isomorphism is one of the very few major problems whose status (either polynomial or

NP-hard) is still unknown (more on that in Chapter 11). For a discussion on this topic

see, for example, Hoffman [1982], or Luks [1982].
A discussion on de Bruijn sequences (Exercise7.28)can be found in Even [1979].

Exercise7.46is from Sedgewick and Vitter [1986]. Exercise7.55is motivated by an

exercise from Bollobas [1986], and Exercise 7.58 is motivated by an exercise from

Lovasz [1979]. Ford [1956] contains an algorithm that satisfies the requirements of
Exercise 7.75. The algorithm for transitive closure hinted in Exercise 7.81 is from
Warren [1975]. Exercise 7.97 is from Lovasz and Plummer [1986]. Gabow and Tarjan
[1988] presentan efficient algorithm for the bottleneck problem in Exercise 7.100. The

theorem presented in Exercises 7.101 and 7.102 is known as Gomory's theorem.

Exercise 7.105 is from Lovasz [1979]. Exercise 7.121 is related to a problem
of

designing space-efficient routing tables, which is solved in Manber and McVoy [1988].

Drill Exercises

7.1 Considerthe problem of finding balance factors in binary trees discussed in Section 5.8.

Solve this problem using DFS. You need only to define pre WORK and postWORK.

7.2 LetG = (V, E) be a connected undirected graph, and let T be a DFStree of G rooted at v.

Drill Exercises 249

a. LetH be an arbitrary induced subgraph of G. Show that the intersection of T and H is

not necessarily a spanning tree of H.

b. Let R be a subtree of 7\\ and let S be the subgraph of G induced by the vertices in R.
Prove that R could be a DFS tree of S.

7.3 The input is a connected undirected graph G = (V, \302\243),a spanning tree T of G, and a vertex v.

Design a algorithm to determine whether T is a valid DFS tree of G rooted at v. In other

words, determine whether T can be the output of DFS under some order of the edges
starting with v. The running time of the algorithm should be O (| E | + | V |).

7.4 Characterize all undirected graphs that contain a vertex v such that there exists a DFS
spanning tree rooted at v that is identical to a BFS spanning tree rooted at v. (Two spanning
trees are identical if they contain the same set of edges; the order in which they are

traversed is immaterial here. However, both trees must have the same root v.)

7.5 Modify algorithm Topological Sorting (Fig. 7.14) in the following way. Assume that you

no longer know whether or not the graph is acyclic. Obviously, if the graph is cyclic, a

topological sort is impossible. Design an algorithm that will output the topological-sort
labeling if the graph is acyclic,and will output a cycle if the graph is not. The running time

of the algorithm should be O(| E \\ + \\V |).

7.6 Consider algorithm Single Source Shortest Paths (Fig. 7.17)Prove that the subgraph

consisting of all the edges that belong to shortest paths from v, found during the execution

of the algorithm, is a tree rooted at v.

7.7 Let G = (V, E) be an undirected weighted graph, and let T be the shortest-paths tree rooted at

a vertex v (Exercise 7.6). Suppose now that all the weights in G are increased by a constant

number c. Is T still the shortest-paths tree from v?

7.8 Prove or show a counterexample: Algorithm Single Source Shortest Paths (Fig. 7.17)
works correctly for weighted graphs some of whose edges have negative weights, provided

that there are no negative-weight cycles.

7.9 Let G = (V, E) bean undirected weighted graph. Prove that, if all the costs are distinct, then

there exists exactly one unique minimum-cost spanning tree.

7.10 Modify algorithm MCST (Fig. 7.20) to find a maximum-cost spanning tree.

7.11 Prove or show a counterexample: algorithm MCST (Fig.7.20)works correctly for weighted

graphs someof whose edges have negative costs.

7.12 a. Give an example of a weighted connected undirected graph G =(V, E) and a vertex v,

such that the minimum-cost spanning tree of G is the same as the shortest-path tree

rooted at v.

b. Give an example of a weighted connected undirected graph G =(V, E) and a vertex v,

such that the minimum-cost spanning tree of G is very different from the shortest path

tree rooted at v. Can the two trees be completely disjoint?

7.13 Describe the changes in the biconnected components and biconnected tree resulting from

deleting the vertex c from the graph in Fig. 7.25.

7.14 a. Run the biconnected components algorithm on the graph in Fig. 7.44. The algorithm

250 Graph Algorithms

should follow the DFS numbers that are given in the figure. Show the High values as

computed by the algorithm in each step.

b. Add the edge (4,8) to the graph and discuss the changes this makes to the algorithm.

7.15 Prove that the definition of a biconnected tree in Section 7.9.1 is valid. You have to show
that there are no cycles, and that the set of all biconnected components are connected.

7.16 a. Run the strongly connected components algorithm on the graph in Fig. 7.45. The
algorithm should follow the DFS numbers that are given in the figure. Show the High
values as computed by the algorithm in each step.

b. Add the edge (4,1)to the graph and discuss the changes this makes to the algorithm.

7.17 Let G = (V, E) be a strongly connected graph and let T be a DFS tree in G. Prove that, if all

the forward edges in G, with respect to 7, are removed from G, the resulting graph is still

strongly connected.

Figure 7.44 An undirected graph with DFS numbers for Exercise 7.14.

1

Figure 7.45 A directed graph with DFS numbers for Exercise 7.16.

Creative Exercises 251

7.18 a.Prove the correctness of the algorithm for finding an odd length cycle in a directed graph

(Section 7.9.4).

b. Show an example of a graph that is not strongly connected for which the algorithm does
not work.

7.19 Show an implementation of the algorithm discussed in Section 7.10.2 to find a perfect
matching in a graph with In vertices, each with degree at least n. Your algorithm should
run in time O (| V \\ + \\E \\) in the worst case.

7.20 This exercise generalizes somewhat the proof of existence of perfect matchings in dense

graphs. Suppose that you are given a graph with 2n vertices such that not all of them have

high degree, but, for any two nonadjacent vertices, the sum of their degrees is at least In. Is
it still true that a perfect matching always exists? Is the algorithm obtained in Exercise 7.19

still valid?

Creative Exercises

Unless specified otherwise, we assume that the graphs are given in an adjacency-lists

representation. Such a representation requires O (| V | + | E \\) space; hence, we say that an

algorithm runs in linear time if its running time is 0(|V | + |\302\243|). Unless specified
otherwise, all the running times are worst case. In some cases, a particular running time is

given and the exercise requires achieving that time; in other cases, we ask only for an

\"efficient algorithm.\" In the latter case, the reader should try to find the best possible
algorithm. In practice, of course, the best running time is unknown when a problem is

encountered.

7.21 Given an undirected graph G = (V, E) and an integer k, find the maximum induced subgraph
H of G such that each vertex in H has degree > k, or determine that it does not exist. (An
induced subgraph of a graph G = (V, E) is a graph // = (\302\243/,F) such that (/cV, and F

includes all edges in E both of whose vertices are in U.) The algorithm should run in linear

time. (This problem is discussed in Section 5.3.)

7.22 Let G = (V, E) be a connected undirected graph. We want to pick a vertex of degree 1 of G,

remove it and its incident edge from G, and continue this process (i.e.,taking another vertex

of degree 1 in the remaining graph, removing it, and so on) until all edges are removed. If

this procedure is always possible for certain graphs, then designing algorithms by induction
for these graphs may be easier. Characterize connected undirected graphs that satisfy these

conditions. In other words, find necessary and sufficient conditions for a graph G on which

the procedure described above is possible.

7.23 Describe an efficient implementation of the Eulerian graph algorithm discussed in Section

7.2. The algorithm should run in linear time and space.

7.24 Let G= (V\\ E) be an undirected graph such that each vertex has an even degree. Design a
linear-time algorithm to direct the edges of G such that, for each vertex, the outdegree is

equal to the indegree.

7.25 A directed Eulerian circuit is a directed circuit that contains each edge exactly once. Prove

252 Graph Algorithms

that a directed graph contains a directed Eulerian circuit if and only if the indegree of each
vertex is equal to its outdegree, and the underlying undirected graph is connected. Design

an efficient algorithm to find such an Eulerian circuit if it exists.

7.26 Let G = (V, E) be an undirected connected graph with k vertices of odd degrees.

a. Prove that k is even.

b. Design an algorithm to find k/2 open paths such that each edge in G is included in

exactly one of these paths.

7.27 Design an algorithm to find a vertex in a connected undirected graph whose removal does
not disconnect the graph. The algorithm should run in linear time. (Do not use the

biconnected components algorithm.) As a consequence, prove that every connected graph

contains such a vertex.

7.28 A binary de Bruijn sequence is a (cyclic) sequence of 2\" bits axa2
\342\200\224\342\200\242

a2\" such that each

binary string s of size n is represented somewhere in the sequence; that is, there exists a

unique index i such that s =
at ai+x

\342\200\242\342\200\242\342\200\242
fl/^-i (where the indices are taken modulo 2\.") For

example, the sequence 11010001 is a binary de Bruijn sequence for n =3. Let Gn = (V, E)
bea directed graph defined as follows. The vertex set V corresponds to the set of all binary

strings of size n - 1 (| V \\ =2\"~l). A vertex corresponding to the string axa2 \342\200\242\342\200\242\342\200\242
an.x has

an edge leading to a vertex corresponding to the string bxb2 '''
bn_x if and only if

#2^3
'''

an-\\ -bxb2
\342\200\242\342\200\242\342\200\242

bn_2. Prove that Gn is a directed Eulerian graph, and discuss
the implications for de Bruijn sequences.

7.29 Design an efficient algorithm for the following problem: Given n positive integers

dx>d2,..., dny such that dx+d2+ \342\200\242\342\200\242\342\200\242
+dn = 2n-2, construct a tree with n vertices of

degreesexactly dx, d2,..., dn.

7.30 Let (/',, o!),(/'2,o2),...,(/\342\200\236,on) be a sequence of pairs of integers such that

a. /', =0, and ik
= 1 for 1 < k <n

n

b. ^Oj
= n-\\

Find a rooted tree with n vertices such that the indegree of vertex k is ikt and its outdegree is

ok. The algorithm should run in time O (n).

7.31 LetG= (V, E) be a directed graph (not necessarily acyclic). Design an efficient algorithm
to label the vertices of the graph with distinct labels from 1 to | V \\ such that the label of
each vertex v is greater than the label of at least one of v's predecessors(if v has any), or to

determine that no such labeling is possible, (w is a predecessorof v if (w, v) e E.)

7.32 An undirected graph G = (V, E) is said to be ^-colorable if all the vertices of G can be
colored using k different colors such that no two adjacent vertices have the same color.

Design a linear-time algorithm to color a graph with two colors or determine that two colors

are not sufficient.

7.33 Let G = (VyE) be an undirected graph that can be colored with two colors. It may be

possible to color G with two colors in several different ways. Use the algorithm in Exercise
7.32 to prove that the coloring of G is unique (except for interchanging the colors, which

can always be done) if and only if G is connected.

Creative Exercises 253

7.34 Let T be an undirected tree (not necessarily binary) whose root is r. Each vertex in T is
associated with a character taken from a fixed finite alphabet. The tree is represented by

adjacency lists. Let P be a pattern string (represented by an array of characters). Design an

algorithm to find whether the pattern appears at least once in a path from the root to a leaf.

The algorithm should run in time 0(n+m) in the worst case, where n is the number of
vertices in the tree and m is the size of the pattern.

7.35 Given a connected undirected graph G = (V, E) that contains exactly one cycle, direct the

edges such that the indegrees of all vertices are at most 1. (Such directed graphs are called

injective since they correspond to injective functions.) What is the complexity of your

algorithm?

7.36 Let G = (V, E) be an undirected graph. Design an algorithm to determine whether it is

possible to direct the edges of G such that the indegree of every vertex is at least 1. If it is

possible, then the algorithm should show a way to do it.

7.37 Given a connected undirected graph G =(V, \302\243),direct its edges such that the following two

conditions are satisfied:

a. The resulting directed graph contains a rooted tree (i.e.,a tree all of whose edges point

away from the root).

b. Any edge, which does not belong to the tree above, completesa directed cycle with

edges of the tree.

What is the complexity of your algorithm?

7.38 Given a directed acyclic graph G = (V, \302\243),find a simple (directed) path in G that has the

maximum number of edges among all simple paths in G. The algorithm should run in linear

time.

7.39 a. Solve the problem in Exercise 7.38 for the case of weighted graphs. That is, you are now

looking for a path whose weight is the maximum over all paths.

b. Will your algorithm work for negative cost edges?

c. Will your algorithm work for general (not necessarily acyclic) graphs?

7.40 LetG = (V, E) be a directed acyclic graph, and let k be the maximal number of edges in a

path of G. Design an algorithm to divide the vertices into at most k + 1 groups such that for
each two vertices v and w in the same group there is no path from v to w and there is no path

from w to v. The algorithm should run in linear time.

7.41 Let G = (V, E) be a directed graph with the following property. G consists of an acyclic

subgraph //, which contains all of G's vertices, and additional back edges, such that every

simple path in G contains at most one back edge. Design a linear-time algorithm to find all

shortest paths from a fixed source to all other vertices of G. (Note that the identity of H is
not known.)

7.42 Let G = (V, E) be a directed graph and let v and w be two vertices in G. Design a linear-
time algorithm to find the number of different shortest paths (not necessarily vertex disjoint)
between v and w. (There are no weights on the edges.)

7.43 Design an implementation of algorithm Single Source Shortest Paths (Fig. 7.15) which

requires running time of O(| V \\2) in the worst case (for any size of E).

254 Graph Algorithms

7.44 Let G = (V, E) be a weighted directed graph. Design an algorithm to find a cycle in G of

minimum weight. The algorithm should run in time O (| V |3).

7.45 The algorithms for finding shortest paths described in Section 7.5 break ties arbitrarily.

Discuss how to modify these algorithms such that, if there are several different paths of the

same length, then the one with the minimum number of edges (hops) will be chosen. You

can use O(| E \\) additional space. (Ties between several paths of the same length and the

same number of edgescan be broken arbitrarily.)

7.46 A Euclidean graph is an undirected weighted graph such that each vertex corresponds to a

point in the plane and the weight of an edge is equal to the distance between the points it

connects. The following heuristic has been suggested to find the shortest path between two

given vertices .v and t in a Euclidean graph. Use Dijkstra's algorithm for single-source
shortest paths, except that, at each iteration, choosethe next previously unchosen vertex x
that minimizes the sum dist(s, x) + Euclid'_dist(x, t), where dist corresponds to the shortest

path and Euclid_dist corresponds to the Euclidean distance (which is assumed to be given).
When t is chosen, then the shortest path from s to t is found.

a. How would you implement this algorithm? You have to mention only the differences

from the implementation of Dijkstra's algorithm.

b. Explain why this method will not work for general (non-Euclidean) graphs.

c. Give an example where this heuristic is much faster (by more than a constant) than

Dijkstra's algorithm, and an example where it is not faster. What is the worst-case

running time in terms of the number of vertices?

7.47 The input is a directed graph G =(V, E) with a distinguished vertex \\\\ such that there is a

positive cost c{w) associated with each vertex w. The cost of a directed path

w v |, a2 a*, // is defined as \302\243<(a,). The costs of the two endpoints v and u are ignored,

so if (v, //) g E, the cost of getting from v to // is 0. Design an efficient algorithm to find the

minimum-cost paths from v to all other vertices.

7.48 LetG = (V, E) be a directed weighted graph such that all the weights are positive. Let r and
w be two vertices in G and k< \\ V | be an integer. Design an algorithm to find the shortest
path from v to w that contains exactly k edges. The path need not be simple.

7.49 There is a large class of problems, called bottleneck problems, which have the following
form. The input is a weighted graph. We are interested a certain property of the graph (in

this case, shortest paths). We define the bottleneck weight of a subgraph as the weight of

the maximum-weight edge in that subgraph, as opposedto the usual definition of sum of the

weights. (This maximum-weight edge is the bottleneck.) In this problem, we consider
bottleneck shortest paths (i.e., the cost of the path is defined as the maximum cost of an

edge in the path).

a. Design an algorithm to solve the single-source shortest-paths problem where the path

costs are defined as above. Can you say something special about the tree of shortest

paths obtained by this algorithm?

b. Design an algorithm to solve the all-pairs shortest-paths problem where the path costs are
defined as above.

Creative Exercises 255

7.50 Let G = (V, E) be a weighted acyclic directed graph with possible negative weights. Design
a linear-time algorithm to solve the single-source shortest-paths problem from a given
source v.

7.51 Let d(v) denote the degree of a vertex v. Design a linear-time algorithm to sort all the

adjacency lists of a given directed graph G = (V, E)by increasing vertex degrees. That is, if

d(u) < d(v), then edges to u precede edges to v in all the adjacency lists that contain both.
Ties are broken arbitrarily. The algorithm can use linear space.

7.52 Find necessary and sufficient conditions under which the set of edges E of an undirected

graph G = (V,E) can be partitioned into disjoint subsets Ex,...,Ek such that each \302\243,

corresponds to a simple cycle. Design an efficient algorithm to find such a partition in

graphs that satisfy these conditions.

7.53 Given an undirected connected graph G = (V, \302\243),find a simple cycle of minimum length (no

weights). The length of the smallest cycle in a graph is called the girth of the graph.

7.54 Prove that there are undirected graphs with n vertices and O(n) edges that contain 2a{n)

different cycles. (This claim implies that even sparse graphs may have an exponential
number of cycles;therefore, an algorithm that requires checking all the cycles is inherently

inefficient for general graphs.)

7.55 Design an algorithm to solve the following problem:

Input: A directed graph G = (V, E) with n + \\ vertices and n edges, whose underlying

undirected graph is a tree, where each edge (w, w) is labeled with a unique integer X(u, w)
in the range 1, 2,..., n.

Output: A function S from vertices to subsets of {1, 2,..., n) such that the following two

conditions are satisfied:

1. If(w, w)e\302\243, then S(w) = S(u){j{X(u, w)}

2. Ifw *w, then S(u)\302\261S(w)

(Note: S(u) can be any subset of {1, 2,..., n) including the empty set or the whole set.)

7.56 Consider again the problem in Exercise 7.55. Prove that the problem cannot be solved for

any graph (and any labeling) which contains a cycle (not necessarily directed). In other

words, prove that the restriction of the problem to trees is necessary.

7.57 A kernel in a directed graph G = (V, E) is a subset V'cV such that no two vertices in V are

connected by an edge, and for every vertex w g V there is an edge (v, w) such that v e V\\

The input is a directed graph G = (V, E) with n +1 vertices and n edges, whose underlying

undirected graph is a tree. Design an algorithm to find a kernel in G or determine that no

kernel exists.

7.58 LetG = (V, E) be a directed graph and let /be a function defined on all edges of G such that
k

2 f(tk) = 0 if e i,..., e* is a circuit in G. Find a function p on the vertices of G such that for

each edge (v, w), we have/(v, w)=p(w)-p(v).

7.59 Here is a sketch of a different MCST algorithm. Instead of keeping one tree and enlarging it
one edge at a time, we keep a collection of disjoint trees (which are all part of the MCST)

256 Graph Algorithms

and combine them, adding one edge at a time. Initially, all the vertices are considered as

disjoint trees of size 0. In each step, the algorithm finds the minimum-cost edge that

connects two separate trees, and combines these two trees by adding the edge. Prove that

such an approach is feasible and correct. Describe an implementation of an algorithm based

on this approach. What is the complexity of your algorithm? (Hint: The Union-Find data

structure is helpful here.)

7.60 Let G = (V, E) be an undirected weighted graph, and let F be a subgraph of G that is a forest

(i.e.,F doesnot contain any cycles). Design an efficient algorithm to find a spanning tree in

G that contains all the edges of F, and that has minimum cost among all spanning trees

containing F.

7.61 Let G = (V, E) be a connected weighted undirected graph, and let T be a minimum-cost

spanning tree of G. Suppose that the cost of one edge e in G is changed. Discuss the

conditions under which T is no longer an MCST. Design an efficient algorithm either to
find a new MCST or to determine that T is still an MCST. (e may or may not belong to T.)

7.62 Consider a communication network that can be modeled as a weighted undirected connected

graph G = (V, E). Each site in the network is represented as a vertex and each line of

communication is bidirectional and has a cost associated with it. The cost may correspond

to the expected delay on the line, or to the tariff for using this line. Each site has only local

information; that is, it knows only the edges (and vertices) adjacent to it. An MCST of the

network can be used to broadcast messages to all sites. If we broadcast the messages by

using only the edges of the MCST, then the total cost is minimized. Assume that such an

MCST is computed by some method and that each site knows which of the edges adjacent
to it belong to the MCST. Assume now that sites in a certain subset U <zV share between

them the information that is known to all of them. In other words, every site in (J knows
not only about the edges and vertices adjacent to itself, but it also knows all the edges and

vertices adjacent to all vertices in U. Furthermore, assume that the partial MCST restricted
to U is connected (i.e., it is a tree). Consider an edge e e U, which belongs to the MCST,
whose cost has just changed.

a. Find the conditions under the change in e's cost is guaranteed not to affect the MCST.
Consideronly conditions that can be checkedwith the information known to the sites in

U. In other words, how can the sites in U determine that no action needs to be taken to

modify the MCST after the change?

b. Find the conditions under which the modified MCST is different from the original one

only in edges that belong to U (hence, the change can be handled locally). Consider only

conditions that can be checkedwith the information known to the sites in (J.

c. Describe briefly an algorithm to check for the conditions in parts a and b (again only
within U), and to modify the MCST accordingly. The algorithm does not need to handle

the case where the change to the MCST may be outside U.

7.63 Consider the problem of broadcasting in a network, but assume now that the main interest is

fast dissemination of information rather than minimum cost. In other words, the costs

correspond to the time it takes to forward a message, and we want to minimize the elapsed
time of broadcast. A message can be sent concurrently on separate links. Assume that one

messageis sent from a fixed source and is forwarded to all other sites such that each site

receives only one copy of the message. You can assume that you are a controller with full

information about the topology of the network.

Creative Exercises 257

a. Design an algorithm to determine the optimal forwarding, assuming that the only delays
are associatedwith the links.

b. Design an algorithm to determine the optimal forwarding when there are also delays
associatedwith the sites. It takes t (v) units of time for site v to forward a message to one
of its neighbors. If v forwards the message to k neighbors, then it takes kt(v) time. (The
values of t(v) are known for all v.)

7.64 Let G = (V, E) be a connected undirected weighted graph. Assume for simplicity that the

weights are positive and distinct. Let e be an edge of G. Denote by T(e) the spanning tree
of G that has minimum cost among all spanning trees of G that contain e. Design an

algorithm to find T(e) for all edges e e E. The algorithm should run in time O (| V |2).

7.65 Design an efficient algorithm to find the minimum bottleneck weight spanning tree of a

weighted connected undirected graph. (Recall that a bottleneck weight is defined as the

maximum weight of an edge in the subgraph.) In other words, you are asked to find a

spanning tree in which the maximum weight is minimized.

7.66 Solve a variation of the problem in Exercise 7.65 for directed graphs: The input is a

weighted directed graph G = (V, E) with a distinguished vertex v. Find a rooted spanning
tree, with v as the root, such that the maximum-cost edge in the tree is minimized. (Recall
that in a rooted tree the directions of all edges are away from the root.)

7.67 Let G = (V, E) be an undirected weighted graph, and let T be an MCST of G. Suppose now

that all the weights in G are increased by a constant number c. Is T still an MCST? If not,

how difficult is it to modify T into an MCST?

*
7.68 Let G = (V, E) be a connected weighted undirected graph, and let T be an MCST of G.

Suppose that we now add a new vertex v to G, together with some weighted edges from v to

vertices of G. Design a linear-time algorithm to find a new MCST that includes v.

7.69 Suppose that the cost of a spanning tree is not the sum of the costs of the tree's edges but

rather the product of their costs (all costs are positive). Design an efficient algorithm to find

a maximum-cost spanning tree under this assumption. (You can assume that all costs are

distinct.)

7.70 Let G = (V, E) be a connected undirected graph with n vertices numbered from 1 to \302\253.

Design an efficient algorithm to find the smallest k such that successively deleting the

vertices numbered 1,2,...,/: (in that order) results in a graph all of whose connected

components contain at most nil vertices. Deleting a vertex also includes deleting all the

edges incident to it. (Hint: Use the union-find data structure.)

7.71 Let G = (V, E) be an undirected graph. A set F c E of edgesiscalleda feedback-edge set if

every cycle of G has at least one edge in F. Design an algorithm to find a minimum-size

feedback-edge set.

7.72 Let G= (V, E) be a weighted undirected graph with positive weights. Design an algorithm

to find a feedback-edge set (defined in Exercise 7.71) of G of minimum weight.

7.73 Prove that algorithm All_Pairs_Shortest Paths given in Fig. 7.22 works correctly for

weighted graphs with possibly negative weights provided that there are no negative-weight

cycles.

258 Graph Algorithms

7.74 LetG = (V, E) be a weighted directed graph such that some of the weights may be negative
but there are no negative-weight cycles (i.e., there are no cycles in which the sum of the

edge weights is negative). Let T be a spanning tree of G rooted at v. Design a linear-time

algorithm to determine whether the tree T contains only shortest paths from v to all other

vertices of G. You need to output only yes or no.

7.75 The following are hints for an algorithm to compute single-source shortest paths in weighted
graphs with negative weights but no negative-weight cycles. The algorithm starts with an

arbitrary rooted spanning tree, as in Exercise 7.74. It then applies the algorithm in that

exercise to determine whether the tree is the shortest path tree. The algorithm obtained in

Exercise 7.74 should provide someevidence in case the tree is not the desired tree. This
evidenceis used to make a modification to the tree, and the same procedure is applied until

the tree becomesthe shortest-path tree.

a. Describe in more detail the exact algorithm.

b. Prove that the algorithm terminates after O(| V \\
\342\200\242

\\E \\) steps.

c. Suggest a way to improve the algorithm by selecting a good initial tree. The

improvement need not change the worst case, only the \"common\" case.

7.76 Let G = (V, E) be a weighted directed graph such that some of the weights may be negative.

Design an efficient algorithm to determine whether the graph contains a negative-weight
cycle. You need to output only yes or no.

7.77 a. LetG = (V, E) be a directed graph, and let v be a vertex of V. Each edge of E is colored
either black or red. Design a linear-time algorithm to determine whether G has a simple
cycle,which includes v, with alternating colors \342\200\224

namely, each red (black) edge in the

cycle has two black (red) neighbors. If such a cycle exists, then the algorithm should
find at least one.

b. Solvethis problem without the restriction that the cycle has to include the special vertex.

7.78 Given a connected undirected graph G = (V, \302\243),find a spanning tree of G with minimum

height. (The height of a tree is the maximum distance from a root to a leaf.)

7.79 A Hamiltonian path is a simple path that includes all the vertices of the graph. Design an

algorithm to determine whether a given acyclic directed graph G = (V, E) contains a
Hamiltonian path. The algorithm should run in linear time.

7.80 Algorithm Improved Transitive Closure given in Fig 7.24 has three nested loops. The first

one (the outer one) chooses a column, the second one choosesa row, and the third one

operates on the chosen row. Suppose that we exchange the first two loops such that the first

one chooses a row and the second one choosesa column. In other words, we simply

exchange the first two lines in the program, as is shown in algorithm

WRONG Transitive Closure in Fig. 7.46. Show that this modification does not work, by

giving an example for which the transitive closure is not computed.

7.81 Exchanging the order of scanning the matrix for the transitive closure algorithm (which was

attempted unsuccessfully in Exercise 7.80) is desired for the following reason. If the matrix

is very large and thus cannot be stored in main memory, we need to access it from

secondary memory. Assume that the matrix is stored by rows such that each row occupies a

page. We want to minimize the number of pages that need to be fetched from secondary

Creative Exercises 259

Algorithm WRONG_Transitive_Closure (A) ;

Input; A (an n x n adjacency matrix representing a weighted graph).
{ A [jc, y] is true if the edge (jc, y) belongs to the graph, and false otherwise;

A [jc,x] is true for all x)
Output: At the end, the matrix A represents the transitive closure of the graph.

begin

for x := 1 to n do

for m := 1 to n do

if A [jc, m] then

for y := 1 to n do

if A [m, y] then A [jc, y] := true

Figure 7.46 Algorithm WRONG Transitive Closure.

memory. If the first loop scans the matrix by columns, then we need to bring all the rows to

look at each column. On the other hand, if we exchange the first two loops and we find that

a certain entry (jc, >>) is false, then there is no need to fetch the >>th row in the next step.
Therefore, if the matrix is sparse (i.e., if it contains only a few Is), fewer pages need to be

fetched. The algorithm in Fig. 7.46 is wrong as is, but it can be fixed.

a. Show that, if we run this algorithm 0(\\ogn) times, then it computes the transitive

closure correctly.

b. Show that, in fact, it is sufficient to run the algorithm only twice.

7.82 Let G = (V, E) be a multigraph, namely, an undirected graph that may have more than one

edge between a pair of vertices. E is in this case a multiset, and | E | is the total number of

edges. Design an O (| E \\ + \\V |) algorithm to delete each vertex v of degree 2 by replacing

the edges (w, v) and (v, w) by an edge (w, w), and to eliminate multiple copies of edges by

repacing them with a single edge. (Note that removing multiple copies of an edge may
create a new vertex of degree2, which has to be removed, and removing a vertex of degree
2 may create multiple edges, which must be removed too.)

7.83 A connected undirected graph G = (V, E) is callededge-biconnectedif removal of any one

edge leaves the graph connected. Design a linear-time algorithm to determine whether a

graph is edge-biconnected.

7.84 Given a connected undirected graph G = (Vy \302\243),and three edges, a, b, and c\\ find whether

there exists a cycle in G that contains both a and b but does not contain c. The algorithm
should run in linear time.

7.85 Let G = (V, E) be a connected undirected graph and let T = (V, F) be a spanning tree of G.
Prove that the intersection of F with the set of edges of any biconnected component is a set
of edgesthat forms a spanning tree of the component.

7.86 A biconnected extension of a graph G = (V, E) is a biconnected graph G' = (V, E') such that

E<^E'. Given an undirected graph G = (V, E), find the minimum biconnected extension;
that is, find a biconnected extension with the minimum number of edges. (Hint: Start by

considering very simple graphs, and work your way up to general graphs.)

260 Graph Algorithms

7.87 Suppose that you are given an undirected graph with a list of all the articulation points.
Show how to find the biconnected components without resorting to running the whole

biconnected component algorithm.

7.88 Let G = (V, E) be a directed graph, and let T be a DFStree of G. Prove that the intersection

of the edges of T with the edges of any strongly connected component of G form a subtree

of7\\

7.89 A High value computed by algorithm Strongly_Connected_Components (Fig.7.33)does not

actually point to the \"highest\" vertex reachable from the vertex under consideration. It

serves only as an indication whether a strongly connected component has been found.

Design a linear-time algorithm to find, for each vertex v in the graph, the vertex with the

largest DFS number (basedon a fixed DFS tree with decreasing DFS numbers) reachable
from v.

7.90 Let G=(V, E) be a connected undirected graph. Design a linear-time algorithm to
determine whether the edges of G can be oriented such that the resulting directed graph is

strongly connected. The algorithm should find such an orientation if it exists.

7.91 a. Prove the following theorem: A directed graph G =(V, E) is strongly connected if and

only if there is a circuit in G that includes every edge at least once. (Note that an edge

may appear more than once in that circuit.)

b. Design an efficient algorithm to find such a circuit in a given strongly connected graph

G=(V, \302\243).

7.92 A vertex basis of a directed graph G=(V, E) is a minimum-size subset BcV with the

property that, for each vertex v in V, there is a vertex b in B such that there is a path of

length 0 or more from b to v. Prove the following two claims, and then use them to design a

linear-time algorithm to find a vertex basis in general directed graphs.

a. A vertex that is not on a cycle and has nonzero indegree cannot be in any vertex basis.

b. An acyclic directed graph has a unique vertex basis, and it is easy to find it.

7.93 A directed graph G = (V, E) is called unilateral if, for any two vertices v and w in G, at least

one of them is reachable from the other. In particular, every strongly connected graph is

unilateral. On the other hand, there are many unilateral graphs that are not strongly

connected. For example, a graph that consists of two vertices connected by one edge is

unilateral, but it is not strongly connected. Design a linear-time (and linear-space)
algorithm to determine whether a given directed graph is unilateral. (Hint: Consider the

strongly connected components graph.)

7.94 A directed graph G =(V, E) is calledunipathic if, whenever w is reachable from v, there is

only one simple path from v to w. Design an efficient algorithm to determine whether a

given graph G = (V, E) is unipathic. (Hint: Solve the problem first for acyclic graphs.)

7.95 Design a linear-time algorithm for finding a maximum matching in a tree.

7.96 Prove the alternating-paths theorem directly without the use of network flows or cuts. (Hint:

Given two matching M\\ and M2, study the properties of the symmetric difference between

them; namely, the set of all edges that appear in exactly one of them.)

Creative Exercises 261

7.97 Let G be an undirected bipartite graph, and let M be an arbitrary matching in G.

a. Prove the following theorem: There exists a maximum matching in G that covers all the
vertices that M covers. (A vertex is coveredby a matching M if it is incident to one of
the edges of M.)

b. Convert the proof in part a to an algorithm for finding such a maximum matching when

G and M are given.

*
7.98 Prove that the running time of Hopcroft and Karp bipartite matching algorithm (the

improved algorithm in Section 7.10) is O ((m +n)w) in the worst case.

7.99 Suppose that we want to find a nonmonogamous matching in a graph. In other words,
instead of looking for disjoint edges, we are looking for disjoint star graphs, which are

trees with one vertex (the root) connected to all other vertices. One edge is a specialcaseof

a star graph, but one vertex alone with no edges is a trivial graph which we do not consider

to be a star graph. Let G = (V, E) be an undirected connected graph. The goal is to design

an algorithm that finds a collection of vertex-disjoint stars in G, each with at least two

vertices. Each vertex should be included in one of the stars, but not all the edges need to be

included. In other words, the stars should cover all the vertices, but not necessarily all the

edges. (There are no minimality or maximality constraints.)

a. Find the error in the following algorithm both by pointing out the wrong argument and

by exhibiting a counterexample.

Wrong algorithm: We use induction. The induction hypothesis is that we know how to

solve the problem for a graph with <n vertices. Given a graph G=(V, E) with n

vertices, we first pick an arbitrary vertex v and remove v with all its neighbors from the

graph. The remaining graph may not be connected, but we can consider each connected

component separately and apply the same algorithm by induction.

b. Design an efficient (and correct)algorithm for this problem.

7.100 Consider the following bottleneck problem. The input is a weighted bipartite graph
G =(V, E) with n vertices and m edges. We define the bottleneck weight of matching M to

be the weight of the maximum-weight edge in M. Design an algorithm to find, among all

maximum matchings, one with minimum bottleneck weight. The algorithm should run in

time 0(4n m \\ogn).

7.101 Consider aniVxAf board of alternating black and white squares (such as a chess board).
Prove, by using the alternating-path theorem, that if one removes one arbitrary black square
and one arbitrary white square, then the rest of the board can be covered by dominoes (of

size 2 x 1).

7.102 Prove the theorem in Exercise 7.101by finding a Hamiltonian cycle in a graph defined by

the board in the following way: The vertices are the squares and any two neighboring
squares are connected.

7.103 Let G =(V, E) be a connected undirected graph. Given two spanning trees T and R of G,
find the shortest sequence of trees T0,Tl9...,Tk,such that T() = T, Tk=R, and each tree

differs from the previous one by an addition of one edge and a deletion of one edge.

262 Graph Algorithms

7.104 Assume that a round-robin tournament is played among n players. That is, each player plays

once against all n -1 other players. There are no draws, and the results of all games are

given in a matrix. It is not possible in general to sort the players, since A may beat B, B may

beat C, and C may beat A (in other words, the results are not necessarily transitive). We are

interested in a \"weak\" sorting as follows. Design an algorithm to arrange the players in an

order P\\,P2, - ,Pn sucn tnat ^i beat P2, Pi beat P3, and so on (concluding with Pn_x

beating Pn\\ given the matrix of results. The worst-case running time of the algorithm
should beO(n logn). (Any entry in the matrix can be accessedin constant time.)

7.105 Given n integers 0<d, <d2 < \342\200\242\342\200\242\342\200\242
^dn, such that dx +d2+ ' '' + dn is even, and, for every

2</<\302\253, we have dj < dx +d2 + ' \" + dj_x. Construct an undirected multigraph with n

vertices of degreesexactly d\\,d2, ...,dn. Prove the correctness of the algorithm which

implies, in particular, that such a multigraph always exists.

*
7.106 An edge coloring of a graph is an assignment of colors to the edges (one color per edge),

such that two edges incident to the same vertex have different colors. Design an algorithm
to find an edge coloring with k colors for undirected bipartite graphs all of whose vertices

have degree k such that k is a power of 2. The running time of the algorithm should be

0(|\302\243|log*).

7.107 An edge cover of an undirected graph G =(V, E) is a set of edgessuch that each vertex in

the graph is incident to at least one edge from the set. Design an efficient algorithm to find

a minimum-size edge cover for a given bipartite graph.

7.108 A vertex cover of an undirected graph G =(V, E) is a set of vertices (J such that each edge
in the graph is incident to at least one vertex from U. Design an efficient algorithm to find a

minimum-size vertex cover for a given tree. (Vertex coversin general graphs are discussed
in Chapter 11.)

7.109 Let G =(V, E) be a tree with weights associated with the vertices such that the weight of

each vertex is equal to the degree of that vertex. Design an algorithm to find the

minimum-weight vertex cover of G, i.e.,a vertex cover with minimum weight.

7.110 Design an efficient algorithm to find a minimum-size vertex cover for a given bipartite
graph. (Hint: Find a relationship to minimum cuts in the graph.)

7.111 LetG = (V, E) be an undirected graph. An independent set in G is a set of vertices no two

of which are connected. Design an efficient algorithm to find a maximum-size independent
set in a given bipartite graph. (Independent sets in general graphs are discussedin Chapter

11.) (Hint: Find a relationship to Exercise 7.110.)

7.112 Design an algorithm to find a maximal independent set (see Exercise7.111)in a given
undirected graph G = (V, E). Theset neednot have the maximum size over all independent

sets. It is only required to be maximal in the sense that it cannot be extended by the

addition of more vertices to it and still remain independent.

7.113 Let G = (V, E) be a tree such that each vertex v has an associate weight w(v). Design a
linear-time algorithm to find an independent set in G (see Exercise 7.111) with maximum

weight.

7.114 Let G =(V, E) be a connected undirected graph. Design an algorithm to determine whether

G contains a vertex cover (seeExercise 7.108) with at most k vertices, all of which are

independent (i.e.,no two vertices from the cover are adjacent).

Creative Exercises 263

7.115Design an algorithm to determine whether an undirected graph G=(V, E) has a set of

vertices U, such that U is a minimum vertex cover and a maximum independent set at the
same time. The algorithm should find such a set if it exists.

7.116 An interval graph is an undirected graph whose vertices correspond to intervals on the real

line and two vertices are connected if the corresponding intervals intersect. Let G =(V, E)
be an interval graph such that the corresponding intervals are known. Design an efficient

algorithm to find a maximum independent set in G.

7.117 An undirected graph G = (V, E) is a split graph if its vertex set can be partitioned into two

disjoint subsets U and W such that the graph induced by U has no edges and the graph
induced by W is a complete graph (i.e., all the edges are present). Design a linear-time

algorithm to determine whether a given graph is a split graph.

7.118 a. Design an algorithm to determine whether a given undirected graph G = (V, E) contains a

triangle as a subgraph. The running time of the algorithm should be O (| V \\
\342\200\242

\\E |).

b. Can your algorithm find all the triangles contained as subgraphs in G?

7.119 a. Design an algorithm to determine whether a given undirected graph G = (V, E) contains a

square as a subgraph (i.e., a cycleof length 4). The running time of the algorithm should

beO(|V|3).

b. Improve your algorithm to run in time O (| V |
\342\200\242

| E |).

You can use the adjacency matrix representation or the adjacency list representation,
whichever is more convenient.

7.120 Prove that there is no algorithm that finds all squares that are subgraphs of a given
undirected graph G = (V, E) whose running time in the worst caseis O(| V |

\342\200\242
| E |).

*
7.121 Let T be a rooted directed tree, not necessarily binary. There is a weight associated with

each vertex, such that the weight of a vertex is greater than the weight of the vertex's parent

(in other words, the weights satisfy the heap condition with the minimal weight on top).
Each vertex can be designated as either a regular vertex or a pivot vertex. The cost of a
pivot vertex is the same as its weight. Regular vertices get discounts, however \342\200\224their cost

is their weight minus the weight of the closest ancestor that is a pivot vertex. Thus,

selecting a vertex as a pivot vertex may increase its cost, but it will also decrease the costs

of some of its descendants. There is no limit on the number of pivot vertices. Design an

efficient algorithm to designate every vertex as either a regular vertex or a pivot vertex, such

that the total cost of all vertices is minimized.

7.122 Let T bea complete binary tree of height h, and n=2h -\\ vertices. We want to embed T in

the plane in the following way. Each vertex corresponds to a unique lattice point (i.e., a

point with integral coordinates), adjacent vertices are connected by straight line segments,
and no two line segments intersect. Embedding graphs in the plane in this way is an

important problem in integrated chip design and especially VLSI design. Our objective in
this exercise is to minimize the area enclosing the layout. We define this area to be the

minimum-area rectangle along lattice points (which are not occupied) that contains the

layout. So, for example, a straight chain with k vertices would be enclosedin a rectangle of

area 2(k + 1). It is clear that for any graph with n vertices the minimal possible area is of
sizeCl(n).

264 Graph Algorithms

a. Describea layout for T that requires O(n) area. (Hint: Use divide and conquer; each
completebinary tree consists of two smaller completebinary trees, both connected to a
new shared root. Assume that you know how to embedtreesof height h - 1, and find the

layout of a tree of height h.)

b. Design an algorithm to compute, for each vertex in 7, its coordinates in the layout
obtained in part a.

CHAPTER 8

GEOMETRIC ALGORITHMS

/ paint objects as I think them, not as I see them.

Pablo Picasso (1881-1973)

8.1 Introduction

Geometrical algorithms play an important role in many areas of computer science,
including computer graphics, computer-aided design, VLSI design, robotics, and

databases. There may be thousands or even millions of points, lines, squares,and circles

in a computer-generated picture; a robot may have to make thousands of moves;a design
of a computer chip may involve millions of items. All these problems involve the

manipulation of geometric objects. Since the size of the input for these problemsmay be

quite large, it is essential to developefficient algorithms for them.

There are two somewhat separate areas in which geometric algorithms arise;

unfortunately, they are both called computational geometry. One of them mainly deals

with continuous aspects of geometric objects; the other one mainly deals with discrete

properties of geometric objects. The distinction is not strong, and there are many similar

problems and techniques. Our emphasiswill be on discrete computational geometry. In

this chapter, we discuss several basic geometric algorithms. As in other chapters, the

scope of this chapter is necessarily limited. We include some of the basic algorithms that

appear as building blocks in the design of more complicatedalgorithms, and that

illustrate interesting techniques. We will limit the discussion to two-dimensional objects.
The objects appearing in this chapters are points, lines, line segments, and

polygons. The algorithms manipulate these objects and compute certain propertiesof

them. We start with basic definitions and a discussion of data structures used to represent
the different objects. A point p is representedas a pair of coordinates (jc, y) (we assume

a fixed coordinate system throughout this chapter). A line is represented by a pair of

266 Geometric Algorithms

points p and q (which can be any two distinct points on the line), and it is denoted by

-p-q-. A line segment is also represented by a pair of points p and q, but in this case
we assumethat the points are the segment's endpoints, and we denote the line segment

by p-q. A path P is a sequence of points Pi,P2\302\273\342\200\224\302\273P/i\302\273and the line segments

P\\-Pi- Pi~P?>i\342\200\242-\">Pk-\\~Pk connecting them. We will sometimes call the line segments
in a path edges. A closed path is a path whose last point is the same as its first point. A

closed path is also called a polygon. The points defining the polygon are also called the

vertices of the polygon. For example, a triangle is a polygon with three vertices. A

polygon is represented as a sequencerather than as a set of points because the order in

which the points are given is very important. Changing the order, even without changing

the points themselves, may result in a different polygon. A simple polygon is one whose

correspondingpath does not intersect itself; that is, no edges of the polygon intersect

except for neighboring edges at their common vertex. A simple polygon encloses a

region in the plane. We will call this region the inside of the polygon. A convex

polygon is a polygon such that any line segment connecting two points inside the

polygon is itself entirely inside the polygon. A convex path is a path of points

p!, p2,..., pn such that connecting p \\ with pn results in a convex polygon.
We assume that the reader is familiar with basic analytic geometry. For example,

we will need to compute the intersection point of two line segments, determine whether a

given point lies on a certain side of a given line, and compute the distance between two

given points. All these operations can be done in constant time with basic arithmetic

operations. (We assume for now that square roots can be computed in constant time; we

discuss this issue in Section 8.3.)
One inconvenient characteristic of many geometric algorithms is the existence of

numerous \"special cases.\" For example, two lines in the plane usually intersect at one

unique point, except when the lines are parallel or when they are the same. When we

perform a computation on two given lines, we need to considerall three possibilities.

More complicated objects can lead to many other types of specialcases,requiring special

care. Usually, most of these specialcasescan be handled in a straightforward manner,

but the need to consider them makes the design and the description of geometric

algorithms tedious sometimes. We occasionally ignore details that are not essential for

understanding the main ideas of the algorithm.

8.2 Determining Whether a Point Is Inside a Polygon
We start with a simple problem.

The Problem Given a simple polygon P and a point q, determine
whether the point is inside or outside the polygon.

This problem may seem trivial at first, but when complicated nonconvex polygons are

8.2 Determining Whether a Point Is Inside a Polygon 267

considered, as is the case in Fig. 8.1, the problem is definitely not simple. Trying to solve

a problem by hand first is always a good idea. The first intuitive approach is to try

somehow to reach the outside boundary from the given point. When we try this approach

we see that it is sufficient to count the number of intersections with edges of the polygon
until the outside is reached. For example, in Fig. 8.1, going northeast from the given

point (following the dashed line in the figure) results in two intersections with the

polygon before the outside is reached. Sincethe first intersection from the outside brings

us inside the polygon and the second intersection brings us back outside, the point is

outside the polygon. In general (ignoring special cases for the moment), the point is

inside the polygon if and only if the number of intersections (as described above)is odd.
We now have a sketch of an algorithm, which is presented in Fig. 8.2.

As we mentioned in Section 8.1, there are usually several special cases that need

attention. Let s be a point outside the polygon, and let L be the line segment connecting q
to s. We are trying to determine whether q is inside P according to the number of

intersections of L with edges of P. The line L, however, may overlap some edges of P.
When one edge overlaps another one, do we call this an intersection? Two intersections?
In this case, we clearly do not want to count overlaps as intersections.Another special

case is the intersection of L with a vertex of P. Figure 8.3(a) gives an example in which

the intersection of L with a vertex of P should not count, and Fig. 8.3(b) gives an

example in which it should count as an intersection. We leave it to the reader to

characterize thesecasesand to find how to handle them (Exercise 8.1).
In the development of this algorithm, we implicitly assumed that we are looking at

pictures. When the input is given as a list of coordinates, as is usually the case in a

computer application, the task is different. For example, when we do the work by hand,

and we see the polygon with our eyes, it is easy to find a good path (i.e., one with few

intersections) from the point to the outside. This is not an easy task, however, when the

Figure 8.1 Determining whether a point is inside a polygon.

268 GeometricAlgorithms

Algorithm Point_in_Polygon_l (P, q); {first attempt}
Input: P (a simple polygon with verticesP\\,Pi, .,/?\342\200\236,and edges

e!, e2,..., en), and q (a point).

Output: Inside (a Boolean variable that is set to true if q is inside P and false

otherwise).

begin
Pick an arbitrary point s outside the polygon ;
LetL be the line segment q -s ;
count := 0 ;

for all edgeset of the polygon do

if e{intersectsL then { We assume that the intersection is not at a
vertex nor is the line L overlapping with e{; see the text}
increment count;

if count is odd then Inside := true

else Inside :=false
end

Figure 8.2 Algorithm Point_in_Polygon_I.

Figure 8.3 Special cases for determining whether a point is inside a polygon.

polygon is stored as a series of coordinates. Counting the number of intersections is easy
to do visually, but again, it is not as easy when only the coordinates are given. The
polygon of Fig. 8.1 is given as a list of coordinates in Fig. 8.4. (The given point is

centered at | 368 308 | .) The reader is encouraged to solve the problem now by looking
only at Fig. 8.4. Clearly, the bulk of the work is computing all the intersections. This

work can be substantially simplified if the line q-s is parallel to one of the axes \342\200\224for

example, the vertical axis. The number of intersections with this special line may be

much more than that with the optimal line, but we do not need to find the optimal line

(which is actually a much more difficult problem
\342\200\224see Exercise 8.3), and computing

each intersection is much easier. The modified algorithm is presented in Fig. 8.5.

8.2 Determining Whether a Point Is Inside a Polygon 269

320.00368.00 | 320.00 384.00 | 288.00 384.00 | 288.00380.00| 308.00 380.00 |

308.00 376.00 | 280.00 376.00| 280.00392.00 | 332.00 392.00 | 332.00 364.00 |
364.00364.00| 364.00 352.00 | 256.00 352.00 | 256.00 404.00| 224.00404.00 |

224.00 332.00 | 352.00 332.00 | 352.00288.00| 224.00 288.00 | 224.00 312.00 |
320.00 312.00| 320.00300.00 | 256.00 300.00 | 256.00 296.00 | 328.00296.00|
328.00 320.00 | 208.00 320.00 | 208.00 280.00| 384.00280.00 | 384.00 340.00 |

240.00 340.00 | 240.00396.00| 248.00 396.00 | 248.00 348.00 | 416.00 348.00|
416.00272.00 | 320.00 272.00 | 320.00 256.00 | 448.00256.00| 448.00 320.00 |

432.00 320.00 | 432.00 340.00| 452.00340.00 | 452.00 224.00 | 256.00 224.00 |
256.00244.00| 320.00 244.00 | 320.00 248.00 | 248.00 248.00| 248.00216.00|
224.00 216.00 | 224.00 240.00 | 232.00 240.00| 232.00256.00 | 288.00 256.00 |

288.00 264.00 | 224.00264.00| 224.00 272.00 | 192.00 272.00 | 192.00416.00|
428.00416.00| 428.00 384.00 | 416.00 384.00 | 416.00 400.00| 424.00400.00 |

424.00 408.00 | 384.00 408.00 | 384.00384.00| 400.00 384.00 | 400.00 396.00 |

388.00 396.00| 388.00404.00 | 408.00 404.00 | 408.00 372.00 | 352.00372.00|
352.00 404.00 | 264.00 404.00 | 264.00 368.00|

Figure 8.4 The polygon of Fig. 8.1, given as a sequenceof coordinates.

Algorithm Point_in_Polygon_2 (P, q); {secondattempt}

Input: P (a simple polygon with vertices p {,p2,..., p\342\200\236,and edges

e!, e2,..., en), and q
= (x0, y0) (a point).

Output: Inside(a Boolean variable that is set to true if q is inside P and false

otherwise).

begin
count := 0 ;
foralledges e{ of the polygon do

if the line x=x0 intersects e{ then

{ We assume that the intersection is not at a vertex nor is the

linex=x0 overlapping with et }
Let y{ be the y coordinates of the intersection between

the linex=x0 and et ;

ifyi <y0 then {the intersectionis below q }

increment count;

if count is odd then Inside := true

else Inside :=false
end

Figure 8.5 Algorithm Point_in_Polygon_2.

As an example, let's try to determine whether the point q with coordinates

(368, 308) is inside or outsideof the polygon given in Fig. 8.4. We count the number of

270 Geometric Algorithms

intersections with a line segment starting at q and going straight down. We need to look

at all the edges, and check, for those edges whose y coordinates are below 308, whether

the x coordinate cross 368. Thereare four edges that cross the line:

(208, 280)-(384, 280);

(416,272)-(320,272);
(320,256)-(448,256);
(452, 224)-(256, 224).

Hence, the point is outside the polygon.

Complexity It takes constant time to perform an intersection between two line

segments in the plane. The algorithm computes n such intersections (where n is the size

of the polygon), and performs other operations that take constant time. Hence,the total

running time of this algorithm is O (n).

Comments In many cases, a simple approach originating from a solution obtained

by hand (or eye) calculations is not efficient for large inputs. In some cases, however,

such an approach is not only simple, but also efficient. Starting with an \"easy-to-

visualize\" method is always a good idea. There are several observations that can be

achieved this way. In this case, by looking at the picture, we observed that we could

solve the problem by following some path from the point to the outside, disregarding

everything else. This was really the main observation that led to the algorithm.

8.3 Constructing Simple Polygons

A set of points in the plane defines many different polygons, each depending on the order

of the points. In this section, we concentrate on finding a simple polygon defined by a set

of points.

The Problem Given a set of n points in the plane, connect them in a

simple closed path.

There are several methods to construct simple polygons. We present a method

corresponding to the way we would probably approach this problem if we had to solve it

by hand. Consider a large circle C that contains all the points. Scan the area of C by a

rotating line originating from the center of C (seeFig. 8.6). Let's assume for now that

the rotating line never touchesmore than one point from the set at a time. It seems that,

if we connect the points in the order they are encountered in the scan, we get a simple

polygon. Let's try to prove this claim. Denote the points, as they appear in the order

imposed by the rotating line, by P\\,p2* >,pn (the first point is chosen arbitrarily). For
all /, 1 < / <n, the edge p,\342\200\224p,-+iis included in a distinct region of the circle; hence, it does

not intersect with any other edge. However, this is not enough to prove that the resulting

8.3 Constructing Simple Polygons 271

Figure8.6 Scanning the points.

polygon is simple \342\200\224in fact, it may not be. The angle between some p, and p/+1 may be

greater than 180 degrees, in which case the region corresponding to the edge P/-p,+i
consistsof more than one-half of the circle. Thus, the edge Pj-pi+i cuts into the other

regions, and it may intersect other edges. (To see that it may, we can consider a circle
that is centered somewhere outside of the circle of Fig. 8.6.) This is a good example of

the kind of ''special cases\" that arise often in geometrical problems. We have to be

careful to make sure that all cases are considered. (Of course,we must do that for any

kind of algorithm, but this problem is more prevalent in geometric algorithms.)

We can overcome this obstacle quite easily. For example, we can take any three

points from the set and choose, as a centerof the circle, a point inside the triangle formed

by these three points. This choicewill ensure that the circle does not contain a segment
of more than 180 degrees without any points from the set. Another solution, which is the
one we will use, is to choose one of the points from the set as the center of the circle. We
will choose the point z with the largest x coordinate (and the smallest y coordinate, if

there is more than one point with the largest x coordinate). We now use basically the
same algorithm. We sort the points according to their position in the circle centered at z.

These positions can be computed by sorting the angles between a fixed line (e.g., the x

axis) and the lines from z to the other points. If two (or more) points have the same

angle, they are further sorted according to their distance from z. We then connect z to the

point with the smallest angle and to the point with the largest angle, and connect the other

points in order. Since all other points lie to the left of z, the bad case we mentioned
earlier cannot occur. (There is still one more special case that occurs when all the points

lie on a line; in that case, any polygon through the points will have overlapping edges.)
The simple polygon obtained by this method for the points in Fig. 8.6 is given in Fig.

8.7.

272 Geometric Algorithms

Figure 8.7 Constructing a simple polygon.

We can improve this method in two ways, which share the same principle. First,

we do not have to compute the exact angles. We use the angles only to find the order for

connecting the points. But the same order is imposedby the slopes of the lines (that is,

by the ratios of the y differences to the x differences). Computing the slopes is easier
than computing the angles (there is no need to compute arctangents).Second,using the

same argument, we can avoid computing distances when two points have the same slope.

It is sufficient to compute the square of the distances! Therefore, there is no need to

compute squareroots. The algorithm is presented in Fig 8.8.

Algorithm Simple_Polygon (p {,p2,...,pn)\302\273'

Input: Pi,P2\302\273 -iPti (points in the plane).
Output: P (a simple polygon whose vertices are p {,p2\302\273\342\200\242\342\200\242\342\200\242\302\273Pn m some order).

begin

for i := 2 to n do

compute the angle a, between the line -p \\-p- and the x axis ;
{it is sometimes more desirable to take an extremepoint instead of

Pi,e.g.,a point from the set with the largest x coordinate
(and smallest y coordinate if there are severalpoints with the

same largest x coordinate)}
Sort the points according to the angles a2,..., oc\342\200\236;

{ break ties according to distancesfrom p { }

P is the polygon defined by the list of points in sorted order

end

Figure 8.8 Algorithm Simple_Polygon.

Complexity The running time of this algorithm is dominated by the sorting, which

requires 0(n logn) time.

8.4 Convex Hulls 273

8.4 Convex Hulls

The convex hull of a set of points is defined as the smallest convexpolygon enclosing all

the points. We would like the convex hull to be represented as a regular polygon,

namely, the vertices should be listed in cyclic order.

The Problem Compute the convex hull of n given points in the

plane.

Dealingwith convex polygons is easier than handling arbitrary polygons. The convex
hull serves, in some sense, as the smallest \"convenient\" region encompassing a set of

points. The vertices of the convex hull are points from the set. We say that a point

belongs to the hull if it is a vertex of the hull. A convex hull can contain as little as three

and as many as all the points as vertices. Convex hulls have many uses, and

consequently, numerous algorithms have been developed to compute them.

8.4.1 A Straightforward Approach

As usual, we start with a straightforward inductive approach. We can easily find the

convex hull of three points. We assumethat we know how to compute the convex hull of

< n points, and we try to find the convex hull of n points. How can the Arth point change
the convex hull formed by the first n -1 points? There are two cases: Either the extra

point is inside the convex hull, in which case the hull is unchanged, or the point is outside

the hull, in which case the hull is \"stretched\" to reach that point (see Fig. 8.9). So, we
need to solve two subproblems. We have to determine whether a point is inside the hull,

\\pi

Pi>\\

ip5 -_ Pa

Figure 8.9 Stretching a convex polygon.

274 Geometric Algorithms

and we have to be able to stretch the hull if the point is outside of it. These problems are

not easy. We have enough experience by now with the straightforward inductive

approach to try some improvements right away. The first improvement is to choose a

specialnth point rather than an arbitrary one. It is tempting to choose a point inside the

hull, so no work will be required to extend the hull. But, of course, some points must

belong to the hull, and in some cases all points belong to the hull. Another possible

choice, which worked well for the previous problem, is an extreme point
\342\200\224

namely,

some sort of maximal or minimal point.

We choose again the point with the maximal x coordinate (and the minimal y

coordinate, if there are severalpoints with the same maximal x coordinate). Denotethis

point by q. It is clear that q is guaranteed to be a vertex of the convex hull. Thus, the

only problem is how to modify (stretch) the hull to include q. We first need to find the

vertices of the old hull that are now inside the new hull (p3 and p4 in Fig. 8.9) and to

remove them; then, we must insert the new point as a new vertex between two existing
vertices (p2 and p5 in Fig. 8.9). A supporting line of a convex polygon is a line that

intersects the polygon at exactly one vertex of the polygon. The polygon thus lies

entirely on one side of a supporting line. Consider now the supporting lines -q-pi~ and

-q-p$- (see Fig. 8.9). Usually, only two vertices of the polygon have lines to q which

are supporting lines. (We will ignore the special case of two or more points that are on
the same line with q.) The polygon lies between the two supporting lines, and that is

exactly the way we want to modify it. The supporting lines have the maximal and

minimal angles, with, say, the x axis, among all other lines from points in the polygon to

q. To find these two vertices, we need to considerthe lines from q to all the vertices

Pi\302\273P2\302\273\342\200\242\342\200\242\342\200\242\302\273P/i\302\273t0 compute the angles, and to pick the maximal and minimal (see also

Exercise 8.4). Once the identity of the two extreme verticesis known, the modified hull

can be constructed.(There are several other approaches to modifying the hull, and this is
not necessarily the best one; we chose it for its simplicity.) We omit the details

concerning this algorithm because we will present a faster algorithm shortly.

Complexity For each point, we need to compute anglesto all the previous points, to
find the maximal and minimal angles, and to delete and insert points from the list. Thus,
the work involved in processing the fah point is O (/:), and we have already seen that the

solution of the recurrence relation T(n) = T(n- \\) + 0(n) is 0(n2). Therefore, the

running time of this algorithm is 0(n2). The algorithm also requires sorting, but the

running time is dominated by the other operations.

8.4.2 Gift Wrapping

How can we improve this algorithm? When we extend the polygon point by point, we

spend a lot of time building convex polygons containing points that may be internal to the

final convex hull. Can we avoid doing that? Instead of considering convex hulls of

subsets of the set of points, we can start with the whole set and build the hull directly.
That is, we can start with an extreme point (which must be on the hull), find its neighbors
in the hull by finding the supporting lines, and continue from these neighbors in the same

way. This algorithm is known as the gift wrapping algorithm for obvious reasons. We

8.4 Convex Hulls 275

start with one vertex of the \"gift,\" and wrap the hull around the gift by finding neighbor
after neighbor. The algorithm is given in Fig 8.10. It can be modified to work for higher
dimensions as well.

The gift-wrapping algorithm is a straightforward application of the following
induction hypothesis (on k):

Induction hypothesis: Given a set of n points in the plane, we can find a

convex path of length k<n that is part of the convex hull of this set.

With this hypothesis, the emphasis is on extending a path rather than on extending the

hull. Instead of finding convex hulls of smaller sets, we find a part of the final convex

hull.

Algorithm Gift_W'rapping (p x, p 2, \342\200\242\342\200\242\342\200\242,pn) ;

Input: p!,p2\302\273 \342\200\242\342\200\242\342\200\242\302\273P/i(a set of points in the plane).

Output: P (the convex hull of P\\,pi, ..,p\342\200\236).

begin

set P to be the empty set;

Let p be the point in the set with the largest x coordinate

(and the smallest y coordinate, if there are severalpoints

with the same largest x coordinate) ;
AddptoP ;
Let L be the line containing p which is parallel to the x axis ;

while P is not complete do

let q be the point such that the angle betweenthe line -p-q- and L

(in counterclockwisefashion)is minimal among all points ;
add qtoP;
L := line -p-q- ;

p:=q
end

Figure 8.10 Algorithm Gift Wrapping.

Complexity To add the kih point to the hull, we find the minimum and maximum

angles among n-k lines. Therefore,the running time of the gift-wrapping algorithm is

0(n2), which is not better than the stretching algorithm.

8.4.3 Grahams Scan

We now show an algorithm to compute the convex hull in time O{n logn). The

algorithm starts by ordering the points according to angles, similarly to the construction

of simple polygons describedin Section 8.3. Let p x be the point with the maximal x

coordinate (and the minimal y coordinate, if there are several other points with the same x

276 GeometricAlgorithms

coordinate). For each point ph we compute the angle of the line -p\\-p,\342\200\224with the x axis,

and sort the points according to these angles(seeFig.8.11).We now scan the points in

the order they appear in the polygon and, as before, try to find the vertices of the convex

hull. As in the gift-wrapping algorithm, we will maintain a path consisting of a subsetof

the points scanned so far. This path will be a convex path whose corresponding convex

polygon encloses all the points scanned so far. (The correspondingconvex polygon is

the one formed by connecting the first and last points of the path.) Hence, when all the

points are scanned, we find the convex hull. The main difference betweenthis algorithm

and the gift-wrapping algorithm is that the convex path we maintain is not necessarily
part of the final convex hull. It is only part of the convex hull of the points that were

scanned so far. The path may contain points that are not on the final convex hull; these

points will be eliminated later. For example, the path from px to qm in Fig. 8.11 is

convex, but qm and qm_\\ clearly do not belong to the convex hull. This discussion leads
to an algorithm, based on the following induction hypothesis.

Induction hypothesis: Given a set of n points in the plane, ordered
according to algorithm Simple Polygon (Section 8.3), we can find a convex

path among the first k points whose correspondingconvex polygon encloses

the first k points.

Thecaseof k = 1 is trivial. Denote the convex path obtained (inductively) from the first k

points by P=q\\,q2, ...,qm. We now have to extend the hypothesis to &+1 points.
Consider the angle between the lines -qm-\\-qm- and -qm-pk+\\- (see Fig. 8.11). If the

angle is less than 180 degrees (where the angle is measured from the inside of the

polygon), then pk+l can be added to the existing path (since the path with it is still

convex), and we are done. Otherwise, we claim that qm is inside the convex polygon

obtained by removing qm from />, addingpk+l to P, and connectingpk+l top{. This is so
becausethe points were ordered according to their angles. The line -p\\-pk+\\- is on the

Figure 8.11 Graham's scan.

8.4 ConvexHulls 277

\"left\" side of the first k points. Hence, qm must be inside the convex polygon defined
above, qm can be removed from />, and pk+\\ can be added. Are we done? Not quite.

Although qm can be eliminated, the modified path is not necessarily convex. Indeed,Fig.
8.11shows clearly that other points may have to be eliminated as well. For example,

qm_x may now be inside the polygon defined by the modified path. We must continue

checking the last two edges of the path until we find two that form an angle of less than

180 degrees. The path is then convex, the hypothesis has been extendedto k + 1 points,
and we are done. The detailed algorithm is presented in Fig 8.12.

Algorithm Graham's_Scan (p \\, p2,..., pn);

Input: Pi,P2\302\273 \342\200\224<>Pn(a set of points in the plane).

Output: <7i,<72>\342\200\242\342\200\242><7m (the convex \\\\\\x\\\\oipup2, ..,pw).

begin

Let p j be the point in the set with the largest x coordinate
(and smallest y coordinate if there are severalpoints

with the same largest x coordinate) ;
Usealgorithm Simple_Polygon to arrange the points around px

in sorted order ; let the order be P\\,p2,..., p\342\200\236;

<7i :=P\\ ;

<72 :=Pi ;

<73 '=P3 ;

{P initially consists ofp\\,p2, andp3 }
m := 3 ;
fork :=4 ton do

while the angle between -qm-\\-qm- an^ ~qm~Pk~ is > 180 degrees do
m := m -1 ;

m := m + 1 ;

qm \342\200\242\"=Pk

end

Figure 8.12 Algorithm Graham s Scan.

Complexity The complexity of the algorithm is dominated by the sorting. All the

other steps require only O(n) time. Each point in the set is considered exactly once in

the induction step as Pk+\\. At that time, the point is always added to the convex path.

The same point will be considered later (possibly more than once) to verify its inclusion

in the current convex path. We call this phase a backwardtest. The number of points
involved in a backward test may be high, but all these points except for two (the current

point and the point that is found to still belong to the convex path) are eliminated! So, we

spend only a constant time to eliminate each point, and a constant time to add it. Overall,

O(n) steps are required for this phase. The total running time of the algorithm is thus

O (n \\ogn) due to the sorting.

278 Geometric Algorithms

8.5 Closest Pair

Supposethat we are given the locations of n objects and we want to check that no two of

the objects are too close to each other. The objectsmay correspond, for example, to parts

in a computer chip, to stars in a galaxy, or to irrigation systems. In this section, we

discuss a variation of this problem, which is an example of a large set of proximity

problems.

The Problem Given a set of n points in the plane, find a pair of

closest points.

Other proximity problems include finding, for each point in the set, the closest point to it

or the k closest points to it, and finding the closest point to a new given point.

A Straightforward Approach

A straightforward solution is to check the distances between all pairs and to take the

minimal one. This solution requires n (n - l)/2 distance computations and n(n - l)/2- 1
comparisons. The straightforward solution using induction would proceed by removing a

point, solving the problem for n - 1 points, and considering the extra point. However, if

the only information obtained from the solution of the n-\\ case is the minimum

distance, then the distances from the additional point to all other n -1 points must be

checked. As a result, the total number of distance computations T(n) satisfies the

recurrence relation T(n) = T(n-\\) +n-\\, (7(2)= 1), and we have already seen that

T(n) = 0(n2). In fact, these two straightforward solutions are identical. We want to find

a more efficient algorithm for large n.

A Divide-and-Conquer Algorithm
Instead of considering one point at a time, we divide the set into two equal parts. The
induction hypothesis can stay the same, but instead of reducing the problem of n points to

the problem of n - 1 points, we reduce it to two problems with nil points. We assume,
for simplicity, that a? is a power of 2, so that it is always possible to divide the set into two

equal parts. There are many ways to divide a set of points into two equal parts. We are
free to choose the best division for our purposes. We would like to get as much useful

information as we can from the solution of the smaller problems;thus, we want as much
of that information to be still valid when the complete problem is considered. It seems

reasonable to divide the set by dividing the plane into two disjoint parts, each containing

one-half of the set. After we find the minimal distance in each part, we have to be
concernedonly with the distances between points close to the boundaries of the sets. The

easiest way of dividing the set is to sort all the points according to their x coordinates, for

example, and then to divide the plane by the vertical line that bisects the set (see Fig.
8.13). (If several points lie on the vertical line, then we divide them arbitrarily.) We

8.5 ClosestPair 279

d2

\342\200\242+

Figure 8.13 The closest pair problem.

choosethis division to minimize the work of combining the solutions of the smaller

problems. The sorting needs to be performed only once.

For simplicity, we concentrate on finding only the minimal distance among the

points. Identifying the actual two closest points will be straightforward from the

algorithm. If the set has only two points, then we find their distance directly. Let P be a
set of n points, and assume that n is a power of 2. We first divide P into two equal-sized

subsets, P \\ and P2, as described above. We find the closest distance in each subset by
induction. Let the minimal distance in Px be d\\, and in P2 be d2, and assume, without

loss of generality, that d\\<d2. We need to find the closest distance in the whole set;

namely, we have to see whether there is a point in Px with a distance <d\\ to a point in

P2. First, we notice that it is sufficient to consider only the points that lie in a strip of

width 2d i centered around the vertical separator of the two subsets (see Fig. 8.13). No
other point can be of distance less than d { from points in the other subset. Using this

observation, we can usually eliminate many points from consideration, but, in the worst

case, all the points can still reside in the strip, and we cannot \"afford\" to use the

straightforward algorithm for them.

Another less obvious observation is that, for any point p in the strips, there is only

a small number of points on the other side whose distanceto p can be smaller than d\\.

This is so because all the points in each strip are at least d \\ apart. If p is a point in the

strip with y coordinate ypj then only the points on the other side with a y coordinate
yq

such that \\yp-yq \\ <d\\ need to be considered. Therecould be at most six such points on

one side of the strip (see Fig. 8.14 for the worst case). As a result, if we sort all points in

the strip according to their y coordinates, and scan the points in order, we need to check
each point against only a Constant number of its neighbors in the order (instead of against

all n - 1 points). A sketch of the algorithm is given in Fig 8.15.

280 Geometric Algorithms

\302\253 \342\226\272

di

Figure 8.14 The worst case of six points d x apart.

Algorithm Closest_Pair_l (P\\,P2*\342\200\224*Pn) >' (firstattempt}

Input: Pi,P2\302\273 \342\200\224<>Pn(a set of n points in the plane).

Output: d (the distance betweenthe two closest points in the set).

begin
Sort the points according to their x coordinates ;

{thissorting is done only once at the beginning }

Divide the set into two equal-sized parts ;

Recursively, compute the minimal distance in each part ;

Let d be the minimal of the two minimal distances ;
Eliminate points that lie farther than d apart from the separation line ;
Sort the remaining points according to their y coordinates ;

Scan the remaining points in the y order and compute the distances of
each point to its five neighbors ;

if any of these distances is less than d then

update d
end

Figure 8.15 Algorithm Closest_P air J.

Complexity It takes 0(n log a?) steps to sort according to the x coordinates, but this

sorting is done only once. We then solve two subproblems of size nil. Eliminating the

points outside of the strips can be done in O(n) steps. It then takes 0(n log a?) steps to

sort according to the y coordinates. Finally, it takes O(n) steps to scan the points inside

the strips and to compare each one to a constant number of its neighbors in the order.

Overall, to solve a problem of size a?, we solve two subproblems of size nil and use

0{n log a?) steps for combining the solutions (plus 0{n log a?)steps once at the beginning
for sorting the x coordinates). We obtain the following recurrence relation:

8.6 Intersections of Horizontal and Vertical Line Segments 281

T(n) = IT(nil) + 0(n logrt), T(2) = 1.

We leave it to the reader to verify that the solution of this recurrence relation is

T(n) = 0(n log2a?). This is asymptotically better than a quadratic algorithm, but we still

want to do better than that.

An 0(n log n) Algorithm

The key idea here is to strengthen the induction hypothesis. The reason we have to spend
0(n log a?) time in the combining step is the sorting of the y coordinates. Although we

know how to solve the sorting problem directly, doing so takes too long. Can we
somehow solve the sorting problem at the same time we are solving the closest-pair
problem? In other words, we would like to strengthen the induction hypothesis for the

closest-pair problem to include sorting.

Induction hypothesis: Given a set of < n points in the plane, we know how

find the closest distance and how to output the set sorted according to the

points y coordinates.

We have already seen how to find the minimal distance if the points are sorted in each

step according to their y coordinates. Hence, the only thing that we need to do to extend
this hypothesis is to sort the set of n points when the two subsets (of size nil) are already

sorted. But, this sorting is exactly mergesort (Section 6.3.2). The main advantage of this

approach is that we do not have to sort every time we combine the solutions \342\200\224we only

have to merge. Since merging can be done in O(n) steps, the recurrence relation

becomes T{n) = 2T{nl2) + 0{n\\ 7(2)= 1,which implies that T(n) = O(n logn). The

revised algorithm is given in Fig 8.16.

8.6 Intersections of Horizontal and Vertical Line
Segments

Intersection problems are common in computational geometry, and they have many

applications. We are sometimes interested in computing the intersection of several

objects,and we are sometimes interested only in detecting whether the intersection is

nonempty. Detection problems are usually easier, although not always substantially

easier. In this section, we presentone intersection problem that illustrates an important

technique of computational geometry. The same technique can be applied to other
intersection problems (and to other problems as well), some of which are given as
exercises.

The Problem Given a set of n horizontal and m vertical line

segments in the plane, find all the intersections among them.

282 GeometricAlgorithms

Algorithm Closest_PairJl (P\\,p2^ \342\200\242\342\200\242\342\200\242>Pn)\302\273'{&n improved version }

Input: P\\,P2* \342\200\224<>Pn(a set of A2 points in the plane).
Output: d (the distance between the two closest points in the set).

begin
Sort the points according to their x coordinates;

{thissorting is done only once at the beginning }

Divide the set into two equal-sized parts ;

Recursively do the following:

compute the minimal distance in each part;

sort the points in each part according to their y coordinates ;

Merge the two sorted lists into one sortedlist;
{Notice that we must merge before we eliminate ; we need to

supply the whole set sorted to the next level of the recursion }
Let d be the minimal of the minimal distances ;

Eliminate points that lie further than d apart from the separation line ;
Scan the points in the y order and compute the distances of each

point to its five neighbors ;
if any of these distances is less than d then

update d
end

Figure 8.16 Algorithm Closest_P air J..

This problem is important, for example, in the design of VLSI circuits. A circuit may
contain hundreds of thousands of \"wires,\" and the designer has to make sure that there

are no unexpected intersections. It is also important in the context of hidden-line
elimination. (The hidden-line elimination problem is usually more complicated, because
the lines are not only either horizontal or vertical.) For simplicity, when there is no

ambiguity, we call the line segments simply lines in this section. An example of the

problem is given in Fig. 8.17.

Finding all intersections among either all the vertical lines or all the horizontal

lines is a simple problem, which is left as an exercise. We assume,for simplicity, that

there are no intersections betweentwo vertical lines or between two horizontal lines. If

we try to reduce the problem by removing one line (either vertical or horizontal) at a

time, then the removed line will have to be comparedagainst all other lines, and the

resulting algorithm will involve O(mn) comparisons.In general, there may be as many

as mn intersections, and the algorithm may require 0(mn) time just to report them. But
the number of intersections may be much smaller than mn. We would like to find an

algorithm that performs very well when there are few intersections and not too poorly
when there are many. We achieve it by combining two of our favorite techniques:
choosing a specialorder of induction and strengthening the induction hypothesis.

8.6 Intersections of Horizontaland Vertical Line Segments 283

Figure 8.17 Intersectionsof horizontal and vertical lines.

The order of induction is determined by an imaginary line (an infinite line, not a

segment) that \"sweeps\" the plane from left to right; the line segments are consideredin

the order in which they intersect with this imaginary line. In addition to computing

intersections, we also keep some information about the line segments that we have seen

so far. This information will be helpful for computing the next intersections more

efficiently. This technique is calledthe line-sweep technique.

Let the imaginary line be a vertical line that sweeps the plane from left to right. To

achieve this sweeping effect, we sort all the endpoints of the segments according to their

x coordinates. The two endpoints of a vertical line have the same x coordinates, so we

need only one of them. We must use, however, the two endpoints of each horizontal line.
After all the endpoints are sorted, we considerthem one by one in that order. As usual in

an inductive approach, we assume that we have already computed the intersections

among the previous line segments and have maintained some additional information, and

we now try to handle the next line segment and to update the information. The structure

of the algorithm is thus as follows. We consider one endpoint at a time in the left-to-right

order. We use the information gathered so far (which we have not yet specified) to

process the endpoint, find some intersections that it causes, and update the information to

be used for the next endpoint. The main part of the algorithm is the definition of the

information that we maintain. Let's attempt to run the algorithm and to discover what is

needed.

One feature of the induction hypothesis, which seems natural to have, is the

knowledge of all the intersections that occurred to the left of the current position of the

sweeping line. Is it better to check for intersections when a vertical line is considered or
when a horizontal line is considered? It seems better to choose the former. When we

look at a vertical line, the horizontal lines that can intersect it are still under consideration

(since we have not yet reached their right endpoint). On the other hand, when we look at

either the left endpoint or the right endpoint of a horizontal line, we either have not yet

seen the vertical lines that intersect it, or we have forgotten about them. Assume that the

284 GeometricAlgorithms

sweeping line is currently at the x coordinates of the vertical line L (see Fig. 8.17). What

kind of information is required to find all intersections involving LI Since all
intersectionsto the left of the current sweeping line are assumed to be already known,

there is no need to consider a horizontal line any further if its right endpoint is to the left

of the sweeping line. Hence, only those horizontal lines whose left endpoints are to the

left of the sweeping line and whose right endpoints are to the right of the sweeping line

should be under consideration (there are six such lines in Fig. 8.17). The list of these
horizontal lines should be maintained. When L is encountered,it should be checked for

intersection against all these horizontal lines. The important point here is that we need
not check the x coordinates to determine intersectionswith L\\ We already know that all

horizontal lines in the list have x coordinates that match that of L. We have to checkonly

the y coordinates of the horizontal lines in the list to see whether they match the y

coordinates of L. We are now ready to try an induction hypothesis.

Induction hypothesis:Given a list of k sorted x coordinatesas described

(with xk being the rightmost x coordinates), we know how to report all

intersections among the corresponding lines that occur to the left of xk, and
to eliminate thosehorizontal lines that are to the left of xk.

We call the horizontal lines that are still under consideration candidates. (These are the

horizontal lines whose left endpoints are to the left of the current x coordinate, and whose

right endpoints are to the right or at the current x coordinate.) We maintain a data
structure containing the set of candidates. The implementation of this data structure will

be discussed shortly.
The base case for this induction hypothesis is easy. To extend the hypothesis, we

need to handle the (k + l)th endpoint. There are three cases:

1. The (k + l)th endpoint is a right endpoint of a horizontal line, in which case we

simply eliminate the line from the set of candidates. As we said, intersections are
detected when vertical lines are considered, so we lose no intersections by

eliminating the horizontal line. This step thus extends the induction hypothesis.
2. The (k + 1)th endpoint is a left endpoint of a horizontal line, in which case we add

the line to the set of candidates. Sincethe line's right endpoint has not been

reached yet, the line should not be eliminated, so, by the arguments above, this is a

properway to extend the induction.
3. The(k+ 1)th endpoint is a vertical line. Thisis the main part of the algorithm. We

can find the intersections involving this vertical line by checking the y coordinates
of all the horizontal lines in the set of candidates against the y coordinates of the

vertical line.

The algorithm is now complete. The number of comparisons will usually be much

smaller than mn. Unfortunately, in the worst case, this algorithm still requires 0(mn)
comparisons, even if the actual number of intersectionsis small. If all the horizontal
lines stretch from left to right, for example, then each vertical line must be checked
against all horizontal lines, resulting in an 0(mn) algorithm. This bad case will hold

even if no vertical line intersectswith a horizontal line.

8.7 Summary 285

To improve the algorithm, we need to minimize the number of comparisons
between the y coordinates of a vertical line and those of the horizontal lines in the set of

candidates. Let the y coordinates of the vertical line we are currently considering be yL

and yR, and let the y coordinates of the horizontal lines in the set of candidates be

y 1\302\273J2\302\273\342\200\224\302\273y/c-Suppose that the horizontal lines in the set of candidates are given in sorted

order according to their y coordinates (namely, y\\,y2* \342\200\224..y*is in increasing order). We
can find the horizontal lines that intersect with the vertical line by performing two binary

searches, one for yL and one for yR. Suppose that yi<yL^yi+\\^yj^yR<yj+\\- The
horizontal lines that intersect with the vertical line are exactly ^/+i,^/+2,\342\200\224.)>_/.

We can

also perform only one binary search, say, for yL, and then scan the y coordinates until we

find yj. Even though the original problem involves two dimensions, finding yi+l,..., yj is

a one-dimensional problem. Searching for numbers in a given one-dimensional range (in

this case, yL to yR) is called a one-dimensional range query. If the numbers are sorted,

then the running time for a one-dimensional range query is proportional to the search
time plus the number of items that are found. But, of course, we cannot afford to sort the

horizontal lines every time we encounter a vertical line.
Let's review the requirements. We need a data structure that allows us to insert a

new element, to delete an element, and to perform a one-dimensionalrange query

efficiently. Fortunately, there are severaldata structures \342\200\224for example, balanced trees
\342\200\224that can perform insertions, deletions, and searches in O (log n) per operation (n being

the number of elementsin the set), and linear scans in time proportional to the number of

elements found. The algorithm is presented in Fig 8.18.

Complexity Sorting according to x coordinates requires time 0((m +n)\\og(m +\302\253)).

Since each insert and delete operation requires 0(\\ogn) steps, the running time for

handling the horizontal lines is 0(n log a?) overall. Handling the vertical lines requires a
one-dimensional range query, which can be performed in time 0(logrt+r), where r is

the number of intersections involving this vertical line. The running time of the

algorithm is thus O ((m +n) log (m + n) + R), where R is the total number of intersections.

8.7 Summary

In some sense, geometric algorithms seem less abstract than, say, graph algorithms, since
we are used to seeing and handling geometric objects. But, appearances are sometimes

misleading. Dealing with huge number of objects is different from looking at small

pictures, and we must be careful that the picture that we have in the back of our minds
does not lead us to wrong conclusions. We must deal with many special cases, and make

sure that we can cover all of them. The algorithm for determining whether a point is
inside a polygon (Section 8.2) is a good example. We usually do not think of a polygon
as being like the one given in Fig. 8.1. Furthermore, it is easy to overlook the special

cases that may occur. Therefore, special caution must be exercised when designing
geometric algorithms.

The techniques for designing (discrete) geometricalgorithms are similar to the

techniques that we have studied in the previous chapters. Induction plays an important

286 Geometric Algorithms

Algorithm Intersection ((vx, v2,..., vm), (hx,h2,..., hn)) ;
Input: v!, v2,...,vm (a set of vertical line segments),

and h{,h2,...,hn (a set of horizontal line segments),
Output: The set of all pairs of intersecting segments.

I yfi(v/) 0y(v/)) denote the bottom (top) y coordinates of line v, }

begin

sort all x coordinates in increasing order and place them in Q ;

V := 0 ;

{ V is the set of horizontal lines that are currently candidates for
intersection ; it is organized as a balancedtree according to the

y coordinates of the horizontal lines }
while Q is not empty do

remove the first endpoint p from Q ;
ifp is the right endpoint ofhk then

remove hk from V

else ifp is the left endpoint ofhk then
insert hk into V

else ifp is the x coordinate of a vertical line v, then

perform a one-dimensional range query for the range

yB(Vi)toyT(Vi)inV
end

Figure 8.18 Algorithm Intersection.

role. The line-sweep technique, which is based on induction, is common to several
geometric algorithms (one was presented in Section 8.5). The divide-and-conquer
approach is also quite common. Geometric algorithms (except for simple ones)seem to

require complicated data structures, and many sophisticated and ingenious data structures

have been developed for that purpose. We have not covered here any of these special
data structures.

Bibliographic Notes and Further Reading

We have seen only a small sampleof geometric algorithms in this chapter. Even though

discrete computational geometry is a relatively new field, there exists an extensive

literature in this area, spanning the last 15 years. Several books concentrate on

computational geometry. Preparata and Shamos [1985] and Edelsbrunner [1987] present
numerous techniques, examples, and a comprehensive bibliography. Additional books

include Mehlhorn [1984] and Toussaint [1984].
The gift-wrapping algorithm for convex hulls is due to Chand and Kapur [1970].

Graham's algorithm is due to Graham [1972]. A bibliography containing 268 papers on

Drill Exercises 287

convex hull algorithms and other problems of convexity was published by Ronse [1987].
The algorithm for finding the closest pair is due to Shamos and Hoey [1975]. An

O (n logn) algorithm that uses the line-sweep technique is due to Hinrichs, Nievergelt,
and Schorn [1988]. A probabilistic algorithm for finding the closest pair, whose expected
running time is O(n), was developed by Rabin [1976] (see also Fortune and Hopcroft

[1979]). A general technique for proximity problems involves the construction of

Voronoi diagrams. A Voronoi diagram for a given set of points is a division of the

plane into regions such that each region contains all points that are closest to one of the

points from the set. Voronoi diagrams can be constructed in 0(n log a?) time (Shamos
and Hoey [1975]). They are useful for a variety of proximity problems.

The algorithm for reporting intersections among vertical and horizontal lines

(presented in Section 8.6) is due to Bentley and Ottmann [1979]. The running time of
O (n log n +/?) of this algorithm is the best possible in the worst case (see Preparata and

Shamos [1985]). An algorithm for determining whether there are any intersections

among an arbitrary set of line segments was developed by Shamos and Hoey [1976]. It

also uses the line-sweep technique. This problem can also be solved by a divide-and-

conquer algorithm with strengthening the induction hypothesis (Guting and Wood

[1984]). There is a large body of literature on intersection problems, and the reader is

referred to one of the books listed above. Exercise 8.16 is from Bentley, Faust, and

Preparata [1982], and Exercises 8.17-8.18 are discussed in Preparata and Shamos

[1985].

Drill Exercises

8.1 Complete algorithm Point In PolygonJ (Fig. 8.2) by addressing the special casesthat arise

when the line L intersects a vertex of the polygon or overlaps an edge of the polygon.

8.2 Design an algorithm to determine whether n given points in the plane are all on one line.

What is the complexity of your algorithm?

8.3 Let S be an arbitrary set of points in the plane. Is there only one unique simple polygon
whose vertices are the set 5? Either prove the uniqueness, or show an example of two

different simple polygons with the same set of vertices.

8.4 The first algorithm we presented for computing the convex hull (Section 8.4) proceeds by

computing the supporting lines from an extreme point to the hull formed by the rest of the

points. Suppose that the only thing we know about the extra point q is that it is outside the
hull. It may be above the hull, below the hull, or anywhere else. We can still try to find the
two supporting lines from q to the hull by computing the angles to all other points, but it is

not clear any more how to select the minimum and maximum angle, becausethese angles

can be in any range. Find a method to determine which of the lines from q to points in the

hull is a supporting line.

8.5 Let P\\,P2, ...,pn be a set of points that are ordered cyclically according to a circle whose
center is somewhere inside the convex hull of these points. Modify Graham's scan to work
(without additional sorting) on this set of points.

288 Geometric Algorithms

8.6 Graham's scan is applied to a set of points in a certain order. We used algorithm

Simple Polygon (Fig. 8.8) to sort the points in the following way. We started with an

\"extreme\" point p (which was guaranteed to be on the hull) and sorted all other points

according to the angles between a fixed line (e.g., the x axis) and the line segments

connecting the points to p. Prove (by showing a counterexample) that not every point p can

be used for that purpose. In other words, show a set of points S and another point p, not in

the set, such that sorting the points relative to p (using the angles from p to the points in the

set) and then applying Graham's scan does not lead to the correct convex hull.

8.7 Show, by an example, that it is possible for algorithm Graham's Scan (Fig. 8.12) to reject p

points in a row, one at a time, for every value of p. (In other words, the loop can be

executed forp steps without changing the value of m.)

8.8 Show an example of n points in the plane with distinct x coordinates, for which algorithm
Closest Pair 2 (Fig.8.16)will take Q(n log a) steps.

8.9 Given a set of n horizontal line segments in the plane, find all the intersections among them.

The algorithm should run in time O (n log n) in the worst case.

Creative Exercises

8.10 The input is a set of n points in the plane and a line. Design a linear-time algorithm to find a

line that is parallel to the given line and that separates the set of given points into two

equal-sized subsets (if a point lies on the line, then it can be counted as being on either

side).

8.11 Let P be a simple (not necessarily convex) polygon enclosedin a given rectangle /?, and q

be an arbitrary point inside R. Design an efficient algorithm to find a line segment
connecting q to any point outside of R such that the number of edgesof P that this line

intersects is minimum. (This question is motivated by the algorithm for determining
whether a point is inside or outside a polygon; see Section 8.2.)

8.12 Let P be a convex polygon given by an array of its vertices in cyclic order. Design an

algorithm to determine whether a given point q is inside P. The running time of the

algorithm should be O (logn) in the worst case.

8.13 Many convex-hull algorithms are based on or are similar to sorting algorithms. You are
asked to develop a convex-hull algorithm that is similar to an efficient insertion sort. In

each iteration, one more point should be considered and possibly should be inserted to the
current convex hull, which should consist of the convex hull of the points seenso far. The

points should be considered in an arbitrary order (i.e., no sorting should be done initially).

The algorithm should be basedon an efficient data structure to determine whether a given
point is inside a given convex polygon. What is the worst-case running time of your
algorithm? (You do not have to supply all the details for all the special cases.)

8.14 Considerthe idea of computing the convex hull by stretching the hull one point at a time
with the use of supporting lines (see Section8.4). Design an O(nlogn) algorithm for
computing the convex hull based on this idea.

Creative Exercises 289

8.15 Assume that you have a black box that finds the convex hull of the union of two disjoint

convex polygons P, and P2 in time 0(\\P]\\ +\\P2\\)(\\P,\\ denotes the number of points in

P(). Design an algorithm that uses this black box to find the convex hull of a given set of n

points in the plane. The running time of the algorithm should be O (n log n).

8.16 A {/-approximate convexhull of a set of points P is a convex polygon all of whose vertices
are from P, such that all points in P are either inside it or within distance d from it. (We
define the distance of a point from a polygon as the minimum over all lengths of line

segments connecting the point to anywhere in the polygon.) Let P be a setof n points such

that the maximal difference between the x coordinates of any two points in P is X. Design
an algorithm to compute a ^-approximate convex hull of P, which runs in time and space
0(n+X/d).

8.17 LetP be a set of n points in the plane. We define the depth of a point p in P as the number

of convex hulls that need to be \"peeled\" (removed) forp to become a vertex of the convex

hull. Design an 0(n2) algorithm to find the depths of all points in P. (Notice that the

straightforward algorithm that finds convex hulls and removes them may run for

0(n2 logrt) time, since all hulls may have a constant number of vertices.)

8.18 a. A point p in the plane is said to dominate another point q if both the x coordinate and y

coordinate of p are greater that or equal to those of q. A point p is a maximal point in a

given set of points P if no point in P dominates it. Design an 0(n \\ogn) algorithm to
find all maximal points of a given set P with n points.

b. Solve the corresponding problem for three dimensions (the definition of dominance is

extended to include all dimensions).

8.19 Let S be a set of points in the plane. For each p e S,we define D (p) to be the set of points
in S that are dominated by p (see Exercise 8.18). Design an algorithm to compute the sizes

of the sets Dip) for all p e S. The running time of the algorithm should be O(n \\ogn) in

the worst case.

8.20 Given n points in the plane, find the pair of points such that the line segment connecting
them has the maximal slope. The running time of the algorithm should be O (n log n) in the

worst case.

8.21 The input is a set of n points in the plane, represented as an array of linked lists in the

following way. Each entry in the array has two fields: X, which gives the x coordinates, and

Next, which points to a (nonempty) linked list of all the points in the set whose x

coordinates are equal to X, sorted according to their y coordinates. The array is sorted

according to the x coordinates. Design an algorithm to find the closest pair of points whose
x coordinates are either equal or consecutive in the array. The algorithm should run in time

O(n) in the worst case. Is it necessary to compute square roots in this algorithm? Does

your algorithm find the closest pair (without any restrictions)?

8.22 The input is a set of line segments in the plane such that all segments are horizontal, vertical,

or have a 45-degree angle with the horizon. You are asked to extend the algorithm for
reporting all intersections among a set of vertical and horizontal line segments to this case

without increasing the asymptotic worst-case running time.
*
8.23 Design an algorithm to compute all the intersections among a set of horizontal and vertical

line segments by using a divide-and-conquer approach. The running time of the algorithm

290 Geometric Algorithms

should be the same as the algorithm discussed in Section 8.6. That is, all intersections
should be reported in time 0((m +n)log(m +n) +R) (where R is the number of
intersections found).

8.24 The input is a set of n arbitrary line segments in the plane. Design an algorithm to

determine whether any two of the line segments intersect. The algorithm needs to output

only yes or no. The running time of the algorithm should be 0(n \\ogn) in the worst case.
(Hint: Use the line-sweep method similarly to the horizontal and vertical case, but maintain

different information.)

8.25 A grid polygon is a simple polygon all of whose edges are parallel to either the x axis or the

y axis. Design an efficient algorithm to compute the intersection of two given grid polygons
(i.e.,the area common to both of them). The polygons are given by their vertices in a cyclic
order.

8.26 The input is a set of intervals on a line, which are represented by their two endpoints.
Design an algorithm to identify all intervals that are contained in another interval from the
set. The algorithm should run in time O (n \\ogn) in the worst case.

8.27 The input is a set of n rectangles all of whose edges are parallel to the axes. Extend the

algorithm obtained in Exercise 8.26 to mark all the rectangles that are contained in other

rectangles. Can you obtain a running time of O (n logn)l

8.28 The input is a set of n rectangles all of whose edges are parallel to the axes. Design an

algorithm to find the intersection of all the rectangles.

8.29 The input is a set of n circles in the plane. Design an algorithm to detect whether there are

any two circles in the set with nonempty intersection. The algorithm does not need to

compute the intersection, only output yes or no. The running time of the algorithm should
be O (n logn) in the worst case.

8.30 The input is a set of n polygons, each with k vertices. Design an algorithm to detect whether

there are any two polygons in the set with nonempty intersection. The algorithm does not

need to compute the intersection, only output yes or no. What is the worst-case running

time?

8.31 The input is two convex polygons given by their lists of vertices (in a cyclic order). Design
a linear-time algorithm to compute the intersection of these polygons. The output, which is

also a convex polygon, should be represented by a list of vertices in a cyclic order.

8.32 The input is two convex polygons given by their lists of vertices (in a cyclic order). Design
a linear-time algorithm to compute the union of the two polygons (i.e., the area enclosedby

at least one of the polygons).

8.33 The input is a set of n rectangles all of whose edges are parallel to the axes. Design an

algorithm to compute the union of all the rectangles. The union is obviously a polygon. It

should be represented by its list of vertices in counterclockwise order. (This problem is an

extension to the skyline problem in chapter 5.)

8.34 The input is a set of n triangles in the plane, given by their vertices. Design an 0(n logn)

algorithm to compute their intersection (i.e., the area common to all of them).

Creative Exercises 291

8.35 The input is a convex polygon given by its list of n vertices in cyclic order. Design a

linear-time algorithm to find n triangles whose intersection is the given polygon.

8.36 The input is a set of n points in the plane. Design an 0(n2 \\ogn) algorithm to determine

whether there exist four points in the set that are vertices of a square.

8.37 The input is a set of n points in the plane. Design a polynomial-time algorithm to determine

whether there are k points in the set (for some k<n) that are the vertices of a regular

polygon. (A regular polygon is a polygon with equal-sized edges and angles.)

8.38 The input is a set of n points all of which have integer coordinates. We are interested in

finding a set of parallel lines such that all the points are contained in at least one of the lines

in the set. The lines must either be parallel to the axes or have a 45-degree angle with the

axes. Design an 0(n \\ogn) algorithm to find a minimum-size set of lines satisfying these

conditions. Again, the lines must all be parallel, so, in particular, if one of the lines has a

45-degreeangle with the coordinates, then all of them do.

8.39 A line divides the plane into two half-planes. The intersection of any number of half-planes

is a convex polygon (half-planes are convex and the intersection of convex objects is always

convex). The problem is to compute the intersection of n given half-planes and output it as

a convex polygon. That is, the output should include the list of the vertices in the cyclic
order in which they appear in the polygon. The half-planes are given by the linear

inequality that defines them. Design an O (n \\ogn) algorithm to compute this intersection.

8.40 The input is 2n points in general position in the plane (i.e., no three points lie on a common

line), such that n points are coloredred and n points are coloredblue. Design an algorithm
to match the blue points to the red points such that (1) each point has a unique match, and

(2) none of the line segments connecting matched points intersect. The algorithm need not

make use of any graph-matching techniques. It is not evident that such a matching always

exists, but it is true. The algorithm should run in polynomial time. (Hint: Use induction:

Try to find a red point and a blue point whose connecting line segment poses no problems;
if that fails, try to divide the set of points by a straight line such that the problem is divided
into two smaller problems.)

CHAPTER 9

ALGEBRAIC AND NUMERICAL

ALGORITHMS

One plus one is two.
Two plus two is four.
Four plus four is eight.
Eight plus eight is more than ten.

A child's poem

9.1 Introduction

Whenever we perform an arithmetic operation, we are in fact executing an algorithm.
We are usually so familiar with these operations that we take the corresponding

algorithms for granted. However, whether it is multiplication, division, or a more

complicatedarithmetic operation, the straightforward algorithm is not always the best

when very large numbers or large sequences of numbers are involved. The same

phenomenon that we have seen in the previous chapters occurs here as well: Some
algorithms that are good for small input become inefficient when the size of the input

grows.

As we have done in previous chapters, we will measure the complexity of an

algorithm by the number of \"operations\" that the algorithm executes. For the most part

we will assume that basic arithmetic operations (such as addition, multiplication, and

division) take one unit of time. This is a reasonableassumption when the operands can
be representedby one or two computer words (e.g., integers that are not too large,
single-precision or double-precision real numbers). There are cases, however,when the

operands are huge (e.g., 2000digit integers). In such cases, we have to take into account

294 Algebraic and Numeric Algorithms

the size of the operands, or at least to be aware that the basic operations are not simple.

It is possible to design algorithms that look very efficient \"on paper,\" but are in fact very

inefficient, because the sizes of the operands are ignored.
The meaning of the \"size of the input\" is confusing sometimes. Given an integer

n on which we want to perform an arithmetic operation, it is natural to think of the value

n as the size of the input. However, this is contrary to our usual convention of using the

storage requirements of the input for defining its size. The distinction is very important.

Adding two 100-digit numbers can be done quickly, even by hand. On the other hand,

counting to a value represented by a 100-digit number cannot be done in reasonable time

even by the fastest computer. Sincea number n can be represented by riog2Ail bits, its

size is defined as |\"log2A2~|. For example, an algorithm that requires O(logAi) operations

when n is the input (for example, an algorithm for computing 2ri) is considered linear,
since 0(\\o%n) is a linear function of the size of the input, whereas an algorithm that

requires O(V>0 operations when n is the input (for example, factoring n by trying all

numbers less than or equal to is considered exponential.
As usual, we concentrate in this chapter on interesting techniques for designing

algorithms. We first discuss how to compute powers of a given number. We then

present what is probably the oldest known nontrivial algorithm: Euclid's algorithm for

finding the greatest common divisor. It is quite amazing that modern computers use a
2200-year old algorithm. We then discuss algorithms for polynomial multiplication and

matrix multiplication, and we end the chapter with one of the most important and most

beautiful algorithms
\342\200\224the fast Fourier transform.

9.2 Exponentiation

We start with a basic arithmetic operation.

The Problem Given two positive integers n and k, compute nk.

We can easily reduce the problem to that of computing nk~\\ since nk=n-nk~l.

Therefore, the problem canbe solved by induction on k, and the resulting straightforward

algorithm is given in Fig. 9.1. We have reduced the value of k, but not its size. The

straightforward algorithm requires k iterations. Since the size of k is \\og2k, the number of

interation is exponential in the size of k (&=
2log2*). This is not bad for very small values

of k, but it is unacceptable for large values of k.
Another way to reduce the problem is to use the fact that nk = (nk/2)2. With this

observation, we reduce the problem to one with n and k/2. Reducing the value of k by
half corresponds to reducing its size by a constant. Thus, the number of multiplications
will be linear in the size of k. We now have the skeleton of the algorithm

\342\200\224
repeated

squaring. The simplest case is for k = 2J for some integer j:

9.2 Exponentiation 295

Algorithm Power (n, k) ; {firstattempt}

Input: n and k (two positive integers).
Output: P (the value of nk).

begin
P:=n;
fori:= 1tok-\\ do

P := n*P

end

Figure 9.1 Algorithm Power.

nk = n2' = j times.

But what if k is not a power of 2? Consider again the reduction we just used. We started

with two parameters n and k, and reduced the problem to a smaller one with n and k/2.

This reduction is not always valid since k/2 may not be an integer. If k/2 is not an

integer, the reduced problem does not satisfy the conditions of the original problem. But

if k/2 is not an integer, then (k-\\)/2 is an integer, and the following reduction is

appropriate:

\342\200\236*=\342\200\236L(*-l)/2

We now have an algorithm. If k is even, we simply square the solution for k/2. If k is

odd, we square the solution for (k-\\)/2 and multiply by n. The number of

multiplications is at most 2\\og2k. The algorithm is given in Fig. 9.2.

Complexity The number of multiplications is 0(\\ogk). As the algorithm

progresses, however, the numbers become larger. Therefore, the multiplications become

more costly. We leave it to the reader (Exercise 9.12) to analyze the complexity of this

algorithm under a more realistic measure for the cost of the multiplications. We now

present an application of this algorithm in which the numbers do not grow during the

execution of the algorithm.

An Application to Cryptography
The study of cryptography is beyond the scope of this book, and we discuss it briefly.

Encryption schemes usually rely on complete secrecy. Any two participants who want to

exchange secretmessagesmust agree on the encryption-decryption algorithm and must

use secret keys known only to themselves. We want to avoid this need to exchange
secret keys between every pair of participants. The following is known as the RSA

public-key encryption scheme (after Rivest, Shamir, and Adleman [1978], who

developed it). The schemecan be used by a group of participants (e.g., computer users)

296 Algebraic and Numeric Algorithms

Algorithm Power_by_Repeated_Squaring (n, k) ;

Input: n and k (two positive integers).
Output: ^(thevalue of nk).

begin

ifk = 1 then P := n

else
z := Power by Repeated Squaring (n, k div 2) ;

if k mod 2 = 0 then

P := z*z

else

P := n*z*z

end

Figure 9.2 Algorithm Power_by RepeatedSquaring.

who want to communicate by encrypted messages. Each participant has only two keys,
one for encryption and one for decryption (independent of the number of other

participants). These keys are chosen as follows. A participant P in the RSA scheme

selects two very large prime numbers p and q and computes their product n =pq. He then

chooses another very large integer d> such that d and (p-\\)(q-\\) have no common
divisor. (See the next section for an algorithm to verify that fact; if d is a random

number, then the condition above is likely to occur.) From p, qy and dy it is possible
(although not easy) to compute the value of a number e that satisfies

e'd=\\(mod(p-\\)(q-\\)). (9.1)

As we shall see next, e will be the encryption key and d the decryption key. The values
of n and e are publicized by P in a central directory that everyone can read. (We assume
the availability of a trusted directory such that no other person can forge P's keys.)The

value of d, as well as the values of p and q, which are not needed anymore, are kept

secret by P.

Let M be an integer that corresponds to a messagethat P wants to encrypt (every
messagecan be translated to a sequence of bits, which can be translated to an integer).

Assume that M is smaller than n\\ otherwise M can be broken into several small messages
each smaller than n. The encryption function EP that P uses is very simple:

EP(M) = Me (modn).

Sinceboth n and e are made public, everyonecan encrypt messages and send them to P.
The decryption function DP is just as simple (but it can be performed only by P> since the
value of dis secret):

DP(C)
= Cd (mod n).

9.3 Euclid's Algorithm 297

One can prove that (9.1) guarantees that DP(EP(M)) = M, hence these are valid

encryption and decryption functions. Both algorithms thus consist of computing only one

power (Me or Cd) and one division (for the congruence), although these operations are

performed on very large numbers. The modulo n operation can be applied at any step of
the algorithm, and not necessarily at the end. This is true because

x-y(xnodn) = [^(modA2)-y(modA2)](modA2),

for all integers x, y, and n. Applying the modulo n operation in each step of the

computation is very important, since this way the values of the operands do not grow
above n. If we use algorithm Power by Repeated-Squaring of Fig. 9.2, not only do we

require only 0(\\o%e) (or 0(\\o%d)) multiplications and divisions for computing the

power, but each multiplication and division involves numbers that are less than n. We
need to modify algorithm Power by Repeated-Squaring by only changing each

multiplication to a multiplication modulo n. Thus, applying the RSA scheme requires
only O (log n) multiplications and divisions of numbers that are less than n.

There is no known algorithm that can factor a very large number (e.g., of 1000

digits) in a reasonable time (e.g., our lifetime). Thus, the knowledge of the value of n

does not imply the knowledge of p and q. It is commonly believed (although there is no

known proof of this fact) that it is impossible to compute the function DP efficiently

without the knowledge of any one of d,p, orq} Therefore, by keeping d, p, and q secret,

P can receive encrypted messagesfrom anyone without compromising the secrecy of the

messages. There are several other advantages of this scheme, which is called a public-
keycryptosy stem.

9.3 Euclid's Algorithm

Thegreatestcommon divisor of two positive integers n and m, denoted by GCD(az, m),
is the unique positive integer k such that (1) k divides both n and m, and (2) all other

integers that divide both n and m are smaller than k.

The Problem Find the greatest common divisor of two given

positive integers.

As usual, we try to reduce the problem to one of smaller size. Can we somehow make n

or m smaller without changing the problem? Euclid noticed the obvious positive answer:

If k divides both n and m, then it divides their difference! If n > m, then GCD(h, m) =

GCD(a? -m, m), and we now have a smaller problem. But, again, we reduced the values

1
It is known that an algorithm for computing d from n and e would lead to an efficient probabilistic algorithm

for factoring n, which is a strong evidence that d cannot be compromised (see Bach, Miller, and Shallit [1986]).
Potentially, however, there may be another way to compute DP without the knowledge of d.

298 Algebraic and Numeric Algorithms

of the numbers in question, and not their sizes. For the algorithm to be efficient, we must

reduce the sizes. For example, if n is very large (say 1000digits) and aw =24, we will

need to subtract 24 from n approximately az/24 times. This computation will take O(n)

steps, which is exponential in the size of n.
Let's look at this algorithm again. We subtract m from n and apply the same

algorithm to n - m and m. If n - m is still larger than m, we subtract m again. In other

words, we keep subtracting m from n until the result becomes less than m. But this is

exactly the same as dividing n by m and looking at the remainder. Division can be done

quickly.
This leads directly to Euclid's algorithm, which is presented in Fig. 9.3.

Complexity We claim that Euclid's algorithm has linear running time in the size of
n+m; specifically, its running time (counting each operation as one step independent of

the size of the operands) is O (log (n+m)). To prove this claim, it is sufficient to show

that the value of a is reduced by half in a constant number of iterations. Let's look at two

consecutive iterations of algorithm GCD. In the first iteration, a and b (a>b) are

changed into b and a mod A3. Then, in the next iteration, they are changed into a mod A3

and A3 mod (a mod A3). So, in two iterations, the first number a is changed to a mod A3.

But, since a > A3, we have a mod A3 < all, which establishes the claim.

9.4 Polynomial Multiplication

n-\\ n-\\

Let P = 2 Pix'* and Q = 2 Qi*1 * ^ two polynomials of degreen - 1. A polynomial is

represented by its ordered list of coefficients.

Algorithm GCD (m, n)

Input: m and n (two positive integers).
Output: gcd (the gcd of m and n).

begin
a :=max(n, m);
b := min(n, m) ;
r := 1 ;
while r>0do {r is the remainder}

r := a mod b ;
a := b ;

A3 := r;

gcd := a
end

Figure 9.3 Algorithm GCD.

9.4 Polynomial Multiplication 299

The Problem Compute the product of two given polynomials of
degree n - 1.

PQ =
pn.xxn

x
+ \342\200\242\342\200\242\342\200\242

+p0 \\<ln-\\XH-X + + <7o (9.2)

Pn-tfn-\\X2\"-2 + P/J-l<7/ + l+P/J-2<7/+2 + '\" +P/+ l<7/i-l \342\226\240* + Po<7o-

We can compute the coefficients of PQ directly from (9.2). It is easy to see that, if we

follow (9.2), then the number of multiplications and additions will be 0(n2). Can we do
better? We have seen by now so many improvements of straightforward quadratic

algorithms that it is not surprising that the answer is positive. A complicated 0(n logAi)

algorithm will be discussed in Section 9.6. But first, we describe a simple divide-and-
conquer algorithm.

For simplicity, we assume that a? is a power of 2. We divide each polynomial into
,n/2t

two equal-sized parts. Let P =P, +xnU P2, and Q =Q, +xnu Q2, where

P\\=P0+P*+
\"'

+Pnl2-* . P2=Pn/2+Pn/2+*+ \"'
+Pn-*

/i/2-l

and

<2l=<7o+<7l* + *\342\200\242\342\200\242
+<lnl2-\\X'

/i/2-l
(?2=<7/i/2+<7/i/2+1-* + \342\200\242\342\200\242'

+<ln-\\X
/i/2-l

We now have

PQ = (/>i+/V/2)(Qi+Q2*\"/2) = PiQ\\+(P\\Q2+P2Q\\)xn,2+P2Q2xn.
The expression for PQ now involves products of polynomials of degree n/2. We can

compute the product of the smaller polynomials (e.g., P\\Q\\) by induction, then add the

results to complete the solution. Can we use induction directly? The only constraints are
that the smaller problems be exactly the same as the original problem, and that we know

how to multiply polynomials of degree 1. Both conditions are clearlysatisfied. The total

number of operations T(n) required for this algorithm is given by the following

recurrence relation:

7\302\273
= 47>/2) + <9(A2), ni)=l.

The factor 4 comes from the 4 products of the smaller polynomials, and the 0 (n) comes
from adding the smaller polynomials. The solution of this recurrence relation is 0(n2)
(see Section 3.5.2), which means that we have not achieved any improvement (see
Exercise 9.4).

To get an improvement to the quadratic algorithm we need to solve the problem by

solving less than four subproblems. Consider the following multiplication table (the
reason we use such an elaborate table for this simple notation will become apparent in the

next section).

300 Algebraic and Numeric Algorithms

X

Q\\

Qi

P\\

A

C

Pi

B

D

We want to compute A + (B+C)xn +Dxn. The important observation is that we do not

have to compute B and C separately; we need only to know their sum! If we compute
the product E = (P { +P2) (Q\\ +Qi), then B +C=E-A-D. Hence, we need to

compute only three products of smaller polynomials: A, D, and E. All the rest can be
computed by additions and subtractions, which contribute only O(n) to the recurrence

relation anyway. The new recurrence relation is

T(n) = 3T(n/2) + 0(n),
which implies 7\302\273

= 0(A2,og23) = 0(n L59).
Notice that the polynomials P{+P2 and Q\\+Q2 are related to the original

polynomials in a strange way. They are formed by adding coefficients whose indices
differ by n/2. This is quite a nonintuitive way to multiply polynomials, yet this algorithm
reduces the number of operations significantly for large n.

\342\226\241Example 9.1

Let P = 1 -jt + 2*2-jt3, and Q = 2+jt-jt2 + 2*3. We compute their product using the

divide-and-conquer algorithm. We carry the recursion only one step.

A=(\\-x)-(2+x) =2-x-x2J

D = (2-x)-(-\\+2x) = -2 + 5x-2x2,

and

E = (3-2x)-(\\+3x) = 3 + lx-6x2.

From \302\243,A, and D, we can easilycompute B +C = E -A -B:

B+C = 3 + 3x-3x2.

Now, P \342\200\242
Q = A + (B + C)xnl2 + Dx\\ and we have

P Q =2-x -x2 + 3x2 + 3x3 -3x4 -2x4 + 5x5 -2x6

= 2-x + 2x2+3x3-5x4+ 5x5-2x6.

Notice that we used 12multiplications compared to 16 in the straightforward algorithm,
and 12 additions and subtractions instead of 9. (We could have reduced the number of

multiplications to 9 if we had carried the recursion one more step.) The savings are, of

course, much larger when n is large. (The number of additions and subtractions remains
within a constant factor of that in the straightforward algorithm, whereas the number of

multiplications is reduced by about a?04.) D

9.5 Matrix Multiplication 301

9.5 Matrix Multiplication

The product C of two n x n matrices A and B is defined as follows:

n

Cij= 5>,**V (9.3)

The Problem Compute the product C =A xB of two n x n matrices

of real numbers.

The straightforward way (and seemingly the only way) to compute matrix product is to

follow (9.3), which requires using n3 multiplications and (n -
\\)n2 additions. Notice that

n represents the number of rows and columns in the matrix, rather than the size of the

input, which is n2. We now present two different schemes that show the possibilities for

improvements.

9.5.1 Winograd s Algorithm
Assume, for simplicity, that n is even. Denote

nil nil

Ai = Z ai,ik-\\ 'ai,2k> and Bj= \302\243b2k-\\j'b2kj.
k = \\ k = \\

After rearranging terms, we get
nil

C'J= \302\243(ai,2k-\\+b2kj)'(<*i,2k
+ b2k-\\j)-Ai-Bj.

k=\\

But the /4,s and BjSneed to be computed only once for each row or column. To compute
all the Afi and BjS requires only n2 multiplications. The total number of multiplications

has thus been reduced to Vin3+n2. The number of additions has increased by about

Vm3. This algorithm is thus better than the straightforward algorithm in cases where

additions can be performed more quickly than multiplications.

Comments This algorithm shows that rearranging the order of the computation can

make a difference, even for expressions, such as matrix multiplication, which have a

simple form. The next algorithm carries this idea much farther.

9.5.2 Strassen s Algorithm

We use the divide-and-conquer method in a way similar to the polynomial multiplication

algorithm in Section 9.4. For simplicity, we assume that a? is a power of 2. Let

302 Algebraic and Numeric Algorithms

\"^ 1.1 A\\2

^2,1 ^2,2
, B =

#1,1#1,2
#2,1#2,2

, and C =
^2,1 ^2,2

where the AjjS, \302\243/>7s,
and C/jS are n/2xn/2 matrices. We can use the divide-and-

conquer approachand reduce the problem to computing the Ctjs from the Ajjs and the

BjjS. That is, we can treat the nllxnll submatrices as elements and consider the whole

problem as one of computing a product of two 2x2 matrices of elements. (We have to

be careful when we substitute elements for submatrices; this is the subject of Exercise
9.23.) The algorithm for the 2 x 2 product canbe converted to an n x n product algorithm

by substituting a recursivecall each time a product of elementsappears.The regular

algorithm for multiplying two 2x2 matricesuses8 multiplications. Substituting each

multiplication by a recursive call, we get the recurrence relation T(n) =$T(n/2)+ 0(n2)y

which implies that T(n) = 0(n og2
) = 0(n3). This is not surprising since we are using

the regular algorithm. If we could only compute the product of two 2x2 matrices with

less than 8 multiplications, we would get an algorithm that is asymptotically faster than

cubic.

The most important part of the recursion is how many multiplications are required
to compute the product of two 2x2 matrices. The number of additions is not as

important since they always contribute 0(n2) to the recurrence relation, which is not a

factor in determining the asymptotic complexity. (It does affect the constant factor,

however.) Strassen found that 7 multiplications are sufficient to compute the product of
two 2x2 matrices. Instead of simply writing down the equations leading to Strassen's

algorithm, we sketch a method that could have been used by Strassen to find it. This
method canbe usedfor similar problems.

Computing the product

'a b
c d

e g
f h

=
P s

r t

is equivalent to computing the product

'a b 0 0

c d 0 0
0 0 a b

OOrrf

e

f

8
h

\342\200\224

P

r

s

t

We write (9.4) as AX = Y. We are looking for ways to minimize the number of

multiplications required to evaluate Y. Let's look for special matrix products that are

easy to compute. As it turns out, we need four types of such special products (the last
two of which are very similar). They are as follows:

Type Product No. of Multiplications

a(e+f)\\
la)

a a

a a

9.5 Matrix Multiplication 303

P)
a a

-a -a
a(e+f)
-a(e+f)

Y)

a 0

a-b b

ae

ae+b(f-e)

5)
a b-a
0 b

a(e-f) + bf

bf

We now look for ways to divide the general matrix product given in (9.4) into several

steps of the types listed above. Since these types of products use less than the nominal

number of multiplications, we may be able to save something at the end. It takes a lot of

trial and error to reach the right combinations. This process is hardly straightforward or

even clear, but it is somewhat less than magic. Let

B =

~b b 0 0

b b 0 0
0 0 0 0
0 0 0 0

, c =

0 0 0 0

0 0 0 0
0 0 c c
0 0 c c

D =

0 0 0 0

c-b 0 0 c-b
b-c 0 0 b-c
0 0 0 0

and E =

a-b 0 0 0
0 d-b 0 b-c

c-b 0 a-c 0
0 0 0 d-c

Then, A=(B + C + D+E) and therefore AX = BX + CX+DX+EX. All the products

above, except for EX, can be computed with one multiplication using types a or p. The

only problem is to compute EX. But E can be divided into two matrices \302\243= F + G, such

that F is of type y and G is of type 8:

F =

a-b 0 0 0
0 0 0 0

c-b 0 a-c 0
0 0 0 0

G =

0 0 0 0
0 d-b 0 b-c
0 0 0 0
0 0 0 d-c

So, overall, AX = (B +C +D +F + G)X, and we need two products of type a, and one

product each of types p, y, and 8, with a total of 7 multiplications (see also Exercise
9.10).

304 Algebraic and Numeric Algorithms

Complexity We use 7 products of matrices of half the original size, and a constant

number of additions of matrices. The additions are less important than the products,
because addition of two nxn matrices can be done in time 0(n2), which is basically a
linear time in the size of the matrices. The O (n2) term is not the dominant factor in the

recurrence relation, which is T(n) = lT(n/2)+ 0(n2). The solution of this recurrence

relation is T(n) = 0(nlog2), which is approximately 0(n2S[). If we use the derivation

described above, we obtain 18 additions (see Exercise 9.10). It is possible to reduce the

number of additions to 15 (Winograd [1973]), but this reduction does not change the

asymptotic running time.

Comments There are three major drawbacks to Strassen's algorithm:

1. Empirical studies indicate that n needs to be at least 100 to make Strassen's

algorithm faster than the straightforward 0(n3) algorithm (Cohen and Roth

[1976]).
2. Strassen'salgorithm is less stable than the straightforward algorithm. That is, for

similar errors in the input, Strassen's algorithm will probably create larger errors in

the output.

3. Strassen's algorithm is obviously much more complicated and harder to implement
than the straightforward algorithm. Furthermore, Strassen's algorithm cannot be

easilyparallelized, whereas the regular algorithm can.

Nevertheless,Strassen'salgorithm is important. It is faster than the regular

algorithm for large az, and it can be used for other problemsinvolving matrices, such as

matrix inversion and determinant computation. We will see in Chapter 10 that several

other problems are equivalent to matrix multiplication. Strassen's algorithm can be

improved in practice by using it only for large matrices and stopping the recursion when
the size of the matrices become smallerthan about 100. This is similar to the idea of

selecting the base of the induction with care, which we discussed in Section 6.4.4 and

Section 6.11.3. Strassen'salgorithm also opened the door to other algorithms and raised

many questions about similar problems that seemed unsolvable.

9.5.3 Boolean Matrices

In this section, we consider the special case of computing the product of two nxn
Boolean matrices. All elements are 0 or 1, and the sum and product are defined by the

following rules (which correspond to or and and respectively):

+

0

1

0

0

1

1

1

1

X

0

1

0

0

0

1

0

1

These definitions of sum and product are of course different from the usual integer sum
and product; hence, algorithms designed for integers normally cannot be used for

Booleans. One problem with the definition of a Booleansum is that subtraction is not

well defined (both 0+1 and 1 + 1 are defined as 1; hence, 1-1 can be both 1 and 0).

9.5 Matrix Multiplication 305

Therefore, Strassen's algorithm cannot be used for Booleanmatrices, because it requires
subtraction. However, there is a trick that allows us to use Strassen's algorithm. We

consider every bit as an integer modulo n + 1, where n is the size of the matrices, and we

use the rules of addition and multiplication of such integers. So, for example, if az=4,

then 1 + 1 =2, 1+ 1 + 1 =3, and 1 + 1 + 1 + 1 + 1 =0. It turns out that, if we compute the
matrix product according to these rules and if we substitute every nonzero entry in the

final result by a 1, then we get the Boolean product. This is so, essentially,becausewe

will not \"overflow\" the number n + 1 (we omit the proof). (More precisely,the integers

modulo k form a ring, which is an algebraic structure with definitions of sums and

products that satisfy certain properties; Strassen's algorithm can be applied to any ring;

see Aho, Hopcroft, and Ullman [1974] for more details.) Thus, the complexity of

Boolean matrix multiplication is also 0(n2Sl). The use of Strassen'salgorithm,

however, requires integer operations rather than Boolean operations. Next, we present
two algorithms that utilize the properties of Boolean operations to improve the running

time of Boolean matrix multiplication. These algorithms are more practical in most

situations than Strassen's algorithm for Boolean matrix multiplication.
Since Booleanoperands require only one bit of storage, we can store k operands in

one computer word of size k. In particular, since we assume that n is stored in one

computer word, we can storek bits for k <log2Ai in one word. The regular algorithm for

matrix multiplication consists of n2 row-by-column products (or inner products), as
n

defined in (9.3). The //th inner product consists of computing \302\243a\\m 'bmj. Assume, for
m = \\

simplicity, that k divides n. We can divide each inner product into a sum of nlk products,
each of which involves Boolean vectors of size k. Finding the inner product of two

Boolean vectors of size k is simpler than, say, multiplying two k-bit integers. We assume

that a multiplication of k-bit integers takes one unit of time; thus, it is not unreasonable to

assume that computing an inner product of two Boolean vectors of size k takes one unit

of time. (For example, an inner product can be computed in two steps: first, we compute
the and of the two vectors, then we check whether the result is all 0s.) Nevertheless, we

usually do not want to make the algorithm dependent on special assumptions concerning
the computer primitives (besides the four basic arithmetic operations). Next, we show

how to avoid the need for such assumption. Then, we combine this idea with another

idea to improve Boolean matrix multiplication even further. Both ideas illustrate

interesting techniques for algorithm design.
The first idea is to precompute all possible Booleaninner products of size k. There

are 22k possible products, since they involve two Boolean vectors of size k. We can

compute all of them in time O (k22k) (we can actually do better than that; see Exercise
9.24),and store all the results in a two-dimensional table of bits of size 2*x2*. The

product of the two vectors a and b is stored at entry (iaJh), where ia is the integer

represented by the k bits of a and ih is the integer represented by the k bits of b. From

now on, we will not make a distinction between ia and a (or ih and /?), since they are

represented in exactly the same way. Thus, given two Boolean vectors of size k, we can

compute their product by simply looking at the table. If we can access a table of size 22k

in 0(1) time, then each inner product of size k can be computed in constant time (once

306 Algebraic and Numeric Algorithms

the table is constructed). For example, let k = [\\og2n/2\\. In that case, the size of the

table is O(n), and constructing it requires 0(n \\ogn) time. The assumption that we can

access a table of size O(n) in constant time is not unusual. We have already made this

assumption (implicitly) many times before. We usually assume that, if n is the size of the

input, then we can store a number with log2Ai bits in one computer word (or a constant

number of computer words). Once the table is constructed, we can compute a Boolean

inner product of size n in time O (n/k) = O(n/\\ogn). Notice that the table depends only

on the value of k and not on the matrices. So, computing the product of two Boolean
matrices can be done in time 0(n3/\\ogn) and extra storage of O(n). We can also

choose k to be [log2\302\253J, in which case the table size is 0(n2), but we save an extra factor
of 2 in the multiplication algorithm. However, if we can afford an extra space of size
0(n2), we can find a faster algorithm.

Consider two n x n Boolean matrices A and B. The usual way to view matrix

multiplication is as defined in (9.3): We perform n2 inner products, each involves a row

of A and a column of B. We can also multiply the two matrices by multiplying columns

of A with rows of B in the following way. Denote the rth column of A by Act^l, and the

rth row of B by BR[r], Consider Ac[r] as an n x 1 matrix, and ^[rjasa lx/i matrix.

The product ofAc[r] with BR[r] is an n x n matrix, whose ijth entry is the product of the

/th entry of Ac[r] with the 7th entry of BR[r] (seeFig.9.4). It is easy to see that

A'B = itAc[r]-BR[r]. (9.5)
r = \\

The expression (9.5) is equivalent to (9.3) in the sense that the same products and

additions are performed, but they are performed in a different order.

We now partition the columns of A and the rows of B into n/k equal-sized groups.
(We assume for simplicity that n/k is an integer; otherwise, there will be an extra smaller

group.) In other words, we divide A into A\\,A2, \342\200\224,An/k,such that each At is an nxk

matrix, and we divide B into BUB2,..., Bn/k, such that each \302\243,is an kxn matrix. It is

easy to see that

n/k

A-B = YtAi-Bi. (9.6)
/ = !

BR[k]

ABC
Figure 9.4 Multiplying matrices columns by rows.

Ac[k]

9.5 Matrix Multiplication 307

The problem now is how to compute Ci=Ai-Bi efficiently. We describe this

computation by an example (see Fig. 9.5).
The first row of C, is exactly the same as the third row of Bh because the first row

of Aj has a 1 only in column 3. Similarly, the second row of C, is the Boolean sum of the
second and third rows of Br It is easy to see that the yth row of C, is a Boolean sum of

rows of Bj according to the yth row of Aj. Instead of computing each row of C, in a

straightforward way, we use a method, similar to the algorithm we described earlier, for

precomputing all possibilities. There are k entries in each row of Ah so there are 2k

possible combinations of rows of Bj. Let k =
log2\302\253,and assume again that k is an integer.

We precompute all 2k = 2og2\" = n combinations, and store the results in a table. In

contrast to the first algorithm, this table contains n rows rather than n bits; thus, the

storage requirement is 0(n2). Also, this table depends on Bh and must be constructed

for each Bj. To find row j of C,, we look at row j of Aj and see the combination of rows

of Bj that need to be added. This combination can be represented as an integer

corresponding to the binary representation of row j of Aj (e.g., the first row of Aj in Fig.

9.5 corresponds to 1, the second row corresponds to 3, the third row corresponds to 4,
and so on). This integer is the address in the table where row j of C, is stored. It takes

0(\\) time to find a row of C, in the table, and O(n) time to copy this row to the

appropriate row in C,. Thus, computing C, canbe done in time 0(n2).

We now show that all the combinations of sums of rows of Bj can be computed in

time O (n
\342\200\242

2k). Each combination of rows corresponds to a k-b\\i integer. We assume, by

induction, that we know how to compute the sums of combinations of rows

corresponding to integers that are less than /'. Computing the sum corresponding to 0 is

trivial. Assume that the binary representation of / - 1 is xxxx 011111 \342\200\224
namely, its least

significant 0 is followedby j Is. The sum of rows corresponding to / is equal to the sum

of rows corresponding to xxxx 000000 plus the row corresponding to 0000100000.Since
xxxx 000000 is less than /, we know its corresponding sum by induction, and we need

only to add one row to it. It takes n Boolean additions to add a row, and we have 2k

combinations. Hence, all the precomputing can be done with 0(n-2k) operations. If

k =
log2fl, then the running time is 0(n2). This algorithm is known as the four-Russians

0
0
I
I
I
1
1
0

0

1

0

0

I

I
0
0

1
1
0
1
0
1
0
I

1
1
0

1 0 1

0 0 1
1 1 1

B,

0 I I

1 1 0
0 0 0

0
1
0

0
1
1
1
1
1
1
0

1

I

1

1

1

1
1
1

1
I
0
1
0

1

0

1

I

1

1
1
I
1
1
1

0

I

0

0

1

1

0
0

0
1
1
1
I
1
1
0

0

0

I

1

I

1
1
0

0
1
0
0
I
1
0
0

Ai C^Afr

Figure 9.5 Boolean matrix multiplication.

308 Algebraic and Numeric Algorithms

algorithm (Arlazarov et al. [1970]), after the nationality and number of its inventors.

The algorithm is given in Fig. 9.6.

Algorithm Boolean_Matrix_Multiplication (A, B, n, k) ;

Input: A, B (twonxn Boolean matrices), and k(an integer).

Output: C (the product of A and B).
| we assume, for simplicity, that k divides n)

begin

Initialize the matrix C toO ;
fori :=Otonlk-1 do

Construct Table, ;

{Tablej is an 2k array of Boolean vectorsof size n which contains

all possiblecombinations of sums ofk rows ofBj; see the text}

m := i* k ;
forj :- I ton do

Let Addr be the k-bit number

A[j, w + l]y4[/', m+2] \342\200\242\342\200\242\342\200\242
A\\J, m+k] ;

add Tablej [Addr] to row j in C

end

Figure 9.6 Algorithm Boolean JAatrix JAultiplication.

Complexity To compute A B we have to compute the nlk products AjBj. Since
each such product takes 0(n2) time and constructing the table takes 0(n -2k) time, the

total running time of the algorithm is O (n3/k + n2
\342\200\242

2kIk). If k =
log2fl, then the running

time isO(n3/\\ogn).
Next, we show how to combine the ideas of the first algorithm with the ideas of the

second algorithm to improve the running time by another O (log a?) factor. The main step

in algorithm Boolean JAatrix JAultiplication (Fig 9.6) involves additions of a row from a

table to C. We can perform this addition in time 0(n/m) by using the same trick of

precomputing all possible additions. (This may not be necessary if a Boolean addition is
a primitive operation that can be performed quickly; the algorithm, however, does not

depend on this assumption.) We first construct a two-dimensional table AddJTable of
size 2mx2m that includes all possible additions of two Boolean vectors of size m. In

other words, the (/, j)th entry in AddJTable is the Boolean sum of / and j. (Again, / and j

are used both as integers and as Boolean vectors.) It is easy to see that AddJTable can be

constructed in time and space 0(m-22m). Notice that, unlike the tables we used in

algorithm Boolean JAatrix JAultiplication (Fig. 9.6),AddJTable is independent of A and

B\\ it depends only on the value of m. We now divide each row of Bt into nlm groups,
each of size m (we assume again, for simplicity, that m divides n). We consider each
group as a m-bit integer; thus, each row of \302\243,is represented by an rt/m-tuple of integers.
All the steps of the algorithm

will be performed on these tuples.

9.6 TheFastFourierTransform 309

To add two vectors of size n, we use Add J able to add the corresponding two

rt/m-tuples in nlm steps. Each step consistsof taking two m-bit numbers and fetching the

corresponding entry in AddTable (which contains their sum). Such a step can be

performed in constant time, as long as the size of the computer word is at most 2m. We

use this trick both for constructing the tables for the regular four-Russians algorithm, and

for adding the rows during the execution of the algorithm. If we select m to be

approximately equal to [log2\302\253/2j, then 22m = 0(n) and, since we assume that we can

represent n in one computer word, we can representa 2m-bit number in one word. For
this choice of m, the running time of the improved algorithm is 0(A23/log2Ai).

Comments We presented an interesting method of computing all possibilities
instead of the usual wisdom of computing only what is needed. We also demonstrated
that changing the order of the computation can lead to a better algorithm. The trick of

computing all possible combinations can be applied in the same manner to other

algebraic functions on bit strings that cannot be performeddirectly by the hardware.

9.6 The Fast Fourier Transform

As an introduction to the fast Fourier transform, we quote from John Lipson's excellent
book:

An algorithm may be appreciated on a number of grounds; on technological
grounds because it efficiently solves an important practical problem, on
aesthetic grounds because it is elegant, or even on dramatic grounds

because it opens up new and unexpected areas of applications. The fast
Fourier transform (popularly referred to as the \"FFT\,") perhaps because it

is strong on all of these departments, has emergedas one of the \"super\"

algorithms of Computer Science since its discovery in the mid sixties.

(Lipson[1981],page 293.)

The FFT algorithm is by no means simple, and its development is not straightforward.
We concentrateon only one application of the FFT \342\200\224

polynomial multiplication.

The Problem Given two polynomials p (x) and q (jc),compute their

product p(x)- q (x).

The problem, as stated above, is not well defined. We have not specified the

representation of the polynomials. We usually represent a polynomial

P =an_{xn~[+an_2xn~2 + '\342\200\242'
+a{x + a0 by the list of its coefficients in increasing

order of degrees. This representation is definitely adequate, but it is not the only one

possible. Consider, for example,a polynomial of degree 1, which is a linear function

a^x + a0. This linear function is usually specified by the two coefficients ax and a0.
But, since the function corresponds to a line in the plane, it can also be specified by any

310 Algebraic and Numeric Algorithms

two (nonequal) points on that line. In the same way, any polynomial of degree n is

uniquely defined by n +1 points. For example, the second-degree polynomial

p(jt)=Jt2 + 3jt+l is defined by the points (1,5), (2,11), and (3,19), and it is the only

second degree polynomial that includes all those points. These three points are not the

only three points that define this polynomial; any three points on the corresponding curve
will do.

This representation is attractive for polynomial multiplication because multiplying

the values of points is easy. For example, the polynomial q(x) = 2x2 -x + 3 can be

represented by (1,4), (2,9), and (3,18). We right away know that the product p(x)-q (x)
has the values (1,20), (2,99), and (3,342). Thesethree points are not enough to represent
p(x)q (x) since it has degree 4. We can overcome this problem by requiring five points

from each of the smaller polynomials; for example, we can add the points (0,1) and

(\342\200\2241,-1)top(jc), and (0, 3) and (-1, 6) to q (x). We can then easily obtain five points that

belong to the product \342\200\224
(1, 20), (2, 99), (3, 342),(0,3), and (-1,-6) \342\200\224

by making only
five scalar multiplications! Using this idea, we can compute the product of two

polynomials of degreeaz, given in this representation, with only O (n) multiplications.
The main problem with this approach is that we cannot simply change the

representation to fit only one application. We must be able, for example, to evaluate the

polynomial at given points. This is much harder to do for this representation than it is
when the coefficients are given. However, if we could convert efficiently from one

representation to another, then we would have a very good polynomial multiplication

algorithm. This is what the FFT achieves.

Converting from coefficients to points can be done by polynomial evaluation. We

can compute the value of a polynomial p (jc), given by its list of coefficients, at any given

point by Horner's rule (Section 5.2) using n multiplications. We need to evaluate p (jc) at

n arbitrary points, so we require n2 multiplications. Converting from points to
coefficients is calledinterpolation, and it also generally requires 0(n2) operations.The

key idea here (as in so many other examples in this book) is that we do not have to use n

arbitrary points; we are free to choose any set of n distinct points we want. The fast
Fourier transform chooses a very special set of points such that both steps, evaluation and

interpolation, can be done quickly.

The Forward Fourier Transform

We first consider the evaluation problem. We need to evaluate two n - 1 degree

polynomials, each at 2n-\\ points, so that their product, which is a 2n - 2 degree

polynomial, can be interpolated. However, we can always represent an n -1 degree
polynomial as a 2n - 2 degreepolynomial by setting the first n - 1 (leading) coefficients

to zero. So, without loss of generality, we assume that the problem is to evaluate an

n-\\

arbitrary polynomial P =
\302\243a{x{ of degree n-\\ at n distinct points. We want to find n

points for which the polynomials are easy to evaluate. We assume, for simplicity, that n

is a powerof 2.

We use matrix terminology to simplify the notation. The evaluation of the

polynomial P above for the n points x0,xu ..., xn_x can be represented as the following

9.6 The Fast Fourier Transform 311

matrix by vector multiplication:

*i

(x0Y

Ui)2

(x0y

(x{y

n-\\

n-\\

1 Xn_i (Xn_\\)
* *

C*\342\200\236_i)J
n-\\

<*0 P(x0)

P(x{)

P(*n-\\)

The question is whether we can choose the values of jc0, jcj, ..., xn_\\ in a way that

simplifies this multiplication. Consider two arbitrary rows i and j. We would like to

make them as similar as possible to save multiplications. We cannot make *,=*,-,
because the values must be different, but we can make (jc,)2=

(jc7)2 by letting Xj
= -xh

This is a good choice,becauseevery even power of x{ will be equal to the same even
power of Xj. We may be able to saveone-half of the multiplications involved with row j.

Furthermore, we can do the same for other pairs of rows. Our goal is to have n special

rows for which the computation above requires only nil vectorproducts. If we can do

that, then we may be able to cut the problem size by half, which will lead to a very

efficient algorithm. Let's try to pose this problem in terms of two separate subproblems
of half the size.

We want to divide the original problem into two subproblems of size nil,
according to the scheme described above. Thisis illustrated in the following expression.

*i

(xoY

C*i)2

(x0y

(x{y

n-\\

n-\\

1 xni2-\\ (Xnl2-\\) i.Xnl2-\\)
n-\\

-x0

~X\\

i-x0f

(\"*l)2

n-\\
(-x0y

1 ~Xn/2-\\ (-Xn/2-\\)
* *

(-Xn/2-\\)
n-\\

<*0

0*i-l

P(x0)

P(x{)

P(-Xn,2-\\)

(9.7)

Thenxn matrix in (9.7) is divided into two submatrices, each of size n/2 x n. These two

matrices are very similar. For each i, such that 0</<az/2, we have JC,=-Jcn/2+/.The
coefficients of the even powers are exactlythe same in both submatrices, so they need to

be computed only once. The coefficients of the odd powers are not the same, but they
are exactly the negation of each other! We would like to write the expressions for P(Xj)
and P (-jc,) for 0< i < nil in terms of the even and odd coefficients:

n/2-1 n/2-1
P(x) = E +0= X a2ixl1 + X fla+i*2\"1.

/=o /=o

The \"even\" polynomial (\302\243)can be written as a regular polynomial of degree nil- 1

312 Algebraic and Numeric Algorithms

with the even coefficients of P:
/i/2-1

\302\243= I a2i(x2)l=Pe(x2).

The \"odd\" polynomial (O) can be written in the same way:
n/2-1

0=x 2 a2M(x2)l=xP0(x2).
/=o

So, overall, we have the following expression:

P(x) = Pe(x2)+xP0(x2\\ (9.8)

where Pe (P0) are the n/2- 1 degree polynomials with the coefficients of the even (odd)

powers of P. When we substitute -jc for x in (9.8), we get P(-x) = Pe(x2)+ (-x)P0(x2).

To evaluate (9.7), we need to compute P(Xj) and P(-Xj), for 0</ < n/2. To do that, we

need to compute only n/2 values of Pe(x2) and n/2 values of P0(x2), and to perform az/2

additions, n/2 subtractions, and n multiplications. So, we have two subproblems of size

nil, and O (n) additional computations.
Can we continue with the same scheme recursively? If we could, then we would

get the familiar recurrence relation T(n) = lT(nll) + 0(n), resulting in an 0(n\\ogn)

algorithm. But this is not so easy. We reduced the problem of computing P(x) (a
polynomial of degree n- 1) at n points to that of computing Pe(x2) and P0(x2) (both

polynomials of degree n/2- 1) at n/2 points. This is a valid reduction, except for one
small thing. The values of jc in P(x) can be chosen arbitrarily, but the values of jc2,
which are needed, for example, in Pe(x2), can only be positive. Since we obtained this

reduction by using negative numbers, this poses a problem. Let's extract from (9.7) the

matrix that corresponds to the computation of/^((jc,)2):

ri c*o)2 c*o)4 c*0r2
1 t*i)2 C*i)4 C*i)\"-2

1 C*/i/2-l) C*/i/2-l)
' '

(xn/2-\\)n

If we try the same trick on this subproblem, we need to set (jc\342\200\236/4)2=-(jc0)2. Since

squares are always positive, this seems impossible. But it is not impossible if we use

complex numbers which include V-1. We again divide the problem into two parts and

let
xj+n/4

= V-1 xj9
for 0<y < n/4. This partition satisfies the same properties as did the

first partition. Hence, we can solve the problem of size n/2 by solving two subproblems
of size n/4 and O (n) additional computation.

If we want to carry this process one step further, we need a number that is equal to

that is, a number z such that z8 = 1, and zj * 1 for 0 <j < 8 (which implies that

z4=-l, and z2 = V-1). In general, we need a number that satisfies the condition above

*0

a2

a4

an-i

=

\"

PeiXo)

Pe(*\\)

Pe(xn/2-\\)\\

9.6 The Fast FourierTransform 313

for n rather than for 8. Such a number is called a primitive nth root of unity. We
denoteit by co. (We do not include n in the notation for simplicity; we will use the same

n throughout this section.) co satisfies the following conditions:

co\" = 1, and o7^ 1 for0<j<n. (9.9)

The n points that we choose as x0,x{,...,xn_{ are 1,co, co2,..., co\"-1. Therefore, we want

to compute the following product:

P(D 1
/>(co)

/>(co2)

/Mco\"-1)

This product is called the Fourier transform of (a0,ah ...,an_{). First, we notice that

indeed for any y, 0<j <n/2, we have
Xj+n/2

=
co\"/2Xj

= -Xj. So the reduction that we

applied initially to the problem of size n is still valid. Furthermore, the subproblems

resulting from that reduction have n/2 points, which are 1, CO2, co4,..., co\"-2. But this is

exactly the problem of size n/2 in which we substitute CO2 for co. The conditions in (9.9)

imply that co2 is a primitive (n/2)th root of unity. Therefore, we can continue

recursively, and the complexity of the algorithm is O (n logAi). A high-level view of the

algorithm is presented in Fig. 9.7.

Algorithm Fast_Fourier_Transform (az, a0, a x,..., an_x, co, var V);

Input: n (an integer), aQj a \\,..., an_x (a sequence of elements whose type

depends on the application), and CO (a primitive mh root of unity).

Output: V (an array in the range [0..n - 1] of output elements).

| we assumethat n is a power of 2)

begin

ifn= 1 then

V[0]:=a0;

else

Fast_Fourier_Transform(n/2, a0a2,...,an-2>to2>U)>'
Fast_Fourier_Transform(nl2,ax a3,..., an_x, co2, W);
forj:=0ton/2-\\do {follow (9.8) for Jt = co7 j

V[j]:=U[j] + rtW[j];

V[j +n/2]:=UV]-rtWlj]
end

1 1

co

CO2

or

2-2
CO

1 co\"-1 co(\"-1)2 CO'

1

CO\"\"1

^\342\200\242(n-l)

|(n-l)-(n-l)

*0

a\\

an-\\

=

Figure 9.7 Algorithm Fast Fourier Transform.

314 Algebraic and Numeric Algorithms

D Example 9.2

We show how to compute the Fourier transform for the polynomial (0, 1,2, 3,4, 5,6,7).
To avoid confusion, we denote the subproblems by Pjojxt jk(x0,xj,...,xk), where

JoJi'\342\200\224'Jk
denote the coefficients of the polynomials, and jc0,x{, ...,xk denote the

values for which we need to evaluate the polynomials. So, in particular, this example

involves computing /*(),1,2,3,4,5,6,7(1*co,co2,\342\226\240\342\200\242\342\226\240\302\273co7).(This notation is quite awkward, but

it contains all the information we need.) The main recurrence we useis (9.8).
The first step reduces ^0,1,2,3,4,5,6,7(^ co,co2,-. co7) t0 ^0,2,4,60. co2, co4, CO6) and

Px 3,5,7(1, co2,co4,co6). We continue recursively and reduce /^^O'co2, co4,co6) to

P0,40\302\273co4)
and P2,6(U co4). ^0,4(1. co4)is tnen reduced to P0U). which is clearly 0, and

P4(\\), which is clearly 4. We can now combine the results to get

/>o,4(l) = />o(D+l-/>4(l)=0+l-4 =4,

and

P0 4(co4) = />0(co4)+ co4/>4(co4)
= 0 + co4\342\200\2424.

Since co4 = -1, we get P04(to4) = -4, and, overall, P0,40. co4) = (4, -4). In the same

manner, we get /^(l* co4)= (8,-4).
We now combine the two vectors aboveto compute Po,2aA^ co2, co4, co6):

/>o,2,4,6(l) = />o,4(l)+l-/>2,6(l) = 4 +8=12.

PoiAfii\302\2562)
=

^o,4(co4) + co2\342\200\242
/>2,6(co4)

= -4 + co2(-4).

/>0,2,4,6(C04)
=

/>o,4(C08) + C04-/>2,6(C08)= />0,4(l)-l-/>2,6(l) =4-8 =-4.

Po,2aA<\302\2736)
=

^0,4(C012) + CO6
\342\200\242

/>2,6(C012)
= />0,4(C04)

- CO2
\342\200\242

/>2,6(C04)
= ~* ~ ^HO-

So, overall

^0,2,4,6(1, CO2, CO4, CO6) = (12, -4(1+C02), -4, -4(1 -CO2)).

In the same way, we find that

P 1,3,5,7(1,co2,co4,co6)= (16,-4(l+co2),-4,-4(1-co2)).
To compute />o,i,2,3,4,5,6,7(l\302\273 co, co2,..., co7), we need to compute 8 values. For

example, P 0,1,2,3,4,5,6,7(1)= 12+ 1
\342\200\24216 = 28, and, in the same manner, P0,i,2,3,4,5,6,7(co4)

= 12- 1-16=-4; P0t 1,2,3,4,5,6,7(co)
= (-4(1 +co2)) + co-(-4(l +co2)),and, in the same

manner, ^0,1,2,3,4,5,6,7(co5)= (-^4(1+co2))- co-(-4(l+ co2)), and so on. We leavethe rest

to the reader. \342\226\241

The Inverse Fourier Transform

The algorithm for the fast Fourier transform solves only half of our problem. We can

evaluate the two given polynomials p{x) and q{x) at the points 1,co,...,co\"\"1 quickly,

multiply the resulting values, and find the values of the product polynomial p(x)-q (x) at

9.6 The Fast Fourier Transform 315

those points. But we still need to interpolate the coefficients of the product polynomial

from the evaluation points. Fortunately, the interpolation problem turns out to be very
similar to the evaluation problem, and an almost identical algorithm can solve it.

Consider again the matrix notation. When we are given the coefficients

(a0,ai, ...,0\342\200\236_i)of the polynomial, and we want to compute the values of the

polynomial at the n points 1, co,co2

vector product:

co\" , we compute the matrix by the following

1

co
2

1

CO\"

CO oy
2-2

co\"\"1 co(\"_1)*2 oy

1

a)\"\"1

co2'\"\"\"

((n-l)\342\200\242(/.-!)
an-\\

P(l)

/>(0)2)

/>((0\"_l)

On the other hand, when the values of the polynomial (fO), f^co), ...,/> (cow_1))=

(v0, v j,..., v\342\200\236_!)are given, and we want to compute the coefficients, we need to solvethe

following system of equations for a0, a \\,...,0\342\200\236_i:

1 1

1 co

1

CO\"

CO\" CO
2-2

1 CO\"\"1 CO*\"\"02 oy

1

o)\"-1

a)2c-|>

((n-l)(n-l)
.

\"tfo\"

tfl

011-1
.

=

\"
v0\"

Vl

v2

v\342\200\236-i

-

(9.10)

Solving systems of equations is usually quite time consuming (0(az3) for the general

case), but this is a special system of equations. Let's write this matrix equation as

V(co)-a=v, where V(co) is the matrix in the left side, a =(a0,a\\, ...,an_i), and

v = (vo. vi\302\273\342\200\224\302\273vn-\\)- Tne solution for a can be written as a = [V(co)]_1 \342\200\242
v, provided that

V(co) has an inverse. It turns out that V(co) always has an inverse; furthermore, its

inverse has a very simple form (we omit the proof):

\342\226\241Theorem 9.1

[V(co)]\"1 = - V(-).
n co

\342\226\241

Therefore, to solve the system of equations (9.10), we need to compute only one matrix

by vector product. This task is greatly simplified by the following theorem.

\342\226\241Theorem 9.2

If (d is a primitive nth root of unity, then 1/co is also a primitive nth root of

unity. \342\226\241

316 Algebraic and Numeric Algorithms

Therefore,we can compute the product V(l/(fl)v by using the algorithm for the fast

Fourier transform, substituting 1/(0 for co. This transform is called the inverse Fourier
transform.

Complexity Overall, the product of two polynomials can be computed with

0(n\\ogn) operations. Notice that we need to be able to add and multiply complex
numbers.

9.7 Summary

The algorithms presented in this chapter are a small sample of known algebraic and

numerical algorithms. We have seen again that the straightforward algorithms are not

lecessarily the best. Strassen's algorithm is one of the most striking examples of a

nonintuitive algorithm for a seemingly simple problem. We have seen several more

examples of the use of induction, and, in particular, of the use of divide-and-conquer
algorithms.

The four-Russians algorithm suggests an interesting technique, which is not based

on induction. The main idea is to compute all possiblecombinations of certain terms,

even if not all of them are needed. This technique is useful in cases where computing all

(or many) combinations together costs much less than computing each one separately.
Another technique, which is common particularly for problems involving matrices, is the

use of reductions between problems. This method is described, with examples, in

Chapter 10.

Bibliographic Notes and Further Reading

The best source for arithmetic and algebraic algorithms is Knuth [1981]. Other books
include Aho, Hopcroft, and Ullman [1974], Borodin and Munro [1975], Winograd

[1980], and Lipson [1981].

The algorithm for computing powers by repeated squaring is very old; it appeared

in Hindu writings circa 200 B.C. (seeKnuth [1981] page 441). The RSA public-key
encryption scheme is due to Rivest, Shamir, and Adleman [1978]. The idea of public-

key encryption schemes was introduced by Diffie and Hellman [1976]. Euclid's
algorithm appeared first in Euclid's Elements, Book 7 (circa 300 B.C.),but it was

probably known even beforethen (see Knuth [1981], page 318). The divide-and-conquer

algorithm for multiplying two polynomials was developedby Karatsuba and Ofman

[1962] (in the context of multiplying two large numbers).
Winograd's algorithm appeared in Winograd [1968] (see also Winograd [1970]).

Strassen's algorithm appeared in Strassen [1969]. The constant c in the asymptotic

running time 0(nc) for matrix multiplication has been reduced several times since 1969

(first by Pan [1978]). The best-known algorithm at this time \342\200\224in terms of asymptotic
running times \342\200\224is by Coppersmith and Winograd [1987], and its running time is

(D(n2316). Unfortunately, as the CO notation indicates, this algorithm is not practical.
For more on the complexity of matrix multiplication and related topics see Pan [1984]. A

Drill Exercises 317

discussion on the implementation of Strassen's algorithm can be found in Cohen and

Roth [1976].
The four-Russians algorithm is due to Arlazarov, Dinic, Kronrod, and Faradzev

[1970]. The improvement of the four-Russians algorithm by using addition tables has

probably been observed by many people; it is mentioned, without details, in Rytter

[1985], where a similar technique is used for context-free language recognition. The

same idea was also used to improye sequence comparisons algorithms (Masek and

Paterson [1983], Myers [1988]). The solution of Exercise 9.26 appears in Atkinson and

Santoro [1988]. Fischer and Meyer [1971] showed a reduction between Boolean matrix

multiplication and the transitive-closure problem.
The algorithm for the fast Fourier transform was introduced by Cooley and Tuckey

[1965], although the origins of the method can be traced to Runge and Konig [1924]. For
more information on the fast Fourier transform, see Brigham [1974] and Elliott and Rao

[1982].

Drill Exercises

9.1 Discuss the relationship between algorithm Power_by_Repeated_Squaring (Fig. 9.2) for

computing nk and the binary representation oik.

9.2 Algorithm Power_by_Repeated_Squaring (Fig.9.2)for computing nk does not necessarily

lead to the minimal number of multiplications. Show an example of computing nk (k> 10)

with fewer number of multiplications.

9.3 Let x be a positive rational number that is represented by the pair (a, b) such that x = a/b.

Design an algorithm to compute the smallest representation of x\\ that is, the representation
(a, b) with the smallest possible values of a and b. For example, if x = 24/84 = 6/21 =2/7,
then (2, 7) is the smallest representation of x.

9.4 Prove that the straightforward divide-and-conquer algorithm for polynomial multiplication

that computes all four products of the smaller polynomials makes exactly the same

operations as does the straightforward algorithm that follows (9.1). Assume that n is a

power of 2.

9.5 Find the product P(x)-Q(x\\ by hand, using the divide-and-conquer polynomial

multiplication algorithm presented in Section 9.4.

P(x)=x + 2x2 + 3x* + \342\200\242\342\200\242\342\226\240+ 15jcl\\

\302\243)(.*:)=16+15* +14*2 + \342\226\240\342\200\242\342\200\242+ 2x,4 + 1jc'\\

How many operations are required overall?

9.6 A divide-and-conquer technique can be used to multiply two binary numbers. Describe
such an algorithm, and discuss the differences between it and the polynomial multiplication

algorithm.

318 Algebraic and Numeric Algorithms

9.7 Use the algorithm discussed in Exercise 9.6 to multiply 10011011 by 10111010.

9.8 A divide-and-conquer technique can be used to multiply two numbers in any base b (not

only b = 2). Use it to perform the decimal multiplication 4679x7114. Carry the recursion
down all the way to 1 -digit numbers.

9.9 Design an algorithm to multiply two complex numbers (a+bi)(c+di) with only three

multiplications. (/ is the square root of -1.)

9.10 Derive the explicit expressions for Strassen's 2x2 matrix multiplication scheme described
in Section 9.5.2.

9.11 Suppose that you find an algorithm to multiply 4x4 matrices with k multiplications. What

would be the complexity of a general matrix multiplication algorithm based on the this

algorithm? What is the maximal value of k that will lead to an asymptotic improvement
over Strassen'salgorithm?

Creative Exercises

9.12 Consider the two algorithms for computing nk given in Section 9.2 (simpleiteration, and

repeated squaring). Let n be an integer with d digits. Assume that integer multiplications
are performed by the regular algorithm, which requires J,

\342\200\242
d2 steps to multiply two integers

with dx and d2 digits. What is the number of steps required to compute nk by the two

algorithms? (You can assume that k is a power of 2, and that a product of two integers with

dx and d2 digits is another integer with d]-\\-d2 digits.)

9.13 Design an algorithm to find the GCD of k integers.

9.14 The least commonmultiple (LCM) of m and n is the smallest integer that is a multiple of
both n and m. Design an algorithm to find the LCM of two given integers.

9.15 Design an algorithm to find the LCM of k given integers. (The LCM of k integers is the
smallest integer that is a multiple of all of them.)

9.16 The Fibonaccinumbers are defined by the following recurrence relation:

F(\\)=\\% F(2)=l, F{n) = F{n-\\) + F{n-2) (n>2).

a. Prove that every integer n > 2 can be written as a sum of at most \\og2n Fibonacci
numbers.

b. Design an algorithm to find such a representation for a given number n.

9.17 Let P(x) and Q(x) be two polynomials. We say that a polynomial D(x) divides P(x) if

there exists another polynomial S(x) such that P(x) = D(x)-S(x). Similarly, we say that

Q(x) =R(x)modP(x) if R(x) has a smaller degree than P(x), and there exists a

polynomial D(x) such that Q(x) =D(x) P(x)+ R(x). The GCD of two polynomials P(x)

and Q (x) is a polynomial R (x) such that R (x) is the highest-degree polynomial that divides

bothP(.v)and(2(.v).

a. Show that the GCD of two polynomials is uniquely defined.

b. Extend Euclid's algorithm to find the GCD of two given polynomials.

Creative Exercises 319

9.18 Modify the polynomial multiplication algorithm described in Section 9.4 by dividing each

polynomial into three equal parts (instead of two), and minimizing the number of

multiplications involving smaller parts. You can assume that the size of the problem is a

power of 3. What is the complexity of the algorithm?

9.19 Modify the polynomial multiplication algorithm described in Section 9.4 by dividing each

polynomial into four equal parts, and minimizing the number of multiplications involving

smaller parts. You can assume that the size of the problem is a power of 4. What is the

complexity of the algorithm?

9.20 Hamilton's quaternions are vectors of the form a+bi + cj + dky where a, b, c, and d are
real numbers, and i, j, and k are special symbols. We add and subtract quaternions

componentwise, and multiply them by using the following rules:
/' =

y2
= k2 = -l

ij = -ji = k

jk = -kj = i

ki = -ik = j
(the symbols /, j\\ and k commute with real numbers and with themselves). How many

multiplications of real numbers are required by the ordinary procedure for quaternion

multiplication? Give an algorithm that reduces the number of multiplications to 12.

9.21 Show how to compute the square of a 2 x 2 matrix with only five multiplications.

9.22 A permutation matrix is an n x n matrix such that each row and each column has exactly
one nonzero entry that is equal to 1. A permutation matrix can be represented by an array P

such that P[i] = j if the ith row contains a 1 in the jth column.

a. Prove that the product of two permutation matrices is another permutation matrix.

b. Design a linear-time algorithm to multiply two permutation matrices given by the array

representation. The outcome should also be given in an array representation.

9.23 Considerthe following suggestion to modify Strassen's algorithm. We can use Winograd's

algorithm to compute the product of two kxk matrices with approximately k312
multiplications. We can then use this product as the basis for the divide-and-conquer

strategy instead of the one using 2x2 matrices. If k is large enough we get a better

asymptotic time than Strassen's algorithm. What is wrong with this suggestion?

9.24 Design an algorithm to compute all possible Boolean inner products of two Boolean vectors

of size k (see Section 9.5.3). Thealgorithm should create a table of size22*. The product of

the two vectors a and b should be stored at entry i, where i is an integer respresented by 2k
bits such that the k most significant bits of i are those of a and the k least significant bits are

those of b. The running time of the algorithm should be O (22*).

9.25 Complete the program for Boolean matrix multiplication (Fig. 9.6). Show how to build the
tables explicitly, and how to handle the case where n/k is not an integer without a

significant loss of efficiency.

9.26 Design an algorithm for Boolean matrix multiplication that divides the matrices into

submatrices of size kxk, and uses the idea of precomputing all possible products between
such submatrices. The running time of the algorithm should be 0(w3/(logw)15), and it

should require extra space of 0(n\\ogn). You can assume that you can perform basic

operations on numbers with up to log2\302\253bits in one step.

320 Algebraicand Numeric Algorithms

9.27 Let A and B be two nxn random Boolean matrices; each entry in each matrix is randomly

chosen (independently) to be either 0 or 1 with probability Vi. Design an algorithm to find

the product of A and By such that the expected number of operations will be 0(n2).

9.28 Let A and B be two 2n x In Boolean matrices that represent open Gray codes(seeSection

2.9) in the following way. The rows of each matrix correspond to the strings in the Gray

code, such that two consecutive rows differ by exactly one bit (the first row and the last row

may differ by more than one bit). Design an O (n2) algorithm to find the product of the two

matrices.

9.29 Let Af M A/2> \342\200\242\342\200\242\342\200\242\302\273A/\342\200\236be n matrices of real numbers. The dimensions of A/, are fl,Xfl/+1, so

the product of A/,-A//+1 is defined for each 1 <i <n. We want to compute the product
MlxM2'x '\"

xMn. Let's assume that it takes af-a/+1 a/+2 operations to multiply an

fl,-Xfl/+1 matrix by an ai+l xai+2 matrix. The problem is to find the right order in which to

carry out the multiplications. For example, let n = 3, and let the matrices be of dimensions

10x2, 2x5, and 5x3. Finding the product of the first two matrices takes 10-2-5

operations resulting in a matrix of dimensions 10x5. Finding the product of this matrix

with the third one takes 10-5-3 operations \342\200\224overall, 250 operations. On the other hand, if

we first find the product of the last two matrices and multiply the first matrix with that

product, we end up with only 90 operations. Design an algorithm to find the optimal order
of carrying out the matrix product above.

CHAPTER 10

REDUCTIONS

Knowledge is of two kinds.
We know a subject ourselves,
or we know where we can find

information upon it.

Samuel Johnson, 1775

10.1 Introduction

We start this chapter with an old joke. A mathematician and her husband are asked the

following question: \"Suppose that you are in the basement and you want to boil water,

what do you do?\" The mathematician says that she will go up to the kitchen and boil

water there; her husband answers similarly. Now they are both asked the following

question: \"Suppose that you are in the kitchen and you want to boil water, what do you
do now?\" The husband says \"it's easier \342\200\224I'll just fill the kettle and boil the water.\"

The mathematician answers \"it's even easier than that \342\200\224I'll go down to the basement

and I already know how to solve that problem.\"
In this chapter, we will concentrate on the idea of reduction. We will show that

besides being funny sometimes, reductions can be extremely useful. Here is another

example of a reduction, this time a real one. When you send a package by Federal

Express from uptown New York City to downtown New York City, the package will be

routed through Memphis. Federal Express routes all packages through Memphis, so
when they are faced with the special situation of delivering packages across town they

\"already know how to solve the problem.\" In this case, the solution makes sense. It

may be much more difficult to identify a special situation and to build a mechanism to
handle that situation more efficiently. It may be easier, and overall cheaper,to handle

everything equally. This is also often true in algorithm design. When we encounter a

i^

322 Reductions

problem
that can be posed as a specialcaseof another problem, whose solution is already

known, then the known solution can be used. Such a solution may sometimes be too

general
or too expensive. But in many cases, using a general solution is the the easiest,

the fastest, and the most elegant way to get a solution. We use this principle every day.

For some computing problems
\342\200\224for example, a database query

\342\200\224it is usually not

necessary to write a program that solves only this problem; it is sufficient to use

general-purpose software that handles more general problems. The general-purpose
solution may not be the most efficient solution, but it is much easier to use.

Supposethat we are given a problem P that seems complicated, but that also seems
similar to a known problem Q. We can try to solve P from scratch, or we can try to

borrow some of the methods used to solve Q and apply them to P. There is, however, a

third way. We can try to find a reduction (or transformation) between the two problems.

Loosely speaking, a reduction is a solution of one problem using a \"black box\" that

solves the other problem. Reductions can achieve one of two goals depending on the

direction in which they are done (i.e., which black box is used to solve which problem).

A solution of P that uses a black box for Q canbe translated into an algorithm for P if we
know an algorithm for Q. On the other hand, if P is known to be a hard problem, or, in

particular, if we know a lowerbound for f\\ then the same lowerbound may be applied to

Q. In the former case, the reduction is used to obtain information about f\\ whereas, in

the latter case, it is used to obtain information about Q.

For example, in Section 10.4.2, we discuss the problems of matrix multiplication
and matrix squaring (i.e., multiplying the matrix with itself). Clearly, we can squarea
matrix with a matrix multiplication algorithm; therefore, the problem of matrix squaring

can be reduced to the problem of matrix multiplication. We show in Section 10.4.2 that

it is possible to multiply two matrices with the use of a matrix squaring algorithm;

therefore, matrix multiplication is reduced to matrix squaring. The purpose of the latter

reduction is to show that computing the square of a matrix cannot be done faster (by
more than a constant) than computing the product of two arbitrary matrices (under some

conditions that are discussed in Section 10.4.2)

We will see several examples of the use of reductions in this chapter. Finding a
reduction between two problems is useful even if it does not lead directly to new upper or
lower bounds on the complexity of the problem. The reduction helps us to understand

both problems. The reduction may be used to find new techniques for attacking the

problem or variations of it. For example, the reduction may be used to design a parallel

algorithm for the problem.

An effective way to use reductions is to define a generalproblem to which many
problems can be reduced. Finding such a general problem is not easy. This problem
should be generalenough to cover a wide variety of problems, but it must also be simple

enough to have an efficient solution. We discuss one such problem, called linear

programming, in Section 10.3.

We have already seen severalexamplesof reductions in this book \342\200\224for example,
the reduction of the transitive-closure problem to the all-pairs shortest-paths problem
(Section7.8). Reductions are important enough, however, to deserve a specialchapter.

Reductions are also the cornerstone of the next chapter.

10.2 Examples of Reductions 323

10.2 Examples of Reductions

In this section, we present four examples of using reductions to obtain efficient

algorithms.

10.2.1 A Simple String-Matching Problem

We start with a simple variation of the string-matching problem.

The Problem Let A=a0a{
\342\200\242\342\200\242\342\200\242

an_x and B=b0bi
\342\200\242\342\200\242\342\200\242

bn_x be

two strings of sizen. Determine whether B is a cyclic shift of A.

The problem is to determine whether there exists an index ky 0<k<n-\\, such that

ai=b(k+i)modn f\302\260raU '\302\2730</</?-l. We call this problem CSM (for cyclic string

matching), and we call the original string-matching problem (Section 6.7) SM. We can

solve CSM, for example, by modifying the Knuth-Morris-Pratt algorithm that was

described in Section 6.7. But there is a better way to arrive at a solution. The idea is to

pose CSM as a regular instanceof SM. In other words, we look for a certain text T and a

certain pattern P such that finding P in T is equivalent to finding whether B is a cyclic
shift of A. If we can do this, then a solution to SM involving T and P can be appliedto

solve CSM involving A and B. If one thinks about the problem in these terms it is easy to
see the solution: We define the text T as AA (namely, A concatenated to itself). Clearly,
B is a cyclic shift of A if and only if B is a substring of AA. Since we already know how

to solve SM in linear time, we have a linear-time algorithm for CSM.

10.2.2 Systems of Distinct Representatives
Let S i, S2, \342\200\242\342\200\242\342\200\242>Sk be a collection of sets. A system of distinct representatives (SDR) is
a set R = {r j, r2,..., rk } such that r, e 5,, for all /, 1</ <ky (notice that, since we require
R to be a set, the /*,s must be distinct). In other words, R includes exactly one
representative from each set. It is not always possible to find an SDR of a given
collection of sets. For example, an SDR for the collection of sets Sx = {1,2},S2 =
{2,3,4},53= {1,3},and S4 = {1,2,3} is {1,4,3,2}, but there is no SDR for the collection

of sets Sx = {1,2},S2= {2,3,4},53= {1,3},54=
{ 1,2,3}, and 55 = {2,3}.

The Problem Given a finite collection of finite sets, find an SDR
for the collection (any SDR will do), or determine that none exists.

There is a very elegant theorem, due to P. Hall, that gives necessary and sufficient
conditions for the existence of SDRs. Let card(S) be the number of elements of S.

324 Reductions

\342\226\241Hall's Theorem

Let S i, S2,..., S* be a collection of sets. This collectionhas an SDR if and

only if the following condition is satisfied:

card sf us,-u \342\200\242\342\200\242\342\200\242
us, >m

for every subset {\302\253i,/2\302\273\342\200\242\342\200\242\342\200\242\302\273'wlof {1, 2, 3,..., k). In other words, every

subcollection of m sets must contain altogether at least m distinct elements,

for every \\<m<k. \342\226\241

It is clear that the condition is necessary since, if there are m sets with altogether less than

m elements, then they cannot have m distinct representatives. That the condition is also

sufficient is harder to prove, and we leave it as an exercise.

Hall's theorem provides simple conditions but, unfortunately, they cannot be

directly checked efficiently. We will have to check all possible subcollections, and there

are 2k of them. We need another approach. The idea is to pose this problem as a

bipartite matching problem. Let G=(V, U, E) be a bipartite graph such that there is a
vertex v, in V for each set Sh and there is a vertex

Uj
in U for each possible element(i.e.,

for each element in the union of the sets). Each element is connectedto all the sets

containing it; that is, (v,, uj) e E if and only if
Uj

e 5,. It is now easy to see that an SDR
is simply a matching in G of size k. We can apply the algorithm discussed in Section

7.10 to solve this problem. Furthermore, the proof of Hall's theorem can be obtained

from the properties of bipartite matching and network flows.

10.2.3 A Reduction Involving Sequence Comparisons
Consider the sequence-comparison problem discussed in Section 6.8: A -ax a2 '''

an

and B=b{ b2
\342\200\242\342\200\242\342\226\240

bm are two strings of characters,and we want to edit A, character by

character, until it becomes equal to B. We allow three types of edit steps, each involving

one character \342\200\224insert, delete, and replace. The cost of each of these steps is given, and

our goal is to minimize the cost of the edit. The solution given in Section 6.8 was to
construct a table of size n by my where each entry corresponds to a partial edit. The //th

entry contains the cost of editing the first / characters of A into the first j characters of B.
The goal is thus to compute the \"bottom-right\" entry (nm) of the table. We showed that

each entry can be computed from only three other \"previous\" entries corresponding to
the three different edit steps.

Another way to look at this problem is by considering the table as a directedgraph.

Each entry in the table corresponds to a vertex in the graph. A vertex thus corresponds to

a partial edit. There is an edge (v, w) if the partial edit corresponding to w has one more

edit step than the partial edit corresponding to v. An example of such a graph is given in

Fig. 10.1, where A =caa and B =aba. The horizontal edges correspondto insertions, the

vertical edges to deletions, and the diagonal edges to replacements. For example, the

shaded path in Fig. 10.1 correspondsto a deletion of c\\ a match of a, an insertion of b,

and another match of a. In the basic problem, the cost of each edge is 1 except for

diagonal edges that correspond to equal characters (i.e., no replacementis necessary)

10.2 Examples of Reductions 325

0 a b a

Figure 10.1The graph corresponding to the sequences A -caa and B -aba.

whose cost is 0. The problem now becomes a regular single-source shortest-paths

problem. Each edge is associatedwith a cost (which is the cost of the corresponding edit

step), and we are looking for the shortest path from vertex [0,0] to vertex [\302\253,m]. We

have reduced the string-edit problem to the single-source sortest-pathsproblem.

Finding shortest paths in general is not easier than solving this problem directly.
Nevertheless, this reduction is useful. Consider, for example,the following variations of

the sequence-comparison problem. The cost of editing is not necessarily per character.

The cost of inserting a block of characters in the middle of another string may not be the

same as that of inserting the same number of characters,one by one, in different places.
The same may be true for deletions. In other words, instead of assigning a cost per
insertion, deletion, and replacement, we may want to assign a cost per blocks of

insertions, or deletions, regardless of their sizes. Alternately, we may want to assign a
cost of say, I+ck, for inserting a block of k characters, where / is the \"start-up\" cost,

and c is a cost per subsequent character. There are many other useful metrics. We can

model them more easily by using the shortest-path formulation than by modifying the

original problem. We can add edges anywhere we want and assign any cost to them,
without changing the problem.

10.2.4 Finding a Triangle in Undirected Graphs
There is a strong correlation between graphs and matrices. A graph G=(V, E) with n

vertices can be represented by its adjacency matrix A, which is an n xn matrix in which

the ijth entry is 1 if and only if (v,, v7) e E. If G is undirected, then A is symmetric. If G
is a weighted graph, then we define A as an n x n matrix such that the ijth entry is equal
to the weight of edge (v,, v;) or to 0 if this edge is not in the graph. There are other ways

to associate a matrix with a graph. For example, the incidence matrix of a graph
G =(V, E) with n vertices and m edges is an n xm matrix in which the ijth entry is 1 if
and only if the ith vertex is incident to the jth edge.

326 Reductions

The correlationgoesbeyond mere representation. Many properties of graphs can
be better understood by looking at the corresponding matrices. Similarly, many

properties
of matrices can be discovered by looking at the corresponding graphs. Not

surprisingly, many algorithmic problems can be resolved by making use of this analogy.

Here is one example.

The Problem Let G = (V, E) be a connected undirected graph with

n vertices and m edges. Design an algorithm to determine whether G

contains three vertices all connected to one another.

The straightforward solution is to check all subsets of three vertices. There are

(^) =n(n- 1)(a?-2)/6subsets of three vertices, and each subset can be checked in

constant time, so the running time of the resulting algorithm is 0(n3). It is possible to

designan algorithm whose running time is 0(mn) (Exercise7.118),which is better if the

graph is sparse. Can we do better than that? We proceed to show an algorithm, which is

asymptotically faster, but is far from being intuitive. The main purpose of this discussion

is to illustrate the relationships between graph algorithms and matrix algorithms.

Let A be the adjacency matrix of G. Since G is undirected, A is symmetric.
Denote by A2 the square of the matrix A, namely, A2 =A xA (the product is the usual
matrix product). We want to study the relationships between the entries of A2 and the

graph G. By definition of matrix multiplication,

A2[iJ]=idA[iAYA[kJ].

Therefore, A2[i, j]>0 if and only if there exists an index k such that both A [/, k] and

A [ky j] are 1. In terms of the graph, A
2

[/, j] > 0 if there exists a vertex ky such that k * /,
and k*j, and both / and j are connected to k. (We assume that the graph does not
contain self loops; hence, A [/, /]=0 for all /.) However, that means that there exists a
triangle involving / and j if and only if / is connected to j and A2[iy j] >0. Thus, there
exists a triangle in G if and only if there are i and j such that A [/, j] = 1,and A

2
[/', j] > 0.

The discussion above implies an algorithm. We first compute A2 and then check
the condition above for each pair / and j. It costs O (n2) to checkall pairs, so the running
time of the algorithm is dominated by the running time of matrix multiplication. We
have thus reduced the problem of finding a triangle in a graph to that of Boolean matrix

multiplication (more precisely to matrix squaring, but we will see in Section 10.4.2 that

these two problems are equivalent). We can now use Strassen's algorithm for matrix

multiplication and obtain an algorithm for finding a triangle whose running time is

0(az281). We can also use the algorithm in Section 9.5.3 for Boolean matrix

multiplication, and obtain a practical algorithm for finding a triangle with a running time
of 0(n3/(\\ogn)2). We have reduced this graph problem to Boolean matrix

multiplication, so, in general, the
complexity of this graph problem is 0(M), where M is

the complexity of Booleanmatrix multiplication.

10.3 Reductions Involving Linear Programming 327

10.3 Reductions Involving Linear Programming
The previous section included examples of reductionsfrom different areas of algorithm
design. We tried to map one problem to another so that we could use a known algorithm.

This section also presents reductions,but with a slightly different approach. Insteadof

looking for a candidate for a reduction whenever a new problem arises, we explore some

4'super-problems,\"to which many problems can be reduced. One such super-problem,

perhaps the most important one, is linear programming. There are efficient algorithms

for solving linear programming, although they are not simple. A thorough discussion of

linear programming is beyond the scope of this book. In this section, we only define
some variations of the problem, and show several examplesof reductions to it.

10.3.1 Introduction and Definitions

There are many problems that involve maximizing or minimizing a certain function

subject to certain criteria. For example,the network-flow problem involves maximizing
the flow function subject to the capacity constraints and to the conservation constraints.

Linear programming is a general formulation of such problems in cases where the

function is a linear function and the constraints can also be written using linear functions

in the following way. Let x = (x\\,x2, \342\200\242\342\200\242\342\200\242,-*\342\200\236)be a vector of variables. An objective

function is defined as a linear function involving the variables of x;
n

c(x) = ^CjXh where thee, s are constants. (10.1)

The goal of linear programming is to find the values of x that satisfy some constraints

(listed below) and maximize the value of the objective function. We shall see later that, if

necessary, it is easy to replace the maximization objective with a similar minimization

objective. First, we define a general form of linear programming with three types of

constraints, not all of which are needed for all problems. Later, we will show that the

general problem can itself be reduced to a problem with only two types of constraints.

Let a!, a2y...,ak be vectors of real numbers, each of length ny and let b i, b2,.., bk

be real numbers. The inequality constraints areas follows:

ax -x<bx

a2 'X <b2

(10.2)

ak-x<bk.

(Exceptfor jc, all other symbols are constants.)
The equality constraints are similar:

328 Reductions

ex -x=dx

e2 'X =d2

(10.3)

em'X=dmy

where 1 \\, e2> \342\200\242\342\200\242\342\200\242,em are also vectors of size ny and dx, d2, \342\200\242\342\200\242\342\200\242\302\273^m are real numbers.

We also usually add the following nonnegative constraints separately (even

though they can be represented as a specialcaseof the previous constraints).

Xj
> 0, for all j e />, (10.4)

where P is a given subset of {1, 2,..., n).
The linear programming problem can be formulated as follows: maximize the

function c(x) (10.1) subject to the inequality constraints (10.2), the equality constraints

(10.3), and the nonnegative constraints (10.4). Of course, not all constraints must be
used in all instances of the problem.

We first show that we can get rid of either the equality or the inequality constraints,

but not both, without a loss of generality. Let

erx=d; (10.5)

be an arbitrary equality constraint. We can substitute for (10.5) the following two

inequality constraints:

erx<dh (10.6)

and

-erx<-dh (10.7)

Alternately, we can replace the inequality constraints with equality constraints.
Given a general inequality constraint

arx<bh (10.8)

we can introduce a new variable, yh and replace (10.8) with the following:

ai-x+yi=bh and^>0. (10.9)

Such a variable is called a slack variable. A linear program with only equality

constraints is said to be in standard form.

In both of these cases, replacing one set of constraints with another set of

constraints may cause the number of constraints to increase. Therefore,it is not always a

good idea to perform these transformations.

We will not describe any algorithm for solving linear programming. We only note

here that the existing algorithms for linear programming are quite fast in practice, and

10.3 Reductions Involving Linear Programming 329

thus a reduction to linear programming is not just an exercise but a good way to solve the

problem.

10.3.2 Examples of Reductions to Linear Programming
Problems in real life are seldom given directly in linear programming formulation. One

has to introduce the right definitions to make the problem fit this formulation. Here is one
example.

The Network-Flow Problem
(This problem is discussed in detail in Section 7.11.) Let the variables A*i,jt2, ...,*\342\200\236

represent the values of the flow for all the edges (n is the number of edges here). The

objective function is the value of the total flow in the network

c(x)= \302\243*,,
ieS

where S is the set of edges leaving the source. The inequality constraints correspond to
the capacity constraints:

Xj
<

Cj for all /, 1< / < a?,

where c, is the capacity of edge /. The equality constraints correspond to the

conservation constraints:

\302\243x,r
-

\302\243Xj
= 0 for alive V-[s, t).

x, leaves v .v, enters v

Finally, the nonnegative constraints apply to all variables (i.e., the set f\\ as defined in

(10.4), is the whole set {1,2,..., /?}).We leave it to the reader to verify that the values of

x that maximize the objective function under these constraints correspond indeed to a
maximum flow.

A Static Routing Problem

Let G =(V, E) be an undirected graph representing a corrmunication network. Suppose

that each node v, in the network has a limited buffer space, and can receive only \302\243,

messages in one unit of time (we assume, for simplicity, that all messages have the same

size). Supposefurther that there is no limit on the number of messages that can be

transmitted through any link, and that each node has an infinite supply of messages. The

problem is to decide how many messages each edge should carry in one unit of time in

order to maximize the total number of messages on the network. (This is a static routing

problem, since we assume that all nodes always want to transmit; usually, transmission

needs are dynamically changing.) In a graph-theoretic formulation, the problem is to

assign weights to the edges such that the sum of the weights of all edges incident to node
v, is <Bh and the total sum of weights is maximized.

This graph-theoretic problem can be easily formulated as a linear programming

problem. We can associate a variable xf with each edge e,=(v, w), indicating the

number of messages passing through er The objective function is c(3c) =
\302\243\342\200\242*/\342\200\242The

330 Reductions

constraints are as follows:

\302\243 Xi<Bh forallveV,

e, is incident to v,

and

jc/>0, for all/.

The Philanthropist Problem

Suppose that there are n organizations that want to contributed money to k computer-
sciencedepartments. Each organization / has a limit of s, on its total contribution for the

year, as well as a limit a^
on the amount it is willing to contribute to department j (e.g.,

k

a,j may be 0 for some departments). In general s, is smaller than
\302\243fl,;; therefore, each

organization has to make somechoices.Furthermore, suppose that each department j has
a limit of

tj
on the total amount of money it can receive (this constraint may be

unrealistic, but it is interesting nevertheless). The goal is to design an algorithm that

maximizes the total contributions (with no regard to fairness).
This problem is a generalization of the matching problem introduced in Section

7.10. It can be solved by matching techniques, but it also has a simple linear

programming formulation. There are nk variables
xijy

1 </<\302\253, 1 <j<k, representing the
amount of money organization / is willing to contribute to department j. The objective

function is

c(x) =
^Xij.'j

The constraints are the following:

Xjj
<

a,j for all /, y,

/t

\302\243Xjj
<

Sj for all /,

and
n

2>,7<0 for all j.

In addition, of course, all variables must be nonnegative.

The Assignment Problem

Let's change the philanthropist problem slightly by insisting that each organization
donate money to only one department and that each department accepts money from only

one organization. In other words, we make it a standard matching problem, but with

weights. Each possible match has a dollar amount attached to it, and we want to find not

only a perfectmatching, but also one that maximizes the total donations. This problem is
a bipartite weighted matching problem, or, as it is usually called, an assignment
problem.

10.4 Reductions for Lower Bounds 331

The variables for this problem must be different from those of the previous
problem. We somehow have to capture the notion of a matching. We must insist that

exactly one edge is connectedto each node. We do so by assigning a variable jt/; for
each edge (/, j) with a value of 1 when the edge is selected, and of 0 otherwise. The

objective function becomes

c(x) = ^aijxij. (10.10)
U

The constraints are the following:
k

\302\243Xjj
= 1 for all /,

and

2>//
= l for all/

These constraints guarantee that no more than one edge is selected for each node. In

addition, all variables must be nonnegative.
This formulation has one major deficiency. The variablesrepresent a yes or no

choice, but their optimal values may be real numbers! We have to add constraints that

limit the values of the variables to either 0 or 1. This is generally very hard to do. Linear
programs whose variables must be integers are calledinteger linear programs. Solving

them involves integer programming. Many of the problems discussed in the previous

chapters can be naturally formulated as integer linear programming problems. However,
although linear programs can be efficiently solved, integer linear programs are usually

(but not always) very difficult. We discuss this issue in the next chapter. (The

assignment problem, by the way, can be solved efficiently by linear programming; see,
for example, Papadimitriou and Steiglitz [1982].)

10.4 Reductions for Lower Bounds

If we can show that an algorithm for problem A can be modified \342\200\224without adding too

much to the running time \342\200\224to solve problem \302\243,then a lower bound for problem B

applies to problem A as well. We present three examples of the use of reductions for
lowerbound proofs. Another example is presented in the next section, which deals with

common errors in the use of reductions.

10.4.1 A Lower Bound for Finding Simple Polygons
Consider the problem of connecting a set of points in the plane by a simple closed

polygon (see Section8.3). We have seen how to solve this problem using sorting. It is
also true that, under certain assumptions, this problem cannot be solved more quickly

than sorting. Therefore, the algorithm we presented for the simple closed polygon

problem cannot be improved without improving sorting. (When we say \"improvement,\"
we mean an improvement by more than a constant factor.)

332 Reductions

\342\226\241Theorem 10.1

It is possibleto sort in time 0(T + n), given a (black-box) algorithm for the

simple polygon problem that runs in time O(T).

Proof: Consider n points on a circle (see Fig. 10.2). The only way to connect

these points into a simple polygon is to connect each point to its neighbor on the circle.

Otherwise, if two points that are not neighbors are connected, the connecting line

separates the rest of the points into two groups that cannot be connected without

intersecting this line. Consider now an input xx,x2, ...,*\342\200\236to the sorting problem. If we

had a black box for the simple polygon problem, we could use it to sort in the following

way: The inputx {,x2,..., xn is first converted to y x, y2,..., yn, such that the >>/S are angles

in the range -180 to 180degrees,with the same relative order as the jc/S. The angles are

then converted to points all lying on the unit circle. The point corresponding to jc, is the

point on the circle with angle y(to some fixed line crossing the circle. These conversions

can be done in linear time. We can now use the black box for constructing a simple

polygon from a set of points in time O (T). As we mentioned, this simple polygon must

connect each point to its neighbor on the circle. But that means that we can scan the

points in order and find the sorted order of the original sequence in time O (T+n). \342\226\241

To obtain a lower bound for the simple polygon problem, we have to be careful

about the model of computation that we assume. The Q(n log n) lowerbound for sorting

that was proved in Section 6.4.6 assumed the decision-tree model. To use this lower

bound for the simple-polygon problem, we must use the same model. That is, we first

must assume that the black box that solves the simple polygon problem uses 0(T)
comparisons in a way that is consistent with the decision-tree model. The theorem must

include this assumption. We then have to show that the reduction is also consistent with

the decision-tree model. In this case, the reduction is valid since the proof of the lower
bound for sorting did not make any restrictions on the type of queries allowed in the

decision tree. Thus, a comparison involving the x or y coordinates of the point

\\/yi

Figure 10.2The conversion from numbers to points.

10.4 Reductionsfor Lower Bounds 333

corresponding to the angle y,- is still counted as one comparison in the decision tree. A

decision tree that solves the simple-polygon problem can be transformed into a decision

tree that solves sorting, without significant change in height.

\342\226\241Corollary 10.2

Under the decision-tree model, the problem of finding a simple polygon
connecting a set of given points in the plane requires Q(n log n)

comparisons in the worst case. \342\226\241

This reduction establishes the fact that sorting is really at the heart of solving the simple

polygon problem.

10.4.2 Simple Reductions Involving Matrices
In Section 9.5, we saw very nonintuitive ways to multiply two matrices. Symmetric

matrices (i.e., matrices in which the ijth entry is equal to the y/th entry) occur commonly
in practice. It is natural to ask whether it is easier to multiply symmetric matrices. It is

entirely possible that symmetry helps in finding better expressions for multiplying, say, 3

by 3 matrices. Thismay lead to a better asymptotic algorithm for multiplying symmetric
matrices. We now show that this is not the case. We prove that multiplying two

symmetric matrices is as hard, to within a constant factor, as is multiplying two arbitrary

matrices.

Let's denote the problem of computing the product of two arbitrary matrices by

ArbM, and that of computing the product of two symmetric matrices by SymM. It is

obvious that SymM is not harder than ArhM (since SymM is a specialcaseof ArbM).

Suppose now that we have an algorithm that solves SymM. We show that we can use this

algorithm as a black box to solve the more general problem ArbM. Let A and B be two

arbitrary matrices. Denote by AT the transpose of A (i.e., the matrix obtained from A by

exchanging every entry ij with the entry ji). We utilize the following expression,

involving a product of two In x In matrices, which is easy to verify:
\"

0 A

AT 0

\"0 Br

B 0
=

AB 0

0 ATBT

(The 0s stand for n xn matrices all of whoseentries are 0.) The reduction follows from

the fact that the two matrices on the left side are symmetric. We can find their product by

using the algorithm for the problem SymM. But the upper-left side of their product

contains exactly the product AB. Hence,we can solve ArbM by using the algorithm for

SymM on two matrices of twice the size. Thisleadsto the following theorem.

\342\226\241Theorem 10.3

// there is an algorithm that computes the product of two symmetric nxn

real matrices in time 0(T(n)), such that T(2n) = 0(T(n)), then there is an

algorithm to compute the product of two arbitrary nxn real matrices in

timeO(J(n) + n2).

334 Reductions

Proof: Given two arbitrary nxn matrices, we use the assumed algorithm to

compute their product as shown in (10.11). It takes 0(n2) steps to compute AT and BT

and to construct the two symmetric matrices, and T(2n) to multiply them. The theorem

follows. \342\226\241

The assumption that T(2n) = O(T(n)) is not overly restrictive; for example, any

polynomial
satisfies it. This reduction is good only for establishing a lowerbound. We

do not suggest using it in practice to multiply. Theorem 10.3 tells us that it is impossible

to utilize the symmetric properties of a matrix for a matrix multiplication algorithm that

is faster asymptotically. Here is another similar reduction.

\342\226\241Theorem 10.4

If there is an algorithm that computes the square ofannxn real matrix in

time 0(T(n)), such that T(2n) = 0(T(n)), then there is an algorithm to

compute the product of two arbitrary nxn real matrices in time

0(T(n) + n2).

Proof: As in the proof of Theorem 10.3,we need to find a matrix whose square

contains enough information to obtain the product of two arbitrary matrices. This is done

by the following expression:

0 A

B 0

2
~AB 0\"

0 BA

The theorem followsimmediately. \342\226\241

10.5 Common Errors

Reductionsshould be used with care. The following are examples of common errors one
can make when attempting a reduction. The most common error is to apply the reduction

in the wrong order. This mistake is more prevalent in reductions for lower bounds. The
reduction should establish in this case that one problem P is at least as hard as another

problem Q whose complexity we already know. We need to start with an arbitrary
instance of Q and to show that it can be solved with a black-box solution for P.
Consider,for example, the following attempt to reduce the problem of data compression
via Huffman's encoding(Section6.6)to the problem of sorting. The goal is to prove a

lower bound of Q(n log a?) for the complexity of Huffman's encoding.

The main observation is that, if the frequencies of the characters are wide apart,
then the tree becomes so unbalanced that it can be used for sorting (see Fig. 10.3). In that

case, the characters will appear in the tree in decreasing order of frequencies (with the

highest-frequency character at the top of the tree). But that means that Huffman's

encoding can be used to sort these frequencies. Therefore, building the tree is at least as
hard as sorting, and a lower bound of \302\243l(nlog a?) seems to be implied.

The error in this argument comes from the fact that we started with a special case

of the sorting problem. We considered only those frequencies that that are wide apart.

10.5 CommonErrors 335

Figure10.3 A Huffman tree for frequencies that are wide apart.

To prove a lower bound for sorting, we must start with an arbitrary instance of sorting.

After all, the proof should show that Huffman's encoding can be used to perform any

sorting. We must start with arbitrary numbers and show that these numbers can be sorted

by the Huffman's encoding algorithm. We will discuss this error further in the next

chapter.
As it turns out, we can modify the arguments above and save the proof. The trick

is to spend some time changing the input of the sorting problem (which must be

arbitrary) so that it conform with our goals. Let the input be a sequence of distinct

positive integers X = (jcj, jc2,...,jc\342\200\236).We can assume that the numbers are distinct,

because the lower bound for sorting applies to distinct numbers as well (in fact, the lower

bound was proved for distinct integers). The Huffman's encoding corresponding to

frequencies that are equal to the numbers in X can be any general tree; thus, the

arguments above cannot be used. However, we can replaceeach jt, with, say, y; = 2X'.

Since, for any positive integer m, we have 2m >
\302\2432', the Huffman tree will have the

i <m

form shown in Fig. 10.3. So, it is possible to use the Huffman's encoding algorithm to

sort the y,-s. We now must make sure that the extra computation involved in the

reduction (computing the yp from the jt,s, in this case) is not prohibitive. Computing

powers can be quite expensive, but that is irrelevant in this case, because the lower bound

for sorting involves only comparisons. We made no assumptions about the number of

other operations (see again Section 6.4.6). Therefore, we established that building the

Huffman's encoding requires \302\243l(nlogn) comparisons in the worst case under the

decision-tree model. (It may be possible to build the tree more quickly with an algorithm

that does not conform to the decision-tree model.)
We also have to be careful that the reduction does not impose significant

inefficiency. Consider the knapsack problem discussed in Section 5.11, and the
extension to it addressed in Exercise 5.17. (The extensionwas to solve the knapsack
problem where each item can be included in the knapsack an unbounded number of
times.) A straightforward reduction of the extended problem to the original problem (in
which each item appears at most once) is the following. Let the size of the knapsack be

336 Reductions

K. An item of size Sj cannot be included more than K/s,- times. So, we can replaceeach

item in the extended problem with [K/Sj] items of the same size in the original problem.

Although this reduction is correct, it is not very efficient, since we have increasedthe size

of the problem considerably. Thisproblem can be solved more efficiently.

10.6 Summary

It is always a good idea to look for similarities between problems. By studying
differences and similarities between two problems, one usually gains insight into both

problems. Given a new problem, the first thought should be (in almost all cases), \"Is this

problem similar to a known problem?\" Sometimes, the similarities between two

problems become apparent only after complicated reductions are exhibited. The
reductions betweenmatrix and graph algorithms are especially interesting. We have seen

several examples of reductions in this chapter, and we will see more examples in the next

chapter.
Linear and integer programming were described too briefly in this chapter. They

are very important and should be studied in detail by anyone interested in algorithms.

Bibliographic Notes and Further Reading

Hall'sTheorem is due to P. Hall [1935]. A detailed discussion of Hall's theorem can be
found in almost any combinatorics book; see, for example, Brualdi [1977] or M. Hall
[1986]. The relationships between finding small cycles \342\200\224in particular, triangles \342\200\224and

matrix multiplications are discussed by Itai and Rodeh [1978]. The two reductions

involving matrices (Section 10.4.2) are due to Munro [1971]. Similar, but more

complicated, reductions can be obtained betweenBoolean matrix multiplication and the

transitive-closure problem (Fischer and Meyer [1971]), and between matrix

multiplication and matrix inversion (Winograd [1970b]).
Linear programming was first solved by Dantzig in 1947 (see Dantzig [1963] for

detailed discussion and numerous examples). Dantzig's algorithm, called the simplex

algorithm, has been in extensive use since the 1950s. It is fast and practical.
Nevertheless, Klee and Minty [1972] proved that the worst-case running time of the

simplex algorithm is exponential. Khachian [1979] was the first to exhibit an algorithm
for linear programming whose running time is polynomial in the worst case. Khachian's

algorithm, which is known also as the ellipsoid algorithm, works very poorly in practice.
However, the ellipsoid algorithm has other applications (see, for example, Grotschel,

Lovasz, and Schrijver [1981]). Another polynomial-time algorithm for linear

programming was introduced by Karmarkar [1984]. Karmarkar's algorithm received a

lot of attention, and triggered extensive research, because of its potential for being

superior to the simplex algorithm in certain cases. For more on linear and integer

programming, see, for example, Papadimitriou and Steiglitz [1982], and Schrijver [1986].
A solution to Exercise 10.7 can be found in van Leeuwen [1986]. Exercise 10.8is

from Even [1979]. Exercise 10.11 is from Maggs and Plotkin [1988]. Exercise 10.22 is
from Aho, Hopcroft, and Ullman [1974].

Exercises 337

Exercises

10.1 Prove Hall's theorem by using the techniques developedin the sections on network flows

and bipartite matching.

10.2 Solve the following variation of the sequence-comparison problem. The input is two

sequences A and \302\243,and the goal is to edit B so that it becomes equal to A. The edit steps are
the usual ones: insert, delete and replace (or match). The costof a step, however, depends

on the position in the sequence of the corresponding characters. The cost of inserting a

character at the z'th position in B is d, where c is a constant, and the cost of deleting the yth
character of B is cj. The cost of replacing a character with another character is still 1. The

algorithm should find the minimum-cost edit sequence.

10.3 Find a reduction (in some direction) between the problem of finding maximal points in the

plane (Exercise 8.18) and that of marking intervals on the line for containment (Exercise

8.26).

10.4 Department D at University X administers a qualifying examination for its Ph.D. students.

The examination consists of Q questions divided into n areas such that there are qt questions
n

in area / (\302\243<7,
= Q). There are k professors P \\,P2 Pk (these are not their real names)

/=i

who write questions for the examination. Suppose that each professor />, has overall /?,
k

questions that can be used, and that \302\243/?,
> Q. A committee is responsible for selecting the

/=i

questions for the examination from the questions supplied by the professors. We assume
that all the questions are unique, and that they are all good. Assume, furthermore, that each

professor insists that no more than r (where r is a constant independent of the professor) of

his or her questions will be used (so that he or she can use the remaining questions in later

years). Design an efficient algorithm to selectthe questions for the examination under these

constraints, or to determine that it is impossible to do so.

10.5 Consider the following variation of the bipartite matching problem. Suppose that there are

In students who want to be admitted to n universities. Consider the bipartite graph formed

by having the students and the universities as the two sets of vertices and including an edge

between a student and a university if the university agrees to admit that student. Find an

algorithm to maximize the number of students that are admitted, such that no more than two

students are admitted to each university (there are no preferences). Solve the problem by

exhibiting a reduction to the regular bipartite matching problem.

10.6 Hereis another variation of the bipartite matching problem. Suppose now that there are n

training courses and n trainees. As usual, we consider the graph in which the courses and
the trainees are the vertices and there is an edge between a trainee and a course if the trainee

is qualified for the course. Each course can have at most two trainees, and each trainee can
take at most two courses. Design an algorithm (by a reduction to a known problem) to

maximize the registration. (Again, no preferences are given, and there are no scheduling
problems.)

10.7 Let G =(V, E) be an undirected graph such that each vertex v is associated with an integer

338 Reductions

b (v)<degree(v). A ^-matching in G is a set of edgesof E such that each vertex v has no

more than b(v) edges incident to it. (If b(v) = 1 for all v, then this is exactly the regular

matching problem.) A maximum ^-matching is one with maximum number of edges.
Reduce the problem of finding a maximum ^-matching to that of finding a maximum

matching.

10.8 Let G=(V, E) be an acyclic directed graph. Design an algorithm to find a minimum
number of vertex-disjoint paths that include all vertices of G.

10.9 Let G = (V, E) be a network with source s and sink t. Assume that G is planar, namely, it

can be laid out in the plane such that no edges intersect. Assume furthermore that such a

layout is given to you (in a reasonable representation), and that both the source and the sink

lie on the outside of the layout. Design an algorithm to find a minimum-cost cut in G

without using the maximum-flow algorithm.

10.10 Exercise 8.40 can be solved by reducing the problem to that of minimum-weight matching.
(In this case, the reduction leads to an inferior algorithm since minimum-weight matching is

harder than a direct solution.) Show the reduction and prove its validity (i.e., prove that the

corresponding minimum-weight matching satisfies the conditions of the problem).

10.11 Reduce the problem of finding an MCST in an undirected graph to a bottleneck shortest-

path problem. (A bottleneck problem is a minimization problem in which we try to

minimize the maximum value, rather than the sum of values; so, a bottleneck shortest-path
problem involves paths whose maximal-cost edgesare minimized, rather than the cost of
the whole path.) As a result, show that the MCST problem can be solved by shortest-paths

techniques. (Although shortest-paths algorithms are usually more expensive than MCST

algorithms, the reduction can be helpful for parallel algorithms.)

10.12 The input is a directed graph G =(V, E) with a distinguished vertex v, such that there is a

positive cost c(w) associatedwith each vertex w. The cost of a directed path
*

v, x], x2, .., jc*, u is defined as \302\243<:(*,). The costs of the two endpoints v and u are ignored,
i=i

so if (v, u) e \302\243,the cost of getting from v to u is 0. Design an efficient algorithm to find the

minimal-cost paths from v to all other vertices. (This exerciseis identical to Exercise 7.47,
but here we insist on a solution by reduction.)

10.13 An even more general formulation of linear programming than the one given in Section 10.3

allows two types of inequality constraints: The first type imposes the \"<\" relations, and the

second type imposes the \">\" relations (of course,with different coefficients). Show that

this formulation can be reduced to the one in Section 10.3.

10.14 Suppose that you have a linear programming algorithm that can only handle nonnegative
variables. (Recall that in our definition of linear programming not all variables were

restricted to be nonnegative.) Show how to reduce the general problem to this one.

10-15 Show, by exhibiting a bad example, that constraints of the type ax*b should not be
allowed in a linear programming formulation.

10.16 Suppose that there are n people in a scientific conference whose goal is to maximize

exchange of ideas. Not everyone can exchange ideas with everyone else. We represent the

conference by an undirected graph, with the vertices associatedwith the people such that / is

connected to j if /' can exchange ideas with j. (One can also define a directed version.)

Exercises 339

Supposefurther that the number of hours for talking is limited. For simplicity, we assume
that there is one global bound of h hours. That is, every person can spend at most h hours

talking. We are not concerned here with scheduling. We assume that time is also spent on

other activities, so there is sufficient flexibility to arrange any possible meeting. For

example, suppose that there are three people, each \"connected\" to the others, and let h = 1.

If two of them talk to each other for the whole hour, then there is only 1 hour of

conversation. If, on the other hand, each one talks to each other for half an hour, then

everyone exhausts his or her time and there is 1.5 hours of conversation. We want to

maximize the total conversation time. Formulate this problem in terms of linear

programming, or reduce it to another problem that we have already discussed.

10.17 Consideragain the philanthropist problem of Section 10.3.2. Supposethat there are no

limits on the amount of money each department is willing to accept. Solve this variation of

the problem.

10.18 Considerthe problem of arranging n players in an order consistent with the results of a

round-robin competition (Exercise7.104). Prove a lower bound of Q(/?logA7) for this

problem by reducing sorting to it. Show that a reduction to sorting can also be helpful in

finding a good algorithm for this problem.

10.19 Let S be a set of n points that are vertices of an arbitrary convex polygon. The points are

given in an arbitrary order. Prove that it takes Q(a7 log a) time to arrange the points into the

standard polygon representation (i.e., in consecutive order).

10.20 We have seen in Section 9.5.2that 7 multiplications (instead of the nominal 8) are sufficient

to compute the product of two arbitrary 2x2 matrices, and that this fact leads to a better

matrix multiplication algorithm. It is possible to compute the square of an 2x2 real matrix

with only 5 multiplications (Exercise 9.21). Discuss why this observation does not
contradict Theorem 10.4.

10.21 A lower triangular matrix is a square matrix (fl;/) such that, if j > /, then a,, =0 (in other

words, all nonzero entries are on or below the main diagonal). An upper triangular

matrix is defined similarly, except that the nonzero entries are on or above the main

diagonal. Prove that, if there exists an algorithm to multiply an nxn lower triangular
matrix by an n xn upper triangular matrix, whose running time is O(T(n)), then there exists

an algorithm to multiply two arbitrary nxn matrices whose running time is 0(T(n) + n2).
You can assume that T(cn) =0(T(n)) for any constant c.

10.22 Prove that if there exists an algorithm to multiply two nxn lower triangular matrices whose

running time is 0(T(n)), then there exists an algorithm to multiply two arbitrary nxn

matrices whose running time is 0(T(n) + n2). You can assume that T(cn) =0(T(n)) for

any constant c.

10.23 The transitive closure A
*

of an n x n matrix A is defined as follows:

A* =1 +A +A2+ \342\226\240\342\226\240\342\226\240+A\"~\\

where / is the n x n identity matrix.

a. Prove that, if A is a Boolean matrix corresponding to an adjacency matrix of a graph,
then A* corresponds to the adjacency matrix of the transitive closure of the graph.
(Assume that multiplication is performed according to the Boolean rules.)

340 Reductions

b. Prove that, if the transitive closure can be computed in time T(n), where T(n) is a
polynomial in n, then matrix multiplication can be computed in time 0(T(n)). You can
assume that T(cn) = 0(T(n)) for any constant c.

10.24 Let S bea set of n points in the plane. The points define a weighted undirected graph in the

following way. The graph is the complete graph (i.e., every two vertices are connected),
and the weight of an edge is equal to the Euclidean distance between the two corresponding
points. Show a lower bound of Cl(n log/?) for the running time of an MCST algorithm for
this case.

10.25 Let S be a set of n points in the plane. The diameter of S is the maximal distance between

two points in S. Denote the problem of finding the diameter by DM. Let A and B be two

sets of n real numbers. Denote the problem of deciding whether A and B are disjoint by DJ.

Prove that, if there exists an algorithm for DM that uses 0(T(n)) arithmetic operations (you

can assume any reasonable operations), then there exists an algorithm for DJ that uses

0(T(n) + n) operations.

f1''\\\342\226\240^k-)-:-^.-:-l^.-.-.-.-.-.-.-.^ '-^.-:-l->:^l^J;- -r-: -r-\342\200\242-\342\226\240-'-:-r-r:- - -: -V-CC->\\-V^

CHAPTER 11

NP-COMPLETENESS

Give me where to stand, and I will move the earth.
Archimedes (287-212 B.C.)

11.1 Introduction

This chapter is quite different from other chapters. In the previous chapters, we mainly

studied techniques for solving algorithmic problems and applied them to specific

problems. It would be nice if all problems had elegant efficient algorithms that can be
discoveredby a small set of techniques. But life is rarely that simple. There are still

many problems that do not seem to succumb to the techniques that we have learned so
far. It is possible that we just have not tried hard enough, but we strongly suspect that

there are problemsthat have no good general efficient solutions. In this chapter, we

describe techniques for identifying some of these problems.
The running times of most of the algorithms that we have seen so far were bounded

by some polynomial in the size of the input. We call such algorithms efficient algorithms,

and call the corresponding problems tractable problems.In other words, we say that an

algorithm is efficient if its running time is 0{P{n)\\ where P(n) is a polynomial in the

size of the input n. Recall that the size of the input is defined as the number of bits

required to represent that input. The class of all problems that can be solved by efficient

algorithms is denoted by P (for polynomial time). This may seem to be a strange

definition. Surely, algorithms that run in time O (nl0) are not efficient by any standard

(for that matter, algorithms that run in time 107a? are not efficient, even though they are

linear). Nevertheless, this definition is valid for two reasons. First, it allows the

development of the theory, which we are about to explore; second,and most important,

it simply works in practice. It turns out that the vast majority of the tractable problems

have practical solutions (of course, some are better than others). In other words, the

342 NP-Completeness

running times of polynomial algorithms that we encounter in practice are mostly small-

degree polynomials (seldom above quadratic). The opposite is also usually true:

Algorithms whose running times are larger than any polynomial are not usually practical

for large inputs.

There are many problems for which no polynomial-time algorithm is known.

Some of these problems may be solved by efficient algorithms that are yet to be

discovered. We strongly suspect, however, that many problems cannot be solved
efficiently. We would like to be able to identify such problems, so that we do not have to

spend time searching for a nonexistent algorithm. In this chapter, we discuss how to deal

with problems that are not known to be in P. In particular, we discuss one specialclass
of problems, called NP-complete problems. We can group these problems in one class
becausethey are all equivalent in a strong sense \342\200\224there exists an efficient algorithm for

any one NP-complete problem if and only if there exist efficient algorithms for all NP-
complete problems. There is a general belief that there is no efficient algorithm for any

NP-complete problem, but no proof of that belief is known. Even if there were efficient

algorithms for NP-complete problems, they would surely be very complicated, since they

have eluded researchers for many years. So far, hundreds (maybe even thousands) of

problems have been found to be NP-complete, which is why this subject is so important.

The chapter consists of two parts. First, we define the class of NP-complete

problems and show how to prove that a problem belongs to the class. Then, we present
several techniques and examples for solving NP-complete problems approximately.
These solutions may not be optimal, and they may not always work, but they are better

than nothing.

11.2 Polynomial-Time Reductions

We will restrict ourselves in this section to decision problems; that is, we consider only
those problemswhose answer is either yes or no. This restriction makes the discussion
and the theory simpler. Most problems can be easily converted to decision problems.
For example,instead of looking for the size of the maximum matching in a given graph,

we can ask whether there exists a matching of size > k. If we know how to solve the
decision problem,we can usually solve the original problem

\342\200\224for example, by binary
search.

A decision problem can be viewed as a language-recognition problem. Let U be
the set of all possible inputs to the decision problem. Let L \302\243U be the set of all inputs

for which the answer to the problem is yes. We call L the language corresponding to the

problem, and we use the terms problem and language interchangeably. The decision

problem is to recognizewhether or not a given input belongs to L. We now introduce the

notion of polynomial-time reduction between languages, which is the main tool we use in

this chapter.

Definition: Let L, and L2 be two languages from the input spaces U \\ and

U2. We say that Lx is polynomially reducible to L2 if there exists a

polynomial-time algorithm that converts each input U\\e U{ to another

11.2 Polynomial-Time Reductions 343

input u2e U2 such that u^e L{ if and only if u2e L2. The algorithm is

polynomial in the size of the input u x. We assume that the notion of size is

well defined in the input spaces U x and \302\243/2,so, in particular, the size of u2

is also polynomial in the size of u x.

The algorithm mentioned in the definition converts one problem to another. If we have
an algorithm for L2, then we can composethe two algorithms to produce an algorithm for

L\\. Denote the conversion algorithm by AC, and denote the algorithm for L2 by AL2.

Given an arbitrary input uxe U\\ we can use AC to convert u x to an input u2 e U2\\ we

then use AL2 to determine whether u2 belongs to L2, which will tell us whether ux

belongs to L x. In particular, we have the following theorem.

\342\226\241Theorem 11.1

If L\\ is polynomially reducible to L2 and there is a polynomial-time

algorithm for L2, then there is a polynomial time algorithm for L x.

Proof: The proof follows from the preceding discussion. \342\226\241

The notion of reducibility is not symmetric; the fact that L{ is polynomially

reducible to L2 does not imply that L2 is polynomially reducible to L \\. This asymmetry

comes from the fact that the definition of reducibility requires that any input of L { can be

converted to an equivalent input of L2, but not vice versa. It is possible, and in many

cases likely, that the inputs of L2 involved in the reduction are only a small fraction of all

possible inputs for L2. Thus, if L \\ is polynomially reducible to L2, then we regard L2 to

be the harder problem.

Two languages Lx and L2 are polynomially equivalent, or simply equivalent, if

each is polynomially reducible to the other. In particular, all nontrivial tractable

problems are equivalent because all have polynomial-time algorithms (we leave the

precise proof of this fact as an exercise). The relation of \"polynomial reducibility\" is

transitive, as is shown in the next theorem.

\342\226\241Theorem 11.2

If L\\ is polynomially reducible to L2 and L2 is polynomially reducible to

L3, then L \\ is polynomially reducible to L3.

Proof: We can compose the two conversion algorithms to form a conversion

algorithm from L x to L3. An input u { in L { will be converted first to an input u2 in L2
and then to an input u3 in L3. Since we use polynomial reductions and a composition of

two polynomial functions is still a polynomial function, the result is a polynomial-time
conversionalgorithm. (This is one of the reasons we chose to use polynomials.) \342\226\241

The essence of the method we presentin this chapter is to look for equivalent problems

when an efficient algorithm cannot be found. When we are given a problem that we
cannot solve efficiently, we try to find whether it is equivalent to other problems that are

known to be hard. The class of NP-complete problems encompasses hundreds of such
equivalent problems.

344 NP-Completeness

11.3 Nondeterminism and Cooks Theorem

The theory of NP-completeness started with a remarkable theorem of Cook [1971].
Before we state the theorem, we must explain several notions. We will try to keep the

discussion intuitive and will skip several technical details. An excellent reference book

for this area is Garey and Johnson [1979]. The theory of NP-completeness is part of a

large theory, called computational complexity, most of which is beyond the scope of

this book. We limit the discussion to some parts that help us to use the theory.

We have not gone into great detail describing in precise mathematical terms what

an algorithm is. This is not important for describing practical algorithms, as long as we

use reasonable steps that are supported by all computers (e.g., additions, comparisons,
memory accesses). A precise definition of an algorithm is very important, however, for

proving lower bounds. (We have used decisiontrees to prove lower bounds in Chapter 6,

but this is a very restricted model.) The most fundamental model of computation is a

Turing machine. Another commonly used model is that of a random access machine.

Fortunately, these and other reasonable models are equivalent for our purposes, because

we can transform an algorithm from one model to another without changing the running
time by more than a polynomial factor. Cook's theorem, for example, was proved with

the use of Turing machines, but it is valid for other models as well. We will not use any

specific model here, since we will not go into any details that require one.
We first need to discuss the notion of nondeterminism. This notion is rather non-

intuitive, which leads many people to think that NP-completeness is something of a
mystery. One should think of a nondeterministic algorithm as an abstract notion, and not

as a realistic goal. Nondeterminism is more important to the development of the theory
and the explanation of the existence of this class than it is to the techniques for using the

theory. A nondeterministic algorithm has, in addition to all the regular operations of a
deterministic algorithm, a very powerful primitive, which we will call nd-choice. As the

name suggests, the nd-choice primitive is used to handle choices, but it does so in an

unusual way. This primitive is associated with a fixed number of choices, such that, for

each choice, the algorithm follows a different computation path. We can assume,

without loss of generality, that the number of choices is always two. Let L be a language
that we want to recognize. Given an input jc, a nondeterministic algorithm performs
regular deterministic steps interleaved with uses of the nd-choice primitive, and, at the

end, it decides whether or not to accept x. The key difference between deterministic and

nondeterministic algorithms lies in the way they recognize a language.
We say that the nondeterministic algorithm recognizes a language L if the

following condition is satisfied:

Given an input x, it is possible to convert each nd-choiceencountered

during the execution of the algorithm into a real choice such that the

outcome of the algorithm will be to accept jc, if and only if x e L.

In other words, the algorithm must provide at least one possibleway for inputs belonging
to L to arrive at an accept outcome, and it must not provide any way for inputs not

belonging to L to arrive at an accept outcome. Notice the asymmetry in the definition.

11.3 Nondeterminismand Cook'sTheorem 345

An input xe L may have many paths to a reject outcome. We require only that the

algorithm has at least one \"good\" sequence of choicesfor every xe L. On the other

hand, for every input x 4 L, we must reach a reject outcome, no matter which choices we

substitute for the nd-choices. The nd-choice primitive is sometimes calledguessingfor

obvious reasons. The running time for an input x e L is the length of a minimum
execution sequence that leads to an accept outcome. The running time of a

nondeterministic algorithm refers to worst-case running time for inputs xe L (inputs not

belonging to L are ignored).
Let's see an example of a nondeterministic algorithm. Consider the problem of

deciding whether a given graph G=(V, E) has a perfectmatching. The following is a

nondeterministic algorithm for this problem. We maintain a set M of edges, which is

initially empty. We examine all the edges of G, one edge e at a time, and use an

nd-choice corresponding to whether or not we include e in M. When we are done

examining all the edges, we check to see whether M is a perfect matching. The checking
can be done in linear time, since we have to determine only whether M contains exactly

| V 112 edges and whether each vertex is incident to exactly one edge from M. The output
of the algorithm is yes if M is a perfectmatching, and no otherwise. This is a correct
nondeterministic algorithm for perfect matching because (1) if a perfect matching exists,
then there is a sequence of choicesthat will put it in M; and (2) the algorithm outputs yes

only if the existence of a perfect matching was proved (because of the checking). We

will see more examplesof nondeterministic algorithms in the next section.

Nondeterministic algorithms are very powerful, but their power is not unlimited.

Not all problems can be solved efficiently by a nondeterministic algorithm. For example,
supposethat the problem is to determine whether the maximum matching in a given

graph is of size exactly k. We can use the nondeterministic matching algorithm to find a

matching of size k if it exists, but we cannot easily determine (evennondeterministically)

that there is no matching of a larger size.

The class of problems for which there exists a nondeterministic algorithm whose

running time is a polynomial in the size of the input is called NP. It seems reasonable to

believe that nondeterministic algorithms are much more powerful than deterministic

algorithms. But are they? One way to prove that they are is to exhibit an NP problem
that is not in P. Nobody has been able to do that yet. In contrast, if we want to prove that

the two classes are equal (i.e., P = NP), then we have to show that every problem that

belongs to NP can be solved by a polynomial-time deterministic algorithm. Nobody has

proved that either (and few believe it to be true). The problem of determining the

relation between P and NP is known as the P = NP problem.
We now define two classes, which not only contain numerous important problems

(all equivalent to one another) that are not known to be in P, but also contain the hardest

problems in NP.

Definition: A problem X is called an NP-hard problem if every problem in

NP is polynomially reducible to X.

Definition: A problem X is called an NP-complete problem if (1) X

belongs to NP, and (2) X is NP-hard.

346 NP-Completeness

The definition of NP-hardness implies that, if any NP-hard problem is ever proved to

belong to P, then that proof would imply that P = NP.
Cook[1971]proved that there exist NP-complete problems; in particular, he

exhibited one such problem, which we will describe shortly. Once we have found an

NP-complete problem, proving that other problems are also NP-complete becomes
easier.Given a new problem Y, it is sufficient to prove that Cook's problem, or any other

NP-complete problem, is polynomially reducible to Y. This follows from the next

lemma.

\342\226\241Lemma 11.3

A problem X is an NP-complete problem if(J)X belongsto NP, and (2') Y

is polynomially reducible to X,for someproblem Y that is NP-complete.

Proof: By condition 2 in the definition of NP-completeness, every problem in NP

is polynomially reducible to Y. But since Y is polynomially reducible to X and

reducibility is a transitive relation, every problem in NP is polynomially reducible to X as

well. \342\226\241

It is much easier to prove that two problems are polynomially reducible than it is to prove
condition 2 directly. Thus, Cook has found the anchor for the whole theory. And there is

more good news. As we find more and more problemsthat are NP-complete we have
more choicesfor proving condition 2'. Shortly after Cook's result became known, Karp

[1972] found 24 important problems that he proved to be NP-complete. Since that time,

hundreds of problems(maybe even thousands, depending on how we count variations of
the same problem) have been discovered to be NP-complete. In the next section, we

present five examples of NP-complete problems with their NP-completeness proof. We
also list several other NP-complete problems without proof. The most difficult part of
such proofsis usually (but not always) to verify condition 2 (or 2').

We now describe the problem that Cook proved to be NP-complete, and mention

the idea of the proof. The problem is known as satisfiability (SAT). Let 5 be a Boolean

expression in conjunctive normal form (CNF). That is, S is the product (and) of

several sums (or). For example,S=
(x+y +z) -(x+y+z)- (x +y +z), where addition and

multiplication correspond to the and and or Boolean operations, and each variable is

either 0 (false)or 1 (true). (Any Boolean expression can be transformed into CNF.) A

Boolean expression is said to be satisfiable if there exists an assignment of Os and Is to
its variables such that the value of the expression is 1. The SAT problem is to determine
whether a given expression is satisfiable (without necessarily finding a satisfying
assignment). For example, the expression S is satisfiable, since the assignment *=1,

y=\\, and z=0 satisfy it. We call an assignment of Os and Is to the variables of a
Boolean expression a truth assignment.

The SATproblem is in NP because we can guessa truth assignment and check that

it satisfies the expression in polynomial time. The idea behind the proof that SAT is NP-
hard is that a Turing machine (even a nondeterministic one) and all of its operations on a

given input can be describedby a Boolean expression. By
*

'described\" we mean that the

expression will be satisfiable if and
only if the Turing machine will terminate at an

11.4 Examples of NP-CompletenessProofs 347

accepting state for the given input. This is not easy to do, and such an expression

becomes quite large and complicated, yet its size is no more than a polynomial in the
number of steps the Turing machine makes. Therefore, any NP algorithm can be
described by an instance of a SAT problem.

\342\226\241Cook's theorem:

The SAT problem is NP-complete. \342\226\241

11.4 Examples of NP-Completeness Proofs

In this section, we prove that the following five problems are NP-complete:vertex cover,

dominating set, 3SAT, 3-coloring, and clique. Each of these problems is described in

more detail below. The techniques we use for proving NP-completeness are typical, and

they are summarized at the end of the section. To prove NP-completeness of a new

problem, we must first prove that the problem belongs to NP, which is usually (but not

always!) easy, then reduce a known NP-complete problem to our problem in polynomial

time. The reduction order used for the five problems in this section is illustrated in Fig.

11.1. To make them easier to understand, we present the proofs in order of difficulty
rather than the tree order. This order is indicated in Fig. 11.1 by the numbers of the

edges.

Figure 11.1 The order of NP-completeness proofs in the text.

348 NP-Completeness

11.4.1 Vertex Cover

Let G =(V, E) be an undirected graph. A vertex cover of G is a set of vertices such that

every edge in G is incident to at least one of these vertices.

The Problem Given an undirected graph G =(V, E) and an integer

k, determine whether G has a vertex cover containing
< k vertices.

\342\226\241Theorem 11.4

The vertex-coverproblemisNP-complete.

Proof: The vertex-cover problem belongs to NP, since we can guess a cover of
size<k and check it easily in polynomial time. To prove that the vertex-cover problem is

NP-complete we have to reduce an NP-complete problem to it. We choose the clique

problem, which is described next (the proof that the clique problem is NP-completewill

be given in Section 11.4.4). Given an undirected graph G =(V, \302\243),a clique C in G is a

subgraph of G such that all vertices in C are connected to all other vertices in C. In other

words, a clique is a complete subgraph. The clique problem is to determine, given a

graph G and an integer k, whether G contains a cliqueof size > k. We have to transform

an arbitrary instance of the clique problem into an instance of the vertex-cover problem
such that the answer to the clique problem is positive if and only if the answer to the

corresponding vertex-cover problem is positive. Let G=(V,E) and k represent an

arbitrary jnstance of the clique problem. Let G =(V, E) be the complement graph of G;

namely, G has the same set of vertices and two vertices are connected in G if and only if

they are not connected in G. We claim that the clique problem is reduced to the vertex-

cover problem represented by the graph G and n-k (where n is the number of vertices in

G). Suppose that C = (U, F) is a clique in G. The set of vertices V-U covers all the

edges of G, becausein G there are no edges connectingvertices in U (they are all in G).

Thus, V - U is a vertex cover in G. Therefore, if G has a clique of size ky then G has a
vertex cover^f sizen-k. Conversely, let D be a vertex cover in G. Then, D covers all
the edges in G, so in G there could be no edges connectingvertices in V -D. Thus, V-D
generatesa clique in G. Therefore, if there is a vertex coverof size k in G, then there is a

clique of size n -k in G. This reduction can obviously be performed in polynomial time,

since it requires only the construction of G' from G (and the computation of n - k). \342\226\241

11.4.2 Dominating Set

Let G =(V,E) be an undirected graph. A dominating set D is a set of vertices in G such
that every vertex of G is either in D or is adjacent to at least one vertex from D.

11.4 Examplesof NP-Completeness Proofs 349

The Problem Given an undirected graph G = (V, E) and an integer

k, determine whether G has a dominating set containing
< k vertices.

\342\226\241Theorem 11.5

The dominating-set problemis NP-complete.

Proof: The dominating-set problem belongs to NP sincewe can guess a set of size
<k and check that it is a dominating set easily in polynomial time. We reduce the

vertex-cover problem to the dominating-set problem. Given an arbitrary instance (G, k)
of the vertex-cover problem, our goal is to construct a new graph G' that has a

dominating set of a certain size if and only if G has a vertex cover of size < k. We start

with G, and add \\E | new vertices and 2\\E | new edges to it in the following way (see

Fig. 11.2). For each edge (v, w) of G, we add a new vertex vw and two new edges

(v, vw) and (w, vw). In other words, we transform every edge into a triangle. Denote the

new graph by G'. It is easy to construct G' in polynomial time.

We now claim that G' has a dominating set of size m if and only if G has a vertex

cover of size m. Let D be a dominating set of G'. If D contains any of the new vertices

vw, then it can be replaced by either v or w and the set will still be a dominating set (both

v and w cover all the vertices that vw covers). So, without loss of generality, we can
assume that D contains only vertices from G. But, since D dominates all the new

vertices, it must contain at least one vertex from each original edge; hence, it is also a
vertex cover for G. Conversely, if C is a vertex cover for G, then each edge is covered

by C, so all the new vertices are dominated. The old verticesare also dominated since all

the edges arecovered. \342\226\241

vw

ft

VZ * uw

m

zw

Figure 11.2 The dominating-set reduction.

350 NP-Completeness

11.4.3 3SAT

The 3SAT problem is a simplification of the regular SAT problem. An instance of 3SAT
is a Boolean expression in which each clause contains exactlythree variables.

The Problem

clause contains

satisfiable.

Given
exactly

a Boolean expression
three variables,

in CNF such that each
determine whether it is

\342\226\241Theorem 11.6

3SAT is N?-complete.

Proof: This problem seems easier than the regular SAT problem becausethere is

the additional requirement of three variablesperclause.We will show that a solution to

3SAT can be used to solvethe regular SAT. First, 3SAT clearly belongsto NP. We can

guess a truth assignment and verify that it satisfies the expression in polynomial time.
Let E be an arbitrary instance of SAT. We will replace each clause of E with several

clauses, each of which has exactly three variables. Let C =(x\\+jc2+ \342\200\242\342\200\242\342\200\242
+xk) be an

arbitrary clause of E such that k >4. We write each variable in its \"positive\" form (i.e.,
we do not use *,) only for convenience of notation. We now show how to replace C with

several clauses, each with three variables. The idea is to introduce new variables

y\\iy2>~->yk-s that transform the clause into a 3SAT formulation without affecting its

satisfiability. We use new (and different) variables for each clause. C is transformed

into C such that

C' = (x[+x2+y[)-(x3+yl+y2)'(x4+y2+y3)
\"' (**-i+**+)'*-3)-

We claim that C is satisfiable if and only if C is satisfiable. If C is satisfiable, then one of

the *,s must be set to 1. In that case, we can set the values of the y(s in C such that all

clauses in C are satisfied as well. For example, if jc3 = 1, then we set y, = 1 (which takes

care of the first clause), ^2=0 (the second clause is okay since jc3
= 1), and the rest of the

.v/s to 0. In general, if x,r
= 1, then we set y\\,y2, --^1-2 to be 1, and the rest to be 0,

which satisfies C\". Conversely, if C is satisfiable,then we claim that at least one of the

x,s must be
_L Indeed, if all xfs are 0, then the expression becomes

CVi)*CVi+>;2),CV2+>;3)\"\342\226\240\342\200\242
Cy*-3). This expression is clearly unsatisfiable.

Using this reduction, we can replace any clause that has more than three variables

with several clauses, each with exactly three variables. It remains to transform clauses

with one or two variables. If C has only two variables, namely, C=(x{ +Jt2), then

C' = (xx +x2+z)'(xx +jc2 + z\,
where z is a new variable. Finally, if C =jc ,, then

C' = (x{ +y + z)-(x{ +y + z)-(jr1 +>>+z)-(jt1 +y + z),
where both y and z are new variables.

11.4 Examples of NP-Completeness Proofs 351

Thus, we have reduced a general instance of SAT into an instance of 3SAT such
that one instance is satisfiable if and only if the other one is. The reduction can clearly be
done in polynomial time. \342\226\241

11.4.4 Clique

The clique problem was definedin Section 11.4.1, when we discussed the vertex-cover

problem.

The Problem Given an undirected graph G =(V, E) and an integer

ky determine whether G contains a cliqueof size > k.

\342\226\241Theorem 11.7

The clique problemisNP'-complete.

Proof: The clique problem belongs to NP since we can guess a subset of >k
vertices and check that it is a clique in polynomial time. We reduce SAT to the clique

problem. Let E be an arbitrary Boolean expression in CNF, E =EXE2
''

Em.

Consider the clause E,-= (x+y+z + w) (we use four variables only for illustration

purposes). We associate a \"column\" of four vertices with the variables in \302\243,even if

they also appear in other clauses. That is, the graph G will have a vertex for each
appearance of each variable. The question is how to connect these vertices such that G

contains a clique of size >k if and only if E is satisfiable. Notice that we are free to

choose the value of k because we want to reduce SAT to the clique problem, which

means that we want to solve SAT using a solution of the clique problem. A solution of

the clique problem should work for every value of k. This is an important flexibility that

is used often in NP-completeness proofs. We will choose k to be equal to the number of

clauses m.
The edges of G are as follows. Vertices from the same column (i.e., vertices

associatedwith variables of the same clause) are not connected. Vertices from different

columns are almost always connected unless they correspond to the same variable

appearing in complementary form. That is, the only time we do not connect two vertices

from different clauses is when one corresponds to a variable x and the other to x. An

example, which corresponds to the expression E = (x+y+~z)-(x+y + z)-(y +z), is

presented in Fig. 11.3. G can clearly be constructed in polynomial time.
We now claim that G has a cliqueof size > m if and only if E is satisfiable. In fact,

the construction guarantees that the maximal clique size does not exceed m independent
of E. Assume that E is satisfiable. Then, there existsa truth assignment such that each
clause contains at least one variable whose value is 1. We will choose the vertex

corresponding to this variable for the clique. (If more than one variable in a clause is set
to 1, we choose one arbitrarily.) The result is indeed a clique, since the only time two

vertices from different columns are not connected is when they are the complement of

352 NP-Completeness

Figure11.3 An example of the clique reduction for the expression

u+)>+z)-(i+y+z)-o>+z).

each other, which of course cannot happen in a consistent truth assignment. Conversely,
assumethat G contains a clique of size>m. The clique must contain exactly one vertex

from each column (since two vertices from the same column are never connected). We

assign the corresponding variablesa value of 1. If any variables are not assigned in this

manner, they can be assigned arbitrarily. Since all the vertices in the clique are
connectedto one another, and we made sure that x and x are never connected,this truth

assignment is consistent. \342\226\241

11.4.5 3-Coloring

Let G =(V, E) be an undirected graph. A valid coloring of G is an assignment of colors

to the vertices such that each vertex is assigned one color and no two adjacent vertices
have the same color.

The Problem Given an undirected graph G=(V, \302\243),determine

whether G can be coloredwith three colors.

\342\226\241Theorem 11.8

3-coloring is N?-complete.

Proof: The 3-coloring problem belongs to NP since we can guess a 3-coloring and

check that it is a valid coloring easily in polynomial time. We reduce 3SAT to the 3-

coloring problem. This is a more complicatedproof for two reasons. First, the two

problems deal with different objects (Boolean expressions versus graphs). Second,we

cannot just replace one object (e.g., vertex, edge) with another (e.g., clause); we have to
deal with the whole structure. The idea is to use building blocks and then to tie them

together. Let E be an arbitrary instance of 3SAT. We have to construct a graph G such
that E is satisfiable if and only if G can be 3-colored. First, we build the main triangle M.

11.4 Examplesof NP-Completeness Proofs 353

Since M is a triangle, it requires at least three colors. We label M with the \"colors\" T
(for true), F (for false), and A (see the bottom triangle in Fig. 11.4). These colors are
used only for the proof; they are not part of the graph. We will later associate these

colors with the assignment of truth values to the variables of E. For each variable x, we
build another triangle Mx whose vertices are labeled x, J, and A, where A is the same

vertex in M. So, if there are k variables, we will have k +1 triangles, all sharing one

common vertex A (see Fig. 11.4). The idea is that, if x is colored with the color 7, then x

must be colored with F (since they are both connected to A), and vice versa. This is

consistent with the meaning of J.
We now have to impose the condition that at least one variable in each clause has

value 1. We do that with the following construct. Assume that the clause is (x+y+z).
We introduce six new vertices and connect them to the existing vertices, as shown in Fig

11.5. (The labels are consistent,so that there is only one vertex in the whole graph
labeled 7, and one vertex for each xy yy or z.) Let's call the three new vertices connected

to 7 and jc, yy or z the outer vertices (they are labeled by O in the figure), and the three

new vertices in the triangle the inner vertices (labeledby / in the figure). We claim that

this construct guarantees that, if no more than 3 colors are used, then at least one of x> y>

or z must be colored7. None of them can be colored A, since they are all connected to A

(see Fig. 11.4). If all are colored F, then the three new vertices connected to them must

be colored A, but then the inner triangle cannot be colored with three colors! The

complete graph corresponding to the expression (x+y+~z)-(x+y+z) is given in Fig.

11.6.

We can now complete the proof. We have to prove two sides: (1) if \302\243is

satisfiable, then G can be coloredwith three colors; and (2) if G can be colored with three

colors, then E is satisfiable. If E is satisfiablethen there is a satisfiable truth assignment.

We color the vertices associatedwith the variables according to this truth assignment (7

if x = 1, and F otherwise). M is colored with 7, F, and A as indicated. Eachclausemust

have at least one variable whosevalue is 1. Hence, we can color the corresponding outer

vertex with F, the rest of the outer vertices with A, and the inner triangle accordingly.

Thus, G can be coloredwith three colors. Conversely, if G can be colored with three

Figure 11.4 The first part of the construction in the reduction of 3SAT to 3-coloring.

354 NP-Completeness

Figure11.5 The subgraphs corresponding to the clauses in the reduction of 3SAT to 3-

coloring.

y y

Figure 11.6 The graph corresponding to (;t +>> +F) \342\200\242(*+>>+z).

colors, we name the colors according to the coloring of M (which must be colored with

three colors). Because of the triangles in Fig. 11.4, the colors of the variables correspond
to a consistent truth assignment. The construct in Fig. 11.6 guarantees that at least one
variable in each clause is colored with T. Finally, G can clearly be constructed in

polynomial time, which completes the proof. D

11.4 Examples of NP-CompletenessProofs 355

11.4.6 General Observations
We discuss here briefly some general methods for proving that a problem Q is NP-

complete. The first condition \342\200\224
showing that Q belongs to NP \342\200\224is usually easy (but

not always). Then, we have to select a known NP-complete problem that seems related
or similar to Q. It is hard to define this \"similarity\" goal, since sometimes the problems
look very different (e.g., the clique problem and SAT). Finding the right problem from

which to reduce is sometimes a difficult task, which can be learned only by experience.

It is a goodidea to try several reductions with several problems until a successful one is
found.

We stress that the reduction is done from an arbitrary instance of the known NP-

complete problem to Q. The most common error in such proofs is to perform the

reduction backward. One way to remember the right order is to ensure that the NP-

complete problem can be solved by a black-box algorithm for Q. This is a little

counterintuitive. The natural thing to do when given a problem Q is to try solve it. Here,

however, we try to show that we can solve another problem (the NP-complete problem)

using the solution of Q. We are not trying to solve Q\\

There are several degrees of freedom that can be used in the reduction. For

example, if Q includes a parameter, then its value can be set in any convenient way. (In
contrast with the parameter in the problem that is reduced to Q, which cannot be fixed!)

Again, Q is just a tool to solve the NP-complete problem; therefore, we can use it in any

way we wish. Q can be restricted to special cases in other ways, besides fixing its

parameter. For example, we may want to use only a certain types of input (e.g., regular

graphs, biconnected graphs) for Q. Another important flexibility we have is the fact that

the efficiency of the reduction is unimportant, as long as the reduction can be done in

polynomial time. We can ignore not only constants and, for example, doublethe size of

the problem, but we can also square the size of the problem! We can introduce

polynomially many new variables, we can replaceeach vertex in a graph by a new large

graph, and so on. There is no need to be efficient (within the bounds of a polynomial),

since the reduction is not meant to be converted into an algorithm (at least not until P is

found to be equal to NP, if ever).
There are some common techniques used in the construction of the reductions

(again, Garey and Johnson [1979] provides many examples). The simplest one is
showing that an NP-complete problem is a specialcaseof Q. If it is, then the proof is

immediate, since solving Q implies solving the NP-complete problem. For example,

consider the set-cover problem. The input to the problem is a collection of subsets
Si,S2,...,5\342\200\236of a set Uy and an integer k. The problem is to determine whether there

exists a subset W \302\243Uy with at most k elements, which contains at least one element from

each set 5,. We can see that the vertex-cover problem is a specialcaseof the set-cover

problem in which U corresponds to the set of vertices V, and each set 5, correspondsto

an edge and contains the two vertices incident to that edge. Thus, if we can solve the

set-cover problem for arbitrary sets, then we can solve the vertex-cover problem.
We must be very careful, however, when using this approach. It is not true, in

general, that adding more requirements to a problem makes that problem more difficult.

356 NP-Completeness

Considerthe vertex-cover problem. Suppose that we add a constraint that the vertex

cover must not include two adjacent vertices. In other words, we are looking for a small

set of vertices that forms a vertex cover and an independent set at the same time. (An

independent set is a set of vertices that are not adjacent to one another.) This problem

seems more difficult than either the vertex-cover or the independent-set problem, because
we have to worry about more requirements. In fact, however, this problem is an easier

problem, and it can be solved in polynomial time (Exercise 7.115). It turns out that the

extra requirements limit the candidate sets to such an extent that the minimum can be
found easily.

Another relatively easy technique involves local reductions. In this case, an

object in one problem is mapped into an object of the other problem. The mapping is

done in a local manner, independently of the other objects. The NP-completeness proof

of the dominating set problem followedthat pattern. We replaced each edge in one graph

by a triangle in the other graph. These local replacements were sufficient to reduce the

problem. The difficulty in this technique is to define the objects in the best way.

The most complicated technique is to use building blocks as we did, for example,
in the NP-completeness proof of the 3-coloring problem. The blocks usually depend on

one another, and designing each one separately is impossible. We have to consider all

the objectives of the problems in order to coordinate the design of the different blocks.

11.4.7 More NP-Complete Problems

The following list contains some more NP-completeproblems that are useful as a basis
for other reductions (e.g., the ones in the exercises). A very large list is given in Garey
and Johnson [1979J. Finding the right problem for the reduction is sometimes more than

half the work.

Hamiltonian cycle: A Hamiltonian cycle in a graph is a simple cycle that contains

each vertex exactly once. The problem is to determine whether a given graph contains a

Hamiltonian circuit. The problem is NP-complete for both undirected and directed

graphs. (Reduction from vertex cover.)
Traveling salesman:Let G =(V, E) be a weighted complete graph. A traveling-

salesman tour is a Hamiltonian cycle. The problem is to determine, given G and a

number W, whether there exists a traveling-salesman tour such that the total length of its

edges is < W. (Straightforward reduction from Hamiltonian cycle.)
Hamiltonian path: A Hamiltonian path in a graph is a simple open path

that

contains each vertex exactly once. The problem is to determine whether a given graph
contains a Hamiltonian path. The problem is NP-complete for both undirected and

directed graphs. (Reduction from vertex cover.)

Independent set: An independent set in an undirected graph G =(V, E) is a set of

vertices no two of which are connected. The problem is to determine, given G and an

integer ky whether G contains an independent set with > k vertices. (Straightforward
reduction from clique.)

3-dimensionalmatching: Let A\\ K, and Z be disjoint sets of size k. Let Mbea set
of triples (x, y, z) such that xe X,ye Yy and z e Z. The problem is to determine whether

11.5 Techniques For Dealing with NP-Complete Problems 357

there exists a subsetof M that contains each element exactlyonce. The corresponding

two-dimensional matching problem is the regular bipartite matching problem.
(Reduction from 3SAT.)

Partition: The input is a setX such that each element x e X has an associated size

s(x). The problem is to determine whether it is possible to partition the set into two

subsets with exactly the same total size. (Reduction from 3-dimensional Matching.)

(Notice that this problem, as well as the next problem, can be solved efficiently by

algorithm Knapsack (Section 5.10) if the sizes are all small integers. However, since the

size of the input is the number of bits required to represent that input, such algorithms,
which are calledpseudopolynomial algorithms, are exponential in the size of the input.)

Knapsack: The input is a setX such that each element xe X has an associated size

s(x) and value v(x). The problem is to determine whether there is a subset B^X whose
total size is < s and whose total value is > v. (Reduction from partition.)

Bin packing: The input is a sequence of numbers a\\,a2, ...,a\342\200\236,and two other

numbers b and k. The problem is to determine whether the set can be partitioned into k

subsets such that the sum of numbers in each subset is < b. (Reduction from partition.)

11.5 Techniques for Dealing with NP-Complete
Problems

The notion of NP-completeness is a basis for an elegant theory that allows us to identify

problems for which no polynomial algorithm is likely to exist. But proving that a given

problem is NP-complete does not make the problem go away! We still need to solve it.

The techniques for solving NP-complete problems are sometimes different from the

techniques that we have previously seen. .We (most probably) cannot solve an NP-

complete problem precisely and completely with a polynomial-time algorithm. So, we
have to compromise. The most common compromises concern the optimality,

robustness, guaranteed efficiency, or completenessof the solution. There are other

alternatives as well, all of which sacrifice something. The same algorithm may be used

in different situations, resulting in different compromises.

An algorithm that may not lead to the optimal (or precise) result is called an

approximation algorithm. Of particular interest are approximation algorithms that can

guarantee a bound on the degree of imprecision. We will see three examples of such

algorithms later.

In Section 6.II, we discussed probabilisticalgorithms that may make mistakes.
The most famous such algorithms are the ones for primality testing, a problem that is not

known to be in P, but is not believed to be NP-complete either. We will not describe

primality-testing algorithms, because they requires knowledge of number theory. It is

commonly believed that NP-complete problems cannot be solved by a polynomial-time

probabilistic algorithm that make mistakes with low probability for all inputs. Therefore,
such algorithms are more likely to be effectivefor problems that are not known to be in P

but are not believed to be NP-complete. Such problemsare not common. Probabilistic

algorithms can be used as part of other strategies \342\200\224for example, as part of

approximation algorithms.

358 NP-Completeness

Another compromise involves the requirement for polynomial worst-case running

times. We can try to solve NP-complete problems in polynomial time on the average.
The problem with this approach is defining average. For example, it is difficult to

exclude inputs for which the particular problem is trivial (e.g., a graph with only isolated

vertices) from participating in the average. Such trivial inputs may lower the average
significantly. Algorithms designed for certain types of random inputs can be useful if the

actual distribution of inputs follows their assumption. Finding the right distribution,

however, is usually very difficult. A major difficulty in designing algorithms that work

well on the average is analyzing them, which is usually very complicated.

Finally, we can also compromise on the completeness of the algorithms; namely,
we can allow the algorithm to work efficiently for only some special inputs. For

example, the vertex-cover problem can be solved in polynomial time for bipartite graphs

(Exercise 7.110). Therefore, when we abstract a problem from a real-life situation we

should make sure that any extra condition involving the input is included in the abstract

definition. Another example is algorithms whose running times are exponential, but they

work reasonably well for small inputs, which may be sufficient.

We describeseveral of these techniques and illustrate them with examples in this

section. We start with two general and useful techniques called backtracking and

branch-and-bound. These techniques are similar. They canbe usedas a basisfor either

an approximation algorithm or an optimal algorithm for small inputs. We then give
several examples of approximation algorithms.

11.5.1 Backtracking and Branch-and-Bound

We describe these techniques through an example. Consider the 3-coloring problem,
which involves assigning colors, under certain constraints, to n vertices of a graph. This
is an example of a problem that requires finding optimal values (colors in this case) for n

parameters. In the 3-coloring example, there are three possiblevalues for each parameter

corresponding to the three colors. Therefore, the number of potential solutions is 3\",

which is the number of all possible ways of coloring n vertices with three colors. Of

course, unless there are no edges in the graph, the number of possible valid solutions will

be quite a bit smaller than 3\", because the edges impose constraints on the possible

colorings. To explore all possible ways of coloring the vertices, we can start by

assigning an arbitrary color to one of the vertices and continue coloring the other vertices

while maintaining the constraints imposed by the edges \342\200\224
namely, that adjacent vertices

must be colored with different colors. When we color a vertex, we try all possible colors

that are consistent with the previously colored vertices. This processcan be performed

by a tree-traversal algorithm, which is the essence of the backtracking and branch-and-

bound techniques. To avoid confusion between the vertices of the graph and the tree, we
will call the vertices of the tree nodes.

The root of the tree corresponds to the initial state of the problem, and each branch

corresponds to a decision concerningone parameter. Denote the three colors by R(ed),

B(lue), and G(reen). Initially, we can pick any two adjacent vertices v and w and color

them, say with B and G. Since they will be colored differently in any valid coloring, it is

11.5 Techniques For Dealing with NP-Complete Problems 359

not important which colors we choose (we can always permute the final coloring), which

is why we can start with coloring two vertices instead of one. The coloring of these two
vertices correspondsto the initial state of the problem, which is associated with the root.

The tree is constructed as it is being traversed. At each node t of the tree, we select the

next vertex u of the graph to color, and add one, two, or three children to t according to

the number of colorsthat can be used to color u. For example,if our first choice (after v

and w) is w, and if u is adjacent to w (which has already been colored G), then there are

two possible ways of coloring w, B or R, and we add two corresponding children to the

root. We then pick one of these children, and continue this process. After a vertex is

colored, there is less flexibility in coloring the rest of the vertices; therefore, the number

of children is likely to be smaller as we go deeperin the tree.

If we manage to color all the vertices of the graph, then we are done. More likely,
however, we will reach a vertex that cannot be colored (sinceit has three adjacent
vertices already colored with the three colors). At that point, we backtrack \342\200\224we go up
the tree and explore other children. An example of a graph and the corresponding 3-

coloring backtrack tree is given in Fig. 11.7. Notice that, in this case, once the colors of

vertices 1 and 2 are fixed, there is only one way to color the rest of the graph (which is

found through the rightmost path in the tree).

We can think of this tree-traversal algorithm as an algorithm based on induction.

We have to strengthen the hypothesis slightly to include coloring graphs some of whose

vertices have already beencolored.In other words, the induction hypothesis will have to

deal not with coloring graphs from scratch, but with completing a partial 3-coloring:

Induction hypothesis:We know how to complete the 3-coloring of a graph
that has < k vertices that are not already colored, or to determine that the

3-coloring cannot be completed.

1B,2G

Figure 11.7 An example of backtracking for 3-coloring. (a) The graph (b) The

backtrack tree.

360 NP-Completeness

Given a graph with k vertices that are not yet colored, we pick one of them and find all

possible colors that can be assigned to it. If all colors have already been used for its

neighbors, then the 3-coloring cannot be completed.Otherwise, we color the vertex with

the possible colors (one at a time) and solve the remaining problems (which now have
k-\\ uncolored vertices) by induction. The algorithm is given in Fig. 11.8.

Algorithm 3-coloring (Gf var U) ;

Input: G =(V,E) (an undirected graph), and U (a set of vertices that have

already been coloredtogether with their colors). { U is initially empty)

Output: An assignment of one of three colors to each vertex of G.

begin

ifU = V then print \"coloring is completed\";halt

else

pick a vertex v not in U ;

forC := 1 to 3 do

if no neighbor ofv is coloredwith color C then

add v to U with color C ;
3-coloring(G,U)

end

Figure11.8Algorithm 3-coloring.

It is not hard to come up with a graph and an order of traversal for the 3-coloring

problem that results in a tree with an exponential number of nodes (Exercise11.34).This

is quite common in backtracking algorithms. Our hope is that, by traversing the tree in a

\"good\" order, we will find the solution early enough. The algorithm we described so far

does not specify how to pick the next vertex. Since any vertex can be chosen next, we

have a degree of freedom that we can use to design heuristics. We will return to this

point shortly.

Branch-and-bound is a variation of backtracking for problems involving finding the

minimum (or maximum) of some objective function. Consider the general coloring
problem \342\200\224we are now interested in finding the minimum number of colors required

to

color the graph rather than just a yes or no answer for 3-coloring. We can build a tree
similar to the one for 3-coloring, but the number of branches may be quite large. Each

new vertex can be colored either by one of the colors already used (unless one of its

neighbors already uses that color), or by a new color. The 3-coloring algorithm is thus

modified in two ways: (1) the constant 3 is replaced by the maximal number of colors
used so far, and (2) the algorithm does not terminate when V = U, since there may be

better ways to color the graph.

The problem is that this algorithm backtracks only when a leaf is reached (i.e.,
V = U), since a new color can always be assigned to the vertex. Thus, the algorithm is

almost guaranteed to have poor performance (unless the graph is very dense). We can

improve the performance of this algorithm by the following observation, which is the

11.5 Techniques For Dealing with NP-Complete Problems 361

basis of the branch-and-bound method. Suppose that we traverse the tree all the way to a

leaf and find a valid coloring with k colors. Suppose further that, after backtracking

several steps up the tree, we traverse another path and reach a vertex that requires color

number k +1. At this point, we can backtrack, since we already know a better solution.

Thus, k serves as a bound for backtracking. At each node, we compute a lower bound on

the best solution that can be found farther down the tree. If that lower bound is greater

than a known solution, we backtrack. One key to making a branch-and-bound algorithm

efficient is computing good lower bounds (or upper bounds, if we want to maximize the

objective function). Another key is finding a good traversal order so that good solutions

are found fast, in which case we can backtrack earlier.
We illustrate this idea through the problem of integer linear programming

(which is also mentioned in Section 10.3). The problem is similar to linear programming,

but with the extra constraints that the values of the variables are integers. Let

! =
(*!,jt2, ..,*\342\200\236)be the vector of variables', ax,a2, \342\200\242\342\200\242\342\200\242,akbe vectors of real numbers,

each of size n\\ and b\\,b2,..;bk and c i, c2,..., ck be real numbers. The problem is to
maximize the value of the linear objectivefunction

Z=CXXX +C2*2+
* * *

+C\342\200\236Xn (11.1)

under the integrality constraints of J and the following constraints

~d\\ -X <bx

a2 'X <b2

(11.2)

ak-x<bk.

(All tf/S and b(s are constants.) Many NP-complete problems can be easily posed as
integer programming problems (we show one example below). Therefore, integer

programming is NP-hard. It is in fact NP-complete, but the proof that it belongs to NP is

quite complicated.

The following is an integer linear programming formulation of the clique problem.

(The problem here is to find the maximal clique, rather than to decide whether a certain
sized cliqueexists.)There are n variables X\\,x2, ...,*\342\200\236,corresponding to the vertices,
such that Xj = 1 if v, belongs to the maximum clique, and jc, =0 otherwise. The objective

function is

Z =X\\ + JC2 + * * * + *\342\200\236,

which implies that we want to select as many vertices as we can. There is one constraint

per vertex

0<^; < 1 for all !</<\302\253,

362 NP-Completeness

and one constraint for each pair of nonadjacent vertices

Xj + Xj
< 1 for each pair of vertices v, and v, such that (v,, v;) 4 E.

The first set of constraints restrict the variables to either 0 or 1. The second set of

constraints guarantee that two vertices that are not adjacent cannot both be selected;
therefore,the vertices that are selected form a clique.

Integer linear programming can be solved with branch-and-bound by using the

corresponding linear program (which is the same problem without the restriction to

integers) to compute the bounds. The solution of the linear program may consist of only

integers, in which case we are done. More likely, however, the solution will include

some noninteger values. For example,assume that the solution of the linear program

associated with the clique problem is (0.1, 1,...,0.5)and z = 7.8. Since the linear

program maximizes the objective function with less restrictions than the integer linear

program, the maximum it finds is an upper bound on the maximum possible for the

integer linear program. Therefore, we cannot hope for a clique of size greater than 7.

This kind of information can be helpful farther down the tree. As in regular

backtracking, we make some choicesas we go down the tree, and a node lower in the

tree corresponds to a subproblem of the original problem. For example, the subproblem

may correspond to selecting v and w to the clique, and eliminating u and x, in which case

we are trying to find the maximal clique that includes v and w and excludes u and x. If at

that point the solution of the linear program givesus a bound that is less than a size of an

already-known clique, then we can backtrack. This is the essence of the branch-and-

bound method. We are trying to find upper bounds (or lower bounds, if the objective
function is supposed to be minimized) that will allow us to backtrack as early as possible.

We can also use the result of the linear program to help us choose the branching.

For example, since a2 = 1 in the noninteger solution, we may guess that jc2
= 1 is the

integer solution as well. This may not be a goodguess,but it is an example of the kind of

heuristics that we are looking for. We try to increase the probability of finding the

optimal solution quickly. (We know that being \"right\" all the time is probably

impossible, since the problem is NP-complete.) We can set x2 = 1, update the constraints

(e.g., set the values of all vertices not adjacent to v2 to 0), and solve the resulting linear

program. If at some point the modified linear program has a maximal value of z=tf,

where a is smaller than the maximal clique known so far, we can backtrack.

Thus, the linear program serves two purposes: It gives upper bounds and thus

allows us to backtrack, and it also hints at which choices to make next. We hope that,
when we are done with the \"most likely to succeed\" subproblem, we will be able to

prune the other subproblems substantially. The amount of pruning
\342\200\224and the efficiency

of the whole algorithm \342\200\224
depends on the heuristic to divide the problems and to choose

the next subproblem to explore. This heuristic depends on the particular application.
Extensive researchhas been done in this area.

Branch-and-bound algorithms lead to the optimal solution when all subproblems
are explored or pruned. If this takes too long, we can terminate the algorithm and obtain
an approximation that consists of the best solution found so far. The traversal of the tree

can be done by breadth-first search, depth-first search, or a combination. An extreme

11.5 Techniques For Dealing with NP-Complete Problems 363

example of terminating early is talcing the first path (chosen by a certain heuristic) that

leads to a feasible solution (usually at a leaf) as the outcome of the algorithm. For

example,in the coloring algorithm, we can color the vertices in reverse order of degree
(the idea being that we lose less flexibility by fixing the color of a small-degree vertex).

This is a simple greedyalgorithm.

11.5.2 Approximation Algorithms with Guaranteed
Performance

In this section, we discuss approximation algorithms for three NP-complete problems:
vertex cover, bin packing, and the Euclidean traveling salesman problem. All these

approximation algorithms have guaranteed performance.That is, we can prove that the

solution they produce is not too far from the optimal solution.

Vertex Cover

We start with a simple approximation algorithm for finding the minimum vertex coverof

a given graph. The algorithm is guaranteed to find a cover that contains no more than

twice the number of vertices containedin a minimum cover. Let G =(V, E) be a graph

and let M be a maximal matching in G. Since M is a matching, its edges have no vertex
in common, and since M is maximal, all other edges have one vertex in common with at

least one of the edges in M.

D Theorem 11.9

The set of all vertices incident to the edges of a maximal matching M is a

vertex cover with no more than twice the number of vertices of a minimum-

size vertex cover.

Proof: The set of vertices that belong to M forms a vertex cover, because M is
maximal. Every vertex cover must cover all the edges

\342\200\224in particular, the edges of M.
But, since M is a matching, a vertex of M cannot cover more than one edge of M.
Therefore, at least half of the vertices of M must belong to every vertex cover. \342\226\241

We can find a maximal matching by simply collecting edges until all edges are covered.

Since the vertex cover includes all the vertices in the matching, we would like to find a

small maximal matching. Unfortunately, the problem of finding the minimum maximal

matching (i.e., a maximal matching with smallest number of edges) is also NP-complete
(Garey and Johnson [1979], problem [GT10]). Exercise 11.35discusses another

approximation algorithm with guaranteed performance for the vertex-cover problem.

One-Dimensional Bin Packing
The bin packing problem is concerned with packing different-sized objects into fixed-
sizedbins using as few of the bins as possible. For example, we may want to move the

contents of a house using as few cars (or the same car as few times) as possibleby

packing the cars as densely as possible.Moving is a 3-dimensional problem, but we will

concentrate on the one-dimensional version. We will also assume for simplicity that all

the bins have size 1.

364 NP-Completeness

The Problem Let Xy,x2,...,xn be a set of real numbers each

between 0 and 1; partition the numbers into as few subsets as possible
such that the sum of numbers in each subset is at most 1.

The one-dimensional bin packing problem arises, for example, in memory-management

problems in which there are requestsfor many different-sized blocks of memory, and the

blocks need to be allocatedfrom several large chunks of available memory. Bin packing

is an NP-complete problem (Exercise11.8).
One heuristic for this problem is to put x, in the first bin, and then, for each /, to

put Xj in the first bin that has room for it, or to start a new bin if there is no room in any of

the used bins. Thisalgorithm is called the first fit algorithm. First fit is not \"too bad\" in

the worst case, as is shown in the next theorem.

\342\226\241Theorem 11.10

The first fit algorithm requires at most 20 PT bins, where OPT is the

minimum number of bins.

Proof: First fit cannot leave two bins less than half full; otherwise, the items in the

second bin could be placedin the first bin. Therefore, the number of bins used is no more
than twice the sum of the sizes of all items (rounded up). The theorem follows from the

fact that the number of bins in the best solution cannot be less than the sum of all the
sizes (in which case all items are perfectly packed). \342\226\241

It turns out that the bound given by Theorem 11.10 is quite conservative. The constant of
2 in the theorem can be reduced to 1.7,by a much more complicated analysis. The 1.7
constant is tight, since there exist cases in which first fit requires 1.7 times the optimal.

First fit can be improved with the following simple modification. The worst case

occurs when many small numbers appear at the beginning. Instead of placing the

numbers in the bins in the order they appear, we sort them first in decreasing order, and

then use first fit. This modified algorithm is called decreasing first fit, and, in the worst

case, its solution comes within a constant of about 1.22 from the optimal (we omit the

proof).

\342\226\241Theorem 11.11

The decreasing first fit algorithm requires at most \342\200\224OPT + 4 bins, where

OPT is the minimum number of bins. O

This constant is also tight. First fit and decreasing first fit are both simple heuristics.
There are other methods leading to better constants. In most cases, the analysis is

complicated.
The strategies we described are typical of heuristics algorithms. They present

natural approaches corresponding to what one would probably do by hand. We have

11.5 Techniques For Dealingwith NP-Complete Problems 365

seen many times, however, that straightforward approaches can perform quite poorly for

large inputs. Therefore, it is very important to analyze the performance of these
algorithms.

Euclidean Traveling Salesman

The traveling salesman problem (TSP), is an important problem with many

applications. We discuss here a variation of TSP with the additional constraint that the

weights correspond to Euclideandistances:

The Problem Let C{,C2, ...,C\342\200\236be a set of points in the plane

corresponding to the location of n cities; find a minimum-distance Ham-

iltonian cycle (traveling salesman tour) among them.

The problem is still NP-hard, but we will see that the Euclidean assumption helps in

designing an approximation algorithm for the problem. (We can relax this assumption

somewhat by assuming only that the distances satisfy the triangle inequality, which

states that the direct distance between any two points is shorter than any route through
other points.)

The algorithm starts by computing the minimum-cost spanning tree (here, cost =

distance), which is a much easier problem (see Section7.6). We claim that the cost of
the tree is no more than the length of the best TSP tour. This is so because a TSP tour is

a cycle containing all vertices; therefore,removing any edge from a TSP tour makes it a

spanning tree, whosecost is thus at least that of the minimum-cost spanning tree.

A spanning tree, however, does not correspond directly to a TSP tour. We need to

modify it. First, consider the circuit that consists of a depth-first search traversal of the

tree (starting from any city), and includes an edge in the opposite direction whenever the

search backtracks. (This circuit corresponds, for example, to traversing a tree-shaped

gallery, with exhibits on both sides of every hall, by always going to the right.) Every

edge will be traversed exactly twice, so the cost of this circuit is twice the cost of the

minimum-cost spanning tree, which is no more than twice the cost of the minimum TSP

tour. We can now convert this circuit into a TSP tour by taking direct routes instead of

always backtracking (see Fig. 11.9). That is, instead of backtracking using the same

edge, we go directly to the first new vertex. The assumption that the distances are
Euclidean is important, because it guarantees that the direct route between any two cities
is always at least as good as the nondirect route. The length of the resulting TSP tour is
thus still no more than twice the length of the minimum TSP tour, although it is often less
than that.

Complexity The running time of this algorithm is dominated by the running time of

the minimum-cost spanning tree algorithm, which, in the case of Euclidean graphs, is
O (n log \302\253)(see, for example, Preparata and Shamos [1985]).

366 NP-Completeness

(a) (b)

Figure 11.9(a)A spanning tree, (b) A TSP tour obtained from the tree by starting at the

middle point, and going right first.

Improvement

The algorithm we have just described can be improved in the following way. The

4'sloppiest\" part of the algorithm is the conversion from the tree traversal into a TSP

tour. Another way to look at this conversion is that it builds an Eulerian circuit on top of
the tree, by repeating each edge twice. We then obtain the TSP tour by taking shortcuts

from the Eulerian circuit. We can convert the tree into an Eulerian graph more

effectively. An Eulerian graph must include only even-degree nodes. Considerall the

odd-degree nodes in the tree. There must be an even number of them (otherwise, the

total sum of all degrees would be odd, which is impossible, since this sum is exactly
twice the number of edges). If we add enough edges to the tree to make the degrees of

all nodes even, then we get an Eulerian graph. Since the TSP tour will consist of the

Eulerian circuit (with some shortcuts) we would like to minimize the length of the

additional edges. Let's abstract the problem.

We are given a tree in the plane and we want to add edges to it, minimizing their

total length, such that the resulting graph is Eulerian. We must add at least one edge to
each vertex of odd degree. Let's try to add exactly one. Suppose that there are 2k

vertices of odddegree.If we add k edges, each connectingtwo odd-degree vertices, then

all vertices will have even degree. The problem thus becomes a matching problem. We

want to find a minimum-length matching that covers all odd-degree vertices. Finding a

minimum-weight perfect matching can be done in 0(n3) for general graphs (see Gabow

[1976] or Lawler [1976]). There is a recent algorithm, due to Vaidya [1988], that works

for the special case of Euclidean distances in time 0(n25 (log\302\253)4). (Whether this is a

better algorithm in practice is not clear.) The final TSP tour is then obtained from the

Eulerian graph (which includes the minimum-length spanning tree plus the minimum-

length matching) by taking shortcuts. The TSP tour obtained by this algorithm for the

tree in Fig. 11.10 is given in Fig. 11.11.

11.5 Techniques For Dealingwith NP-Complete Problems 367

(a) (b)

Figure 11.11The minimum Eulerian circuit and its corresponding TSP tour, (a) The

spanning tree plus the matching, (b) The tour obtained from the Eulerian circuit.

\342\226\241Theorem 11.12

The improved algorithm produces a TSP tour whose length is at most 1.5

times the length of the minimum TSP tour.

Proof: We will ignore the shortcuts (since there may not be any in the worst case),

and will concentrate on the length of the Eulerian circuit. The circuit consists of the tree

and the matching. We have already seen that the length of the tree is at most the length
of a minimum TSP tour; hence, it is sufficient to prove that the length of the matching is

at most half the length of a minimum TSP tour. Let Q be a minimum TSP tour. Q is a

cycle containing all vertices. Let D be the set of odd-degree vertices in T. We can obtain

two disjoint matchings of D such that the sum of their lengths is no more than that of Q in

the following way (see Fig. 11.12). We start with an arbitrary vertex v of D and match it

to a vertex of D that is its closest neighbor clockwise in Q. We then continue matching in

a clockwise direction. If the matched vertices are not neighbors in Qy then the distance

between them is no more than the length of the path connecting them in Q (by the

triangle property). Thisprocessgives us one matching. The second matching is obtained

by repeating the same process counterclockwise. The sum of the lengths of both

matchings is at most the length of (?, as is shown in Figure 11.12. But, since M was a
minimum-weight matching of D, its length is at most half the length of Q. \342\226\241

Finding a minimum-weight perfect matching takes much longer than finding a
minimum-cost spanning tree, but it results in a better bound. It is still an open problem
whether it is possible either to improve the constant of 1.5, or to find a faster algorithm

achieving this constant. This algorithm illustrates one of the main characteristics of this

type of algorithm: We abstract an easier problem \342\200\224or relax some parts of the original

problem
\342\200\224and then design the heuristic accordingly.

368 NP-Completeness

Figure 11.12 Twomatchings whose sum is at most that of the TSP tour.

11.6 Summary
The previous chapters should have generated somedeservedoptimism about our ability
to design goodalgorithms. This chapter should bring us closer to reality. There are many

important problems that unfortunately cannot be solved with elegant, efficient algorithms.
We have to be able to recognize these problems and to solve them with a less than

optimal solution. When a problem is given to us, we have two possible lines of attack.
We can try to use the techniques introduced in the previous chapters to solve the

problem, or we can try to use the techniques introduced in this chapter to show that the

problem is NP-complete. To avoid making many wrong turns before we take the right

approach, we need to develop an intuition for the difficulty of problems.

Bibliographic Notes and Further Reading

The notion of NP-completeness was introduced in the seminal paper of Cook [1971](a
similar result was discovered in the Soviet Union independently by Levin [1973]). Karp

[1972] presented a list of 24 important NP-complete problems (some of which are

included in Section 11.4). Both Cook and Karp received the Turing award in part due to
this work, and their Turing award lectures were published in Cook [1983], and in Karp

[1986]. Several other notable classes of problems that are not known to be in P have

been studied. One such class is co-NP,which contains the complements of all problems
in NP. For example, the problem of deciding whether a Boolean expression is always

false belongs to co-NP. The reasonco-NPis different from NP is that the definition of

acceptance of languages by a nondeterministic algorithm is asymmetric; there are
different requirements for accepting and for rejecting an input. Another important class
is PSPACE, which contains all problems that can be solvedusing polynomial space. It

turns out that nondeterminism does not add more powerwhen an algorithm is limited to

polynomial space [Savitch 1970].In other words, any problem that can be solved in

polynomial space by a nondeterministic algorithm can also be solved in polynomial space

Bibliographic Notes and Further Reading 369

by a deterministic algorithm. The generalized HEX game is an example of a problem

that is complete for PSPACE (Even and Tarjan [1976]), where completeness is defined

similarly to the way it is defined for the class NP, except that the reductions can use

polynomial space. There is a hierarchy of classes between P and PSPACE called the

polynomial-time hierarchy. It is important to note that at present there is no proof that

any of the classes mentioned aboveis different from PI We do not know of any problem
that belongs to PSPACE and does not belong to P. There are, however, problemsthat are

known to require exponential time and space (Meyer and Stockmeyer [1972]), or even

more (Fischer and Rabin [1974]).
Thereare several problems that are not known to be either in P or in NP-complete.

The most notable ones are the graph isomorphism and primality testing. Graph

isomorphism can be solved in polynomial times for many special cases (see, for example,
Luks [1982]),but the general problem is still open. Rabin [1976] and Solovay and

Strassen [1977] present Monte Carlo probabilisticalgorithms for primality testing.

(These algorithms determine that a number is prime with very little error probability, and

they make no error when they determine that a number is not a prime.) Goldwasser and
Killian [1986] present a Las Vegas probabilisticalgorithm that tests primality, without

errors, whoseexpectedrunning time is polynomial. Another seemingly simple problem
that is still open is the even-cycle problem, which is to determine whether a given

directed graph contains a (simple) even-length cycle (see Klee, Ladner, and Manber

[1984]). A wealth of information about NP-completeness and related subjects can be
found in Garey and Johnson [1979] and in an NP-completeness column by Johnson that

has been appearing in the Journal of Algorithms since 1981. A natural question to ask is

whether all problems in NP are either NP-completeor are in P. This question was

partially answered by Ladner [1975] who proved that, unless P = NP, there are infinitely

many classes in between.
An algorithm that runs in polynomial time on the average for the Hamiltonian

cycle problem is described in Angluin and Valiant [1979], and one for satisfiability is

described in Purdom and Brown [1985b]. An approximation algorithm for the weighted

vertex-cover problem is given in Bar-Yehuda and Even [1981]. The algorithm finds a

vertex cover whose weight is at most twice that of the minimum-weight cover. Gusfield
and Pitt [1986] present a more intuitive explanation of this algorithm. Heuristics for

coloringgraphs with k colors (for fixed k) are given by Brelaz [1979], and by Turner

[1988]. These heuristics are proven successful for \"almost all\" graphs (see Turner

[1988] for a precisedefinition). In fact, Wilf [1984] proved that the average size of the

simple backtrack tree for graph k-co\\ohng (for a fixed k) is a constant independent of n.

(It is less than 200 for k = 3, and is 1 million for k = 5.) However, it is likely that the good
performanceof these algorithms are due more to the definition of the average than to the

strength of the algorithms (see, for example, Franco [1986]). The best known guaranteed
bound for approximate graph coloring is given by Wigderson [1983]. Backtrack
techniques are describedin Golomb and Baumert [1965] (see also Bitner and Reingold

[1975] and Horowitz and Sahni [1978].) Knuth [1975] describes a technique for

estimating the running time of backtrack programs. A general discussion on heuristics is

given by Pearl [1984].

370 NP-Completeness

The bounds on the performance of first fit and decreasing first fit given in Section

11.5.2 are provedin Johnson et al. [1974]. For another heuristic that comes very close to

an optimal solution of the bin-packing problem, see Karmarkar and Karp [1982].

The traveling salesman problem is probably the most studied NP-complete

problem in terms of proposed solutions. An approximation algorithm for the general
problem is given by Lin and Kernighan [1973]. The algorithm achieving the bound of

1.5 for the Euclidean problem, which is the best bound currently known for a polynomial

algorithm, is due to Christofides [1976]. A book edited by Lawler, Lenstra, Rinnooy

Kan, and Shmoys [1985] contains 12 articles covering most aspects of this problem,
including heuristics and their analysis, branch-and-bound algorithms, special cases, and

applications.

Drill Exercises

You can complete these exercisesusing only the NP-complete problems discussed in the text or in

other exercises from this chapter.

11.1 Prove that all problems in P are polynomially equivalent according to the definition given in

Section 11.2.

11.2 Prove that the definition of how a nondeterministic algorithm recognizes a language does

not allow one algorithm to recognize two different languages.

11.3 Consider the following algorithm to determine whether a graph has a clique of size k. First,

we generate all subsets of the vertices containing exactly k vertices. There are 0(nk)
subsets altogether. Then, we check whether any of the subgraphs induced by these subsets
is complete. Why is this not a polynomial-time algorithm for the clique problem, which

implies that P = NP?

11.4 Write the 3SAT expression that is obtained from the reduction of SAT to 3SAT (given in
Section 11.4.3)for the expression

(x+y+^+W+U+V)'(x+y+Z + W+U+V)'(X+y+'z+W + U+V)'(X+y).

11.5 Draw the graph that is obtained from the reduction of SAT to the clique problem (given in

Section 11.4.4) for the expression

U+y +z)-U+> +z)-(jc + v+z)-(jc+y + z).

11.6 Draw the graph that is obtained from the reduction of 3SAT to the 3-coloring problem
(given in Section 11.4.5) for the expression

{x +y + z) \342\200\242
(x + v +F) \342\200\242

(x +y +z).

11.7 Prove that the knapsack problem is NP-complete.

Creative Exercises 371

11.8Prove that the bin packing problem is NP-complete.

11.9 Pose the 3-coloring problem as an integer linear program.

Creative Exercises

You can complete these exercises using only the NP-complete problems discussed in the text or in

other exercises from this chapter.

11.10 Prove that the following problem is NP-complete:Given an undirected graph G = (V, E) and

an integer k, determine whether G contains a spanning tree T such that each vertex in T has

degree < k.

11.11 Prove that the vertex-cover problem remains NP-complete even if all the vertices in the

graph are restricted to have even degree.

11.12 Consideragain the problem of finding large induced subgraphs discussed in Chapter 5.

Suppose that, instead of the requirement that each vertex in the induced subgraph has

degree > d, we require that its degree be < d. Here is the formulation of the problem in

terms of a decision problem. Given an undirected graph G = (V, \302\243),and two integer

parameters d and k, determine whether G contains an induced subgraph H with at least k

vertices, such that the degree of each vertex in H is < d. Prove that this problem is NP-

complete.

11.13 Prove that the following problem is NP-complete:Given an undirected connected graph

G=(V, E) and an integer k, determine whether G contains a clique of size k and an

independent set of size k.

11.14 Prove that the following problem is NP-complete:Given an undirected graph G = (V, E) and

an integer k, determine whether G contains a subset of k vertices whose induced subgraph is

acyclic.

11.15 Let E be a CNF expression such that each variable x appears exactly once as x and exactly

once as x. Either find a polynomial-time algorithm to determine whether such expressions
are satisfiable or prove that this problem is NP-complete.

11.16Prove that the following variation of 3SAT, called l-in-3SAT, is NP-complete.The input is

the same as the one for 3SAT. The problem is to determine whether there exists a satisfying

assignment such that in every clause exactly one of the 3 variables is true.

11.17 Prove that 2-in-4SAT is NP-complete: The input is a Boolean expression in CNF with

exactly 4 variables per clause, and the problem is to determine whether there exists a

satisfying assignment such that in every clause exactly 2 of the 4 variables are true. (Hint:

Use Exercise 11.16.)
*

11.18The input is again a Boolean expression in CNF. The problem is to determine whether

there exists a satisfying assignment such that every clause contains an odd number of
variables whose values are 1. For example, if the input is a 3SAT input, then we are

looking for assignments such that, in every clause, either 1 or 3 variables have value 1.

372 NP-Completeness

(Another way to look at this problem is that the or operations are replaced with exclusive or

operations.) This may seem like another variation of the problems in Exercises 11.16 and

11.17, but in fact this problem can be solved in polynomial time! Find a polynomial-time

algorithm for it.

11.19 The input is an undirected regular graph (i.e., a graph in which all vertices have the same

degree). Prove that the clique problem remains NP-complete for regular graphs.

11.20 The exact coverby 3-sets (X3C) problem is the following. The input is a set S with 3n

elements and a collection of subsets of S, S,,S2 \342\226\240$*\302\273eacn containing exactly three
elements. The problem is to determine whether there exists a subcollection of subsets

Sj , S,, Sin such that each element of S is contained in exactly one subset S, . Prove that

X3C is NP-complete.

11.21 Prove that the following problem is NP-complete:Given an undirected graph G=(V, E)
with 3a7 vertices, determine whether the vertices of G can be partitioned into n groups, such

that each group contains three elements, each connected to each other. In other words, the

question is to determine whether the graph can be partitioned into n triangles.

11.22 Let G = (V, U, E) be a bipartite graph such that V is the set of vertices on one side, U is the

set of vertices on the other side, and E is the set of edges connecting them. V corresponds to

a set of machines and U to a set of parts. A machine v, is connected to a part u} if the

machine is used to work on that part. Suppose that a room can accommodate at most K

machines and unlimited number of parts (for simplicity, we assume that all machines have

the same size). We assume that we have as many rooms as needed, but we want to

minimize the movements of parts from one room to another. Each edge (vhpj) is
associatedwith a cost c (v,, py), which is the cost of moving part u} to machine v, if the part
and the machine are not in the same room. We define the cost of a partition of machines

and parts into rooms as the sum of the costs of the edges connecting parts to machines that

are not in the same room. Prove that the following problem is NP-complete:Given the

graph G, the parameter K, and another parameter C, determine whether it is possible to

partition the machines and parts into rooms with cost <C. (In other words, the set of
vertices should be partitioned into subsets, each with at most K vertices from V, such that

the sum of the costs associated with the edges that connect vertices in two different subsets

does not exceed C.)

11.23 Let S be a set, and C = IC,, C2,...,Ck} be a collection of subsets of S each with four

elements. Two subsets of S are said to be connected if they contain a common element. A

collection C is said to be a cycle if C, is connected to C/+1 for all /', 1 <i<k-\\, and C] is
connected to Ck. An subcollection C'^C is calledacyclic if it does not contain a cycle.
Prove that the following problem is NP-complete:Determine whether a given collection C
contains an acyclic subcollection C such that (1) every two subsets in C have at most one

element in common, and (2) every element of S is included in at least one subset of C.

11.24 Assume that the Hamiltonian path problem for undirected graphs is NP-complete. Prove
that the Hamiltonian cycle problem for undirected graphs is also NP-complete. (Both

problems are defined in Section 11.4.)

11-25 The input is an undirected graph G =(V, E) and two distinguished vertices v and w in G.
Prove that there is no polynomial-time algorithm to determine whether G contains a
Hamiltonian path whose end vertices are v and w unless P = NP.

Creative Exercises 373

11.26Consider again the problem of determining whether a graph G=(V, E) contains a

Hamiltonian path with given end vertices v and vv (see Exercise 11.25). Let G' bethe graph

obtained by adding two new vertices v and vv and two new edges (v, v) and (vv, vv). If G'

contains a Hamiltonian path, then its two end vertices must be v and vv. Therefore, such a

path corresponds to a Hamiltonian path in G with the end vertices v and vv. What have we

just proved?

11.27 Prove that graph ^-coloring is NP-complete.The problem is to determine, given an

undirected graph G=(V, E) and an integer k, whether G can be coloredwith at most k

colors.

11.28 Prove that, if there is a polynomial-time approximation algorithm that can color any graph

with less than 4/3 times the minimal number of colors required to color that graph, then

P=NP.

11.29 Prove that the following problem, called feedback edge set, is NP-complete: Given a

directed graph G =(V, E) and an integer parameter k, determine whether G contains a set F
of at most k edges such that every directed cycle in G contains at least one edge from F.

11.30 Let Q be someNP-complete problem involving undirected graphs. Suppose that you find a

polynomial-time algorithm that solves Q for some particular restricted classof graphs (e.g.,

planar graphs, graphs containing perfect matchings, Eulerian graphs). Does this algorithm

imply that all NP-complete problems involving undirected graphs can be solved in

polynomial time when restricted to that class?

11.31 Let G =(V, E) be an undirected graph, and let (v,, w,), (v2, w2) (vk, wk) be k pairs of
distinct vertices of G. Prove that the following problem is NP-complete:Determine

whether there exist k paths in G such that path / connects v, to vv,, and all paths are vertex

disjoint.

11.32 Let G = (V, E) be an undirected graph, such that each vertex is associated with some task.

Two vertices are connected if the corresponding tasks cannot be performed at the same time

(e.g., they need the same resource).This is the only limit on concurrency. Any set of tasks

such that no two of them are connected can be performed in one step. Prove that the

following problem is NP-complete:Given a graph G =(V, \302\243),and an integer parameter k,

determine whether all corresponding tasks can be performed in at most k steps.
*

11.33Let G = (V, E) be an undirected graph such that the edges incident to each vertex are

ordered in a cyclic order. There is no relationship between ordering at different nodes.

Suppose further that G is Eulerian. The problem is to find an Eulerian tour covering G that

satisfies the following \"noncrossing\" property: If the tour enters a vertex v at an edge e,
then the next edge in the tour must be adjacent to e in the cyclic order imposed on the edges
incident to v (from either side of e). Oneway to view this property is to look at a road map.
The goal is to travel through all the edges (road segments) such that an intersection (vertex)
is never crossed except from one edge to its neighbor. Prove that determining whether such
an Eulerian tour exists for a given graph and cyclic orderings is NP-complete. (The
problem remains NP-complete for planar graphs, but the proof is more difficult.)

11.34 Show an example in which the simple backtracking algorithm described in Section 11.5 for

3-coloring a graph results in exponential number of nodes.

11.35 The following is a simple heuristic for finding a vertex cover. In each step of the algorithm,

374 NP-Completeness

the vertex of highest degree (ties are broken arbitrarily) is added to the cover, then it is
removed from the graph together with all its incident edges. The algorithm terminates when

no more edges remain. Since an edge is removed only after a vertex incident to it is

included in the cover, the algorithm indeed finds a vertex cover. This is a greedy algorithm
since it always selects the vertex with the highest \"payoff.\" The worst-case behavior of

this algorithm is not very good. Show an example of a graph and an order of execution of
this algorithm that leads to a vertex cover with more than twice the number of vertices of
the minimum cover.

11.36 Show an instance of the bin packing problem for which the first-fit algorithm gives a

solution using 5/3 times more bins than the optimal solution.

11.37 You are a traveling salesman of the 1980s. Your boss has asked you to visit n cities, and

you are planning your flight itinerary. You do not care about the cost of travel \342\200\224the

company is going to pay your expenses anyway. What you want to maximize is the benefits

you will receive as a frequent flyer! In other words, you want to maximize the length of the

entire trip. You can assume that the mileage computed by the airlines is actual mileage, so

this is an Euclidean problem. Also, do not worry about choosing different airlines. You

just want to maximize the total mileage. Prove that this problem is NP-complete, and

suggest approximation algorithms for it.

11.38 Let Ci, C2, .., Cn be a set of coursesoffered at a certain university, and let f,, t2,..., tn be

the time intervals (not necessarily disjoint) during which the courses are offered. For

example, f, may be Tuesday from 10:00 to 11:00,t2 may be Tuesday from 10:30 to 12:00,

and so on. Your job is to assign classroomsto the courses. The only requirement is that no
two courses overlap at the same time at the same room. The goal is to use the minimal

number of classrooms that satisfies the requirement.

a. Reduce this problem to a coloring problem, and design an efficient algorithm to solveit.

b. Discuss why your solution does not imply that P = NP (even though coloring is an NP-

complete problem).

CHAPTER 12

PARALLEL ALGORITHMS

A person with one watch knows what time it is;

a person with two watches is never sure.

Anon

In the first place, it is to be remarked that, however small

the republic may be, the representatives must be raised to a

certain number, in order to guard against the cabals of the

few; and that, however large it may be, they must be limited

to a certain number, in order to guard against the

confusion of the multitude.

James Madison, 1787

12.1 Introduction

The subject of parallel computing has moved from the exotic to mainstream computer
science within a decade. It is expanding very fast (even relative to other areas of

computer science). There are numerous types of parallelcomputers in operation, ranging
from 2 to 65,536 processors.The differences between the various existing parallel
machines, evenas far as the naive user is concerned, are major. We can no longer adopt
one \"generic\"model of computation and hope that it adapts to all parallel computers.
Designingparallel algorithms, analyzing them, and proving them correct is much more
difficult than the corresponding steps for sequential algorithms.

We cannot hope in this short chapter to cover all (or even most) areas in parallel

computing. We present a variety of examples using different models of computation and

different techniques. We try to give the flavor of parallelalgorithms and to explore the
difficulties in designing them. We start with some common characteristics. We then

briefly describe the main models of parallel computing used in this chapter, and follow

. ins

376 Parallel Algorithms

with examples of algorithms and techniques.
The main measures of complexity for sequential algorithms are running time and

space utilization. These measures are important in parallel algorithms as well, but we

must also worry about other resources. One important resource is the number of

processors. There are problems that are inherently sequential, and they cannot be

\"parallelized\" even if an infinite number of processors is available. Most other

problems, however, can be parallelized to a degree.The more processors we use \342\200\224
up

to a certain limit \342\200\224the faster the algorithm becomes. It is important to study the

limitations of parallel algorithms, and to be able to characterize the problems that have

very fast parallel solutions.Sincethe number of processors is limited, however, it is also

important to use the processors effectively. Another important issue is communication

among the processors. Generally, it takes longer to exchange data between two

processors than it does to perform simple operationson the data. Furthermore, some

processors may be \"close\" to one another, whereas other processors may be farther

apart. Therefore, it is important to minimize communication, and to arrange it in an

effective way. Yet another important issue is synchronization, which is a major problem
for parallel algorithms that run on independent machines connected by some

communication network. Such algorithms are usually called distributed algorithms.
For lack of space,we will not consider distributed algorithms in this book. We discuss

only models that assume full synchronization.

Some models of parallel computation restrict all processors to execute the exact

same instruction in each step. Parallel computers that follow this restriction are called
SIMD (Single-Instruction Multiple-Data) machines. The connection machine is a
prominent example of such computers. Parallel computers in which each processor can
execute a different program are called MIMD (Multiple-Instruction Multiple-Data)

machines. Unless specified otherwise, we will assume the MIMD model.

12.2 Models of Parallel Computation
A comprehensive survey of parallel machine modelsis beyond the scope of this book.
We mention only a few major models, with emphasis on those that are used in this

chapter. We include, in this section, some general discussion and definitions that apply
to many models. Each of the following sections covers one type of model,and includes a

more detailed description of the model and examples of algorithms for it.

We denote the running time of an algorithm by T(a?, /?), where n is the input size
and p is the number of processors. The ratio S(p) = T(n, \\)/T(n,p) is called the

speedup of the algorithm. A parallel algorithm is most effective when S(p)=p, in which

case we say that the algorithm achieves a perfect speedup. The value of T (a?, 1) should

be taken from the best known sequential algorithm. An important measure of the

utilization of the processors is the efficiency of a parallel algorithm, which is defined as

\302\243(\342\200\236,p)=am
= j>o>_.

p pT(nyp)

The efficiencyis the ratio of the time used by one processor (with a sequential algorithm)

12.2 Modelsof Parallel Computation 377

and the total time used by p processors. (The total time is the actual elapsed time

multiplied by the number of processors.) The efficiency indicates the percentage of the

processors' time that is not wasted, compared to the sequential algorithm. If E(n, p)= 1,
then the amount of work done by all processors throughout the execution of the algorithm

is equal to the amount of work required by the sequential algorithm. In this case, we get
the optimal use of the processors. Obtaining such an optimal efficiency is rare, because
most of the time the parallel algorithm introduces some overhead that was not required

by the corresponding sequential algorithm. One of our goals is to maximize the

efficiency.

When we design a parallelalgorithm we could fix p, according to the number of

processors available to us, and try to minimize T(a?, p). But, doing so would potentially
require a new algorithm whenever the number of processorschanges. It is more

desirable to find an algorithm that works for as many values of p as possible. We discuss

next how to translate an algorithm that works for a certain value of p to algorithms for
smaller values of p, without changing the efficiency significantly. In general, we can

modify an algorithm with T(n,p)=X to an algorithm with T{n, plk)~kX, for any

constant k>\\. In other words, we can use a factor of k less processors running for a

factor of k more time. We construct the modified algorithm by replacing each step of the

original algorithm with k steps in which one processor emulates the execution of one step
of k processors. This principle cannot be appliedto all situations. For example, k may
not divide p, the algorithm may depend on a certain interconnection pattern of the

processors (as discussedin Section 12.4), or the decision concerningwhich processors to

emulate may require computation time. However,this principle, called the parallelism

folding principle, is quite general and useful. It shows that we can reduce the number of

processorswithout changing the efficiency significantly. If, for example, the original

algorithm (which was designed for a large p) exhibits a good speedup, then we can obtain

algorithms achieving about the same speedup for any smaller value of p. Therefore, we
should try to get the best speedup with the maximal number of processors, provided that

the efficiency is good (i.e., close to 1). Then, if we have fewerprocessors,we can still

use the same algorithm. On the other hand, parallel algorithms with small efficiency are

useful only for a large number of processors. For example, suppose that we have an

algorithm with T(n, \\)
= n and T(n, n) =

\\og2n, which implies that the speedup
S(n) =

n/\\og2n
\342\200\224a very impressive speedup \342\200\224and the efficiency E(n, n)= l/log2\302\253.

Suppose now that the number of processorsavailable to us is p =256, and that n = 1024.

The running time of the parallel algorithm is 7(1024, 256) = 41og21024= 40 (assuming

that folding is possible), which is a speedup of about 25 over the sequential algorithm.
On the other hand, if p -16, then the running time would be 640, which is not a good
speedup (less than 2 with 16 processors).

The various models of parallel computation differ mainly in the way the processors

communicate and synchronize. We will consider only models that assume full

synchronization, and concentrate on different communication paradigms. The shared-

memory models assume that there is a random-access shared memory, such that any

processor can access any variable with unit cost. This assumption of unit-cost access

regardless of the number of processors or the size of the memory is unrealistic, but it is a

378 Parallel Algorithms

good first approximation. The shared-memory models differ in the way they handle

access conflicts.We discuss several different alternatives in Section 12.3.

Shared memory is usually the easiest way to model communication, but it is the

most difficult model to implement in hardware. Other models assume that the processors

are connected through an interconnection network. An interconnection network can be

represented by a graph, such that the vertices correspond to the processors and two

vertices are connectedif the corresponding processors have a direct link between them.

Each processor usually has a local memory that it can access quickly. Communication is
done through messages, which may have to traverse several links to arrive at their

destinations. Therefore, the speed of the communication depends on the distance

between the communicating processors. Many different graphs have been studied as
interconnection networks. We will mention several popular ones in Section 12.4.

Parallel computers based on interconnection networks with message passing are

sometimes calledmulticomputers.
Another model that we discuss is that of systolic computation. A systolic

architecture resemblesan assembly line. The data move through the processors in a

rhythmic fashion, and very simple operations are performed on them. Instead of having

to access a shared (or nonshared) memory, the processors receive their input from their

neighbors, operate on it, and pass it on. Systolic algorithms are discussed in Section
12.5.

A basic theoretical model that we will use only for illustration purposes is that of a

circuit. A circuit is a directedacyclic graph in which the vertices correspondto simple

operations and the edges show the movement of the operands. For example,a Boolean

circuit is one in which all indegrees are at most 2 and all operations are Boolean
operations (or, and, and not). There are designated vertices for input (with indegree of
0), and for output (with outdegree of 0). The depth of a circuit is the longest path from

an input to an output. The depth corresponds to the parallel running time.

12.3 Algorithms for Shared-Memory Machines

A shared-memory computer consists of several processors and a shared memory. We
use only fully synchronized algorithms in this section. We assume that the computation

consists of steps. In each step, each processor performs an operation on the data it

possesses, reads from the shared memory, or writes into the shared memory. (In practice,
each processor may also have localmemory, but we assume that all memory is global.)
The

shared-memory models differ in the way they handle memory conflicts. The
Exclusive-ReadExclusive-Write (EREW) model does not allow more than one processor
to access the same memory location at the same time. The Concurrent-Read Exclusive-

Write (CREW) model allows severalprocessorsto read from the same memory location
at the same time, but only one processor can write. Finally, the Concurrent-Read

Concurrent-Write (CRCW) model posesno restrictions on memory conflicts.
The EREW and CREW models are well defined, but it is not clear what is the

result of two processors writing at the same time to the same location. There are several

alternatives to handle concurrent writes. The weakestCRCW model \342\200\224and the only

12.3 Algorithms for Shared-MemoryMachines 379

CRCW model we utilize in this book \342\200\224allows several processors to write to the same

location at the same time only if they all write the same thing. If two processors attempt

to write different values to the same location at the same time, the algorithm halts.

Surprisingly, as we will see in Section 12.3.2, this feature is very powerful. Another

alternative is to assume that the processors are labeled, and that, when several processors
write to the same location at the same time, the highest-labeled processorsucceeds.Yet

another possible assumption is that an arbitrary processor succeeds.

12.3.1 Parallel Addition

We start with a simple example of a parallel algorithm, developed by induction, for a

problem that looks inherently sequential at first glance.

The Problem Find the sum of two AZ-bit binary numbers.

The regular sequential algorithm starts at the least significant bits, and adds two bits at a

time with a possible carry. It seems that we cannot be sure of the outcome of the /th step

until the two / - 1 least significant bits are added, since there may or may not be a carry.
Nevertheless, it is possible to design another algorithm.

We use induction on n. It will not help much to go from n-\\ to az, since this

implies an iterative sequential algorithm. The divide-and-conquerapproach has a much

better potential for parallel algorithms, since it may be possible to solve all smaller parts

in parallel. Suppose that we divide the problem into two subproblems of size nil (we

assume that n is a power of 2 for simplicity). We can find the sums of the two pairs in

parallel. But we still have the problem of the carry. If the sum of the least significant

pair has a carry, we have to changethe sum of the most significant pair.

The key observation here is that there are only two possibilities \342\200\224we either have a

carry or we do not. Therefore, we can strengthen the induction hypothesis to include

both cases. The modified problem is to find the sum of the two numbers with and

without an initial carry. Suppose that we now solve this modified problem for both pairs.

We get four numbers: L, Lc, /?, and /?c, which correspond to the sum of the least

significant pair with no initial carry, the same sum with an initial carry, and the

corresponding sums for the most significant pair, respectively. For each of these sums,
we also find whether it generates a carry. The final sum 5, without initial carry, is L and
either R or /?c, depending on whether L had a carry. The final sum Sc is the same as 5,
exceptthat L is replaced by Lc.

We solve a problem of size n by two subproblems of size nil and a constant

number of (conquer) steps. Since both subproblems can be solved in parallel
\342\200\224

assuming that the processors can access different bits independently \342\200\224we obtain the

recurrence relation T(n, n) = T(n/2, a?/2)+6>(1),which implies that T(n, n) = (9(loga?).

Furthermore, since both subproblems are completelyindependent, this algorithm assumes

only the EREW model. This algorithm may not be the best one for parallel addition (see,

380 Parallel Algorithms

for example, Ladner and Fischer [1980]), but it is a good example of an easy

parallelization of an algorithm. Once it becomes clear that the problem can be solved

very quickly in parallel, the solution can be further improved.

12.3.2 Maximum-Finding Algorithms

The Problem Find the maximum among n distinct numbers, given

in an array.

We solve this problem for two different shared-memory models\342\200\224EREW and CRCW.

The algorithms for both models use techniques that are used for many other problems.

EREW Model
The straightforward sequential algorithm for finding the maximum requires n -1

comparisons.We can think of a comparison as a game played between the two numbers,
with the larger of the two winning. The maximum-finding problem is thus equivalent to

running a tournament with the winner being the maximum of the whole set. An efficient

way to run a tournament in parallel is to use a tree. The players are divided into pairs for
the first round (with possibly one player sitting out, in case of an odd number of players),
all the winners are again divided into pairs, and so on, until the finals. The number of
rounds is riog2Az]. We can obtain a parallel algorithm from the tournament by assigning
a processor to every game (think of the processor as the referee of the game). We have
to ensure,however, that each processor knows the two competing numbers. This can be
arranged by putting the winner of the game in the larger indexed position of the two

players. That is, if the game is played between xf and Xj such that j > /, then the maximal

of Xj and Xj is put in position j. In the first round, processor Pf compares jc 2, -1 to x2j
(1 <i <nll\\ and exchanges them if necessary; in the second round, P{ compares jt4/_2 to

*4/ 0 ^i^n/4), and so on. Since each number is involved in only one game at a time, an

EREW model is sufficient. The running time of this simple algorithm is clearly O (log n).
Let's try now to minimize the number of processors.

The algorithm we just presented requires \\nll\\ processors, and we have

T(n\\nl2\\)=\\\\og2n\\. Since the sequential algorithm achieves T(n, 1)= \302\253-1, the

efficiency of the parallel algorithm is E (n, nil) = 1/log2fl. If nil processors are available

anyway (e.g., if the maximum-finding algorithm is a part of another algorithm that

requires them), then this algorithm is simple and efficient. With some modifications,

however, we can achieve a parallel time of O (logn) with O (1) efficiency.
The total number of comparisons required for this algorithm is n -1, the same as

the sequential algorithm. The reason for the low efficiency is that many processors are

idle in later rounds. We can improve the efficiency by reducing the number of processors
and performing load balancing in the following way. Suppose that we use only about

nl\\og2n processors. We divide the input into A?/log2A? groups, with about log2A? elements

per group, and assign a group to each processor. In the first phase, each processor finds

12.3 Algorithms for Shared-Memory Machines 381

the maximum in its group, using the sequential algorithm that takes about log2fl steps. It

remains now to find the maximum among about nl\\og2n maximums, but there are now

enough processors to use the tournament algorithm. The running time of this algorithm

(assuming that n is a power of 2) is r(AZ,[Az/log2Az]) = 21og2AZ. The corresponding
efficiencyisE(n)= lfr. Next, we formalize the idea we just used for saving processors.

We call a parallel algorithm static if the assignment of processors to actions is

predefined.We know apriori, for each step / of the algorithm and for each processor Pp
the operation and the operands Pj uses at step /. The maximum-finding algorithm, for

example, is a static algorithm, because all the \"games\" are prearranged.

\342\226\241Lemma 12.1

If there exists an EREW static algorithm with T(n, p) = O(t), such that the

total number of steps (over all processors) is s, then there exists an EREW

static algorithm with T(n, sit) = O (t).

(Notice that, if s is equal to the sequential complexity of the problem, then

the modified algorithm has an efficiency of 0(1).)

Proof: Let a{ (i = 1,2,...,/) be the total number of steps performed by all

processors in step / of the algorithm. We have
\302\243at=s. If #,<$//, then there are enough

processors to perform step /, and we do not have to change it. Otherwise, we replace step
/ with |~0,7(5/01 stePs in which the available sit processors emulate the steps taken by the

p processorsin the original algorithm (following the folding principle). The total number

of stepsis now

i
/=1

^+1 = *+--i>- = 2l
(slt)\\

Hence, the running time of the modified algorithm is still O (t). \342\226\241

Lemma 12.1 is known as Brent's lemma after Brent [1973] (which contains a proof of

the same spirit of a more complicatedcase). Brent's lemma shows that, in some cases,

the efficiency of a parallel algorithm depends mainly on the ratio between the total

number of operationsperformed by all processors and the running time of the sequential

algorithm.
We need the restriction to static algorithms because we must know which

processors to emulate. Lemma 12.1is valid for nonstatic algorithms as well, provided
that the emulation can be done quickly. An example of a case where Lemma12.1is not

valid is as follows. Supposethat there are n processors and n elements. After the first

step, some of the processors decide(basedon the results of the first step) to withdraw.

The same thing happens after the second step, the third step, and so on. This algorithm is

similar to the tournament algorithm, except that, in this case, we do not know which

processors withdraw. If we try to emulate the remaining processors, say, after the first

step, we need to know which of them are still active. But, it may require some

computation time to find that out.

382 Parallel Algorithms

CRCW Model

It may seem at first that a parallel algorithm cannot find the maximum in less than log2fl

steps if only comparisons are used. But this is not so. The following algorithm, whose

parallel running time is 0(1), illustrates the power of concurrent writes. We use the

version of concurrent writes in which two or more processors can write to the same

location at the same time only when they write the same thing.

We use n(n-\\)/2 processors, and assign a processor P^ to each pair {/,j) of

elements. We also allocate another shared variable v, for each element xh and initialize

v, to 1. In the first step, each processor comparesits two elements and writes a 0 in the

shared variable associated with the smaller element. Since only one element is larger
than all others, only one v, remains 1 (see also Exercise 12.12). In the second step, the

processors associated with the winner can determine that it is the winner and can

announce this fact. This algorithm requires only two steps, independent of n\\ its

efficiency, however, is very poor, since it requires 0(n2) processors. We call this

algorithm the two-step algorithm.
We can improve the efficiency of the two-step algorithm by using a method similar

to the one for the EREW model. We divide the inputs into groups such that we can

allocate enough processors to find the maximum of each group by the two-step algorithm.
As the number of candidates declines, the number of available processors per candidate
increases,and the group size can be increased.The two-step algorithm shows that, if the

size of a group is ky then k(k- l)/2 processors are sufficient to find the group's maximum
in constant time. Assume that we have n processors overall, and that n is a powerof 2.

In the first round, the size of each group is 2, and the maximum of each group can be

found in one step. In the second round, only nil elements are left, and we still have n

processors. If we set the size of each group to be 4, then we have nl% groups, allowing

us to allocate 8 processors per group. Thisis sufficient, since 4 \342\200\242
(4- l)/2 = 6. In the third

round, we have nl% remaining elements. Let's calculate the maximal group size that we
can afford. If the group size is #, then the number of groups is fl/8g, and there are 8g

processors available per group. To use the two-step algorithm, we need g(g-\\)ll

processors for a group of size g\\ therefore, we must have g(g - l)/2<8#,which implies

that g < 17 (it is simpler to use g = 16). We leave it to the reader to verify that the size of
the group can be squared in each round, leading to an algorithm that requires
O (log logn) rounds.

Although this algorithm is slightly slower that the two-step algorithm (O (log logn)
versus 0(1)), its efficiency is much better. It is 0(l/loglogAz), versus 0(\\/n) of the

two-step algorithm. This technique has been called divide and crush, since we divide
the input into groups of size small enough that we can \"crush\" them with lots of

processors. This technique is not limited to the CRCW model.

12.3.3 The Parallel-Prefix Problem

The parallel-prefix problem is important because it serves as a major building block in

the design of numerous parallel algorithms. Let \342\200\242be an arbitrary associative binary

operation
\342\200\224

namely, it satisfies x%(yZ) = (x9y)9z \342\200\224which we will simply call

12.3 Algorithms for Shared-Memory Machines 383

product. For example, \342\200\242can represent addition, multiplication, or maximum of two

numbers.

The Problem Given a sequenceof numbers x \\, jc2, ..., *\342\200\236,compute

the products x \\ mx2 \342\200\242* * *
\342\200\242**,for all k, such that \\<k<n.

We denote by PR(i, j) the product jc/*jc/+i \342\200\242\342\200\242\342\200\242\342\200\242
\342\200\242xj.

Our goal is to compute PR(\\,k)
for all k, \\<k<n. The sequential version of the prefix problem is trivial \342\200\224we simply

compute the prefixes in order. The parallel-prefix problem is not as easy to solve. The
method we use is divide and conquer. As usual, we assume that n is a power of 2.

Induction hypothesis: We know how to solve the parallel-prefix problem

for nil elements.

Thecaseof one element is trivial. The algorithm proceeds by dividing the input in half,

and solving each half by induction. Thus, we obtain the values of PR(\\,k) and

PR(n/2+\\,n/2 + k\\ for all k% \\<k<nl2. The values for the first half can be used

directly. The values PR(\\,m), for n/2<m<n can be obtained by computing PR(1, nil)
\342\200\242PR(n/2+\\ym). Both terms are known by induction (notice that we use the

associativity of the operation). The algorithm is given in Fig. 12.1.

Complexity The input is divided into two disjoint sets in each recursive call of the

algorithm. Both subproblems can thus be solved in parallel under the EREW model. If

we have n processors for the problem of size az, then one-half of them can be allocated to

each subproblem. The combining step requires n/2 steps, and they can also be
performed in parallel, but an CREW model is required becausethey all use x[Middle].

Although several processorsmust read x[Middle] at the same time, they all write to

distinct locations, so a CRCW model is not required. Overall, T(n, n) = 0(\\ogn), and

E(n yn) = 0(\\/\\ogn) (since the sequential algorithm clearly runs in O(n) steps).

Unfortunately, we cannot improve the efficiency of this algorithm by using Brent's

lemma. The total number of steps used in the algorithm is O (n logn). The waste comes

from the second recursive call. A sequential algorithm can compute all the prefixes

without the second recursive call. Therefore, if we want to improve the efficiency, we

must improve the algorithm such that the total number of steps is reduced. We do that

next. An EREW algorithm for this problem (with the same resource bounds) is the

subject of Exercise 12.18.

Improving the Efficiency of Parallel Prefix
The trick is to use the same induction hypothesis, but to divide the input in a different

way. Assume again that a? is a power of 2 and that there are n processors. Let E denote
the set of all Jt,s with i even. If we find the parallel prefixes of all elements in \302\243,then

finding the rest of the prefixes (those with odd indices) is easy: If PR (1, 2/) is known for

all i such that 1 < i < n/2, then, for each odd prefix PR (1, 2/ +1),we need to compute one

384 Parallel Algorithms

Algorithm Parallel_Preftx_l (x, n) ;
Input: x (an array in the range 1 to n).

{ we assume that n is a powerof 2 |

Output: x (the /th element contains the /th prefix).

begin

PPJ(Ln);
end

procedure PP_1 (Left, Right) ;

begin

if Right
-

Left = 1 then

x[Right] := x[Left] %x[Right] { \342\200\242is an associative binary operation }
else

Middle := (Left + Right - l)/2 ;
do in parallel

PP_l(Leftf Middle); {assignedto P, to Pnl2 }

PPJ(Middle + 1,Right); {assigned to Pn/2+\\ to Pn }

for i := Middle + 1 to Right do in parallel

x[i] :=x[Middle]mx[i]
end

Figure 12.1 Algorithm Parallel prefix J.

more product (f7?(l, 2/) \342\200\242Jt2/+1). We can find the prefixes of the elements in E in two

phases. First, we compute (in parallel) jc2/-i*jc2/ for all 1</<az/2, and we store the

result in *2/- In other words, we compute the products of all elements of E with their left

neighbors. Then, we solve the Az/2-sized prefix problem for E (by induction). The result

for each x2i is the correct prefix, since each x1{already includesthe product with jc2/-i -

And if we know the prefixes of all the even indices,then we have already seen how to

compute the odd prefixes in one more parallel step. We leave it to the reader to verify

that this algorithm requires only the EREW model. The algorithm is given in Fig 12.2

(see alsoExercise12.17)

Complexity Both loops in algorithm Parallel_Prefix_2 can be performed in parallel
in O (1) time with nil processors. The recursive call is applied to a problem of half the

size, so the running time of the algorithm is O(logAz). The total number of steps S(n)
satisfies the recurrence relation S(n) = S(n/2) +n-1, 5(2)=1, which implies that

S(n) = 0(n). But, this implies that we can now use Brent's lemma to improve the

efficiency. By Brent's lemma, we can modify the algorithm to run in time 0(logA?) with

only 0(n/\\ogn) processors,leading to an 0(\\) efficiency. The key to this improvement
is using only one recursive call (instead of two) while still being able to perform the

merge step in parallel.

12.3 Algorithms for Shared-Memory Machines 385

Algorithm Parallel_Prefix_2 (x, n) ;

Input: x (an array in the range 1 to n).
{ we assume that n is a powerof 2)

Output: x (the /th element contains the /th prefix).

begin

PPJ(I);
end

procedure PP_2 (Inc);

begin

if Inc = nil then

x[n] := x[n/2]mx[n] {\342\200\242is an associative binary operation}
else

for i := I to n/(2
\342\200\242

Inc) do in parallel
x[2 \342\200\242

/
\342\200\242Inc] := x[2 \342\200\242i \342\200\242Inc-Inc] \342\200\242jc[2

\342\226\240/ \342\226\240Inc] ;

PP_2(2Inc) ;

for i := J to n/(2 Inc)-\\ do in parallel
x[2 \342\200\242/ \342\200\242Inc -\\-Inc] := x [2 \342\200\242i \342\200\242Inc] \342\200\242*[2

\342\226\240/ \342\226\240Inc -\\-Inc]

end

Figure 12.2 Algorithm Parallel J'refixj.

12.3.4 Finding Ranks in Linked Lists

Generally, it is much more difficult to deal with linked representations in a parallel

environment than with arrays. Linked lists, for example, are inherently sequential. If the

only access to the link list is through the head of the list, then we have to traverse the list

one element at a time with no possibility of parallelism. In many cases, however, the

elements of the list (or pointers to them) are actually stored in a contiguous array; the

order imposed on the elements by the list is independent of the array. In such cases,
where parallelaccessto the list is possible, there is hope for fast parallelalgorithms.

The rank of an element in a linked list is defined here as the distance of the

element from the end of the list (thus, the head has rank az, the second element has rank

n- 1, and soon).

The Problem Given a linked list of n elements, all of which are
storedin an array A [\\..n], compute for each element its rank in the list.

We can solve the sequential problem by simply traversing the list. The method we will

386 Parallel Algorithms

use for designing a parallelalgorithm for this problem is called doubling. We assign a

processor to each element. Initially, each processor knows only the right neighbor of its

element in the list. In the first step, each processor finds the neighbor of its neighbor.
After the first step, each processor knows the element at distance 2 from its element. If,

at step /, each processorknows the element at distance k from its element, then in one

step eachprocessorcan find the element at distance 2k. Thisprocesscontinues until the

end of the list is reached. Let N [i] be the farthest element to the right of / in the list that

is known to Pt at a given moment. Initially, N[i] is /'s right neighbor (except for the last

element whose right neighbor is nil). Basically,in each step, Pt updates N[i] to N[N[i]]
until the end of the list is reached. Let R[i] be the rank of /. Initially, R [i] is set to 0,
exceptfor the last element in the list, for which it is set to 1 (this element is detectedby

its nil pointer). When a processorencounters a neighbor with a nonzero rank /?, this

processor can determine its own rank. Initially, only the element of rank 1 knows its

rank. After the first step, the element of rank 2 finds that its right neighbor has rank 1, so

it knows that its own rank is 2. After the second step, rank 3 and rank 4 are determined,
and so on. If f\\ finds that N[i] points to a \"ranked\" element of rank R after d doubling
steps, then /'s rank is 2d~l +/?. The precisealgorithm is given in Fig 12.3. This

algorithm can be easily adapted to the EREW model (Exercise 12.4).

Algorithm List_Rank (N);

Input: N (an array in the range 1 to n of indices).

Output: N (the rank of each element in the array).

begin

D:=l;

{ each processor can have its own local D variable;
we use only one D variable }

do in parallel { processor P(is activeuntil R [i] becomes nonzero }
R[i]:=0;
ifN[i]= nil then R[i] = l ;
while R[i] =0do

ifR[N[i]]*0then

R[i]:=D+R[N[i]]
else

N[i]:=N[N[i]];
D := 2D

end

Figure 12.3 AlgorithmListRank.

Complexity The doubling process guarantees that each processor will reach the end

of the list in at most [~log2\"l steps. Therefore, T(n, n) = 0 (logn). The efficiency is

E(n, n) = 0(\\llogn). Improving the efficiency requires making a major modification to

12.3 Algorithms for Shared-Memory Machines 387

the algorithm, since the total amount of work is 0(n logn). (See the Bibliography

section for a discussion on recentresults.)
The rank computation allows us to convert a linked list into an array in O(logAz)

time (even though with less than perfect efficiency). After all the ranks are computed,
the elements can be copied into the appropriate locations in the array, and the rest of the

computation can then be performed directly on the array, which is much easier.

12.3.5 The Euler's Tour Technique
We can parallelize many types of algorithms on trees by operating on a whole level of

the tree in parallel (e.g., the tournament algorithm to find the maximum). The running
time of such an algorithm is proportional to the height of the tree. If the tree is

reasonably balanced, and its height is O(logAz) (where n is the number of nodes), then

this approach is quite good. However,when the tree is not balanced, the height may be

as high as az-1, and we need another approach. The Euler's tour technique is

instrumental in designing parallel algorithms on trees, and especially on unbalanced

trees.

Let T be a tree. We assume that T is represented by the regular adjacency-list

representation, with one additional feature. As usual, there is a pointer E(i) to the start

of the list of edges incident to the vertex / (\302\243(/) nil if this list is empty). Each list

contains records that include the corresponding edge (/, j) (it is sufficient to store only y,

since / is known), and a pointer to the next edge in the list Next(iy j). Each (undirected)

edge (/, j) is represented by two (directed) copies, one for (/, j) and one for (/, /). The
additional feature is an extra pointer for each edge that points to the other copy of that

edge. We need that extra pointer to find the edge (/, /) quickly when edge (/, j) is given.
This representation is illustrated in Fig. 12.4 (the pointers connecting the copies are not

shown).

The key idea behind the Euler's tour technique is to construct a list of edges of the

tree that forms an Euler's tour of the directed version of the tree (in which every edge

appears twice). Once this list is built, many operations on the tree can be performed

1
E
I\342\200\224\342\226\272(1,2)\342\200\224> (1,5)

a b

2 \342\226\272(2,3) \342\226\272(2,1) \342\226\272(2,4)
c e d

3 \342\226\272(3,2)

f

4 \342\226\272(4,2)

5 \342\226\272(5,1)
h

Figure 12.4 The representation of the tree.

388 Parallel Algorithms

directly on the list almost as though the list was linear. A sequential algorithm can

always traverse the tree and perform operations together with the traversal. This

\"linearization\" of the tree allows us to perform such operationson the tree efficiently in

parallel.
We will see two examples of such operations. But first we discuss how to

construct the Euler's tour.

It is easy to find an Euler's tour of T (with every edge appearing twice)

sequentially. We can traverse the tree using depth-first search, taking the opposite order

of an edge whenever the search backtracks. We will do a similar thing in parallel. Let

NextTour (/, j) denote the edge following edge (/, j) in the tour. We claim that NextTour

is defined by the following rule, which can be easily computed in parallel:

{Next(j\\

i) if Next (j\\ i) is not nil

\302\243(/) otherwise.

In other words, the list of edges incident to a vertex is consideredin a cyclic order, such

that, if (/, 0 is tne last on /s list, then the first edge on that list, pointed to by \302\243(/), is

taken. For example, if we start with edge a in Fig. 12.4 (we assume that the edges

incident to each vertex are ordered clockwise), then the tour consists of the edges

a, d, #, c, /, e, b, h, and back to a. By choosing Next (J, i) to follow (/, j) in the tour, we

guarantee that (/, /) will be chosen only after all other edges incident to j are chosen.

Therefore, the subtree rooted at j will be completely traversed before we backtrack to /.
We leave the proof that this procedure is correctas an exercise.

Once the list is constructed, we canchoosea starting edge (r, t) (any edge will do),

and mark the edge beforeit in the tour as the end of the list. The vertex r is chosenas the

root of the tree. We can now number the edges according to their position in the list by

algorithm List_Rank (Fig. 12.3). Let R (/, j) denote the rank of edge (/, j) in the list (e.g.,

/?(r, t) =
2(n -1), where n is the number of vertices). We now show two examples of

operations on the tree \342\200\224
ordering the vertices in preorder traversal, and computing, for

all vertices, the number of their descendants.

Let (/, j) be an edge in the tour. We call (/, j) a forward edge if it points away

from the root, and a backwardedgeotherwise. The numbering of the edges allow us to

distinguish between forward and backward edges: An edge (/, j) is a forward edge if

R (/, j) > R (/, /). Since the two copies of the edge (/, j) are connected by a pointer, we
can easilydetermine which one of them is the forward edge. Furthermore, we can make

this determination for all edges quickly in parallel. We are interested in forward edges

because they impose preorder on the vertices. Let (/, j) be the forward edge leading to j
(namely, / is /s parent in the tree). If/(/, j) is the number of forward edges following

(/, j) in the list, then the preorder number for j is n -f (/', j). (The preorder number of r,

which is the only vertex with no forward edge pointing to it, is 1.) We can now use a
variation of the doubling algorithm to compute, for each forward edge (/', y), the value of
/ 0\\ 7)\342\200\242We leave the exact implementation of this doubling algorithm as an exercise.

The secondexample involves computing, for each vertex y\", the number of vertices
below j (descendants) in the tree. Let (/, j) be the (unique) forward edge leading to j.
Considerthe edges following the edge (/', j) in the list. The number of verticesbelow j in

the tree is equal to the number of forward edges that are below j in the tree. We already

12.4 Algorithms for Interconnection Networks 389

know how to compute in parallel the value of/(/, y), which is the number of forward

edges that are after (/, j) in the list. We can similarly compute the number of forward

edges /(/, /) following (/, /) in the list. It is easy to see that the number of descendants
of j is equal to/(/, j)-f(j, 0. which can be found again by the doubling technique. The
algorithms for preorder numbering and for finding the number of descendants can both be

performed in time T(n, n) =0 (logn)under the EREW model.

12.4 Algorithms for Interconnection Networks

Interconnection networks can be modeled by graphs (almost always undirected). The

processorscorrespond to the nodes and two nodes are connected if there is a direct link

between the corresponding processors. Each processorhas local memory, and can also
access, through the network, the local memories of other processors. Thus, all memory
can be shared, but the cost of accessing a variable depends on the locations of the

processor and the variable. A shared-memory access may be as quick as a local access

(if the variable happens to be in the same processor), or as slow as a traversal of the

whole network (in case the graph is a simple chain). It is usually somewhere in between.

Processors communicate by messages. When a processor wants to access a shared

variable that is located at another processor, it sends a message asking for this variable.

The message is routed across the network.

Numerous graphs have been suggestedas interconnection networks. The simplest
ones include linear arrays, rings, binary trees, stars, and two-dimensional meshes(grids).
The more edges we add to the graph, the better the communication becomes. But edges

are expensive (e.g., edges increasethe area required for the layout of the wires, which

increases the time for communication). We have to find the right tradeoff. There is no

one type of graphs that is good for all purposes. The performance on a certain graph

depends heavily on the communication patterns of the particular algorithm. There are,
however, several properties that are very useful. We list some of them below, together
with examples of interconnection networks.

The diameter of the graph is of great importance. (The diameter is the maximum

of all the shortest distances between any two nodes.) It determines the maximum number

of hops that a message may have to take. An/ix/j grid has diameter In, whereas an n-

node balanced binary tree has diameter 2log2(fl+ l)-2. A tree can thus deliver a

message(in the worst case) much faster than a grid. On the other hand, the tree has a

major bottleneck.All traffic from one half of the tree to the other half must pass through
the root. The two-dimensional mesh has no such bottlenecks, and it is very symmetric,
which is important for algorithms that communicate in a symmetric fashion.

A hypercube is a popular topology that combines the benefits of high symmetry,

small diameter, many alternate routes between two nodes, and no bottlenecks. A d-

dimensional hypercube consists of n = 2d processors. The addresses of the processors are

integers in the range 0 to 2d - 1. Therefore, each address contains d bits. ProcessorPx is

connected to processor Pj if and only if / differs from j by exactly one bit. The distance
betweentwo processors is never more than d, since we can go from Px to Pj by changing
at most d bits (one bit at a time). A four-dimensional hypercube is shown in Fig. 12.5.

390 Parallel Algorithms

Figure 12.5 A four-dimensional hypercube.

The hypercube provides a rich connection, since there are many different routes between

any two processors (e.g., we can changethe appropriate bits in any order). We can also

combine the hypercube with the mesh architecture by, for example, embedding meshes in

the faces of the hypercube. Othersuggestednetworks include the perfect shuffle, cube-
connectedcycles,quad and octal trees, mesh of trees,butterfly, and more.

12.4.1 Sorting on an Array

We start with the relatively simple problem of sorting on an array of processors. There
are n processors P X,P2, i>,Pn> and n inputs X\\,x2, ...,*\342\200\236.Each processor holds one

input. The goal is to distribute the input among the processors such that the smallest

input is in P x, the second smallest is in P2, and so on. In general, we may want to assign
more than one input to each processor. We will see that the same algorithm can be

adapted to this case as well. The processors are connected in a linear fashion. Each
processorP{ is connected to Pi+l, 1< / < n.

Since each processor can communicate only with its neighbors, the only
comparisons and possible exchanges can be done with elements that are consecutive in

the array. In particular, in the worst case, the algorithm must allow n - 1 steps,which is

the time it takes for an input to move from one end of the array to the other. The

algorithm is basically as follows. Each processorcompares its number to the number of
one of its neighbors, exchanges the numbers if they are in the wrong order, and then does
the same with the second neighbor. (We must alternate neighbors, because otherwise the

same numbers will be compared again.) The same process continues until all numbers

are in the correct order. The steps are divided into odd steps and even steps. In the odd

steps, the odd-numbered processorscompare their numbers with those of their right

neighbors; in the even steps, the even-numbered processors compare their numbers with

those of their right neighbors (see Fig. 12.6). This way, all processors are synchronized
and a comparison always involved the correct processors. If a processor does not have

12.4 Algorithms for Interconnection Networks 391

X i X2 Xt, X$ X$ X(y X-j ;

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

*8

Figure 12.6 Odd-even transposition sort.

the corresponding neighbor (e.g., the first processor in the second step), it remains idle

through this step. This algorithm is called the odd-even transposition sort. It is given

in Fig. 12.7. A numeric example of the algorithm is presented in Fig. 12.8. Noticethat

the sort in the example is completeafter only six steps. However, early termination can

be very hard to detect in a network. Therefore, in many cases it is better to let the

algorithm run to its worst-case completion.
Algorithm Sorting_on_an_Array seems natural and clear, but its proof of

correctness is far from obvious. For one thing, an element may move away from its final

destination. For example,in Fig. 12.8, 5 moves to the left for two steps before it starts

moving to the right, and 3 moves to the leftmost position and stays there for three steps
before it moves back to the right. Proving the correctness of parallel algorithms is

difficult, because of the interdependencies among the actions of the different processors.

Algorithm Sorting_on_an_Array (x, n)

Input: x (an array in the range 1 to az, such that xt resides at Pt).

Output: x (the array in sorted order, such that the /th smallest element is in Pt).

begin

do in parallel \\ n/2\\ times

/>2/-i and P2i comparetheir elements and exchange them

if necessary ; {for all i, such that \\<2i<n}
P2j and P2t+\\ compare their elements and exchange them

if necessary ; (for all i, such that 1 < 2/ < n }
[ifn is odd, then this step is done only |_a?/2J time }

end

Figure 12.7 Algorithm Sorting_on_an_Array.

392 Parallel Algorithms

1

/

J
6
i

2

J
7
i

4

J
5
i

1

8

L
2
i

6

L
4
i

7

L
6
i

1

2

j
8
i

4

J

6
i

6

J

7
1

1

4

4
i

8

8
i

8

8
1

i

5

J
7
i

/

J
5
i

2

j
5
I

i

6

L
/
I

7

L
2
i

5

L_

4

i

1

3
i

J

i

/

/
i

1

7

L
5
i

5

L
/
I

3

l_

2

i

I I I I I I

12 3 4 5 6 7 8

Figure 12.8 An example of odd-even transposition sort.

The behavior of one processor affects all other processor, and it is usually hard to focus
on only one processor and prove that its actions are correct; we have to considerall

processors together.

\342\226\241Theorem 12.2

When algorithm Sorting_on_an_Array terminates, the numbers are sorted.

Proof: The proof is by induction on the number of processors (or elements). If
there are only two processors, then one comparison sorts the two numbers. We assume
that the theorem is true for n processors and consider the case of n + 1 processors. Let's

focus our attention on the maximum element and assume that it is xm (e.g., x5 in Fig.

12.8). In the first step, xm will be compared to either xm_\\ or to ;cm+1, depending on
whether m is even or odd. If m is even, then no exchange will take place because xm is

greater than xm_x. But this is exactly the same as the case of xm residing initially at Pm-\\

(and an exchange taking place). Therefore, we can assume, without loss of generality,
that m is odd. In this case, xm is compared to ;cm+1, exchanged, and moved step by step

(diagonally) to the right (since it is greater than all other numbers) until it arrives at xn+\\

and stays there. This is its correct position, so the sort works correctly for the maximum

element.

We now must show that the rest of the elements are sorted correctly too. There are
n other elements, and we would like to use induction. To do that, we have to map the

execution of the n processors in the array of size n +1 to a possible execution of n -1

processors in an array of size n. This mapping is done as follows. Consider the diagonal

formed by the movement of the maximum element (see Fig. 12.9). The comparisons

involving the maximum element (i.e., those that are on the diagonal) are ignored. We

divide the other comparisons into two groups, the one below the diagonal and the one
above it. We then \"move\" the triangle above the diagonal one step down. In other

words, for the comparisons in the upper triangle, step / is now called step /+1. For

example, considerthe comparisons 1 versus 8 and 4 versus 2 in the first step of Fig. 12.8.

12.4 Algorithms for Interconnection Networks 393

Figure 12.9 The induction step in the proof of theorem 12.2.

The first comparison is on the diagonal, so it is ignored; the second one is above the

diagonal, so we consider it to be part of step 2 (instead of step 1). Therefore, step 2
consistsof 7 versus 5, 6 versus 1, and (from step 1) 4 versus 2. But, this is a valid even

step involving only n elements. We can now simply ignore step 1 (i.e., row 1) on the left

side of the diagonal and all comparisons involving the maximum element (the last

column), and the rest is exactly a sequence of comparisons that can result from running

the algorithm for n elements. By the induction hypothesis, the sort on n elements is

correct; therefore, this sort is correct too, and it requires only one more step. \342\226\241

So far, we have discussed the case of one input per processor. Supposenow that

each processor holds k inputs and consider first the case of only two processors. We

assume that the goal is to redistribute the elements such that the smallest k elements

reside at P x, and the largest k elements resideat P2> It is clear that in the worst case aH

elements must be moved, so we cannot do better than 2k element movements. One way

to achieve the sort is to repeat the following step until the sort is completed: P x sends its

largest element to P2 and P2 sends its smallest element to Px. The process terminates

when the largest elementin P x is not greater than the smallest elementin P2. This step

is called merge-split. If we use this step as the basic step in the odd-even transposition

sort, we can extend the sort to many elements per processor. Instead of a comparison and

possibly an exchange of neighboring elements, a merge-splitoperation is done.

Although the sorting algorithm presented in this section is optimal for an array, its

efficiency is low. We have n processors each running for n steps; therefore, the total

number of steps is n2. The low efficiency is not surprising, since an efficient sorting

algorithm must be able to exchange elements that are far away. The array cannot support

such an exchange. In the next section, we present interconnection networks that are

designed specifically for efficient sorting.

12.4.2 Sorting Networks

When we design an efficient sequential algorithm, we are concerned only with the total

number of steps. In a design of a parallel algorithm, we must also try to make the steps
as independent as possible. Consider mergesort (Section 6.4.3). The two recursive calls

394 Parallel Algorithms

are completely independent, and they can be performed in parallel. However, the merge

part
of the algorithm is performed in a serial manner. We place the /th element in the

final array only after the first / - 1 elements are placed. If we can parallelize the merge,
then we will be able to parallelize mergesort.

We now describe a different merge algorithm, developed by Batcher [1968], using

divide and conquer. We assume for simplicity that n is a power of 2. Let a i, a2,..., an

and bub2,..., bn be two sorted sequences that we want to merge, and let jc j, jc2, ..., x2n
be the final merged order (e.g., x\\ =rmn(aXy bx)). We want to merge disjoint parts of

these sequences in parallel so that the final merge becomes easy. This is done by

dividing the two sequences into two parts
\342\200\224the odd-indexed elements and the even-

indexed elements. Each part is merged with the corresponding part of the other

sequence, then a final merge is performed. Let o {,o2,...,on be the merged order of the

odd subsequences a^a3y ...,fl\342\200\236_iand bub3 ...ybn_Xy and let ex,e2, ...,\302\243\342\200\236be the merged
order of the even subsequences a2,a4, ...,an and b2,bA...,bn. Clearly,x{=o{ and

x2n=en. The rest of the merge is also easy to obtain, as can be seen by the following

theorem (see also Fig. 12.10).

\342\226\241Theorem 12.3

Following the notation above, for all i such that \\<i<n-\\, we have

x2i=min (oi+i, et) andx2i+\\ =max(oi+i, et).

Proof: Consider ex. Since et is the /th element in the merged order of the even

sequences, et is greater than or equal to at least / even elementsfrom both sequences.

a2

aA

<*8

nil

merge

network

-+ *2

-\342\200\242-*4

b2

b3

b4

b5
be
bi
bs

nil
merge

network

-* *10

-\342\200\242*ll

-\342\200\242x\\2

-\342\200\242*13

-\342\200\242*14

-\342\200\242*15

-\342\200\242*16

Figure 12.10 The circuit for odd-even merge.

12.4 Algorithms for Interconnection Networks 395

But, for each even element, we can add one more odd element that et is greater than

(since we started with two sorted sequences). Therefore, et is greater than or equal to at

least 2/ elementsfrom both sequences. In other words, ex >x2i. By the same argument,

tf,+i is greater than or equal to / + 1 odd elements, which implies that it is greater than or

equal to at least 2/ elementsaltogether. (We have to subtract 2 from the index, because

the first elements in both odd sequences do not add any more elements.) Hence,
\302\260i+\\^x2i- But now, by a variation of the pigeonhole principle, both et and oi+l must be

equal (in some order) to x2i and x2i+{. Thisis so because only e { and o2 can be equal to

x2 and jt3, and that makes only e2 ando3 fitjt4 andjt5,and soon. \342\226\241

The important property of Theorem 12.3is that the final merge can be obtained in

one parallel step. The rest is done by induction. The parallel algorithm follows directly

from the theorem. Figure 12.10 illustrates the recursive merge construction, and Fig.

12.11 shows the complete sort, which is called odd-even mergesort. The seemingly
small boxes on the left side of Fig. 12.11 (marked \"nil sort\") are recursive
constructions of the whole sort. The numbers on the right side are the input in the sorted

order.

Complexity The recurrence relation for the total number of steps TM(n) for the

merge procedure is TM(2n)= 2TM(n) + n-\\, TM(\\)= 1. Therefore, the total number of

comparisons is O (n log az), in contrast to the sequential algorithm that requires only O (n)

steps. The depth of the recursion, which corresponds to the parallel time, is O(logAz).
The recurrencerelation for the total number of steps Ts(n) for odd-even mergesort is

x\\6 +

Figure 12.11 The circuit for odd-even mergesort.

396 Parallel Algorithms

Ts(2n)
= 2Ts(n) + 0(n\\ogn)y 75(2)=1, which implies that Ts(n) = 0(n\\og2n). The

circuit contains n processors in each \"column\" and its depth is 0(log2Az), so overall

there are 0(n log2a?) processors in the circuit. (Notice that although the same processors
can be used for all columns, they will have to be almost fully connected.) The only type
of computation in the circuit is a comparison,and the only processors needed are

comparatorswith two inputs and two outputs.

12.4.3 Finding the Ath-Smallest Element on a Tree

We now assume that the interconnection network is a complete binary tree with n=2h~l

leaves. There are 2h - 1 processors, each associated with a node in the tree. The input is

a sequence x \\, Jt2,..., *\342\200\236,such that xt resides initially at leaf /. Tree machines have been

suggestedmainly for image-processing applications, where the leaves correspond to the

inputs (e.g., pixels in a picture) and the algorithms for manipulating them are hierarchical
(see,for example, [Uhr 1987]). In this section, we considerthe problem of finding the

Mi-smallest element. This example illustrates the translation of a sequential algorithm to

a parallel algorithm, and the use of pipelining (which is described in more detail in

Section 12.5).
First, we recall the sequential algorithm for finding the &th-smallest element

describedin Section 6.5. We assume, for simplicity, that the elements are distinct. The

algorithm is a probabilistic one. In each step, a random element x is chosenas the pivot.

The rank of x is computed by comparing x to all other elements and, according to

whether the rank is smaller or greater than ky the elements that are less than x or greater
than x are eliminated. The algorithm terminates when the rank of the pivot is k. The

expected number of iterations is O(logAz), and the expected number of comparisons is

0(n). There are three different phases in each iteration of the algorithm: (1) choosing a
random element, (2) computing its rank, and (3) eliminating. We first describe efficient

parallel implementations of eachphase,then improve the parallelization even further.

Choosing a random element can be achieved by a tournament arranged on the tree.

Each leaf sends its number to its parent where the number
*

'competes\" with the number
of its sibling leaf by flipping a coin. The winning number is then promoted up again, and

the same process continues up the tree until the root chooses the overall winner. (This
works only in the first iteration; we discuss later how to make it work after some

elements are eliminated.) The winning number is then \"broadcast\" down the tree, so

that all leaves can compareit with their number. If the identity of the pivot is known at

all the leaves, they can all compare their numbers to the pivot in one step. They then

send a 1 (if their number is smaller than or equal to the pivot) or 0 (otherwise) to their

parent node. The rank of the pivot is the number of Is that are sent up. Summing n

numbers up the tree is easy to do. The root can then broadcast the rank down the tree,
and each leaf can determine whether or not its number should be eliminated. Overall,
there are four \"waves\" of communication per iteration: (1) up the tree to choose a pivot;

(2) down the tree to broadcast it; (3) up the tree to compute its rank; and (4) down the

tree to broadcast the rank.

12.4 Algorithms for Interconnection Networks 397

The problem is that, after some elements are eliminated, the tournament is no

longer fair. In the extreme case, all elements in one-half of the tree, except for one, are

eliminated. The remaining element in that half will be promoted to the root without

competition. It will then be chosen with probability !/2, while other elements are chosen
with much smaller probabilities. We want to preserve the uniform randomness of the

choice. We can preserve it in the following way. Processors associated with values that

have been eliminated in previous rounds send up a nil value. Any element always wins

against a nil value. Every competing elementhas an associated counter, which is initially

1. The counter indicates the number of (real) \"opponents\" that participated in the part
of the tournament involving this element (i.e., the number of elements in the subtree that

have not yet been eliminated). When an element wins a game at some node in the tree, it

is promoted upward, and the losing element's counter is added to its counter. Every

game is now played with a biased coin according to the counters of the competing
elements. For example, if x wins its first game (say, against y) and z advances by default,
then ;t's counter is 2 and z's counter is 1. If jc now plays against z, then the game is

played with 2:1 bias toward x. Overall, z has a probability of lA of winning this game,
and both x and y have probability of lh \342\200\242% = y/j of winning both their games. Thisprocess
guarantees that the final choice is uniformly selected among the participating elements.

Complexity The number of (parallel) steps involved in each phase is equal to four

times the height of the tree. Since this algorithm eliminates elementsin exactly the same

way as the sequential algorithm, the expected number of phases is still O(logAz). The

expected running time is thus O (log2Az).

A Sketch of an Improved Algorithm
The root of the tree is a major bottleneckin the computation. Most of the information

must pass through the root, but the root has only two connections and all leaves are at

distance h - 1 from it. If we cannot improve the connections, we should at least make the

root as busy as possible. In the algorithm we just described, the root and the leaves are
active for one step and then remain idle for about 2h steps. We can improve this

algorithm by making all processors busy all the time. We do that by initiating new

iterations in every step even before the previous iterations are completed. All those

iterations will proceed in a pipeline fashion up and down the tree. The reason this

pipeline improves the running time is the following. It takes 2h-2 steps to select one

pivot (h - 1 steps to reach the root, and h - 1 steps for the root to broadcast the result). If

we start another tournament in the second step and run it in parallel to (but one step

behind) the first one, then we can select two pivots in 2/z -1 steps. We can select h

pivots in 3h-2 = 0(\\ogn) steps. All those pivots can be used to eliminate elements.

Thus, instead of cutting the search space by about half with one pivot, we cut it to about

\\l(h +1) of its original size with h pivots, and we do it without spending significantly
more time. We can also interleave the different phases. The leaves start a new

tournament at each step (until the k smallest is found) and the tournament pushes the rest
of the computation.

398 Parallel Algorithms

D Example 12.1

An example of this process is given in Fig. 12.12 (which proceeds from left to right top

down). The elementsare the numbers from 1 to 8, and we are looking for the fourth-

smallest number. (In this case, the rank of each number is equal to that number's value,
so we do not show both ranks and numbers.) For each step, the contents of all nodes is

shown. The numbers inside the nodes are the ones obtained from below, and the

numbers outside the nodes are those that are broadcast down. The first chosen pivot is 3

(Fig. 12.12d),the second one is 5 (Fig. 12.12e),and then 4, 3, 1, and 4. In Fig. 12.12(g),
the first pivot (3) arrives at the leaves, and from then on they start the second phase,
which is computing the rank. The fact that 3 has rank 3 is discovered in Fig. 12.12(j),

and the fourth smallest element is discovered by the root at Fig. 12.12(1). Once the

element is broadcast to the nodes (which we do not show), the algorithm terminates. In

this case, there was no need to run another set of iterations (or eliminate any element); in

general, however, this process should be run several times and elements should be

eliminated until the &th-smallest element is found. \342\226\241

Complexity The regular algorithm requires O(logAz) steps to eliminate elements
with one pivot. Since we can generateO(logn)pivots at about the same time, we savea

factor of O(loglogAz) overall. The expected running time is reduced to 0{).
log log n

The proof of this fact, as well as the details of the algorithm, simulation results, and some

slight improvements, canbe found in Greenberg and Manber [1987].

12.4.4 Matrix Multiplication on the Mesh
The interconnection graph we consider now have is a two-dimensional nxn mesh (grid).
ProcessorP[/, j] is the processor at row / and column y, and it is connected to P [i - 1,j],
P[U J; + 1], P[i + l,y], and P[i, j- 1]. We assume that the boundaries of the mesh are
wrapped around, so that, for example, P[0, 0] is connected to P [0, n - 1] and P[n

- 1,0],
in addition to P[0, 1] and P[\\, 0] (see Fig. 12.13). In other words, all additions and

subtractions of indices are done modulo n. The algorithm we present is more symmetric
and elegant with this assumption; it has the same running time (to within a constant)

without the wrap around.

The Problem Given two nxn matrices A and B, such that initially

A[i, j] and B[i, j] resideat P[i, y], compute C=A-B, such that C[/, j]

resides atP[i,j].

We use the regular matrix multiplication algorithm. The problem is to move the data

such that the right numbers are at the right place at the right time. Consider
n-\\

C[0, 0] =
\302\243

A L0, k] \342\200\242B [*, 0], which is the inner product of the first row of A and the first

o \342\226\240>-o o Ui <-* Ui Ui <-* Ui

00X3 00HE) GXEH3 GH00) GKEKE) G>0>0) GKM 0O0

*\302\251\342\200\2240\342\200\224G-
g

-0\342\200\2240\342\200\2240*
s 0M^) t CMMJ

(EX-XE) (EX\302\260XE) GX00) (EX*XE) &\342\202\254XE) (EXEX3 GKM (EXEXE)
o o Uj <-\302\273\302\273Uj Uj <-\302\273\302\273V*j

\342\226\240U\302\253-. L* -U L* L* -U L*

00H3 GK5KH) GHHMH) (00HE) GHM) G>0HE) G>0H5) 0^KH)

GXXEXXE) GXXEX^E G-XEXXE (MM)

GKEKE) (EX\302\260X3 (EXEXE) (EXEXE) (EXEXE) (EX^XE (EX^XE) (EXEXE)
l* 4t l* <-* -U <-*

\342\226\240uu^-u -uu^-u -uo-u -uo-u

GXEXE) G>0XE) GX0O GXEXE) GXBXD GH00) GKME) GXEME)

-0\342\200\224GM\302\251\"- 3 -0\342\200\2240\342\200\224\342\202\254)- s -0\342\200\2240\342\200\224Q'-
5 GK^>^)

EX\302\260XE) GW3 (EX-XE) &\342\202\254X3 (EX3-Q (EXEXE) (EX^XE) (EX-XE)
\342\226\240UU, *k. -U U, *k. -UO-U -U O -U

400 Parallel Algorithms

Ck Q^ 0- Ck

-0-

6- -O-

6^- -<y- -o^ -6'

Figure 12.13 A two-dimensional wrap-around mesh.

column of B. We would like C[0,0] to be computed by P[0,0] (which also must have
the final result). This can be done by shifting the first row of A to the left one step at a

time, and, at the same time, shifting the first column of B up one step at a time. At the

first step, P[0,0] has /4[0,0] and \302\243[0,0], and it computes their product; in the second

step, it gets A[0y 1] (from the right) and B[\\, 0] (from below), adds their product to the

partial result, and so on. The value of C[0,0] will be computed after n steps.
The problem is that we need all processors to do the same thing, and they all need

to share the data. We have to arrange for the data to move such that not only P[0, 0] gets
what it needs, but every other processor does too. The trick is to rearrange the data

movements in such a way that, throughout the execution of the algorithm, all processors

always have two numbers whose product they need. The key is the initial distribution of
the data. We will rearrange the data such that each processor P[i, j] has A[i, i+j] and

B[i+j> j] (again, all additions are modulo n). If we can do that, then afterward every

step will consist of simultaneous row and column shifts, which bring A[i, i+j +k] and

B[i+j + k, y], 1<k <az, to P[i, y], which is exactly what P[U j] needs. We can achieve
the initial arrangement by shifting the ith row i steps to the left and the yth column j steps

up, and by doing that for all rows and columns. The precise algorithm is given in Fig

12.14. Figure 12.15 illustrates the initial data movement. The left side shows the data at

the beginning, and the right side shows the data after the initial shifts are performed.

Complexity The initial row shifts take nil parallel steps (we can shift to the right
when the number of shifts is more than nll)\\ the same is true for the column shifts. No

computations are involved so far. Then, there are n steps, involving both computations
and shifts, for each processor. All these steps can be done in parallel. The overall

running time is thus O (n). The efficiency is O (1) if we compare the parallel algorithm
to

the regular 0(n3) sequential algorithm. The efficiencyis (asymptotically) less if we

compare the parallel algorithm to asymptotically faster algorithms (e.g., Strassen's
algorithm).

12.4 Algorithms for Interconnection Networks 401

Algorithm Matrix .Multiplication (A, B)

Input: A and B (nxn matrices).

Output: C (the product of A and B).

begin
for all rows do in parallel

shift row i of A to the left i steps
{ namely, perform A [/, j] :=A [/, (J+ \\)mod n] i times }

for all columns do in parallel

shift column j ofB upwards j steps

{ namely, perform B [/, j]:=B [(/+ \\)mod ny j] j times}
{thedata is now in the proper starting positions }

for all i and j do in parallel

C[iJ]:=A[i,j]B[iJ];

for k := 1 to n-\\ do

for all i and j do in parallel

A[i,j]:=A[i, (j+\\)modn] ;

B[iJ]:=B[(i + \\)modnJ] ;
C[iJ]:=C[iJ]+A[iJ]B[iJ]

end

Figure 12.14 Algorithm MatrixMultiplication.

011

a2\\

b2\\

031

&31

<*41

bAX

012

b\\i

a 22

b22

0 32

b32

042

b42

013

^13

0 23

^23

0 33

&33

043
^43

0 14

b\\4

a 24

b24

0 34

bM

044
^44

012
^21

0 23

&31

0 34

b4[

041

bn

0 13

b32

a 24

bA2

031

b\\2

042

^22

0 14

^43

021

^13

0 32

^23

043

&33

011

bXA

022

^24

033

bM

044
bu

Figure 12.15The initial data placement and the result of the initial shifts.

12.4.5 Routing in a Hypercube

The examples we have seen so far illustrate the difficulty of adapting even a simple

algorithm to an algorithm that runs on an interconnection network. If algorithms depend
so heavily on the architecture, then programming becomes very difficult. Another

approach to designing algorithms for interconnection networks is to define some

powerful primitives, to implement these primitives on the network, then to design the

402 Parallel Algorithms

algorithms using these primitives. We have to implement only the primitives on another

network to translate all algorithms that use these primitives. The problem with this

approach is the definition of the primitives. After all, there are major differences

between the topologies, and we cannot hope to find primitives that are good for all

topologies. Yet another approach is to design algorithms that emulate one network using

another. This technique will allow an easy translation of algorithms between the two

networks, but the translation may not yield an efficient algorithm. In this section, we

briefly discuss a general routing scheme that allows us to design algorithms for

interconnection networks as though shared memory is available.

We assumea hypercube connection (similar schemes have been designedfor other

topologies). In an EREW shared-memory algorithm, the different processors can in one

step access arbitrary variables. Supposethat each processor P(is responsible for one
variable xh Since an EREW algorithm does not have any read or write conflicts, a step in

the algorithm consists of processors accessingdistinct variables. Another way to look at

a step is as a permutation a, such that processor P{ accesses variable
jtCT(/). (Not all

processors may be accessing variablesall the time, but in the worst case we can assume
that they do.) We concentrate on one (arbitrary) step of the EREW algorithm, and try to

emulate it using several steps of a hypercube. We now have a routing problem. We

assume that each processor P, on the hypercube wants to send a messageto processor

Pod) (which holds variable
jcct(/)).

All messages are sent at the same time, and our goal is
to route all of them through the hypercube quickly. We assume that each edge of the

hypercube can deliveronly one message at a time. Therefore,the problem is not only to
find short routes between sources and destinations, but also to minimize the conflicts

arising from trying to use the same edge at the same time. If two messages try to use the

same edge at the same time, one of them must be buffered. We also want to minimize
the buffer space requirements.

The best routing obviously depends on the particular permutation. However, it is

generally not possible to analyze the permutation to find the best routing, since the

permutation is distributed among the processors. Therefore, we are looking for a scheme

that works well on the average. The following routing scheme was suggestedby Valiant

[1982]. The key idea is to use randomization. The routing consists of two phases. In the

first phase, each processorP, sendsits message to a random processor, chosenuniformly

(independently of the destination) among all other processors. (In a moment, we will

describe how to select this random processor and how to route the message to it.) In the

second phase, the message is sent along a shortest route between the random processor
that received the message and the final destination.

All messages are sent in the same way, so we can concentrateon one message
\342\200\224

say, that from / to j. Let the binary representation of / be bx b2
\342\200\242\342\200\242\342\200\242

bd (with possible

padding of 0s at the beginning), and that of j be c \\ c2
\342\200\224'

cd. In the first phase, we need

to find a random processor r. We find it by considering the bits representing / one by
one, and deciding randomly with probability Vi whether to route to the corresponding

neighbor or not. For example,considerFig. 12.16,and let /=000 and 7 = 110. First, we

randomly choose whether or not to send the message to 100. Supposethat we decide not

to send it to 100. Then, we consider the second bit and decide whether to change it; in

12.4 Algorithms for Interconnection Networks 403

000

Figure 12.16An example of random routing in a 3-cube.

other words, we decide whether or not to send the message to 010. Finally, we consider

the third bit. In Fig. 12.16, the random processor is 011 and the route (marked in bold

lines) passes through it. If we decide not to send a message,we immediately make the

next choice without waiting for the next round; we assume that local computation is

much faster than message passing. When the choice concerningthe last bit is made, the

random routing is done. Each choiceis made locally.

Since all processors send messagesat the same time, a processor may have more

than one message waiting to be sent along the same edge. In this case, the messages are

put in a queue (in a random order, if there is more than one) and are sent when the edge

becomes available.
It is not difficult to see that every number k (in the appropriate range) has the same

probability of being chosen as the random destination. The routing from the random

chosen processor r to j is donedeterministically. Suppose that /* and j differ in t bits with

the indices k{ <k2<
''' <kt. The messageis sent by changing bit A: i, then bit /:2\302\273and

so on. In the example of Fig. 12.16,the message will be sent first from Oil to 111 (since
the destination 110 has a 1 in the first bit), and then to 110 (the second bit is not

changed).
This routing scheme is simple to implement. The routes are not necessarily the

shortest routes (in the example above, the route took four edges versus two edges of the

shortest route). The length of each route, however, is not too large; it is at most 2d. The
main property of these routes is that, with very high probability, they have few conflicts;

thus, the permutation is expected to be completedin O (d) steps. Similar routing schemes

have been suggested for other topologies. There are also efficient algorithms, based on
such schemes, to map shared-memory algorithms to algorithms for interconnection

networks automatically.

404 Parallel Algorithms

12.5 Systolic Computation

A systolic architecture resembles an assembly line. The processors,usually called

processing elements, are arranged in a very regular way (usually, but not always, as one
or two dimensional arrays), and the data move through them in a rhythmic fashion. Each

processorperforms very simple operations on the data it received in the previous beat,

and moves the result(s) to the next \"station.\" Each processor contains very limited (if

any) memory. Most of the input is \"pushed\" one variable at a time, rather than being
loaded all at once to some memory locations. The advantage of systolic architecture is

efficiency, both in terms of the hardware (which is specialized and simple), and speed

(the number of memory accesscyclesis minimized). As in assembly lines, the key is to

avoid the need to fetch tools, material, and so on, during the work. Everything that is

required to perform an operation arrives on the line. Thebig drawback is the inflexibility

of such schemes. Systolicarchitectures are efficient only for certain algorithms. We will

see three examples of systolicalgorithms.

12.5.1 Matrix-Vector Multiplication

We start with a straightforward example, then use it to develop more complicated
algorithms.

The Problem Find the product x-Ab of an m xn matrix A with a

column vector b of sizen.

There are n processors (stations), such that P,- is responsible for adding to the partial

product the term involving br The data movements and the actions of each processor for
the case of n-m-A are illustrated in Fig. 12.17. We assume that b resides in the

appropriate processors (or is pumped into them regularly). The results are accumulated
as they move from left to right through the processors. The x{sare initially 0. In the first

step, x! (= 0) together with a,, move into P \\, and all the other inputs move closer. P \\

computes jc, +0,,
\342\200\242

fc,, and moves the result to its right. In the second step,P2 receives
x\\=a\\\\'b\\from the left, together with an from above; it computes X\\+a\\2'bi, and

moves the result to its right, and so on. In each step, processorP, receives a partial
/-1

result, which is equal to
\302\243ajkbk, from the left, the appropriate entry of the matrix from

above, and the appropriate element of b from either local memory (as it is in the figure)
or from below. P{ computes x+ajjb, and passes it to its right. When jt, leaves the array,
it clearly has the right value. The whole product is computed in m +n steps.

The main problem in designing systolic algorithms is the data movement. Each

data element must be at the right place at the right time. The only trick in this example
was to introduce delays so that column / of the matrix arrives at P, in step /. This
exampleis simple,sinceeach element of A was used only once. When the same value is

12.5 SystolicComputation 405

'44

<*41

031

021

<*42

0 32

a 22

012

043

0 33

0 23

013

0 34

0 24

0 14

. * . . * \302\253 \342\226\240W .

*2 -X\"i J *i J b2 J b3 J b4 >

OUTPUT

-+ *out =
xin + ab

Figure 12.17 Matrix-vector multiplication.

used several times (as is usually the case), it is much more complicatedto design its

movement, as is illustrated in the next example.

12.5.2 The Convolution Problem

Let jc =jc i, jc2, \342\200\224,xnand w = w,, w>2....,wk be two sequences of real numbers with k <n.

The Problem Compute y\\,yi, ...,yn+\\-k* sucn tnat J/ =
w\\xt +

The vector y is called the convolution of x and w. We can reduce the convolution

406 Parallel Algorithms

problem to a matrix-vector product as

I
-V, X2 *3

* *
*k

X2 A'3 X4
' '

Xk + \\

*v3 x4 x5
' '

xk+2

xn + \\-k xn+2-k xn+l-k
' '

xn

We can obtain the systolic algorithm for this problem by simply substituting the matrix in

(12.1) with the matrix of Fig. 12.17. This is shown in Fig. 12.18. Notice that each jt, is

needed at the same time across the array (except for the first k-\\ jt,s which are not

needed everywhere). Thus, a broadcast line is needed. Next, we show another solution

to the convolution problem with no broadcast.
Theprocessorsin Fig. 12.18 receive several inputs, but send only one output. We

now use processors that receive inputs from two directions and send output to two

directions. The ideais to move the vector x from left to right and the vector w from right

to left. The result y is accumulated in the processors. We have to design this movement

such that the appropriate values of w and x meet. The problem with moving the two

vectors in opposite directions is that they move twice as fast toward each other. As a
result, each element of x will miss half of the elements of w, and vice versa. The solution

is to move the vectors at half the speed. The left input will be **jc 1, nothing, jt2,

nothing,\" and so on, and the same for w. This solution is illustrated in Fig. 12.19 (the

bullets correspond to empty slots).

x^ x^ x^ x^

*3 *3 x3

X2 X2

x\\

Wi w->i.

'

W-t

1f

Wa

OUTPUT

follows.

w,
w2

w3

Wk_

-

y\\

yi
^3

yn + \\-k

(12.1)

Figure 12.18 Convolution using broadcast.

12.5 Systolic Computation 407

\342\200\242 y*

1\342\200\224i\342\200\224'

*2 ^3

1 1 '

\342\200\242 yi X\\ y\\

w\\

I I I I
I I I I

.-*-_ ,-*-_ ,-*-- ,_*__1 ' ' '

OUTPUT

y=y + win-xin

out
~ *in

Wout
= \"in

Figure 12.19 Convolution using a bidirectional array.

We leave it to the reader to verify that each P,- collects the value of yh When wk

leaves Ph the final value of y,- is computed, and it can move out of the array through the

data path illustrated below the array in Fig. 12.19. The main drawback to moving data at

half speed is, of course,that the computation takes twice as long.

12.5.3 Sequence Comparisons
Let A =a\\ a2

'''
an and B\342\200\224b\\b2

'''
bm be two strings of characters. Our goal is to

find the minimal edit distance betweenA and B (see Section 6.8 and Section 10.2). A

dynamic programming algorithm was presented in Section 6.8 to solve this problem. We

first discuss general ways to parallelize this algorithm, then present a systolic array
solution.

The algorithm proceeds by filling a table, such that the solution appears at the

bottom right of the table. The value of the ijth entry depends on three entries

surrounding it, the (/- l)yth, (/- \\)(j- l)th, and /(/- l)th entries. Supposefirst that we

have nm processors arranged according to the table (see Fig. 12.20). Each processorP,j
gets input from three processors \342\200\224above it, to the left of it, and diagonally from it \342\200\224

and sends output to three processors similarly. Each character from B moves down the

table, and each character from A moves to the right. Let's see which of the algorithm's

steps can be performed in parallel. The labels on the squares in Fig. 12.20 indicate the

level of this square, such that squares with the same level can be computed in parallel.

We can compute the whole table in O (n +m) steps by computing one level at a time. It

is not necessary, however, to have nm processors. The same processors that handled

level / can also handle level / + 1, level / +2, and so on. Therefore, min(\302\253, m) processors

are sufficient. The problem is to arrange the data movement.

For simplicity, we assume that n=m. We use 2n processors arranged in a one-

dimensional bidirectional array (see Fig. 12.21). We have to ensure that every pair of

characters a{ and bj meets at some processor at some time, and that the three values

Wout

X'm

y

Win

*out

408 Parallel Algorithms

c

a

a

a

1

2

3

b

2

3

4

a

3

4

5

Figure 12.20Sequence comparisons by a two dimensional array.

/

0

c

0 0 0 0
a

7

2

a

1

1

0

a
c

1
1

2
b

a >

2

2

1

a
a

1

1
1

2
b

c

2

2
1

3

b

2

2
3

2

a
a

3

3
3

3

a

Figure12.21Sequence comparisons by a one-dimensional array.

needed to process these characters are known to the processor. This is achieved by

moving A from left to right, B from right to left, both at half speed, and having one

memory cell per processorwhich is used for the diagonal connection. We use half speed
not only to ensure that the corresponding charactersmeet, but also to allow the costs

computed so far to use the empty slots between two adjacent characters. For example, let

A =caa and B =aba (seealso Section 10.2.3). The first row (and column) in the matrix is

Bibliographic Notesand Further Reading 409

123 (corresponding to the costs of inserting or deleting those characters).The input from

the right side will be a \\b2a 3, and that from the left side will be c \\a 2a3. The memories
of all processors are initialized to 0. When two characters a{ and

bf
meet at, say, Pk, they

are compared; in the next beat, the two numbers following them meet at Pk, and Pk now

has all the information needed to compute the corresponding entry in the matrix. The
minimal cost of matching A [1../] to B[\\..j- 1] comes from Pk-\\, the minimal cost of

matching /\\[1../-1] to B\\\\..j] comes from Pk+\\, and the minimal cost of matching

A 11../
- 1] to B [1 .J

- 1] comes from Pk 's memory. This new entry will then be moved
both left and right in the next step, and so on. Figure 12.21 shows four different steps:
The first row is the initial step, the second row is the third step, the third row is the fourth

step, and the last row is the seventh step. The values of the memories and costs are shown

before the step. When the last character leaves the last processor (in either side), the

number that follows it is the minimal edit cost.

12.6 Summary

Since parallel algorithms are even more complicated to design than sequential

algorithms, we have to make good use of building blocks. The parallel-prefix paradigm
is a powerful building block. It was even suggestedas a primitive machine operation (for

example, Blelloch [1987]). The same is true for the routing through permutations

(Section 12.4.5). It is still too early to know which of the suggested parallel architectures
(if any) will dominate in the future. Therefore, it is important to identify design

techniques that are common to many models. We have seen four techniques (and there

are, of course,others that we have not seen): doubling (list ranking and other operations
on linked lists), parallel divide and conquer (addition, parallel prefix, sorting), pipelining

(finding A-smallest on the tree, and systolic computation in general), and the Eulefs tour

technique (which is helpful for a variety of tree and graph algorithms). Induction, again,

plays a major role.

Bibliographic Notes and Further Reading

The area of parallel computing is expanding rapidly, as is evidenced by the number of

books that have appeared in the last few years. Books describing parallel computing

include Akl [1985], which is devoted to parallel sorting; Hong [1986] and Parberry
[1987), which include theoretical models of parallel computation and their relationships;

Quinn [1987] and Gibbons and Rytter [1988], which are general books on parallel
algorithms; Hwang and Briggs [1984], Lipovski and Malek [1987], and Almasi and

Gottlieb [1989], which describe different parallel architectures and parallel software;
Ullman [1984], which deals mainly with VLSI; Gehringer, Siewiorek, and Segall [1987],

which describes experience with Cm ; Fox et al. [1987], which describes experiments

with the hypercube; Reed and Fujimoto [1987], which includes models, architectures,
and several detailed applications; Bertsekas and Tsitsiklis [1989], which deals mainly

with numerical and optimization methods; and others. Chandy and Misra [1988]present
a general methodology for writing parallel (and sequential) programs. A survey on

410 Parallel Algorithms

parallel graph algorithms is given by Quinn and Deo [1984], and on general parallel
algorithms by Moitra and Iyengar [1986]. Richards [1986]contains a large bibliography

on parallel sorting. The classification of machines according to Single/Multiple-
Instruction Single/Multiple-Data is due to Flynn [1966]. Modeling algorithms by circuits

is described, for example,in Borodin [1977].

Valiant [1975] is an early work on parallel maximum finding, merging, and

sorting, from which some of the material in Section 12.3.1. is taken. Other parallel
algorithms

for these problems appear in Shiloach and Vishkin [1981], and in Borodin and

Hopcroft [1985]. Additional algorithms for list ranking appear in Kruskal, Rudolph, and

Snir [1985] (where parallel prefix is used), in Vishkin [1987] (where a randomized

algorithm is presented), and in Cole and Vishkin [1986] (where a general technique for

converting randomized parallel algorithms to deterministic ones is presented). Cole
[1988]presents an elegant parallelization of mergesort which has T(n, n) = 0(\\ogn)
under both the CREW and EREW models (although the CREW algorithm is much

simpler and involves smaller constants). Attalah, Cole, and Goodrich [1987] includes

several other applications of Cole's technique, in particular to parallel geometric
algorithms.

Algorithms for the parallel-prefix problem and applications, including parallel

addition, appeared in Ladner and Fischer [1980]. Fich [1983] providesupper and lower

bounds for the number of gates in parallel-prefix circuits. Beame, Cook, and Hoover

[1986] describe parallel algorithms for division and related problems. The Euler's tour

technique, as well as the algorithms presented in Section 12.3.5, are from Tarjan and

Vishkin [1985]; see also Kruskal, Rudolph, and Snir [1986]. Divide and conquer for

parallel computing is discussed in Horowitz and Zorat [1983], and in Stout [1987].
Exercise 12.24 is from Kruskal, Rudolph, and Snir [1987]; Exercise12.15is from Cook

and Dwork [1982].
Sorting networks, including the odd-even mergesort, were introduced by Batcher

[1968]. It was an open problem for a long time whether there exist sorting networks with

depth O(logAz). Ajtai, Komlos, and Szemeredi [1983] proved that such networks exist

(even though their network was definitely an impractical O0(\\ogn)
\342\200\224see Section 3.2).

Reif and Valiant [1987] exhibit a network with a randomized O(logAz) sort. The
connection machine is described by Hillis [1985], and various algorithms for it are given
in Hillis and Steele [1986]. The improved algorithm for finding the fan-smallest element
on a tree is due to Greenberg and Manber [1987] (the regular algorithm appeared in

Shrira, Francez, and Rodeh [1983]). A deterministic algorithm whose running time is

0(log3Az)in the worst case is given by Frederickson [1988]. The algorithm for matrix

multiplication on a mesh can be adapted to run on a hypercube and other interconnection

networks (Dekel, Nassimi, and Sahni [1981]). Experimental results for matrix

multiplication on a hypercube are given in Fox et al. [1988]. The routing scheme

presented in Section 12.4.5 is from Valiant [1982] and Valiant and Brebner [1981](the

former was actually developed earlier). (Valiant [1982] suggested to choose the order of

the bits at random; it was shown in Valiant and Brebner [1981] that the bits can be
considered in order, which is how we described it in Section 12.4.5.) Similar schemes

Drill Exercises 411

appear in Aleliunas [1982] and Upfal [1982]. Schemes for emulating shared memory in

networks appear in Karlin and Upfal [1986], Upfal and Wigderson [1987], and Ranade
[1987]. For more on interconnection networks see, for example, Feng [1981], Siegel

[1985], or Ullman [1984].
More on systolic computing can be found in Kung [1979], Kung and Leiserson

[1980], and Kung [1982]. Systolic arrays for matrix multiplication using Winograd's
algorithm (Section 9.5.1) are presented in Jagadish and Kailath [1989]. The systolic
array algorithm for sequence comparisons in Section 12.5.3 is from Lipton and Lopresti

[1985]. The July 1987 issue of Computer is devoted to systolicarrays.

\"Thinking in parallel\" is difficult, and designing parallel algorithms is usually

significantly more difficult than designing the corresponding sequential algorithms.

Nevertheless, Megiddo [1983]has found an ingenious technique to design some types of

sequential algorithms by using parallel algorithms. An improvement of this technique
was given by Cole [1984].

Drill Exercises

12.1 Draw the circuit corresponding to the parallel addition discussed in Section 12.3.1.

12.2 Design an algorithm to add k binary numbers, each with n bits. The running time should be
O(log n log k) using nk processors.

12.3 Draw the circuit that corresponds to algorithm Parallel Prefix 2 of Section 12.3.3.

12.4 Prove that algorithm List Rank (Fig. 12.3)requires only the EREW model.

12.5 Prove that the rules for constructing an Euler's tour given in Section 12.3.5 are correct.

12.6 Complete the details of the doubling algorithm to find the preorder numbering of all vertices

in a tree (Section 12.3.5).

12.7 Figure 12.22 is an example of a graph representing an interconnection network that we

discussed in this chapter. Identify the network, and label the nodes appropriately.

12.8 Consider the proof of correctnessof the odd-even transposition sort. The proof uses

induction, and shows that, when an additional processor (and input) is added, the number of

steps is incremented by 1. The base case, n = 2, uses exactly one comparison. Hence,the

total number of steps seems to be n - 1 and not n. Show an example that requires n steps,

and discuss why the proof does not show that n - 1 steps are sufficient.

12.9 a. Draw the full circuit for merging two sequences of size 8.

b. Draw the full circuit for sorting 16 inputs.

c. Draw the fuli circuit for sorting 10 inputs.

12.10 Complete Fig. 12.21 by showing all the steps until the two sequences are separated.

412 Parallel Algorithms

Figure 12.22 An example of an interconnection network.

Creative Exercises

12.11 Design an CREW algorithm for matrix multiplication that can multiply two n by n matrices

in time O (log n) using O (n3 / log n) processors.

12.12Modify the CRCW algorithm for finding the maximum (Section 12.3.2) to work in the case
where the numbers are not distinct. The parallel running time should still be O (1).

12.13 Let A [\\..n] be an array of values. We want to copy the value A [1] to all other locations in
the array (i.e., broadcast).

a. Design an EREW algorithm with T(n, n) =0 (log n) for this problem.

b. Design an EREW algorithm with efficiency 0(1) and running time O (log n).

12.14 Parallelize Horner's rule to evaluate a polynomial of degreen under the EREW model in

time O (log n) and efficiency 0(1).
*

12.15 The input is an array of n Boolean variables. The output is the or function of all of them.
In other words, the output is 1 if and only if at least one of the variables is 1. It is

straightforward to compute the or of n variables in flog2\302\253l steps by an EREW algorithm
with n processors. It seems fairly obvious that doing better than |\"log2\302\253lis impossible. But
this is not the case. Design an EREW algorithm whose running time is less than flog2\302\253l\342\200\242

You can assume an unlimited number of processors and space. (This algorithm is not

practical, but it shows that simple \"obvious\" lower bounds are not always so obvious.)

12.16Solve Exercise 12.15 (computing or of n Boolean variables) in time O(l) under the CRCW

model.

Creative Exercises 413

12.17Draw a circuit with 0(n \\ogn) vertices that solves the parallel-prefix problem with depth
O (log A7), such that the fan-in and fan-out of every processing element is no more than 2 and

every processing element is involved in exactly one operation.

12.18 Use the circuit of Exercise 12.17 to design an EREW algorithm for the parallel-prefix

problem with T(n, n) =0 (log n).

12.19 Let jcj , x2 x\342\200\236be a sequence of distinct numbers. Design a CREW algorithm to sort the

sequence in time O (log n). You can assume an unlimited number of processorsand space.

12.20 Design a CRCW algorithm to merge two sorted arrays A and B into one sorted array in time

0(1). You can assume an unlimited number of processorsand space.

12.21 Let S be a set of size n and let k > 1 be a constant. Design a CRCWalgorithm to find the
maximum in S with T(n, n]+]/k) = 0(\\).

12.22 Let X\\,x2 x\342\200\236be a sequence of (not necessarily distinct) integers in the range 1 to n.

Design a CRCW algorithm to find the maximum in the sequence with T(n, n) = 0(\\).

12.23 Letxlyx 2, ...,*\342\200\236be a sequence of real numbers, let S be a subset of {1, 2,..., n\\, and let* be
an associative binary operation on real numbers. The set S partitions the sequence into

groups, such that the first group contains jcj, jc2 xh where / is the smallest element in S,
the second group contains ,v/+1 jc;, where j is the second smallest element of S, and so on

(the last group contains the rest of the elements in case n does not belong to S). The group

parallel-prefix problem is to compute parallel prefixes separately for all groups. Show that

the group parallel-prefix problem can be solved with the same resourcesas are used for the

regular parallel-prefix problem.

12.24 The crossproduct of two arrays A[0..n-\\] and B[0..m- 1] is an array C[0..nm- 1]
such that, if i = k-m+r% 0<k<n-\\, 0<r<m-l, then C[i] = A [k] -B[r]. (In other

words, C is a row representation of an n x m matrix whose ij entry is the product of A [i]

and B [j].) Design an EREW parallel algorithm to compute C with p processors and time

O (mnlp + log/?). You can use O (nm) space. (For simplicity, you can assume that n, m, or

p is a power of 2.)

12.25 The input is an array of records. Each record contains some data (which is immaterial for

this exercise) and a Boolean variable Mark. The goal is to pack all records whose Mark

value is 1 into the beginning of the array. (For example, these records may be selected for

some purpose and some more work has to be performed on them; it is better to have them in

a contiguous area.) The order among the records that are moved should not be changed.

Design an EREW algorithm for this problem with T(n, n) =0 (log n).

12.26 The input is a linked list such that all of its elements are stored (in an arbitrary order) in an

array. Let F[i] be a Boolean flag associated with the elements. Design an EREW

algorithm with T(n, n) = 0(\\ogn) to construct another linked list consisting of only the

elements with F[i]=\\ in the same order they appear in the original list. (This algorithm is

needed, for example, in computing preorder in Section 12.3.5.)

12.27 The input is a linked list such that all of its elements are stored (in an arbitrary order) in an

array. Design an efficient parallel algorithm to construct a linked list in the opposite order
of the original list (i.e., reverse the list), without moving any element. You can assume that

sufficient space is allocated to hold the extra pointers.

414 Parallel Algorithms

12.28 Design an EREW algorithm with T(n, n) = 0(\\ogn) to rank the forward edges in the list

obtained by the Euler's tour method. In other words, for each forward edge you should find

the number of forward edges that follow it in the list. (This number is denoted by / (/, j) in

the text, and it is needed to compute the preorder associated with the Euler tour; see Section

12.3.5.)

12.29 Suppose that a tree T is given in the regular adjacency-list representation without the extra

pointers connecting the two copies of each edge. Design a fast and efficient EREW

algorithm to construct these pointers. You can assume that you have as much work spaceas
you want.

12.30 Let T be a tree represented by adjacency lists in the same way as described in Section

12.3.5. Design a T(n, n) =
0(\\ogn) EREW algorithm to find, for each vertex /, the number

of ancestors of / in the tree (i.e.,the length of the path to the root).

12.31 Construct a counter circuit: The input consists of n binary numbers, and the output is the

binary representation of the number of Is in the input.

12.32 Consider the following attempt to prove the correctness of the odd-even transposition sort.

We have seen that the maximum element gets to the right position. Without it there are

n - 1 numbers. But the maximum number adds at most one idle step to each number. Since
we have a step to spare, the algorithm terminates on time. Discusswhy this proof is not a
valid.

12.33 Consider the binary tree topology and assume that each leaf / has a number xt. Solve the

parallel-prefix problem under this model. At the end of the computation, each leaf / should
have the sum xx \342\200\242jc2\302\253

\342\200\242\342\200\242\342\200\242
\342\200\242*,(where \342\200\242is an associative binary operation that can be

computed in one step). The running time of the algorithm should be O(log n).

12.34 Consider the parallel algorithm for finding the fan-smallest element on a tree described in

Section 12.4.3. Suppose that the elements are not distinct. Describethe modifications to

the algorithm required to deal with this case.

12.35 Design a sorting algorithm for processorsconnected through a complete binary tree as

described in Section 12.4.3. Each leaf contains a number, and the goal is to get the kih
smallest element to the kih leaf. Show that the running time of your algorithm is optimal to
within a constant.

12.36 The processorsare arranged in a ring. Each processorPt holds the \302\253throw of an n x n matrix

A and the \302\253thelement of the vector b =(bub2> ...,b\342\200\236).We want to compute the matrix
n

vector product x-Ab such that jc, is stored in P{ at the end. (Xi
=

^aik-bk.) Design an
*=i

O (n) algorithm for this problem.

12-37 Solve Exercise 12.36,exceptthat initially each processor Px holds the \302\253thcolumn of the
matrix (and b{).

12.38 The transpose ofanxn matrix A is the matrix AT such that a]j =
ajh Suppose that A is

initially stored in an n xn mesh such that P[z, j] holds aVj. Design an O(n) algorithm to
compute the transpose of A.

12.39 Suppose that you are given a mesh of nxn processors,each holding a pixel of an nxn
black-and-white picture. In other words, each processorholds one binary number where 1

Creative Exercises 415

corresponds to black and 0 corresponds to white. We would like to find the connected

components of the picture. Two black pixels belong to the same component if there is a

black path connecting them (horizontally or vertically; diagonals are not considered
connected).All pixels in the same component should be labeled with a unique component
label. Initially, the (//)th pixel is labeled i-n+j. Considerthe following algorithm that
labels each component with the smallest label of a pixel in it. In each step, each processor
holding a black pixel looks at the current labels of its black neighbors. If any of them is
smaller than its own label, then it updates it own. Prove that this algorithm will eventually

label the components correctly, but that it may require c \342\200\242n2 parallel steps for some input

(where c is a constant). How would you terminate the algorithm?

12.40 Let A be an n x n matrix stored in an n x n mesh in the usual way. Let o and n be two

permutations of (1, 2 /?), such that o is stored in the first row of the grid and n is stored

in the second row. Design an O(n) algorithm to permute the rows of A according to o and

the columns of A according to n (starting with the rows). In other words, row / should move

to row c(i) and column j should move to column n(j).

12.41 Consider the A7-dimensional hypercube topology and assume that each processor holds one
element. Design an O (n) parallel algorithm to find the maximum of the 2\" elements.

12.42 Design a fast algorithm to solvethe parallel-pre fix problem on an A7-dimensional hypercube.
Each processor holds one number. You can assign indices to the processors in any way you
want. At the end of the algorithm, each processor should have the value of the prefix
associated with its index.

12.43 Let C = (V, E) be a directed weighted graph with positive weights. Design a CREW

algorithm to compute the costs of all shortest paths in G in time 0(log2/7) where n is the

number of vertices of G. You can use as many processors as you want, and any reasonable

graph representation.

12.44 Design parallel algorithms for the following problem when an adjacency matrix is given.
Use as many processors as you can while preserving an efficiency of O(1).

a. Design an algorithm to determine whether a given undirected graph contains a triangle as

a subgraph.

b. Design an algorithm to determine whether a given undirected graph contains a square as

a subgraph (namely, a cycle of length 4).

12.45 A common way to generate integer random numbers is to use the recurrence

Xj
= a *,_! +b(mod/?), where a, b, and p are constants (p a prime), and jr, is the seed.

Design an EREW parallel algorithm for computing the first p numbers from this sequence
when the seed is given. The running time of the algorithm should be T{p,p)=0(\\ogp).

12.46 a. Prove that a complete binary tree of height n > 1 (which has 2\" - 1 nodes) cannot be

embedded in an /7-dimensional hypercube (with 2\" nodes). (Embedding one graph G in

another graph H involves mapping every vertex of G to a unique vertex of H such that

two adjacent vertices of G are mapped into two adjacent vertices of//.)

b. Find ways to embed complete binary trees in hypercubes approximately, that is, some of

the tree edgesmay be mapped to short paths rather than to edges. The goal is to be able
to map algorithms designed for complete trees to hypercubes with little effort (and with

reasonable efficiency).

416 Parallel Algorithms

12.47Show how to embed a two-dimensional grid of size 2k by 2m in the (fc + m)-dimensional

hypercube.

12.48 This is a parallel gossip problem. Supposethat there are n =2k persons, each with a certain

item of information. In each step, each person can communicate with another person and

share all the information he or she knows (including information learned in previous steps).
A person cannot communicate with more than one person in any step. Design a

communication (gossip)pattern such that after \\og2n steps, everyone knows everything.

12.49 Design another systolic array for the convolution problem such that both the x vector and the

w vector move in the same direction (say, from left to right). Each processorwill have two

inputs from the left and two outputs to the right. The partial values are accumulated at the

processors. (Hint: Movethe two vectors at different speeds.)

12.50 Design a two-dimensional systolic array for matrix multiplication. The connections are the

same as a two-dimensional mesh. The first matrix arrives from the top row, and the second
matrix arrives through the first column. The result moves from right to left starting from the

last column.

12.51 In some biology applications of sequence comparisons, there are only four different

characters (corresponding to four types of nucleotides). In that case, each character can be

represented by two bits. Show that it is possible to encode the numbers associated with the

costs that move following the characters in the systolic implementation given in Section
12.5.3 with only two bits as well. (This short encoding is important, since it reduces the

required bandwidth between the processors.)

SKETCHES OF SOLUTIONS

TO SELECTED EXERCISES

You know my methods. Apply them.

Sir Arthur Conan Doyle

Chapter 1

1.13 There are quite a few possible ties. The following states have 269 electoral votes overall:

California, New York, Illinois, New Jersey, Massachusetts, Wisconsin, Maryland,

Minnesota, Washington, Iowa, Connecticut, Rhode Island, Washington DC, Ohio,
Michigan, North Carolina, Oregon, and West Virginia.

(Note: This is written well before the 1988election.)

Chapter 2

2.1 The base case of n = 1 is trivial. The induction hypothesis states that xn~x -yn~x is divisible

by x-y for all natural numbers x and y (x*y). We try to write x\"-yn in terms of

xn-yn =x(xn~x -yn-x) + y{xn-x -y'^^ + x-y\"^ -yx\"-]

= x(xn~l -y\"-l) + y(xn-1 -yn-l) + xy(xn-2-yn-2).

The first two terms in the expression above are divisible by x-y by the induction

hypothesis; the third term includes xn~2-yn~2. Therefore, we use the strong induction

principle by changing the hypothesis to state that xk-yk is divisible by x-y for all natural

numbers jc, y (x *y), and k, such that k < n.

2.6 The basecaseis k = 1, and indeed l2 = 1(1 + l)/2. Assume that the claim is true for k- 1.

The sum for k is the sum for k -1, which by the induction assumption is

(_1)<*-ih (\302\243
_

i)\302\243/2,plus the *th element, which is (-1)*\"1*2. This sum is

(_1)*-i*2+(-l)(-!)*-\342\226\240(k -\\)k/2 = (-\\)k-i(k2-k(k-\\)/2) = (-\\)k-lk(k + \\)/2.

A\\n

418 Sketches of Solutionsto Selected Exercises

2.8 The proof is by induction on n. The case of n = 1 is trivial. Assume that the claim is true for

n and consider n + 1. We have to prove that

2n(an+l + bn+l)>(a + b)n+l.

We start with the right side.

(a + b)n+l=(a + b)(a +b)n<(a +b)2n-l(an+bn),

by the induction hypothesis. We now rearrange the expression to make it as close as we can
to the desired result (2n(an+l + bn+l)).

(a+b)2n-\\an + bn) = 2n~l(an+l + bn+l +ban + abn)

= 2n(an+l + bn+l) + 2n~\\ban+abn-an+l -bn+l).

The left term is what we want, so it is sufficient to prove that the right term is at most 0. In

other words, we need to prove that

2n~\\b an+abn- an+l - bn+l) < 0.

The 2n~l factor can be ignored, and without it the expression becomes

ban + a bn -an+l -bn+l = an(b-a) + bn(a-b) = (b-a)(an-bn).

If a = b, then the expression above is equal to 0. Otherwise, if a < b, then the left factor is

positive but the right factor is negative, and vice versa if a > b. In either case, the

expression is no more than 0, and the proof is complete.

2.9 There are several ways to prove this theorem. We present a proof of a slightly more general

theorem. We say that an integer n is congruent to k modulo 3, written n =k (modulo 3), if k

is the remainder when we divide n by 3. (k can be any one of 0, 1,or 2.) We prove the

following stronger theorem.

D Theorem A.l

A number n, given in its decimal representation, is congruent to k modulo 3 if and

only if the sum of its digits is congruent to k modulo 3.

Proof: The claim can be easily checked for small numbers. Assume that it is true for

n - 1, and consider n. The difference between the decimal representations of n - 1 and n is

only in the last digit, unless the last digit of n - 1 is 9. If the last digit of n -1 is not 9, then

when we go from n -1 to \302\253,we increment both the number and the sum of its digits; thus,

the congruence remains the same. If the last digit of n -1 is 9, then it changes to 0 and 1 is

added to the second digit. The change of 9 to 0 does not change the congruence of the sum
of digits (since both are divisible by 3), and the addition of 1 to the second digit has the

same effect on the congruence of the sum of digits as that of the addition of 1 to the first

digit (e.g., it may cause another 9 to change to 0).

2.15 The subtle point is that, when we subtract an element, say ah from the list to reduce the size

of the number in question \302\253,we must make sure that n -a% <a{\\ otherwise, the induction

hypothesis cannot be used on n-at since it may require another use of a{ in its

representation. But the requirement was that the sum use distinct numbers from the list.

2.26 The only tree with two vertices is a single edge, in which case both degrees are 1. Assume

that the theorem is true for n - 1 vertices, and consider the case of n vertices. Since all

Sketches of Solutionsto Selected Exercises 419

degrees are positive and their sum is In -2, at least one of them, say dh must be equal to 1

and at least one of them, say djy must be greater than 1. We can now remove d(from the

sequence and decrement dj by 1. There are now n -1 numbers whose sum is In - 4;
therefore, by the induction hypothesis, there exists a tree with these degrees. We can add

one additional vertex to this tree and connect it to the vertex whose degreeis
dj

- 1 to obtain

the desired tree.

2.29 If two balls are put inside one box, then the box contains more than one ball. Assume that

the principle is true for n +1 balls and consider putting n + 2 balls inside n +1 boxes.

Assume the contrary; namely, no box contains more than one ball. But then, there exists a
box with one ball, and if we remove both the box and the ball we get a contradiction to the

induction hypothesis.

2.34 The claim is clearly true for n - 2. Assume that it is true for n and consider n + 2. Take any

two vertices v and w. The graph without them is Kn, and by the induction hypothesis it can

be partitioned into nil spanning trees. We need to extend those spanning trees to include v

and w, and to add one more spanning tree. The edges included in Kn+2 that are not covered
by Kn are those that are connected to v and u. We partition the set of n vertices into two

equal-sized groups X and Y. The new spanning tree contains the edge (v, u) and all edges

from v to vertices in X and from u to vertices in Y. Each of the previous spanning trees

includes all vertices in Kn. Therefore, we can extend each of these spanning trees to span

Kn+2 by adding an edge from a vertex of X to u and an edge from a vertex of Y to v. We

will choose different vertices of X and Y for each spanning tree.

2.38 We added a subtle implicit assumption in the proof: We took it for granted that a maximum

always exists. If all the x(s are positive integers, then there are finitely many possible sets

whose sum is S, and so a maximum always exists. However, if some of the jc,s are real

numbers, then a maximum may not exist. Hence, the proof, as is, is valid only for integers.

Chapter 3

3.6 It is easy to remove the recursion:

T(n) = T(n-\\) + n/2 = T(n-2) + (n-\\)/2+ n/2 =

1+2/2 + 3/2+ \342\200\242\342\200\242\342\200\242+/i/2 = /i(/i + 1)/4+1/2.

3.8 Let n be a power of 2. We guess that T(n)<cn (\\og2n)2. We have to verify (see Section

3.5.1) that (1) c2(log22)2>4, and that (2) c(2n)(\\og2(2n))2 >2cn (\\og2n)2 +4n log2(2\302\253),

for some value of c. We can simplify (2) to

2cn (\\og2n)2 + Acn \\og2n + 2cn > 2cn (\\og2n)2 + 4\302\253\\og2n + 4n.

Both inequalities clearly hold for c >2.

3.14 We have

\302\243/Mog2i
<

J xk\\o%2xdx =
jf]-[\302\260gX~

\\\\
=0(nk+l\\ogn).

3.15 The functions f (n)= 3n, g(n) = 2n, and s(n) =r(n) = n form a counterexample to the claim.

420 Sketches of Solutions to SelectedExercises

3.17 We can construct the two functions by letting one of them grow fast for all even numbers

and the other one grow fast for the odd numbers. We define the functions recursively. Let

/<1) =S(0=1.
f / (/?

- 1) + 1 when n is odd

^(\=1") f(n-\\) + (g(n-\\))2 when a? is even

and

f g (n - 1)+ 1 when n is even

g(<n)=\\ g(n-\\) + (f(n-\\))2 when n is odd

/(n) is about the square of g (n) for all even numbers, and g (n) is about the square of / (n)
for all odd numbers. Therefore, / (n) \302\261O (g (n)) and g (n) \302\261O (f (n)).

3.19 We can use Theorem3.4,since m and c are constants. The result is

S(n) =
o[nlogmUmlogmi

3.21 The solution is T(n)=0(n). To prove it, we guess that T(n)<dn for some constant d. We

have to show that

k k

dn >
\302\243a-,(dnlbt) + en =dn^ a\\lb\\ + en.
i=\\ /=!

k

Since /= 1 -
\302\243a,lbt > 0, the inequality above holds for d>elf.
i = \\

3.25 If we replace the term T{\\yn\\) with T(n/2), then we get the typical divide-and-conquer

recurrence relation, whose solution, by Theorem 3.4, is 0(n log a). Thus, since is no

greater than n/2 for n >2, T(n) = 0(n logn). However, it is possible that T(n) is smaller

than that. Let's try T(n) =en. The basecase implies that e>\\. Consider 2n. We have to

prove that

2cn > en + Vo? + n,

which is clearly true for e-2 and n >2.

3.29 a. If n is a power of 2, then the upper part of the recurrence will always be used. In this

case, we can substitute k for n, and obtain the following recurrence relation for

T(k) =T(2k).

r(*) = r(*-i)+i, no)=i.
The solution of this recurrence relation is clearly T(k) = k + 1.

b. Considernow n=2k-\\. If we use the bottom part of the recurrence, then T(n) is

replaced by 7((a7-1)/2), and (n -1)/2 = 2*~'-1. In other words, if we start with

n = 2k' - 1, then we will always use the bottom part of the recurrence relation, becausethe

numbers involved will always be of the form 2J-1 for some j. We can now define

T(k) = T(2k - 1),and obtain the recurrence relation

r(k) = 2T(k-\\), r(i) = i.

The solution of this recurrence relation is clearly T(k) = 2k~]. The recurrence relation

Sketches of Solutions to Selected Exercises 421

behaves differently for powers of 2 and for nonpowers of 2, because its definition is

vastly different between even numbers and odd numbers. We can restrict ourselves to

powers of 2 if the solution of the recurrence relation is a function that behaves \"nicely.\"
In particular, the expressions for the running times of most algorithms are monotonically

increasing functions. If the difference between the value of T(n) and T(2n) is no more

than a constant and if T(n) is monotonically increasing, then T(m) for n < m < In is no
more than a constant times T(n). Therefore, the analysis for powers of 2 is sufficient in

that case.

Chapter 4

4.5 Since 16 is occupied, 8 (16's parent) must be occupied. By the same argument, 4, 2, and 1

must be occupied. Thus, 5 is the minimal number of heap elements in an array of size 16.

4.12 We will use an array of size n and store element / at location /. Therefore, insertions are

easy. A removal is more complicated, since / is not specified and we do not know which

locations are occupied. We handle removals by linking all the occupied locations in a

linked list. An insertion of / thus involves marking the /th location and inserting / to the list.

A removal deletesthe first element from the list and unmarks that element.

4.13 We first remove an arbitrary element from one of the heaps (e.g., the top of one of them),

and rearrange this heap. We then insert the removed element as a new root such that the

roots of the two heaps are connected to it as its children. The new root may not be in its

appropriate place, but it takes O(log (m + n)) steps to move it down the combined heap to a

correct place.

4.15 We use AVL trees so that insertions and deletions can be done in 0(\\ogn) steps. To

perform Find_Next(x) we use the regular search algorithm for jc, except that we branch right

if we meet x and x is not a leaf. If x is not a leaf, then the search leads us to the desired

element. If x is a leaf, then the element for which we are looking is the last node on the path

from the root to x where we branch to the left (if we always branch to the right, then x is the

largest element in the tree). We can, during the search, store a pointer to the last node from

which we branch left and use it if x is found to be a leaf.

4.17 We use AVL trees so that insertions and deletions can be done in O(log n) steps. We add a

new field to every node v, denoted by v.D, which contains the number of descendants of v

(including v). We can use this field to find the rank of a node v (namely, the number of
elements in the tree that are smaller than or equal to v.Key) during the search. This is done

by the use of induction as follows. We assume that we know the ranks of all nodes on the

path from the root to some node u\\ and show how to find the ranks of the children of w.

Denote the rank of node v by v.Rank.

w.Left.Rank = w.Rank -
w.Left.Right.D

- 1.

w.Right. Rank = w.Rank + w.Right.Left.D + 1.

(If any of the children does not exist, the D value is taken as 0.) To perform

Find_Next(x, k) we first find v such that v.Key =x (if there is no such node, then the search
is unsuccessful). We then search for the node with rank v.Rank + k. It is as easy to search

according to ranks as it is according to keys. We are not yet done, however. Since we have

introduced a new field, we must show how to maintain this field when insertions or deletion

422 Sketchesof Solutions to Selected Exercises

take place. This is done as follows. When we insert (delete) an element we increment

(decrement) the descendant fields in all nodes along the search path. (Notice that, if the

insertion or the deletion is unsuccessful, we must redo these changes.)

Here is another question: Why did we add a descendant field instead of a rank field, which

would have made the search for a key with a specified rank much easier?

4.20 Let the height of the \"left\" tree (i.e., the tree with the smaller elements) be /*, and the

height of the right tree be h2. Assume that hl>h2 (the other case is similar). First, delete

the maximal element from the left tree. Denote this element by r. Then, use r as a new root

for the right tree, and insert this root in the appropriate place on the right side of the left

tree. More precisely, traverse the left tree, taking only right branches, for h, -h2 steps. Let
the node at that place be v, and its parent p. The new concatenated tree will have r in place

of v as the right child of p, v as the left child of r and the root of the right tree as the right

child of r (the right tree remains below its root on the right side of r). It is easy to verify

that this is a consistent binary search tree. This insertion may invalidate the AVL property,'
in which case we can use the usual remedy of a rotation.

4.23 Let Th be the worst AVL tree of height h (namely, the tree with the fewest nodes). 7, is

clearly a tree with a root and one child. T2 is a tree with a root and two children such that

one of the children has one child of its own, and the other child is a leaf. In general, we

assume that we know how to construct Th and consider Th+l. Th+l must have a child that is

a root of a subtree of height h. Since this subtree must satisfy the AVL property and we

want a tree with fewest nodes, we should use Th. Furthermore, since the AVL property
must also be satisfied at the root, the other child of the root must be the root of a subtree of

height at least h-\\. The subtree with fewest nodes for this child is thus Th.x. Therefore,
Th+l consists of a root connected to Th and Th_x. The number of nodes N(h + \\) in Th+i
satisfies

N(h + \\) = N(h) + N(h-\\)+\\.

This is the Fibonacci recurrence relation. Its solution leads to the lower bound on the

number of nodes in an AVL tree. This lower bound can then be used to prove the upper
bound on the height of an AVL tree with n nodes given in the theorem.

4.27 We use the extra array, denoted by S, to store sums of numbers in a special way. Let's
assume first that n = 2k - 1 for some k. We store in S [2k~x] the sum of all numbers from 1 to
2*\"'. By doing so, we have divided the problem into two subproblems of half the size \342\200\224

maintaining the left side of the array (from 1 to 2*\"' -1), and the right side of the array

(from 2*\"' + 1 to 2k - 1). Each subproblem can be solved by induction. The first subproblem

can be solved independently, except that every time an Add operation is performed, the

appropriate change in S [2*_l] must be made. The secondsubproblem can also be solved

independently, except that we add the value of S [2*_l] to the returned value of Partial sum.

If we look beyond the recursion, what happens is that S [i] holds the sum of the numbers

from A[j] to A [/], where j is the closest index to / that is divided by a higher degree of 2
than i. For example, S [12]holds the sum A [9] +A [10] +A [11] +A [12], and S [6] holds the

value of A [5] +A [6]. We leave the exact details to the reader.

4.29 We can implement all the operations in the exercise, except for Add all, in a straightforward
way by using AVL trees. To support Add_all(y), we associate one more global variable,

Scale, with the tree. Add_all{y) simply adds y to Scale. Find_value(x) adds Scale to the
value associated with x. Insert(x, Value) sets the value of x as Value -Scale.

Sketches of Solutions to Selected Exercises 423

Chapter 5

5.4 The loop invariant is the following:

Only one person among the first next - 1 persons can be the candidate, and

that person is i if next = j, orj if next = i.

5.12 The solution is similar to that of the maximum consecutive subsequence problem, except
that we strengthen the induction hypothesis even further. We assume that we know (1) the

subsequence with the maximal product, (2) the subsequence that ends at the end with the

maximal product, (3) the subsequence with the minimal negative product, and (4) the

subsequence that ends at the end with the minimal negative product. We leave it to the

reader to handle all these cases.

5.14 The solution is trivial for a tree with one or two vertices. Suppose that we know how to
solvethe problem for a tree with n vertices, and consider a tree T with n + 1 vertices. Let v

be an arbitrary leaf in 7\\ and let w be the only vertex connected to v. If we remove v, we are
left with a smaller tree T. The distance between v and any vertex u in T is 1 plus the

distance between w and u.

5.15 Let v be an arbitrary vertex in G, which we designate as the root of the tree. If we remove v

from the tree, we obtain several smaller trees whose roots are the vertices that were adjacent
to v. We can repeat this process, each time obtaining new roots and smaller trees, until all

edges are removed. We will solve the problem by induction on the number of times we

have to perform this process until all edges are removed. If the path corresponding to the

diameter of the tree does not contain the root, then the diameter of the tree is also the

diameter of one of the smaller trees, which we find by induction. If the root is contained in

the path corresponding to the diameter, then this path connects two vertices in two separate
smaller trees that are farthest away from the root. This observation suggests the following
induction hypothesis (which is stronger than the straightforward one).

Induction hypothesis: We know how to find the diameter of subtrees with <

n vertices, and how to find the maximal distance from a fixed root.

The basecaseis trivial. Given a tree with n vertices, we designate v as the root, and solve
the problem by induction for all the subtrees rooted at the children of v. Notice that the

distances we find are those to the children of v, and not those to v. However, to find the

distances to v, we need only to add 1 to all the distances. After doing that, we compare the

maximum diameter found among the subtrees with the sum of the two maximum distances
from v. The larger of the two is the diameter.

5.21 We assume that a subset whose sum is k exists. Use the black box for the input set without

one of the elements. If the answer is yes, then there is a solution without this element; if

the answer is no, then the element is necessary. In either case, the problem has been

reduced, since the status of one element has been determined.

Chapter 6

6.3 We can use binary search by cutting the text in half and running the program on one half. If

an error occurs, then we know that it is in that half and we can continue in the same manner;
if no error occurs, then it is in the other half. (We assume that the offending string has not

been cut.)

424 Sketches of Solutionsto Selected Exercises

6.11 We first modify algorithm Partition (Fig. 6.9) such that, if the pivot is not equal to X [Left],
then the pivot is first exchanged with X[Left]. Let X[l] = 1, X[n]=2, and let all other
elements be greater than 2. In this case, the pivot will clearly be X [n]. Algorithm Partition

will first exchange X[\\] with X[n] as mentioned above, then exchange X[n] with X[2]
(sinceX [n] is now < 2 and X [2] > 2). Sinceall other elements are greater than 2, no other

exchanges will take place. The result of the partition is to put 1 and 2 at their correct places
in the beginning of the array. Quicksort will then recursively sort the array from the third

index to the last one. To continue this pattern, we need to put the third smallest element in

the third position, and, since the element in the last position in the array after the partition
was originally in the second position, we need to put the fourth smallest element in the

second position. For example, if n = 8, then a bad order will be 1, 4, 3, 6, 5, 8, 7, 2.

6.14 Divide the set into two equal-sized subsets (or into two sets with sizes different by 1 if the

size of the original set is odd). Solveeach subproblem recursively, and merge the results.
Each recursive solution produces two results, the maximal and minimal element. Only two

comparisons are required to merge the two solutions; one to compare the two maximals, and

one to compare the two minimals. The following recurrence relation is obtained:

T(n) = 2T(n/2) + 2, 7(2)= 1.

It is easy to verify by induction that T(n) = 3n/2-2: T(2) = 3\342\200\2422/2-2= 1, and T(2n) =

2T(n)+ 2 = 2(3/i/2-2) + 2 = 3n -2. The savings come from the base case! It takes only
one comparison to find both minimum and maximum between two numbers. We do it (at

the final unfolding of the recursion) for n/2 pairs, so we save about n/2 comparisons. It is

interesting to note that more than 3n/2-2 comparisons may be needed if n is not a power of
2. For example, since 7(3) = 3, we have 7(6) = 8, 7(12)= 18,and so on. The algorithm
suggested in Section 6.5.1 is better in this case.

6.19 Consider w =A [n/2] (we assume without loss of generality that n is even). If w>z, then z

must appear in the array between A [1] and A [n/2]. This is true because the difference
between consecutive elements in the array is at most 1, and therefore no number can be
skipped. If w < z, then, by a similar argument, z must appear between A [n/2+ 1]and A [n].
In either case, we cut the search space in half with each comparison. The maximal number

of comparisons is thus [log2\302\253l.

6.20 We can use the simple information-theoretic bound. The number of possible answers to the

question posed by Exercise 6.19 is n (z can be equal to A [1], A [2], and so on). Therefore,
any decision tree that solves this problem must have at least n leaves (where the \302\253thleaf

corresponds to the answer \"z is equal to A [/]\.") The height of such a decision tree must be

at least flog2\302\253l.

6.22 a. Sort the set S\\ then, for each element z of S, perform binary search for the number x - z.

b. We use induction.

Induction hypothesis: We know how to solve the problem for a sorted set

of <n elements.

Assume that S is sorted in increasing order. Consider 5[1] and S[n], and let

y =S [1J + S [n J. If y =*, then we are done. If y > jc, then clearly S [n] cannot be part of

the solution because S[n] +S[i]>x for all /. Therefore, we can eliminate S[n] from

consideration and solve the remaining problem by induction. If y < jc, then, by a similar

argument, we can eliminate S [1].

Sketches of Solutions to Selected Exercises 425

6.26 Sort the set, and pair the smallest element with the largest, the second smallest with the

second largest, and so on. This procedure is correct for the following reasons. Suppose that

there is another partition with a better bound, in which x, and xn are not matched. Let x, be
matched in this partition with jc, and xn with

Xj. But then, we can change the partition so
that jc i is matched with xn and jc, is matched with

xjy without increasing the maximal sum,
which is a contradiction.

6.28 The permutation o,, a2, \342\200\242\342\200\242\342\200\242,an defines a total order on xux2 xn. That is, we can

4'compare\" any pair of elements jc, and
Xj by comparing a, to o;. We want to rearrange the

XjS such that the o,s will appear in order. Therefore, any sorting algorithm that sorts

according to the values of the o,s and moves both jc, and at together will lead to the desired
outcome.Sincewe want an in-place algorithm, we can use, for example, heapsort.

6.29 Initially, put all the d minimal elements of the sequences in a heap. Then, in each step,
remove the minimal element in the heap and insert the next element from the corresponding

sequence.

6.31 a. Insert each element into a balanced binary search tree (e.g., an AVL tree). Each node of

the tree has a key and a pointer to a linked list of all the elements with the same key.
Since the number of different keys is 0(log\302\253), the number of nodes in the tree is

0(}ogn) and therefore the tree's height is 0 (log log a). After we construct the tree we

can append the different linked lists to one list by performing inorder traversal of the

tree.

b. The lower bound for sorting does not apply to this problem, because the lower bound

proof assumed that all permutations are possible valid inputs. In this problem, we

restrict the possible inputs to only those with 0(}ogn) different values.

6.33 The sum of heights is at most
n

r(/o = 2xriog2((/i + i)//)l.

To evaluate T(n)v/e start with a small concrete example.Consider7(7):

7(7)= log28 + log24+riog28/3l + log22+ riog28/5l+riog28/6l+[log28/7l

= 3 + 2 + 2+1 + 1 + 1 + 1.

There are 4 (=(n+ l)/2) terms of size 1, two terms of size2, and one term of size 3. Let's
assume that n + 1 =2*. It is not difficult to see that T(n) will consist of (n + l)/2 terms of

size 1, (n + l)/4 terms of size 2, and so on, up to one term of size k. (This is exactly the

heights of all nodes in a complete binary tree.) So, overall
it

T(n) = Zi2k-i.

This sum was shown to be O(n) in Section 3.4. If n + 1 is not a power of 2, then there can

be at most an extra contribution of 1 to each term, adding no more than n.

6.36 Suppose that algorithm A finds that x, is the kth largest element by making a series of

comparisons whose results cannot determine whether a certain element Xj is greater or
smaller than jc,-. This implies that the outcome of the comparisons is consistent with Xj

being equal to a value y >x, and to a value z <Xj. But both cases lead to a different kth

largest element, which is a contradiction.

426 Sketches of Solutionsto Selected Exercises

6.38 The idea is to consider 2k elements at a time. We start with the first 2k elements, and find

their median. All elements greater than the median can be eliminated. We now look at the

next k elements and do the same. This process requires approximately nlk phases, each

consisting of computing the median of 2k elements.

6.41 Thereare exactly n + 1 possible answers to this problem, so every decision tree that solves
the problem must have at least n + 1 leaves. The claim follows immediately.

6.44 This problem is discussed in Section 10.2.

6.46 The basic idea is to construct the next table for the part of the pattern that is known, and to
extend it as more characters of the pattern become known. This is not hard to do, since the

construction of the next table is similar to the regular pattern matching problem (see also

Takaoka[1986]).

6.51 Part b serves as a good hint for the solution of part a. We find the minimal edit distance

(and the minimal edit sequence) between T and P under the assumption that no

replacements are allowed (the same algorithm can be used, except that the cost of a

replacement is set to 2). The LCS of the two sequences is the set of characters that are

matched in the minimal edit sequence (i.e., those that are not involved in the insertions or

deletions). The SCSis the LCS plus all the insertions and deletions. We leave the proof to

the reader.

6.54 The easiestway to solve this problem is to use the regular sequence comparison algorithm,

except that the initial values of C (/, 0) (seealgorithm Minimal Edit Distance) are 0. In

other words, inserting the beginning of A does not cost anything, which is exactly what we

want.

6.60 The (not surprising) answer is that it is better to be correct than to be fast. Given a Las

Vegas algorithm that runs in expected time T(n) and always produces the correct result, we

can transform it into a Monte Carlo algorithm by enforcing termination of the algorithm

after 4T(n) steps, if it has not already terminated. Since its expected running time is T(n),
the probability that it does not terminate after AT(n) steps is no more than 1/4. When we

enforce termination, we output an arbitrary answer. The algorithm now runs in

(guaranteed) time 0(T(n)) and no more than 1/4 probability of error.
A little harder question: Show that it is sufficient to run the algorithm for 2T(n) steps.

6.61 We use the majority algorithm, exceptthat we keep up to three different candidates. Each

element is compared to the candidates, and if it is equal to one of them, then the

corresponding multiplicity is incremented. Otherwise, if the new element is different from

the existing three candidates, then we can decrement the multiplicity of all candidate (by the

same argument as in the majority algorithm \342\200\224we can eliminate four distinct values from

consideration). If there are less than three candidates, we add the current element as a new

candidate. At the end, all remaining candidates are compared to all the elements.

Chapter 7

7.4 LetTbe a tree that satisfies the conditions of the problem, and consider the rest of the graph.

Let e be an edge not in T. SinceT is a DFS tree, e must be a back edge; that is, e must
connect a vertex to its ancestor. However, since T is also a BFS tree, e must connect two

vertices at the same level or at neighboring levels. This is a contradiction; hence, the only
graphs that satisfy the constraints of the problem are trees.

Sketches of Solutionsto Selected Exercises 427

7.8 The claim is wrong.

7.24 The conditions of the problem imply that G is Eulerian. Consider an Eulerian circuit C in G,

and its traversal.

7.27 Perform a DFS (a BFS will do just as well), and construct the DFS tree. Prove that any leaf

in that tree satisfies the conditions of the problem.

7.29 The solution is by induction. The base case is simple. We want to reduce the problem to

one with n -1 numbers, and still have the same constraints. Since all d,s are positive and

their sum is 2n -2, there exists at least one k such that dk = 1. There also exists j such that

dj> 1. So,we can remove dk from the list and subtract 1 from dj. This is a valid problem

of size n-\\ (everything is still positive and the sum is 2\302\253-4), which we solve it by

induction. We find a tree T with the corresponding degrees. We need only to add a leaf to
the vertex corresponding to dj in T to find the tree that solves the original problem.

7.34 We use the KMP pattern-matching algorithm (Section 6.7) in combination with a DFS-like

(preorder) traversal of the tree. During the traversal, we maintain the status of each vertex
in regard to current potential matching. That is, we define v.match to be equal to the size of
the maximal prefix in the pattern that matches the suffix of the path from the root to v. (This

is exactly the same information that is maintained by the KMP algorithm.) preWORK for v

is defined by including v's character as the next step in the KMP algorithm, and computing
vmatch. postWORK is defined by restoring the status of v \342\200\224that is, by continuing the

matching from v using v.match. The running time of this algorithm is linear in the number

of vertices in the tree.

7.35 Without the cycle, the graph would have been a tree for which the problem is easy (pick a
root and direct all edges away from it). We can discoverthe cycle by DFS when the first

(and only) edge leading to a previously visited vertex is found. The cycle can be directed so

that it becomes a directed cycle and all its vertices have indegree 1. All other edgesshould

be directed away from the cycle. This can be achieved by starting another DFS from any

vertex on the cycle and directing all edges in the direction they are visited during the search.

The single back edge will point to the root of the search which will have indegree 1 (as will

all other vertices).

7.37 Perform DFS on the graph, and build a DFS tree T. Sinceall the other edges in the graph
are back edgesrelative to 7\\ we can direct all edges of T to point away from the root and all

other edges to point toward vertices that are closerto the root (i.e., toward the ancestors).

7.40 Modify the topological sort algorithm so that all vertices of indegree 0 are removed together

from the queue and are put in one group. The algorithm handles these vertices as before

(i.e., it removes their emanating edges by decrementing the corresponding indegrees), and

then again all vertices of indegree 0 are removed. Prove that the groups satisfy the

conditions of the problem, and that there are no more than k + 1 of them.

7.42 Use BFS starting at v. Each edge (jc, y) encountered through the search, such that y is a new

vertex, is part of a shortest path from v to y. A common error is to increment the count of
shortest paths to y when (jc, y) is encountered. However, there may already be several
known shortest paths to jc, and each one of them is a part of a shortest path to y (ending with

the edge (jc, y)). Hence, the correct solution is to add the number of shortest paths to x

(which is already known) to the count of shortest paths to y. All counts are initialized to 0.

428 Sketches of Solutionsto Selected Exercises

7.43 The main idea is not to use a heap. Instead, we find a new minimum path by looking at all

the vertices. This takes O (| V \\) time, but now the update for each edge takes only constant

time (since no heap is maintained).

7.45 Add to each edge a weight of \\u where u stands for a unit. Use the same algorithm, except
that the length of a path is its regular length plus the sum of units. The units are used to

compare two paths with the same regular weight. Instead of using artificial units, it may be

possible to add a very small number x to the weight of each edge. The value of x must be
small enough that it does not affect paths with different regular weight. For example, x can
be taken as m/(| V | + 1), where m is the precision of the weights (e.g., if they are integers,

then m - 1).

7.48 We use induction on k, and find not only the path to w, but also the paths to all other
vertices. For simplicity, we discuss finding only the lengths of the paths, rather than the

paths themselves.Thecaseof k = 1 is obvious. Denote by w.SPk the length of the shortest

path from v to w which contains exactly k edges. Assume that we know the shortest paths,

which contain exactly k - 1 edges, from v to all other vertices. That is, we know the values

of w.SPk.l for all w. We now need to consider all edges, and for eachedge(jc, y) set y.SPk
to x.SPk_x + length (x, y) if it is smaller than the current y.SPk. The running time is thus

0<|EHV|).

7.50 Algorithm Improved Acyclic Shortest Paths (Fig. 7.16)works for negative-cost edges as
well. (Hint for a proof: Whenever a vertex is considered, all the paths leading to it from the

source have been compared.)

7.52 The graph must be Eulerian, since each cycleadds a degree of 2 to each of its vertices. On

the other hand, the edges of an Eulerian graph can always be partitioned into a set of cycles.
It is enough to note that there exists at least one cycle in an Eulerian graph, and that

removing a cycle from an Eulerian graph gives a set of (possibly one) connected Eulerian

graphs.

7.55 This is an excellent example for a solution by induction. The induction will be on the

number of vertices.Thebasecaseis simple. Let v be any leaf in the tree. We would like to

remove v, to solve the problem for the remaining tree, and to find a value of S{y) that

satisfies the requirements. If the edge connected to v points toward v, then the reduction is

simple:Let the edge be (w, v); then, S (v) can be set to S(w) \\^j {X(w, v)J, and it is easy to

see that the requirements are satisfied. The difficult case is when the edge is (v, w). In that

case, we set S(v) to be equal to S(w) and change all the other subsets by adding the label

^(v, w) to them. It is easy to verify that all the requirements are satisfied.

7.60 Start with F as the current \"minimal\" spanning tree and add edges to it according to the

algorithm in Exercise 7.59.

7.64 First find the MCST, call it T. (The answer for all edges of T is obviously T itself.) For
each pair of vertices v and w, find the maximum-cost edge in the (unique) path connecting v

to w in T. This is a preprocessing step. We may not need the information for all pairs, but it

is simpler to compute it for all of them. A minimum-cost spanning tree containing the edge
U, y) is obtained by adding the edge (jt, y) to 7, then removing the maximum-cost edge
from the unique cycle that is formed (or the second largest, if (.v, y) is the maximum). This

edge is the maximum-cost edge on the path from x to y in 7\\ whose identity we obtained in

the preprocessing step. The preprocessing step can be done by using DFS on T for | V \\

Sketches of Solutions to Selected Exercises 429

times, each time starting from another vertex.

7.67 Increasing all costs by a constant does not change an MCST, because only the relative order
of the costs is important for the algorithm. Whenever costs are used in the algorithm, they

are compared to each other with a simple comparison (\"<\" or \">\.") They are not used (or

manipulated) in any other way. Therefore, since adding a constant to all costs does not

change the order of the costs, it also does not change the result.

7.68 (This is just a sketch of a rather complicated algorithm.) First, we notice that we can

concentrate on T and ignore the rest of the graph. Since T has already been found to be an

MCST, every other edge in G completes a cycle with the edges of T in which it is a

maximum-cost edge. Adding another vertex does not change that fact. We will also

assume, for simplicity, that v is connected to all vertices in T (e.g., we can add dummy

edges with infinite cost). We use induction on the number of vertices in T. Consider T as a
rooted tree (with an arbitrary root), and look at an internal vertex w connected to several
leaves. Each pair of leaves x and y connected to w defines a cycle of four edges with v and

w (containing the edges (w, jc), (jc, v), (v, y), and (y, w)). The maximum-cost edge of this

cycle should be deleted, which creates a new leaf in the new graph. This leaf is guaranteed
to be in the new MCST, which will reduce the size of the problem. We are not quite done,
since w may have only one leaf z. In that case, the cycle is a triangle consisting of (w, z),
(z, v), and (v, w). The difficult case is when (v, w) is the maximum-cost edge in this cycle
and needs to be removed. This case is difficult because no new leaf is found. However, we

can still reduce the problem by
*
'compressing\" w. We replace the two edges (w, z) and

(w, p) (where p is the parent of w in the rooted tree) by one edge (p, z), and set the cost of
this new edge as the maximal cost of the two old edges. We leave it to the reader to

complete this argument into an algorithm. Oneneedsto prove that the compression is valid,

and to design the appropriate data structure to maintain the necessary information during the

running of the algorithm.

7.70 The main idea is to solve the problem backward. Instead of deleting vertices in the way the

problem is stated, we add vertices in the opposite order. We use the union-find data

structure (Section 4.5) to maintain the set of components currently in the graph. We start

with vertex n and add it as one component to the data structure. We then consider vertices

n -1, n - 2, and so on. For each vertex z, we first add it as a component, then check all

edges (/', j) such that j > i. For each such edge (/', j), we check whether z and j belong to
the same component (using the find operation), and, if not, we join the two corresponding

components (using the union operation). We stop when one component contains more than

nil vertices.

7.71 Since every cycle in G must contain an edge from the feedback-edge set F, the set of edges
E-F cannot contain a cycle. We want to minimize the size of F, which is the same as

maximizing the size of E-F. The largest set of edges with no cycle in a graph corresponds
to a spanning tree (or spanning forest, if the graph is not connected). Hence, the minimum-

size feedback-edge set in an undirected graph is a complement of a spanning tree of the

graph, and its size is | E \\
-

\\V | + 1 (assuming that the graph is connected). The
corresponding problem for directed graphs is NP-complete (seeChapter 11).

7.74 Check all the edges not in the tree. If there is an edge (v, w) such that v.SP + cost(v, w) <

w.SP (where Jt.SP is the length of the shortest path to x via the tree), then the tree is

obviously not a shortest-path tree. It remains to prove that, if no such edge exists, then the

tree is indeed a shortest-path tree.

430 Sketches of Solutions to SelectedExercises

7.79 Find a topological order, and then check, for all vertices with consecutive labels, if they are
connected in the graph. If they are, then the topological order gives a Hamiltonian path. On

the other hand, if there exists a Hamiltonian path, then any topological order will sort the

vertices according to their place in that path.

7.84 We proved in Section 7.9 that two edges are contained in a cycle if and only if they are in

the same biconnected component. Hence,we need only to remove c from the graph and to
run the biconnected components algorithm to determine whether a and b belong to the same

biconnected component in the graph without c.

7.85 We will prove a slightly stronger theorem (and leave it to the reader to show that it implies

the claim in the exercise).

D Theorem A.2

Ifv and w are two vertices of the same biconnected component B, then any simple

path between v and w is contained in B.

Proof: There is obviously at least one simple path between v and w in B. If there is

path that is not contained in \302\243,then it has to leaveB and to come back. It has to leave B
from one component and to come back through another (since it is simple, and two

components can be connected only through one articulation point). But that would imply
the existence of a cycle involving more than one biconnected component, which is

impossible.

7.87 Pick an arbitrary articulation point v. Remove v and its incident edges from the graph and
find the different connected components of the resulting graph. Then put back the removed

edges into the appropriate components. Consider now each component separately, and

perform the same procedure by picking another articulation point, and so on.

7.89 A first approach may be to try to modify the strongly connected component algorithm to

update the High values more accurately. For example, instead of using DFS numbers, we
can use the currently known High values. In other words, when an edge (v, w) is

considered for the purpose of computing v.High, we use w.High instead of w.DFSin the

computation. However, w.High may be updated later (e.g., one of its other children may
have a path to a higher vertex). Updating all the vertices that used the previous value of

w.High may be too costly. We use another approach.

Denote the largest DFS number reachable from v by v.RealHigh. All the vertices in the
same strongly connected component have the same characteristics as far as reachability is
concerned. That is, if any of them can reach a vertex w, then all of them can reach w.

Hence, it is sufficient to compute v.RealHigh for one representative of each strongly
connected component. We first use the strongly connected component algorithm to

construct the SCC graph SG. Each node in SG is marked with the DFS number of the root

of the corresponding strongly connected component (this is the vertex with the highest DFS
number in the component). SG must be acyclic, so we have reduced the problem to that of

finding the RealHigh values of acyclic graphs. The advantage of this reduction is that it

solves the problem with repeated updating that we had before. SinceSGis acyclic, there

are no back edges. Therefore,at the time the edge (v, w) (in SG) is used to update

v.RealHigh, the value of w.RealHigh is the correct final value. We leave it to the reader
to prove this fact \342\200\224for example, by induction (the proof is not trivial).

Sketches of Solutionsto Selected Exercises 431

7.92 a. Supposethat v belongs to a vertex basis B. If v is not on a cycle and v has a nonzero

indegree, then there exists a vertex w such that (w, v) is an edge and w is not reachable

from v. For B to be a vertex basis, either w belongs to B or there is a path from some
vertex in B to w. In either case, however, there is also a path from a vertex in B to v, and
v can be removed from B. This contradicts the minimality of B.

b. Sinceno vertex is on a cycle in an acyclic graph, it follows from part a that only the

vertices of indegree 0 can be in a vertex basis. But, it is also true that each vertex of

indegree 0 must be in any vertex basis, since there is no path leading to it. Hence, the

unique vertex basis of an acyclic graph is the set of vertices of indegree 0 (we proved in

Section 7.3 that this set is not empty).

Given a general graph now, we first find the SCC graph (see Section 7.9). As we have

shown, the SCC graph is acyclic. Any vertex in a strongly connected component covers
all other vertices in this component. Hence,it is sufficient to choose one of the vertices

in each component. Thus, a vertex basis consists of one vertex (any vertex) from each

component that corresponds to a node of indegree 0 in the SCC graph.

7.95 Consider the tree as a rooted tree with an arbitrary root. Take an arbitrary leaf v and match

it to its parent w. Remove both from the tree (and all other
*
'brothers\" that become

disconnected). Solve the resulting problem by induction. We need to prove that the edge
(v, w) indeed belongs to a maximum matching. Let M be a maximum matching. If M does
not contain (v, w), then v is not matched (it is connected only to w). If (w, w) is in the

maximum matching, then simply replace it with (v, w). It is still a matching, and it has the

same cardinality.

7.99 a. A graph must not include a vertex of degree0 to have such a cover. When we remove an

arbitrary vertex, we may end up with a component that consists of only one vertex.

b. We now assume that the graph contains only vertices of degree > 0, and we make sure

that the reduced graph satisfies this condition. Only vertices of degree 1 pose any

problem. So, if the graph contains any vertex of degree 1, we remove one such vertex
with its edge and add this edge (which is a star graph by itself) to the cover. Only one

degree of one other vertex is reduced by 1. It is easy to see that this is now a valid

reduction.

7.100 We use binary search in combination with the maximum-matching algorithm described in

Section 7.10. Let's solve first the problem of verifying whether there exists a maximum

matching such that all of its edges have weights <x (for some given x). This problem can
be solved by removing from the graph all edges of weight > x and applying the maximum-

matching algorithm to see whether the maximum matching in the remaining graph has the

same number of edges as the maximum matching in the original graph. The cost of this

verification is dominated by the cost of the maximum-matching algorithm, which is

0(^fn m). There are m edges in G, so there are at most m different possibilities for weights.
We can now use binary search to find the smallest x such that x is a weight of someedge
and there is a maximum matching such that all of its edges have weights <.v. (For an

algorithm with a lower time complexity, seeGabow and Tarjan [1988].)

7.104 We use divide and conquer. We divide the players into two equal-sized groups and

construct a chain as required for each group. We then merge the two chains in exactly the

same way as regular merge. We leave it to the reader to verify the correctness of this

procedure. The similarity of this algorithm to mergesort is not incidental; see Exercise
10.18.

432 Sketchesof Solutions to Selected Exercises

7.106 Clearly, at least k colors are necessary, since all edges incident to the same vertex must be

colored differently. We will show that k colors are also sufficient. We want to use divide

and conquer, but we have to divide the problem such that the subproblems are the same as
the original problem. If we divide into two smaller subgraphs, we have to ensure that the

degrees of all vertices in each subgraph are equal and that they are a power of 2. This is

achieved by finding an Eulerian circuit of the graph (such a circuit exists, since all degrees

are even). Then, we traverse the circuit and divide the edges into two groups by alternating
between the two groups (i.e., the first edge goes to the first group, the second to the second

group, the third to the first group, and so on). Each group defines a subgraph with all the

original vertices and one-half of the original edges. The degreeof each vertex in each

subgraph is exactly fc/2, since whenever an edge entering a vertex is put in one group, the

next edge (which is leaving the vertex) will be put in the second group. The rest can be
done by induction. We now have graphs with fewer edges and, more important, smaller

degrees. We color all the edges of the two subgraphs separately, but we use distinct colors

for each group. Therefore, we can just put the two colorings together. The complexity of

this algorithm is dominated by the algorithm for finding Eulerian circuits, which takes linear

time but which has to be performed for each subgraph. The number of stages of this

algorithm is log2fc (since k is halved at each stage); hence, the total running time is
O(| E | log k). (It is interesting to note that every graph whose maximal degree is k can be

edge-coloredwith at most k + 1 colors; see,for example, Chartrand and Lesniak [1986].)

7.108A common approach to this problem (judging from students' examinations) is to consider a

root of the tree (any vertex can serveas the root), to find minimum vertex coversfor all the

subtrees below the root, and then to include the root in the vertex cover unless all its

children are already included in the vertex coversof the subtrees. This seems like a good
approach, since the root must indeed belong to the vertex cover if any of its children does
not belong. However, there may be many different minimum vertex covers (see Fig. A.l).
For a given subtree, it is possible that there is a minimum vertex cover that includes its root
and one that does not include the root. Therefore, this approach does not necessarily lead to

minimum vertex covers (unless more precautions are taken). A different reduction can be

achieved by considering a leaf first. The edgefrom a leaf to its parent must be covered, and
can be coveredby either the leaf or its parent. There is no advantage to choosing the leaf,

Figure A.l A tree with two minimum vertex covers.

Sketches of Solutions to SelectedExercises 433

since it does not coveranything else. More precisely, there is a minimum vertex cover that
includes the parent. Therefore, if we choose the parent (of any arbitrary leaf), remove it
and all its incident edges, and then solve the remaining problem by induction, we are
guaranteed to have a minimum vertex cover. It is not difficult to implement this algorithm
in linear time.

7.109 It is easy to see that the weight of a vertex cover in this case must be equal to at least the
number of edges(sinceall edges must be covered and each contributes at least a costof 1 to

the cover). A cover that includes exactly one vertex from each edge is thus the minimum-

weight cover. We will show that such a cover can always be found.

Solution 1: Perform a BFS with an arbitrary vertex v as the root, and assign each vertex a

level number according to its distance from v. Now add all vertices with odd level numbers
(even level numbers will do just as well) to the vertex cover. The result will be a vertex

cover, since every edge connects vertices from two adjacent levels,so one of them has odd
level number. Furthermore, each edge is coveredby exactly one vertex, so the cover is

minimum.

Solution 2: The induction hypothesis states that we know how to solve the problems for all

trees with < n vertices. Pick an arbitrary leaf v and remove it (and its incident edge) from

the tree. Let the only vertex adjacent to v be w, and let G' be the remaining tree. Solve the

problem for G' by induction. Consider again the original tree G. If w is used in the

minimum-weight vertex cover of G', then this cover is still valid; otherwise, include v in

the cover for G. We have to prove that in both cases the cover of G is minimal. But, the

size of a minimum-weight vertex cover of G must be at least 1 more than the minimum-

weight cover of G', since the extra edge must be coveredby either v or w (and it costs 1

more in either case, since the degree of w is increased). We achieve this bound, so the

resulting vertex cover is minimal.

7.114 Let v be an arbitrary vertex of G. Denote the set of vertices adjacent to v by N(v). If v

belongs to the vertex cover,then none of the vertices in N(v) can belong to the vertex cover

(since the vertices in the cover should be independent). Furthermore, all the vertices

adjacent to vertices from N(v) must belong to the cover, since that is the only way to cover

those edges. In particular, if any two vertices of N(v) are adjacent, then the edge between
them cannot be covered, and the procedure fails. This procedure is continued until either it

fails, in which case v cannot belong to the vertex cover, or a vertex cover is found. All the

steps of the procedure are determined by the choice of v; hence, the vertex cover that is

found is the only one containing v that satisfies the conditions of the problem. If this cover

is not too large, then we are done; otherwise, v cannot belong to the vertex cover. But, if we

determine that v cannot belong to the vertex cover,then all its adjacent vertices must belong

to the cover, and we can apply the same procedure.

7.116 Each interval /, is represented by two numbers (/,, r7) (the left and right endpoints). Sort the

intervals according to the r,s. Denote the intervals in the sorted order by /,, /2,..., /\342\200\236(i.e.,

r, is the minimum among the right endpoints). We claim that there is a maximum

independent set that includes /,. To prove it, take any maximum independent set and

consider the interval /, in it such that t'j is minimum among all other right endpoints in the

set. Since r, is the global minimum, r} >r,. But that implies that /, doesnot intersect with

any other interval in the set (except possibly with /,); hence, /, can replace/,, and the

modified set is still maximum independent set. The algorithm follows directly by induction,
because we know how to handle /1.

434 Sketchesof Solutions to Selected Exercises

7.119 a. Let v,, v2, v3, and v4 be a cycleof length 4 (in that order). Considerthe adjacency

matrix of the graph, and assume that the main diagonal is 0 (i.e., a vertex is not

considered adjacent to itself). The rows corresponding to v, and v3 both contain Is

corresponding to v2 and v4. This is, is some sense, a characterization of a cycle of

length 4. (Notice that the matrix is symmetric since the graph is undirected.) We can

look at all pairs of rows, and for each pair check its intersection. In other words, for each

pair of vertices, we check all the other vertices that are adjacent to both of them. There

is a square if and only if any such intersection contains at least two vertices. Any row

intersection (which is basically a row and operation) can be performed in linear time.
There are O(| V \\2) pairs of vertices, so the overall running time is O(| V |3).

b. Use an adjacency-list representation. First sort all the edges in all the lists. Then show

that the intersection between two rows described in part a can be performed in time

proportional to the number of edges incident to the two corresponding vertices.

7.120 Compute the maximum number of squares that can be contained in a graph with | V \\

vertices, and show that it may be more than 0(\\ V \\
\342\200\242

\\E |). Therefore, just listing all

squares may take more than O (| V | \342\200\242
| E |) time.

Chapter 8

8.6 The counterexample is given in Fig. A.2. The circled point will be removed by Graham's

scan even though it is on the hull.

8.11 Sort the vertices of the polygon in a cyclic order according to the angles of the line segment

they make with q (and a fixed line). Then scan these vertices in that order. Start with an

arbitrary vertex v, and determine the number of edges of the polygon that intersect with the

half-line passing through q and v using the algorithm presented in Section 8.2. Then,
whenever a vertex w is visited, one can in constant time determine whether the line through
q and w intersects one more edge,one lessedge, or the same number of edges.

8.16 Divide the plane into vertical columns of width d starting with the minimal x coordinate

among the points and ending with the largest x coordinate. Find the points with the minimal

Figure A.2 A counter example for Exercise 8.6.

Sketches of Solutionsto Selected Exercises 435

and maximal y coordinates in each of the columns. This can be done in time 0(n +Xld)
since the column that contains a given point can be found in constant time. Apply a

procedure similar to Graham's scan to all the minimal points and then to all the maximal

points. This results in two convex paths, which can easily be connected at both ends to
form a convex polygon C. C is not necessarily the convex hull of the points, but it is easy to

show that the distance of any point from the set outside the hull to the hull is at most d.

8.17 The gift-wrapping algorithm can be applied to this problem without additional complexity.

The necessary observation here is that each point is compared against all other remaining

points. Thus, the algorithm requires n - 1 comparisons to find the first vertex of the hull,

n-2 comparisons to find the second, and so on. After the hull is discovered, all its vertices

are marked with the appropriate depth, and removed. The same algorithm continues. The

first vertex on it requires n-k comparisons (where k - 1 is the number of vertices removed
so far), and so on. Overall, O (n2) steps are required.

8.22 The only difficult case is that of finding intersections between all vertical line segments and

the segments with 45-degree angle (the other casesare either symmetric or can be handled

by the algorithm in Section 8.6). We use the same approach as the intersection algorithm of

Section 8.6. The segments are sorted according to the x coordinates of their endpoints. The

line-sweep algorithm is performed in the same way. A segment with 45-degree angle is

inserted when its left endpoint is meeting the sweeping line, and is deleted when its right

endpoint is meeting the sweeping line. We now have to find intersections between a new

vertical line and several candidate segments with 45-degree angles. This is done as follows.

For each segment with 45-degree angle, we compute the intersection of the full line

overlapping the segment with the x axis. We use this value when we perform the range

queries. The range is set as follows. The left point of the range is the intersection between

the line with 45-degree angle that contains the top endpoint of the vertical line and the x

axis. The right point of the range is the intersection between the line with 45-degree angle
that contains the bottom endpoint of the vertical line and the x axis. We have converted the

problem to a one-dimensional range query, and the complexity remains the same.

8.26 We strengthen the induction hypothesis a little.

Induction hypothesis: We know how to mark all the intervals contained in

other intervals among a set of < n intervals, and how to find the largest right

endpoint among them.

We first sort the intervals according to their left endpoints. Assume that we solved the

problem for the first (leftmost) n -1 intervals, and consider the nX\\\\ interval. If its right

endpoint is larger than the largest right endpoint so far, then it is not contained in any

interval; we update the largest right endpoint. Otherwise, it is contained in another

interval; we mark it.

8.28 The intersection of two rectangles whose edgesare parallel to the axes can be computed in

constant time. Furthermore, either this intersection is empty or it is a rectangle. Hence,we

can solve the problem in linear time by intersecting one rectangle after the other in any

order.

8.31 We give only a rough sketch of a solution. The basic idea is to divide each polygon into
slabs and to intersect the slabs separately. First, we sort all the vertices according to their x

coordinates. This sorting can be done in linear time, because the cyclic order of the vertices
in each polygon is known. We associatewith each vertex a vertical line, and we use these

436 Sketches of Solutions to Selected Exercises

vertical lines to divide the two polygons into slabs, as in shown in Fig. A.3. Since we know
the sorted order of the vertical lines, we need only to compute intersections between disjoint

pairs of slabs. An intersection between two slabs can be computed in constant time,
because each slab has at most four edges. We can then assemble the corresponding
intersections into a polygon in linear time.

8.34 An intersection of triangles is a convex polygon. We can intersect two triangles in constant

time, and we can intersect two convex polygons in linear time (Exercise 8.31). Thus, a

divide-and-conquer algorithm that divides the set of triangles into two sets, computes the

intersection of all triangles in each set recursively, and then intersects the two resulting
convex polygons has a running time of O (n log n).

Chapter 9

9.2 Oneexample is w = 15. The method presented in Section 9.2 requires 6 multiplications

(jc15 = (((x2-x)2)-x)2-x). It is possible to compute x]5 with only 5 multiplications

(jc15 = ((jcjc)2jc)3). See [Knuth 1981, p. 443] for a detailed discussion of this issue.

9.10 We use the notation of Section 9.5.2. We need to compute (B +C +D + F +G)X.We make

the following definitions, which correspond directly to the seven multiplications in the four

types of products introduced in Section 9.5.2: z, = b(e+f\\ z2
= c(g+h), z3 =

(c-b)(e+h), z4 = (a-h)e, z5
= (a -c)(g -e\\ z6 = (d-c)h, and z7 = (d-b)(f-h). We

now look at the contribution of each of the matrices. B contributes [z,, z,, 0, 0] (we write it
as a row matrix instead of as a column matrix for convenience); C contributes [0,0, z2, z2];

D contributes [0, z3, -z3, 0];F contributes [z4, 0, z4 +z5, 0]; and G contributes [0, z6 + z7,
0, z6]. So,overall, we have p = Cu = z, +z4, r =

C2J
=

Z\\ + z3+z6 + z1, s = C,i2=
Z2+Z3+Z4 + Z5, and t = C2,2=z2 +z6. There are 18 additions and 7 multiplications.

9.16 The hard part of this problem is proving that such a representation always exists. We prove
that it does by induction. It is easy to verify the base case. Let n > 2 be an integer, and let

F(k) be the largest Fibonacci number not larger than n (i.e.,F(k)<n and F(k + 1)> n). We

claim that F(k)>n/2, since otherwise F(k+ \\) = F(k)+F(k- 1)<n. By the induction

hypothesis, n-F(k) can be represented as a sum of at most log2(w -F(k)) Fibonacci

Figure A.3 Intersection of two convex polygons by the slab method.

Sketches of Solutionsto Selected Exercises 437

numbers. But, since n-F(k)<F(k), adding F(k) to the representation of n-F(k) still

keeps the numbers distinct; furthermore, it is easy to see that \\og2(n
- F (k)) + 1 < log2w.

To find the representation we need, we compute all Fibonacci numbers until we reach one
that is larger than or equal to n\\ we can then follow the proof given here.

9.19 We denote the four parts of the first polynomial by a,, b,, c j, and d,, and the four parts of
the second polynomial by a2, b2, c2, and d2. We can illustrate the problem using a 4x4
table as shown in Fig. A.4. This table is similar to the 2x2 table that was given in Section

9.4. Each entry in the table corresponds to a product of two parts of the polynomials. We

do not have to compute the value of each entry, only the sum of values in each of the

diagonals shown in the figure. Each of these diagonals corresponds to the coefficient of a
certain degree in the product of the polynomials. The following 9 products are sufficient to

compute the values of all the diagonals: (1) a, \342\200\242
a2, (2) b, \342\200\242

b2, (3) (a j + b,)
\342\200\242

(a 2 + b2), (4)

c, -c2t (5) dx -d2, (6) (c,+rf,)-(c2 + rf2), (7) (a 1\"+c1)-(tf2 + 6-2), (8) (/>, +</,)\"(*2+</2),
and (9) (a\\ +b\\ +c'i +d\\) -(a2+b2+c2+d2). We leave it to the reader to verify that all

diagonals can be computed from these 9 products. The corresponding recurrence relation is

T(n) =9T(n/4)+0(n),which implies that T(n) = O(wlog9') = 0(wlog3), which is the same as

the running time of the algorithm that divides each polynomial into two parts. Is that

equality coincidental, or is there a good reason for it? In other words, what are the

similarities between the two algorithms?

9.23 Winograd's algorithm assumes commutativity of multiplication (i.e., it assumes that

x -y =y
- x). If we use Winograd's algorithm as the base of the recursion, we have to be able

to substitute matrices for elements, but we cannot do that because matrix multiplication is
not commutative.

9.29 We solve the problem by induction on n. The case of n = 1 is trivial. Assume that we know

the solution for n > 1, and consider n + 1. Denote by M[i.J] the product M, x \342\200\242\342\200\242\342\200\242
xMj.

The best way to compute M[\\..n + 1] is first to compute M[\\..i] and A/[/+ \\..n + 1], for

some (as yet unknown) /, and then to multiply the two products. We can find the value of /
that leads to the minimum cost by trying all possibilities. We know the best way to

compute M [1../] by induction. However, we need to know how to compute M [i + 1 ..n + 1].

To do that, we strengthen the induction hypothesis.

Stronger induction hypothesis: We know the best way to compute M[i.j]

for all 1 <i <j<n.

ax bx cx dx

ai

b2

Cl

d2

Figure A.4 Finding the product of two polynomials by dividing them into four parts.

438 Sketchesof Solutions to Selected Exercises

To extend this hypothesis to n + 1, we need to compute M[i..n + 1] for all 1 <i<n. We

solve this problem by yet another (nested) induction, this time on / in a reversed order. For

/' = \302\253,there is only one way to compute the product M[n..n+ \\]\\ hence, the problem is
trivial. Assume that we know the best way to compute M[i..n+ 1]and consider / - 1. We
can now perform the reduction. We check for each j, / <j < w + 1, the cost of computing

M[i-\\..j] (which we know by the original induction), the cost of computing

M[j+ \\..n + 1] (which we know by the nested induction), and the cost of multiplying both

products. We then choose the j that minimizes this cost. Overall, the two induction

processes correspond to two loops, the first of size w, the second of size n -/', and the inside
n n n

loop consists of n-i steps. The total number of steps is thus \302\243XX#0), which is
k=\\ i=k j=i

0(n3).

Chapter 10

10.3 We show that the interval-containment problem can be solved by using the maximal-points
algorithm. For each interval

/y
=

(Ly,/?7), we define a point in the plane such that its x

coordinate is -L, and its y coordinate is Rj. We leave it to the reader to verify that an

interval is contained in another interval if and only if the corresponding point is not

maximal.

10.5 Split each vertex that corresponds to a university into two vertices. Connect both of those

vertices to all the students who were admitted to that university. This is a regular bipartite

matching problem.

10.12 The simplest solution to this problem is by reduction. We construct a new graph H with two

vertices w{ and w2 for each vertex w of G. We call w{ the tail vertex of w, and w2 the

head vertex of w. The edges of H are the following. For each edge (w, w) in G, we add the

edge (vv2, m i) with cost 0 to H. In other words, we make all edges go from head vertices to
tail vertices. In addition, we add an edge (u\\,u2) with cost c(u) for each vertex u in G.
The problem becomes the regular single-source shortest-paths problem from v2 to all tail

vertices.

10.15 The simplest counterexample involves only one variable x. The objective function, which

we try to maximize, is simply jc, and the only two constraints are x<0 and x*0. This

problem has no solution, since there is no maximum number smaller than 0.

10.17 The linear program can be changed easily, but it is much easier to notice that the best
solution is for every organization to donate its maximum.

10.20 To compute the square of a matrix, we indeed need only five multiplications of matrices half

its size. However, these are multiplications of two arbitrary matrices, not squarings of

matrices of half the size.

10.24 We show how to use such an algorithm to sort. Given a sequence x^x2 xn of distinct

numbers that we wish to sort, we associate a point pt with each jc, such that all points lie on

a fixed line and the distance of point pt from a fixed origin is jc,. It is easy to see that the

minimum-cost spanning tree must connect each point to its neighbors on the line \342\200\224namely,

the tree is a chain. The tree has two leaves, which are the maximum and minimum elements

of the sequence. If we know the minimum-cost spanning tree, then we can find the sorted

order of the points in linear time as follows. First, we find the minimum among the points,

Sketches of Solutionsto Selected Exercises 439

say xh The chain defined by the tree gives us the sorted order, and we can follow it in linear

time. Thus, we have a lower bound of Q(n \\ogn) for this problem under the decision tree

model (which is the model under which the lower bound for sorting was proved).

Chapter 11

11.3 O (nk) is a polynomial in w, but it is an exponential function in k. Sincek is part of the input

(and may be as high as w), this is not a polynomial-time algorithm.

11.11 We use a reduction from the regular vertex-cover problem. Let G =(V, E) be an arbitrary

undirected graph, and let U be the set of vertices of odd degree in G. We modify G by

adding three new vertices, x, y, and z, which are connected to each other (in a triangle). We
also connect x to all vertices in U. It is now easy to prove that the modified graph has a

vertex cover of sizeK if and only if G has a vertex cover of sizeK - 2.

11.14 The problem is obviously in NP, since we can guess the subset and check its induced

subgraph in polynomial time. We use a reduction from 3SAT. Let E-C \\ C2 Cnbc
an arbitrary instance of 3SAT. We construct a graph G=(V, E) with 4w + l vertices as
follows. For each clause C,, we include four vertices, one associatedwith the clause itself,
and the other three associated with the corresponding variables. The four vertices
associated with a clause are fully connected to one another. We also connect any two

vertices in the graph that are associatedwith x and x for any variable x. Finally, we add one
additional vertex r which is connected to all vertices associated with variables (but not to
the vertices associated with the clauses themselves).We claim that the graph has a subset

of size In + 1 that induces an acyclic graph if and only if the expression is satisfiable.

1. If the expression is satisfiable, then we can find a consistent truth assignment satisfying

every clause. The subset will consist of the vertex r, the n vertices corresponding to the

clauses, and one vertex for each clause corresponding to the variable that satisfies the

clause (ties are broken arbitrarily). This subset induces an acyclic graph since r is
connected only to variables, and two variables are not connected if they belong to a

consistent truth assignment.

2. If there exists a subset S with In + 1 vertices that induces an acyclic graph, then we claim

that S includes r and exactly two vertices from every clause. Indeed, S cannot include

more than two vertices from one clause, since such vertices are connected (and thus form

a triangle). Also, since S includes r, it cannot include two vertices that correspond to x

and x for some variable x. Therefore, it is possible to obtain a truth assignment for E.

11.16 We use a reduction from 3SAT. Let C =(x+y+z) be a clause in an arbitrary 3SAT

problem. We replaceC with the following three clauses (the o,s are all new variables):
(x + a\\ + a2), Cy + 0 3+tf4), and (z+a5+a6). In the l-in-3-SAT problem, exactly one of
the variables in each of the three clauses above must be satisfied. We want to guarantee that

at least one of jc, y, or z is satisfied. We do that by adding more clauses that guarantee that

no more than one of a \\, o3, and a5 is satisfied, and no more than one of a2, tf 4, and a6 is
satisfied. The clauses are (fl,+fl3+fl7), (a^-\\-a5-\\-a^), (a5 + a\\+a9), (a2 + a4+a\\0),
(a4+a6+au), and (a6+a2+an)' We ^eave tne verification to the reader.

11.19 We reduce the clique problem to this problem. Let G = (V, E) and k be an arbitrary instance
of the clique problem. We need to convert G into a regular graph R such that the clique
problem for G can be solved by solving a clique problem for R. We cannot simply add

edges to G until G becomes regular, because this would potentially increase the sizes of the

440 Sketches of Solutions to Selected Exercises

cliques of G. We must add vertices and edges to G such that no new cliques are formed.

Let d be the maximal degree of G if it is even or the maximal degree plus 1 otherwise, and

let n be the number of vertices of G. For each vertex v of G with degree d{y)<d, we add

d-d(v) vertices and connect each of them to v. The total number of additional vertices is
n

dn-^d(Vj)
= dn -

2\\E |. This number is even since we chose d to be even. Notice that

all the original vertices now have the same degree d, and that no new cliques were added

(since each new vertex is connected to only one vertex). The only problem is that the new

vertices have a degree of 1. We can change their degrees to d without introducing more

cliques by adding edges between them in the following way. We divide the set of new

vertices to two equal sets. We then connect each vertex of one set to exactly d - 1 vertices

of the other set. The new vertices thus induce a bipartite graph, which does not contain

cliques of size > 2. We leave it to the reader to verify that it is possibleto construct this

bipartite graph in the desired way.

11.25 If we could determine whether there exists a Hamiltonian path with specified end vertices,
then we could determine whether there exists any Hamiltonian path by just trying all pairs
of vertices. Therefore, a polynomial-time algorithm for this problem leads to a

polynomial-time algorithm for the Hamiltonian path problem, which in turn leads to

polynomial-time algorithms for all NP problems. Notice that this is not a pure reduction as

defined in Section 11.2, but it is sufficient.

11.29 We use a reduction from the vertex-cover problem. Let G =(V, E) and K be an arbitrary
instance of the vertex-cover problem. We construct a directed graph G' by replacing every
vertex v in G with two vertices v, and v2 connected by a directed edge (v,, v2). We replace
each edge (v, w) of G with two directed edges, (w2, Vj) and (v2, h^). We now claim that
G' contains a feedback-edge set of sizeK if and only if G contains a vertex cover of sizeK.

11.33We sketch a reduction from SAT. Let v be a vertex in G and let the edges adjacent to v be

(in the cyclic order) e,, e2,...,ek. The Eulerian tour defines a pairing among the edges of v,

such that the consecutive edges in the tour used to enter and leave v are paired. By the

conditions of the problem, an edge et can be paired either with e,-_j or with ei+] (additions
and subtractions are done modulo k). Themain observation is that, if e,- is paired with e/+1,
then the pairings for all other edgesof v are fixed (ei+2 must be paired with e/+3, and so on).
The same is true if e,- is paired with e,-_i. In other words, there are only two ways of pairing
the edges of v. We will associate a vertex with each variable in the SAT expression, such

that the value of this variable in the truth assignment will correspond to the way the pairing
is done for this vertex in the tour. We have to make sure that the truth assignment is
consistent (i.e., the values of x and J are complementary), and that every clause is satisfied.

We will have one vertex vv for every variable jc, and one vertex v^ for J, and we will connect

them such that a pairing for vt forces a certain pairing for Vx. We associate the truth values

accordingly. Then, for each clause(x +y + z), we connect the corresponding three vertices
such that at least one of the pairings that is associated with one the variables being true must

be taken. We leave the details (which are not straightforward) to the reader. The planar

case, which is more complicated, is proved in Bent and Manber [1987].

Chapter 12

12.13We use the doubling method. In the first step, only one processor Px participates: P,
simply copies A [11 to A [2]. In step /, there are 2'\"1 participating processors, and they copy

Sketches of Solutions to Selected Exercises 441

the array A [1..2'
'
] to A [T

,
+ 1..2']. To improve the efficiency, use Brent's lemma.

12.16 This problem can be solved in exactly the same way as the problem of finding the

maximum.

12.17 The circuit forw =8 is given in Fig. A.5.

12.20 Assign one processorPti
to every pair of elements A [i] and B[j\\. Pti first compares A [i] to

B[j], then compares A [i] to B [j + 1]. If A [i] is between B [k] and B [k+ 1], then Pik will
find that out and conclude that A [/]'s place in the final array is in the (/' + ifc)th position. The

same procedure can be applied to B.

12.25 We sketch an elegant solution using parallel prefix (the problem can also be solved directly).
We first compute the parallel prefix on the Mark array with the + operation. The prefix

value of each record whose Mark value is 1 will be equal to its place in the compacted

array. We can then complement the Mark array to do the same for the other elements.

Once all the indices are computed, the actual movement can be done in one (parallel) step,
since there are no conflicts.

12.27 If we associate a processor with each record, then in one step each processor can write its

index in the appropriate field of its successor. Each processornow knows its predecessor in

the list.

12.32 We cannot concentrate on each number separately. It is true that each number incurs at

most one more idle step, but a delay for one processorcan cause more delays at other

processorsif the numbers do not arrive there fast enough.

12.33 We use induction. If the height of the tree is 2, then the left leaf sends its number x] to the

root, which then sends it down where it can be added to jc2. Suppose that we have an

algorithm for height h, and consider height h + \\. (We will consider only the case of

complete binary trees. It is easy to modify the algorithm to the general case.) Let R be the

root, and RL and RR be the root's left and right children. We call the sum over all the leaves
in a particular subtree the sum of the subtree. A straightforward solution is to solve the

Figure A.5 A parallel-prefix circuit.

442 Sketches of Solutionsto Selected Exercises

problem separately for the left and right subtrees, then to broadcast the sum of the left

subtree to all the leaves of the right subtree. Each leaf in the right subtree simply adds the

sum of the left subtree to the prefix it computed so far. The problem with this solution is
that its running time is 0(h2), becausethe recurrence relation is T(h + \\) = T(h) + h. We
can improve this solution by noticing that there is no need to wait until the left subtree has
finished its computation. The right subtree needs to obtain the sum of the left subtree, and

this sum can be available at the root at step h + 1. Thus, the requirement from RL is that it

receives the sum of all its descendants and sends it up to the root. The requirement from RR

is that it receives the sum from the root and sends it down to all its descendants. This leads

directly to the following rules: (1) each leaf starts by sending its value up (we have to

modify the simple solution for height 2 slightly, since the root needs to know the sum); (2)
the internal nodes, when receiving values from below, add those values and send them up;
(3) the internal nodes, when receiving values from above, send those values down to both

children; and (4) the internal nodes also act as the roots of their own subtrees and send the

value they receive from their left children to their right children. We leave it the the reader

to verify that this is a correct algorithm and that its running time is 2h.

12.37 Suppose first that we are interested only in computing x{. Processor P2 computes a 12 b2,

which is its contribution to the value of jcm and sends it to P3\\ processor P3 adds to the

value it receives a^-b^ and forwards that value to P4, and so on. After n - 1 steps, P, will

receive from P\342\200\236the value of jc, -au -bly and it will be able to completethe computation.

Now, to compute all the jc,s, we pipeline this process. In the first step, each processorP{
computes a{i.\\y,

\342\226\240
b, (all index calculation are done modulo n), and sends it to Pi+l. In the

7-1
y'th step, P, receives the value \302\243a{i_j){i_k) \342\200\242\302\243,_*,adds to it

o(/_y)/ bh and sends it to Pi+l
k = \\

(again, all index calculations are modulo n).

12.40 This problem can be solved directly, but it is easier to use a reduction to matrix

multiplication. We first use the the o permutation to build a permutation matrix S such that,

for each column z, only the entry at the o(z)th row has a value of 1, and all other entries at
that column have a value of 0. We can easily build this matrix and distribute it to the

appropriate processors in n steps. Permuting all the rows according to the permutation o is
the same as computing the product S A, which we already know how to do in O(n) steps.
Permuting the columns can be done in the same way with the permutation matrix Q, except
that the product is A Q.

12.42 The straightforward induction solution is to compute the parallel prefix in each half-cube

separately in parallel, then to broadcast the largest prefix in one half-cube (designated as the

smaller one) to the other. (The base case of one dimension is trivial.) Broadcast in a d-

dimensional cube takes d steps. Thus, the running time of this algorithm satisfies the

following recurrence relation: T(d+ \\) = T(d) + d, which implies that T(d) = 0(d2). We
can improve this algorithm by strengthening the induction hypothesis. We assume that

every processor not only computes its corresponding prefix, but also computes the sum of
all numbers in the cube. The basecaseof one dimension is still easy: The two processors
simply exchange their values. Given a (d+ 1)-dimensional cube, we divide it into two d-

dimensional cubes,and solve the problem by induction in both of them. But now, we do
not have to broadcast the sum of the left cube. Since each node in the left cube knows the

sum, it can send the sum in one step to its neighbor in the right cube. All the prefixes can
thus be computed in one more step. Furthermore, the sum of everything can also be
computed in one more step if the nodes in the right subtree send their (global) sum to their

Sketches of Solutions to SelectedExercises 443

neighbors in the left subtree. The recurrence relation is thus T(d+\\) = T(d) + 2, which

implies that T(d) = 0(d). The assignment of indices to processor should be clear from this

description.

12.48 Thereis a rich literature on the subject of gossip as it is related to computer networks; see,

for example Hedetniemi, Hedetniemi, and Liestman [1988] for a survey. The exercise

presents a relatively simple gossip problem. It can be solved by the pattern shown in Fig.

A.6, called butterfly, which has many other uses (the most notable is the parallel

computation of the FFT). Figure A.6 shows the solution for n = 8.

Figure A.6 The solution of the gossip problem (Exercise 12.48) for n =8.

BIBLIOGRAPHY

Add'son-Vel'skii G. M., and Y. M. Landis, \"An algorithm for the organization of
information,\" Soviet Math. Dokl., 3 (1962), pp. 1259-1262.

Aho A. V., and M. J. Corasick, \"Efficient string matching: An aid to bibliographic
search,\" Communications of the ACM, 18 (June 1975),pp.333-340.

Aho A. V., J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

Aho A. V., J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms, Addison-

Wesley, Reading, MA, 1983.

Ajtai M., J. Komlos, and E. Szemeredi,\"An 0(n logn) sorting network,\" 15th Annual

ACM Symposium on Theory of Computing, Boston (April 1983), pp. 1-9.

Akl S. G., Parallel Sorting Algorithms, Academic Press, New York, 1985.

Aleliunas R., \"Randomized parallel communication,\" First ACM Symposium on

Principles of Distributed Computing, Ottawa (August 1982), pp. 60-72.

Almasi G. S., and A. Gottlieb, Highly Parallel Computing, Benjamin/Cummings,
RedwoodCity, CA, 1989.

Angluin D., and L. G. Valiant, \"Fast probabilistic algorithms for Hamiltonian circuits

and matchings,\" Journal of Computer and System Sciences,18 (April 1979), pp.

155-193.

Apostolico A., and Z. Galil, Combinatorial Algorithms on Words, Springer-Verlag,New

York, 1985.

Arlazarov V. L., E. A. Dinic, M. A. Kronrod, and I. A. Faradzev, \"On economical

construction of the transitive closure of a directed graph,\" Soviet Math Dokl, 11

(May 1970), pp. 1209-1210.

Atkinson M. D., and N. Santoro, \"A practical algorithm for Boolean matrix

multiplication,\" Information Processing Letters, 29 (September 1988),pp.37-38.

Attalah M. J., R. Cole, and M. T. Goodrich, \"Cascading divide-and-conquer: A

technique for designing parallel algorithms,\" 28th Annual Symposium on

445

446 Bibliography

Foundations of Computer Science, Los Angeles (October1987),pp. 151-160.

Auslander L., and S. V. Parter, \"On imbedding graphs in the plane,\" J. Math, and
Mech.,10(May 1961), pp. 517-523.

Bach E., G. Miller, and J. Shallit, \"Sums of divisors,perfect numbers and factoring,\"

SIAM Journal on Computing, 15 (November 1986), pp. 1143-1154.

Baer J.-L., and B. Schwab, \"A comparison of tree-balancing algorithms,\"

Communications of the ACM, 20 (May 1977), pp. 322-330.

Bar-Yehuda R., and S. Even, \"A linear time approximation algorithm for the weighted
vertex cover problem,\" Journal of Algorithms, 2 (1981), pp. 198-203.

BatcherK. E., \"Sorting networks and their applications,\" in Proceedings AFIPS 32nd

Spring Joint Computer Conference,(1968),pp. 307-314.

Bates J. L., and R. L. Constable, \"Proofs as programs,\" ACM Transactions on

Programming Languages and Systems, 7 (January 1985), pp. 113-136.

BavelZ.,Math Companion for Computer Science, Reston Publishing Company, Reston,

Virginia, 1982.

Beame P. W., S. A. Cook, and H. J. Hoover, \"Log depth circuits for division and related

problems,\" SIAM Journal on Computing, 15 (February 1986), pp. 994-1003.

Beckenbach E., and R. Bellman, An Introduction to Inequalities, New Mathematical

Library, Random House, New York, 1961.

Bellman R. E., Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.

Bent S. W., and J. John, \"Finding the median requires In comparisons,\" 17th Annual

ACM Symposium on Theory of Computing, Providence, RI (May 1985), pp.
213-216.

Bent S. W., and U. Manber, \"On non-intersecting Eulerian circuits,\" Discrete Applied
Mathematics, 18(1987),pp. 87-94.

Bentley J. L., Programming Pearls, Addison-Wesley, Reading, MA, 1986.

Bentley J. L., M.G. Faust, and F. P. Preparata, \"Approximation algorithms for convex

hulls,\" Communication of the ACM, 25 (January 1982), pp. 64-68.

Bentley J. L., D. Haken, and J. B. Saxe, \"A general method for solving divide-and-

conquer recurrences,\" SIGACT News, (Fall 1980),pp.36-44.

Bentley J. L., and B. W. Kernighan, \"Tools for printing indexes,\" Electronic Publishing,

1(1988), pp. 3-17.

Bentley J. L., and T. Ottmann, \"Algorithms for reporting and counting geometric
intersections,\" IEEE Transactionson Computers, C-28 (Sept. 1979), pp. 643-647.

Bibliography 447

BergeC, The Theory of Graphs and Its Applications, John Wiley and Sons, New York,
1962.

Berge C, Graphsand Hypergraphs, North Holland, London, 1973.

Bertsekas D. P., and J. N. Tsitsiklis, Parallel and Distributed Computation, Numerical

Methods, Prentice-Hall, Englewood Cliffs, NJ, 1989.

Bitner J. R., and E. M. Reingold, \"Backtrack programming techniques,\"
Communications of the ACM, 18 (November 1975), pp. 651-656.

Blelloch G., \"Scans as primitive parallel operations,\"1987International Conference on

Parallel Processing, (August 1987), pp. 355-362.

Blum M., R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan, \"Time bounds for
selection,\"Journal of Computer and System Sciences, 7 (1972),pp.448-461.

Bollobas B., Graph Theory: An Introductory Course, Springer Verlag, New York, 1979.

Bollobas B., Combinatorics, CambridgeUniversity Press, Cambridge, 1986.

Bondy J. A., and U. S. R. Murty, Graph Theory with Applications, Elsevier, New York,
1976.

Borodin A., \"On relating time and space to size and depth,\" SI AM Journal on

Computing, 6 (December1977),pp. 733-744.

Borodin A., and J. E. Hopcroft, \"Routing, merging and sorting on parallel models of

computation,\" Journal of Computer and System Sciences, 30 (1985), pp. 130-145.

Borodin A., and I. Munro, The Computational Complexity of Algebraic and Numeric

Problems, Elsevier Computer ScienceLibrary, New York, 1975.

Boyer R. S., and J. S. Moore, \"A fast string searching algorithm,\" Communications of
the ACM, 20 (October 1977), pp. 762-772.

Brelaz D., \"New methods to color the vertices of a graph,\" Communications of the

ACM, 22 (April 1979), pp. 251-256.

Brigham E. O., The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, NJ, 1974.

Brualdi R. A., Introductory Combinatorics, North Holland, New York, 1977.

Burge W. H., Recursive Programming Techniques, Addison-Wesley, Reading, MA,

1975.

Bussey W. H., \"Origin of mathematical induction,\" American Mathematical Monthly,

24 (1917), pp. 199-207.

Capobianco M., and J. C. Molluzzo, Examples and Counterexamplesin Graph Theory,

North-Holland, New York, 1978.

Carter J. L., and M. N. Wegman, \"Universal classes of hash functions,\" Journal of

448 Bibliography

Computer and System Sciences, 18 (April 1979), pp. 143-154.

Chand D. R., and S. S. Kapur, \"An algorithm for convex polytopes,\" Journal of the

ACM, 17 (January 1970),pp.78-86.

Chandy K. M., and J. Misra, Parallel Program Design: A Foundation, Addison-Wesley,

Reading, MA, 1988.

Chartrand G., Graphs as Mathematical Models, Wadsworth International Group,

Belmont, CA, 1977.

Chartrand G., and L. Lesniak, Graphs & Digraphs, SecondEdition, Wadsworth &

Brooks/Cole, Monterey, CA, 1986.

Cheriton D., and R. E. Tarjan, \"Finding minimum spanning trees,\" SIAM Journal on

Computing, 5 (December 1976),pp.724-742.

Choueka Y., A.S. Fraenkel, S.T. Klein, and Y. Perl, \"Huffman coding without bit-

manipulation,\" Proceedings of the Eighth Annual ACM-S1G1R Conference,
Montreal, Canada(1985),pp. 122-130.

Christofides N., Graph Theory: An Algorithmic Approach, Academic Press, London,
1975.

Christofides N., \"Worst-case analysis of a new heuristic for the traveling salesman

problem,\" Technical Report, Graduate School of Industrial Administration,

Carnegie-Mellon University, Pittsburgh, PA, 1976.

Cohen J., and M. Roth, \"On the implementation of Strassen's fast multiplication

algorithm,\" Acta lnformatica, 6 (1976),pp.341-355.

ColeR., \"Slowing down sorting networks to obtain faster sorting algorithms,\" 25th
Annual Symposium on Foundations of Computer Science,Singer Island (October

1984), pp. 255-259.

Cole R., \"Parallel merge sort,\" SI AM Journal on Computing, 17 (August 1988), pp.

770-785.

Cole R., and U. Vishkin, \"Deterministic coin tossing and accelerating cascades: micro

and macro techniques for designing parallel algorithms,\" 18th Annual ACM

Symposium on Theory of Computing, Berkeley (May 1986), pp. 206-219.

Cook S. A., \"The complexity of theorem proving proceudres,\" Third Annual ACM

Symposium on Theory of Computing, New York (1971), pp. 151-158.

CookS.A., \"An overview of computational complexity,\" Communications of the ACM,
26 (June 1983),pp.400-408.

Cook S. A., and C. Dwork, \"Bounds on the time of parallel RAMs to compute simple
functions,\" 14th Annual ACM Symposium on Theory of Computing, San Francisco

(May 1982), pp. 231-233.

Bibliography 449

CooleyJ. M.,and J. W. Tuckey, \"An algorithm for the machine calculation of complex
Fourier series,\"Math. Comp., 19 (1965), pp. 297-301.

Coppersmith D., and S. Winograd, \"Matrix multiplication via arithmetic progressions,\"

19th Annual ACM Symposiumon Theory of Computing, New York (May 1987), pp.
1-6.

Culberson J., \"The effects of updates in binary search trees,\" 17th Annual ACM

Symposium on Theory of Computing, Providence, RI (May 1985), pp. 205-212.

Dantzig G. B., \"On the shortest route through a newtwork,\" Management Science, 6
(1960),pp. 187-190.

Dantzig G. B., Linear Programming and Extensions, Princeton University Press,
Princeton, NJ, 1963.

Dekel E., D. Nassimi, and S. Sahni, \"Parallel matrix and graph algorithms,\" SIAM
Journal on Computing, 10 (November 1981), pp. 657-675.

DenardoE.V.,Dynamic Programming, Prentice-Hall, Englewood Cliffs, NJ, 1982.

Deo N., Graph Theory with Applications to Engineering and Computer Science,

Prentice-Hall, Englewood Cliffs,NJ, 1974.

Deo N., and C. Pang, \"Shortest-path algorithms: Taxonomy and annotation,\" Networks,

14 (1984), pp. 275-323.

Dershowitz N., TheEvolution of Programs, Birkhauser, Boston, 1983.

Diffie W., and M. E. Hellman, \"New directions in cryptography,\" IEEE Transactions on

Information Theory, IT-22 (June 1976), pp. 644-651.

Dijkstra E. W., \"A note on two problems in connexion with graphs,\" Numerische

Mathematik, 1 (1959), pp.269-271.

Dijkstra E. W., A Discipline of Programming, Prentice-Hall, Englewood Cliffs, NJ, 1976.

Dobkin D. P.,and J. I. Munro, \"Determining the mode,\" Theoretical Computer Science,
12 (1980),pp.255-263.

Dreyfus S. E., and A. M. Law,The Art and Theory of Dynamic Programming, Academic

Press, New York, 1977.

Dvorak, S., and B. Durian, \"Unstable linear time 0(1) spacemerging,\" The Computer

Journal, 31 (1988), pp.279-283.

Ebert J., \"Computing Eulerian trails,\" Information Processing Letters, 28 (June 1988),
pp.93-97.

Edelsbrunner H., Algorithms in Combinatorial Geometry, Springer-verlag,Berlin, 1987.

Edmonds J., and R. M. Karp, \"Theoretical improvements in algorithmic efficiency for
network flow problems,\" Journal of the ACM, 19 (1972), pp. 248-264.

450 Bibliography

Elliott D. F., and K. R. Rao, Fast Transforms: Algorithms Analyses, Applications,

Academic Press, New York, 1982.

Eppinger J. L., \"An empirical study of insertion and deletion in binary search trees,\"
Communications of the ACM, 26 (September 1983),pp.663-669.

Erdos P., and A. Szekers, \"A combinatorial problem in geometry,\" Compositio
Mathematica, 2 (1935),pp. 463-470.

Erdos P., and J. Spencer,Probabilistic Methods in Combinatorics. Academic Press, New
York, 1974.

Euler L., \"Solutio problematis ad geometriam situs pertinentis,\" Commentarii

Academiae Scientiarum Petropolitanae, 8 (1736),pp. 128-140.

Even S., Graph Algorithms, Computer Science Press, Rockville, MD, 1979.

Even S., and R. E. Tarjan, \"A combinatorial problem which is complete in polynomial

space,\" Journal of the ACM, 23 (1976), pp. 710-719.

Fagin R., J. Nievergelt, N. Pippenger, and H. R. Strong, \"Extendible hashing
\342\200\224a fast

access method for dynamic files,\" ACM Transaction on Database Systems, 4

(September 1979),pp.315-355.

Feng T., \"A survey of interconnection networks,\" Computer, 14 (December 1981), pp.
12-27.

Fich F. E., \"New bounds for parallel prefix circuits,\" 15th Annual ACM Symposiumon

Theory of Computing, Boston (April 1983), pp. 100-109.

FischerM.J., \"Efficiency of equivalence algorithms,\" in Complexity and Computations,
R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 153-168.

Fischer M. J., and A. R. Meyer, \"Boolean matrix multiplication and transitive closure,\"
IEEE 12th Annual Symposium on Switching and Automata Theory, East Lansing, MI

(October 1971),pp.129-131.

Fischer M. J., and M. O. Rabin, \"Super-exponential complexity of Presburger
arithmetic,\" in Complexity of Computation, R. M. Karp Ed., SIAM-AMS, 1974.

Fischer M. J., and S. L. Salzberg, \"Finding a majority among n votes,\" Journal of
Algorithms, 3 (1982), pp. 375-379.

Flajolet P., and J. S. Vitter, \"Average-case analysis of algorithms and data structures,\"

Technical Report 718, INRIA, France, August 1987.

Floyd R. W., \"Algorithm 97: Shortest paths,\" Communications of the ACM, 5 (June

1962), pp. 345.

Floyd R. W.,
*

'Assigning meanings to programs,\" Symposium on Appllied Mathematics,
American Mathematical Society (1967), pp. 19-32.

Bibliography 451

Floyd R. W., and R. L. Rivest, \"Expectedtime bounds for selection,\" Communication of
the ACM, 18 (March 1975), pp. 165-172.

Flynn M. J., \"Very high-speed computing systems,\" Proceedings of the IEEE, 54

(1966), pp. 1901-1909.

Ford L. R., \"Network flow theory,\" The Rand Corporation P-293, Santa Monica, CA
(1956).

Ford L. R., and D. R. Fulkerson, \"Maximal flow through a network,\" Canadian Journal

of Mathematics, 8 (1956),pp.399-404.

Ford L. R., and D. R. Fulkerson, Flows in Networks, Princeton University Press,

Princeton, NJ, 1962.

Ford L. R., and S. M. Johnson, \"A tournament problem,\" American Mathematical

Monthly, 66 (1959), pp. 387-389.

Fortune S., and J. Hopcroft, \"A note on Rabin's nearest-neighbor algorithm,\"

Information Processing Letters, 8 (1979), pp.20-23.

Fox G. C, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W. Walker,

Solving Problems on ConcurrentProcessors,Volume 1: General Techniques and

Regular Problems,Prentice-Hall, Englewood Cliffs, NJ, 1988.

Franco J., \"On the probabilistic performance of algorithms for the satisfiability

problem,\" Information Processing Letters, 23 (August 1986),pp. 103-106.

Frederickson G., \"Distributed algorithms for selection in sets,\" Journal of Computer and

System Sciences, 37 (December 1988), pp. 337-348.

Fredman M. L., and R. E. Tarjan, \"Fibonacciheaps and and their uses in network

optimization,\" Journal of the ACM, 34 (July 1987), pp. 596-615.

Gabow H. N., \"An efficient implementation of Edmonds's algorithm for maximum

matching on graphs,\" Journal of the ACM, 23 (1976),pp.221-234.

Gabow H. N., Z. Galil, T. H.Spencer,and R. E. Tarjan, \"Efficient algorithms for finding

minimum spanning trees in undirected and directed graphs,\" Combinatorica, 6
(1986),pp. 109-122.

Gabow H. N., and R. E. Tarjan, \"Algorithms for two bottleneck optimization problems,\"
Journal of Algorithms, 9 (September 1988), pp. 411-417.

Galil Z., \"On improving the worst case running time of the Boyer-Moore string

searching algorithm,\" Communications of the ACM, 22 (September 1979), pp.
505-508.

Galil Z., \"Efficient algorithms for finding maximum matching in graphs,\" Computing
Surveys, 18 (March 1986),pp.23-38.

452 Bibliography

Galler B. A., and M. J. Fishcer, \"An improved equivalence algorithm,\" Communications

of the ACM, 7 (1964),pp.301-303.

Garey M. R., and D. S. Johnson, Computersand Intractability, A Guide to the Theory of

NP-completeness, W. H. Freeman, San Francisco, CA, 1979.

Gehringer E. F., D. P. Siewiorek, and Z. Segall, Parallel Processing: The Cm

Experience, Digital Press, Bedford, MA, 1987.

GibbonsA.,Algorithmic Graph Theory, Cambridge University Press, Cambridge,1985.

Gibbons A., and W. Rytter, Efficient Parallel Algorithms, Cambridge University Press,
Cambridge,1988.

Goldberg A. V., and R. E. Tarjan, \"A new approach to the maximal-flow problem,\"
Journal of the ACM, 35 (October 1988),pp.921-940.

Goldwasser S., and J. Killian, \"Almost all primes can be quickly certified,\" 18th Annual

ACM Symposium on Theory of Computing, Berkeley (May 1986), pp. 316-329.

GolombS.,and L. Baumert, \"Backtrack programming,\" Journal of the ACM, 12 (1965),

pp. 516-524.

GolovinaL.I.,and I. M. Yaglom, Induction in Geometry (translated from Russian), D. C.
Heath, Boston, 1963.

Golumbic M., Algorithmic Graph Theory and Perfect Graphs, AcademicPress,New

York, 1980.

Gondran M., and M. Minoux, Graphs and Algorithms, John Wiley & Sons,New York,

1984.

Gonnet G. H., Handbookof Algorithms and Data Structures, Addison-Wesley, Reading,
MA, 1984.

Graham R. L., \"An efficient algorithm for determining the convex hull of a planar set,\"

Information Processign Letters, 1 (1972),pp.132-133.

Graham R. L., D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley,
Reading, MA, 1989.

Gray F., Pulse Code Communication, US Patent 2632058 (March 1953).

GreenbergA., and U. Manber, \"A probabilistic pipeline algorithm for ^-selection on the
tree machine,\" IEEE Transactions on Computers, C-36 (March 1987),pp.359-362.

Greene D. H., and D. E. Knuth, Mathematics for the Analysis of Algorithms, Birkhauser,

Boston, 1982.

Gries D., TheScienceof Programming, Springer-Verlag, New York, 1981.

GrotschelM.,L. Lovasz, and A. Schrijver, \"The ellipsoid method and its consequences
in combinatorial optimization,\" Combinatories, 1 (1981) pp. 169-197.

Bibliography 453

Guibas L. J., and A. M. Odlyzko, \"A new proof of the linearity of the Boyer-Moore
string searching algorithm,\" SIAM Journal on Computing, 9 (1980), pp. 672-682.

Gusfield D., and L. Pitt, \"Equivalent approximation algorithms for node cover,\"

Information Processing Letters,22 (May 1986), pp. 291-294.

Guting R. H., and D. Wood, \"Finding rectangles intersections by divide-and-conquer,\"
IEEE Transactionson Computers, C-33 (July 1984), pp. 771-775.

Hall M., Combinatorial Theory, Second Edition, John Wiley and Sons, New York, 1986.

Hall P., \"On representatives of subsets,\"Journal of the London Mathematical Society,
10(1935),pp. 26-30.

Hamming R. W., Coding and Information Theory, Second Edition, Prentice-Hall,

Englewood Cliffs,NJ, 1986.

Harary F., Graph Theory, Addison-Wesley, Reading, MA, 1969.

Hedetniemi S. T., S. M. Hedetniemi, and A. L. Liestman, \"A survey of broadcastingand

gossiping in communication networks,\" Networks, to appear (1989).

Hibbard T. N., \"Some combinatorial properties of certain trees with applications to

searching and sorting,\" Journal of the ACM, 9 (January 1962), pp. 13-28.

Hillis W. D., The Connection Machine, MIT Press, Cambridge, MA, 1985.

Hillis W. D., and G. L. Steele, \"Data parallel algorithms,\" Communications of the ACM,
29 (December1986),pp. 1170-1183.

Hinrichs K., J. Nievergelt, and P. Schorn, \"Plane-sweep solves the closest pair problem

elegantly,\" Information Processing Letters, 26 (1988), pp. 255-261.

Hirschberg D. S., \"A linear-space algorithm for computing maximal common

subsequences,\" Communications of the ACM, 18 (June 1975),pp.341-343.

Hirschberg D. S., \"Recent results on the complexity of common-subsequence

problems,\" in Time Wraps, String Edits, and Macromolecules: The Theory and

Practice of Sequence Comparison, D. Sankoff and J. B. Kruskal, eds., Addison-

Wesley, Reading, MA, 1983.

Hoare C. A. R., \"Quicksort,\" TheComputer Journal, (1962), pp. 10-15.

Hoffman C. M., Group Theoretic Algorithms and Graph Isomorphism, LectureNotes in

Computer Science, 136, Springer-Verlag, New York, 1982.

Hofri M., Probabilistic Analysis of Algorithms, Springer-Verlag, New York, 1987.

Hong, J.-W., Computation: Computability, Similarity and Duality, Pitman, London,
1986.

Hopcroft J. E., and R. M. Karp, \"An n5'2 algorithm for maximum matchings in bipartite

graphs,\" SIAM Journal on Computing, 2 (December 1973), pp. 225-231.

454 Bibliography

Hopcroft
J. E., and R. E. Tarjan, \"Dividing a graph into triconnected components,\"

SIAM Journal on Computing, 2 (September 1973),pp.135-158.

Hopcroft
J. E., and R. E. Tarjan, \"Efficient planarity testing,\" Journal of the ACM, 21

(October 1974), pp. 549-568.

Hopcroft
J. E., and J. D. Ullman, \"Set-merging algorithms,\" SIAM Journal on

Computing, 2 (December 1973), pp. 294-303.

Horowitz E., and S. Sahni, Fundamentals of Computer Algorithms, Computer Science

Press, Rockville, MD(1978).

Horowitz E., and A. Zorat \"Divide and conquer for parallel processing,\" IEEE
Transactionson Computers, C-32 (June 1983), pp. 582-585.

Hu T. C, Integer Programming and Network Flows, Addison-Wesley, Reading, MA,
1969.

Huang B. C, and M. A. Langston, \"Practical in-place merging,\" Communications of the

ACM, 31 (March 1988),pp.348-352.

Huffman D. A., \"A method for the construction of minimum redundancy codes,\"
Proceedingsof the IRE, 40 (September 1952),pp. 1098-1101.

Hunt J. W., and T. G. Szymanski, \"A fast algorithm for computing longest common

subsequences,\"Communications of the ACM, 20 (May 1977),pp.350-353.

Hwang K., and F. A. Briggs, Computer Architecture and Parallel Processing, McGraw-

Hill, New York, 1984.

Incerpi J., and R. Sedgewick, \"Practical variations of shellsort,\" Information Processing

Letters, 26 (1987) pp. 37-43.

Itai A., and M. Rodeh, \"Finding a minimum circuit in a graph,\" SIAM Journal on

Computing, 7 (November 1978), pp. 413-423.

Jagadish H. V., and T. Kailath, \"A family of new efficient arrays for matrix

multiplication,\" IEEE Transactions on Computers, C-38 (January 1989), pp.

149-155.

Johnson D. S., A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham, \"Worst case

performance bounds for simple one-dimensionalpacking algorithms,\" SIAM

Journal on Computing, 3 (1974),pp.299-325.
Johnson D. B., \"Efficient algorithms for shortest paths in sparse networks,\" Journal of

the ACM, 24 (January 1977), pp. 1-13.
Jones D. W., \"An empirical comparison of priority-queue and event-set

implementations,\" Communications of the ACM, 29 (April 1986), pp. 300-311.

Karatsuba A., and Yu. Ofman, \"Multiplication of multidigit numbers on automata,\"

translated in Sow Phys. Dokl., 7 (1963),pp.595-596.Originally appeared in Dokl.

Akad. Nauk SSSR, 145 (1962), pp. 293-294.

Bibliography 455

Karlin A. R., and E. Upfal, \"Parallel hashing
\342\200\224An efficient implementation of shared

memory,\" 18th Annual ACM Symposium on Theory of Computing, Berkeley (May

1986), pp. 160-168.

Karmarkar N., \"A new polynomial time algorithm for linear programming,\"
Combinatories, 4 (1984),pp.373-395.

Karmarkar N., and R. M. Karp, \"An efficient approximation scheme for the one-

dimensional bin packing problem,\" 23th Annual Symposium on Foundations of
Computer Science,(November 1982), pp. 312-320.

Karp R. M., *
deducibilities among combinatorial problems,\" in Complexity of

Computer Computations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New

York (1972), pp. 85-103.

Karp R. M., M. Saks, and A. Wigderson, \"On a search problem related to branch-and-

bound procedures,\" 27th Annual Symposium on Foundations of Computer Science,
Toronto (October 1986), pp. 19-28.

Karp R. M., \"Combinatorics, complexity, and randomness,\" Communications of the

ACM, 29 (February 1986), pp. 98-109.

Karp R. M., and M. O. Rabin, \"Efficient randomized pattern-matching algorithms,\" IBM
Journal of Research and Development, 31 (March 1987),pp.249-260.

Khachian L. G., \"A polynomial algorithm in linear programming,\" Soviet Math. Doki,
20 (1979),pp. 191-194.

King K. N., and B. Smith-Thomas, \"An optimal algorithm for sink-finding,\"

Information Processing Letters, 14 (May 1982), pp. 109-111.

Klee V., and G. L. Minty, \"How good is the simplex algorithm?\" in Inequalities 111,O.
Shisha,ed.,Academic Press, New York (1972), pp. 159-175.

Klee V., R. E. Ladner, and R. Manber, \"Signsolvability revisited,\" LinearAlgebra and

its Applications, 59 (1984), pp. 131-157.

Knuth D. E., The Art of Computer Programming, Volume II Fundamental Algorithms,
Second edition, Addison-Wesley, Reading,MA, 1973a.

Knuth D. E., The Art of Computer Programming, Volume 31 Sorting and Searching,
Addison-Wesley, Reading, MA, 1973b.

Knuth D. E., \"Estimating the efficiency of backtrack programs,\" Mathematics of
Computation, 29 (1975), pp. 121-136.

Knuth D. E., \"Big omicron and big omega and big theta,\" S1GACT News, (April-June
1976),pp.18-24.

Knuth D. E., The Art of Computer Programming, Volume 21 Seminumerical Algorithms,
Second edition, Addison-Wesley, Reading, MA, 1981.

456 Bibliography

Knuth D. E., \"Dynamic Huffman coding,\" Journal of Algorithms, 6 (1985), pp.

163-180.

Knuth D. E., J. H. Morris, and V. R. Pratt, \"Fast pattern matching in strings,\" SIAM

Journal on Computing, 6 (June 1977), pp. 323-350.

Kronrod, M. A., \"An optimal ordering algorithm without a field of operation,\" (in

Russian), Dok. Akad. Nauk. SSSR, 186 (1969), pp. 1256-1258.

Kruskal J. B., \"On the shortest spanning subtree of a graph and the traveling salesman

problem,\" Proceedings of the American Mathematical Society, 71 (1956), pp.
48-50.

Kruskal C. P., L. Rudolph, and M. Snir, \"The power of parallel prefix,\" IEEE

Transactions on Computers, C-34 (November 1985),pp.965-968.

Kruskal C. P., L. Rudolph, and M. Snir, \"Efficient parallel algorithms for graph

problems,\" 1986 International Conference on Parallel Processing, (August 1986),

pp. 869-876.

Kruskal C. P., L.Rudolph, and M. Snir, \"Techniques for parallel manipulation of sparse

matrices,\" IBM Research report RC-13364,(December1987).

Kung H. T., \"Let's design algorithms for VLSI systems,\" Proceedings of the Caltech

Conference on VLSI, (1979), pp.65-90.

Kung H. T., \"Why systlic architecture,\" Computer, 15 (January 1982), pp. 37-46.

Kung H. T., and C. E. Leiserson, \"Algorithms for VLSI processor arrays,\" in

Introduction to VLSI Systems, C. Mead and L. Conway, eds., Addison-Wesley,
Reading, MA, (1980), pp. 271-292.

Kurtz T., and U. Manber, \"A probabilistic distributed algorithm for set intersection and

its analysis,\" Theoretical Computer Science, 49 (1987),pp. 267-282.

Ladner R. E., \"On the structure of polynomial time reducibility,\" Journal of the ACM,
22 (January 1975), pp. 155-171.

Ladner R. E., and M. J. Fischer, \"Parallel prefix computation,\" Journal of the ACM, 27
(October1980),pp. 831-838.

Lakatos I., Proofs and Refutations: TheLogic of Mathematical Discovery, Cambridge

University Press, Cambridge,1976.

Lawler E. L., Combinatorial Optimization: Networks and Matroids, Holt, Rinehart &
Winston, New York, 1976.

Lawler E. L., J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, The Traveling
SalesmanProblem, John Wiley & Sons, New York, 1985.

Lempel A., S. Even, and I. Cederbaum, \"An algorithm for planarity testing of graphs,\"
Theory of Graphs:An International Symposium, Rome (July 1966),pp.215-232.

Bibliography 457

Levin L. A., \"Universal sorting problems,\" Problemy Peredaci Informacii, 9 (1973),pp.

115-116. English translation in Problems of Information Transmission, 9 (1973),
pp.265-266.

Lin S., and B. W. Kernighan, \"An effective heuristic for the traveling salesman

problem,\" Operations Research, 21 (1973),pp. 498-516.

Lipovski G. J., and M. Malek, Parallel Computing: Theory and Comparisons,John

Wiley & Sons, New York, 1987.

Lipson J. D., Elements ofAlgebra and Algebraic Computing, Bejamin Cummings, Menlo
Park,CA, 1981.

Lipton R. J., and D. Lopresti, \"A systolic array for rapid string comparison,\"

Proceedings of the 1985 ChapelHill Conference on VLSI, (\\9S5\\ pp. 363-376.

Litwin W., \"Linear hashing: A new tool for file and table addressing,\" Proceedingsof

the Sixth Conference on Very Large Databases, Montreal, Canada (1980) pp.
212-223.

Lovasz L., \"Coverings and colorings of hypergraphs,\" Proceedings of the Fourth

Southeastern Conferenceon Combinatorics, Graph Theory, and Computing, Utilitas

Mathematica, Winnipeg (1973), pp. 3-12.

LovaszL.,Combinatorial Problems and Exercises, North Holland, Amsterdam, 1979.

Lovasz L., and M. D. Plummer, Matching Theory, North Holland, Amsterdam, 1986.

LucasE.,Recreations Mathematiques, Paris, 1882.

Lueker G. S., \"Sometechniques for solving recurrences,\" Computing Surveys, 12

(December1980),pp. 419-436.

Luks E. M., \"Isomorphism of graphs of bounded valence can be tested in polynomial

time,\" Journal of Computer and System Sciences, 25 (1982), pp. 42-65.

Lynch T. J., Data Compression Techniques and Applications, Van Nostrand Reinhold,

New York, 1985.

Maggs B. M., and S. A. Plotkin, \"Minimum-cost spanning tree as a path-finding

problem,\" Information Processing Letters, 26 (January 1988),pp.291-293.

Manacher G. K., \"The Ford-Johnson sorting algorithm is not optimal,\" Journal of the

ACM, 26 (July 1979), pp. 441-456.

Manber U., \"On maintaining dynamic information in a concurrent environment,\" SIAM
Journal on Computing, 15 (November 1986), pp. 1130-1142.

Manber U., \"Usinginduction to design algorithms,\" Communications of the ACM, 31

(November 1988), pp. 1300-1313.

Manber U., and L. McVoy, \"Efficient storage of nonadaptive routing tables,\" Networks,

18 (1988), pp. 263-272.

458 Bibliography

Manber U., and E. Myers, \"Suffix arrays: A new method for on-line string searches,\"

first Annual ACM-SIAM Symposium on Discrete Algorithms (January 1990).

Manna Z., Lectures on the Logic of Computer Programming, CBMS-NSF Regional
Conference series in Applied Mathematics, SIAM, Philadelphia, PA, 1980.

Manna Z., and R. Waldinger, 'The origin of a binary search paradigm,\" Science of

Computer Programming, 9 (1987) pp. 37-83.

Masek W. J., and M. S. Paterson, \"How to compute string-edit distances quickly,\" in

Time Warps, String Edits, and Macromolecules: The Theory and Practice of

Sequence Comparison, D. Sankoff and J. B. Kruskal, eds., Addison-Wesley,
Reading, MA (1983), pp. 337-349.

McCreight, E. M., \"A space-economical suffix tree construction algorithm,\" Journal of

the ACM 23 (1976),pp.262-272.

Megiddo N., \"Applying parallel computation algorithms in the design of serial

algorithms,\" Journal of the ACM, 30 (October1983),pp. 852-865.

Mehlhorn K., Data Structures and Algorithms 3: Multi-Dimensional Searching and

Computational Geometry,Springer-Verlag, Berlin, 1984.

Menger K., \"Zur allgeminen Kurventheorie,\" Fund. Math., 10 (1927),pp.95-115.

Meyer A. R., and L. Stockmeyer, \"The equivalenceproblem for regular expression with

squaring requires exponential space,\" 13th Annual Symposium on Switching and
Automata Theory, (1972), pp. 125-129.

Minieka E., Optimization Algorithms for Networks and Graphs, MarcelDekker,New

York, 1978.

Mirzaian A., \"A halving technique for the longest stuttering subsequence problem,\"

Information Processing Letters, 26 (1987),pp. 71-75.

Misra J., and D. Gries, \"Finding repeated elements,\" Science of Computer
Programming, 2 (1982), pp. 143-152.

Moffat A., and T. Takaoka, \"An all pair shortest path algorithm with expected time

0(n2\\ogn)\" SIAM Journal on Computing, 16 (December 1987),pp.1023-1031.
Moitra A., and S. S. Iyengar, \"Discussion of parallel algorithms,\" Technical Report

TR-86-759,Department of Computer Science, Cornell University (June 1986).

Moret B. M. E., \"Decisiontrees and diagrams,\" Computing Surveys, 14 (December
1982),pp.593-623.

Munro I., \"Problems related to matrix multiplication,\" in Computational Complexity, R.
Rustin, ed., Algorithmics Press, New York, 1971.

Myers E. W., \"An O(ND) difference algorithm and its variations,\" Algorithmica, 1

(1986), pp. 251-266.

Bibliography 459

Myers E. W., \"A four-Russians algorithm for regular expression pattern matching,\"

Technical Report #88-34, Department of Computer Science,University of Arizona,

October 1988.

Nishizeki T., and N. Chiba, Planar Graphs, Theory and Algorithms, Annals of Discrete

Mathematics, 32, North Holland, Netherlands, 1988.

Ore O., \"Note on Hamiltonian circuit,\" American Mathematical Monthly, 67 (1960), p.

55.

Ore O., Graphsand Their Uses, Random House, New York, 1963.

Pan V., \"Strassen'salgorithm is not optimal,\" 19th Annual Symposium on Foundations

of Computer Science}Ann Arbor, MI (October 1978), pp. 166-176.

Pan V., How to Multiply Matrices Faster, LectureNotes in Computer Science, Volume

129, Springer-Verlag,Berlin, 1984.

Papadimitriou C. H., and K. Steiglitz, CombinatorialOptimization: Algorithms and

Complexity, Prentice-Hall, Englewood Cliffs,NJ, 1982.

Parberry I., Parallel ComplexityTheory, John Wiley & Sons, New York, 1987.

Paull M. C, Algorithm Design: A Recursion Transformation Framework, John Wiley &
Sons,New York, 1988.

Pearl J., Heuristics \342\200\224
Intelligent Search Strategies for Computer Problem Solving,

Addison-Wesley, Reading, MA, 1984.

Perl Y., A. Itai, and H. Avni, \"Interpolation search \342\200\224A loglog/V search,\"

Communications of the ACM, 21 (July 1978), pp. 550-553.

Polya G., Induction and Analogy in Mathematics, Princeton University Press, Princeton,

NJ, 1954.

PolyaG., How to Solve It, Second Edition, Princeton University Press, Princeton, NJ,
1957.

PolyaG.,Mathematical Discovery, Combined Edition, John Wiley & Sons, New York,

1981.

Polya G., and G. Szego, Aufgaben und Lehrsatze aus der Analysis, Volume I, Berlin,

Springer, 1927,p. 7.

Polya G., and G. Szego, Problems and Theorems in Analysis I, Springer-Verlag, Berlin,
1972.

Preparata F. P., and M. I. Shamos,Computational Geometry: An Introduction, Springer-
Verlag, New York, 1985.

Prim R. C, \"Shortest connection networks and some generalizations,\" Bell System
TechnicalJournal, 36 (1957), p. 1389.

460 Bibliography

Purdom P. W., and C. A. Brown, The Analysis of Algorithms, Holt, Rinehart & Winston,

New York, 1985a.

Purdom P. W., and C. A. Brown, 'The pure literal rule and polynomial average time,\"
SIAM Journal on Computing, 14 (November 1985b), pp. 943-953.

Quinn M. J., Designing Efficient Algorithms for Parallel Computers, McGraw-Hill, New

York, 1987.

Quinn M. J., and N. Deo, \"Parallel graph algorithms,\" Computing Surveys, 16

(September 1984),pp. 319-348.

Rabin M. O., \"Probabilistic algorithms,\" in Algorithms and Complexity, Recent Results

and New Directions, J. F. Traub, ed., AcademicPress,New York, 1976, pp. 21-39.

Raghavan P., \"Probabilistic construction of deterministic algorithms: Approximating

packing integer programs,\" 27th Annual Symposium on Foundations of Computer
Science,Toronto (October 1986), pp. 10-18.

Ranade A. G., \"How to emulate shared memory,\" 28th Annual Symposium on

Foundations of Computer Science,LosAngeles (October 1987), pp. 185-194.

Reed D. A., and R. M. Fujimoto, Multicomputer Networks: Message-BasedParallel
Processing,MIT Press, Cambridge, MA, 1987.

Reif J. H.,and L. G. Valiant, \"A logarithmic time sort for linear size networks,\" Journal

of the ACM, 34 (January 1987), pp. 60-76.

Reingold E. M., and W. J. Hansen, Data Structures, Little, Brown, Boston, MA, 1983.

Richards D., \"Parallel sorting
\342\200\224A bibliography,\" SIGACT News, 18 (Summer 1986).

Rivest R. L., A. Shamir, and L. M. Adleman, \"A method for obtaining digital signatures

and public-key cryptosystems,\" Communications of the ACM, 21 (February 1978),
pp. 120-126.

Roberts F. S., Applied Combinatorics, Prentice-Hall, EnglewoodCliffs, NJ, 1984.

Rodeh M., \"Finding the median distributively,\" Journal of Computer and System

Sciences, 24 (1982), pp. 162-166.

RonseC, \"A bibliography on digital and computational convexity,\" Manuscript Ml85,

Philips Research Laboratory, Brussels, (February 1987).

Rosenberg A. L., \"On the time required to recognize properties of graphs,\" SIGACT

News, (1973), pp. 15-16.

Runge C, and H. Konig, Die Grundlehrn der mathematischen Wissenschften, Springer,
Berlin, 1924.

Ryser H. J., \"Combinatorial properties of matrices of zeros and ones,\" Canadian
Journal ofMathematics, 9 (1957), pp. 371-377.

Bibliography 461

Rytter W., \"Fast recognition of pushdown automaton and context-free languages/'
Information and Control, 67 (1985) pp. 12-22.

Sankoff D., and J. B. Kruskal, Time Wraps, String Edits, and Macromolecules: The

Theory and Practice of Sequence Comparison, Addison-Wesley, Reading, MA,
1983.

Savitch W. J., \"Relationships between nondeterministic and deterministic tape

complexities,\" Journal of Computer and System Sciences, 4 (1970), pp. 177-192.

SchabackR., \"On the expected sublinearity of the Boyer-Moore algorithm,\" SIAM

Journal on Computing, 17 (August 1988), pp. 648-658.

SchonhageA., M. S. Paterson, and N. Pippenger, \"Finding the median,\" Journal of

Computer and System Science, 13 (October1976),pp. 184-199.

Schrijver A., Theory of Linear and Integer Programming, John Wiley & Sons,
Chichester, 1986.

Sedgewick R., Quicksort, Garland, New York, 1978.

Sedgewick R., Algorithms, Second Edition, Addison-Wesley, Reading, MA, 1988.

SedgewickR., and J. S. Vitter, \"Shortest paths in Euclidean graphs,\" Algorithmica, 1

(1986),pp.31-48.

Shamos M. I., and D. Hoey, \"Closest-pointproblems,\" 16th Annual Symposium on

Foundations of Computer Science, Berkeley (October 1975), pp. 151-162.

Shamos M. I., and D. Hoey, \"Geometric intersection problems,\" 17th Annual

Symposium on Foundations of Computer Science, Houston (October 1976), pp.
208-215.

Shell D. L., \"A high-speed sorting procedure\" Communications of the ACM, 2 (July

1959), pp. 30-32.

Shiloach Y, and U. Vishkin, \"Finding the maximum, merging, and sorting in a parallel

computation model,\" Journal of Algorithms, 3 (March 1981), pp. 88-102.

Shrira L., N. Francez, and M. Rodeh, \"Distributed k selection: From a sequential to a
distributed algorithm,\" Second ACM Symposium on Principles of Distributed

Computing, Ottawa (August 1983), pp. 143-153.

SiegelH.J.,Interconnection Networks for Large Scale Parallel Processing:Theory and

Case Studies, Lexington Books, Lexington, MA, 1985.

Sleator D. D., and R. E. Tarjan, \"Self-adjusting binary search trees,\" Journal of the

ACM, 32 (July 1985), pp. 652-686.

Smit G. V., \"A comparison of three string matching algorithms,\" Software \342\200\224Practice

and Experience, 12 (1982), pp.57-66.

52 Bibliography

olovay R., and V. Strassen, \"A fast Monte-Carlo test for primality,\" SIAM Journal on

Computing, 6 (March 1977),pp.84-85;erratum (February 1978), p. 118.

(ominskii I. S., The Method of Mathematical Induction, (translated from Russian), D. C.
Heath, Boston, 1963.

Jpafford E. H., 'The Internet worm program: An analysis,\" Technical Report CSD-
TR-823, Department of Computer Science, Purdue University (November 1988).

Spira P. M., \"A new algorithm for finding all shortest paths in a graph of positive arcs in

average time 0(AZ2log2Az),\" SIAM Journal on Computing, 2 (1973), pp. 28-32.

Standish T. A., Data Structure Techniques, Addison-Wesley, Reading, MA., 1980.

Stanton D., and D. White, Constructive Combinatorics,Springer-Verlag, New York,

1986.

Stout Q. R, \"Supporting divide-and-conquer algorithms for image processing,\" Journal
of Parallel and Distributed Computing, 4 (1987),pp.95-115.

Strassen V., \"Gaussian elimination is not optimal,\" Numerische Mathematik, 13 (1969),
pp. 354-356.

Takaoka T., \"An on-line pattern matching algorithm,\" Information Processing Letters,
22 (May 1986), pp. 329-330.

Tarjan R. E., \"Depth first search and linear graph algorithms,\" SIAM Journal on

Computing, 1 (June 1972), pp. 146-160.

Tarjan R. E., \"Efficiency of a good but not linear set union algorithm,\" Journal of the

ACM, 22 (April 1975), pp. 215-225.

Tarjan R. E., Data Structures and Network Algorithms, SIAM, Philadelphia, PA, 1983.

Tarjan R. E., \"Amortized computational complexity,\" SIAM Journal on Applied and
DiscreteMathematics, 6 (1985), pp. 306-318.

Tarjan R. E., and J. van Leeuwen, \"Worst case analysis of set union algorithms,\"

Journal of the ACM,31 (April 1984), pp. 245-281.

Tarjan R. E., and U. Vishkin, \"An efficient parallel biconnectivity algorithm,\" SIAM

Journal on Computing, 14 (November 1985), pp. 862-874.

Tarry G., \"Leprobleme des labyrinths,\" Nouvelles Ann. de Math, (1895), p. 187.

Toussaint G., Computational Geometry, North Holland, Amsterdam, 1984.

Turner J. S., \"Almost all /:-colorable graphs are easy to color,\" Journal of Algorithms, 9
(1988),pp.63-82.

Tutte W. T., Graph Theory, Encyclopedia of Mathematics, Volume 21, Addison-Wesley,
Reading, MA, 1984.

Bibliography 463

Uhr L., Parallel Computer Vision, Academic Press,New York, 1987.

Ukkonen E., \"Algorithms for approximate string matching,\" Information and Control,

64 (1985), pp. 100-118.

Ullman J. D., Computational Aspects of VLSI, Computer Science Press, Rockville, MD,
1984.

Upfal E., \"Efficient schemes for parallel communication,\" First ACM Symposium on

Principles ofDistributed Computing, Ottawa (August 1982), pp. 55-59.

Upfal E., and A. Wigderson, \"How to share memory in a distributed system,\" Journal of
the ACM, 34 (January 1987), pp. 116-127.

Vacca G., \"Maurolycus, the first discoverer of the principle of mathematical induction,\"
Bulletin of the American Mathematical Society, 16(1909),p.70.

Vaidya P. M., \"Geometry helps in matching,\" 20th Annual ACM Symposium on Theory
of Computing, Chicago (May 1988), pp. 422-425.

Valiant L. G., \"Parallelism in comparisons problems,\" SIAM Journal on Computing, 4

(September 1975), pp. 348-355.

Valiant L. G., \"A scheme for fast parallel communication,\" SI AM Journal on

Computing, 11 (May 1982), pp. 350-361.

Valiant L. G., and G. J. Brebner, \"Universal schemes for parallelcommunication,\" 13th

Annual ACM Symposium on Theory of Computing, Milwaukee (May 1981), pp.
263-277.

van der Nat M., \"On interpolation search,\" Communications of the ACM, 22 (December
1979),p.681.

van Leeuwen J., \"Graph algorithms,\" Technical Report RUU-CS-86-17,Department of

Computer Science, University of Utrecht, Utrecht, The Netherlands, (October 1986).

von Neumann J., Collected Works, 5, Macmillan, New York, 1963, pp. 91-99.

Vishkin U., \"Randomized parallel speedups for list ranking,\" Journal of Parallel and
Distributed Computing, 4 (1987), pp. 319-333.

Vitter J. S., \"Designand analysis of dynamic Huffman coding,\" 26th Annual Symposium

on Foundations of Computer Science,Portland, OR (October 1985), pp. 293-302.

Vitter J. S., and W. C. Chen, Design & Analysis of Coalesced Hashing, Oxford

University Press, New York, 1987.

von Neumann J., Collected Works, 5, Macmillan, New York, 1963.

Wagner R. A., and M. J. Fischer, \"The string-to-string correction problem,\" Journal of
the ACM, 21 (January 1974), pp. 168-173.

464 Bibliography

Warren H. S., \"A modification of Warshall's algorithm for transitive closure of binary

relations,\" Communications of the ACM, 18 (April 1975), pp. 218-220.

Warshall S., \"A theorem on Boolean matrices,\" Journal of the ACM, 9 (January 1962),

pp. 11-12.

Wegman
M. N., and J. L. Carter,\"New classes and applications of hash functions,\" 20th

Annual Symposium on Foundations of Computer Science, (October 1979), pp.

175-182.

Weiner, P., \"Linear pattern matching algorithm,\" 14th IEEE Symposium on Switching

and Automata Theory, Iowa City, Iowa (October 1973), pp. 1-11.

Whitney H., \"Congruent graphs and the connectivity of graphs,\" American Journal of

Mathematics, 54 (1932),pp.150-68.

Wigderson A., \"Improving the performance guarantee for approximate graph coloring,\"

Journal of the ACM,30 (October 1983), pp. 729-735.

Wilf H. S., \"Backtrack: An 0(1) expected time algorithm for the graph coloring

problem,\" Information Processing Letters, 18 (1984), pp. 119-121.

Williams J. W. J., \"Algorithm 232: Heapsort,\"Communications of the ACM, 7 (June
1964),p.701.

Winograd S., \"A new algorithm for inner product,\" IEEE Transactions on Computers,
C-17(1968),pp. 693-694.

Winograd S., \"On the number of multiplications necessary to compute certain

functions,\" Communications on Pure and Applied Mathematics, 23 (1970a),pp.

165-170.

Winograd S., \"The algebraic complexity of functions,\" Proceedings of the International

Congress ofMathematicians, 3 (1970b), pp. 283-288.

Winograd S., \"Someremarks on fast multiplication of polynomials,\" in Complexity of

Sequential and Parallel Numerical Algorithms, J. F. Traub, ed., Academic Press,
New York (1973), pp. 181-196.

Winograd S., Arithmetic Complexity of Computations, SIAM, Philadelphia, PA, 1980.

Wirth N., Algorithms & Data Structures, Prentice-Hall, EnglewoodCliffs, NJ, 1986.

Yao A., \"An 0(\\E | log log \\V |) algorithm for finding minimum spanning trees,\"

Information Processing Letters, 4 (1975),pp.21-23.
Yao A., \"Probabilistic computations \342\200\224toward a unified measure of complexity,\" 18th

Annual Symposium on Foundations of Computer Science,Providence, RI (October

1977), pp. 222-227.

Ziv J., and A. Lempel, \"Compression of indiviual sequences via variable-rate coding,\"
IEEE Transactionson Information Theory, IT-24 (September 1978),pp. 530-536.

INDEX

O 41

O 39

00 41-42,174,316,410
0 41
ft 41

co 41

Aanderaa, S.O. 113
Abstract data types 62

Ackerman's function 86

Acyclic collection of sets 372
Acyclic graph, see Directed acyclic graph
Addition, parallel 379-380,411

Aderson-VePskii, G. M. 75
Adjacency list representation 84

Adjacency matrix representation 84

Adleman,L. M. 295,316
Aho, A. V. 85, 174, 175,305,316,336

Ajtai, M. 410

Akl, S. G. 409

Aleliunas, R. 411

Algebraic algorithms 293-320,436-438

Algorithm

algebraic 293-320, 436-438
analysis of 37-60

approximation 357, 363-367
definition of 1

distributed 208, 376

divide-and-conquer 103-104,113-114,
131,137,141,144, 158, 169, 172,
176, 183,264,278-281,286, 287,

289, 299-304, 311-314, 316-319,
379-380,383, 394-396, 409-410, 431

efficient, definition of 341

geometric 102-104, 265-291,331-333,
434-436

graph 95-96,98-101, 185-264,325-326,

347-349, 351-354,356-363,369,

370-374, 414-415,426-434

greedy 210-211,235,237,363
for interconnection networks 378,

389-403
notation for 4

numeric 293-320,379-380,398-^01,
404-407

parallel 214,216,304,375-416

probabilistic 158-164, 175,287,320,
402-403

running time of an 42

sequencesand sets 119-183

systolic 404-409,411,416
All shortest paths problem 212-214, 322
Almasi, G. S. 409

Alternating path 236

Amortized complexity 55,83,86

Analysis of algorithms 37-60
Ancestor (in a tree) 193

Angluin, D. 369

Anti-Gray codes 33
Apostolico, A. 175

Approximate convex hull 289

Approximation algorithms 357, 363-367
Arborescence 66, 186

Arithmetic geometric mean theorem 24-26,

35-36

Arithmetic sum 11-12,31,53

Arlazarov, V. L. 317

Array, definition of 63

Articulation point 218,223,260,430
ASCII 146

Assembly line 404

Assignment problem 330-331

Asymptotic complexity, definition of 38

Atkinson, M. D. 317

466 Index

Attalah, M.J. 410

Augmenting path 239

Auslander, L. 248

AVLtree 75-77, 104,114-115,130

Avni,H. 174

b-Matching 338

Bach, E. 297
Backtracking 358-363, 369, 373

Baer, J. -L. 86

Bag 87

Balance factor 75, 104-106,248

Bar-Yehuda, R. 369

Batcher, K. E. 394,410
Bates,J.L. 106

Baumert, L. 369

Bavel,Z. 55
Beame,P.W. 410

Beckenbach, E. 31

begin 5
Blelloch, G. 409
Bellman, R. E. 31, 114
Bent,S. W. 174,440

Bentley, J. L. 55, 106,287

Berge, C. 247

Bertsekas, D. P. 409
BFS,seeBreadth-first search

Biconnected

component 217-223,249,259-260,430
extension 259

graph, definition of 217
edge-biconnected259

Bin packing 357, 363-365, 370, 371,374
Binary numbers, conversion to 26-28, 36
Binary search 120-125,285,342,431

Binary tree 34, 115
complete 34,263-264

Binary search tree 71-77,86,285

Biology, molecular 149,155
Bipartite graph 111-112, 117,187,372
Bipartite matching 235-238, 337, 357
Bisection 125
Bitner,J. R. 369

Blum, M. 174
Bohr, N. 55

Bollobds, B. 175,247,248
Bolzano method 125

Bondy,J. A. 247

Booleanmatrix multiplication 304-309, 317,
319-320,325-326

Borodin, A. 316,410

Bottleneck problems 254,257,261,338

Boyer,R.S. 155, 174

Boyer-Moore algorithm 155,174

Branch-and-bound 358-363, 370
Breadth-first-search 95, 189, 198-199,238,

246, 249,426,427
Brebner,G.J.410
Brelaz, D. 369

Brent's lemma 381,383,384,441
Bridge, in a graph 34, 220
Briggs, F. A. 409

Brigham, E.O. 317
Broadcast 396-398,406,412

Broadcast network 256
Bre1az,D.369
Brown, C. A. 55,369

Brualdi,R.A. 55,336
Bucket sort 127-129, 142,164

Burge,W.H. 113
Bussey,W.H.30

Butterfly network 411

Capacity 238
Capobianco,M. 247
Carrol, L. 175

Carter, J. L. 86
Cauchy, A. L. 24

Cederbaum, I. 248
Celebrity problem 98-101,113-114

Chaining, separate 79
Chand,D.R.286

Chandy, K. M. 409
Characteristic equation 50

Chartrand,G. 247,432
Chavey, D. 31
Chen,CW. 86

Cheriton, D. 247
Chiba, N. 247

Choueka,Y. 175
Christofides, N. 248,370

Circle 34,270,271,290,332
Circuit, in a graph 186

Eulerian 187; see also Eulerian graph

Hamiltonian 243-244; see also
Hamiltonian cycle

Index 467

Circuit, model of parallel computing 378, 410

Clique problem 348, 351-352, 356, 361, 370,
371,372

Closed path, in the plane 266
Closestpair problem 278-281, 287, 289

Clustering 80

CNF 346

Coalesced hashing 86

Cohen, J. 304,317
Cole,R. 410-411
Collision (in hashing) 78-80

Coloring problems 14, 161-164, 175, 252,
369

edgecoloring 262,432

k-coloring 369

plane coloring 14
3-coloring 352-354,370,371,373

Communication network 146, 256,329
Complement of a graph 348

Completebinary tree 34, 263-264

Complete graph 96, 244, 263, 356

Complexnumbers 318

Complexity
amortized 55, 83
asymptotic 38

computational complexity 344

space 42
time 42

Component
biconnected 217-223, 249,259-260,430

connected 187, 192,415

strongly connected 226-233,247,250,
251,260

Compression

data 145-148, 174, 177, 180,334-335
path 82,86

Computational complexity 344

Computer security 186

Concatenate operation 88
Concurrent-read concurrent-write, see CRCW
Concurrent-read exclusive-write, see CREW

Condensation graph 226

Conjunctive normal form 346
Connected component 187, 192,415

Connected graph 186
Connection machine 376, 410

co-NP 368
Constable, R. L. 106
Context-free language 317

Conversion

binary to decimal 36
decimal to binary 26-28

Convex hull 273-277, 286-289

approximate 289

stretching a 273

Convex path 266,276

Convex polygon, definition of 266

Convolution 405-407
Cook,S.A. 344,346,368,410

Cook's theorem 347

Cooley,J.M. 317
Coppersmith, D. 316

Corasick, M. J. 174
Counter circuit 414

Cover

edge 262
set 355
by 3-sets 372

vertex 262-263, 348,355-356,358, 363,

371,373,432-433

CRCW 378,383,410,412,413
CREW 378,382,410,412,415
Critical node (in an AVL tree) 75
Crossedge, in depth-first search 194
Crossproduct 413

Cryptography 295-297

Cube-connected-cycles 390
Culberson, J. 86

Cut (in a network) 241
Cycle(in a graph) 186

even-cycle problem 230

Hamiltonian 248, 372

odd-cycleproblem 233-234, 246

DAG, see Directed acyclic graph

Dantzig,G. B. 247,336
Data compression 145-148,174
Data structures 61-90

Data types, abstract 62

de Bruijn sequence 252
Deadlock6
Decimal representation 31

Decimal to binary conversion 26-28, 36
Decision tree 141-143, 174, 177,332-333,

335, 424,426,438-439

Decoding 147

Decreasing DFS numbers 223

468 Index

Decreasing first fit 364

Decryption 295

Degree of a vertex 186

Degree sequence 252, 262
Dekel,E. 410
Deletion

in a binary search tree 73-74

in a heap 69-70
Denardo, E. V. 114

Dense graphs, algorithms for 234-235,
244-246

Deo,N. 247,410

Depth of a circuit 378

Depth-first search 95, 189-197,221-225,

227-233, 246-250,388,426-427, 429

back edge 194
crossedge 194
forward edge 194

nonrecursive implementation 194
numbers 192,223

tree 192-196

Dershowitz, N. 4, 113

Descendant (in a tree) 193,388
Deterministic algorithm, definition of 158

DFS, see Depth-first search

Diameter

of a graph 115,389
of a set of points 340

Dictionary 71

Diffie, W. 316

Dijkstra, E. W. 113,247
Dijkstra's algorithm 204-208, 247, 254
Dinic, E. A. 317
Directed acyclic graph 197, 199-203,226,

246, 249, 253,255,258, 260, 338,

371,378,430-431
Distributed algorithms 208, 376

Divide-and-conquer algorithms 103-104,
113-114,131,137, 141,144, 158,

169, 172, 176,183,264, 278-281,

286, 287, 289, 299-304,311-314,
316-319,379-380, 383, 394-396,

409-410,431

Divide-and-conquer recurrence relations

50-51

Divide-and-crush 382
DNA 149

Dobkin, D. P. 175
Dodecahedron 6

Dominating set 348-349
Domination of points 289
Domino principle 91

Double hashing 80
Double induction 18

Double rotation (in an AVL tree) 75

Doubling technique 123, 386-389, 409, 411,
440

Dreyfus, S. E. 114

Dummy variable 66

Durian, B. 174
Dvorak, S. 174

Dwork, C. 410
Dynamic programming 108-111, 114,

155-158,407

Ear decomposition 34

Ebert,J. 247
Edelsbrunner, H. 286

Edge

coloring 262,432
cover 262
in the plane 266

of a graph 83, 186

of a planar map 17
Edge-biconnected graph 259

Edge-disjoint paths 23-24
Edit steps 155

Editing a text file 149

Edmonds, J. 243

Efficiency of parallel algorithms 376
Efficient algorithm, definition of 341

Election, 1988Presidential 8

Element, definition of 62
Elliott, D. F. 317

Ellipsoid algorithm 336

Embedding trees 263
Emulation 377

Encoding 146

Encryption 295
end 5

Eppinger, J. L. 86

Equations, system of 315

Erdos, P. 175
EREW 378,380-381,383-389,410,

412-415

Errors
in design by induction 111-112

Index 469

in induction proofs 28-29
in reductions 334-336

Euclidean graph 254, 365
traveling salesman 365-367

Euclid's algorithm 294, 297-298,316,318
Euler,L. 187,247

Euler's constant 53
formula 17-18,30

tour technique 387-389,409-411,414
Eulerian graph 187-190, 247, 251-252, 373,

432
Even, S. 247, 248, 336, 369
Even-cycle problem 230, 369

Exact coverby 3-sets 372

Exclusive-read exclusive-write, see EREW

Exponentiation 294-297

Extendible hashing 86

Fagin, R. 86

Faradzev, LA. 317
Fast Fourier transform 309-317,443

inverse 314-316
Faust, M.G. 287

Federal Express 321
Feedback-edgeset 257, 373, 429

Feng,T. 411
FFT 309-317,443

Fibonacci numbers 34-35,46, 49,60,318
Fich,F. E. 410

FIFO (first-in-first-out) 62
File comparisons 155

Fingerprinting 174
First fit 364, 370, 374

Fischer, M. J. 86, 175, 317,369,380, 410

Flajolet, P. 55
Flow, network 238-243, 246, 248, 327,329,

338

Floyd, R. W. 113, 174,247
Flynn, M.J. 410

Folding principle 377
Ford,L.R. 174,248

Ford and Johnson sorting 178

Forest 186-187

Fortune, S. 287
Forward edge (in DFS) 194
Four-Russian algorithm 306-109, 316, 317
Fox,G. C. 409

Fraenkel, A. S. 175

Francez, N. 410

Franco, J. 369
Frederickson, G. 410

Fredman, M. L. 247
Freetrees 83
Frequency 146

Fujimoto, R. M. 409
Fulkerson, D. R. 248

Full-history recurrence relations 51-53, 57,
137

Function, one-to-one 96-98

Gabow, H. N. 247, 248, 366, 431
Galil,Z. 174,175,247,248
Galler, B. A. 86

Garey, M.R. 344,355, 356, 363, 369

GCD 297-298,318
of polynomials 318

Gehringer, E. F. 409
Geometricalgorithms 102-104, 265-291,

331-333,434-436
Geometric series 53
Gibbons, A. 247,409

Gift-wrapping algorithm 274-275, 286
Gillis,J.30

Girth of a graph 255

Goldberg, A. V. 248

Goldstine, H. H. 113
Goldwasser, S. 369

Golomb, S. 369
Golovina, L. I. 31

Golumbic, M. 247
Gomory, R. E. 248

Gondran, M. 247,248
Gonnet,G. H. 85,86, 175

Goodrich, M.T. 410
Gossip problem 416

Gottlieb, A. 409
Graham, R. L. 55,286
Graham's scan 275-277,287-288
Graph

algorithms 95-96,98-101,185-264,

325-326, 347-349, 351-354,
356-363,369, 370-374, 414-415,

426-434
biconnected 217;seealso Biconnected

component

bipartite 111-112, 117,187,372

470 Index

Graph (continued)

coloring problems 252, 369,352-354,
370,371,373

complement of a 348

complete 96,244,263, 356

condensation 226

connected, definition of 186

decomposition 217-234
definitions 186-187

dense 234-235, 244-246
diameter 115,389

directed, definition of 186
directed acyclic, see Directed acyclic

graph
edgebiconnected, definition of 259

embedding 415-416
Euclidean 254, 365

Eulerian 187-190,247,251-252,373,
432

girth of a 255

Hamiltonian 243-246, 369

induced 95-96, 114,187,251
injective 253

interval 263,433

isomorphism 248,369
join 89

kernel 255

matching 234-238,248,251,260-261,

291, 338, 342, 366,431;seealso

Matching problems

multigraph 186

planar 248, 338

proofs by induction, involving 18-19,

23-24, 34, 35

regular 372

representation of 83-84
residual 242
selfloops in a 186

simple 186
split 263

strongly connected 226-233, 247,250,
251,260

subgraph 186

subgraph induced 187
traversal of a 189-199
undirected 186
unilateral 260

unipathic 260

weighted, definition of 187,201

Gray,F. 31

Gray code 20-23, 31, 33-34, 320
open 22,320

ami 33-34

Greatest common divisor 297-298, 318

of polynomials 318

Greedy algorithms 210-211, 235, 237, 363
Greenberg, A. 398,410

Greene, D. H. 55
Grid, see Mesh

Grid polygon 290
Gries,D. 4,31,113,175

Grotschel, M. 336

Guessing 11-14,43-44,47-49, 58,345

Guibas,L.J. 174

Gusfield, D. 369
Guting,R. H. 287

Haken, D. 55
Half plane 291

Hall, M. 336
Hall, P. 323, 336

Hall's theorem 324, 336

Hamilton, W. R. 6, 243
Hamilton's puzzle. 6

Hamilton's quaternions 319
Hamiltonian cycle 243-246, 248, 261, 356,

369
path 258, 356, 372, 373

Hamming, R. W. 31

Hansen, W. J. 85
Harary, F. 247

Harmonic series 53-54
Hash functions 79

universal 86

Hashing 78-80, 86

coalesced 86
double 80

extendible 86

Heap 68-70, 87, 138-141,148,178,179,
206,428

Heapsort 137-141, 174

Hedetniemi, S. M. 443
Hedetniemi, S. T. 443

Height of a node in a tree 104
Hellman, M. E. 316
Heuristic 211,254,369
HEX 369

Index 471

Hibbard,T. N. 86

Hidden-line elimination 102-104, 282
Hillis, W. D. 410

Hinrichs, K. 287
Hirschberg, D. S. 175

Hoare,C. A. R. 174

Hoey, D. 287
Hoffman, CM. 248

Hofri, M. 55

Hong,J.-W.409
Hoover, H.J. 410

Hopcroft, J. E. 85,86, 175, 248, 261, 287,

305,316,336,410
Horner's rule 92-94, 114, 128,310,412
Horowitz, E. 369,410

House, analogy to algorithm design 2
Hu,T. C. 248

Huang, B.C. 174

Huffman, D. A. 148, 174
Huffman's encoding 145-148, 174, 177, 180,

334-335
Hunt, J. W. 175

Hwang, K. 409
Hypercube 389-390,401-403,415

Incerpi, J. 174
Incident matrix 325

Increasing subsequence problem 167-169,

175

Indegree of a vertex, definition of 186

Independent set 19,262-263,356, 371, 433

Induced subgraph 95-96, 114,187,251
Induction 3, 9-36 (and virtually everywhere)

choosing the base of 137,167,172
choosing the order of 17, 30, 92-94,

96-101,112-113,128, 200, 202-203,

221,282-283
common errors 28-29, 111-112

definition 10
double 18

double usage 14

generalization 114

reversed 25,244-246

strengthening the hypothesis 22-24, 93,
105-109, 113,145,162, 167-169,

281, 282, 379, 418,423,428, 435,

437, 442

strong 10,109,157

variations of 10-11,25
Information-theoretic lower bound 142

Injective graph 253
Inner product 305

In-placesort 127, 131,135,137, 174, 178

Input size 38,294
Insertion

in a binary search tree 71-72

in a heap 69-70
sort 130

Integer linear programming 331,336,
361-363,371

Integral 54

Interconnection network, algorithms 378,
389-403

Interpolation 310

Interpolation search 125-127
Intersection problems 267-270, 281-285,

287,289-291
Interval graph 263,433

Invariant, loop 26-28,31,36, 113-114, 134,

176-177

Inventor's paradox 24, 113

Inverse fast Fourier transform 314-316

Isomorphism, graph 248, 369
Itai,A. 174,336

Iyengar, S. S. 410

Jagadish, H. V. 411

John, J. 174
Johnson, D. B. 247

Johnson, D.J. 344, 355, 356, 363, 369, 370,
Johnson, S. M. 174

Join graphs 89

Jones, D. W. 86

k-connectivity 217

*th-smallest element 143-145, 174,179,
396-399

Kailath,T. 411

Kapur, S. S. 286
Karatsuba, A. 316

Karlin,A. R. 86,411
Karmarkar, N. 336,370

Karp, R. M. 174,175,243,261,346, 368, 370

Kernel of a graph 255

Kernighan, B. W. 370
Khachian, L. G. 336

472 Index

Killian, J. 369

King, K.N. 113
Klee,V.336,369

Klein, S. T. 175

KMP algorithm 148-155, 174, 323, 427

Knapsack problem 8, 108-111,114-115, 357,
370

Knuth, D. E. 55, 77, 85,86,94, 155, 160,

173, 174,175,316,369,436
Knuth-Morris-Pratt algorithm 148-155, 174,

323,427
Komlos,J. 410
Kbnig, D. 317

Kbnigsberg bridge problem 187

Kronrod, M. A. 174,317
Kruskal,J. B. 175,247,410

Kung, H.T. 411
Kurtz, T. 86

Ladner,R. E. 369,380,410
Lakatos, I. 30

Landis, Y. M. 75
Langston, M. A. 174

Language-recognition 342
nondeterministic 344

Las Vegas algorithms 159;seealso

Probabilistic algorithms
Lattice point 33
Law, A.M. 114

Lawler, E. L. 248,366, 370

Least common multiple 318

Leiserson, C. E. 411
Lempel,A. 174,248
Length of a path 201

Lenstra, J. K. 370
Lesniak, L. 247,432

Level (in breadth-first search) 198
Levin, L. A. 368

Lexicographic sort 128

Liestman, A. L. 443
Lin,S. 370

Line 14,265
Line segment 266
Line-sweeptechnique 281-287,435

Linear congruential method 160
Linear probing (in hashing) 79
Linear programming 322, 327-331, 336,

338-339

standard form of 328

Linear search 173
Linesin general position in the plane 13
Linked lists 64

Lipovski, G. J. 409
Lipson,J.D. 309,316
Lipton, R. J. 411

Litwin, W. 86

Load balancing 380
Localreduction 356

Logarithms, rules of 54
Longest increasing subsequence 167-169,

175

Loopinvariant 26-28, 31, 36, 113-114, 134,
176-177

Lopresti, D. 411

Lovdsz,L. 31, 175,248,336
Lowerbound 174, 178, 180, 331-334, 339

i nformation-theoretic 142

for sorting 141-143
Lower triangular matrix 339

Lucas, E. 247
Lueker,G.S. 55

Luks, E. M. 248, 369
Lynch, T.J. 174

Maggs, B. M. 336
Majority problem 164-166,175

Malek, M. 409
Manacher, G. K. 174

Manber, U. 4, 55,86, 113, 175, 248, 398,
410,440

Manber, R. 369

Manna, Z. 4, 113,173
Masek,W.J.317
Matching problems 234-238,248,251,

260-261, 291, 338,342,366, 431

b 338

bipartite 235-238, 324,337,357
perfect 35,234

string 148-155

3-dimensional 356
Mathematical induction, see Induction

Matrix

adjacency 84,99,325, 339

Boolean multiplication 304-309,317,
319,320,325-326

and graphs 246, 325-326, 336, 339-340

Index 473

incident 325

inversion 336
lower triangular 339

multiplication 301-309,316,318,
325-326, 333-334,336,339,

398-400,410,412,416

permutation 319

square of a 319,334
symmetric 333-334

transpose 333

upper triangular 339

vector multiplication, by 404-405

Maurolycus, F. 30
Max-flow min-cut theorem 242

Maximum-consecutive subsequence problem

106-107

Maximum element in a set 143-144, 169-171
176,380-382

Mazeproblem 6, 247

McCreight, E. M. 175
MCST,seeMinimum-cost spanning tree

McVoy, L. 4, 248
Median 144-145, 174, 179; see also fan-

smallest element

Megiddo, N. 411
Mehlhorn, K. 286

Menger,K. 217-218

Merge
mergesort 104,130-131,174,281,

393-395,410

parallel 394-396,413
split 393

Mesh 389,398-400,414
of trees 390

Meyer, A. R. 317,369

Miller, R. 297
MIMD 376,410

Miniekas, E. 248

Minimum-cost spanning tree 208-212, 247,
249, 255,257,338,340, 365, 428, 429

Minimum element in a set 143-144, 169-171,
176,380-382

Minoux,M. 247-248

Minty, G. L. 336
Mirzaian, A. 173

Misra,J. 175,409
Modeof a multiset 171-173

Moffat, A. 247
Moitra, A. 410

Molecular biology 149,155
Molluzzo, J. C. 247

Monotonically increasing function 48

Monte Carlo algorithms 159

Moore, J. S. 155,174
Moret, B. M. E. 174

Morris, J. H. 155,174
Multicomputer 378

Multigraph 186,259,262

Multiple-instruction multiple-data 376, 410

Multiplication
of Booleanmatrices 304-309, 317,

319-320

of general matrices 301-309, 316, 318,
325-326,333-334,336, 339,

398-400,410,412,416

of polynomials 298-300, 309,316-317,
319

Multiplicity of an element 164,171
Multiset 171-173

Munro,I. 175,316,336

Murty, U. S. R. 247

Myers, E. W. 4,175,317

Nassimi, D. 410
Negative cost, shortest paths 255, 258
Neighborhood (of a vertex) 19
Network

broadcast in 256

communication 146,208,256, 329

cut 241

interconnection 378,389-403
sorting on a 393-396

Network flow 238-243, 246, 248, 324, 327,
329,338

Newton, I. 94

Nievergelt, J. 86,287
Nil pointer 66

Nishizeki, T. 247
Node, definition of 186; see also Vertex

Nonconvex polygon 267-270

Nondeterministic algorithm 344-346, 370

language recognition 344
Nonuniform model of computation 143
Notation

algorithms 4

graphs 83-84, 186-187
geometry 265-266

474 Index

NP-completeness 341-374
NP-complete problems 175, 244, 246,

345-357,368-374,429, 439-440

Numeric algorithms 293-320, 379-380,
398-401,404-407

o Notation 41

O Notation 39
OONotation 41-42, 174, 316, 410

Objectivefunction 327,361

Octal tree 390

Odd-cycleproblem 233-234, 246

Odd-even mergesort 393-396,410,411
Odd-eventransposition sort 390-393, 411,

414

Odlyzko, A. M. 174

Ofman,Yu. 316
l-in-3SAT371

One-to-one function 96-98

Open Gray code 22-23, 320

Order statistics 143-145, 174, 179,396-399

Ore,0. 247,248
Ottmann, T. 287

Outdegree of a vertex, definition of 186

P (class of problems) 341
P=NP problem 345

Packing, bin 363-365,370-371,374
Pan, V. 316

Pang,C. 247
Papadimitriou, C. H. 248, 336
Paradox, inventor 24

Parallel algorithms 214,216,304, 375-416

addition 379-380,411

efficiency of 376

folding principle 377
matrix multiplication 398-401,404-405,

410,416

merge 394-396,410,413
models of 375-379, 409-411

prefix 382-385,410,411,413,415
ranking 385-387

routing 401-403
selection 396-399,410,414
sequencecomparisons 407-409, 411, 416

sorting 390-396,410,411,413,414
speedup of 376

tree operations 387-389,

Parberry, I. 409

Parter, S. V. 248

Partition (for quicksort) 133-135, 144-145,
176

Partition problem 357

Pascal 4
Pascal'striangle 31

Patashnik, O. 55
Paterson, M. S. 174,317
Path 186

alternating 236

augmenting 239

compression 82, 86
convex 266,276
Hamiltonian 258, 372-373

length of a 201
shortest, see Shortest-paths problems

simple 186
Pattern matching, see String matching

Paull, M. C. 4

Pearl, J. 369

Perfect matching 35,234

Perfect shuffle 390

Perfect speedup 376

Perl,Y. 174-175

Permutation 142, 182

Permutation matrix 319

Philanthropist problem 330, 339
Pigeonhole principle 34, 175, 395

Pipeline 396-397,409

Pippenger, N. 86, 174
Pitt, L. 369

Pivot 133, 136-137,144,396
Planar graph 248, 338

Planar map 17

Plotkin, S. A. 336

Plummer, M. D. 248
Poll, public-opinion 165

Polya,G. 24,30,31,113,169
Polygon 33, 266-277, 287-290

convex 266,273-277,286-289

grid 290

regular 291

simple 266,270-272,288,331-333
Polynomial division 318

evaluation 92-94, 114,128,310,412
greatest common divisor 318

multiplication 298-300, 309, 316-317,
319

Index

Polynomial-time hierarchy 369
Pool 87
Pratt, V. R. 155, 174
Prefix constraint 146

Prefix, parallel 382-385,410, 411,413,415
Preparata, F. P. 286, 287, 365
Prim,R.C. 247

Primality testing 369
Primitive root of unity 313,315
Priority queue 62, 68, 86

Priority search 207,246

Probabilistic algorithms 158-164,175,287,
320,402-403

Probabilistic proof 175

Proximity problems 278-281

Pruhs,K. 175

Pseudopolynomial algorithm 357

Pseudorandom numbers 160
PSPACE 368

Public-key encryption scheme 295-297,316
Public-opinion poll 165

Purdom, P. W. 55,369

Quadtree 390

Quaternions 319

Queue, priority 62, 68, 86

Quicksort 131-137,144,174,176

Quinn,M.J. 409-410

Rabin, M. O. 174,287,369
Radix sort 127-129

Raghavan, P. 175
Ranade, A.G. 411

Random access machine 344

Random number 160, 175,415
Range search 285,435

Rank 143

Ranking in linked lists 385-387
Rao,K.R. 317
Rational number 317

Reachable vertex 186
Realizable sequence 175,183

Recurrence relations 46-53,55,56, 57, 58, 59

divide-and-conquer 50-51
with full history 51-53, 137

Recursion, unfolding 194

Reduction 215, 239,246,317,321-340,442;

see also NP-completeness

Reed, D. A. 409

Regular graph 372

Regular polygon 291

Reif,J.H. 410

Reingold, E. M. 85, 369

Repeated squaring 297, 317

Representation of graphs 83-84

Residual graph 242
Reversed induction 25, 244-246

Revision maintenance 155
Richards, D. 410

Ring 305

Rinnooy Kan, A. H. G. 370
Rivest,R.L.174,295,316
RNA 149

Roberts, F. S. 55
Rodeh,M.175,336,410
Ronse, C. 287

Rooted tree, definition of 66, 83, 186

Rosenberg, A. L. 113

Rotating line 270

Rotation (in AVL trees) 75
Roth,M. 304,317

Round-robin tournament 183

Routing problem 329-330

Routing in a hypercube 401-403

RSA public-key encryption scheme 295-297,
316

Rudolph, L. 410

Runge,C. 317

Running time of an algorithm 42

Ryser,H.J. 175
Rytter,W. 317,409

Sahni,S. 369,410

Saks,M. 175
Salzberg, S. L. 175

Sankoff,D. 175
Santoro, N. 317

SAT (satisfiability) problem 346-347,

350-354,357,370,371,440

SAT, l-in-3 371
SAT,2-in-4371

Savitch,W.J. 368

Saxe, J. B. 55
Schaback, R. 174

Scheduling 185

Schbnhage, A. 174

476 Index

Schorn,P. 287
Schrijver, A. 336

Schwab, B. 86
Search

binary 120-125,285,342,431

in binary search trees 71
breadth-first 95, 189, 198-199,238,246,

249,426, 427
depth-first 95, 189-197,221-225,

227-233, 246-250, 388,426-427,429

interpolation 125-127

linear 173

priority 207,246

Secondary collision (in hashing) 80
Security 186

Sedgewick, R. 174
Seed 160
Segall,Z.409

Selection problem 143-145, 174, 179,
396-399

Selection sort 130

Self-adjusting trees 86
Selfloops in a graph 186

Separate chaining 79

Sequence algorithms 106-107, 119-183,317,
324-325, 337, 407-409

Sequence comparisons 155-158,175,
181-182,317,324-325, 337, 407-409

Set algorithms 119-183,380-383;seealso

Sequence algorithms
cover 355

Shallit, J. 297

Shamir, A. 295,316
Shamos, M. I. 286-287, 365

Shared-memory algorithms 378-389

Shell, D. L. 174
Shellsort 174

Shiloach, Y. 410
Shmoys, D. B. 370

Shortest-paths problems 185, 201-208,

212-214, 247, 249,253,254, 255,

257, 258, 322, 325,338,427, 428, 429

Shrira, L. 410
Siegel,H.J. 411
Siewiorek, D. P. 409

SIMD 376,410
Simple graph 186

Simple path 186

Simple polygon 266, 270-272, 288, 331-333

Simplex algorithm 336

Single-instruction multiple-data 376

Single-source shortest paths 201-208

Sink 99
Sizeof an input 38,294

Skyline problem 102-104,115
Slackvariable 328

Sleator, D. D. 86
Smit,G.V. 174

Smith-Thomas, B. 113
Snir, M. 410

Solovay,R. 369
Sominskii, I. S. 31

Sorting
bucket 127-129, 142, 164

Ford and Johnson 178

heapsort 137-141, 174
in-place 127,131,174

insertion 130

lexicographic 128, 178
lower bound for 141-143

mergesort 130-131
network 393-396,410

odd-even transposition 390-393, 411,414
parallel 390-396,413-414

quicksort 131-137, 144, 174,176
radix 127-129

selection 130

topological 199-201,249,427, 430

Space complexity 42

Spafford, E. H. 173

Spanning forest 187

Spanning tree 35,186,371,429; seealso
Minimum-cost spanning tree

Speedup 376

Spencer,J. 175,247
Spira, P. M. 247

Split graph 263

Square of a matrix 319, 334
Square root 272

Stable algorithm 304
Stack 194
Standard form of linear programming 328
Standish, T. A. 85

Stanton, D. 173
Steele,G.L. 410
Steiglitz, K. 248,336

Stirling's approximation 54, 142
Stockmeyer, L. 369

Index 477

Stout, Q. F. 410

Strassen, V. 369

Strassen's algorithm 301-305, 316,318,319,
326

Strengthening the induction hypothesis
22-24,93,105-109,113,145, 162,

167-169, 281, 282, 379,418,423,
428, 435,437, 442

String matching 148-155, 174-175, 177,

180-181,323,427
Strong, H. R. 86

Strong induction 10, 109, 157

Strongly connected component 226-233, 247,

250,251,260
Stuttering subsequence problem 124

Subgraph 186-187
induced 95-96, 114, 187

Subsequence, longest increasing 167-169

Summation problems 11,15-16
Summation technique 43-46, 54-55

Supporting line 274

Symmetric matrix 333-334

Synchronization 376

System of equations 315

System of distinct representatives 323-324

Systolic algorithms 378, 404-409, 411,416
Szego,G. 31,169

Szekeres, A. 175

Szemeredi, E. 410
Szymanski, T. G. 175

Takaoka,T. 247,426
Talmud 30

Tarjan, R. E. 55,85,86, 174, 247, 248, 369,
410,431

Tarry, G. 247

3-Coloring 352-354,370,371,373
3-Dimensional Matching 356

3SAT 350-354, 357,370,371,439
Time complexity 42

Timetable 374

Topological sort 199-201, 249,427, 430

Toussaint, G. 286
Towers of Hanoi 116
Tractable problem 341

Transitive closure 214-216, 248,317,322,

339

Transpose of a matrix 333,414

Transposition sort 390-393,411,414

Traveling salesman 356,365-367,374

Euclidean 365-367

Traversal (of a graph) 189-199

Tree 18,34,66-77,186
ancestor in a 193

AVL 75-77,104, 114-115
balancing 75

biconnected 221

binary 34, 115

binary search 71-77,86
breadth-first 198-199

complete binary 34, 263-264
decision 141-143,174,177,332-333,

335,424, 426, 438-439

descendant in a 193

depth-first 192-196
deletion from a 73-74

embedding for 263

explicit representation of a 67
free 83
height of a node in a 104

implicit representation of a 67-68
insertion into a 71-72

machine 396-398
minimum-cost spanning 208-212, 247,

249, 255,257,338,340, 365,428, 429

octal 390

quad 390

rooted 66,83, 186

self-adjusting 86

shortest-path 208

spanning 35,186,371,429; seealso
Minimum-cost spanning tree

Triangle inequality 365

Triangular matrix 339
Tremaux, 247

Trotter, W. T. 114
Truth assignment 346

Tsitsiklis, J. N. 409

TSP, see Traveling salesman problem

Tuckey,J.W, 317

Turing machine 344, 346-347

Turner, J. S. 369
Tutte, W. T. 247
2-in-4SAT 371

Uhr, L. 396

478 Index

UkkonenE. 175

Ullman, J. D. 85,86,175,305, 316, 336, 409,
411

Undirected graph, definition of 83, 186

Unilateral graph 260

Union of polygons 290

Union-find problem 80-83, 86,256,429

Unipathic graph 260

Universal hash functions 86

Upfal,E. 86,411
Upper triangular matrix 339

Vacca,G. 30
Vaidya, P. M. 366

Valiant, L. G. 369,402,410
van der Nat, M. 174
van Leeuwen, J. 86, 247, 336
Vertex 83, 186

basis 260,431
cover 262-263,348, 355-356, 358, 363,

371,373,432-433
degreeof 186
indegree of 186

outdegree of 186
of a planar map 17

of a polygon 266

reachability of 186

Virus 173
Vishkin, U. 410

Vitter,J.S. 55,86,174
VLSI 263
von Neumann, J. 113, 174

Voronoi diagram 287

Voting 164

Wagner, R. A. 175

Waldinger,R. 173

Warren, H. S. 248
Warshall, S. 248

Wegman, M. N. 86

Weighted graph 187

Weiner,P. 175
White, D. 173

Whitney, H. 217
Wigderson, A. 175,369,411

Wildcard 174
Wilf, H. S. 369

Williams, J. W. J. 174

Winograd, S. 316
Winograd's algorithm 301,316,319

Wirth, N. 85
Wood, D. 287
Worm 173

Worst-case 38-39

Wrap-around 398

X3Cproblem 372

Yaglom, I. M. 31
Yao,A. 175,247

Ziv,J. 174

Zorat, A. 410

\342\200\242I

A Creative Ap i roach

i
University of Arizona

This book emphasizesthe creative aspects of algorithm design. It teaches the thinking behind the

creation of algorithms. Algorithms are describedby following the steps leading to their development

(sometimes including wrong steps). Theheart of this creative process lies in an analogy between

provingmathematical theorems by induction and designing combinatorial algorithms. The book contains

hundreds of problems and examples. It is designed to enhance the reader's problem-solving abilities and

understanding of the principles behind algorithm design.

HIGHLIGHTS

\342\200\242
Current, up-to-date coverage of algorithms.

\342\200\242Covers many known techniques for designing algorithms, and unifies many of them.

\342\200\242Contains over 500 mostly nonroutine exercises, and gives solutions to about a quarter of them.
\342\200\242Discusses implementation details separately from algorithm design ideas.

\342\200\242Covers parallel algorithms.
\342\200\242Includes pseudocode examples for most algorithms.

The design of efficient non-numerical algorithms is becoming an important tool in many fields

includingmathematics, statistics, biology, and engineering. This book,which is self-contained, can serve as
an introduction to algorithms and non-numeric computation.

ABOUT THE AUTHOR

Udi Manber has been an associate professorof computer science at the University of Arizona since

1987. He received his Ph.D. in computer science from the University of Washington in 1982. He was
an assistant professorand later an associate professor at the University of Wisconsin, Madison.His
researchareas include design of algorithms, distributed and parallel computing, and computer
networks. He received the prestigious Presidential \\bung Investigator Award in 1985, and the Best Paper
Award of the seventh International Conferenceon Distributed Computing Systems, 1987.

90000

Theory
Addison-Wesley Publishing Company

9\"780201\"120370

ISBN 0-201-12037-E

	Cover
	Preface
	Contents
	1. Introduction
	Exercises

	2. Mathematical Induction
	2.1 Introduction
	2.2 Three Simple Examples
	2.3 Counting Regions in the Plane
	2.4 A Simple Coloring Problem
	2.5 A More Complicated Summation Problem
	2.6 A Simple Inequality
	2.7 Euler's Formula
	2.8 A Problem in Graph Theory
	2.9 Gray Codes
	2.10 Finding Edge-Disjoint Paths in a Graph
	2.11 Arithmetic versus Geometric Mean Theorem
	2.12 Loop Invariants: Converting a Decimal Number to Binary
	2.13 Common Errors
	2.14 Summary
	Bibliographic Notes and Further Reading
	Exercises

	3. Analysis of Algorithms
	3.1 Introduction
	3.2 The O Notation
	3.3 Time and Space Complexity
	3.4 Summations
	3.5 Recurrence Relations
	3.5.1 Intelligent Guesses
	3.5.2 Divide and Conquer Relations
	3.5.3 Recurrence Relations with Full History

	3.6 Useful Facts
	3.7 Summary
	Bibliographic Notes and Further Reading
	Exercises

	4. Data Structures
	4.1 Introduction
	4.2 Elementary Data Structures
	4.3 Trees
	4.4 Hashing
	4.5 The Union-Find Problem
	4.6 Graphs
	4.7 Summary
	Bibliographic Notes and Further Reading
	Exercises

	5. Design of Algorithms By Induction
	5.1 Introduction
	5.2 Evaluating Polynomials
	5.3 Maximal Induced Subgraph
	5.4 Finding One-to-One Mappings
	5.5 The Celebrity Problem
	5.6 A Divide-and-Conquer Algorithm: The Skyline Problem
	5.7 Computing Balance Factors in Binary Trees
	5.8 Finding the Maximum Consecutive Subsequence
	5.9 Strengthening the Induction Hypothesis
	5.10 Dynamic Programming: The Knapsack Problem
	5.11 Common Errors
	5.12 Summary
	Bibliographic Notes and Further Reading
	Exercises

	6. Algorithms Involving Sequences and Sets
	6.1 Introduction
	6.2 Binary Search and Variations
	6.3 Interpolation Search
	6.4 Sorting
	6.4.1 Bucket Sort and Radix Sort
	6.4.2 Insertion Sort and Selection Sort
	6.4.3 Mergesort
	6.4.4 Quicksort
	6.4.5 Heapsort
	6.4.6 A Lower Bound for Sorting

	6.5 Order Statistics
	6.5.1 Maximum and Minimum Elements
	6.5.2 Finding the kth-Smallest Element

	6.6 Data Compression
	6.7 String Matching
	6.8 Sequence Comparisons
	6.9 Probabilistic Algorithms
	6.9.1 Random Numbers
	6.9.2 A Coloring Problem
	6.9.3 A Technique for Transforming Probabilistic Algorithms Into Deterministic Algorithms

	6.10 Finding a Majority
	6.11 Three Problems for Exhibiting Interesting Proof Techniques
	6.11.1 Longest Increasing Subsequence
	6.11.2 Finding the Two Largest Elements in a Set
	6.11.3 Computing the Mode of a Multiset

	6.12 Summary
	Bibliographic Notes and Further Reading
	Exercises

	7. Graph Algorithms
	7.1 Introduction
	7.2 Eulerian Graphs
	7.3 Graph Traversals
	7.3.1 Depth-First Search
	7.3.2 Breadth-First Search

	7.4 Topological Sorting
	7.5 Single-Source Shortest Paths
	7.6 Minimum-Cost Spanning Trees
	7.7 All Shortest Paths
	7.8 Transitive Closure
	7.9 Decompositions of Graphs
	7.9.1 Biconnected Components
	7.9.2 Strongly Connected Components
	7.9.3 Examples of the Use of Graph Decomposition

	7.10 Matching
	7.10.1 Perfect Matching in Very Dense Graphs
	7.10.2 Bipartite Matching

	7.11 Network Flows
	7.12 Hamiltonian Tours
	7.12.1 Reversed Induction
	7.12.2 Finding Hamiltonian Cycles in Very Dense Graphs

	7.13 Summary
	Bibliographic Notes and Further Reading
	Exercises

	8. Geometric Algorithms
	8.1 Introduciton
	8.2 Determining Whether a Point Is Inside a Polygon
	8.3 Constructing Simple Polygons
	8.4 Convex Hulls
	8.4.1 A Straightforward Approach
	8.4.2 Gift Wrapping
	8.4.3 Graham's Scan

	8.5 Closest Pair
	8.6 Intersections of Horizontal and Vertical Line Segments
	8.7 Summary
	Bibliographic Notes and Further Reading
	Exercises

	9. Algebraic and Numeric Algorithms
	9.1 Introduction
	9.2 Exponentiation
	9.3 Euclid's Algorithm
	9.4 Polynomial Multiplication
	9.5 Matrix Multiplication
	9.5.1 Winograd's Algorithm
	9.5.2 Strassen's Algorithm
	9.5.3 Boolean Matrices

	9.6 The Fast Fourier Transform
	9.7 Summary
	Bibliographic Notes and Further Reading
	Exercises

	10. Reductions
	10.1 Introduction
	10.2 Examples of Reductions
	10.2.1 A Simple String-Matching Problem
	10.2.2 Systems of Distinct Representatives
	10.2.3 A Reduction Involving Sequence Comparisons
	10.2.4 Finding a Triangle in Undirected Graphs

	10.3 Reductions Involving Linear Programming
	10.3.1 Introductions and Definitions
	10.3.2 Examples of Reductions to Linear Programming

	10.4 Reductions for Lower Bounds
	10.4.1 A Lower Bound for Finding Simple Polygons
	10.4.2 Simple Reductions Involving Matrices

	10.5 Common Errors
	10.6 Summary
	Bibliographic Notes and Further Reading
	Exercises

	11. NP-Completeness
	11.1 Introduction
	11.2 Polynomial-Time Reductions
	11.3 Nondeterminism and Cook's Theorem
	11.4 Examples of NP-Completeness Proofs
	11.4.1 Vertex Cover
	11.4.2 Dominating Set
	11.4.3 3SAT
	11.4.4 Clique
	11.4.5 3-Coloring
	11.4.6 General Observations
	11.4.7 More NP-Complete Problems

	11.5 Techniques for Dealing with NP-Complete Problems
	11.5.1 Backtracking and Branch-and-Bound
	11.5.2 Approximation Algorithms with Guaranteed Performance

	11.6 Summary
	Bibliographic Notes and Further Reading
	Exercises

	12. Parallel Algorithms
	12.1 Introduction
	12.2 Models of Parallel Computation
	12.3 Algorithms for Shared-Memory Machines
	12.3.1 Parallel Addition
	12.3.2 Maximum-Finding Algorithms
	12.3.3 The Parallel-Prefix Problem
	12.3.4 Finding Ranks in Linked Lists
	12.3.5 The Euler's Tour Technique

	12.4 Algorithms for Interconnection Networks
	12.4.1 Sorting on an Array
	12.4.2 Sorting Networks
	12.4.3 Finding the kth-Smallest Element on a Tree
	12.4.4 Matrix Multiplication on the Mesh
	12.4.5 Routing in a Hypercube

	12.5 Systolic Computation
	12.5.1 Matrix-Vector Multiplication
	12.5.2 The Convolution Problem
	12.5.3 Sequence Comparions

	12.6 Summary
	Bibliographic Notes and Further Reading
	Exercises

	Sketches of Solutions to Selected Exercises
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	Bibliography
	Index

