

INTRODUCTION
TO ALGORITHMS

A Creative Approach

INTRODUCTION
TO ALGORITHMS

A Creative Approach

UDI MANBER

University of Arizona

r 3

vy

ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusets » Menlo Park, California + New York
Don Mills, Ontario » Wokingham, England + Amsterdam
Bonn » Sydney - Singapore * Tokyo » Madrid » San Juan

Library of Congress Cataloging-in-Publication Data

Manber, Udi.
intraduction 1o algorithms.

ncludes bibliographies and inde?c.
1. Data structures (Computer science)

2. Algorithms. L Title.
QA76.9.D35M36 1989 005.7'3 882186

ISBN 0-201-12037-2

Reproduced by Addison-Wesley from camera-ready copy supplied by the author,

The programs and applications presented in this book have been included for their
instructional value. They have been tested with care, but are not guaranteed for any
purpose. The publisher does not offer any warranties or representation, nor does it accept
any labilities with respect 1o the programs or applications,

Reprinted with corrections October, 1989
Copyright © 1989 by Addison-Wesley Publishing Company Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
systemn, or tranSmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without prior written permission of the publisher.
Printed i the United States of America. Published simuktancously in Canada.

EFGHIJ-D0-943210

To my parents Eva and Meshulam

PREFACE

This book grew out of my frustrations with not being able to explain algorithms clearly.
Like many other teachers, | discovered that not only is it hard for some students to solve
{what seemed to me) simple problems by themselves, but it is aiso hard for them to
understand the sojutions that are given to them. [believe that these two parts « the
creation and the explapation - are related and should not be separated. It is essential to
follow the steps leading to a solution in order to understand it fully. It is not sufficient to
look at the finished product.

This book emphasizes the creative side of algorithm design. Its main purpose is to
show the reader how to design a new algorithm. Algorithms are not described in a
sequence of *‘problem X, algorithm 4, algorithm A’, program P, program P’,”” and so on.
Instead, the sequence usually (although not always) looks more like *“‘problem X, the
straightforward algorithm, its drawbacks, the difficulties overcoming these drawbacks,
first atternpts at a better algorithm (including possible wrong turns), improvements,
anakysis, refation to other methods and algorithms,’” and so on, The goal is to present an
algorithm not in a way that makes it easier for a programmer to transiate into a program,
but rather in a way that makes it casier to understand the algorithm’s principles. The
algorithms are thus explained through a creative process, rather than as finished products.
Our goeals in teaching algorithms are to show not only how o solve particular problems,
but also how to soive new problems when they arise in the future. Teaching the thinking
involved ir designing an algorithm is as important as teaching the details of the solution.

To further heip the thinking process involved in creating algorithms, an
“old-new’’ methodology for designing algorithms is used in this book. This
methodology covers many known techniques for designing algorithms, and it also
provides an elegant intuitive framework for explaining the design of algorithms in more
depth. It does not, however, cover all possible ways of designing algorithms, and we do
not use # exclusively. The heart of the methodology lies in an analogy between the
intetlectual process of proving mathematical theorems by induction and that of designing
combinatorial algerithms. Although these two processes serve different purposes and
achieve different types of results, they are more similar than they may appear to be. This
analogy has been observed by many people. The novelty of this book is the degree to
which this analogy is exploited. We show that the analogy encompasses many known
algorithm-design techniques, and helps considerably in the process of algorithm creation,
The methodology is discussed briefly in Chapter I and is introeduced more formally in
Chapter 3.

vi Preface

Consider the folowing analogy. Suppose that you arrive at an unfamiliar city, rent
a car, and want directions to get to your hotel. You would be quite impatient if you were
told about the history of the city, its general layout, the traffic patterns, and so on. You
would rather have directions of the form “‘go straight for two blocks, turn right, go
straight for three miles,”” and so on. However, your outlook would change if you
planned 1o live in that city for a long time. You could probably get around for a while
with directions of the second form (if you find someone who gives you those directions),
but eventually you will need to know more about the city. This book is not a source of
easy directions, It does contain explanations of how to solve many particular problems,
but the emphasis is on general principles and methods. As a result, the book is
challenging. It demands involvement and thinking. I believe that the extra effort is well
worthwhile.

The design of efficient nonnumeric algorithms is becoming important in many
diverse fields, including mathernatics, statistics, molecular biology, and engineering.
This book can serve as an introduction to algorithms and to nonnureric computations in
general. Many professionals, and even scientists not deeply involved with computers,
believe that programming is nothing more than grungy noninteltectual work. It
sometimes is. But such a belief may lead to straightforward, trivial, inefficient solutions,
where clegant, more efficient solutions exist. One goal of this book is to convince
readers that algorithm design is an elegant discipline, as well as an important one,

The book is self-contained, The presentation is mostly intuitive, and technicalities
are cither kept to 2 minimum or are separated from the main discussion. In particuoiar,
implementation details are separated from the algorithm-design ideas as much as
possible, There are many examples of algorithms that were designed especially to
ilustrate the principles emphasized in the book. The material in this book is net
presented as something to be mastered and memorized. |t is presented as a series of
ideas, examples, counterexamples, modifications, improvements, and so on. Pseudo-
codes for most algorithms are given following the descriptions, Numerous exercises and
a discussion of further reading, with a relevant bibliography, follow each chapter. In
most chapters, the exercises are divided into two classes, drill exercises and creative
exercises. Drill exercises are meant to test the reader’s understanding of the specific
examples and algorithms presented in that chapter, Creative exercises are meant 10 test
the reader’s ability to use the techniques developed in that chapter, in addition to the
particular algorithms, to solve new problems. Sketches of solutions to selected exercises
(those whose numbers are underlined) are given at the end of the book. The chapters
also inctude a surmary of the main ideas introduced.

The book is organized as follows, Chapters | through 4 present introductory
material. Chapter 2 is an introduction to mathematical induction, Mathematical
induction is, as we will see, very important to algorithm design. Experience with
induction proofs is therefore very helpful. Unfortunately, few computer-science students
get enough exposure to induction proofs. Chapter 2 may be quite difficult for some
students. We suggest skipping the more difficult examples at first reading, and returning
to them later. Chapter 3 is an introduction to the analysis of algorithms. It describes the
process of analyzing algorithins, and gives the basic tools one needs to be able to perform

Preface vil

simple anatysis of the algorithms presented in the book. Chapter 4 is a brief introduction
to data structures, Readers who are familiar with basic data structures and who have a
basic mathematical background can start directly from Chapter 5 (it is always a good idea
to read the introduction though). Chapter 5 presents the basic ideas behind the approach
of designing algorithms through the analogy fo induction proofs. It gives several
examples of simple algorithms, and describes their creation. If you read only one chapter
in: this book, read Chapter 5.

There are two basic ways to organize a book on algorithms, One way is to divide
the book according to the subject of the algorithms, for example, graph algorithms,
geometric algorithms. Another way is to divide the book according to design techniques.
Even though the emphasis of this book is on design techniques, 1 have chosen the former
organization, Chapters 6 through 9 present algorithms in four areas: algorithms for
sequences and sets (e.g., sorting, sequence comparisons, data compression), graph
algorithms (c.g., spanning trees, shortest paths, matching), geometric algorithms (e.g.,
convex hull, intersection problems), and numerical and algebraic algorithms (e.g., matrix
multiplication, fast Fourier transform). | believe that this organization is clearer and
easier to follow.

Chapter EQ is devoted to reductions. Although examples of reductions appear in
earlier chapters, the subject is unique and important enough to warrant a chapter of its
own. This chapter also serves as an opening act to Chapter 11, which deals with the
subject of NP-completeness. This aspect of complexity theory has become an essential
part of algorithm theory. Anyone who designs algorithms should know about NP-
completeness and the techniques for proving this property. Chapter 12 is an introduction
to paratle] algorithms. It contains several interesting algorithms under different models
of parallel computation.

The material in this book is more than can be covered in a ong-semester course,
which leaves many choices for the instructor. A first course in algorithm design should
include parts of Chapters 3, 5, 6, 7, and € in some depth, although not necessarily all of
them. The more advanced parts of these chapters, along with Chapters 9, 10, 11, and 12,
are optionat for a first course, and can be used as a basis for a more advanced course,

Acknowledgments

First and foremost 1 thank my wife Rachel for helping me in more ways than I can list
here throughout this adventure. She was instrumental in the development of the
methedology on which the book is based. She contributed suggestions, corrections, and
~— more important than anything else — sound advice. 1 coutd not have done it without
her,

Special thanks are duc to Jan van Leeuwen for an excellent and thorough review of
a large portion of this book. His detailed comments, numerous suggestions, and many
corrections have improved the book enormously. 1 also thank Eric Bach, Darrah Chavey,
Kirk Pruhs, and Sun Wu, who read parts of the manuscript and made many helpful
comments, and the reviewers Guy T. Almes (Rice University). Agnes H. Chan
{Northeastern University), Dan Gusfield (University of California, Davis}, David Harel
(Weizmann Instituse, Israel), Daniel Hirschberg (University of California, Irvine),

viii Preface

Jefferey H. Kingston (University of lowa), Victor Klee (University of Washington),
Charles Martel (University of California, Davis), Michael J. Quinn {University of New
Hampshire), and Diane M. Spresser (James Madison University).

1 thank the peopie at Addison-Wesley who failed to supply me with any examples
of hotror stories that authors are so fond of telling. They were very helpful and
incredibly patient and understanding. In particular, I thank my production supervisor
Bette Aaronson, my editor Jim DeWoif, and my copy editor Lyn Dupré, who not only
guided me but also let me do things my way even when they knew better, I also thank
the National Science Foundation for financial support, through a Presidential Young
Investigator Award, and AT&T, Digital Equipment Corporation, Hewlett Packard, and
Tektronix, for matching funds.

The book was designed and typeset by me, It was formatted in troff, and printed
on a Linotronic 300 at the Department of Computer Science, University of Arizona. |
thank Ralph Griswoid for his advice, and John Luiten, Alen Peckham, and Andrey
Yeatts for technical help with the typesetting. The figures were prepared with gremiin —
developed at the University of California, Berkeley — except for Fig. 12.22, which was
designed and drawn by Gregg Townsend. The index was compiled with the help of a
system by Bentley and Kernighan [1988]. I thank Brian Kernighan for supplying me the
code within minutes after I (indirectly) requested it. The cover was done by Marshall
Henrichs, based on an idea by the author.

1 must stress, however, that the final manuscript was prepared by the typesetter.
He was the one who decided to overlook many comments and suggestions of the people
listed here, And he is the one who should bear the consequences.

Tucson, Arizona Udi Manber
(Internet address: udi@arizona.edu.)

CONTENTS

Chapter 1 Introduction 1
Chapter 2 Mathematical induction 9
2.1 Introduction
2.2 Three Simple Examples
23 Counting Regions in the Piane
24 A Simple Coloring Problem
25 A More Complicated Summation Problem
2.6 A Simpie Inequality
2.7 Euler’s Formula
2.8 A Problem in Graph Theory
29 Gray Codes
2.10 Finding Edge-Disjoint Paths in & Graph
2.1 Arithmetic versus Geometric Mean Theorem
2.12 Loop Invariants: Converting a Decimal Number 10 Binary
2.13 Common Errors
2.14 Summary
Bibliographic Notes and Further Reading
Exercises
Chapter 3 Analysis of Algorithms 37
31 Itroduction
32 The O Notation
33 Time and Space Complexity
3.4 Summations
3.5 Recurrence Relations
3.5.1 Intelligent Guesses
3.5.2 Divide and Conqguer Relations
3.5.3 Recumence Relations with Full History
3.6 Useful Facts
3.7 Summary

Bibliographic Notes and Further Reading
Exercises

i1
i3
i4
i5
i6
i7
i8
20
23
24
20
28
29
30
31

37
39
42
43

47
50
51
53
55
55
56

ix

x Contents

Chapter 4 Data Structures 61
4.1 Introduction
4.2 Elementary Data Structures
4.2.1 Elements
42.2 Amays
4.2.3 Records
424 Linked Lists
4.3 Trees
4.3.1 Representation of Trees
4.3.2 Heaps
4.3.3 Binary Search Trees
434 AVL Trees
44 Hashing
4.5 The Union-Find Problem
4.6 Graphs
4.7 Summary
Bibliographic Notes and Further Reading
Exercises
Chapter 5 Design of Algorithms by Induction 91
5.1 Introduction
5.2 Evaluating Polynomials
5.3 Maximal Induced Subgraph
54 Finding One-to-One Mappings
3.5 The Celebrity Problem
5.6 A Divide-and-Conguer Algorithm: The Skyline Problem
5.7 Computing Balance Factors in Binary Trees
5.8 Finding the Maximum Consecutive Subsequence
5.9 Swengthening the Induction Hypothesis
5.10 Dynamic Programming: The Knapsack Problem
5.11 Common Errors
512 Summary
Bibliographic Notes and Further Reading
Exercises
Chapter 6 Algorithms Involving Sequences and Sets 119
6.1 Introduction
6.2 Binary Search and Variations
6.3 lnterpolation Search
6.4 Sorting

6.4.1 Bucket Sort and Radix Sort
6.4.2 Insertion Sort and Selection Sort
6.4.3 Mergesont

61
62
62
63

RN N

68
71
75
78
80
83

85
86

91
92
a5

98
102
104
106
07
i08
{11
112
P13
114

19
120
125
127
127
i30
130

Contents xi

6.4.4 Quicksort 131
6.4.5 Heapsort 137
6.4.6 A Lower Bound for Sorting i41
6.5 Order Statistics £43
6.5.1 Maximum and Minimum Elements 143
6.3.2 Finding the kth-Smallest Element 144
6.6 Data Compression 45
6.7 String Matching 148
6.8 Sequence Comparisons 155
6.9 Probabilistic Algorithimns 158
6.9.1 Random Numbers 1660
6.9.2 A Coloring Problem 161

6.9.3 A Technique {or Transforming Probabilistic
Algorithms into Deterministic Algorithms 161
6.10 Finding a2 Majority 164
6.11 Three Problems Exhibiting Interesting Proof Techniques 167
6.11.1 Longest Increasing Subsequence 167
6.11.2 Finding the Two Largest Elements in a Set i69
6.11.3 Computing the Mode of a Multiset 171
6.12 Summary i73
Bibliographic Notes and Further Reading 173
Exercises 175

Chapter 7 Graph Algorithms 185

7.1 Introduction 185
7.2 Eulerian Graphs 187
7.3 Graph Traversals 189
7.3.1 Depth-First Search 190
7.3.2 Breadth-First Search 198
74 Topelegical Sotting 199
7.5 Single-Source Shortest Paths 201
7.6 Minimum-Cost Spanning Trees 208
7.7 Al Shortest Paths 212
7.8 Transitive Closure 214
7.9 Decompositions of Graphs 217
7.9.1 Biconnected Components 217
7.9.2 Strongly Connected Components 226
7.6.3 Examples of the Use of Graph Decomposition 230
7.10 Matching 234
T.10.1 Perfect Matching in Very Dense Graphs 234
T.80.2 Bipartite Matching 235
7.1l Network Flows 238
7.12 Hamiitonian Tours 243

7.12.} Reversed Induction 244

xii Contents

7.12.2 Finding Hamiltonian Cycles in Very Dense Graphs
7.i13 Summary

Bibliographic Notes and Further Reading
Exercises

Chapter 8 Geometric Algorithms

8.1
8.2
83
8.4

85§
8.6
8.7

Introduction

Determining Whether a Point Is Inside a Polygon
Constructing Simple Polygons

Convex Hulls

8.4.1 A Straightforward Approach

842 Gift Wrapping

84.3 Graham’s Scan

Closest Pair

Intersections of Horizontal and Vertical Line Segments
Surmmary

Bibliographic Notes and Further Reading
Exercises

Chapter 9 Algebraic and Numeric Algorithms

9.1
9.2
9.3
9.4
9.5

9.6
9.7

Introduction

Exponentiation

Euclid’s Algorithm
Polynomial Multiplication
Matrix Multiplication

9.5.1 Winograd's Algorithm
952 Strassen’s Algorithm
9.5.3 Boolean Matrices

The Fast Fourier Transform
Summary

Bibliographic Notes and Further Reading
Exercises

Chapter 10 Reductions

101

Introduction

i0.2 Examples of Reductions

10.3

10.2.1 A Simple String-Matching Problem

10.2.2 Systems of Distinct Representatives

10.2.3 A Reduction Involving Sequence Comparisons
10.2.4 Finding a Triangle in Undirected Graphs
Reductions Involving Lincar Programming

10.3.1 Introduction and Definitions

10.3.2 Examples of Reductions to Linear Programming

265

293

321

246
247
248

265
266
270
213
273
274
275
278
281
285
286
287

293
294
297
208
301
301
301
304
309
316
316
37

321
323
323
323
324
323
327
327
329

Contents

10.4 Reductions for Lower Bounds

i0.3
1.6

10.4.1 A Lower Bound for Finding Simple Polygons
10.4.2 Simple Reductions Involving Matrices
Common Errors

Summary

Bibliographic Notes and Further Reading

Exercises

Chapter 11 NP-Completeness 341

111
1L2
113
114

11.3

116

Introduction

Polynomial-Time Reductions

Nondeterminism and Cook’s Theorem

Examples of NP-Completeness Proofs

£1.4.1 Vertex Cover

11.4.2 Dominating Set

11.43 38AT

1144 Clique

11.4.5 3-Coloring

11.4.6 QGeneral Gbservations

1147 More NP-Cormplete Problems

Techniques For Dealing with NP-Cormplete Problems

11.5.1 Backtracking and Branch-and-Bound

11.5.2 Approximation Algorithms with Guaranteed
Performance

Summary

Bibliographic Notes and Further Reading

Exercises

Chapter 12 Parallel Algorithms 315

12.1
i2.2
i2.3

12.4

Introduction

Modets of Parallel Computation
Algorithms for Shared-Memory Machines
12.3.1 Paralie] Addition

12.3.2 Maximum-Finding Algorithms
12.3.3 The Parallel-Prefix Problem
12.3.4 Finding Ranks in Linked Lists
£2.3.5 The Euler’s Tour Technique
Algorithms for Interconnection Networks
12.4.1 Sorting on an Array

12.4.2 Sorting Networks

12.4.3 Finding the kth-Siallest Element on a Tree
12.4.4 Matrix Multiplication on the Mesh
12.4.5 Routing in a Hypercube

xiii

331
331
333
334
336
336
337

341
342
344
347
348
348
350
351
352
333
356
357
358

363
363
363
370

375
376
318
379
380
382
385
387
389
300
393
396
398
401

xiv Contents

12.5 Systolic Computation
12.5.1 Matrix-Vector Multiplication
12.5.2 The Convolution Problem
12.5.3 Sequence Comparisons

12,6 Summary
Bibliographic Notes and Further Reading
Exercises

Sketches of Solutions to Selected Exercises

References

Index

417
445
465

404
404
405
407
409
409
411

CHAPTER 1

INTRODUCTION

Great importance has been rightly attached to this process
of “construction,” and some claim to see in it the
necessary and sufficient condition of the progress of the
exact sciences. Necessary, no doubt, but not sufficient!
For a construction lo be useful and not mere waste of
mental effort, for it to serve as a stepping-stone to higher
things, it must first of all possess a kind of unity enabling us
1o see something more than the juxtaposition of its
elements.

Henri Poincaré, 1902

The Webster's Ninth New Collegiate dictionary defines an algorithm as **a procedure for
solving a mathematical problem (as of finding the greatest common divisor) in a finite
number of steps that frequently involves a repetition of an operation; or broadly: a step-
by-step procedure for solving a problem or accomplishing some end.”” We will stick to
the broad definition. The design of algorithms is thus an old field of study. People have
always been interested in finding better methods to achieve their goals, whether those be
starting fires, building pyramids, or sorting the mail. The study of computer algorithms is
of course new. Some computer algorithms use methods developed before the invention
of computers, but most problems require new approaches. For one thing, i is not enough
to tell a computer to “look over the hill and sound the alarm if an army is advancing.”
A computer must know the exact meaning of “‘look,”” how to identify an army, and how
to sound the alarm (for some reason, sounding an alarm is always easy). A computer
receives its instructions via well-defined, limited primitive operations. It is a difficult
process to translate regular instructions to a fanguage that a computer understands. This
necessary process, called programming, is now performed on one level or another by
mitlions of people.

2 Intredugtion

Programming a computer, however, requires more than just translating well-
understood instructions to a language a corputer can understand, In most cases, we need
1o devise totatly new methods for solving a problem. [t is pot just learning the weird
tanguage in which we *"alk’" to a computer that makes it hard to program; it is knowing
what to say. Computers execute not only operations that were previously performed by
hurnans; with their enormous speed, computers can do much more than was ever
possible. Algorithms of the past dealt with dozens, maybe hundreds of items, and, at
most, with thousands of instructions. Computers can deal with billions, or even trillions,
of bits of information, and can perform millions of {their primitive) instructions per
sccond, Designing algorithms on this order of magnitude is something new. It is in
any respects counterintuitive, We are used 1o thinking in terms of things we can see
and feel, As a result, there is a tendency when designing an algorithim to use the
straightforward approach that works very well for small problems. Unfortunately,
algorithms that work well for small problems may be terrible for large problems. It is
easy to lose sight of the complexity and inefficiency of an algorithm when applied to
targe-scale computations.

There is another aspect to this problem. The algorithms we perform in our daily
life are not too complicated and are not performed o ofien. It is usually not worthwhile
to expend a lot of effort to develop the perfect algorithm. The payoff is too smatl. For
example, consider the problern of unpacking grocery bags. There are obviously less
efficient and more efficient ways of doing it, depending on the contents of the bags and
the way the kitchen is organized. Few people spend time even thinking about this
problem, much less developing algoerithms for it. On the other hand, people who do
large-scale commercial packing and unpacking must develop good methods. Another
example is mowing the lawn. We can improve the mowing by minimizing the number of
turns, the total time for mowing, or the length of the trips to the garbage cans. Again,
unless one really hates mowing the lawn, one would not spend an hour figuring out how
to save a minute of mowing, Computers, on the other hand, can deal with very
complicated tasks, and they may have to perform those tasks many times. Et is
worthwhile to spend a lot of time designing better methods, even if the resulting
algorithms are more complicated and harder to understand. The potential of a payoff is
much greater. (Of course, we should not overoptimize, spending hours of programming
time to save overall 2 few seconds of computer time.)

These two issues — the need for counterintuitive approaches to large-scale
algorithms and the possible complexities of these atgorithms — point 1o the difficulties in
tearning this subject. First, we must realize that straightforward intuitive methods are not
always the best. It is important to continue the search for better methods. To do that, we
need of course, to learn new methods. This book surveys and illustrates numerous
methods for algorithm design. But it is not enough to learn even a large number of
methods, just as it is not enough 10 memorize many games of chess in order to be a good
player. One must understand the principles behind the methods. One must know how 1o
apply them and, more imporant, when to apply them,

A design and implementation of an algorithm is analogous to a design and

Introduction 3

construction of a house.! We start with the basic concepts, based on the requirements for
the house. It is the architect's job to present a plan that satisfies the requirements. It is
the engineer’s job to make sure that the plan is feasible and correct (so that the house will
not collapse after a short while). It is then the builder’s job 1o construct the house based
on these plans. Of course, all along the way, the costs associated with each step must be
analtyzed and taken inte account. Each job is different, but they are all refated and
intertwined. A design of an algorithm also starts with the basic ideas and methods.
Then, a plan is made. We maust prove the comrectness of the plan and make sure that its
cost is effective. The last step is to implement the algorithm for a particular computer.
Risking oversimplification, we can divide the process into four steps: design, proof of
commectness, analysis, and implementation. Again, each of these steps is different, but
they are all related. None of them can be made in a vacuurmn, without a regard to the
others. One rarely goes through these steps in linear order. Difficulties arise in all
phases of the construction. They usually require modifications to the design, which in
turn require another feasibility proof, adjustment of costs, and change of implementation.

This book concentrates on the first step, the design of algorithms. Following our
analogy, the book could have been entitled The Architecture of Algorithms. However,
computer architecture has a different meaning, so using this term would be confusing,
The book does not, however, ignore all the other aspects. A discussion of correctness,
analysis, and implementation follows the description of most algorithms — in detail for
some algorithms, briefly for others. The emphasis is on methods of design.

[t is not encugh to learn many algorithms to be a good architect and to be able to
design new algorithms. One must understand the principles behind the design. We
employ a different way of explaining algorithms in this book. First, we try 1o lead the
reader to find his or her own solution; we strongly believe that the best way to learn how
to create something is to try to create it. Second, and more important, we follow a
methodelogy for designing algorithms that helps this creative process. The methodology,
introduced in Manber {1988], provides an elegant intuitive framework for explaining the
design of algorithms in more depth. k also provides a wnified way to approach the
design. The different methods that are encompassed by this methodology, and their
numerous variations, are instances of the same technique. The process of choosing
among those many possible methods and applying them becomes more methodical. This
methodelogy does not cover all possible ways of designing algorithms. [t is useful,
however, for a great majority of the algorithms in this book.

The methodology is based on mathematical induction. The heart of it lies in an
analogy between the intellectual process of proving mathematical theorems and that of
designing combinatorial algorithms. The main idea in the principle of mathematical
induction is that a statement need not be proven from scratch: I¢ is sufficient to show that
the correctness of the statement follows from the correctness of the same statement for
smaller instances and the cotrectness of the statement for a small base case. Transiating
this principle to algorithm design suggests an approach thal concentrates on extending

' The two wonderful books by Tracy Kidder, Fhe Sowt of a New Mavhine (little Brown, 19813, and House
(Houghton Miffiin, 1985), inspired this analogy.

4 Intreduction

solutions of srmall problems to solutions of large problems. Given a problem, if we can
show how to solve it by using a solution of the same problem for smaller inputs, then we
are done. The basic idea is to concentrate on extending a solution rather than on building
it from scratch. As we will show in the following chapters, there are many ways of doing
this, leading to many algorithm design technigues.

We use mathematical induction mainly as a tool for explaining and designing
high-level algorithms. We make little attempt to formalize or axiomize the approach.
This has been done by several people, including Dijkstra {1976], Manna [1980], Gries
[1981], Dershowitz |1983], and Paull {1988], among others. This book complements
these other books. Our goal is mainly pedagogical, but of course whenever something
can be explained better it is usually understood better. Among the proof techniques we
discuss are strengthening the induction hypothesis, choosing the induction sequence
wisely, double induction, and reverse induction. The significance of our approach is
two-fold. First, we collect seemingly different techniques of algorithm design under one
umbrella; second, we utilize known mathematical proof techniques for algorithm design.
The latter is especially important, since it opens the door to the use of powerful
technigues that have been developed for many years in another discipline.

One notable weakness of this approach is that it is not a universal approach. Not
all atgorithins can or should be designed with induction in mind. However, the principle
of induction is so prevalent in the design of algorithms that it is worthwhile to
concentrate on it. The other principles are not ignored in this book. A commeon criticism
of almost any new methodology is that, although it may present an interesting way to
explain things that were already created, it is of no help in creating them. This is a valid
criticism, since only the future will telt how effective a certain methodology is and how
widely used it becomes. | strongly believe that induction is not only just another tool for
explaining algorithis, but it is necessary in order to understand them, Personally, even
though I had a good experience in developing algorithms without following this
methodology. T found i helpful, and, at least in two cases, it led me to develop new
algorithms more quickly (Manber and McVoy [1988}, Manber and Myers [1989]).

Notation for Describing Algorithms

In addition to describing the algorithrns through the creative process of their
development, we also include pseudocodes for many algorithms. The purpose of
including programs is to enbance the descriptions. We have not made a great effort to
optimize the programs, and we do not recommend simply copying them. In some cases,
we made 2 conscious decision not to include the most optimized version of the program,
because it introduces additional complexity, which distracts from the main ideas of the
algorithm. We sometimes do not explain in detail how we translate the algorithmic ideas
into a program. Such translations sometimes are obvious and sometimes are not. The
emphasis in this book, as we mentioned, is on the principles of algorithm design.

For the most part, we use a Pascal-like language (sometimes even pure Pascal). In
many cases, we include high-level descriptions (such as “‘insert into a fable,”” or **check
whether the set is empty™’) inside a Pascal code to make it more readable. One nolable
exception we make to the rules of Pascal is the use of begin and end to encompass

Exercises §

blocks. We include these statements only at the beginning and end of the programs, and
let the indentation separate the blocks. This convention saves space without causing
ambiguities. We usually do not include precise declarations of variables and data types
in cases where such declarations are clear (e.g., we may say that ¢ is a graph, or that T'is
a tree).

% Exercises

i

Exercises whose numbers are underiined have solutions at the back of the hook. Exercises that are
marked by a star are judged by the author to be substantiaily more difficult than other exercises.

The exercises in this chapter do not require any previous knowledge of algorithms, They address
retatively simple problems for specific inputs. The reader is asked 1o find the answers by hand,
The main purpose of these exercises is to ilustrate the difficuity in dealing with a very large
nusmber of possibilities. In other words, one of the goals of these exercises is to cause frustration
with straightforward methods, The problems given here will be discussed in the following
chapters.

{.1 Write down the aumbers | to 160 each on a separate card. Shuffle the cards and rearrange
thermn in order again.

1.2 Write down the followiag 106 numbers cach on a separate card and sort the cards, Think
about the differences between this exercise and Exercise 1.1,

32918 21192 11923 4233 88231 8312 11 72 971 8234 22238 49283 3295
29347 3102 32883 20938 2930 16 823 9234 9236 29372 2218 9222 21202
83721 9238 8221 30234 93920 81102 1011 18152 2831 29133 9229 10039
9235 48395 2832 37927 73492 B402 48201 38024 2800 32155 2273 82930
2221 3841 311 3022 38099 2992C 28349 74212 7011 1823 903 2991 9335
29123 28910 29281 3772 20012 70458 30572 38013 72032 2800] B3IR35
3017 92626 73825 29263 2017 262 8362 77302 8393 3826 9374 2001
83261 48402 4845 79794 27271 39992 22836 444 2937 37201 37322
49472 11329 2253

1.3 Consider the following list of rumbers. Your job is to erase as few of those numbers as
possible such that the remainiag numbers appear in increasing ordes. For example, erasing
everything except the first two numbers leaves an increasing sequence; erasing everything
except for first, third, sixth, and eighth numbers, does the same (but fewer aumbers are
erased).

94432 127423492353741 82027836461 2839932917 13 1455
216672237399 1288 77365838462511 7468767867 75697022
112432526

1.4 Solve Exercise 1.3, such that the remaining numbers are in decreasing order.

1.5 Suppose that in a strange country there are five sypes of coins with denominations of 15, 23,
29, 41, and 67 {all cents). Find a combination of these coins to pay the sum of 8 doliars
and B cents {1808 cenis}. You have enough coins of each type in your pocket.

6

i.8
1.9

1.1¢

Introduction

The input is a list of pairs of integers given below. The meaning of a pair (x, y) is that x is
waiting for an answer from y. When x is waiting, it cannot de anything eise, and, in
particular, it cannot answer any questions from others that may be waiting for it. The
problem is o find a sequence of pairs (x, x2). Qrpxa} -+ L (g 4 (3 1), for some & > |
(any k will do). If such a sequence exists, then there is a deadiock, No one can proceed,
since everyone is waiting for someone else.

You can use a pencil and a piece of paper, and make any kind of compatatien, invoiving
aurnbers (e.g., comparisons, creating tables); however, you cannot draw any kind of a
figure. (You may draw figures, unrelated to this particular input, to help you design a
general method of solving such a problem.)

116,221,225, 222,2350,2347,241,2510,357, 3645, 36 37, 38 42,
3941,4237,1223,123,1220,1425,41 9,42 3,435,4322, 292,30 48,
3115,3217,64561,535,520,528,511,484,4810,4932, 731,74,
533,629,612,611,63,617,4527,4734,43820,740,734, 81, 919,
1130, 414, 1122, 1125,2024,21 23, 2146,2247,2349,339,334, 4
14,4 37,542,358, 132, 1550,154,1537, 1613, 17 38, 18 28,198, 26
15,26 42,27 18,28 35, 13 36, 13 50, 13 34, 13 22, 29 34, 29 38,29 30, 29
16,44 33,44 36,44 7,44 3,44 32,44 21,33 9, 33 21, 33 35,33 19,33 41,
26 10,26 44,26 16,26 39,20 17

The input is the two-dimensional {5 by 15 table given in Fig. 1.1, The ith row and the ith
column (for any) correspond to the same place. Each entry in the table indicates the direct
distance between the places in the corresponding row and celumn. The *-7* symbol
indicates that there is no direct link between the two places. The direct distance may not be
the shortest distance. There may be a shorter path between two places poing through a third
ptace (or several places). For example, the shortest route between 1 and 6 is through 5 and
12. Find the shortest route between | and 15, between 4 and 3, and between 15 and 8.

Consider the table in Fig, 1.1. Find the shortest route between 5 and all other places.

Consider the graph shown in Fig. 1.2, Find a closed route along the edges of the graph
which includes every vertex exactly once. (This graph corresponds to the edges of a
dodecahedron; this puzzle was first described by the Irish mathematician Sir William R.
Hamilton, and we discuss it further in Section 7.12.3

The following is a regular maze problem, with the exception that the maze is given in
numeric representation (rather than a picture). The maze is contained in a rectangle with 11
rows and colurnns, sumbered from (4 to 10, The maze is traversed ajong the rows and
codumns ~ up, down, right, or left. The starting point is 0,0 and the target is 10,10, The
foliowing peints are obstacles you cannot traverse through:

(3,.2) (6,6) (7.0) (2.8) (5,9) (8,4) 2,4) (0.8) (1,3} (6,33 (3. 3) (1.9) G 3T}
(4.2) (7.8) (2.2) (4.5) (5,6) (10,5) (6,2) (6,10) {4,0) {7,5) {79 8,1} (5.1
(4.4) (8,7} (9.2) (10,9) (2,6)

a. Find a path from the starting point to the target thai does not include any of the obstacles.

b. Find a shorrest path from the starting point to the 1arget that does not inctude any of the
obstacies.

Exercises 7

P2 i34 is e | rigjelw iz 13 4| 45
i 012413 - 19 21 7 4 2 g 3 -
2 7 2| - - - b2 01 6 9 H 7 2 8
3 8 ¢ | 8|93 |6 B|S 7 - 8 3
4 | -[8}1-10 5147 -] 1 9 - g -
5 {9 |-}8]-10:312|7|5] 8 - 1 - 4 2
¢« {3 |2} -13]|6(0:5 |32 3 7 2 - 8
7 2| - - 128 0| b6 |2 - 8 & 2 - 4
g {1 }-71-12:3i8|0]-] i 2 7
s i4]-197-12 912|861} 4 9 3 - - -
wio- | - -t &8~ 71] 3 - - 2
{3 R TV~ - 13780 - ¢ 2 9 2]
23 |- (1218|011)-15 2 10 2 9
BT - 3116 24 - - 9] 2 -
G| 2|96 Tl-197-137 - i] 9 -
3292111 - 4 3 5 H 0

Figure 1.1 The table for Exercises 1.7 and 1.8,

1.11 Fing the greatest common divisor of 223277 and 178794, (The greatest common divisor
of two integers is the largest aumber that divides both of them.)

.12 Compute the value of 2. Try to find & way to minimize the number of muitiptications,

Figure 1.2 Hamiiton's puzzle.

8 [Introduction

1.13 The following list represenis the number of electoral votes for each state in the 1988

T presidential election {the candidate receiving the majority of the votes in a state collects all
the electorat votes for that state). There are aliogether 538 electoral votes. Determine
whether it is (mathematically} possibie for the etection to ead up in a tie. (This groblem is
known as the partition preblem, and it is a special case of the knapsack problem
discussed in Section 3.10.)

Alabama 9 Alaska 3 Arizona 7
Arkansas 6 California 47 Colorado B
Connecticut 8 Delaware 3 Florida 21
Georgia 12 Hawaii 4 ldaho 4
{Hinois 24 Indiana 12 lowa 8
Kansas 7 Kentucky 9 Louisiana 0
Maine 4 Maryland 1¢ Massachusests 13
Michigan 20 Minrnesota 10 Mississippd 7
Missour 1 Moniana 4 Nebraska 5
Nevada New Hampshire 4 New Jersey 16
New Mexico New York 36 North Carolina 13
North Pakota Ohio 23 Oklahoma 8
Oregen Peansyivania 23 Rhode Island 4
South Carolina South Dakota 3 Tennessee 14
Texas {tah 5 Vermong 3
Virginia Washington 16 Washington, D.C. 3
West Virginia Wisconsin 11 Wyoming 3

CHAPTER 2

MATHEMATICAL INDUCTION

No one believes an hypothesis except its originator, but
everyone believes an experiment except the experimenter.

Anon

Obviousness is always the enemy of correctness.
Bertrand Russel} (1872-19H})

2.1 Introduction

We will see in the following chapters that induction plays a major role in aigorithm
design, In this chapter, we present a brief introduction to mathematical induction through
examples. The examples range from easy 1o quite difficult. Readers who have not seen
many induction proofs may find this chapter to be relatively hard. We claim that the
processes of constructing proofs and constructing algorithms are similar, and thus
experience with induction proofs is very helpful.

Mathematical induction is a very powerful proof technigue. It usually works as
follows. Let T be a theorem that we want to prove. Suppose that T includes a parameter
n whose value can be any natural nomber (a natural number is a positive integer),
Instead of proving directly that T holds for all values of 7, we prove the following two
conditions:

1. Tholdsforn=1
2. Forevery n >}, if T hoids for n— 1, then T holds for n

The reason these two conditions are sufficient is clear. Conditions 1 and 2 imply directly
that T holds for n=2. If T holds for n =2, then condition 2 irnplies that T holds for n =3,
and so on. The induction principle itself is so basic that it is usually not proved; rather, it

10 Mathematical Induction

is stated as ap axiem in the definition of the natural numbers.

Condition 1 is usuaily simple to prove. Proving condition 2 is easter in many cases
than proving the theorem directly, since we can use the assumption that T holds for n— 1.
This assumption is called the induction hypothesis. In some sense, we get the induction
hypothesis for free. It is enough to reduce the theorem to one with smaller value of #,
rather than proving it from scratch. We concentrate on this reduction. Let’s start right

away with an example.
1 Theorem 2.1
For all natural numbers x and n, x" — 1 is divisible by x - 1.

Proof: The proof is by induction on n. The theorem is trivially true for n=1. We
assume that the theorem is true for n ~ 1; namely, we assume that x"~! — 1 is divisible by
x —1 for all naturat numbers x. We now have to prove that x" — | is divisible by x— 1,
The idea is to try to write the expression x" — | using x"~' — 1, which, by the induction
hypothesis, is divisible by x ~ I

Mot=x " D+~

But the left term is divisible by x —1 by the induction hypothesis, and the right termn is
justx— 1, £l

The induction principle is thus defined as follows:

if a statement P, with a parameter n, is true forn =14, and if, for everyn > 1,
the truth of P for n—1 implies its truth for n, then P is true for all nqtural
numbers.

Instead of using n—! and n, we sometimes use n and n+1, which is completely
equivalent:

If a statement P, with a parameter n, is true for n=1, gnd if, for every n2 1,
the truth of P for n implies its truth for n+ 1, then P is true for all natural
numbers.

The proof of Theorem 2.1 illustrates a simple application of induction. Over the years,
many variations of induction have been developed. For example, the following variation,
called strong induction, is very common.

If a statement P, with a parameter n, is true for n =1, and if, for every n > |,
the truth of P for all natural numbers < n implies its truth for n, then P is
true for all natural numbers.

The difference is that we can use the assumption that the statement is true for all numbers
< n in proving the staterent for 2. In many cases, this stronger assumption can be very
useful. Another simple variation is the following:

2.2 Three Simple Examples 11

If a statement P, with a parameter n, is true for n=1 and for n =2, and if,
for every n > 2, the truth of P for n =2 implies its truth for n, then P is true
for all natural numbers.

This variation ‘“works’" in tweo parallel tracks. The base case for n =1 and the induction
step imply P for all odd numbers; the base case for n =2 and the induction step imply P
for all even numbers, Another common variation is the following:

if a statement P, with a parameter 1, Is true for n= 4, and if, for every n > 1,
such that re is an integer power of 2, the truth of P for ni2 implies its truth
for n, then P is true for all natural numbers that are integer powers of 2.

This variation follows from the first one by writing the parameter » as 2¢, and carrying
out the induction for the parameter £ (starting from k =0).

Induction can also be used in many different ways to prove properties of structures
other than numbers. In most cases, the induction is on some number r that measures the
size of the instance of the problem. Finding the right measure to which the induction
should be applied is not straightforward. {For example, we could have applied induction
10 x in the previous example, rather than to m; this would have made the proof much
more complicated.) Sometimes, this measure is not natural, and it has to be invented just
for the purpose of the induction. The common thread to all these proofs is the extension
of claims for smaller structures to claims for larger structures,

2.2 Three Simple Examples

The problem is to find the expression for the sum of the first » natural numbers
S{(my=1+42+ - +n. We prove the following theorem.

0 Theorem 2.2

The sum of the first n natwral numbers is n{n+1)/2,

Proef: The proof is by induction on n. If a=1, then the claim is true because
S{)=1=1-{1+1¥2 We now assume that the sum of the first # natural numbers 5 (n)
is n{n+1)/2, and prove that this assumption implies that the sum of the first # + { natural
numbers is S{n+D=(n+1¥a+2)/2. We know from the definition of S{n) thas
Sn+1y=S(n)+n+1. But, by the assumption, S(n)=n{n+1)/2, and thercfore
Str+y=nn+1)/2+4n+1 = (n+2¥n+1)/2, which is exactly what we wanted to
prove. |

We continue with a slightly more complicated sum, Suppose that we want to
compute the sum T(n)=8+13+18+23+ - - +{3+5x#). The sum in the previous
example, §(n), is equal to nli2+ni2. Each of the elements in the current example is
slightly more than five times the corresponding element in the previous example. Hence,
it s reasonable to guess that T'(n) is also a quadratic expression, Let’s try the implicit
guess G(n}=c,n2+c2n +c3. That is, we introduce the parameters ¢, ¢4, and ¢+, and
determine their values when it is convenient to do so. For example, we can determine the

12 Mathematical Induction

parameters by checking the first few terms. i #=0, the sum is €, so ¢3 must be 0. For
a=1and n=2, we get the following two equations:

() e +1lc;=8

{2) 4"(.‘| ‘?'2'{.'2 =13+8

If we multiply (1} by 2 and subtract it from (2), we get 2¢, =35, which implies that
¢y=25, and =355 We therefore guess that G(n)=2.5r%+55n is the right
expression. We now try to prove that G (n)=T(n) by induction. We have already
verified a base case, We assume that G{n)=T(n), and we try to prove that

Gr+1y=T(n+1)
T{n+ 1) =T{n)+3(n+1)+3 = (hy induetion} G (m)+ 5+ 1)+3

=250 +550+5n+8=25r2+5r+2.5+55n+5.5

=25n+ 1V +55n+D=Gn+1).

We have proved the following theorem.

{J Theorem 2.3
The sum of the series
B+13+ 18423+ - +{3+5n)
is 2.51% +5.5n. [y

We end this section with another simple example.

0 Theorem 2.4
If nis a natural number and +x >0, then

(I+x¥Y' 21+ (2.5
Proof: The proof is by induction on ., If n=1, then both sides of (2.1} are equal

to T+x. We assume that (1+x)" 2 | +nx for all x such that § +x >0, and consider the
case of n + 1. We have to prove that {1+x)"*' 2 { 4 (n + 1)x, for all x such that | +x >0

A+xy" =(F+x¥i+xy 2 {by induction) (1 +1)(1 +nx)

=l+(n+hx+mei21+m+1x

Notice that we were able to multiply the inequality (implied by the induction) by (1 +x)
because of the assumption that [+x>0. The fast step was possible because nx® is
clearly nonnegative. O

2.3 Counting Regions in the Plane 13

2.3 Counting Regions in the Plane

A set of lines in the plane is said (o be in general position if no two lines are parallel and
no three lines intersect at a commen point. The next problem is to compute the number
of regions in the plane formed by # lines in general position. Good hints for the right
guess can be obtained from small cases. When n =1, there are 2. Twe intersecting lines
form 4 regions; three lines that do not intersect at 2 point form 7 regions. 1t seems, at
jeast for { <3, that the ith line adds 7 regions. If this is true for ali {, then the number of
regions can be easily computed from § (), which was computed in the previous section.
Therefore, we concentrate on the growth of the number of regions when one more line is
added. The claim we are trying to prove is the following:

Guess: Adding one more line to n—1 lines in general position in the plane
increases the number of regions by n.

As we have already seen, the guess is true for # £3. We can now usc the guess as our
induction hypothesis, and try to prove that adding one line to » lines in general position
increases the number of regions by n+1. Notice that the hypothesis does not deal
directly with the number of regions, but rather with the growth of the number of regions
when one line is added. Even if the hypothesis is true, we will still need to comnpute the
total number of regions, but this part will be straightforward.

How can a new line increase the number of regions? Consider Fig. 2.1. Since al}
lines are in general position, a Hne cannot just touch a region at the border; it can either
cut a region into two parts {in which case one more region is formed), or be disjoint from
it. Consequently, we need only 1o prove that the (n + Fih Jine intersects exactly n+1
existing regions. 1t is possible to prove the theorem directly at this point, but we want to
Hlustrate another technique of induction proofs. Let’s remove for the moment the ath
tine. By the induction hypothesis, without the nth line, the (s + 1)th line is adding n new
regions. Thus, we need only to prove that the presence of the nth line causes the (n +)th
line to add one additional region. Let's put the #th line back. Since all lines arc in
generat position, the nth and {n + 1)th lines intersect at a point p, which must be inside a

the nth line

the (n+1)th line

Figure 2.1 n+ I lines in general position,

14 Mathematical Induction

region R. Both lines thus intersect 8. Each line separately cuts R into two pieces, but
together they cut R into four pieces! So, the addition of the (1 + I #h line, when the ath
line is not present, cuts R into two regions. But, the addition of the (# + 1)th line, when
the nth line is present, affects R by adding two more regions (R is cut from two to four
regions) instead of just adding one. Furthermore, R is the only region so affected, since
the two lines meet at only one point. Hence, the n + 1th line adds n regions without the
presence of the ath line, but it adds n+ | regions with the nth line, and the proof is

complete.
1 Theorem 2.5

The number of regions in the plane formed by n lines in general position is
n{n+132+1.

Proof: We have already proved that the ath line adds n more regions. The first
line introduces two regions; hence, the total number of regions (for n> 1) is
242+3+4+5+---+n We have seen in the previous section that
L4243+ - +a=n{n+1)/2; therefore, the total number of regions is n(n +13/2+ 1. []

Comments There are two interesting points in this proof. First, the hypothesis dealt
with the growth of the function we were after, rather than directly with the function. As
& result, the induction proof concentrated on the growth of the growth of the function.
There is no need to define the hypothesis such that it proves the theorem directly,. We
can achieve the proof in two or more steps. As long as we are learing more about the
situation, we are making progress. There is no need to hwry, or 10 attempt too much too
quickly. Patience usually pays. Second, the same induction hypothesis was used twice
in two different configurations: once for the sth line and once for the {n+ ¥h line
*‘acting”” as an nth line. This double use is npt uncommon, and the lesson it teaches is
that we should utilize our assumptions to their fullest.

2.4 A Simple Coloring Problem

Consider again » distinct lines in a plane, this time not necessarily in general position,
We are interested in assigning colors to the regions formed by these lines such that
neighboring regions have different colors (two regions are considered neighbors if and
only if they have an edge in common)., We will say that *'it is possible to color” the
regions if we can follow this rule, and we call the assignment of colors a valid coloring.
In general, it is possible to color any planar map with four colors (the proof of this fact
has occupied mathematicians for about a hundred years, and was found only recently).
The regions formed by (infinite) lines, however, have special characteristics, as is shown
in the next theorem,

1 Theorem 2.6

It is possible to color the regions formed by any number of lines in the plane
with only two colors.

2.5 A More Complicated Summation Problem 15

Proof: We use the natural induction hypothesis.

Induction hypethesis: It is possible to color the regions formed by < n
tines in the plane with only two colors.

It is clear that two colors are necessary and sufficient for n=1. Assume the induction
hypothesis, and consider n lines. Again, the only question is how to modify the coloring
when the nth line is added. Divide the regions into two groups according to which side
of the nth line they He. Leave all regions on one side colored the same as before, and
reverse the colors of alt regions on the other side. To prove that this is a valid coloring,
we consider two neighboring regions R | and K. If both are on the same side of the mth
line, then they were colored differently before the line was added (by the induction
hypothesis). They may have the reverse colors, but they are still different. If the edge
between them is part of the ath line, then they belonged (o the same region before the line
was added. Since the color of one region was reversed, they are now colored differently.

C]

Comments The general method itlustrated in this example is the search for
fiexibility, or for more degrees of freedom. The idea 15 usually to stretch the hypothesis
as much as possible in order 10 get the most out of it. In this case, the key idea was that,
given a valid coloring, we can reverse all colors and still have a valid coloring. This idea
was used to handle the formation of new regions by the added line.

2.5 A More Complicated Summation Problem

The next example is more complicated. Consider the following triangle.

{ = 1
3+ 5 = 3

T + 0 4+ 1 = 27
13+ 15+ 174+ 19 = 64
21+ 23+ 25+ 21+ 29 = 125

The problem is to find an expression for the sum of the ith row, and prove its correctness.
The sums of the rows seem to follow a regular pattern; They look like a sequence
of cubes.
3

Induction hypothesis: The sum of row i in the triangie is i,

The problem and the hypothesis are defined in terms of a picture. It is not easy to define
the problem precisely, let alone to solve it. In practice, it is not uncommon for problems
¢ be vaguely defined. A major part of any solution is to extract the right problem.
Therefore, we will rake some assumptions that are consistent with the picture, and solve
the problem accordingly. (It is possible to make other assumptions.) The ith row
contains { numbers. The numbers are the odd numbers in order. Again, let’s concentrate
on the difference between two consecutive rows. To prove that the sum of row § is
indeed i®, we need only to show that the difference between row i+1 and row i is
(i + 1)* — i? (we have already seen that the hypothesis is true for { <4},

16 Mathematical Induction

What is the difference between the first number in row { + 1 and the first number in
row i?7 Since the numbers are the odd numbers in order and there are { of them in row i,
the difference is 2i. This is also the difference between the second number in row i+ 1
and the second number in row i, the third number, the fourth number, and so on. Overall,
there are i differences, each of size 2i. There is also the last element at the end of row
i+ 1, which is not matched to any number in the previous row. Hence, the difference
between the two TOWS is 2 plus the value of the last number in row i+1. Since
G+1Y —it= 3i?+3i + 1, we need only to prove that the value of the last number in row
i+1is 33 +3i+1-2% =% +3i+ 1. This is where the guess that the sam is i* comes to
play. We have reduced the problem of finding the sum to a problem of finding an
element. We prove the last statement again by induction.

Nested induction hypothesis: The last number inrow i+ 1is i+ 3i + 1,

The claim is true for i= 1. Now, it is sufficient, by induction, to check only the
differences. That is, we have to prove that the difference between the last number in row
i+ 1 and the last number in row { is equal to

[+ 3+ =1 +3(-D+11=2+2.

But we already know that the difference between any corresponding numbers in row i + 1
and 7 is 2i. The guess has thus been established.

Comments This proof illustrates again that we should not always try to achieve the
whole proof in one step. It is a good policy to advance in stages, as long as we are
making progress. This proof also illustrates the method of **going backward' to arrive
at a proof. Instead of starting from a simpler problem and working our way toward the
final problem, we start with the final problem and simplify it by reducing i to simpler and
simpler problems. This is a very common method (not only in mathematics).

2.6 A Simple Inequality

In this section, we prove the following inequality.

O Theorem 2.7

i1 1
2+I+~§+ il 2.2)

foralinz i)

Proof: We want to prove the theorem by induction. The theorem is clearly true
for n=1. We assume that (2.2) is true for n, and we consider n+1. The only
information we get from the induction hypothesis is that the sum of the first # terms is

"This inequality is wsually written as a fact abowi convergence of infinite series, but we do not assume any
knowledge of series; this formulation is completely finite.

27 Euwler'sFormula 17

less than 1. How can we extend it to include the n + 1th term? Adding 1/2"* (o the left
hand side may potentially increase the sum to more than 1. The trick here is to apply the
induction in a different order. Given the sum

L+_Z_+L+ --A+__j~_+ l
2 4 g 2n 2n+l‘

we look at the lgst i terms:

+....1....+-z-.+....i_......i_ 1 w.l«.l«,*,i.,i,l.,*,-x-,*,“l_..(
8 ot T 212 4 8 2"

A
2

B

by the induction hypothesis. But now we can add 1/2 to both sides and get the expression
(2.2 forn+ 1. O

Comments [t is not necessary to consider the last element as the (# + 1)th element in
the induction proof. Sometimes it is easier to consider the first element. There are other
instances where it is better to let the {n + 1)th element be 2 special element satisfying
some special propesties. H you run into problems, be flexible, and consider as many
options as you can. The following examples extend this notion further,

2.7 Euler’'s Formula

The next proof is for a theoremn known as Euler’s Formula. Consider a connected
planar map with V vertices, E edges, and F faces. (A face is an enclosed region. The
outside region is counted as one face, so, for example, a square has four vertices four
edges and twe faces.) The map in Fig. 2.2 has 11 vertices, 19 edges, and 10 faces. Two
vertices of a map are said to be connected if it is possible to go from one vertex to the
other by traversing edges of the map., A map is called connected if every two vertices in
itare connected. Intuitively, a map is connected if it consists of one part,

1 Theorem 2.8

The number of vertices (V), edges (E), and faces (F} in an arbitrary
connected planar map are related by the formula V + F = E + 2.

Figure 2.2 A planar map with 11 vertices, 19 edges, and 10 faces.

18 Mathematical Indaction

Proef: We will prove this theorem by a variation of induction known as double
jnduction. The induction proceeds first on the pumber of vertices and then on the
number of faces.

Consider first 2 map with only one face. Such a map does not contain a cycle
because, otherwise, the cycle would form at least one face and the outside would form
another face. A connected map without a cycle is called a tree. We first prove that, for
att trees, V+ 1=E+2,

First induction hypothesis: A tree with n vertices has n — | edges.

The base case is trivial. Assume that trees with # vertices have n ~ | edges, and consider
trees with #+ I vertices, There must be at least one vertex v connected to only one edge.
Otherwise, if all vertices are connected to at least two edges and if we traverse the tree
along the edge, starting from any vertex, then we are guaranteed to return to a vertex
already visited without getting stuck. But this means that there is a cycle, which is a
contradiction. We can remove the vertex v along with the edge connected to it. The
resulting map is still connected; thus, it is still a tree. But it has one less vertex and one
less edge, which implies the claim,
This serves as a base case for an induction on the number of faces.

Main induction hypothesis: Any planar map with n faces has E edges and
V vertices such that V+n=£ + 2.

Consider a map with a + | faces. It must have a face f, which is a neighbor of the outside
face. Since fis a face, it is surrounded by a cycle. Removing one edge of this cycle will
not disconnect the map. We remove one of the edges that separates f from the outside,
We now have one less face and one less edge and the theorem follows. 1

Comments This theorem included three parameters. The proof used induction on
ong parameter {the number of faces), but the base case required another induction on
another parameter (the number of vertices). The proof shows that we have to be careful
about choosing the right sequence of induction. Sometimes, the induction switches from
one parameter o another; sometimes, it is based on a combined value of several
parameters; and sometimes, it is applied to two different parameters at the same time,
Choosing the right sequence can make a big difference in the difficulty of the proof. As
we will see in the following chapters, choosing the right sequence of induction can also
make a big difference in efficiency of algorithms.

2.8 A Problem in Graph Theory

We first need to introduce some basic concepts of graph theory (these concepts are
discussed in detail in Chapter 7). A graph G =(V, E) consists of a set V of vertices and a
set E of edges. Each edge corresponds o a pair of distinct vertices. A graph can be
directed or undirecied. The edges in a directed graph are ordered pairs: The order
between the two vertices the edge connects is important, In this case, we draw an edge
as an arrow pointing from one vertex (the tail) to another {the head). The edges in an

2.8 A Problem in Graph Theory 19

undirected graph are unordered pairs. We deal with directed graphs ip this section. The
degree of a veriex v is the number of edges incident to v. A path is a sequence of
vertices vy, vy, ...,V that are connected by the edges (v, v3), rq. vad L (¥ . W)
(these edges are also usually considered to be part of the path). Vertex « is said to be
reachable from vertex v if there is a path from vio u. Let G =(V, E)be a graph, and U/ a
set of vertices U/ ¢ V. The subgraph induced by U is a subgraph H = (U, F) such that £
consists of all the edges in £ both of whose vertices belong to {/. An independent set 5
in a graph G ={V, £) is a set of vertices such that no two vertices in § are adjacent,

0 Theorem 2.9

Let G=(V, E) be a directed graph. There exists an independent set $(G) in
G such that every vertex in G can be reached from a vertex in (G} by a
path of length at most 2.

Proof: The proof is by induction on the number of vertices,

Induction hypothesis: The theorem is true for all directed graphs with < n
vertices.

The theorem is trivial for n<3. Let v be an arbitrary vertex in V. Let N(vy = {v]
fwe V |{v,w)e E}. N(v)is the neighborheod of v. The graph / induced by the set of
vettices V~N{v} has fewer vertices than does G, thus, we can use the induction
hypothesis for H. Let S{}) be the independent set of H implied by the induction
hypothesis. There are two cases,

1. S{H) v |v} is independent. In this case, we can set ${G) to be S(H} w {vi,
because every vertex in N (v} is reachable from v with distance . The vertices not
in N(v) are reachable from s vertex in S{H) with distance at most 2 by the
induction hypothesis,

2. S{H) v {vi is not independent. In this case, there must be a vertex w e S(f) that
is adjacent to v. Now, we S(H) imples that we V ~N(v), which implies that
(v, w) is not an edge of G. But, since we assumed that w is adjacent to v, (w, ¥)
must be an edge of G. In that case, however, every vertex in ¥ (v} can be reached
from w (through v) with distance at most 2. We can set 5{G} to be S(H) (s [wi,
which completes the proof. il

Comments The amount of *‘reduction” in this proof was not fixed. That is, we
reduced the size of the problem from n to a smaller number depending on the instance of
the problem. Furthermore, the smaller problem was not an arbitrary problem of smaller
size. It depended heavily on the particular larger problem. We removed just enough
vertices to make the proof feasible. There is a very fine balance in such proofs between
removing too many verfices, in which case the hypothesis is too weak, and remeoving too
few vertices, in which case the hypothesis is too strong. Finding this balance is, in many
cases, the heart of the induction proof. Notice also that we used the strong induction
principle, because it was required to assume the theorem for all instances of smaller size.

20 Mathematical Induction

2.9 Gray Codes

We are given a set of n objects and we want to name them. Each name is represented by
a unique string of bits. There may be many different objectives for a **good’” naming
scheme. We deal with only one objective in this example. We would like to arrange the
names in a circular list such that each name can be obtained from the previous name by

changing exactly one bit. Such a scheme is called a Gray code.’ There are several
applications of Gray codes. For example, a sensor may scan some objects. It is better to
be able to change representations quickly from one obiject to the next. The purpose of
this section is to find out whether it is possible to construct a Gray code for any number
of objects. The objects themselves play no part in the problem; we care only about their
number.

A good way to visualize the relationship between the names is by using graphs.
The names correspond to the vertices of the graph, and two names are connected if they
differ by only one bit. A Gray code corresponds to a cycle containing all the vertices.

We start by trying small values of n. The cases of n=1 and n =2 are trivial. What
about n =37 I is not hard 1o see that it is impossible 10 find a Gray code of length 3. if
we start with any string and change one bit twice, we cither get the same string or another
string with a two-bit difference; we cannot get the same string after three changes. In
fact, this observation implies that it is impossible to construct a2 Gray code of any odd
tength, What about # =47 The following is a Gray code of length 4: 00, 01, 11, 10. The
corresponding graph s of course a square. We are now ready for our first attempt.

1 Theorem 2,10

There exists a Gray code of length 2k for any positive integer k.

Proof: The proof is by induction on k. The case of 4 =1 is trivial. Assume that
there exists a Gray code of size 24 and consider 2{k +1). Let 5,.54,....5 % cormespond (0
a Gray code of size 2k. Clearly, if we add a leading 0 or a leading 1 to all the strings, the
result is still 2 Gray code. The following is thus a Gray code of size 2k +2 (see Fig. 2.3):

Os(, sy, 154, O55, O54, 054, ..., O5 5. .

Although the proof is complete, the construction is not very satisfactory. The
fength of each string in the code is at least one-half of the number of objects. In general,
i is possible to represent n objects with [logyn] bits. Can we construct Gray codes of
size n with fewer than n/2 bits? To achieve a logarithmic number of bits, we need to add
one bit whenever the number of objects is doubled. Let's assume that we know how to
construct Gray codes for ali even numbers 2k, such that & < n. Given 2r objects, we iry
to construct the code from two smaller codes each of size n.

We immediately run into a problem. Although 2» is even, and thus there is a Gray
code of that size, n may be odd, and there is no odd-size Gray code. Consequently, we

* Gray codes usually refer to the case where the number of objects is a power of 2. We use it for all values of #.

29 Gray Codes 21

Figure 2.3 Constructing a Gray code of size 2k

may not be able to use the induction hypothesis whenever # is odd, Let's restrict
ourselves to values of n that are powers of 2. We assume that we know how to construct
short {we will see later how short) Gray codes for all powers of 2 less than », and
consider n. Let §,87,....5,,2 correspond to a Gray code of size n/2. We can again add
leading Os or 1s, such that the two sequences O0s(,05,,...,08,1, and 15),15,..... 15,2 also
correspond 10 Gray codes. We can then merge these two sequences into one in the
following way (see Fig. 2.4):

152,084,054,..,05,,2,05 15, bsn, IS iann 1800

For example, we can extend the Gray code for n=4 10 a Gray code for # =8 as foliows.
The two sequences are 000, 001, OLE, 010, and 100, 108, 111, 110. The combined
sequence is 101, 001, 011, 010, 000, 100, 110, 111, We constructed a Gray code for »
with only one more bit than we used for the Gray code for n/2. Hence, the length of each
string will be log,n.

Figure 2.4 Constructing a Gray code from two smaller ones.

22 Mathematical Induction

How do we extend this construction to any even value of #? Recall that the
problem with constructing odd Gray codes was that it was impossible to close the cycle.
Looking back at Fig, 2.4, we can see that it is not necessary 1o have two closed cycles; it
is sufficient to have two open sequences, f we can construct an open Gray code
(namely. one with exactly two names that differ by more than one bit) of odd length, then
it may be sufficient for the general construction. We now have two cases.

1 Theorem 2.11

There exist Gray codes of length [logak| for any positive integer k. The
Gray codes for the even values of k are closed, and the Gray codes for odd
vaifues of k are open.

Proef: We prove both cases with one stronger induction hypothesis,

Induction hypothesis: There exist Gray codes of length [log,k} for all
values k < n. If k is even, then the code is closed; if k is odd, then the code
is apen.

The base of the induction is trivial. We now construct a Gray code of size n. There are

two cases:

1. nmiseven: The reduction in this case is simnilar to the reduction for the case where n
was a power of 2. By the induction hypothesis, there exists a Gray code of length
1/ 2 (either open or closed). We can construct two copies of this code, one with
leading Os and one with leading 1s, and connect them into a cycle {as in Fig. 2.4).
Alse by the induction hypothesis, the number of bits in the smaller codes is
Mog,¢n/2)]. We add one bit and double the number of objects; thus, the number of
bits for the new code is [fog,{(n/2)] + 1 =[logyn)].

2. nisodd: Let n=2k +1. Construct two Gray codes of size &, and connect them in
the same way as before. Hf 2k is not & power of 2, then there are some strings of
length [log,(2k)}, which have not been used as names. One of these strings is
connected to one of the strings that has been used. We can now break the cycle of
length 2k by adding this new string, resulting in an open path of length 2k +1 (see
Fig. 2.5). The number of bits satisfies the condition. If 24 is a power of 2, there
are 10 unused strings left, and we peed to add one more bit to the code. The total
number of bits is thus [log,(2k)} +1. But since 2k is a power of 2,
Nog,(2k)] = log,(24), and Jog,(24) + 1 = [log,(2k + 1], 0

Comments In this example, we had a theoremn with two distinct cases. The natural
thing to do is to consider each case separately. However, this is not always the best thing
to do. Even though the two cases were different, it was easier to consider thern together
and 10 include both of them in one induction hypothesis. This way, the solution of one
case benefited from the induction hypothesis concerning the other case. It is much like
climbing with two feet. We do not plan the steps of each foot separately. Each foot
benefits from the steps taken by the other foot. It is sornetimes better to define the
induction hypothesis such that it covers a more general probiem. In this example, the
generalized problem merely included two cases. In the next section, we present an

2.16 Finding Edge-Disjoint Pathsin a Graph 23

Figure 2.5 Constructing an open Gray code.

example where it is easier to solve the problem by solving an extended problem dealing
with more general structures. The advantage to working on a4 more general problem is
that the induction hypothesis is stronger and can be used more effectively. There is an
obvious tradeoff. We need {0 prove the induction statement for n +1 assuming that the
statement for a is cormect. If the statement for # is stronger, then it is easier 1o use it in
the proof. But, on the other hand, there is more to prove. We discuss this issue further in
the next section and in Section 5.10. Netice also that we included in the hypothesis ali
values less than 2a, rather than just 2n 2.

2.10 Finding Edge-Disjoint Paths in a Graph

Let G=(V, E) be a connected undirected graph. Two paths in & are said to be edge
disjoint, if they do not contain the same edge. Let O be the set of vertices in V with odd
degrees. We first claimn that the sumber of vertices in O is even. To prove this claim, we
notice that, by summing up the degrees of all vertices, we get exactly twice the number
of edges (since each edge is counted twice). But, since all vertices of even degree
contribute an even pumber to this sum, there must be an even number of vertices of odd
degree. We now prove the following theorem.

[} Theorem 2.12

Let G =(V, E) be a connected undirected graph, and ler O be the set of
vertices with odd degrees. We can divide the vertices in €} into pairs and
Jind edge-disjoint paths connecting vertices in each pair.

Proof: The proof is by induction on the number of edges. The theorem is clearly
true form=1.

Induction hypothesis: The theorem is true for all connected undirected
graphs with < m edges.

24 Mathematical Induction

Consider a connected undirected graph € with m edges, and let O be the set of odd
vertices. If O is empty, then the theorem is trivially true. Otherwise, take any two
vertices in 0. Since G is connected, there is a path connecting them. Remove the whole
path from G. The remaining geaph has fewer edges. We would like to use the induction
hypothesis, to find the paths for the rest of the odd vertices, and to complete the proof.
The problem, however, is that, by removing the path, we may have disconnected the
graph. The induction hypothesis applied only to connected graphs, We have to be very
careful about using the induction hypothesis correctly. We can avoid this difficulty in
this case in an ingenious way — we will change the hypothesis and adapt it to cur needs!

The problem we encountered was with the connectivity reguirement. Let’s remove
it. We now have the following induction hypothesis:

Revised induction hypothesis: The theorem is true for all undirected
graphs having < m edges.

This is obviously a stronger theorem. Its proof, on the other hand, is simpler. Consider
again an undirected graph with m edges, and O as before. The graph may not be
connected. In this case, the graph is partitioned into several connected components. We
will take two odd vertices from the same component. Since each component is a
connected graph by #self, it must have an even number of odd vestices. Hence, if there
are any odd vertices, we can find two of them in the same component. S0 now we are
basically done. Since the two chosen vertices are in the same component, we can
connect thern by a path. We then remove the path. The graph has now less than m
edges, and we can use the induction hypothesis because it does not require connectivity.
Thus, in the remaining graph, we can pair the odd vertices in edge disjoint paths. We can
then add the path we removed and complete the proof.

We actually proved a stronger theorem than the one we sought! We proved that
the connectivity requirement is unnecessary. And the proof was easier, Il

Comments This is an example of a very powerful technique we call strengthening
the induction hypothesis. [t is similar in some sense to the method used in the previous
section. The main trick is to change the hypothesis to fit our needs. Even though the
theorem becomes stronger, the proof may be easier to obtain. Polya calls this principle
the inventor paradox (Polya [1954]}. The reason we can achieve this apparent paradox
15 that, although we attempt to prove more, we have more on which to base the proof,
because the induction hypothesis is also stronger. We will sce additional examples of
this method of strengthening the induction hypothesis throughout the book. This method
is very important.

2.11 Arithmetic versus Geometric Mean Theorem

The next example is a beautiful proof, atributed 1o Cauchy, of the arithmetic versus
geometric mean theorern. kt employs an elegant nonstandard use of induction, which we
will use later,

2.11 Arithmetic versus Geometric Mear: Theorem 25

1 FTheorem 2.13

Ifx,,.x,, ..., x, are all positive numbers, then

]
. FApE X,
(g x) " € T2 - iy (2.3)

Proof: The proof is by induction o #. The induction hypothesis is identical to
{2.3}. The interesting part of the proof comes from the fact that the induction proceeds
backward. Instead of proving a base case and then extending an assumption for smatler
values of n to one for larger values of n, we use the following reversed induction
principle:

If a statement P is true for an infinive subset of the natural numbers, and if
its truth for n implies its truth for n—1, then P is true for all natural
numbers,

This principle holds because the fact that the statement holds for an infinite set
guarantees that for every natural number &, there is a greater number m in the set; we can
then use the reversed induction step to go backward from m to k.

We will prove the theorem in two steps. In the first step, we use regular induction
to prove the theorem ondy for values of » that are powers of 2. The powers of 2 is the
infinite set we need. In the second step, we use reversed induction to prove the theorem
for all n. Consider first all values of n that are powers of 2. The theorem is trivial for
n =1, Consider n=2, The claim becomes

which we can verify easily by sguaring both sides. Assume now that (2.3} is true for
n=2" and consider 2n = 2**!, We rewrite the left-hand side of {2.3) as follows:

T T
(ryxg- Azn)z ‘\/(I;Xz % L E AN PP 2 R (24)

We can now use the theorem for n=2 with y, =(x,;x;---x)"" and
¥ = X Xasg 7 X' The expression (2.4) becomes

i

X i Yty

(Xpxg - xp) " = Y1y =

But, by the induction hypothesis for n, we have
Xptxa+ 0 dX, X tXpe o X,
+

Yoty

ity n n '
2 2

and the clatm follows immediately,

26 Mathematical Induction

We are now ready to use reversed induction to prove the theorem for all .
Assume that {2.3) is true for an arbitrary n, and consider # — 1. Define

X!“f‘J\'z‘i‘ A . P
zx

n—i
The theorem is assumed to be true for any » positive numbers, so, in particular, it is true
fOF X |, X2,.0 Xy -1 ,2- Thatis,
l -
- Xyt kad o X, I h—Dz+z

n _ -
XiXa T X2} = = z
(12 -l

(z was chosen especially to *‘collapse’” the right-hand side of this expression.) Hence,
we have
1
(xyxs X 2)" K2,
which irnplies that

XXy " Xppz S27,

and
!

Xyt + oo by

__1 -
(XX X)) Sz

]

ok

which is exactly the same as (2.3) forn - L. £l

2.12 Loop Invariants: Converting a Decimal Number
to Binary

induction is very useful for proving correctness of algorithms. Consider a program that
contains a loop that is supposed to compute a certain value. We want to prove that the
result of executing the loop is indeed the intended result, We can use induction on the
number of times the loop is executed. The induction hypothesis should reflect the
relationships between the variables during the Joop execution. Such an induction
hypothesis is calied 2 loop invariant. We illustrate the use of loop invariants with the
atgorithm in Fig, 2.6, which converts a decimal number #n into a binary number
represented by the array b (which is initially zero).

Algorithm Convert_to_Binary consists of one loop with three staterments. The first
statement incremnents k, which is an index to the array b, The second statement computes
tmod 2, which is the reminder of the division of ¢ by 2 (pamely, 1 if r is odd, and 0
otherwise). The third statement divides ¢ by 2, using an integer division (namely,
ignoring fractions).

1 Theorem 2.14

When Algorithm Convert_to_Binary terminates, the binary representation
of n is stored in the array b.

2.12 Leop Invariants: Converting a Decimal Number to Binary 27

Algorithm Convert_to_Binary (n) ;
Input: » (a positive integer).
Output: b (an array of bits corresponding to the binary representation of n).

begin
t:=n . { we use a new variable t to preserve n }
k=0,
while t > G do
ke=k+1;
bik] :=tmod2 ;
tr=tdivd
end

Figure 2.6 Algorithen Convert_to_Binary.

Proef: The proof is by induction on £, the number of times the loop is executed.
The induction hypothesis does not have to be the same as the theorem statement. [t can
apply to only a part of the algorithm. In this case, the maip part is the loop, and we use
the induction hypothesis to verify the execution pattern of the loop. The hypothesis, in
this case, can be thought of as an invariant. It is a statement about the variables that is
correct independent of the number of times we execute the loop. The most difficult pant
of the proof is finding the right induction hypothesis. Consider the following hypothesis,

Induction hypothesis: If m is the integer represented by the binary array
bli.k], thenn=1-2"+m.

The expression ¢ 2 +m is the heart of the loop invariant, and is also the heart of the
algorithm. The hypothesis states that the value of this expression is independent of the
number of tirnes the foop is executed. It captures the idea behind the algorithm. At step
k of the loop, the binary array represents the k least significanr bits of n, and the value of
1, when shifted by k, corresponds to the rest of the bits,

To prove the correctness of this algorithm, we have to prove three conditions: (1}
the hypothesis is true at the beginning of the Joop, (2) the truth of the hypothesis at step &
implies its truth for step k + 1, and (3) when the loop terminates, the hypothesis implies
the cotrectness of the algorithm, At the beginning of the loop, & =0, m =0 (by definition,
since the array is empty), and n=t. Assume that n = 2" +m at the start of the kth loop,
and consider the corresponding values at the end of the kth loop, There are two cases.
First, assume that ¢ is even at the start of the kth loop. In this case, tmod 2 is 0. Thus,
there is no contribution to the array (namely, m is unchanged), ¢ is divided by 2, and £ is
incremented, Hence, the hypothesis is still true. Second, assume that m is odd. In this
case, blk +11 is set 10 1, which contributes 2 twomtis changed to (+— 11/2, and k is
incremented. So, at the end of the kh loop, the corresponding expression is
(=102 2 ama2f = (1= 2"+m+2" = +- 2 4 m=n, which is exactly what we

38 Mathematical Induction

need to prove. Finally, the loop terminates when ¢=0, which implies, by the hypothesis,
that n =0 2" +m =m. o

2.13 Common Errors

We finish this chapter with a few warnings and examples of common traps one can ¢asily
fall into by using induction hastily. Many wrong proofs come from strong convictions,
if one believes strongly in the theorem, one tends to take as evident certain seemingly
trivial **facts”’ implied by it. In induction proofs, this phenomenon often takes the
following form. Since the theorem is ““gvident,”” one sometimes implicitly adds to the
hypothesis several evident “facts.”’ The proof of the step from n 1o n +1 uses these
assumptions. Thus, the induction hypothesis is implicitly strengthened, but the stronger
assumptions are never proven. For example, one may overlook the fact that the graphs in
the theorem were assumed to be connected, and forget to check the reduced graphs for
connectivity. Such an omission could be very subtle, and, of course, could lead to a very
wrong proof. It is important to state the induction hypothesis precisely.

Another common error is the following. The main step in an induction proof is
showing that the truth of the theorem for n implies its truth for 7 + 1. We can either start
with the # + | instance and show that it follows from the » instance, or start with the »
instance and show that it jmplies the n+1 instance. Both approaches are valid.
However, the 7+ 1 instance must be an arbitrary instance! The proof will be wrong if
we start with an » instance and extend it to an #+ 1 instance that has some special
properties. For example, consider the following wrong proof of Theorem 2.8. We start
with an arbitrary map with n faces, and assume, by induction, that V+r=E +2. We take
an arbitrary face and add a new edge with two new vertices that cats the face in two.
Adding two new vertices “‘cuts’’ two old edges, each one into two new edges. Overall,
we added one more face, three more edges, and two more vertices. But,
VA+2+n+1=E+3+2, and the claim is true for #+1 faces. The reason this is not a
valid proof is that the addition of the edge was done in a special way. An edge can also
be added between existing vertices, or between one existing veriex and one new vertex,
In fact, the graphs we get by adding edges only between new vertices have vertices only
of degree 3 or less, so they are very special indeed. In general, it is safer to start with an
arbitrary instance and try to prove it using the induction hypothesis, rather than the other
way around,

Another dangerous trap involves exceptions to the theorem. lt is common to have
minor exceptions of the form n 23, or “*n is not a prime less than 30" The induction
principle depends on the ability to imply the hypothesis for » =2 from the hypothesis for
n =1, the hypothesis for # =3 from the hypothesis for n =2, and so on. I even one of
these steps fails, the whole proof fails. We present two examples of this trap. The first
example is a simple amusing anecdote; the second example is a more serious one.
Consider the following claim.

Ridiculous claim: Given n lines in the plane, no two of which are paratle!
fo each other, all lines must have one point in common.

2.}4 Summary 29

This ¢laim is clearly wrong, but let’s look at a *“proof’” of it. The claim is obviously true
for one line. Let’s even be a little more careful and consider two lines; the claim is still
true. Assume that the claim is true for n lines, and consider n+1 lines. By the
hypothesis, the fiest # lines have a point in common. But, also by the hypothesis, the last
n lines {including the (n + L)th line) have a point in common, The common point of the
first 7 lines and the last # lines must be comnmon to all 7+ 1 lines, because lines having
two points in common are equal. But, in that case, the {w + 1)th line passes through the
same point, and the claim is proven.

What is wrong with this proof? Actually very little. The only wrong step is that
the proof unintentionally (or in this case very intentionally) ignores the face that 7 must
be at least 3 for the argument to work. That is, the claim is true for n =1, # =2, and also,
ifitistrue forn=3,4, - -, then itis true for n+ 1 =4, 5, ---. The only problem is the
step from n =2 to # =3, This small exception is enough to make the whole proof, and the
claim in this case, very wrong. The reader may think that this example is too obvious to
miss. Let’s look at another example that is pot so obvious

Consider the following claim:

nx’\jl+(nwl)‘\/l+n\fl+(n+l)\!l+(n+2)-~. 2:5)

{The expression goes to infinity.) Here is a proof of (2.5) by induction. First, we have to
show that the expression converges for all #, so that the claim is meaningful. We omit
this part (it is correct). If =, then {2.5) becomes §=v1+0(- -), which is true (since
the expression in parenthesis converges). Assume that (2.5} is correct for #, and consider
n+ 1. 1f we square both sides of (2.5) we get

ﬁzxi+{n~1}‘\/1+ﬁ\/l+{n+l)\“+{n+2)'“.

Rearranging terms, we get

2

’; “]] =n+l z'\/l +n\fl s+ DNL++2) -,

which is exactly (2.5) for n+1. The proof is now complete. Or is t? The only wrong
step was dividing by # — 1 without verifying that this value is not 0. But, #n —1=0 when
n =1, which is the first step in the induction! Again, everything works except for one
implication — the one that goes from n= ! to # =2 — and this is enough to invalidate the
whole proof. In this case, by the way, the claim is correct, but the proof is not that easy.

2.14 Summary

Mathematical induction is a rich technique. We have seen many variations of induction,
and explored some of the methods for using it. The first step is to define the induction
hypothesis. We have to decide to which parameter we apply the induction. In many
cases, there is onby one parameter, and the choice is clear. In other cases, however, we

30 Mathematical Induction

have a fair amount of flexibility, The parameter may be even a newly defined one,
introduced especially for the proof. As we have seen, the induction hypothesis does not
atways follow directly from the theorem statement. Sometimes, we apply induction in
several steps, each leading us closer to the proof. At other times, we strengthen the
hypothesis such that it implies a stronger theorem.

There are two steps in every induction proof: the base case and the reduction step.
The base case is usually, but not always, casy. Because H is ¢asy, there is a tendency to
ignore it. The reduction step is the heart of the induction proof. There are many ways 1o
achieve the reduction. The most common way is to reduce a claim involving # to the
same claim involving n—1. It is also common to 'go’’ from n+1 to n. A strong
induction reduces a claim invelving # to one or several claims involving values smatler
than # (but not necessarily #—1). Other variations include going from 2#n to n, and
reversed induction, in which the claim for » is implied from a claim for #n + | and a base
case consisting of an infinite set is proved. The key to any reduction is that it must
preserve the exact statement of the claim. No additional assumptions can be made about
the reduced claim, unless they are specifically included in the induction hypothesis.

The reduction step can also be regarded as an extension step. We extend the claim
from a smaller value of the parameter to a larger value. We have to ensure that the
extension “‘covers'’ all possible values of the parameter, and that the extended claim is a
general claim of the theorem without any additional assumptions or constraints. In
Chapter 5, we will see that there is a direct analogy between the variations of induction
introduced in this chapter and several algorithm design technigues.

Bibliographic Notes and Further Reading

The discovery of the mathematical induction principle is attributed to the ltalian
mathematician Franciscus Maurolycus (b. 1494). The history of mathematical induction
is described in Bussey {1917] (sce also Vacca [1909]). It is interesting to note that a
principle very similar to mathematical induction was wsed in the 12th century in
interpretation to the Talmud (this observation is due to }. Gillis). The problem was to
interpret a rule that specifies a date as **3 days before a holiday.”” At the time of the
writing of the Talmud, it was not uncommon, when one said **x days before a holiday,”
to include the holiday itself as part of the x days. The question was whether or not the
holiday should be included as part of the 3 days specified in the rule. The interpretation
was that the 3 days do not include the holiday because doing so would lead 10
ambiguities. An inductive argument was used to arrive at that conclusion. The base case
was | day. It makes no sense to say ‘'l day before a holiday™ when we mean the
holiday itself. Therefore, **1 day before a holiday™" does not include the holiday. Now,
2 days before a holiday’* must also exclude the holiday, because otherwise it will have
the same meaning as **1 day before a holiday.”” Therefore, **3 days before a holiday’”
does not include the holiday. This is-clearly an inductive argument.

The swmrmation problem given in Section 2.5 is from Polya {1957]. A brilliant
discussion on the generalization of Euler’s formula to three-dimensional objects is given
by Lakatos [1976]. It is warmly recommended. The example in Section 2.8 is from

Exercises 31

Lovdsz [1979]. Gray codes were introduced by Gray {1953}, More on coding theory can
be found in Hamming {19861 The proof of the arithmetic versus geometric mean
theorem is due to Cauchy {see, for example, Polva and Szego [1972] or Beckenbach and
Bellman {1961]). A bibliography for graph theory is given in Chapter 7. More on loop
invariants can be found in Gries {1981}, The example of the proof of (2.5) was shown to
us by Darrah Chavey.

Further material on mathematical induction can be found in Polya’s wonderful
books 1954, 1957, 1981]. Additional examples can be found in Sominskii [1963],
Golovina and Yaglom {1963}, and, of course, throughout this book.

Exercises

2.1 Prove that x" —y" is divisible by x — y for all naturaf numbers x, y (r 2y}, and n.

2.2 Extend the solution in Section 2.2 to general arithmetic sums. That is, find the sum
a+an+ o +a,, wherea, =c,n+¢,, and ¢,,c, are constants.

23 Find the following sum and prove your claim:

§ 24234 -+ +nn+iln

2.4 Find the following susm and prove your claim:

1 i 1 i

e o e =

2 4 B8 2"
2.5 Find the sum of the squares of the first # natural numbers and prove your claim.
26 Prove that

f.

222632 g 1P e - R 12,

29 Given a set of # + | numbers out of the first 2# matural aumbers 1,2,...,2n, prove that there
are two numbers in the set, one of which divides the other,

28 Leta, b, and # be positive integers. Prove that

2@ + b 2 (a+ b

2.9 Prove by induction that a number, given in its decimat representation, is divisible by 3 if and
only if the sum of its digits is divisible by 3.

2.10 Find an expression for the sum of the ith row of the following triangle, which is called the
Pascal ¢riangle, and prove the correctness of your claim. The sides of the triangle are 1s,
and each other entry is the sum of the two entries directly above it

32

2.1t

212

213

1.

(o]
—
A

2.19

2.20

2.2

222

Mathematical Induction

Find an expression for the sum of the ih row of the following triangle, and prove the
correctness of your claim. Each entry in the wiangle is the sum of the three entries directly
above it {a nonexisting entry is considered 9}.

1
I 1 1
1 2 3 21
i 36 7T 6 3 1
i 4 1016 19 16 10 4 1

Prove that, foralln > 1,
ST S .
n+l o+l 2n T 247
Prove that, for all # > £,

1 1 1 k

el bk SRR R
l+2+3 o

where k is an odd number and m is an even numbsr,

Consider the following series, 1, 2, 3, 4, 5, 10, 20, 40, ..., which starts as an arithmetic
series, but after the first 5 terms becomes a geometric series. Prove that any positive integer
can be wrizten as a sum of distinct numbers from this series,

Consider the following series, 1, 2, 3, 6, 12, 24, 54, 84, 114, ..., which starts as an arithmetic
series, after the firs: 3 terms it becomes a geometric series, and then, after 3 more terms, it
hecomes an arithmetic series again, Does your proof of Exercise 2.14 fit this problem? H it
does, find the error in it since, for example, 81 cannot be written as a sum of distinct
numbess this series. What is the subtle point in the proof of Exercise 2.147

Consider # 23 lines in general position in the plane. Prove that at least one of the regions
they form is a triangle.

Consider # 23 lines in general position in the plane. Prove that these lines form at least
n 2 tiangles.

Given a set of n points in the plane such that any three of them are contained in a unit-size
cycle, prove that all # poings are contained in a unit-size cycle.

Prove that the regions formed by # circles in the plane can be colored with two colors such
that any neighboring regions are colored differently.

Prove that the regions formed by » circies in the plane, each with eae chord (see Fig. 2.7,
can be colored with three colors such that any neighboring regions are colored differently.

Prove that the regions fosmed by a planar map all of whose vertices have even degree cas be
colored with two colers such that no two neighboring regions have the same color.

Prove that a planar map caa be cotored with shree colors, such that every two neighboring
regions are cofored with different colors, if and onty if each region has an even number of
neighboring regions. Two regiens are considered neighbors if they have an edge in
commaon,

Exercises 33

Figure 2.7 Circles with one chord.

¥2.23 The lattice noings in the plane are the points with integer coordinates. Let P be a polygon
that does not cross isself (such a polygon is called simple) such that all of its vertices are
lattice poinis (see Fig. 2.8). Let p be the number of lattice points that are on the boundary of
the polygon (including its vertices), and let ¢ be the number of lattice points that are inside
the polygon, Prove that the area of the polygon is p/2+g — 1.

2.24 We can define anti-Gray codes in the foliowing way. Instead of minimizing the difference
between twe consecutive strings, we can try to maximize it. Is it possible to design an
encoding for any even value of objects such that each two consecutive strings differ by &

Figure 2.8 A simple pelygon on the lattice points.

34 Mathematical Induction

225

226

227

228

2.30

2.3

232

2.33

bits (where is & is the aumber of bits in each string)? How about & —{ bits (or k-2, k3,
etc.y? If itis possible, find an efficient construction.

Given a tree T and & subitrees of T such that each pair of subtrees has at least one vertex in
commen, prove that there is at least one vertex in commor to ail the subtrees.

Letd,.ds, ... d,. # 22, be positive integers. Prove tha, if
di+dy+ - +d,=2n -2,
then there exists a tree with # vertices whose degrees are exactly d, o, ... d,.

Put # points on the boundary of a circle, and connect each point te alt the others by a line
segment. Assume that no three line segments meet at a point. Calculate the aumber of
regions formed by these line segments inside the circle, and prove your ciaim.

Let T=(V, £) be an undirected tree. Let f be a function that maps vertices {o vertices,
which satisfies the following conditien: If (v, w) is an edge in E, then either (f (v), f {w)) is
anedgein £ or f {v)=f (w). In other words, the function either maps an edge to an edge, or
it contracis an edge o a single vertex. Prove that there exists either a vertex v in V such that
Fivy=v oranedge (v, w)in E such that £ (v) = w and f (w) = v (in other words, there is
either a vertex or & edge that the fusction maps 1o itself).

The pigeonhole principle (in iis simplest variation) states the following: Hf #+1 balls (n 2 1)
are put inside # boxes, thea at least one box will contain more than one ball. Prove this
principie by induction.

A complete binary tree is defined inductively as follows, A complete binary tree of height
0 consists of 1 node which is the root. A complete binary tree of height & + 1 consists of
two complete binary trees of height £ whose roots are connected o 2 new root. Let T he a
complete binary tree of height A, The height of a node in T is A minus the node’s distance
from the root {e.g., the root has height &, whereas a leaf has height 9). Prove that the sum of
the heights of all the nodes in Tis 271 —h -2,

Let F(n) be the nth Fibonacci number, which is defined inductively as foilows:
F()=F (=1, Fim=F(n—-1+F{n-2), for n>2. Prove that F(n¥ + Fan+1)¥ =
F(2n+1). (Hint: Streagthen the induction hypothesis by proving two seemingly separate
theorems at the same tisne, as is done in the section on Gray codes.)

Let rr and m be integers such that 1 $m $a. Prove by induction that

Al—mm s+ +m? € nlen
(Hiat: Use a *‘two sided’” induction on m. Prove two base cases, m =] and m =n, and go
either forward from m = § or backward from m =n.)

A bridge in an undirected graph is an edge whose removal discomnects the graph. Let
G=(V, E) be a connected undirected graph without a bridge. Prove that G has the
following ‘‘ear decomposition™” (see Fig. 2.9). The edges of G ¢an be partitioned into
disjoint sets £, F 4, ..., E;, such that £, is a cycle, and, for each i, 1 <i <k, E; is a path
whose endpoints are vertices that aiready appear in a previous E;, j <i, and its other
vertices (if any) have not appeared in previous E;s. (The path may be a closed one, in
which case it includes only one previous vertex.)

Exercises 338

Figure 2.9 An ear decomposition,

* .
2.34 Let K, denote the complete undirected graph with 2 vertices (namely, every tweo vertices are

236

2.37

connected), and let # be an even number. Prove that the edges of K, can be partitioned inio
exactly »#/2 spanning trees. (A spanning iree is a connected subgraph that contains all
vertices and no cycles.)

Given an undirected graph G =(V, E), a matching is a set of edges no two of which have a
vertex in common. A perfect matching is one in which ail vertices are matched. Construct
a graph G with 2# vertices and #? edges such that G has exactly one unique perfect
matching.

leta,,as,, .., a, be positive real numbess such that g, a; -« a, = 1. Prove, without using
the arithmetic versus geomelric inequatigy, that

{l+a)(i+a;) - {+a,322".

(Hini: Try a reduction by introducing another variable that replaces two specially chosen
numbers from the sequence.)

Consider the recurrence relation for Fibenacct numbers F{n)=F{n — 1)+ F (n -2}, Without
solving this recurrence, compare F(n) to G{#n) defined by the recurrence
G =G(n—13+G(n—23+1. It seems obvious that G (n) > F {n) (because of the extra 1).
Yet the following is a seemingly valid proof (by induction} that G(m)=F{n}~1. We
assume, by induction, that G(ky=F¢k)—1 for all & such that 15k Sna, and we consider
G+l

CGin+1) = G+ G -+t = F—1+F{n—1=1+1 = Fn+{)~1.
What is wrong with this preof?

The foliowing is anocther proof of the arithmetic versus geometric mean ineguality. The
proof has a major weakness, which makes it incomplete in general. Describe this weakness
and then define the resirictions on the theorem that are needed to make this proof correct.

let S =x, +x;+ -+ +.x,. To find a contradiction 10 the theorem, we need to exhibit 2
numbers whose sum is § and whose geometric mean is farger than S/a. 1t makes sense to

36 Mathematical Induction

239

2.40

lock for a set of numbers whose sum is § and whose product is maximum over all such sets,
In other words, we fix the sum (5) and {ry to maximize the product. Let {x, .xy,..1,} bea
set that maximizes the product, and whose sum is 5. i x, #.x,, thes we can replace both x,
ang x, with their average (x, +x,)/2. The sum remains the same, but the product grows,

because

2
Np+xs
XQX2£ 2

with equaiity holding enly if x; =x,. If ali the numbers are equal, then the theorem holds.
Otherwise, this is a contradiction to the maximality assumption of the set.

Design an algerithm o convert an hinary number to & decimal number. The aigorithm
should be the epposite of aigorithm Convert_to_Binary (see Fig. 2.6). The input is an array
of biss & of length &, and the output is a number #. Prove the comreciness of your algorithm
by using a loep invariant.

Muodify algorithm Convert_to_Binary (see Fig. 2.6) such that it converts a number given in
base 6 to a binary number. The input is an array of base-6 digits, aad the output is an array
of bits, Prove the correciness of your algorithm by using a loop invariant.

CHAPTER 3

ANALYSIS OF ALGORITHMS

i does not depend on size, or a cow would catch a rabbit,

Penasylvasia German Proverb

He is a fool who looks ai the fruit of lofty trees,
but does not measure their height.

Quintus Curtius Rufus

3.1 Introduction

The purpose of algorithm analysis is to predict the behavior, especially the running time,
of an algorithm without implementing it on a specific computer. The advantages of
doing so are clear. It is much more convenient to have simple measures for the
efficiency of an algorithm than to implement the algorithm and test the efficiency every
time a certain parameter in the underlying computer system changes. Furthermore, a
complicated program usually includes many different **small™” algorithms. It would be
too much work 1o test thoroughly all different alternatives for each part of the program.

Unfortunately, it is wsually impossible to predict the exact behavior of an
algorithm, There are too many influencing factors. Instead, we try 1o extract the main
characteristics of the algorithm. We define certain parameters and certain measures that
are the most important for the analysis. Many details concerning the exact
implementation are ignored. The analysis is thus only an approximation; it is not
perfect. On the other hand, even a rough approximation can yiekd significant information
about the algorithm. Most important, using this analysis, we can compare different
algorithms to determine the best one for our purposes. We can use an analogy to car
mileage claims, and attach a disclaimer saying **Use for comparison only — your
funning times may vary.”’

W7

38 Analysis of Algorithms

In this chapter, we describe one methodology for predicting the approximate
running times of algorithms and for comparing different algorithms. The main feature of
this approach is that we ignore constant factors and concentrate on the behavior of the
algorithm as the size of the input goes to infinity. For exampte, if the input is an array of
size n, and if the algorithm consists of 100a steps, then we ignore the constant 160 and
say that the running time is approximately » {(we will introduce precise notation shortly).
If the number of steps is 2n? +50, then we ignore the constants 2 and 50 and say that the
running fime is approximately nt. Since n? is larger than », we say that the second
algorithm is slower, even though for n =35, for example, the first algorithm requires 500
steps, whereas the second one requires only 100 sieps. This approximation is valid,
however, if n is large enough. The second algorithm is indeed slower than the first one
for all # 250. On the other hand, suppose that the running time of the first algorithm was
100n 8. Again, the first algorithm seems better, since n'® is smaller than #%. In this
case, however, n will have to be approximately 300,000,000 for 100a'® to be smaller
than 2n°+50. Fortunately, most ajgorithms have small constants in the expression of
their running times. Thus, even though the asymptotic approach can be misleading
sometimes, it works well in practice. In most cases, looking at only the asymptotic
behavior is sufficient as a first approximation and indication of efficiency.

The result of our analysis should indicate how long the algorithm in question is
expected to run for a particular input. However, we cannot list the precise running times
for afl inputs, unless the algorithm is very simple. The number of different possibilities
of inputs is enormous, and most algorithms behave differently for different inputs.
{nstead, we attach a measure to the input, called the size of the input, and present analysis
relative to that size. The algorithm will not behave exacily the same for all inputs of
equal size, but we hope that the variation will be reasonable. The size is usually defined
as a measure of the amount of space required to store the input. We will not try to
introduce one general definition of size of the input for all algorithms, because we will be
mainly interested in comparing different algorithms for the same problem. In most cases,
the definition of size will be straightforward. We will sec some examples shortly.
Unless specified otherwise, the size will be denoted by n.

Given a problemn and a definition of size, we want to find an expression that gives
the running time of the algorithm relative to the size. (The precise definition of *‘running
time’" will be given in Section 3.3.) As we said earlier, there is usually not just one value
for all inputs of equal size. Consequently, we must choose, among all inputs of the same
size, the input we want to use as our indicator. The most common choice is the worst-
case input. This may seem peculiar. Why not use the best input, or the average input?

The best input is usually ruled out because, in most cases, it is not representative;
there is usually an input for which the problem is trivial. The average-case input may be
a good choice, but it is sometimes very hard 1o measure effectively. First, it is generally
not clear what an “‘average’ input is. We can average over many different parameters in
many different ways, If we are not careful, the average can contain many cases that
never occur in practice, thus making this measure irrelevant. Another serious problem
with taking the average case is the mathematical difficulty in analyzing average-case
performance. We are stili very far from having comprehensive, relatively easy-to-use

3.2 The O Notation 39

techniques for average-case analysis. We will discuss average-case analysis for few
problerns, but we will mainly resort to worst-case analysis. Choosing the worst input as
an indicator turns out 1o be very useful. In some cases, the worst input is very close to
the average input and to experimental observations. In other cases, even though the
worst input is substantially different from the average input, the algorithm that achieves
the best performance for the worst input also performs very well for all cases. Unless
specified otherwise, we will use worst-case analysis throughout this book.

In summary, both asymptotic analysis and worst-case analysis are only
approximations of the running time of a particular algorithmn under a particular input.
They definitely do not give the whole story. They are, however, very good indicators in
most cases.,

3.2 The O Notation

As we have already said, our approach will be to ignore constant factors when trying to
evaluate the running time of a particular algorithr. Te do that effectively we need
special notation. We say that a function g{n} is O(f (n}) for another function f(n)
(pronounced “*Oh,” or sometimes “"Big Oh,"" of f(n)), if there exist constants ¢ and N,
such that, for all n 2N, we have g (m)<c¢f {n}). In other words, for large enough n, the
function g {#) is no more than a constant times the function f {#). The function g {n} may
be less than ¢f (), even substantially less; the O notation bounds it only from above. For
example, Snt+15=0(n?), since S’ +15<6n’ for n24. At the same time,
51 +15=0(n’), since Sn* +15< " for all n 26.

The O notation allows us to ignore constants conveniently. Although we can
include constants within the O notation, there is no reason to do that. We always write
O(n} instead of, say, O(5a+4). Similarly, we write @ (log#) without specifying the
base of the logarithm, because changing bases changes the logarithm only by a constant,
We write O (1) to denote a constant. We can also use the O notation if we want to
specify the constants only in parts of the expression. For example, we may write
T(m)=3n2+0(n), or S (n)=2n logyn +5n + O (1).

In general, determining whether a certain function g{n) is G (f (#)) may not be
easy. Most of the functions involved in the analysis of algorithms in this book are
relatively simple. With some sirple rules, we can cover the majority of (but not ali)
cases. The most useful rule is the following: We say that a function f{n) is
moenotonically growing if n| 2 n, implies that £ (n 32 f (n;).

03 Theorem 3.1

For all constants ¢ > 0 and a > 1, and for all monotonically growing
Sunctions fin},

(f (my =0@™.

In other words, an exponential function grows faster than does a
poiynomial function. 0

40 Analysis of Algorithms

This rule can be used 1o compare many functions. For example, if we substitute n for
£ (n} in Theorem 3.1, we get that, for all constants c >0 and a > 1,

n =0(@"). (3.1)

Another example comes from substituting log,n for f(n}. For all constants ¢ >0 and
ax>l

(log,nY’ =0(a"™*")=0(n). 32
We can add and multiply with the O notation using the following rules.
01 Lemma 3.2

1 If finy = Otstn)y and g(n) = O(r(n)} then fin} + gin} = Ofs(n) + r(n)).
2HIf find = Ofs{njj and g(n} = O(r(n}) then finkg(n) = Ofstrkrinij.

Proof: By definition, there are comstants ¢, N, ¢;, and ¥,, such tha
fimsesinyforn 2Ny, and g(nyScar{n) for n2N,. The largest of ¢, and ¢4, and the
largest of N | and N, can be used to show both claims, .

Since the O notation corresponds to the “*S7° relation, however, it is not possible to
subtract or divide. That is, it is not true in general that f(n)=0(s{n)) and
gm)=0(m) imply that f(n)—g{ny = O(s(n)~r(n)) or that fin}/g(n) =
O{s(ny/ r{n}) (see Exercises 3.15 and 3.16).

The importance of concentrating on the asymptotic behavior is illustrated in Table
3.1, which contains several typical running times and the time the corresponding
algorithms consume for a problem of size # = 1000 for different computer speeds. The
speeds differ by a constant of 2 from column to column, from 1000 steps per second to
8000 steps per second. We can clearly see the improvements we gain by speeding up the
computer (or the algorithm) by a constant factor versus the improvements we gain by
changing to a faster asymptotic algorithm (i.e., going up the table). An exponential
algorithm will require astronomical time (billions and billions of years} to handle
£ = 1000 (unless the base is very close to 1),

The O notation is used to denote upper bounds on the running times of algorithms;
however, using only upper bounds is not sufficient. All the algorithms in this book, for
example, have ranning times of O(2"). That is, they do not require more than
exponential time. However, O(2") is a very crude upper bound for most of these
atgorithms — they are much faster than that. We are interested not only in upper bounds,
but also in an expression that is as close to the actual running time as possible. In cases
where it is too difficult to find the exact expression, we would ke to find at Jeast upper
and lower bounds for it. Obtaining lower bounds is more difficult than is obtaining upper
bounds. An upper bound on the running time of an algorithm implies only that there
exists some algorithm that does not use more time than indicated. A lower bound must
nply that no algorithm can achieve a better bound for the problem. It is impossible, of
course, 1o consider all possible algorithms one by one. We need mechanisms to model
problems and algorithms in a way that enables us to prove lower bounds, Lower bounds
are discussed further in Section 6.4.6. There is a similar notation 0 handic lower bounds

3.2 The O Notation 41

time time 5 tirme time 4
running times 1000 stepsfsec 2000 stepsfsec 4000 stepsfsec BOOO stepsfsec
tog,n 0.010 0.005 4.003 0.001
" 1 0.5 025 0.125
#n logyn 10 5 2.3 1.25
nts 32 16 8 4
n’ 1,000 500 250 125
n? 1,000,000 500,000 250,000 125,000
11" e 10 10% 10

Table 3.1 Running times {in seconds) under different assumptions {(n=1000).

while ignoring constants. I there exist constants ¢ and N, such that for all n2N the
number of steps T'{#) required to solve the problem for input size n is at least g (#}, then
we say that T(z) = (g (). So, for example, n° =Q(n? - 100), and also » =n"%).
The €2 notation thus correspond to the “'2"” relation.

If a certain function f (r) satisfies both f (n)=0(g(m)) and f (n)=Lg(n)), then
we say that f{n)=0(g(n)). For example, 5nlogn — 10=0(n logn). (The base of the
logarithm can be omitted in the expression ©én logn), since different bases change the
logarithm only by & constant factor.) The constants used to prove the O part and the £
part nced not be the same.

The O, €1, and & correspond {loosely) to <™, 27, and ="', Sometimes we
need notation corresponding to **<'" and ©*>'". We say that f{n} = o{g {n}) (pronounced
“finyishllechof g(m)7yif

o L o

lim
" —ron g (H)

For example, n/logan =o(n), but n/10#0(n). Similarly, we say that f(n)=@{(g{n) if
gy=o(f(n)).
We can strengthen Theorem 3.1 by replacing big O with little o

0 Theorem 3.3

For all constants ¢ >0 and a> 1, and for all monotonically growing
funciions fin}, we have (f ()" = o(a’"). In other words, an exponeniial
Junction grows faster than does a polynomial function. 0

The 0 Symbol

The & notation has received a lot of criticism over the years. The main obiection o it is,
of course, that in reality constants do matter, The wide use of the O notation makes it
convenient to forget about constants altogether, It is essential to remember that the ©
notation gives only a first approximation. As such, it serves a useful purpose, and its use

42 Analysis of Algorithms

has prompted the development of many algorithms that are practical by all measures. It
was also instrumenial in the development of complexity theory, which sheds fight on
many aspects of algorithm efficiency.

It is. however, important to distinguish between the case where the constants
ignored by the O notation are prohibitively large and the casc where they are small and
the corresponding algorithm is efficient in practice. To make this distinction, we
introduce in this book a new symbol. It is not mearnt to be a precise mathematically
defined notation — it is meant only to replace some prose that accompanies (or at least
should accompany} some algorithms whose running times, as measured by the O
notation, are of theoretical value only. We suggest to denote by (D{fin}} (pronounced
“(h Oh of f(n)'"} a function that is O (f (n)), but with constants that are too large for
most practical uses. {This notation should be easy to remember since it resembles 4 big
.}

The use of the € notation should be lefi to the judgment of the writer, Whether or
not a certain constant leads to a “'practical use'’ is not well defined. We have no
intention of attempting to tighten our definition. The main purpose is 10 indicate to the
reader the opinion of the writer in a concise form. Another goal in introducing this
symbol is to stress that the O notation is not the whole story.

3.3 Time and Space Complexity

How do we analyze an algorithm’s running time without running the algorithm? We
need to count the number of steps the algorithm performs. The problem is that there are
many different types of steps, and each may require a different amount of time. For
example, a division may take longer 10 compuie than an addition does. One way to
analyze an algorithm is to count the number of different steps separately. But listing all
the types of steps separately will be, in most cases, too cumbersome. Furthermore, the
implementation of the different steps depends on the specific computer or the
programming language used in the implementation. We are trying to avoid that
dependency.

Instead of counting all steps, we focus on the one type of step that scems to us to
be the major step. For example, if we are analyzing a sorting algorithm, then we choose
comparisons as the major step. Intuitively, comparing elements is the essence of sorting;
all the rest can be regarded as overhead. Of course, we have to make sure that
comparisons indeed constitute the major part of the algorithm. Since we will ignore
constant factors anyway, it suffices to check that the number of all other operations is
proportional to the number of comparisons, If this is true, and if O (f (1)) is a bound for
the number of comparisons, then O (f (n)) is also a bound for the total humber of steps.
We say that the time complexity of the algorithm, or the running time, is O{f (n)}).
This approach also solves the problem of different steps that require different
computation time, as Jong as the difference is no more than a constant.

The space complexity of an algorithm indicates the amount of temporary storage
required for running the algorithm. In most cases, we do not count the storage required
for the input or for the output 4s part of the space cormplexity. This is so, because the

34 Summations 43

space complexity is used to compare different algorithms for the same problem, in which
case the inputfoutput requircinents are fixed. Also, we cannot do without the input or
output, and we want to count only the storage that may be saved. We also do not count
the storage required for the program itself, since it is independent of the size of the input.
Like time complexity, space complexity refers to worst case, and it is usually denoted as
an asymptotic expression in the size of the input. Thus, an O{n}-space algorithm
requires a constant amount of memory per input primitive, An O {1)-space algorithm
requires a constant amount of space independent of the size of the input.

Counting the number of major steps may not be easy. In the next sections we
discuss briefly several mathematical techniques for computing running times. In
contrast, estimating the space complexity of a particular algorithm is usually
straightforward, and, in most cases, we will not discuss it

3.4 Summations

If an algorithm is composed of several parts, then its complexity is the sum of the
complexities of its parts. In many cases, this is not as simple as it sounds. The algorithm
may consist of a loop executed many times, each time with a different complexity, We
need techrigues for summing expressions in order to analyze such cases. Probably the
simplest case is a loop of size n, such that the ith step (i <n) requires / operations. The

total number of operations is thus 1+2+ - - +n. We denote sums with the sigma
L3

notation. The above sum is written as Y/, which means “‘sum of the term {, where {
i=1

goes from 1 to n.”’ As we have seen in Section 2.2, this sum is equal to n(n+1)/2. We

can cormpare this sum to the case where each step requires exactly # operations, and we

observe that, by cutting the running time of the ith step from » to i, we save a factor of

about 2.
O Example 3.1

Consider now the case of executing a loop in which the ith step requires i operations. In
other words, we are looking for the summation

Symy=Y i%.
izl

It is clear that S,(rn) S n”, since n® is equal to running the foop for n’ operations in each
step. Judging from this example, we can guess that the differences between S,(n) and n°
are within a constant. We can prove our guess, and find the constants, by induction. We
guess that S,(n)=P{n)=an’ +bnl4+cn+d. P{n) must satisfy P{I)=1 and the
induction step P{n + 1)=P(n)+{n +1¥. The induction step implies that

atn+ D +bn+ 1P vctn+D+d—tan*+bnl +en+dy=n+2n+1,

which implies {since coefficients of the same power of n must be equal) that

44 Analysis of Algorithms

Ja+b-b=1 the coefficient of n? ,

3g+2b+c—c =2 thecocfficientof n,

and
a+h+c+d~d=1 the coefficiecnt of I .

These equations imply that @ = 1/3, b=1/2, and ¢ = 1/6. The value of 4 comes from the
initial condition (P(1}=1), which implics that a +b +c +d = 1. Hence d=0. Combining
all the terms, we get

ntont n_a(aDCr+l)

=ttt o= 33
S:0=73+7 %% 6 (3-3)
Again, it is interesting to note that by reducing the size of the ith step from n” to i%, we
save a factor of about 3, 1

There is another way to arrive at expression (3.3}, 1t is & general technique that we
will use several times. If we guess that S;(n) is a third-degree polynomial, then we can
try 10 express S;(a) as a combination of such pelynomials. We then arrive at the solution
for §,{n} by solving an equation involving it and other explicit polynomials. Consider
the sum

HOED WS (3.4)
i=1

We will first write (3.4) in a different way;

" " et el
Sym=Y it = T -1+ = FE+1Y =¥ P 437 +3i + 1), (3.5)
iz f=1 =) i=G
In other words, we shift the summation, so that the sum goes from 0 to » — | instead of

from | to n. This shift is illustrated in Fig. 3.1. We can now equate the lef! side and the
right side of (3.5), and expand:

" n—I

§ it=)-:6 (7 + 37 30+ 1), (3.6)

The i terms for 7 ranging from | to # — 1 are common to both sides of (3.6), and can be
canceled. We then write an equation involving the rest of the terms from both sides.

1} + 2 + + (n-1y + n'

@1 + D'+ @+ 4 + (-141)

Figure 3.1 Computing a summation by shifting.

34 Summations 45

n—I|
nt=0"+ ¥ (3% +3i+1).
i<l
m—t sl
We atready know that Y i =n(n—1)/2, and it is clear that Z:’z = 8,(n)—n? (the only
i=f) i=0
difference is in the #th term). Hence,

=38, -n?)+3n(n =112 +n.
We can now solve for §,(n):

nt=3n(n-102-n=3(5(n}~n?),
which implies that

3 3 2

Sg(n}:n 3n(n3 hi2 n+n2:%+32 4}“gv:w{n+1()3(24&-1—!).
which is, of course, exactly the same expression as (3.3}

The main trick in this derivation was to use a patticular sum (§3{(n) in this
example) in two different ways, such that they mostly cancel each other. Many other
sums cxhibit the same behavior. If we consider the difference between a sum
fi+fa+ - +f, and a shifted sum fr+f3+ < - +f,,.1. we sec that most of the
coefficients cancel each other. Only the boundary terms are left. We present three more

examples of this technique.

1 Example 3.2

We want to compute the following sum:

i .
Fn)=%2=142+4+ - 42"
i=0
We would like to compare F (n) to another expression involving F (n) by shifting terms
and by canceling most of them. The difference between consecutive terms in F(n) is a
factor of 2, so let’s multiply the whole expresston by 2 (which will allow us to shift):

2F(n)=2+4+8+4 - +27 2",
We can now get an expression involving F (n):

F(m)-F(m)y=2""" - 1.
But, this implies that ¥ (n)=2"*' - | 4
00 Example 3.3

Consider now the following slightly more difficult sum:

(3{n}=}:f2i=1'2!+2'22+3‘2"’+ SRR o A

f=1

We can apply the same technique:

46 Analysis of Algorithms

WGy =12+2:22 43254 o g2

(we simply incremented the power). By subtracting the two expressions, we eliminate
the effect of the / factor;

Gy =26 ~Gmy=n-2" = (12" + 122+ -+ + 127
=22 D= n-D2 + 2

1 Example 3.4

Finally, we consider the following sum, which will appear in Section 6.4.5 in the analysis
of heapsort;

Giny=Yi2" " =127 42272432734 - 40 20,

fa]
We can apply the same technique:
2G(ny=1-2"+2-2""143-2"%4 - 42N,
Again, by subtracting the two expressions, we eliminate the effect of the / factor:

Gmy=26(n)~G)=2"+12"T 4 1272 4 <. 112 =20

=t -2-n

3.5 Recurrence Relations

A recurrence relation is a way to define a function by an expression involving the same
function. Probably the most famous recurrence relation is the one defining the Fibonacci
numbers

Fimy=F(n-1+F((n=-2), F()=1, F(Q=1. 3D

This expression uniguely defines the function. We can compute from this expression the
value of the function at every number k. For example, F(3)=F(Q)+F(1)=2,
Fid)=F(3)+F(2y=3, and so on. However, if we compute the value of the function by
following the definition, we would need & -2 steps to compute F (k). It is much mere
convenient to have an explicit {or closed-form) expression for F (n). That would enable
us to compute F(n) quickly, and to compare F(n) 10 other known functions. This is
called solving the recurrence relation. We sometimes calf a recurrence relation simply a
recurrence.

Recurrence relations appear frequently in the analysis of algorithms. We briefly
discuss here a useful technique for solving recurrence relations, and present general
solutions of two classes of recurrences that are among the most cOMMON recurFENces
involved in analyzing algorithms. These recurrences will be used later in the book.

3.5 Recurrence Relations 47

3.5.1 Intelligent Guesses

Guessing a solution may seem like a nonscientific method, but, keeping our pride aside, it
works very well for a wide class of recurrence relations. It works even better when we
are trying to find not the exact solution, but ondy an upper bound. The main reason that
guessing is useful is that proving that a certain bound is valid is ecasier than computing the
bound. Consider the following recurrence which is defined only for values of n that are
powers of 2:

FRmys2T(ny+2n-1 TH=1 (3.8)

We wrote this recurrence as an inequality rather than equality. This is consistent with
our modest goal of finding only an upper bound (in the form of the O notation), and with
the fact that the right-hand side represents the worst case. We want to find a function
F{n) such that T'(n) = O (f (1)), but we also want to make sure that f(n) is not too far
from the actual T{n).

Given a guess for f {n), say f{n) = n?, we prove that T {n) = G (f {n}) by induction
on #n. First, we check the base of the induction. In this case, T(2)= 1 < (2)=4. Wethen
prove that T(n) < f {n) implies that T (2n) < f (2n). We need to prove that

T(mysn® implies T2n)s@n)
The proof is as follows;

T{2n)S2F(nd+2n—1, {by the definition of the recurrence)
<2n* +2n -1, (by the induction hypothesis)

< (2n),

which is exactly what we wanted to prove. Thus, T(1)=0{n?). Is n* a good estimate
for T(n)? In the last step of the proof, 222 +2n — | was substituted by the greater 4n%,
But there is a substantial gap (about 2n?%) between these two expressions, which gives us
a hint that maybe »? is a high estimate for T (n).

Let's try a smaller estimate, say, f(n)=cn for some constant ¢. 1t is clear,
however, that cn grows more slowly than T{(n) does, since ¢ 2n=2cn, and there is no
room for the extra 2 — |. Hence, T (n) is somewhere between cn and n°.

Let’s try now T{n)Sn log,n. Clearly, T{(2) < 2log,2. Assume that T'(n) S n logyn,
and consider T'(2n}:

TRn)y<2T(r)+ 2n-1, {by the definition of the recurrence)
% 2nlogan +2n—1, (by the induction hypothesis)

< 2n(log;2n),

which is exactly what we wanted to prove. The leeway in the proof is only 1 now, so we
are very close. Later, we will prove that this is actually the exact solution to within a
constant,

48 Analysis of Algorithms

The recurrence relation (3.8) is defined only for values of n that are powers of 2.
We can define a similar recurrence for all values of 2 in the following way:

TS2T (|2})+n~1, T2)=1L (3.9

(Notice that the floor symbol s necessary, because T (n) is defined only for integers.)
The recuerence refation (3.9) is more general than {3.8), since it is defined for all values
of n, but, for values of » that are powers of 2, (3.9) is exactly the same as (3.8).
Therefore, we atready know that, for values of n that are powers of 2, T{n)=0 (n log n}.
We now show that the same bound applies to all values of F(n). Itis clear that T{n)is a
monotonically increasing function. I # is not a power of 2, T (n) is no more than T(25),
where 2% is the first power of 2 that is greater than n. That is, let 2! < n < 2%; clearly,
TN s Ty < T(2*). We proved that T(Z*}sd"logzzk for some constant ¢. Hence,

T(n) <2 log, 2% < c(2n)log,(2n) < ¢ nlogyn.

for another constant ¢, which implies that T(n}=0(rlogn) for all n. It is usually
sufficient to assumme that » is a power of 2 when we are [ooking for an asymptotic
eXpression.

Let's surmnarize the steps used in an inductive proof of a selution to a recurrence
relation. Suppose that we have a general recurrence relation of the following form:

T{gn)=ET, n), 3.10

where g {n) is a function of n {which defines the growth of the recurrence), and £ is some
expression involving T(n) and n. For example, in (3.8), g(n)=2n, and E(T, n) =
2F(n)+2n~1. Suppose further that we guess that T'(n)<f (n), for some function f (#).
To prove our guess, we need 1o substitute g (r) for a in f {n}, then to substitute f (r) for
each occurrence of T(r) in £. We then have to show that f {g{#)) is greater than or
equal to the vaiue substituted for E (T, n). In other words, we have to prove that

fAgENZE, n). @1

For example, in (3.8) we guessed that f(n)=nlogsn; thus, we had to show that
(2n)¥loga(2r)) 2 2{n logyn) + 20— 1.

A common mistake is to try to prove the opposite — that is, to replace *‘greater
than'' with “'less than.’' An intuitive, and easy to remember, explanation is the
following. We are trying to prove that f {n) grows more quickly than T (n) does. Hence,
if we substitute g{(n) for n in f{n), we should get a value larger than what we get by
substituting g (n) for # in T(n). But, T(g{n))=E (T, n} (this is exactly the recurrence
relation); thus, we can replace T(g{n)) with E(f, n). This process may have to be
repeated several times with different functions (guesses) until the proof of the inequality
becomes reasonably tight.

Another common mistake is to use the ¢ notation when guessing. That is, we
guess that the solution is O (f (). and we try to substitute O {f (n)) for n. However, the
O notation cannot be used in that way. The problem with using the @ notation is that,
even though we do not care about the constants at the end, we cannot ignore them
through the proof. For example, if we try to prove that the solution of (3.8) is O (n), by

3.5 Recurrence Relations 49

substituting © (n) for n, we get the following (the base case is trivial):

TR E2T () + 20~ 1, (by the definition of the recurrence)
<On)+2n-1, {by the induction hypothesis)

= (}{n),

which is wrong, as we have scen earlier. The error lies in the fact that different constants
were used (or rather ignored) at different stages of the “"proof.”’ The correct approach is
to include the constants explicitly. When we want to guess that the solution is O (f (n}),
we guess that it is ¢f (n} for some constant ¢, and determine the value of ¢ later.

Let's try now to solve the Fibonaccei relation by guessing. Again, we are given that

Fmy=F(n-D+F{n-2), F{)y=L FQ2)=1L (3.12)

Since the value of F (n) is the sum of two previous values, a reasonable guess would be
that F{n) is doubled every time; namely, it is approximately 2". Let's try F{n)=c2".
Substituting c2" in {3.12), we get

€2 w2 4 o2l

This equality is clearly impossible, since ¢ is canceled and the left side is always greater
than the right side. So we learned that ¢2" is too large, and that the multiplicative
constant ¢ plays no role in the induction step.

The next attempt could be another exponeatial function, bu¢ with a smaller base.
instead of guessing different bases, it is easier to introduce a parameter as a base and to
compute its value through the verification. We will try F{n)=a", where a is a constant,
Substituting a” in (3.12), we get

G" =an—| +G"_2,

which implies that

al=g+ 1. (3.13)

The two solutions for (3.13)arc a, = (1 + \E)!Z and gp=(F -~ \E}IZ. So, in particular, we
now know that F{n}=O((a,}"), since (a,)" satisfies the recurrence, and we can easily
find a constant ¢ such that c{a ;)" is greater than the given values for n=1 and n =2,

If we want to find the exact value for F (#), we will need to consider the initial
values more carefully. Since both (g} and (@,)" solve the recurrence, any linear
combination of them does. So the general solation of the recusrence is

cpla) +oqlag)”.

We need to compute the values of ¢ and ¢, 50 that the expression fits the values of F (1)

and F(2). It is a simple exercise to verify that ¢y = 1!\(5. and ¢y=-1 !\E. Therefore, the
exact solution of the Fibonacci refation is

%0 Analysis of Algorithms
—— [fog}" j {zuﬁ]"
n)=—= | -)
V5

2
The equation a = a + 1, which we encountered in our search for a solution to the
recurrence relation {3.12), is called the characteristic equation of the recurrence
relation. The same technigue is the basis for solving any recurrence of the form

Fmy=bFn-1+bF(n—2}+ -+ F(n—k)

for a constant .

3.5.2 Divide and Conquer Relations

In a divide-and-conquer algorithm, the problem is divided into smaller subproblems, each
subproblem is solved recursively, and a combine algorithm is used to solve the original
problem. Assume that there are @ subproblems, each of size 1/b of the original problem,
and that the algorithm used to combine the solutions of the subproblems runs in time cn®,
for some constants a, b, ¢, and k. The running time T (n) of the algorithm thus satisfies

T(n)=aT (n/b) +cn”. (3.14)

We assume, for simplicity, that n =6™, so that n/b is always an integer (b is an integer
greater than 1), We first try to expand (3.14) a couple of times to get the feel of it:

T(n)y=a@T{n/b*) +cln/by)+ on® = atat@l (n/b*) +cuib®) +cnib))y +en*,
In general, if we expand all the way to #/b™ = |, we get
Timy=aa(- - Tm/b™ +cn/b" 'Y+ -y cnt,

Let's assume that F(1)=c (a different value would change the end result by only a
constant). Then,

T(r)y=ca™ +ca™ ' b* +ca™ 2 + - 4 ™,

which implies that

Ji] o Fol kf
T{ﬂ} = L.Zamm:bak = CdmZ(“{)““))
i=0 =0 @

But, this is a simple geometric series. There are three cases, depending on whether
(b*/a) is less than, greater than, or equal to 1.

Casel: a>p*

In this case, the factor of the geomelric series is less than 1, so the series converges to a
constant even if m goes to infinity. Therefore, T(n) =0 (a™). Since m =log,n, we get
a" =a'"%" = n' (the fast cquality can be easily proven by taking logarithm of base b
of both sides). Thus,

Tn) = 0 (n'%%).

3.5 Recurrence Relations 51

Case2: a=h*
In this case, the factor of the geometric series is 1, and thus T'{n)= G (a™ m). Notice that
a = b* implies that log,a = k and m = O (log n). Thas,

T(n) =0 (#*logn).

Case3: a <b*

{n this case, the factor of the geometric series is greater than 1. We use the standard
expresston for summing a geometric series. Denote b*/a by F (F is a constant). Since
the first element of the series is @™, we obtain

anr+| -1

T(m) =a"——= =0 @"FM =0 (b)) = 0((6"Y) =0 (n").
These three cases are summarized in the following theorem,
0 Theorem 3.4

The solution of the recurrence relation T{n) = al' (n/b) + cn®, where a and
b are integer constants, a 21, b2 2, and ¢ and k are positive constants, is

O™y ifa>ht
Tny=+< O(n'logn) ifa=h.
on*) if a < b
]
The result of Theorem 3.4 applies to many divide-and-conquer algorithms. It
should be memorized. This result is also very helpful in the design stage, since it can be
used to predict the running time. Generalizations of this formula are given in the
exercises.

3.5.3 Recurrence Relations with Full History

A full-history recurrence relation is one that depends on all the previous values of the
function, not just on a few of them. One of the simplest full-history recurrence relations
is

a-l
T(ny=c+ 3 T, (3.15)
i=]
where ¢ is a constant and T (1) is given. We can solve this recurrence by using the same
method we used to compute surns. We will try to write the recurrence in such a way that
most of the terms will be canceled. (This method is sometirnes called elimination of
history.) For the recurrence ¢3.15), we compare Tin+ 1) to T(n):

Tihey=c+YT{). (3.16)
i=1

If we subtract ¢(3.15) from (3.16), we get T{n+ 1)~T(n)=T{n). So, T{n+1)=2T{n),
which clearly implies that T(n+1)=T(1)2", (This claim is true for T(1), and, by

&2 Analysis of Algorithms

induction, if the claim is true for T'(n), then & is true for T{n + 1), since we double the
value every time.)

This argument may be “‘clear,”” but it is incorrect! We can, for example, set
T(D=1F and ¢ =35, and see that T(2}=6=2T(1). This is another example of carelessly
going through an induction proof ignoring the base case. The error results from the face
that the proof does not work for T(2), since T{1) is not necessarily canceled by ¢. One
should be very suspicious when a parameter (¢ in this case) that appears in the expression
does not appear in the final solution. To solve this problem correctly, we note that
T(2)=T(I}+¢ (by definition), and that the proof above is correct for all #>2. Hence,
Tin+ D =(T(1)+c)2"

This recurrence s very simple. The next one is not so simple, but it is very
important. It appears in the analysis of the average case of quicksort which we discuss in
Section 6.4.4. The recurrence refation is

L]
T{n}:n—i+% T, {fornz2). T{1)=0 G
i=}
We use the shifting and canceling terms technigue. We want to cancel most of the T(f)
terms. Let’s look at the corresponding expression for T{n + 1}

T (nz2). (3.18)

Tin+ly=(n+)-1+ i &

For convenience, we mukltiply both sides of (3.17) by a, and both sides of (3. 18) by n + |;

n-1
nTny=nn-11+2 ZT(E) (nz22). (319

i=1
n+DTn+D=n+n+2 ZT(E} (nz2). {3.20)
i=l
We can now subtract (3.19) from (3.20), and obtain
n+Tin+)—nF)=r+tm —nn— 1} +2Tn)y=2n + 2T) (n 2D,
which implies that

2 n
T+n=2T%T
(b= T+

(nz2).

n
, and get a close

This recurrence is easier to solve. First, we substituie 2 for
Approximation:

n+2
n+l

Tn+1) s Timy+2 (nz2). (3.20)

If we expand (3.21), we get

3.6 Useful Facts 53

n+i] n—f 4
Ty <2+ . {Z{anl{z-‘-nwz{ B}H

n+l n+t m n+tl r n-i n+t n n=-l1 4
=2|F+ + + 4o

n n n-1 n n-1 n=2 n n-t n-2 3

n+i n+l nti rt
m 2]+ + + o
i n-1 n—-2 3

{ 1 1 ;
—2(n+i}{n“+n+n“1+ +3]

=200+ DH (n+ D= 1.5),

where H(n)=1+1/2+1/3+ <>« +1/nis the Hammonic series. The Harmonic series has
a simple approximation, which we will not prove, H{n)=lnn + ¥+ O (1/n), where
y=0.577.. is Euler’s constant. Hence, the solution for T(n} is

T s2n+Dnn+y-13Y+0 (1) =0{nlogn).

3.6 Useful Facts

In this section, we present, without proof, several equalities and inequalities that are
useful in analyzing algorithms.

Arithmetic series

1+2+3+'-'+n=£~{~%i-1~)-. (3.22)
More generally, if a, =a,| +c¢, where ¢ is a constant, then

a,+a2+a3+-‘-+an:fﬁﬁ;ﬂ. {3.23)
Geometric series

14244+ 0+ + 20 =24y, (3.24)
More generaily, if a, =ca,_;, where c#1 is a constant, then

ay+dy+ay+ +a,,=aEC:__ll. {3.25)

i 0 < < |, then the sum of the infinite geometric series is

54 Analysis of Algorithms

Sum of squares

En:fz n(n+l)6(2n+i}‘

]

Harmonic series

=lnn+v+0(H/n),

= |

"

HN = E

k=l

where Y=0.577.. is Euler’s constant.

Basic rules involving logarithms

logya = I

&b jog,b
| logpx
Og.X =

Ba log,a
bfﬂgbr =y

blnga.\' = xlaggh‘
Sum of logarithms

3 L logyi] = (n+ Dl logyn] — 28" 4 2= @(n log n).

Ful

Bounding a summation by an integraf

I f (x) is a monotonically increasing continuous function, then

xzh+l

Tris | fdr
| i=]

Stirling’s approximation

nt=\2mn [i} (1+0(1/n).

In particular, Stirling’s approximation implies that log,{(r {) = &(n log n).

{3.26)

(3.27)

{3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.23)

(3.34)

(3.35)

Bibliographic Notes and Further Reading 55

3.7 Summary

Niels Bohr once said that ‘it is very hard to predict; especiaily the future.” it is not thar
hard 1o predict the behavior of an algorithm, but it is far from being ecasy. The main
method we use is approximation. We ignore many details and atiemp! to extract only the
most important characteristics of the algorithm. The O notation is useful in that respect,
but we must never forget that it is only a first approximation. On the other hand, the
difficulty in analyzing algorithms should not deter the algorithen designer from
attemnpting this task. It is essential to get at least some indication of the efficiency of an
algorithm.

In many cases, especially when recursion is wsed, we get a recurrence relation.
The first thing we should do with a recurrence refation is to fook at the first fow terms,
This will give us some idea of the behavior of the relation, but it is by no means enough.
The first few terms help in making the first pass at guessing a solution. Another useful
step is to expand the recurrence several times, as we did in Section 3.5.2. Guessing and
verifying is a good technique for solving recurrence relations, but it is usually just a first
step. We must be careful not to ‘‘overguess’ — that is, to try an upper bound that is
correct, but too pessimistic. There are many other techniques. Fortunately, most
ajgorithms that appear in practice lead fo one of a very few classes of recurrence
rejations, most of which are described in this chapier. I is usuaily sufficient to assume, as
a first step, that # has a special form — in particular, that » is a power of 2,

Bibliographic Notes and Further Reading

The idea of asymplotic analysis was promoted in the early 1970's, and it was met with
some resistance. 11 3s by now the major measure for algorithm efficiency. There arc
several books — mainly on discrete mathematics and combinatorics — that cover
techniques for evaluating summations, recurrence relations, and other expressions needed
for analyzing algorithms. Brualdi {1977], Bavel [1982], Roberts {1984}, and Graham,
Knuth, and Patashnik [£989] are just a few cxamples. There are fewer books that are
devoted entirely to algorithm analysis. Knuth [1973a] provides 2 rich source of material.
Additional books and survey papers include Greene and Knuth [1982], Lucker {19803,
Purdom and Brown [19854], Fizjolet and Vitter [1987], and Hofri [1987].

Knuth [1976] discusses the relatives of the O notation. Additional techniques for
solving recurrence relations can be found in Lueker [1980], and Bentley, Haken, and
Saxe [1980]. (The latter contains the solutions to Exercises 3.23 and 3.24.) Tarjan
[£985] discusses amortized complexity, which is an eiegant method for analyzing the
running times of certain algorithms in a more precise way; if 3 certain part of the
algorithm is performed several times, each fime with a different running time, then,
instead of taking the worst case every time, we amortized the different costs. The
recurrence relation in Exercise 3.19 is from Manber [1986]). Exercise 3.21 is from
Purdom and Brown [1985a].

56 Analysis of Algorithms

Drill Exercises

3.1 Prove that, if P (n) is a polynomial in », then O (log (P (n))) = O (logn),
32 Provethat, if f{n)=0(g(n)} then £ (my=0 (g (m)}. Is the opposite true?
33 Prove, by using Theorem 3.1, that

nllogyn)’ = On'?).

3.4 Prove, by using Theorem 3.1, that for ali constanis g, b >0

(log,n)* = 0 n™.

3.5 Compare the following pairs of functions in terms of order of magnitude. In each case, say
whether £ (1) =0 (g (r)), f {(#}=L4g (n)), andfor f (n) =g (1)}.

Fum gim
a. 100n +logn n+{logn)?
b. logn logn?)

2

n P
c. Togn n (log n}
d. 1 kop "

(logn3 ogn

e. n” (logny
f. n2* 3¢

3.6 Solve the following recurrence relation. Give an exact selution.

Tim=Tn-D+n2 T(1)=1.

3.7 Solve the following recurrence relation. Give an exact solution,

Tim)=8Tn -1y~ i15T{n -2y, T(N=t; T(Y=4.

3.8 Prove that T{n), which is defined by the recurrence relation
Tin)=2T(}n/2) Y+ 2ntogyn, T(2}=4,
satisfies T (n)y= O {n togin).

3.9 The following recurrence relation describes the runsing time of a recursive atgorithm for
matrix multiplication {(Pan £978]. What is the asymptotic running time of this algorithm?

Creative Exercises 587

Tin)y= 1436407 (110 + Oy, T(h)=1.

3.10 Find the mistake in the following analysis. Let A be an aigorithm that works on complele
binary trees {namely, binary trees in which ali the leafs are at the same depth). Suppose that
A performs O{k} steps for each leaf in the tree, where % is a parameter that has to do with
the ameunt of information stored in the leafs {but is otherwise independent of the tree), and
constant time ¢ per each internal node. We claim that the 1otal running time of the
algorithm is O (k).

Wrong proof: The “‘proof’’ is by induction en n, the number of nodes in the tree. Hn =1,
then the total number of steps is obviously O (k). Assume that the claim is true for al}
complete binary trees with < # nodes, and consider a tree with # nodes. Such a tree consists
of a root and two subtrees, each of size (n — 1)/2. By the induction hypothesis, the running
time for the two subtrees is (k). Hence, the running time for the tree is (k) + O (ky+¢.
Bui this is egual 1o O (k}, and the proof is complete.

311 Solve the following full-history recurrence refation;
T(m=max {T(H,
where T{])=1.

312 Solve the following full-history recurrence relation:

L)
Tmy=n+ Y, T,

i=f
where T{I)=1.

313 Use (3.34) to prove that, for every positive integer &,

Zik = O{H'“E).
i=l

Lt
N

Use (3.34) to prove that, for every positive integer £,

Y. it togyi = 0(n** logn).

=]

(Creative Exercises

-

3.15 Find a counterexample to the following claim; f{ny=0(s{n)} and g(m)=0(r(n)) imply
that f (r)—g{r¥= O (s{n)~r(a).

3.16 Find a counterexample o the following claim: f{n}=0 (s{n)} and g{n)=0{ (n)} imply
that f (n3y/ g{ny=0(s(m)/ r(n)).

%
3.17 Find two functions f (#) and g {n}, both monotonically increasing, such that £ (n)» O {g{n)}
and g (n)= 0 (flr)).

&8 Analysis of Algorithms

L
=]

L
i

in

324

Consider the recurrence rejation
Timy=2Tw/2D+ 4, T(H=1.

We try to prove that T(n)=0{nr) {we limit our attention to powers of 2). We guess that
T{ny<cn for some (as yet unknown) constant ¢, and substitute ¢n in the expression (see
Section 3.5.1). We have to show that cn 2 2¢ (n/2)+ 1. But this is clearly not true. Find the
cotrect solugion of this recustence (you can assume that # is a power of 2), and explain why
this attempt failed,

Find the asymptotic behavior of § (#), which satisfies the following recurrence relation:
S(mn)Semiog,mSin)+ O{mn), S(=1,
where m and ¢ are constant parameters. {The solution should be a function of n, m, and ¢.)
Prove that the asymptetic selution for the recurtence relation
FTimy=2T(n-c)+k,
where both ¢ and & are integer constants, is T(n)= 0 {d"} for some constans 4.

The foilowing recusrence relation appears in divide-and-conguer algorithms in which the
problem is divided into unegual size parts:

‘
T =Y aTwnib)+cn

All the g5 and ;s are constants, and they satisfy

&
HR Za{-)'b,- >0,

ff

Fird the asymptotic behavior of this recusrence relation (by guessing and verifying}.

Solve the following two recurrence redations. It is sufficient to find the asymptotic behavior
of T ().

2 T(n)=4TH\f;U+Z; T(2)=1.

b, T¢ny=2T H\I:Tn w20 T =1
(Hint: Substitute another variable for n.)

Prove that the solution of the recurrence relation
Ty =kTin/2y+ f(m), Titi=c

is
Ty =n"(c+g()+g@) + - +g(n)),

where g () is defined as £ (m)/m' ™. You can assume that # is a power of 2. (This is a

more general sofution than the one given in Section 3.5.2, since it applies 10 any function
Fiy

Prove that the selution of the recurrence rekation

328

3.26

327

328

330

i3

Creative Exercises 59

Ty=kTinid)+ f(n), T{hH=c¢,
is
T =n" (¢ +g{dy+ g @)+ - +g@)),

k ‘
®*. You can assume that is a power of d.

where g {m) is defined asf{m)fmm

Find the asymptetic behavior of the function ¥'{(n) defined by the recurrence relation
Tm=T@D+T{) +n Ty=1, TQ)=2.

You can consider enly values of n that are powers of 2.

Find the asympiotic behavior of the function T (#) defined by the recurrence relation
T) =T 2D+vn, T(H=1.

You can consider only values of »n that are powers of 2,

Find the asymptotic behavior of the function T (#) defined by the recurrence relation

H
logq s

T(n)=T(n12}+T“ H +n{n>d, Tiii=t, T()=2

You can consider only vaiues of # that are powers of 2.

Find the solution of the following recurrence relation. It is sufficient to find the asymptotic
behavier of T{n}. You should give convincing evidence that the function f{#} you find
satisfies £ {m) =T (n)).

Tin) = ZTH d
log,#

Although in general i is sufficient to evaluate recurrence relations only for powers of 2, that
is not always the case. Consider the following refation:

TiniD+1 if 7 is even
T =4 2P (n-1y2) ifnis odd,

} + 3 (n>2), T=], T(=2.

with T (H=1.
a. Prove that the selution of this recurrence for powess of 2 is T(2*}=# + 1 (namely, for
powers of 2, T (n}= O (leg n)}.

b. Show that, for an infinite number of values of n, T{n)=Ln). Discuss why the usual
assumpticn about the relative behavior for powers of 2 and ronpowers of 2 breaks down
for this recusrence,

Use {3.34) to prove that
§(ny= 3 Noga(n/i]
f=E

satisfies S(ny=0{n).

Compute the following sum precisely:

60 Analysis of Algorithms

Ld

s = Y [loga(n/i)].

faf
You can assusne that # is a power of 2,

3.32 The Fibonacci numbers F(n) can be extended to negative values of n using the same
definition: F{(n+D=F(n+ 1}+F{n}, and F(l)=1, FO}=0 (e.g., Fl-)=1t, F(-2)=—1,
and so on). Let G(n) be defined as F{-n). Write a recwrence relation for G (r), and
suggest a way to solve it.

333 Prove that G ()= (~1)"" F (n).

CHAPTER 4

A BRIEF INTRODUCTION TO
DATA STRUCTURES

Seience is nothing but trained and organized common sense.
T.H. Huxley, 1878

I hare invellectuals; they are from the top down;
{ am from the bottom up.

Frank Lloyd Wright {1869-195%;

4.1 Introduction

Data structures are the building blocks of computer aigorithms. A design of an algorithm
is jike a design of a building. One has to put alj the rooms together in a way that is the
most effective for the intended use of the building. To do that, it is not enough to know
about functionality, efficiency, form, and beauty. One needs a thorough knowledge of
construction techniques. Putting a room in midair may achieve the desired effect, but it
is not possible. Other ideas may be possible, but too expensive. In the same way, a
design of an algorithm must be based on a thorough understanding of data structure
techniques and costs.

in thix short chapter, we review only the basic data structures used throughout the
book. We do not intend this chapter 1o provide a comprehensive treatment of data
structures, That would require (at least) a whole book, and indeed, there are many
excetlent such books. We expect that most readers have already studied data structures
in some depth. This chapter is intended mostly for quick review.

62 Data Structares

A wvseful notion in the study of data structures is that of an abstract data type.
Normally, when we write a program, we have to specify the data type (e.g., integers,
reals, characters). But, in some cases, the data type is not important for the design of the
algorithm, For example, we may want to maintain a first-in first-out {(FIFO) quene of
items. The required operations are insertions of items into the queue, and removals of
itemns from the queue. In case of removals, the items must be removed in the same order
in which they were inserted. [t is more convenient and more general to design the
algorithms for these operations without specifying the data type of the items. We specify
onty the required operations. We call the abstract data type that supporis these operations
a FIFO queue. The most important part of an abstract data type is a list of operations that
we want to support. Another example of an abstract data type is a queue in which the
items have priorities. The removals are not according to the order of insertions, but
according to the priotrities. That is, the first item to be removed in each step is the item of
highest priority among the items in the queue. This abstract data type is called a priority
queue, Again, we do not specify the data type of the items. (In this case, we do not even
have to specify the data type of the priorities; we need only to assume that the priorities
are totally ordered and that we can determine that order.}

By concentrating on the operational nature of 2 data structure, and not on a precise
mmplementation for a particular problern, we make the design more general. The
techniques for implementing a priority queue, for example, are for the most parn
independent of the exact data type. If we realize that our needs correspond to the
definition of the abstract data type, we can immediately use it. Abstract data types allow
us to rake the algorithm-design process more modular.

4.2 Elementary Data Structures

4.2.1 Elements

We use the notion of an element throughout this book as a generic name for an
unspecified data type. An element can be an integer, a set of integers, a file of text, or
another data structure. We use this term whenever the discussion is independent of the
type of data. Consider, for example, sorting algorithms. If the only steps the algorithm
takes are comparing elements and moving them around, then the same algorithm can be
used for sorting integers or names (strings of characters). The implementation {that is,
the program) may be slightly different, but the ideas are the same. Since we often
concentrate on the ideas rather than on the implementation, it is reasonable o ignore the
types of the elements.
The only assumptions we make about elements are the following;

b Elements can be compared for equality.

2. Elemenss are taken from a totally ordered set, and it is possible 1o tell whether one
element is “‘less than'® another. We usually are not concemed with the exact
definition of the relation “‘less than,” as lopg as it is a valid total order.

3. Elements can be copied.

4.2 Elementary Data Structures 63

All these operations are counted as taking one unit of time. Although the unit is relative
to the size of the actual elements, we usuvally will repard these operations as taking
constant time. Most of the time, it is easier to think of an element simply as an integer,
even though the algorithm may also work for more complicated structures.

4.2.2 Arrays

An array is a row of elements of the same type. The size of an array is the humber of
elements in that array, This size must be fixed. Since the size of the array is fixed, and
all the elements are of the same type, the amount of memory that should be allocated to
store the array is known a priori. For example, if the elements are names with 8
characters each, if each character requires | byte of storage, and if the size of the array is
100, then 80 bytes are required to store the array. The storage for an array is always
consecutive. If the first byte of the array is stored at location x in memory, then the kth
byte of the array is stored at location x+k— 1. Consequently, it is casy to compute the
starting location of the storage of cach element in the array. In our example, if the
starting location of the array is at 10000, then the 35th name starts at the 433rd byte,
which is stored at location 10432, assuming locations are numbered by bytes. (This
calculation can be easily modifted if jocations are numbered differently.)

Arrays are very efficient and very common data structures. Every element of an
array can be accessed in constant time. The algorithm designer who uses a high-level
language is rarely concemed with location calculations — they are done by the compiler.
As a rule of thumb, arrays should be used whenever possible. The main drawbacks for
using arrays are their restrictions. Arrays cannot be used to store elements of different
types {or sizes), and the size of an array cannot be changed dynamically. We deal with
these two restrictions in the following subsections,

4.2.3 Records

Records are similar to arrays, except that we do not assume that all elements are of the
same type. A record is thus a list of elements of different types. The exact combination
of types is fixed. Like that of an array, the storage size of a record is known in advance.
Each element in a record can be accessed in constant time. This is accomplished by
keeping an array with the same number of etements, such that for each element the array
contains its starting location. This array is needed only to enable a constant time access
to any record element. Such access is achieved by consulting the array for the location of
the element. The exact program that maintains the array is created automatically by the
compiler.

For example, a record may consist of 2 integers, 3 arrays of 20 integers each, 4
more integers, and 2 names each containing 12 characters. (Note that the 1wo array types
in the record are considered now to be efements by themsebves.) This record is defined in
Fig. 4.1. The array stored with the record contains the starting relative focations of all the
elements. Thus, if each integer is stored in 4 bytes, Int6, which is the ninth element in the
record, starts at byte number 261 (2-4+3-20-4+3-4+1). Since the sizes of all the
elements in the records are known, it is possible to compuse the location of each ¢lement

64 Data Structures

record examplel
hegin
Int] :integer ;
In2 :integer ;
Arl carray [1.20] of integer ;
Ar2 carray [1.20] of integer ;
Ar? array [1..20} of integer ;
fn3 ; integer !
Fatd : integer ;
Ints ; integer ;
Int6 : integer ;
Namel : array {1..12] of character ;
Namel @ array [1..12] of character
end

Figure 4.1 Definition of 2 record,

in constant time. Like that for arrays, the storage for a record is always consecutive;
sitnilarly, it is not possible to add elements dynamically.

4.2.4 Linked Lists

There are many applications in which the number of elements is changing dynamically as
the algorithm progresses. It is possible to define all the elements as arrays {or records)
large enough to ensure sufficient storage space. This is often a good schution, but, of
cousse, it is not very efficient to demand storage according to the worst case (and, in
rnanty cases, the worst case is unknown). Furthermore, there are cases where there is a
need for insertions and deletions in the middie of the list. If we use arrays and we need to
insert an element in the middle, we have to shift all other elements. This inefficiency is
inherent in the consccutive representation of arrays; thus, arbitrary insertions and
deletions are very costly for large arrays. For these cases we need dynamic data
structures. We use dynamic data structures extemsively throughout this book; a
familianty with them is essential.

Linked lists are the sirplest form of dynamic data structures. Suppose we have a
list of elements and we want to be able to insert new elements and to delete old elements
efficiently. The idea is to abandon the consecutive representation of arrays. Instead,
cach element is represented separately, and all efernents are connected through the use of
pointers. A pointer is simply a variable that holds as its value the address of another
element. A linked list is a list of pairs, each consisting of an efement and a pointer, such
that each pointer contains the address of the next pair. Each such pair is represented by a
record. A finked list can be scanned by following the addresses in the pointers. Such a
scan must be a linear scan. That is, it is not possible to access each element directly —
we must traverse the lst in order.

4.2 Elementary Data Structures 68

There are two major drawbacks to the linked-list representation. First, it requires
more space. There is one additional pointer per element. Second, if we want to look at
the 30th element, for example, we need to start at the beginning and look at 29 peinters,
one at a tme. With arrays, we could make a simple calculation and find the 30th element
directly. On the other hand, there is one major advantage to this representation. Suppose
that we find the 30th element and we now want to insert a new 31st element.! All we
need to do is to set the pointer associated with the new 31st element to the address of the
previous 31st element (this address is stored in the 30th pointer), and set the 30th pointer
to point to the new 31st element (see Fig. 4.2). Only two operations are required. With
arrays, all elements following the 30th element would need to be moved. A delete
operation 1s also simple. If we want to delete the 31st elernent, we simply set the 30th
pointer to point to the 32nd element, by copying the address stored at the 31st pointer
(see Fig. 4.3). Only two operations are required.

The discussion of insertions and deletions in linked lists has ignored several
tmportant details that tend to make the implementation of linked lists a little more
cotplicated. The main problem is how to detect the end of the list. Usually, a special

30th

LI H I 4 oo —{ [+ -

30th f

EplliEnllEy

HECES NG BE oieleloaE BE S HE S B

30th

LA A 3[4~ ocoo HV EallE

Figaure 4.3 Deleting an element from a Hnked Fst.

' The number system is consecutive in nature. It is thus confusing 1o tatk about the new 3ist and the old 3ist
element. We often uses 304" 10 denote an insertion after 30. This notation causes many problems. i we in-
serl again after the 30th, we may run out of nctation (302,7). This is a good example of the need for dynamic
data structures.

66 Data Structures

address, called nil, is provided, such that a nil pointer is a2 pointer to nowhere; it can be
used 1o indicate an end of a list. Another possibility is to introduce a regular record, but
to inchude in it a key that will guarantee that the search will end there. This additional
record, sometimes catled a dummy record, makes the program simpler, since there are
fewer special cases, Dummy records are useful for a variety of data structures.

4.3 Trees

The onby structure that arrays and linked lists can capture is the order of the elernents
they represent. There arc numerous applications that require more structure, Trees
represent hierarchical structures. They can alse serve as a more efficient data structure
for ceriain operations on linear structures. In this section, we will be concemned with onty
hierarchical trees, also known as rooted trees or arborescences. A reoted tree is a set of
elements, which we call nedes (or vertices), together with a set of edges that connect the
elements in a speciat way (see Fig. 4.4). One node is the root of the tree (the top of the
hierarchy). The root is connected to other nodes, which are at level 1 of the hierarchy;
they, in turn, are connected 10 nodes at level 2, and so on. All the connections are thus
between nodes and their direct unique ‘“supervisors’ {usually called parents after
genealogical trees). Only the root has no parent. The main property of trees is that they
do not have cycles. As a result, there is a unique path between any two nodes of a tree.

A node is connected to its parent and to several underlings (again, following the
geneatogical terminology, we will call the latter children). The maximal number of
children of any node in the tree is called the degree of the tree. We usually order the
children of every node, then identify them by their index in that order (the first, second,
and s0 on). In the special case of trees of degree 2, called binary trees, we identify the
children by Jeft {for first) and right (for second). A node with no children is called a leaf
(this time, the terminology comes from real trees). A node that is not a leaf is called an
internal node. The height of a tree is the maximal level of the tree, namely, the

Figure 4.4 A rooted tree.

4.3 Trees 67

maximal distance between the root and a leaf. Each node has a key, which comes from a
totatty ordered set (for example, a real pumber or an integer). We will interchangeably
refer to the key and the node as the same when no confusion can arise. For convenience,
we assume that we deal with unique keys. Otherwise, we can link together alt the
elements with the same key in a lnked lst and have one node with a pointer fo that list.
Each node wsually has a data field containing the data {or a pointer o the data) that is
associated with the node. The data field depends on the application, and we will
generakly not deal with it,

In this section, we concentrate on two uses of trees: search trees, and heaps. In
both cases, binary trees are used. We start with a discussion of the representation of trees
in memory.

4.3.1 Representation of Trees

There are two main representations of trees, an implicit representation and an explicit
representation. kn the explicit representation, the connection of one tree node to another
is done by a pointer. A node with & children is 4 record containing an array of & pointers.
{In some applications, a node also contains a peinter to its parent.) It is usually more
convenient to have al the nodes of the same type. Hence, all nodes have m pointers,
where m is the maximal number of children in the tree. Alternately, it is possible to
associate only two pointers per node in the following way. The first pointer points to the
first child, and the second pointer points 10 the next sibling. Figure 4.5 illustrates the two
representations of the same tree. The main drawback of the second representation is that,
to get hold of all the children of a node, we have to traverse a linked list,

No pointers are used in the implicit representation. An array is used to store atl the
nodes of the tree, and the connections are implied by the positions of the nodes in the
array. The most common way of implementing an implicit tree representation is the
following. Consider a binary tree T. The root of T is stored in 4 [1]. The left and right
children of the root are stored in A {2] and A {3}; the two children of the left child of the
root are stored in A [4] and A [3]; and so on, The array represents a traversal of the tree

Figure 4.5 Binary representation of a nonbinary tree.

68 Data Steuctures

from left to right, level by level. We can define the representation by induction: (1) The
root is stored at A [1] {the base case). (2) The left child of a node v that is stored in A [{}
is stored in A{2/}, and v's right child is stored in A[2i+1]. The advantage of this
representation is that no pointers are required, which saves storage. On the other hand, if
the tree is unbalanced, namely, if some leaves are much farther away from the root than
others are, then many nonexisting nodes must be represented. An unbalanced trec is
shown in Fig. 4.6; the numbers below each node indicate its position in the array. An
array of size 30 is needed to represent 8 nodes. The implicit representation thus may or
may not save storage, depending on the tree. Also, since arrays are used, dynamic
operations in the middle of the tree are costly. On the other hand, dynamic operations
can be reasonably supported if they are limited to nodes that correspond to the end of the

array.

4.3.2 Heaps
A heap is a binary tree whose keys satisfy the following heap property:

The key of every node is greater than or equal to the key of any of is
children.

By the transitivity taw, the heap property implies that the key of every node 1s greater
than or equal to the keys of all that node's descendants. Heaps are useful in
implementing a prierity queue, which is an abstract data type defined by the following
two operations:

Insert(x): insert a key x into the data structure.
Remove(): remove the largest key from the data structure.

Heaps can be implemented with either the explicit or the implicit tree representation. We
will use the implicit representation, since we can ensure that the heaps will be balanced.
We assume that the armay is A{l.k}, where & is an upper bound on the number of
elements the heap will ever contain (if an upper bound is not known, then a linked

30

Figure 4.6 Implicilt representation of an unbalanced ree.

4.3 Trees 69

representation: is required). Let n denote the current number of elements in the heap;
natnely, only the array A [1.#] is of interest at any moment. We now proceed to describe
how to implement insert and remove efficiently with the use of heaps.

We start with the Remove operation. By the heap property, the node with the
targest key in a heap is the root, A{l}. So, a Remove operation always removes the key
from the root. The problem is to restore the heap property after the key of the root has
been deleted. We now have an array A [2..n], which corresponds to two separate heaps.
We first take the leaf A [#], delete it, and put it in place of the root. That is, we let A1{]]
= A{n], and decrement the value of n by one. Denote the value of the new A (1] by x.
We still have two separate heaps phus a value on top, which may or may not satisfy the
heap property. (The only way for x to satisfy the heap property at this point is if the
whole path from the root to where x was coniained the value x.) To restore the heap
property, we now propagate x down the tree, until it reaches a subtree for which it is a
maximum. This is done by comparing x with the values of its two children (A {2] and
A 3]} and, if x is not the maximal among the three, by exchanging A [1} with the largest
of thern. Assuene that A (2] is the maximal. Then, A [2] is clearly the maximal key in the
whole heap, so it can be put i the root position. Furthermore, the subtree rooted at A [3]
rernains unchanged, and thus it also satisfies the heap property. We have 10 worry only
about the subtree rooted at A{2} (because now it has x in its root). But now we can
continue inductively in the same way. Assume that we continue for § steps, and that the
key x is now at A{j]. Only the tree rooted at A [/} may not satisfy the heap property. We
again compare x to its two new children, A{27] and A[2j+1] (if they exist), and
exchange if x is not the maximal. The algorithm terminates either when x becomes the
maximal of 2 subtree, or when it reaches a leaf. The maximal number of comparisons
required for a deletion is 2| logyn], which is twice the height of the tree. The algorithm
for removing a maximum element from a heap is given in Fig. 4.7.

An fnsert operation is simitar. We first increment # by one, and insert the new key
a5 the new leaf A {n]. We then compare the new leaf with s parent, and exchange if the
new leaf is larger than its parent. At this point, the new key is the maximal of its subtree
(since the parent was the maximal and it was found 1o be larger). We assume,
inductively, that the tree rooted at A [j] (initially A [r]) satisfies the heap condition, and
that if we remove this tree the rest of the heap satisfies the heap property. We continse
this process, promoting the new key up the tree, untif the new key is not farger than its
parent (or until it reaches the root). At this point, the whole tree is a valid heap. The
maximal nurnber of comparisons required for an insertion is | log,n |, which is the height
of the tree. The algorithm for inserting an element into a heap is given in Fig. 4.8.

Overall, we can perform any sequence of Insert and Remove operations in time
O (log) per operation. On the other hand, it is not possible to perform other operations
efficiently with a heap. For example, if we want to search for a given key, the hierarchy
given by the heap is not useful. A Heap is a good example of an implementation of an
abstract data type. A heap supports a limited number of specific operations very
efficiently. Whenever we need these particular operations, we can impose the heap
structure on the data whatever its type is.

70 Data Structures

Algorithm Remove_Max_from_Heap (A. n) ;

Input: A (an array of size » representing a heap).

Output: Top_of the_Heap (the maximal clement of the heap), A (the new
heap}, and # (the new size of the heap; if # = 0, then the heap is empty).

begin
if n =0 then print "the heap is empty”
else
Top_of the_Heap := Al1];
Alll:=An]:
n=n-t;
parent 1= 1 ;
child := 2 ;
while child<n - | de
if Afchild] < Afchild+{] then
child := child + I ;
if Afckild] > Alparent] then
swap{Afparent], Afchild]) ;
parent ;= child ;
child '= 2%child ;
else child := n { to stop the loop }
end

Figure 4.7 Algorithm Remove_Max_from_Heap.

Algorithm Insert_to_Heap (A, n, x) ;
Inpui: A (an array of size n representing a heap), and x (a number).
QOutput: A (the new heap), and 1 (the new size of the heap}.

begin
no=n+ 1 { we assume that the array does not overflow }
Aln] s=x
chitd .= n ;

parent = ndiv2;
while parent 2 | do
if Afparent] < Afchild] then
swap(Afparent], Afchild}]} ; { see also Exercise 4.6 }
child ;= parent ;
parent ;= parent div 2 ;
else parent := ¢ { 10 stop the loop }
end

Figure 4.8 Algorithm /nsert_to_Heap.

43 Trees 71

4.3.3 Binary Search Trees
Binary search trees implement efficiently the following operations:

searchix): find the key x in the data structure, or determine that x is not
there (for simplicity, we will assume that each key appears at most once).

insert(x}: insert the key x into the data structure (unless it is afready there).
delete(x}: delete the key x from the data structure if it is there.

Abstract data types that handle these three operations are called dictionaries. Binary
search trees implement dictionaries efficiently, as well as other more complicated
operations. We will use the explicit representation of trees in this section, since dynamic
insertions and deletions are important parts of binary search trees. We do not want to
Hmit ourselves to a given upper bound for the number of clements. We assume that cach
node in the tree is a record containing at least three fields: key, left, and right, such that
key holds the key assoctated with the node, and lefr and right are pointers to other nodes
{or to nil). Binary search trees are more complicated than heaps, because in heaps only
leaves are added or removed and keys exchanged, whereas in binary search trees, any
node may be removed and the pointers may be manipulated in many other ways. For
simplicity, we assume that all keys are distinct.

Search

As its name suggests, a search tree is a structure to facilitate searching. The structure
becomnes clear once the search procedure is understood. Assume that we have a key x
and we want 1o know whether 1t is currently a key of a node in the tree, and if it is, we
want to find that node. This operation is called a search. We first compare x against the
root of the tree, whose value is, say, r. i x=r, then we are done. If x <r, then we
continue the search from the left child; otherwise, we continue the search from the right
child. Each key in the search tree serves to divide the range of the keys below it the
keys in the left subtree are all smatler than it, and the keys in the right subtree are all
greater than it. This rule defines search trees. We say that the tree is consistent if all the
keys satisfy this condition. A simple recursive program for searching in a binary search
tree is presented in Fig. 4.9

Insertion

Insertions into binary search trees are also quite simple. Given a key x to insert, a search
for x is performed first. If x is already in the tree, then it will be found and the insertion
will be aborted. (We assume that we do not want several nodes with the same key.)
Otherwise, the search ends (unsuccessfully} at a lzaf. A node containing the new key can
then be inserted below that leaf (as either a right child or a left child, depending on the
vilue of x}. The tree remains consistent, since subsequent searches for x will get to the
same leaf and through it to the new node. The sgarch program muast be changed slighily
so that we find the leaf. We use this opportunity to write a nonrecursive search program,
which is given in Fig. 4.10.

72 Data Structures

Algorithm BST_Search {root, x) ;

Input: root (a pointer to a root of a binary search tree), and x (a number).

Output: node (a pointer to the node containing the key x, or sl if no such
node exists).

begin
if root = nil or root"key = x then node := root
{ root” is the record that the pointer root is pointing to. }
else
if x < root"key then BST Searchiroot”left, x)
else BST Searchiroot’right, x)
end

Figure 4.9 Algorithim BST search.

Algorithm BST Insert (root, x) ;

Input: root (a pointer to a root of a binary search tree), and x {a number).

Qutput: The tree is changed by inserting a node with the key x pointed to by
the pointer chifd; if there is already a node with key x, then child = nil,

begin
if root = nil then
create a new node pointed to by child ;

roor := child ;
root"key ;= x
else

node := root ;
child ;= root ; | to injtiglize it so that it is not nil }
while node # nil and child # nil do
if node " key = x then child := nil
else
parent '= node ;
if x < node " key then node := node " left
else node = node”.right ;
if child # nil then
create a new node pointed to by child ;
child key .= x ;
child"feft := nil ; childright ;= nil ;
if x < parent”key then parent'left := child
else parent”.right >= child
end

Figure 4.10 Algorithm BST insert.

4.3 Trees 73

PDeletion

Deletions are generally more complicated. It is easy to delete a leaf: we need only to
change the pointer to it to be nil. {t is also not hard to delete a node that has only one
child; the pointer to the node is changed to point to its child. However, if the node we
want to delete has two children, then we need to find a place for the two pointers, Let 8
be a node with two children whose key we want to delete (see Fig. 4.11). In the first step,
we exchange the key of B with a key of another node X, such that (1) X has at most one
child, and (2) deleting X (after the exchange) will leave the tree consistent. In the second
step, we delete X, which now has the key of B which we wanted to delete. We can easily
delete X, because it has at most one child. To preserve the consistency of the tree, the
key of X must be at least as large as all the keys in the left subtree of B, and must be
smatler than all the keys in the right subtree of B. Notice that the key of X in Fig. 4.11
satisfies these constraints: it is the largest among the keys in the left subtree of B. X is
called the predecessor of B in the tree. X canpot have a right child, since otherwise i
would not have the largest key in that subtree. The deletion algorithm is presented in Fig,
4,12

Complexity The running times of search, insert, and delete depend on the shape of
the tree and the location of the relevant node. [n the worst case, the search path would
take us all the way to the bottom. All the other steps in the algorithms require only
constant time (e.g., the actual insertion, the exchange of keys in the deletion). So, the
worst-case running time is the maximal length of a path from the root to a leaf, which is
the height of the tree. If the tree is reasonably balanced (we will define balance shortly),
then its height is approximately logyn, where n is the number of nodes in the tree. Al the
operations are cfficient in this case. If the tree is unbalanced, then these operations are
much less efficient.

If the keys are inserted into a binary search tree in a random order, then the
expected height of the tree is O (log n) — more precisely, 2/n n. In this case, the search
and insert operations are efficient. In the worst case, however, the height of the tree can
be 1 {(when the tree is a simple linked list). Trees with long paths can result, for example,
from insertions in a sorted, or close 1o sorted, order. Also, deletions may cause problems
even i they occur in a random order. The main reason for that is the asymmetry of
always using the predecessor to replace a deleted node. If there are frequent deletions,

X

Figure 4,11 Deleting a node with two children.

74 Data Structures

Algorithm BST_Delete (root, x} ;
Input: root (a pointer to & root of a binary search tree), and x (a number).
Output: The tree is changed by deleting a node with the key x, if it exists.

[We assume that the root is never deleted, and that all keys are distinet

begin
node ;= root ;
while node # nil and node” key ¥ x do
parent ;= nade |
if x < node” key then node = node” left
else node := node"right ;
if node = nil then print{"x is not in the tree”) ; halr ;
if node # root then
if node’ left = nil then
if x < parent"key then
parent”left ;= node right
else parent”.right ;= node " right
else if node’ right = nil then
if x s parent” key then
parent”left i= node” left
else parent” right := node” left
else {the two children case }
nodel = node’left ;
parent! = node ;
while nodel " right # nil do
parent! := nodel ;
nodel := nodel “right ;
{ now comes the actual deletion }
parent! “right ;= nodel " left ;
node " key := nodel " key
end

Figure 4.12 Algorithm BST _delete.

followed by insertions, the tree may have a height ofO{\er), even for random insertions
and deletions. This asymmetry can be avoided if, instead of always choosing the
predecessor of the deleted node, we alternate hetween the predecessor and the successor
{which is a smallest key in the right subtree). Fortunately, there are ways to prevent the

creation of long paths in binary search trees. We describe one such method in the next
SECtion.

4.3 Trees 75

4.3.4 AVL Trees

AVL trees (named after Adel'son-Vel'skii and Landis [1962]) were the first data
structures to guarantee O {loga) running time for search, insert, and delete in the worst
case (n is the number of elements). The main idea in AVL trees {and in most other tree
structures that achieve logarithmic bounds) is to spend additional time when inserting and
deleting to balance the tree, such that the height of the tree is always bounded by
O(logn). The time devoted to balancing must not exceed O (logn), or else insertions
and deletions will be too expensive. The idea is to define balance in such a way that it is
¢asy to maintain.

Definition: An AVL trec is a binary search tree such that, for every node,
the difference between the heights of its left and right subtrees 15 at most |
(the height of an empty tree is defined as 0).

This definition guarantices a maximal height of O {logn), as is shown in the next theorem.

3 Theorem 4.1

The height h of an AVL tree with n internal nodes satisfies
h < 14404 logy(n +2)-0.328.

Proof: Left as an exercise. £

This theorem implies that search in an AVL tree requires O (logn) comparisons. The
problem is how to perform insertions and deletions and still to maintain the AVL
property. We start with insertions; again, we assume that all the keys are distinct.

Let x be a new key that we wish (o insert into an AVL tree. First, we insert x at the
bettom of the tree in the usual way. If, after the insertion, the tree remains an AVL tree,
then we are done. Otherwise, we need to rebalance the tree. There are four possibilties
— two of them are ilbustrated in Fig. 4.13; the other two are symmetric {to the right).

In part (a) of Fig. 4.13, the new node was inserted into the left subtree, making the
height of B equal to & +2, whereas the height of C is A, To remedy this unbalance, we
perform a rotation: We move 8 to the top and change the rest of the tree according to the
binary search property (Fig. 4.14). The height of the new subtree, rooted at 8, is now
h+2, which is the same as the height of the original subtree before the insertion. As a
result, no more balancing is required. This rotation is called a single rotation. It will not
help in part (b) of Fig. 4.13; a double rotation is required (Fig. 4.15). Again, the new
subtree has the same height as the original one, so no more balancing is required. Ap
important property of AVL trees is that one rotation {single or double} is always
sufficient after an insertion. We omit the proof.

The node A in both examples is called the critical node. [t is the root of the
smallest subtree that becomes a non-AVL subtree as a result of the insertion. To perform
the insertion, we have to find the ctitical node and to determine which of the cases is
involved. We maintain in each node a balance factor, which is equal to the difference
between the heights of the left and right subtrees of this node. For AVL trees, the

76 Data Structares

new rew
{a} {h}

Figure 4,13 Insertions that invalidate the AYL property.

batance factor of each node is I, —1, or 0. Ap insertion into a sublree requires
rebalancing if the balance factor was either 1 or —1, and the insertion increases the height
of a subtree in the “‘wrong’" direction. That implies that the critical node must have a
nonzere balance factor. Morecover, if a lower node has a nonzero balance factor, then,
after balancing, the heights from that node will be the same as they were before the

fa) {h)

Figure 4.14 A single rosation: (a) Before. (b) After.

4.3 Trees 77

{a) (b}

Figure 4,18 A double rotation: {(a) Before. (b} After.

insertion (recall that the balancing retains the old heights from the critical node). Hence,
the critical node is the lowest ancestor of the new node with nonzero balance factor. On
the way down the tree, we look at the balance factors, remembering the last nonzero one.
When we reach the teaf, we can easily determine whether we insert to the *'right”” or
“wrong'' direction. We then make another pass (either bottom up or top down -
preferably bottom up, since that uswally involves less nodes), readjust the balance factors,
and perform 3 rotation if necessary. We omit the details.

Deletions are, as usual, more complicated. It is no longer true that the tree can be
rebalanced with only one single or double rotation after a deletion. There are cases
where O (logn} rotations are required, where n is the number of nodes in the tree.
Fortunately, each rotation requires only constant number of steps: thus, the worst-case
running time of a deletion is still O (log n). Again, we omit the details.

Comments AVL trees form an efficient data structure. They perform well in the
worst case, requiring at most 45% more comparisons than optimal trees, and even better
in the average case. Empirical studies have shown the average search time to be
approximately logyn +0.25 comparisons (see Knuth [1973], pp. 460]). The main
disadvantages of AVL trees are the need for extra storage for the balance factors, and the
fact that the program that implements them is rather complicated. Many other schemes
for balanced-search trees have been proposed, including 2-3 trees, B-trees, weight-
balance trees, and red-black trees.

78 Data Structures

4.4 Hashing

Hashing is one of the most {if not the most) useful data structures for computer
algorithms. Hashing is used mainly for insertions and searches, and some variations of it
can also be used for deletions. The idea behind hashing is simple. Designing a data
structure for storing data with keys numbered from | to 1 is easy: The data can be stored
in an array of size n, such that key 1 is stored at location /. Any key can thus be accessed
immediately. If there are # unigue keys in the range | to 2n, for example, then it is stiil
usually best to store them in an array of size 2n, even though the storage utilization is
now enly 50 percent. The access is so efficient that it is usually worth the extra space.
However, f the keys are integers, say, in the range | to M, where M is the maximal
integer that can be represented in the particular computer, we cannot afford to allocate
space of size M. For example, if there are 250 students identified by their social-security
number, we will not atlocate an array of size 1 billion to store information about them
(there are | billion possible social-security numbers). Instead, we can use the last three
digits of the numbers, in which case we need only an array of size 1000. This is not a
foolproof methed. There may be students with the same last three digits {in fact, with
250 students, the probability of that is quite high). We will show how to handle such
dupticates shortly. We can also use the last four digits, or the 1ast three digits and the first
letter of the student’s name, to minimize duplicates even further. However, using more
digits requires a larger-size table and results in a smaller utitization.

We assume that we are given a set of n keys taken from a large set U of size M,
such that M is much larger than n. We want to store the keys in a 1able of size m, such
that »1 is not much targer than n. The idea is to use a function, called a hash function, to
map the keys, which are in the range 1 to M, to new keys in the range 1 to m, so we can
stor¢ everything in an array of size m. Taking the tast three digits of a large integer is
such a function. It maps a large set U of size 1 billion 1o a set of size 1000. Each
possible key is thus given a place (index) in a table of size m. We will attempt to store
the key in that particular place in the table. If the function is easy to compute, then
accessing the key is also casy. However, since the set U is large and the table is small,
no matter what function we use, many keys wilt be mapped into the same place in the
table. When two keys are mapped to the same location in the table, we call it a collision.
We are thus faced with two problems: (1) finding a hash function that minimizes the
likelihood of collisions, and (2) handling collisions.

Even though the set U is much larger than the size of the table, the actual set of
keys we handle is usually not too large. A good hash function should map the keys
uniformly in the table. Of course, no hash function can map all possible sets of keys
without collisions. If the size of U is M and the size of the hash table is m, then there
must be at least M/m keys that are mapped into the same place. If the mapping is
uniform, each location will have approximately M/m keys mapped into it. Hash
functions should transform a set of keys uniformly to a set of random locations in the
range | to m. The uniformity and randomness are the essence in hashing, For example,
instead of taking the fast three digits of the social-security number, we could take the last
three digits of the student’s year of birth. It is clear that this is an inferior hash function,

4.4 Hashing 79

since it is much more likely that many students were born in the same year than it is that
many studenes have the same last three digits of the social-security number.

Hash Functions

We assume that the keys are integers, and that the size of the hash table is m. A simple
and effective hash function is 4 (x) = x mod m, where m is a prime number. If the size of
the table cannot be adjusted easily to be a prime (it is convenient sometimes to have a
size that is a power of 2, for example), then the following hash function can be used:
k(x) = {x mod p Ymod m, where p is a prime, and p >m (p should be sufficiently larger
than m to be effective, but it should also be sufficiently smaller than |/).

As we have already mentioned, no hash function can be good for all inputs. Using
primes as described is fairly safe, since most data in practice have no structure related to
prime rumbers. On the other hand, it is always possible (although unlikely} that, in a
certain application, one will want to store results of some experiments made on integers
all of which are of the form r + &p for a constant r. Al these numbers of course will have
the same hash values if p is used as described. We can take the idea of scrambling data
with hashing one step further, and use a random procedure to select a hash function! For
example, the prime p can be selected at random from a list of primes in the appropriate
range. Finding a large list of primes, however, is not easy. Another possibility is the
following: At random, select two numbers ¢ and b, such that @, b < p, and ¢ 20, and let
h{x}=|ax+bmodp|mod m. This function is more complicated to compute than the
previous one is, but it has the advantage that it is very good on the average for all inputs.
Of course, the same hash function must be used for all accesses to the same table. In
many cases, however, there is a need for many independent tables, or tables that are
created and destroyed frequently. In those cases, a different hash function can be used
every time a different table is created. The random hash functions described above have
certain other desirable properties.

Handling Collisions

The simplest way to handle collisions is 1o use a method called separate chaining. Each
entry in the hash table serves as a head of a linked kst containing all the keys that are
hashed into that entry. To access a key, we hash it and then perform hnear search on the
appropriate linked list. A new key can be inserted into the beginning of the kst (but the
list must be searched to ensure that the key is not a duphlicate). A search may be
inefficient if some Hsts are long. The lists will be long if the size of the table is small
compared to the actual number of keys or if the hash function is bad. Thus, hashing is
not a good dynamic structure. | is imporiant to have a good estimate on the number of
keys, The main problem with separate chaining is that it requires dynamic memory
allocation and more space for the pointers (even if the number of keys is pot (oo large,
and the pointers are not used). On the other hand, if for some reason the estimate of the
appropriaste table size is wrong, scparate hashing will still work, whereas other static
methods will fail.

Another simple method is linear probing. The size of the table is fixed, and there
are no pointers. The hash function determines the place of the key in the table. If that

80 Data Structures

place ts already occupied, that is, if a collision occurs, then the first empty place after it is
saken instead. A search for the key follows the same procedure. (The table is considered
in a cyclic order; if the last place is reached and it is full, then the first place is considered
next.) An unsuccessful search thus ends at the first empty place. When the table is
relatively empty, this simple method works well. If the table is relatively full, there will
be many secondary collisions, which are collisions that are caused by keys with different
hash values. We cannot avoid collisions with keys that have the same hash function,
because such keys are mapped into the same place. We should, however, try to minimize
secondary cotisions. Let’s look at an example. Suppose that the ith place is full and that
the {i + |)th place is empty. A new key, which is mapped to /, will cause a collision, and
will be inserted into {+ 1. This case i1s efficient, since the collision is resolved with
minimal effort. However, if a new key is now mapped to / + 1, there will be a secondary
collision and i +2 will become full (if it is not full already). Any new key mapped to/, to
i+1, or to i +2 will not only encounter secondary collisions, but will also increase the
size of the full segment, causing more secondary collisions later. This effect is called
clustering. When the table is almost full, the number of secondary collisions with linear
probing will be very high, and the search will degrade to linear search,

Deletions cannot be implemented efficiently with linear probing. K an insertion
*‘passes’’ through a key on its way to an empty slot, and if that key is later deleted, then a
future search will be unsuccessful, since it will stop in the new empty stot. If deletions
are required, we must have a collision-resolution scheme using pointers.

The clustering effect can be reduced with double hashing. When a coflision
occurs, a second hash value fi{x} is computed. Instead of searching in 2 linear order,
namely, i + 1, i +2, and so on, we search the places § +h,{x), { +2k,{x}, and s0 on {alt in
a cyclic order). When another key y is mapped to, say, i + h;{x}, the next attempt will be
at [+ hy(x)+ho(y), instead of at i+2h,(x). If h(x) bs independent of h,(y}, then
clustering is eliminated. We must be careful, however, 1o choose the second hash value
such that the sequence i +hy(x), { +2/5(x}..., | +Hh3(x) spans the whole table (which
will happen if the numbers i5(x) and # are relatively prime).

The main disadvantage of double hashing is that it reguires more computation
{namely, the selection of a second hash value) for the search. One way to save extra
computation is to select a second hash value that is not completely independent of the
first hash vatue, but that still reduces clustering. One such method is to set A,(x) = 1 if
By(x)=0, and hy(x) = m~h,(x) otherwise {we assume that m is prime and that
fy(x) = x mod m).

4.5 The Union-Find Problem

The union-find probtem (also known as the equivalence problem) is a good example of
the use of nonstraightforward data structures to improve the efficiency of algorithms.
The problem is the following, There are » elements x4, x5, ..., x,. The elements are
divided inte groups. Initially, each element is in a group by itself. There are two kinds
of operations performed on the elements and the groups in an arbitrary order:

4.5 The Union-Find Problem 81

find ¢/): returns the name of the group that contains x;

union {4, B): combines group A with group B to form a new group with a
unigue name (any name distinct from the other names will do).

The goal is to design a data structure that will support any sequence of these two
operations as efficiently as possible.

Since all the elements are known ahead of time (and they are indexed from 1 to n},
it is possible to allocate an array X|[l.#n] for them. The straightforward method of
solving the problem is to store the identity of the group containing the ith clement in
X#]. A find operation is thus trivial — we simply lock at the array. A union operation
takes more time. Assume that union(A, B) results in a combined group called 4. Then, it
is necessary to change all the entries containing B to A,

We now present a different approach to this problem. Instead of making the find
operation simple, we make the union operation simple. We use indirect addressing.
Each entry in the array is a record with the identity of the clement and a pointer to
another record. Initially all pointers are mil. We perform the operation union(4, B) by
changing the pointer in the record for B to point to the record containing A4, or vice versa
{we will discuss this choice shortly). After several unions, the data structure is a set of
trees as in Fig. 416, Each tree comresponds to a group, and each node corsesponds to an
element. The element at the root of each tree serves as the name of the group. To find the
group that contains element ¢, we follow the path from G's pointer until we reach the
root, which is a record whese pointer is nil. This process is similar to someone changing
addresses — instead of notifying everyone, it is simpler to leave a forwarding address.
Of course, finding the right address is more difficult now, namely, the find operations are
less efficient. They are especially inefficient if the union operations form talf trees,

The idea behind the efficient union-find data structure is to balance and collapse
the trees. We have already seen that it is worthwhile to expend additional effort to
batance the data structure. Consider union{A, B} in Fig. 4.16. We have two possibilities.
We can set 8's pointer to point to A, or we can set A's pointer 10 point to B. Tt is clear
that the first option leads to a more balanced tree. This idea is formalized in the

A nif B il E nil

Figure 4,16 The representation for the union-find problem.

82 Data Structures

following way. We store with each record that corresponds to a root not only the name
of the group, but also the number of elements in it

Balancing: when a union operation is performed, the pointer of the smaller
group is set to point to the record of the larger group (ties are broken
arbitrarily). The size of the combined group is also computed and placed in
the appropriate field in the root,

If the union operation utilizes balancing, then the height of the irees is never more than
log,n, as is shown in the following theorem.

] Theorem 4.2

If balancing is used, then any tree of height b must contain ar least 24
elements.

Proof: The proof is by induction on the number of union operations. The theorem
is clearly true for the first union, which results in a tree of height 1 with two elements.
Consider union(4, B), and assume that 4 is the larger group, so that B will point to A.
Denote by A(A} and h{B)} the heights of the trees corresponding to groups 4 and B,
respectively. The height of the combined tree 1s the maximum of h{A) and h(B}+ 1. If
h{A) is larger, then the combined tree has the same height as A's wee with even more
elements; hence, the theorem obviously holds. Otherwise, the combined tree has at least
twice as many elements as B’s tree (since B was assumed to be smaller than A), and its
height is one more than 8's original height. Again, the theorem is satisfied. 1

Theoremn 4.2 implies that a find operation never follows more than log,n pointers. A
union operation always take constant time. Consequently, any sequence of m either find
or utsion operations, such that m 2 #, takes at most O (m log n) steps.

It is possible to improve the cfficiency of the union-find data structure with the
following idea. Consider again the mail-forwarding analogy. If several changes of
addresses occur, then the mail wilt go from one address to another until it reaches the
final destination. At that point, it would be a good idea to notify all the forwarding
stations about the final destination, so that they can forward the mail directly, After we
traverse the pointers from a record 1o the root of its tree, we change those pointers on the
path to point directly to the root (see Fig. 4.17). This is called path compression.
Traversing the path again only doubles the number of steps; therefore, the asymptotic
time complexity of a find operation remains the same, We can use path compression
every time a find operation is performed. The following theorem, which we will not
prove, gives a good bound on the worst case complexity,

1 Theorem 4.3

If both balancing and path compression are used, then the total number of
steps in the worst case for any sequence of m 2 n operations {either find or
union} is O (mlog'n), where tog'n is the iterated logarithm function,
defined helow, £l

4.6 Graphs 83

—

(aj (h}
Figure 4.37 Path compression: {a) Before. {b) After.

The function log n is defined recursively as follows. log"1 = log"2 = 1. For any # > 2,
tog"n = 1 +log"(logzn']). For example, tog" 4 = 1 +1og"2=2,log" 14 =1 +log 4 =3, and
log 60000 = 1+log 16 = 4. For any number n, such that n £2%%¢, which covers
virtually all practical purposes, we have log n £5. Thus, the complexity of any sequence
of unions and finds is almost linear {and is linear in practice). Notice that one particular
find operation may still require G{logn) steps, but, overall, O(»n) of them require
O(nlog n) steps. This is an excellent example of amortized analysis, which involves
counting all steps iogether rather than bounding each step separatcly. Whether it is
possible to design a linear tirme atgorithm for this problem is still an open problem.

4.6 Graphs

We devote a whole chapter {Chapter 7) to graph algorithms. In this section, we discuss
the data structures used 1o represent graphs. A graph G =(V, E) consists of a set V of
vertices (also called nodes), and a set £ of edges. Each edge corresponds to a pair of
vertices, The edges represent refationships among the vertices, For example, the graph
may represent a set of people, and the edges may connect any two persons who know
cach other. A graph can be directed, or undirected. The edges in a directed graph are
ordered pairs — the order between the two vertices the edge connects is inportant. In
this case we specify an edge as an arrow pointing from one vertex (the tail) to another
(the head). The edges in an undirected graph are unordered pairs. Trees are simple
exampies of graphs. If we want 1o indicale a hierarchy in a tree, we can orignt all the
edges 1o point away from the root. Such trees are sometimes called rooted trees, since it
is enough to specify the root in order to define the direction of all the edges, We can also
consider undirected trees {sometimes called free trees), which do not correspond to a
hierarchy.

g4 Data Structures

We will use two main representations of graphs in this book. The first
representation uses the adjacency matrix of a graph. Let |V]=n The adjacency
matrix of G is an n X matrix A such that ;=1 if and only if (v;, v;}€ E. The jth row of
the matrix is thus an array of size # which has a 1 in the jth position if there is an edge
leading from ¥; to v;, and a 0 otherwise. Adjacency matrices have one major drawback
— they require space of size n* no matter how many edges are in the graph. For
example, the number of edges in a tree is # ~ 1, and these edges can be represented by
one or two pointers per vertex {depending on whether we want to go up or down the
iree). With adjacency matrices, each verfex has an associated array of size n. In other
words, if the number of edges is small, most of the entries in the adjacency matrix will be
Us.

Instead of having an explicit representation for all of those 0s, we can link the
actual number of ls (representing the edges) in & linked list. There will be one pointer
per edge. This second representation is catled the adjacency list. In the adjacency-list
representation, cach vertex is associated with a linked kst consisting of all the edges
adjacent to this vertex, This list is usually sorted according to the labels of the heads of
the corresponding edges. The whole graph is represented by an array of lists, Each entry
in the array includes the label (or index) of the vertex, and a pointer to the beginning of
its Hst of edges. If the graph is static — that is, if no insertions or deletions are attowed
- the lists can be represented by arrays in the following way. We assign an array of size
[V |+ |E}. The first |V | entries correspond to the vertices (in order). Each such entry
contains the index in the array where the list of edges emanating from this vertex is
started. For example, if there are 20 vertices and 50 edges and vertex 1 has 4 edges
emanating from it, then the first entry will be 21 (it is always |V | + 1), and the second
entry will be 25, The entries corresponding to the edges contain the heads of these edges.
In the example above, if the second edge of the second vertex points to the fifth vertex,
then entry 26 is equal to 5. The edges are usually stored in a sorted order, although this is
not abways required. All three representations are illustrated in Fig, 4,18, Adjacency
ratrices are usually easier to handle than are adjacency Hsts, and the programs using
them are usually simpter. However, adjacency lists are more efficient when the graph
has few edges. In practice, most graphs have much fewer than the maximal n(n —1)/2
undirected or # (n ~ [} directed edges. Thus, adjacency lists are more common.

4.7 Summary

Data structures can be divided into static and dynamic structures. Arays are static
structures. The size of an array, or at least a good bound on it, has to be known before
we start using it, and it cannot be extended. On the other hand, accessing an array is very
efficient. Linked lists are dynamic. They can easily be extended and reduced in size.
They can support any size (within the constraints of the total available memory).

Data structures can also be divided into one-dimensional structures and
multidimensional structures. Arrays and linked lists are one-dimenstonat. The only
structure they represent is the possible order among the elements. Trees represent a little

Bibliographic Notes and Further Reading 85

A

40 |0 |00 | { 5
51011/ ¢ |00 Y
4 3
{aj (b}

(c}
Figure 4.18 Graph representations.

more than one-dimensional structure — they represent hierarchy. Graphs can represent
even more elaborate structures. Of course, we can also build multidimensional arrays or
multidimensional linked Hists.

The concept of abstract data types is very useful. It allows us 10 concentrate on the
operations required from the data structure, and to postpone implementation details that
are dependent on the specific data type. We have described implementations for
dictionaries, priority queues, and union-find data structures.

If we need only to store data without any structure imposed on thern, then hashing
is the best option. Hashing cannot be used if the access depends on something besides
the explicit key of the element. For example, if we wish to find the minimal key in a
hash table, then the whole table must still be scanned.

Bibliographic Notes and Further Reading

The study of data structures is now considered a basic part of computer science
education. As a resul:, many books on data structures have been written. Knuth [1973a)
and Knuth { 1973b] contain a wealth of information abour data structures. Other books
include Standish |1980], Aho, Hopcroft, and Ulkman [1983], Reingold and Hansen
£198341, Gonnet |1984], and Wirth [{986]. A more advanced monograph on data
structures and algorithms is by Tarjan {1983}

86 Data Structures

A comparative stady of many data structures for priority-queues was done by
Jones [1986]. Jones's paper aiso includes a comprehensive bibliography on priority
gueues. The algorithms for insertions and deletions in binary scarch trees were
described, among others, by Hibbard [1962]. This paper proved that the average path
fength after 7 random insertions is 2ln#. For more information, see Knuth {1973b]. An
empirical study on the effects of random insertions and deletions in binary search trees
was performed by Eppinger [1983], who conjectured that the length of the average path
may be as high as O(iog‘*n)‘ Culberson {1983] proved that, under certain conditions,
random deletions and insertions cause the length of the average path to be O(\[; A
comparison between different balancing schemes is presented in Baer and Schwab
19771, Balanced trees are also described in Kputh [£973b] and Tarjan (1983]. Sleator
and Tarjan [1985] present several new methods for maintaining self-adjusting frees.
The idea is to adjust the tree by moving the most currently accessed node to the top after
every access. Although the trees are not always balanced, they exhibit good performance
characteristics in the amortized sense; namely, a single operation may be slow, but over a
long period, the average time for each operation is small.

More information about hashing can again be found in Knuth {1973b], and in
Gonnet [1984]. A book by Vitter and Chen [1987] describes in great detail one strategy
called coalesced hashing. Classes of random hash functions called universal hash
functions are described by Carter and Wegman §1979]. Several interesting applications
of this concept can alse be found in Wegman and Carter [1979), Karlin and Upfat [1986],
and Kurtz and Manber [1987]. There are also extendible hashing schemes that allow
dynamic growth of the tables; see, for example, Fagin, Nievergelt, Pippenger, and Strong
[1979] and Litwin | 1980].

The union-find data structure was first studied by Galler and Fischer {1964], and
also by Fischer [1972], and Hopcroft and Ullman {1973} (who obtained the result
mentioned in Theorem 4.3}, among others. Tarjan [1975] improved the running time o
O{ma(m, n)), where a(r) is the inverse Ackerman’s function, which grows even slower
than log n. Tarjan and van Leeuwen [1984] studied several simpler variations of path
compression that achieve the same running time. For information on graphs, see Chapter
7 and its bibliography.

Drill Exercises

4.3 Write a program to delete an element from a linked list.

4.2 Write a program to reverse the direction of a given Jinked list. In other words, the pointers
should all point backward.

4.3 Convert the simple recursive search procedure for binary search lrees 1o a noarecursive
procedure.

4.4 Design ar algorithm to list in order all the keys in a given binary search iree.

4.5

456

47

48
4.9

Creative Exercises 87

Let A[1..16] be an array that represenis a heap {using the impiicit representation). What is
the misimal sumber of heap elements that can occupy ar array of size 167

Algorithm fnsert to Heap may swap elemenis many times up the heap. Modify the
algorithm so that at most one swap will be performed (O{logn) comparisons are still
allowed).

Suppose that we want to use AVL (rees as a priority-queue data structure, What is the
complexity of ail the operations?

Show the AVL. tree formed by inserting the numbers | to 20 in order.

Show an AVL tree with a node whose deletion resulis in a son-AVL. tree, such that the
resulting tree carnot be made an AVL tree by only one (single or double) sotasion. Draw
the tree, specify the node, and explain why the resuiting tree cannot be balanced with one
rotation.

Creative Exercises

4,10

4,11

4.14

Design an implementation of an abstract data type that supports the following operations:

Inseri(x): the insertion should be performed even if x is already in the data
structuse. In other words, the data structure should hold duplicates.

Remove(yy: remove any ¢lement from the data structure and assign it o y.
Again, any element will do. If there are several copies of the same element
oniy one of them should be removed.

This abstract data type is called a pool (or a bag). H is usefui for storing jobs, for example.
New jobs are generated and inserted into the pool, and when a worker becomes avaiiable a
iob is semoved. All the operations should take O ¢1) time.

Modify the pool daia typs of Exercise 4.10 in the following way: Assume now that every
clement can appear at most once in the data structure. An insertion must now check for
duplicates. Implement the same operations as before, but with duplicate checking. What is
the complexity of each operation in the worst case? What is 2 good data structure for the
average case?

Another variant of the pool data type (see Exercises 4.10 and 4.11}) is the following: Assume
now that all the elements are identified by integers in the range 1 to n, and that » is small
enough that you can allocate memeory of size G (n). Each element can appear al most once.
Design algorithms for inserr and remove {as defined in Exercise 4.10) that work in O (1)
time,

Design an algorithm to construct one heap that contains alf the elements of two given heaps
of sizes n and m, respectively. The heaps are given in 2 finked-list representation (each
node has links to its two children). The sunning time of the afgorithm shoutd be
O (tog {m +ny) in the worst case.

Deesign an algorithm to coastruct one heap that contains all the clements of k given heaps.
What is the corplexity of the ajgerithm?

88 Data Structures

415

4.16

*®
4,18

4.19

4.2

4.22

Design an implementation of ar abstract data type that supports the fellowing operations:
Inserixy. insert the key x into the data structure only if it is ot already there.
Deleteixy: delete the key x from the data structure (if it is there).

Find Next(xy. find the smallest key in the data structure that is greater than x.

Al} these operations should 1ake ¢ (log #) time in the worst case, where # is the number of
elements in the data structure.

Design an impiementation of an abstract data type that supports the foliowing operations:
{nsert(x): insert the key x info the data structure only if it is not already there.
Delete(x): delete the key x from the data structure (if it is there).

Find Smallest(k): find the kth smallest key in the data structure.

All these operations should take O (legn) time in the worst case, where # is the number of
eiements in the data structure.

Design an implementation of an abstract data type that supports the following operations:

Insert(xy: insert the key x into the data structure only if it is not already there.
Delete(x): delete the key x from the data structure (if it is there).

Find Next(x, k). find the kth “*right"’ reighbor smaliest key among the keys
in the data structure that are larger than x.

All these operations shouid sake O (log ») time in the worst case, where # is the number of
elements in the datd structure.

The A1, algorithms that were presented in Section 4.3.4 require balanced factors with three
possible values, 1, 0, or 1. To represent three vaiues we need 2 bits. Suggest a method for
implementing these algorithms (with only a slight modification} with only 1 extra bit per
node.

A concatenate operation take two sets, such that ali the keys in one set are smaller than all
the keys in the other set, and merges them together, Design an algorithm to concatenate two
binary search trees into one binary search tree. The werst-case running time shouid be
O (h), where 4 is the maximal height of the two trees,

Design an algorithm to concatenate (as defined in Exercise 4.19) two AVL trees into one
valid AVL tree. The worst-case running time should be O¢h), where 4 is the maximal
height of the two trees.

Consider an AVL tree formed by a fairly random sequence of insertions and deletions.
Assume that each possible batance factor appears with the same probability (namely, a
probability of {/3 for cach possibility). Prove that the average tength of the path from the
critical node to the place of insertion is a constant independent of the size of the tree.

Determine the general siructure of the AVL tree formed by inserting the numbers | to n in
order. What is the height of this tree?

Find the “‘worst AVL wree.” That is, construct an AVL tree of height A with the misimal

424

4.25

4,26

Creative Exercises 89

number of nodes. Use this worst AVL tree to prove Theorem 4.4 {Section 4.3.4) regarding
the maximat height of an AVL tree with # nodes. (Hint: Try a recursive construction.)

Let T, and T, be two arbitrary trees, each having # nodes. Prove that it is sufficient to apply
at most 2» rotations to 7| so that it becomes equaito T 5.

A join of two undirected graphs G =(V, £) and H =(U, F) is a new graph J =(W, D) such
that W =V _; U/ (namely, the vertices of the new graph include the vertices of both graphs),
and D =F\ JF |)V xU (namely, the edges include ail the previous edges plus an edge
from each vertex in V o each vertex in /). Suggest 2 good representation for graphs that
allows join operations te be performed efficiently.

let § = {5,587, .., 5, be a very large set, and assume that § is partitioned into & blocks.
Assurme that you have a procedure cailed which block such that given an elemen: s,
which_Block(s;) = number of the block that contains s;; which_block works in constant time
{e.g., § may correspond 0 all street addresses in the United States, and the blocks may
correspond to zip codes). You want to mainiain a small subset of 8, T, and to perform the
foliowing operations on T2

Inseri(s;).
Delete(s;),
Delete_blockijy. delete all elements in T that befong to block f.

Initially, T is empty, Each operation should take O {Jog #) time in the worst case, where 7 is
the number of elements currently in T. Delete Mock only removes {discomnects) the
elements from the data structure; it need not physically remove each and every one of themn.
Both m and k are too large, so you cannot afford to use a table of size m or k. However, nis
relatively smail, and you can use O (n) space.

+
4.27 Let A{l..n] be an array of real numbers. Design aigorithms to perform any sequence of the

428

following two operations:

Add(i, v): add the value y to the ith number,
Partial_sumli): return the sum of the first { numbers, ¥ A7],
!
Notice that the number of elements remains fixed (there are no insertions or deletions); the
only changes are to the vaiues. Each operation shouid take O tloga) steps. You can use
one more array of size # as a work space.

Extend the data structure for the problem in Exercise 4.27 to support insertions and
deletions. Each element now has a key and a value, An element is accessed by its key, The
addition operation applies to the values {but the elements are accessed by their keys). The
Partial _sum operation is different,

Partial_sum(y): retum the sum of ail the elements currently in the set whose
value is less than y, 3%
ey
The worst-case running time should sl be O(nlogn) for any sequence of O (n)
operalions.

99 Data Structures

429

430

Design a data structuse o maintain a set of elements, each with a key and a vatue. The
foltowing operations should be supporied:
Find_value(x). find the value associated with the efement x {nil if x is not in the

set).

Insert(x, y).

Delete(x),

Add(x, ¥): add the value y to the current value of the element with key x,

Add_ali(y). add the value y to the values of aif the elements in the set.
The worst-case running time should be O {log n} for each of these operations,

{True story.) A programmer named Guy once encountered an error message from a new
compiier he was using indicating that the compiler had run out of memory space while
compiling a program. The programmer was baffied, since the program did not use much
space. He was able to pinpoint the problem te a2 certain case statement, which is given
below. Withous this case statement, the program compiled flawlessly, With it, the compiler
ran out of space. Determine what data structure the compiler was using that was causing
the problem. (The case staternent is correct and valid; the problem lies with the compiter,
which was unable to compile the ¢ase statement.)

case | of

l: Statemeni(i)
2 Siatemen(2) ;
4 Staternent(3) ;

256: Statement(4) ;
65535; Statement(5};

CHAPTER 5

DESIGN OF ALGORITHMS
BY INDUCTION

Nothing is more importans than to see the sources of
invention, which are, in my opinion, more interesting
than the inventions themselves.

G. W. Leibniz (1646-1716)

Invention breeds invention.
R. W.Emerson {(i803-1882)

5.1 Introduction

In this chapter, we introduce our approach to algorithm design using the analogy to
mathematical induction. We include relatively simple examples, and present the basic
principles and techniques on which the method is based. The analogous induction
techniques have been described in Chapter 2. When appropriate, we repeat the
discussion here to make this chapter self contained.

Mathematical induction is based on a domine principle. Imagine that we have a
line of upended dominoes, and that we wish to knock down all of them by knocking
down only the first. To make sure that all dominoes will fall down, we need only to
verify that we have pushed the first one and that each domino will toppie the next one as
it falls. We need not collapse the whole arrangement every time we add a new domino to
verify that the new arrangement will work. The same principle can be applied to
algorithm design.

il

92 Design of Algorithms by Induction

It is not necessary to design the steps required te solve the problem
from scratch; it is sufficient to guarantee that (1) it is pessible to solve a
small instance of the problem (the base case), and (2} a solution to every
problem can be constructed from sohutions of smaller problems (the

inductive step}.

With this principle in mind, we should concentrate on reducing the problem to a smaller
problem (or to a set of smaller problems). The trouble is that it is usually not easy to find
a way to reduce the problem. In this chapter, we present several techniques to facilitate
this process. The examples in this chapter were chosen not because of their importance
(some of them have limited applicability}, but because they are simple and yet they
iltustrate the principles we want to emphasize, We will present numerous other examples
of this approach throughout the book,

5.2 Evaluating Polynomials

We start with a simple algebraic problem — evaluating a given polynomial a¢t a given
point.

The Problem Given a sequence of real numbers a,. a,_, ..., ¢, dp,
and a real number x, compute the value of the polynomial £,{x) = g,x"
va,_x" e dax +ag.

This problem may not secem (o be a natural candidate for an inductive approach.
Nevertheless, we will show that induction can lead directly to a very good solution to the
problem, We start with the most simple (almost trivial) approach, then find variations of
it that lead to better solutions.

The problem involves #+2 numbers. The inductive approach is to solve this
problem in terms of a solution to a smaller problem. In other words, we try to reduce the
problem to one with smaller size, which we then solve recursively, or, as we cali it, by
induction. The first natural attempt is to reduce the problem by removing a,. We are left
with the problem of evaluating the polynomial

n-2

PolO=a, 5" g, 2x" 7+ o tax +ag

This is the same problem, except that it has onc less parameter. Therefore, we can solve
it by induction.

Induetion hypethesis: We know how 1o evaluate a polynomial represented
by the input a,., ... @1, Gp, a1 the point x (f.e., we know how to compite
Pﬂ“i(x))‘
We can now Lse the hypothesis 10 solve the problem by induction. First, we have o
solve the base case, which is compuling ay; this is trivial. Then, we must show how 16

5.2 Evaluating Polynomials 93

solve the original problem (computing P, (x)) with the aid of the solution to the smaller
problem {which is the value of P,_(x)). This step is straightforward in this case; simply
compute &”, muitiply it by a,, and add the result to P, (x):

P,(xy=P, . (x}+a,x".

At this point it may seem that the use of induction in this problem is frivolous — it
just complicates a very simple solution. The algorithm implied by the preceding
discussion is merely evaluating the polynomial from right to left as it is written. In a
moment, however, we will see the power of our approach.

Although the algorithm is correct, it is not efficient. It requires
n+n—t+n=-2+ +l=n{n+1)/2 multiplications and » additions, We now use
induction a little differently to obtain a better solution.

We make the first improvement by observing that there is a great deal of redundant
computation: The powers of x are computed from scratcch. We can save many
multiplications by using the value of x"~! when we compute x". We make this change
by inctuding the computation of x* in the induction hypothesis.

Stronger induction hypothesis: We know how to compute the value of the
polyromial P,,_{x}, and we know how to compute x" .

This induction hypothesis is stronger, since it requires computing x" ™', but it is easier to
extend (since it is now easier 10 compute x"} We need to perform only one
maultiplication to compute x”, then one more multiplication to get a, x", then one addition
to complete the computation. (The induction hypothesis is not too strong, since we need
to compute x"”' anyway.) Overall, there are 2n multiplications and # additions. It is
interesting to nole that, even though the induction hypothesis requires more computation,
it leads to less work overall. We will return to this point later. This algorithm looks good
by all measures. It is efficient, simple, and casy to implement. However, a better
algorithm exists. We discover it by using induction in yet another different way.

Reducing the problem by remeoving the last coefficient, a,, is the straightforward
step, but it is not the only possible reduction. We can also remove the first coefficient,
ay. The smaller problem becomes the evaluation of the polynomial represented by the
coefficients a,,, a,_;. ..., &, which is

P =ax" g, x4 kay

(Notice that a, is now the {1 — [)th coefficient, a,.; is the (n —2)}th coefficient, and so
on.) S0 we have a new induction hypothesis,

Induction hypothesis (reversed order): We know how to evaluate the
polynomial represented by the coefficients a,.d,.1,...,a, at the point x {i.e.,
we know how to compute P, _{x).

This hypothesis is more suited to our purposes, because it is easier to extend, Clearly,
Puxy=xP,_,(x)+a, Therefore, only one maultiplication and one addition are
required to compute P,(x) from P’,_i{x}. The complete algorithm can be described by
the following expression:

o4 Design of Algorithms by Induction

A"+ X" Rt ag = (0 (@ F @)X))X A)Xt g,

This algorithm is known as Horner’s rule after the English mathematician W.(5. Hormer.
(It was also mentioned by Newton, see [Knuth 1981}, page 467.) The program to
evaluate the polynomial is given in Fig, 5.1,

Algorithm Polynomial Evaluation (a, x};

Input: a@=ay,d;,ay, ..., a, (coefficients of a polynomial), and x (a real
nutnber).

QOutput: P (the value of the polynomial a¢ x).

begin
P =a,,
Jori:=ltondo
P=x*P+a,.;
end

Figure 5.1 Algorithm Polynomial _Evaluation.

Complexity The algorithm requires only #» multiplications, » additions, and one extra
memoty location. Even though the previous solutions seemed very simple and very
efficient, we have found it worthwhile to pursue a better algorithin. Not only is this
algorithm faster than those described previously, but also its corresponding program is
simpler.

Comments Induction allows us to concentrate on extending solutions of smaller
subproblems to those of larger problems. Suppose that we want to solve P {r), which is a
problem P that depends on a parameter # (usaally its size}, We start with an arbitrary
instance of P (), and try to solve it by using the assumption that P {(n — I} has already
been solved. There are many possible ways to define the induction hypothesis and many
possibie ways to use it. We will survey several of these methods, and will show their
power in designing algorithms,

This simple example illustrates the fAexibility we have when we use induction, The
trick that fed to Horner's rule was merely considering the input from left to right, instead
of the intuitive right to left. Another common possibility is comparing top down versus
boitorn up (when a tree structure is involved). It is also possible to go in increments of 2
(or more) rather than |, and there are numerous other possibilities. Moreover, sometimes
the best induction sequence is not the same for alt inputs. Jt may be worthwhile to design
an algorithm just to find the best way to perform the reduction. We will see examples of
al] these possibilities,

5.3 Maximal Induced Subgraph 95

5.3 Maximal Induced Subgraph

Consider the following problem. You are arranging a conference of scientists from
different disciplines and you have a list of people you want to invite. You assume that
everyone on the list will agree to come under the condition that there will be ample
oppostunity to exchange tdeas. For each scientist, you write down the names of all other
scientists on the list with whom interaction is likely. You would like to invite as many
people on the st as possible, but you want to guarantee that each one will have at least &
other people with whom to interact (£ is 4 fixed number, independent of the number of
invitees). You de not have to arrange the interactions; in particular, you de not have 1o
make sure that there is enough time for them 1o occur. You just want 10 lure everyone to
the conference. How do you decide whom to invite? This problem corresponds to the
fotlowing graph-theoretic problem. Let G =(V, F) be an undirected graph. An induced
subgraph of G is a graph H=(U, F} such that U¢ V and F includes all edges in E both of
whose incident vertices are in U, A degree of a veriex is the number of veriices adjacent
to that vertex, The vertices of the graph correspond to the scientists, and two vertices are
connected if there is a potential for the two corresponding scientists to exchange ideas.
An induced subgraph corresponds to a subset of the scientists.

The Problem Given an undirected graph G =(V, F) and an integer
k, find ap induced subgraph H=({/, F} of ¢ of maximum size such that
all vertices of H have degree 2 & (in H), or conclude that no such in-
duced subgraph exists.

A direct approach to solving this problem is to remove vertices whose degree is <k. As
vertices are removed with their adjacent edges, the degrees of other vertices may be
reduced. When the degree of a vertex becomes less than 4, that vertex should be
removed. The order of removals, however, is not clear. Should we remove all the
veriices of degree <k first, then deal with vertices whose degrees were reduced? Should
we remove first one vertex of degree <k, then continue with affected vertices? (These
two approaches correspond to breadth-first search versus depth-first search, which are
discussed in detail in Section 7.3, Will both approaches lead to the same resule? Will
the resulting graph be of maximum size? All these questions are easy to answer; the
approach we will describe makes answering thein even easier.

Instead of thinking about our algorithm as a sequence of steps that a computer has
o take to calculate a result, think of proving a rthearem that the algorithm exists, We do
not suggest atternpting a formal proof (ai least not at this first stage), The idea is to
imitate the steps we take in proving a theorem, in order to gain insight into the problem.
We need to find the maximum induced subgraph that satisfies the given conditions. Here
is & “proof’’ by induction.

96 Design of Algorithms by Induction

Induction hypethesis: We know how to find maximum induced subgraphs
all of whose vertices have degrees 2 k, provided that the number of vertices
is<n

We need 10 prove that this *‘theorem’ is true for a base case, and that its truth for #n -1
implies its truth for . The first nontrivial base case occurs when n=4 + 1, because if
n Sk, then all the degrees are less than &, If n=4& + 1, then the only way to have all the
degrees equal to & is to have a complete graph (namely, all vertices are connected),
which we can detect. So, assume now that G =(V, £} is a graph with # > & + 1 vertices,
If afl the vertices have degrees 2k, then the whole graph satisfies the conditions and we
are done. Otherwise, there exists a vertex v with degree < k. It is obvious that the degree
of v remains < & in any induced subgraph of G; hence, v does not belong to any subgraph
that satisfies the conditions of the problem. Therefore, we can remove v and its adjacent
edges without affecting the conditions of the theorem, After v is removed, the graph has
n—1 vertices — and, by the induction hypothesis, we know how to solve the problem.

We are now done. The algorithm and the answers o the questions we raised
earlier are now clear. Any vertex of degree < k can be removed. The order of removals
is immaterial. The graph remaining after all these removals must be of maximurm size
hecause these removals are mandarory. It is also clear that the algorithm is correct,
because we designed it by proving its correctness!

Comments The best way to reduce a problem is 1o eliminate some of its elements,
In: this example, the application of induction was straightforward, mainly because it was
clear which vertices we should eliminate and how we should eliminate them. The
reduction follows inunediately. In general, however, the elimination process may not be
straightforward. We will see examples of combining two elements into one, causing the
number of elemerts to be reduced (Section 6.6); of eliminating restrictions on the
problem rather than eliminating parts of the input (Section 1.7); and of designing a
special algorithm to find which elements can be eliminated (Section 5.5). Another
example of eliminating the right elements is presented next. [t is interesting to note that,
if we replace 2" with **$™ in the statement of the problem (that is, if we look for a
maximal induced subgraph ali of whose degrees are at most k), the problem becomes
much more difficult {(see Exercise 11.12),

5.4 Finding One-to-One Mappings

Let f be a function that maps a finite set A into itself (i.e., every element of A is mapped
to another element of A). For simplicity, we denote the elements of A by the integers 1 to
n. We assume that the function fis represented by an array f {1..n] such that f [1] holds
the value of f (i) (which is an integer between [and #). We call fa one-fo-one function
if, for every elemnent j, there is at most one element 7 that is mapped to j. The function f
can be represented by a diagram, as shown in Fig. 5.2, where both sides correspond to the
same set and the edges indicate the mapping. The function in Fig. 5.2 is clearly not a
one-to-one funcsion,

5.4 Finding One-to-One Mappings 97

! /
2 o2
3 K
4 4
5 s

Figure 5.2 A mapping from a set into itself {both sides represent the same set).

The Problem Given a finite set A and 2 mapping f from A to itself,
find a subset ST A with the maxirnum number of elernents, such that (1)
the function f maps every element of S to another element of § (ie., f
maps § into itself), and (2) no two elements of § are mapped to the same
element (i.e., f is one-to-one when restricted 0 §).

If fis originally one-to-one, then the whole set A satisfies the conditions of the problem,
and A is definitely maximal, If, on the other hand, f{()=f(j) for some i/, then §
cannot contain both { and j. For example, the set 5§ that solves the problem given in Fig.
3.2 cannot contain both 2 and 3 since f(2}=f{3)=1. The choice of which one of them
to eliminate cannot be arbitrary. Suppose, for example, that we decide to eliminate 3,
Since 1 is mapped 10 3, we must eliminate | as well (the mapping must be into § and 3 is
no longer in $). But if I is eliminated, then 2 must be eliminated as well {for the same
reasorr). But, this subset is not maximal, since it 1s easy to see that we could have
¢liminated 2 alone. (The solution for Fig. 5.2 is the subset {1,3,5}.) The problem is to
find a general method to decide which elements to include.

Fortunately, we have some flexibility in deciding how to reduce the problem to a
smaller one, We can reduce the size of the problem by finding either an element that
belongs to § or an element that does not belong to S. We will do the latter. We use the
straightforward induction hypothesis.

Induction hypothesis: We know how to solve the problem for sets aof n—1
elements.

The base case is trivial: If there is only one efement in the set, then it must be mapped to
itself, which is a one-to-one mapping. Assume now that we have a set A of » elements
and we are looking for a subset § that satisfies the conditions of the problem. We claim

o8 Design of Algorithms by Induction

that any element i that has no other element mapped to it cannot belong to . (In other
words, an element [in the right side of the diagram, which is not connected to any edge,
cannot be in 8.} Otherwise, if / € § and § has, say, k elements, then those & elements are
mapped into at most k-1 elements, therefore, the mapping cannot be one-to-one. If there
is such an i, then we simply remove it from the set. We now have a set A'=A-{{] with
— 1 elements, which f maps inio iself, by the induction hypothesis, we know how to
solve the problem for A", If no such i exists, then the mapping is one-to-one, and we are
done.

The essence of this solution is that we must remove /. We proved that / cannot
belong to 5. This is the strength of induction: Once we remove an element and reduce
the size of the problem, we are done. We have to be careful, however, that the reduced
problem is exactly the same (except for size) as the original problem. The only condition
on the set 4 and the function f was that f maps A into itself. This condition is still
maintained for the set A-[i}, since there was nothing that was mapped to {. The
algorithm terminates when no more elements ¢an be removed.

implementation We described the algorithm as a recursive procedure. In each
step, we found an element such that no other elernent is mapped to i, removed it, and
continued recursively. The implementation, however, need not be recursive. We can
maintain a counter ¢ [] with each element i, Initiatly, ¢ [/ } should be equal to the number
of elements that are mapped to {. We can compute ¢ {{], for all £, in # steps by scanning
the array and incrementing the appropriate counters. We then put all the elements that
have a zero counter in a queue. In each step, we remove an element j from the quene
(and the set}, decrement ¢ [f (/). and, if c{f (/3]=0, we put f{j} in the queue. The
algorithm terminates when the queue is emnpty. The algorithm is given in Fig. 5.3.

Complexity The initialization part requires O {1} operations. Every element can be
put on the queue at most once, and the steps involved in removing an element from the
queuve take constant time. The total number of steps is thus O (r).

Comments In this example, we reduced the size of the problem by eliminating
elements from a set. Therefore, we tried to find the easiest way to remove an element
without changing the conditions of the problem. Because the only requirement we made
was that the function maps A into itself, the cheice of an element t¢ which no other
element is mapped is natural,

5.5 The Celebrity Problem

The next example is a popular exercise in algorithm design. It is & nice example of a
problem that has a selution that does not require scanning all the datz (or even 2
significant part of them). Among n persons, a celebrity is defined as someone who is
known by everyone but does not know anyone. The problem is to identify the celebrity,
if one exists, by asking questions only of the form. “*Excuse me, do you know the person
over there?” (The assumption is that all the answers are correct, and that even the
celebrity will answer.) The goal is 10 minimize the number of questions. Since there are

5.5 The Celebrity Problem 99

Algorithm Mapping { f.n) ;
Input: f(an array of integers whose values are between | and 1),
Output: S (a subset of the integers from | to #, such that fis one-to-one on §).

begin
S:=A; | Aisthe setof pumbers from t1on }
Jorj=1lwndo c[jl =0
Jorj=1tonde increment cif {j])
Jor i =1tonde
if c[j] =0 then put j in Queue;
while Queue is not empty do
remove [from the top of the queue;
S S§-{i
decrement ¢ [f [/1];
ifciftiti=0thenput f (I} in Queue
end

Figure 5.3 Algorithm Mapping.

n(n—1)/2 pairs of persons, there is potentially a need to ask #(n — I} questions, in the
worst case, if the questions are asked arbitrarily, It is not clear that we can do better in
the worst case.

We can use a graph-theoretical formulation. We can build a directed graph with
the vertices corresponding to the persons and an edge from person A to person B if A
krows B. A celebrity comesponds 1o a sink of the graph (no pun intended). A sink is a
vertex with indegree n —1 and outdegree 0. Notice that a graph can have at most one
sink. The input to the problem corresponds to an 7 x n adjacency matrix (whose if entry
is 1 if the ith person knows the jth person, and 0 otherwise).

The Problem Given an n x# adjacency matrix, determine whether
there exists an i such that all the entries in the ith column (except for the
fith entry) are 1, and all the entries in the ith row (except for the iith en-
iry) are 0.

The base case of two persons is simple. Consider as usual the difference between the
problem with n - | persons and that with # persons. We assume that we can find the
celebrity among the first # — 1 persons by induction. Since there is at most one celebrity,
there are three possibilities: (1) the celebrity is among the first #— 1, (2) the celebrity is
the nth person, and (3) there is no celebrity. The first case is the easiest to handie. We
need only to check that the nth person knows the celebrity, and that the celebrity does not

100 Design of Algorithms by Induetion

know the nth person. The other two cases are more difficult because, to determine
whether the nth person is the celebrity, we may need to ask 2(n — 1} questions. If we ask
2(n — 1) questions in the snth siep, then the total number of questions will be n{n~1)
{which is what we tried to avoid). We need another approach.

The trick here is 1o consider the problem “‘backward.’” It may be hatd to identify a
celebrity, but it is probably easier to identify someone as a noncelebrity. After all, there
are definitely more noncelebrities than celebrities. If we eliminate someone from
consideration, then we reduce the size of the problem from n to n — 1. Moreover, we do
not need 1o eliminate someone specific; anyone will do. Suppose that we ask Alice
whether she knows Bob. If she does, then she cannot be a celebrity; if she does not, then
Bob cannot be a celebrity. We can eliminate one of them with one question.

We now consider again the three cases with which we started. We do not just take
an arbitrary person as the nth person. We use the idea in the last paragraph to eliminate
either Alice or Bob, then solve the problem for the other n—1 persons. We are
guaranteed that case 2 will not occur, since the person eliminated cannot be the celebrity,
Furthermore, if case 3 occurs — namely, there is no celebrity among the n — | persons —
then there is no celebrity among the » persons. Ounly case 1 remains, but this case is casy,
If there is a celebrity among the n — 1 persons, it takes two mote guestions to verify that
this is a celebrity for the whole set, Otherwise, there is no celebrity.

The algorithm proceeds as follows, We ask A whether she knows B, and eliminate
either A or B according {0 the answer. Let's assume that we eliminate A. We then find
(by induction) a celebrity among the remaining n — | persons. If there is no celebrity, the
algorithm terminates; otherwise, we check that A knows the celebrity and that the
celebrity does not know A,

Implementation As was the case with the algorithm in the previous section, it is
more efficient to implement the celebrity algorithm iteratively, rather than recursively.
The algorithm is divided into 1wo phases. In the first phase, we eliminate all but one
candidate, and in the second phase we check whether this candidate is indeed the
celebrity. We start with # candidates, and, for the purpose of this discussion, let’s
assume that they are stored in a stack. For each pair of candidates, we can eliminate one
candidate by asking one question - whether one of them knows the other. We start by
laking the first two candidates from the stack, and eliminating one of them. Then, in each
step, we have one remaining candidate, and, as long as the stack is nonempty, we take
one additional candidate from the stack, and eliminate one of these two candidates.
When the stack becomes empty, one candidate remains. We then check that this
candidate is indeed the celebrity. The algorithm is presented in Fig. 5.4 (notice that the
stack is implemented explicitly by the use of the indices i/, f, and nexr).

Complexity At most 301~ 1) questions will be asked: n ~1 questions in the first
phase 1o eliminate # — I persons, and then at most 2(r — 1) questions to verify that the
candidate is indeed a celebrity, Notice that the size of the input is not n, but rather
ni{n -1y (the number of entries of the matrix). This solution shows that it is possible to
identify a celebrity by looking at only (2 (n) entries in the adjacency matrix, even though
a priori the solution may be sensitive to cach of the n (7 — 1) entries.

5.5 The Celebrity Problem 101

Algorithm Celebrity (Know) ;
Input: Krnow (an nx n Boolean matrix).

Qutput: celebrity,

begin
il
=2
next =3,

{ in the first phase we eliminate all but one candidate }
while next <n+1de
if Know{i, j] then i = rext
else j := next ;
next ;= next + 1 ;
{ one of either { or } is eliminated }
ifi =n+1then
candidate := |
else
candidate := i ;
{ Now we check that the candidate is indeed the celebrity }
wrong = false ;
k=1
Knowfceandidate, candidate] = false ;
{ a dummy variable to pass the test }
while not wrong and k <ndo
if Know{candidate, k] then wrong := true ;
if not Know[k, candidate] then
if candidate # k then wrong = true ;
ko=k+ I
if not wrong then celebrity := candidare
else celebrity := 0 { no celebrity }
end

Figare 5.4 Algorithm Cefebrity.

Comments The key idea in this elegant solution is to reduce the size of the problem
from 1 to n—1 in a clever way. This example shows that it sotnetimes pays to expend
some effort (in this case — one question) to perform the reduction more effectively, Do
not start by simply considering an arbitrary input of size n — | and attempting 1o extend
it. Select a particular input of size n—1. We will see more examples where we spend
subssantial time just constructing the right order of induction — and that time is well

spent,

102 Design of Algorithms by Induction

5.6 A Divide-and-Conquer Algorithm: The Skyline
Problem

So far, we have seen examples from graph theory and numerical compuiation. This
example deals with a problem of drawing shapes.

The Problem Given the exact locations and shapes of several rec-
tangular buildings in a city, draw the skyline (in two dimensions) of
these buiidings, eliminating hidden lines.

An example of an input is given in Fig. 5.5(a); the corresponding output is given in Fig,
5.5(b). We are interested in only two-dimensional pictures. We assume that the bottoms
of all the buildings lic on a fixed line {i.c., they share a common horizon). Building B; is
represented by a triple (L, H;, R;). L; and R; denote the left and right x coordinates of the
building, respectively, and H; denotes the building’s height. A skyline is a kst of x
coordinates and the heighis connecting them arranged in order from left 1o right. For
example, the butldings in Fig. 5.5¢(a) correspond to the following input:

(1,11.5), (2,6,7), 3,13.9), (12,7,16), (14,3,25), (19,18,22), (23,13,29), and
(24.4,28).

(The numbers in boldface type are the heights.) The skyline in Fig. 5.5(b} is represented
as follows:

(1,11,3,039,0,12,7,16,3,19,18,22,3,2313,29.6).

(Again, the numbers in boldface type are heights.)

The straightforward algorithm for this problem is based on adding one building at a
time to the skyline. The induction hypothesis is the simple one, We assume that we
know how to solve the problem for » — | buildings, and then we add the sth building.

iP5 6 15 20 25 30 {5 6 15 20 25 30

{aj {h)
Figure §.5 The skyline problem: (2) The inpus. (b} The skyline.

5.6 A Divide-and-Conquer Algorithm: The Skyline Problem 103

The problem is trivial for one building. To add a building B, to the skyline, we need to
intersect it with the existing skyline (see Fig. 5.6). Let B, be (5,9,26). We first scan the
skyline from left to right to find where the left side of B, fits (i.e., we search for the
appropriate x coordinate — 5 in this example). In this case, the horizontal line that
“‘covers’” § is the one from 3 to 9, and its height 1s 13. We can now scan the skyline,
locking at one horizontal line after another, and adjusting whenever the height of B, is
higher than the existing height. We stop when we reach an x coordinate that is greater
than the right side of B,. For this example, we do not adjust the height from 3 1o 9, but
we do adjust it all the way from 9 to 19, then adjust it once more from 22 to 23. The new
skyline is represented by

(1,11,3,13,9.9,19,18,22,9,23,13,29.0).

This algorithm is clearly correct, but it is not necessarily efficient. In the worst case, the
scan for B, requires O(nm) steps. Hence, the total number of steps will be
O()+0(n~1+ - +0(1) =0).

To improve the performance of this algorithm, we use a well-known technique
called divide and conquer. Instead of using the simple induction principle of extending
the selution for n 1 to a solution for », we exiend a solution for n/2 to a solution for n.
{Again, the base case of one building is trivial.) Divide-and-conguer algorithms divide
the inputs into smaller subsets, solve {conguer) each subset recursively, and merge the
solutions together. Generally, it is more efficient to divide the problem into subproblems
of about equal size. As we saw in Chapter 3, the solution of the recurrence relation
T)=Tn-D+0() is Tn)=0n>), whereas that of T(n)=2Tw/D)+C(n) is
T(m)=0(nlogn). Therefore, if we divide the problem into two equal-sized
subproblems, then combine the solutions in lingar time, the algorithm runs in tme
O{nlogn). The divide-and-conquer technique is very useful, and we will see many
examples of it.

) 5 1o i3 20 25 30

Figure 5.6 Addition of a building (dotted Jine) to the skyline of Figure 5.5(b) {solid lines).

164 Design of Algerithms by Induction

The key idea behind the divide-and-conquer algorithm in this example is the
observation that, in the worst case, it takes linear time to merge one building with the
skyline, and also linear time to merge two different skylines. In about the same time, we
achieve more using the fatter approach. Two skylines can be merged with basically the
same algorithm that merges one building into a skyline (Fig. 5.7). We scan the two
skylines together from left o right, match x coordinates, and adjust heights when
necessary. The merge can be achieved in linear time, and therefore the complete
algorithm runs in time O(nlogn} in the worst case. This algorithm is similar 10
mergesort, which is discussed in detail in Section 6.4.3. Therefore, we do not give the
precise algorithm for the skyline algorithm here.

Commentis Always try to get more for your money. There is nothing mysterious or
technical about this principle. If the algorithm includes a step that is more general than
required, consider applying this step 10 a4 more complicated part of the problem. The
reason the divide-and-conquer approach is so useful is that it uses the combine step to its
fullest. The recurrence relations given in Section 3.5.2 cover the most commen divide-
and-conguer algorithms. You should memorize these recurrence relations,

5.7 Computing Balance Factors in Binary Trees

let T be a binary tree with root r. The height of a node v is the distance between v and
the farthest leaf down the tree. The balance factor of a node v is defined as the
difference between the height of the node's left subtree and the height of the node’s right
subtree (we assume that the children of a node are labeled by left or right). In Chapter 4,
we discussed AVL trees, in which all nodes have balance factors of —F, G, or 1. In this
section, we consider arbitrary binary trees. Figure 5.8 shows a tree in which cach node is
labeled with numbers representing h/b, where & is the node's height and b is its balance
factor.

i b 10 i5 20 25 30

Figure 5.7 Merging two skylines.

5.7 Computing Balance Factors in Binary Trees 108

310

I

Figure 5.8 A binary tree. The numbers represent 4/b, where # is the height and b is the
balance factor.

The Problem Given a binary tree T with # nodes, compaute the bal-
ance factors of all the nodes.

We use the regular inductive approach with the straightforward induction hypothesis.

Induction hypothesis: We know how to compute balance factors of all
nodes in trees that have < n nodes.

The base case of n=1 is trivial. Given a tree with # > | nodes, we remove the root, then
solve the problem (by induction) for the two subtrees that remain. We chose 1o remove
the root because the balance factor of a node depends on only the nodes below that node.
We now know the balance factors of all the nodes, except for the root. The root’s
bajance factor, however, depends not on the balance factors of the root’s children, but
rather on their height. Hence, simple induction does not work in this case. We need to
know the heights of the children of the root. The idea is to include the heighi-finding
problem within the original problem:

Stronger induction hypothesis: We know how to compuite balance factors
and heights of all nodes in trees that have < n nodes.

Again, the base case is trivial. Now, when we consider the root, we can determine its
balance factor easily by calculating the difference between the heights of its children.
Furthermore, we can also determine the height of the root — it is the maximal height of
the two children plus 1.

The key to the algorithm is that it solves a slightly extended problem. Instead of
computing only balance factors, we also compute heights. The extended problem turns
out to be an easier one to solve, because the heights are easy to compute. In many cases,
solving a stronger problem is easier. With induction, we need only 1o extend a solution
of a small problem to a solution of a larger problem. If the solution is broader {because
the problem is extended), then the induction step may be easier, since we have more with

106 Design of Algorithms by Induction

which te work, It is a commen error to forget that there are two different parameters in
this problem, and that each one should be compuied separately. We will present several
examples of such errors later in the book.

5.8 Finding the Maximum Consecutive Subsequence

The following problem is from Bentley [1986} (it also appeared in Bates and Constable
[1985]).

The Problem Given a sequence £, x4, ..., x, of real numbers {not
necessarily positive) find a subsequence x;, x4, ..., x; {of consecutive
clements) such that the sum of the numbers in it is maximuwm over all
subsequences of consecutive elements.

We call such a subsequence a maxirnm subsequence. For example, in the seguence {2,
~3, 1.5, -1, 3, -2, -3, 3), the maximum subsequence is (1.5, ~1, 3); its sum is 3.5, There
may be several maximum subsequences in a given sequence. [f afl the numbers are
negative, then the maximum subsequence is empty (by definition, the sum of the empty
subsequence is (). We would like to have an algorithm that solves the problem and reads
the sequence in order only once.

The straightforward induction hypothesis is as follows:

Induction hypothesis: We know how 1o find the maximum subsequence in
sequences of size <n.

It n=1, then the maximum subseguence consists of the single number if that number is
nonnegative, or the cmpty subsequence otherwise. Consider a sequence
S={x),x3,...x,) of size n>1. By induction, we know how to find a maximum
subsequence in §'=(v |, X, X,_(). If that maximum subsequence is empty, then all the
numbers in §” are negative, and we need to consider only x,. Assume that the maximam
subsequence found by induction in §” is 8’y =(x;, X4y, .., X;), for certain { and j such that
1si<jgn—1, If j=n~1 {namely, the maxirnum subsequence is a suffix), then it is easy
to extend the solution to §: If x, is positive, then it extends §'y; otherwise, §’y remains
maximum. However, if j < -1, then there are two possibilities. Either §'y, remains
maximum, or there is another subsequence, which is not maximum in §°, but is maximum
in § when x,, is added to it.

The key idea here is to strengthen the induction hypothesis. We first illustrate
the technigue by using it to solve the maximum-subsequence problem, then discuss it in
mare generality in the next section. The problem we had with the straightforward
induction hypothesis was that x, may extend a subsequence that is not maximum in 5,
and thus may create a new maximum subsequence. Knowing only the maximum
subsequence in §” is thus not sufficient. However, x, can extend only a subseguence that

5.9 Strengthening the Induction Hypothesis 107

ends at n—1 — that is, a suffix of §'. Suppose that we strengthen the induction
hypothesis to include the knowledge of the maximum suffix, denoted by
S’ﬁ = (xktxki—l PR |)'

Stronger induction hypothesis: We know how 10 find, in sequences of size
< n, a maximum subsequence overall, and the maximum subseguence that is

a suffix.

If we know both subsequences, the algorithm becomes clear. We add x, to the maximum
suffix. If the sum is more than the global maximum subsequence, then we have a new
maximum subsequence (as well as a new suffix). Otherwise, we retain the previous
maximum subsequence. We are not done yet. We also need to find the new maximum
suffix. It is not true that we always simply add x, to the previous maximum suffix. It
could be thai the maxirmurm suffix ending at x,, is negative. In that case, it is better 10 take
the empty set as the maximum suffix (such that kater x,,, will be considered by itself).
The algorithm for finding the sum of the maximum subsequence is given in Fig. 5.9,

Algorithm Maximum_Consecutive_Subsequence (X, n} ;
Input: X {an array of size n).
Qutput: Giobal_Max (the sum of the maximum subsequence).

begin
Global Max :=0;
Suffix_Max =0
fori:=1Ilondo
#Fxli] + Suffix Max > Global_Max then
Suffix Max ;= Suffix Max + x{{];
Global_Max = Suffix Max
else if x [i} + Suffisx_Max > 0 then
Suffix_Max ;= x{f] + Suffix_Max
else Suffix Max =0
end

Figure 5.9 Algorithm Maximum_Consecutive_Subsequence.

5.9 Strengthening the Induction Hypothesis

Strengthening the induction hypothesis is one of the most important techniques for
proving mathematical theorems with induction. When auempting an inductive proof, we
often encounter the following scenario. Denote the theorem by P. The induction
hypothesis can be denoted by P ¢ < a), and the proof must conclude that P{ < n)=> P (n).
tn many cases, we can add another assumption, call it @, under which the proof becomes
easier. That is, it is easter to prove [P and Qli<n) = FP(n) than i is to prove

108 Design of Algorithms by Induction

P{<ny= P(n). The assumption seems correct, but it is not clear how we can prove it.
The trick s to include @ in the induction hypothesis. We now have to prove that [P and
Ql(<n) = (P and Q](n). P and @ is a stronger theorem than just P, but often stronger
theorems are easier to prove. This process can be repeated and, with the right added
assumptions, the proof becomes tractable. The maximum-subsequence problem is a
good example of how this principle is used to improve algorithrms.

A nice analogy to this principle is a well-known phenomenon: bt is easier to add $1
million to profits that are based on $100 million of sales, than it is to add 31 thousand to
profits that are based on $10 of sales.

The most common error people make while using this technique is to ignore the
fact that an additional assumption was added and to forget to adjust the proof. In other
words, they prove that [P and Ql(<a) = P{n}, without even noticing that 0 was
assumed. This oversight corresponds to forgetting to compute the new maximum suffix
in the maximum-subsequence example. In the balance factors example, it corresponds to
forgetting to compute the heights separatety — which, unfortunately, is a common error.
We cannot everemphasize this fact:

It is erucial to foow the induction hypothesis precisely.

We will present more complicated examples of strengthening the induction hypothesis in
Sections 6.11.3,6.13.1, 7.5, 8.3, and 12.3.1 {among others).

5.10 Dynamic Programming: The Knapsack Problem

Suppose that we are given a krapsack and we want to pack it fully with items. There
may be many different iterns of different shapes and sizes, and our only goal is to pack
the knapsack as full as possible. The knapsack may correspond to a truck, a ship, or a
silicon chip, and the problem is 10 package items. There are many variations of this
problem; we consider only a simple one dealing with one-dimensional items. Other
variations of the knapsack problem are presented in the exercises, and in Chapter 11.

The Problem Given an integer K and n items of different sizes such
that the ith item has an integer size &;, find a subset of the items whose
sizes sum to exactly K, or determine that no such subset exists.

We denote the problem by P (n, K}, such that n denotes the number of items and X
denotes the size of the knapsack. We will implicitly assume that the n items are those
that are given as the input 1o the problem, and we will not include their sizes in the
notation of the problern. Thus, P (i, £} denotes the problem with the first { items and a
knapsack of size &. For simplicity, we first concentrate on only the decision problens,
which is to determine whether a solution exists. We start with the straightforward
induction approach.

510 Dyramic Programming: The Knapsack Problem 109

Induction hypothesis {first attempt): We know how to solve P(n~1,K),

The base casc is easy; there is a solution only if the single element is of size K. I there
is a solution: to P{n 1, K) — that is, if there is a way to pack some of the n—1 itemns
into the knapsack - then we are done; we will simply not use the sth item. Suppose,
however, that there is no solution for F{n—1,K}. Can we use this negative result? Yes
— it means that the ath item must be included. In this case, the rest of the items must fit
into & smaller knapsack of size K ~4,. We have reduced the problem to two smaller
subproblems: P(n~1,K} and P{n~1 K—&,). To complete the solution, we have to
strengthen the hypothesis. We need to solve the problem not only for knapsacks of size
K, but also for knapsacks of all sizes at most K.

Induction hypothesis (second attempt): We know how to solve P{n~1,k)
foralisksK.

The previous reduction did ot depend on a particular value of K it will work for any 4.
We can use this hypothesis to solve P (n, &) for all 024 £K. The base case P{1, k) can
be easily selved: i 4 =0, then there is always a (trivial) solution. Otherwise, there is 2
sotution only if the first item is of size k. We now reduce P(n, k) to the two problems
Pin-tLKyand P(n-1,k-4%,). If k-4, <0, then we ignore the second problem. Both
problems can be solved by induction. This is a valid reduction, and we now have an
algorithm; however, the algorithm may be inefficient. We reduced 2 problem of size nto
two subproblems of size n—1! {We also reduced the value of £ in one subproblem,)
Each of these two subproblems may be reduced to two other subproblems, leading to an
exponential algorithm,

Fortunately, it is possible in many cases to mmprove the ranning time for these
kinds of problems. The rmain observation is that the total number of possible problems
may not be too high. In fact, we introduced the notation of P (i, k) especially to
demonstrate this observation. There are n possibilities for the first parameter and K
possibilities for the second one. Overall, there are only #K different possible problems!
The exponentiat running time resulted from doubling the number of problems after every
reduction, but if there are only #K different problems, then we must have generated the
same problens many many times. The solution is to remember all the solutions and never
solve the same problem twice. This approach is a combination of strengthening the
induction hypothesis and using strong induction (which is using the assumption that all
solutions to smaller cases, and not only that for n — 1, are known). Let’s see now how to
implement this approach.

We store all the known results in an n XK matrix. The (£, k)th entry in the matrix
contains the information about the solution of P (i,). The reduction from the second-
atternpt hypothesis basically computes the nth row of the matrix. Each entry in the nth
row is computed from two of the entries above it. If we are interested in finding the
actwal subset, then we can add to each entry a flag that indicates whether the
corresponding item was selected in that step. This flag can then be traced back from the
(n, K)th entry, and the subset can be recovered. The algorithm is given in Fig. 5.10.
Figure 5.11 shows the complete matrix for a given input.

110 Design of Algorithms by Induction

Algorithm Knapsack (S, K} ;

Input: S (an array of size » storing the sizes of the itemns),

and K (the size of the knapsack).

Qutput: P (a two-dimensional array such that P (i, k J.exist = true if there
exists a solytion 1o the knapsack problem with the first | elements and a
knapsack of size k, and P [f, k |.belong = true if the ith element belongs

to that solution),

| See Exercise 5.15 for suggestions about improving this prograrm. |

begin

P[0, Ol.exist := true ;
Jork = 1 to Kdo
P |0, k |.exist ;= false ;
{ there is no need to initialize P (i, 0] for i 2 1, because it will

be computed from P 10,0} }

Jori:=ltonde
fork = 0toK do

P i, k Lexist = false | { the default value }

if Pli—1, k Lexist then
Pii, k .exist ;= true ;
Pi, k.belong := false

else if k ~$1i] 20 then
ifPli—1,k-51{i]].exist then

Pli, klexist ;= true ;
Pli, kLbelong = true

end
Figure 5.10 Algorithm Knapsack.
oi1]2103 5 718 i 12314715116
k]:2 O I = - - - . -
k=3 1 O O 1 -] . R
k=510 010 0 171 1] - N R
ky=6 | O oo 0 oo o1 : 1

Figure 5,11 An cxample of the table constructed for the knapsack problem. The input
consists of four items of sizes 2, 3, 5, and 6. The symbols in the table are the following:
"I"; a solution containing this item has been found; "0O": a solution without this item has
been found; "-": no solution has not yet been found. (If the symbol

last line, then there is no solution for a knapsack of this size.)

[T

appears in the

5.11 Common Errors 111}

The method we just used is an instance of a general technique called dynamic
programming. The essence of dynamic programming is to build large tables with all
known previous results. The tables are constructed iteratively. Each entry is computed
from a combination of other entries above it or to the feft of it in the matrix. The main
problem is to organize the construction of the matrix in the most efficient way. Another
example of dynamic programming is presented in Section 6.8,

Complexity There are nK entries in the table, and each one is computed in constant
time from two other entries. Hence, the total running time is O (nK). I the sizes of the
itemms are not too large, then K cannot be too large and aK is much better than an
exponential expression in n. (If K is very large or if the sizes are real numbers, then this
approach will not work; we discuss this issue in Chapter 11,3 _If we are interested only in
determining whether a solution exists, then the answer is in Pn, K. If we are interested
in finding the actual subset, then we can trace back from the (#, Kth entry, using, for
example, the belong flag in the knapsack program, and recover the subset in 0 (1) time.

Comments The dynamic programming approach is effective when the problem can
be reduced to several smaller, but not small emcugh, subproblems, All possible
subproblems are computed. We do this computation by maintaining a large matrix.
Hence, dynamic programming can work only if the total number of possible subproblems
is not too large. Even then, dynamic programming requires building large matrices, and
thus it usually reguires a large space. {In some cases, as in the program in Fig. 5.10, it is
possible to use less space by storing only a small part of the matrix at any moment.) The
running times are usually at least quadratic.

5.11 Common Errors

In this section, we briefly mention some commeon errors in the use of induction to design
algorithms. We have already discussed common errors in induction proofs in Section
2.13, All those errors have analogous errors here. For example, forgetting the buse case
is common. [n the case of a recursive procedure, a base case is essential to terminate the
recursion. Another common error is 10 ¢xtend a solution for # to a solution of & speciul
instance of the problem for n + 1, instead of an arbitrary instance.

Changing the hypothesis unintentionally is another common mistake. Here is a
typical example of it. A graph G=(V, E) is called bipartite if its set of vertices can be
Partitioned into two subsets such that there is no edge connecting tweo vertices from the
same subset. 1f the graph is connecied and bipartite, then the partition is unique (we omit
the proof of this fact).

The Problem Given a connected undirected graph G =(V, E),
determine whether it is bipartite and, if it is, partition the vertices ac-
cordingly.

112 Design of Algorithms by Induction

A wrong solution: Remove a vertex v and partition the rest of the graph, if possible, by
induction. We call the first subset red, and the second subset blue. If v is connected to
onty red vertices, add it to the blue subset. If v 1s connected to only blue vertices, add it
to the red subset. If v is connected to vertices from both subsets, then the graph is not
bipartite {since the partition Is unique}.

The main error in this attempted solution, and the one we want to illustrate, is that
after we have removed a vertex the graph may not be connected. Hence, the smaller
instance of the problem is not the same as the original instance, and induction cannot be
used. Had we removed a vertex that does not disconnect the graph, this selution would
have been valid. This problem has a better solution, which does not depend on the graph
being connected; we leave that solution to the reader (Exercise 7.32). For a similar
example and further discussion of this common error, see Sectior 7.3, A result related to
this incorrect atgorithm is included in Exercise 5.24.

Changing the hypothesis is sometimes very tempting. If the hypothesis is
something of the form “‘we know how to find such and such,”” then we are tempied to
think that we can find other simple things with the same effort. But we cannot use any
such assumption unless it is included specifically in the induction hypothesis. One way
to avoid changing the hypothesis unintentionally is to think of it as a black box. Do not
make any changes to that black box, unless you are ready (o open it {namely, to redefine
it explicitly).

5.12 Summary

Several techniques for designing algorithms, all of which are variations of the same
approach, were intreduced in this chapter. These are by no means all the known methods
for designing algorithms. Additional techniques and numerous examples are presented in
the following chapters. The best way to jearn these technigues is to use them to solve
problems. The rest of this book is devoted to precisely that purpose. The principles
presented in this chapter are as follows:

. We can use the principte of induction to design algorithms by reducing an instance
of a problem to one or more of smaller size. If the reduction can always be
achieved, and the base case can be solved, then the algorithm follows by inductien.
The main idea is to concentrate on reducing a problem, rather than on solving it
directly.

. One of the easiest ways to reduce the size of a problem is to eliminate some of its
clements. That technique should be the first line of attack. The elimination cap
take many forms. In addition to simply eliminating elements that clearly do not
contribute (as in Section 5.3), it is possible to merge two elements into one, to find
elements that can be handled by special {easy) cases, or to introduce a new element
that takes on the role of two 0r more original elements (Section 6.6).

* We can reduce the size of the problem in many ways. Not all reductions, however,
lead to the same efficiency. As a result, all possibilities for reductions should be
considered. In particular, it 18 worthwhile to consider different orders for the

Bibliographic Notes and Further Reading 113

induction sequence. We have seen examples where it is better to take the largest
element first. Sometimes, i is better 1o take the smallest element first. We will see
examples of starting from the middle (Section 6.2). We also will see examples of
induction on trees in which the root is removed first (top down), and examples in
which the leaves are removed first (bottom up} {Section 6.4.4).

. One of the most efficient ways to reduce the size of a problem is to divide it into
two {or more) egual parts. Divide and conquer works effectively if the problem
can be divided such that the output of the subproblems can easily generate the
output for the whole problem. Divide-and-conquer algorithms are given in
Sections 6.4, 6.5, 8.2, 8.4, 9.4, and 9.5,

. Since a reduction can change only the size of the problem, but not the problem
#self, we should look for smaller subproblems that are as independent as possible.
For example, the problem of finding some ordering among several items can be
reduced to finding (and removing) the item that is first in the order; the relative
order of the rest of the items is independent of the first item (see Sections 6.4 and
7.5).

[There is one way, however, to overcome the limitation that the reduced problem
must be identical 10 the original problem: Change the problem statement. Thisisa
very kmportant method that we will use often. Sometimes, it is better to weaken
the hypothesis and to arrive at a weaker algorithm, which can be used as a step in
the complete atgorithm (see Section 6.10).

. Finally, we can use all these techniques together, or in various combinations. For
example, we can use the divide-and-conquer approach with strengthening the
induction: hypothesis, so that the different subproblems become easier to combine
{see Section 8.4),

Bibliographic Notes and Further Reading

The method presented in this chapter was developed by the author (Manber [1988}). 1t s
by no means new. The use of induction, and in general mathematical proof techniques,
in the algorithms area has its origin in the flowcharts of Goldstine and von Neumann {(see
von Neumann {1963}), but was first fully developed by Floyd {1967]. Dijkstra {1976},
Manna {1980}, Gries [1981], and Dershowitz {1983] present methodologies similar to
ours to develop programs together with their proof of correctness. Their approach
addresses program design in a much more rigorous and detailed fashion than the
presentation in this chapter. The use of loop invariants, described in Section 2.12, can be
considered, in some sense, 10 be equivalent to the use of induction in this chapter.
Recursion, of course, has been used extensively in algorithm design (see, for example,
Burge {19751 and Paull {1988]).

The celebrity problem was first suggested by Aanderaa (see Rosenberg [1973]) |
is possible to save an additional | log,n} questions by being careful not to repeat, in the
verification phase, questions asked during the elimination phase (King and Smith-
Thomas [1982]). Strengthening the induction hypothesis is probably a very old trick.
Polya {1957] calis this technique the inventor’s paradox {because it is easier 10 invent,

114 Design of Algorithms by Induction

or prove, something that is stronger). It is also sometimes called generalization.
Dynamic programming was introduced and formalized by Bellman {1957). It has
numerous applications, and many variations. For a detailed description of dynamic
programming see, for example, Dreyfus and Law {1977}, or Denardo [1982]). The
observation leading to Exercise 5.24 was pointed out to us by Tom Trotier.

Prill Exercises

5.1

52

56

5.7
38

59

Design a divide-and-conguer algorithm for polynomial evaluation. How many additions
and muliiplications does your algorithm require? Can you think of an advaniage this
atgorithm has over Homer’s rule?

Try to follow the steps of inductive reasoning that were used in Section 5.3 to solve the
following maximal induced subgraph problem: Given a graph G =(V, E), we are looking
for the maximal induced subgraph G’ such that all the degrees in G' are at most k {as
opposed to *'at least” in the problem in Section 5.3). This version is much more difficuls
than the original version, and the approach taken for the original version does not work
here. Discuss why it does not work. (See Chapter i1 for a discussion of this problem for
the simple case of k= (1)

Consider algorithm Mapping (Fig. 5.3}, Is it possible that the set § will become empty at the
end of the algorithm? Show an example, or prove that it cannot happen.

Write the appropriate loop iavariant for the first while loop in aigorithm Celebrity (Fig. 5.4).

You are given a binary tree 7. T is called an AVL tree (see also Section 4.3.4) if the
balance faciors of all its nodes are 0, 1, or —1. Assume that the nodes do not have enough
space to store the balance factor. Design an efficient algorithm to solve the following
decision problem. Given a tree T, the algorithm should determine whether or not T is an
AVL tree. The answer should be only yes of no.

Modify algorithm Maximum_Consecutive_Subsequence (Fig. 5.9) such that it finds the
aciual subsequence and not only the sum.

Write 4 program to recover the solution to a knapsack problem using the befong flag.

In algerithm Knapsack, we first checked whether the ith item is unnecessary (by checking
PHi—1, i1, H there is a solution with the i~ items, we take this solution, We can alse
make the opposite cheice, which is to take the solution with the ith item if it exists (ie.,
check P[i, j-k] first). Which version do you thisk will have a better performance?
Redraw Fig. 5,11 to reflect this choice.

A given knapsack probtem may have many different solutions. What are the special
characteristics of the solution obtained from algorithm Knrapsack? What separates this
sofution from all the rest? How does your answer change if the choice is made according to
the poitey of Exercise 3.77

Creative Exercises 115

| Creative Exercises

5.19

5.18

519

Solve the following extended skyline problem. Suppose that the buildings in the skyline
have roofs. Each building is a rectangle with a triangular roof on top. (You can assume for
simplicity that all the roofs have 48-degree angles with the buildings.} Again, all the
buildings have a common horizon. Design an algorithm to draw the skyline in this case.

Suppose that there are two different (snaybe proposed) skylines: One is projected on a
screen with a blue ¢olor, and the other is superimposed on the first one with a red color,
BDesign an efficient aigorithm to compute the shape that wili be colored purpie. In other
werds, compute the intersection of two skylines.

Letxy, ¥, ..., x, be 2 sequence of real numbers {not necessarily positive}. Design an G {n)
algorithm to find the subsequence x;, Xy, ..., x; (of consecutive elemenis) such that the
product of the numbers in it is maximum over ali consecutive subsequences. The product of
the empty subseguence is defined as i.

Suppose that a given tree is not an AVL tree. We call a node an AVL node if its balance
factor is 9, |, or -1. Design an aigorithm 10 mark the nodes in T that are not AVL nodes, but
all of whose descendents are AVL nodes.

Let G =(V, £) be a binary tree with # vertices, We want to construct an 2 X 7 matrix whose
ifth entry is equal to the distance between v, and v, (Since the tree is undirected, the matrix
wiil be symmetric.) Design zn O (n*) aigorithm to construct such a matrix for a tree that is
giver in the adjacency-list representation.

Let G =(V, E} be a binary tree. The distance between two vertices in G is the length of the
path connecting these two vertices {neighbors have distance 1), The diameter of G is the
maximal distance over all pairs of vertices. Design a linear-time algorithm to find the
diameter of a given tree.

Improve the space utifization in algorithmn Knapsack (Sectien 5.10). Is there 2 need for a
compilete n x K matrix? What is the space complexity of the improved algorithm?

Solve the following variation of the knapsack problem: The assumptions are identical to
those of Section 5.10, except that there is an unlimited supply of each item. 1n other words,
the probiem is to pack items of given sizes in a given-sized kaapsack, bui each item may
appear many times.

Here is another variation of the knapsack problem: The assumptions are the same as in
Exercise 3.17 (n items, unlimited supply, fixed-sized knapsack}, but now cach item has an
associated value, Design an algorithm to find how to pack the kaapsack fully, such that the
items in it have the maximal vaiue among ail possible ways to pack the knapsack.

Here is the most common variation of the knapsack problem: The assumptions are the same
as in Exercise 5.17 (n items with sizes and values, unlimited supply, fixed-sized knapsack,
and the geal of maximizing the vaiue), but now we are aot restricted to Hlling the knapsack
exactly {0 capacity. We are interested only in maximiziag the total value, subject to the
constraint that there is enough room for the chosen items in the knapsack.

116

520

5.22

523
524

Design of Algerithms by EInduction

"
Let ¥y,.Xz, . £, De a set of integers, and let § = ¥.x,. Design an algorithm to partition the
iwl
set into two subsets of equal sum, or determine that it is impossible to do so. The algorithm
shouid run in time O (n5).

Suppose that you are given an algorithm as a klazck box — you cannot see how it is designed
— that has the following properties: f you input any sequence of real numbers, and an
integer &, the algorithm will answer **yes”* or “*no,"" indicating whether there is a subset of
the numbers whose sum is exacily £. Show how to use this black box te find the subset
whose sum is &, if i1 exists. You should use the black box O {n} times (where » is the size of
the seguence).

The towers of Hanoi puzzie is a standard example of a nontrivial probiem that has a simple
recussive soiution. There are n disks of different sizes arranged on a peg in decreasing
order of sizes. There are two other empty pegs. (see Fig. 5.12). The purpose of the puzzle
is 1o move all the disks, one at a time, from the first peg to another peg in the following
way. Disks are moved from the top of one peg to the top of another. A disk can be moved
10 a peg ontly if it is smaller than all other disks on that peg. !n other words, the ordering of
disks by decreasing sizes mast be preserved at all times. The goal is to move all the disks in
as few moves as possible.

a. Design an algorithm (by induciion) to find a minimal sequence of moves that selves the
towers of Hanoi problem for # disks.

b. How many moves are used in your algorithm? Construet a recurrence relation for the
number of moves, and solve it.

c. Prove that the number of moves in part b is optimal; that is, prove that there cannot exist
any other algeorithm that uses less moves,

Write 2 nonrecursive program for the rowers of Hanoi probiem (defined in Exercise 3.22).

The foliowing is a variation of the towers of Hanoi probiem {(see Exercise 5.22). We no
longer assume that all the disks are initiaily on one peg. They may be arbitrarily distribuied
among the three pegs, as long as they are ordered in decreasing sizes on each peg. The
purpose of the puzzie remains 10 move all disks to one specitied peg, uader the same
constraints as the original problem, with as few moves as possible. Design an algorithm to
find a minimal sequence of moves that solves this version of the towers of Hanei preblem
for n disks.

AN N

Figure 5.12 The towers of Hanoi puzzle.

Creative Exercises 117

525 This exercise is refated to the wrong algorithm for determining whether a graph is bipartite,
described in Section 5.13. In some sense, this exercise shows that not only is the algorithm
wreng. but also the simple appreach cannot work. Consider the more general preblem of
graph coloring: Given an undirected graph G =(V, £}, a valid coloring of G is an
assigament of colors to the vertices such that no two adjacent vertices have the same color,
The problem is te find a valid celoring, using as few colors as possible. (In general, thisis a
very difficuls problem; it is discussed in Chapter 11.) Thus, a graph is bipartite if it can be
colored with two colors.

4. Prove by induction that Irees are abways bipartite.

b. We assume that the graph is a tree {which means that the graph is bipartite}. We want to
find a partition of the vertices into the two subsets such that there are ae edges conaecting
vertices withis one subset. Consider again the wrong algerithm for determining whether
a graph is bipartite, given in Section 5.11: We take an arbitrary vertex, remove it, color
the rest (by induction), and then cotor the vertex in the best possible way. That is, we
color the vertex with the oldest possible color, and add a new color onty if the vertex is
connecied to vertices of all the old colors. Prove that, if we color one vertex at a time
regardless of the global connections, we may aeed up 10 } +log,n colors. You should
design a construction that maximizes the number of colers for every order of choosing
vertices. The construction can depend or the order in the following way. The algorithm
picks a vertex as a next vertex and starts checking the vertex's edges. At that point, you
are aliowed to add edges incident to this vertex as you desire, provided that the graph
remains a tree, such that, a: the end, the maximal number of colors will be required. You
cannot remove an edge after it is put in (that would be cheating the algorithm, which has
already seen the edge). The best way 1o achieve this construction is by induction.
Assume that you kaow a construction that requires <k colors with few vertices, and build
one that requires £ + | colors without adding too many new vertices.

CHAPTER 6

ALGORITHMS INVOLVING
SEQUENCES AND SETS

Girder is a lovely thing;
on disarray it tays its wing,
teaching simplicity to sing.
Anaa Hempstead Branch (1875-1937)

6.1 Introduction

In this chapter, we deal with inputs that are either finite sequences or finite sets. The
difference between sequences and sets is that in sequences the order in which the
elements are given is important whereas in sets if is not. Also, in sets we assume that an
element does not appear more than once, whereas there is no such assumption for
sequences. Since inputs are usually given in some order, we can regard them as
sequences, Nevertheless, we may call an input a set when we are not interested in the
given order. Throughout this chapter, unless specified otherwise, the representation of
the input is asswmed to be an array, and we assume that the size of the array is known,
The elements in the sequences or sets are assumed to be taken from a totally ordered set
(c.g., integers, teals), so that they can be compared. In this chapter, we consider
problems in which the elements are all of the same type. We study issues such as
maximality, order, special subsequences, data compression, and similarities of sequences.

This chapter contains many different algorithms with a variety of applications.
Our purpose is to give more examples of the design methodology introduced in Chapter
5. and, at the same time, 10 describe some important algerithms. We include algorithms

120 Algorithms Involving Sequences and Sets

¢hat are very important and universally applicable (binary search and sorting, for
example), algorithms that are very important but have specific applications (file
compression and sequence comparisons), and algorithms that are not very important but
itlustrate interesting techniques {(finding the two largest clements in a set, and the
stuttering-subsequence problem).

The first example in this chapter is binary search — a basic and clegant algorithm
that comes in many forms and appears in many situations, We then discuss sotting —
one of the most extensively studied algorithmic problems — order statistics, data
compression, two problems involving text manipulation, and probabilistic algorithms.
We end this chapter with several examples of elegant algorithms illustrating interesting

design techniques.

6.2 Binary Search and Variations

Binary search is to algorithms what a wheel is to mechanics: k is simple, elegant, and
immensely important, and it is rediscovered frequently. The basic idea behind binary
search is to cut the search space n half {or approximately so) by asking only one
question. In this section, we describe several variations of binary search and show its
versatitity,

Pure Binary Search

The Problem Let 1y, ., ..., be a sequence of real nurmbers such
that x £x, < -« <x,. Given a real number z, we want to find whether
z appears in the sequence, and, if it does, to find an index { such that

.‘}' =i.

For simplicity, we Jook for only one index 7 such that v, =z In general, we may be
interested in finding all such indices, the smallest one, the largest one, and so on. The
idea is to cut the search space in half by checking first the middle number. Assume, for
simplicity that n is even. If = is less than X,,»,,, then o is clearly in the first half of the
sequence; otherwise, : is in the second half, Finding = in cither half is a problem of size
n/2, which can be solved by induction. We handle the base case of n=1 by directly
comparing - to the element. The algorithm is given in Fig. 6.1,

Compiexity Each timne a comparison is made, the range is cut by one half; therefore,
the nurmber of comparisons required to find a given number in a sequence of size n with
binary search is O (logn). This version of binary search delays the equality comparisons
to the end. The alternative is to check equality with = in each step. The disadvantage of
the version we present is that there is no hope for stopping the search early;, the
advantage is that only one comparison is made in every siep (instead of one equality
comparison and one inequality comparison). This search is thus usoally faster. Although

6.2 Binary Search and Variations 121

Algorithm Binary_Search (X. n, :};

Input: X (asorted array in the range | to a1}, and - ¢the search key).
Output: Posirion (an index such that X |{ | =z, or 0 if no such index exist).

begin
Pasition ;= Findiz, |, n);
end

Sunction Find (. Left, Right) . integer ;
begin
if Left = Right then
if X |Left] = z then Find := Left
else Find := 0
else
Middle := [/A(Left +Right)]
if 2 < X |Middle | then
Find := Find {z, Left, Middle-1)
else
Find := Find (z, Middle, Right)
end

Figure 6.1 Algorithm Binary Search.

it is more convenient to write the program as a recursive program, we can easily convert
it to a ponrecursive program. Binary search is not as effective for srall values of # as it
is for large ns. If n is small, then it is better simply 1o search the sequence linearly.

Binary Search in a Cyclic Sequence

A sequence x), X3, .., X, is said to be cyelically sorted if the smallest number in the
sequence is xv; for some unknown §, and the SeqUENCE Xy, Xy py coos Xyr X |y o0 Aoy 18 SOITRd
in increasing order.

The Problem Given a cyclically sorted list, find the position of the
minimal element in the list (we assume, for simplicity, that this position
1$ unique).

To find the minimal element x; in the sequence, we use the idea of binary search to
eliminate half the sequence with one comparison. Take any two numbers x; and x,,, such
that £ <m. I x; <x,,, then i cannot be in the range k < i sm, since x; is minimal in the
whole sequence. (Notice that we cannot exclude x,.) On the other hand, if x; > x,,. then J

122 Algorithms Involving Sequences and Sets

must be in the range k <i<m, since the order is switched somewhere in that range.
‘Thus, with one comparison, we can eliminate many elements. By choosing & and m
appropriately, we can find { in O {log n} comparisons, The algorithm is given in Fig. 6.2.

Algorithm Cyclic_Binary_Search (X, n, z) ;

Input: X (a cyciicaiiy sorted array in the range 1 to n of distinct elements).
Output: Position (the index of the minimal element in x).

begin
Position = Cyclic_Find(1,n) ;
end

Junction Cyclic_Find (Left, Right) . integer ;
begin
if Left = Right then Cyclic_Find '= Left
else
Middle := |2 (Left + Right)] ;
if XiMiddle] < X [Right] then
Cyclic_Find := Cyclic_Find {Left, Middlej
else
Cyclic_Find ;= Cyclic_Find (Middle+1, Right)
end

Figure 6.2 Algorithm Cyelic_Binary_Search.

Binary Search for a Special Index

In the following search problem, the key is not given; instead, we are looking for an
index that satisfies a special property.

The Problem Given a sorted sequence of distinct integers
ay,ds, ... 4, determine whether there exists an index 7 such that g, =1,

Pure binary search is not applicable here, because the value of the searched efement is
not given. However, the property we seek is adaptable to the binary search principle.
Consider the value of a,,, (assume again that n is even). If this value is exactly n/2, then
we are done. Otherwise, if it is less than n/2, then, since all numbers are distinct, the
vahue of a,;9_; is less than #/2~ 1, and so on. No number in the first half of the sequence
can satisfy the property, and we can continue searching the second half. The same
argument holds if the answer is ‘‘greater than.”” The algorithm is given in Fig 6.3.

6.2 Binary Search and Variations 123

Algorithm Special_Binary_Search (A, nj ;

Input: X (asoried array in the range | to # of distinct integers),
Output: Position (the index satisfying A [Position } = Pasition, or 0 if no
such index exists),

begin
Position = Special Find(1, n}.;
end

Junction Special_Find (Left, Right) : integer ;
begin
if Left = Right then
if AlLeft] = Left then Special Find = Left
else Special_Find = @ { unsuccessful search }
else
Middle :={ '/(Left +Right)] ;
if A (Middle } < Middle then
Special _Find := Special Find { Middle + 1, Right }
else
Special_Find := Special_Find { Left, Middle
end

Figure 6.3 Algorithm Special_Binary_Search.

Binary Search in Sequences of Unknown Size

Sometimes we use a procedure much like binary search to double the search space rather
than to halve it. Consider the regular search problem, but suppose that the size of the
sequence 18 unknown. We cannot halve the search range, since we do not know its
boundaries, Instead, we look for an element x; that is greater than or equal to z. If we
find such an element, then we can perform binary search in the range 1 t0 . We first
compare 7 to x;. I z Sx |, then z can only be equal to x,. Assume, by induction, that we
know that z » x; for some j 2 1. If we compare z to xy;, then we double the search space
with one comparison. If z $x,;, then we know that x; <z Sx;; and we can find z with
O {log j) additional comparisons. Overall, if i is the smallest index such that z Sx;, then it
takes O (logi) cornparisons to find an X such that z SXs and another O (logi)
comparisons to find /.

The same algorithm can also be used when the size of (he sequence is known, but
we suspect that [is very small. This algorithm is an improvement over regular binary
search in such cases because its running time is O (log{) rather than O {log n). However,
there is an extra factor of 2 in the running time of this algorithm, since we perform two
binary search Jike procedures. Therefore, this algorithm is better only when i =0 (V).

124 Algorithms Involving Sequences and Sets

The Stuttering-Subsequence Problem

The principle of binary search appears even in problems that do not seem to require any
search. Let A and B be twe sequences of characters from a finite alphabet
A=a,ay " a,and B=b b, b, such that m Sn. We say that B is a subsequence of
A if there are indices {; <iy < *** <, such that, for all j, I<j<m, we have h;=q;. In
other words, 8 is a subsequence of A if we can embed B inside A in the same order but
with possible holes. It is simple to determine whether B is a subsequence of A. We scan
A until we find the first occurrence €if any) of b, continue from there untit we find b,
and so on. The proof that this algorithm is correct is easy by induction, and we leave it as
an exercise. Since the algorthm involves one linear scan of A and B, its running time is
ctearly O (m+n). Given a sequence B, we define B’ to be the sequence B with each
character appearing { times consecutively. For example, if B=xyzzx, then
B* = xxxyyyzzzzazxxx.

The Problem Given two sequences A and B, find the maximal
value of / such that B' is a subsequence of A,

This problem is called the stuttering-subsequence problem. It may seem difficult at
first, but it can be solved easily with binary search.

For each given value of i, we can construct the sequence B' easily. Hence, we can
determine whether B is a subsequence of A for any specific value of 7. Furthermore, if
B/ is a subsequence of A, then B' is a subsequence of A, for 1 £/ <j. The maximal value
of i that needs to be considered cannot exceed n/m, since in that case the sequence B’
would be longer then A. So, we can use binary search. We first set i =| n/m}/2, and
check whether B' is a subsequence of A. We then continue with binary search,
climinating the lower range if the answer is yes and the upper range otherwise. It will
take [logy(n/m)| tests to determine the maximal /. The overall ranning time is thus
O((r+m)log{n/m)) = O(nlog(n/m)). Sequence comparison prodblems are also
discussed in Section 6.8,

This solation suggests a general technique. Whenever we are looking for the
maximal { that satisfies some property, it may be sufficient to find an algerithm that
determines whether a given i satisfies that property. We can do the rest by binary search
if we have an upper bound for i, and if the property is such that, whenever { satisfies it,
then j satisfies i, for 1<, If we do not know an upper bound for i, we can use the
doubling scheme. That is, we can start at / = | and double the value of / until we find the
right range. This search will take longer, but, unless the desired | is extremely large, it
will still be efficient. The resulting algorithm, however, may not be optimal. In many
cases, such as the stuttering-subsequence problem, it is possible to eliminate the extra
(J {log #) factor,

.3 Interpolation Search 128

Solving Equations

This subject area does not conform to the subiect of this chapter, but it deserves a shost
mention here. Suppose that we want to find a solution to the equation f (x) =0, where fis
a continuous function which we can compute. We are given that x is in the range [a, b}
ti.e., asxsh), and that f(a) féb)<0 (i.e., onc of f (a) and f (b} is positive and the
other one is negative). We want o find 2 solution to the equation within a given
precision.

Since the function is continuous, a solution must exist in the range ia, b]. We can
use a variation of binary search, known as bisection or the Bolzano method, which
works as follows. The function f is evaluated at x|, ={a +5)/2. If f(x;}=0 (within the
required preciston), then we have a solution. Otherwise, we can select one of the
subranges [a, x,1 or [x,, b], each being one half the size of the original, in which a
solution is guaranteed to exist. The selection is done such that the values of the function
are positive at one end and negative at the other. We continue in this way until the
desired precision is achieved, After k steps, the size of the region that contains a solution
is (b—a)25,

6.3 Interpolation Search

in binary search, the search space is always cut in half, which guarantees the logarithinic
performance. However, if during the search we find a value that is very close to the
scarch number 7, # seems more reasonable to comtinue the search in that
“neighborhood™ instead of blindly going to the next half point. In particular, if = is very
small, we should start the search somewhere in the beginning of the sequence instead of
at the halfway point.

Consider the way we open a book when we are searching for a certain page
number. Say the page number is 200 and the book looks fike an 800-page book. Page
200 is thus around the one-fourth mark, and we use this knowledge as an indication of
where to open the book. We will probably not hit page 200 on the first try; suppose that
we get page 250 instead. We now cut the search to a range of 250 pages, and the desired
page is at about the 80 percent mark between page 1 and 250. We now try to go back
about one-fifth of the way. We can continue this process until we get close enough to
page 200, that we can flip one page at a time. This is exactly the idea behind
interpolation search. Instead of cutting the search space by a fixed half, we cut it by an
amount that seems the most likely to succeed. This amount is determined by
interpolation, which is iltustrated in Fig. 6.4. The first guess is at X {8), which tums out to
be larger than z. Another interpolation leads to X {5], and then anocther finally leads to
X 14). The aigorithm, including the precise expression used for the interpolation, is given
in Fig, 6.5.

Complexity The performance of interpolation search depends not only on the size of
the sequence, but also on the input itself. There are inputs for which interpolation search
checks every number in the sequence (see Exercise 6.4). However, interpolation search
Is very efficient for inputs consisting of relatively uniformly distributed elements (the

126 Algorithms Involving Sequences and Sets

> ea
l X{if

4 5 6 7 & 9 10N 12131415 1617

f

Figure 6.4 Interpolation search,

Algorithm Interpolation_Search (X, n, z) ;

Input: X (a sorted armay in the range 1 to n), and z (the search key).
Gutput: Pesirion {an index i such that X [{ }=z, or 0 if no such index exist).

begin
ifz< X[l}orz>X{n] then Position .= 0
{ unsuccessful search }
else Position := Imt_Find(z,], n}
end

Sunction Int_Find (2, Left, Right} : integer ;
begin
i Xileft| =z then Iny_Find := Left
else if Left = Right or X [Left) = X {Right] then
Int_Find := 0
else
(z — X [LeftXRight— Left) |
X [Right 1~ X {Left]
ifz < X {Next Guess]then
int_Find := Int_Find (z, Left, Next_Guess — 1}
else
Int_Find := Int_Find (z. Next_Guess, Right)

Next Guess '= | Left+

end

Figure 6.5 Algorithm Interpolation_Search.

6.4 Sorting 127

pages of a book are, of course, uniformly distributed). It can be shown that the average
number of comparisons performed by interpolation search, where the average is taken
over all possible sequences, is O (loglognr) Although this seems (o be an order of
magnitude improvement over the perfermance of binary search {due to the extra
jogarithmy}, interpolation search is not much better than binary search in practice for two
main reasons. First, unless n ks very large, the value of logyn is small enough that the
logarithm of it is not much smaller. Second, interpolation search requires more elaborate
arithmetic,

6.4 Sorting

Sorting 1s onc of the most extensively studied problems in computer science. [t is the
basis for many algorithras, and it consumes a large proportion of computing time for
many typical applications. There are numerous variations of the sorting problem, and
dozens of sorting algorithms. We cannot cover in this section even & small part of this
subject. We mention onby several common techniques. As usual, we concentrate on the
principles behind the algorithms that can be useful for other problems. We will go into
more detail than usual in this section.

The Problem Given » numbers x|, x3, ..., X,,, arrange them in in-
creasing order. In other words, find a sequence of distinet indices
1Si3, 02, v Sn, such that x; sx; -0 S, .

For simpticity, unless specified otherwise, we assume that the numbers are distinct. Al
the methods described in this section are valid for nondistinet numbers as well. A sorting
algorithm is called in-place if no additional work space is used besides the initial array
that holds the eletnents,

6.4.1 Bucket Sort and Radix Sort

Perhaps the simplest sorting technique is the **mailroom™ sort: allocate a sufficient
number of *‘boxes’ -~ we call them buckets — and put each element in the
corresponding bucket. This method is called bucket sort. If the elements are letters and
they need to be sorted according to states, for example, then allocating one bucket per
state is sufficient and the resulting algorithm is very efficient. On the other hand, if the
letiers need to be sorted by zip codes {with 5 digits), then this method requires 100,000
boxes and a very Iarge mailroom. Thus, bucket sort works very well only for elements
from a small, simple range that is known in advance. A more detailed description of
bucket sort follows.

We assume that there are n elements, all of which are integers in the range | to m.
We alocate m buckeis, and then, for each i, we put x; in the bucket corresponding to its

128 Algorithms Involving Sequences and Sets

value, At the end, we scan the buckets in order and collect all the elements. The
complexity of this simple algorithm is obviously O{m +n). If m=0{n}, then we get a
linear-time sorting algorithm, On the other hand, if m is very large relative to » (as may
be the case with zip codes), then O (m) is too large. In addition, the algorithm requires
O (m) storage, which is an even more serious probiem for large m,

A natural extension of this idea is radix sort. Consider the zip-code exarnple
again. Using bucket sort for zip codes is not effective because the range of zip codes is
too large to handle. Can we do something to reduce the range? We use induction on the
range in the following way, We use several stages. First, we use 10 buckets and sort
everything according to only the first digit of the zip code. Each bucket now covers
10,000 different zip codes {corresponding to the remaining four digits). The running
time for this stage is G (r). At the end of the first stage, we have 10 buckets, each with
elements corresponding to a smaller range. We can now solve the problem for each
bucket by induction. Since we reduce the range by a factor of 10 in each stage, and since
al zip codes have 5 digits, only 3 stages will be required. Once the buckets are sorted, it
is easy to put them together into a sorted list. We leave the details of this algorithm to the
reader {Exercise 6.5), since we want to show another variation of the same idea. We note
that the range can be divided in any convenient way. In the zip-code example, the range
is divided according to the zip codes’ decirnal representationn. If the keys are strings of
characters that need 10 be sorted in a lexicographic order, we can consider one character
at a tme, leading to a lexicographic sert. Both algorithms are similar, The version of
radix sort presented here (namely, a left to right scan) is known as radix-exchange sort.

A straightforward recursive implementation of radix-exchange sort requires
temporary buckets {about 50 buckets will be needed in the zip-code example; see also
Exercise 6.5). Another way 1o achieve radix soft is to apply the induction in the opposite
order. That is, the sorting is done from right to left, starting with the least significant
parts instead of the most significant parts, We assume that the elements are large mtegers
represented by k digits, and each digit s in the range 010 d — . The induction hypothesis
ts the straightforward one,

Induction hypothesis: We know how to sort elements with < k digits.

The difference between this method and the previous radix-exchange sort is the way we
extend the hypothesis. (This idea of applying induction in the opposite order is similar t0
the one for Homer's rule in Section 5.2} Given elements with & digits, we first ignore
the most significant digir and sort the elements according to the rest of the digits by
induction. We now have a list of elements sorted according to their & — 1 least significant
digits, We scan all the elements again and use bucket sort, on the most significant digit,
with d buckets. Then, we collect all the buckets in order. This algorithm is called
straight-radix sort. We wani to argue that the elernents are now sorted according 1o X
digits.

We claim that two elements that are put in different buckets in the last step are
arranged in the right order. We do not even need the induction hypothesis for this case,
since, by the lexicographic ordering, the most significant digit is the one that determines
the order regardless of the other digits. On the other hand, if two elements have the same

6.4 Sorting 129

most significant digit, then, by the induction hypothesis, they are in the right order before
the tast step. Thus, we have to make sure that they stay in the right order. This is the
only subtle part of the algerithm, and it is a good example of the use of the inductive
approach to make sure the algorithm is correct. It is essential that elements that are put in
the same bucket remain in the same order. This can be achieved by using a queue for
cach bucket, and by appending the 4 queunes at the end of a stage 1o form one global
quene of all elements (sorted according to the [least significant digits). The precise
algorithm is given in Fig. 6.6.

Algorithm Straight_Radix (X, n, k} ;

Input: X (an array of integers, each with £ digits, in the range | to n},
Cutput: X (the array in sorted order),

begin
We assume that all elements are initially in a global quene GQ ;
{ We use GQ for simplicity; it can be implemented through X }
Jori:=1ltoddo
{ d ix the number of possible digits; d = 10 in case of decimal numbers }
initialize gqueue Qi) to be empty ;
Sfori = kdownio I do
while GQ Is not empty do
pop x from GQ ;
d ;= the ith digit of x ;
insert x into Q{d],
fort = 1toddo
ingert Q{t] into GQ ;
Jori=1tondo
pop X1i] from GO
end

Figure 6.6 Algorithm Straight Radix.

Complexity It takes n steps to put all the elements in the queue GC, and d steps to
initialize the queues Q@ {i]. The main loop of the algorithm, which is executed & times,
pops each element from GC and pushes it into one of the @ {i]s. It also concatenates all
the O [ils together. The overall running time of the algorithm is O (nk).

In the remainder of this section, we consider sorting techniques that use direct
comparisons between the elements without regard to the “‘structure’” of their keys. Each
comparison will thus involve the whole key, These algorithms are more general since
they make no assumptions about the types of elements, except that two elements can be
compared.

130 Algorithms Involving Sequences and Sets

6.4.2 insertion Sort and Selection Sort

We use a straightforward induction. Suppose that we know how to sort » — | numbers
and we are given # numbers. We can sort the # — | numbers and then put the nth number
in its correct place by scanning the » — | sorted numbers until the correct place to insert is
found. This procedure is appropriately catled insertion sort. It is simple and effective
for small vatues of n. However, it is not an efficient algorithm for large #. In the worst
case, the sth number is compared to all the previous n — I numbers. The total number of
comparisons for sorting n numbers may be as high as I+2+ - +n-] =
Yln—-Dn-2} = O (n*}. Furthermore, inserting the nth number in its cormect place
involves moving other elements. In the worst case, n — | elements are moved in the ath
step; hence, the number of element movements is also O (n%). We can improve insertion
sort by storing the elements in ap array, and using binary search on the n— I sorted
nurnbers to find the correct place to insert. The search takes only O (log) comparisons
per insertion, leading to O (n log n) comparisons overall. However, the number of data
movements remains unchanged, so this is still a quadratic-time algorithm,

We can improve the straightforward induction by selecting a special #th number,
For example, we can select the maximal number as the sth number. The maximal is a
good choice because we know where to put it — it belongs at the end of the array. The
atgorithm consists of first selecting the maximal, then putting it in the right place (by
swapping it with whatever is there}, and then recursively sorting the rest. This algorsthm
is called selection sort. The advantage of selection sort over insertion sort is that only
r -1 data movements (swaps in this case) are required versus O (n?) in the worst case for
insertion: sort. On the other hand, stnce it takes n —1 comparisons to find the maximal
clement (finding the maximal is discussed in Section 6.53), the total number of
comparisons is always O(n?), whereas insertion sort with binary search requires only
O (n log n) comparisons.

It is also possible to use balanced trees for efficient insertion or selection (see
Chapter 4). Using AVI. trees, for example, each insertion requires O (loga) time.
Scanning an AVL tree 10 get a Hst of its numbers in order takes O (r) time. If we assume
by induction that we know how to build an AVL tree for # — | numbers, then all we need
to da is to insert, which takes O (log n) time. Overall, it takes O (n log n} time to insert »
nurnbers into an empty AVL tree, and O (n) time at the end 1o list them in sorted order.
For large n, this is a much better solution than insertion sort or selection sort, but it
requires more space o hold the pointers, It is clearly not an in-place algorithm. It s also
quite complicated, and it is not as good as the algorithms we present next. The programs
for insertion and sclection sorts are sirnple and are left as exercises.

6.4.3 Mergesort

To mprove the efficiency of insertion sort, we notice that in the time it takes to scan the
sorted numbers 1o find the correct place to insert one number, we can find the correct
place for many numbers. We have already uvsed this idea in Scction 5.6, If we have two
sets of numbers that are already sorted, we can merge them together with one scan. The
merge involves considering the numbers of the second set in order and finding the correct

6.4 Sorting 131

place in the first set for the smallest number, the second smallest, and so on. More
precisely, denote the first set by @y, g2, ..., g, and the second set by b, b,, ... b,,. and
assume that both sets are sorted in increasing order. Scan the first set until the right place
to insert b, is found, and insert it; then continue the scan from that place until the right
place to insert b, is found, and so on. Since the bs are sorted, we never have to go back.
The total number of comparisons, in the worst case, is the sum of the sizes of the sets.
What about data movements? It is inefficient to move elements each time an insertion is
performed, since the same elements will be moved many times. Instead, since the merge
produces the elements one by one in sorted order, we copy them to a temporary array;
each element is copied exactly once. Overall, merging two sorted sequences of sizes n
and m can be done with O{n +n) comparisons and data movements (provided that
additional storage is available).

The merge procedure that we just described can be used as a basis for a divide-
and-conquer sorting algorithm, known as mergesort. The algorithm works as follows.
First, the sequence is divided into two equal or close-to-equal (in case of an odd size)
parts. Second, each part is sorted separatety recursively. Third, the two sorted parts are
merged into one sorted sequence, as described above. The precise algorithm is given in
Fig. 6.7. An ¢xample of mergesort is shown in Fig. 6.8 (the copying is not shown),

Complexily Let T(n) be the number of comparisons required by mergesort in the
worst case. Let’s assume, for simplicity, that » is a power of 2. To calculate T{n), we
nced to solve the following recurrence relation:

Ty =2+ O(n), T{H=1L

The solution of this recurrence relation is T(n) = O {n logn) (see Chapter 3), which is
asymptotically better than the O (z*) running time required for insertion sort or selection
sort, The number of data movements is also O (n logn)}, which is more than the O (n)
data movements required by selection sort.

Although mergesort is better than insertion sort for large a, it sttt has several
drawbacks. First, mergesort is not as easy to implement. Second, the merging step
requires additional storage to copy the merged set. Thus, mergesort is not an in-place
algorithm. (There are more complicated versions of mergesort that use only constant
amounts of extra storage; see the bibliography section.) This copying maust be done
every time two smatler sets are merged, which makes the procedure slower.

6.4.4 Quicksort

Mergesort and its analysis demonstrate the efficiency of divide and conguer. If we can
divide the problem into two equal-sized subproblerms, solve each subproblem separately,
and combine the solutions, we can get an O (n log n) algorithm, provided that the division
step and the combining step take O (n}. The problem with mergesort was the need for
€xira storage, since the merging is arbitrary and we cannot predict where each element
will ¢nd up in the order. Can we somehow perform a different divide and conquer so that
the position of the elements can be determined? The idea of quicksert is to spend most of
the effort in the divide step and very little in the conguer step.

132 Algorithms Involving Sequences and Sets

Algorithm Mergesort (X, n} ;
Input: X (an array in the range | to n).
Qutput: X (the array in sorted order).

begin
M Sort(!, nj
end

procedure M_Sort(Left, Right) ;

begin
if Right - Left = I then
{ checking for this case is not necessary, because it will be handled
correctly anyway, but it makes the program more efficient }
if X{Left] > X[Right] then swap (X{Left], X[right] }
else if Left # Right then
Middle :={ ' (Left + Right)] ;
M Sort(Left, Middle-1};
M _SortMiddle, Right) ;
{ we now merge the two sorted sequences above into one sorted
sequence }
£ o= Left;
J = Middle ;
k=0
while (i < Middle — 1) and (j € Right) do
kr=k+1;
XX ()] then
TEMP k] = X[},
=i+ 1
else
TEMPKk] :=X[j].
IECHE N
if J > Right then
{ move the rest of the left side to the end of the array }
{ if i 2 Middie, then the right side is aiready in the right place }
Jort:=0to Middle — | ~i do
X{Right—t] =X Middle -1-t].
{ we now copy TEMP back into X }
fort:=0tok-Ido
X{Left+1) = TEMP [t}
end

Figure 6.7 Algorithm Mergesort.

6.4 Sorting 133

i

i

Qm@@xw

7 i

713

713

703

7 3

713

7|3

7 | 3
tOHOIE
w27 s (D
®

13

EBRccRERRRE

@@ sls|s]|siz|a|si s
£
o
=

@ 4
307 | O] 16 | 14
o fwo izl 3|7 | 3lsta || 0e
®

@
9 |10 12(3) ®
©|O® ® WO |O 5 G| 0©

Figure 6.8 An example of mergesort. The first row 15 tn the initial order. Each row il-
lustrates either an exchange operation or a merge. The numbers that are involved in the
current operation are circled.

6 | 2
@ ®
| 6
|G
2 | s
2 | s
2| 5
Ol
£ 2
¢]2
£ 2
£ 2
P2
P2
t]2
®®

O] =|==|~|~= @0« |o[=]z

@Lﬂ L L] wn L] R U’i@

Suppose that we know a number x such that one-half of the elements are greater
than or equal to x and one-half of the elements are smaller than x. We can compare all
elements to x and partition the sequence into two parts according to the answer. This
partition requires 7 — | comparisons. Since the two parts are equal in size, one past can
occupy the first half of the array and the other the second half. Furthermore, this
partition can be accomplished without additional space, as will be shown shortly. This is
the divide step. We can now sort each subsequence recursively. The combine step is
trivial since the two parts already occupy the correct positions in the array. Therefore, no
additional space is required.

Thus far, we have assumed that we know the value of x, which we usually do not.
It is easy to see, however, that the same algorithmn will work no matter which number is
used for the partition. We call the number used in the partition the pivot. Our purpose is
to partition the array into two parts, one with numbers greater than the pivot and the other
with numbers less than or equal to the pivot. We can achieve this partition with the
following algorithm. We use two pointers to the arvay, L and R, Initiatly, L points to the
left side of the array and R points to the right side of the array. The pointers *'move’ in

134 Algorithms Invelving Sequences and Sets

opposite directions toward each other, The following induction hypothesis {or loop
invariant) guarantees the correctness of the partition,

Induction hypothesis: At step k of the algorithm, pivot zx; for all i such
that [<L, and pivot < x; for all j such that j > R.

The hypothesis is trivially true at the beginning (since no i or j satisfies the conditions).
Qur goal is to move either L 1o the right or R to the left at step £ + I without invalidating
the hypothesis.

When L =R, the partition is almost completed except possibly for x,, with which
we deal later. Let's assume that L <R. There are two cases. If either x; <pivor or
Xg > pivot, then the corresponding pointer(s) can move and the hypothesis is preserved,
Otherwise, we have x; > pivor and xg Spivot. In this case, we can exchange x; with xg
and move both peinters inward., Both cases involve the movement of at least one of the
pointers; hence, the pointers will eventually meet and the algorithm will terminate.

We are left with the problems of choosing a good pivot and dealing with the last
step of the algorithm in which the two pointers meet. Divide-and-conquer algorithms
work best when the parts have equal sizes, which suggests that the closer the pivot is to
the middle, the faster the algorithm runs, It is possible to find the median of the sequence
{we discuss median finding in the next section}, but # is not worth the effort. As we shall
see in the analysis, choosing a random element from the sequence is a good choice. 1f
the sequence is in a random order, then we might as well choose the first element as the
pivol. We make this choice, mainly for simplicity, in: the algorithm presented in Fig. 6.9,

Algorithm Partition (X, Left, Right) ;

Input: X {(an array), Lefr {the left boundary of the array), and Right
(the right boundary).

Cutput: X and Middle such that X [{ 1S X [Middle | for all i £ Middle
and X [f 1> X [Middle | for all j > Middle,

begin
pivot = X [Left] ;
L:=Left: R:=Right.
while L. < R do
while X [L) < pivotand LS Rightde L. =L + ! ;
while X [R]| > pivotand Rz Leftdo R =R - 1 ;
ifl < R then
exchange X [LYwith X[R] ;
Middle := R ;
exchange X [Left } with X | Middle }
end

Figure 6.9 Algorithm Partition.

6.4 Sorting 135

When the first element is chosen as the pivot, we can exchange it with x; at the last
step of the partition, which wili put the pivot in the middle of the partition as required.
We mention other policies in the complexity discussion. In any case, any pivot chosen
from the sequence can be exchanged with the first element, and then the algorithm in Fig.
6.9 can be usad.

An example of algorithm Partition is given in Fig. 6.10. The pivot is the first
number (6). The circled numbers are those that have just been exchanged. After three
exchanges, p, points to X [6]=1, and p; points to X [7]=12. The last exchange involves
the middle point (I} and the pivot (6). After this exchange, everything to the left of the
pivot is less than or equal to i, and everything to the right is greater than it. The two
subsequences (from | to 6 and from 7 to 16) can be sorted recursively. Quicksort is thus
an in-place algorithm. The algorithm for quicksort is given in Fig. 6.11, and an example
of it is presented in Fig. 6.12.

Complexity The running time of quicksort depends on the particular input and on
the selection of the pivot. If the pivot always partitions the sequence into two equal parts,

i} 2 B 3 I3 g 12 H 15 7 3 I3 4 11 6 | 14

sz (O stwlo izt 7|3 | 1w
9

2 (i 7 08 [e | s

: ®
Mil2iafsia|En2 9|7 w0]m]s |11]16]|4

Figure 6.30 Partition of an array around the pivot 6.

Algorithm Quicksort (X, nj ;
Input: X {ap array in the range | to n),
Output: X (the array in sorted order).

begin
g Sort({, nj
end

procedure @ Sort{Left, Right} ;
begin
if Left < Right then
Partition(X, Left, Right} ;
C SortLeft, Middle — 1} ;
C SortiMiddie + 1, Right}
end

Figure 6.11 Algorithin Quicksort.

136 Algorithms Involving Sequences and Sets

5] 1 10 13 8 i3] 16 14

i5 7 | 13 8 i1 16 1 14

n
~1
o
b
=]
>
s

e
=

0| 9 |(D
9
[©®
s (@@

Figure 6,12 An cxample of quicksort. The first line is the initial input. A new pivot is
selected in each line. The pivots are circled. When a single number appears between
two pivots it is obviously in the right position.

clooeeeEoE -+
oo ele |-~
OEEEEEE] |||
PRl eEE -
QGG «|<|<|<|<]-
@
®
SEEEEE

then the recurrence relation is T{n}=2T(n/2)+Q(n), T(2)=1, which implies
F(n)=0{(nlogn} We will see that we get an O (» log #) running time even under much
weaker conditions. However, if the pivot is very close to one side of the sequence, then
the running time is much higher. For example, if the pivot is the sallest element in the
sequence, then the first partition requires n— | comparisons and places only the pivot in
the right place. If the sequence is already in increasing order, and we always select the
first element as the pivot, then the running time of the algorithm is O(r®). We can
eliminate the quadratic worst case for sequences that are sorted or abmost serted by
comparing the first, kast, and middle elements, and then taking the median of these three
{namely, the second largest) as the pivot. An even safer method is to choose pivots from
among the elements in the sequence af random. The running time of quicksort will still
be O (n°) in the worst case, because there is still a chance that the pivot is the smallest
element in the sequence. However, the likelihood that this worst case occur is very
small. We now analyze this case.

We assume that each of the x; has the same probability of being selected as the
pivot. The runnping time T (n) of quicksort if the ith smallest element is the pivot is

Ty =n~t+T({i-1)+T(n—i).

(It takes n — | comparisons for the partition, and we need to sort two smaler sequences of
sizes { — 1 and n —i} If each element has the same probability of being selected, then the
average running time is

6.4 Sorting 137

T(n)xnwl+~32ﬂ:(T{f—i}+T(n“f)}

f=
1 & . .
=p-1+ =Y T{E~+— Y T(n=i)
n ozl o

A=l

—n-1+ 2% 100,
B

This is a recurrence refation with full history. We discussed this particular relation in
Section 3.3.3, and its solution was shown there to be T(n}=0{n logn). Hence, quicksort
is indeed quick on the average,

In practice, quicksort is very fast, so it well deserves its name. A major reason for
its quickness, besides the elegant divide and conquer, is that many elements are
compared against the same element (the pivot). The pivot s thus stored in a register and
there is no need for a data movement from memory. [n most computers, this saves
considerable time.

One way to improve the running time of quicksort is to use a technique we call
choosing the base of the induction wisely. The idea is to start the induction not always
from 1. Quicksort, as described above, is called recursively until the base case, which
consists of sequences of size 1. However, simple sorting techniques, such as insertion
sort or selection sort, perform very well for small sequences, whereas the efficiency of
quicksort shows only for large sequences. Therefore, we can define the base case for
quicksort to be of size larger than | (it seems that 10 to 20 is a good size, but that
depends on the specific implementation), and handle the base case by insertion sort. (In
other words, we replace the check “if Left < Right™ by **if Left < Right - Threshold™
and add an ‘‘else’” part which runs insertion sort.) This change leads to an improvement
of the running time of quickseort by a small constant. In Section 6.11.3, we will see how
t0 use the principle of selecting the base of the induction to improve asymptoticatly the
running time of an algorithm,

6.4.5 Heapsort

Heapsort 1s another fast sosting algorithm. In practice, it is usually not quite as fast as
quicksost for karge », but it is not much slower. On the other hand, unlike quicksort, its
performance is guaranteed. Like mergesort, the worst-case running time of heapsort is
O{nlogn). Unlike mergesort, heapsort is an in—place sorting algorithm. In this section,
we emphasize one part of heapsort — building the heap. The algorithm for building the
heap illustrates the way design and analysis of algorithms should be interleaved.

Heaps were discussed in Chapter 4. We assume here an implicit representation;
specifically, the elements are given in an array A{l..» |, which corresponds to a tree in
the following way: The root of the tree is stored in A [1], and the children of any node
Ai] (3f there are any) are stored in A {2/] and A{2i + 1]. Such an array satisfies the heap
Property if the value of each node is greater than or equal to the values of its children,

138 Algorithms Involving Sequences and Sets

Heapsost works as follows. The input is ap armay A[l.sn 1 First, the elements in
the array are rearranged to form a heap. We will discuss how to build a heap later. I 4
is a heap, then A [1] is the maximal elernent of the array, We exchange A[1] with An]
so that A [r] now contains the correct element. We then consider the array A{l.n—1].
Again, we rearrange the array (o form a heap (we have to worry only about the new
A[1]), exchange A[1} with A [# 1], and continue with A{l..n —2]. Overal, there is one
initial step of building a heap, and 1 ~ 1 steps of exchanging elerents and rearranging the
heap. Rearranging the heap after an exchange is basically the same as algorithm
Remove Max_from_Heap, given in Section 4.3.2. Building a heap is an interesting
problem on its own, and it is described in detail betow, Overall, the running time of
heapsort is O{n logn) {0 (log n) per exchange}, plus the running time of the algorithm
for building the heap. Heapsort is clearly an in-place sorting algorithm. The atgorithm
for heapsort is given in Fig. 6.13.

Algorithm Heapsort (X, nj ;
Input: X (an array in the range 1 to n).
Outpat: X (the array in sosted order).

begin
Build Heap (X} { see text below }
fori ;= ndownto 2 do
swap (A1), Alil};
Rearrange Heap {I—1)
{ basically the same procedure as Remove_Max_from_Heap
inFig. 4.7}
end

Figure 6.13 Algorithm Heapsort.

Building a Heap

We now concentrate on the problem of building a heap from an arbitrary array.

The Problem Given an array A[1.n] of elements in an arbitrary
order, rearrange the elements so that the array satisfies the heap proper-

ty.

There are two natural ways to baild a heap — top down and bottom up, They correspond
respectively to scanning the array representing the heap eithes from left to right or from
right to left. Figure 6.14 iHlustrates both methods, We first describe both methods with
the use of induction. We then show that there is a substantial difference in performance

6.4 Sorting 139

Figure 6.14 Top down and bottom up heap construction.

between the two methods.
Consider scanning the array from left to right (corresponding to top down).

Induction hypothesis (top down): The array A[1..{] is a heap.

The base case is trivial, since A [1] by itself is always a heap. The main past of the
algorithm is to incorporate 4 [{ + 1) into the heap A [1..1 1. But, this is exactly the same as
inserting A {i + 1] into the heap (see Chapter 4). A [{+1] is compared to its parent, and
exchanges are made until the new parent is larger. The number of comparisons in the
worst case is | fog, (i + 1)].

Consider now scanning the array from right to left (corresponding to bottom up).
We would like to say that the array A i+ L.n} is a2 heap and to consider adding the
element A [i]. But the array A1i + 1.2] does not correspond to one heap; it corresponds
to a collection of heaps. (Note that we consider 4 [i + |..n] as part of the tree represented
by A[i..n], and not as an array by itself.) Therefore, the induction hypothesis is stightly
meore complicated.

Induction hypothesis (bottom up): All the trees represented by the array
Ali + L.n] satisfy the heap condition.

Aln] by itself is obviously a heap, so the base casc is satisfied. We can do better,
however, The whole array Al n/2] + 1.n] represents leaves in the tree. Hence, the
trees corresponding to A[|n/2] +t..n] are all singletons, so they satisfy the heap
property trivially. We need to start the induction process only at{ #/2|. This is a good
hant that the bottom-up approach may be better. Afier all, half the work is trivial. (This
is also another example for the importance of selecting the base of the induction with
care.}

Consider now A[i]. It has at most two children (A§2i+ 1] and A{2i]}, both
serving as roots 1o valid heaps (by the induction hypothesis). Incorporating A{{] into a
heap is straightforward. A[i] is compared to the maximal of its children, and, if

140 Algorithms Involving Sequences and Sets

necessary, it is exchanged with the larger child. This is similar to a deletion in a heap
(see Chapter 4}. The exchanges continue down the tree until the old value of A[f]
reaches a place where i is larger than both its children. A bottom-up construction is
inustrated in Fig. 6.15. Since the height of A[{] is |logy(n/i}|, the number of
comparisons in the worst case is 2| logy(n/i)].

Complexity (top down) The ith step requires at most |log./| $|log;n]
comparisons; hence, the running time is O{nlogn}). Moreover, O(nlogn} is not an
overestimation of the running time, as the following argument shows.

i{iogzt‘j > i Llogsil 2 n/2 logy(n/2)] = CXnlogn).

i=l i=ni}

Complexity (bottom up) The number of comparisons involved in cach siep is at
most twice the height of the corresponding node {since each node may have to be
compared with its two children, exchanged, and so on down the tree). Therefore, the
complexity is at most twice the sum of the heights of all nodes in the tree. We want to
evaluate this sum. Let's look at complete trees first, and denote by H{i) the sum of
heights of all nodes in the complete binary tree of height i, We can derive a recurrence
relation for H (i}, noting that a tree of height { consists of two trees of height i—1 and a
root. Hence, H{{)=2H (i - I}+i, and H{0)=0. We can verify (by induction) that the
solution of this recurrence is H({)=2""' = (i +2). Since the number of nodes in a
complete binary trec of height { is 2/*' — 1, it follows that the complexity of bottom-up
heap construction is O (n) for complete binary trees (namely, heaps with 2° - 1 nodes).
The complexity for a heap with # nodes such that 2° £n <2%*! — | is no more than that
for a heap with 2°*! — 1 nodes, which is still O{#n). (A more careful analysis shows that
the constant is not increased; see Exercise 6.32.) The reason the bottom-up approach is

| 2 3 4 5 f 1 S 9 (I P2 13 14 13 16

L] 2 & 5 1 9 12 i 15 7 3 13 4 11 6 14

216 @ w3 @ w]s 7| 394 @ |
2 139 16 |l s 73 a8l
o s |l iw |26 s 7|3 (@D 4[]8l

Figure 6,15 An example of building a heap botiom up. The numbers on top are the in-
dices. The circled numbers are those that have been exchanged on that step.

6.4 Sorting 141

faster than the top-down approach is that there are many nodes at the bottom of the tree
and few at the top. Thus, it is better to minimize the work for the bottom nodes rather
than to minimize the work for the top nodes.

This is another example where trying a different order of induction leads 1o a better
algorithm. The top-down method is the more straightforward and intuitive, but the
bottorn-up method turns out to be superior.

Comuments [t is hard to surnimarize sosting in onc paragraph. The main techniques
that were described in this section are variations of divide and conquer. We have seen
that it is worthwhile to spend time for the divide in order to make the conquer easier. In
the induction analogy, this translates into trying different orders of induction, and, in
particular, applying the induction to special subsets rather than to arbitrary elements. We
have also seen that the analysis must go hand in hand with the design. With some
experience one leans to develop intuition about efficiency of algorithms even before the
analysis is performed. This intuition is helpful in directing the search for a better
algorithm. The truth is usually (but not always!) not far removed from the intuition,

6.4.6 A Lower Bound for Sorting

We have started with an O (n2) algorithm for sosting and improved it to an O (nlogn)
algorithm. {s it possible to improve it even further? A lower bound for a particular
problem is a proof that no algorithm can solve the problem better. It is much harder to
prove a lower bound, since we have to address all possible algorithms and not just one
approach. We need to define a model that cormesponds to an arbitrary (unspecified)
algorithm and to prove that the running time of any algorithm that fits the model must be
higher than or equal 10 the lower bound. In this section, we discuss one such model
called a decision tree. Decision trees model computations that consist mainly of
comparisons. Pecision trees are not general models of computation, as are Turing
machines or random-access machines — hence, lower bounds using them are weaker —
but they are simpler in many respects and are easier to work with. There are many
variations of decision trees, and many known lower bound proofs atilizing them.,

We define decision trees as binary trees with two types of nodes — internal nodes
and feaves. Each internal node is associated with a query whose outcome is one of two
possibilities, each assoctated with one of the emanating branches. Each leaf is associated
with a possible output. We assume that the input is a sequence of numbers x, X3, ... X,
The computation starts at the root of the tree. At each node, the query is applied to the
input and, according to the outcome of the query, either the left or the right branch is
taken. When a leaf is reached, the output associated with the leaf is the output of the
computation, The worst-case running time associated with a tree T is the height of 7,
which is the maximal number of queries required by an input. A decision tree thus
corresponds 1o an algorithm. Although decision trees cannot model every aigorithm (for
example, we cannot compute a square oot of a number with 2 decision tree), they are
reasonable models of comparison-based atgorithms. A lower bound obtained for
deciston trees implies that no algorithm of that form can perform better. We now use
deciston trees to prove a lower bound for sorting,

142 Algorithms Involving Sequences and Sefs

3 Theorem 6.1
Every deciston tree algorithm for sorting has height {{n log n).

Proof: The input for sorting is a sequence X, Xy, .., X,. The output is the same
sequence in the sotted order. Another way to look at the output is that i is a permutation
of the input; namely, the output indicates how to rearrange the elements such that they
become sorted. Bvery permutation is a possible output, since the input can be in any
order. A sorting algorithm is correct if it handles al possible inputs. Thus, every
permutation (rearrangement) of (£, 2, ..., n) should be represented as a possible output in
the decision tree for sorting. The output in a decision iree is associated with the leaves.
Since two different permutations correspond to different outputs, they must be associated
with different leafs. Therefore, there must be at least one leaf for every possible
permutation. The total number of permutations on n clements is #!. Since we assume
that the tree is a binary tree, the height of the tree is at least log.{n!). By Stirling’s
formula

nl=\2mn {»E)“ (L+0(1/n)).

Hence, log,{n !} = L(n tog n), which completes the proof, [

This kind of a lower bound is called an information-theoretic tower bound,
because it does not depend at all on the computation (notice that we have not even
defined the kind of queries we allow), but only on the amount of information contained in
the output. What the lower bound says in this case is that every sorting algorithm
requires {2(w bog n) comparisons in the worst case, since it needs to distinguish between
n! different cases and it can distinguish between only two possibilities at a time. We
could have defined a decision tree as a tree with three children {corresponding, for
example, 10 "<, =" and *'>’"). In this case, the height would have been at Jeast
togin !, which is still (n log#). In other words, the Q(#n tog #) lower bound applies to
any decision tree with constant number of branches per node.

This lower bound proof implies only that no comparison-based sorting algorithn
can be faster than Q(n log n). 1t may be possible to sort more quickly by utilizing special
properties of the keys and performing algebraic manipulations on the keys. For example,
if there are n elements, all integers with values between | and 4n, then bucket sort will
produce a sorted Hst in O () time. This is not 4 contradiction to the lower bound, since
bucket sort does not use comparisons. 1t uses the fact that the values of the numbers can
be used efficiently as addresses (buckets),

When discussing decision trees, we usually ignore their sizes, and concentrate only
on their heights. As a result, even simple linear-time algorithms may correspond to
decision trees with an exponential number of nodes. The size is not important, since we
do not intend actually to construct the tree. We use the tree only as 2 tool for lower
bound proofs. Ignoring the size makes the proofs more powerful, since they may apply
to programs of exponential size. On the other hand, the technique may be too powerful,
rendering it useless for deriving lower bounds for problems that cannot be solved by
practical-sized programs, but can be solved with an exponential-sized program (e.g., 2

6.5 Order Statistics 143

program with a table for all the possible solutions). Decision trees are nonuniform
models of computation. The tree depends on s, the size of the input. We can potentially
build different trees for different values of n. This is not just a whimsical worry. It tumns
out that we can build decision trees of polynomial height — but exponential size — for
problems that probably reguire exponential running time, so decision trees are oo
optimistic sometimes. That is, a decision tree lower bound may fall far below the actual
complexity of the problem. On the other hand, if the lower bound is equal to the upper
bound of a particular algorithm — as is the case with sorting — then the lower bound
implies that even if we use a lot more space, we cannot improve the algorithm.

It is interesting to note that the average running time of any comparison based
sorting algorithm is alse (Hnrlogn). We omit the proof, which is much more
complicated (see for example Aho, Hoperoft, and Ulhman [19741).

6.5 Order Statistics

Given a sequence S =x,, x5, ..., X, of eclements, we say that x; has rank kin 5 if x; is the
kth-smalest element in §. We can easily determine the ranks of all elements in a
sequence by sorting the elements. However, there are many questions about ranks that
can be answered without sorting. In this section, we deal with such questions. We start
with the problem of finding the maximum and minimum elements, then consider the
generat problem of finding the kth smallest element.

6.5.1 Maximum and Minimum Elements

Finding the maximum or the minimum element of a sequence is straightforward. If we
know the maximum of a sequence of size n—1, then we need only to compare this
maximun to the nth element to find the maximurm of a sequence of size »# (finding the
maximum of a sequence of size 1 15 trivial), This process takes one comparison per
element, starting with the second element; hence, the number of comparisons is n — 1.
Suppose now that we want to find both the maximum and the minimum elements.

The Problem Find the maximum and minimum elements in a given
sequence.

The straightforward solution is to soive both problems independently, The total number
of comparisons will be 2n~3: n~1 to find the maximum and then n-2 to find the
minimum (because the maximum need not be considered). Can we do better? Consider
again an inductive approach., Assume that we know how to solve the problem for n—1
elements, and that we want to find the solution for n elements (the base case is trivialk
We have to compare the additional element to the maximum and minimum elements
found so far. This requires two comparisons, which implies that the total number of
comparisons witl again be 2n — 3, since no comparison is required for the first element,

144 Algorithms Involving Sequences and Sets

and only one comparison is required for the second element. We cannot improve the
solution by scanning the elements in 2 different order, because the position of the
elemnents in the sequence is irrelevant to the problem,

The next attempt can be to extend the solution by more than one element at a time.
Let's try to extend the solution by two clements at a time. That is, assume that we know
how to solve the problem for n — 2 elements, and try to solve it for n. {For this approach
1o be complete, we need two base cases, #=1 and n =2, so that extending by two will
cover all natural numbers.) Consider x,,_, and x,, and et MAX (min} be the maximum
(minimum} of the first n — 2 elements (known by induction). |t is easy to see that finding
the new maximurm and minimum requires only three comparisons. We first compare X, .|
to x,, then compare the larger of these two values to MAX, then compare the smatler of
them to min. So, overall, we have an algorithm with approximately 3a/2 comparisons
instead of 2n comparisons! Can we do better by adding three {or four} elements at a
time? Following the same approach leads to the same number of comparisons. It turns
out that we cannot reduce the pumber of comparisons for this problem by any method, 1t
is interesting to note that a divide-and-conquer approach also leads to about 3nr/2
comparisons {Exercise 6.14),

6.5.2 Finding the kth-Smallest Element

We now consider the general problem,

The Problem Given a sequence S=x,x,, ..., x, of elements, and
an integer & such that 1 <4 <n, find the kth-smallest element in §.

This problem is called order statistics or selection. If £ is very close 10 | or very close
to a1, then we can find the Ath-smallest element by running the algorithm for finding the
minimum (maximum) element & times. This approach reguires approximately 4n
comparisons. Sorting would be better than this naive algorithm, unless £ is O{logn) or
n-Q{ogn). There is, however, another algorithm that finds efficiently the kth smallest
element for any value of £.

The idea is 10 use divide and conquer in the same way as it is done in quicksort,
except that only one subproblem has to be solved. In quicksort, the sequence is
partitioned by a pivot into two subsequences. The two subsequences are then sorted
recursively. Here, we need only to determine which subsequence contains the kth
srnallest element, and then to continue the algorithm recursively only for this
subsequence. The rest of the elements can be ignored. The algorithm is given in Fig.
6.16.

Complexity As in quicksort, choosing poor pivots leads to a quadratic algorithm.
Since only one subproblem has (o be solved in each recursive call, the running time of
this algorishm is lower than that of quicksort. The average number of comparisons i$

6,6 Data Compression 145

Algorithm Selection (X, n, k) |
Inpui: X {(an array in the range I to n), and k (an integer).
QOutput: § (the kth smaltest element; the array X is changed),

begin
if (k < I} or(k > n}then print "error”
else
S = Selecitl, n, k)
end

procedure Select (Left, Right, k) ;
begin
if Left = Right then
Select '= Left
else
Partition (X, Left, Right} ; { see Fig. 6.9}
Let Middle be the output of Partition ;
if Middle —Left+1 2k then
Select (Left, Middle, k)
else
Select (Middle + Y, Right, k — (Middie — Left + 1)}
end

Figure 6.16 Algorithm Selection.

O (n), but we will not prove that here. It is alse possible to find the kth smallest in O (n)
steps in the worst case. However, in practice, the algorithm presented in Fig. 6.16 is
more efficient.

Comments Most applications of order statistics require finding the median, that is,
the n/2-smallest elernent. Algorithi Selection 1s an excellent median-finding algorithm,
There is no simpler algorithm for finding only medians. In other words, extending the
median-finding problem to finding any ith-seallest element makes the algorithm
simples! This is another example of strengthening the induction hypothesis since the
recursion reguires arbitrary values of &.

6.6 Data Compression

Data compression is an important technigue for saving storage. Given 2 file, which we
consider as a string of characters, we want to find a compressed file, as small as possible,
such that the original file can be reconstructed from the information in the compressed
file, Data compression is useful, for example. when access to the file is infrequent, so the
work involved in compressing and uncompressing is fustified by the storage savings. It is

146 Algorithms Involving Sequences and Sets

also important in communication problems where the cost of sending information is
greater than the cost of processing it. Data compression has many more applications, and
it is a very developed field. In this section, we describe only one algorithin for one
particular aspect of data compression.

For simplicity the file is assurned 10 be a sequence of English letters. Each of the
26 characters is represented by a unique string of bits, called the encoding of the
character. H the length of all encodings is the same (as is the case for most standard
encodings), the number of bits representing the file depends only on the number of
characters in that file. On the other hand, it is possible to choose smaller bit
representations for characters {(such as A) that appear more often and larger
representations for characters (such as Z) that appear rarely. For example, in ASCI
{Armerican Standard Code for Information Interchange), all characters are represented by
bit strings of size 7. A is represented by the bit string 1000001, B by 1000010, and so on.
{There is room for 128 characters, inchuding lower-case and special characters.) The
word **AND"" (and any other word with three letters) requires 21 bits. I we change the
representation of A to, say 1001, we save 3 bits every time A appears. However, not
every set of encodings is valid. There may be ambiguities, For example, we cannot
choose 1001 as an encoding for A and leave the enceding of M as 1001101, because
when we read FO01 we cannot determine whether it 1s A or 15 part of M. We could use
special delimiters to separate characters, but that would only add 1o the representation. In
general, the prefixes of an encoding of one character must not be equal to a complete
encoding of another character. We call this constraint the prefix constraint. Whenever
we shorten the enceding of one character, we may have to lengthen the encodings of
others, The problem is to find the best balance, assuming we know the frequency of
appearances of the different characters.

The Problem Given a text (a sequence of characters), find an en-
coding for the characters that satisfies the prefix constraint and that
minimizes the total number of bits needed 10 encode the text,

First, we have to compute the number of times each character appears in the text; we call
this value the frequency of the character. (In many cases, we can use standard frequency
tables computed for typical texts, instead of computing the exact frequency table for the
particular text.) Denote the characters by C,,C1, ..., C,, and denote their frequencies by
f1+f2v s fo- Given an encoding E in which a bit string S, of length s; represents C;, the
length of the file # compressed by using encoding E is

LE.F) = Y5
i=)

Our goal is to find an encoding £ that satisfies the prefix constraint and minimizes
L(E, F).

6.6 Data Compression 147

The prefix constraint is needed to make the decoding unambiguous, so let’s look at
a decoding procedure. We need to scan the sequence of bits one by one until we get a
sequence that is equal to an encading of one of the characters. Consider a binary tree in
which each node has either two emanating edges labeled by 1 and 0, or no emanating
edges. The leaves in this tree correspond to the characters. The sequence of Us and 1s on
the path from the root to a leaf corresponds to the character’s encoding (see Fig. 6.17).
The prefix constraint says that alt characters must correspond to leaves. When the
encoded file is scanned and a leaf is reached, we can safely determine the corresponding
character. Qur problem is to construct such a tree that minimizes L(£, F}. The tree
representation is not necessary in order to solve the problem. It is useful, however, to
have a graphic illustration of the problem (and its constraints).

The algorithm is based on a reduction of a problem with # characters to 2 problem
with n — | characters (the base case is trivial). As usual, the main difficulty is how to
define the induction hypothesis and in which order to eliminate characters. The reduction
here is different from the ones we have seen so far. Instead of simply eliminating one
character from consideration, we introduce 2 new ““artifictally made’” character in place
of two existing characters. This technique is a little more complicated, but it serves the
same purpose — the size of the input is reduced. Let C; and €, be two characters with
minimal frequency (if there are more than two such characters, then ties are broken
arbitrarily). We claim that there exists a tree that minimizes L (£, F) in which these
characters correspond to leaves with the maximal distance {rom the root. Otherwise, if
there is a character with higher frequency lower in the tree, it can be exchanged with C;
or C; decreasing L{E, F). (If its frequency is equal, it can still be exchanged without
changing L{E, F).) Since each node in the tree has either two children or no children (or
else we can shorten the tree), we can assume that C; and C; are together. We now
replace C; and C; with a new character, called C,;, whose frequency is the sum f; + ;.

The problem now has n— 1 characters (# —2 old and one new), and as such can be
solved by the induction hypothesis. We obtain the solution of the original problem by
substituting an internal node in the reduced problem with two leaves corresponding to C;
and C; in place of the leaf corresponding to C;;. We leave the proof of optimality as an
exercise.

G

(10 it

Figure 6.17 The tree representation of encoding.

148 Algorithms Invelving Sequences and Sets

implementation The operations required for Huffman’s encoding are (1) insertions
into a data structure, (2} deletions of the two characters with minimal frequency from the
data structure, and (3) building the tree. A heap is a good data structure for the first ewo
operations, each of which requires O (logn} steps in the worst case. The algorithm is
given in Fig. 6.18. This compression technique is known as Huffman’s encoding after
D. Huffman [1952], who proposed this algorithm,

Algorithm Huffman_Encoding (8, f} ;
Input: § (a string of characters), and f (an array of frequencies).
Qutput: T (the Huffman tree for S).

begin
insert all characters into a heap H according to their frequencies ;
while H is not empty do
if H contains only one character X then
make X the root of T
else
pick two characters X and Y with lowest frequencies
and delete them from H ;
replace X and Y with a new character Z whose frequency is
the sum of the frequencies of X and Y ;
insert Zto H ;
make X and ¥ children of Z in T { Z has no parent yet }
end

Figure 6.18 Algorithm Huffman_Encoding.

3 Example 6.1

Suppose that the data contains six characters A, 8, C, D, E, and F, with frequencies §, 2,
3,4, 10, and 1, respectively The Huffman tree corresponding to these characters is given
1n Fig. 6.19. The internal nodes are numbered according to the time they were created. [

Complexity Building the tree takes constant time per node. Insertions and deletions
take O (log n) steps each. Overall, the running time of the algorithm is O (1 log n).

6.7 String Matching

Let A=a,a; - a, and B=h, b, - b,. m<n, be two strings of characters. We
assume that the characters come from a finite set. ¢Jt is convenient to think of English
charactess, although it is not necessary.} A substring of a string A is a consecutive
sequence of characters @, @,+ - 4; from A4 We denote by A () (B(i) the special
substring @y a, - - a; (hy by - b))

6.7 String Matching 149

Figure 6.19 The Huffman tree for example 6.1.

The Problem Given two strings A and B, find the first occurrence
(if any) of B in A. In other words, find the smallest & such that, for all /,
t<ism, wehavea,,;=h,.

The most obvious example of this problem is a search for a certain word or pattern in a

text file." Any text editor must contain commands to find patterns. The problem also has
applications to other areas — including molecular biology, where it ts useful to find
certain patterns inside large RNA or DNA molecules,

This problem seems simple at first. We can iy to match B inside A by starting at
the first character of 4 that matches b, and continuing (comparing to b, and so on) until
we either complete the match or find a mismatch. In the latter case, however, we must go
back to the place from which we started and start again. This process is iflustrated in Fig.
6.20 by an example that we will use throughout this section. In this example,
A = xyaeyrveypyyaneyyeyoyer, and B =xyxyyryxevxx. The first mismatch occurs at ag
since by #a4. We now must start comparing b, 10 a,, which leads to a mismatch right
away, Next, we start at @5, which is 3 match, but a4 #b;. The next attempt is more
promising: We have a match from a4 to a4, only to have a mismatch at az. Now, we
need to backirack several steps and to compare b to @ {mismatch), then b, to a4, and
s¢ on. Eventually, we find a match starting at @ 3. We may have to backtrack and
compare again a substantial number of times, leading 10 O {mn) number of comparisons

'Ay least, that is the most obvious one to me, as | am currenily editing a text file,

150 Algorithms Involving Sequences and Sets

A = XYAXYXYXYYXVXYXPVXYXYXX. B =Xyxyyxyxyxx,

123456789 10111213141516171R1920212223
Xy X XYy XYy XyyxXyxyxyyxyaxyuxx

I vy x ¥y

2 X

X X ¥

4: Yy x yy

5 X :

o Xy X yyxyxyuxx
T x ©o

8: X ¥ x

9 X

10: X

B Xy Xy ¥y
12: X v o

__
g

Iy X yyXxyxyzxux

Figure 6.20 An example of a straightforward string matching.

in the worst case. Notice that a lot of the work is redundant. For example, we find twice
that the subpattern xyxy fits inside A starting at @, (lines 6 and 11). In the example of
finding & word in a text file, the number of backeracking steps will be very small, since
most of the time the mismatch will occur earty on. This simple algorithm is fairly good
for such applications. In other cases, where the alphaber is small and the patterns have
many repetitions, the number of backtracking steps may be large. The algorithm above
may compare the same subpatiern to the same place in the text many times. We would
like to find an algorithm that avoids such worst cases, The problem is 1o arrange the
information we learn throughout the algorithm such that it can be used efficiently fater on
when the same matches occur in other places.

To improve the straightforward algorithm we must first understand the reasons for
is tnefficiency, The bad case we discussed was caused by the need 10 backerack. A
particular bad case will occur if the pattern is yyyyyx and the text is yyyyyyyyyyyyr. We
will compare the five ys in the pattern to the text, find the mismatch with the x, move one
step to the right, and make four redundant comparisons again and again. (This simple
case is easy to handle, but it illustrates the general problem.) On the other hand, consider
the pattern vyyyyy. To match this patermn in the text, we lock for occurrences of X
foliowed by five ys. If the aumber of ys is not sufficient, there is no need to backtrack.
We will nged to find the next x, and all the maiched ys will not help. The straightforward
algorithm, adapted to the pattern tyyyyy, runs in linear time since no backtracking is
needed.

6.7 String Matching 151

Let’s return now to the original pattern B =xyxyyxyxyxx. Suppose that a mismatch
occurs when the fifth character of B is scanned (as it is when ag is compared to it in line
4 of Fig. 6.20). The preceding two characters in A must have been xy (since they
matched). But, xv are also the first characters of B. We now want to *‘slide’” B to the
right and compare the current character in A to some character in the middle of B {1aking
into account the previcus matches). We would like 1o slide B as far to the right as
possible (to save comparisons) without bypassing potential matches. In this case, we can
slide B two steps to the right. We continue the match by comparing the same character in
A that caused the mismaich (a; in the example) 10 b4, since we already know that b, and
b, matched. (In fact, that is exactly what we did later on, in line 6 of Fig. 6.20, except
that it took us three more redundant comparisons — x in line 3, and xy at the beginning of
line &6 — to get there.) Notice that this whole discussion is completely independent of A!
We know the last few characters in A since they have matched B so far.

In the following discussion, we will not assume that there are only two characters
in the text (and pattern), even though, for simplicity, the examples will contain only two
characters, It is possible (and that is the subject of Exercise 6.45} to make the algorithm
even more efficient in this case,

Let's look at another example by confinuing the match. The mismatch at line 6 of
Fig. 6.20 is at the last character of B, b;. We can now do a lot more sliding. Consider
the subpattern B{10)=b; by -~ big. We know that B(10) is exactly the same as the
preceding 10 characters in A; that is, B (10}=A {6..15], because they matched. We wang
to determine exactly how many steps B can be shifted to the right until there is some
kope of another match. We determine this number by looking for a maximum suffix of
B{l() that is equal to a prefix of B. In this case, that suffix is of length 3 (xyx), as is
thustrated in Fig. 6.21. In the figure, B(10) is shifted, one step at a time, and is
compared to itself, until a prefix matches a suffix. (The last character, b, is ignored
since it is the cause of the mismatch.) Since we know that B[1..3]=B[8..10], we can
continue by comparing a |4 10 by, and so on, unti] the complete match occurs. We save
all the comparisons on lines 7 to 12 and half those on line 13. The only difference
between Fig. 6.21 and Fig. 6.20 is that the information in Fig. 6.21 depends only on B.
This is important because we can preprocess B once, and find all the relevant information
about it regardless of the text A. We now can take advantage of all the maiches done in
tine 6 of Fig. 6.20; none of them will be repeated.

Figure 6.21 Matching the pattern against itself,

152 Algorithms Involving Sequences and Sets

‘The preprocessing of B is the essence of the improved algorithm, We will study all
the repeating patterns of B and devise a way to handle mismatches when they occur
without backtracking. Our scheme is the following. The string A is always scanned
forward; there is no backtracking in A, although the same character of A may be
compared to several characters of B (when there are mismatches). When a mismatch is
encountered, we consult a table 1o find how far in B we must backtrack, There is an entry
in the table for each character in B corresponding to the amount of backtracking (or the
number of shifts) required when there is a mismatch involving this character. In a
moment, we will show how to construct this table efficiently. We first define the table
precisely and show how we use it for the string-matching problem.

The idea behind the table should be clear now. For each b, we want to find the
largest suffix of B{i ~ 1) that is equal to a prefix of B(/ - 1). If the length of this suffix is
j, then the mismatched character in A can be matched against by, directly, without going
through all the other redundant matches. We already know that the most recent j
characters in A match the beginning of B. Furthermore, since this suffix is the fargest
among those that are equal 1o a prefix, we know that B cannot fit into A any farther to the
left. The table is called next, and here is a precise definition of the values of its entrigs:

next (i) = the maximum j (0<j<i~1} such that b;,_;b,_;y, -~ by =
B (jy, and O if no such exists.

For convenience we define next {F}=~1 to distinguish this case. It is clear that next (2) is
always equal to G {since there is no j satisfying 0 < j <2 - 1). The values of the next table
for the pattern B in Fig. 6.2} are given in Fig. 6.22. These values can be computed in a
brute force way, as was done in Fig. 6.22. However, there is an elegant way to compute
all these values in time O (). Let’s first assume that the values of nesr are given 10 us,
and see how o perform the matching. Afterwards, we will describe how 1o compute
next.,

The matching proceeds as follows., The characiers in A are compared to those in B
until there is a mismaich, At that point, say at b;, the next table is consulted and the same
character in A is compared against b, (since the first next (i) characters already
match). If this is a mismaich too, then the next comparison is against by, vew iy 1yet- and
so on. The only exception to this rule is when the mismatch is against b in this case,

i= i 2 3 4 5 6 7T 8§ 9 16 1
B= ¥ ¥y X ¥ ¥y x ¥y x ¥ X X
next= -t 0 0 | 2 0 1 2 3 4 3

Figure 6,22 The values of nexr.

6.7 String Matching 153

we want to proceed in A. This case can be determined by the special value of nexr (1),
which is —1. The program for string matching is given in Fig. 6.23.

Algorithm String_Match (A, n, B, m} |
Input: A (a string of size 1), and B {a string of size m).
{ We assume that next has been computed; see Fig. 6.25)
Qutput: Starf (the first index such that B is a substring of A starting
at A [Start).

begin
J=1li=1;
Start =0
while Start =0 and i S ndo
ifBj1=Ali) then

jr=i+l:
i=i+]
else
jomnextijl+ 1
if i = 0 then
Jr=1
ivmidd;

if f=m+ I then Start :=i-m
end

Figure 6.23 Algorithm String Maich.

It remains to find an algorithm to compute the values of the next table. We use
induction. As we mentioned, next (2) =0, which takes care of the base case. We assume
that the vatues of next for 1, 2, ..., i — 1 have been compuied, and we consider next ({). At
best, nexr{(iy can be next{i-1}+1, which wifl happen if b, | =h,eqi_11+1- In other
words, the targest suffix that is equal to a prefix is extended by b;.;. This is the easy
case. The difficult case is when b, #b,,..;_1- We need to find a new suffix that is
equal to a prefix, However, we already know how to fit the largest suffix of B(/ -2): It
fis in b by Byewq_pn (s6¢ Fig. 6.24). But having b;_; #bpeyiiny 18 exactly the
same as having a regular mismatch at b1« And we already know what to do
about that. If there is a mismatch at index j, we go to nexz{j). So, we have a mismatch
at index next (F— 1)+ 1, and we go 1o next (next (i — 1)+ 1). That ts, we try to match b,_,
0O Byprimexrii-1yenyet - If they match, we set nexs (i) = next (next (i —)+ D+ 1. Otherwise,
we continue in the same fashion until we either get a match or we return to the beginning.

0O Example 6.2

Let B =xyxyyxyxyxx {the same as in Fig. 6.21), and consider next (11}, We first fook at
aext {10), which is 4. and compare b g 10 bs. If they had been the same, then the largest

154 Algorithms Involving Sequences and Sets

next(jj+1 J;i:x!fblhf

Figure 6.24 Computing next(i).

prefix that is equal to a suffix would have been 5, but they are not. So, we have a
mismatch at b5, and we ook at next (5) which is 2. We now compare b g 1o b3, and they
happen 10 be the same. Hence, #ext (11)=3, which can easily be verified by hand. C

The algorithm for computing the next table is difficult to understand, but it is not difficukt
to implement. The program is given in Fig. 6.25,

Algorithm Compute_Next (B, m) ;
Input: B (a string of size m).
Output: next (an array of size m).

begin
next{1y:=~1;
next(2} =0
Sori=3tomdo
Frnext(f—~1+1;
while b;_, # b; and j >0 do
Fi=next(Jy+1;
next{i) = f
end

Figure 6.25 Algorithm Compute Next.

Complexity A character of A may be compared against many characters of B, If
there is a mismaich, then the same character of A is compared against the character of B
pointed to by the nexr table. If there is another mismatch, then we continue comparing
against the same character of A until there is either a match or we reach the beginning of
B. Nevertheless, we claim that the running time of this algorithm is still O (n). How
many times can we backtrack for one character from A, say ;7 Let’s assume that the
first mismatch involved b;. Since each backtrack leads us to a smaller index in B, we can
backtrack only & times, However, to reach b, we must have gone forward & times
without any backtracking! If we assign the costs of backtracking to the forward moves,
then we at most double the cost of the forward moves. But there are exactly n forward_
moves, so the number of comparisons is O (n),

6.8 Sequence Comparisons 155

This algorithm was developed by Knuth, Morris, and Pratt [1977}, and it is known
as the KMP algorithm. Another fast algorithm for this problem was developed by
Boyer and Moore [1977]. We sketch it briefly. The difference between the algorithms is
that the Boyer—-Moore algorithm scans B from the end rather than from the beginning.
That is, the first comparisen will be of b, against a,,. If there is 2 match, then the next
comparison will be of b,,_, against a,,_;, and so on. If there is a mismatch, we use the
information, much as we did in the previous algorithm, to shift the whole pattern 1o the
right. For example, if 4,, = "'Z,”" and Z does not appear at all in B, then the whole
pattern can be shifted to the right by m steps, and the next comparison will be of a5,
against b,. If Z does appear in B, say at b;, then we can shift by m~/ steps. The
decision how much to shift becomes more complicated when there are several partial
matches. On the one hand, we want to utilize the matches already found. On the other
hand, it is more efficient to shift the whole pattern as far as possible, even if the same
comparisons may have to be performed twice. We omit the details. The interesting
characteristic of this algorithm is that it is likely to make fewer than n comparisons (in
regular texe}! This is because one bad mismatch allows us to shift, without any more
comparisons, by m.

6.8 Sequence Comparisons

The subject of sequence comparisons has received a lot of attention lately. The main
reason for that attention is the applications to problems in melecular biology. We
concenirate here on only one problemn — finding the minimum number of edit steps
required to change one string into another. The main technique used throughout this
section is dynamic programming (discussed in Section 5.10).

Let A=a,ay - a, and B=b, b, -+ b, be two strings of characters. We
assume that the characters come from a finite set (English characters, for example). We
would Jike o change A character by character such that it becomes equal to B, We allow
three types of changes (or edit steps), and we assign a cost of 1 to each: (1) insert —
insert a character into the string, (2) delete — delete a character from the string, and (3)
replace — replace one character with a different character, For example, to change the
string abhc inlo the string babb, we can delete the first g, forming the string bbc, then
insert an a between the two bs (babc), and then replace the last ¢ with a b for a total of
three changes. However, we can also insert a new b at the beginning (forming babbc),
and then delete the fast ¢, for a total of two changes. Qur goal is to minimize the number
of single-character changes.

The string-edit problem has aiso applications to file comparisons and revisions
Maintenance. We may have a text file {or z program} and another file that is a
Modification of the first one. 11 is convenient to extract the differences between the iwo
files. There may be several versions of the same program, and, if the versions are simitar
and they need to be archived, it is more efficient to store only the differences instead of
storing the whole programs. In such cases, we may aliow only insertions and deletions.
In other cases, we may assign different costs o each of the edi steps.

156 Algorithms Involving Sequences and Sets

There are quite a few possible changes, and it seems difficult to find the best one.
As usual, we try induction. We denote by A (/) (8 (/) the prefix substrings a, a4, -~
(b, b3 - by Our problem is 1o change A (#) 10 B (m) with a minimum number of edit
steps. Suppose that we know the best way to change A (n—1) to 8(m} by induction.
(There may be several different best solutions; we assume only that we know one of
them.) With one more deletion, that of a,,, we have a way to change A (n) to B(m). But
this may not be the best way of doing it. 1t could be that it is better to replace a, with b,
or better yet, @, may even be equal o b,

We need to consider all the different possibilities of constructing the minimum
change from A to B with the aid of the best changes of smaller sequences involving A and
B. Denote by C (i, j) the minimum cost of changing A (/) to B{j). Let’s assume for now
that we are interested only in finding the cost of changing A to B and not in the change
iself. We are inferested in finding a relation between € (n, m} and C (4, j)s for some
combination of smaller /s and js. 1t is not hard to see that there are four possibilities,
corresponding to the three different edit steps and 1o doing nothing:

delete; if a, is deleted in the minimem change from A to B, then the
scenario above holds. The best change would be the one fromA(n-1) o
Bi{m) and then one more deletion. In other words,
Cin, my=C(n-1,mi+ 1.

insert: if the minimum change from A 10 B involves insertion of a character
to match b, then we have C(n, m)=C (n, m— 1)+ 1. That is, we find (by
induction) the minimum change from A(n) to B{m—1) and insert a
character equal to b,,.

replace: if a, is replacing b,,, then we first need to find the minimum
change from A{n~ IYto B(m—-Dand thentoadd 1 ifa, % 5,,.

match: if a, is equal to b, then Cén, my=C(n—-1,m~ I}

Denote

) 0 i.fa‘;wbj
D=3 ifa e,

We can now combine these four cases into the following recurrence relation.

Cin-1,my+1 { deleting a4,,)
Cin, m) = min{ C{n, m~1)+1 { inserting for by,)
Clt—1m—1y+¢{n m) (replacing V matching a,),

with C¢,)=/ forall i, G=i<n, and C(0, jy=j forall j, 0Sj<m.

It is not difficuit to prove that these possibilities are the only ones. Consider 4, It
must be handled somehow. 1 is either deleted, which is handled by the first case, or it is
mapped into some character in B. In the latter case, either a, is mapped into b,,, which is

6.8 Sequence Comparisons 157

handled by the third or fourth case, or it is mapped into a character appearing before b,,,,
in which case something must be inserted after a,,.

The problem with this approach is that we used induction too many times! We
reduced a problem of size (n, m) to three problems of only slightly smaller sizes. If we
use recursion separately for each smaller problem, we triple the work every time we
reduce the size by a constant. That leads to an exponential algorithm. Fortunately, in
this case there is no need to solve each subproblemn separately. The key to this
observation is that there are not too many different subproblems aliogether. Each
possible subproblem involves computing C (/, j) for some / and j in the ranges 0<i<n,
and 0<j<m. There are nm combinations of such is and Js, so there should not be a need
for more than nm subproblems., This is the same phenomenon we observed in the
knapsack problem (Section 5.11}). To overcome it, we use strong induction. Instead of
just extending a problem of size n —] to a problem of size n, we extend all subproblems
of size <n 1o the problem of size n. This is a two-dimensional problem, so we have 1o
extend all subproblems of sizes <{n, m} 1o the problem of size {(n, m). The notation
< (n, m) means "‘any combination of (i, /) such that at least one of these values is less
than the corresponding bound and the other one is no greater than its bound.””

We will be able to use strong induction if the sclutions of all the subproblems are
available to us. We create a table with the results of all subproblemns. Consider Fig. 6.26.
To compute the value of C (i,), we need the three other values indicated by shading in
the figure. We want to scan the matrix so that, whenever we arrive at an eniry, we have
already visited the three other entries necessary for its computation. In this case, a row-
order fraversal (i.e., row by row from left to right} is sufficient. This two-dimensional
version of the approach is an example of dynamic programming.

Implementation We maintain a matrix C[l..n, L.} Each entry Ci, j} of the
matrix holds the value of C(J, j). Let M {{, j]| denote the fast move {change) that leads o
the minimum value of C{i, j]. The reason we need only the last change is that we can
backtrack and find all the changes from the matrix. TFhis move is any one of delete(i),

Figure 6.26 The dependencies of C(/, /).

158 Algorithms Involving Sequences and Sets

insert(jy, or replace(i, f}. To compute C {1, 71, we need to know the values of C{i ~ £, ji,
Cli, j~1].and C[i =1, j—1]. The last change can be determined according to which of
the possibilities leads to the minimum value for C{i, j]. The algorithm is given in Fig.
6.27.

Algorithm Minimum_Edit Distance (A n. B, m} ;
Input: A (astring of size /), and B (a string of size m}.
Output: C {the cost matrix).

Begin
Jori=0tondo Cli, 0] =1,
Jorj=1toemdoC0, j) =],
fori=1tondo
forj=1tomdo
x:=CH-1,j]+1;
yus O, j= 11+ 1
ifa;=b; then
z=Cli-1,j-1]
else
s=Cli-1,j-1]+1;
Cli, jl=min(x, y, 7}
{ M[i, j] can be set appropriately }
end

Figure 6.27 Algorithm Minimum_Edit_Distance.

Complexity It is clear from the program in Fig. 6.27 that the running time is O (nm).
One major drawback is the need for an O (nm) space as well,

Comments Dynamic programming is useful in cases where the solution of a
problem depends on many solutions of slightly smaller problems. The use of a table 0
store previous results is common in dynamic programming. The table is usually scanned
in some order (usually row order), which leads to at least quadratic running times. Thus
the dynamic programming approach is usually less efficient than, say, the divide-and-
conquer approach.

6.9 Probabilistic Algorithms

The algorithms we discussed so far were deterministic — every step was predetermined.
If we use a deterministic algorithm twice for the same input, we will get two identical
execution patterns and resuits. Probabiiistic algorithms are different. They include steps
that depend not oniy on the input but also on results of some random events. There are
many variations of probabilistic algorithms, We will discuss two of them. We start with

6.9 Probabilistic Algorithms 159

a simple example and continue with a more formal treatment.

Suppose that we have a set of numbers x, x4, ..., x,,, and we want to select one of
them that belongs to the *‘upper half’’ {L.e., it is greater than or equal to the median). For
example, we may want to select a “‘goed’” student according to her or his grades. One
option i8 1o select the maximum (which is, of course, always in the upper haif). We have
afready seen that finding the maximum requires n — | comparisons. Another possibility is
to start the maximum-finding algorithm and to stop just after the haifway point is
reached. A number that is greater than one-half of the numbers is definitely in the upper
half. This algorithm requires about n/2 comparisons. Can we do better? 1t is not difficult
to prove that it is impossible to guarantee that a number belongs 1o the upper half by
making less than #/2 comparisons. So, it may seem that we found an optimal algorithm.

This algorithm, however, is an optimal algorithm only if we insist on a guarantee.
In many cases, a guaraniee is not required; a good likelithood that the solution is correct is
enough. For ¢xample, in hashing we could not guarantee that no collisions would ocour,
but we were able 10 handle them if they did. (Hashing can also be considered a
probabilistic algorithm, as will become apparent shortly.} If we do not insist on a
guaraniee, then a better algorithm exists for finding an element in the upper half. Let’s
take two random numbers from the set, x; and x;, such that i # j. Assume that x; 2x;. The
probability that a random number from the sef belongs to the upper half is at least 1/2 (ig
will be more than 1/2 if many numbers are equal to the median). So, the probability that
both x; and x; do not belong to the upper half is at most 1/4. But, since x; 2x;, this
probability is the same as the probability that x; does not belong to the upper half. Thus,
the probability that x; belongs to the upper half is at least 3/4.

Being correct with a probability of 3/4 is usually not good enough. However, the
same principle can be easily extended. We can select & numbers at random and pick the
maximal among them. By the same argument, the probability that the maximal of the &
clements belongs to the upper half is at least 1 -2, For example, if £ =10, we have a
success probability of 0.999. If £ =20, we have a success probability of 0.999999. If
= 100, the probability of error is, for all practical purposes, negligible. The probability
of & programming error, of a hardware error, or of an earthquake for that matter, exceeds
that. We now have an algorithm that selects a number in the upper half, with
overwhelming probability, using at most 100 comparisons regardless of the size of the
input, {We assume that choosing an element at random can be done in one operation; we
discuss random-number generation in Section 6.9.1.)

This type of algorithm is sometimes called a Monte Carlo algorithm. It may give
4 wrong result with very small probability, but its running time may be better than that of
the best deterministic algorithm. Another type of a probabilistic algorithm is one that
Rever gives a wrong result, but its running time is not guaranteed. It may terminate
Guickly or it may run for an arbitrarily long time. This type of algorithm, which is
sometimes called a Las Vegas atgorithm, is useful if its expected running time is low. In
Section 6.9.2, we show a Las Vegas algorithm that solves a certain coloring problem. In
Section 6.9.3, we describe an elegant technique for transforming some Las Vegas
algorithms into deterministic algorithms., We apply the technique to obtain an efficient
deterministic algorithm for the coloring problem of Section 6.9.2. This technique,

160 Algorithms Involving Sequences and Sets

however, camnot transform every efficient Las Vegas algorithm inte an efficient
deterministic algorithm.

The idea of probabilistic algorithms has direct analogies to mathematical proof
techniques. Using probability to prove combinatorial properties is a powerful technique.
In a nutshell, the idea is to prove that, among a set of objects, the probability that an
object has certain properties is greater than 0, which 15 an indirect proof that there exists
an object with these properties. This method translates to algorithms in the following
way. Suppose that we are searching for an object with certain properties, and we know
that if we generate a random object it will satisfy the desired properties with nonzero
probability (this is a probabilistic proof that the desired object exists). We try to follow
the probabilistic proof by generating random events when appropriate, then finding the
object with some positive probability,. We can repeat this process many times until we
succeed. If the probabilities work in our faver, we end up with an effective Las Vegag
algorithm,

6.9.1 Random Numbers

Probabilistic algorithms require that we select numbers at random. We must find
efficient methods for doing that. However, any deterministic procedure will generate
numbers according to some fixed scheme, depending on the steps of the procedure. If the
scheme is completely deterministic, then the numbers generated cannot be random in the
srue sense of the word. They will relate to one another in a specific way. Fortunately, this
is not a major practical problem. In practice, it is sufficient 10 use pseudorandom
nembers. These numbers are generated by a deterministic procedure — and thus are not
truly random -— but the procedure makes any relationship among the numbers
unnoticable by most applications.

It is beyond the scope of this book to discuss this issue in depth. We restrict the
discussion fo one very effective method, called the linear congruential method, for
generating pseudorandom numbers. The first step is 1o choose an integer seed r(1}),
which is 2 number selected at random by some external means (e.g.. the current time in
microseconds, the current record of one's favorite team). The rest of the numbers are
computed according to the following rule:

F(iY=((-1b+11mody,

where b and 1 are constants. The selection of b and ¢ must be done carefully, Knath
[1981] suggests the following guidelines: ¢ should be quite large, in the millions af least,
and can be 2 power of 2 {or 1) if that is convenient; b should be about one digit less than
1, and s decimal represemtation should end with x21, with x even. These (strange)
guidelines are designed to avoid hitting some bad cases that cause many repetitions of the
same numbers. The numbers generated by the linear congruential method are in the
range 0 to 71— 1. We can achieve a different range by multiplying the numbers by the
appropriate factor (1 should be chosen to be a multiple of that range).

6.9 Probabilistic Algorithms 161

6.9.2 A Coloring Problem

Let § be a set with n elements, let $,, 54, ..., 5; be a collection of distinct subsets of S,
cach containing exactly r elements, such that k 2772,

The Problem Color each element of S with one of two colors, red
or blue, such that each subset §; contains at least one red and at least one
blue element.

A coloring that satisfies this condition is called a valid coloring. It turns out that, under
the given conditions on the subsets, there ts always a valid coloring. We present a simple
probablistic algorithm that is adapted from a probabilistic proof of existence of such a
coloring. The algorithm is almost as simple as possible:

Take every element of § and color it either red or blue at random {with
probability 112) independently of the coloring of the other elements.

This algorithm obviously does not always lead to a valid coloring. Let's calculate the
probability of failure. The probability that all elemenis of §; are colored red is 27, The
probability that at least one of the & subsets is colored only red is no more than
k27" < 1/4 (because of the bound on k). Hence, the probability that a random coloring is
not valid is at most 1/2 (since there is also a probability of at most 1/4 of a subset engirely
colored blue). This 8 a proof that a valid coloring always exists (otherwise the
probability of failure must be exactly). It also implies that the random algorithm is
very good. We can easily test the validity of a particular coloring. We simply check the
elements of each subset unti] we find two of different colors. We have a 5050 chance of
success. If we fail, we simply try again. The expected number of times we need to run
the algorithm to get a valid coloring is 2. The algorithm is clearly a Las Vegas algorithm,
because we check each coloring and terminate only when we find a valid one. Thisis a
simple application of probabilistic methods. Unfortunately, probabilistic algorithms are
often not so simple. Next, we show that this algorithm can be modified such that it finds
a valid coloring deterministically.

6.9.3 A Technique for Transforming Probabilistic Algorithms
into Deterministic Algorithms?

We now show how to use induction to transform the probabilistic coloring algorithm into
a deterministic algorithm. The technique we present does not work for every Las Vegas
algorithm. We do not believe that it is possible to wransform efficiently every Las Vegas
algorithm into a deterministic algorithm. This technique is interesting, however, because

* This section can be skipped at fisst reading.

162 Algorithms Involving Sequences and Sets

it employs the idea of strengthening the induction hypothesis in a powerful way. The
resubting algorithm will not only be efficient and deterministic, but will also solve a more
general problem, removing some of the restrictions imposed on the original problem.

Let § be again a set of n elements, and 5, 84, ..., §; be a collection of distingt
subsets of §. The probabilistic algorithm was based on the fact that the probability that
we get a valid coloring by coloring each element at random is at least 1/2. Suppose that
we ¢an ¢olor an element either blue or red such that the probability that we get a valid
coloring of the rest of the elements by a random coloring is nonzero. We claim that this
will lead to an algorithm by induction on #. If we can color one element such that
probability of success remains nonzero, then we can celor all elements by induction.

Since we are trying to handle one element at a time, we must strengthen the
induction hypothesis such that we no longer require that all subsets be of the same size.
The most important condition is that the probability of success remain nonzero. Let s
denote the size of subset §;. The probability that §; is colored wath only one color is
277 The probability of failwre (i.e., the probability that a random coloring of all
elements 1s not a valid coloring) is no more than

13
Fm=Y 2"
[EY]
This probability F(n} is a function of the sizes of the sets, but we write it as a function of
n for convenience. We are on solid grounds as tong as F(n) < 1. Let’s try the following
induction hypothesis.

Induction hypothesis: We know how to color a set S with < n elements,
provided that Fin} < 1.

If one of the subsets has only one element, then this elemeni contributes 1 1o F(n}, so
F(n) cannot be less than 1. I # =2, then, since the subsels are assumed to be distinct,
there can be only one subset with the two elements, and we can color one element blue
and one element red. Hence, the base case is established. We now try to reduce the
coloring problem for n elements to one for n — 1 ¢lements.

Let x be an arbitrary element of S. There are two possible ways to celor x — blue
or red. Suppose that x is colored blue. What is the probability that a random cotoring of
the other n~1 elements is valid? A subset §; that does not include x has the same
probability of faiture — namely 2°°*'. A subset §; that includes x has one fewer
element, and it only needs to have at least one red-colored efement (it already has a
blue-colored element). Thus, the probability of failing to color subset §; is 2
Notice that this probability is the same as it was before we colored x! Therefore, F(n)
remains less than 1, and we now have to color only n— | elements. Does that mean that
we now have an algorithm? No. It means only that the first choice can be made
arbitrarily. After the first choice ts made, the problem is different,

We can no longer use the same induction hypothesis, because, affer we color the
first element, some of the subsets need 10 be colored with two colors, and some of them
need to be colored with only one color, We have to strengthen the induction hypothesis
further to reflect this change. Suppose that some elements are already colored. A subset

6.9 Prebabilistic Algorithms 163

may be ir one of four siates: (}) the subset has red and blue elements, in which case we
do not have to consider it any further; (2) the subset has at least one red element but no
blue elements, in which case at least one of the uncolored elements must be colored blue;
(3) the subset has at least one blue element but no red elements, in which case at least one
of the uncolored elements must be colored red; and (4) the subset has no colored
elements. We call a subset in state (2) a red subset, z subset in state (3} a blue subset,
and a subset in state (4) a neutral subset. Let u; be the number of uncolored elements of
subset S;. If §; is in state (1), then it is already colored successfully. If §; is red or blue,
then the probability of failure in coloring it randomly is 27, If S, is neutral, then the
probability of failure in coloring it randomly is 274" Let fi denote the probability of
failure in coloring subset §; randomly. We have to maintain the property that

k
Fmy=Sf<1. 6.1)
i=]

The induction hypothesis must reflect the status of all subsets. We extend the
problem to include arbitrary red, blue, and neuiral subsets. In other words, the input is
now a collection of subsets, each labeled red, blue, or neutral. We assume that condition
(6.1) is satisfied.

The Problem Color each element of § with one of two cotors, red
or blue, such that each red subset coniains af least one blue element,
each blue subset contains at least one red element, and each neutral sub-
set contains at least one red element and at least one blue element.

The induction hypothesis is the straightforward hypothesis for this (nonstraightforward)
exiension of the problem.

Induction hypothesis: We know how to color a set § with < n elements to
satisfy the conditions of the probiem, provided that (6.1} is satisfied.

The base case is similar 10 the previous base case. Given a set S with n elements such
that (6.1} is satisfied, we need to color one element of § and 1o leave (6.1) satisfied.

We again pick an arbitrary element x € S. There are two possible ways to color x,
each leading to different statuses of the subsets. If we color x red, then all red subsets
containing x remain red (but with one less uncolored element), all blue subsets containing
X become successfully colored (and can be removed), and all neutral subsets containing x
become red subsets. Subsets that do not contain x are not changed. Coloring x blue leads
to similar changes. We can now compute the value of F(n—1), which we denote by
Fpin— 1), to indicate that we color x red. We also denote by Fgin —) the corresponding
value of Fin—1) in the case when x is colored blue. The key o the algorithm is the
foitowing lermma.

164 Algorithms Involving Sequences and Sets

t Lemma 6.2

Let Fin} be the probability of failure initially, let Fg(n—1) be the
probability of failure after coloring x red, and let Fgin—1) be the
probability of failure after coloring x blue. Then, Fgin-1) +
Fg(n—1)$2F (n).

Preof: A subset that does not contain x remains unchanged. Its contribution 1o
Fpin=13, Fg{n—1}), and F(n) is the same, which is consistent with the claim. We
consider now the subsels that contain x. There are three possibilities, according to the
subset status. €1} A red subset contributes nothing to Fy(n—1), because it is now
successfully colored; its contribution to Fg(n—1) is twice as much as that to F{n),
because it has one fewer element. Again, this is consistent with the claim. (2) The case
of 2 blue subset is the same as that of a red subset. (3) A neutral subset with u; elements
contributes 27! to F {n). This subset becomes either red or blue with one less element.
Thus, i1 contributes 27%"Y 45 both Fr(n—1) and Fp(n-1). In either case, its
coniribution to F (n), Fe{n ~ 1}, and Fgz(n — 1) is the same, establishing the claim.]

Lemma 6.2 leads directly to the algorithm, The base case of one element is simple,
because, for (6.1} to be satisfied, there can be orly one red or one blue subset containing
the ¢lement. If there is only one subset, then we can color the element with the other
color. If Fp(n— 1)+ Fp{n— 13<2F (n), then either Fp(n - DSF(n) or Fg{n - 132 F (n})
(or hoth). We can compuite these values and color x blue if Fg(n—1) is less than
Fgr(n—1), and color x red otherwise. By Lemma 6.2, condition {6.1} in the induction
hypothesis is satisfied, and the algorithm follows. We leave the implementation of this
algorithm to the reader.

6.10 Finding a Majority

Let £ be a sequence of integers x|, X3, ..., x,. The multiplicity of x in £ is the number of
times x appears in £, A number z is a majority in £ if its multiplicity is greater than #/2.

The Problem Given a sequence of numbers, find the majority in the
sequence of determine that none exists.

For example, an integer can represent a vote in an election, and the problem is to find
whether someone won the election. If the number of candidates is small, then bucket sort
can be used effectively to solve the problem in O (n) time. However, if the number of
possible candidates is very large (the sign of the times), then bucket sort cannot be used.
We assume here that there is no Himit on the number of possible candidates, and that they
are represented as arbitrary integers. Voting is also performed in computer systems, for
example, 10 achieve consistency of decisions.

6.10 Finding a Majority 165

This problem is an excellent example of a straightforward problem whose
straightforward solutions are not as efficient as an elegant solwtion that requires some
thinking but is more efficient and simpler to implement. We first discuss several
straightforward approaches to the problem, and then present the elegant algerithm.

The most straightforward way to solve this problem is to use sorting. Once the
votes are sorted, it is easy to count how many votes each candidate got. Sorting,
however, requires O {n logn) comparisons in the worst case. We will see that it is
possible to do better. We can also use a median-finding algorithm. If there is a majority,
then it must be equal to the median (the median 1s the (n#/2)th smallest element, and the
majorily appears more than #/2 times). Therefore, once the median is found, we can
count the number of times it appears, and if the median is not a majority, then there is no
majorily. Since finding the median is easier than sorting, this is a better approach.
Another approach is to use a probabilistic algorithm. We can pick a small random
sample of the votes, take the majority of the sample, and count the number of times this
sample majority appears in the whole list. However, although it is easy to verify that a
given vote is a majority, it is impossible with this algorithm to prove that there is no
majority. The outcome of such an algorithm may be “‘undecided.”” (This is the method
used for public-opinion polls; some election predictions are indeed *‘too close to call.™)
It is also not easy to determine the appropriate size of the sample.

We now present a linear-time algorithm to find a majority that can handie any
number of candidates. The algorithm is faster and simpler than the median-finding
algorithm. As we did in the algorithm for finding a celebrity (Section 5.5), we first try to
gliminate as many elements as we can from being candidates for majority. 1t fums out
that we can ¢liminate all but one element. Finding this one candidate is helped by the
following observation, which allows us to reduce the problem to a smaller one:

If x; # x; and we eliminaie both of these elements from the list, then the
majority in the original list remains a majority in the new st

{Notice that the opposite is not true: the list 1,2,5,5,3 has no majority, but if we remove 1
and 2, then 3 becomes a new majority.)

So, if we find two unegual votes, we eliminate both, find the majority in the smaller
list, and check whether it is a majority in the original list. What if we do not find unequal
votes? If we scan the votes and they are all equal, then we have to keep track of only one
possible candidate; once we find a vote that is not equal to this one candidate, we can use
the observation above. If all the remaining votes are equal, then we have to check only
one candidate. This is the seed of the idea; we now show how 1o implement it.

The votes are scanned in the order they appear. We use two variables, C
{candidate) and M (multipiicity). When we consider x;, C is the only candidate for
majority among Xy, Xz, ... X_;. and M s the number of times C appeared so far
excluding the times C was eliminated. In other words, the votes xy, Xy, ..., X;_; can be
divided into two groups of sizes 2k and M, such that 2k +M =i—1, the first group
contains & pairs of unegual votes {which can be efiminated by the observation), and the
second group contains C appearing M times. If there is a majority among v, x5, .., %;_;,
then it must “‘survive” this elimination scheme, and so it must be equal to €. (Notice

166 Algorithms Invelving Sequences and Sets

again that the opposite is not true; C may survive the elimination without being the
majority.) When we consider x; we compare it to C, and either increment or decrement
the multiplicity depending on whether or not x; is equal to C. We also have to take care
of the case of having no candidate (which will happen, for example, at x5 if x;%x)).
This case occurs when M is equal to 0, and we simply set C=x; and M =1. At the end,
we have only one candidate €, and we can count the number of times C appears in the
list and determine whether it is the majority or whether there is ao majority. The
algorithm is given in Fig, 6.28,

Algorithm Majority (X, n) |
Input: X (an array of size » of positive numbers},
QOutput: Majoriry (the majority in X if it exists, or ~1 otherwise).

begin
C=X[1];
M=1;

{ first scan; eliminate all but one candidate C }
fori=2tondo
if M = G then
C:=X{i;
M=
else
fC=X[ilthenM =M+ !
else M =M-1;
{ second scan; check whether C is a majority }
if M = 0 then Majoriry ;= -1
else
Count :=0 ;
fori:=ltondo
if X [i] = C then Count := Count + [;
if Count > ni2 then Majority := C
else Majority := —|
end

Figure 6.28 Algorithm Majority.

Complexity We use n— I comparisons to find a candidate and n — | comparisons, in
the worst case, to determine whether this candidate is a majority. Thus, overall, there are
at most 2n -2 comparisons. 1t is possible to reduce the number of comparisons o
3n/2+1, and that is optimal (Fischer and Salzberg {1982]). In any case, since there are
constant number of other operations per comparison, the overal} running time is O (n).

6.11 Three Problems Exhibiting Interesting Proof Techniques 167

6.11 Three Problems Exhibiting Interesting Proof
Techniques?

In this section, we present three unrelated problems Invelving sequences and multisets.
Each algorithm is an example of a different proof technique. The first algorithm utifizes
the principle of strengthening the induction hypothesis. We strengthen the induction
hypothesis four times during the development of this solution, leading 1o an efficiens
algorithm. The second algorithm is an example of an obvious technique — improving
the ‘‘theorem’’ by eliminating all unnecessary assumptions. The example shows that this
principle is not always straightforward. This third example shows how 1o improve an
algorithm by choosing the base of the induction wisely.

6.11.1 Longest Increasing Subsequence

Let § be a sequence of distinct integers x|, X4, .., X,. An increasing subsequence (IS}
of § is a subsequence x; , X; , ..., X;, With i} <y < - <i, such that, forall 1 $j <k, we
have x; <x; . A longest increasing subsequence (LIS} of S is an increasing
subsequence of maximum length,

The Problem Find a longest increasing subsequence of a given se-
quence of distinct integers,

The algorithm we develop in this section is an excellent example of the principle of
strengthening of the induction hypothesis. We will strengthen the hypothesis several
times, each time as a result of problems encountered in the previous attempt. Consider
first the straightforward induction.

Induction hypothesis (first attempt): Giver a sequence of size < m, we
know how to find a longest increasing subsequence of it.

The base case consists of sequences of size 1 for which the problem is trivial. Given a
sequence of size m, we find an LIS of #s first m — I elements, and consider x,,. If x,, is
greater than the last element in the LIS, given by the induction, then x,, can be appended
1o the LIS, creating a new longer LIS, and we are done. Otherwise, however, it is not
clear how to proceed. For example, there may be several different LISs and x, may
exiend one of them, bui not necessarily the one found by the induction. The next step
seems to be a strengthening of the induction hypothesis as follows:

Induction hypothesis (second attempt): Given a sequence of size < m,
we know how (o find all the longest increasing subsequences of it.

* This section canr be skipped at first reading.

168 Algorithms Invelving Sequences and Sets

The base case is still trivial. We use induction in the same way, except that now we can
check x,, against all of the LISs and find whether a longer IS exists. This attempt solves
the previous problem, but it introduces another problem — we now have to find afl LISs.
If x,, cannot extend any LIS, then there may still be an IS of length | less than the
longest, and x,, can extend it, which will create a new LIS, It seems that we have gotten
ourselves into a hole, because we now have to find all ISs of largest and second largest
length. But to find all the second largest ISs, we will need to find all the third largest ISs,
then all fourth largest, and so on. This is a good example where strengthening the
induction hypothesis is overdone.

Let’s ook back at the stronger induction hypothesis. Do we really need alf LISs?
We need only to know whether x,, can extend one of them. Can we somehow find the
“best™” one in terms of potential of extension? The answer is positive. The best LIS is
the one that ends with the smallest number! If we can extend any LIS, we can surely
extend this one. {There may be several different LISs that end with the same number,
and they are all equivalent in terms of extension potential. For simplicaty, we talk about
“the best one” instead of “an arbitrary best one.””) Let's try another induction
hypothesis, this one a little weaker than the last one:

Induction hypothesis (third attempt): Given a sequence of size < m, we
know how 1o find a longest increasing subsequence of ir, such that no other
longest increasing subsequence of it has a smaller last number.

The base case is still trivial. Given x,,, we can determine whether it can be appended to
the LIS found by the induction. Assume that the LIS is of length 5. If x,, can be added,
then we have a new LIS, which 1s longer than the previous one; thus, this new LIS is
unigue, so it is definitely the “‘best’” one, and we are done. Otherwise, we know that no
fonger increasing subsequence exists. But we are still not done. 1t may be the case that
X, cannot be added 1o the best LIS (since it is smaller than the last number in that LIS),
but it can be added to an IS of length s~ I, making the latter an LIS with a smaller last
mumber. To account for this possibility, we need 1o know the best IS of length s — 1. But
then again, if the induction hypothesis states that we know the best IS of length s~ I,
then x,, may extend an IS of length s — 2 making it the new best IS of length s— 1. We
will have 1o be able 1o determine whether x,, extends such an IS in order to proceed with
the induction. So, we will need to know the best IS of length s — 2, 5 - 3, and 50 on down
to the best |5 of length 1, which is simply the smallest number in the sequence so far.
{Even without using induction, one can see that shorter ISs cannot be discarded
arbitrarily — there is always the possibility that one of these ISs is the start of the final
LIS

Yel again we try to strengthen the induction hypothesis, We denote by BIS(L) the
best increasing subsequence of length & — namely, the one that ends with the smallest
number (if there is more than one such subsequence we take an arbitrary one). We
denote by BIS{k).last the last number in the sequence BIS(k)

Induction hypothesis (fourth attempt): Given @ sequence of size < m, we
know how 1o find BIS(k) for all k < m -\, if they exist.

6.11 Three Problems Exhibiting Interesting Proof Technigues 169

The base case remains trivial, Given x,,, we have to find which of the BISs it can
change. x, extends a certain BIS() if and only if the following two conditions occur: (1)
X, > BIS(h).{ast, so x,, can be added to BIS(), and (2) x,, < BIS(k + 1).fast, so BIS(L)
with x,,, at the end is beiter than BIS(k + 1), We claim that BIS{)last < BES{2).last <

< BIS{s)iast, where 5 15 the size of the LIS. This claim is true because, if
BIS(j).last < BIS(j — 1}).last for some j, then the first j— T numbers of BIS{(j} would be
better than BIS(j—1). The algorithm proceeds as follows. Given x,,, we look at the
values of BIS(i.last, for i=s, s~ 1,5~2, and so on, until we find one, say BIS{j}.las,
which is smaller than x,. If no such j exists, then x,, is the smallest number in the
sequence so far, and i becomes BIS(1). If j =g, then we extend BIS(s) with x,,, creating
a new BIS(s+1). (The previous BIS(s) remains unchanged.) Otherwise, we have
BIS()).last < x,, < BIS(j + F L.last. We then replace BIS(j + 1) with BIS{/ix,,.

This s basically the whole algorithm, and it is quite simple once we use the right
tnduction. Notice that the search can be performed by binary search, because we are
searching a sorted set. Hence, each x,, adds at most O {log m) comparisons, and the total
running time s G(n logn). We leave it to the reader 1o complete the details of this
algorithm, which is not a straightforward task.

6.11.2 Finding the Two Largest Elements in a Set

A commorn technique, which ks important in proving almost any theorem, is to search the
proof thoroughly for assumptions or steps that are not essential, Removing such
assumptions results in a better theorem. Having inessential assumptions is also
sometimes an indication that the proof may be wrong. Quoting Polya and Szego [1927]:
**One should scrutinize each proof 1o see if one has in fact made use of all the
assumptions; one should try to get the same consequence from fewer assumptions . . . and
one should not be satisfied until counterexamples show that one has arrived at the
boundaries of the possibilities.”” The same is true for algorithms, This principle sounds
simple, but many times it i3 not, as seen in the next example.

The Problem Given aset S of # numbers x;, x5, ... X, find the first
and second largest of them.

We are looking for an algorithm that minimizes only the number of comparisons of
elements from the set. We ignore other operations. Furthermore, for simplicity, we
assume that # is a power of 2.

We try the usual divide-and-conguer technique, by dividing the set § of size # into
two subsets P and O of size n/2. If we use straightforward induction, we assume that we
know the first and second largest elements of P and (. denote them by py, po,and g, 4,
respectively, and we try to find the first and second largest elements of §. It is easy to see
that two more comparisons are necessary and sufficient to find the first and second largest
elements of §. One comparison is between the two maximais p; and ¢, and the other

176 Algorithms Involving Sequences and Sets

one is between the ““loser”” and the second largest of the “*winner” (see Fig. 6.29). This
approach leads to the recurrence relation T(2m)y=2T (m)+ 2, T(2)=1, whose solution is
T(n)=3n/2~2. This is better than the straightforward 2s — 3 comparisons, and it is very
similar to the problem of finding the maximal and minimal elements presented in Section
6.5.1. We want to do even better.

If the two comparisons are necessary for the inductive step, then how can we
improve the total number of comparisons? Looking carefully at the comparisons in Fig,
6.29, we see that ¢, will not be used further in the algorithm. Therefore, the computation
leading 1o its discovery was unnecessary. If we can avoid this computation, then we witl
save significant number of comparisons. However, until we compare p, to g, we do not
know whether p, or g, can be ignored. If we had known which subset was going to
“Jose,”” then we could have used the regular maximum-finding algorithm for this subset,
saving many comparisons, 3o, we suspect that quite a few comparisons can be avoided,
but we do not know which ones they are.

The trick is to delay the computation of the second largest element untif the end.
We keep only a list of candidates for second largest, and we do not assume that we know
the second largest element in the induction hypothesis:

Induction hypothesis: Given a set of size < n, we know how to find the
maximum element and a 'small’’ set of candidates for the second maximum
element.

We have not defined a value for “small” in the hypothesis. We will discover the
appropriate value when we develop the algorithm.

The algorithm proceeds as follows, Given a set § of size n, we divide it into two
subsets P and O of size n/2. By the induction hypothesis, we know the largest elements
of the two sets, p; and g, plus a set of candidates for the second largest, Cp and Cp. We
compare p; and ¢, and take the largest, say p,, to be the maximum of §. We then

Py
..

P2

»

1,

Figure 6.29 Finding the largest and second largest elements {the dashed lines
correspond to the comparisons).

6.11 Three Problems Exhibiting Interesting Proof Techniques 171

discard Cg, since all elements of Cj are less than ¢, which is at most the second largest,
and add only ¢, to Cp. At the end, we get the largest element and a set of candidates
from which we choose the second largest element directty. The number of comparisons
for finding the maximum satisfies the recurrence relation T(n)=2T(n/2}+ 1, T(2)=1,
which implies that T{n)=r 1. It is easy 1o see that log,n is a sufficient size for the
candidate set, because we add one more element to the candidate set when we double the
size of the set we consider. Therefore, finding the second largest element requires
logon— | additional comparisons. The total number of comparisons s thus
n— | +logzn—1, which, incidently, is the best possible (see [Knwh 1973b]). The
induction hypothesis, for the case when # is equal to a power of 2, is thus as follows.

Induction hypothesis: Given a ser of size < n, we know how 1o find the
maximum element and a set of ar most logyn candidates for the second
maximum element.

Comments Once an algorithm is constructed, if is a good idea to examine it
carefully for parts that do not contribute to the final result, Often, these parts can be
efiminated. Even if the redundant operations cannot be eliminated, they may be replaced
by simpler operations, which are more efficient.

6.11.3 Computing the Mode of a Multiset

bet S=(x;, X1, .., %,) be a multiset of (not necessarily distinct) elements from a totally
ordered set. A mode of a multiset is defined as an element that occurs most frequenily in
the multiset {there may be more than one mode). The number of times an element occurs
is called its multiplicity. The mode is thus the element with the highest multiplicity,

The Problem Find a mode of a given multiset S.

Our goal is to minimize the number of comparisons. One possible way to find the mode
is to use sorting. Once the elements are sorted, we can scan the sorted sequence and
count the multiplicities (equal elements will be consecutive in the sorted sequence). We
will see that sorting is not always necessary. The reason for thinking that sorting may not
be required is that finding the majority (Section 6.12) can be done in linear time, whereas
sorting requires O (n log n) time. This leads us 1o suspect that, if the multplicity of the
mode is high, then there may be a fast way of finding it without sorting.

Let's try the straightforward induction approach. We assume that we know the
mode of a multiset with n — 1 elements, and try to find the mode of an » element multiset.
This is not easy since there may be several elements with the highest multiplicity; the nth
element may break the tie. Suppose that the induction hypothesis states that we know alf
the elements with the highest multiplicity. Then, we can determine whether the ath
element breaks the tie, but it may also increase the multiplicity of another number, which

172 Algorithms Involving Sequences and Sets

now has 10 be added to the list, We have already seen (Section 6.13.1) that keeping track
of all different ‘*best’” sclutions is possible, but the cost will probably be too high. On
the other hand, i is aot necessary that the nth element be arbitrary — we can choose a
special one. Suppose that the nth element is the maximum element. We still have
basically the same problems as before, but now we are closer to a solution, We can
reduce the size of the problem by removing not one but @l occurrences of the maximal
element. We then solve the reduced problem, and compare the multiplicity of the mode
of the reduced multiset with the multiplicity of the maximal element.

We now have an algorithm, but unfortunately, it is still too slow. Finding the
maximum of a multiset of # elements requires n — | comparisons, If the multiset contains
quite a few distinct elements, then too many maximum computations will have to be
performed. In particular, if the multiset is in fact a set (i.e., all the elements are distinct),
then this algorithm is basically the same as the O (n*) selection sort.

To improve the performance of the algonthm, we resort to the divide-and-conguer
techrique. Instead of using one element or a small set of elements in the induction, we
try to divide the multiset into two parts of about the same size. The two parts should be
disjoint, so that they lead to independent subproblems. How do we divide a multiset into
two approximately equal disjoint parts? We can first find the median of the multiset and
then split the multiset into three parts — less than, equal to, and greater than the median.
We have already seen how to find a median in O{n) expected number of comparisons
(Section 6.5} It is also possible to find the median in O (n} time in the worst case,
atthough we have not proved this result. We use the median-finding algorithm as a step
in our algorithm. Given a maltiset of size n, we first find the median and perform the
splitting, then solve two subproblems of size no more than #/2. The mode of the original
mulktiset can be easily determined from the modes of the two smaller multisets, since the
smaller multisets are disjeint. Since finding the median and spliting can be done in
linear time, we get the familiar recurrence relation

TM£2Tn/H+00(m), T(D)=1,

which implies that T(n)=0 (s log#s). But this is no betier than sorting. In fact, if the
spliiter element is chosen at random instead of being the exact median, then this
algorithm is basically the same as quicksort.

We now come to the heart of this algorithm. To improve the performance, we look
at the base of the induction. Suppose that the multiplicity of the mode is M. We claim
that we can start the induction from submultisets of size M. In other words, we do not
have 10 continue splitting the multiset into parts smaller than M. Since all parts are
disjoint, one of the parts of size M must contain only the mode. At this point, the mode
will be discovered because the multiplicity of all other elements cannot exceed M.
Therefore, there is no need to divide the multises any further,

The implementation of this algorithm is not straightforward. We cannot use
recursion, because we do not know beforehand how far to carry out the recursion. The
recursion should be terminated when the size of the multiset becomes at most M, but the
value of M is found during the execution of the algorithm by checking all the smalier
multisets. In each step, all the submustisets are checked, and, if none of them contains

Bibliographic Notes and Further Reading 173

only one distinct element, then all of them are further divided. If any of the submultisets
contains only one distinct element, then we can terminate. We leave the implementation
details to the reader.

Complexity The resulting recurrence relation is modified only in its base:
Tim) 2T (!2y+ 0 (m, T(MY=0 M),

which implies that the number of comparisons is O{nlog(n/M}). An intuitive
explanation of this expression is that the recursion is carried cut only until a multiset of
size M is encountered, which is a total of log(n/M) times. Each time it takes a linear
number of comparisons to divide and check all subproblems. In particular, if M =cn for
some constant ¢, then this is a linear-time algorithm. I M is a constant, then this is an
O (nlogn) algorithm. This algorithm is thus superior to sorting only if M is fairly high
and if the cost of comparisons is also high (there s a significant overhead for
remembering subproblems).

6.12 Summary

We touched on quite a few subjects in the this chapter — searching, sorting, order
siatistics, data compression, string manipulation, probabilistic algorithms, and others.
We presented only one or two basic problems in each subject. In practice, problems are
often not as clean and simple to define as are the problems presented in this chapter. One
should therefore try to abstract the main parts of 2 given problem. The techniques that
we employed in this chapter are guite similar to those introduced in Chapter 5. Induction
again plays a major role.

Many of the problems discussed in this chapter have straightforward solutions that
can be obtained with little effort — linear search and selection sort are two examples. I
the size of the input is small, these solutions are most often not only good enough, but
they are also better than sophisticaied solutions. Whenever the size of the input is not
small (e.g., over 100), it is tmportant to attempt to find better solutions. The use of
linear-search and quadratic-sorting algoriths, for example, is qguite common.
Unfortunately, these and other inefficient algorithms are used too often for large inputs.*

Bibliographic Notes and Further Reading

A wealth of material about sorting and searching, including their history, can be found in
Knuth {1973b]. Additional algorithms involving sequences and sets, as well as fopics in
combinatorics, are presented in Stanton and White [1986]. A formal derivation of a
binary-search paradigm can be found in Manna and Waldinger [1987]. The stuttering-
subsequence problem of Section 6.2 is from Mirzaian [1987], where a linear-time

*A recent example highlighted this issue unexpectantly when the virus (or worm} that attacked over 6000 com-
puters across the United States on November 2, 1988, slowed down those computers considerably, partty be-
cause ali the search algorithms in it used linear search (see Spafford [19881).

174 Algorithms Involving Sequences and Sets

algorithm is presented. The average performance of interpolation search was studied by
Pert, [tai, and Avni [19781, and some empirical results are given by van der Nat [1979).

Mergesort was probably first developed by von Neumann in 1945, and it was one
of the Brst stored programs to be implemented. An in-place version of mergesort was
first developed by Kronrod [1969]; see also Huang and Langston [1988], and Dvorak and
Durian { 1988]. Quicksort is due to Hoare [1962]. A detailed study of guicksort appears
in Sedgewick [1978]. Heapsort was developed by Williams [1964]. A wonderful film
coatzining descriptions of nine major sorting fechniques all shown with beautiful
animation was produced by the computer graphics group at the University of Toronto
[198%]. Even though sorting has been studied extensively for many years, there are still
many open problems. The exact number of comparisons required for sorting » numbers
is still unknown. The algorithm outlined in Exercise 6.30 is by Ford and Johnson {1959).
ft was the *‘champion™ for some time in terms of number of comparisons, but it was
proved not to be optimal by Manacher [1979]. Another widely used sorting algorithm is
shellsort invented by Shell 11959]. Shellsort is simple and very easy to implement.
However, its complexity is still unknown; see Incerpi and Sedgewick §1987] for recent
results and empirical observations. Decision trees have been used successfully to prove
tower bounds for several basic problems; Moret {1982) presents a survey of their uses,

An analysis of the probabilistic selection algorithm was given by Floyd and Rivest
[1975]. A linear-time deterministic algorithm for order statistics was first developed by
Blum, Floyd, Pratt, Rivest, and Tarjan {1972). However, the running time is in fact
@(ny since the constant is very high. Schonhage, Paterson, and Pippenger {1976}
presenis a median finding algorithm with at most 3n comparisens. The best-known lower
bound (on the number of comparisons) for finding the median is 2» (Bent and John
[1985]). This paper contains results for the general order statistic problem; the
expressions for the general lower bounds are more complicated.

Data compression has been studied widely due to its great importance. The
algorithm in Section 6.6 is due 10 Huffman [1952] (see also Kauth [1973a]). Variations
of Huffman’s algorithm that use only one pass are described by Knuth [1983) and Vigter
{1985}, Another effective and popular algorithm is due 1o Ziv and Lempel [1978). More
on data compression in general can be found in Lynch [1985].

The string-matching algorithms presented in Section 6.7 are due to Kauth, Morris,
and Pratt [1977], and to Boyer and Moore [1977]. Galil [1979] improved the worst-case
running time of the Boyer~Moore algorithm. More on the complexity of the
Boyer—-Moore algorithm can be found in Guibas and Odlyzko [1980] and in Schaback
[1988]. Empiricat comparisons between various string matching algorithms can be found
i Smit {1982]. A probabilistic string matching slgorithm was developed by Karp and
Rabin [1987]. This algorithm uses the idea of fingerprinting to make short
representations of large strings so that they can be compared efficiently. It can also be
used with fwo-dimensional patterns. The string matching problem can be extended to
look for patierns more complicated than just strings. For example, *‘wiid cards™ are
useful; we may want to search for all occurrences of strings of the form B*C, where B
and C are given strings and * denotes any string. A more general probiem is to look for
any regular seis of strings, For more on these problems see Aho and Corasick [1975].

Drill Exercises 175

Another important problem is to search for strings in a fixed text that has been
preprocessed. Suffix trees (Weiner [1973], MeCreight [1976]) and Suffix Arrays
(Manber and Myers [1990]} allow fast search.

Sequence comparisons and their many applications are covered in a book edited by
Sankoff and Kruskal {1983]. Various problems involving strings are included in a book
edited by Apostolico and Galil [1985]. The algorithm given in Section 6.8 is due to
Wagner and Fischer (19741 This algorithm can be improved in many ways, including
savings of storage (Hirschberg [1975]), improved running times when the alphabet is
very large (Hunt and Szymanski [1977]), and when the sequences are close (Ukkonen
{1985] and Myers [19861). A survey of relevant results appears in Hirschberg | 1983].

The probabilistic algorithm that finds an element in the upper half is due to Yao
(197%]. Random number generation is covered in detad in Knuth {1981} The
probabilistic coloring algorithm given in Section 6.9.2 is based on a probabilistic proof of
existence given in Bollobds [1986]. The technique for converting probabilistic
algorithms 1o deterministic algorithms, which was ilustrated in Section 6.9.3, is due o
Raghavan [1986]. The wse of this technique to selve the coloring problem of Section
6.9.2 was peinted out to us by K. Pruhs. The general problem of finding a valid coloring
for arbitrary-sized subsets is NP-complete (Lovdsz {1973]). Erdos and Spencer [1974]
present many examples of probabilistic techniques for proving combinatorizl properties,

‘The majority problem was studied, for example, by Misra and Gries [1982). Using
a more sophisticated data structure than the one presented in Section 6.10, Fischer and
Salzberg {1982} showed that the number of comparisons (but not the number of other
steps) can be reduced to 3n/2+ 1 in the worst case, and that this bound is optimal.

An excellent description of a sclution to the longest increasing subsequence
problem (from which we borrowed heavily) is given by Gries [198%]. Erdos and
Szekeres [1935] proved, by a very elegant use of the pigeonhole principle, that every
sequence of distinct elements of length n° +1 must have either an increasing or a
decreasing subsequence of length n + . The problem of finding the largest and second
largest elements in a set was frst suggested, in the context of arranging tennis
tournaments, by Lewis Carrell (see [Knuth 1973b}). Another algorithm for finding the
mode is given in Dobkin dnd Munre (1980 (see also Gonn -t | 19843,

The solution to Exercise 6.27 is discussed in Aho, Hopcroft, and Ullman {1974},
Exercise 6.34 is from Karp, Saks, and Wigderson [1986]. A solution 10 Exercise 6.39 is
given in Rodeh [1982]. The subject of Exercise 6.42 is discussed in Choueka, Fraenkel,
Klein, and Perf [1985]. The snotion of realizable sequences (Exercise 6.64) was
infroduced by Ryser {19571,

Drill Exercises

6.l Design a good sirategy for the following well-known game: One player thinks of 4 number
in the range 1 to #. The other player attempis to find the number by asking guestions of the
form **is the number less than (greater than) w7 The object is to ask as few questions as
possible. {Assume that nobody cheats.)

176

6.2

6.4

6.5

6.6

6.7

6.8

6.9

e o
I

l.

Algorithms Involving Sequences and Sets

Find a strategy to the guessing game in Exercise 6.1 when the range of choice is unknown
— that is, the chosen number may be any positive number.

Suppose that you are using a program that handles farge fexts, for exampie, a word
processing program. The program takes as input a text, represented as a sequence of
characters, and produces some cutput. Once in a while, the program encouniers an error
from which it cannot recover. Nof only that, buf it cannot even indicate what ersor it is, or
where it is. In other words, the only action the program takes is to halt and to ouiput
“Error.”” Assume that the error is focal; in other words, it resulfts only from 2 particular
steing in the text which the program, for some unknown reason, does not kke. The ervor is
independent of the context in which the offending string appears. Suggest a sirategy to
locate the source of the efror.

Construct an example for which interpolation search will use Q(n) comparisons for
searching in a tabie of size n,

Write the complete program for radix-exchange sort, The input is a sequence of » integers,
each with k digits. Each digit is in the range | to m. You can assume that O (m) space is
available. First, write the program as a recursive procedure. Determine the amount of extsa
space required by the recursive procedure. Then, design a nonrecursive program and try fo
minimize the amount of extra space.

Write the complete programs for insertion sort (with linear search and binary search) and
selection sort,

Count the number of comparisons used to sort the input in Fig. 6.8 (by mergesort), and in
Fig. 6.1]1 (by quicksort). Compute the number of comparisons for the same input for
insertion sort and selection sort.

Prove, by using a loop invariant, that the first if statement in aigorithm Mergesorr (Fig. 6.7}
i« not necessary. In other words, prove that the resuft of the algorithm will not change if we
remove this if statement, and star the algorithm with the if statement “*if Left # Right."”

Compare mergesort with the solution 1o the skyline problem in Chapter 5. Try to formalize
the similarities. Will it be possible 1o use one solution almost as & ‘*black box” to soive the
other problem?

Write the appropriate foop invariant for the main loop in Algorithm Partition (Fig. 6.9), and
prove the correciness of the algorithm,

Construct an example for which quicksort will use Q(n?) comparisons when the pivot is
chosen by taking the median of the firss, fast, and middle efermnents of the sequence,

In some cases, the input for a sorting algorithm is already afmost sorted, which means that
the number of out-of-order elements is smak. Describe how the different sorting algorithms
suggested in Section 6.4 perform for almest sorted inputs, Which algorithm would you use?
{You are encouraged 1o design your own.}

Construct a table similar to that in Fig. 6.15 for building a heap top down.

Design a divide-and-conquer algerithm to find the minimal and maximal elements in a set.
The algesithm should use at most 34/2 comparisons {for n=2*}. Can you pinpoint the
reasen this algeriths requires less than the straightforward 2x — 3 comparisons algerithm?

6.15

6.16
6.17

6.18

Creative Exercises 177

Build the Huffman tree for the set of characters in this question. Include all characters.
How many bits are saved in the storage of this question using Huffman trees versus a
storage based on a fixed-length encoding?

Construct the rear table (Section 6.7) for the siring aabbaabababbaabbaahb.

Construct the matrices ¢ and M obiained by comparing the sequences aabccbbaabea 1o
baacbabaccaba using algorithm Minimum_Edit_Distance of Fig. 6.27.

Write the appropriate loop invariant for the first loop in Algorithm Majority (Fig, 6.28), and
prove the correctness of the first phase of the algorithm.

Creative Exercises

Unless specified otherwise, sequences and sets are assumed to be of size n, and to consist of
elements that are real numbers. Algorithms are said to run in linear time if they run in time O (r).
All the running times are worst case.

6.19

623

6.24

6.25

Given an array of integers A[l.a], such that, for all i, 1<i<n we have
JA[I]=Ali+1]] <1. Let Al1]=x and A[n]=y, such that x < y. Design an efficient search
algorithm to find j such that A [j]=z for a given value 2z, x€z<y. What is the maximal
aumber of comparisons to z that your algorithm makes?

Prove by using decision trees that the algorithm you developed for Exercise 6.19 is optimai
in the worst case {or improve your aigorithm until you can prove that it is optimat).

The input is a set § with # real numbers. Design an O{#) time algorithm to find a number
that is rot in the set. Prove that {¥{n} is a lower bound on the number of steps required to
solve this problem,

The input is a set § containing # real numbers, and a real number x.

a. Besign an algorithm to determine whether there are two clements of § whose sum is
exactly x. The aigorithm should run in time O (n log n).

b. Suppose now that the set § is given in a sorfed order. Design an algorithm to solve this
problem in time G (n).

(Given two sets § | and S5, and a real number x, find whether there exists an element from $,
and an element from §, whose sum is exactly x. The aigorithm should run in time
O (n log n), where n is the total number elements in both sets.

Design an algorithm to determine whether two sets are disioint, State the compiexity of
your algorithm in terms of the sizes m and n of the given sets. Make sure to consider the
case where m is subsiantially smailer than #,

Design an algorithm o compule the union of two given sets, both of size O (1), The sets are
given as arrays of elements. The ocutput should be an array of distinct elements that form
the union of the sets. No element should appear more than once. The worst-case running
time of the algorithm skould be O (1 log #).

178 Algorithms Involving Sequences and Sets

626 The input is a sequence of real numbers x|, X1, .., x,, such that n is even. Design an

T algorithm to partition the input into /2 pairs in the following way. For each pair, we
compyte the sum of its numbers. Denote by 5,, 53,8,,; these #/2 sums. The atgorithm
should find the partition that minimizes the maximum sum.

*6.27 Modify fexicographic sort 10 work for variable-fength strings. In other words, you can ne
fonger assume that all numbers have exactly £ digits. Some numbers may be long and some
short. It is possible of course to *‘pad™ all nimbers by adding *dummy’” (0} digits to make
them afl of the same length. Find an algorithm that avoids doing that and achieves a
running tfime linear in the totai number of digits.

6.28 The input is & seguence x,, X5, ..., X, of integers in an arbitrary order, and another sequence

- @y, 4z, - &, Of distinct integers from | 10 w {namely @,,@,, ..., a, is a permutation of
1,2, ..., n). Both sequences are given as arrays. Design an O (n log #) algorithm to order
the first sequence according to the order imposed by the permutation. In other words, for
each 7, x; should appear in the position given in a;. Forexample, if x= 17,5, 1,9, anda =
3,2, 4, 1, then the outcome should be x = 9, 5, 17, §. The algorithm should be in-place, so
you cangnot use an additional array.

6.29 The input is d sequences of elements such that each sequence is already sorted, and there is
a total of » elements. Design an O (n log d) algorithm to merge all the sequences into one
sorted sequence.

6.30 The following is a brief and incomplete description of a soriing algerithm kaown as the Ford
and Johason sorting.

1. Arbifrarily form #/2 distinct pairs of elements

2. Compare the elements in each pair

3. Recursively sort the n/2 larger clements

4, Insert in some order the #/2 remaining efements into the sorted list of farger elements

This algorithm uses fewer comparisons thaa almost any other algorithm, provided that the
insertions in step 4 are done in 2 “‘good'” order. Consider the cases of n = 5, 6, and 8. Find
a good order in which 1o insert in step 4. You should end up with an optimal soring
algonithm {in terms of the number of comparisons) for these values of n (in fact, you will
get an optimal algerithm for any # < 12 with this algorithm).

=,
et

The input is a sequence of n integers with many duplications, such that the number of
distinct integers in the sequence is O (log n).

a. Design a sorting algorithm to sort such sequences using at most O (nloglogm)
comparisons in the worst case.

b. Why is the fower bound of (i Jog n) not satisfied in this case?

632 Prove that the sum of the heights of all nodes in a balanced binary tree with # nodes is at
most 7 -1, (A balanced binary tree with # nodes is one that corresponds to an implicit
representation using an array of size #.) Show a tree whose sum of heighis is exactly n — 1.

The sum of the heights of all nodes in a heap (see Section 6.4.5) can afso be computed
directly by noting that the height of the node corresponding to position i in the array (of size
a1} is at most [fog,(n —i + 1], Find the sum of heights by using this method.

i.

o
Lk
Tl

6.34

6.35

o
fad
==

{.

6.40

Creative Exercises 179

The input is a heap of size # (in which the largest element is on top), given as an array, and a
real number x. Design an algorithm to determine whether the &th largest element in the
heap is less than or equal to x. The worsl-case running time of your aigorithm should be
G (k). independent of the size of the heap. You can use O (k) space. {Notice that you do
not kave {o find the kth largest element; you need only determine its relationship to x.)

The weighted selection problem is the following. The input is a sequence of distinct
numbers £, X3, ..., X, such that each number x; has a positive weight w(x;} associated with
it. Let W be the sum of all weights. The problem is to find, given 2 value X, 0 < X €W, the
number x; such that

Y owixy < X,

x>z,
and

wir)+ Yowix) 2 X
L2 R
Design an efficient algorithm to solve the weighted selection problem. {Notice that when
all weights are 1, this probiem becomes the regular selection problem.}

Let A be an algorithm that finds the &th largest of 7 elemenis by a sequence of comparisons.
Prove that A collects enough information to determine which efements are greater than the
kth targest and which elements are fess than it ¢In other words, you can partition the set
around the kth fargest element without making more comparisons.)

Consider the problem of finding the kth largest element, and suppose that we are interested
only in minimizing space. Each element lls one memory cell. The input is 2 sequence of
eiements, given one at a time, inserted into a fixed cell C. That is, in the ith input step x; is
put into € ¢and C’s previous contens is erased). You can perform any computation between
two input steps (including, of course, moving the content of C to a temporary focation).
The puspose is to minimize the extra number of cells required by the algorithm, Give an
upper bound and a lower bound on the number of memory cells needed o find the ith
largest element.

The goal of this problem is o find the kth smallest element, as in Exercise 6.37, but this time
we want to minimize the ruaning time as well as to use very little space (although not
necessarily minimal space). The inpus is again 2 sequence of elements ¥, X3, ..., X,, given
one at a time, Design an O (#) expected time aigorithm to compute the th smallest elemesnt
using only (k) memory cells. The value of is known ahead of time {50 that sufficient
arsount of memory can be allocated). but the vaiue of n is not known until the tast elemesnt
is seen.

Let 4 and B be two sets, both with # elements, such that A resides in computer P and B in Q.
P and ¢ can communicate by sending messages, and they can perform any kind of local
computation. Design an algorithm to find the nth smallest element of the union of A and B
(i.e., the median). You can assume, for simplicity, that all the elements are distinct. Your
goal is to minimize the number of messages, where a message can contain one element or
one integer, What is the number of messages in the worst case?

Given a set of integers § = {x,, X2, .., %, |- find a nonempty subset R & 8, such that

130

6.42

6.43

6.45

Algerithms Involving Sequences and Sefs

¥4 = 0 (medulo).

xeR

Use the idea of the information-theoretic bound to prove a lower bound of Qlogn)
comparisons for the problem of finding the value of { such that x;=/ in the sequence
X (4 X34 ey Ipo OF determining that no such 7 exists. (This problem is discussed in Sections
6.2 and 6.4.6.)

Suppese that you want te use Huffman's encoding but that you do not use a programming
language that lets you access bits, You can read the sequence of bits as a sequence of bytes
(or any other biocks of size £ depending on the machine). Each byte {block) comespends o
an integer, and the encoding thus corresponds to a sequence of integers {each less than 2%,
Design a method to translate the sequence of integers such that you can use the Huffman
tree and decode the corresponding sequence of bits. Do it by building a table of size k x 2,
where & is the size of the block {8 in the case of bytes). The fable depends on the tree
{which is given to you). You can use only multiplication, addition, and subtraction of
inegers; you cannot use bit operations. The tabie should allow you to access any bit in a
number { taken from the sequence of integers. Now solve the problem again, but this time
use a tabie of size 2x 2%,

Assume that a Huffman's encoding has been applied to a certain text. The Huffman tree has
been constructed and it is availabie to you. The frequencies of ali characters in the text are
also known. Assume now that the text has been changed slightly such that the frequency of
one (existing)} character X has been increased by 1. You want to update the tree so that it
remains optimat for the modified texi. A friend makes the following suggestion for an
algorithm to modify the iree.

First, he notes that an important property of a Huffman tree is that the frequencies
associated with the nodes are nondecreasing as the nodes are closer to the root. (In other
words, a node with lower frequency cannot be higher in the tree than a node with higher
frequency.) The frequency of an internal node v is defined as the sum of alf the frequencies
of the characters associated with external nodes that are descendants of v. Consequently, he
suggests checking whether the increased frequency still satisfies tha: property by checking
the next higher level. If there is no node in the next higher levei with a frequency smatier
than the frequency of X, then leave X in its place. Otherwise, replace X with the character at
the higher level whose frequency is now smaller than that of X. This algorithm may
sometimes work, but it is generally incorrect. Describe why it is incorrect and how it can be
comrected. You should mention not only what is missing in the algorithm but, more
important, discuss why the algerithm does not work, as is, in general. That is, either
construct a counterexample under which this algorithm does not construct an opiimai tree,
or show that, had the algorithm been correct, it would have led to a contradiction (or {0
some highly suspicious implications). It is not enough to point out that the algorithm does
not deal with some cases. It could be that those cases can be ignored. You need to show
that the algorithm is definitely wrong.

The input is two sirings of characters A =a,a, -+ a, and B=h, b, -~ Bb,. Design an
Ctn) time aigorithm to determine whether B is a cyclic shift of A. In other werds, the
algorithm shouid determine whether there exists an index &, 1£&<n such thal
@ =By omagns foralif, 1 Si 50

The KMP string matching algorithm can be improved for binary strings in the following

6.46

6.47

6.48

6.49

6.30

6.52

Creative Exercises 181

way: When constructing the next table, in additien to looking at the suffix of the string seen
so far, we can add the mismatched character. That is, we look for the longest suffix of
B (i— 1)Yb; that matches a prefix of B. (b; is the complement character of b,.} That way,
every character in A is compared to a character in B exactly once.

a. Give a precise definition of the modified next table, and show i new values for the
example in Fig. 6.21.

b. Modify the string maiching aigorithm to take advantage of this change.

An on-line string matching algorithm: Suppose that the pattern is input one character at a
time at a relatively slow pace {e.g., by typing), but the tex1 s already given. We would like
to proceed with the matching as much as we can, without waiting until ali the patiern is
known, In other words, when the Ath character is input, we would like 10 be at the first
place in the text that matches the first & — 1 characters in the pattern. Modify the KMP
algorithm to achieve that goal.

Modify the KMP siring matching aigorithm o find the fargest prefix of 8 that matches a
substring of A. In other words, you do not need to match ail of B inside A; instead, you
want (o find the largest match (but it has to start with b,).

Let T and P be two sequences ¢, {3, ..., 1, and p,. ps, ... p; of characters, such that k<n.
Dresign an O(n) aigorithm to determine whether P is 2 subsequence of T, (P is a
subsequence of T if there exist a sequence of indices 154 <iy < -+ <y $asuch that for
all j1€jsk wehavet, =p,)

Pesign an algorithm for Exercise 6.48 such that, if there are many subsequences in T that
are equal to P, then the algorithm finds the subsequence whose sum of indices is maximum.
That is, find the seiquence of indices 1 84, <y <+ <y Snsuchthatforall j, 1 S5k we
have #; =p;, and Yi; is maximized.

j=
Consider Exercise $.48; assume that the ith character of T has a positive cost ¢ (i} associated

with it. Find the matching subsequence that maximizes the sum of costs, That is, find the
sequence of indices 1 €4, </« + - <y S such that for all j, 1</ <k, we have f; =p,,
k

and ¥ .c(i;) is maximized.

i=1
The largest common subsequence (1L.CS) of two sequences T and P is the fargest sequence
L such that L is a subsequence of both T and P. The smallest common supersequence
{8CS8)} of two seguences T and P is the smallest sequence L such that both 7 and P are
subseguences of L.

a. Design efficient algorithms fo find the LCS and SCS of two given seguences.

b. Let d{T, P} be the smaliest edit distance between T and P such that no replacements are
allowed (in other words, we have to insert and deletel. FProve that
d{I, Py= | SCS(F, Py | ~ } LCS(T, P) |, where | SCS{T, P31 (JLCS(T.P)) is the
size of the smallest SCS {(L.CSyof Tand 2.

Generalize the minimal-edit-distance probiem presented in Section 6.8 to the case where
insertions ai the beginning or the end of one of the sequences are no: counted. In other
words, if B fits inside A, then we do not count the insertions needed to enlarge 8; we count

182

6.53

6.56

6.57

6.58

6.59

Algerithms Involving Sequences and Sets

only the edit distance of B to the subseguence of A to which it fits, (Notice that, if you
insert at the beginning of B without cost, you mast count the insertions at the end of A, and
vice versa.)

The sequence comparison problem can be generalized to three (or more) sequences in the
fotlowing way. In each step, we are allowed 10 inser, delete, or replace characters from any
of the sequences. The cost of a step is 0 if the corresponding characters in all sequences are
equal, and § otherwise {even if two sequences match and only one insersion or deletion is
necessary). For example, suppose that the sequences are aabb, bbb, and cbbh. One possible
edit sequence is inserting a in front of bbk and cbk (which costs 1), replacing a & in 5bk and
a ¢ in chb with an g, and then the test matches; the total cost is 2. Design an O (n%)
algorithm to find the minimal edit distance between three given sequences.

letA=da,d, - a,and B=b, b, -+ b, betwo strings of characters. Denote by A [f] the
string o a;,y - @, (namely, the ith suffix of A). Let d; be the minimal edit distance
between 8 and Aiil. Design an O (n?) algorithm to find the minimum value of d; (among
alif, 15i<n).

The input is a sequence of numbers 1, X3, .. X,. Prove that any deterministic algoriths
that selects a rumber from the set which is in the upper half (i.e., greater than or equai to the
median)} must make at Jeast{ ¥4 n] comparisons,

Determine the expected number of steps required by the probabilistic coloring algorithm of
Section 6.9.2, in terms of both £ and .

Assume that you have a procedure for generating random numbess in the range 1 to £, for
every & <n. Design an afgorithm to generate a random permuitation of » numbers. Each
possibie permuiation should be selected with egual probability.

Public-opinion potis are exampies of probabilistic aigorithms. Suppose that there are two
candidates and # voters. A common algorithm is to ask & random voters and take the
average response. Assume that exactly one-half of the votess faver each of the candidates,
What is the probability that the results of the survey {with & voters) are in the range of 45
percent to 55 percent? (The result should be an expression with a, £, and the percentages as
parameters.

The results of public-opinion polls are usually given with an “‘ervor’” range. For example,
they may indicate that candidate X has x percent of the vote, and add that the poll has a £3
percent masgin of ersor. Discuss why stating the bounds on the percentage of error as
absolute bounds is not precise. What would be the precise way to define the error?

The purpose of this excreise is {o compare Monie Carle algorithms to Las Vegas algorithms.
In a nutshell, Monte Carlo algorithms guarantee the running time, bul cannot guarantee
correctness; Las Vegas algorithms, on the other hand, guarantee correctness, but caanot
guarantee the running time. Suppose that the problem we consider is a decision problem, s0
the answer is either yes or no. Assume that the error probability in the Monte Cario
algorithm is at most 1/4. (This is enough since we can simply run the algorithm many times
and take the majority as the answer, thereby reducing the probability of error significantly.)
Which type of ajgorithm is more powesfui? In other weords, is it possible 10 convest one
type of algorithm to the other?

Design an algorithm that, given a list of » elements, finds all the clements that appear more

6.62

Creative Exercises 183

than n/4 times in the fist, The algorithm shouid use O {n) comparisons. {Hiat: Modify the
majority aigorithm.}

You are asked to design a schedule for 2 round-robin tennis tournament. There are n =2
players. Each player must play every other player, and each player must play one match per
day for n — | days. Denote the players by P P,,...P,. Qutput the schedule for each player.
{Hint: Use divide and conquer in the following way. First, divide the players info two equal
groups and et them play within the groups for the first #/2~1 days. Then, design the
games between the groups for the other #/2 days.}

"6.63 Design an algorithm to arrange & round-robin lennis tournament (see Exercise 6.62) for any

number of players. If the number of players is odd, then in each round one player does not
participate.

* . .
6.64 Letr,, ry, ...r, and ¢, ¢1, ... ¢, be two sequences of integers whese sum is equal; namely,

Zr:f;c

Such sequences are called realizable if there is an 1 > n matrix all of whese elements are
either 0 or i, such that, for all 7, the sum of the ith row is exactly r; and the sum of the ith
column is exacily ¢;. Not ali sequences ase realizable. For example, the two sequences 0,2
and 0,2 are not realizabie since only the second efement of the second row can be nonzero,
but it cannot be more than 1. Design an algorithm to determine whether two given
sequences are reafizable, and construct & matrix with the corresponding row and column
sums if they are. (Hint: First, strengthen the induction hypothesis to extend the probiem to
n % m matrices. Then, use induction on n (the pumber of rows). Try to place 1s in the first
row so that the problem for the other n — i rows can be solved if and only if the original
probiem can be soived.}

CHAPTER 7

GRAPH ALGORITHMS

A shoricut is the longest distance between twa points.

Anon

7.1 Introduction

In the previous chapter, we discussed algorithms involving sets and sequences of objects.
The refationships we studied were limited to ordering, mukltiplicities, overlappings, and so
on, In this chapter, we discuss more involved relationships among objects. We use
graphs to model these relationships. Graphs can model a large variety of situations, and
they have been used in diverse fields ranging from archaeclogy to social psychelogy, We
present several important basic algorithms to manipulate graphs and to compute certain

graph properties.

First let’s see examples of modeling by graphs.

Finding a good route to a restaurant in a city is a graph-theoretical problem. The
streets correspond to the edges (directed edges in the case of one-way streets), and
the intersections 1o the vertices, Each vertex and each edge (street segment) can be
associated with an expected time defay, and the problem is to find the *‘quickest”
path between two vertices.

Some programs can be partitioned into states. From each siate the program may
have several possibilities 1o proceed. Some of the states may be considered
undesirable. The problem of finding which states can lead to an undesirable state
is a graph-theoretical problem in which the states correspond to the vertices and an
edge indicates a possible move from one state to another.

The problem of scheduling classes in a university can be viewed as a graph-
theoretical problem. The vertices correspond to the classes, and two classes are
connected if there is a student who wishes to take them both or they are both taught
by the same professor. The problem is 1o schedule the classes such that the

186 Graph Algerithms

conflicts are minimized. This is a difficult problem and good solutions to it are

hard to find.

4. Consider a computer system with several user accounts. Each user has a security
permission to access his or her account, Users may want to cooperaie and io give
one another permission to use their account. However, if A has permission to use
B’s account, and B has permission to use C's account, then A may be able to use
C’s account as well, The problem of identifying which users can access which
accounts is a graph-theoretical problem. The users correspond 1o the vertices in
this case, and there is a directed edge from user A to user B if A gives B
permnission to use his or her account.

There are quite a few textbooks on graph theory (see the Bibliography section), and

numerous other applications.

Representations of graphs were discussed in Section 4.6. For the most part, we
will use the adjacency list representation, which is more efficient for sparse graphs {(i.e.,
graphs with relatively few edges). We begin by introducing standard terminology. A
graph G =(V, F) consists of a set V of vertices {also called nodes), and a set E of edges.
Each edge corresponds to a pair of distinct vertices. (Sometimes self-loops, which are
edges from a vertex to itself, are allowed; we will assume that they are not allowed.) A
graph can be directed or undirected. The edges in a directed graph are ordered pairs;
the order between the two vertices the edge connects is important. In this case, we draw
an edge as an arrow peinting from one veriex {the tail) to another (the head}. The edges
in an wundirected graph are unordered pairs; we draw them simply as line segments. A
multigraph is a graph with possibly several edges between the same pair of vertices (i.e.,
E is a maultiset). Graphs that are not multigraphs are sometimes catled simple graphs.
Unless specified otherwise, we will assume that the graphs we deal with are simple. The
degree d(v) of a vertex v is the number of edges incident to v. In a directed graph, we
also distinguish between the indegree, which is the number of edges for which v is the
head, and the outdegree, which is the number of edges for which v is the tail.

A path from v, to v, is a sequence of vertices vy, v,, ..., v that are connected by
the edges {v, vy}, {va, v3), ... (vee). vi) (these edges are also usually considered to be
part of the path). A path is called simple if each veriex appears in it at most once.
Vertex u is said to be reachable from vertex v if there is a path (directed or undirected,
depending on the graph) from v to w. A circuit is a path whose first and last vertices are
the same. A circuit is called simple if, except for the first and last vertices, no vertex
appears more than once. A simple circuit is also called a cycle. (Circuits are sometimes
called cycles even if they are not simple; we will assume that cycles are always simple.)
The undirected form of a directed graph G=(V, E) is the the same graph without
directions on the edges. A graph is called connected if (in its undirected form) there is a
path from any vertex 1o any other vertex. A forest is a graph that (in its undirected form)
does not contain a cycle. A free is a connected forest. A rooted free (also known as an
arborescence) is a directed tree with one distinguished vertex called the root, such that
all the edges are pointing away from the root,

A subgraph of a graph G=(V, E) is a graph H = (¥, F} such that ¥V and
FCE. A spanning tree of an undirected graph G is a subgraph of G that is a tree and

7.2 Eulerian Graphs 187

that containg all the vertices of G. A spanning forest of an undirected graph G is a
subgraph of (7 that is a forest and that contains all the vertices of G. A vertex-induced
subgraph of a graph & =(V, £) is a subgraph H =(U/, F} such that U <V and F consists
of all the edges in E both of whose vertices belong to U. A vertex-induced subgraph is
asually simply called an induced subgraph. I a graph G =(V, E) is not connected, then
it can be partitioned in a unique way into a set of connected subgraphs called the
cennected components of G. A connected component of (7 is a connected subgraph of
G such that no other connected subgraph of G contains it. In other words, a connected
compenent is a maximal connected subgraph. A bipartite graph is a graph whose
vertices can be divided into two sets such that all edges connect vertices from one set to
vertices in the other sef. A weighted grapb is a graph with weights (or costs, or lengths)
assoctated with the edges.

Many definitions for directed and undirected graphs are similar, except for some
obvious differences. For example, directed paths and undirecied paths are defined in
exactly the same way, but, of course, the directions of the edges in directed paths are
specified. When we discuss one type of graph we will not specifically use a different
nofation. 8o, for example, when we talk about paths in the context of directed graphs we
will mean directed paths.

We start with a simple example that is considered to be the first problem in graph
theory — walking the bridges of Konigsberg, We then discuss how to traverse a graph,
how to order a graph, how o find shortest paths in a graph, how to partition the graph
into blocks satisfying certain properties, and other problems. Chapter 10 includes a
discusston on the relationships of graph algerithms and matrix algorithms. Several more
graph algorithms are presented there,

7.2 Eulerian Graphs

The notion of Eulerian graphs is involved in what is considered to be the first solved
problem of graph theory. The Swiss mathematician Leonhard Euler encountered the
following puzzle in 1736. The town of Konigsberg (now Kaliningrad) tay on the banks
and on two islands of the Pregel river, as is shown in Fig. 7.1, The city was connected by
seven bridges. The question {which many townspeople attempted to solve} was whether
it was possible to start walking from anywhere in town and return to the starting point by
crossing all bridges exactly once. The solution is obtained by abstracting the problem.
The graph in Fig. 7.2 is equivalent, for the purpose of the problem, to the layout of Fig.
7.1. The question becomes the graph-theoretical problem of whether it is possible to find
4 circuit in the graph that contains each edge exacily once. Another way to pose the
question is to ask whether it is possible 1o draw the graph in Fig. 7.2 — and end at the
same place from which we started — without lifting the pencil. Euler.solved this
problem by proving that such a traversal is possible if and only if the graph is connected
and all ks vertices have even degrees. Such graphs are called Eulerian graphs. Since
the graph in Fig. 7.2 contains vertices of odd degrees, it follows that the Konigsberg
bridges problem is impossible to solve. A proof of this theorem by induction, which
corresponds to an efficient algorithm for constructing the closed path, is given next.

188 Graph Algorithms

Figure 7.1 The Kenigsberg bridges problem.

A

B

Figure 7.2 The graph corresponding to the Konigsberg bridges problem.

The Problem Given an undirected connected graph G =(V, E) such
that all the vertices have even degrees, find a closed path F such that
each edge of F appears in P exactly once.

It is easy to prove that all vertices must have even degree for such a closed path to exist:
When traversing a closed path, we enter and leave each vertex the same number of times.
Since each edge is used exactly once, the number of edges adjacent 1o each vertex must
be even. TFo prove by induction that the condition is sufficient, we first have to decide

7.3 Graph Traversals 189

which parameter 10 apply the induction. The first consideration is to be able to reduce the
problem without changing it. If we remove a vertex or an edge, the resulting graph may
not satisfy the even-degree property. We should remove a set of edges S such that, for
each vertex v in the graph, the number of edges from § adjacent 1o v is even {possibly 0).
Any circuit satisfies this requirement, so the question is whether an Eulerian graph
always contains a circuit, Suppose that we start traversing the graph, without going
through any edge more than once, from an arbitrary vertex v in an arbitrary order. We
claim that the traversal will eventually return to v because, whenever we enter another
vertex, we reduce the degree of that vertex by 1, making it odd, and therefore we can
always leave 1. (Note that this circuit may not include all the edges.)
We are now ready to state the induction hypothesis and prove the theorem,

Induction hypothesis: A connected graph with < m edges, all of whose
vertices have even degrees, contains a closed path that includes each edge
exactly once, and we know how to find that path.

{1t is easier to state the induction hypothesis in terms of the number of edges rather than
the number of closed paths, even though the induction is performed on paths.) Consider
a graph G =(V, F} with m edges. Let P be a closed path in G. Let & be the graph
resulting from removals of all the edges of P from . The degrees of all vertices in G
must be even, since the number of removed edges adjacent to any vertex is even. But we
cannot simply apply the induction hypothesis vet, since ' may not be connected. Let
G, Gy, G be the connected components of G'. In each component, the degrees of
abl vertices are even. Furthermore, the number of edges in each component (indeed, in
all of them together) is <m. Hence, we can now apply the induction hypothesis 1o each
component. That is, by the induction hypothesis, each component has a closed path that
includes ¢very edge exactly once, and we know how te find it. Denote these & closed
paths by P, P,,...P.. We now need to merge all these paths to one closed path covering
the whole graph G. We start with any vertex in P and traverse P until we meet the first
vertex v; belonging to one of the components G';. At this point, we traverse the path P,
returning to v;. We can continue this way, traversing the paths of the components the
first time we meet them, uatil we return (o the starting vertex. At this poing, all edges will
have been traversed exactly once. This closed path is called an Eulerian circuit. The
aigorithm is not yet complete. We still need 1o find an efficient method to identify the
connected components, and an efficient method to traverse the graph. Both of those
issues are discussed next. The implementation of the Eulerian circuit algorithm is left as
an exercise.

7.3 Graph Traversals

The first problem we encounter when trying to design a graph algorithm is how to look at
the input. This was a trivial problem i the previous chapter because of the one-
dimensionality of the input — sequences and sets can be easily scanned in lirear order,
Scanning a graph, or traversing it, as we <all it, is not straightforward. We present two
traversal algorithms — depth-first search (DFS), and breadth-first search (BF3). Most

190 Graph Algorithms

of the algorithms in this chapter depend, in one way or another, on one of these
techniques.

7.3.1 Depth-First Search

The depth-first search algorithms for directed graphs and undirected graphs are almost
identical. However, since we also want to explore several graph properties that are
different in directed graphs and in undirected graphs, we divide the discussion into two

parts.

Undirected Graphs

Suppose that the undirected graph G =(V, E) corresponds to an art gallery consisting of
an arrangement of corridors where the paintings are hung. The edges of G correspond to
the corridors, and the vertices correspond to the intersections of the corridors. We want
to walk through the gallery and see all the paintings. We assume that we can see both
sides of a corridor when we walk through it in any direction. If the graph is Eulerian,
then it is possible to walk throughout the gallery visiting each corridor exactly once. We
do not assume here that the graph is Eulerian, and we allow ezch edge 10 be traversed
more than once (as it turns out, each edge will be traversed exactly twice). The idea
behind depth-first search is the following, We walk through the gallery trying to eater
new comidors whenever we can. The first time we visit an intersection, we leave a
pebble there, and we continue from another corridor (unless it is a deadend). When we
arrive at an intersection that already has a pebble, we return through the same corridor
from which we came, and try another corridor. If all the corridors leading from the
intersection have already been visited, then we remove the pebble from this intersection,
and return through the corridor from which we first entered. We will not visit this
intersection again. {(Removing the pebbles is done only to clean the gallery; it is not an
essential part of the algorithm.) We always try to explore new corridors; we return from
the corridor from which we first entered an intersection, only if we tried afl other
corridors. We call this approach depth-first search (DFS) to indicate that we first try to
visit new edges (going deeper into the gallery). The main reasons for the usefulness of
DFS is the way it divides the graph and its adaptability to recursive algorithms.

The description we gave of DFS was in terms of walking and putting down
pebbles. Let’s see now how DFS is implemented for undirected graphs given in the
adjacency list representation. The traversal is started from an arbitrary vertex r, which is
called the root of the D¥S. The root is marked as visited. An arbitrary (unmarked)
vertex ry, connected 1o r, is then picked and a DFS starting from r| is performed
{recursively). The recursion stops when it reaches a vertex v such that all the vertices
connected to v are already marked. I, after the DFS for r, terminates, all the vertices
adjacent to r are marked, then the DFS for r terminates. Otherwise, another arbitrary
unmarked vertex r, connected to 7 is picked, a DFS siarting from r is performed, and so
on.

There is generally a purpose for traversing the graph. To incorporate different
applications with the DFS framework, we associate two types of work, preWORK and
postWORK, with visiting a veriex or an edge; preWORK is performed at the time the

7.3 Graph Fraversals 191

vertex s marked, and postWORK is performed afier we backtrack from an edge or find
that the edge leads to a marked vertex. Both preWORK and postWORK depend on the
application of DFS. This notation aliows us to present several applications by defining
only preWORK and postWORK. The DFS program is given in Fig. 7.3. The starting
vertex of the recursive call is v. For simplicity, we first assume that the graph is
coanected. An example is given in Fig. 7.4, where the numbers associated with the
vertices indicate the order in which the vertices ¢ould be traversed by DFS.

Algorithm Depth_First_Search (G, v);
Input: G=(V, E) (an undirected connected graph), and v {a vertex of ().
Gutput: depends on the application.

begin
mark v ;
perfornt preWORK on v | | preWORK depends on the application of DFS }
Jor all edges (v, w) do
if wis unmarked then Depth First Search(G, w) ;
perform postWORK for {v, w)
{ postWORK depends on the application of DFS; it is sometimes
performed only on edges leading to newly marked vertices. }
end

Figure 7.4 Algorithm Depth First Search.

1 Lemma 7.1

If G is connected, then all its vertices will be marked by algorithm
Depth_First Search, and all its edges will be looked at at least once during
the execution of the algorithm.

!
2 10
7
3 4
6 9 &8
51

Figure 7.4 A DFS for an undirected graph.

192 Graph Algorithms

Proof: Suppose the contrary, and let U denote the set of unmarked vertices
remaining at the end of the algorithm. Since G is connected, at least one vertex from U/
must be connected to at least one marked vertex. But this situation cannot happen, since
whenever a vertex is visited, alt the unmarked vertices adjacent to it are visited (hence
marked) too. Since all vertices are visited, and since whenever a vertex is visited all its
edges are considered, afl edges are considered. |

If a graph G =(V, E} is not connected, we have to modify DFS slightly. If all
vertices are marked after the first try, then the graph is connected and we are done.
Otherwise, we start with an arbitrary unmarked vertex, perform another DFS, and so on.
Thus, we can use DFS to determine whether or not a graph is connected and to find its
connected components. The corresponding algorithm is given in Fig 7.5. We will
generally consider only connected graphs, because otherwise we can usually deal with
each connecled component separately. Thus, we will use DFS as it is described in Fig.
7.3, without specifically mentioning that it may have o be run several times as in Fig,

1.3,

Algorithm Connected Components { G) ;

Input: G =(V, £} (an undirected graph).

Gutput: v.Component is set to the number of the component contatning v,
for every vertex v,

begin
Component Number ;=1 ;
while there is an unmarked vertex v do
Depth_First Search{G, v} ;
(using the following preWORK:
v.Component := Component_Number ; }
Compuonent_Number := Component Number + |
end

Figure 7.8 Algorithm Connected Components.

Complexity It is easy to see that each edge is Jooked at exactly twice (once from
each end). Therefore, the running time is proportional to the number of edges. However,
since the graph may contain many vertices that are not connected io anything (and all of
them must be examined), we must inciude O(JV|) in the expression for the running
time. Therefore, the overall running time is G¢|V | + |E |).

Constructing the DFS Tree

Next, we present two simple uses of DFS — numbering the vertices with DFS numbers,
and building & special spanning tree, called the DES tree. The DFS numbers and the
DFS tree exhibit special properties that are useful for many algorithms, Even if the tree

7.3 Graph Traversals 193

is not built explicitly, it is easier to understand many algorithms by considering it. To
describe these algorithms, we need only 1o describe either preWORK or pastWORK. The
algorithm for numbering the vertices with DFS numbers is given in Fig. 7.6, and the
algonthm for building the DFS tree is given in Fig. 7.7. These two algorithms need not
be performed separasely.

Algorithm DFS_Numbering (G, v) ;
Input: & =(V, E) (an undirected graph), and v {a vertex of G).
Output: for every vertex v, v.DFS is set to the DFS number of v,

Initially DFS Number = | ;
Lise DFS with the following preWORK:
preWORK:

v.OFS = DFS Number ;

DFS Number = DFS Number + 1 ;

Figure 7.6 Algorithm DFS Numbering.

Algorithm Build DFS _Tree (G, v) ;
Input: G =(V, £} (an undirected graph), and v (a vertex of (7).
Qutput: T (a DFS tree of G; T is initially empty).

Use DFS with the following postWORK
postWORK :
if w was unmarked then add the edge (v, wito T ;
{ the statement above can be included in the if statement (line 4} of
algorithm Depth First Search }

Figure 7.7 Algorithm Build DFS Tree.

A vertex v is called an ancestor of a vertex w in a tree T with root r, if v is on the
unique path from wto rin 7. If v is an ancestor of w, then w is called a descendant of v,

0 Lemma 7.2 (The main property of undirected DFS trees)

Let G =(V, E) be a connected undirected graph, and let T=(V, F) be a DFS§
tree of G constructed by algorithm Build DFS Tree. Fvery edge ¢€E
either belongs to T (i.e.. e F}, or connects two vertices of G, one of which
is the ancestor of the other inT.

Proof: Let (v, #} be an edge of &, and suppose that v is visited by DFS before u.
After v is marked, we perform DFS starting from all neighbors of v that have not been
marked yei. Since u is a neighbor of v, the DFS wili either start from u, in which case
(v, u) will belong to T, or the DFS will visit « before it backtracks from v, in which case
i 1s a descendant of v in 1. |

194 Graph Algorithms

In other words, DFS avoids cross edges, which are edges connecting vertices
sideways across the tree. Avoiding cross edges is important for recursive procedures
performed on the graph, as we will see later.

Since DFS is a very important program, we also include its nonrecursive version,
The main tool for implementing a recursive program is a stack, which keeps information
needed to “‘unfold™ the recursive calls. A compiler maintains all the local data
assoctated with every instance of the recursive procedure on the stack. Hence, when one
recursive instance ends, we can get back to the exact point (with the exact information) in
the calling procedure (which may be another instance of the same recursive procedure).
Frequently, not all Jocal data need to be maintained on the stack, which is one reason
why using nonrecursive procedures is more efficient. The nonrecursive version we give
next is & good example of a translation from a recursive to a nonrecursive program,

One major difficulty we face in translating a recursive version into a nonrecursive
version is that we need explicit bookkeeping. We called DFS recursively inside a for
loop, and expected the progeam to remember the right place in the loop from which to
continue afier the end of the recursive call. In a nonrecursive version, we must maintain
this information explicitly. We assume that each vertex v has a linked list of its incident
edges in a certain order (DFS will follow this order). The list is pointed to by v.First.
Each item in the lst is a record containing iwo variables: Vertex and Next. Vertex is the
name of the vertex on the other side of the edge, and Next points to the next item. Next of
the last edge on the list points to nil. DFS proceeds as before, traversing down the tree
until no new vertices are found. A stack is maintained throughout the search. The stack
contains all the vertices on the path from the root to the current vertex {in the order of the
path). Between every two vertices Parent and Child, the stack contains a pointer to the
edge from Parent that is the next one DFS wraverses when it backtracks from Child. The
nonrecursive version of DFS is given in Fig. 7.8.

Directed Graphs

The procedure for DFS for directed graphs is identical 10 that for undirected graphs.
However, directed DFS trees have different properties. It is no longer true that there are
no cross edges, as can be seen in Fig. 7.9. There are now four types of edges — tree
edges, back edges, forward edges, and cross edges. The first three types of edges
connect two vertices one of which is a descendant of the other in the tree: Tree edges
connect parents to children in the tree, back edges connect descendants to ancestors, and
forward edges connect ancestors to descendants. Only cross edges connect vertices not
“refated” in the tree. Cross edges, however, must cross from “‘right to left,” as is
shown in the next lemma.

3 Lemma 7.3 (The main property of directed DFS trees)

Let G =(V, EY be a directed graph, and let T=(V, F} be a DFS iree of G. If
(v, w} is an edge in E suck that v.DFS_Number < w.DFS_Number, then w
is a descendant of v in the tree T,

1.3 Graph Traversals 195

Algorithm Nonrecursive_Depth_First_Search (G, v) ;
Input: G ={V, E) (an undirected connected graph), and v (a vertex of G).
Output: depends on the application.

{ We use the Pascal pointer symbel " explicitly here;

we will not do that in the rest of this chapter. }

begin
while there is an unmarked vertex v do
mark v ;
perform preWORK on v ;
Edge = v.First ;
push v and Edge to the top of the stack ;
Parent ;= v
{ initialization up to here; now comes the main loop of the recursion }
while the stack is not empry do
remove Edge from the top of the stack ;
while Edge = nil do
Child := Edge " Vertex ;
if Child is unmarked then
mark Child ;
perform preWORK on Child ;
push Edge” Next to the top of the stack ;
{ 50 that we can return to the next edge when we are done
with Child }
Edge ;= Child First ;
Parent := Child ;
push Parent to the top of the stack ;
else { Edge is a back edge }
perform postWORK for (Parent, Child) ;
{ this step is skipped if we perform postWORK only on
tree edges }
Edge := Edge " Next ;
remove Child from the top of the stack ;
if the stack is not empty then
{ the stack becomes empty when Child is the root }
let Edge and Parent be at the top of the stack ;
{ do not remove them }

perform postWORK for (Parent, Child)
end

Figure 7.8 Algorithm Nonrecursive_Depth_First Search,

196 Graph Algorithms

Figure 7.9 A DFS tree for a directed graph.

Proof: Since the DFS number of w is greater than that of v, w was visited after v.
Since (v, w} is an edge in £, (v, w) must be considered during the DFS of v. If at that
fime w was unmarked, (v, w) would be added to the tree; henge, (v, wle F, and the
condition is satisfied. Otherwise, w was marked after v during the recursive call of DFS
from v. Hence, w must be a descendant of v in the tree T.]

DFES for connected undirected graphs, starting from any vertex, traverses the whole
graph. This is not so for directed graphs. Consider the directed graph in Fig. 7.10. If
DFS starts at a, for example, then only the left column will be traversed. DFS will
traversed the whole graph of Fig. 7.10 only if it starts at v, If v and its two incident edges
are deleted from the graph, then there is no vertex from which a DFS traverses the whole
graph. We must start again from an unmarked vertex, and continue doing so until all
vertices are marked. Therefore, whenever we tatk about DFES for directed graphs, we
assume that it is run until all the vertices are marked and all the edges are considered.

a y
*- 9 .
? & 9
¢ —be o

Figure 7.10 An example of a directed DFS that does not traverse the whole graph.

7.3 Graph Traversals 197

As an example, we show how 10 use DFS to determine whether or not a graph is
acyclic.

The Problem Given a directed graph G =(V, E), determine wheth-
er it confains a {directed) cycle.

1 Lemma 7.4

Let G=(V, E) be a directed graph, and let T be a DFS tree of G. Then, G
contains a directed cycle if and only if G contains a back edge (relative to
T}.

Preof: If there is a back edge, then if leads to a vertex higher up in the tree, so it
completes a cycle, Conversely, let C be a cycle in 7 and let v be the vertex in C with the
lowest DES number. We claim that the edge (w, v) leading to v in C is a back edge. It
cannot be a forward or a tree edge, since it leads from a higher DFS-numbered vertex to
a lower DFS-numbered vertex. Suppose that v is not an ancestor of w in the tree, and let
be the lowest commen ancestor of v and w. Since v has a lower DFS number than that
of w, it is in a subtree of u that was visited before the subtree of u that contains w. This
implies that the only way 1o reach w from v is through u or an ancestor of i (since it is
impossible to go *‘from left to right’”), But, C contains a path from v to w, and C cannot
contain an ancestor of v since v has the lowest DES number in C,]

The algorithm for determining whether a directed graph is acyclic is given in Fig, 7.11.

Algorithm Find a_Cycle (G} !
Input: & =(V, E)(a directed graph),
Output: Find a_Cycle (true if G contains z cycle and false otherwise).

Use DFS, starting from an arbitrary vertex, with the following preWORK
and postWORK

preWORK:

v.onr_the path '= trie ;
{ x.on_the_path is true if x (s on the path from the root to the current vertex }
{ initially x.on_the_path = false for all vertices, and Find_a_Cycle is false }

postWORK :
if won_the path ther Find_a_Cycle := rrue ; halt ;
if w is the last vertex on v's list then v.on_the_path = faise ;

Figure 7.11 Algorithes Find_a_Cycle.

198 Graph Algorithms

7.3.2 Breadth-First Search

Breadth-first search (BFS) traverses the graph in what seems like a more organized order
- it does so level by level. If we start from a vertex v, then all v's children are visited
first. The second level includes a visit to all the *'grandchildren,”” and so on (see Fig.
7.12), The traversal is implemented similasly to the nonrecursive implementation of
DFS, except that the stack is replaced by a queue. We can associate BFS numbers with
vertices similarly to DFS numbers. That is, a vertex w has BFS number & if it was the kth
vertex to be marked by BFS. We can build a BFS tree by including only edges that lead
to newly visited vertices. The BFS algorithm is given in Fig. 7.13. (The notion of
postWORK is not as weli defined for BFS as it is for DFS, since intuitively the search
does not proceed ‘*down and up,’” but only down; we therefore omit it.}

3 Lemma 7.5

If an edge {u,w) belongs to a BFS tree, such that u is a parent of w, then u
has the minimal BFS number among vertices with edges leading to w.

Proof: The claim follows from the first-in-first-out property of the gueve.]

3 Lemma 7.6

For each vertex w, the path from the root to w in T is a shortest path from
the rootto win G.

Proef: Left to the reader. £l

The tevel of a vertex w is the length of the path in the tree from the root to w. BFS
traverses the graph level by level.

Figure 7.12 A BFS tree for a directed graph.

7.4 Topological Sorting 199

Algorithm Breadth_First_Search (G, v) ;
Input: G =(V, £) (an undirected connecied graph), and v (a vertex of 7).
Output: depends on the application.

begin
mark v ;
pht v in a quene { First In First Out };
while the queue is not empry do
remove the first vertex w from the queue ;
perform preWORK on w ;
{ preWORK depends on the application of BFS }
Jor all edges (w, x) such that x is unmarked do
mark x ;
add (w, x) to the tree T ;
put X in the gueue
end

Figure 7.13 Algorithm Breadth First Search.

0 Lemma 7.7

If tvw) is an edge in E that does not belong to T, then it connects two
vertices whose level numbers differ by at most 1,

Proof: Left to the reader. [

Now that we know how to traverse a graph, we present several algorithms involving
graphs. We again use the design-by-induction technique very heavily.

7.4 Topological Sorting

Suppose that there is a set of tasks that need to be performed one af a time. Some tasks
depend on other tasks and they cannot be started until the other tasks are completed. All
the dependencies are known, and we want to arrange a schedule for performing the tasks
which is consistent with the dependencies (i.e., every task is scheduled to be performed
only after all the tasks on which it is dependent are completed). We want to design a fast
algorithm to generate such a schedule. This problem is called topological serting. We
can associate a directed graph with the tasks and their dependencies in the following
way. Each task is associated with a vertex and there is a directed edge from task x 10 1ask
¥ if y cannot siart until x is finished. Obviously, the graph must be acyclic; otherwise,
some tasks can never be started.

200 Graph Algorithms

The Problem Given a directed acyclic graph G =(V, £} with n ver-
tices, label the vertices from | to # such that, if v is labeled £, then all
vertices that can be reached from v by a directed path are labeled with
fabels >£.

The straightforward induction hypothesis is the following.

Induction hypethesis: We know how to label all directed acyclic graphs
with < n vertices according to the conditions above.

The base case of one vertex is trivial. As usual, we consider a graph with » vertices,
remove one vertex, apply the induction hypothesis, and try fo extend the labeling. We
are free to choose any vertex as the nth vertex. Therefore, we should choose a vertex thas
will simplify our work. We need 10 label vertices. Which vertex is the easiest 1o label?
It is cleasly a vertex (task) with no dependencies — namely, a vertex whose indegree is
zera. This vertex can be labeled | without any problems. Can we always find a vertex of
indegree zero? The answer is intuitively yes, since we must be able to start somewhere.
The following lemma establishes this fact.

00 Lemma 7.8
A directed acyclic graph always contains a vertex with indegree 0.

Proof: If all the vertices had positive indegrees, then we could traverse the graph
“backward’’ and never have to stop. Since there are finitely many vertices, however, we
must go through a cycle, which is impossible in an acyclic graph. (By the same
argument, there is a veriex with outdegree 0.) 0

We will see shortly how to find & vertex with indegree 0. Once we find it, we 1abel
it 1, remove it with its adjacent edges, and label the rest of the graph — which is still
acyclic, of course — with labels 2 to n. (To be completely precise, the induction
hypothesis assumed labels of 1 to n— 1 instead of 2 1o n, but this causes no problems.)
Notice that once we decided to select a vertex of indegree O for the reduction, the
algorithm followed with little effors.

Implementation The only implementation problems are how to find a vertex with
indegree 0 and how to adjust the indegrees when a vertex is removed. We associate a
variable fndegree with each vertex, such that initially v.Indegree is equal to v's indegree.
The Indegree variables can be initialized by traversing all the edges in any order {using
DFS, for example), and incrementing w.Indegree whenever an edge (v, w) is traversed.
The vertices with indegree 0 are put in a queue (a stack will do just as well). By Lemma
1.8, there is at least one vertex v with indegree 0. It is easy to find v — it is simply
removed from the queue. Then, for each edge (v, w) coming out of v, the counter of w is
decreased by 1. When a counter becomes €, the vertex is put on the queue. A removal of
v leaves the graph still acyctic. Therefore, by Lemma 7.8, there must be at least one

7.5 Single-Source Shortest Paths 201

vertex of indegree O in the remaining graph. The algorithm terminates when the queue
becomes empty, in which case all the vertices have been labeled. The algorithm is given
in Fig. 7.14.

Complexity Initializing the /ndegree variables requires O{|V |+ |E|) time.
Finding a vertex with indegree 0 takes constant time (accessing a queue). Each edge
{v, w} is considered once (when v is taken from the queue). Thus, the aumber of times
the variables need to be updated is exactly equal to the number of edges in the graph.
The running time of the algorithm is therefore O ({V | + | E |), which s linear in the size
of the input.

7.5 Single-Source Shortest Paths

In this section, we deal with weighted graphs. Let G =(V, £} be a directed graph with
nonnegative weights associated with the edges. We will call the weights lengths in this
section, because traditionally the problem is called the shortest path problem (rather than
the lightest path problem). (Length of a path also sometimes denotes the number of
edges in the path; we will be careful to avoid confusion.) If the graph is undirected, we
can think of it as a directed graph such that each undirected edge corvesponds to two
directed edges {in opposite directions) with the same length. Thus, the discussion in this
section applies to undirected graphs as well. The length of a path is the sum of the
lengths of its edges.

Algorithm Topological_Sorting (G} .
Input: G =(V, E} (a directed acyclic graph).
Qutput: The Labe! field indicates a topological sorting of G,

begin
initialize v Indegree for all vertices ; { e.g.. by DFS }
G label := 0 ;

Jori:=ltonde
if v, Indegree = O then put v; in Queue ;
repeat
remove vertex v from Queue ;
G label := G label + I ;
viabel ;= G_label ;
Jor all edges (v, w) do
w.indegree ‘= w.ilndegree - | ;
if windegree = 0 then pur w in Quene ;
until Queue is emplty
end

Figure 7.14 Algorithm Topaological Sorting.

202 Graph Algeorithms

The Problem Given a directed graph G =(V, E) and a vertex v, find
shortest paths from v to all other vertices of G.

For simplicity, we discuss only how to find the length of the shortest paths. The
algorithms can be extended 1o find the actual paths. There are many examples of shortest
path problems. For example, the graph may correspond to a road map, and the length of
a segment may correspond to its actual length, to the expected time it takes to travel
through it, or to the cost of constructing it, depending on the problem.

The Acyclic Case

Let's first assume that the graph G is acyclic. The problem is easier in this case, and its
solution will help us to find a solution to the general case. We try induction on the
number of vertices. The base case is trivial. Let |V {=n We can use topological
sorting as discussed in the previous section. If the label of v is &, then all vertices with
labels <k need not be considered. There is no way to reach these vertices from v.
Furthermore, the order imposed by the topelogical sorting 18 a good order for the
induction. Consider the last vertex, namely, the vertex z with label n. Suppose
{inductively) that we already know the shortest paths from v to all vertices except for z.
Denote the length of the shortest path from v to w by w.8P. To find z.5P, we need only to
check those vertices w with edges leading to z. Since the shortest paths 1o all other
vertices are already known, 2.8P is equal to the minimum, over all w with an edge to z, of
w.SP +length{w, 7). Are we done? We have fo be careful that adding z does not shorten
the distance to other vertices. But, since z is the last vertex in the topological order, no
other vertex in the graph can be reached from z, so no other path is affected. Therefore,
by removing z, computing the shortest paths without it, then putting it back, we have
solved the problem. The corresponding induction hypothesis is the following,

Induction hypothesis: Given a topological ordering, we know how to find
the lengths of the shortest paths from v to the first n — 1 vertices.

Given an acyclic graph with # vertices in a topological order, we remove the nth vertex,
solve the reduced problem by induction, then take the minimum of the values
w.SP +length (w, 2) over all w such that (w, z)& E. The algorithm is given in Fig. 7.15.
We now improve the algorithm such that the topological order can be found hand in hand
with the shortest paths. In other words, we want to combine the two passes, one for the
topological sorting and one for the shortest paths, into one pass.

Consider the way the algorithm will be executed recursively (after the topological
order is found). Assume, for simplicity, that the label of v in the topological order is 1.
The first step is the call to the recursive procedure. It will call itself repeatedly until v is
reached. At that time, the length of the shortest path to v is set to 0, and the recursion
starts 1o unfold. The vertex & with label 2 will be considered next, and the length of its
shortest path will be set to the length of the edge from v to « if it exists; otherwise, there
is no path from v to u. The next step will be 10 check the vertex v with tabel 3. In this

7.5 Single-Source Shortest Paths 203

Algorithm Acyclic_Shortest_Paths (G, v, n) ;
Input: G =(V, £} (a weighted acyclic graph), v (a vertex),
and n {the number of vertices).
Qutput: For every vertex w € V, w.SP is the length of the shortest path
from v to w.
{ We assume that a topological sort has already been performed. An improved
algorithm, which computes the topological order as well, is given in Fig. 7.16.)

begin
let z be the vertex labeled n { in the topological order };
ifz #£vthen
Acyclic_Shortest Paths (G ~z,v,n~1);
{ G —z resuits from removing z with its incident edges from G }
Jor all wsuch that (w, 2} & E do
if w.SP + lengthiw, z) < z.5P then
2.8P = wSP + length(w,) ;
else v.SP =0
end

Figure 7.153 Algorithm Acyclic_Shortest Faths.

case, there may be edges to x from v and/or from «, and the corresponding paths will be
compared. Instead of applying recursion in some sense ‘‘backward,”” we now try to
execute the same steps in increasing order of labels,

The inducsion is applied in increasing order of labels starting from v. This order
will eliminate the need to know the labels in advance, and we will be abie 1o run both
algorithms at the same time. We assume that the lengths of the shortest paths to vertices
labeled 1 to m are known, and we consider the vertex labeled m + I, call it z. To find the
shortest path to z, we need to check all edges coming into z, The topological order
guarantees that all such edges come from vertices with smaller labels. By the induction
hypothesis, these vertices have already been considered; hence, the lengths of the shortest
paths to them are already known. For each such edge {(w, z), we know the length of the
shortest path to w, w.SP, hence the shortest path through this edge to z is wSP +
length (w, z). Therefore, the length of the shortest path to z is the minimum, over all w,
of w.SP + length (w, z). Furthermore, as before, we need not worry about adjusting
shortest paths to vertices with tower labels, since there is no way to reach any of them
from z. The improved algorithm is given in Fig. 7.16.

Complexity Each edge is checked once in the initialization of the indegrees and
once when its tail is removed from the queue. The queue is accessed in constant time.
Each vertex is considered only once. Therefore, the worst-case running time is
OV I+|E.

204 Graph Algorithms

Algorithm Improved_Acyclic_Shortest_Paths (G, v) ;

Input: G=(V, E) (a weighted acyclic graph), v (a vertex of G).

Quiput: For every vertex w, w.SP is the length of the shortest path from v to w.
{ This is a nonrecursive version aof the previous algorithm, and it includes
topological sorting }

begin
Jor all vertices w do
w.SP i=oeo
Initialize v.indegree for ali vertices ; { e.g., by DFS }
fori:=[tondo
if v;.indegree = 0 then put v; in Queue ;
v.SP =0,
repeat
remove vertex w from Queue ;
Jor all edges (w, z) do
if w.SP + lengthiw, 7) < z.8P then
2.8P = wSP + lengthfw, z} ;
zindegree := z.indegree — | ;
if rindegree = () then put z in Queue ;
until Queue is empty
end

Figure 7.16 Algorithm Improved_Acyclic_Shortest_Paths.

The General Case

When the graph is not acyclic, there is no such thing as a topological order, and the
algorithms we just discussed cannet be applied directly. It may be possible, however, to
use the ideas of these algorithms for the general case. The simplicity of the algorithms
we presented is a result of the following feature of topological order:

If z is a vertex with label k. then {1} there are no paths from : to vertices
with labels < k, and (2} there are no paths from vertices with labels > % to
z.

This feature enables us to find the shortest path from v to z without having to consider the
vertices that are after z in the topological order. Can we somehow define an order on the
vertices of a general graph that will aliow us 1o do something similar?

The idea is to consider the vertices of the graph in the order imposed by the leagths
of their shortest paths from v. We do not know these lengths initially, of course; we will
find them during the execution of the algorithm. First, we check all the edges coming out
of v. Let (v, x) be the edge of minimum length among them. Since all lengths are
positive, the shortest path from v to x is the edge (v, x). All other paths from v are at feast

1.5 Single-Source Shortest Paths 205

as long. So, we know the shortest path to x, and this can serve as the base case for the
induction. Let’s try one more step. How can we find the shortest path to one more
vertex? We choose the vertex that is second closest 10 v {x is the first closest). The only
paths we need to consider are other edges from v or paths consisting of two edges — the
first edge is (v, x) and the second is an edge from x. We choose the minimum of
length (v, ¥} {y #x) or length(v, x} + length(x, z} {z#v}. Again, we do not need to
consider any other paths, since this is the shoriest way to get out of v (except to x). Here
is the general induction hypothesis.

Induction hypothesis: Given a graph and a vertex v, we know the k
vertices that are closest to v and the lengths of the shortest paths to them.

Natice that the induction is on the number of vertices whose shortest paths have already
been computed and not on the size of the graph. Furthermore, it assumes that these are
the closest vertices to v and that we can identify them. We know how to find the closest
vertex {x above), so the base case, with k=1, is solved. When k={V | -1, the complete
problem is solved.

Denote the set containing v and the & closest vertices 1o v by V). The problem is to
find a vertex w that is ciosest to v among the vertices not in V., and to find the shortest
path from v to w. The shortest path from v to w can go through only the vertices in V. 1t
cannot include vertices not in ¥, since they would then be closer to v than w. Therefore,
to find w, it is sufficient to consider only edges connecting vertices from V; to vertices
not in V; all other edges can be ignored for now. Let (4, z) be an edge such that i is in
V; and z is not. Such an edge corresponds to a path from v to z, which consists of the
shortest path from v to u (already known by induction) and the edge (u, 7). We need only
to compare all such paths, and take the shortest among them.

‘The algorithm implied by the induction hypothesis is the following. At each
Heration, a new vertex is added. I is the vertex w such that the length

min (u.SP + length (4, w)) (7.1)
we 'V,
i5 the minimal over all w not in V. By the arpuments above, w is indeed the (¢ + [)th
closest vertex to v; thus, adding it extends the induction hypothesis.

The algorithm is complete now, bat its efficiency can be improved. The main step
of the algorithm involves finding the next closest vertex. This is done by computing the
minimal path length according to (7.1). However, it is not necessary to check all the
values w.SP + length{u, w) in gvery step. Most of these values are not changed when a
new vertex is added; only those that correspond to paths that go through the new vertex
may change. We can maintain the lengths of the known shortest paths 1o ali vertices in
Vi, and update them only when V, is extended. The only way to find better shortest
paths when w is added to V; is to go through w. Therefore, we need to check all edges
coming out of w to vertices not in V- For each such edge (w, 2}, we check the length of
w.SP + length (w, 7}, and update 2.5P if necessary. Thus, each iteration involves finding
a vertex with minimum SP value, and updating the SP values of some of the remaining
vertices. This algorithm is known as Dijkstra’s algorithm.

206 Graph Algorithms

implementation We need to be able to find a minimum among a set of path lengths,
and to update path lengths frequently. A heap is a good data structure for finding
minimum elements and updating lengths of elements. Since we need to find the vertex
with minimurm path length, we keep all vertices not yet in V; in a heap with their current
known shortest path lengths from v as their keys. Initially, all but one of the path lengths
are o=, 50 the heap is ordered in no particular order {except that v is on top). Finding w is
easy; we can simply take it from the top of the heap. All the edges (w, u) can be checked
and the path lengths can be updated without difficulty. However, when a path length to,
say, z is updated, z’s place in the heap may change. We need 1o be able to modify the
heap accordingly. To do that, we need to know z's position in the heap. {Remember that
a heap is not a search structure; it does not provide any facilities to locate an element.)
Locating 7 in the heap can be done with another data structure connected to the heap,
Since the identities of all vertices are known ahead of time, we can put them in an array
with pointers to their location in the heap. Finding a vertex in the heap thus requires only
accessing the array. Since the elements of the heap are the vertices of the graph, the
space requirement is onky O (| V |}, which is reasonable. Path lengths only decrease. If
an elemnent of the heap becomes smaller than its parent, it can be exchanged and moved
up until its appropriate position is found. This is exactly the same as the regular heap
maintenance procedures (e.g., insert). The shortest paths algorithm is given in Fig. 7.17.

Algorithm Single Source_Shortest Paths (G, v} ;

Input: & =(V, £){a weighted directed graph), and v (the source vertex).

Output: for each vertex w, w.SP is the length of the shortest path from v to w.
{ all lengths are assumed to be noanegative. }

begin
Jor all vertices w do
w.mark := false ;
W8P =00
vSP =0,
while there exists an unmarked vertex do
let w be an unmarked vertex such that w.SP is minimal ;
w.mark ;= true ;
Jor all edges (w,) such that z is unmarked do
if w.SP + lengthlw, 2} < z.5F then
z.8P = w.8P + length(w, 2}
end

Figure 7.17 Algorithm Single_Source_Shortest_Paths.

Complexity Updating the length of a path takes O (fog m) comparisons, where m is
the size of the heap. There are |V | iterations, leading to |V | deletions from the heap.
There are also at most |£ | updates (since each edge can cause at most one update),

7.5 Single-Source Shortest Paths 207

leading to O(|E |log |V |} comparisons in the heap. Hence, the running time is
OUIE + [V iYlog [V 1), Notice that this algorithm is slower than the same algorithm
for acyclic graphs, since the next vertex in the latter algorithm was taken from the
(arbitrarily ordered) queue, and no updates were required.

1 Example 7.1

An example of algorithm Single Source_Shorrest Paths is given in Fig. 7.18. The first
Hine includes only paths of one edge from v. The shortest path is chosen, in this case,
teading to vertex a. The second line shows the update of the paths including now all
paths of one edge from either v or 4, and the shortest path now leads to ¢. A new vertex
is chosen in each line, and the current known shortest paths from v are listed to every
vertex. The circled distances are those that are known to be the shortest, C]

Commentis This type of algorithm is sometimes called priority search — each
vertex is assigned a priority (e.g., the current known distance from the source), and
vertices are traversed according to that priority. When a vertex is considered, all its

. I “ 3 "b
2 g 3
cg—* 34 2 g
9 4 !

v alb i c|dle| f|lg|h
cloe (D s i3 |9 fle|ole|e
b{}@S@?mumm
d o |G G788 12]e e
e lo DGO G®I@ 82|«
I ERIONOHONOHOIN AN K
AolclElClcIREo
AROCEICIEIIO

Figure 7.18 An example of the single-source shortest-paths aigorithm,

208 Graph Algorithms

adjacent edges are checked. That check may trigger a change in some priorities. The
procedure for making that change is what distinguishes one priority search from another.
Priority search is more expensive than regular search. It is useful for problems involving
weighted graphs.

We found the shoriest paths from v to all other vertices by finding one path at a
time. BEach additional path was identified by one edge, which led from a previously
known shortest path to a new vertex. All those edges together form a tree with v as its
root (Exercise 7.6). This tree, called the shortest path tree, is important in dealing with
a variety of path problems.

7.6 Minimum-Cost Spanning Trees

Consider a network of compuiers connected through bidirectional links. There is a
positive cost associated with sending a message on each of the links. We assume that the
cost of sending a message on a specific link does not depend on the direction. We want
10 broadcast a message to all the computers starting from an arbitrary computer. We
assume that the cost of the broadcast is the sum of the costs of the links used to forward
the message. (Another possible definition of cost is the time it takes to complete the
broadcast; see Exercise 7.63.)} The network can be represented by an undirected graph
with positive costs on the edges. The problem is to find a fixed connected subgraph
(corresponding to the links used in the broadcast), containing all the vertices, such that
the sum of the costs of the edges in the subgraph is minimum. It is not difficult to see
that this subgraph must be a tree. If any cycle had been present, then we could have
broken it by deleting one of its edges; the graph would still be connected, but the cost
would be smaller since all costs are positive. This subgraph is called the minimum-cost
spanning tree {(MCST), and it has many uses besides broadcasts. Qur goal is to find an
efficient algorithm to find an MCST.! For simplicity, we assume that the costs are
distinct. This assumption implies that the MCST is unique (Exercise 7.11), which makes
the problem easier 10 discuss. The algorithm remains the same without this assumption,
except that, when equal-cost edges are encountered, any one of them can be chosen (i.e.,
ties are broken arbitrarily). The proof of correctness is more complicated in this case.

The Problem Given an undirected connecied weighted graph
G =V, E), find a spanning tree T of G of minimum cost.

(Notice that we now call the weights cosrs.) The straightforward induction hypothesis is
the following.

' We assume here tha the whole graph is known to us. The complete tepelogy of a communication network
and al} curren costs are usuatly unknown only at the local sites; therefore, a distributed algorithm is needed.

7.6 Minimum-Cost Spanning Trees 209

Induction hypothesis : We &know how to find the MCST for connected
graphs with < m edges.

The base case is trivial. Given the MCST problem with m edges, how de we reduce it to
a problem with <m edges? We claim that the minimum-cost edge must be included in
the MCST. If it is not included, then adding it to the MCST would create a cycle;
removing any other edge from this cycle creates a tree again, but with smalier cost,
which is a contradiction to the mintmality of the MCST. So, we now know one edge that
belongs to the MCST. We can remove this edge from the graph, and apply induction 10
the rest of sthe graph, which now contains less edges. Is that a valid use of induction?

This is not a valid use of induction, because, after we remove an edge, the problem
we need 10 solve is not the same as the original problem. First, the selection of one edge
limits the selection of other edges. Second, after we remove an edge, the graph may not
be connected any more. We cannot emphasize this issue too strongly — the induction
hypothesis has to be precisely defined and followed.

The solution is to adjust the induction hypothesis. We know how to select the first
edge, but we cannot simply remove it and forget about it, since the rest of the selections
depend on it. Therefore, instead of removing it, we mark it as being selected and use this
fact (its selection) for the algorithm. The algorithm proceeds by selecting one edge at a
time 1o the MCST, Thus, the induction is not on the size of the graph, but rather on the
number of edges already selected in a given fixed graph.

Induction hypothesis 2: Given a connected graph G =(V, E}, we know
how to find a subgraph T of G with k edges (k< |V | =1}, such that T is a
tree that is a subgraph of the MCST of G.

We have already discussed the base case for this hypothesis, which is choosing the first
edge. We assume that we have already found the tree T satisfying the induction
hypothesis, and we need to extend T by one more edge. How can we find another edge
that is guaranteed o be in the MCST? We apply the same argument that was used 1o find
the first edge. T is already known 1o be part of the MCST. Hence, there must be at [east
one edge in the MCST comnecting T to vertices not in T. We will try to find one such
edge. Let £, be the set of all edges connecting T to vertices not in T. We claim that the
edge with minimum cost in E, belongs 10 the MCST. Denote this edge by (u, w) (se¢
Fig. 7.19). Since the MCST is a spanning tree, it contains a unique path from u to w
(there exists a unique path between every two vertices in a tree). H (&, w) does not
belong to the MCST, then it is not included in that path from u to w, But, since u does
belong to T and w does not belong to T, there must be at least one edge (x, y) in this path
that connects T o a vertex not in T. The cost of this edge is higher than the cost of
{u, w}, since (&, w) has the minimum cost among all such edges. But now we can use the
same argument that we applied to the first selected edge. I we add (u, w} to the MCST
and remove the edge (x, y), we gel another spanning tre¢ with smaller cost, which is a
contradiction.

Implementation This algorithm is very similar to the single-source shortest-path
algorithm presented in the previous section. The first chosen edge is the edge with

210 Graph Algorithms

Figure 7.19 Finding the next edge of the MCST.

minimum cost, T is then defined as a tree with only this edge. In each iteration, we need
to find the minimurm-cost edge connecting T to vertices outside of T. In the shortest-path
algorithm we found the mirimum-length parh leading owtside of 7. Hence, the only
difference between the MCST algorithm and the shortest-path algorithm is that the
minimum is taken not on the length of a path but on the cost of an edge. Tue rest of the
afgorithm is virtually the same. We maintain, for each veriex w not included in T, the
minimum-cost edge leading to w from a vertex in T {or == if no such edge exists). In each
iteration, we choose the minimum-cost edge and connect the corresponding vertex w 1o
T. We then check all the edges incident to w. If the cost of any such edge (w, 2} (for z
not in T} is smaller than the cost of the current best edge leading to z, we update 2’s cost.
The algorithm is presented in Fig. 7.20.

Complexity The complexity of this algorithm is identical to that of the single-source
shortest-path algorithm presented in the previous section, The worst-case running time is
OWIVI+1E Mog IV).

0 Example 7.2

An example of algorithm MCST is illustrated in Fig. 7.21. The vertex in the first column
of the table is the one that is added at that step. The first vertex is v, and the edges
connected to v are listed along with their costs. The vertex with the minimum-cost edge
is chosen in each line. The current best edges (and their costs) leading to unmarked
vertices are updated at each step (only the tails of the edges are listed). £l

Comments The atgorithm for finding an MCST is an example, although not a pure
one, of a method called the greedy method. Suppose that we are dealing with a set of
elements, each with an associated cost, and that we are interested in finding the set of
elements with maximum (or Minimum) cost satisfying some constraints. In the MCST

7.6 Mipimum-Cost Spanning Trees 211

Algorithm MCST (G} ;
Inpit: G (a weighted undirected graph).
Qutput: T (a minimum-cost spanning tree of G).

begin
Initially T is the empty ser |
Jor all vertices w do
wMark = false ; { wMark istrueif wisinT}
w.Cost (=00 [
let {x, y} be a minimum cost edge in G ;
xMark := true ; { y will be marked in the main loop }
for all edges {x, z) do
rEdge '=(x, 2} ; { a minimum cost edge fromT fo z }
z.Cost := cosi(x, z} ; { the cost of 2.Edge }
while there exists an unmarked vertex do
let w be an unmarked vertex such that w.Cost is minimal ;
if w.lost = oo then
print "G is not connected” ;
halt
elve
w.Mark ;= true ;
add wEdgetoT ;
{ we now update the costs of unmarked vertices connected to w }
Jor ail edges (w, z) do
if not z Mark then
if cost{w, z2) < z.Cost then
r.Edge '= (w, 2);
z.Cost ;= costiw, 2)
end

Figure 7.20 Algorithm MCST.

problem, the elemenis were the edges of the graph, and the constraint was that the edges
correspond 1o a spanning tree. The greedy method is to be greedy and take the
maximal-cost possible element at any step, In the MCST algerithm, we introduced some
more constraints on the selection of edges, specifically, we considered only edges thai
were connected 10 the current tree. Therefore, the MCST aigorithm is not purely greedy,
We can also, however, find the MCST by selecting, at each siep, the minimum-cost edge
anywhere in the graph, provided that this edge does not form a cycle (Exercise 7.59).
The greedy method does not always lead to an optimal solution. It is usvally just a
heuristic to find suboptimal sotutions. Sometimes, however, as in the MCST exampie,
the greedy method does lead to the best solution,

212 Graph Algerithms

a i v 6 b
& L]
2 g 3
i 4 d‘ 7 L 3
1G i2 5
» » &
f 13 ¢ 1 h
v a b ¢ d e f g h
¥ - 1’{ i) 1’{6) o v(9) oo o oo oo
a | - - v{6} § a(2) | v(H o0 . o0 o0
¢ | - - v(6} - (4} o (10} o0 o0
d] - - v(6) - - d(D | (1 | d12) o0
h |- - - - - B(3) | c(10)Y | d(12) =
e] - - - - - . e(10} | d012) | e(D)
hi- - - - - - c(10y | R(EDY -
fi- - - - - - - h(EDY .
8

Figure 7.21 An example of the minimum-cost spanning-tree algorithm.

7.7 All Shortest Paths

We now consider the problem of computing shortest paths between all pairs of vertices
in a graph,

The Problem Given a weighted graph G =(V, E) {directed or un-
directed) with nonnegative weights, find the minimum-length paths
between all pairs of vertices.

Again, since we are talking about shortest paths, we refer 1o the weights as lengths. This
probiem is called the all-pairs shertest-paths problem. For simplicity, we discuss how
10 find only the lengths of the shortest paths, rather than the paths themselves. We
assume that the graph is directed; the same arguments hold for undirected graphs. We
assume throughout this section that all weights are nonnegative; Exercise 7.73 deals with
negative lengths.

7.7 Al Shortest Paths 213

As usual, let’s start with straightforward induction. We can use induction either on
the edges or on the vertices. What is involved in terms of shortest paths in adding a new
edge, say (s, w), 1o a graph? First, the edge may form a shorter path between 4 and w.
Furthermore, there may be other shorter paths that use {u, w}. In the worst case, we need
to check, for every pair of vertices v, and v,, whether the length of the shortest path
from v, to u plus the length of {«, w) plus the length of the shortest path from w to v, is
shorter than the kaown path from v, to v,. Overall, for every new edge, we may have to
make O{|V |?) checks, leading 1o a worst-case running time of O(]E | |V [%). (Since
the number of edges may be as large as O (|V [%), this is an O{|V |9 algorithm.)

What is involved in terms of shortest paths in adding a new vertex u to a graph?
We first need to find the lengths of the shortest paths from # to all other vertices and from
alt other vertices 10 w. Since all shortest paths that do not involve u are already known,
we can find the shortest path from u to w in the following way. We need only to
determine the first edge out of u in this path. If this edge is (i, v), then the length of the
path from & to w is the length of (i, v} plus the length of the shortest path from v to w
{which is already known), We therefore compare these lengths for all vertices adjacent
to u, and take the minimum length, The shortest path from w 1o u can be found similarly.
But again, this is not enough. We still have to check, for any pair of vertices, whether
there exists a shorter path between the two using the new vertex . For each pair of
vertices v and w, we check the length of getting from v to i plus the length of getting
from « to w, and we compare this length 10 the leagth of the previously known shortest
path. Overall O(|V Ez) comparisons and additions are needed for each added vertex,
feading to an Q(|V |*) algorithm. The induction on vertices is thus better than the
induction on edges, but there exists an even better induction method for this problem,

The trick is to leave the number of edges and vertices fixed, and to put restrictions
on the type of paths allowed, The induction addresses the removals of these restrictions
on the paths until, at the end, all possible paths are considered. We label the vertices
from 1 to |V {. A path from u to w is called a k-path if, except for u and w, the highest-
labeled vertex on the path is fabeled £. In particular, a O-path is an edge (since no other
vertices can appear on the path).

Induction hypothesis: We know the lengths of the shortest paths between
all pairs of vertices such that only k-paths, for some k < m, are considered.

The base of the induction is m = 1, in which case only direct edges can be considered and
the solution is obvious. We assume the induction hypethesis for m, and we try to extend
it to m+1. We now have to consider all A-paths such that k <m +1. So, the only new
paths that we need to consider are m-paths. We have to find the shortest m-paths
between all pairs of vertices, and to check whether they improve on the &-paths for k <m.
Denote by v, the vertex labeied m. Any shortest m-path must inciude v, exactly once.
The shortest m-path between 4 and w is the shortest k-path (for some & < m) between u
and v, appended by the shortest f-path (for some j < m, where j need not be equal to &)
between v, and w. By induction, we already know the lengths of all shortest k-paths for
k <m; hence, we need only o sum the 1wo iengths above to find the shortest m-path
between u 10 w. Not only is this algorithm faster (by a constant factor) than the one using

214 Graph Algorithms

the straightforward induction on vertices, bat it is also simple to program. The algorithm
is given in Fig. 7.22.

Algorithm All_Pairs_Shortest_Paths (Weight} ;

Input: Weight (an n X n adjacency matrix representing a weighted graphy.

{ Weight [x, v is the weight of the edge {x, y) if it exists, or = otherwise;

Weightix, x}is O, forall x |

Output: At the end, the matrix Weight contains the lengths of the
shortest paths.

begin
formi:=1to ndo | the induction sequence }
forx = [tonde
Jory = 1ltondo
if Weight{x, m] + Weight{m, v] < Weight{x, v] then
Weight/x, y] ;= Weight{x, m} + Weightfm, y}]
end

Figure 7.22 Algorithm All_Pairs_Shortest_Paths.

The inner two loops of the algorithm are used to check all pairs of vertices. Notice
that this check can be applied to the pairs of vertices in any order, since each check is
independent of the others. Such flexibility is important, for example, for parallel
algorithms.

Complexity For each m, the algorithm involves only one sum and one comparison
per pair of vertices. The induction sequence is of length [V |, so the total number of
additions (and comparisons) is at most |V |*. Recall that the running time of the single-
source algorithm 3s O ([E | log {V {). If the graph is dense such that the number of edges
is ©(n?), then using this algorithm is better than using the single-source algorithm for
every vertex, Although it is possible to implement the single-source algorithm in time
O(|V 1*) (Exercise 7.43.), which will lead to an O {1V [} algorithm for all-pairs shortest
paths, the algorithm in this section is better for dense graphs because it is so simple to
implement. On the other hand, if the graph is relatively sparse, then the running time of
OCUE][Vilog [V 1) resuling from using the single-source algorithm [V} times, is
better.

7.8 Transitive Closure

Given a directed graph G =(V, E), the transitive closure C=(V, F) of G is a directed
graph such that there is an edge (v. w) in C if and onty if there is a directed path from v to
w in ¢, The transitive closure is related, for example, to the user-accounts security
problern mentioned at the beginning of this chapier. The vertices correspond to the users,
and the edges correspond (o permissions. The transitive closure identifies for each user

7.8 Transitive Closure 215

all the other users with permission (either directly or indirectly} to use his or her account,
There are many other applications of the transitive closure, and so finding it efficiently is
important.

The Problem Given a directed graph G =(V, E), find its transitive
closure.

We solve this problem by using a reduction. ‘That is, we transform any instance of the
transitive closure problem to an instance of another problem that we aiready know how
10 solve, We then transform the solution of the other problem fo a solution of the
sransitive closure problem. The reduction is from the all-pairs shortest-paths probiem.

Let G'=(V, E") be a compiecte directed graph (i.e., all veriices are connected in
both directions). Each edge ¢ in £ is assigned the length 0 if e € E, and | otherwise. We
now solve the all-pairs shortest-paths problem for ', I there is a path from viow in G,
then its length in G” is 0, since all edges of G have length O in &', Therefore, there is a
path between v and w if and only if the length of the shortest path between v and win G’
is 0. Thus, an answer to the ali-pairs shortest-paths problem can be transformed directiy
into an answer for the transitive closure problem.

The idea of using reductions between two problems is explored in detail in Chapter
10. We used reduction here mainly to iliustrate the technique with a simple exampie. It
is easy to modify the all-pairs shortest-paths algorithm directly to a transitive closure
algorithm, as is shown in Fig 7.23,

Algorithm Yransitive_Closure (A} ;

Input: A (an n xn adjacency matrix representing a directed graph).

£ Afx, y]is true if the edge (x, v) belongs to the graph, and false otherwise;
Alx,x]istrueforall x }

Output: At the end, the matrix A represents the transitive closure of the graph.

begin
Jorm:=1tondo | the induction sequence }
forx = [ltondo
fory.:=1tondo
ifAlx,mland Alm, ylthen Alx, v = true
{ this step is improved in the next algorithm }
end

Figure 7.23 Algorithm Transitive_Closure.

The fact that we can reduce one problem 1o another means that the solution of the
first problem is general enough to embody the solution of the other. But, more general

216 Graph Algorithms

solutions are usually more expensive. We have seen cases where a more general
problem is easier to solve; in many cases, however, the more you get the more you have
to pay for it. When a reduction is used we should always try to improve the resulting
solution by using the spectal characteristics of the problem,

Consider the main step of the algorithm: the if statement. It consists of two checks,
for A[x,m] and for A[m, y]. An action is taken only if both of these checks are
satisfied, This if statement is performed n times for each pair of vertices. Any
tmprovement of this statement would lead to a4 substantial improvement of the algorithm,
Do we really need to perform the tweo checks all the time? The first check depends on
only x and m, whereas the second check depends on only m and y. Therefore, we can
perform the first check only once for a certain x and a certain m. I the first check fails,
then there is no need to perform the second check for any value of y. I the first check
succeeds, then there is no need to perform it again, This change is incorporated in the
(impraved) algorithm presented in Fig. 7.24. The asymptotic ¢omplexity remains
unchanged, but this algorithm will run about twice as fast.

Algorithm Improved_Transitive_Closure (A) ;

Input: A (an # xn adjacency matrix representing a directed graph).

{ Alx, y]is true if the edge (x, y} belongs to the graph, and false otherwise;
Alx, x]istrue forallx i

Output: At the end, the matrix A represents the iransitive closure of G.

begin
Jorm = tonde | the induction sequence }
Jorx:=1tondo
ifAlx, m) then
Jory =1l tonde
ifA(m v]them Alx, vi = true
end

Figure 7.24 Algorithm Improved Transitive Closure.

implementation The implementation of the algorithm is straightforward, Notice,
however, that the last line has the same effect as an or operation on the xth row of the
matrix. Each eniry {(x, y} in the xth row is set to the value of itself or that of (m, ¥).
These operations are equivalent 1o setting the xth row to be the or of the xth row and the
mih row, Since many computers can perform an or operation on many bits at the same
time, & row or operation can be performed faster than several bit-by-bit operations. So,
in practice, the number of steps for this algorithm is O (#°/w), where w is the word size
{the number of bits that can be or’d together in one step). This is a very simple example
of a paralie] algorithm. This issue is also discussed in Section 9,5.3,

7.9 Decompositions of Graphs 217

7.9 Decompositions of Graphs

We have already seen one form of graph decomposition — the partition into connected
components, In general, the idea of graph decomposition is o partition the graph into
subgraphs such that each of the subgraphs satisfies a certain desirable property. Then,
when we need to design an algorithm that manipulates the graph, it may be possible to
consider each subgraph separately and to use its desirable property. For example, we
have seen several algorithms that require that the graph be connected. By partitioning the
graph into its connected components, we were able to apply these algorithms fo each
component separately, and thus to avoid many complications, This section presents two
other decompositions — biconnected components and strongly connected components,
The first one apphies to undirected graphs and the second one to directed graphs, Both
are useful in designing algorithms. In particular, both decompositions depend heavily on
the cycles in the graph (undirected and directed cycles respectively). Therefore,
whenever there is a problem that involves cycles in one way or another (and many graph
problems invelve cycles), it is a good idea to consider these decompositions. They are
rot always useful, but they should at least be considered. We assume throughout this
section that the graphs are connected.

7.9.1 Biconnected Components

The notion of biconnectivity extends the regular connectivity concept in a natural way.
An undirected graph is cennected if there is a path from every vertex 10 every other
vertex. An undirected graph is biconnected if there are at least two vertex disjoint paths
from every vertex 1o every other vertex. Biconnected graphs thus exhibit a higher level
of ¢onnectivity: If for some reason one of the paths connecting two vertices can no
tonger be used, then the two vertices are still connected. It turns out that, if a graph is not
biconnected, then it can be partitioned info subgraphs, each of which is biconnected. We
will be mainly interested in that partition. In general, an undirected graph is called k-
connected if sthere are at least & vertex disjoint paths between every two vertices. We
first study several properties of k-connected graphs.

The first important property of k-connected graphs is a theorem due to Menger
(1927} that relates the number of vertex disioing paths between vertices to the number of
vertices required {o disconnect the graph.

3 Menger’s Theorem

Let G =(V, E) be an undirected connected graph, and let w and v be two
nonadiacent vertices in (. The minimum number of vertices whase removal
from G disconnects u from v is equal to the maximal number of vertex
disjoint paths from u to v, (When a vertex is removed, all its incident edges
are removed as well.} 0

A simple coroliary of Menger’s theorem is the foifowing, due to Whitney [1932].

218 Graph Algerithms

1 Whitney's Theorem

An undirected graph is k-connected if and only if af least & vertices must be
removed in order to discornect the graph.]

Since the condition in Whitney's theorem is equivalent to the condition defining k-
connectivity, we can use either one of these conditions. For a proof of these theorems,
see for example Chartrand and Lesniak [1986], (One side of the theorems is clear: If
there are & vertices whose removal disconnects the graph, then there cannot be more than
k vertex disjoint paths; the other direction is more complicated.)

Menger’s theorem is one of the most important theorems in graph theory. For our
purposes, the main implication of the two theorems is that a graph is aor biconnected if
and only if there is a vertex whose removal disconnects the graph. Such a vertex is
catled an articulation peint. Figure 7.25 illustrates the structure of a nonbiconnected
graph. Such a graph contains one or more articulation points. The blocks, *'beiween”
the articulation points, which are highlighied in the figure, are by themselves
biconrected. These blocks form the biconnected components of the graph. We make
this nofion more precise next.

Definition: A biconnected component is 2 maximal subset of the edges
such that is induced subgraph is biconnected (namely, there is ro subset
that consains it and induces a biconnected graph).

A biconnected component is defined as a set of edges. A vertex can belong to several
components. Indeed, each articulation point belongs 10 more than one component. {In

19 Decompositions of Graphs 219

fact, this description provides another characterization of articulation points.) The set of
edges of every graph car be partitioned into biconnected components in a unique way.
Each edge belongs to exactly one component. The following two claims prove the
existence of the partition and its uniqueness,

] Lemma 7.9

Two edges ¢ and [belong to the same biconnected component if and only if
there (s a cycle conmtaining both of them. (Note that a biconnected
component may consist of only one edge; this claim addresses only
hiconnected components with at least two edges.}

Proof: First, we show that a cycle is always entirely contained in one biconnected
compenent. If the cycle contains edges from more than one biconnected component,
then we can extend each of these compoenents by adding the rest of the cycle. The
extended subgraph is still bicornected since a cycle cannot be disconnected by one
vertex. This contradicts the maximality of the component. For the other side of the
theorem, if the two edges belong fo the same biconnected component, then we can obtain
the cycle containing them in the following way., We add two new (artificial) vertices 1o
the “‘middle™ of e and £, (That is, if e=(v, w), we add a new vertex z and replace e by
the two edges (v, z) and (z, w); we do the same for £} The component, as a subgraph,
remains biconnected since it stifl contains no articulation points. (Removing any of the
new vertices is the same as removing the old edges, which cannot disconnect the
component; removiag an old vertex has the same effect as before.) Therefore, there are
1wo vertex-disioint paths between the two new vertices, but these paths exactly complete
a cycle containing ¢ and f, J

0 Lemma 7.10
Each edge belongs to exactly one biconnected compaonent,

Proof: Each edge definitely belongs to at least one biconnected component
{possibly containing only itself). It cannot belong to more than one biconnected
component, since there would be cycles containing it and edges from both components.
A combination of the two cycles is one larger cycle containing edges of two components.
We have already seen that this is impossible. 03

We want to find the partition into biconnected components. Let’s start as usual
with the straightforward induciion hypothesis.

Induction hiypothesis: We know how 1o find the biconnected components of
connected graphs with < m edges.

A connected graph with one edge is biconnected. Consider a graph with m edges and
pick an arbitrary edge x. We remove x from the graph and find, by induction, the
biconnected components. We now have to determine what effect adding x would have
on the partition. The easiest case i8 when x connects two vertices from the same
component (for example the edge {a, n) in Fig. 7.25). In this case, adding x has no effect

220 Graph Algorithms

on the partition (it only makes that one particular component even more connected).
Another easy case is when x completely disconnects the graph {for example the edges
(h, i) and (n, 0) in Fig. 7.25). In this case, it is clear that both of x’s endpoints are
articulation points and, as a result, x is a biconnected component by itself. (Such an edge
is appropriately called a bridge.) Obviously, none of the other components is changed.
The difficult case is when x does not disconnect the graph and connects vertices from two
different components. An example of such an edge is edge (b, ¢) in Fig. 7.25. We also
tllustrated this case in Fig. 7.26(a}. It is clear that x merges the two components it
connects, plus several other components that are *‘in between,” intc one larger
component. The problem is thus to find afl the *‘in-between’” components and to merge
them efficiently,

Looking back at Fig. 7.25 and Fig. 7.26, we can see that the bicomnected
components define a tree in the following way. Each biconnected component is
assoctated with a node (we call them nodes to distinguish them from the original
vertices). We start with an arbitrary component R as the root of the tree (the component
containing a, b, and k in Fig. 7.25). The children of R are those biconnected components
that have cormon articufation points with R; the grandchildren are those biconnected
componenis that have not been included in the tree yet, which have common articulation
points with the children, and so on. In other words, we construct the trees in a breadth-
first fashion. We canmot simply say that two biconnected components are connected if
they have an articulation poing in common, because an articulation point may be common
to more than two biconnected components, and we do not want to form cycles, It is not
difficult to prove that a tree is always formed by this construction (Exercise 7.17). This

{a) (b}

Figure 7.26 An edge that connects two different biconnected components. {a) The com-
ponents corresponding to the graph of Fig. 7.25 with the articulation points indicated. (b}
The biconnected componernt (ree,

7.9 Decompositions of Geaphs 221

tree is called the biconnected tree. Figure 7.26¢a) shows the biconnected components of
the graph in Fig. 7.25, and Fig. 7.26(b) shows the corresponding biconnected tree. The
edge x in Fig, 7.26 illustrates the addition of an edge; it can correspond, for example, to
an edge connecting @ and & in the original graph.

If we think of the biconnected tree now, we see that an edge connecting vertices
from iwo different components generates a cycle in the tree. All the nodes
{corresponding to components) in that cycle must be merged into one component. So we
now have an algorithm, We add to the induction hypothesis the assumption that we
know how to construct the tree, and then we can handle each of the three cases we
discussed earlier. We omit the details because there is a better algorithm.

The problem with the algorithm we just described is the time it takes to find the
cycle generated by the added edge in the biconnected tree. Finding a cycle in a tree may
require traversing the whele tree, which in the worst case requires looking at all the edges
of the tree. There may be as many as O (1V |} edges in the tree, and we have to perform
this step for each edge of the original graph, Thus, this algorithm may require
CQ(IV |- |E | time (this is not a precise analysis). We would like to avoid searching for
& cycle in each step.

One common way to improve a straightforward inductive algorithm is to choose
carefully the order of induction. In the preceding discussion, we picked an arbitrary
edge. We may be able to improve the algorithm if we pick the edges in an order that will
make it easier to handie the biconnected tree. A matural first attempt would be to use a
good graph traversal. It turns out, as we shall see in a moment, that DFS is excellent for
this purpose, Consider again Fig. 7.25. Assume that DFS starts at verfex a, and consider
the articulation point b. Let B be the component “*below’ b which the DFS visits first
after visiting b. (In Fig 7.25, this component consisis of the edges connecting vertices b,
c.d, e, f. and g.) How can we determine that # is indeed an articulation point? By
definition, if all paths from B 1o the rest of the graph pass through b, then & is an
articulation point. So, we want 1o determine whether there are any edges coming out of
8 to the rest of the graph.

Assume that the vertices in B are visited next by the DFS. If there are no edges out
of B, the traversal will be local to B. All of B's edges will be traversed and b will be
reached again. Furthermore, since DFS eliminates cross edges, the only edges that may
connect B to the rest of the graph are back edges. In other words, b disconnects B if and
anly if there are no back edges out of B that reach the tree above b. {The only exception
io this ruie occurs at the root of the DFS tree; we discuss this case fater.) Let’s see now
how we can determine this fact.

We want to know how high in the DFS tree we can reach from a subtree. We
traverse the graph using DFS. At each vertex v, we firs: visit one whole subtree below v,
then another, and so on. Let ¥, be a subtree rooted at a child of v such that the DES
visits this child first. Suppose that we find not only all the biconnected components in
T, but also the highest vertex in the tree that is connected to T| by a back edge. (This is
really just strengthening the induction hypothesis, as will be seen in a moment.} Let’s
denote by High(v) the highest veriex in the DFS tree hat is connected, by a back edgs,
to either v or a descendent of v (in the DFS tree). Assume that the children of v in the

222 Graph Algerithms

DFS tree are w, w ..., wy (see Fig. 7.27). We can easily compuie High (v) if we know
High{w;) for all wy: H is simply the highest among all High (w;} and among all the back
edges from v. {We will describe shortly how to determine efficiently whether one vertex
js higher than another.} So, if we perform DFS, we can easily compute all the High
vatues, For example, in Fig. 7.27, High(w)=r, High(wy)=v, and High{wi)=w;; the
highest back edge from v goes to g, hence High (v)=r.

Now suppose that we have computed all the High values. We claim that a vertex v
is an articulation point if and only if there s a child w; of v such that High(w;) is not
higher than v. Indeed, if such w; exists, then there are no edges from vertices in the
subtree rooted at w; to vertices higher than v in the tree; hence, v is an articulation point,
{The beauty of DFS is that it traverses the graph in exactly the right order for our
purposes.)

Computing the High values goes hand in hand with the DFS, according to the
following induction hypothesis.

Induction hypothesis: When we visit the kth vertex by DFS, we know how
to find the High values of vertices that have already been visited and are
below this vertex.

The order of the induction follows the order of DFS. When we reach a vertex v, we
perform {recursively) a DFS for all children of v, find (by induction) their High values,
and compute High(v) according to the definition. At the same time, we can decide
whether a veriex is an articulation point.

Figure 7.27 Computing the High values.

7.9 Decompositions of Graphs 223

The root of the DFS tree presents a special case. Obviously, no High value can
exceed the root. 1t is easy to see that the root is an articulation point if and only if it has
maore than one child in the DFS tree. Of course, this is easy to determine.

The key to the efficiency of the algorithm for computing the High values is that all
the necessary information is available when DFS is performed. The only problem we
have is how to decide whether one vertex is higher than another in the DFS tree. We use
DFS numbers to make this determination. All the vertices involved in the computation of
the High values are ancestors in the tree. Therefore, they already have a DFS number.
Furthermore, the higher an ancestor is, the lower its number is! This is not true for
vertices that are nof related in the tree; fortunately, however, we care only about back
edges. So, a practical way to manipulate the High values is to use the DFS numbers, We
define High (v) as before, except that it refers not 10 the highest vertex itself, but to that
vertex's DFES number. It is confusing to describe the algorithm in terms of DFS numbers,
because higher vertices correspond to lower DFS numbers. Therefore, we define
decreasing DFS nuwmbers: the root has a DFS number of [V | and the number is
decreased every time we visit a new vertex, We can also use negative numbers: we
assign the root a DFS number of —1, and we decrement the number every time we visit a
new vertex. The advantage of the latter scheme is that the value of |V | need not be
known in advance.

The only remaining task is to find the actual biconnecied components. We could
find them by brute force, but there is also an elegant way. Let’s look back at Fig. 7.25.
Notice that, at the point where the algorithm determined that b is an articulation point, the
edges of B were the most recent 10 be traversed. During the traversal, we put the new
vertices on a stack and add the edges as they are encountered. When a vertex is found to
be an articulation point, we can remove from the siack all the top edges going back in the
stack until that vertex is reached. This is exactly the biconnecied component! We can
now remove those edges from the graph and continue in the same way. The complete
program for biconnecied components is given in Fig. 7.28. (The algorithm can be
defined merely in terms of preWORK and postWORK of DFS, but, for completeness, we
present it fully.)

Complexity Clearly, the extra amount of work, in addition to the work involved in
the DFS, is constani per vertex. Hence, the running time of this algorithm is
GV |+ |£|). The space requiremenis are also G(|V | + |£ |} since the components
must be remembered as they are traversed.

0O Example 7.3

An exampte of algorithm Biconnected_Components for the graph in Fig. 7.25, which is
repeated here, is given in Fig. 7.29. The first line gives the vertices and the second line
gives their (decreasing) DFS Numbers. Each successive line presents the High numbers
as updated when a new call to the recursive procedure is made. A vertex is circled when
it is discovered o be an articulation point. 1

224 Graph Algorithms

Algorithm Biconnected_Components (G, v, n)

Input: G =(V, E} {an undirected connected graph}, v (a vertex serving as
the root of the PXFS tree), and n (the number of vertices in &).

Output: the biconnecied componenis are marked and the High values are
computed.

begin
Jor every vertex vof Gdo
v.DFS Number := 0 ;
{ the DFY numbers will also serve to indicate whether or not the
corresponding vertices have been visited }
DFS N:=n;
{ we use decreasing DFS numbers; see the explanation in the fext. }
BCtv)
end

procedure BC(v) ;

begin
v.DFS Number := DFS N ;
DFS N:=DFS N-1I.
insert v into Stack ; { Stack is initially empty }
v.High := v.DFS Number ; (initial value }
Jor all edges (v, w)do
insert (v, w} into Stack ;
{ each edge will be inserted twice (for both directions} }
if wis not the parent of v then
if w.DFS Number = 0 then
BC(w);
ifwHigh < v.DFS Number then
{ v disconnects w from the rest of the graph }
remove all edges and vertices from Stack until v is
reached, and mark the subgraph they form
as a biconnected component ;
insert v back into Stack ;
{ v is part of w's component and possibly others }
v.High := max{ v.High , wHigh }
else { (v, w)is a back edge or a forward edge }
v.High ;= max (v.High , w.DFS _Number)
end

Figure 7.28 Algorithm Biconnected Components.

7.9 Decompositions of Graphs

a b ¢ d e f g i i kI m n o p

16 15 14 13 g2 11 10 8 7 6 5 4 3 2 i
a 16 - - - - - - - - - - - - - - -
B 16 15 - - e e oo oo
L TS . ¥
d 16 15 B4 13 - o« e oo o
e 16 15 14 13 U8 - - - . . o oo
d 16 15 B 15 U8 - - -« .o
£ 16 15 4 15 15 14 - - . - . ..o
d 16 IS5 t4 5 U5 M4 - . . - . ..o
¢ 16 15 15 15 5 M -o ...
g 16 15 15 15 15 14 15 - - o
¢ 16 1S 15 15 IS 14 15 - - - - -
() 16 15 15 5 14 3 15 - - - - o . .
Bo16 15 5 15 U5 14 15 U6 - - - - .« . .
P16 15 15 15 15 14 15 16 & - S e
i 16 15 15 15 15 14 15 16 8 7 - - - - - -
k16 IS 15 15 15 14 IS 16 & 7 8 - - . o .
i 16 15 I5 15 5 14 15 16 8 8 & - - . . .
1 16 15 15 15 15 14 15 16 8 & & 8 - - - -
i 16 15 (5 15 5 14 15 16 8 8 8§ & - - - -
() 16 15 15 15 15 14 15 16 8 8 & 8 - - - -
(W) 16 15 15 15 45 14 15 6 8 8 & 8 - - - -
b 16 16 35 1S 5 14 15 6 8 § 8 & - - . -
A 16 15 35 15 15 14 1S 6 8 % 8 & . - . -
m 16 15 15 15 15 14 IS 16 & & 8 8 4 - - -
n 16 5 15 IS 15 14 15 16 8 8 B 8 4 16 - -
o 16 5 35 15 15 14 1S 16 8 8 8 & 4 16 2 -
(m) 16 15 15 15 15 14 15 16 8 & & 8 4 16 2 -
P16 15 15 IS 15 14 15 16 & 8 8 8§ 4 (6 2 16
n 16 35 15 (5 15 M 15 16 8 8 8 8 4 6 2 16
m 16 15 15 5 15 4 15 16 8 8 8 8 16 16 2 16
6 1S 1S 15 15 4 15 16 8§ 8 8 8 16 16 2 16

225

figure 7.29 An exampie of computing High values and biconnected compenents.

226 Graph Algorithms

7.9.2 Strongly Connected Components

In this section, we discuss only directed graphs. A directed graph is strongly connected
if, for every pair of vertices v and w, there is a path from v 1o w and a path from wio v,
In other words, it is possible to reach any vertex from any other vertex.

Definition: A strongly connected component is a maximal subset of the
vertices such that its induced subgraph is strongly connected (i.e., there is
no subset that contains it and induces a strongly connected graph).

Notice that, unkike biconnected components, a strongly connected component is defined
as a set of vertices. The vertices of every graph can be partitioned inte strongly
connected components in a unique way. Each vertex belongs to exactly one component,
An edge in the graph may belong to one component, or it may connect {wo separate
components. We prove the existence of the partition by the following two claims, which
are similar 1o the biconnected component case in the previous section.

7 Lemma 7.11

Two vertices belong to the same strongly connected component if and only
if there is a circuit containing both of them. (Recall that a circuit is a
closed directed path that is not necessarily simple; that is, it may include a
vertex more than once. A cycle is a simple circuit.}

Proof: A circuit is by itself strongly connected. A strongly connected componeni
cannot include only a subset of the vertices of a ¢ircuit, since it would not be maximal
{we can add all the other vertices of the circuit to the component). Now, given any two
vertices v and w from the same strongly connected component, we claim that they are
contained in a circuit. By the definition of strong connectivity, there is a path fromvto w
and a path from w to v. Pulting together these two paths results in a circuit (but not
necessarily in a cycle, since the paths may not be vertex disjoint).]

03 Lemma 7.12
Each vertex belongs ta exactly one strongly connected component.

Proof: If a vertex v belongs 1o more than one strongly connecied component, then
there are circuits containing v and vertices from the other components. However,
combining those circuits results in another circuit, which, by Lemma 7.1F, must be
contained in only one strongly connected component. This is a contradiction. 0

We can define the strongly connected component (SCC) graph similarly to the
biconnected component tree. (This graph is also catled a condensation graph.) The
nodes of the SCC graph (we call them nodes to distinguish them from the original
vertices) correspond to the strongly connected components; there is a direcied edge from
node @ to node b if there is a directed edge (in the original graph) from any veriex in the
component that corresponds t0 @ 0 any vertex in the componeni that corresponds to &.
The SCC graph is acyciic since cycles cannot involve more than one component. Figure
7.30 presents a directed graph G and its SCC graph.

7.9 Decompositions of Graphs 227

Figure 7,30 A directed graph and its strongly connected component graph.

As was the case with biconnected components, we can design an algorithm by
tnduction.

Induction hypothesis: We know how to find the strongly connected
companents of graphs with < m edges, and how to construct their SCC
graphs.

The base case is trivial. Consider a graph with m edges and pick an arbitrary edge x. We
remove x from the graph and find, by induction, the strongly connected componenis, We
now have to determine what effect adding x would have on the partition. Again, the easy
case is when x connects two vertices from the same component. In this case, adding x
has ne effect on the partition or on the SCC graph. The difficult case is when x connects
vertices from two different components. This case is illustrated in Fig. 7.31, in which an
edge x is connecting two components in the SCC graph of Fig. 7.30. Clearly, x merges
these two components if and onty if it completes a (directed) cycle in the SCC graph. In
this case, all the components corresponding to the nodes in the cycle are combined into
one component, and we are done. If x does not complete a cycle in the SCC graph, then
no changes are made 1o the component. As was the case with biconnected components,
we can improve this algorithm by considering the edges in a particular order. Again,
DFS plays a major role.

Let's ry to follow the same steps as we did in the biconnected component
algorithm, and modify them when necessary. When we visit a vertex through DFS, we
want to determine whether it is part of a circuit with other vertices — in particular,
vertices that are higher than it in the DFS tree. The notion of High values can be used in

228 Graph Algorithms

Figure 7.31 Adding an edge connecting two different strongly connected components.

a similar way. We are looking for vertices such that there is no way 10 reach other parts
of the graph from them or from their descendants. We need a mechanism by which we
can identify the ‘“breakpoints’ in a similar way to the articulation points. Censider the
DFS tree. The strongly connected components occupy connected parts of the tree
{Exercise 7.88). That is, all the vertices in a strongly connected component must belong
to one connected subtree of the DFS tree, For a given component, consider its highest
vertex in the tree; we call this vertex the root of the component. The root is the first
vertex of the component o be visited by the DFS. (For example, the roots in Fig. 7.30
are a, 4, g, and i) If we can identify the roots similarly to the way we identified
articulation points, then we can find the partition. We will see that the roots are similar to
articulation points,

The algorithm is based on induction that follows the order of DFS. Let r be the
root of the first component visited in its entirety by the DFS. It is the lowest leftmost
component in the usual picture of DFS (r =4 in Fig. 7.30), The component must consist
of all of r's descendants in the tree (none of the descendants can belong to a smaller
component, since that component's traversal would have been completed first). 1f,
during the DFS, we can identify r as the first root, then we can identify the component,
remove it from the graph, and continue by induction. This is not as simple as we stated
it, but this is the main idea. Let’s first see if we can identify r.

First, for a vertex r to be a root of a component, there cannot be any back edges
leading from a descendant of r to a vertex higher than r. Such a back edge completes a
cycle with the higher vestex, which implies that the higher vertex belongs fo the same
component as r. We can determine whether such back edges exist similarly to the
biconnected component case — using the High values. However, we need to be more
careful here since DFS in directed graphs does not eliminate cross edges, Consider Fig.
7.32. Vertex g does not have any back edges, but it has a cross edge to e, which i§
contained in a cycie with a higher veriex b. Consequently, g's parent {f) is not a root of a
component, even though there is no back edge from any of its descendants. Thus, we

7.9 Decompositions of Graphs 229

Figure 7.32 The effect of cross edges.

must consider the cross edges as well,

What is the effect of cross edges? Cross edges must go from right fo lefi; in other
words, they must point 1o vertices that have already been visited. Remember that we are
looking for the first root. H there is a cross edge from g to e and the root has not been
found yet, then we claim that it cannot be f. It must be a vertex which is an ancestor of
both fand e. If it had not been an ancestor of f, then it would have been discovered
before we reached f. In particular, the fact that the component containing ¢ has not been
discovered yet means that there is a way to go higher from e. So, a cross edge from g o
a vertex that was visited before f implies that f is not a root. Bug this is just as easy to
take tnio account as a back edge — we need only to consider DFS numbers! When
considering the effect of the edge from g 10 e, it is not important whether this edge is a
back edge. Only the DFS number of e (and its value relative to that of f) is important.
We can define the High values as in the biconnected component case by looking for an
edge teading to a vertex with the lowest DFS number. The High value of a vertex is the
highest among those of its children and among its back edges or cross edges. A vertex is
the first root if it is the first vertex whose High value is not higher than itself. Notice that
the High values do not really point to the highest vertices. - The High value of g will be
the BFS number of e, even though it is possible to reach b from e (and thus from g). We
care only whether we can reach a vertex higher than g (or f), it is not important to know
the tdentity of the highest vertex. {Nor do we want to chase poinfers once a back edge is
encouniered.)

Once we find the first root, we can find the first strongly connecied component — it
consists of all the descendants of the root in the DFS free. We can then remove this
component from the graph. This is done by deleting all the compoenent’s vertices and
edges, and ali the edges that point to them from other vertices. We can ignore edges

230 Graph Algorithms

from other vertices, since there is no way 10 get outside of the component. The rest can
be done by induction since we now have a smaller graph! (The reader should carefully
verify that all the assumptions are still valid.) Notice that the definition of the High
values is dynamic. Since we remove the edges pointing to the newly discovered
component, they will play no part in the computation of the High values later. (This is
different from the ‘‘static’” definition of the High values for the biconnecied component
case, which did not depend on any of the previous components.) In practice, there is no
need to actually remove either vertices or edges. We can simply mark the vertices of
each component as they are discovered, and later on ignore edges pointing to marked
vertices. The strongly connected component algorithm is given in Fig. 7.33 {we use
decreasing DFS numbers again o avoid confusion),

Complexity The algorithm is similar to the biconnecied component algorithm and its
complexity is the same. The time and space complexitiesare O(|V | + | £ |).

3 Example 7.4

An example of algorithm Srrongly _Connected _Componenis for the graph in Fig, 7.32,
which is repeated here, is given in Fig. 7.34. The first line gives the vertices and the
second line their (decreasing) DFS numbers. Each successive line presents the High
numbers as updated when a new call to the recursive procedure is made. A vertex is
circled when it is discovered 10 be a root of a strongly connected component. [,

7.9.3 Examples of the Use of Graph Decomposition

In this short section, we present two examples where the use of graph decomposition
significantly simplifies the solutions. The first problem involves undirected graphs and
the secord one involves directed graphs.

The Problem Given a connected undirected graph G =(V, E),
determine whether it containg a ¢cycle of even length.

We have seen that a cycle must be contained in a biconnected component. Hence, we
can first partition the graph into its biconnected components, then consider each
component separately. In other words, we can now assume that the graph is biconnected!
If the graph is biconnected and it contains more than one edge, then it contains at least
one ¢ycle {in fact, every two edges are contained in a cycle). Let's find an arbitrary cycle
Cy=v, vy, v, vy If kis even, we are done. If there are no more edges — that i5,
the graph consists of exactly one odd cycle — then the answer is obviously negative.
Otherwise, there is an edge not in the cycle such that one of its vertices is in the cycle.
Let that edge be (v;, w}). Since the graph is biconnected, the edges (v;, w} and (v}, Vi)
are contained in another cycle Ca. We traverse €, starting at w until we meet C; again

7.9 Decompositions of Graphs 231

Algorithm Strongly_Connected_Components (G, v, n)

Input: G =(V, E) (a directed graph), v (a vertex serving as the root
of the DFS tree), and n (the number of vertices in G,

Quitput: marking the strongly connected components, and computing
the High values.

{ As is always the case with directed DFS, this procedure may

have to be called several times until all vertices have been visited, }

begin
Jor every vertex v of G do
v.DFS Number := 0 ;
v.Component /=0 ;
Current Component =0 ;
DFS N:=n;
{ we use decreasing DFS numbers; see the explanation in Section 7.9.1. }
while there exists a vertex v such that v.DFS Number = G do
SCCiv)
end

procedure SCCiv) ;

begin
v.DFS _Number ;= DFS N ;
DFS N:=DFS N-1;
insert v into STACK ;
v.High := v.DFS Number ; { the initial value }
Jor all edges (v, w) do
if wDFS Number = 0 then
SCCtwj ;
viigh ;= max (vHigh , wHigh)
else
if wDFS_Number > v.DFS_Number and w.Component = 0 then
{ (v, wYis a cross edge or a back edge that we need to consider }
vHigh := max { v.High , wDFS Number },;
if v.High = v.DFS Number then { v is a root of a component }
Current_Component = Current_Component + 1 ;
repeat { mark the vertices of the new componeni }
remove X from the top of STACK ;
x.Component '= Current_Component ;
untilx =v
end

Figure 7.33 Algorithm Strongly Connected_Coniponents.

232 Graph Algerithms

a b ¢ [f H i k
T 7 6 s 4 3 2 1
S
e L 1
S S T T
& 1t 19 8 - - - - ...
e It 1 % 8 10 - - - . . .
d 1 w9 8 0 - - - . .
¢ Il B 10 10 10 - - - - ..
£ 1L 10 10 10 ©® 6 - - - - -
g 1l 0 1 10 10 6 7T - - - -
fo1 1w w10 w71 - - ..
¢ 10 10 10 7 7T - - . -
) 1 w0 w10 10 07 7 - . ..
a 110 18 e o0 7 7 - - - .
Bt 10 16 w0 1007 7T 4 - - -
Pt 10 1 10w 7 7 4 3 - -
i1 10 18 1007 7T 4 3 1t -
P14 10 1 16 7 7 4 1 -
) u w0 10 w0 e 7 7 4 1 o0 i
i1 w19 10 1 7 7 4 41 1Lt
howo10 1w 7 7 o 111
Gy n o 10 10 w7 o7 a1

Figure 7.34 An example of computing High vatues and strongiy connected components.

7.9 Decompositions of Graphs 233

at, say, v; (see Fig 7.35). Clearly, v;#v;. The path v;, w, ..., 4, v; defines two cycles, as is
shown in Fig. 7.35. 11 is easy to see that one of the three cycles in the figure must be
even. We have proved the following theorem.

3 Theorem 7,13

Every biconnected graph that has more than one edge and is not merely an
odd-length cycle contains an even-length cycle,

The second problem is a similar one, but for directed graphs.

The Problem Given a directed graph G =(V, £), determine wheth-
er it contains a {directed) cycle of odd length.

Again, we know that a cycle must be contained in a strongly connected component, so
we might as well assume that the graph is strongly connected. We perform DFS starting
from an arbitrary veriex r and we mark vertices with either even or odd. We mark r as
even, then, for each edge (v, w), we mark w with the opposite mark of v. Since r ¢can be
reached from any vertex (by the strong-connectivity assumption), we claim that there is a
cycle of odd length if and only if we try 10 mark a vertex that is already marked by the
opposite mark (the most notable example is if we reach r again and try 1o mark it as odd).
We leave the proof of this fact to the reader. It is strongly dependent on the strong
connectivity assumption.

Both of these problems are much more difficult to solve without the
decomposition. Since both decompesitions can be achieved efficieatly in linear time, it is
wsuatly worthwhile to start thinking about a given problem with the extra assumption that
the graphs in questions are etther biconnected or strongly connected. This is especially

¥y Yz

¥

Vi

Vist

Figure 7.35 Finding an even-jength cycle.

234 Graph Algorithms

true for problems that involve cycles. It is interesting 10 note that the problem of
efficiently determining whether a directed graph contains an even-length cycle is still
open (see the Bibliography section).

7.10 Matching

Given an undirected graph G =(V, £), 2 matching is a set of edges no two of which have
a verfex in common. The reason for the name is that an edge can be thought of as a
match of its two vertices. We insist that no vertex belongs to more than one edge from
she matching so that it is a monogameus matching. A vertex that is not incident 1o any
edge in the maiching is called unmatched. We also say that the vertex does not belong
to the matching. A perfeet matching is one in which all vertices are matched. A
maximum matching is one with the maximum number of edges. A maximal matching,
on the other hand, is a matching that cannot be extended by the addition of an edge.
Problems involving matching occur in many situations {besides social). Workers may be
matched to jobs, machines to parts, and so on. Furthermore, many problems that seem
unrelated to matching have eguivalent formulations in terms of maiching problems.

Matching in general graphs is a difficult problem. In this section, we Bmit our
discussion to two specific matching problems. The first problem is not so important; it
involves finding perfect matchings in special very dense graphs. The solution fo this
problem, however, illustrates an interesting approach, which we then generalize 1o solve
an important problem concerning matching in bipartite graphs.

7.10.1 Perfect Matching in Very Dense Graphs

In this example, we consider a very restricted case of the perfect matching problem. Let
G =(V, £) be an undirected graph such that |V | =2n and the degree of each vertex is at
least n. We present an algorithm to find a perfect matching in such graphs. As a
corollary, we show that, under these conditions, a perfect maiching always exists,

We use induction on the size m of the maiching. The base case, m = 1, is handled
by taking any arbitrary edge as a matching of size one. We will show that we can extend
any matching that is not perfect either by adding another edge or by replacing an existing
edge with two new edges. In either case, the size of the matching is increased, and the
result follows,

Consider a matching M in G with m edges such that m <n. We first check all the
edges not in M to see whether any of them can be added to M. ¥ we find such an edge,
then we are done. Otherwise, M is a maximal matching. Since M is not perfect, there are
at least two nonadjacent vertices, v, and v, that do not belong to M. These two vertices
have at least 2n distinct edges coming out of them. All of these edges lead to vertices
that are covered by M, since otherwise such an edge could be added to M. Since the
number of edges in M is < n and there are 2n edges from v, and v, adjacent to them, at
feast one edge from M — say (4, 45) — is adjacent to three edges from v, and v.
Assume, without loss of generality, that those three edges are {u,, v,), (1,,v3), and
{#43, vy} (see Fig. 7.36(a)). It is easy 10 see that, by removing the edge (u,.u,) from M

7.10 Matching 235

e O
Hy iy
{a)

Figure 7.36 Extending a matching,

and adding the two edges (4, v3), and (3, v}, we get a larger matching (Fig. 7.36(b)).

We leave the implementation of this algorithm as an exercise (7.21). This
algorithm is another example of a greedy approach. At most three edges were involved
in each siep in the extension of one matching to a larger one. This was sufficient in this
case, but, in general, finding a good matching is more difficult. A choice of one edge
may affect choices of other edges far away in the graph. Next, we show how 1o
generalize this approach to other matching problems.,

7.10.2 Bipartite Matching

Let G =(V, E, U) be a bipartite graph, such that V and U are two disjoint sets of vertices,
and E is a set of edges connecting vertices from V to vertices in {/.

The Problem Find a maximum-cardinality matching in a bipartite
graph G.

We can formulate this problem in terms of real matching: V is a set of girls, U/ is a set of
boys, and £ is a set of *‘possible’” pairings; we want to match boys to girds so as to
maximize the number of maiched boys and gitls.

A straightforward approach is to try to match according to some strategy until no
more maiches are possible, in the hope that the strategy will guarantee optimality, or at
least come close. We can try different strategies. For example, we can try a greedy
approach by first maiching the vertices with small degrees, hoping that the other vertices
will be more likely to have unmaiched partners later on. (In other words, first match the
boys that are the most difficuit to match, and worry about the rest later.) Instead of trying
to analyze such strategies (which is hard), we try the approach used in the previous
problem. Suppose that we start with a maximal matching, which is not necessarily a
maximum matching, Can we somehow improve it? Consider Fig. 7.37(a), in which the

236 Graph Algerithms

matching is depicted by bold lines. It is clear that we can improve the maiching by
replacing the edge 2A with the edges /A and 28. This 1s similar to the transformation we
applied in the previous problem. But we are not restricted to replacing one edge with two
edges. I we find a similar situation where & edges can be replaced by & + | edges, then
we have an improvement. For example, we can improve the matching further by
replacing the edges 3D and 4E with the edges 3C, 4D, and 5E (Fig. 7.37(b)).

Let's study these transformations. Our goal is to add more matched vertices, We
start with an unmatched vertex v and try to find a match for it If we already have a
maximal matching, then all of +’s neighbors are already matched, so we must try to break
up a match. We choose another vertex u, adjacent io v, which was previously maiched
1o, say, w. We match v to « and break up the match between u and w. We now have to
find a match for w. If w is connected 1o an unmatched vertex, then we are done {this was
the first case above); if not, we can continue this way by breaking matches and trying
rematches, To transkate this attempt into an algorithm, we have to do two things. Firsg,
we have to make sure that this procedure terminates, and second, we have to show that, if
there is an improvement, then this procedure wili find it, Firest, we formalize this idea.

An alternating path P for a given matching M is a path from a vertex vin Vio a
vertex, ¥ in {/, both of which are unmatched in M, such that the edges of P are
alternatively in £ —M and in M. That is, the first edge (v, w) of P does not belong 1o M
(since v does not belong to M), the second edge (w, x) belongs to M, and so on, until the
last edge of P, {z, u), which does not belong to M. Notice that alternating paths are
exactly what we used already to improve a matching. The number of edges in P must be
odd since P starts in ¥ and ends in {/. Furthermore, there is exactly one more edge of P
in £ —M than there is in M. Therefore, if we replace all the edges of P that belong 1o M
by the edges that do not belong to M, we get another matching with one more edge. For
example, the first alternating path we used to improve the maiching in Fig. 7.37(a) was
(1A, A2, 2B), which was used to replace the edge A2 with the edges 1A and 28; the
second alternating path was (C3, 30, D4, 4E, E5), which was used to replace the edges
30 and 4E with the edges C3, D4, and E5,

i 2 3 4 5 & ! 2 3 4 5 6
\ T
W MW
A B C D E F A B C D E F
{a) (h}

Figure 7.37 Extending a bipartite matching.

7.10 Matching 237

It should be clear now that, if there is an alternating path for a given matching M,
ther: M is not maximum. It turns out that the opposite is also true,

7 Alternating-Path Theorem
A matching is maximum if and only if it has no alternating paths. 3

This claim will be proved, in the context of a more general theorem, in the next section.

The aliernating path theorem immediately suggesis an algorithm, because any
matching that is not maximum has an alternating path and any alternating path can extend
a matching. We start with the greedy algorithm, adding as many edges to the matching
as possible, untit we get a maximal matching. We then search for an aliernating path,
and modify the matching accordingly until no more alternating paths can be found. The
resulting matching is maximum. Since each alternating path extends a matching by one
edge and there are at most #/2 edges in any matching (where # is the number of vertices),
the number of ierations is at most n/2. The only remaining problem is how to find
aliernating paths. We solve this problem as follows. We transform the undirected graph
G to a directed graph G’ by directing the edges in M to point from U/ to V and directing
the edges not in M 1o point from V 1o U. Figure 7.38(a) shows the matching obtained for
the graph in Fig. 7.37%(a), and Fig. 7.38(b) shows the directed graph . An alierating
path corresponds exactly to a directed path from an unmatched vertex in ¥V to an
unmatched vertex in U. Such a directed path can be found by any graph-search
procedure, for example, DFS. The complexity of a search is O ({V | + | E |); hence, the
complexity of the algorithm is O {|V | (V| + [E |}

An Improvement

Since a search can traverse the whole graph in the same worst-case running time that it
traverses one path, we might as well try 1o find several alternating paths with one search,
We have to make sure, however, that these paths do not modify one another. One way to
guarantee the independence of such alternating paths is to restrict them to be vertex

i U
! 2 3 4 5 6 i 2 3 4 5 6
A B C D E F A B C D E F
Vv v
{aj (b}

Figure 7.38 Finding alternating paths.

238 Graph Algorithms

disioint. If the paths are vertex disjoint, they modify different vertices, so they can be
applied concurrently. The new improved algorithm for finding alternating paths 1s the
following. First, we perform BFS in (" from the set of all unmatched vertices in V, level
by level, until a level tn which unmatched vertices in {/ are found. Then, we extract from
the graph induced by the BFS a maximal set of vertex disjoint paths in ¢’ (which are
alternating paths in G). This is done by finding any path, removing its vertices, finding
another path, removing its vertices, and so on. (The result is not a maximum set, but
merely a maximal set.) We choose a maximal set in order to maximize the number of
edges added to the matching with one search (each vertex-disjoint alternating path adds
one edge to the matching). Finally, we modify the matching using this set of alternating
paths. This process is repeated unrtll no more alternating paths can be found (i.c., the new
directed graph G’ disconnects the unmatched vertices in V from the unmatched vertices

in U,

Complexity It tums out that the number of iterations of the improved algorithm is
O(N|V]) in the worst case. 'We omit the proof, which is due to Hoperoft and Karp
[1973]. The overalt worst-case running time is thus O({|V | + | E VIV 1)

7.11 Network Flows

The problem of network flows is a basic problem in graph theory and combinatorial
optimization. 1t has been studied extensively for the last 35 years, and many algorithms
and data structures have been developed for it. It has many variztions and extensions,
Furthermore, many seemingly wnrelated problems can be posed as network-flow
problems. The basic variation of the network-flow problem is defined as follows. Let
G=(V, E) be a directed graph with two distinguished vertices, s (the source) with
indegree 0, and 7 (the sink) with outdegree 0. Each edge e in E has an associated positive
weight ¢ (¢}, called the capacity of e. The capacity measures the amount of flow that can
pass through an edge. We call such a graph a network. For convenience we assign a
capacity of 0 to nonexisting edges. A flaw is a function f on the edges of the network
that satisfies the following two conditions:

i, O<fleyscie) The flow through an edge cannot exceed the capacity of
that edge.
2 For all veV~{s,17), T flu,v)=% f{v,w) The total flow entering a
M "

vertex is equal to the total flow exiting this vertex (except for the source and
sink).

These two conditions imply that the total flow leaving s is equal to the total fiow entering
1. The problem is to maximize this flow. (If the capacities are real numbers, then it is not
even clear that maximum flows exist; we will show that they indeed atways exist.) One
way 1o visualize this problem is to think of the network as a network of water pipes. The
goal is to push as much water through the pipes as possible. If too much water is pushed
to the wrong area, the pipes wiil burst.

7.11 Network Flows 239

First, we show that the proeblem of bipartite matching, discussed in the previous
section, can be posed as a network-flow problem. This may seem to be a fruitless
exercise, since we already know how to solve the matching problem, but we do not know
how to solve the network-flow problem (namely, the reduction is in the wrong direction).
The reason we present this wrong-order reduction is that the techniques for solving the
network-flow problem are similar to those for solving the bipartite matching problem.
Understanding the similarities can be helpful in understanding network-flow algorithms.

Given a bipartite graph G =(V, E, U} in which we want to find a maximum-
cardinakity matching, we add two new vertices s and ¢, connect s 1o all vertices in ¥, and
connect all vertices in {/ to . We aiso direct all the edges in £ from V 1o U (see Fig.
7.39, in which all edges are directed from left to right). We now assign capacities of 1 to
all the edges, and we have a valid network-flow problem on the modified graph G". Let
M be a maiching in . There is a natural correspondence between M and a flow in &,
We assign a flow of 1 to all the edges in M and to all the edges connecting s or ¢ to
matched vertices in M. All the other edges are assigned a flow of 0. The total flow is
thus equal to the number of edges in the matching. It tums out that M is a maximum
matching if and only if the corresponding flow is 2 maximum flow in . One side is
clear: H the flow is maximum and it corresponds 10 a matching, then we cannot have a
larger matching, since it would correspond to a larger flow. For the other side of the
claim we somehow have to adapt the idea of alternating paths to network flows, and to
show that, if there are no alternating paths, then the corresponding flow is maximum. We
proceed to do just that.

An augmenting path with respect to a given flow fis a directed path from s to ¢
which consists of edges from &, but not necessarily in the same direction; each of these
edges (v, 1) satisfies exactly one of the following 1wo conditions:

l. (v, u} is in the same direction as it is in G, and f (v, u) <c{v, u). In this
case, the edge (v, u) is called a forward edge. A forward edge has room for

Figure 7.39 Reducing bipartite matching to network flow (the directions of all the
edges are from left to right).

240 Graph Algorithms

more flow. The difference ¢ (v, u) - f (v, u} is called the slack of the edge.

2. (v, u} s in the opposite direction in G {namely, (4. v)& E), and f (4, v} > 0.
In this case, the edge (v, «) is called a backward edge. It is possible to
borrow some flow from a backward edge.

Augmenting paths are extensions of alternating paths, and they serve the same
purpose for network flows as alternating paths do for bipartite matching. If there exists
an augmenting path with respect to a flow f (we say that f admits an augmenting path),
then £ is not maximum. We can modify f by moving more flow through the augmenting
path in the following way. If all the edges of the path are forward edges, then more flow
can be moved through them, and all the constraints are still satisfied. The extra flow in
that case is exactly the minimum slack of the edges in the path. The case of backward
edges is a litle more complicated. Consider Fig. 7.40. Each edge is marked with two
numbers a/b, such that « is the capacity and b is the current flow. It is clear that no more
flow can be pushed forward, since there is no path from s to ¢ that consists of only
forward edges. However, there is a way to extend the flow.

The path s—v—u—w—t is an augmenting path. An additional flow of 2 can reach u
from s through this path (2 is the minimam slack over all forward edges uatil). We can
deduct a flow of 2 from £ (w, u). The conservation constraint is now satisfied for u, since
u had an additional flow of 2 coming in through the augmenting path, and a flow of 2
deducted from the backward edge. We now have an extra flow of 2 at w that needs to be
pushed, which is exactly what we want. We can continue pushing flow from w in the
same way, pushing it forward on forward edges, and deducting it from backward edges.
I this case, there is one forward edge {(w, 1) that reaches 1, and we are done. Since only
forward edges can leave s and enter 7, the total flow is increased, The increase is equal to
the minimum of either the minimal slack of forward edges or the minimal currens flow
through backward edges. Figure 7.41 shows the same network with the modified flow.
(This flow is in fact maximum.)

43
55 32 3/3
] AR LR A
F
6/5 11 913 63
si5 W

Figure 7.40 An example of a network with a2 (nonmaximum} flow.

7.1 Network Flows 241

3/5 w

Figure 7.41 The result of augmenting the flow of Fig. 7.40.

The arguments above establish that if there is an augmenting path, then the flow is
not maximum. The opposite is also frue:

[0 The Augmenting-Path Theorem
A flow [is maximum if and only if it admits no augmenting path,

Proof: We have already shown one direction of the theorem — if the flow admits
an augmenting path, then it is not maximum. Let’s assume now that a flow f admits no
augmenting path, and prove that fis maximum. We use the concept of cuts. Intuitively,
a cuf is a set of edges that separate s from . More precisely, let A be a set of vertices of
Vsuch that s € A and r ¢ A. Denote the rest of the vertices by B=V —A. A cutis the set
of edges {(v, wie E} such that v € A and w € B. The capacity of the cut is defined as the
sum of the capacities of its edges. It is clear that no flow can exceed the capacity of any
cut. (If you disconnect the pipes, no water can flow through them.) Hence, if we find a
flow whose value is equal to the capacity of a (any) cut, then this flow must be maximum.
We proceed to prove that, if a flow admits no augmenting paths, then it is equal to the
capacity of a cut, and hence it is maximum,

Let fbe a flow that admits no asgmenting path. Let A CV be the set of vertices
such that for each v e A there is an augmenting path, with respect to the flow £, from s 1o
v. Clearly, s€ A4, and t4 A (since we assumed that f admits no augmenting path}.
Therefore, A defines a cut. We claim that, for all edges (v, w) in that cut,
F v, wi=c(v, w). Otherwise, (v, w) would be a forward edge and there would be an
augmenting path fo w, conirary to our assumption that wd A. By the same argument,
there cannot be an edge (w, v) such that w ¢ A and v € 4, and f (w, v) > 0 (since it would
be 2 backward edge and it could extend an augmenting path). Hence, the value of the
How fis equal 1o the capacity of the cut defined by A, and fis maximum. 3

242 Graph Algorithms

We have proved the following fundameniat theorem.
0 Max-Flow Min-Cut Theorem

The value of a maximum flow in a network is equal to the minimum capaciry
of a cut. O

The augmenting-path theorem also implies the following theorem.
3 The Integral-Flow Theorem

If the capacities of all edges in the network are integers, then there is a
maximum flow whose value is an integer.

Proof: The theorem follows directly from the augmenting-path theorem. In fact,
any algorithm that uses only augmenting paths will fead to an integral flow if all the
capacities are integers. This is obvious since we start with a flow of 0, and each
augmenting path adds an integer to the total flow. O

We now return to the bipartite-matching problem. Clearly, any alternating path in
G corresponds to an augmenting path in G, and vice versa. The augmenting-path
theorem implies the aliernating-path theorem given in the previous section. If M is a
maximum matching, then there is no alternating path for i, which implies that there is no
augmenting path in &', which implies that the flow is maximum. On the other hand,
there 15 a maximum integral flow, and it clearly corresponds 1o a matching since each
vertex in V is connected by only one edge {with capacity 1) to s; hence, each vertex of V
can support a flow of only 1. The same argument holds for the vertices of U/. This
matching must be maximum since, if it could be extended, then there would be a larger
flow.

The angmenting-path theorem immediately suggests an algorithm. We start with a
flow of 0, search for augmenting paths, and augment the flow accordingly, until there are
no more augmenting paths. We are always making progress since we are increasing the
flow. Searching for augmenting paths can be done in the following way. We define the
residual graph, with respect 10 2 network G =(V, E} and a flow f, as the network
R =(V, F) with the same vertices, the same source and sink, and the same edges, but with
possibly different directions and different capacities, The edges in the residual graph
correspond to the possible edges in an augmenting path. Their capacities correspond t©
the possible augmenting flow through those edges. More precisely, an edge (v, w)
belongs to F if it is either a forward edge, in which case its capacity is ¢ (v, w)—f (v, w},
or a backward edge, in which case its capacity is f (v, w). An augmenting path is thus a
regular directed path from s to f in the residual graph, Constructing the residual graph
requires | E | steps since each edge has to be checked exactly once.

Unfortunately, selecting augmenting paths in an arbitrary way may lead 1o a very
slow algorithm, The worst-case running time of such an algorithm may not even be a
function of the size of the graph. Consider the network in Fig. 7.42. The maximum flow
is obviously 2M. However, one might start with the path 5 ~a —b~t, which can support a
flow of oniy 1. Then, one might take the augmenting path s-b-a-t, which again

7.12 Hamiltenian Feurs 243

5
Figure 7.42 A bad example of network flow.

augments the flow by onty 1. This process can be repeated 2M times, where M may be
very large, even though the graph has only four vertices and five edges. (Since the value
of M can be represented by O (log M) bits, this algorithm is exponential, in the worst
case, in the size of the input.)

Although the scenario above may be unlikely, we have to take precautions to avoid
it. Furthermore, we want to minimize the number of augmentations in order to speed up
the atgorithm. Edmonds and Karp {1972], for example, suggested (among other things)
selecting the next augmenting path by taking the augmenting path with the minimum
number of edges. They proved that, if this pelicy is maintained, then at most
(V|- 1V 1)/4 augmentations are required. This Jeads to an algorithm whose worst
case is polynomial in the size of the input. Many different algorithms have been
suggested since then. Some are complicated; others are relatively simple (none are really
simple}. An upper bound of O}V 1% on the complexity of network flow has been
achieved by several of these algorithms. We will not describe these algorithms here
{references are given in the Bibliography section).

7.12 Hamiltonian Tours

We started this chapter with a discussion of a tour containing all edges of a graph. We
end the chapler with a discussion of a tour containing all the vertices of a graph. This is
also a famous problem, named after the Irish mathematician Sir William R. Hamilton,
who designed a popular game based on this problem in [R37.

The Problem Given a graph G=(V, E), find a simpie cycle in G
that includes every vertex of ¥ exactly once.

244 Graph Algorithms

Such a cycle is called a Hamiltonian cycle. Graphs containing such cycles are called
Hamiltonian graphs. The problem has a directed and an undirecied version; we will
consider only the undirected version.

Uniike the Eulerian-four problem, the problem of finding Hamiltonian cycles (or
characterizing Mamiltonian graphs) is very difficult. It belongs to the class of NP-
complete problems discussed in Chapter 1]. In this section, we present a simple example
in which we find Hamiltonian cycles in orly special graphs that are very dense. The
most interesting part of this example is the use of an interesting technique called
reversed induction.

7.12.1 Reversed Induction

We have already seen reversed induction in Section 2.1, The idea is to use an infinite
set S{e.g., S = {2%), k=1, 2,..) asthe base case for the induction, That is, we prove that
the theorem P () holds for all values of n that belong to §. Then, we go ‘backward,””
proving that the validity of P{n) implies the validity of P{n-1). Usually in
mathematics, going from » to n~ I is not easier than going from n—1 to n, and proving
an infinite base case is much meone difficult than a simple one, When designing
algorithms on the other hand, it is almost always easy to go from n 1o 2~ 1, namely, 10
solve the problem for smaller inputs. For example, we can introduce “*dummy’’ inputs
that do not affect the outcome. As a result, it is sufficient in many cases to design the
afgorithm not for inputs of all sizes, but only for sizes taken from an infinite set. The
most common use of this principle is designing algorithms only for inputs of size n which
is a power of 2. It makes the designh much cleaner and eliminates many **dirty”” details.
Obviously, these details will have to be resolved eventually. But it is more convenient to
solve the main problem first. We use the assumption that n is a power of 2 in several
algorithms throughout the book (e.g., Sections 8.2, and 9.4).

The same method is also useful when there is a bound on the number of possible
elements. The base case of the theorem can be the instance with the maximal number of
elements (rather than the minimal number). The proof can then ‘‘go backward.”” For
example, suppose that we want to prove a theorem about graphs and we wani to apply
induction on the number of edges. We can start with the complete graph, which has the
maximal number of edges for a fixed number of vertices. We can then prove that the
theorem continues 1o hold even if we remove an edge (as opposed to the usual adding of
an edge). This gives us extra flexibility in applying induction. The next algorithm
illustrates this priaciple,

7.12.2 Finding Hamiltonian Cycles in Very Dense Graphs

Let G =(V, £) be a connected undirected graph, and let d{v) denote the degree of the
vertex v. The following problem involves finding Hamiltonian cycles in very dense
graphs. We will show that the conditions of the problem guarantee that the graph is
Hamilionian. We introduce the problem 1o illustrate the principle of reversed induction.

712 Hamiltonian Tours 245

The Problem Given a connected undirected graph G =(V, E) with
n 23 vertices, such that each pair of nonadjacent vertices v and w
satisfies d(v)+d(w)Zn, find & Hamiltonian cycle in G.

The algorithm is based on reversed induction on the number of edges. The base case is
the complete graph. Every complete graph with at least three vertices contains a
Hamiltontan cycle and it is easy to find one {put all vertices in an arbitrary order and
connect them in a cycle).

Induetion hypothesis: We know how to find a Hamiltonian cycle in graphs
satisfving the given conditions with 2 m edges.

We have to show how to find a Hamiltonian cycle in a graph with m—1 edges that
satisfies the conditions of the problem. Let & =(V, £} be such a graph. Take any pair of
nonadiacent vertices v and w in G, and consider the graph ', which is the same as G
except that v and w are connected. By the induction hypothesis, we know how to find a
Hamiltoniar cycle in G". Let x|, x3, ..., X,, X be such a cycle in G’ (see Fig. 7.43) If
the edge (v, w) is not included in the cycle, then the same cycle is contained in G and we
are done. Otherwise, without loss of generality, we can assume that v=x, and w=x,.
By the conditions given for G, d(v)+d(w)2n. The stage is now set to find a new
Hamiltonian cycle.

Consider all the edges in &G coming out of v and w. There are at least n of them (by
the conditions of the problem). But & contains n — 2 other vertices. Therefore, there are
two vertices x; and x;,;, which are neighbors in the cycle, such that v is connected to x;
and w is connected to x;. Using the edges (v, x;,;) and (w, x;), we can now find a new
Hamiltonian cycle that does not use the edge (v,w) It is the cycle
VX Kinps Xig2e oo WXL X5, X1y, o0 v (5e€ Fig, 7.43),

W v

Xiel i

Figure 7.43 Modifying Hamilonian cycles,

246 Graph Algorithms

implementation The straightforward implementation of this proof stants with the
complete graph and replaces one edge at a time. We can do better by starting with a
much smaller graph as follows. Take the input graph &, find a large path (e.g., by DES),
and add the edges (not from () necessary to complete this path to a Hamiitonian cycle.
We now have a larger graph (7', which has 2 Hamiltonian cycle. Usually, only few edges
will be added. However, even in the worst case, at most n— | edges will be added. We
can apply the proof above iteratively, starting with (G, until a Hamiltonian path is
obtained for G. The total number of steps 1o replace an edge is O(n). There are O(n)
edges to replace; hence, the algorithm runs in time O (n?).

7.13 Summary

Graphs are used to model relationships among pairs of objects. Since most algorithms
require an examination of the whole input, the first issue invelved in graph algorithms is
frequently graph traversal. We studied two types of graph traversals: depth-first search
(DFS), and breadth-first search (BFS). We saw several examples where DFS was more
suitable than BFS, Therefore, we suggest trying DFS first (although there are many
examples where BFS is superior). DFS is especially suited for recursive algorithms on
graphs. BES also usually requires more space {although again, this is not a rule — it
depends on the graph). We have also seen an example of priority search, which was
used o compute shortest paths from a single source. Priority search is more expensive
than regular search. 1t is useful for optimization problems involving weighted graphs.

Cycles usually cause major difficulties for graph algorithms. Therefore, algorithms
for trees or directed acyclic graphs are usually much easier to design and faster to
execute. It is important to realize that graphs with even a small number of edges can
have many different cycles (Exercise 7.54). Algorithms that require checking all or a
large fraction of the cycles in a graph can be very slow for most graphs.

Graph decomposition is very wseful. Fortunately, it is also wsually reasonably
inexpensive. We have seen decompositions info connected components, biconnected
components, and strongly connected components. Decompaosition basically allows us to
assume Ccertain properties {such as connectivity), even though the graphs under
consideration may nof have them.

Another useful technique for graph algorithms is reduction, Since graphs can be
represented by matrices there Is a nawral relationship between graph and matrix
algorithms, We discuss this relationship and reductions in general in Chapter 10
Network-flow problems and matching problems are excellent source for reductions.
Reductions also help us to determine whether a problem is difficult. In Chapter 11, we
discuss a class of problems, called NP-complete problems, which probably cannot be
solved by algorithms whose running times are polynomial in the size of the input in the
worst case. This class includes numerous graph problems. The differences between easy
problems and hard problems sometimes seem minuscule, For example, we have seen an
efficient algorithm to determine whether a directed graph contains a simple ¢ycle of odd
length; the same problem with the extra constraint that the cycle contains a given vertex
{or edge) is NP-complete. It is essential to understand and develop an intuitive feeling

Bibliographic Netes and Further Reading 247

for these differences. Thus, the material in Chapter 11 is very important for
understanding graph algorithms.

Bibliographic Notes and Further Reading

(raph theory is a relatively new field in mathematics. Most of the basic results were
discovered only in this century. Nevertheless, by now graph theory is a developed and
well-understood field, with thousands of resublts. Many books on graph theory have been
published, among them Berge [1962], Ore {1963], Harary {1969), Berge [1973], Deo
{1974], Bondy and Murty {1976}, Chartrand [1977], Capobianco and Molluzzo [1978],
Botlobés [1979], Tutte [1984], and Chartrand and Lesniak {1986]. There are also several
books devoted to graph algorithms, including Even [1979], Gelumbic [1980] (which
emphasizes perfect graphs and related classes of graphs), Gondran and Minoux [1984)
{which emphasizes optimization problems), Gibbons [1985], Nishizeki and Chiba [1988]
(which is devoted to planar graphs), and a survey paper by van Leeuwen [1986].

The notion of Eulerian graphs is due to Euler {1736], and it is regarded as the first
resubt in graph theory. An algorithm for finding Eulertan paths can be obtained quite
easily from the proof (see, for example, Even [1979] or Ebert [1988]). Depth-first search
was first described by Lucas [1882] (describing work by Trémaux) and Tarry [1895],
where it was used to design algorithms to traverse a maze., The importance of depth-first
search was made evident in the work of Tarjan [1972], who also presented the algorithms
for biconnected and strongly connecied components.

The minimur-cost spanning tree problem has been studied extensively. The
algorithm presented in Section 7.6 (although not its implementation) is due to Prim
{1957). Another algorithm (which is the subiect of Exercise 7.59) is due o Kruskal
{1956). Other algorithms for finding the minimum-cost spanning tree were developed by
Yac [1975], Cheriton and Tarjan [1976), Fredman and Tarjan [1987], and Gabow, Galil,
Spencer, and TFarjan [1986]

The algorithm for single-source shortest paths presented in Section 7.5 was
developed by Dijkstra [1959). The implementation using a heap is due to Johnson [1977]
(see also Tarjan {1983)]). When the graph is sparse, as is usually the case in practice, this
is a fast algorithm. If the number of edges is proportional to |V |2, then the running time
of this algorithm is O(|V |*log |V |. A better implementation for dense graphs, with a
running time of O(|V |%), is the subject of Exercise 7.43. The best-known asymptotic
running time for this problem (using quite complicaied data structures) is
GUE]+ |V |tog IV), a result due to Fredman and Tarian [1987]. The all-pair
shortest-paths algorithm presented in Section 7.7 is due to Floyd {1962]. I works
correctly for weighied graphs with possibly negative weights, provided that there are no
negative weight cycles (Exercise 7.73). It is possible to find all the shortes: paths faster
on the average — Spira [1973] presented an algorithm whose average running time is
O (1V |* log? 1V |}, and Moffat and Takaoka [1987) used a hybrid of Spira’s algorithm
and an earlier algorithm by Danizig [1960] 10 obtain an algorithim whose average running
time is O(|V |2tog 1V 1), For more information on shortest-path algorithms see the
survey by Deo and Pang [1984] (which includes, among other things, 222 references).

248 Graph Algorithms

The transitive closure algorithm presented in Section 7.8 is due to Warshall {1962).

The augmenting-path theorem and its application to network flows were
discovered by Ford and Fulkerson [1956]. An excellent description of the data structures
and combinatorial algorithms for network flows is given in Tarjan [1983]. A new
algorithm for network flow was recently developed by Goldberg and Tarjan [1988].
Maore information on the network-flow problem and many of its extensions can be found
in Ford and Fulkerson [1962], Hu [1969], Christofides {1975], Lawler {1976]. Minieka
[1978], Papadimitriou and Steiglitz [1982}, and Gondran and Minoux {1984]. A book by
Lovdsz and Plummer [1986} covers both the mathematical foundations of matching
theory and algorithms for various matching problems. Galil {1986] presents a survey of
matching algorithms in bipartite and general graphs. The algorithm in Section 7.12.2 for
finding Hamiltonian cycles in dense graphs is based on a theorem (and its proof) by Ore
[1960%.

Two important subjects in graph algorithms were not discussed here: planarity and
graph isomorphism. The problem of characierizing planar graphs and embedding them
in the plane is one of the oldest problems in graph theory. Early algorithms for this
problem were developed by Auslander and Parter {1961] and Lempel, Even, and
Cederbaum [1966]. A linear-time algorithm 1o determine whether a graph is planar was
developed by Hoperoft and Farjan [1974]. It uses a linear-time (DFS-based} algorithm to
decompose a graph into 3-connected components (Hopcroft and Tarjan [1973]). This
algorithm motivated the development of many other algorithms and data structures, A
polynomial-time algorithm for graph isomorphism has not been found yet. Graph
isomorphism is one of the very few major problems whose status (either polynomial or
NP-hard) is still unknown (more on that in Chapter 11). For a discussion on this topic
see, for example, Hoffman [19821, or Luks [1982].

A discussion on de Bruijn sequences {Exercise 7.28) can be found in Even [1979].
Exercise 7.46 is from Sedgewick and Vitter {1986]. Exercise 7.55 is motivated by an
exercise from Bollobds [1986], and Exercise 7.58 is motivated by an exercise from
Lovdsz [1979]. Ford {1956} contains an algorithm that satisfies the requirements of
Exercise 7.75, The algorithm for transitive closure hinted in Exercise 7.81 is from
Warren {1975). Exercise 7.97 is from Lovdsz and Plummer [1986). Gabow and Tarjan
{1988] present an efficient algorithm for the bottleneck problem in Exercise 7.100. The
theorem presented in Exercises 7.101 and 7.102 is known as Gomory's theorem.
Exercise 7.105 is from Lovédsz {1979). Exercise 7.121 is related to a problem of
designing space-efficient routing tables, which is solved in Manber and McVoy [1988].

Drill Exercises

7.1 Censider the problem of tinding balunce factors in binary trees discussed in Section 5.8.
Solve this problem using DFS. You need only to define pre WORK and postWORK,

7.2 Let G =¢V, E) be a connecied undirected graph, and let 7 be & DFS tree of (G rooted at v,

7.3

1.4

7.5

7.6

73

18

79

110
11

7.12

1.43

Drill Exercises 249

a. Let Hf be an arbitrary induced subgraph of (7. Show that the intersection of T and H is
not necessarily a spanning tree of H.

b. Let R be a subtree of T, and let § be the subgraph of G induced by the vertices in R.
Prove that R could be a DFS tree of 5.

The input is a connected undirected graph G =(V, E), a spanning iree T of G, and a vertex v.
Design a algorithm to determine whether T is a valid DFS tree of G rooted at v. In other
worids, determine whether T can be the output of DFS under some order of the edges
stagting with v, The running time of the algorithm should be O(LE | + }V }).

Characlerize ali undirected graphs that contain a vertex v such that there exists a DFS
spanning iree rooted at v that is identical to a BFS spanning tree rooted at v. (Two spanning
trees are identical if they contain the same set of edges: the order in which they are
traversed is immaterial here. However, both trees must kave the same root v.)

Modify aigorithm Topological Sorting (Fig. 7.14) in the following way. Assume that you
no fonger know whether or not the graph is acyclic. Obviously, if the graph is cyclic, a
topological sort is impossibie. Design an algorithm that will output the topologicai-sort
tabeling if the graph is acyclic, and will output a cycie if the graph is not. The running time
of the algorithm should be O (1 E | + |V {).

Consider algorithm Single Source Shortest Paths (Fig. 7.17) Prove that the subgraph
consisting of all the edges that belong to shortest paths from v, feund during the executicn
of the atgorithm, is a tree rooted at ».

Let G =(V, E) be an undizrected weighted graph, and let T be the shortest-paths tree rooted at
a vertex v {Exercise 7.6). Suppose now that all the weights in & are increased by a constant
number ¢. Is T still the shortest-paths tree from v?

Prove or show a counterexample: Algorithm Single_Sowrce_Shortest_Paths {Fig. 7.17)
works correctly for weighted graphs some of whose edges have negative weights, prqvide{l
that there are no negative-weight cycles, ’

.

Let G =(V, E) be an undirected weighted graph. Prove tha, if ali the costs are distinct, then
there exists exactly one unique minimum-cost spaaning tree,

Medify algorithm MCST (Fig. 7.20) to find a maxinam-cost spanning tree.

Prove or show a counterexample: algorithss MCST (Fig. 7.20} works correctly for weighted
graphs some of whose edges have negative costs.

a. Give an example of a weighted connected undirected graph G ={V, £} and a vertex v,
such that the minimum-cost spasning tree of G is the same as the shortest-path tree
rooted at v.

b. Give an example of a weighted connected undirected graph G =(V, £) and a vertex v,
such that the minimum-cost spanning tree of G is very different from the shortest path
tree rooted at v. Can the two trees be completely disjoint?

Describe the changes in the biconnected components and biconnected tree resulting from
deleting the vertex ¢ from the graph in Fig. 7.25,

a. Run the bhiconnected componends algorithm on the graph in Fig. 7.44, The algorithm

250

7.15

T.16

717

Graph Algorithms

should follow the DFS numbers that are given in the figure. Show the High values as
computed by the algorithm in each step.

. Add the edge {4,8) to the graph and discuss the changes this makes to the algorithm.

Prove that the definition of a biconnected tree in Section 7.9.1 is valid. You have to show
that there are no cycles, and that the set of all biconnrected components are connected.

a. Run the strongly connected componenis algerithm on the graph in Fig. 7.45. The
algorithm should follow the DFS numbers that are given in the figure. Show the High
vatues as computed by the algorithe in each step.

b. Add the edge {4,1) to the graph and discuss the changes this makes to the algorithm.

Let G =¢V, E} be a strongly connected graph and let T be a DFS tree in . Frove that, if alf
the forward edges in G, with respect te T, are removed from &, the resuiting graph is stk
strongly connected.

Figure 7.44 An undirected graph with DFS numbers for Exercise 7.14.

I

Figure 7.48 A direcled graph with DFS numbesrs for Exercise 7.16.

7.8

7.20

Creative Exercises 25}

a. Prove the comectness of the aigorithm for finding an odd length cycle in a directed graph
{Section 7.9.4).

b, Show an example of a graph that is not strengly connected for which the algorithm does
not work.

Show an implementation of the algorithm discussed in Section 7.10.2 o find a perfect
matching in & graph with 2 vertices, each with degree at least n. Your algorithm should
run in time OC[V | + | E |} in the worst case.

This exercise generalizes somewhat the proof of existence of perfect matchings ia dense
graphs. Suppose that you are given a graph with 2 vertices such that not ali of them have
high degree, but, for any two nonadjacent vertices, the sum of their degrees is at feast 2n. Is
it still true that a perfect matching atways exists? Is the algorithm obtained in Exercise 7.19
stifl valid?

(Creative Exercises

721

7.22

723

724

7.25

Uniess specified otherwise, we assume that the graphs are given in an adjacency-Jists
representation. Such a representation requires O {1V | + | F |) space; hence, we say that an
algorithm runs in finear time if its running time is O (|V |+ |E{). Ualess specified
otherwise, all the ruaning times are worst case. In some cases, a particudar running tisse is
given and the exercise requires achieving that time; in other cases, we ask only for an
“efficient algorithm.”” In the latter case, the reader should try o find the best possible
algorithm. In practice, of course, the best runping time is unknown when a problem is
encouniered.

(Given an undirected graph G =(V, E) and an integer &, find the maximum induced subgraph
H of G such that each vertex in A has degree > £, or determing that it dees not exist, (An
induced subgraph of a graph G =(V, E) is a graph # =(U/, F) such that <V, and F
inctudes all edges in E both of whose vertices are in U.) The algorithm shouid run in linear
tisne. (This problem is discussed in Section 3.3.}

Let G =(V, E) be a connected undirected graph, We want to pick a vertex of degree of G,
remove it and its incident edge from &, and continue this process (i.e., taking another veriex
of degree 1 in the remaining graph, removing it, and so on) until alf edges are removed. If
this procedure is always possible for certain graphs, then designing algorithms by induction
for these graphs may be easier. Characterize connected undirected graphs that satisfy these
conditions. In other words, find necessary and sufficient conditions for a graph & on which
the procedure described above is possible.

Describe an efficiens impiementation of the Eulerian graph algorithm discussed in Section
7.2, The algoriths shouid run in linear time and space,

Let G =(V, E) be an undirected graph such that each vertex has an even degree. Design a
linear-time algoriths o direct the edges of & such thal, for each vertex, the outdegree is
equal to the indegree.

A directed Fulerian circuit is a directed circuit that contains each edge exactly once. Prove

252

7.26

7.28

7.30

7.31

1.32

7.33

Graph Algorithms

that a directed graph contains a direcied Eulesian cizcuit if and only if the indegree of cach
vertex is equal to its outdegree, and the underlying undirected graph is connected. Design
an efficient algorithm 1o find such an Eulerian circuit if it exists.

Let G ={V, F} be an undirected connected graph with & vestices of odd degrees.
a. Prove that k is even.

b. Design an algorithm to find £/2 open paths such that each edge in G is inciuded in
exactly one of these paths.

Design an algerithm to find a vertex in a connected undirected graph whose removal does
not disconnect the graph. The algorithm should run in Hnear time. (Do not use the
biconnecied components algorithm.) As a conseguence, prove that every connected graph
contains such & veriex.

A binary de Bruijn sequence is a (cyclic) sequence of 27 bits @ a4 - - - @47 such that each
binary siring s of size n is represented somewhere in the sequence; that is, there eXists a
unigue index fsuch that s = ¢; ¢4y * ** G4 (Where the indices are taken modulo 2°). For
example, the sequence 11010001 is a binary de Bruijn sequence for n =3, Let &, ={V, £}
be a directed graph defined as follows. The vertex set V corresponds to the set of all binary
strings of size n~1 {|V | =27"!). A vertex corresponding to the string @, a, - - @,_, has
an edge leading to a vertex comesponding to the string b, by -+ b, if and enly if
dadsy ' dgey = by by o by, Prove that G, is a directed BEulerizn graph, and discuss
the implications for de Bruijn sequences.

Design an efficient algorithm for the following problem: Given n positive integers
dy,dy, ... d,, such that d +d,+ -+ +d,=2n~2, construct a tree with n vertices of
degrees exactly dy, dy, ..., d,.

Let(i;, 0,), (I3, 02), ..., (i,, 0,} be a sequence of pairs of integers such that

a. i;=0,andi;=1fori<ksa

b Fo=n-1

jul
Find a rooted iree with # vertices such that the indegree of vertex k is i, and its outdegree is
0. The algorithm should rur in time O (n).

Let G =(V, E} be a directed graph (not necessarily acyclic). Design an efficient algorithm
to labei the vertices of the graph with distinct labels from 1 to [V | such that the label of
each vertex v is greater than the label of at least one of v's predecessors (if v has any), or 1o
determine that no such labeling is possible. {w is a predecessor of v if (w, v}e E.)

An undirected graph G ={(V, E} is said to be &-colorable if ali the vertices of G can be
colored using k different colors such that no two adjacent vertices have the same color.
Design a linear-time algorithm 1o color a graph with two cologs or determine that two colors
are not sufficiens,

let G={V, E} be an undirected graph that can be colored with two colors. 1t may be
possible to color G with two colors in several different ways. Use the algorithm in Exercise
7.32 1o prove that the coloring 0f G is unigue (except for interchanging the colors, which
can always be done) if and only if GG is connected.

l:_.,
e |

1.39

740

741

7.43

Creative Exercises 253

Let T be an undirected tree (not necessarily binary) whose root is #. Each vertex in T is
associated with a character taken from a fixed finite alphabet. The tree is represented by
adjacency lists. Let P be a pattern string (represented by an array of characters). Besign an
algorithm to find whether the pattern appears at least once in & path from the root 10 a leaf,
The atgorithm should run in time O (n +m) in the worst case, where # is the number of
vertices in the tree and m is the size of the pattern.

Given a connected undirected graph G = (V, £} that contains exactly one cycle, direct the
edges such that the indegrees of all vertices are at most {. {Such directed graphs are called
injective since they cormespond to injective functions.) What is the complexity of your
algorithm?

ket G =(V, E) be an undirected graph. Design an algorithm to determine whether it is
possible 1o direct the edges of G such that the indegree of every ventex is at feast 1. If it is
possible, then the algorithm shouid show a way to do it.

Ciiven a connected undirecied graph G ={V., E), direct its edges such that the following two
conditions are satisfied:

a. The resuiting directed graph contains a rooted iree (i.e., a tree all of whose edges poing
away from the root),

b. Any edge, which does not belong to the tree above, completes 2 directed cycle with
edges of the tree,
What is the complexity of your atgorithm?

Given a directed acyclic graph ¢ = (V, £), find a simple (directed) path in & that has the
maximum number of edges among afl simple paths in . The aigorithm shouid run in linear
fime.

a. Solve the problem in Exercise 7.38 for the case of weighted graphs. That is, you are now
tooking for a path whose weight is the maximum over all paths.

b. Wil your algorithm work for negative cost edges?
c. Wil your aigorithm work for generai {not necessarily acyciic) graphs?

Let G =(V, £} be a directed acyciic graph, and fet & be the maximal aumber of edges in 2
path of G. Design an algorithm to divide the vertices into at most & + | groups such that for
each two vertices v and w in the same group there is no path from v to w and there is no path
from w to v. The afgorithi shouid rua in Enear time.

Let G={V, £} be a directed graph with the following property. (consists of an acyclic
subgraph H, which contains afl of G's vertices, and additional back edges, such that every
simple path in G contains at most one back edge. Design a linear-lime algorithm to find all
shortest paths from a fixed source to all other vertices of G. (Note that the identity of H is
not known,)

Let G=(V, E) be a directed graph and let v and w be two vertices in G. Design 4 linear-
time algorithm to find the mamber of different shortest paths (not necessarily veriex disjoint)
between v and w. (There are no weights on the edges.)

Design an implementation of algorithm Single_Source_Shortest_Paths (Fig. 7.15) which
requires runsing time of G{| V| 2y in the worst case (for any size of £,

254

7.46

147

7.49

Graph Algorithms

Let & =(V, E) be a weighted directed graph. Design an aigorithm to find a cycle in G of
minimum weight. The algorithm should run in time G (1V |,

The algorithms for Hnding shortest paths described in Section 7.5 break ties arhitrarily,
Discuss how to modify these algorithms such that, if there are several different paths of the
same length. then the one with the minimum sumber of edges (hops} will be choser. You
can use O (] E |) additional space. (Ties between severa) paths of the same length and the
same number of edges can be broken arbitrarily.)

A Euchlidean graph is an undirected weighted graph such that each vertex comesponds {0 a
point in the plane and the weight of an edge is equal to the distance between the points it
connects. The following heuristic hus been suggesied 1o find the shortest path between two
given vertices 5 and ¢ in & Euclidean graph. Use Dijksira’s algorithm for single-source
shortest paths, except that, at each iteration, choose the next previeusly unchosen vertex x
that minimizes the sum dist {s. 1} + Euclid_dist (x. 1}, where disf corresponds to the shortest
path and Euclid_dist cortesponds 1o the Euclidean distance (which is assumed to be given),
When # is chosen. then the shortest path from s to 1 is found.

a, How would you implement this algerithm? You have 10 mention only the differences
from the implementation of Dijkstra’s algorithm.

b. Explain why this method will not work for general (non-Euclidean} graphs.

c. Give an example where this heuristic is much faster (by more than a consiani) than
Dijkstra’s algorithm. and an example where it is nol faster. What is the worst-case
runniag time in temns of the number of vertices?

The inpat is a directed graph G ={V. E} with a distinguished vertex v, such that there is a

positive cost ¢i(w) associated with each vertex w. The cosi of a direcied path
L

VU p Xz e X, i i3 defined as Yoe(x). The costs of the two endpeiats + and u are ignored,
fa=]

so H (v, w)e E, the cost of getting from v 10 1 is 0. Design an efficient algorithm to find the

minimum-cost paths from v 10 all other vertices,

Let G ={V, £} be a directed weighied graph such that all the weights are positive. Let v and
w be two vertices in G and £ < |V] be un integer. Design an algorithm to find the shorest
path from + 10 w that contains exactly £ edges. The path need not be simple.

There is a large class of problems. called bottleneck problerms. which have the following
form. The input is a weighted graph. We are interested a cerlain property of the graph (in
this case. shoriest paths). We define the bottieneck weight of a subgraph as the weight of
the maximum-weight edge in that subgraph, as opposed 10 the usual definition of sum of the
weights, (This maximum-weight edge is the boitleneck.) In this problem. we consider
bottlencek shortest paths (ie., the cost of the path is defined as the maximom cost of an
edge in the path).

& Design an @lgorithm w solve the single-source shoriest-paths problem where the path
costy are defined as above. Can you say something special about the tree of shortest
paths obtained hy this algorithm?

h. Design an algorithm w solve the all-pairs shortest-paths problem where the path costs are
defined as above.

7.50

7.51

7.52

1.56

7.57

7.58

Creative Exercises 25§

Let G = (V, E) be a weighted acyclic directed graph with possible negative weights. Design
a Enear-time algorithm to solve the single-source shorest-paths problem from a given
source v.

Let d(v) denote the degree of a vertex v. Design a linear-time aigorithm 1o sort a¥i the
adjacency lists of a given directed graph G =(V, £} by increasing vertex degrees. That is, if
d (i) < d(v), then edges to u precede edges to v in all the adjacency lists that contain both.
Ties are broken arbitrarity, The algorithm can use linear space.

Find necessary and sufficient conditions under which the set of edges £ of an undirected
graph G ={V, E} can be partitioned into disjoint subsets E,,.. E; such that each E;
corresponds to a simple cycle. Design an efficient aigorithm o find such a partition in
graphs that satisfy these conditions.

Given an undirecied connected graph G = (V, £, find a simple cycle of minimum length (no
weights}. The fength of the smallest cycle in a graph is calied the girth of the graph.

Prove that there are undirected graphs with a vertices and ¢ (n) edges that contain 2%
different cycles. (This claim implies that even sparse graphs may have an exponentia
rumber of cycles; therefore, an algorithm that requires checking all the cycles is inherently
inefficient for general graphs.)

Design an algorithm o selve the following problem:

Enput: A directed graph G =(V, E) with n+1 vertices and r edges, whose underlving
undirected graph is a tree, where each edge (u, w) is fabefed with a unique integer Alw, w)
inthe range 1,2, ., n.

Output: A function § from vertices to subsets of {1, 2, .., n} such that the folfowing two
conditions are satisfied:

LOIf(u, wie B, then S(wy=S(\) Mu. w)}

2. fu#w, then §5(1) 285w}
(Note: $ () can be any subset of {§, 2, ..., a} including the empty set or the whole set.}

Consider again the problem in Exercise 7.55. Prove that the problem cannot be solved for
any gragh (and any labeling) which contains a cycle (not necessarily directed). In other
words, prove that the restriction of the probiem to trees is necessary.

A kerne! in a directed graph G = (V, E) is a subset V' ¢ V such that ne two vertices in 1 are
comected by an edge, and for every vertex w € V7 there is an edge (v, w) such that v e V"
The input is a directed graph & =(V, E) with n + 1 vertices and n edges, whose underlying
undirected graph is a tree. Design an algorithm to find a kernei in & or determine that no
kemnel exists.

Lf:t G =(V, £) be a directed graph and let f be a function defined on all edges of (¢ such that
¥ Aey=0ife,, ... e, is acircuit in . Find a function p on the vertices of G such that for
i=l

each edge (v, w), we have f (v, w)=p{w)—p(v}

Here is a skeich of a different MCST algorithm. Instead of keeping one tree and enlarging it
one edge al a time, we keep a collection of disjoint trees {which are 4l pant of the MCST)

256

760

7.61

7.62

7.63

Graph Algorithms

and combine them, adding one edge at a time. Initially, all the vertices are considered as
disjoint trees of size 0. In each step, the algorithm finds the minimum-cost edge that
connects two separate trees, and combines these two trees by adding the edge. Prove that
such an approach is feasibie and correct. Describe an implementation of an algorithm based
on this approach, What is the complexity of your algorithm? (Hini: The Union-Find data
structure is helpful here.}

Let G = (¥, E) be an undirected weighted graph, and et F be a subgraph of G that is a forest
{i.e.. F does not contain any cycles). Design an efficient algorithm to find a spanning tree in
G that contains all the edges of F, and that has minimum cost among all spanning trees
containing F.

Let G =(V, E) be a connected weighted undirected graph, and let 7 be a minimum-cost
spanning tree of (. Suppose that the cost of one edge ¢ in G is changed. Discuss the
conditions under which T is no longer an MCST. Design an efficient aigorithm either te
find a new MCST or to determine that T is stilf an MCST. (¢ may or may not belong to T}

Consider a communication network that can be modeted as a weighted undirected connected
graph G =(V, E). Each site in the network is represenied as a vertex and each line of
communication is bidirectional and has a cost associated with if. The cost may correspond
to the expected delay on the tine, or to the tariff for using this line. Each site has only local
information; that is, it knows only the edges {and vertices) adjacent (o it. An MCST of the
network can be used to broadcast messages to all sites. I we broadcast the messages by
using only the edges of the MCST, then the total cost is minimized, Assume that such an
MUCST is computed by some method and that each site knows which of the edges adjacent
1o it befong to the MCST. Assume now that sites in a certain subset U/ <V share between
them the information that is known 1o all of them. In other words, every site in U knows
not only about the edges and vertices adjacent to itseif, but it also knows all the edges and
vertices adiacent to ali vertices in {/. Furthermore, assume that the partiai MCST restricted
to U is connected (e, it is a tree). Consider an edge ¢ € §/, which belongs to the MCST,
whose cost has just changed.

a. Find the conditions under the change in ¢’s cost is guaranteed not to affect the MCST.
Consider only conditions that can be checked with the information known to the sites in
U. In other words, how can the sites in I/ determine that no action needs to be taken to
modify the MCST after the change?

b. Find the conditions under which the modified MCST is different from the original cne
only in edges that belong to U/ (hence, the change can be handled locally). Consider only
conditions that can be checked with the information known 1o the sites in .

. Describe briefly an algerithm $o check for the conditions in parts a and b (again only
within {), and to modify the MCST accordingly. The algorithm does not aeed to handie
the case where the change to the MCST may be outside U,

Consider the problem of broadcasting in a network, but assume now that the main interest 18
fast dissemination of information rather than minimum cost. In other words, the costs
correspond fo the time it takes to forward a message, and we want 10 minimize the efapsed
time of broadcast. A message can be sent concurrently on separate links. Assume that one
message is sent from a fixed source and is forwarded to all other sites such that each site
receives enly one copy of the message, You can assume that you are a controtier with full
information about the topology of the network.

7.64

7.65

7.66

7.69

770

1.72

173

Creative Exercises 257

a. Design an aigerithm to determine the optimal forwarding, assuming that the only delays
are associated with the links.

b. Design an aigorithm to determine the optimal forwarding when there are also defays
associated with the sites. It takes £ (v) units of time for site v to forward a message to one
of its neighbors, If v forwards the message 10 & neighbors, then it takes &r(v) time. (The
values of f(v) are known for all v.}

Let G=(V, E) be a connected undirected weighted graph. Assume for simplicity that the
weights are positive and distinct. Let ¢ be an edge of (. Denote by T {e) the spanning tree
of G that has minimum cost among all spanning trees of G that contain ¢. Design an
algorithm to find 7{¢) for ali edges e € E. The algorithm should run in time O (|V | %).

Design an efficient aigorithm te find the minimum bottieneck weight spanning tree of a
weighted connected undirected graph. {Recall that a bottlencck weight is defined as the
maximum weight of an edge in the subgraph.) In other words, you are asked fo find a
spanning iree in which the maximum weight is minimized.

Solve a variation of the problem in Exercise 7653 for directed graphs: The input is a
weighted directed graph G =(V, E) with a distinguished veriex v. Find a rooted spanning
tree, with v as the root, such that the maximum-cost edge in the tree is minimized. (Recail
that in a rooted tree the directions of all edges are away from the root.)

Eet G =(V, E) be an undirected weighted graph, and fet T be an MCST of (7. Suppose now
that all the weights in (G are increased by a constant number c. Is T stili an MCST? If not,
how difficult is it te modify T into an MCST?

Let G=(V, £} be a connected weighted undirected graph, and et T be an MCST of G.
Suppose that we now add a new vertex v to G, together with some weighted edges from v to
vertices of G. Design a inear-time algorithi to find a new MCST that includes v.

Suppose that the cost of a spanning tree is nol the sum of the costs of the tree’s edges but
rather the product of their costs {all costs are positive). Design an efficient aigorithm to find
2 maximum-cost spanning tree under this assumption. (You can assume that all costs are
distinct.)

Let G=(V, £} be a connected undirected graph with n vertices numbered from | o .
Design an efficient algorithm to find the smallest £ such that successively deleting the
vertices numbered 1,2, .,k {in that order) results in a graph afl of whose connected
componrents contain at mest n/2 vertices. Deleting a vertex also includes deleting all the
edges incident to it. (Hint: Use the union-find data structure.)

Let G =(V, E) be an undirected graph. A set F S E of edges is called a feedback-edge set if
every cycle of G has at feast one edge in F. Design an algorithm to find a minimum-size
feedback-edge set,

Let G =(V, E) be a weighted undirected graph with positive weights. Design an atgorithm
to find a feedback-edge set {(defined in Exercise 7.71) of G of minimum weight.

Prove that algorithm AH_Pairs_Shortest_Paths given in Fig. 7.22 works correctly for
weighted graphs with pessibly negative weights provided that there are no negative-weight
cycies,

258

774

116

1.7

7.80

7.81

Graph Algorithms

Let G =(V. E} be a weighted directed graph such that some of the weights may be negative
but there are no negative-weight ¢ycles {i.e., there are no cycles in which the sum of the
edge weights is negative). Let 7 be a spanning tree of G rooted at v. Design a linear-time
algorithm to determine whether the tree T contains only shortest paths from v to all other
vertices of G, You need o cutput only yes orf no.

The following are hints for an algorithm to compute single-source shoriest paths in weighted
graphs with negative weighis but no negative-weight cycles, The algorithm starts with an
arbitrary rooted spanning tree, as in Exercise 7.74. It then applies the aigorithm in that
exercise to determine whether the tree is the shortest path tree. The algorithm obtained in
Exetcise 7.74 should provide some evidence in case the tree is not the desized tree. This
evidence is used to make a modification to the tree, and the same procedure is applied until
the tree becomes the shortest-path tree.

a. Describe in more detail the exact algorithm.
b. Prove that the algorithm terminates after G (] V | - {E |} steps.

¢. Suggest a way lo improve the algorithm by selecting a good initial tree. The
improvement need not change the worst case, only the *'common™ case.

Let G ={V, £} be a weighted directed graph such that some of the weights may be negative.
Design an efficient algorithm 1o determine whether the graph contains a negative-weight
cycie. You need to output only yes or no.

4 Let G=(V, £) be a directed graph, and let v be a vertex of V. Each edge of E is colored
either black or red. Design a tinear-time algorithm to determine whether & has & simple
cyche, which includes v, with aiternating colers — namely, each red (black) edge in the
cycle has two black (red} neighbosrs. If such a cycle exists, then the aigorithm shouid
find ai least one.

b. Solve this problem without the restriction that the cyche has fo include the special vertex.

Given a connected undirected graph G ={V, E}, find a spanning tree of G with minimum
height. (The height of a tree is the maximumn distance from a roet to a leaf)

A Hamiitontan path is a simple path that includes ali the vertices of the graph. Design an
algorithm to determine whether & given acyclic directed graph G ={V, £} conains a
Hamiltonian path. The algorithm should run in linear time.

Algorithm !mproved _Transitive_Closure given in Fig 7.24 has three nested loops. The fisst
one (the outer one) chooses a column, the second one chooses a rew, and the third one
operates on the chosen row. Suppose thal we exchange the first two loops such that the first
one chooses a row and the second one chooses a column. In other words, we simply
exchange the first two Hnes in the program, as is shown in algorithm
WRONG_Transitive_Closure in Fig. 7.46, Show that this modification does not work, by
giving an example for which the transitive closure is not computed.

Exchanging the order of scanniag the matrix for the transitive closure algorithm (which was
attempted unsuccessfuily in Exercise 7.80) is desired for the following reason. Ef the matrix
is very large and thus cannoi be stored in main memory, we need 0 access it from
secondary memory. Assume that the matrix is stored by rows such that each row eccupies a
page. We want 1o minimize the number of pages that need (o be fetched from secondary

7.82

7.83

7.86

Creative Exercises 259

Algorithm WRONG _Transitive_Closure {A) ;
Input: A (an 1 x n adjacency matrix represeating a weighted graph).
{ Alx, ¥1is true if the edge (x, v} belfongs to the graph, and false otherwise;

Alx, x]istrue forall x }
Output: At the end, the matrix A represents the transitive closure of the graph.
begin

for x = lwondo

form:= 1 tondo
ifAlxr, m] then
fory:= 1 tondo
i A[m, y]then Afx, y} = true

Figure 7.46 Algorithm WRONG Transitive_Closure.

memory. If the first toop scans the matrix by columns, then we need to bring ali the rows to
iock at each column. On the other hand, if we exchange the first two foops and we find that
a certain eatry (x, ¥) is faise, then there is no need to fetch the yth row in the next step.
Therefore, if the matrix is sparse {ie., if it contains only a few 1s), fewer pages need o be
fetched. The algorithm in Fig. 7.46 is wrong as is, but it can be fixed.

a. Show that, if we run this algorithm O{log#s) times, then it compules the transitive
ciosure correcily.

h. Show that, in fact, it is sufficient to run the algorithm enly twice.

Let G =(V, £} be a muitigraph, namely, an undirected graph that may have more than one
edge between a pair of vertices. E is in this case a multiset, and | £ | is the total number of
edges, Design an O (1E | + |V |} algorithm 1o delete each vertex v of degree 2 by repiacing
the edges (4. v) and (v, w} by an edge (x, w). and to eliminate multiple copies of edges by
repacing them with a single edge. (Note that removing multiple copies of an edge may
create a new vertex, of degree 2, which has to be removed, and removing a vertex of degree
2 may create multiple edges, which must be removed t00.}

A connected undirected graph & =(V, E} is called edge-biconnected if removal of any one
edge leaves the graph connected. Design a Hinear-lime algorithm to determine whether a
graph is edge-biconnecied.

(Given a connected undirected graph G =(V, E}, and three edges, &, b, and ¢, find whether
there exists a cycie in (7 that contains both @ and b but does not contain ¢. The aigorithm
shoutd run in linear time.

Let G=(V, £} be a connected undirected graph and let T'=(V, F) be a spanning tree of G,
Prove that the intersection of F with the set of edges of any biconnecied component is a set
of edges that forms a spansaing tree of the componens.

A biconnected extension of a graph & = (V. E) is a biconnected graph G’ =(V, £') such that
EcE. Given an undirected graph G=(V, £}, find the minimum biconaected extension:
that is, 8nd a biconnecied extension with the minimum number of edges. (Hint: Start by
considering very simple graphs, and work your way up 1o general graphs.)

260

787

7.88

7.89

190

7.91

193

7.94

7.95
7.96

Graph Algorithms

Suppose that you are given an undirected graph with a list of all the amiculation points,
Show how to find the biconnected components without resorting to running the whole
hiconnected compeoneat algorithm.

Let G=(V, £) be a directed graph, and let T be a DFS tree of G. Prove that the intersection
of the edges of T with the edges of any strongly connected component of & form a subiree
of T.

A High value computed by algorithm Strongly Connected_Components (Fig. 7.33) does not
actually point to the “highest’” veriex reachable from the vertex under consideration. It
serves only as an indication whether a strongly connected component has been found.
Design a linear-time algorithm to find, for each vertex v in the graph, the vertex with the
largest DFS number {based on a fixed DFS tree with decreasing DFS numbers) reachable
from v.

Let G ={V, E) be a connected undirected graph. Design a linear-time algorithm o
determine whether the edges of & can be oriented such that the resulting directed graph is
strongly connected. The algorithm shouid find such an orientation if it exists,

a. Prove the following theorem: A direcied graph G =(V, E) is sirongly connecied if and
onfy if there is a circuit in G that includes every edge at least once. {Note that an edge
may appear more than once in that circuit.}

b. Design an efficient algorithm te find such a circuit in a given strongly connected graph
G=(V, E).

A vertex basis of a directed graph € ={V. E} is a minimum-size subset B gV with the
property that, for each vertex v in V, there is 2 veriex b in B such that there is 4 path of
length 8 or more from b to v. Prove the folloewing twe claims, and then use them o design a
linear-time algorithm to find a vertex basis in general directed graphs,

a. A vertex that is not on a cycle and has nonzero indegree cannot be in any vertex basis,
b. An acyctic direcied graph has a unigue vertex basis, and it is easy to find it.

A directed graph G =(V, E) is cafled unitateral if, for any two vertices v and w in G, at least
one of them is reachable from the other. In particular, every strongly connecied graph is
unifateral. On the other hand, there are many unifateral graphs that are not stropgly
connected. For example, a graph that consists of two vertices connected by one edge i
unilateral, but it is not strongly connected. Design a hnear-time (and linear-space)
algorithm to determine whether a given directed graph is uniateral. (Hint: Consider the
strongly connected components graph.)

A directed graph G =(V, E} is called anipathic if, whenever w is reachable from v, there is
only one simple path from v to w. Design an efficient algorithm to determine whether 2
given graph G = (V, E}is unipathic. (Hint: Solve the problem first for acyclic graphs.)

Design a linear-time algorithm for finding a maximum matching in a tree.

Prove the alternating-paths theorem directly without the use of network flows or cuts. (Hintl
Given two matching M, and M, study the properties of the symmetric difference between
them; namely, the set of all edges that appear in exactly one of them.)

Creative Exercises 261

797 Let G be an undirected bipartite graph, and let M be an arbitrary maiching in G.

®
7.98

799

7101

7.102

7.103

a. Prove the following theorem: There exists a maximum matching in G that covers all the
vertices that M covers. (A verex is covered by a maiching M if iz is incident 10 one of
the edges of M.)

b. Convert the proof in part a to an algorithm for finding such a maximum matching when
G and M are given.

Prove that the running time of Hopcroft and Karp bipartite matching algorithm (the
improved algorithes in Section 7.10) is O ({m +a)W) in the worst case.

Suppose that we want to find a neamonogamous matcking in a graph. In other words,
instead of tooking for disjoint edges, we are looking for disjoint star graphs, which are
trees with one vertex (the root) connected to all other vertices. One edge is a special case of
a star graph, but one vertex afone with no edges is a trivial graph which we do not consider
to be a star graph. Let G =(V. E} be an undirected connected graph. The goal is to design
an algorithm that finds a coliection of vertex-disjoint stars in G, each with at least two
vertices. Each vertex should be included in one of the stars, but not ali the edges need to be
inctuded. In other words, the stars should cover all the vertices, but not necessarity all the
edges. {There are no minimatity or maximality consraints.)

a. Find the error in the following algorithss both by peinting out the wrong argument and
by exhibiting a counterexample.

Wrong afgorithm: We use induction. The induction hypothesis is that we know how to
solve the problem for a graph with <n vestices, Given a graph ¢ ={V, E) with »
vertices, we first pick an arbitrary vertex v and remove v with all its neighbors from the
graph, The remaining graph may not be connected, but we can consider each connected
component separately and apply the same afgorithm by induction.

b. Design an efficient (and correct) algorithm for this problem.

Consider the following bettleneck problem. The input is a weighted bipartite graph
G =(V, E) with a vertices and m edges. We define the bottleneck weight of matching M to
be the weight of the maximum-weight edge in M. Design an aigorithm o find, among all
maximum maichings, one with minimus bottleneck weight. The aigorithm shouid run in
time O (\rr;m log n}.

Consider an N x N board of alternating black and white squares (such as a chess board).
Prove, by using the alternating-path theerem, that if one removes one arbitrary black sguare
and one arbitrary white square, then the rest of the board can be covered by dominoes (of
size 2% 1).

Prove the theorem in Exercise 7.101 by finding a Hamiltonian cycle in a graph defined by
the board in the following way: The vertices are the squares and any two neighboring
sguares are connected,

Let G =(V, £} be a connected undirected graph. Given two spanning trees T and R of G,
find the shortsst sequence of trees Ty, Ty, 7;, such that Ty =T, T,=R, and each tree
differs from the previous one by an addition of one edge and a deletion of one edge.

262

7.104

e

Graph Algorithms

Assume that 2 round-robin toumament is played among n players. That is, each player plays
once against all n —1 other players. There are no draws, and the results of all games are
given in a matrix. It is not possible in general to sort the players, since A may beat B, 8 may
beat C, and C may beat A ¢in other words, the results are not necessarily transitive). We are
interested in a “*weak’” sorting as foliows. Design an algorithm to arrange the players in an
order P, P, .., P, such that P, beat P,, P, beat P, and so on (concluding with P, _|
beating P,), given the matrix of results. The worst-case running time of the algorithm
should be O (n logn). {Any endry in the matrix can be accessed in constan: time.)

7.105 Given nintegers 0Sd, £d, < -+ - £d,, suchthatd, +d; + -+ + 4d, is even, and, for every

2%isn wehave d; Sd,+dy + - +d,.,. Construct an undirected muiltigraph with »
vertices of degrees exactly dy.d,, ... d,. Prove the correciness of the algorithm which
impties, in particular, that such a multigraph always exists.

*7.][)6 An edge coforing of a graph is an assignment of colors to the edges {one color per edge),

7.107

1.108

7,109

7110

7111

7112

7.113

such that two edges incident to the same vertex have different colors, Design an algorithm
te find an edge coloring with & cotors for undirected bipariite graphs all of whose vertices
have degree & such that & is & power of 2. The running time of the algorithm should be
O(|E | legk).

An edge cover of an undirected graph G =(V, E) is a set of edges such that each vertex in
the graph is incident to at teast one edge from the set. Design an efficient alfgorithm to find
a minimum-size edge cover for a given bipartite graph,

A vertex cover of an undirected graph G = (V, E) is a set of vertices {/ such that each edge
in the graph is incident to at jeast one vertex from U, Design an efficient algoriths to find a
minimum-size vertex cover for 4 given tree. (Vertex covers in general graphs are discussed
in Chapter i 1.}

Let & ={V, £} be a tree with weights associated with the vertices such that the weight of
each vertex is equal to the degree of that vertex. Design an algorithm to find the
minimum-weight vertex cover of G, i.c., a vertex cover with minimum weight,

Design an efficient algorithm to find a minimum-size vertex cover for a given bipartite
graph. (Hint: Find a relationship to minimum cuts in the graph.}

Let & =(V, E} be an undirected graph. An independent set in G is a set of vertices no two
of which are connected. Design an efficient algorithm io find a maximum-size independent
set in & given bipastite graph. (Independent sets in general graphs are discussed in Chapter
11.) (Hing: Find a relationship to Exercise 7.110.)

Design an algorithm to find a maximal independent set (see Exercise 7.111) in a given
undirected graph G =(V, E). The set need not have the maximum size over all independent
seis. It is oniy required to be maximal in the sense that it cannot be extended by the
addition of more vertices to it and still remain independen:,

Let G =(V, E) be a tree such that each vertex v has an associate weight w{v), Design a
tincar-time aigorithm to find an independent set in ¢ (see Exercise 7.111) with maximum
weight.

Let G =(V, E) be a connected undirected graph. Design an algorithm to determine whether
G contains 2 vertex cover {see Exercise 7.108) with at most & vertices, all of which are
independent {i.e., no two vertices from the cover are adjacent).

7

7

7

s

115

37

118

|

7

26

&

1121

Creative Exercises 263

Design an algorithm to detesmine whether an undirected graph G =(V, E) has a set of
vertices U, such that U is a minimum vertex cover and a maximum independent set at the
same time. The algorithm should find such a set if it exists.

An interval graph is an undirected graph whose vertices correspond o intervals on the real
line and two vertices are connected if the comesponding intervals intersect. Let G =(V, E)
be an interval graph such that the corresponding intervals are known. Design an efficient
algorithss to find a maximum independent set in .

An undirected graph G = (V, E) is a split graph if its vertex set can be partitioned into twe
disjoint subsets &/ and W such that the graph induced by U/ has no edges and the graph
induced by W is a compiete graph (i.e., all the edges are present). Design a linear-time
algorithm to determine whether a given graph is a split graph,

a. Design an algorithm to determine whether a given undirected graph G ={V, E) contains a
triangie as a subgraph. The running time of the algorithm should be G(IV | - [E |).

b. Can your algorithm find aif the triangies contained as subgraphs in G?

a. Design an algorithm to determine whether a given uadirected graph G = (V. £} contains a
square as a subgraph {i.e., a cycle of length 4. The running time of the algorithm should
be O(|V 1.

b. Enprove your algerithm to run intime O (JV | - {E D).
You can use the adjacency matrix representation or the adiacency list represeniation,
whichever is more convenient.

Prove that there is no algorithm that finds a/f sgquares that are subgraphs of a given
uadirected graph G =(V, E) whose runaing time in the worst case is G (|V | - |E{).

Let T be a rooted directed tree, not necessarily binary, There is a weight asseciated with
each vertex, such tha: the weight of a vertex is greater than the weight of the vertex’s parent
(in other words, the weights satisfy the heap condition with the minimal weight on top).
Each vertex can be designated as either a regular vertex or a pivot vertex. The cost of a
pivot vertex is the same as its weight. Regular vertices get discounts, however —- their cost
is their weight minus the weight of the closest ancestor that is a pivot veriex. Thus,
selecting a veriex as a pivot vertex may increase its cost, but it will also decrease the costs
of some of its descendants. There is no fimit on the number of pivet vertices. Design an
efficient algorithm to designate every vertex as either a regular vertex or a pivot vertex, such
that the totai cost of all vertices is minimized,

7.122 Let T be a complete binary tree of height A, and n =2" — | vertices. We want to embed 7 in

the plane in the following way. Each veriex corresponds to a unique lattice point (ie., a
poini with integral coordinates), adjacent vertices are connected by straight line segments,
and no {wo iine segments intersect. Embedding graphs in the plane in this way is an
important problem in integrated chip design and especiatly VLSI design. Our objective in
this exercise is o minimize the area enclosing the tayout. We define this area 1o be the
minimum-area reciangle along lattice peints (which are not occupied) that contains the
layout. So, for example, a siraight chain with k vertices would be enclosed in a rectangle of
area 26k + 1) 1t is clear that for any graph with # vertices the minimal possibie area is of
size £3(n).

264 Graph Algorithms

a. Describe a layout for T that requires O (#) area. (Hint: Use divide and conquer; each
camplete binary tree consists of two smailer complete binary trees, both connected to &
new shared root. Assume that you know how to embed trees of height A~ 1, and find the
layout of a tree of height A.)

b. Design an algorithm 1o compute, for each vertex in 7, its coordinates in the fayout
obtained in pari a.

CHAPTER 8

GEOMETRIC ALGORITHMS

I paint objects as | think them, not as I see them.
Pabio Picasso (1881-1973)

8.1 Introduction

Geometrical algorithms play an important role in many areas of compuler science,
including computer graphics, computer-aided design, VLSl design, robotics, and
databases. There may be thousands or even millions of peints, lines, squares, and circles
in a computer-generated picture; a robot may have to make thousands of moves; a design
of a computer chip may involve millions of items. Al these problems involve the
manipulation of geometric objects. Since the size of the input for these problems may be
quite farge, it is essential to develop efficient algorithms for them.

There are two somewhat separate areas in which geometric algorithms arise;
unfortunately, they are both called computational geometry. One of them mainlty deals
with contimrous aspects of geometric objects; the other one mainly deals with discrete
properties of geometric objects. The distinction is not strong, and there are many simijar
problems and techniques. Our emphasis will be on discrete computational geometry. In
this chapter, we discuss several basic geometric algorithms. As in other chapters, the
scope of this chapter is necessarily limited. We include some of the basic algorithms that
appear as building blocks in the design of more complicated algorithms, and that
iflustrate interesting techniques. We wili himit the discussion to two-dimensional objects.

The objects appearing in this chapters are points, lines, lne segments, and
poiygons. The algorithms manipulate these objects and compute certain properties of
them. We start with basic definitions and a discussion of data structures used to represent
the different objects. A peint p is represented as a pair of coordinates (x, y} (we assume
a fixed coordinate systemn throughout this chapier). A line is represented by a pair of

266 Geometric Algorithms

points pr and ¢ {which can be any two distinct points on the line), and it is denoted by
~-p—q—. A line segment is also represented by a pair of points p and ¢, but in this case
we assume that the points are the segment’s endpoints, and we denote the line segment
by p—g. A path P is a sequence of points pi.pa....p,. and the line segments
P1P2. P2mP3s o Proi—Py connecting them. We will sometimes call the line segments
in a path edges. A closed path is a path whose last point is the same as its first point. A
closed path is also called a polygon. The points defining the polygon are also called the
vertices of the polygon. For example, a triangle is a polygon with three vertices. A
polygon is represenied as a sequence rather than as a set of points because the order in
which the points are given is very important. Changing the order, even without changing
the points themselves, may result in a different polygon. A simple polygon is one whose
corrgsponding path does not intersect itself; that is, no edges of the polygon intersect
except for neighboring edges at their common vertex. A simple polygon encloses a
region in the plane. We will call this region the inside of the polygon. A convex
pelygon is a polygon such ihat any line segment connecting two points inside the
polygon is tiseff entirely inside the polygon. A comvex path is a path of poinis
Pi.Pa2. . Py such that connecting p, with p, resufts in a convex polygon.

We assume that the reader is familiar with basic analytic geometry. For example,
we will need to compute the intersection point of two line segments, determine whether a
given point kies on a certain side of a given line, and compute the distance between two
given points, All these operations can be done in constant time with basic arithmetic
operations. (We assume for now that square roots can be computed in constant fime; we
discuss this issue in Section 8.3.)

One inconvenient characteristic of many geometric algorithms is the existence of
numerous “special cases.”” For example, two lines in the plane usually intersect at one
unigue point, except when the lines are parallel or when they are the same. When we
perform a computation on two given Hnes, we need to consider all three possibilities.
More complicated objects can lead to many other types of special cases, requiring special
care. Usually, most of these special cases can be handled in a straightforward manner,
but the need to consider them makes the design and the description of geometric
algorithms tedious sometimes, We occasionally ignore details that are not essential for
undersianding the main ideas of the algorithm.

8.2 Determining Whether a Point Is Inside a Polygon

We start with a simple problem.

The Problem Given a simple polygon P and a point g, determine
whether the point is inside or cutside the polygon.

This problem may seem trivial at first, but when complicated nonconvex polygons are

8.2 Determining Whether a Point Is Inside a Polygon 267

considered, as is the case in Fig. 8.1, the problem is definitely not simple. Trying to solve
a problem by hand first is always a good idea. The first intwitive approach is to ry
somehow to reach the outside boundary from the given point. When we try this approach
we see that it is sufficient to count the number of intersections with edges of the polygon
until the outside is reached. For example, in Fig. 8.1, going northeast from the given
point (fellowing the dashed line in the figure) results in two intersections with the
polygon before the outside is reached. Since the first intersection from the outside brings
us inside the polygon and the second intersection brings us back outside, the point is
outside the polygon. In general (ignoring special cases for the moment), the point is
inside the polygon if and only if the number of intersections {(as described above) is odd.
We now have a sketch of an algorithm, which is presented in Fig. 8.2

As we mentioned in Section 8.1, there are usually several special cases that need
attention. Let 5 be a point outside the polygon, and let L be the line segment connecting ¢
to 5. We are trying to determine whether ¢ is inside P according to the number of
intersections of L with edges of P. The line L, however, may overlap some edges of P.
When one edge overlaps another one, do we call this an intersection? Two intersections?
In this case, we clearly do not want to count overlaps as intersections. Another special
case is the intersection of L with a vertex of P. Figure 8.3(a) gives an example in which
the intersection of L with a vertex of P should not count, and Fig. B.3(b) gives an
example in which it should count as an intersection. We leave it to the reader fo
characierize these cases and to find how to handle them (Exercise 8.1).

In the development of this algorithm, we implicitly assumed that we are Jooking at
pictures. When the mput is given as a list of coordinates, as is usually the case in a
computer application, the task is different. For example, when we do the work by hand,
and we see the polygon with our eyes, it is easy to find a good path (i.e., one with few
intersections) from the point to the outside. This is not an easy task, however, when the

Figure 8.1 Determining whether a point is inside a polygon.

268 Geometric Algorithms

Algorithm Point_in_Polygon_1 (P, q) ; { first attempt }

Input: P (a simple polygon with vertices py, p1, ..., ,, and edges
€4,€7, ... €,), and g {a point}.

Output: Inside (a Boolean variable that is sei 1o true if g is inside P and false
otherwise).

begin
Pick an arbitrary point s outside the polygon ;
Let L be the line segment ¢ -5 ;
count =0 ;
for all edges e; of the polygon do
if e; intersects L then { We assume that the intersection is not at a
vertex nor is the line L overlapping with ¢,; see the text }
increment count ;
if count is odd then Inside = true
else Inside := faise
end

Figure 8.2 Algorsithm Foint_in Polygon |.

-
T
<

\

T
[
fy

{a) (b}
Figure 8.3 Special cases for determining whether a point is inside a polygon.

polygon is stored as a series of coordinates. Counting the number of intersections is easy
to do visually, but again, it is not as easy when only the coordinates are given. The
potygon of Fig. 8.1 is given as a list of coordinates in Fig. 8.4, (The given point is
centered at | 368 308 | .) The reader is encouraged to solve the problem now by looking
oniy at Fig, 8.4. Clearly, the bulk of the work is computing all the intersections. This
work can be substantially simplified if the line g—s is parallel o one of the axes — for
example, the vertical axis. The number of intersections with this special line may be
much more than tha: with the optimal line, but we do not need to find the optimal line
{which is acwally a much more difficull problem — see Exercise 8.3), and computing
each intersection is much easier. The modified algorithm is presented in Fig. 8.5.

8.2 Determining Whether a Point Is Inside a Polygon 269

320.00 368.00 | 320.00 384,00 | 288.00 384.00 | 28R.00 380.00 | 308.00 380.04 |
308.00 376.00 | 280,00 376.00 | 280.00 392.00| 332,00 392,00 | 332.00 364.00 |
364.00 364.00 | 364.00 352,00 | 256.00 352,00 | 256,00 404.00 | 224.00 404.00 |
224.00 332,601 352,00 332.00| 352.00 288.00 } 224.060 288.00 | 224.00 312.00 |
320.00 312.00 } 320.00 300.00 | 256.00 300.00 | 256.00 296.00 | 328.00 296.00 |
328,00 320.00 [208,060 320,00 | 208,00 280,00 | 384.00 280.00 | 384.00 340.00 |
240,00 340,00 | 240.00 396,00 | 248,00 396,00 | 248,00 348,00 [416.00 348.00 |
416,00 272.00 | 320.00 272,001 320,00 236,00 | 448.00 256,00 | 448.00 320.00]
432,00 320,00 432,00 340.00] 432,00 340.00{ 432,00 224.00{ 256.00 224,00
236,00 244,00 | 32000 244,00 32000 248,00 | 248.00 248,00 | 248.00 216,00
224,00 216,00 | 224,00 24000 232.00 240.00 | 232.00 256,00 { 28800 256.00 |
288.00 264,00 | 224,00 264,00 | 224,00 272,00 | 192,00 272,00 | 192.00 416.00 |
42800 416.00 | 428.00 384.00 | 416.00 384.00 | 416,00 400.00 | 424,00 400.00 |
424,00 408.00 | 384.00 408.00 | 384.00 384.00 | 460.00 384.00 | 4060.00 396.00 |
388.00 396.00 | 388.00 404.00 | 408.00 404.00 | 408.60 372.00 | 352.00 372.00 |
352.00 404.00 | 264.00 404,00 | 264.00 368.00 |

Figure 8.4 The polygon of Fig. 8.1, given as a sequence of coordinates.

Algorithm Point_in_Polygon_2 (P, q) ; { second attempt }
Input: P (a simple polygon with vertices py, pa. ..., p,, and edges
€, €2, .. £,), and g = (xg, ¥o) (a point).
QOutput: Inside (a Boolean variable that is set to true if ¢ is inside P and false

otherwise).
begin
courtt ‘=0

Jor all edges ¢, of the polygon do
if the line x=x intersects ¢; then
{ We assume that the intersection is not ai a vertex nor is the
line x =xq overlapping with e; }
Let v; be the y coordinates of the intersection between
the line x=xy and ¢, ;
if y, < yo then { the intersection is below q }
increment count ;
if count is odd then inside = true
else inside := false
end

Figure 8.5 Algorithm Paint_in_Polygon 2.

As an example, let’s try to determine whether the point ¢ with coordinates
{368, 30R) is inside or outside of the polygon given in Fig. 8.4. We count the number of

270 Geometric Algorithms

intersections with a line segment siarting at ¢ and going straight down. We need to look
at all the edges, and check, for those edges whose y coordinates are below 308, whether
the x coordinate cross 368. There are four edges that cross the line:

(208, 280)-(384, 280 ;
(416, 272)~(320, 272} ;
(320, 256)~(448, 256) ;
(452, 224)~(256, 224).

Hence, the point is outside the polygon.

Complexity It takes constant time to perform an intersection between two line
segments in the plane. The algonithm computes n such intersections (where n is the size
of the polygon}, and performs other operations that take constant time. Hence, the total
running time of this algerithm is O {#}.

Comments In many cases, a simple approach originating from a solution obtained
by hand (or eve) calculations is not efficient for large inputs. In some cases, however,
such an approach is not only simple, but also efficient. Starting with an *‘easy-to-
visnalize™* method is always a good idea. There are several observations that can be
achieved this way. In this case, by looking at the picture, we observed that we could
solve the problem by following some path from the point to the outside, disregarding
everything else. This was really the main observation that led to the algorithm.

8.3 Constructing Simple Polygons

A set of points in the plane defines many different polygons, each depending on the order
of the points. In this section, we concentrate on finding a simple polygon defined by a set
of points,

The Problem Given a set of # points in the plane, connect them in a
simple closed path.

There are several methods to construct simple polygons. We present a method
corresponding to the way we would probably approach this problem if we had to solve it
by hand. Consider a large circle C that contains all the points. Scan the area of C by 2
rotating line originating from the center of € {(see Fig. 8.6). Let's assume for now that
the rotating line never touches more than one point from the set at a time. It seems that,
if we connect the points in the order they are encountered in the scan, we get a simple
polygon. Let’s «ry to prove this claim. Denote the points, as they appear in the order
imposed by the rotating line, by p,, pa, ..., p, (the first point is chosen arbitrarily). For
ali i, 1 Si <n, the edge p/—p;.) is included in a distinet region of the circle; hence, it does
not intersect with any other edge. However, this is not enough to prove that the resulting

8.3 Constructing Simple Polygons 271

Figure 8.6 Scanning the points.

polygon is simple — in fact, it may not be. The angle between some p; and p;) may be
greater than 180 degrees, in which case the region corresponding to the edge p,—p, .,
consists of more than one-half of the circle. Thus, the edge p;—-p;,; cuts info the other
regions, and it may intersect other edges. {To see that it may, we can consider a circle
that is centered somewhere outside of the circle of Fig. 8.6.) This is a good example of
the kind of ‘‘special cases’ that arise often in geometrical problems. We have to be
careful to make sure that all cases are considered. (Of course, we must do that for any
kind of algorithm, but this problem is more prevalent in geometric algorithms.)

We can overcome this obstacle quite easily. For example, we can take any three
points from the set and choose, as a center of the circle, a peint inside the triangle formed
by these three points. This choice will ensure that the circle does not contain a segment
of more than 180 degrees without any points from the set. Ancther solution, which is the
one we will use, is to choose one of the points from the set as the center of the circle. We
will choose the point z with the largest x coordinate (and the smallest y coordinate, if
there is more than one point with the largest x coordinate). We now use basically the
same algorithm. We sort the points according to their position in the circle centered at z.
These positions can be computed by sorting the angles between a fixed line (e.g., the x
axis) and the lines from z to the other points. If two {or more) points have the same
angle, they are further sorted according to their distance from z. We then connect 7 to the
point with the smallest angle and to the point with the largest angle, and connect the other
points in order. Since all other points iie to the left of z, the bad case we mentioned
earlier cannot occur, (There is stiil one more special case that occurs when all the points
Hie on a ling; in that case, any polygon through the points will have overlapping edges.)
The simple polygon obtained by this method for the points in Fig. 8.6 is given in Fig,
8.7.

272 Geometric Algorithms

Figure 8.7 Constructing a simple polygon.

We can improve this method in two ways, which share the same principle. First,
we do not have o compute the exact angles. We use the angles only to find the order for
connecting the points. But the same order is imposed by the slopes of the lines (that is,
by the ratios of the y differences to the x differences). Computing the slopes is easier
than computing the angles (there is no need 1o compute arctangents). Second, using the
same argument, we can avoid computing distances when two peints have the same slope.
It is sufficient to compute the square of the distances! Therefore, there is no need to
compute square roots. The algorithm is presented in Fig 8.8,

Algorithm Simple_Polygon (p,.ps, .00 }:

Input: p,.p;. ..., p, (points in the plane).
Output: P (a simple polygon whose vertices are p,, ps, ... P, in some order).

begin
Jori:=2tondo
compiite the angle o between the line —p —p;— and the x axis ;
{ It is sometimes more desirable to take an extreme point instead of
1. €.8.. a point from the set with the largest x coordinate
{and smallest y coordinate if there are several points with the
same largest x coordinate) }
Sort the points according to the angles O, ..., O, |
{ break ties according 1o distances fromp, }
P is the polvgon defined by the list of poiris in sorted order
end

Figure 8.8 Algorithm Simple_Polygon,

Complexity The running time of this algorithm is dominated by the sorting, which
requires O (r log n) time.

84 Convex Hulls 273
8.4 Convex Hulls

The convex hull of a set of points is defined as the smallest convex polygon enclosing all

the poiats. We would like the convex hull to be represented as a regular polygon,
namely, the vertices should be listed in cyclic order.

The Problem Compute the convex hull of # given points in the
plane.

Dealing with convex polygons is easier than handling arbitrary polygons. The convex
hull serves, in some sense, as the smallest “‘convenient’ region encompassing a set of
points. The vertices of the convex hull are points from the set. We say that a point
belongs 1o the hullb if it is a vertex of the hull. A convex hull can contain as little as three

and as many as all the points as vertices. Convex hulls have many uses, and
consequently, numercus algorithms have been developed to compute them,

8.4.1 A Straightforward Approach

As usual, we start with a straightforward inductive approach. We can easily find the
convex hull of three points. We assume that we know how 1o compute the convex hull of
< n pomts, and we try to find the convex hull of » points. How can the ath point change
the convex hull formed by the first # — | points? There are two cases: Either the extra
point is inside the convex hull, in which case the hull is unchanged, or the point is outside
the bull, in which case the hall is “*stretched”” 1o reach that point (see Fig. 8.9). So, we
need to solve two subproblems. We have to determine whether a point is inside the hafl,

o VP

Ps “

Figure 8.9 Stretching a convex polygon.

274 Geemetric Algorithms

and we have to be able to stretch the hull if the point is cutside of 4. These problems are
not easy. We have enough experience by now with the straightforward inductive
approach to try some improvements right away. The first improvement is to choose a
special nth point rather than an arbitrary one. It is tempting to choose a point inside the
hull, so ne work will be reguired to extend the hull. But, of course, some points must
helong to the hull, and in some cases all points belong to the hull. Another possible
choice, which worked well for the previous problem, is an extreme point — namely,
some sort of maximal or minimal point.

We choose again the point with the maximal x coordinate {and the minimal v
coordinate, if there are several points with the same maximal x coordinate). Denote this
point by ¢. It is clear that ¢ is guaranteed to be a vertex of the convex hull. Thus, the
only problem is how to modify (stretch) the hull to include . We first need to find the
vertices of the old hull that are now inside the new hull (p; and p, in Fig. 8.9) and to
remove them; then, we must insert the new point as a new vertex between {wo existing
vertices {p, and ps in Fig. 8.9). A supporting line of a convex pelygon is a line that
intersects the polygon at exactly one vertex of the polygon. The polygon thus lies
entirely on one side of a supporting line. Consider now the supporting lines —g—p;~ and
—g-ps— {see Fig. 8.9). Usually, only two vertices of the polygon have lines 1o ¢ which
are supporting lines. (We will ignore the special case of two or more points that are on
the same line with q.) The polygon lies between the two supporting lines, and that is
exactly the way we want to modify it. The supporting lines have the maximal and
minimal angles, with, say, the x axis, among all other lines from points in the polygon to
g. To find these two vertices, we need to consider the lines from g to all the vertices
P1eP2e 0 Py 10 compute the angles, and o pick the maximal and minimal (see also
Exercise 8.4). Once the identity of the two extreme vertices is known, the modified hall
¢an be constructed. (There are several other approaches to modifying the hull, and this is
not necessarily the best one; we chose it for its simplicity.} We omit the details
concerning this algorithm because we will present a faster algorithm shortly.

Complexity For each point, we need to compute angles to all the previous points, 10
find the maximal and minimal angles, and to delete and insert points from the list. Thus,
the work invelved in processing the kth point is O (%), and we have already seen that the
solution of the recurrence relation T(m)=T(n—1)}+0(n) is O{n?). Therefore, the
running time of this algorithm is O (#?). The algorithm also requires sorting, but the
running time is dominated by the other operations.

8.4.2 Gift Wrapping

How can we improve this algorithm? When we extend the polygon point by point, we
spend a lot of time building convex polygons containing points that may be internal to the
final convex hull. Can we avoid doing that? Instead of considering convex hulls of
subsets of the set of points, we can start with the whole set and build the hull directly.
That is, we can start with an extreme point {which must be on the hull), find its neighbors
in the hull by finding the supporting lines, and continue from these neighbors in the same
way. This algorithm is known as the gift wrapping algorithm for obvious reasons, We

84 Cenvex Hulls 275

start with one vertex of the *‘gift,”” and wrap the hull around the gift by finding neighbor
after neighbor. The algorithm is given in Fig 8.10. [t can be modified to work for higher
dimensions as well.

The gift-wrapping algorithm is a straightforward application of the fellowing
induction hypothesis {on &)

Induction hypothesis: Given a set of n points in the plane, we can find a
convex path of length k < n that is part of the convex hull of this set,

With this hypothesis, the emphasis is on extending a path rather than on extending the
hull. Instead of finding convex hulls of smaller sets, we find a part of the final convex
hull,

Algorithm Gift_Wrapping (p,,py. ...P,};
Input: p.ps. ... p, (a set of points ir: the plane).
Qutpat: P {the convex hullef p |, ps. ... p,).

begin
set P 1o be the empty set ;
Let p be the point in the ser with the largest x coprdinate
{and the smallest y coordinate, if there are several points
with the same largest x coordinate} ;
AddpioP ;
Let [be the line containing p which is parallel to the x axis ;
while P is not complete do
let g be the point such that the angle between the ling ~p—q— and L
{in counterclockwise fashion} is minimal among all points ;

addgtoP ;
L o= ling ~p—g-;
p=q

end

Figure 8.10 Algorithm Gift Wrapping.

Complexity To add the &th point to the hull, we find the minimum and maximum
angles among n —~k lines. Therefore, the running time of the gifi-wrapping algorithm is
O (n%), which is not better than the siretching algorithm.

8.4.3 Graham’s Scan

We now show an aigorithm to compute the convex bhull in time O(nlogr). The
algorithm staris by ordering the poinis according to angles, simifarly to the construction
of stmple polygons described in Section 8.3, Let p; be the point with the maximal x
coordinate {and the minimal y coprdinate, if there are several other points with the same x

276 Geometric Algorithms

coordinate}. For each point p;, we compuie the angle of the line —p | ~p;~ with the x axis,
and sort the points according to these angles (see Fig. 8.11). We now scan the points in
the order they appear in the polygon and, as before, try to find the vertices of the convex
hull. As in the gift-wrapping algorithm, we will maintain a path consisting of a subset of
the points scanned so far. This path will be a convex path whose corresponding convex
polygon encloses all the points scanned so far. {The corresponding convex polygon is
the one formed by connecting the first and last points of the path.} Hence, when all the
points are scanned, we find the convex hufl. The main difference between this algorithm
and the gift-wrapping algorithm is that the convex path we maintain is nof necessarily
part of the final convex hull. It is onrly part of the convex hull of the points that were
scanned so far. The path may contain points that are not on the final convex hull; these
points will be eliminated later. For example, the path from p, to ¢, in Fig. 8.11 is
convex, bui gq,, and g, clearly do not belong to the convex hull. This discussion leads
i an algorithm, based on the following induction hypothesis,

Induction hypothesis: Given a set of n points in the plane, ordered
according 1o algorithm Simple _Polygon (Section 8.3), we can find a convex
path among the first k points whose carresponding convex polygen encloses
the first k paints.

The case of k = 1 is trivial. Denote the convex path obtained (inductively) from the first &
points by P=q,q;,..4n We now have to extend the hypothesis to &k +1 points.
Consider the angle between the lines —g,, _;—¢,,— and —¢,,~P. .~ (see Fig. §,11). If the
angle is less than 180 degrees (where the angle is measured from the inside of the
polygen), then p,,, can be added 1o the existing path (since the path with it is still
convex), and we are done. Otherwise, we claim that g, is inside the convex polygon
obtained by removing g, from P, adding py,, to P, and connecting p, ., 1o p,. This is so
because the points were ordered according to their angles. The line —p —p, .~ is on the

1

Figure 8.11 Graham’s scan.

8.4 Cenvex Hulls 277

“left'" side of the first k points. Hence, g, must be inside the convex polygon defined
above, ¢, can be removed from P, and p;,; can be added. Are we done? Not quite.
Although g,, can be eliminated, the modified path is not necessarily convex. Indeed, Fig.
§.11 shows clearly that other points may have to be eliminated as well. For example,
Gm-; Mmay now be inside the polygon defined by the modified path. We must continue
checking the last two edges of the path until we find two that form an angle of less than
180 degrees. The path is then convex, the hypothesis has been extended to & + 1 points,
and we are done. The detailed algorithm is presented in Fig 8.12.

Algorithm Grahkam’s_Scan (p,,p1, ... p.) |
Input: p,,p,, ..., p, (a set of points in the plane).
Output: g,,49;,....q, (theconvex hull of py, 3, ... p,).

begin
Let p| be the point in the set with the largest x coordinate
fand smallest y coordinate if there are several points
with the same largest x coordinate) ;
Use algorithm Simple_Polygon to arrange the points around p |
in sorted order ; let the order be p, P2, .., Pr ¥

gy =Py,
g1'=p2:
43 '=Ps3
{ P inivially consists of py, ps,and py]
mo=3;

fork . =4rwondo
while the angle between ~q,,_y—q,,— and —g,~p;— is = 180 degrees do
m=m-1;
mo=m-+{;
G = Dk
end

Figure 8.12 Algorithm Graham's Scan.

Complexity The complexity of the algorithm is dominated by the sorting. All the
other steps require only O (n) time. Each point in the set is considered exactly once in
the induction step as p,;. At that time, the point is always added to the convex path.
The same point will be considered later (possibly more than once) to verify its inclusion
in the current convex path, We call this phase a backward 1est. The number of points
invoived in a backward test may be high, but all these points except for two (the current
point and the point that is found to still belong to the convex path) are eliminated! So, we
spend only a constant time to eliminate each point, and a constant time to add it. Qverall,
O{n) steps are required for this phase. The total running time of the algorithm is thus
O (n log n} due to the sorting.

278 Geometric Algorithms

8.5 Closest Pair

Suppose that we are given the locations of n objects and we want 1o check that no two of
the objects are too close to each other. The objects may correspond, for example, to parts
in a computer chip, to stars in a galaxy, or to irrigation systems. In this section, we
discuss a variation of this problem, which is an example of a large set of proximity
problems.

]
The Problem Given a set of » points in the plane, find a pair of
¢losest poinis.

Other proximity problems include finding, for each point in the set, the closest point fo it
or the & closest points to it, and finding the closest point to a new given point.

A Straightforward Approach

A straightforward solution is to check the distances between all pairs and to take the
minimal one. This selution requires »# (n — 1)/2 distance computations and nin - 1/2-1
comparisons. The straightforward solution using induction would proceed by removing a
point, selving the probiem for # — | points, and considering the extra point. However, if
the only mformation obtained from the solution of the #—1 case is the minimum
distance, then the distances from the additional point 1o all other n — 1 poinis must be
checked. As a result, the total number of distance compuiations T(r) satisfies the
recurrence relation T{(n)y=T(n-1}+n—-1, (F{2)=1), and we have already seen that
T(m)=0(n*). In fact, these two straightforward solutions are identical. We want to find
a more efficient algorithm for large »,

A Divide-and-Conquer Algorithm

Insiead of considering one point at a time, we divide the set into two equal parts. The
induction hypothesis can stay the same, but instead of reducing the problem of » poinis to
the problem of # — | points, we reduce it to two problems with 7/2 points, We assume,
for simplicity, that » is a power of 2, so that it is always possible to divide the set into two
equal parts, There are many ways to divide a set of poinis into two equal parts. We are
free to choose the best division for our purposes. We would like to get as much useful
information as we can from the solution of the smailer problems; thus, we want as much
of that information to be still valid when the complete problem is considered. It seems
reasonable to divide the set by dividing the plane info two disjoint paris, each containing
one-half of the set. After we find the mirimal distance in each part, we have 1o be
cancerned only with the distances between points close 1o the boundaries of the sets. The
easiest way of dividing the set is 10 sort all the points according to their x coordinates, for
exampie, and then 1o divide the plane by the vertical line that bisects the set (see Fig.
8.13). (If several points lie on the vertical line, then we divide them arbitrarily.) We

8.5 Closest Pair 279

b T
: :
1 i
| E .
@ .
1 T
. ! :
1 T
i : A .
A —
' : d,
*) | |
— = .
1
% el
i i ®
. ! !
: !
e &
i 1
1 1
1 1
3 1
: !
Al el
d, d

Figure 8.13 The closest pair problem.

choose this division to minimize the work of combining the selutions of the smaller
problems. The sorting needs to be performed only once,

For simplicity, we concentrate on finding only the minimal distance among the
points. ldentifying the actual two closest points will be straightforward from the
algorithm. If the set has only two points, then we find their distance directly. Let P be a
set of n points, and assume that n is a power of 2. We first divide P into 1wo equal-sized
subsets, P | and P, as described above. We find the closest distance in each subset by
induction. Let the minimal distance in P, be d,, and in P, be d», and assume, without
loss of generality, that 4, <d;. We need to find the closest distance in the whole set;
namely, we have to see whether there is a point in P with a distance <4, to a peint in
P ;. First, we notice that # is sufficient to consider only the points that lie in a strip of
width 24, centered around the vertical separator of the two subsets (see Fig. 8§.13). No
other point can be of distance less than ¢, from points in the other subset. Using this
observation, we can usually eliminate many points from consideration, but, in the worst
case, all the points can sfill reside in the strip, and we cannot “*afford’” to use the
straightforward algorithm for them.

Another less obvious observation is that, for any point p in the strips, there is only
4 small number of points on the other side whose distance o p can be smaller than 4.
This is so because all the points in each sirip are at least d, apart. If p is a point in the
strip with y coordinate y,, then only the points on the other side with a y coordinate y,
such that |y, —y, | <d, need to be considered. There could be at most six such points on
one side of the strip (see Fig. 8.14 for the worst case). As a result, if we sort all points in
the strip according 1o their y coordinates, and scan the points in order, we need 1o check
each point against only a constant number of its neighbors in the order (instead of against
all # -1 points). A sketch of the algorithm is given in Fig 8.15.

280 Geometric Algorithms

Figure 8,14 The worst case of six poiats d, apart.

Algorithm Closest_Pair_I (p.p,,....p,): { frst attempt }
Input: p..p,. ... p, (aset of n points in the plane}.
Qutput: 4 (the distance between the two closest points in the set).

begin
Sart the points according to their x coordinates ;
{ this sorting is done only once at the beginning }
Divide the set into two equal-sized parts |
Recursively, compute the minimal distance in each part ;
Let d be the minimal of the two minimal distances ;
Eliminate points that lie farther than d apart from the separation line ;
Sort the remaining points according to their y coordinates ;
Scan the remaining points in the y order and compute the distances of
each point to its five neighbors ;
if any of these distances is less than d then
update d
end

Figure 8.15 Algorithm Closest_Pair_1.

Complexity 1t takes O (1 log n) steps to sort according to the x coordinates, but this
sorting is done only once. We then solve two subproblems of size n/2. Eliminating the
peints outside of the strips can be done in O (1) steps. It then takes O(n logn) steps to
sort according to the y coordinates. Finally, it takes O (n) steps to scan the points inside
the strips and to compare each one to a consiant pumber of is neighbors in the order.
Overall, to solve a problem of size n, we solve two subprobiems of size #/2 and use
O (nlog n) steps for combining the solutions {plus O (n log n) steps once at the beginning
for sorting the x coordinates). We obiain the foliowing recurrence relation:

8.6 Intersections of Horizontal and Vertical Line Segments 281

T =2/ +Onlogn), F{=1.

We leave it to the reader to verify that the solution of this recurrence relation is
T(a)= O (nlog’n). This is asymptotically better than a quadratic algorithm, but we still
want to do better than that.

An O(n log n) Algorithm

The key idea here is to strengthen the induction hypothesis. The reason we have to spend
O{nlogn) time in the combining step is the sorting of the y coordinates. Although we
know how to solve the sorting problem directly, doing so takes too long. Can we
somehow solve the sorting problem at the same time we are solving the closest-pair
problem? In other words, we would like to strengthen the induction hypothesis for the
closest-pair problem to include sorting.

Induction hypothesis: Giver a set of < n points in the plane, we know how
find the closest distance and how to output the set sorted according to the
points’ y coordinates.

We have already seen how to find the minimal distance if the points are sorted in each
step according to their y coordinates. Hence, the only thing that we need to do 1o extend
this hypothesis is 1o sort the set of # points when the two subsets (of size #/2) are already
sorted. But, this sorting is exactly mergesert (Section 6.3.2). The main advantage of this
approach is that we do not have fo sort every time we combine the solutions — we only
have to merge. Since merging can be done in O{n) steps, the recurrence relation
becomes T (n)=2T(m/2y+ G{n}), T(2}=1, which implies that T(n)=O(nlogn). The
revised algorithm is given in Fig 8.16.

8.6 Intersections of Horizontal and Vertical Line
Segments

Intersection problems are common in computational geometry, and they have many
applications. We are sometimes interested in computing the intersection of several
objects, and we are sometimes interested only in detecting whether the intersection is
nonempty. Detection problems are usually easier, although not always substantially
easier. In this section, we present one intersection problem that illustrates an important
technique of computational geometry. The same technique can be applied to other
intersection problems (and to other problems as well), some of which are given as
exercises.

The Problem Given a set of # horizontal and m vertical line seg-
ments in the plane, find ali the intersections among them.

282 Geometric Algerithms

Algorithm Closest_Pair 2 (p . ps, ... Pp} : { An improved version }
Input: py,py, ..., p, (@ set of npoints in the plane).
Output: d (the distance between the two closest points in the set).

3

begin
Sort the points according to their x coordinates ;
{ this sorting is done only once at the beginning }
Divide the set into two equal-sized parts ;
Recursively do the following:
compute the minimal distance in each part ;
sort the points in each part according to their y coordinates ;
Merge the two sorted lists into one sorted list ;
{ Notice that we must merge before we e¢liminate | we need to
supply the whole set sorted to the next level of the recursion }
Let d be the minimal of the minimal distances ;
Eliminate points that lie further than d apart from the separation line ;
Scan the points in the ¥ order and compute the distances of each
point to its five neighbors ;
if any of these distances is less than d then
update d
end

Figure 8.16 Algorithm Closest_Pair 2.

This problem is impornant, for example, in the design of VLSI circuits. A circuit may
contain hundreds of thousands of “*wires,”” and the designer has to make sure thag there
are no unexpected intersections. ft is also important in the context of hidden-line
elimination. (The hidden-line elimination problem is usually more complicated, because
the lines are not only either horizontal or vertical.) For simplicity, when there is no
ambiguity, we call the line segments simply fines in this section. An example of the
problem is given in Fig. 8.17.

Finding all intersections among either afl the vertical lines or all the horizontal
lines is a simple problem, which is left as an exercise. We assume, for simplicity, that
there are no intersections between two vertical lines or between two horizontal lines. If
we iry to reduce the problem by removing one line {either vertical or horizontal) at 8
time, then the removed line will have to be compared against ali other lines, and the
resulting algorithm wiil involve O (mnr) comparisons. In general, there may be as many
as mn intersections, and the algorithm may require O (mn) time just to report them. But
the number of intersections may be much smaller than mn. We would like to find an
algorithm that performs very well when there are few intersections and not oo poorly
when there are many, We achieve i by combining two of our favorite techniques:
choosing a special order of induction and strengthening the induction hypothesis.

8.6 Intersections of Horizontal and Vertical Line Segments 283

Figure 8,17 Intersections of horizontal and vertical lines,

The order of induction is determined by an imaginary line {an infinite line, not a
segment) that ““sweeps’ the plane from left to right; the line segments are considered in
the order in which they intersect with this imaginary line. In addition to computing
intersections, we also keep some information about the kine segments that we have seen
so far. This information will be helpful for computing the next intersections more
efficiently. This technique is called the line-sweep technique.

Let the imaginary line be a vertical line that sweeps the plane from lefi to right. To
achieve this sweeping effect, we sort all the endpoints of the segments according to their
x coordinates. The two endpoints of & vertical line have the same ¢ coordinates, so we
need only one of themn, We must use, however, the two endpoints of each horizontal line.
After all the endpoints are sorted, we consider them one by one in that order. As usual in
an inductive approach, we assume that we have already computed the intersections
among the previous line segments and have maintained some additional information, and
we now try to handle the next line segment and to update the information. The structure
of the algorithm is thus as follows. We consider one endpoint at a time in the left-to-right
order. We use the information gathered so far {which we have not yet specified) to
process the endpoint, find some intersections that it causes, and update the information to
be used for the next endpoint. The main part of the algorithm is the definition of the
information that we maintain. Let’s attempt to run the algorithm and to discover what is
needed.

One feature of the induction hypothesis, which seems natural fo have, is the
knowledge of all the intersections that occurred to the left of the current position of the
sweeping line. 1s it better to check for intersections when a vertical line is considered or
when a horizontal line is considered? k seems better to choose the former. When we
look a1 a vertical line, the horizontal lines that can intersect it are still under consideration
{since we have not yet reached their right endpoint), On the other hand, when we look a
either the left endpoint or the right endpoint of a horizontal line, we either have not yet
seen the vertical lines that intersect it, or we have forgotten about them, Assume that the

284 Geometric Algorithms

sweeping line is currently at the x coordinates of the vertical line L (see Fig. 8.17). What
kind of information is required to find all intersections involving L? Since all
intersections to the left of the current sweeping line are assumed to be already known,
there is no need to consider a horizontal kine any further if its right endpoint is 1o the left
of the sweeping line. Hence, only those horizonial lines whose left endpoints are 1o the
left of the sweeping line and whose right endpoints are 1o the right of the sweeping line
should be under consideration (there are six such Hnes in Fig. 8.17). The list of these
horizontal lines shoutd be maintained. When L is encountered, it should be checked for
intersection against all these horizontal lines. The important point here is that we need
not check the x coordinates to determine intersections with Lt We already know that alj
horizontal lines in the list have x coordinates that match that of L. We have to check only
the y coordinates of the horizontal lines in the list to see whether they match the y
coordinates of L. We are now ready to try an induction hypothesis.

Induction hypothesis: Given a list of k sorted x coordinates as described
(with x, being the rightmost x coordinates), we know how 1o report all
intersections among the corresponding lines that occur to the left of x,, and
to eliminate those horizontal lines that are to the left of x;.

We call the horizontal lines that are still under consideration candidates. (These are the
horizontal lines whose left endpoints are to the left of the current x coordinate, and whose
right endpoints are to the right or at the current x coordinate.) We maintain a data
structure containing the set of candidates. The implementation of this data structure will
be discussed shortly,

The base case for this induction hypothesis is easy. To extend the hypothesis, we
need to handle the (& + 1 3th endpoint. There are three cases:

i, The (k+1)h endpoint is a right endpoint of a heorizontal ling, in which case we
simply eliminate the line from the set of candidates. As we said, intersections are
detected when vertical lines are considered, so we lose no intersections by
eliminating the horizontal line. This step thus extends the induction hypothesis.

2. The (k + 1 1h endpoint is a left endpoint of a horizontal line, in which case we add
the line to the set of candidates. Since the line’s right endpoint has not been
reached yet, the line should not be eliminated, so, by the arguments above, this is 2
proper way to extend the induction,

3. The (k+ 1)1th endpeint is a vertical line. This is the main part of the algorithm, We
can find the intersections involving this vertical line by checking the y coordinates
of all the horizontal lines in the set of candidates against the y coordinates of the
vertical line,

The algorithm is now complete. The number of comparisons will usually be much
smaller than mn, Unfortunately, in the worst case, this algorithm still requires O (mn)
comparisons, even if the actual aumber of intersections is small, If all the horizontal
lines stretch from left to right, for example, then each vertical line must be checked
against all horizontal lines, resulting in an @ (ma) algorithm. This bad case will hold
even if no vertical line intersects with a horizontal line.

8.7 Summary 285

To improve the algorithm, we need to minimize the number of comparisons
between the y coordinates of a vertical line and those of the horizontal lines in the set of
candidates, Let the y coordinates of the vertical line we are currently considering be y,
and ve, and let the y coordinates of the horizontal lines in the set of candidates be
¥1.¥2. .0 ¥ Suppose that the horizontal lines in the set of candidates are given in sorted
order according to their y coordinates {namely, ¥, ¥,, ... ¥ is in increasing order). We
can find the horizontal lines that intersect with the vertical line by performing two binary
searches, one for y; and one for ye. Suppose that y, <y ¥, Sy, S¥g <¥j+1. The
horizontal lines that intersect with the vertical line are exactly ¥ii1, Yisz. .- ¥;. We can
also perform only one binary search, say, for y;, and then scan the y coordinates until we
find y;. Even though the original problem involves two dimensions, finding y;,q, ..., y; is
a one-dimensional problem. Searching for numbers in a given one-dimensional range (in
this case, y; to yp) is called a one-dimensional range query. If the numbers are sorted,
then the running time for a one-dimensional range query is proportional 1o the search
time plus the number of items that are found. But, of course, we ¢cannot afford to sort the
horizontal lines every time we encounter a verticat line,

Let's review the requirements. 'We need a data structare that allows us to insert a
new element, to delete an element, and o perform a one-dimensional range query
efficiently. Fortunately, there are several data structures — for example, balanced trees
- that can perform insertions, deletions, and searches in & (Jog n) per operation (i being
the number of elements in the set}, and linear scans in time proportional to the number of
elemenis found. The algorithm is presented in Fig 8.18,

Complexity Sorting according to x coordinates requires time O ({(m +n)}log{(m +n)).
Since each insert and delete operation requires O(logn) steps, the running fime for
handling the horizontal lines is O (# logn} overall. Handling the vertical lines requires a
one-dimensional range query, which can be performed in time Q{ogn +r), where r is
the number of intersections involving this vertical line. The running time of the
algorithm is thus O ({m +n}log{(m +n)+ R}, where R is the total number of intersections.

8.7 Summary

iIn some sense, geomeitric algorithms seem less abstract than, say, graph algorithms, since
we are used fo seeing and handling geometric objects. But, appearances are sometimes
misleading. Dealing with huge number of objects is different from looking at small
pictures, and we must be careful that the picture that we have in the back of our minds
does not lead us to wrong conclusions. We must deal with many special cases, and make
sure that we can cover all of them. The algorithm for determining whether a point is
inside a polygon (Section 8.2) is a good example. We usually do not think of a polygon
as being like the one given in Fig. 8.). Furthermore, it is easy 1o overlook the special
cases that may occur. Therefore, special caution must be exercised when designing
geometric algorithms.

The techniques for designing (discrete} geometric algorithms are similar to the
techniques that we have siudied in the previous chapters. Induction plays an important

286 Geometric Algorithms

Algorithm Intersection ((v, vy, .. v,) (hy ko hy))
Input: vy, va, ..., vy, (a set of vertical line segmenis),
and hy, k4, ... h, (a set of horizontal line segments),
Output: The set of all pairs of intersecting segments.
{ ya(v;) (yr(v;)) denote the bottom (top) y coordinates of line v; |

begin
sart all x coordinates in increasing order and place them in @ ;
V=0

{ V is the set of horizontal lines that are currently candidates for
intersection ; it is organized as a balanced tree according to the
¥ coordinates of the horizontal {ines }

while (is not empty do
remove the first endpoint p from @ ;
if p is the right endpoint of h; then
remove hy fromV
else if p (s the left endpoint of by, then
insert hy into 'V
else if p is the x coordinate of a vertical line v; then
perform a one-dimensional range guery for the range
yevi) to yr(vyyinV
end

Figure 8.18 Algorithm fntersection.

role. The line-sweep technigue, which is based on induction, is common to several
geometric algorithms (one was presented in Section 8.5) The divide-and-conquer
approach is also quite common. Geometric algorithms (except for simple ones) seem 10
require complicated data structures, and many sophisticated and ingenious data structures
have been developed for that purpose. We have not covered here any of these special
data structures.

Bibliographic Notes and Further Reading

We have seen only a small sample of geometric algorithms in this chapter. Even though
discrete computational geometry is a relatively new field, there exists an extensive
literature in this area, spanning the last 15 years. Several books concentrate on
computational geometry. Preparata and Shamos {1985} and Edelsbrunper [1987] present
numerous techniques, examples, and a comprehensive bibliography. Additional books
include Mehlhorn [1984] and Toussaint {1984],

The gift-wrapping atgorithm for convex hulls is due to Chand and Kapur [1970]
Graham's algorithm is due 1o Graham {1972} A bibliography containing 268 papers on

Drill Exercises 287

convex hafl algorithms and other problems of convexity was published by Ronse [1987].

The algorithm for finding the closest pair is due 10 Shamos and Hoey {1975]. An
O (n log n} algorithm that uses the ling-sweep technique is due to Hinrichs, Nievergelt,
and Schorn [1988]. A probabilistic algorithm for finding the closest pair, whose expected
running time is O (n), was developed by Rabin [1976] (see also Fortune and Hoperoft
[1979]). A general technique for proximity problems involves the construction of
Voronoi diagrams. A Voronoi diagram for a given set of points is a division of the
plane into regions such that each region contains all points that are closest to one of the
points from the set. Voronoi diagrams can be constructed in O (n logn) time (Shamos
and Hoey [1975]). They are useful for a variety of proximity problems.

The algorithm for reporting intersections ameng vertical and horizontal lines
(presented in Section 8.6) is due 1o Bentley and Ottmann [1979]. The running time of
O (n logn +R) of this algorithm is the best possible in the worst case (see Preparata and
Shamos [1985]). An algorithm for determining whether there are any intersections
among an arbitrary set of line segments was developed by Shamos and Hoey 11976]. It
also uses the line-sweep techaique. This problem can also be solved by a divide-and-
conquer algorithm with strengthening the induction hypothesis (Guting and Wood
[19841). There is a large body of literature on intersection problems, and the reader is
referred to one of the books listed above. Exercise 8.16 is from Bentley, Faust, and
Preparata {1982)], and Exercises 8.17-8.18 are discussed in Preparata and Shamos
[1985].

Drill Exercises

81 Complete algorithm Point_in_Polygon_1 (Fig. 8.2) by addressing the special cases that arise
when the line L intersects a vertex of the polygon or overlaps an edge of the polygen.

8.2 Design an algorithm to determine whether n given points in the plane are all on one fine.
What is the complexity of your algorithm?

8.3 Let § be an arbitrary set of points in the plane. Is there only one unique simple polygon
whose vertices are the set 57 Either prove the uniqueness, or show an example of two
different simpie polygons with the same set of vertices,

B4 The first algorithm we presented for computing the convex hull (Section 8.4) proceeds by
computing the supporting lines from an extreme point to the hull formed by the rest of the
points. Suppose that the only thing we know about the exira point g is that it is outside the
hull. Ht may be above the hull, befow the huil, or anywhere else. We can stiil try to find the
two supporting lines from g o the hull by computing the angtes (0 all other points, but it is
not clear any more how 1o select the minimum and maximum angle, because these angles
can be in any range. Find a method to determmine which of the fines from ¢ to points in the
hull is a supperting }ine.

85 Letp,,p2. ..p, be aset of points that are ordered cyciically according 1o a circle whose
center is somewhere inside the convex hull of these points. Medify Graham's scan to work
(without additional sorting) on this set of points.

288

8.6

87

B.8

LAY

Geometric Algorithms

Graham’s scan is appiied 1o a set of points in a certain order. We used algerithes
Simple_Polygon (Fig. 88) 10 sort the points in the following way. We started with an
“extreme” poiat p {which was guaranteed to be on the hull) and sorted all other pointg
according to the angles between a fixed line (e.g., the x axis) and the line segments
connecting the points to p. Prove {by showing a counterexample) that not every point p can
be used for that purpose. In other words, show a set of points § and another point p, not in
the set, such that sorting the poiats relative t0 p (using the angles from p {0 the points in the
set} and then applying Graham's scan does not lead to the correct convex hull.

Show, by an example, that it is possible for aigorithm Graham’s_Scan (Fig. 8.12) to reject p
poinis in a row, one at a time, for every value of p. (In other words, the loop can be
executed for p steps without changing the vaiue of m.)

Show an example of # poinis in the plane with distinct x coordinates, for which algerithm
Closest_Pair 2 (Fig. 8.16) will take n log n) steps,

Given a set of » horizontal line segments in the plane, find ali the intersections among them.
The algorithm should run in time O {n log #) in the worst case.

Creative Exercises

8.10

811

8.14

The input is a set of # points in the plase and 2 line. Design a linear-time aigorithm to find a
line that is paralle} to the given line and that separates the set of given points into two
equal-sized subsets (if a point lies on the line, then it can be counted as being on either
side}).

Let P be a simple {not necessarily convex) polygon enclosed in a given rectangle R, and g
be an arbitrary point inside R. Design an efficient algorithm te find a line segment
connecting 4 to any point outside of & such that the number of edges of P that this line
intersects is minimum. (This question is motivated by the algorithm for determining
whether a point is inside or outside a polygon; see Section 8.2.)

Let P be & convex pelygon given by an array of its vertices in cyclic order. Design an
algorithm to determine whether a given point ¢ is inside P. The running time of the
algorithm should be O {fog #) in the worst case.

Many convex-huil algorithms are based on or are simifar to sorting algorithms. You are
asked to develop a convex-hull algerithm that is similar te an efficient insestion sort. In
each iteration, one more point shouid be considered and possibly should be inserted te the
current convex huil, which should consist of the coavex hull of the points seen se far. The
points shouid be considered in an arbitrary order (i.e., no sorting should be done initialty).
The algorithm should be based on an efficient data structure 10 determine whether a given
peint is inside a given convex polygon. What is the worss-case running time of your
algorithm? (You do not have to supply ali the details for all the special cases.)

Consider the idea of computing the convex huil by stretching the hull one point at a time
with the use of supporting Jines (see Section 8.4). Design an @ (nlogn) algorithm for
compating the convex hull based on this idea,

813

B.I8

815

820

821

8.22

&
R.23

Creative Exercises 289

Assume that you have 4 black box that finds the convex hull of the union of two disjoint
convex polygons Py and P, intime O(|Py | + | P43 (| P; 1 denotes the number of points in
P.). Design an algorithm that uses this black box to find the convex hull of a given set of »
poins in the plane. The running time of the algorithm should be G (n logn).

A d-approximate convex hull of a set of poinis P is a convex polygon all of whose vertices
are from P, such that all points in P are either inside it or within distance d from it. (We
define the distance of a peint from a polygon as the minimum over all lengths of line
segments connecling the point to anywhere in the polygon.} Let P be a set of # points such
that the maximal difference between the x coordinates of any two points in P is X, Design
an algorithm to compute & d-approximate convex huli of P, which runs in ime and space
Om+Xid).

Let P be a set of # points in the plane, We define the depth of a point p in P as the number
of convex hulls that need 1o be *‘peeled’” {removed) for p 10 become a veriex of the convex
hull. Design an O (n*) algorithm to find the depths of all points in P. (Notice that the
straightforward algorithm that finds convex hulls and removes them may run for
O (n? log 1) time, since all huils may have a constant sumber of vertices.}

a. A point p in the plane is said to dominate another point ¢ if both the x coordinate and ¥
coordinate of p are greater that or equal to those of ¢. A peint p is a maximal point ina
given set of points P if no point in P dominates it. Design an O (n log#) algorithm fo
find atl maximal points of a given set P with » points.

b. Solve the corresponding problem for three dimensions (the definition of dominance is
extended to include all dimensions).

Let § be a set of poiats in the plane. For each p € §, we define D (p) to be the set of points
in § that are dominated by p (see Exercise 8.18). Design an algorithm to compute the sizes
of the sets D (p) for all pe S. The ruaning time of the algorithm should be O {n logn) in
the worst case.

Given n poinis in the plane, find the pair of points such that the line segment connecting
them has the maximal siope. The rusning time of the algerithm shouid be O (n logn) in the
worst case.

The input is a set of # poiats in the plane, represented as an array of linked lists in the
following way. Each eniry in the array has two fields: X, which gives the x coordinates, and
Nexr, which points to a (nonempty) linked list of all the points in the set whaose x
coordinates are equal to X, sorted according to their ¥ coordinates. The array is sorted
according to the x coordinates. Design an algerithm to find the closest pair of points whose
x coordinales are either equal or consecutive in the array, The algorithm should fun in time
O (n) in the worst case. Is it necessary to compute square roots in this algorithm? Does
your algorithm find the closest pair (without any restrictions)?

The input is a set of line segments in the plane such that ali segrments are horizonial, vertical,
or have a 45-degree angie with the horizen. You are asked to extend the algorithm for
reporting alf intersections among a sel of vertical and horizontal line segments 10 this case
without increasing the asymptotic worst-case runaing time.

Design an algorithm to compute ail the intersections among a set of horizontal and vertical
line segments by using a divide-and-conguer approach. The runaing time of the algorithm

290

8.24

825

8.27

Geometric Algorithms

should be the same as the aigorithm discussed in Section 8.6. That is. all intersections
should be reporied in time G¢m+n)logim+n3+R) (where R is the number of
intersections found).

The input is a set of a arbitrary line segmenis in the plane. Design an algorithm to
determine whether any two of the line segments intersect. The algerithm needs to output
only yes or no. The rusning time of the aigorithm should be O (n logn) in the worst case.
(Hint: Use the line-sweep method similarly o the horizontal and veriical case, but maintain
different information.)

A grid polygon is & simple polygon all of whose edges are paralle! to either the x axis or the
y axis. Design an efficient algorithm te compute the intersection of two given grid polygons
{i.e., the area common to both of them). The polygons are given by their vertices in a cyclic
order.

The input is a set of intervals on a line, which are represented by their two endpoints.
Design an algorithm to identify all intervals that are contained in another interval from the
set. The algorithm should run in time O (» log #) in the worst case.

The input is a set of # rectangles all of whose edges are parailel to the axes. Extend the
algorithm obiained in Exercise 8.26 to mark all the rectangles that are contained in other
rectangles. Can you obtain a running time of O {a loga)?

The input is a set of # rectangles all of whose edges are paraliel to the axes. Desiga an
aigorithem to find the intersection of alt the rectangtes.

The input is a set of n circles in the plane. Design an aigorithm to detect whether there are
any two circles in the set with nonemply intersection. The algorithss does not need to
compute the intersection, only output yes or no. The running time of the aigoriths should
be G{n logn} in the worst case.

The input is a set of n polygons, each with & vertices. Design an algosithm 1o detect whether
there are any two polygons in the set with nonempty intersection. The algorithm does not
need to compute the intersection, only outpu yes or no, What is the worst-case running
time?

The input is two convex polygons given by their fists of vertices (in a cyclic order). Design
a linear-time algorithm to compute the intersection of these polygons. The output, which is
also a convex pelygon, should be represented by a list of vertices in a cyclic order.

The input is two convex polygons given by their lists of vertices {in a cyclic order). Design
a lineas-time aigorithm to compute the union of the two polygons (i.e., the area enclosed by
at least one of the polygons).

The input is a set of # rectangles all of whose edges are parailel to the axes. Design an
aigerithm to compute the union of aif the rectangles. The union is obviously a polygon. It
should be represented by its list of vertices in counterclockwise order. (This problesm is an
extension to the skyline problem in chapter 5.}

The input is a set of n triangles in the plane, given by their vertices. Design an O{n logn)
algorithm 1o compute their intessection (j.e., the area common to ail of them).

8.35

8.36

837

838

8.39

8.40

Creative Exercises 29}

The inpui is & convex polygon given by its list of » vertices in cyclic order. Design a
linear-time aigorithm to find » triangles whose intersection is the given polygon.

The input is a set of » peints in the plane. Design an O (a? log n} algorithm te determine
whether there exist four points in the set that are vertices of a square.

The input is a set of # points in the plane. Design a polynomial-time algorithm to determine
whether there are & points in the set {for some & Sx) that are the vertices of a regular
polygon, (A regular polygon is a polygon with equal-sized edges and angles.}

The input is a set of # points all of which have integer coordinates. We are interested in
finding a set of paralle! fines such that all the points are contained in af least one of the lines
int the set. The lines must either be paralle! to the axes or have a 45-degree angle with the
axes. Design an O (n logn) aigorithm fo find a minimum-size set of lines satisfying these
conditions, Again, the lines must all be parallel, so, in particular, if one of the fines has a
45-degree angle with the coordinates, then ali of them do.

A line divides the plane into two half-planes. The intersection of any number of half-planes
is a convex polygon (half-planes are convex and the intersection of convex objects is always
convex). The problem is to compute the intersection of n given haif-planes and output it as
a convex polygon. That is, the output should include the list of the vertices in the cyclic
order in which they appear in the poiygon. The half-planes are given by the linear
inequality that defines them. Design an O (n log n) algorithm to compute this intersection,

The input is 2» points in general position in the plane {i.e., no three points lie on a common
line), such that » points are colored red and # poinis are colored blue. Design an algorithm
te match the blue points to the red points such that (1) each poiat has a unique maich, and
(2} none of the line segments connecting matched points intersect. The algorithm need not
make use of any graph-matching techniques, I is not evident that such a matching always
exisis, but it is true. The algorithm should run in polynomial time. (Hint: Use induction:
Try to find a red point and a biue point whose connecting line segment poses no problems,
if that fails. try to divide the set of points by a straight line such that the problem is divided
into two smaller problems.}

CHAPTER 9

ALGEBRAIC AND NUMERICAL
ALGORITHMS

One plus one is two.

Two plus two is four.

Four plus four is eight.

Eight plus eight is more than ten.

A child’s poem

9.1 Introduction

Whenever we perform an arithmetic operation, we are in fact executing an algorithm,
We are usually so familiar with these operations that we take the corresponding
algorithms for granted. However, whether it is multiplication, division, or 2 more
complicated arithmetic operation, the straightforward algorithm is not always the best
when very large numbers or large sequences of numbers are invelved. The same
phenomenon thai we have seen in the previous chapters occurs here as well: Some
algorithms that are good for small input become inefficient when the size of the input
ZTOWS,

As we have done in previous chapters, we will measure the complexity of an
algorithm by the number of *‘operations™ that the algorithm executes. For the most part
we will assume that basic arithmetic operations {such as addition, multiplication, and
division) take one unit of time. This is a reasonable assumption when the operands can
be represenied by one or two computer words (e.g., integers that are not too large,
single-precision or double-precision real numbers). There are cases, however, when the
operands are huge {e.g., 2000 digit integers). In such cases, we have to take into account

L T

294 Algebraic and Numeric Algorithms

she size of the operands, or af least to be aware that the basic operations are not simple.
It is possible to design algorithms that look very efficient *‘on paper,” but are in fact very
inefficient, because the sizes of the operands are ignored.

The meaning of the ‘‘size of the input” is confusing sometimes. Given an integer
n on which we want o perform an arithmetic operation, if is natural to think of the value
n as the size of the input. However, this is contrary to our usual convention of using the
storage requirements of the input for defining its size. The distinction is very important,
Adding iwo 100-digit numbers can be done quickly, even by hand. On the other hand,
counting to a value represented by a 00-digit number cannot be done in reasonable time
even by the fastest computer. Since a number # can be represented by [log,nl bits, its
size is defined as [logyn]. For example, an algorithm that requires O (log n) operations
when # is the input (for example, an algonithm for computing 2n) is considered finear,
since O(logn) is a linear function of the size of the input, whereas an algorithm that
requires O{\(;) operations when #n is the input {for example, factoring » by trying all
numbers less than or equal to \/;) is considered exponential.

As usual, we concentrate in this chapter on interesting techniques for designing
algorithms, We first discuss how to compute powers of a given number. We then
present what is probably the oldest known nontrivial algorithm: Euclid's algorithm for
finding the greatest common divisor. It is quite amazing that modern computers use a
2200-year old algorithm, We then discuss algorithms for polynomial multiplication and
matrix multiplication, and we end the chapter with one of the most important and most
beautiful algorithms — the fast Fourier transform,

9.2 Exponentiation

We start with a basic arithmetic operation.

The Problem Given two positive integers n and k, compute n*.

i k k-1

We can easily reduce the problem to that of computing n*~', since n*=n-n
Therefore, the problem can be solved by induction on &, and the resulting straightforward
algorithm is given in Fig. 9.1. We have reduced the value of &, but not its size. The
straightforward algorithm requires & iterations. Since the size of & is logy &, the number of
interation is exponential in the size of & (k=2t°g’k}. This is not bad for very small values
of &, but it is unacceptable for large values of &.

Another way to reduce the problem is to use the fact that nt ={#*2)*. With this
observation, we reduce the probiem to one with # and k/2. Reducing the value of k by
half corresponds to reducing its size by a constant. Thus, the number of multiplications
will be linear in the size of &. We now have the skeleton of the algorithm — repeated
squaring. The simplest case is for £ =2/ for some integer f:

9.2 Expenentiation 295

Algorithm Power (n, k} { first attempt }
Input: nand k (two positive integers).
Output: P (the value of n*).

begin
Pr=n,;
fori=1tok~1do
P wn*P
end

Figure 9.1 Algorithm Power.

ot (] 7 sumes

But what if £ is not a power of 27 Consider again the reduction we just used. We started
with two parameters n and £, and reduced the problem 10 a smaller one with n and k/2.
This reduction is not always valid since /2 may not be an integer. H &4/2 is not an
integer, the reduced problem does not satisfy the conditions of the original problem. But
if k/2 is not an integer, then (k—1)/2 is an integer, and the following reduction is
appropriate:

2
k= [n{kml)fz} .

We now have an algorithm. If £ is even, we simply square the solution for £/2. If £ is
odd, we square the solution for (4-1)/2 and multiply by a#. The number of
multiplications is at most 2log, k. The algorithm is given in Fig, 9.2,

Complexity The number of multiplications is Oflogk). As the algorithm
progresses, however, the numbers become larger. Therefore, the multiplications become
more costly. We leave it to the reader (Exercise 9.12) to analyze the complexity of this
algorithm under a more realistic measure for the cost of the multiplications. We now
present an application of this algorithm in which the numbers do not grow during the
execution of the algorithm.

An Application to Cryptography

The study of cryptography is beyond the scope of this book, and we discuss it briefly,
Encryption schemes usually rely on complete secrecy. Any two participants who want to
exchange secret messages must agree on the encryption—decryption algorithm and must
use secret keys known only 1o themselves. We want to aveid this need to exchange
secrel keys between every pair of participants. The following is known as the RSA
public.key encryption scheme (after Rivest, Shamir, and Adleman [1978], who
develeped it). The scheme can be used by a group of participants (e.g., computer users)

296 Algebraic and Numeric Algorithms

Algorithm Power_by_Repeated Squuaring (n, k) ;
Input: # and k (two positive integers).
Output: P (the value of n*).

begin
ifk=1then P :=n
else
z := Power_by_Repeated Squaring (n, k div 2},
ifkmod2 = 0 then
P =%z
else
P o= p¥rty

end

Figure 9.2 Algorithm Power_by_Repeated Squaring.

who want to communicate by encrypted messages. Each participant has only two keys,
one for encryption and one for decryption (independent of the number of other
participants). These keys are chosen as follows. A participant P in the RSA scheme
selects two very large prime numbers p and g and computes their product # =pg. He then
chooses another very large imteger d, such that d and (p — I)Xg — 1) have no common
divisor, (See the next section for an algorithm to verify that fact; if 4 is a random
number, then the condition above is likely to occur) From p, g, and d, it is possibie
{although not easy) 1o compute the value of a number ¢ that safisfies

e-d=1(mod(p-1)g-1) @.1)

As we shall see next, ¢ will be the encryption key and o the decryption key. The values
of # and e are publicized by P in a central directory that everyone can read. (We assume
the availability of a trusted directory such that no other person can forge P's keys.) The
value of d, as well as the values of p and g, which are not needed anymore, are kept
secret by P,

Let M be an integer that corresponds to a message that P wanis to encrypt (every
message can be translated to a sequence of bits, which can be translated to an integer
Assume that M is smaller than »; otherwise M can be broken into several small messages
each smaller than n. The encryption function Ep that P uses is very simple:

Ep(MYy=M* (modn),

Since both 1 and e are made public, everyone can encrypt messages and send them to F.
The decryption function Dp is just as simple (but it can be performed only by P, since the
value of d is secrei):

Dp(C) = C? (mod).

9.3 Euclid’s Algorithm 297

One can prove that {9.1) guarantees that Dp(Ep(M)) =M, hence these are valid
encryption and decryption functions. Both algorithms thus consist of computing only one
power (M* or C%) and one division (for the congruence), although these operations are
performed on very large numbers. The modulo # operation can be applied at any step of
the algorithm, and not necessarily at the end. This is true because

x-y(mod n) = [x{mod »r) - y(mad n) J(mod »),

for all integers x, y, and n. Applying the modulo »n operation in each siep of the
computation s very important, since this way the values of the operands do not grow
above n, If we use algorithm Power by Repeated-Squaring of Fig. 9.2, not only do we
require only Oflege) (or O(logd)) multiplications and divisions for computing the
power, but each multiplication and division involves numbers that are less than n, We
need to modify algorithm Power by Repeated-Squaring by only changing each
multiplication to a multiplication modulo n. Thus, applying the RSA scheme requires
onty O (log #) multiplications and divisions of numbers that are less than ».

There is no known algorithm that can factor a very large number (e.g., of 1000
digits) in a reasonable time (e.g., our lifetime). Thus, the knowledge of the value of n
does not imply the knowledge of p and 4. It is commonly believed {although there is no
known proof of this fact) that it is impossible to compute the function D, efficiently
without the knowledge of any one of d, p, or g.! Therefore, by keeping d, p, and g secret,
P can receive encrypied messages from anyone without compromising the secrecy of the
messages. There are several other advantages of this scheme, which is called a publie-
key eryptosystem.

9.3 Euclid’s Algorithm

The greatest common divisor of two positive integers » and m, denoted by GCD(n, m),
is the unique positive integer k such that (1) &k divides both # and m, and (2} all other
integers that divide both » and m are smaller than &,

The Problem Find the greatest common divisor of two given posi-
tive integers.

As usual, we try to reduce the problem 1o one of smaller size. Can we somehow make n
or m smatler without changing the problem? Euclid noticed the obvious positive answer:
If & divides both n and m, then it divides their difference! H # > m, then GCB{n, m) =
GCDtn —m, m), and we now have a smaller probiem. But, again, we reduced the values

"It ix known that an algorithm for computing ¢ from »# and ¢ would lead to an efficient probabilistic algorithm
for factoring r, which is a strong evidence that d cannot be compromised (see Bach, Miller, and Shatlit [1986]).
Potentiaily, however, there may be ancother way 10 compuie Dp without the knowledge of o,

298 Algebraic and Numeric Algorithms

of the numbers in question, and not their sizes. For the algorithm to be efficient, we must
reduce the sizes. For example, if # is very large (say 1000 digits) and m =24, we will
need to subtract 24 from » approximately n/24 times. This computation will take O (n)
steps, which is exponential in the size of ,

Let’s lock at this algorithm again. We subtract m from n and apply the same
algorithm to #n~m and m. If n-m is still larger than m, we subtract m again. In other
words, we keep subtracting m from » until the result becomes less than m. Bug this is
exactly the same as dividing # by m and looking at the remainder. Division can be done
quickly. This leads directly to Buclid’s algorithm, which is presented in Fig. 9.3.

Complexity We claim that Euclid’s algorithm has linear running time in the size of
n +my, specifically, its running time (counting each operation as one step independent of
the size of the operands) is O {log(n +m)). To prove this claim, it is sufficient to show
that the value of a is reduced by half in a constant nrumber of iterations. Let’s look at two
consecutive iterations of algorithm GCD. In the first iteration, a and b (a>5) are
changed into b and amodb. Then, in the next iteration, they are changed into a mod b
and bmod{amodb). So, in two iterations, the first number « is changed to amodb.
But, since a > b, we have a mod & < a/2, which establishes the claim.

9.4 Polynomial Multiplication

n-1 _ fef .

let P=3F pix’,and @ =¥ gx', be two polynomials of degree n—1. A polynomial is
i=0 i=0

represented by its ordered hist of coefficients.

Algorithm GCD (m, n)
Input: m and n (ewo positive integers).
Output: gcd (the ged of m and #).

begin
a=maxt n,mi;
b:=mintn,m);
re=1;

while r > G do { r s the remainder }
re=amodb;

a=h;
h:=r;
god = q

end

Figure 9,3 Algorithm GCD,

9.4 Polynomial Multiplication 299

The Problem Compute the product of two given polynomials of de-
gree s~ 1,

PQ = [pmwr"‘“r +poJ {qnmszw“ "*‘f?o} = 9.2)

Pocia X" H4 0 4 [Pn—;‘?m +Ppafivzt T +Ps+24’n~;}l’"+f + o+ Poge.

We can compute the coefficients of PQ directly from (9.2). It is easy to see that, if we
follow {9.2), then the number of multiplications and additions will be O n?). Can we do
better? We have seen by now so many improvements of straightforward quadratic
algorithms that it is not surprising that the answer is positive. A complicated O (n logn)
algorithm will be discussed in Section 9.6. But first, we describe a simple divide-and-
conquer algorithm.

For simplicity, we assume that » is a power of 2. We divide each polynomial info
two equal-sized parts. Let P=P,+x"? Py, and 0 =0, +x"* (,, where

i -1 a2l
*

Py=potpix+ o +pn X s PospuntPext P,

and

i 2] ni2-1

Q1=qo+q 1 X+ " H X s Qa=qun ¥ X+ g x

We now have
PO = (P +Pux" (@, +Q:x™y = Py0) +(P 101+ P20 X" + P05 x".

The expression for PQ now involves products of polynomials of degree n/2, We can
compute the product of the smaller polynomials (e.g., P 1@} by induction, then add the
results to complete the solution. Can we use induction directly? The only constraints are
that the smaller problems be exactly the same as the original problem, and that we know
how to multiply pelynomials of degree 1. Both conditions are clearly satisfied. The total
anymber of operations T(n} required for this algorithm is given by the following
recurrence relation:

Ty=4T{(n/2Y+ O(n), T(H=1

The factor 4 comes from the 4 products of the smaller polynomials, and the O (n} comes
from adding the smaller polynomials. The solution of this recurrence relation is 0 (n?)
(see Section 3.5.2), which means that we have not achieved any improvement (see
Exercise 9.4).

To get an improvement 1o the quadratic algorithm we need 10 solve the problem by
solving less than four subproblems. Consider the following multiplication table (the
reason we use such an elaborate table for this simple notation will become apparent in the
next section).

300 Algebraic and Numeric Algorithms

x P; Pz
O, A B
Q- C D

We want to compute A +(B+C)x"2 +Dx". The important observation is that we do not
have to compute B and C separately; we need only to know their sum! If we compute
the product E = (P, + P} (0, +(;), then B+C =E-A-D. Hence, we need to
compute only three products of smaller polynomials: A, D, and E. All the rest can be
computed by additions and subtractions, which contribute only O {n)} to the recurrence
relation anyway. The new recurrence relation is

T{ny=3FTn/2)+ O (n),

which implies T(m) = 0(n'**’y = 0(n "),

Notice that the polynomials P, +P, and @, +(J), are related 1o the original
polynomials in a strange way. They are formed by adding coefficients whose indices
differ by n/2. This is quite a nonintuitive way to multiply polynomials, yet this algorithm
reduces the number of operations significantly for large n.

1 Example 9.1

Let P=1-x+2x?—x* and @ = 2+x-x*+2x*. We compute their product using the
divide-and-conquer algorithm. We carry the recursion only one step.

A=(l-x) Q+xy=2—x-x*,

D=(2-x) (-14+2x)=-2+5x - 2x%,
and
E=(G-2)(1+3x0)=3+Tx—6x’.
From E, A, and D, we can easily compute B+C = E ~A ~ B:
B+C = 3+3x-3x%,
Now, P Q0 = A + (B +CW™? + Dx", and we have
P Q=2-x-x 437+ 3x0} -3 - 2 4 5x% - 20

= 2+ 200+ 357 559 4 5% = 245,

Notice that we used 12 multiplications compared to 16 in the straightforward algorithm,
and 12 additions and subtractions instead of 9. (We could have reduced the number of
multiplications to 9 if we had carried the recursion one more step.) The savings are, of
course, much larger when » is large. (The number of additions and subtractions remains
within a constant factor of that in the straightforward algorithm, whereas the number of
multiplications is reduced by about n%4) rl

9.5 Matrix Multiplication 301

9.5 Matrix Multiplication

The product C of two # X # matrices A and B is defined as follows:

Cy = Z ay by (9.3

k=1

The Problem Compute the product C =A x B of two 1 X # matrices
of real numbers.

The straightforward way (and seemingly the only way) to compute matrix product is to
follow (9.3}, which requires using #° multiplications and (x ~ 1)n”? additions, Notice that
r represents the aumber of rows and columns in the matrix, rather than the size of the
input, which is n°. We now present two different schemes that show the possibilities for
improvernents.

9.5.1 Winograd’s Algorithm

Assume, for simplicity, that n is even. Denote

nid ni2
A= 3 @Gyt "@ap and By= ¥ by by
k=1 k=1
After rearranging terms, we get

nid
Cij= ;:21 @2k oy (@ n+by)—-A - B,
But the A;s and B;s need to be computed only once for each row or column. To compute
all the A;s and B s requires only n’ maltiplications. The total number of multiplications
has thus been reduced 10 Ysn® +a%. The number of additions has increased by about
Yan®. This algorithm is thus better than the straightforward algorithm in cases where
additions can be performed more quickly than multiplications.

Comments This algorithm shows that rearranging the order of the computation can
make a difference, even for expressions, such as matrix multiplication, which have a
simple form. The next algorithm carries this idea much farther,

9.5.2 Strassen’s Algorithm

We use the divide-and-conquer method in a way similar to the polynomial multiplication
algorithm in Section 9.4. For simplicity, we assume that » is a power of 2, Let

302 Algebraic and Numeric Algorithms

Ay A By By

A= 4y Azl 5= Bay Byl and €=
where the A, s, B;;s, and C; ;8 are #/2xn/2 matrices. We can use the divide-and-
conguer approach and reduce the problem to computing the C, ;s from the A; ;s and the
B, ;s. That is, we can treat the n/2xn/2 submatrices as elements and consider the whole
problem as one of computing a product of two 2x2 matrices of elements. (We have to
be careful when we substitute elements for submatrices; this is the subject of Exercise
9.23.) The algorithm for the 2 x 2 product can be converted fo an n x » product algorithm
by substituting a recursive call each time a product of elements appears. The regular
algorithm for multiplying two 2x2 matrices uses 8 maltiplications. Substituting each
multiplication by a recursive call, we get the recurrence relation T (m)=8T (n/2)+0 {nz)‘
which implies that T(n)=0(n'°g’8}=0(n3). This is not surprising since we are using
the regular algorithm, If we could only compute the product of two 2x2 matrices with
less than 8 multiplications, we would get an algorithm that is asymptotically faster than
eubic.

The most important part of the recursion is how many multiplications are required
to compuie the product of two 2x2 matrices. The number of additions is not as
tmportant since they always contribute O (n*} to the recurrence relation, which is not a
factor in determining the asympiotic complexity, (It does affect the constant factor,
however.) Strassen found that 7 multiplications are sufficient to compute the product of
two 2x2 matrices. Instead of simply writing down the equations leading 10 Strassen’s
algorithm, we sketch a method that could have been used by Strassen to find it. This
method can be used for similar problems.

Compating the product

wirE

is equivalent to computing the product
e b0 0] [e P

Cia Ciz
Cay Caal’

cd@ o |f r
00abl g = |s (9.4)

00 cd |k 7

We write (9.4) as A-X =Y. We are looking for ways to minimize the number of
muliiplications required to evaluate ¥. Let's look for special matrix products that are
easy to compute. As it turns out, we need four types of such special products (the last
two of which are very simifar). They are as follows:

Type Product No. of Multiplications

a aile ae+f)
o) a allf = G(E'l"f) 1

9.5 Matrix Multiplication 303

(a alle ale+f)
B) |f] T -ate) !
a Ollel | ae
Vo aob b|fl T ae+b(f=e) 2
la b-allel _a{e—f)+bf
o b {lA= w } 2

We now look for ways to divide the general matrix product given in (3.4) into several
steps of the types listed above. Since these types of products use less than the nominal
number of multiplications, we may be able to save something at the end. It takes a lot of
trial and error to reach the right combinations. This process is hardly straightforward or
even clear, but it is somewhat less than magic. Let

b b 00O 0000
bbhoo 0000
B=lnooo “Flooccl
00¢0 00 cec
0 00 O a=b 0 0 0
c-b 00 c-b 0 d-b O b-c
D=l c00b-—c @™ E=l 4 0 4c 0
0 00 O 0 0 0 d-c

Then, A=(B+(C+D+E) and therefore AX=BX+CX+DX+EX. All the products
above, except for £X, can be computed with one multiplication using types o or . The
onty problem is to compute EX. But £ can be divided into two matrices £ =F + G, such
that F is of type yand G is of type &:

a-b 0 0 0 00 0 0
00 0 0 0 d=b 0 b=c
Feleboaco “Flo 0 0 o
00 0 0 0 0 0d-c

So, overall, AX =(B+C+D +F +G}X, and we need two products of iype o, and one
product each of types B, v, and 8, with 4 total of 7 muitiplications {see aiso Exercise
9.10).

304 Algebraic and Numeric Algorithms

Complexity We use 7 products of matrices of half the original size, and a constant
number of additions of matrices. The additions are less important than the products,
hecause addition of two 2 X n matrices can be done in time O (n?), which is basically a
linear time in the size of the matrices. The O (nz} term is not the dominani factor in the
recurtence relation, which is T(ﬂ)=?T(ﬂf2)+0(n2). The solution of this recurrence
relation is T{n)=0{ni“g’?}. which is approximately O (¥, If we use the derivation
described above, we obtain I8 additions (see Exercise 9.10). H is possible to reduce the
number of additions to 15 (Winograd {1973)), but this reduction does not change the
asymptofic rupning time.

Comments There are three major drawbacks to Strassen’s algorithm:

1. Empirical studies indicate that » needs to be at least 100 to make Strassen’s
algorithm faster than the straightforward o algorithm (Cohen and Roth
11978)).

2. Strassen’s atgorithm is less stable than the straightforward algorithm. That is, for
similar errors in the input, Strassen’s algorithm will probably create larger errors in
the output,

3. Swassen’s algorithm is obviously much more complicated and harder to implement
shan the straightforward algorithm. Furthermore, Strassen’s algorithm cannof be
eastly parallelized, whereas the regular algorithm can.

Nevertheless, Strassen’s algorithm is important. It is faster than the regular
akgorithm for large n, and 3t can be used for other problems involving matrices, such as
matrix inversion and determinant computation. We will see in Chapter 10 that several
other problems are eqguivalent {0 matrix multiplication. Strassen’s algorithm can be
improved in practice by using it only for large matrices and stopping the recursion when
the size of the matrices become smalier than about 100. This is similar to the idea of
selecting the base of the induction with care, which we discussed in Section 6.4.4 and
Section 6.11.3. Strassen’s algorithm also opened the door to other algorithms and raised
many questions about similar problems that seemed unsolvable.

9.5.3 Boolean Matrices

In this section, we consider the special case of computing the product of two nXn
Boolean matrices. All elements are 0 or 1, and the sum and product are defined by the
following rules (which correspond to or and and respectively):

+ | O x |0]
0101 010 4
| | 1 i 0 1

These definitions of sum and product are of course different from the usual integer swm
and product; hence, algorithms designed for integers normally cannot be used for
Booleans. One problem with the definition of 2 Boolean sum is that subiraction is not
well defined {both 0+ 1 and 1+1 are defined as 1; hence, { ~1 can be both 1 and 0).

9.5 Matrix Multiplication 385

Therefore, Strassen’s algorithm cannot be used for Boolean matrices, because it requires
subtraction. However, there is a trick that allows us fo use Strassen’s algorithm. We
consider every bit as an integer medule n + 1, where n is the size of the matrices, and we
use the rules of addition and multiplication of such integers. So, for example, if n=4,
then F+1=2 I+1+1=3 and I+ 1+1+1+1=0. It turns ocut that, if we compute the
matrix product according to these rules and if we substitute every nonzero entry in the
final result by a 1, then we get the Boolean product. This is so, essentially, because we
will not ““overflow™” the number n+ 1 (we omit the proof). (More precisely, the integers
modulo &k form a ring, which is an algebraic structure with definitions of sums and
products that satisfy certain properties; Strassen’s algorithm can be applied to any ring;
see Aho, Hoperoft, and Ullman [1974] for more details.) Thus, the complexity of
Boolean matrix multiplication is also O™y, The use of Strassen’s algorithm,
however, requires integer operations rather than Boolean operations. Next, we present
two algorithms that utilize the properties of Boolean operations to improve the running
fime of Boolean matrix multiplication. These algorithms are more practical in most
sisnations than Strassen’s algorithm for Boolean matrix multiplication,

Since Boolean operands require only one bit of siorage, we can store k operands in
one computer word of size k. In particular, since we assume that n is stored in one
computer word, we can siore & bits for k Slogya in one word. The regular algorithe for
matrix multiplication consists of n? row-by-column products (or inner products), as

"
defined in (9.3). The ijth inner product consists of computing Y, @y, - bn,. Assume, for
me=]

simplicity, that & divides n. We can divide each inner product info a sum of a/k products,
each of which involves Boolean vectors of size k. Finding the inner product of two
Boolean vectors of size k is simpler than, say, multiplying two £-bit integers. We assume
that a multiplication of k-bit integers takes one unif of fime; thus, it is not unreasonable to
assume that computing an inaer product of twe Boolean vectors of size & takes one unit
of time. {For example, an inner product can be computed in two steps: first, we compute
the and of the two vectors, then we check whether the result is all 0s.) Nevertheless, we
vsualty do not want to make the algorithm dependent on special assumptions concerning
the computer primitives (besides the four basic arithmetic operations). Next, we show
how to avoid the need for such assumption. Then, we combine this idea with another
ilea to improve Boolean matrix multiplication even further. Both ideas illustrate
interesting techniques for algorithm design.

The first idea is to precompate all possible Boolean inner products of size k. There
arg 2% possible products, since they involve two Boolean vectors of size k. We can
compute all of them in time O (k2%) (we can actually do better than that; see Exercise
9.243, and store all the results in a two-dimensional table of bits of size 2 x2¥. The
product of the two vectors a and b is stored at entry (i, {,}, where {, is the infeger
represented by the & bits of a and i, s the integer represented by the & bits of . From
now on, we will not make a distinction between f, and « {or /, and b), since they are
represented in exactly the same way. Thus, given two Boolean vectors of size k, we can
compute their product by simply tooking at the table. If we can access a table of size 2%
in O(1) time, then each inner product of size & can be computed in constant time (once

306 Algebraic and Numeric Algorithms

the table is constructed). For example, let k =[logyn/2]. In that case, the size of the
abie is O{n), and constructing it requires O {n logn) time. The assumption that we can
access a table of size O (n} in constani time is not unusual. We have already made this
assumption (implicitly} many times before. We vsually assume that, if n is the size of the
input, then we can store a number with log,n bits in one computer word (or a constant
number of computer words). Once the table is constructed, we can compute a Boolean
inner product of size a in time O {(n/k) = O(n/logn). Notice that the table depends only
on the value of £ and not on the matrices. So, computing the product of 1wo Boolean
matrices can be done in time O (n’/logn) and extra storage of O(n). We can also
choose & to be | log,r], in which case the table size is O (n*), but we save an extra factor
of 2 in the multiplication algorithm. However, if we can afford an extra space of size
O (n*), we can find a faster algorithm.

Consider two nxn Boolean matrices A and B. The usual way to view matrix
multiplication is as defined in (9.3): We perform n? inner products, each involves a row
of A and a column of B. We can also maltiply the two matrices by multiplying columns
of A with rows of B in the following way. Denote the rth column of A by A-[r], and the
rth row of B by By[r]. Consider A-(r] as an nx | matrix, and Bg[r] as a 1 xn matrix.
The product of Ap[r] with Bgir] is an # X n matrix, whose ijth entry is the product of the
ith entry of A-(r] with the jth entry of Be(r] (see Fig. 9.4). It is easy to see that

n
A-B =3 Aclr]-Bglr]. {9.5)
r=1
The expression (9.5} is equivalent to (9.3) in the sense that the same products and
additions are performed, but they are performed in a different order.
We now partition the columns of A and the rows of B into n/k equal-sized groups.
(We assumne for simplicity that n/k is an integer; otherwise, there will be an extra smaller
group.) In other words, we divide A into A, A,, ..., A4, such that each A; is an axk
matrix, and we divide B into B, B, ..., B, such that each B, is an kx» matrix. It is
easy io see that

nik
A'Bﬁz‘A;'B;. (9-6)
iml
Belk] |
Aclk] |
A B C

Figare 9.4 Multiplying matrices columns by rows.

9.5 Matrix Multiplication 307

The problem now is how 1o compute C;=A;-8; efficiently. We describe this
compustation by an example (see Fig. 9.5},

The first row of C; is exactly the same as the third row of B;, because the first row
of A; has a | only in column 3. Similarly, the second row of C,; is the Boolean sum of the
second and third rows of B;. It is easy to see that the jth row of C; is a Boolean sum of
rows of B; according to the jth row of A,. Instead of computing each row of C; in a
straightforward way, we use a methed, similar to the algorithm we described earlier, for
precomputing all possibilities. There are k entries in each row of A;, so there are 2%
possible combinations of rows of B;. Let k =log,», and assume again that £ is an integer.
We precompute all 2* = 2°8" = combinations, and store the results in a table. In
contrast to the first algorithm, this table contains » rows rather than r bits; thus, the
storage requirement is O(n%). Also, this table depends on B,, and must be constructed
for each B;. To find row j of C;, we look at row j of A; and see the combination of rows
of B; that need 1o be added. This combination can be represented as an integer
corresponding to the binary representation of row j of A, (e.g., the first row of 4; in Fig.
9.5 corresponds to 1, the second row corresponds to 3, the third row corresponds 1o 4,
and so on). This integer is the address in the table where row j of C; is stored. It takes
O(1) time to find a row of C; in the table, and O{n) time 1o copy this row fo the
appropriate row in C,. Thus, computing C; can be done in time O (n?),

We now show that all the combinations of sums of rows of B; can be computed in
time O (n - 2°). Each combination of rows corresponds to a 4-bit integer. We assume, by
induction, that we know how to compute the sums of combinations of rows
corresponding fo integers that are less than /. Computing the sum corresponding to O is
trivial. Assume that the binary representation of i —{ is xxxx011]11 — namely, its least
significant O is followed by j 1s. The sum of rows corresponding to i is equal to the sum
of rows corresponding to xxxx 000000 plus the row corresponding to 00001000080, Since
xxex 000000 is fess than i, we know is comesponding sum by induction, and we need
only to add one row to it. It takes » Boolean additions to add a row, and we have 2t
combinations. Hence, all the precomputing can be done with O (n-2%) operations. If
k=log,n, then the running time is O (n%). This algorithm is known as the four-Russians

0 0 1 I 1610110 01110000
0 1 1 1001 110 N B R A
10 o 01 110000 I 1061 0110
1ol I A N)
110 B; P01 11
IR I B R I A
I 00 P01 0010
0 0 I 01 1 100 0 0
A, C, = AB,

Figure 9.5 Boolean matrix multiplication.

308 Algebraic and Numeric Algorithms

algorithm (Arlazarov et al. [1970]), after the nationality and number of its inventors.
The algorithm is given in Fig. 9.6.

Algorithm Boolean Muatrix Multiplication (A. B, n, kj ;
Input: A, B (two nxn Boolean matrices), and k (an integer).
Cutput: ¢ (the product of A and B).

{ we assume, for simplicity, that k divides n |

begin
{nitialize the matrix C 10 0 ;
Jori =0tonk-1do
Construct Table; ;
{ Table; is an 2" array of Boolean vectors of size n which contains
all possible combinations of sums of k rows of B;, see the text }
m=i*k;
forj:=ltondo
Let Addr be the k-bit humber
Aljm+ 1A, m+2] - - Alj.m+k).
add Table,[Addr] to row jin C
end

Figure 9.6 Algorithm Boslean_Muatrix_Multiplication.

Complexity To compute A B we have to compute the n/k products A;*B;. Since
each such product takes O (17} time and constructing the table takes O (n - 2*) time, the
total running time of the algorithm is O (0> 1k +n*-247k). Kk =logyn, then the running
time is O (n°/log n).

Next, we show how to combine the ideas of the first algorithm with the ideas of the
second algorithm 1o improve the running time by another O (log #) factor. The main step
in algotithm Boolean_Matrix_Multiplication (Fig 9.6) involves additions of a row from a
table 1o C. We can perform this addition in time O (n/m) by using the same trick of
precomputing all possible additions. (This may not be necessary if a Boolean addition is
a primitive operation that can be performed quickly; the algorithm, however, does not
depend on this assumption.) We first construct a two-dimensional table Add_Table of
size 27 x 2™ that includes all possible additions of two Boolean vectors of size m. In
other words, the (i, j)th entry in Add_Table is the Boolean sum of { and j. (Again, / and J
are used both as integers and as Boolean vectors.) It is easy 10 se¢ that Add_Table can be
constructed in time and space O (m-2%"). Notice that, unlike the tables we used in
algorith Boolean_Marrix_Multiplication (Fig. 9.6), Add_Table is independent of A and
B; it depends only on the value of m. We now divide each row of B, into n/m groups,
each of size m (we assume again, for simplicity, that m divides n), We consider each
group as a m-bit integer; thus, each row of B, is represented by an n/m-tuple of integers.
Ali the steps of the algorithm will be performed on these tuples,

9.6 The Fast Fourier Transform 309

To add two vectors of size n, we use Add_Table 10 add the corresponding two
nl/m-tuples in n/m steps. Each step consists of taking two m-bit numbers and fetching the
corresponding entry in Add Table (which contains their sum). Such a step can be
performed in constant time, as long as the size of the computer word is at most 2m. We
use this trick both for constructing the tables for the regular four-Russians algorithm, and
for adding the rows during the execution of the algorithm. If we select m to be
approximately equal 1o | logyn/2], then 22" =0 (n) and, since we assume that we can
represent n in one computer word, we can represent a 2mi-bit number in one word. For
this choice of m, the running time of the improved algorithm is O (n°/log*n).

Comments We presented an interesting method of computing all possibilities
instead of the usual wisdom of computing only what is needed. We also demonstrated
that changing the order of the computation ¢an lead to a better algorithm. The trick of
computing all possible combinations can be applied in the same manner to other
algebraic functions on bit strings that cannot be performed directly by the hardware.

9.6 The Fast Fourier Transform

As an introduction fo the fast Fourier transform, we quote from John Lipson’s excellent
book:

An algorithm may be appreciated on a number of grounds; on technological
grounds because it efficiently solves an important practical problem, on
acsthetic grounds because it is elegant, or even on dramatic grounds
because it opens up new and unexpecied areas of applications., The fast
Fourier transform (popularly referved to as the *'FFT""), perhaps because it
is strong on all of these departments, has emerged as one of the *‘super”
algorithms of Computer Science since its discovery in the mid sixties.
{Lipson {1981], page 293.)

The FFT algorithm is by no means simple, and its development is not straightforward.
We concengrate on only one application of the FFT — polynormial multiplication.

The Problem Given two polynomials p (x) and ¢ (x), compute their
product p{x)-g{x)

The problem, as stated above, s not weli defined. We have not specified the
representation of the poiynomials, We usuaily represent a polynomial
Pe=g, x" 4a, 0" %+ +a,x+a, by the list of its coefficients in increasing
order of degrees. This representation is definitely adequate, but it is not the oniy one
possible. Consider, for example, a polynomial of degree I, which is a linear function
a,x+ay. This linear function is usually specified by the two coefficients a and ao.
But, since the function corresponds to a line in the plane, it can also be specified by any

31 Algebraic and Numeric Algorithms

swo {nonequal) peints on that line. In the same way, any polynomial of degree a is
aniquely defined by #+1 points, For example, the second-degree polynomial
p(x}:x2+3x+l is defined by the points (1,5), (2,11}, and (3,19), and it is the only
second degree polynomial that includes all those points. These three points are not the
only three points that define this polynomial; any three points on the corresponding curve
will do.

This representation is atfractive for polynomial multiplication because multiplying
the values of points is easy. For example, the polynomial gxy=2x*—x+3 can be
represented by (1,4), (2,9), and (3,18). We right away know that the product p (x) " q{x)
has the values (1,20}, (2,99), and (3,342}, These three points are not encugh to represent
p(x)-g(x) since it has degree 4. We can overcome this problem by requiring five points
from each of the smaller polynomials; for example, we can add the points (0,1} and
(-1, -1}yto plx), and (0, 3} and (-1, 6) to g (x}. We can then easily obtain five points that
belong to the product — (1, 20y, (2, 99, (3, 342), (0, 3), and (-1, =6) — by making only
five scalar multiplications! Using this idea, we can compute the product of two
polynomials of degree n, given in this representation, with only O (n) multiplications.

The main problem with this approach is that we cannot simply change the
representation to fit only one application. We must be able, for example, to evaluate the
polynomial at given points. This is much harder to do for this representation than it is
when the coefficients are given. However, if we could convert efficiently from one
representation to another, then we would have a very good polynomial multiplication
algorithm. This is what the FFT achieves.

Converting from coefficients to points can be done by polynomial evaluation. We
can compute the value of a polynomial p (x), given by its list of coefficients, at any given
point by Horner's rule (Section 5.2) using » multiplications. We need to evaluate p (x} at
n arbitrary points, so we require n° multiplications. Converting from points to
coefficients is called interpolation, and i1 also generally requires O (1) operations. The
key idea here (as in so many other examples in this book} is that we do not have to use n
arbitrary points; we ate free 1o choose any set of 2 distinct points we want. The fast
Fourier transform chooses a very special set of points such that both steps, evaluation and
interpolation, can be done quickly.

The Forward Fourier Transform

We first consider the evaluation problem. We need 1o evaluate two n—1 degree
polynomials, each at 2n-1 points, so that their product, which is a 2n-2 degree
polynomial, can be interpolated. However, we can always represent an n—| degree
polyromial as a 2n -2 degree polynomial by setting the first n~ I (leading) coefficients

to zero. So, without loss of generality, we assume that the problem is 1o evaluate an
n-i
arbitrary polynomial P = " a.x' of degree n— 1 at n distinct points. We want to find #
i=0
peints for which the polynomials are easy to evajuate. We assume, for simplicity, that 1
is 2 power of 2.
We use matrix terminology 1o simplify the notation. The evaluation of the
polynomial P above for the # points xg, 1y, .., x,_; can be represented as the foliowing

9.6 The Fast Fourier Transform 311

matrix by vector multiplication:

b oxg () o el [ae] [Plxo)]
Eoxp) o a e P{xy)
E Xt (et © 0)™ (@] [P O0)
The question is whether we can choose the values of x4, x),..,x,; in a way that

simplifies this muliplication. Consider two arbitrary rows { and j. We would like to
make them as similar as possible to save multiplications. We cannot make x;=x;,
because the values must be different, but we can make (Jr,-)2=(x}-)2 by lewting x; =—x;.
This is a good cheice, because every even power of x; will be equal to the same even
power of x;, We may be able to save one-half of the multiplications involved with row j.
Furthermore, we can do the same for other pairs of rows. QOur goal is to have n special
rows for which the computation above requires only n/2 vector products. If we can do
that, then we may be able to cut the problem size by half, which will lead 1o 2 very
efficient algorithm. Let’s try to pose this problem in terms of two separate subproblems
of half the size.

We want to divide the original problem inte two subproblems of size n/2,
according to the scheme described above, This is illustrated in the following expression.

1 % (xp) (xg)™! 1 P o)

ag A0
] 2 -l

Xy («‘ff)) a, Pcy)
SIS COPNRS LI CAP
= . 9.7

1 —xp (=xg¥ (~xg)* ™
I -x, x P (=x,)"

y-1 P(_xnfl—»i}
] X (~Knrz-1) (“xnfz—ilﬂul_ -) i

The n x n matrix in (9.7) is divided into two submatrices, each of size #/2 xn. These two
matrices are very similar. For each i, such that 0</ <n/2, we have x;=—x,,5,;. The
coefficients of the even powers are exactly the same in both submatrices, so they need to
be computed only once. The coefficients of the odd powers are not the same, but they
are exactly the negation of each other! We would like to write the expressions for P {x;)
and P {~x;} for 0£{ < n/2 in terms of the even and odd coefficients:

2t w2 -
Pxy=E+0O = E a2;X Pt E a3 41X il
i =l i=l)

The ‘‘even’” polynomial {£) can be wrillén as a regular pelynomiai of degree n/2-1

312 Algebraic and Numerie Algorithms

with the even coefficients of P:
ni2-1 5)
E= 3 aye’) =P(x%).
i=0
The “odd’” polynomial {O) can be written in the same way:
nid-}

O=x Z a2l’+i{x2)‘l w‘R:Ps)(xz)-
Pafy

So, overall, we have the following expression:
P(x) = P(x) +x Pyx?), 9.8)

where P, (P,) are the n/2—] degree polynomials with the coefficients of the even (odd)
powers of P. When we substitute ~x for x in (9.8), we get P(—x)= PPy + (=x) P (x%).
To evaluate (9.7}, we need to compute P (x;) and P (~x;), for 05i <n/2. To do that, we
need to compute only n/2 values of Pe(xz) and n/2 values of Po{xz), and 1o perform #/2
additions, n/2 subtractions, and # multiplications. So, we have two subproblems of size
n/2, and O (n) additional computations.

Can we continue with the same scheme recursively? If we could, then we would
get the familiar recurrence relation T(n) = 2T (n/2) + O (n}, resulting in an O(nlogn)
algorithm., But this is not so easy. We reduced the problem of computing P(x) (a
polynomial of degree n~ 1) at n points to that of computing P,(x*) and P,(x*) (both
polynomials of degree n/2~1) at #/2 poinis. This is a valid reduction, except for one
small thing. The values of x in P{x) can be chosen arbitrarily, but the values of xZ,
which are needed, for example, in P,(x*), can only be positive. Since we obtained this
reduction by using negative numbers, this poses & problem. Let’s extract from (9.7) the
matrix that corresponds to the computation of P((x;}*):

1 () (xe) (o' Y [a0] [Polxp)]

xR (x) (x, 2 a; Pxy)
iy

I () et 0 ()2 {802 Po(xp5-1)

If we try the same trick on this subproblem, we need to set (e =—(x0)2. Since
squares are always positive, this seems impossible. But it is not impossible if we use
complex numbers which include V-1, We again divide the problem into two parts and
et X;pnss = ﬁx}. for 0<j < n/4. This partition satisfies the same propertics as did the
first partition. Hence, we can solve the problem of size /2 by solving two subproblems
of stze n/4 and O {(n) additionaj computation,

I we want to carry this process one step further, we need a number that is equal 10

N—1; that is, a number z such that z¥ =1, and z/ # 1 for 0 <j <8 (which implies that
2%=-1,and 2’ = \/w—t). In general, we need a number that satisfies the condision above

9.6 The Fast Fourter Transform 313

for # rather than for 8. Such a number is calied a primitive nth root of unity. We
denote it by ®. {We do not include # in the notation for simplicity; we will use the same
n throughout this section.) satisfies the following conditions:

o =1, and @l forO<j<n 9.9

The n poinis that we choose as xg, Xq, ..., X,_; are 1, @, @, ..., ®* . Therefore, we want
to compate the following product:

b1 i 1 al [pray]
l o o ! a, P(m)
o o wrinb . P ((:}2)
1 &)H—f m{n—i}-l P m{ﬂ_”'{ﬂ—il dyoy P(wﬂ*i)
This product is called the Fourier transform of (ag, 44, ..., a,..;). First, we notice that

indeed for any j, 0<j<n/2, we have xj,,, = m’”zxj =~x;. So the reduction that we

applied initially to the problem of size » is siill valid. Furthermore, the subproblems
resulting from that reduction have a/2 points, which are 1, @, ©*, .., @" 7. But this is
exactly the problem of size n/2 in which we substitute @’ for . The conditions in (9.9)
imply that @ is a primitive (n/2)th root of unity. Therefore, we can continue
recursively, and the complexity of the algorithm is O (n logn). A high-level view of the
algorithm is presented in Fig, 9.7,

Algorithm Fast_Fourier_Transform (n,ay, 4,q,.;, 0, varV);
Input: » (an integer), ag, a,, ... a,., (a sequence of elements whose type
depends on the application), and o (a primitive ath root of unity).
Output: V (an array in the range {021 — 1] of outpus elements).
{ we assume that #ris a power of 2 §

begin
ifn=1then
V[O] JEdg
else
Fast_Fourier Transformini2, aq as, ..., a, 3, o, U},
Fast_Fourier_Transformini2, a\ a3, .., dy., o Wj;
Sfor j = Gtoni2~ 1\ do { follow (9.8) forx=w¥ }
VI = U1+ Wi
VE+n2l = UG- Wi
end

Figure 9.7 Algorithn Fast_Fourier Transform.

314 Algebraic and Numeric Algorithms

1 Example 9.2

We show how to compute the Fourier transform for the polynomial (0, 1,2, 3, 4, 5, 6, 7).
To avoid confusion, we denote the subproblems by P, ; . (xg,x;,...x), where
fos f1+ - Ji denote the coefficients of the polynomials, and xg, xy, .., x; denote the
values for which we need to evaluate the polynomials. So, in particular, this example
2 .., ®). (This notation is guite awkward, but

\\\\\

Paso(l o) o' 0°). We continue recursively and reduce Pgy44(1, 0, 0*, 0% to
Pyt 00’y and Pyll, @*). Pg4(l, @) is then reduced to Po(1), which is clearly 0, and
P 4(1}, which is clearly 4. We can now combine the results 1o get

Pos}=Po(D+1-Py(y=0+14=4,
and
Py s@H =P’y + P 0*) =0+ ' 4.

Since ®' =-1, we get Py 4(w*)=—4, and, overall, Py (1, ®*)= (4, ~4). In the same
manner, we get P, (1, 0*) = (8, ~4).
We now combine the two vectors above to compute Py 5 4 4(1, @, @*, ©%):

Poras(l)=Po)+ 1-Pyg(l)=4+8= 12
P2 ssl@?) = Po (@) + 07 Py (") = —4 + 02(~4).
Po2asl@*y=Po ((0¥) + @1 Prg(00¥y= Py (1) - 1-Pye(l}=4-8=—4.

Po24s(@) =Py @) + 0 Py g(@') = Py 4(00%) ~ 07 - Po g(0%) = -4 ~ 0P (—4).
So, overall

Pozasll, @, 0, 0% = (12, -4(1+0%), 4, -4(1 - o).
In the same way, we find that

Piasqs(), @, 0f, 0% = (16, ~4(1+0?), ~4, ~4(1 ~)).

‘‘‘‘‘‘‘

......

.......

{0 the reader. o

The inverse Fourier Transform

The algorithm for the fast Fourier transform solves only half of our problem. We can
evaluate the two given polynomials p(x) and q{x} at the points 1, @, .., @" " quickiy,
multiply the resulting values, and find the vaiues of the product polynomial p{x)- ¢ (x) at

9.6 The Fast Fourier Transform 315

those points. But we still need to interpolate the coefficients of the product polynomial
from the evaluation points. Fortunately, the interpolation problem tumns out 10 be very
sirnilar to the evaluation problem, and an almost identical algorithm can solve it.
Consider again the matrix notation. When we are given the coefficients
(@g. a3, ... dy.) of the polynomial, and we want to compute the values of the
polynomial at the 2 points 1, @, @?, .., @', we compute the matrix by the following

vector product:

.an.

Pl i] P]

I ® ! a P(w)
(1)2 G)Z‘z wﬁ‘(ﬁ“” P ({.!)2)

1 mnwl w{ﬂw}}'Z . w{nwi}‘(nwi} By P(mﬂwi}

On the other hand, when the values of the polynomial (P (1}, P(w), ..., P{0™ ")) =
(vg. Vi, ... V4_)) are given, and we want {0 compute the coefficients, we need to solve the

following system of equations forag, a4, ..., d,.4:
1 1 ; fag] Vo]
I o o " a, Vi
o @l P vy
(9.14)
1 mn-«l m{n-—l)-z o w{n«-i)-{n«-k} ay.) Vot

Solving systems of equations is usually quite time consuming (O (n?) for the general
case), but this is a special system of equations. Let's wrile this matrix equation as
V{m)-d =7, where V{w} is the matrix in the left side, @ =(ap, @), ... 4,1}, and
V (Vs Vs oos Vpop). The solution for @ can be written as @ = [V (0)]™' * ¥, provided that
V{w} has an inverse. It tums ow that V() always has an inverse; furthermore, its
inverse has a very simple form {we omit the proof);

it Theorem 9.1

N R {Z]
Viw)]” = " V(m}-

Therefore, to solve the system of equations (9.10), we need to compute onfy one matrix
by vector product. This task is greatly simplified by the following theorem.

3 Theorem 9.2

If © is a primitive nth root of unity, then 1/ is also a primitive nth root of
unity. [

316 Algebraic and Numeric Algorithms

Therefore, we can compute the product V{1/w)V by using the algorithm for the fast
Fourier transform, substituting 1/¢ for . This transform is called the inverse Fourier
transform.

Complexity Overall, the product of twe polynomials can be computed with
¢ (nlog n) operations. Notice that we need 10 be able to add and multiply complex

numbers.

9.7 Summary

The algorithms presented in this chapter are a small sample of known algebraic and
numerical algorithms. We have seen again that the straightforward algorithms are not
tecessarily the best. Strassen’s algorithm is one of the most striking examples of a
nonintuitive algorithm for a seemingly simple problem. We have seen several more
examples of the use of induction, and, in particular, of the use of divide-and-conquer
algorithms.

The four-Russians algorithm suggests an interesting technique, which is not based
on induction. The main idea is to compute all possible combinations of certain terms,
even if not all of them are needed. This technique is useful in cases where computing all
(or many) combinations together costs much less than computing each one separately,
Another technique, which is common particularly for problems involving matrices, is the
use of reductions between problems. This method is described, with examples, in
Chapter 10.

Bibliographic Notes and Further Reading

The best source for arithmetic and algebraic algorithms is Knuth [1981]. Other books
include Aho, Hoperoft, and Ullman 11974], Borodin and Munro |1975), Winograd
{1980), and Lipson {1981].

The algorithn: for computing powers by repeated squaring is very old; it appeared
in Hindu writings circa 200 B.C. (see Knuth [1981) page 441). The RSA public-key
encryption scheme is due to Rivest, Shamir, and Adleman (19781, The idea of public-
key encryption schemes was introduced by Diffie and Hellman |{976]. Euclid's
algorithm appeared first in Euclid's Elements, Book 7 {circa 300 B.C), but it was
probably known even before then (see Knuth {1981}, page 318}, The divide-and-conquer
algorithm for multiplying two polynomials was developed by Karatsuba and Ofman
[1962] (in the context of multiplying two large numbers),

Winograd’s algorithm appeared in Winograd |1968] (see also Winograd [1970]).
Strassen’s algorithm appeared in Strassen [1969}. The constant ¢ in the asymptolic
running time O (n°) for matrix multiplication has been reduced several times since 1969
{first by Pan [1978]). The best-known algorithm at this time — in terms of asymptotic
running times — is by Coppersmith and Winograd |1987], and its rupning time i8
@Hn*Y%). Unfortunately, as the D notation indicates, this algorithm is not practical.
For more on the complexity of matrix multipiication and related topics see Pan [1984]. A

Drill Exercises 317

discussion on the implementation of Strassen's algorithm can be found in Cohen and
Roth [1976].

The four-Russians algorithm is due to Arlazarov, Dinic, Kronrod, and Faradzev
[1970]. The improvement of the four-Russians algorithm by using addition tables has
probably been observed by many people; it is mentioned, without details, in Rytter
[1985}, where a similar technique is used for context-free language recognition. The
same idea was also used to improye sequence comparisons algonithms (Masek and
Paterson {1983), Myers [1988}). The solution of Exercise 9.26 appears in Atkinson and
Santoro [1988). Fischer and Meyer {1971] showed a reduction between Boolean matrix
multiplication and the transitive-closure problem.

The algorithm for the fast Fourier transform was introduced by Cooley and Tuckey
{1965], although the origins of the method can be iraced 1o Runge and Konig [1924]. For
more information on the fast Fourier transform, see Brigham [1974] and Elliott and Rao
[1982].

Drill Exercises

9.1 Discuss the relationship between algorithm Power by Repeated Squaring (Fig. 9.2) for
computing n* and the binary representation of £,

9.2 Algorithm Power_by Repeated Squaring (Fig. 9.2) for computing r* does not necessarily
lead to the minimal number of multiplications. Show an example of computing n* (% > 1
with fewer number of multiplications,

93 Let x be a positive rational aumber that is represeated by the pair {a, b) such that x =a/b.
Eesign an algorithm to compute the smallest representation of x; that is, the represestation
(@, b) with the smallest possible values of a and b. For example, if x =24/84=6/21 =2/7,
thesn (2, 7) is the smailest representation of x.

94 Prove that the straightforward divide-and-conquer algorithm for polynomiat multiplication
that compures all four products of the smaller polynomials makes exactly the same
operations as does the straightforward algerithm that follows {9.1). Assume that # is a
power of 2.

9.5 Find the product Pix} Q(x), by hand, using the divide-and-conquer poiynomial
multiplication algorithm presented in Section 9.4.

Pxi=x+ 22+ 3x 4 -0+ 15075

Q)= 16+ 150+ 142 + -+ + 2™ 4 | x5
How many operations are required overall?

96 A divide-and-conquer technique can be used to multiply two binary numbers. Describe
such an algorithm, and discuss the differences between it and the polynomial multiplication
algorithm,

318

9.7
9.3

Algebraic and Numeric Algorithms

tJse the aigorithm discussed in Exercise 9.6 to multiply 1001101 by 10111010,

A divide-and-conquer technigue can be used to multiply two numbers in any base b (not
oniy b =2). Use it to perform the decimal multiplication 4679x 7114, Carry the recursion
dows all the way to I-digit numbers,

Design an algorithm to multiply two complex numbers (g +bi)(c +di) with only three
muftiplications. (7 is the square roet of ~1.)

Derive the expiicit expressions for Strassen's 2x 2 matrix muitiplication scheme described
in Section 9.5.2.

Suppose that you find an algorithm to muitiply 4 x4 matrices with # multiplications. What
wouid be the complexity of a general matrix multiplication algorithm based on the this
aigorithm? What is the maximal value of & that will lead o an asympiotic improvement
over Strassen’s aigorithm?

Creative Exercises

9.12

9.13
9.14

Consider the twe algorithms for computing n* given in Section 9.2 (simple iteration, and
repeated squating), Let # be an integer with J digits. Assume that integer muitiplications
are performed by the regular aigorithm, which reguires d, - d; steps to multiply tweo integers
with d, and o digits. What is the number of steps required to compute n* by the two
algorithms? (You can assume that & is a power of 2, and that a product of two integers with
o, and d, digits is another integer with ¢ | +d, digits.)

Design an algorithm to find the GCD of k integers.

The least common maltiple (E.CM) of m and # is the smallest integer that is a multipie of
both n and m. Design an algerithm to find the LCM of two given integers.

Design an aigorithm 1o find the LCM of & given integers. (The LCM of & integers is the
smatlest integer that is a muitipie of all of them.)

The Fibenacci nambers are defined by the foflowing recurrence refation:
F(D=1, FiliI=l, Fim=Fn-B+Fn-2) (n>2),

a. Prove that every integer n >2 can be written as a sum of at most log,» Fibonacci
aumbers.

b. Design an algorithmt to find such a representation for a gives number n,

Let P(x) and Q(x) be two polynomiais. We say that a polynomial D (x} divides P (x) if
there exists another polynomial S (x) such that Péx) =D (x)-S{x}. Similarly, we say thal
gl)=Rxymod P(x) if R{x) has a smaller degree than P(x), and there exists a
polynomizl £ (x) such that Q{0)=D (x}- P{x)+R (x). The GCD of two polynomials P {x)
and { (x) is 4 potynomial K (x} such thar R (x} is the highest-degree polynomial that divides
both P (x)and O (v).

&. Show that the GCD of (wo pelynomials is uniquely defined.
b. Extead Euciid’s aigorithm 10 find the GCD of two given polynomials.

V3
ey

1.

9.20

9.21
922

9.24

925

9.26

Creative Exercises 319

Modify the polynemial multiplication algerithm described in Section 9.4 by dividing each
polynomial into three equal parts (instead of two), and minimizing the aumber of
multiplications involving smaller parts. You can assume that the size of the problem is a
power of 3. What is the complexity of the algorithm?

Modify the polynomial multiplication aigorithm described in Section 9.4 by dividing each
polyasomial into four equal parts, and minimizing the number of multiplications involving
smaller parts. You can assume that the size of the problem is a power of 4. What is the
complexity of the algorithm?

Hamilton’s quaternions are vectors of the form a +bi +¢j +dk, where g, b, ¢, and d are
real numbers, and i, j, and k are special symbols. We add and subtract quatemions
componeniwise, and muitiply them by using the following rules:

it = =kt = -l

ij =—ji = k
jk=—kf=1i
ki = =tk = §

(the symbaols {, j, and ¥ commute with real numbers and with themseives). How many
multiplications of real numbers are required by the ordinary procedure for guaternion
multiplication? Give an algorithm that reduces the number of multiplications to 12.

Show how to compute the square of a 2 X2 matrix with only five multiplications.

A permutation matrix is an # X » matrix such that each row and each column has exactly
one nonzero entry that is equal to E. A permutation matrix can be represented by an array P
such that P [i]= j if the ith row contains a 1 in the jth columgn.,

a. Prove that the product of two permutation matrices is another permstation matrix.

b. Design a linear-time aigorithm to muitiply two permutation matrices given by the array
representation. The outcome should also be given in an array representation.

Consider the followiag suggestion to modify Strassen’s algorithm. We can use Winograd's
algorithm to compute the product of two kxk matrices with approximately k372
multiplications. We can thes use this product as the basis for the divide-and-conguer
strategy instead of the one using 2x2 matrices. If & is large cnough we get a better
asymptotic time than Strassen’s aigorithm. What is wrong with this suggestion?

Desigs an algerithm to compute ail possibic Boolean inner preducts of twe Boolean vectors
of size k (see Section 9.5.3), The algorithm should create a able of size 2%, The product of
the two vectors @ and b should be stored at entry {, where / is an integer respresented by 2k
bits such that the k most significant bits of { are those of g and the & Jeast significant bits are
those of b, The runaing time of the zlgorithm should be ¢ (2%,

Complete the program for Boolean matrix multiplication (Fig. 9.6). Show how o build the
tables explicitly, and how to handie the case where n/k is not an integer without a
significant loss of efficiency.

Design an algorithm for Boolean matrix multiplication that divides the matrices into
submatrices of size k x k, and uses the idea of precomputing all possible products between
such submatrices. The running time of the algorithm should be O(n?/(togn)'¥), and it
should require extra space of Q(nlogn). You can assume that you can perform basic
operations on numbers with up 10 log,# bits in one step.

320

5,27

9.28

*
9.29

Algebraic and Numeric Algorithms

Let A and B be two 1 Xn random Boolean matrices; each entry in each matrix is randomly
chosen (independently) to be either O or § with probability 2. Design an algorithm to find
the product of A and B, such that the expected number of operations will be O (27),

Eet A and B be two 21 x 2n Boolean matrices tha: represent open Gray codes {see Section
2.9) in the following way. The rows of each matrix correspond te the strings in the Gray
code, such that two conseculive rows differ by exactly one bit (the first row and the last row
may differ by more than one bit). Design an O (n?) aigorithm to find the product of the two
Mmalrices,

Llet M, M,, ... M, be 2 matrices of real numbers. The dimensions of M; are a; xa;,,, s¢
the product of M;-M,,, is defined for each IS¢ <n We want to compute the product
Mo xM,x -+ xM, Let’s assume that it takes a; @y, g,y operations to multiply an
a; X @;,, matrix by an a,,; ¥ a,,; matrix. The preblem is to find the right erder in which to
carry out the multiplications. For exampie, let # =3, and let the matrices be of dimensions
i0x2, Zx5, and 5x3. Finding the product of the first two matrices takes 10-2-3
operations resulting in a marrix of dimensions 10x 3. Finding the product of this matrix
with the third one takes 10+ 5 3 operations — overall, 250 operations. On the other hand, if
we first find the product of the last two matrices and multiply the first matrix with thaz
product, we end up with only 90 operations. Design an algorithm to find the optimal order
of carrying out the matrix product above.

CHAPTER 10

REDUCTIONS

Knowledge is of two kinds.
We know a subject ourselves,
ar we know where we can find
information apon it

Samuel Johnson, 1775

10.1 Introduction

We start this chapter with an old joke. A mathematician and her husband are asked the
following question: *‘Suppose that you are in the basement and you want to boil water,
what do you do?'’ The mathematician says that she will go up to the kitchen and boil
water there; her husband answers similarly. Now they are both asked the following
question: “*‘Suppose that you are in the kitchen and you want to boil water, what deo you
do now?"" The husband says “‘it’s easier — I'll just fill the kettle and boil the water.”’
The mathematician answers *‘if’s even easier than that — I'll go down to the basement
and ! already know how to solve that problem.”’

In this chapter, we will concentrate on the idea of reduction. We will show that
besides being funny sometimes, reductions can be extremely useful. Here is another
example of a reduction, this time a real one. When you send a package by Federal
Express from uptown New York City to downtown New York City, the package will be
routed through Memphis. Federal Express routes all packages through Memphis, so
when they are faced with the special situation of delivering packages across town they
**already know how 1o solve the problem.”” In this case, the solution makes sense. It
may be much more difficult to identify a special situation and to build a mechanism to
handle that situation more efficiently. It may be easier, and overall cheaper, to handle
everything equally. This is also often true in algorithm design. When we encounter a

k¥ |

322 Reductions

problem that can be posed as a special case of another problem, whose solution is already
known, then the known solution can be used. Such a solution may sometimes be too
general or too expensive. But in many cases, using a general solution s the the easiest,
the fastest, and the most elegant way to get a solution. We use this principle every day.
For some computing problems — for example, a database query — it is usually not
necessary 10 write a program that solves only this problem; it is sufficient to use
general-purpose software that handles more general problems. The general-purpose
solution may not be the most efficient solution, but it is much easier to use.

Suppose that we are given a problem P that seems complicated, but that also seems
similar to a known problem . We can try to solve P from scratch, or we can try o
borrow some of the methods used 1o solve O and apply them to P. There is, however, a
third way. We can try o find a reduction (or transformation) between the two problems.
Loosely speaking, a reduction is a solution of one problem using a “*black box" that
solves the other problem. Reductions can achieve one of two goals depending on the
direction in which they are done (i.e., which black box is used to solve which problem).
A solution of P that uses a black box for { can be translated into an algorithm for P if we
know an algerithm for . On the other hand, if P is known to be a hard problem, or, in
particular, if we know a lower bound for P, then the same jower bound may be applied to
. In the former case, the reduction is used o obtain information about P, whereas, in
the latter case, it is used to obtain information about Q.

For example, in Section 10.4.2, we discuss the problems of matrix multiplication
and matrix squaring (i.e., multiplying the matrix with itseff). Clearly, we can square a
matrix with a matrix multiplication algorithm; therefore, the problem of matrix squaring
can be reduced to the problem of matrix multiplication. We show in Section 10.4.2 that
it is possible to multiply two matrices with the use of a matrix squaring algorithm;
therefore, matrix multiplication is reduced to matrix squaring. The purpose of the latter
reduction is to show that computing the square of a matrix cannot be done faster (by
more than a constant) than computing the product of two arbitrary matrices (under some
conditions that are discussed in Section 10.4.2)

We will see several examples of the use of reductions in this chapter. Finding a
reduction between two problems is useful even if it does not lead directly to new upper or
lower bounds on the complexity of the problem. The reduction helps us to understand
both problems. The reduction may be used 1o find new techniques for attacking the
problem or variations of it. For example, the reduction may be used to design a parallel
algorithm for the problem.

An effective way 1o use reductions is to define a general problem to which many
problems can be reduced. Finding such a general problem is not easy. This problem
should be general enough 1o cover a wide variety of problems, but it must also be simple
enough to have an efficient solution. We discuss one such problem, called linear
programming, in Section $0.3.

We have already seen several examples of reductions in this book — for example,
the reduction of the transitive-closure problem to the all-pairs shortest-paths preblem
{Section 7.8). Reductions are important enough, however. to deserve a special chapter,
Reductions are aiso the cornerstone of the next chapter.

10.2 Examples of Reductions 323

10.2 Examples of Reductions

In this section, we present four examples of using reductions to obtain efficient
algorithms,

10.2.1 A Simple String-Matching Probiem

We start with a simple variation of the string-matching problem.

The P!‘Obfem Let A Sdody 0 Ay and B=bgbi v bn—l be
twe strings of size n. Determine whether B is a cyclic shift of A.

The problem is to determing whether there exists an index &, 0sk<n-—1, such tha
a; = Byaiymoan fOT all i, 0Sisn—1. We call this problem CSM (for cyclic string
maiching}, and we call the original string-matching problem (Section 6.7} SM. We can
solve CSM, for example, by medifying the Knuth-Morris-Pratt algorithm that was
described in Section 6.7. But there is a better way to arrive at a solution. The idea is to
pose CSM as a reguiar instance of SM. 1n other words, we look for a certain exs T and a
ceriain pattern P such that finding P in T is equivalent to finding whether B is a cyclic
shift of A. If we can do this, then a solution to SM involving T and P can be applied to
solve CSM involving A and B. If one thinks about the problem in these terms it is easy o
see the solution: We define the text T as AA {(namely, A concatenated to itself). Clearly,
B is a cyclic shift of A if and only if B is a substring of AA. Since we already know how
10 solve SM in linear time, we have a linear-time algorithm for CSM.

10.2.2 Systems of Distinct Representatives

Let §,.5,, ..., 5; be a collection of sets. A system of distinct representatives (SDR} is
asetR = bry, rqa, ..., 1 such that r; € S, for all /, 1 £/ 54, {notice that, since we require
R to be a set, the r;s must be distinct). In other words, R includes exactly one
representalive from each set. It is not always possible to find an SDR of a given
collection of sets. For example, an SDR for the collection of sets §; = [1,2], §; =
(234}, 83 =13}, and S5 = {1,2.3} is {1,4,3,2}, but there is no SDR for the collection
ofsets $; = { 1,2}, 8, = (2341, S = 11,3}, Sy = [1,2.3], and S5 = {231

The Problem Given a finite collection of finite sets, find an SDR
for the collection {any SDR wili do), or determine that none exisis.

There is a very elegant theorem, due to P. Hail, that gives necessary and sufficient
conditions for the existence of SDRs. Let card (S) be the number of elements of §.

324 Reductions

1 Hall’s Theorem

Let §,,5;,5; be a collection of sets. This collection has an SDR if and
only if the following condition is satisfied:

card [S‘;I USI': U e US;J 2m

Jor every subset iy, ia, 0l of {1,3,3, ., k). In other words, every
subcoflection of m sets must contain altogether at least m distinct elements,
for every L Sm sk (1

It is clear that the condition is necessary since, if there are m sets with altogether less than
m elements, then they cannot have m distinct representatives. That the condition is also
sufficient is harder to prove, and we leave it as an exercise.

Hall's theorem provides simple conditions but, unforiunately, they cannot be
directly checked efficiently. We will have to check all possible subcollections, and there
are 2* of them. We need another approach. The idea is to pose this problem as a
bipartite matching problem. Let G =(V, U, E) be a bipartite graph such that there is a
vertex v; in V for each set §;, and there is a vertex u; in U for each possible element (i.e.,
for each element in the anion of the sets). Each element is connected to all the sets
comtaining it; that is, (v, w;3€ £ if and only if 4;€ S, It ts now easy to see that an SDR
is simply a matching in G of size k. We can apply the algorithm discussed in Section
7.10 to solve this problem. Furthermore, the proof of Hall's theorem can be obtained
from the properties of bipartite matching and network flows.

10.2.3 A Reduction Involving Sequence Comparisons

Consider the sequence-comparison problem discussed in Section 6.8: A=a,a, ' a,
and B=pf b, ' b, are two strings of characters, and we want 1o edit A, character by
character, until it becomes equal to B, We allow three types of edit steps, each involving
one character — insert, delete, and replace. The cost of each of these steps is given, and
our goal is to minimize the cost of the edit. The solution given in Section 6.8 was to
construct a table of size r» by m, where each eniry corresponds 10 a partial edit. The ijth
eniry containg the cost of editing the first / characters of 4 into the first f characters of B.
The goal is thus to compute the **bottom-right'" entry (nm) of the table. We showed that
each eniry can be computed from only three other **previous’” entries carresponding to
the three different edit steps.

Another way to look at this problem is by considering the table as a directed graph.
Each entry in the table corresponds 1o a vertex in the graph. A vertex thus corresponds 10
a partial edit. There is an edge (v, w) if the partial edit corresponding to w has one more
edit step than the partial edit corresponding to v. An example of such a graph is given in
Fig. 10.1, where A =cqa and B =aba. The horizontal edges correspond to insertions. the
vertical edges to deletions, and the diagonal edges to replacements. For example, the
shaded path in Fig. 10.} correspends to a deletion of ¢, a match of @, an insertion of b,
and another match of 4. In the basic probiem, the cost of each edge is 1 except for
diagonal edges that correspend to equal characters {i.e., no replacemen; is necessary)

10.2 Examples of Reductions 328

& a b a
) X
C;
¥} el \' S . ;
o » %

Figure 10,1 The graph corresponding to the sequences A =caa and B =aba.

whose cost is 9. The problem now becomes a regular single-source shortest-paths
problem. Each edge is associated with a cost (which is the cost of the corresponding edit
step), and we are fooking for the shortest path from vertex [{, 0] to vertex [n, m]. We
have reduced the siring-edit problem to the single-source sortest-paths problem.

Finding shortest paths in general is not easier than solving this problem directly.
Nevertheless, this reduction is useful. Consider, for example, the following variations of
the sequence-comparison problem. The cost of editing is not necessarily per character,
The cost of inserting a block of characters in the middle of another string may not be the
same as that of inserting the same number of characters, one by one, in different places.
The same may be true for deletions. In other words, instead of assigning a cost per
insertion, deletion, and replacement, we may want to assign a cost per blocks of
insertions, or deletions, regardless of their sizes. Alternately, we may want to assign a
cost of say, I +ck, for inserting a block of k characters, where [is the *‘start-up™” cost,
and ¢ is a cost per subsequent character. There are many other useful metrics. We can
model them more easily by using the shortest-path formulation than by medifying the
original problem. We can add edges anywhere we want and assign any cost to them,
without changing the problem.

10.2.4 Finding a Triangle in Undirected Graphs

There is a strong correlation between graphs and matrices. A graph ¢ =(V, E) with »
vertices can be represented by its adjacency matrix A, which is an # X 2 matrix in which
the ifth entry is 1 if and only if (v;,v;) € E. If (G is undirected, then A is symmetric. If G
is a weighted graph, then we define A as an 1 X# matrix such that the ijth entry is equal
to the weight of edge (v;, v;) or 1o 0 if this edge is not in the graph. There are other ways
to associate a matrix with a graph. For example, the incidence matrix of a graph
G =(V, E) with n vertices and m edges is an # X m matrix in which the ijth entry is 1 if
and only if the ith vertex is incident to the jth edge.

326 Reductiens

The correlation goes beyond mere representation. Many properties of graphs can
be better understood by looking at the comresponding matrices. Similarly, many
properties of matrices can be discovered by looking at the corresponding graphs. Not
surprisingly, many algorithmic problems can be resolved by making use of this analogy.
Here is one example.

The Problem Let G =(V, E) be a connected undirected graph with
n vertices and m edges. Design an algorithm to determine whether G
contains three vertices all connected to one another.

The straightforward solution is to check all subsets of three vertices. There are

(?):n(n“ Pi(n—2)/6 subsets of three vertices, and each subset can be checked in
constant time, so the running time of the resulting algorithm is O (»*). I is possible to
design an algorithm whose running time is O (mn) (Exercise 7.118), which is betier if the
graph is sparse. Can we do better than that? We proceed to show an algorithm, which is
asymptotically faster, but is far from being intaitive. The main purpose of this discussion
is 1o ilustrate the relationships between graph algorithms and matrix algorithms,

Let A be the adjacency matrix of G. Since G is undirected, A is symmetric.
Denote by A* the square of the matrix A, namely, AZ = A x A (the product is the usual
matrix product). We want to study the refationships between the entries of A2 and the
graph G. By definition of matrix multiplication,

n
AMi, j1= 3 Ali, k1 ALk 5.
k=l

Therefore, A%[i, §]>0 if and only if there exists an index & such that both A[/, k] and
Alk, j] are 1. In terms of the graph, A%[i, j]> 0 if there exists a vertex k, such that £ #/,
and k#J, and both / and j are connected 1o k. {We assume that the graph does not
contain self loops; hence, A{i, {}=0 for all) However, that means that there exists a
triangle involving { and j if and only if i is connected to j and A*[i, j1>0. Thus, there
exists a triangle in G if and only if there are i and jsuch that A[7, j1=1, and A*[f, /1> 0.

The discussion above implies an algorithm. We first compute A® and then check
the condition above for each pair / and j. It costs O (n*) to check all pairs, so the running
time of the algorithm is dominated by the running time of matrix multiplication. We
have thus reduced the problem of finding a triangle in a graph to that of Boolean matrix
multiplication (more precisely to matrix squaring, but we will see in Section 10.4.2 that
these two problems are equivalent). We can now use Strassen’s algorithm for matrix
multiplication and obtain an algorithm for finding a triangle whose running time is
O(n*®). We can also use the algorithm in Section 9.5.3 for Boolean matrix
multiplication, and obtain a practical algorithm for finding a wiangle with a running time
of O{n*/(logn)?). We have reduced this graph problem to Boolean matrix
maultiplication, so, in general, the complexity of this graph problem is O (M), where M is
the complexity of Boolean matrix muhiplication.

10.3 Reductions Involving Linear Programming 327

10.3 Reductions Involving Linear Programming

The previous section included examples of reductions from different areas of algorithm
design. We tried 1o map one problem to another so that we could use a known algorithm,
This section also presents reductions, but with a shightly different approach. Instead of
locking for a candidate for a reduction whenever a new problem arises, we explore some
“‘super-problems,”’ to which many problems can be reduced. One such super-problem,
perhaps the most important one. is linear programming. There are efficient algorithms
for solving linear programming, although they are not simple. A thorough discussion of
linear programming is beyond the scope of this book. In this section, we only define
some variations of the problem, and show several examples of reductions to it.

10.3.1 introduction and Definitions

There are many problems that involve maximizing or minimizing a certain function
subject to certain criterta. For example, the network-flow problem involves maximizing
the flow function subject to the capacity constraints and to the conservation constraints.
Linear programming is a general formalation of such problems in cases where the
function is a linear function and the constraints can also be written using linear functions
in the following way. Let X={x, X3, ...X%,) be a vector of variables. An objective
function is defined as a linear function involving the variables of x;
n
¢{X)= ¥ c;x;, where the ¢;s are constants. 10.1)
i=
The goal of linear programming is to find the values of X that satisfy some constrainis
(listed betow) and maximize the value of the objective function. We shall see later that, if
Recessary, il is easy 1o replace the maximization objective with a similar minimization
objective. First, we define a general form of linear programming with three types of
constraints, not all of which are needed for all problems. Later, we will show that the
general problem can itself be reduced 10 a problem with only two types of constraints.
Letdy,ds, ..., a; be vectors of real numbers, each of length n, and let b4, b4, .., By
be real numbers. The inequality constraints are as follows:

ot
i
A

by

2

=3
[

3!

A

(10.2)

Efk'xﬂbk.

{Except for X, all other symbols are constants.}
The equality constraints are similar:

328 Reductions

E;g Emd;
?g'fzdz

(10.3)
Em'}=dm,

where 2, €4, ..., &, are also vectors of size #, and ¢, d4, ..., d,, are real numbers.
We also usually add the following nonnegative constraints scparately (even
though they can be represented as a special case of the previous constraints).

x; 20 forallje P, (10.4)

whete P is a given subsetof {1, 2, ..., n}.

The linear programming problem can be formulated as follows: maximize the
function ¢ (X} {10.1) subject to the inequality constraints (102}, the equality constraints
{10.3), and the nonnegative constraints (10.4). Of course, not all constraints must be
used in all instances of the problem.

We first show that we can get rid of either the equality or the inequality constraints,
but not both, without a loss of generality. FLet

E;'X md;‘ (10.5)

be an arbitrary equality constraint. We can substitute for (10.5) the following two
inequality constraints:

g xsd, (10.6)
and
""‘a' XK ““‘d;. {10.7)

Ahemnately, we can replace the inequality constraints with equality constraints.
Given a general inequality constraint

a;" X <b, (10.8)
we can introduce a new variable, y;, and replace (10.8} with the following:
G-X+y =b;, and y; 2 0. (10.9)

Such a variable is called a slack variable. A lincar program with only equality
consiraints is said 1o be in standard form.

In both of these cases, replacing one set of constraints with another set of
constraints may cause the number of constrainis to increase. Therefore, it is not always a
good idea to perform these transfermations,

We will not describe any algorithm for solving linear programming. We only note
here that the existing algorithms for linear programming are quite fast in practice, and

10.3 Reductions Involving Linear Programming 329

thus a reduction to linear programming is not just an exercise but a good way to solve the
problem.

10.3.2 Examples of Reductions to Linear Programming

Problems in real life are seldom given directly in linear programming formulation. One
has to introduce the right definitions to make the problem fit this formualation. Here is one
example,

The Network-Flow Problem

{This problem is discussed in detail in Section 7.11.) Let the variables x;, x5, ... x,
represent the values of the flow for all the edges (n is the number of edges here). The
objective function is the value of the total flow in the network
((}) E fo!
ie§
where S is the set of edges leaving the source. The inequality constraints correspond 1o
the capacity constraints:

x5 foralli, 1€isn,

where ¢; is the capacity of edge i. The equality constraints correspond to the
conservalion constraints:

Y 5~ ¥ x, =0 forallve V-(s ¢}

¥, feaves v X, enders v

Finally, the nonnegative constraints apply to all variables (i.e., the set P, as defined in
£10.4}, is the whole set { 1, 2, ..., n}}. We leave it to the reader to verify that the values of
x that maximize the objective function under these constraints correspond indeed to a
maximum flow.

A Static Routing Problem

Let G=(V, £) be an undirected graph representing a corrmunication network. Suppose
that each node v, in the network has a limited buffer space, and can receive only B;
messages in one unit of time (we assume, for simplicity, that all messages have the same
size}, Suppose further that there is no limit on the number of messages that can be
transmitted through any link, and that each node has an infinite supply of messages. The
problem is to decide how many messages each edge should carry in one unit of time in
order to maximize the total number of messages on the network. (This is a static routing
problem, since we assume that ail nodes always want to transmit; usunally, transmission
needs are dynamically changing.) In a graph-theoretic formulation, the problem is to
assign weights 1o the edges such that the sum of the weights of all edges incident to node
v; is £8;, and the total sum of weights is maximized.

This graph-theoretic problem can be easily formulated as a lingar programming
problem, We can associate a variable x; with each edge ¢ =(v, w), indicating the
number of messages passing through e,. The objective function is ¢(X}=Y x,. The

i

330 Reductions

constraints are as follows:

Y €8, forallveV,

¢, is incident 1o v,
and
x; 20, forall/

The Philanthropist Problem

Suppose that there are n organizations that wani 1o coniributed money to k computer-

science departments. Each organization / has a limit of 5, on its total contribution for the

year, as well as a limit a;; on the amount it is willing to contribute 1o department j (e.g.,
&

a;; may be 0 for some departments). In general 5; is smaller than 3 a;;; therefore, each
=l

organization has to make some choices. Furthermore, suppose that éach department j has
a limit of #; on the total amount of money it can receive (this constraint may be
unrealistic, but it is interesting nevertheless). The goal is to design an algorithm that
maximizes the total contributions (with no regard to fairess).

This problem is a generalization of the matching problem introduced in Section
7.10. it can be sclved by matching techniques, but it also has a simple linear
programming formulation. There are nk variables x;;, 1 Si<n, 15/ <k, representing the
amount of money organization { is willing 1o contribute 1o department j. The objective
function is

c(Xy=Y x;.
i
The constraints are the following:

X;; S ay foralli, j,

‘.
¥ x5 s foralld,
i
and

H
2 x; st forall j
=1

In addition, of course, all variables must be nonnegative,

The Assignment Problem

Let’s change the philanthropist problem slightly by insisting that each organization
donate money to only one department and that each department accepts money from only
one organization. In other words, we make it a standard matching problem, but with
weights. Each possible match has a doltar amount attached 1o it, and we want to find not
only a perfect matching, but also one that maximizes the total donations. This problem is
a bipartite weighted matching preblem, or, as it is usually called, an assignment
problem,

10.4 Reductions for Lower Bounds 331

The variables for this problem must be different from those of the previous
problem. We somehow have to capture the notion of a matching. We must insist that
exacily one edge is connected to each node. We do so by assigning a variable x;; for
each edge (/, j) with a value of 1 when the edge is selected, and of 0 otherwise. The
objective function becomes

SEDEDNIE (10.10)
ij
The constraints are the following:

&
ox;=1 foralli,
J=l
and

L]

> x;=1 forall j.

i=l
These constraints guarantee that no more than one edge is selected for each node. In
addition, all variables must be nonnegative,

This formaulation has one major deficiency. The variables represent a yes or no
choice, but their optimal values may be real numbers! We have to add constraints that
limit the values of the variables to either 0 or 1. This is generally very hard 1o do. Linear
programs whose variables must be integers are called integer linear programs. Solving
them involves integer pregramming. Many of the problems discussed in the previous
chapters can be naturally formulated as integer linear programming problems. However,
although linear programs can be efficiently solved, integer linear programs are usually
(but not atways) very difficult. We discuss this issue in the next chapter. (The
assignment problem, by the way, can be solved efficiently by linear programming; see,
for example, Papadimitriou and Steiglitz [1982].)

10.4 Reductions for Lower Bounds

I we can show that an algorithm for problem A can be modified — without adding 100
much to the running time — to solve problem B, then a lower bound for problem B
applies to problem A as well. We present three examples of the use of reductions for
lower bound proofs. Another example is presented in the next section, which deals with
commeon errors in the use of reductions.

10.4.1 A Lower Bound for Finding Simple Polygons

Consider the problem of connecting a set of peints in the plane by a simple closed
polygon (see Section 8.3}, We have seen how to solve this problem using sorting. It is
also true thai, under certain assumptions, this problem cannot be solved more quickly
than sorting. Therefore, the algorithm we presented for the simple closed polygon
preblem cannot be improved without improving sorting. (When we say *‘improvement,”’
we mean an improvement by more than a constant factor.)

332 Reductions

{1 Theorem 10.1

1t is possible to sorr in time O (T +n), given a {black-box) algorithm for the
simple polygon problem that runs in time O(T),

Proof: Consider n points on a circle (see Fig. 10.2). The only way to connect
these points into a simple polygon is 1o connect each point to its neighbor on the circle.
Otherwise, if two poinis that are not neighbors are connected, the connecting line
separates the rest of the points into two groups that cannot be connected without
intersecting this line. Consider now an input x,, X3, X, 10 the sorting problem. If we
had a black box for the simple polygon problem, we could use it to sort in the following
way: The input x, X3, ..., X, is first converted to y(, ¥2, ..., ¥,, such that the y;s are angles
in the range —180 to 180 degrees, with the same relative order as the x;5. The angles are
then converted to points all lying on the anit circle. The point corresponding to x; is-the
point on the circle with angle y; to some fixed line crossing the circle. These conversions
can be done in linear time. We can now use the black box for constructing a simple
polygon from a set of points in time O(T). As we mentioned, this simple polygon must
connect each point to its neighbor on the circle. But that means that we can scan the
points in order and find the sorted order of the original sequence in time O (F +n). -

To obtain a lower bound for the simple polygon problem, we have o be careful
about the model of compatation that we assume. The Q(n log n) lower bound for sorting
that was proved in Section 6.4.6 assumed the decision-tree model. To use this lower
bound for the simple-polygon problem, we maust use the same model. That is, we first
must assume that the black box that solves the simple polygon problem uses O(T)
comparisons in 4 way that is consistent with the decision-tree model. The theorem must
include this assumption. We then have to show that the reduction is also consisient with
the decision-tree model. In this case, the reduction is valid since the proof of the lower
bound for sorting did not make any restrictions on the type of queries allowed in the
decision tree. Thus, a comparison involving the x or y coordinates of the point

?)‘ Ys

Ya

Figure 10.2 The conversion from numbers to points.

10.4 Reductions for Lower Bounds 333

corresponding to the angle y; is still counted as one comparison in the decision tree. A
decision tree that solves the simple-polygon problem can be transformed into a decision
tree that sobves sorting, without significant change in height.

0 Corollary 10,2

Under the decision-tree model, the problem of finding a simple polygon
connecting a sel of given points in the plane requires L2(nlogn)
comparisons in the worst case. |

This reduction establishes the fact that sorting is really at the heart of solving the simple
polygon problem.

10.4.2 Simple Reductions Involving Matrices

In Section 9.5, we saw very nonintuitive ways to multiply two matrices. Symmetric
mairices {t.e., matrices in which the /jth entry is equal 10 the jith entry} occur commonty
in practice. It is natural to ask whether it is easier to multiply symmetric matrices. It is
entirely possible that symmetry helps in finding better expressions for multiplying, say, 3
by 3 matrices. This may lead to a better asympiotic algorithm for multiplying symmetric
matrices. We now show that this is not the case. We prove that multiplying two
symmetric matrices s as hard, to within a constant factor, as is multiplying two arbitrary
matrices.

Let’s denote the problem of computing the product of two arbitrary matrices by
ArbM, and that of computing the product of two symmetric matrices by SymM. 1t is
obvious that SymM is not harder than ArbM (since SymM is a special case of ArbM).
Suppose now that we have an algorithm that solves SymM. We show that we can use this
algorithm as a black box to solve the more general problem ArbM. Let A and B be two
arbitrary matrices. Penote by AT the transpose of A (i.c., the matrix obtained from A by
exchanging every entry ij with the entry ji}. We utilize the following expression,
involving a product of two 2n X 2n matrices, which is easy to verify:

0 A] [0 BT AB 0O
At ol |B ol T lo a8 (10.11)

(The 0Os stand for n x n matrices all of whose entries are 0.} The reduction follows from
the fact that the two matrices on the left side are symmetric. We can find their product by
using the algorithm for the problem SymM. But the upper-left side of their product
contains exactly the product AB. Hence, we can solve ArbM by using the algorithm for
SymM on two matrices of twice the size. This leads to the following theorem.

1 Theorem 10.3

If there is an algorithm that computes the product of two symmetric nxn
real marrices in time O(T (n)), such that T(2nY=0 (T (m)), then there is an
algorithm to compute the product of two arbitrary nxn real mairices in
time QAT (m)+n?).

334 Reductions

Proof: Given two arbitrary nxn matrices, we use the assumed algorithm to
compute their product as shown in (10.11). It takes O (n?) steps to compute AT and BT
and to construct the two symmetric matrices, and T(2n) to multiply them. The theorem
folfows. [

The assumption that T(2n)=0(T{n)} is not overly restrictive; for example, any
polynomial satisfies it. This reduction is good only for establishing & fower bound. We
do not suggest using it in practice to multiply. Theorem 10.3 tells us that it is impossible
to utilize the symmetric properties of a matrix for a matrix multiplication algorithm thay
is faster asymptotically. Here is another similar reduction,

{1 Theorem 104

If there is an algorithm that computes the square of an n X n real matrix in
time O(T(n}), such that T(Qn)=0(T{m)), then there is an algorithm to
compute the product of twe arbitrary nxa real mairices in time
O(T () +n?),

Proof: As in the proof of Theorem 10.3, we need 10 find a matrix whose square
contains enough information to obtain the product of two arbitrary matrices. This is done
by the following expression:

0 Al* {AB 0
B0 ""%0 BA\ (10.12)

The theorem follows immediately. £

10.5 Common Errors

Reductions should be used with care. The following are examples of common errors one
can make when attempting a reduction. The most common error is to apply the reduction
1n the wrong order, This mistake is more prevalent in reductions for lower bounds. The
reduction should establish in this case that one problem P is at least as hard as another
problem @ whose complexity we already know. We need to start with an arbitrary
instance of @ and 1o show that it can be solved with a black-box solution for P.
Consider, for example, the following atiempt to reduce the problem of data compression
via Huffman’s encoding (Section 6.6) to the problem of sorting. The goal is to prove a
lower bound of Q(x log n) for the complexity of Huffman's encoding.

The main observation is that, if the frequencies of the characters are wide apart,
then the tree becomes so unbalanced that it can be used for sorting (see Fig. 10.3). In that
case, the characters will appear in the tree in decreasing order of frequencies (with the
highest-frequency character at the top of the tree). But that means that Huffman's
encoding can be used to sort these frequencies. Therefore, building the tree is at least as
hard as sorting, and a lower bound of £l(n log #) seems to be impiied.

The error in this argument comes from the fact that we started with a special case
of the sorting problem. We considered only those frequencies thas that are wide apart.

HL.5 Common Errers 335

2 I
Figure 10.3 A Huffman tree for frequencies that are wide apart.

To prove a lower bound for sorting, we must start with an arbitrary instance of soriing.
After all, the proof should show that Huffman's encoding can be used to perform any
sorting. We must start with arbitrary numbers and show that these numbers can be sorted
by the Huffman’s encoding algorithm. We will discuss this error further in the next
chapter.

As it tums out, we can modify the arguments above and save the proof. The trick
is to spend some time changing the input of the sorting problem (which must be
arbitrary) so that it conform with our goals. Let the input be a sequence of distinct
positive integers X = (x,, xs, ..., X,). We can assume that the numbers are distinct,
because the lower bound for sorting applies to distinct numbers as well {in fact, the lower
bound was proved for distinct integers). The Huffman’s encoeding corresponding 1o
frequencies that are equal 10 the numbers in X can be any general tree; thus, the
arguments above cannot be used. However, we can replace each x; with, say, y; = 2",
Since, for any positive integer m, we have 2" > ¥ 2, the Huffman tree will have the

[]

form shown in Fig. 10.3. So, it is possible to use the Huffman's encoding algorithm to
sort the y;5. We now must make sure that the extra computation involved in the
reduction {computing the y;s from the x;s, in this case) is not prohibitive. Computing
powers can be quite expensive, but that is irrelevant in this case, because the lower bound
for sorting involves only comparisons. We made no assumptions about the number of
other operations (see again Section 6.4.6). Therefore, we established that building the
Huffman’s encoding requires £X(nlogn) comparisons in the worst case under the
decision-tree model. {1t may be possible to build the tree more quickly with an algorithm
that does not conform to the decision-tree model.)

We also have to be careful that the reduction does not impose significant
inefficiency. Consider the knapsack problem discussed in Section 5.i1, and the
extension 1o it addressed in Exercise 5.17. (The extension was to solve the knapsack
problem where each item can be included in the knapsack an unbounded number of
times.) A straightforward reduction of the extended problem to the original problem (in
which each itern appears at most once} is the following. Let the size of the knapsack be

336 Reductions

K. Anitem of size 5; cannot be included more than K/s; times. So, we can replace each
item in the extended problem with| K/s,] items of the same size in the original problem,
Although this reduction is correct, it is not very efficient, since we have increased the size
of the problem considerably. This problem can be solved more efficiently.

10.6 Summary

It is always a good idea to look for similarities between problems. By studying
differences and similarities between two problems, one usually gains insight into both
problems. Given a new problem, the first thought should be (in almost alt cases}, **Is this
problem similar to a known problem?”’ Sometimes, the similarities between two
problems become apparent only after complicated reductions are exhibited. The
reductions between matrix and graph algorithms are especially interesting. We have seen
several examples of reductions in this chapter, and we wili see more examples in the next
chapter.

Linear and integer programming were described too briefly in this chapter. They
are very important and should be studied in detail by anyone interested in algorithms.

Bibliographic Notes and Further Reading

Hall’s Theorem is due to P. Hall {1935]. A detailed discussion of Hall's theorem can be
found in almost any combinatorics book; see, for example, Brualdi [1977] or M. Hall
[1986]. The relationships between finding small cycles — in particular, tniangles — and
matrix multiplications are discussed by Iat and Rodeh {1978]. The two reductions
involving matrices (Section 10.4.2) are due to Munro [1971]. Similar, but more
complicated, reductions can be obtained between Boolean matrix multiplication and the
transitive-closure problem (Fischer and Meyer (1971]), and between matrix
multiplication and matrix inversion (Winograd | 1970b)).

Linear programming was first solved by Dantzig in 1947 (see Dantzig [1963] for
detailed discussion and numerous examples). Dantzig’s algorithm, called the simplex
algorithm, has been in extensive use since the 1950s. [t is fast and practical,
Nevertheless, Klee and Minty [1972] proved that the worst-case running time of the
stmplex algorithm is exponential. Khachian {1979} was the first to exhibit an algorithm
for linear programming whose running time is polynomial in the worst case. Khachian’s
algorithm, which is known also as the ellipsoid algorithm, works very poorly in practice.
However, the ellipsoid algorithm has other applications (see, for example, Grotschel,
Lovdsz, and Schrijver [1981])., Another polynomial-time algorithm for linear
programming was introduced by Karmarkar [1984]), Karmarkar’s algorithm received a
lot of attention, and triggered extensive research, because of its potential for being
superior to the skmplex algorithm in certain cases. For more on linear and integer
programming, see, for example, Papadimitriou and Steiglitz [1982], and Schrijver {1986).

A solution to Exercise 10.7 can be found in van Leeuwen {19861, Exercise 10.8 15
from Even [1979]. Exercise 10.11 is from Maggs and Plotkin [1988], Exercise 1022 is
from Aho, Hopcroft, and Ullman [1974],

Exercises 337

Exercises

10.f Prove Hail's theorem by using the techniques developed in the sections on network Sows
and bipartite matching.

102 Solve the following variation of the sequence-comparison problem. The inpu: is two
seguences A and B, and the goal is to edit B so that it becomes equal to A, The edit steps are
the usual ones: insert, delete and replace (or masch}. The cost of a step, however, depends
on the position in the seguence of the corresponding characters. The cost of inserting a
character a1 the fth position in B is ¢, where ¢ is a constant, and the cost of deleting the jth
character of B is ¢j. The cost of repiacing a character with another character is stifl |, The
algorithm should find the minimum-cost edit sequence.

=
T

Find a reduction (in some direction) between the problem of finding maximal points in the
plane {Exercise 8.i8) and that of marking intervals on the line for containment (Exercise
8.26).

104 Department D ar University X administers a qualifying examination for its Ph.D. students.
The examination consists of (7 questions divided into # areas such that there are g; guestions
®

in area i {3 ¢, =) There are k professors P, Py, ... P, (these are not their real names)
izl

whe write guestions for the examination. Suppose that each professor P; has overall p;
£

questions that can be used, and that ¥, p, 2 @. A committee is responsible for selecting the
i=l

questions for the examination from the questions supplied by the professors. We assume
that aif the questions are unigue, and that they are all good. Assume, furthermore, that each
professor insists that no more than r (where r is a constant independent of the professor) of
his or her questions will be used (so that he or she can use the remaining questions in later
years). Design an efficient algorithm to select the questions for the examination under these
constraints, or to determine that it is impossible to do so.

10.5 Consider the following variation of the bipartite matching problem. Suppose that there are
2n students who want 1o be admitted o # universities. Consider the bipartite graph formed
by having the students and the universities as the two sets of vertices and including an edge
between a student and a university if the university agrees o admit that student. Find an
aigorithm to maximize the number of students that are admitted, such that no more than two
students are admitted fo each university (there are no preferences). Solve the probiem by
exhibiting a reduction 0 the regular bipartite matching problem.

10.6 Here is another variation of the bipartite matching problem. Suppese now that there are 2
sraining courses and # trainees. As usual, we consider the graph in which the courses and
the trainees are the vertices and there is an edge between a trainee and a course if the trainee
is qualified for the course. Each course can have at most two trainees, and each trainee can
sake at most twe courses. Design an algorithm (by a reduction te a known preblem) to
maximize the registration. (Again, no preferences are given, and there are no scheduling
problems.}

10.7 Let G={V, E) be an undirected graph such that cach vertex v is associated with an integer

108

10.9

10.1¢

10.11

16.13

10.14

Reductions

b(visdegree{v). A b-matching in G is a set of edges of E such that each vertex v has no
more than B{v} edges incident to it. {If b(v)=1 for all v, then this is exactly the regular
matching probiem.) A maximum b-matching is one with maximum number of edges.
Reduce the probiem of finding a maximum b-matching to that of finding a maximum
matching.

Let G={V, E) be an acyclic directed graph. Design an aigorithm to find a minimum
number of vertex-disjoint paths that include all vertices of G.

Let G =({V, E} be a network with source s and sink 1. Assume that G is planar, namely, it
can be laid out in the plane such that no edges intersect. Assume furthermore that such a
fayout is given 0 you {in a reasonable representation), and that both the source and the sink
fie on the outside of the layout. Design an algorithm to find a minimum-cost cut in G
without using the maximum-flow algorithm,

Exercise 8.40 can be solved by reducing the problem to that of minimum-weight maiching,
{In this case, the reduction leads 1o an inferior algorithm since minimum-weight matching is
harder than a direct solution.) Show the reduction and prove its validity {i.e., prove that the
correspoending minimum-weight matching satisfies the conditions of the problem),

Reduce the problem of finding an MCST in an undirected graph to a bottleneck shorfest-
path problem. (A botdeneck probiem is a minimization problem in which we iy to
minimize the maximum value, rather than the sum of values; so, a bottleneck shortest-path
problem inveives paths whose maximal-cost edges are minimized, rather thas the cost of
the whoile path.) As a result, show that the MCST problem can be spived by shortest-paths
techniques. {Although shortest-paths aigorithms are usually more expensive than MCST
aigorithms, the reduction can be helpfui for paralle] algerithms.)

The input is a directed graph G =(V, E) with a distinguished veriex v, such that there is a
positive cost ¢ (w) associatedt with each vertex w. The cost of a directed path

VoX |, X300 A B8 defined as Y c(x;). The costs of the two endpoints v and u are ignored,
i=1

soif {v, w)e E, the cost of getting from v to # is 0. Design an efficient algorithm to find the

minimal-cost paths from v 1o ali other vertices. (This exercise is identical fo Exercise 7.47,

but here we insist on a selution by reduction.}

An even mere general formulation of linear programming than the one given in Section [0.3
aliows two types of inequality constraings: The first type imposes the “*<"" relations, and the
second type imposes the 2" relations {of course, with different coefficients). Show that
this formslation can be reduced to the one in Section 0.3,

Suppose that you have a linear programming aigorithm that can only handle nonnegative
variables. {Recall that in our definition of linear programming not all variables were
restricted to be nonnegative.) Show how to reduce the general problem to this one.

Show, by exhibiting a bad example, that constraints of the type & ¥ b should not be
allowed in a linear programming formulation.

Suppose that there are n people in a scientific conference whose goal is 1o maximize
exchange of ideas, Not everyone can exchange ideas with everyone else. We represent the
conference by an undirected graph, with the vertices associated with the people such that { is
connected 1o j if i can exchange ideas with j. (One can also define a directed version.)

10,18

i0.19

16.20

10.2¢

10.22

1023

Exercises 33

Suppose further that the number of hours for talking is limited. For simplicity. we assume
that there is one global bound of # hours, Thal is. every person can spend at most & hours
taiking, We are not concerned hese with scheduling. We assume that time is also spent on
other activilies. so there is sutficient flexibility to arrange any possible meeting. For
exampie, suppose that there ate three people, each 'connected™ 1o the others, and let A= §,
If two of them talk to each other for the whole hour, then there is only 1 hour of
conversation. if. on the other hand, each one talks to each other for half an hour, then
everyone exhausts his or her time and there is 1.5 hours of cenversation. We wanl (o0
maximize the total conversation time. Formulale this problem in terms of linear
programming, or reduce i t0 another probiem thut we have already discussed.

Consider again the philanthropist problem of Section 10.3.2. Suppose that there are no
limits on the amount of money each department is witling 1o accepl. Solve this variation of
the probiem.

Consider the problemn of arranging » players in an order consistent with the resulis of 2
round-robin competition {Exercise 7.104). Prove a lower bound of Q{nlegn) for this
problem by reducing sorting to it. Show that a reduction to sorting can alse be helpful in
finding & good algorithm for this preblem.

Let § be a set of # points that are vertices of an arbitrary convex polygon. The points are
given in an arbitrary order. Prove that it takes £(x log #) time 10 arrange the poings into the
standard polygen representation (i.e., in consecutive order}.,

We have seen in Section 9.5.2 that 7 multiplications (instead of the nominal 8) are sufficient
to compute the product of two arbitrary 2 x2 matrices, and that this fact leads to a betier
matrix multiplication algorithm. It is possible to compute the sguare of an 2 x 2 real matrix
with only 5 muitiplications (Exercise 9.21). Discuss why this observation does not
contradict Theorem 10.4.

A lower {riangular matrix is a square matrix (a;} such that, if j >/, then a; =0 (in other
words, all nonzero entries are on or below the main diagonal). An upper triangular
matrix is defined similarly, except that the nonzero eniries are on or ahove the main
diagonal. Prove that, i there exists an algorithm to maltiply an # X» lower trianguiar
matrix by an # X » upper trianguiar matrix, whose running time is O (T{#)}, then there exists
an aigorithm to multiply two arbitrary # X » matrices whose running time is G{F{n)+n?),
You can assume that T {¢n)y=0 (T {n)) for any constant ¢.

Prove that if there exisis an algorithm to multiply (wo # X n fower triangular matrices whose
runping time is G(T (#)), then there exists an algorithm to multiply twe arbitrary n xn
matrices whose running time is O (F{n}+ A%y, You can assime that T{omy=0(T) for
any constant ¢.

The transitive closure A of an # X» matrix A is defined as foliows:
A=l +A+A T+ - +A"TY
wherze [is the # x # ideniity mairix,

4. Prove that, if A is a Boolean matrix corresponding 10 an adiacency matsix of a graph,
then A~ corresponds to the adjacency matrix of the transitive closure of the graph.
(Assume that multiplication is performed sccording to the Booleun rules)

340 Reductions

b. Prove that, if the transitive closure can be computed in time T(n), where T'(n) 15 a
pelynomial in #, then matrix multiplication can be computed in time O (¥ (#)). You can
assume that T{en)= Q{T{n)) for any constant ¢.

10.24 Let § be a set of # points in the plang. The poinis define a weighted undirected graph in the

— following way. The graph is the complete graph {i.e., every Iwo vertices are connected),
and the weight of an edge is equai to the Euclidean distance between the two cormresponding
paints. Show a lower bound of (x log#) for the runaing time of an MCST algorithm for
this case.

*10.25 Let § be a set of n points in the plane. The diameter of § is the maximal distance between
two peints in §. Denote the problem of finding the diameter by DM. Let A and B be two
sets of n real numbers. Denote the problem of deciding whether A and B are disjoint by DJ,
Prove that, if there exists an algoritam for DM that uses O (T (1)) arithmetic operations {you
can assume any reasonable operations), then there exists an algorithm for [J that uses
O (T {n}+n) eperalions.

CHAPTER 11

NP-COMPLETENESS

Give me where to stand, and § will move the earth.
Archimedes (287-212 B.C.)

11.1 Introduction

This chapter is quite different from other chapters. In the previous chapters, we mainly
siudied techniques for solving algorithmic problems and applied them to specific
problems. It would be nice if all problems had elegant efficient algorithms that can be
discovered by a small set of techniques. But life is rarely that simple. There are still
many problems that do not seem to succumb to the techniques that we have learned so
far. It is possible that we just have not tried hard enough, but we strongly suspect that
there are problems that have no good general efficient solutions. In this chapter, we
describe techniques for identifying some of these problems.

The running times of most of the algorithms that we have seen so far were bounded
by some polynomial in the size of the input. We call such algorithms efficient algorithms,
and call the corresponding problems tractable problems. In other words, we say that an
algorithm is efficient if its running time is O (P (#)), where P{n) is a polynomial in the
size of the input n. Recall that the size of the input is defined as the number of bits
required to represent that input. The class of all problems that can be solved by efficient
algorithms is denoted by P (for polynomial time). This may seem to be a strange
definition. Surely, algorithms that run in time O (n'%) are not efficient by any standard
(for that matter, algorithms that run in time 107# are not efficient, even though they are
linear). Nevertheless, this definition is valid for two reasons. First, it allows the
development of the theory, which we are about to explore; second, and most importani,
it stmply works in practice. It turns out that the vast majority of the tractable problems
have practical solutions {of course, some are better than others). In other words, the

............. AR

342 NP-Completeness

sunning times of polynemial algorithms that we encounter in practice are mosily small-
degree polynomials (seldom above quadratic). The opposite is also usually true:
Algorithms whose running times are larger than any polynomial are not usually practical
for large inputs.

There are many problems for which no polynomial-time algorithm is known.
Some of these problems may be solved by efficient algorithms that are yet to be
discovered. We strongly suspect, however, that many problems cannot be solved
efficiently. We would like to be able to identify such problems, so that we do not have to
spend time searching for a nonexistent algorithm. In this chapter, we discuss how 10 deal
with problems that are not known to be in P. In particular, we discuss one special class
of problems, called NP-complete problems. We can group these problems in one class
because they are atl equivalent in a strong sense — rhere exisis an efficient algorithm for
any one NP-complete problem if and only if there exist efficient algorithms for all NP-
complete problems. There is a general belief that there is no efficient algorithm for any
NP-complete problem, but no proof of that belief is known, Even if there were efficient
algorithms for NP-compleie problems, they would surely be very complicated, since they
have eluded researchers for many years. So far, hundreds (maybe even thousands) of
problems have been found to be NP-complete, which is why this subject is so important.

The chapter consists of two parts. Firsi, we define the class of NP-complete
problems and show how to prove that a problem belongs to the class. Then, we present
several techniques and examples for solving NP-complete problems approximately.
These solutions may not be optimal, and they may not always work, but they are better
than nothing.

11.2 Polynomial-Time Reductions

We will restrict ourselves in this section to decisien problems; that is, we consider only
those problems whose answer is either yes or no. This restriction makes the discussion
and the theory simpler. Most problems can be easily converted to decision problems.
For example, instead of looking for the size of the maximum maiching in a given graph,
we can ask whether there exists a matching of size 2 k&, If we know how to solve the
decision problem, we can usually solve the original problem — for example, by binary
search.

A decision problem can be viewed as a language-recognition problem. Let U be
the set of all possible inputs to the decision problem. Let L SU be the set of all inputs
for which the answer to the problem is yes. We call L the language corresponding to the
problem, and we use the terms problem and language interchangeably. The decision
problem is to recognize whether or not a given input belongs to L. We now introduce the
notion of polynomial-time reduction between languages, which is the main tool we use in
this chapter.

Definition: Let L, and L, be two languages from the input spaces I/ and
U/, We say that L, is polynomially reducible to L, if there exists a
polynomial-time algorithm that converts each input u, € ¥/, to another

11.2 Polynemiai-Time Reductions 343

input ¥y € Uy such that u; & L, if and only if u, & L,. The algorithm is
polynomial in the size of the input «,. We assume that the notion of size is
well defined in the input spaces I/ and U5, so, in particular, the size of u,
is also polynomial in the size of u .

The algorithm mentioned in the definition converts one problem to ancther. If we have
an algorithm for L ,, then we can compose the two algorithms to produce an algorithm for
L. Denote the conversion algorithm by AC, and denote the algorithm for L, by AL,.
Given an arbitrary tnput € /| we can use AC to convert u; to an input u, € U,; we
then use AL, to determine whether u, belongs to Ly, which will tell us whether «,
belongs to L. In panticular, we have the following theorem.

1 Theorem 1.1

If L, Is polynomially reducible to L, and there is a polynomial-time
algorithm for L, then there is a polynomial time algorithm for L |.

Proof: The proof follows from the preceding discussion. a4

The notion of reducibility is not symmetric; the fact that L is polynomially
reducible 1o L, does not imply that L, is polynomially reducible to L. This asymmetry
comes from the fact that the definition of reducibility requires that any input of L ; can be
converted to an equivalent input of L,, but not vice versa. It is possible, and in many
cases likely, that the inputs of L 5 involved in the reduction are only a small fraction of all
possible inputs for L,. Thus, if L, is polynomially reducible to L ,, then we regard L; to
be the harder problem.

Two languages L, and L, are polynomially equivalent, or simply equivalent, if
each is polynomially reducible to the other. In particular, all nontrivial tractable
problems are equivalent because all have polynomial-time algorithms (we leave the
precise proof of this fact as an exercise). The relation of *‘polynomial reducibility’” is
transitive, as is shown in the next theorem.

¢ Theorem 11,2

If L, is polynomially reducible 10 L, and L, is polynomially reducible to
Ly, then L | is polyromialiy reducible to L.

Preof: We can compose the two conversion algorithms to form 4 conversion
algorithm from L, to L;. An inpat &, in L, will be converted first to an input uy in L,
and then to an input 45 in L+. Since we use polynomial reductions and a composition of
two polynomial functions is still a polynomial function, the result is a polynomial-time
conversion algorithm. (This is one of the reasons we chose to use polynomials.) O

The essence of the method we present in this chapter is to look for equivalent problems
when an efficient algorithm cannot be found. When we are given a problem that we
cannot solve efficiently, we try to find whether it is equivalent 1o other problems that are
known to be hard. The class of NP-complete problems encompasses hundreds of such
equivalent problems.

344 NP-Completeness

11.3 Nondeterminism and Cook’s Theorem

The theory of NP-completeness started with a remarkable theorem of Cook [1971].
Before we state the theorem, we must explain several notions. We will try to keep the
discussion intuitive and will skip several technical details. An excellent reference book
for this area is Garey and Johnson {1979]. The theory of NP-completeness is part of a
large theory, called compuatational complexity, most of which is beyond the scope of
this book. We limit the discussion to some parts that help us to use the theory.

We have not gone into great detail describing in precise mathematicat terms what
an algorithm is. This is not important for describing practical algorithms, as long as we
use reasonable steps that are supported by all computers (e.g., additions, comparisons,
memory accesses). A precise definition of an algorithm is very important, however, for
proving lower bounds. (We have used decision trees to prove lower bounds in Chapter 6,
but this is a very restricted model.) The most fundamental model of computation is a
Turing machine. Another commonly used model is that of a random access machine.
Fortunately, these and other reasonable models are eguivalent for our purposes, because
we can fransform an algorithm from one model to another without changing the running
time by more than a polynomial factor. Cook’s theorem, for example, was proved with
the use of Turing machines, but it is valid for other models as well. We will not use any
specific model here, since we will not go into any details that require one.

We first need to discuss the notion of nondeterminism. This notion is rather non-
intuitive, which leads many people to think that NP-completeness is something of a
mystery. One should think of a nondeterministic algorithm as an abstract notion, and not
as a realistic goal. Nondeterminism is more important to the development of the theory
and the explanation of the existence of this class than it is to the techniques for using the
theory. A nondeterministic algorithm has, in addition to all the regular operations of a
deterministic algorithm, a very powerful primitive, which we will cali rd-chaice. As the
name suggests, the nd-cheoice primitive 15 used to handle choices, but it does so in an
unusual way. This primitive is associated with a fixed number of choices, such that, for
each choice, the algorithm follows a different computation path. We can assume,
without loss of generality, that the number of choices is always two. Let L be a language
that we want 10 recognize. Given an input x, a nondeterministic algorithm performs
regular deterministic steps interleaved with uses of the nd —choice primitive, and, at the
end, it decides whether or not to accept x. The key difference between deterministic and
nondeterministic algorithms lies in the way they recognize a language.

We say that the nondeterministic algorithm recognizes a language L if the
following condition is satisfied:

Given an input x, it is possible to convert each nd—choice encountered
during the execution of the algorithm into a real choice such that the
outcome of the algorithm will be to accept x, if and only f x & L.

In other words, the algorithm must provide at least one possible way for inputs belonging
to L to arrive at an accept owtcome, and it must not provide any way for inputs not
belonging to [to arrive at an accept cutcome. Notice the asymmetry in the definition,

11.3 Nondeterminism and Cook’s Theorem 345

An input x € L may have many paths to a reject outcome. We require only that the
algorithm has at least one ‘‘good’’ sequence of choices for every x& L. On the other
hand, for every input x ¢ L, we must reach 2 reject outcome, ne matter which choices we
substitute for the ad —choices. The nd —choice primitive is sometimes called guessing for
obvicus reasons. The running time for an input x&€ L is the length of a minimum
execufion sequence that leads to an accept outcome. The running time of a
nondeterministic algorithm refers to worst-case running time for inputs x € L (inputs not
befonging to L are ignored),

Let’s see an example of a nondeterministic algorithm. Consider the problem of
deciding whether a given graph G =(V, E) has a perfect matching. The following is a
nondeterministic algorithm for this problem. We maintain a set M of edges, which is
initially empty. We examine all the edges of G, one edge ¢ a1 2 time, and use an
nd—choive corresponding to whether or not we include ¢ in M. When we are done
examining all the edges, we check 10 see whether M is a perfect matching. The checking
can be done in linear time, since we have to determine only whether M contains exacily
| V 172 edges and whether each vertex is incident to exactly one edge from M. The output
of the algorithm is yes if M is a perfect matching, and no otherwise, This is a correct
nondeterministic algorithm for perfect matching because (1) if a perfect matching exists,
then there is a sequence of choices that will put it in M, and (2) the algorithm outputs yes
only if the existence of a perfect matching was proved (because of the checking). We
will see more examples of nondeterministic algorithms in the next section,

Nondeterministic algorithms are very powerful, but their power is not unlimited.
Not all problems can be solved efficiently by a nondeterministic algorithm. For example,
suppose that the problem is to determine whether the maximum matching in 2 given
graph is of size exactly X, We can use the nondeterministic matching algorithm to find a
maiching of size & if it exists, but we cannot easily determine {even nondeterministically)
that there is no matching of a larger size,

The class of problems for which there exists a nondeterministic algorithm whose
running time is a polynomial in the size of the input is called NP. [t seems reasonable to
believe that nondeterministic algorithms are much more powerful than deterministic
algorithms. But are they? One way to prove that they are is 10 exhibit an NP problem
that is not in P. Nobody has been able to do that yet. In contrast, if we want to prove that
the two classes are equal (i.e.. P = NP), then we have to show that every problem that
belongs to NP can be solved by a polynomial-time deterministic algorithm. Nobody has
proved that either (and few believe it to be true). The problem of determining the
relation between P and NP is known as the P = NP problem,

We now define two classes, which not only comtain numerous important problems
¢all equivalent to one another) that are not known to be in P, but also confain the hardest
problems in NP,

Definition: A problem X is called an NP-hard problem if every problem in
NP is polynomially reducible to X.

Definition: A problem X is called an NP-complete problem if (1) X
belongs to NP, and (2) X is NP-hard.

346 NP-Completeness

The definition of NP-hardness implies that, if any NP-hard problem is ever proved 1o
belong to P, then that proof would imply that P = NP.

Cook [1971] proved that there exist NP-complete problems; in particular, he
exhibited one such problem, which we will describe shortly. Once we have found an
NP-complete problem, proving that other problems are also NP-complete becomes
easier. (iven a new problem Y, it is sufficient to prove that Cook’s problem, or any other
NP-complete problem, is polynomially reducible 1o Y. This follows from the next

fernma.
0 Lemma 11.3

A problem X Is an NP-complete problem if (1) X belongs to NP, and (2'} ¥
is pelynomially reducible to X, for some problem Y that is NP-complete.

Proof: By condition 2 in the definition of NP-completeness, every problem in NP
is polynomially reducible to Y. Bui since Y is polynomially reducible to X and
reducibility is a transitive relation, every problem in NP is polynomially reducible to X as
well.]

1t is much easier 1o prove that two problems are polynomially reducible than it is to prove
condition 2 directly. Thus, Cook has found the anchor for the whole theory. And there is
more good news. As we find more and more problems that are NP-complete we have
more choices for proving condition 2'. Shortly after Cook's result became known, Karp
[1972] found 24 important problems that he proved to be NP-complete. Since that time,
hundreds of problems (maybe even thousands, depending on how we count variations of
the same problem) have been discovered to be NP-complete. in the next section, we
present five examples of NP-complete problems with their NP-completeness proof. We
also list several other NP-complete problems without proof. The most difficalt pant of
such proofs is usually (but not always) to verify condition 2 {or 2°}.

We now describe the problem that Cook proved to be NP-complete, and mention
the idea of the proof. The problem is known as satisfiability (SAT). Let S be a Boolean
expression in conjunctive normal form (CNF). That is, S is the product {and) of
several sums (or). Forexample, S={x+y +2)' (X +y +2)- (X +¥ +7), where addition and
multiplication cotrespond to the and and or Boolean operations, and each variable is
either 0 (false) or 1 (true). (Any Boolean expression can be transformed into CNF.) A
Boolean expression is said to be satisfiable if there exists an assignment of Os and is to
its variables such that the value of the expression is 1. The SAT problem is to determine
whether a given expression is satisflable (without necessarily finding a satisfying
assignment). For example, the expression § is satisfiable, since the assignment x=1,
y=1, and z=0 satisfy it. We call an assignment of Os and 1s to the variables of a
Boolean expression a truth assignment,

The SAT probiem is in NP because we can guess a truth assignment and check that
it satisfies the expression in polynomial time. The idea behind the proof that SAT is NP-
hard is that a Turing machine {even a nendeterministic one) and all of its operations on a
given input can be described by a Boolean expression. By “*described’’ we mean that the
expression will be satisfiable if and only if the Turing machine will terminate at an

11,4 Examples of NP.Completeness Proofs 347

accepting state for the given input. This is not easy o do, and such an expression
becomes quite large and complicated, vet its size is no more than a polynomial in the
number of steps the Turing machine makes. Therefore, any NP algorithm can be
described by an instance of a SAT problem.

1 Cook’s theorem:
The SAT problen: is NP-complete. 0

11.4 Examples of NP-Completeness Proofs

In this section, we prove that the following five problems are NP-complete: vertex cover,
dominating set, 3SAT, 3-coloring, and clique. Each of these problems is described in
more detai] below. The techniques we use for proving NP-completeness are typical, and
they are summarized at the end of the section. To prove NP-completeness of a new
problem, we must first prove that the problem belongs to NP, which is usually (but not
always!) easy, then reduce a known NP-complete problem to our problem in polynomial
time. The reduction order used for the five problems in this section is illustrated in Fig.
H.1. To make them easier to understand, we present the proofs in order of difficulty
rather than the tree order. This order is indicated in Fig. 11.1 by the numbers of the
edges.

SAT
4 3
Clique 3SAT
d 5
Vertex N
Cover 3-Colorability
2

Figure 11,1 The order of NP-completeness proofs in the text.

148 NP-Completeness

11.4.1 Vertex Cover

Let G =(V, E) be an undirected graph. A vertex cover of (¢ is a set of vertices such that
every edge in G is incident to at least one of these vertices,

The Problem Given an undirected graph G =(V, E) and an integer
k, determine whether G has a vertex cover containing < & vertices,

3 Theorem 11.4
The vertex-cover problem is NP-complete.

Proof: The vertex-cover problem belongs to NP, since we can guess a cover of
size <k and check it easily in polynomial time. To prove that the vertex-cover problem is
NP-complete we have to reduce an NP-complete problem 1o it. We choose the clique
problem, which is described next (the proof that the clique problem is NP-complete will
be given in Section 11.4.4). Given an undirected graph G=(V, E), aclique Cin G is a
subgraph of & such that all vertices in C are connected to all other vestices in C. In other
words, a clique is a complete subgraph. The clique problem is to determine, given a
graph GG and an integer &, whether G contains a clique of size = &. We have to transform
an arbitrary instance of the clique problem into an instance of the vertex-cover problem
such that the answer to the clique problem is positive if and only if the answer 10 the
corresponding vertex-cover problem is positive. Let G=(V, £} and & represent an
arbitrary instance of the clique problem. Let G =(V, E) be the complement graph of G;
namely, G has the same set of vertices and two vertices are connected in G if and onty if
they are nor connected in G. We claim that the cligue problem is reduced to the vertex-
cover problem represented by the graph G and n — k (where 7 is the number of vertices in
G). Suppgse that C=(U/, F} is a clique in G. The set of vertices V —U covers all the
edges of G, because in G there are no edges connecting vestices in U (they are all in G),
Thus, ¥ ~ U is a vertex cover in G. Therefore, if G has a clique of size £, then (s has a
vertex cover of size n ~ k. Conversely, let D be a vertex cover in . Then, D covers all
the edges in G, so in G there could be no edges connecting vertices in V~D. Thus, VD
generates a clique in . Therefore, if there is 4 vertex cover of size £ in 5, then there is a
clique of size # ~ k in G. This reduction can obviously be performed in polynomial time,
since it requires only the construction of G’ from G (and the computation of n —4}. !

11.4.2 Dominating Set

Let G =(V, E'} be an undirected graph. A dominating se¢ D is a set of vertices in G such
that every vertex of G is either in D or is adjacent to at least one vertex from D,

11.4 Examples of NP.Completeness Proofs 349

The Problem Given an undirected graph G =(V, E) and an integer
k, determine whether & has a dominating set containing < & vertices.

(1 Theorem 11.5

The dominating-set problem is NP-complete,

Proof: The dominating-set problem belongs to NP since we can guess a set of size
<k and check that it is a dominating set easily in polynomial time. We reduce the
vertex-cover problem to the dominating-set problem. Given an arbitrary instance (G, k)
of the vertex-cover problem, our goal is 10 construct a new graph G that has a
dominating set of a certain size if and only if & has a vertex cover of size <k We start
with G, and add £ | new vertices and 2| £ | new edges to it in the following way (see
Fig. 11.2). For each edge (v, w} of G, we add a new vertex vw and two new edges
(v, vw}and {w, vw). In other words, we transform every edge into a triangle. Denote the
new graph by G’. 1t is easy 10 construct G* in polynomial time,

We now claim that G has a dominating set of size m if and only if & has a vertex
cover of size m. Let D be a dominating set of ', I D contains any of the new vertices
vw, then it can be replaced by either v or w and the set will still be 2 dominating set (both
v and w cover all the vertices that vw covers). So, without loss of generality, we can
assume that O contains only vertices from (. But, since £ dominates all the pew
vertices, if must contain at least one vertex from each original edge; hence, it is also a
vertex cover for ;. Conversely, if C is 4 vertex cover for G, then each edge is covered
by C, so all the new vertices are dominated. The old vertices are also dominated since all
the edges are covered, .

Figure 11.2 The dominating-set reduction,

350 NP-Completeness

11.4.3 3SAT

The 3S8AT problem is a simplification of the regular SAT problem. An instance of 35AT
is a2 Boolean expression in which each clause contains exactly three variables,

The Problem Given a Boolean expression in CNF such that each
clause contains exactly three variables, determine whether it is
satisfiable.

3 Theorem 11.6
3SAT is NP-complete.

Preof: This problern seems easier than the regular SAT problem because there is
the additional requirement of three variables per clause. We will show that a solution to
3SAT can be used 10 solve the regular SAT. First, 35AT clearly belongs to NP. We can
guess a truth assignment and verify that it satisfies the expression in polynomial time.
Let £ be an arbitrary instance of SAT. We will replace each clause of £ with several
clauses, each of which has exactly three variables. Let C=(x, +x3+ -+ +x;) be an
arbitrary clause of £ such that k 24. We write each variable in its *'positive’” form (i.e.,
we do not use x;) only for convenience of notation. We now show how 10 replace C with
several clauses, each with three variables. The idea is to introduce new variables
Yt ¥z, .Yy that transform the clause into a 3SAT formulation without affecting its
satisfiability. We use new (and different) variables for each clause. C is transformed
into C such that

C=(x +xq+Y,) (3 +Y +52) (g +Y7+Y3) - oy H X+ Yg_3),

We claim that C” is satisfiable if and only if C is satisfiable. I (is satisfiable, then one of
the x;s must be set 1o 1. In that case, we can set the values of the y;5 in €’ such that all
clauses in €7 are satisfied as well. For example, if x3 =1, then we set y, = | (which takes
care of the first clause), y; =0 (the second clause is okay since x3 = 1}, and the rest of the
¥is t0 0. In general, if x; =1, then we set y,, y,,..., ¥;.2 10 be 1, and the rest to be 0,
which satisfies C". Conversely, it C’ is satisfiable, then we claim that at feast one of the
s must be i Indeed, if all x5 are O, then the expression becomes
G iy a+ys) e _(y“;:;}. This expression is clearly unsatisfiable.

Using this reduction, we can replace any clause that has more than three variables
with several clauses, each with exactly three variables. It remains to transform clauses
with one or two variables, If C has only two variables, namely, C =(x; +x3}, then

C'w{x;+x?_+2)'(x1 +.x7 +E),
where 7 is a new variable. Finally, if C=x, then
Cram(x) +y+2} X F¥ 42+ 4+ - (4, + 5 +7),

where both y and z are new variables.

11.4 Examples of NP-Completeness Proofs 351

Thus, we have reduced a general instance of SAT into an instance of 3SAT such
that one instance is satisfiable if and only if the other one is. The reduction can clearly be
done in polynomial time. el

11.4.4 Clique

The clique problem was defined in Section 11.4.1, when we discussed the vertex-cover
problem.

The Problem Given an undirected graph G =(V, £) and an integer
k, determine whether ¢ contains a clique of size 2 £.

O Theorem 11.7
The cligue problem is NP-complete.

Proof: The clique problem belongs to NP since we can guess a subset of 2k
vertices and check that it is a clique in polynomial time. We reduce SAT to the clique
problem. Let £ be an arbitrary Boolean expression in CNE, E=E |- E, - E,.
Congider the clause E;=(x+y-+z+w) (we use four variables only for illustration
purposes). We associate a “‘column’ of four vertices with the variables in E; even if
they also appear in other clauses. That is, the graph ¢ will have a vertex for cach
appearance of each variable. The question is how to connect these veriices such that G
contains a clique of size 2k if and only if E is satisfiable. Notice that we are free 0
choose the value of £ because we want to reduce SAT 10 the clique problem, which
means that we want 1o solve SAT using a solution of the clique problem. A solution of
the clique problem should work for every value of k. This is an important fiexibility that
is used often in NP-completeness proofs. We will choose & to be equal to the number of
clauses .

The edges of G are as follows. Vertices from the same colamn {i.c., vertices
assoctated with variables of the same clause) are not connected. Vertices from different
columns are almost always connected unless they correspond to the same variable
appearing in complementary form. That is, the only time we do not connect two vertices
from different clauses is when one corresponds to a variable x and the other to x. An
example, which corresponds fo the expression E={x+y+Z) (X +§F+z}-(¥+7), is
presented in Fig. 11.3. G can clearly be constructed in polynomial time.

We now claim that G has a clique of size 2m if and only if £ is satisfiable. In fact,
the construction guarantees that the maximal clique size does not exceed m independent
of E. Assume that £ is satisfiable. Then, there exists a truth assignment such that each
clause comtains at least one variable whose value is 1. We will choose the vertex
corresponding to this variable for the clique. (i more than one variable in a clause is set
10 1, we choose one arbitrarily.} The resuit is indeed a clique, since the only time two
vertices from different columns are not connected is when they are the complement of

352 NP-Completeness

Figure 11,3 An example of the clique reduction for the expression
X+y+2p (X +y+2) (v +2)

each other, which of course cannot happen in a consistent truth assignment, Conversely,
assume that (7 contains a cligue of size 2m. The clique must contain exactly one vertex
from each column (since two vertices from the same column are never connected). We
assign the corresponding variables a value of 1. H any variables are not assigned in this
manner, they can be assigned arbitrarily. Since all the vertices in the clique are
connected to one another, and we made sure that x and ¥ are never connected, this truth
assigament is consistent, a4

11.4.5 3-Coloring

Let (7 ={V, E) be an undirected graph. A valid coloring of & is an assignment of colors
io the vertices such that each vertex is assigned one color and no {wo adjacent vertices
have the same color.

The Problem Given an undirected graph G =(V, E), determine
whether (¢ can be colored with three colors,

1 Theorem 11.8
3-coloring is NP-complete.

Proof: The 3-coloring problem belongs to NP since we can guess a 3-coloring and
check that it is a valid coloring easily in polynomial time. We reduce 3SAT to the 3-
coloring problem. This is a more complicated proof for two reasons. First, the two
problems deal with different objects (Boolean expressions versus graphs). Second, we
cannot just replace one object (e.g., vertex, edge) with another {e.g., clause); we have 10
deal with the whole structure. The idea is to use building blocks and then to tie them
together, Let £ be an arbitrary instance of 3SAT. We have to construct a graph G such
that £ is satisfiable if and only if G can be 3-colored. First, we build the main triangle M.

11.4 Examples of NP-Completeness Preofs 353

Since M is a triangle, it requires at least three colors. We label M with the “‘colors”” T
(for true), F (for false), and A (see the bottom triangle in Fig. 11.4}. These colors are
used only for the proof, they are not part of the graph. We will later associate these
colors with the assignment of truth values to the variables of £. For each variable x, we
build ancther triangle M, whose vertices are labeled x, x, and A, where A is the same
verex in M. So, if there are & variables, we will have & +1 triangles, ali sharing one
commen vertex A (see Fig. 11.4). The idea is that, if x is colored with the color 7', then x
must be colored with F (since they are both connected to A), and vice versa. "This is
consistent with the meaning of x.

We now have to impose the condition that at least one variable in each clause has
value 1. We do that with the following construct. Assume that the clause is (x+y +z).
We introduce six new vertices and connect them to the existing vertices, as shown in Fig
11.5. (The labels are consistent, so that there is only one vertex in the whole graph
labeled 7, and one vertex for each x, y, or z.) Let's call the three new vertices connected
to T and x, y, or z the cuter vertices (they are labeled by O in the figure), and the three
new vertices in the triangle the inner vertices (labeled by / in the figure}). We claim that
this construct guarantees that, if no more than 3 colors are used, then at least one of x, v,
or z must be colored 7. None of them can be colored A, since they are all connected 1o A
(see Fig. 11.4). If all are colored F, then the three new vertices connected to them must
be colored A, bt then the inner iriangle cannot be celored with three colors! The
complete graph corresponding 1o the expression (x+y+7) (X +¥-+7z) is given in Fig.
11.6.

We can now complete the proof. We have to prove two sides: (1) if £ is
satisfiable, then G can be colored with three colors; and (2) if (7 can be colored with three
colors, then £ is satisfiable. If £ is satisfiable then there is a satisfiable truth assignment.
We color the vertices associated with the variables according 1o this truth assignment (I
if x=1, and F otherwise). M is colored with T, F, and A as indicated. Each clause must
have at feast one variable whose value is 1. Hence, we can color the corresponding outer
vertex with F, the rest of the outer vertices with A, and the inner triangle accordingly.
Thus, G can be colored with three colors. Conversely, if G can be colored with three

T F

Figure 11.4 The frse part of the construction in the reduction of 35AT to 3-coloring.

354 NP-Completeness

Figure 1.5 The subgraphs corresponding to the clauses in the reduction of 3SAT to 3-
coloring.

Figure 11.6 The graph corresponding to (X + y +7) (X +¥ +2).

colors, we name the colors according to the coloring of M (which must be colored with
three colors). Because of the triangies in Fig. 11.4, the colors of the variables correspond
to a consistent truth assigament. The construct in Fig. 11.6 guarantees that at least one
variable in each clause is colored with 7. Finally, G can clearly be constructed in
polynomial time, which completes the proof, £

11.4 Examples of NP-Completeness Proofs 355

11.4.6 General Observations

We discuss here briefly some general methods for proving that a problem @ is NP-
complete. The first condition — showing that ¢ belongs to NP — is usually easy {(but
not always). Then, we have to select a known NP-complete problern that seems related
or similar to @. 1t is hard to define this *‘similarity’’ goal, since sometimes the problems
look very different (e.g., the clique problem and SAT). Finding the right problem from
which 10 reduce is sometimes a difficult 1ask, which can be learned only by experience.
It is & good ided to try several reductions with several problems until a successful one is
found.

We stress that the reduction is done from ar arbitrary instance of the known NP-
complete problem to . The most common error in such proofs is to perform the
reduction backward. One way to remermber the right order is 10 ensure that the NP-
complete problem can be solved by a black-box algorithm for @. This is a little
counterintuitive. The natural thing to do when given a problem O s to try solve it. Here,
however, we try to show that we can solve another problem (the NP-complete problem)
using the solution of 3. We are not trying to solve !

There are several degrees of freedom that can be used in the reduction. For
example, if @ includes a parameter, then its value can be set in any convenient way. (In
comtrast with the parameter in the problem that is reduced to @, which cannot be fixed!)
Again, { is just a tool to solve the NP-complete problem; therefore, we can use it in any
way we wish. can be restricted to special cases in other ways, besides fixing its
parameter. For example, we may want to use only a certain types of input {e.g., regular
graphs, biconnected graphs) for 0. Another importamt flexibility we have is the fact that
the efficiency of the reduction is unimportant, as long as the reduction can be done in
polynomiat time. We can ignore not only constants and, for example, double the size of
the problem, but we can also square the size of the problem! We can introduce
polynomiatly many new variables, we can replace each vertex in a graph by a new large
graph, and so on. There is no need to be efficient (within the bounds of a polynomial),
since the reduction is not meant 10 be converted into an algorithm (at least not until P is
found 1o be equal to NP, if ever).

There are some common technigues used in the construction of the reductions
{again, Garey and Johnson [1979] provides many examples). The simplest one is
showing that an NP-complete problem is a special case of . If it is, then the proof is
immediate, since solving @ implies solving the NP-complete problem. For example,
consider the set-cover problem. The input to the problem is a collection of subsets
51,84, .., 5, of a set U, and an integer £, The problem is to determine whether there
exists a subset W S U, with at most & elements, which contains at least one element from
each set §;. We can see that the vertex-cover probiem is a special case of the set-cover
problem in which U corresponds to the set of vertices V, and each set §; corresponds to
an edge and contains the two vertices incident to that edge. Thus, if we can solve the
set-cover problem for arbitrary sets, then we can solve the vertex-cover problem.

We must be very careful, however, when using this approach. It is not true, in
general, that adding more requirements to a problem makes that problem more difficult.

336 NP-Completieness

Consider the vertex-cover problem. Suppose that we add a constraint that the vertex
cover must not include two adjacent vertices. In other words, we are looking for a small
set of vertices that forms a vertex cover and an independent set at the same time. (An
independent set is a set of vertices that are not adjacent to one another.}) This problem
seems more difficuls than either the vertex-cover or the independent-set problem, because
we have to worry about more requirements. In fact, however, this problem is an easier
problem, and it can be solved in polynomial time (Exercise 7.115). 1t tums out that the
extra requirements limit the candidate sets to such an extent that the minimam can be
found easily.

Another relatively easy technigue involves local reductions. In this case, an
object in one problem is mapped into an object of the other problem. The mapping is
done in a local manner, independently of the other objects. The NP-completeness proof
of the dominating set problem followed that pattern. We replaced each edge in one graph
by a triangle in the other graph. These local replacements were sufficient to reduce the
problem. The difficulty in this technique is to define the objects in the best way.

The most complicated technique is to use building blocks as we did, for example,
in the NP-completeness proof of the 3-coloring problem, The blocks usually depend on
one another, and designing each one separately is impossible. We have to consider all
the objectives of the problems in order to coordinate the design of the different blocks.

11.4.7 More NP-Complete Problems

The following list contains some more NP-complete problems that are useful as a basis
for other reductions {e.g., the ones in the exercises). A very large list is given in Garey
and Johnson {1979]. Finding the right problem for the reduction is sometimes more than
half the work.

Hamiltenian cycle: A Hamiltonian cycle in a graph is a simple cycle that contains
each veriex exactly once. The problem is to determine whether a given graph contains &
Hamittonian circuit. The problem is NP-complete for both undirected and directed
graphs. (Reduction from vertex cover.}

Traveling salesman: Let G =(V, £) be a weighted complete graph. A traveling-
salesman tour is 2 Hamiltonian cycle. The problem is to determine, given G and a
number W, whether there exists a traveling-salesman tour such that the total length of its
edges is £ W. (Swaightforward reduction from Hamiltonian cycle.)

Hamiltenian path: A Hamiltonian path in a graph is a simple open path thal
contains each vertex exactly once. The problem is to determine whether a given graph
contains a Hamiltonian path. The problem is NP-complete for both undirected and
directed graphs. (Reduction from vertex cover.)

Independent set: An independent set in an undirected graph G =(V, E} is a set of
vertices no two of which are connected. The problem is to determine, given G and an
integer k, whether G contains an independent set with > & vertices, {Si:‘aightforwalﬂit
reduction from ¢lique.)

3-dimensional matching: Let X, ¥, and Z be disjoint sets of size k. Let M be a set
of triples {x, y, z) such that x € X, y€ ¥, and z € Z. The problem is to determine whether

11.5 Techniques For Dealing with NP-Complete Problems 357

there exists a subset of M that contains each element exactly once. The corresponding
two-dimensional matching problem is the regular bipartite matching problem.
(Reduction from 3SAT.)

Partition: The input is a set X such that each element x € X has an associated size
5¢x). The problem is to deterrine whether it is possible 1o partition the set into two
subsets with exactly the same total size. (Reduction from 3-dimenstonal Matching.)

(Notice that this problem, as well as the next problem, can be solved efficiently by
algorithm Knapsack (Section 5.10) if the sizes are all small integers. However, since the
size of the input is the number of bits required to represent that input, such algorithms,
which are called pseudopolynomial algorithms, are exponential in the size of the input.)

Knapsack: The input is a set X such that each element v € X has an associated size
s{x) and value v(x). The problem is to determine whether there is a subset B © X whose
total size is £ 5 and whose total value is 2 v. (Reduction from partition.)

Bin packing: The input is a2 sequence of numbers a,, 44, ..., d,, and two other
numbers & and k. The problem 15 to determine whether the set can be partitioned into &
subsets such that the sum of numbers in each subset is £ £, (Reduction from partition.)

11.5 Techniques for Dealing with NP-Complete
Problems

The notion of NP-completeness is a basis for an elegant theory that allows us to identify
problems for which no polynomial algorithm is likely to exist. But proving that a given
problem is NP-complete does not make the problem go away! We still need to solve it
The techniques for solving NP-complete problems are sometimes different from the
technigues that we have previousty seen. .We (most probably) cannot sobve an NP-
complete problem precisely and completely with a polynomial-time algorithm. So, we
have to compromise. The most common compromises concern the optimality,
robustness, guaranteed efficiency, or completeness of the solution. There are other
afternatives as well, all of which sacrifice something. The same algorithm may be used
in different situations, resulting in different compromises.

An algorithm that may not lead 10 the optimal (or precise} result is called an
approximation algorithm. Of particular interest are approximation algorithms that can
guarantee a bound on the degree of imprecision. We will see three examples of such
algorithms later.

In Section 6.11, we discussed probabilistic algorithms that may make mistakes.
The most famous such algorithms are the ones for primality testing. a problem that is not
known to be in P, but is not believed to be NP-complete either. We will not describe
primality-testing aigorithms, because they requires knowledge of number theory. It is
commonly believed that NP-complete problems cannot be solved by a polynomiai-time
probabilistic algorithm that make mistakes with low probabifity for ali inputs. Therefore,
such algorithms are more fikely to be eftective for problems that are not known to be in P
but are not believed to be NP-complete. Such problems are not common. Probabilistic
algorithms can be used as part of other sirategies — for example, as part of
approximation algorithms.

358 NP-Completeness

Another compromise involves the requirement for polynomial worst-case running
simes. We can try to solve NP-complete problems in polynomial time on the average.
The problem with this approach is defining average. For example, it is difficult to
exclude inpats for which the particular problem is trivial (e.g., a graph with only isolated
vertices) from participating in the average. Such trivial inputs may lower the average
significantly. Algorithms designed for certain types of random inputs can be useful if the
actual distribution of inputs follows their assumption. Finding the right distribution,
however, is usually very difficult. A major difficulty in designing algorithms that work
well on the average s analyzing them, which is usually very complicated.

Finally, we can also compromise on the completeness of the algorithms; namely,
we can allow the algorithm to work efficiently for only some special inputs. For
example, the vertex-cover problem can be solved in polynomial time for bipartite graphs
{Exercise 7.110). Therefore, when we abstract a problem from a real-life situation we
shoukd make sure that any exira condition involving the input is included in the abstract
definition. Another example is algorithms whose running times are exponential, but they
work reasonably well for small inputs, which may be sufficient.

We describe several of these techniques and illustrate them with examples in this
section. We start with two general and useful techniques called backtracking and
branch-and-bound. These techniques are similar. They can be used as a basis for either
an approximation atgorithm or an optimal algorithm for small inputs. We then give
several examples of approximation algorithms.

11.5.1 Backtracking and Branch-and-Bound

We describe these techniques through an example. Consider the 3-coloring problem,
which involves assigning colors, under certain constraints, to n vertices of a graph. This
is an example of a problem that requires finding optimal values {colors in this case) for n
parameters. In the 3-coloring example, there are three possible values for each parameter
corresponding to the three colors. Therefore, the number of potential solutions is 37,
which is the number of all possible ways of coloring n vertices with three colors. Of
course, unless there are no edges in the graph, the number of possible valid solutions will
be quite a bit smaller than 3", because the edges impose constraints on the possible
colorings. To explore all possible ways of coloring the vertices, we can start by
assigning an arbitrary color to one of the vestices and continue coloring the other vertices
while maintaining the constraints imposed by the edges — namely, that adjacent vertices
must be colored with different colors. When we color a vertex, we try all possible colors
that are consistent with the previously colored vertices. This process can be performed
by a tree-traversal algorithm, which is the essence of the backtracking and branch-and-
bound techniques. To avoid confusion between the vertices of the graph and the tree, we
will call the vertices of the tree nodes.

The root of the tree cosresponds fo the initial state of the problem, and each branch
corresponds to a decision concerning one parameter. Denote the three colors by R{ed),
B(lue), and G{reen). Initially. we can pick any two adjacent vertices v and w and color
them, say with B and G. Since they wili be colored differently in any valid coloring, it is

1L.5 Techniques For Dealing with NP.Complete Problems 359

not important which colors we choose (we can always permute the final coloring}, which
is why we can start with coloring two vertices instead of one. The coloring of these two
vertices corresponds o the initial state of the problem, which is associated with the root.
The ree is constructed as it is being traversed. At each node ¢ of the tree, we select the
nex{ vertex u of the graph to color, and add one, two, or three children to ¢ according to
the number of colors that can be used to color 4. For example, if our first choice (after v
and w) is «, and if 4 is adjacent o w (which has already been colored (), then there are
two possible ways of coloring u, B or R, and we add two corresponding children to the
root. We then pick one of these children, and continue this process. After a vertex is
colored, there is less flexibility in coloring the rest of the vertices; therefore, the number
of children is likely to be smaller as we go deeper in the tree.

If we manage to color all the vertices of the graph, then we are done. More likely,
however, we will reach a vertex that cannot be colored (since it has three adjacent
vertices already colored with the three colors). At that point, we backtrack — we go up
the tree and explore other children. An example of a graph and the corresponding 3-
coloring backtrack tree is given in Fig. 11.7. Notice that, in this case, once the colors of
vertices 1 and 2 are fixed, there is only one way to color the rest of the graph (which is
found through the rightmost path in the tree).

We can think of this tree-traversal algorithm as an algorithm based on induction,
We have to strengthen the hypothesis slightly to include coloring graphs some of whose
vertices have already been colored. In other words, the induction hypothesis will have to
deal not with coloring graphs from scratch, but with completing a partial 3-coloring:

Induction hypothesis: We know how to complete the 3-coloring of a graph
that has < k vertives that are not already colored, or 10 determine that the
3-coloring cannot be completed.

18,26

4
3R 3B

3

5 4G 4B 4R 4G
2
5R
!
{aj (b}

Figure 11.7 An example of backtracking for 3-coloring. (a) The graph (b} The back-
track tree.

360 NP-Completeness

Given a graph with k vertices that are not yet colored, we pick one of them and find all
possible colors that can be assigned to it. If all colors have already been used for its
neighbors, then the 3-coloring cannot be completed. Otherwise, we color the vertex with
the possible colors (one at a time) and solve the remaining problems (which now have
& -1 uncolored vertices) by induction. The algorithm is given in Fig. 11.8.

Algorithm 3-coloring (G, var U) ;

Input: G =(V, E} (an undirected graph), and U (a set of vertices that have
already been colored together with their colors). { U is initially empty |

Output: An assignment of one of three colors 1o each vertex of .

begin
if U7 = V then print "coloring is completed”; halt
else
pick a vertex v notin U |
Jor C = 1o 3de
if no neighbor of v is colored with color C then
add v to U with color C ;
3-coloring(G, U}
end

Figare 11.8 Algorithm 3-coloring.

It is not hard to come up with a graph and an order of traversal for the 3-coloring
problem that results in a tree with an exponential number of nodes (Exercise 11.34). This
is yuite common in backtracking algorithms. Our hope is that, by traversing the tree in a
“good™ order, we will find the solution early enough. The algorithm we described so far
does not specify how to pick the next vertex. Since any vertex can be chosen next, we
have a degree of freedom that we can use to design heuristics. We will return to this
point shortly.

Branch-and-bound is a variation of backtracking for problems involving finding the
minimum (or maximem) of some objective function. Consider the general coloring
problem — we are now interested in finding the minimum number of colors required to
color the graph rather than just a yes or no answer for 3-coloring. We can buaild a tree
stmilar to the one for 3-coloring, but the number of branches may be quite large. Each
new vertex can be colored either by one of the colors already used (unless one of its
neighbors already uses that color}, or by a new color. The 3-coloring algorithm is thus
maodified in two ways: (1) the constant 3 is replaced by the maximal number of colors
used so far, and (2} the algorithm does not terminate when V = U, since there may be
better ways to color the graph.

The problem is that this algorithm backtracks only when a leaf is reached (ie.,
V=), since a new color can always be assigned to the vertex. Thus, the algorithm is
almost guaranteed to have poor performance (uniess the graph is very dense). We can
improve the performance of this aigorithm by the following observation, which is the

1.5 Techniques For Dealing with NP-Complete Problems 361

basis of the branch-and-bound method. Suppose that we iraverse the tree all the way to a
feaf and find a valid coloring with k colors. Suppose further that, after backtracking
several steps up the tree, we traverse another path and reach a vertex that requires color
number £ + 1. At this point, we can backtrack, since we already know a better solution.
Thus, & serves as a bound for backiracking. At each node, we compute a lower bound on
the best sofution that can be found farther down the tree. If that lower bound is greater
than a known solution, we backtrack. One key 10 making 4 branch-and-bound algorithm
efficient is computing good lower bounds (or upper bounds, if we want to maximize the
objective function). Another key is finding a good traversal order so that good solutions
are found fast, in which case we can backirack earlier.

We illustrate this idea through the problem of integer linear programming
(which is also mentioned in Section 10.3}. The problem is similar to linear programming,
but with the extra constraints that the values of the variables are integers. Let
X=(Xy, Xy, .., X,) be the vector of variables, a,, a,, ..., @, be vectors of real numbers,
each of size m; and by, ba, .., b and ¢, ¢5, ..., ¢y be real numbers. The problem is to
maximize the value of the linear ebjective function

ZELOyX) HOg X+ 0 O X, (t1.1)

under the integrality constraints of x and the following constraints

8
|
728

by

Bl
=]
L1
A

by

(11.2)

a, "X Sb;‘-‘

(All @;5 and b;s are constants.) Many NP-complete problems can be easily posed as
integer programming problems (we show one example below). Therefore, integer
programmming is NP-hard. [t is in fact NP-complete, but the proof that it belongs to NP is
quite complicated.

The following is an imeger linear programming formulation of the clique problem.
(The problem here is to find the maximal clique, rather than to decide whether a certain
sized clique exists.) There are n variables x;. x5, ..., x,. corresponding to the vertices,
such that x; =1 if v; belongs to the maximum clique, and x, =0 otherwise. The objective
function is

ZEmX +Xyd 0 d X,

which implies that we want to select as many vertices as we can. There is ong constraint
per vertex

Osx;st forall1sisn,

362 NP-Completeness

and one constraint for each pair of nonadjacent vertices
x+x; 51 for each pair of vertices v, and v, such that (v;,v;) ¢ E.

The first set of constraints restrict the variables to either 0 or 1. The second set of
constrainis guarantee that two vertices that are not adjacent cannot both be selected;
therefore, the vertices that are selected form a clique.

Infeger linear programming can be solved with branch-and-bound by using the
corresponding linear program (which is the same problem without the restriction to
integers) to compute the bounds. The solution of the linear program may consist of only
integers, in which case we are done. More likely, however, the solution will include
some noninteger values. For example, assume that the solation of the linear program
associated with the cligue problem is (0.1, 1,..,0.5) and z=7.8. Since the linear
program maximizes the objective function with less restrictions than the integer linear
program, the maximum it finds is an upper bound on the maximum possible for the
integer linear program. Therefore, we cannot hope for a clique of size greater than 7.
This kind of information can be helpful farther down the wee. As in regular
backtracking, we make some choices as we go down the tree, and a node lower in the
tree corresponds to a subproblem of the original problem. For example, the subproblem
may correspond to selecting v and w to the cligae, and eliminating « and x, in which case
we are trying to find the maximal clique that includes v and w and excludes v and x. If at
that point the solution of the linear program gives us a bound that is /ess than a size of an
already-known clique, then we can backtrack. This is the essence of the branch-and-
bound method. We are trying 1o find upper bounds (or lower bounds, if the objective
function is supposed 1o be minimized) that will allow us to backtrack as early as possible.

We can also use the result of the linear program 1o help us choose the branching.
For example, since v, =1 in the noninteger solution, we may guess that x,=1 is the
integer solution as well. This may not be a good guess, but it is an example of the kind of
heuristics that we are looking for. We iry to increase the probability of finding the
optimal solution quickly. (We know that being “right” all the time is probably
impossible, since the problem is NP-complete.) We can set x5 = |, update the constrainis
(e.g.. set the valaes of all vertices not adjacent to v, to (), and solve the resulting linear
program. If at some point the modified Hinear program has a maximal value of z=q,
where a is smaller than the maximal clique known so far, we can backtrack.

- Thus, the linear program serves two purposes: It gives upper bounds and thus
allows us to backirack, and it also hints at which choices to make next. We hope that,
when we are done with the *‘most likely to succeed’’ subproblem, we will be able to
prune the other subproblems substantially. The amount of pruning — and the efficiency
of the whole algorithm - depends on the heuristic to divide the problems and to choose
the next subproblem to explore. This heuristic depends on the particular application.
Extensive research has been done in this area.

Branch-and-bound algorithms lead to the optimal solution when ali subproblems
are explored or pruned. If this takes too long, we can terminate the algorithm and obtain
an approximation that consists of the best solution found so far. The traversal of the tree
can be done by breadth-first search, depth-first search, or a combination. An extreme

1L.5 Technigues For Dealing with NP-Complete Problems 363

example of terminating early is taKing the first path (chosen by a certain heuristic) that
leads to a feasible solution (usually at a leaf) as the outcome of the algorithm, For
example, in the coloring algorithm, we can color the vertices in reverse order of degree
{the idea being that we lose less flexibility by fixing the color of a small-degree vertex).
This is a simple greedy algorithm.

11.5.2 Approximation Algorithms with Guaranteed
Performance

In this section, we discuss approximation algorithms for three NP-complete problems:
verex cover, bin packing, and the Euclidean traveling salesman problem. All these
approximation algorithms have guaranteed performance. That is, we can prove that the
solution they produce is not too far from the optimal solution.

Vertex Cover

We start with 4 simple approximation algorithm for finding the miniraum vertex cover of
a given graph. The algorithm is guaranteed to find a cover that contains no more than
twice the number of vertices contained in a minimum cover, Let G =(V, E) be a graph
and let M be a maximal matching in G. Since M is a matching, its edges have no vertex
in common, and since M is maximal, all other edges have one vertex in common with at
least one of the edges in M.

4 Theorem 11.9

The set of all vertices incident to the edges of a maximal matching M is a
vertex cover with no more than twice the number of vertices of a minimum-
size veriex cover.

Proof: The set of vertices that belong to M forms a vertex cover, because M is
maximal. Every vertex cover must cover all the edges — in particular, the edges of M.
But, since M is a matching, a vertex of M cannot cover more than one edge of M.
Therefore, at least half of the vertices of M must belong 10 every vertex cover. O

We can find a maximal matching by simply collecting edges until all edges are covered.
Since the vertex cover includes all the vertices in the matching, we would like 1o find a
small maximal matching. Unfortunately, the problem of finding the minimam maximal
matching (i.e., a maximal matching with smallest number of edges) is also NP-complete
{Garey and Johnson [1979], problem [GTH0]). Exercise 11.33 discusses another
approximation algorithm with guaranteed performance for the vertex-cover problem.

One-Dimensional Bin Packing

The bin packing problem is concerned with packing different-sized objects into fixed-
sized hins using as few of the bins as possible, For example, we may want to move the
contents of a house using as few cars (or the same car as few times) as possible by
packing the cars as densely as possible. Moving is a 3-dimensional problem, but we will
concentzate on the one-dimensional version, We will also assume for simplicity that all
the bins have size 1.

364 NP.Completeness

The Problem Let x;,x;,..,x, be a set of real numbers each
between 0 and 1; partition the numbers into as few subsets as possible
such that the sum of numbers in each subset is at most 1.

The one-dimensional bin packing problem arises, for example, in memory-management
problems in which there are requests for many different-sized blocks of memory, and the
blocks need to be allocated from several large chunks of available memory. Bin packing
is an NP-complete problem (Exercise 11.8),

One heuristic for this problem is to put x| in the first bin, and then, for each i, 1o
put x; in the first bin that has room for it, or to start a new bin if there is no room in any of
the used bins. This algorithm is called the fiest fit algorithm. First fit is not ““too bad”” in
the worst case, as is shown in the next theorem.

1 Theorem 11.10

The first fit algorithm requires at most 20PT bins, where OPT is the
minimum number of hins.

Proof: First fit cannot leave two bins less than half full; otherwise, the items in the
second bin could be placed in the first bin. Therefore, the number of bins used is no more
than twice the sum of the sizes of all items (rounded up). The theorem follows from the
fact that the number of bins in the best solution cannot be less than the sum of all the
sizes (in which case all items are perfectly packed). £

Ft turns out that the bound given by Theorem 11.10 is guite conservative. The constant of
2 in the theorem can be reduced to 1.7, by a much more complicated analysis. The 1.7
constant is fight, since there exist cases in which first fit requires 1.7 times the optimal,

First fit can be improved with the following simple modification. The worst case
cccurs when many small numbers appear at the beginning, Instead of placing Ehe
numbers in the bins in the order they appear, we sort them first in decreasing order, and
then use first fit. This modified algorithm is called decreasing first fit, and, in the worst
case, its solution comes within a constant of about 1.22 from the optimal {we omit the
proof),

1 Theorem 11.11

The decreasing first fir algorithm requives at most -Ec;* OFT + 4 hins, where
OPT is the minimum number of hins. -

This constant is also tight. First fit and decreasing first fit are both simple heuristics.
There are other methods feading to better constants. In most cases, the analysis is
complicated.

The strategies we described are typical of heuristics algorithms. They present
natural approaches corresponding 1o what one would probably do by hand. We have

11.5 Techniques For Dealing with NP-Complete Problems 365

seen many fimes, however, that straightforward approaches can perform quite poorly for
large inputs. Therefore, it is very important to analyze the performance of these
algorithms.

Euclidean Traveling Salesman

The traveling salesman problem (TSP), is an important problem with many
applications. We discuss here a variation of TSP with the additional constraint that the
weights comrespond 1o Euclidean distances:

The Problem Let C,,C,,....C, be a set of points in the plane
corresponding 1o the location of # cities; find a minimum-distance Ham-
ilfonian cycle {{raveiing salesman tour) among them,

The problem is stilf NP-hard, but we will see that the Euclidean assumption helps in
designing an approximation algorithm for the problem. (We can relax this assumption
somewhat by assuming only that the distances satisfy the triangle inequality, which
states that the direct distance between any two points is shorter than any route through
other points.)

The algorithm starts by computing the minimuam-cost spanning tree (here, cost =
distance), which is a much easier problem (see Section 7.6). We claim that the cost of
the tree is no more than the length of the best TSP tour. This is so because a TSP tour is
a cycle containing all vertices; therefore, removing any edge from a TSP tour makes it a
spanning {ree, whose cost is thus at least that of the minimum-cost spanning tree.

A spanning tree, however, does not correspond directly to a TSP tour. We need 1o
modify it. First, consider the circuit that consists of a depth-first search traversal of the
tree (starting from any city), and includes an edge in the opposite direction whenever the
search backtracks. (This circuit corresponds, for example, to traversing a tree-shaped
gatlery, with exhibits on both sides of every hall, by always going to the right} Every
edge will be traversed exactly twice, so the cost of this circuit is twice the cost of the
minimum-cost spanning iree, which is po more than twice the cost of the minimum TSP
tour. We can now convert this circuit into a TSP tour by 1aking direct routes instead of
always backtracking (see Fig. 11.9). That is, instead of backtracking using the same
edge, we go directly to the first new vertex. The assumption that the distances are
Euclidean is important, because it guarantees that the direct route between any two cities
is always at least as good as the nondirect route. The length of the resulting TSP tour is
thus still no more than twice the length of the minimum TSP tour, although it is often less
than that.

Complexity The running time of this algorithm is dominated by the running time of
the minimum-cost spanning tree algorithm, which, in the case of Euclidean graphs, is
G ¢n log n) {see, for example, Preparata and Shamos [1985}).

366 NP-Completeness

{a) (b

Figure 11.9 (2) A spanning tree. (b) A TSP tour obtained from the tree by starting at the
middle point, and going right first.

Improvement

The algorithm we have just described can be improved in the following way. The
“sloppiest”™ part of the algorithm is the conversion from the tree traversal into a TSP
tour. Another way to iook at this conversion is that it builds an Eulerian circuit on top of
the tree, by repeating each edge twice. We then obtain the TSP tour by taking shorteuts
from the Eulertan circuit. We can convert the tree into an Eulerian graph more
effectively. An Eulerian graph must include only even-degree nodes. Consider all the
odd-degree nodes in the tree. There must be an even number of them {otherwise, the
total sum of all degrees would be odd, which is impossible, since this sum is exactly
twice the number of edges). If we add enough edges 1o the tree to make the degrees of
all nodes even, then we get an Eulerian graph. Since the TSP tour will consist of the
Eulerian circuit (with some shortcuts) we would like to minimize the length of the
additional edges. Let’s abstract the problem.

We are given a tree in the plane and we wani to add edges to it, minimizing their
total length, such that the resulting graph is Eulerian. We must add at least one edge to
each veriex of odd degree. Let's try 10 add exactly one. Suppose that there are 24
vertices of odd degree. If we add k edges, each connecting two odd-degree vertices, then
alt vertices will have even degree. The problem thus becomes a marching problem. We
want 1o find a minimum-length matching that covers all odd-degree vertices. Finding a
minimum-weight perfect matching can be done in On’) for general graphs {sce Gabow
{1976} or Lawler {1976]). There is a recent algorithm, due to Vaidya {1988}, that works
for the special case of Euclidean distances in time O (n%” (log n)*). (Whether this is a
better algosithm in practice is not clear.) The final TSP tour is then obtained from the
Eulerian graph {(which includes the minimum-length spanning tree plus the minimum-
length matching} by taking shortcuts. The TSP tour ebtained by this algorithm for the
tree in Fig. 11.10 is given in Fig. 11.11,

11.5 Techniques For Dealing with NP-Complete Problems 347

{a} (bj

Figure 11,11 The minimum Eulerian circuit and its corresponding TSP tour. (a) The
spanning tree plus the matching. (b) The tour obtained from the Eulerian circuit,

{1 Theorem 11,12

The improved algorithm produces a TSP tour whose length is at most 1.5
times the length of the minimum TSP tour,

Proof: We will ignore the shortcuts (since there may not be any in the worst case),
and will concemrate on the length of the Eulerian circuit. The circait consists of the tree
and the matching. We have already seen that the length of the tree s at most the length
of & minimum TSP tour; hence, i is sufficient to prove that the length of the maiching is
at most half the tength of a minimum TSP tour. Let & be a minimum TSP tour. O is a
cycle containing all vertices. Let D be the set of odd-degree vertices in 7. We can obtain
two disjoint matchings of D such that the sum of their lengths is no more than that of @ in
the following way (see Fig. 11.12). We start with an arbitrary vertex v of D and maich it
to a vertex of £ that is its closest neighbor clockwise in . We then continue maiching in
a clockwise direction. I the matched vertices are not netghbors in O, then the distance
between them is no more than the length of the path connecting them in Q (by the
triangle property). This process gives us one matching. The second matching is obtained
by repeating the same process counterclockwise. The sum of the lengths of both
matchings is at most the length of Q, as is shown in Figure 11,12, But, since M was a
minimum-weight matching of D, its length is a1 most half the length of 0. O

Finding a minimum-weight perfect matching takes much longer than finding a
minimum-cost spanning tree, but i results in a better bound. k is still an open problem
whether it is possible either to improve the constant of 1.5, or to find a faster algorithm
achieving this constant. This algorithm illustrates one of the main characteristics of this
type of algorithm: We abstract an easier problem — or relax some parts of the original
probiem — and then design the heuristic accordingly.

368 NP-Completeness

Figure 11.12 Two matchings whose sum is at most that of the TSP tour,

11.6 Summary

The previous chapters should have generated some deserved optimism about our ability
1o design good algorithms. This chapter should bring us closer to reality. There are many
important problems that unfortunately cannot be solved with elegant, efficient algorithms.
We have 10 be able to recognize these problems and to solve them with a less than
optimal solution. When a problem is given to us, we have two possible lines of attack.
We can try to use the techniques introduced in the previous chapters to solve the
problem, or we can try to use the techniques introduced in this chapter to show that the
problem is NP-complete. To avoid making many wrong tums before we take the right
approach, we need to develop an intuition for the difficulty of problems.

Bibliographic Notes and Further Reading

The notion of NP-completeness was introduced in the seminal paper of Cook {1971} (a
similar result was discovered in the Soviet Union independently by Levin {1973]). Karp
11972} presented a list of 24 important NP-complete problems (some of which are
included in Section 11.4). Both Cook and Karp received the Turing award in part due to
this work, and their Turing award lectures were published in Cook 11983], and in Karp
[1986]. Several other notable classes of problems that are not known to be in P have
been studied. One such class is co-NP, which contains the complements of all problems
in NP. For example, the problem of deciding whether a Boolean expression is always
false belongs to co-NP. The reason co-NP is different from NP is that the definition of
acceptance of languages by a nondeterministic algorithm is asymmetric; there are
different requirements for accepting and for rejecting an input. Another important class
is PSPACE, which contains all problems that can be solved using polynomial space. H
turns out that nondeferminism does not add more power when an algorithm is limited to
polynomial space [Savitch 1970]. In other words, any problem that can be solved in
polynomial space by a nondeterministic algorithm can also be solved in polynomial space

Bibliographic Notes and Further Reading 369

by a deterministic algorithm. The generalized HEX game is an example of a problem
that is complete for PSPACE (Even and Tarjan {11976}), where completeness is defined
similarty to the way it is defined for the class NP, except that the reductions can use
polynomiat space. There is a hierarchy of classes between P and PSPACE called the
polynomial-time hierarchy. It is important to note that at present there is no proof that
any of the classes mentioned above is different from P! We do not know of any problem
that belongs to PSPACE and does not belong to P. There are, however, problems that are
known to require exponential time and space (Meyer and Stockmeyer [1972]), or even
more {Fischer and Rabin {1974}).

There are several problems that are not known to be either in P or in NP-complete,
The most notable ones are the graph isemorphism and primality testing. Graph
isomorphism can be solved in polynomial times for many special cases (see, for example,
Luks {1982]), but the general problem is still open. Rabin {1976] and Solovay and
Strassen [1977] present Monte Carlo probabilistic algorithms for primality testing.
(These algorithms determine that a number is prime with very little error probability, and
they make no error when they determine that a number is not a prime.) Goldwasser and
Killian {1986] present a Las Vegas probabilistic algorithm that tests primality, without
errors, whose expected running time is polynomial. Another seemingly simple problem
that is still open is the even-cycle problem, which is to determine whether a given
directed graph contains a {simple) even-length cycle (see Klee, Ladner, and Manber
11984]). A wealth of information about NP-completeness and related subjects can be
found in Garey and Johnson {1979} and in an NP-completeness column by Johnson that
has been appearing in the Journal of Algorithms since 1981, A natural question 10 ask is
whether all problems in NP are either NP-complete or are in P. This question was
partially answered by Ladner {1975] who proved that, unless P = NP, there are infinitely
many classes in between,

An algorithm that runs in polynomial time on the average for the Hamiltonian
cycle problem is described in Angluin and Valiant [1979], and one for satisfiability is
described in Purdom and Brown [1985b]. An approximation algorithm for the weighted
veriex-cover problem is given in Bar-Yehuda and Even [1981]). The algorithm finds a
vertex cover whose weight is at most twice that of the minimum-weight cover, Gusfield
and Pitt {1986] present a more intuitive explanation of this algorithm. Heuristics for
coloring graphs with k colors (for fixed k) are given by Brélaz [1979], and by Tumer
{1988]. These heuristics are proven successful for ‘‘almost all'’ graphs (see Tumer
{1988] for a precise definition). In fact, Wilf [1984] proved that the average size of the
simple backtrack tree for graph k-coloring (for a fixed k) is a constant independent of n.
(It is less than 200 for k=3, and is | million for k£ =3.) However, it is likely that the good
performance of these algorithms are due more to the definition of the average than to the
strength of the algorithms {see, for example, Franco [19861). The best known guaranteed
bound for approximate graph coloring is given by Wigderson [1983]. Backirack
techniques are described in Golomb and Baumert [1965] (see also Bitner and Reingold
[1975} and Horowitz and Sahni {1978}) Knuth {1975] describes a technique for
estimating the running time of backtrack programs. A general discussion on heuristics is
given by Pearl {19841

370 NP-Completeness

The bounds on the performance of first fit and decreasing fiest fit given in Section
11.5.2 are proved in Johnson et al. {1974]. For another heuristic that comes very close to
an optimal solution of the bin-packing problem, see Karmarkar and Karp [1982].

The traveling salesman problem is probably the most studied NP-complete
problem in terms of proposed solutions. An approximation algerithm for the general
problem is given by Lin and Kernighan [1973]. The algorithm achieving the bound of
1.5 for the Euclidean problem, which is the best bound currently known for a polynomial
algorithm, is due to Christofides [1976]. A book edited by Lawler, Lenstra, Rinnooy
Kan, and Shmoys {1983] contains |2 articles covering most aspects of this problem,
including heuristics and their analysis, branch-and-bound algorithms, special cases, and

applications,

Drill Exercises

You: can complete these exercises using enly the NP-compiete preblems discussed in the text or in
other exercises from this chapter,

i1.f Prove that aif problems in P are polynomially equivalent according to the definitien given in
Section 112,

11.2 Prove that the definition of how a nondeterministic algorithm recognizes a language does
not allow one aigorithm to recognize two different fanguages.

11.3 Consider the following algorithm to determine whether a graph has a clique of size k. First,
we generate all subsets of the vertices containing exactly & vertices. There are O (%)
subsets altogether. Then, we check whether any of the subgraphs induced by these subsets
is complete, Why is this not a polynomial-time algorithm for the clique problem, which
implies that P = N#?

|

l£.d4 Write the 35AT expression that is obtained from the reduction of SAT 0 3SAT (given in
Section 1£.4.3) for the expression

KA +T AW U+ V) T T4z +F4u+v) (X +F+T+w+u +¥) - +5)
11,5 Draw the graph that is obtained from the reduction of SAT to the cligue problem (given in
Section 11.4.4) for the expression
(r+F+2) R4y +T) K4y +2) (x+F+7).
116 Draw the graph that is obtained from the reduction of 3SAT to the 3-coloring problem
(given in Section 11.4.5) for the expression

K +F+2) (r+y+F)-x+y+zh

117 Prove that the knapsack problem is NP-complete,

158
1.9

Creative Exercises 371

Prove that the bin packing problem is NP-complete.

Pose the 3-coloring problem as an integer linear program.

Creative Exercises

You can complete these exercises using only the NP-complete probiems discussed in the text or in
other exercises from this chapter.

11.10

11.11

11.12

11.13

—
—
—
a

11.15

1117

Prove that the following problem is NP-complete: Given an undirected graph G = (V, £) and
an integer k, determine whether G contains a spanning tree T such that cach vertex in T has
degree < k.

Prove that the vertex-cover problem remains NP-complete even if all the vertices in the
graph are restricted to have even degree.

Consider again the problem of finding large induced subgraphs discussed in Chapter 5.
Suppose that, instead of the requirement that each vertex in the induced subgraph has
degree = d, we require that its degree be £ 4. Here is the formulation of the problem in
terms of a decision problem. Given an undirected graph G =(V, E), and tweo integer
parameters d and &, determine whether G contains an induced subgraph / with at least k
vertices, such that the degree of each vertex in H is < 4. Prove that this problem is NP-
complete.

Prove that the following problem is NP-complete: Given an undirected connected graph
G=(V, E) and an integer &, determine whether & contains & cligue of size & and an
independent set of size £.

Prove that the following problem is NP-complete: Given an undirected graph G =(V, £) and
an integer &, determine whether G contains a subset of & vertices whose induced subgraph is
acyclic.

Let £ be a CNF expression such that each variable x appears exactly once as x and exactly
once as x. Either find a polynomial-time aigotithm to determine whether such expressions
are satisfiable or prove that this problem is NP-complete.

Prove that the foilowing variation of 38AT, calied {-in-35AT, is NP-complete. The input is
the same as the one for 3SAT. The probiem is to determine whether there exists a satisfying
assignment such that in every clause exactly one of the 3 variabies is true,

Prove that 2-in-4SAT is NP-compicte: The input is a Boolean expression in CNF with
exactly 4 variables per clause, and the probiem is to determine whether there exists a
satisfying assigament such that in every clause exactly 2 of the 4 variables are true. (Hint:
Use Exercise 11.16.)

*] 1,18 TFhe input is again a Boolean expression in CNF. The preblem is 1o determine whether

there exists a satisfying assigament such that every clause contains an odd number of
variables whose values are 1. For example, if the input is a 3SAT inpws, then we are
looking for assignmenis such that, in every clause, either | or 3 variables have value 1.

n

14.21

11.22

11.23

11.24

1:.25

NP-Completeness

{Another way 1o look at this problem is that the or operations are replaced with exclusive or
operations.) This may seem like another variation of the problems in Exercises 11.16 and
11.17, but in fact this problem can be solved in polynomial time! Find a polynomial-time
algorithm for it.

The input is an undirected regular graph {i.c., a graph in which all vertices have the same
degree). Prove that the cligue problem remains NP-complete for regular graphs.

The exact cover by 3-sets {X3C) problem is the foliowing. The input is a set § with 3x
eiements and a coilection of subsets of §, 5, 8., ... 3,, each containing exactly three
elements. Fhe problem is to determine whether there exists a subcollection of subsets
S;,48i, 0 85, such that each element of § is contained in exactly one subset S; . Prove that

X3C is NP-compiete.

Prove that the following problem is NP-complete: Given an undirected graph G =(V, E)
with 3n vertices, determine whether the vertices of & can be partitioned inte n groups, such
that each group contains three elements, each connected to each other. In other words, the
question is to determine whether the graph can be partitioned into # triangies.

Let G =(V, U, E} be & bipartite graph such that V is the set of vertices on one side, U is the
set of vertices on the other side, and E is the set of edges connecting them. V corresponds to
a set of machines and U to0 a set of parts. A machine v; is connected to a part u; if the
machine is used to work on that part. Suppose that a room can accommodate at most K
machines and unlimited number of parts (for simplicity, we assume that all machines have
the same size). We assume that we have as many rooms as needed, but we want to
minimize the movements of parts from one roem te anether. Each edge {(v.p,) is
associated with a cest ¢ (v, p)), which is the cost of moving past 4, to machine v; if the part
and the machine are not in the same room. We define the cost of a partition of machines
and parts inio rooms as the sum of the costs of the edges connecting pars to machines that
are not in the same room. Prove that the following problem is NP-compiete: Given the
graph G, the parameter K, and another parameter C, determine whether it is possible to
partition the machines and parts into rooms with cost £C. (In other words, the set of
vertices shouid be partitioned into subsets, cach with at most K vertices from ¥, such that
the sum of the costs associated with the edges that connect vertices in two different subsets
does not exceed €.}

Let S be a set, and € = {C,,C,, ... C¢} be a collection of subsets of § each with four
elements. Two subsets of § are said to be connected if they contain a common element. A
collection C is said to be a cyvele if C; is connected to C; forali i, 15isk~1, and C is
connected to €. An subcollection €& C is called acyclic if it does not contain a cycle.
Prove that the following probiem is NP-complete: Determine whether a given collection C
contains an acyclic subcollection €7 such that (i} every two subsets in " have at most one
element in common, and (2) every element of § is included in at least one subset of C”.

Assume that the Hamiltonian path probiem for undirected graphs is NP-complete. Prove
that the Hamiltonian cycle probiem for undirected graphs is also NP-compiete. (Both
problems are defined in Section 11.4.3

The input is an endirecied graph G =(V, £) and two distinguished vertices v and w in G.
Prove thar there is no polynomial-lime algorithm to determine whether G confains a
Hamiltonian path whose end veértices are v and w unless P = NP

11.26

11.27

11.2%

11,29

11.30

11.31

11.32

]

Creative Exercises 373

Consider again the probiem of determining whether a graph G =(V, £} contains a
Hamiitonian path with given end vertices v and w (see Exercise 11.25). Let G be the graph
obtained by adding two new vertices v and @ and two new edges {v, ¥} and {w, w). If &
contains a Hamiltonian path, then its {wo end vertices must be v and w. Therefore, such a
path corresponds to a Hamiltonian path in & with the end vertices v and w. What have we
just proved?

Prove that graph k-coloring is NP-complete. The preblem is to determine, given an
undirected graph G ={V, £) und an integer k, whether G can be colored with at most £
colors.

Prove that, if there is a polynomial-time approximation algorithm that can coler any graph
with less than 4/3 times the minimal number of colors required to color that graph, then
P=NP.

Prove that the following probiem, called feedback edge set, is NP-compiete: Given a
directed graph G =(V. E) and an integer parameter %, determine whether G contains a set F
of at most & edges such that every directed cycie in G contains at least one edge from F.

[t @ be some NP-complete probiem involving undirecied graphs. Suppese that you find 2
polynomial-time algetithm that scives @ for some particular restricted class of graphs (e.g.,
Planar graphs. graphs containing perfect matchings, Eulerian graphs). Does this algorithm
imply that all NP-complete problems involving undirected graphs can be soived in
polynomigal time when restricted to that ciass?

Let O =(V. E} be an undirected graph, and let {v |, w,), (v3, w3}, ..., (v, W) be k pairs of
distinet vertices of (. Prove that the following problem is NP-complete: Determine
whether there exist & paths in (7 such that path / connects v; to w;, and all paths are vertex
disjoint.

Let G =({V. E} be an undirected graph, such that each vertex is associated with some task,
Two vertices are connected if the corresponding tasks cannat be performed at the same time
(e.g., they need the same resource). This is the only #mit on concurrency. Any set of tasks
such that no twe of them are connected can be performed in one step. Prove that the
foilowing problem is NP-compiete: (hiven a graph G =(V, E3, and an integer parameter £,
determine whether all corresponding tasks can be performed in at most & steps.

11.33 Let G=(V. E) be an undirected graph such that the edges incident to each vertex are

11.34

ordered in a cyclic order. There is no relationship between ordering at different nodes.
Suppose further that G is Eulerian. The problem is to find an Eulerian tour covering G that
satisfies the following ““noncrossing’” property: I the tour enters a vertex v at an edge e,
then the next edge in the tour must be adjacent to ¢ in the cyclic order imposed on the edges
incident to v (from either side of). One way to view this property is to look at a road map.
The goal is to travel through all the edges (road segments) such that an infersection {vertex)
is never crossed except from one edge to its neighbor. Prove that determining whether such
an Eulerian tour exists for a given graph and cyclic orderings is NP-complete. (The
problem remains NP-complete for planar graphs, but the proof is more difficuit,)

Show an example in which the simple backtracking algorithm described in Section 11.5 for
3-coloring a graph results in exponentizl number of nedes.

1135 The following is a simple heuristic for finding a vertex cover. n each step of the aigorithm,

374

1136

11.37

11.38

NP-Completeness

the veriex of highest degree (lies are broken arbitrarily} is added to the cover, then it is
removed from the graph together with all its incident edges. The aigorithm terminates when
no more edges remain. Since an edge is removed only after a vertex incident to it is
included in the cover, the algorithm indeed finds a vertex cover, This is a greedy algorithm
since it always selects the vertex with the highes: “'payoff.” The worst-case behavior of
this algorizhm is not very good. Show an example of a graph and an order of execution of
this algorithm that leads to a vertex cover with more than twice the number of vertices of
the minimum cover.

Show an instance of the bin packing problem for which the first-fit algorithm gives a
solution using 5/3 times more bins than the optimai solution,

You are a traveling salesman of the 1980s. Your boss has asked you to visil » cities, and
you are planning your flight itinerary. You do not care about the cost of travel — the
company i geing 1o pay your expenses anyway, What you want to maximize is the benefits
you will receive as a frequent flyer! In other words, you want to maximize the length of the
entire (rip. You can assume that the mileage computed by the airlines is actual mileage, so
this is an Euclidean probiem. Also, do not worry about choosing different airlines. You
just want to maximize the total mileage. Prove that this problem is NP-complete, and
suggest approximation algorithms for it

Let O, Cy, .., C, be aset of courses offered at a certain university, and fet £, ¢5, .., ¢, be
the time intervals (not necessarily disjoint} during which the courses are offered. For
exampie, {; may be Tuesday from 10:00 to 11:00, ¢, may be Tuesday from 10:30 to 12:00,
and se on. Your job is to assign classrooms to the courses. The only requirement is that o
two courses overlap at the same time at the same room. The goal is 1o use the minimal
number of classrooms that satisfies the requirement.

a. Reduce this problem to a cotoring problem, and design an efficient algorithm to solve it

b. Discuss why your solution does not imply that P = NP {even though coloring is an NP-
complete problem),

CHAPTER 12

PARALLEL ALGORITHMS

A person with ane waich knows what time it is;
a person with two watghes is never sure.

Anon

In the first place, it is to be remarked that, however small
the republic may be, the representatives must be raised to a
certain number, in order to guard against the cabals of the
few; and that, however arge it may be, they must be Kmited
to a certain number, in order to guard against the
confusion of the multitude,

James Madison, 1787

12.1 Introduction

The subject of parallel computing has moved from the exotic to mainstream computer
science within a decade. H is expanding very fast (even relative to other areas of
computer science), There are numerous types of parallel computers in operation, ranging
from 2 to 65,536 processors. The differences between the various existing parallel
machines, even as far as the naive user is concerned, are major. We can no longer adopt
one ‘‘generic’’ model of computation and hope that it adapts to all parallel computers,
Pesigning paralle] algorithms, analyzing them, and proving them correct is much more
difficult than the corresponding steps for sequential algorithms.

We cannot hope in this short chapter to cover all (or even most) areas in parallel
computing. We present a variety of examples using different models of computation and
different techniques. We try to give the flavor of parallel algorithms and to explore the
difficulties in designing them. We start with some common characteristics. We then
briefly describe the main models of paratiel computing used in this chapter, and follow

b L §

376 Parallel Algorithms

with examples of algorithms and techniques,

The main measures of complexity for sequential algorithms are running time and
space utilization. These measures are imporiant in parallel algorithms as well, but we
must also worry abouwt other resources. One important resource is the number of
processors. There are problems that are inherently sequential, and they cannot be
*parallelized’” even if an infinite number of processors is available. Most other
problems, however, can be parallelized to a degree. The more processors we use — up
to a certain limit — the faster the algorithm becomes. It is important to study the
limitations of parallel algorithms, and to be able to characierize the problems that have
very fast parallel solutions. Since the number of processors is limited, however, it is also
jmportant to use the processors effectively. Another important issue is commanication
among the processors. Generally, it takes longer to exchange data between two
processors than it does to perform simple operations on the data. Furthermore, some
processors may be “‘close’” to one another, whereas other processors may be farther
apart. Therefore, it is important to minimize communication, and to arrange it in an
effective way. Yet another important issue is synchronization, which is a major problem
for parallel algorithms that run on independent machines connected by some
communication network, Such algorithms are usually called distributed algorithms.
For lack of space, we will not consider distributed algorithms in this book. We discuss
only models that assume full synchronization.

Some models of parallel computation restrict all processors 10 execute the exact
same instruction in each step. Parallel computers that follow this restriction are called
SIMD (Single-Instruction Multiple-Data) machines. The connection machine is a
prominent example of such computers. Parallel computers in which each processor can
execute a different program are called MIMD (Multiple-Instruction Multiple-Data)
machines. Unless specified otherwise, we will assume the MIMD model.

12.2 Models of Parallel Computation

A comprehensive survey of parallel machine models is beyond the scope of this book.
We mention only a few major models, with emphasis on those that are used in this
chapter. We include, in this section, some general discussion and definitions that apply
to many models. Each of the following sections covers one type of model, and includes a
more detailed description of the model and examples of algorithms for it.

We denote the running time of an algorithm by T (n, p), where » is the input size
and p is the number of processors. The ratio S{p)=T(n, 1)/T(n, p} is called the
speedup of the algorithm. A parallel algorithm is most effective when S (p) =p, in which
case we say that the algorithm achieves a perfect speedup. The value of T (n, 1) should
be taken from the best known sequential algorithm. An important measure of the
utilization of the processors is the efficiency of parallet algorithm, which is defined as

Sgr) _ Tin 1)
p o pTinp)
The efficiency is the ratio of the time used by one processor (with a sequential algorithm)

E(n'p)x

12.2 Models of Parallel Computation 377

and the total time used by p processors, (The total time is the actual elapsed time
multiplied by the number of processors.) The efficiency indicates the percentage of the
processors’ time that is not wasted, compared to the sequential algorithm. If £(n, p)=1,
then the amount of work done by all processors throughout the execution of the algorithm
is equal to the amount of work required by the sequential algorithm. In this case, we get
the optimal use of the processors. Obtaining such an optimal efficiency is rare, because
most of the time the parallel algorithm introduces some overhead that was not reguired
by the corresponding sequential algorithm. One of our goals is to maximize the
efficiency.

When we design a parallel algorithm we could fix p, according to the namber of
processors available to us, and try to minimize T{», p}. But, doing so would potentiaily
require a new algorithm whenever the number of processors changes. It is more
desirable to find an algorithm that works for as many values of p as possible. We discuss
next how to translate an algorithm that works for a certain value of p to algorithms for
smaller values of p, without changing the efficiency significantly. In general, we can
medify an algorithm with T(n, p)=X 1o an algorithen with T(n, p/ky=kX, for any
constant &£ > 1. In other words, we can use a factor of & less processors running for a
factor of & more time. We construct the modified algorithm by replacing each step of the
original algorithm with & steps in which one processor emufates the execution of one siep
of k processors. This principle cannot be applied to all situations. For example, & may
not divide p, the algorithm may depend on a certain interconnection pattern of the
processors {as discussed in Section 12.4), or the decision conceming which processors to
emulate may require computation time. However, this principle, called the parallelism
folding principle, is quite general and useful. It shows that we can reduce the number of
processors without changing the efficiency significantly. If, for example, the original
algorithm (which was designed for a large p) exhibits a good speedup, then we can obtain
algorithms achieving about the same speedup for any smaller value of p. Therefore, we
should try 1o get the best speedup with the maximal number of processors, provided that
the efficiency is good (i.e., close to 1). Then, if we have fewer processors, we can still
use the same algorithm. On the other hand, paralle] algorithms with smalt efficiency are
useful only for a large number of processors. For example, suppose that we have an
algorithm with T{u, 1)=n and T{n, n)=logzn, which implies that the speedup
Si{m)y=n/logn — a very impressive speedup — and the efficiency E(n, n)=1/log:n.
Suppose now that the number of processors available to us is p =256, and that » = 1024,
The running time of the paralle] algorithm is T(1024, 256} = 4log, 1024 = 40 (assuming
that folding is possible), which is a speedup of about 25 over the sequential algorithm.
On the other hand, if p =16, then the running time would be 640, which is not a good
speedup {less than 2 with 16 processors).

The vasious models of parallel computation differ mainly in the way the processors
communicate and synchronize. We will consider only models that assume full
synchronization, and concentrate on different communication paradigms. The shared-
memory models assume that there is a random-access shared memorty, such that any
processor can access any variable with unit cost. This assumption of unit-cost access
regardless of the number of processors or the size of the memory is uarealistic, but itis a

378 Parallel Algorithms

good first approximation. The shared-memory models differ in the way they handle
access conflicts, We discuss several different alternatives in Section 12.3,

Shared memory is usually the easiest way to model communication, but it is the
most difficult model 10 implement in hardware. Other models assume that the processors
are connected through an interconnection network. An interconnection network can be
represented by a graph, such that the vertices correspond 10 the processors and two
vertices are connected if the corresponding processors have a direct link between them.
Each processor usually has a local memory that it can access quickly. Communication is
done through messages, which may have to traverse several links to arrive at their
destinations. Therefore, the speed of the communication depends on the distance
between the communicating processors. Many different graphs have been studied as
interconnection networks. We will mention several popular ones in Section 12.4,
Parallel computers based on interconnection networks with message passing are
sometimes called multicomputers.

Another model that we discuss is that of systolic computatien. A systolic
architecture resembles an assembly line. The data move through the processors in a
rhythmic fashion, and very simple operations are performed on them. Instead of having
to access a shared {or nonshared) memory, the processors receive their input from: their
neighbors, operate on it, and pass it on. Systolic algorithms are discussed in Section
12.5.

A basic theoretical model that we will use only for illustration purposes is that of a
circuit. A circuit is a directed acyclic graph in which the vertices correspond to simple
operations and the edges show the movement of the operands. For example, a Boolean
circuit is one in which all indegrees are at most 2 and all operations are Boolean
operations {(or, and, and not). There are designated vertices for input (with indegree of
0}, and for output (with outdegree of 0). The depth of a circuit is the longest path from
an input to an output. The depth corresponds to the parallel running time.

12.3 Algorithms for Shared-Memory Machines

A shared-memory computer consists of several processors and a shared memory. We
use only fully synchronized algorithms in this section, We assume that the computation
consists of steps. In each step, each processor performs an operation on the data it
possesses, reads from the shared memory, or writes into the shared memory. (In practice,
each processor may also have focal memory, but we assume that all memory is global.}
The shared-memory models differ in the way they handle memory conflicts. The
Exclusive-Read Exclusive-Write (EREW) model does not allow more than one processor
to access the same memory location at the same time, The Concurrent-Read Exclusive-
Write (CREW) model allows several processors to read from the same memory location
at the same time, but only one processor can write, Finally, the Concurrent-Read
Concarrent-Write {CRCW} model poses no restrictions on memeory conflicts,

The EREW and CREW models are well defined, but it is aot clear what is the
result of two processors writing at the same time to the same location. There are several
alternatives to handle concumment writes, The weakest CRCW model — and the only

12.3 Algorithms for Shared-Memory Machines 379

CRCW model we utilize in this book — allows several processors to write to the same
focation at the same time only if they all write the same thing. If two processors attempt
to write different values to the same location at the same time, the algorithm halts.
Surprisingly, as we will see in Section 12.3.2, this feature is very powerful. Another
alternative i to assume that the processors are labeled, and that, when several processors
write to the same location ai the same time, the highest-labeled processor succeeds. Yet
another possible assumption is that an arbitrary processor succeeds.

12.3.1 Paraliel Addition

We start with a simple example of a parallel algorithm, developed by induction, for a
problem that fooks inherently sequential at first glance.

The Problem Find the sum of two n-bit binary numbers.

The regular sequential algorithm starts at the [east significant bits, and adds two bits at a
time with 4 possible carry. [t seems that we cannot be sure of the outcome of the ith step
until the two i — | least significant bits are added, since there may or may not be a carry.
Nevertheless, it is possible to design another algorithm.

We use induction on n. It will not help much to go from # -1 10 n, gince this
implies an iterative sequential algorithm. The divide-and-conquer approach has a much
better potential for parallel algorithms, since it may be possible to sofve atl smaller parts
in parallel. Suppose that we divide the problem into two subproblems of size #/2 (we
assume that n is a power of 7 for simplicity). We can find the sums of the two pans in
parallel. But we still have the problem of the carry. If the sum of the least significant
pair has a carry, we have to change the sum of the most significant pair,

The key observation here is that there are only two possibilities — we either have a
carry or we do not. Therefore, we can strengthen the induction hypothesis 1o inclade
both cases. The modified problem is to find the sum of the two numbers with and
without an initial carry. Suppose that we now solve this modified problem for both pairs.
We get four numbers: L, Lo, R, and R,, which correspond to the sum of the least
significant pair with no initial carry, the same sum with an initial carry, and the
corresponding sums for the most significant pair, respectively. For each of these sums,
we also find whether it generates a carry. The final sum S, without initial carry, is L and
either R or R, depending on whether L had a carry. The final sum S, is the same as S,
except that L is replaced by L.,

We solve a problem of size n by two subproblems of size n/2 and a constant
number of (cosquer) steps. Since both subproblems can be solved in paraliel —
assuming that the processors can access different bits independently — we obtain the
recurrence refation T{n, n}=T{n/2, ni2)+O(1}, which implies that T(n, #) = O (log n).
Furthermore, since both subproblems are completely independent, this algorithm assumes
only the EREW model. This algorithm may not be the best one for parallel addition (see,

380 Parallel Algorithms

for example, Ladner and Fischer {1980]), but it is a good example of an easy
parallelization of an algorithm. Once it becomes clear that the problem can be solved
very quickly in parallel, the solution can be further improved.

12.3.2 Maximum-Finding Algorithms

The Problem Find the maximum among n distinct numbers, given
H1 an array.

We solve this problem for two different shared-memory models — EREW and CRCW,
The algorithms for both models use techniques that are used for many other problems.

EREW Model

The straightforward sequential algorithm for finding the maximum requires n -1
comparisons. We can think of a comparison as a game played between the two numbers,
with the farger of the two winning. The maximum-finding problem is thus equivalent to
FUnming a toumnament with the winner being the maximum of the whole set. An efficient
way to run a fournament in parallel is {o use a tree. The players are divided into pairs for
the first round (with possibly one player sitting out, in case of an odd number of players),
all the winners are again divided into pairs, and so on, until the finals. The number of
rounds is [logzn}. We can obtain a paralle] algorithm from the tournament by assigning
a processor to every game (think of the processor as the referee of the game). We have
to ensure, however, that each processor knows the two competing numbers. This can be
arranged by putting the winner of the game in the larger indexed position of the two
players. That is, if the game is played between x; and x; such that j >/, then the maximal
of x; and x, is put in position j. In the first round, processor P; compares xz_y o Xy
{1=i5n/2), and exchanges them if necessary; in the second round, P, compares x4y 10
x4 (1 £i2n/4), and so on. Since each number is involved in only one game at a time, an
EREW model is sufficient. The running time of this simple algorithm is clearly O (log n).
Let’s try now 1o minimize the number of processors.

The algorithm we just presented requires |n/2] processors, and we have
T(nfn/2))=[logan]. Since the sequential algorithm achieves T(n, 1}=n-—1, the
efficiency of the parallel algorithm is £ (1, n/2) = t/logyn. If n/2 processors are available
anyway (e.g,, if the maximum-finding algorithm is a pan of another algorithm that
requires them), then this algorithm is simple and efficient. With some modifications,
however, we can achieve a parallel time of O {log n) with O (1) efficiency.

The total number of comparisons required for this algorithm is # — |, the same as
the sequential algorithm. The reason for the low efficiency is that many processors are
idle in later rounds. We can improve the efficiency by reducing the number of processors
and performing ioad balancing in the following way. Suppose that we use only about
n/logyn processors. We divide the input into a/logyn groups, with about logan elements
per group, and assign a group o each processor. In the first phase, each processor finds

12.3 Algorithms for Shared-Memory Machines 381

the maximum ia its group, using the sequential algorithm that takes about log,yn steps. It
remains now to find the maximum among about n/log,n maximums, but there are now
enough processors to use the tournament algorithm. The running time of this algorithm
(assuming that n is a power of 2) is T(n[n/logyn])=2logyn. The corresponding
efficiency is E (n) = ¥2. Next, we formalize the idea we just used for saving processors.

We call a paratlel algorithm static if the assignment of processors to actions is
predefined. We know apriori, for each step i of the algorithm and for each processor P,
the operation and the operands P; uses at step i. The maximum-finding algorithm, for
example, is a static algorithm, because all the ““games’’ are prearranged,

1 Lemma §2.1

If there exists an EREW static algorithm with T{(n, p) = O{1), such that the
total number of steps (over all processors} is s, then there exists an EREW
static algorithm with T(n, sity = O ().

(Notice that, if s is equal to the sequential complexity of the problem, then
the modified algorithm has an efficiency of G (1).)

Proef. Let a; (i = 1,2,...,7) be the total number of steps performed by all
[

processors in step { of the algorithm. We have Y a,=s. If a; 25/t, then there are enough
i=l

processors to perform step /, and we do not have to change it. Otherwise, we replace step

i with[a;/(s/t)} steps in which the available s/t processors emulate the steps taken by the

p processors in the original algorithm (following the folding principle). The total number

of steps is now

i ai < i ar.-'l' l B r'! _,,,,2
h> o0 <3| =+ =1+ Ya =

=] jul

Hence, the running time of the modified algorithm is still O {¢}. 1

Lemma 12.1 is known as Brent’s lemma after Brent [1973] (which contains a proof of
the same spirit of a more complicated case). Brent's lemma shows that, in some cases,
the efficiency of a parallel algorithm depends mainly on the ratio between the total
number of operations performed by all processors and the running time of the sequential
algorithm.

We need the restriction to static algorithms because we must know which
processors {0 emmdate. Lemma 12,1 is valid for nonstatic algorithms as well, provided
that the emulation can be done quickly. An example of a case where Lemma 2.1 is not
valid is as follows. Suppose that there are » processors and »n elements. After the first
step, some of the processors decide (based on the results of the first step} to withdraw.
The same thing happens after the second step, the third step, and so on. This algorithm is
similar to the tournament algorithm, except that, in this case, we do not know which
processors withdraw. If we try to emulate the remaining processors, say, after the first
step, we need to know which of them are still active. But, it may require some
computation time to find that out.

382 Paralle] Algorithms

CRCW Model

1t may seem at first that a paralle! algorithm cannot find the maximum in less than logyn
steps if only comparisons are used. But this is not so. The following algorithm, whose
parallel running time is O (1), illustrates the power of concurrent writes. We use the
version of concurrent writes in which two or more processors ¢an write io the same
location at the same time only when they write the same thing.

We use n{n—1}/2 processors, and assign a processor P;; 1o each pair {i, j} of
elements. We also allocate another shared variable v; for each element x;, and initialize
v, to 1. In the first step, each processor compares its two elements and writes a 0 in the
shared variable associated with the smaller element. Since only one element is larger
than all others, only one v, remains 1 (see also Exercise 12.12). In the second step, the
processors assaciated with the winner can determine that it is the winner and can
announce this fact. This algorithm requires only two steps, independent of m; its
efficiency, however, is very poor, since it requires O(n”) processors. We call this
algorithm the two-step algorithm.

We can improve the efficiency of the two-step algorithm by using a method similar
to the one for the EREW model. We divide the inputs into groups such that we can
allocate enough processors to find the maximum of each group by the two-step algorithm,
As the number of candidates declines, the number of available processors per candidate
increases, and the group size can be increased. The two-siep algorithm shows that, if the
size of a group is &, then & (k — 1)/2 processors are sufficient to find the group’s maximum
in constant time. Assume that we have # processors overall, and that n is a power of 2.
In the first round, the size of each group is 2, and the maximum of each group can be
found in one step. In the second round, only n/2 elements are left, and we still have n
processors. M we set the size of each group 1o be 4, then we have n/8 groups, allowing
us to allocate & processors per group. This is sufficient, since 4+ (4~ 1)/2=6. In the third
round, we have n/8 remaining clements. Let’s calculate the maximal group size that we
can afford. If the group size is g, then the number of groups is n/8g, and there are 8g
processors avaitable per group. To use the iwo-step algorithm, we need g{g—1)/2
processors for a group of size g, therefore, we must have g (g — 1)/2 <8¢, which implies
that g <17 (it is simpler to use g =16). We leave it to the reader to verify that the size of
the group can be squared in each round, leading to an algorithm that requires
O (log log n) rounds.

Although this algorithm is slightly slower that the two-step algorithm (O (log log 7}
versus G (1)), its efficiency is much better. It is O{1/loglogn), versus O(1/n) of the
two-step algorithm. This technique has been called divide and crush, since we divide
the input into groups of size small enough that we can ‘‘crush’’ them with lots of
processors. This technique is not limited to the CRCW model.

12.3.3 The Parallel-Prefix Problem

The parallei-prefix problem is important because it serves as a major building block in
the design of numerous paralie! algorithms, Let e be an arbitrary associative binary
operation — namely, it satisfies xeo{yez)=(xey)ez — which we will simply call

12.3 Algorithms for Shared-Memory Machines 383

product. For example, » ¢an represent addition, multiplication, or maximum of two
numbers.

The Problem Given a sequence of numbers x4, x4, ..., X,, compute
the products x; ex,e - - wx, forall £, such that 15k $n,

We denote by PR(Z, j) the product x;ex;, e - sx;. Our goal is to compute PR(1,4)
for all k, 1 £k <n. The sequential version of the prefix problem is trivial - we simply
compule the prefixes in order. The parallel-prefix problem is not as easy to solve. The
method we use is divide and conquer. As usual, we assume that » is a power of 2.

Induction hypothesis: We know how to solve the parallel-prefix problem
for ni2 elements.

The case of one element is trivial. The algorithm proceeds by dividing the input in half,
and solving each half by induction, Thus, we obtain the values of PR{1, k) and
PR(n/2Z+ 1, ni2+ky, for all &, 1€k€n/2. The values for the first half can be used
directly. The values PR (., m), for n/2 <m <n can be obtained by computing PR(1, n/2)
o PR(n/2+1,m). Both terms are known by induction (notice that we use the
associativity of the operation). The algorithm is given in Fig, 12.].

Complexity The input is divided into two disjoint sets in each recursive call of the
algorithm. Both subproblems can thus be solved in parallel under the EREW model. If
we have n processors for the problem of size n, then one-half of them can be allocated to
each subproblem. The combining step requires n/2 sieps, and they can also be
performed in parallel, but an CREW model is required because they all use x [Middle }.
Although several processors must read x[Middle] at the same time, they all write to
distinct locations, so a CRCW meodel is not required. Overall, T (1, n)=0{logn), and
E(n .n)=0{1/logn} (since the sequential algorithm clearly runs in G (n) steps).

Unfortunately, we cannot improve the efficiency of this algorithm by using Brent’s
lemma. The total number of steps used in the algorithm is O (n logn). The waste comes
from the second recursive call. A sequential algorithm can compute all the prefixes
without the second recursive call. Therefore, if we want to improve the efficiency, we
must improve the algorithm such that the total number of steps is reduced. We do that
next. An EREW algorithm for this problem (with the same resource bounds) is the
subject of Exercise 1218,

Improving the Efficiency of Parallef Prefix

The trick is to use the same induction hypothesis, but to divide the input in a different
way. Assume again that # is a power of 2 and that there are » processors. Let E denote
the set of all x;s with / even. If we find the parallel prefixes of all elements in £, then
finding the sest of the prefixes (those with odd indices) is easy: H PR (1, 2/) is known for
all i such that 1 <¢<a/2, then, for each odd prefix PR{1, 2i + 1), we need to compute one

384 Parallel Algorithms

Algorithm Parallel_Prefix_I (x, n};
Input: x (an array in the range | to n).
{ we assume that 7 is a power of 2 |
Outpui: x (the ith element contains the /th prefix).

begin
PP _I{i.n};
end

procedure PP_1 (Left, Rightj ;

begin
if Right - Left = | then
xfRight] = x{Left] o x{Right] [wis an associative binary operation }

else
Middle := (Left +Right - 1)}/2 ;
do in paraliel

PP _i(Left, Middle} ; { assignedto Py to Py}
PP_I{Middle + 1, Right) ; { assigned 1o P, 1o P, }
Jor i ;= Middle +1 to Right do in parallel
xfif = x{Middle] »x{i}
end

Figure 12.1 Algorithm Parallel Prefix_I.

more product (PR (E, 2/) » x3,,,). We can find the prefixes of the elements in E in two
phases. First, we compute (in parallel) x4_) x5 for all 15/$#/2, and we store the
result in x5, In other words, we compute the products of all elements of E with their left
neighbors. Then, we solve the n/2-sized prefix problem for £ (by induction)., The result
for each xy; is the correct prefix, since each x; already includes the product with x4,.,.
And if we know the prefixes of all the even indices, then we have already seen how to
compute the odd prefixes in one more parallel step. We leave it 1o the reader to verify
that this algorithm requires only the EREW model. The algorithm is given in Fig 12.2
(see also Exercise 12.17)

Complexity Both loops in algotithm Parallel Prefix 2 can be performed in parallel
in O (1) time with #/2 processors, The recursive call is applied to a problem of half the
size, 50 the running time of the algorithm is O{logn). The total number of steps ${(n}
satisfies the recurrence relation S(m)=S(#/2)+n~1, S§(2)=1, which implies that
S{n)=0(n). But, this implies that we can now use Brent's lemma to improve the
efficiency. By Brent's lemma, we can medify the algorithm 10 run in time O (log #) with
only O (n/log n} processors, leading to an (3{1) efficiency. The key to this improvement
is using only one recursive call {instead of two) while still being able to perform the
mesge step in parallel,

12.3 Algorithms for Shared-Memory Machines 385

Algorithm Parallel Prefix 2 (x, nj ;
Inputi: x (an array in the range 1 to n).
{ we assume that # is a power of 2 }
Qutput: x (the ith element contains the ith prefix).

begin
PP 2(1};
end

procedure PP_2 (Inc}

begin
if Inc = n/2 then
x[n) = x[n/2iex[n]{ eis an associative hinary operation }
else
Jori = Iton/(2-Inc)do in parallel
x[2iInci=x[2i-Inc-Inc)exf2 i -Inc);
PP (2 Incj;
fori = 1Iton/(2 Incy-1 doin parallel
x[2iInc+inc) = xf2 i Inctex[2-i-Tnc+inc)
end

Figure 12.2 Algorithm Paraliel Prefix 2,

12.3.4 Finding Ranks in Linked Lists

Generally, it is much more difficult to deal with linked representations in a parallel
environment than with arrays, Linked lists, for example, are inherently sequential, If the
only access to the link list is through the head of the list, then we have to traverse the list
one element at a time with no possibility of parallelism. In many cases, however, the
elements of the list (or pointers to them) are actually stored in a contiguous array; the
order imposed on the elements by the list is independent of the array. In such cases,
where paralle] access to the Jist is possible, there is hope for fast parallel algorithms,

The rank of an element in a linked list is defined here as the distance of the
element from the end of the list {thus, the head has rank #, the second element has rank
n -1, and s0 on),

The Problem Given a linked list of #n elements, all of which are
stored in an array A [1..n], compute for each element its rank in the list,

We can solve the sequential problem by simply traversing the list. The method we will

386 Parallel Algorithms

use for designing a paralle] algorithm for this problem is called deubling, We assign a
processor 10 each element. Initially, each processor knows only the right neighbor of its
element in the Hst. In the first step, each processor finds the neighbor of its neighbor,
After the first step, each processor knows the element at distance 2 from its element. If,
at step i, each processor knows the element at distance & from its element, then in one
step each processor can find the element at distance 2. This process continues until the
end of the list is reached. Let N[7] be the farthest element 1o the right of { in the hst that
is known to P; at a given moment. Initially, N{i] is I’s right neighbor (except for the last
element whose right neighbor is nil). Basically, in each step, P; updates N{i | to N[N [{]]
until the end of the list is reached. Let R [/] be the rank of i. Initially, R[i}] is set to ,
except for the last element in the list, for which it is set to | ¢(this element is detected by
its nil pointer). When a processor encounters a neighbor with a nonzero rank R, this
processor can determine its own rank. Initially, only the element of rank | knows its
rank. After the first step, the element of rank 2 finds that its right neighbor has rank [, so
it knows that its own rank is 2. After the second step, rank 3 and rank 4 are determined,
and so on. If F; finds that ¥ [{] points 10 a *'ranked’” element of rank R after 4 doubling
steps. then i*s rank is 27"+ R. The precise algorithm is given in Fig 12.3. This
algorithm can be easily adapied to the EREW model (Exercise 12.4).

Algorithm List_Rank (N) ;
Input: N (an array in the range 1 to » of indices).
Cutput: N (the rank of each element in the array).

begin
D=y
| each processor can have its own local D variable;
we use only one D variable)
do in paraliel { processor P; is active until R i | becomes nonzero }
R[i]:=0;
iN[i)=nilthen R[i] = 1 ;
while R[i] = O do
fRIN{i 110 then
Riil:=D+RINI{i]]
else
Ni]:=NIN[i]) .
D:=2D
end

Figure 12.3 Algorithm List_Rank.

Complexity The doubling process guarantees that each processor will reach the end
of the list in at most [logyn] steps. Therefore, T'(n, ny=0{logn). The efficiency is
E(n, ny=0(1/logn). Improving the efficiency requires making a major modification 10

12.3 Algorithms for Shared-Memory Machines 387

the algorithm, since the total amount of work is O{nlogn). (See the Bibliography
section for a discussion on recent results.}

The rank computation allows us to convert a linked list into an array in O (logn)
time (even though with less than perfect efficiency). After all the ranks are computed,
the elements can be copied into the appropriate locations in the array, and the rest of the
compuiation can then be performed directly on the array, which is much easier.

12.3.5 The Euler’s Tour Technique

We can parallelize many types of algorithms on trees by operating on a whole level of
the tree in paratlel (e.g., the tournament algorithm 1o find the maximum). TFhe running
time of such an algorithm is proportional to the height of the tree. If the tree is
reasonably balanced, and its height is O (logn) (where n is the number of nodes), then
this approach is quite good. However, when the tree is not balanced, the height may be
as high as n—1, and we need another approach. The Ewler's tour technique is
instrumental in designing paraltel algorithms on trees, and especially on unbalanced
irees,

Let T be a tree. We assume that T is represented by the regular adiacency-list
representation, with one additional feature., As usual, there is a pointer E (i} to the start
of the list of edges incident to the vertex / (E (/) nil if this list is empty). Each list
coniains records that include the corresponding edge (1, j) (it is sufficient to store only J,
since [is known), and a pointer to the next edge in the list Next (i, /). Each (undirected)
edge (i, J) is represented by two (directed) copies, one for (i, j} and one for {j, i}, The
additional feature is an exira pointer for each edge that points to the other copy of that
edge. We need that extra pointer to find the edge {J, {1} quickly when edge (i, j} is given,
This representation is illustrated in Fig. 12.4 (the pointers connecting the copies are not
shown}.

The key idea behind the Euler's tour technique is to construct a list of edges of the
tree that forms an Euler’s tour of the direcied version of the tree {in which every edge
appears twice). Once this list is built, many operations on the tree can be performed

E
] — {12} — (1.5}
a b

. 23— (20— 124}
I e d

Figure 12.4 The representation of the tree,

388 Parallel Algorithms

direcily on the list almost as though the list was linear. A sequential algorithm can
always traverse the tree and perform operations together with the traversal. This
“linearization'’ of the tree allows us to perform such operations on the tree efficiently in
parallel. We will see two examples of such operations. But first we discuss how to
construct the Euler’s tour.

It is easy to find an Euler's tour of T (with every edge appearing twice)
sequentially. We can traverse the tree using depth-first search, taking the opposite order
of an edge whenever the search backiracks. We will do a similar thing in parallel. Let
NextTour (i, f3 denote the edge following edge (i, j) in the tour. We claim that NexiTour
is defined by the following rule, which can be easily computed in parallel:

o Next{j, iy if Nexr(j,) is not nil
NextTour(, j) =1 g(j otherwise.

In other words, the list of edges incident to a verfex is considered in a cyclic order, such
that, if (f, /) is the last on f's lisy, then the first edge on that list, pointed to by E(J), is
taken. For example, if we start with edge a in Fig. 12.4 (we assume that the edges
incident to each vertex are ordered clockwise), then the tour consisis of the edges
a. d, g ¢, f,e, b, h and back to a. By choosing Next (j, {) to follow (i, j) in the tour, we
guarantee that {f, i} will be chosen only after all other edges incident 10 § are chosen.
Therefore, the subtree rooted a1 j will be completely traversed before we backirack to /.
We leave the proof that this procedure is cotrect as an exercise.

Once the list is constructed. we can choose a starting edge (r, 1) {any edge will doj,
and mark the edge before it in the tour as the end of the Hist. The verex r is chosen as the
root of the tree. We can now number the edges according o their position in the list by
algorithm Lisi_Rank (Fig. 12.3). Let R(i, j) denote the rank of edge (i, j) in the [ist (e.g.,
R(r, ty=2(n— 1), where # is the number of vertices). We now show two examples of
operations on the tree — ordering the vertices in preorder traversal, and compating, for
all vertices, the number of their descendants.

Let {/, /) be an edge in the tour. We call ¢, j} a forward edge if it points away
from the root, and a hackward edge otherwise, The numbering of the edges allow us to
distinguish between forward and backward edges:; An edge (i, j) is a forward edge if
R,)Y>R(j, /). Since the two copies of the edge ({, /) are connected by a pointer, we
can easily determine which one of them is the forward edge. Furthermore, we can make
this determination for all edges quickly in parallel. We are interested in forward edges
because they impose preorder on the vertices. Let (7, j) be the forward edge leading to J
(namely, { is j's parent in the tree), If f (i, j) is the number of forward edges following
{4, j) in the list, then the preorder number for jis n—f (i, /). (The preorder number of r,
which is the only vertex with no forward edge pointing to it, is 1.) We can now use a
variation of the doubling algorithm to compute, for each forward edge (7, j), the value of
F U, j). We leave the exact implementation of this doubling algorithm as an exercise.

The second example involves computing, for each vertex J, the number of vertices
below j (descendants) in the tree. Let (i, j) be the (unique) forward edge leading to J.
Consider the edges following the edge (7, /) in the list. The number of vertices below j in
the tree is equal to the number of forward edges that are below ; in the tree. We already

12.4 Algorithms for Interconnection Networks 389

know how to compute in parallel the value of f (i, j), which is the number of forward
edges that are after (i, j) in the list. We can similarty compute the number of forward
edges f (J, {} following (/, i) in the list. 11 is easy to see that the number of descendants
of jisequal to f (i, jY—F (J, i}, which can be found again by the doubling technique. The
algorithms for preorder numbering and for finding the number of descendants can both be
performed in time T(n, n}=0 (log n) under the EREW model.

12.4 Algorithms for Interconnection Networks

Interconnection networks can be modeled by graphs (almost always undirected). The
processors correspond 1o the nodes and two nodes are connected if there is a direct Jink
between the corresponding processors. Each processor has local memory, and can also
access, through the network, the local memories of other processors. Thus, all memory
can be shared, but the cost of accessing 2 variable depends on the locations of the
processor and the variable, A shared-memory access may be as guick as a local access
(if the variable happens to be in the same processor), or as slow as a traversal of the
whole network {in case the graph is a simple chain). It is usually somewhere in between.
Processors communicate by messages, When a processor wants 1o access a shared
variable that is located at another processor, it sends a message asking for this variable.
The message is routed across the network.

Numerous graphs have been suggested as interconnection networks. The simplest
ones include linear arrays, rings, binary trees, stars, and two-dimensional meshes {grids).
The more edges we add 1o the graph, the better the communication becomes, But edges
are expensive {e.g., edges increase the arca required for the layout of the wires, which
increases the time for communication). We have to find the right tradeoff. There is no
one type of graphs that is good for all purposes. The performance on a certain graph
depends heavily on the communication patterns of the particular algorithm. There are,
however, several properties that are very useful. We list some of them below, together
with examples of interconnection networks.

The diameter of the graph is of great importance. (The diameter is the maximum
of ali the shortest distances between any two nodes.} It determines the maximum number
of hops that a message may have to take. An n xn grid has diameter 2n, whereas an »-
node balanced binary tree has diameter 2log,(n +1)~2. A tree can thus deliver a
message {in the worst case} much faster than a grid. On the other hand, the tree has a
major boutleneck. All traffic from one half of the tree to the other half must pass through
the root. The two-dimensional mesh has no such bottlenecks, and it is very symmetric,
which is important for algorithms that communicate in a symmetric fashion.

A hypercube is a popular topelogy that combines the benefits of high symmetry,
small diameter, many alternate routes between two nodes, and no bottlenecks. A d-
dimenstonal hypercube consists of # =27 processors. The addresses of the pracessors are
integers in the range 0 to 24— 1. Therefore, each address contains d bits. Processor P; is
connected to processor P if and only if { differs from j by exactly one bit. The distance
between two processors is never more than d, since we can go from £, to P; by changing
at most d bits (one bit at a time). A four-dimensional hypercube is shown in Fig. 12.5.

390 Parallel Algorithms

Figure 12.5 A four-dimensional hypercube,

The hypercube provides a rich connection, since there are many different routes between
any two processors {e.g., we can change the appropriate bits in any order). We can also
combine the hypercube with the mesh architecture by, for example, embedding meshes in
the faces of the hypercube. Other suggested networks include the perfect shuffie, cube-
connected cycles, quad and octal trees, mesh of trees, butterfly, and more.

12.4.1 Sorting on an Array

We start with the relatively simple problem of sorting on an array of processors. There
are n processors P, P,, ... P,, and n inputs x,, x4, ..., x,. Each processor holds one
input. The goal is to distribute the input among the processors such that the smallest
input is in P, the second smallest is in P, and so on. In general, we may want 1o assign
more than one input 1o each processor. We will see that the same algorithm can be
adapted to this case as well. The processors are connected in a linear fashion. Each
processor P, is connected to P, 15/ <n.

Since each processor can communicate only with its neighbors, the only
comparisons and possible exchanges can be done with elements that are consecutive in
the array. In particular, in the worst case, the algorithm must allow n — | steps, which is
the time it takes for an input 1o move from one end of the array to the other. The
algorithm is basically as follows. Each processor compares its number to the number of
one of its neighbors, exchanges the numbers if they are in the wrong order, and then does
the same with the second neighbor. (We must alternate neighbors, because otherwise the
same numbers will be compared again.) The same process continues until all numbers
ate in the correct order. The steps are divided into odd steps and even steps. In the odd
steps, the odd-numbered processors compare their numbers with those of their right
neighbors; in the even steps, the even-numbered processors compare their numbers with
those of their right neighbors {see Fig. 12.6). This way, all processors are synchronized
and a comparison always involved the correct processors. If a processor does not have

12.4 Algorithms for Interconnection Networks 391

Xy Xy X3 X4 X5 Xg Xy Xg

(N— e (I (E—
L T 1 (S—

I L (R L
L L (T—

L L L L
(S— (T— (N—

Lt (I (I L
(R L L

Figure 12.6 Qdd-even transposition sort.

the corresponding neighbor (e.g., the first processor in the second step), it remains idle
through this step. This algorithm is called the odd—even transposition sort. It is given
in Fig. 12.7. A numeric example of the algorithm is presented in Fig. 12.8. Notice that
the sort in the example is complete after only six steps. However, early termination can
be very hard to detect in & network. Therefore, in many cases it is better to let the
algorithm run to its worst-case completion.

Algorithm Sorting on_an Arrgy seems natral and clear, but its proof of
correctness is far from obvious. For one thing, an element may move away from ifs final
destination. For example, in Fig. 12.8, 3 moves 10 the left for two steps before it starts
moving to the right, and 3 moves to the leftmost position and stays there for three steps
before it moves back 10 the right. Proving the correctness of parallel algorithms is
difficult, because of the interdependencies among the actions of the different processors,

Algorithm Sorting_on_an_Array (x, n}
Input: x (an array in the range | to n, such that x; resides at P;}.
Qutput: x (the array in sorted order, such that the ith smallest element is in P},

begin
do in parallel] ni2| times
P | and P4 compare their elements and exchange them
if necessary ; {for all i, such that 1 <2i<n}
P, and Py, compare their elements and exchange them
if necessary ; {for all i, such that 152 <n}
{ if nis odd, then this step is done only | n12] time }
end

Figure 12.7 Algorithm Sorting_on_an_Array.

392 Parallel Algorithms

Figure 12,8 An example of odd—even transposition sort.

The behavior of one processor affects all other processor, and it 35 usually hard to focus
on only one processor and prove that its actions are correct, we have to consider all
processors together,

00 Theorem 12.2
When algorithm Sorting_on_an_Array terminates, the numbers are sorted,

Proof: The proof is by induction on the number of processors (or elements). H
there are only two processors, then one comparison sorts the two numbers. We assume
that the theorem is true for # processors and consider the case of » +1 processors. Let’s
focus our atention on the maximum element and assurne that it is x,, (e.g., x5 in Fig.
12.8). In the first step, x,, will be compared to either x,.| or t0 X, depending on
whether m is even or odd. H m is even, then no exchange will take place because x,, is
greater than x,_,. Bat this is exactly the same as the case of x,, residing initially at P,
{and an exchange taking place). Therefore, we can assume, without loss of generality,
that m is odd. In this case, x,, is compared to x,,,,, exchanged, and moved step by step
(diagonally) to the right (since it is greater than all other numbers) until it arrives at x, 4
and stays there. This is its correct position, so the sort works cosrectly for the maximum
element.

We now must show that the rest of the elements are sorted correctly too. There are
n other elements, and we would Hke to use induction. To do that, we have to map the
execution of the n processors in the array of size n+1 to a possible execution of n -1
processors in an array of size a. This mapping is done as follows. Consider the diagonal
formed by the movement of the maximum element (see Fig. 12.9). The comparisons
involving the maximum element (i.e., those that are on the diagonal) are ignored. We
divide the other comparisons inte two groups, the one below the diagonal and the one
above it. We then “‘move”’ the triangle above the diagonal one step down. In other
words, for the comparisons in the upper triangle, step i is now called step i+ 1. For
example, consider the comparisons 1 versus 8 and 4 versus 2 in the first step of Fig. 12.8.

12.4 Algorithms for Interconnection Networks 393

Figure 12,9 The induction step in the proof of theorem 12.2.

The first comparison is on the diagonal, so it is ignored; the second one is above the
diagonal, so we consider it to be part of siep 2 (instead of step 1). Therefore, step 2
consists of 7 versus 5, 6 versus 1, and (from step 1) 4 versus 2. But, this is a valid even
step involving only n elements. We can now simply ignore step | (i.e., row 1) on the left
side of the diagonal and all comparisons involving the maximum elerment (the last
column), and the rest is exactly a sequence of comparisons that can result from running
the algorithm for n elements. By the induction hypothesis, the sort on » clements is
correct; therefore, this sort is correct too, and it requires only one more step. &

So far, we have discussed the case of one input per processor. Suppose now that
each processor holds & inputs and consider first the case of only two processors, We
assume that the goal is 1o redistribute the elements such that the smallest & elements
reside at P, and the largest £ elements reside at P,. It is clear that in the worst case ali
elements must be moved, so we cannot do better than 2k element movements, One way
to achieve the sort is to repeat the following step until the sort is completed: P, sends its
targest element to £, and P, sends its smallest element o #,. The process terminates
when the largest element in P is not greater than the smallest element in P,. This step
is called merge-splir. If we use this step as the basic step in the odd—even transposition
sort, we can extend the sort to many elements per processor. Instead of a comparison and
possibly an exchange of neighboring elements, a merge-split operation is done.

Although the sorting algorithm presented in this section is optimal for an array, its
efficiency is low. We have n processors each ninning for n steps; therefore, the total
number of steps is n°. The low efficiency is not surprising, since an efficient sorting
algorithm must be able to exchange elements that are far away. The array cannot support
such an exchange. In the next section, we present interconnection networks that are
designed specifically for efficient serting,

12.4.2 Sorting Networks

When we design an efficient sequential algorithm, we are concerned only with the total
number of steps. In a design of a parallel algorithm, we must also try to make the steps
as independent as possible. Consider mergesort (Section 6.4.3}. The two recursive calls

194 Parallel Algorithms

are completely independent, and they can be performed in parallel. However, the merge
part of the algorithm is performed in a serial manner. We place the ith element in the
final array only afier the first i — I elements are placed. If we can parallelize the merge,
then we will be able te parallelize mergesort.

We now describe a different merge algorithm, developed by Batcher [1968], using
divide and conquer. We assume for simplicity that n is a power of 2. Letay, a4, ..., a,
and b, b2, ..., b, be two sorted sequences that we want to merge, and let x,, x5, ..., X3,
be the final merged order (e.g., x|, =min{a, ;). We want to merge disjoint parts of
these sequences in parallel so that the final merge becomes easy. This is done by
dividing the 1wo sequences into two parts — the odd-indexed elements and the even-
indexed elements, EBach part is merged with the corresponding part of the other
sequence, then a final merge is performed. Let 0, 03, ..., 0, be the merged order of the
odd subsequences @, a4, ...,y and b, bs ..., b,_;, and let ¢ |, £4, ..., €, be the merged
order of the even subsequences a,,dy,4, and b3, b4..., b,. Clearly, x,=0, and
Xy, =€,. The rest of the merge is also easy to obtain, as can be seen by the following
theorem (see also Fig. 12.10).

(1 Theorem 12.3

Following the notation above, for all i such that 15isn—1, we have
X =mIN{0; 4y, €;) and X3, =max (0,41, €.

Proof: Consider ¢;. Since ¢; is the ith element in the merged order of the even
sequences, ¢; is greater than or equal to at least { even elements from both sequences.

i o s X

aa . X3

[I S — n/2 X

a, merge X4

[SRR network X5

L) S S Y L T N A S— S— et X

a7 — X7

dg s — - Xg

Xy

by

by o g X 13
b3 >~ niz ———]
by w- merge ot X 12
bs network X3
P a— et X 14
by e X35
bg o » Y16

Figure 12.10 The ciscuit for edd—even merge.

12.4 Algorithms for Interconnection Networks 395

But, for each even element, we can add one more odd element that ¢; is greater than
(since we started with two sorted sequences). Therefore, ¢; is greater than or equal to at
least 2/ elements from both sequences. In other words, ¢; Zx5;. By the same argument,
o4 18 greater than or equal to / + 1 odd elements, which implies that it is greater than or
equal to at least 27 elements altogether. {We have to subtract 2 from the index, because
the first elements in both odd sequences do not add any more elemenis.) Hence,
@41 X2 But now, by a variation of the pigeonhole principle, both e; and o,,, must be
equal (in some order) to x,, and x4,,. This is so because only ¢, and ¢, can be equal 10
X7 and x5, and that makes only e; and ¢4 fit x4 and x5, and so on, W

The impontant property of Theorem 12.3 is that the final merge can be obtained in
one parallel step. The rest is done by induction. The parallel algorithm follows directly
from the theorem. Figure 12.10 illustrates the recursive merge construction, and Fig.
12.11 shows the complete sort, which is called odd—even mergesort. The seemingly
small boxes on the left side of Fig. 12.11 (marked /2 sort’’) are recursive
constructions of the whole sort. The numbers on the right side are the input in the sorted
order.

Complexity The recurrence relation for the total number of steps Ty(n} for the
merge procedure is Ty(2n)=2T(n)+n -1, Ty(1)=1. Therefore, the total number of
comparisons is O (n log #), in contrast 1o the sequential algorithm that requires only O (n)
steps. The depth of the recursion, which corresponds 10 the parallel fime, is O(logn).
The recarrence relation for the total number of steps Tg(n) for odd—even mergesort is

X = » * Lgrl)
Xy o— + X512)
X1 » nid X
x3 n/2 merge ;(3)
4 — 8 it Xy ()
L ¢ - HBFWOI'}C ‘xs(ﬁ)
Xy a—nu] Xsen
XS » x-f{s)
Xpey
X9
B T — Xs1m
X T A A A N X
Xll -—] nfz meree x&'“”
12— oot L g R — - X512
X3 network et Xg(13)
X4 o— et -—«l—. Xg(14)
X135 o—f —T * Xs(15)
Xis o - e X5(16)

Figure 12.}1 The circuit for odd-even merge sort,

396 Parallel Algorithms

To(2ny=2Tg{n)+ O (nlogn), Ts(2)=1, which implies that T5(n}=0O(n Iogzn). The
circuit contains # processors in each “‘column’ and its depth is O(logzn). 50 overall
there are O (n log?n) processors in the circuit. (Notice that although the same processors
can be used for all columns, they will have 1o be almost fully connected.) The only type
of computation in the circuit is a comparison, and the only processors needed are
comparators with two inputs and two outputs.

12.4.3 Finding the ith-Smallest Element on a Tree

We now assume that the interconnection network is a complete binary tree with nr =2~
leaves. There are 2" — | processors, each associated with a node in the tree. The input is
4 SeqQUENCE X), X3, ... Xy, such that x; resides initially at leaf /. Tree machines have been
suggested mainly for image-processing applications, where the leaves correspond to the
inputs {e.g., pixels in a picture} and the algorithms for manipulating them are hierarchical
(see, for example, [Uhr 1987]). In this section, we consider the problem of finding the
kih-smallest element, Fhis example illusirates the translation of a sequential algorithm to
a paralle] algorithm, and the use of pipelining (which is described in more detail in
Section 12.5).

First, we recall the sequential algorithm for finding the Ath-smallest element
described in Section 6.5. We assume, for simplicity, that the elements are distinct. The
algorithm is a probabilistic one. In each step, a random element x is chosen as the pivet.
The rank of x is computed by comparing x to all other elements and, according to
whether the rank is smaller or greater than £, the elements that are less than x or greater
than x are eliminated. The algorithm terminates when the rank of the pivot is k&, The
expected number of erations is O (loga), and the expected number of comparisons is
O{n). There are three different phases in each iteration of the algorithm: (1) choosing a
random element, (2) computing its rank, and (3) eliminating. We first describe efficient
parallel implementations of each phase, then improve the parallelization even further.

Choosing a random element can be achieved by a toumament arranged on the tree.
Each leaf sends its number to its parent where the number **competes’” with the number
of its sibling leaf by flipping a coin. The winning number is then promoted up again, and
the same process continues up the tree until the root chooses the overall winner, (This
works only in the first iteration; we discuss later how to make i work after some
elements are eliminated.) The winning number is then **broadcast’” down the tree, so
that all leaves can compare it with their number. If the identity of the pivot is known at
all the leaves, they can all compare their numbers to the pivot in one step. They then
send a | (if their number is smaller than or equal to the pivot) or 0 (otherwise) 1o their
parent node. The rank of the pivot is the number of 1s that are sent up. Summing n
numbers up the tree is easy to do. The root can then broadcast the rank down the tree,
and each leaf can determine whether or not its number should be eliminated. Overall,
there are four “*waves™ of communication per iteration: (1} up the tree to choose a pivot;
(2} down the tree to broadcast it; (3) up the tree to compute its rank; and {4} down the
tree to broadcast the rank.

12.4 Algorithms for Interconnection Networks 397

The problem is that, after some elements are eliminated, the tournament is no
longer fair. In the extreme case, all elements in one-half of the tree, except for one, are
eliminated. The remaining element in that half will be promoted to the root without
competition. It will then be chosen with probability '4, while other elements are chosen
with much smaller probabilities. We want to preserve the uniform randomness of the
choice. We.can preserve it in the following way. Processors associated with values that
have been eliminated in previous rounds send up a nil value. Any element always wins
against a nil value. Every competing element has an associated counter, which is initially
I. The counter indicates the number of (real} *‘opponents” that participated in the part
of the tournament involving this element (i.e., the number of elements in the subtree that
have not yet been eliminated). When an element wins a game at some node in the tree, it
is promoted upward, and the losing element’s counter is added to its counter. Every
game is now played with a biased coin according to the counters of the competing
elements. For example, if x wins its first game (say, against v} and z advances by default,
then x's counter is 2 and 7°s counter is 1. If x now plays against z, then the game is
played with 2;1 bias toward x. Overall, z has a probability of 4 of winning this game,
4nd both x and y have probability of /2 - % =4 of winning both their games. This process
guarantecs that the final choice is uniformly selected among the participating elements.

Complexity The number of (parallel) steps involved in each phase is equal to four
times the height of the tree. Since this algorithm eliminates elements in exactly the same
way as the sequential algorithm, the expected number of phases is still O (logn). The
expected running time is thus O (log?n).

A Sketch of an Improved Algorithm

The root of the tree is a major bottleneck in the computation. Most of the information
must pass through the root, but the root has only two connections and all leaves are at
distance £ — 1 from it. If we cannot improve the connections, we should at least make the
root as busy as possible. In the algorithm we just described, the root and the leaves are
active for one step and then remain idle for about 24 steps. We can improve this
algorithm by making all processors busy all the time. We do that by initiating new
iterations in every step even before the previous iterations are completed. All those
iterations will proceed in a pipeline fashion up and down the tree. The reason this
pipeline improves the running time is the following. It 1akes 24 -2 steps to select one
pivot {# — | steps to reach the root, and A 1 steps for the root to broadcast the resalt). If
we start another tournament in the second step and run it in parallet to (but one step
behind} the first one, then we can select two pivots in 2h—1 steps. We can select 4
pivots in 34 —2=0{(logn) steps. All those pivots can be used to eliminate elements.
Thus, instead of custing the search space by about half with one pivot, we cut it to about
1/th+1) of its original size with k pivots, and we do it without spending significantly
more time. We can also interleave the different phases. The leaves start a new
tournament at each step (unzil the & smallest is found) and the tournament pushes the rest
of the computation.

398 Parallel Algorithms

1 Example 12.1

An example of this process is given in Fig. 12.12 {which proceeds from left to right top
down). The elements are the numbers from 1 to 8, and we are looking for the fourth.
smallest number. (In this case, the rank of each number is equal 1o that number’s value,
so we do not show both ranks and numbers.) For each step, the contents of all nodes is
shown. The numbers inside the nodes are the ones obtained from below, and the
numbers outside the nodes are those that are broadcast down. The first chosen pivot is 3
(Fig. 12.12d), the second one is 5 (Fig. 12.12¢), and then 4, 3, 1, and 4. In Fig. 12.12(g),
the first pivot (3) arrives at the leaves, and from then on they start the second phase,
which is computing the rank. The fact that 3 has rank 3 is discovered in Fig. 12.12(3),
and the fourth smallest element is discovered by the root at Fig. 12.12(1). Once the
element is broadcast to the nodes {which we do not show), the algorithm terminates. In
this case, there was no need to run another set of iterations (or eliminate any element); in
general, however, this process should be run several times and elements should be
eliminated until the kth-smallest element is found. O

Complexity The regular algorithm requires O (logn) steps to eliminate elements
with one pivot. Since we can generate O (log#) pivots at about the same time, we save a

log*n
foglogn ™
The proof of this fact, as well as the details of the algorithm, simulation results, and some
slight improvements, can be found in Greenberg and Manber [1987].

factor of O(loglogn) overall. The expected running time is reduced to O

12.4.4 Matrix Multiplication on the Mesh

The interconnection graph we consider now have is a two-dimensional n X n mesh (grid).
Processor P[i, j} is the processor at row { and column j, and it is connected to P[i ~ 1, f],
Pli, j+1), Pli+ 1, j], and P[i, j—1]. We assume that the boundaries of the mesh are
wrapped around, so that, for example, P[0, 0} is connected to P[0, n— 1} and P{n— 1, 0],
in addition 10 P[0, 1] and P[1, 0] (see Fig. 12.13). In other words, all additions and
subtractions of indices are done modulo n. The algorithm we present is more symmetric
and elegant with this assumption; it has the same running time {to within a constant}
without the wrap around.

The Problem Given two n xn matrices A and B, such that initially
Ali, i1 and B(i, j] reside at P{i, j], compute C =A - B, such that Cfi, j)
resides at P[7, L

We use the regular matrix multiplication algorithm. The problem is to move the data
such that the right numbers are at the right place at the right time. Consider
!

C[0,01= 3 A[0, k] Blk, 0], which is the inner product of the first row of A and the first
e

12.4 Algorithms for Interconnection Networks 399

Figure 12,12 An example of the kth-smallest pipeline algorithm.,

400 Parallel Algorithms

O > b O
)))
1 1 1 1
1 1 1 1
| | \ |
\ \ i \
\ \ i \
1 1 1 1
e L i -~ !
1 1 1 1
Cﬂ ! ! PV} F '
- T A 1 b T 1
1 1 1 1
B 1 1 1
| I |
: i I |
: | \ \
; | \ \
B 1 1 1
..................... T i
4 T I - 1
(R : P P s} |
> L { Lo
: : :
H \
| \
1 1 1
1 1 1
JE R N A A -~
Ko L L e
& L 0 o

Figure 12.13 A two-dimensional wrap-around mesh.

column of B. We would like C[0, 0] to be computed by P[0, 0] (which also must have
the final resuft). This can be done by shifting the first row of A to the left one step at a
time, and, at the same time, shifting the first column of B up one step at a time. At the
first step, PO, 0] has A[0, 0] and B[O, 9], and it computes their product; in the second
step, it gets A[0, 1] (from the right) and B[1, 0} {from below), adds their product to the
partial result, and so on. The value of C[0, 0] will be computed after # steps.

The problem is that we need all processors to do the same thing, and they all need
10 share the data. We have to arrange for the data to move such that not only P{0, 0] gets
what it needs, but every other processor does too. The trick is to rearrange the data
movements in such a way that, throughout the execution of the atgorithm, all processors
always have two numbers whose product they need. The key is the initial distribution of
the data. We will rearrange the data such that each processor P[I, ji has A[{, f+/] and
Bli+j, J] tagain, all additions are modulo n). H we can do that, then afterward every
step will consist of simultaneous row and column shifts, which bring Afi, i+j+4} and
Bli+j+k ji, 1£k<n, to P[i, j}, which is exactly what Pfi, j] needs. We can achieve
the initial arrangement by shifting the ith row i steps to the left and the jth column j steps
up, and by doing that for all rows and columns, The precise algorithm is given in Fig
12,14, Figure 12.15 illustrates the initial data movemeni. The lefi side shows the data at
the beginning, and the right side shows the data after the initial shifts are performed.

Complexity The initial row shifis take »/2 parallel steps (we can shift to the right
when the number of shifts is more than n/2); the same is true for the column shifts. No
computations are involved so far. Then, there are a steps, involving both computations
and shifis, for each processor. All these steps can be done in parallel. The overall
running tme is thus G (n). The efficiency is O (1) if we compare the parallel algorithm to
the regular O (n’) sequential algorithm, The efficiency is (asymptotically) less if we
compare the parallel algorithm to asymptotically faster algorithms {(e.g., Strassen’s
algorithm).

12.4 Algorithms for Interconnection Networks 401

Algorithm Matrix_Multiplication (A, B}
Input: A and B (1 xn matrices).
OQutput: C (the product of A and B}.

begin
Jor all rows do in parallel
shift row i of A to the left i steps
{ namely, perform A{i, j1'=Al, (j+ Dmodn}itimes}
Jor all columns do in parallel
shift column | of B upwards j steps
{ namely, perform B i, j1 =B [{i+) mod n,] j times }
{ the data is naw in the proper starting positions }
Jor all i and | do in parallel
Cli, ji=AlL 1" Bl ji;
Jork :=1ton~1do
Jor all i and j do in parallel
Ali, j1:=AHl, G+Dmodn};
Bii, jl:=B[(i+1Ymadn, ji;
CU Jl=CU, j1+AL J) B, j]

end
Figure 12.14 Algorithm Matrix_Multiplication.
ap a2 a3 LBY a;2 a3 a4 a5
by 1 by | by | by by [ban | by | b
a3 @y | A2y | A 33 dz4 | 421 a3
by | by | by | by by | bsy | b3 | b
a3 | dxy | dig a3y ay iy | dy
by | ba | by | by by | b | by | b
a4 Lry 43 44 a4 a4 43 a4
bay | bay | bz | by by | bn | by | by

Figure 12,15 The initial data placement and the result of the initial shifts.

12.4.5 Routing in a Hypercube

The examples we have seen so far illustrate the difficulty of adapting even a simple
algorithm to an algorithm that runs on an inferconnection network. I algorithms depend
so beavily on the architecture, then programming becomes very difficult. Another
approach to designing algorithms for interconnection networks is to define some
powerful primitives, to implement these primitives on the network, then to design the

402 Parallel Algorithms

algorithms using these primitives, We have to implement only the primitives on another
network to transiate all algorithms that use these primitives, The problem with this
approach is the definition of the primitives. After all, there are major differences
between the iopologies, and we cannct hope to find primitives that are good for all
topologies. Yet another approach is to design algorithms that emulate one network using
ancther. This technique will allow an easy translation of algorithms between the two
networks, but the translation may not vield an efficient algorithm. In this section, we
briefly discuss a general routing scheme that allows us to design algorithms for
interconnection networks as though shared memory is available.

We assume a hypercube connection (similar schemes have been designed for other
topologies). In an EREW shared-memory algorithm, the different processors can in one
step access arbitrary variables. Suppose that each processor P, is responsible for one
variable x;. Since an EREW algorithm does not have any read or write conflicts, a step in
the algorithm consists of processors accessing distinct variables. Another way to look at
a siep is as a permuiation ¢, such that processor P; accesses variable xg;,. (Not all
processors may be accessing variables ali the time, but in the worst case we can assume
that they do.) We concentrate on one {arbitrary) step of the EREW algorithm, and try to
emulate it using several steps of a hypercube. We now have a routing problem. We
assume that each processor P; on the hypercube wants to send a message to processor
P 4y (which holds variable x4,,). All messages are sent at the same time, and our goal is
to route all of them through the hypercube quickly. We assume that each edge of the
hypercube can deliver only one message at a time. Therefore, the problem is not only to
find short routes between sources and destinations, but also to minimize the conflicts
arising from trying 10 use the same edge at the same time. H two messages try to use the
same edge at the same time, one of them must be buffered. We also want to minimize
the buffer space requirements.

The best routing obviously depends on the particular permutation. However, it is
generally not possible 10 analyze the permwation 10 find the best routing, since the
permatation is distributed among the processors. Therefore, we are looking for a scheme
that works well on the average. The following routing scheme was suggested by Valiant
{1982]. The key idea is to use randomization, The routing consists of two phases. In the
first phase, each processor P; sends its message to a random processor, chosen uniformly
(independently of the destination) among all other processors. (In a moment, we will
describe how to select this random processor and how 10 route the message to it} In the
second phase, the message is sent along a shoriest route between the random processor
that received the message and the final destination.

All messages are sent in the same way, 50 we can ¢on¢entrale on one message —
say, that from i 1o j. Let the binary representation of i be £, by -« b, (with possible
padding of Os at the beginning), and that of jbe ¢ ¢, * -+ ¢4 In the first phase, we need
to find a random processor . We find it by considering the bits representing { one by
one, and deciding randomly with probability % whether to route o the corresponding
neighbor or not. For example, consider Fig. 12.16, and let i =000 and j=[10. First, we
randomly choose whether or not to send the message to 100. Suppose that we decide not
to send it to 100. Then, we consider the second bit and decide whether to change it; in

12.4 Algorithms for Interconnection Networks 403

O

160 01
vy \,
i10 il
A e
000 001
) O
016 011

Figure 12.16 An example of random routing in a 3-cube.

other words, we decide whether or not to send the message to (10. Finally, we consider
the third bit. In Fig. 12.16, the random processor is 011 and the route {marked in bold
lines) passes through it. 1f we decide not to send a message, we immediately make the
next choice without waiting for the next round; we assume that Jocal compuiation is
much faster than message passing. When the choice concerning the last bit is made, the
random routing is done. Each choice is made locally.

Since all processors send messages at the same time, a processor may have more
than one message waiting to be sent atong the same edge. In this case, the messages are
put in a quene (in a random order, if there is more than one) and are sent when the edge
becomes available,

It is not difficult to see that every number & (in the appropriate range) has the same
probability of being chosen as the random destination. The routing from the random
chosen processor r to j is done deterministically. Suppose that r and j differ in 1 bits with
the indices k; <k, < -+ <k, The message is sent by changing bit k,, then bit k,, and
soon. In the example of Fig. 12.16, the message will be sent first from 011 to 111 (since
the destination 110 has a 1 in the first bit}, and then to 110 (the second bit is not
changed).

This routing scheme is simple to implement. The routes are not necessarily the
shortest routes (in the example above, the route took four edges versus two edges of the
shortest route). The length of each route, however, is not too large; it is at most 2d. The
main property of these routes is that, with very high probability, they have few conflicts;
thus, the permutation is expected to be completed in O {d) steps. Similar routing schemes
have been suggested for other topologies. There are also efficient algorithms, based on
such schemes, to map shared-memory algorithms to algorithms for interconnection
networks automatically.

404 Parallel Algorithms

12.5 Systolic Computation

A systolic architecture resembles an assembly line. The processors, usually calied
processing elements, are arranged in a very regular way (usually, but not always, as one
or two dimensional arrays), and the data move through them in a rhythmic fashion. Each
processor performs very simple operations on the data it received in the previous beat,
and moves the result{s) to the next ““station.” Each processor contains very limited Gf
any) memory. Most of the input is **pushed’’ one variable at a time, rather than being
lpaded all at once to some memory locations. The advantage of systolic architecture is
efficiency, both in terms of the hardware (which is specialized and simple), and speed
(the number of memory access cycles is minimized), As in agsembly lines, the key is to
avoid the need to fetch tools, material, and so on, during the work. Everything that is
required to perform an operation arrives on the line. The big drawback is the inflexibility
of such schemes. Systolic architectures are efficient only for certain algorithms. We will
see three examples of systolic algorithms.

12.5.1 Matrix-Vector Multiplication

We start with a straightforward example, then use it io develop more complicated
algorithms,

The Problem Find the product x =Ab of an m xn matrix 4 with a
column vector b of size n.

There are n processors (stations), such that P, is responsible for adding to the partial
product the term involving b;. The data movements and the actions of each processor for
the case of n=pm =4 are illustrated in Fig. 12.17. We assume that & resides in the
appropriate processors (or is pumped into them regularly). TFhe results are accumulated
as they move from left to right through the processors. The x;s are initially 0. In the first
step, x; { =) together with a;, move into P, and all the other inputs move closer. P
computes x, +a,,; - b, and moves the result 10 its right. In the second step, P, receives
Xy=d - by from the left, together with a;, from above; it computes x| +a ;" b,, and
moves the result 10 its right, and so on. In each step, processor P; receives a panial

i-1
result, which is equal 10 3 a, by, from the left, the appropriate entry of the matrix from
k=i
above, and the appropriate element of b from either local memory (as it is in the figure)
or from below. P; computes x +a,b; and passes it to its right. When x; leaves the array,
it clearly has the right value, The whole product is computed in m + n steps.

The main problem in designing systolic algorithms is the data movement. Each
data efement must be at the right place at the right time. The only trick in this example
was to introduce delays so that column § of the matrix arrives at P; in step i This
example is simple, since each element of A was used enly once. When the same value is

12.5 Systolic Computation 4065

das
d43 a3
a5 1k} a4
a5 a3 an a4
a3 23 a3
i a2
ay;
E
I R T
Xy X b bsy bs by by
oQUTPUT
a
|
Xin b » Kour = Xin +ab

Figure 12,17 Matrix-vector mulitiplication.

used several times (as is usually the case), it is much more complicated to design its
movement, as is iflustrated in the next example.

12.5.2 The Convolution Problem

Letx=x,,x,, ..., x, and w=w,, wy, .., w; be two sequences of real numbers with &k <n,

The Probiem Compute y,,y2, .., Ypuiir Such that y; = w, x; +
Wakiyy + o0 bW g

The vector y is called the convolution of xr and w, We can reduce the convolution

406 Parallel Algorithms

problem to a matrix-vector product as follows.

[Xy A2 X3 Xy |
Xy X3 Xg T Xy W, i;
A3 X4 S N L Wy v3
Wil =) {12.1}
Wy
y Yawr—k
Apaiok Xnadt Xpadt * 7 Xn))

We can obtain the systolic algorithm for this problem by simply substituting the matrix in
(12.1) with the matrix of Fig. 12.17. This is shown in Fig. 12.18. Notice that each x; is
needed at the same time across the array {except for the first k—1 x;8 which are not
needed everywhere). Thus, a broadcast line is needed. Next, we show another solution
to the convolution problem with no broadcast.

The processors in Fig. 12.18 receive several inputs, but send only one output. We
now use processors that receive inputs from two directions and send oatput to two
directions. The idea is to move the vector x from left to right and the vector w from right
to left. The result y is accumulated in the processors. We have to design this movement
such that the appropriate values of w and x meet. The problem with moving the two
vectors in opposite directions is that they move twice as fast toward each other. As a
result, each element of x will miss half of the elements of w, and vice versa. The solution
is to move the vectors at half the speed. The left input will be “‘xy, nothing, x,,
nothing,”” and so on, and the same for w. This solution is illusirated in Fig. 12.19 (the
builets correspond to empty slots).

X3 X4 X4 X3
X3 3 X3
X3 Xa
Xy
¥ ¥1 Wy W Wi Wa b

QUTPUT

Figure 12.18 Convolation using broadcast,

12.5 Systolic Computation 407

— . Wy Y W
[— —
X3 ® Y4 Xy Y3 e Y2 | x, Y1
T T
L3 1 F 13
L3 1 3 13
}mt,’ :Jr,: :,.*v.l s A
P LI ol A g >
P, 1 p—} P | -
OQUTPUT
Wour Win Y=Y+ Wy Xy
y P
» Kour = Xiy
Xin Xour
Wowr = Wip

Figure 12,19 Convolution using a bidirectional array.

We leave it to the reader to verify that each P; collects the value of y;. When w,
leaves P;, the final value of y; is computed, and it can move out of the array through the
data path illustrated below the array in Fig. 12.19. The main drawback to moving data at
half speed is, of course, that the computation takes twice as long.

12.5.3 Sequence Comparisons

letA=a,ay - a, and B=h, by - b, be two strings of characters. Cur goal is to
find the minimal edit distance between A and B (see Section 6.8 and Section 10.2). A
dynamic programming algorithm was presented in Section 6.8 to solve this problem. We
first discuss general ways to parallelize this algorithm, then present a systolic array
solution.

The algorithm proceeds by filling a table, such that the solution appears at the
bottom right of the table. The value of the ijth entry depends on three entries
surrounding it, the (i — 1)jth, (f — 1)(j — 1)th, and / (j — 1)th entries. Suppose first that we
have nm processors arranged according to the table (see Fig. 12.20). Each processor P,
gets input from three processors —— above it, to the left of it, and diagonally from it —
and sends output to three processors similarly. Each character from B moves down the
tabje, and each character from A moves to the right. Let’s see which of the algorithm’s
steps can be performed in parallel, The labels on the squares in Fig, 12.20 indicate the
level of this square, such that squares with the same level can be computed in parallel.
We can compute the whole table in O (n +m) steps by computing one level at a time. |
is not necessary, however, to have nm processors. The same processors that handled
level i can also handle level 7 + 1, level / +2, and so on. Therefore, min{n, m) processors
are sufficient. The problem is to arrange the data movement.

For simplicity, we assume that n=m. We use 2n processors arranged in a one-
dimensional bidirectional array (see Fig. 12.21). We have to ensure that every pair of
characters a; and b; meets at some processor at some time, and that the three values

408 Parallel Algorithms

a b a
¢ i 2 3 .
a 2 3 4 .
a 3 4 5

Figure 12,20 Sequence comparisons by a two dimensional array.

0 0 0 0 0
. p I
i c
2 i 0 1 2
> a 1 b 2
2 a ! ¢
2 i 1 2 2
a i b 2 a
a 2 o i & .
3 2 2 3 3
* b 2 a 3
3 I/ 3 a e

Figure 12.21 Sequence comparisons by a one-dimensional array.

needed 1o process these characters are known 1o the processor. This is achieved by
moving A from left 1o right, B from right to left, both at half speed, and having one
memory cell per processor which is used for the diagonal connection. We use half speed
not only to ensure that the corresponding characters meet, but also 1o allow the costs
computed so far 1o use the empty slots between two adjacent characters. For example, let
A =caa and B =aba {see also Section 10.2.3), The first row (and column) in the matrix is

Bibliographic Netes and Further Reading 409

k23 (corresponding to the costs of inserting or deleting those characters). Fhe input from
the right side wili be @ 1h 2a 3, and that from the ieft side will be ¢ 1a 2a 3. The memories
of ali processors are initialized to 0. When two characters g; and b; meet at, say, Py, they
are compared; in the next beat, the two numbers foilowing them meet at P, and P, now
has ail the information needed to compute the corresponding entry in the mairix. The
minimal cost of matching AlF..7i] 10 B[1..j—}) comes from P,_,, the minimal cost of
matching A{l..i~t] to B{l..j} comes from P,,,, and the minimal cost of matching
Afli~1i10 B(1..j—1] comes from P;’s memory, This new entry will then be moved
both left and right in the next step, and 50 on. Figure 12.21 shows four different steps:
The first row is the initial step. the second row is the third step, the third row is the fourth
step, and the last row is the seventh step. The values of the memories and costs are shown
hefore the step. When the last character leaves the last processor (in either side), the
number that foliows it is the minimal edit cost.

12.6 Summary

Since paralie]l algorithms are even more complicated to design than sequential
aigorithms, we have 1o make good use of building blocks. The paraliel-prefix paradigm
is a powerful buiiding block. It was even suggested as a primitive machine operation (for
exampie, Blelloch |I987]). The same is true for the routing through permutations
{Section 12.4.5). It is still too early to know which of the suggested parallel architectures
(if any} will dominate in the future. Therefore, it is important to identify design
techniques that are common to many models. We have seen four technigues (and there
are, of course, others that we have not seen): doubling (list ranking and other operations
on linked lists), paraflel divide and conquer (addition, parailel prefix, sorting), pipelining
{finding &-smallest on the tree, and systolic computation in general}, and the Ewler’s four
technique (which is helpfal for a variety of tree and graph algorithms). Induction, again,
plays a major roie,

Bibliographic Notes and Further Reading

The area of parallel computing is expanding rapidly, as is evidenced by the number of
books that have appeared in the last few years. Books describing parallel computing
include Akl [1985i, which is devoted to paralle] sorting; Hong {1986] and Parberry
[1987], which include theoreticai models of parallel computation and their relationships;
Quinn |1987] and Gibbons and Rytter |1988], which are general books on parallel
algorithms; Hwang and Briggs [1984], Lipovski and Malek {1987], and Almasi and
Gottlieb [1989], which describe different parailel architectures and parallel software;
Ullman {19841, which deals mainly with VLSI; Gehringer, Siewiorek, and Segall [1987],
which describes experience with Cm™; Fox et al. | 1987], which describes experiments
with the hypescube; Reed and Fujimoto [1987), which includes models, architectures,
and severat desailed applications; Bertsekas and Tsitsiklis {1989, which deals mainly
with numerical and optimization methods; and others. Chandy and Misra [1988] present
a general methodology for writing parallei (and sequential) programs. A survey on

410 Parallel Algorithms

parallel graph algorithms is given by Quinn and Deo [1984], and on general parallel
algorithms by Moitra and Iyengar [1986]. Richards {1986] coniains a large bibliography
on parallel sorting. The classification of machines according to Single/Multiple-
Instruction Single/Multiple-Data is due to Flynn {1966]. Modeling aigorithms by circuits
is described, for example, in Borodin {1977].

Valiant [1975] is an early work on parallel maximum finding, merging, and
sorting, from which some of the material in Section 12.3.1. is taken. Other parallel
algorithms for these problems appear in Shiloach and Vishkin [1981], and in Borodin and
Hopcroft [1985]. Additional algorithms for list ranking appear in Kruskal, Rudolph, and
Snir [1985] {where parallel prefix is used), in Vishkin [1987] (where a randomized
algorithm is presented), and in Cole and Vishkin (1986] (where a general technique for
converting randomized parallel algorithms to deterministic enes is presented). Cole
11988] presents an elegant parallelization of mergesort which has T{n, n)=0(logn)
under both the CREW and EREW models (although the CREW algorithm is much
simpler and involves smaller constants). Atialah, Cole, and Goodrich [1987] includes
several other applications of Cole’s technique, in particular to paraflel geometric
algorithms.

Algorithms for the parallel-prefix problem and applications, including parallel
addition, appeared in Ladner and Fischer [1980). Fich {1983} provides upper and lower
bounds for the number of gates in parallel-prefix circuits. Beame, Cook, and Hoover
[1986] describe parallel algorithms for division and related problems. The Euler’s tour
technique, as well as the algorithms presented in Section 12.3.5, are from Tarjan and
Vishkin [1985}; see also Kruskal, Rudolph, and Snir [1986]. Divide and conquer for
parallel computing is discussed in Horowitz and Zorat [1983], and in Stout [1987].
Exercise 12.24 is from Kruskal, Rudolph, and Snir [1987]; Exercise 12.15 is from Cook
and Dwork 119821

Sorting networks, including the odd—even mergesort, were introduced by Batcher
[1968]. It was an open problem for a long time whether there exist sorting networks with
depth O (logn}. Ajtai, Komlés, and Szemerédi {19831 proved that such networks exist
(even though their network was definitely an impractical (D(log n) — see Section 3.2).
Reif and Valiant [1987) exhibit a network with a randomized O (logn) sort. The
connection machine is described by Hillis [1985], and various algorithms for it are given
in Hillis and Steele {1986]. The improved algorithm for finding the kth-smallest element
on a tree is due 1o Greenberg and Manber [1987] (the regular algorithm appeared in
Shrira, Francez, and Rodeh {1983]). A deterministic algorithm whose running time is
O(log*n) in the worst case is given by Frederickson {1988]. The algorithm for matrix
multiplication on a mesh can be adapied to run on a hypercube and other interconnection
networks (Dekel, Nassimi, and Sahni [1981]). Experimental results for matrix
multiplication on a hypercube are given in Fox et al. [1988]. The routing scheme
presented in Section 12.4.5 is from Valiant [1982] and Valiant and Brebner [1981] (the
former was actually developed earlier). (Valiant {1982} suggested to choose the order of
the bits at randomn; it was shown in Valiant and Brebner [1981] that the bits can be
considered in order, which is how we described it in Section 12.4.5.) Similar schemes

Drill Exercises 411

appear in Aleliunas [1982] and Upfal [1982]. Schemes for emulating shared memory in
networks appear in Karlin and Upfal [1986], Upfal and Wigderson | 1987], and Ranade
[1987]. For more on interconnection networks see, for example, Feng [1981], Siegel
[1985], or Ullman [19584).

More on systolic computing can be found in Kung [1979], Kung and Leiserson
[1980], and Kung {1982]. Systolic arrays for matrix multiplication using Winograd’s
algorithm (Section 9.5.1) are presented in Jagadish and Kailath {19891, The sysiolic
array algorithm for sequence comparisons in Section 12.53.3 is from Lipton and Lopresti
119851 The July 1987 issue of Computer is devoted to systolic arrays.

*“Thinking in parallel'” is difficult, and designing parallel algorithms is vsually
significantly more difficult than designing the corresponding sequential algorithms.
Nevertheless, Megidde {1983} has found an ingenious technique 1o design some types of
sequential algorithms by using parallel algorithms. An improvement of this technique
was given by Cole 119841

Drill Exercises

12,1 Draw the circuit corresponding to the parallel addition discussed in Section 12.3.1.

12.2 Design an algorithm : add & binary numbers, each with # bits. The running time should be
O{log r iog &} using nk processors.

12.3 Draw the circuit that corresponds to algorithm Paralfel_Prefix 2 of Section 12.3.3.
12.4 Prove that algorithm List_Rawnk (Fig. 12.3) requires only the EREW model.
12.5 Prove that the rules for constructing an Euler’s tour given in Section 12.3.5 are correct,

12,6 Compiete the details of the doubling algorithm to find the preorder numbering of ail vertices
in a tree {Section 12.3.5).

12.7 Figure 12.22 s an example of a graph representing an inferconnection network that we
discussed in: this chapzer. Identify the neswork, and label the nodes appropriately.

12.8 Consider the proof of correctness of the odd—even fransposition sort. The proof uses
induction, and shows tha:, when an additionat processor {and input) is added, the number of
steps is incremented by §. The base case, n =2, uses exactly one comparison. Hence, the
totai number of steps seems to he #— | and not #. Show an example that requires » sleps,
and discuss why the proof does not show that # — | steps are sufficient.

12.9 a. Draw the fulf circuit for merging twe sequences of size 8.
b. Praw the fuli circuit for sorting 16 inputs.
¢. Praw the fisli circuit for sorting 10 inputs.

12,10 Complete Fig. 12.21 by showing ali the steps untii the two sequences are separated.

412

Parallel Algorithms

Figure 12.22 An example of an interconnection network.

Creative Exercises

12.11

Design an CREW algorithm for matrix muisipiication that can muitiply two 7 by n matrices
in time O (log #) using O (#°/log) processors.

12.12 Modify the CRCW algorithm for finding the maximum {Section 12.3.2) to work in the case

where the numbers are not distinct. The paraliel ninning time should still be O{1).

12.13 Let A[1.n] be an array of values. We want te cepy the value A{1] to afl other locations in

the array (i.e., broadcast).
a. Design an EREW algorithm with T (n, n) =0 {log n} for this problem.

b. Design an EREW algorithm with efficiency O (1} and running time & {log #).

12.14 Paraiielize Homer’s rule to evaluate a polynomial of degree » under the EREW medel in

time O (Jog #) and efficiency ¢ (1}

*
12.15 The input is an array of # Boolean variables. The output is the or function of all of them.

In other words, the ouput is | if and only if at least one of the varizbles is 1. It is
straightforward to compute the or of n variables in [log,n] steps by an EREW algorithm
with n processors. It seems fairly obvious that doing better than [log,n] is impossible. But
this is not the case. Design an EREW algerithm whose running time is less than [logyn].
You can assume an unlimited number of processors and space. (This algorithm is not
practical, but it shows thas simple “*obvious” lower bounds are not always so obvious.}

12,16 Solve Exercise 12.15 (computing or of n Boolean variables) in time O (i} under the CRCW

madel.

lw
~

12,18

12.19

12.21

1232

12.23

12.24

12.25

12.26

12.27

Creative Exercises 413

Draw a circuit with O (n fog nr) vertices that solves the paratlel-prefix problem with depth
O {log n}, such that the fan-in and fan-out of every processing element is no more than 2 and
every processing element is involved in exactly one operation.

Use the circuiz of Exercise 12.17 10 design an EREW algorithm for the parallel-prefix
problem with T (n, ny=0 {ogn).

Let x;, x;, ..., ¥, be a sequence of distinct numbers. Design a CREW algorithm to son the
sequence in time € (logn). You can assume an unlimited number of processors and space.

Design a CRCW algorithm to merge two sorted arrays A and B into one sorted array in time
O (1). You can assume an unlimited number of processors and space.

{215 be a set of size » and let k > 1 be a conszant. Design a CRCW aigorithm to fnd the
maximum in S with T (z, n """ y=0 ().

Let x, %3, ... X, be & sequence of {not necessarily distinct) integers in the range 1 to n.
Design a CRCW algorithm to find the maximum in the sequence with T(n, m)=0(1).

Let x,, x5, ..., X, be a sequence of real numbers, let S be a subset of {1,2, .., n}, and letebe
an associative binary operation on real numbers. The set § partitions the sequence into
groups, such that the first group contains Xy, x,,X;, where [is the smailest element in §,
the second group contains iy, ..., x;, where j is the second smailest element of S, and so on
(the last group contains the rest of the elements in case » does not belong 1o §3. The group
parallel-prefix problem is to compute parallel prefixes separately for all groups. Show that
the group paralicl-prefix probiem can be solved with the same resources as are used for the
regular parailel-prefix problem.

The ¢ross product of two arrays A[QO.n—1} and B[O..m ~ 1] is an array C{0..nm—1}
such thag, of i=k-m+r, 0Sksn—4, 0Srsm=1, then Cli] = Alk}-Birl (In other
words, C is a row representation of an # xm matrix whose i entry is the product of A{f}
and B[f]) Design an EREW paraliel algorithm o compute C with p processors and time
O{mn/p+logp}. You can use O{nm) space. (For simplicity, you can assume that », m, or
p is a power of 2.)

The input is an array of records. Each record contains some data (which is immatertal for
this exercise} and a Boelean variable Mark. The goal is 1o pack all records whose Mark
value is § into the beginning of the array. {For example, these records may be selected for
some purpose and some more work has o be performed on them, it is better to have them in
a contiguous area.} The order among the records that are moved should not be changed.
Design an EREW algorithm for this problem with 7'(n, #)=C {log n).

The input is a linked list such that all of its clements are stored (in an arbitrary order) in an
array. Let Fii} be a Boolean fag associated with the elements. Design an EREW
algorithm with T{n, n}=0(log#) to construct another linked list consisting of only the
elements with F [/ = | in the same order they appear in the original list. {This algorithm is
needed, for example, in computing preorder in Section 12.3.5.}

The input is a linked list such that sl of its elements are stored (in an arbitrary order) in an
array. Design an efficient parallel algorithm to construct a linked Est in the opposite order
of the original list (i.¢., reverse the list), without moving any element. Yoo can assume that
sufficient space is allocated to hold the extra poiners.

414

12,28

1229

12.30

12.34

1235

12.36

12.37

12.38

12.39

Parallel Algorithms

Design an EREW algeorithm with 7' (n, 7)=0(log #) to rank the forward edges in the list
obtained by the Euler’s tour method. En other words, for each forward edge you should find
the number of forward edges that follow it in the list. {This number is denoted by f (i, j}in
the texy, and it is needed to compute the preorder associated with the Euler tour; see Section
12.3.5)

Suppose that a tree T is given in the regular adiacency-list representation without the extra
pointers connecting the two copies of each edge. Design a fast and efficient EREW
algorithm to construct these pointers. You can assume that you have as much work space as
you want.

Let T be a tree represented by adjacency lists in the same way as described in Section
12.3.5. Design a T(n, n}=0(logn) EREW algorithm to find, for each vertex i, the numbey
of ancestors of { in the tree (i.¢., the length of the path to the root).

Construct a counter ciremit: The input consists of # binary numbers, and the output is the
binary representation of the number of |s in the input.

Consider the following attempt to prove the correciness of the add-even transposition sort.
We have seen that the maximum element gets to the right position. Without it there are
#— | numbers. But the maximum aumber adds at most one idle step to each number. Since
we have a step to spare, the algorithm terminates on fime. Discuss why this proof is not a
valid.

Consider the binary tree topology and assume that each leaf { has a number x;. Solve the
parailel-prefix problem under this model. At the end of the computation, each leaf ¢ should
have the sum x,ex;e ‘-~ &x; (where » is an associative binary operation that can be
computed in one step). The running time of the algorithm should be O {fog n}.

Consider the paraliel algorithm for finding the kth-smallest element on a tree described in
Section 12.4.3. Supgpose that the elements are not distinet. Describe the modifications to
the algorithm required to deal with this case,

Design & sorting algorithm for processors connected through a complete binary tree as
described in Section 12.4.3. Each leaf contains & number, and the goal is to get the kth
smalles: efement to the 4th leaf. Show that the running time of your algorithm is optimal to
within a constant.

The processors are arranged in a ring. Each processor P; holds the ith row of an n xn matrix

A and the ith element of the vector b=(by, by, ... b,}. We want to compute the mairix

vector product x =Adb such that x; is stored in P; at the end. {x,—xza,-k-bi.} Besign an
b=t

€2{n} algorithm for this problem,

Solve Exercise 12.36, except that initially each processor P; holds the ith column of the
matrix {and b,).

The transpose of a nxn matrix A is the matrix A7 such that ag:a}-,-. Suppose that A is
initially stored in an # xa# mesh such that P{i,] hoids a;. Design an (}{n) algorithm to
compute the transpose of A.

Suppose that you are given a mesh of » xn processors, each holding a pixel of an nx»n
black-and-white picture. In other words, each processor holds one binary number where |

12.41

12.42

1243

12.44

12.45

12.46

Creative Exercises 415

corresponds to black and () corresponds 10 white. We would like to find the connected
componenis of the piclure. Twe black pixels belong to the same componens if shere is a
black path connecting them (horizontally or venically, diagonzls are not considered
connected). Alf pixels in the same component should be labeled with a unique component
label. Initially, the (/7)th pixel is fabeled i -n+ /. Consider the following algorithm that
fabels each component with the smallest fabel of a pixel in it. In each step, each processor
holding a black pixel looks at the current labels of its black neighbors. If any of them is
smalier than its own label, then it updates it own. Prove that this algorithm wil eventuaily
label the components correctly, but thal it may require ¢ »° parallel steps for some inpus
(where ¢ is a constant). How would you terminate the algorithm?

Let A4 be an # % matrix stored in an 2 x»n mesh in the usual way. Lol ¢ and ® be two
permutations of (1, 2. ..., #), such that G is stored in the first row of the grid and nt is stored
in the second row. Design an O (#r) algorithm to permute the rows of A according o0 © and
the columns of A according 1o % {starting with the rows). [n other words, row { should move
to row o{i) and column ; should move to column #2(/).

Consider the n-dimensional hypercube topology and assume that each processor holds one
element. Design an G (n) parallel sigorithm to find 1he maximum of the 2° elements.

Design a fast algorithm to solve the parallei-prefix problem on an #-dimensional hypercube.
Each processor holds one number. You can assign indices 1o the processors in any way you
wani. At the end of the algorithm, each processor should have the value of the prefix
associated with its index.

Let G=(V, E) be a directed weighted graph with positive weights. Design a CREW
algoritha 1o compute the costs of all shortest paths in G in time O{log®n) where #n is the
number of vertices of . You can use as many processors as you want, and any reasonable
graph representatiosn.

Design paralle} algorithms for the following problem when an adjacency matrix is given.
Uise as many processors as you can while preserving an efficiency of O¢1).

a. Design an algorithm to determine whether 2 given undirected graph contains a triangle as
a subgraph.

b. Design an algorithm to determing whether 2 given undirected graph contains a square as
a subgraph (namely, a cycle of length 4).

A common way to generate integer random numbers s to use the recusrence
;=@ XL b (mod p), where a. b, and p are constants {p a prime}, and x| is the seed.
Design an EREW parallel algorithm for computing the first p numbers {from this sequence
when the seed is given. The running time of the algorithm should be T(p, pi=0O(logp).

a. Prove that a complete binary tree of height # > | (which has 2" — 1 nodes) cannet be
embedded in an n-dimensional hypercube (with 2" acdes). (Embedding one graph G in
another graph H involves mapping every vertex of (G 1o a unique vertex of H such that
two adjacent vertices of {5 are mapped into two adjacent vertices of H.)

b. Find ways 10 embed complete binary trees in hypercubes approvimaiely, that is, some of
the tree edges may be mapped (o short paths rather than to edges. The goal is to be able
@ map algorithms designed for complete trees 1o hypercubes with little effort (and with
reasonable efficiency).

416

12.47

12,48

1249

12.50

12.51

Parallel Algorithms

Show how to embed a two-dimensional grid of size 2° by 2™ in the {(k +m)~dimensional
hypercube.

This is a paralle] gossip problem. Suppose that there are 1 =2* persons, each with a certain
item of information, In each step, each person can commusicate with another person and
share ali the information he or she knows (including information leamed in previous steps).
A person cannot communicate with more than one person in any step. Design a
communication (gossip) pattem such that after log, n steps, everyone knows everything.

Design another systolic array for the convelution problem such that both the v vector and the
w vector move in the same direction (say, from left to right), Each processor will have two
inpusts from the left and two outputs to the right. The partial values are accumulated at the
processors. (Hint: Move the twoe vectors at different speeds.)

Design a two-dimensional systolic array for matrix muitiplication. The connections are the
same as a two-dimensional mesh. The first matrix arrives from the top row, and the second
matrix arrives through the first column, The result moves from right to left starting from the
iast colsmn.

In some biology applications of sequence comparisons, there are only four different
characters (corresponding to four types of nucleotides). In that case, each character can be
represented by two bits, Show that it is possible to encode the numbers associated with the
costs that move following the characiers in the systolic implementation given in Section
12.5.3 with only two bits as well. (This shon encoding is important, since it reduces the
required bandwidth between the processors.)

SKETCHES OF SOLUTIONS
TO SELECTED EXERCISES

You know my methods. Apply them.
Sir Arthur Conan Doyie

Chapter 1

.13 There are quite a few possible ties. The following states have 269 electoral votes overail:

California, New York, Iilinois, New Jersey, Massachusetts, Wisconsin, Maryland,
Minnesota, Washington, Jowa, Conpecticut, Rhede [sland, Washington DC, Ohie,
Michigan, North Carelina, Oregon, and West Virginia,
{Note: This is written well before the 1988 election.)

Chapter 2

2.1

26

The base case of # =1 is trivial. The induction hypothesis states that x*"' ~y"™' is divisible
by x—y for all natural rumbers x and y (x#y). We try to write x"-y" in terms of
Xyt

xT=y" ,—,x(x""l wy*'"l),q,},(“,{nml w}f”_£)+x _yr!—} -y cen!

:X(XH_I _yn—f)+y(‘=,ﬂ—| _yﬂ‘-|)+xy(x!!-2“yn-~2)‘

The first two terms in the expression above are divisible by x—y by the induction
hypothesis; the third term includes x""% ~y"~2. Therefore, we use the strong induction
principle by changing the hypothesis to state that x* —y¥ is divisible by x —y for a# natural
numbers x, y (x #¥), and &, such that k <a.

The base case is & =1, and indeed 12 =1(1 +1)/2. Assume that the claim is true for k- 1.
The sum for & is the sum for k-1, which by the induction assumption is
(=1 ¥AIV ek 1)k42, plus the kth element, which is {~1)*"14%. This sum is

=D e ()= = DRI2 = 1T (k- 1 2y = (=1 Rtk + 1)/2.

418

28

2.9

2,15

226

Sketches of Solutions to Selected Exercises

The proof is by induction on n. The case of =1 is givial. Assume that the claim is true for
n and consider # + 1, We have to prove that

2n(an+l + bn+l} > ({1 +b)n+l_
We start with the right side.
(a+ by =(a+ba+b) <{a+b2"a" +b"),

by the induction hypothesis. We now rearrange the expression to make it as close as we can
to the desired resujt (2"(a"*! + p7Hy).

{a_i_b}zn—l{an + bN)_,_,_zn—](au-Pl +bn+| +ha" "P'db”}

xzn(anﬂ + bn+l)+ 2n—l(bau +g bt _an-(-i _bn-!-i}‘

The left term is what we wani, so it is sufficient to prove that the right term is at most 0, In
other words, we need to prove that

2 Vba™ +ab” ~a"t! - p") <0,
The 2"~! factor can be igrored, and without it the expression becomes
ba"+ab"—a™ = b =g"b-a)+ b a-by=(b-a¥a" - b").

If a =h, then the expression above is equal o 0. GCtherwise, if @ < b, then the left factor is
positive but the right factor is negative, and vice versa if a > 5. In either case, the
expression is no moere than 0, and the proof is complete.

There are several ways to prove this theorem. We present a proof of a slightly more general
theorem. We say that an integer # is congruent to £ modulo 3, written n sk {(module 33, if &
is the remainder when we divide n by 3. (k can be any one of 0, 1, or 2.} We prove the
fotlowing stronger theorem.

7 Theorem A.l

A number n, given in its decimal representation, is congruent to k modulo 3 if and
only if the sum of its digits is congruent to k modulo 3.

Proof: The claim can be easily checked for smali numbers. Assume that it is true for
-1, and consider #, The difference between the decimal representations of n —1 and n is
only in the last digit, unless the last digit of # — 1 is 9. If the last digit of 7 ~ 1 is not 9, then
when we go from # -] o n, we increment both the number and the sum of its digits; thus,
the congruence remains the same. If the last digit of n —~1 is 9, then it changes o O and s
added to the second digit. The change of 9 to § does not change the congruence of the sum
of digits {since both are divisible by 3), and the addition of 1 to the second digit has the
same effect on the congrience of the sum of digits as that of the addition of 1 to the first
digit (e.g., it may cause another 9 to change 10 0).

The subtie point is that, when we subtract an element, say a;, from the list to reduce the size
of the number in question n, we mus make sure that » —a; $a;; otherwise, the induction
hypothesis cannol be used on #—g; since it may require another use of a4 in its
represeatation. But the requirement was that the sum use distinet numbers from the list.

The only tree with two vertices is a single edge, in which case both degrees are 1. Assume
thas the theorem is true for n =1 vertices, and consider the case of n vertices, Since alt

2.29

134

2.38

Sketches of Solutions to Selected Exercises 419

degrees are positive and their sum is 2n -2, at least one of them, say d;, must be equal o 1
and at least one of them, say 4;, must be greater than 1. We can now remove 4; from the
sequence and decrement d; by i There are now n—1 numbers whose sum is 2n — 4,
therefore, by the induction hypothesis, there exists a tree with these degrees. We can add
ene additional vertex (o this tree and connect it to the vertex whose degree is d; — 1 to obtain
the desired tree.

If two balls are put inside one box, then the box contains more than one bail. Assume that
the principle is true for n+1 balis and consider putting 7 +2 balls inside n +1 boxes.
Assume the congrary; namely, no box contains more than ose ball. But then, there exists a
box with one bali, and if we remove both the box and the bali we get a contradiction to the
induction hypothesis.

The claim is ¢clearly true for # =2, Assume that it is true for # and consider #+2. Take any
tweo vertices v and 4. The graph without them is X, and by the induction hypothesis it can
be partitioned into #/2 spanning trees. We need 10 extend those spanning trees to include v
and u, and to add one more spanaing tree. The edges inciuded in X, that are not covered
by K, are those that are connected to v and #. We partition the set of # vertices into two
equal-sized groups X and Y. The new spanning tree contains the edge (v, u) and ali edges
from v to vertices in X and from u to vertices in ¥. Each of the previous spanning frees
incledes ali vertices in K,. Therefore, we can extend each of these sparning trees to span
K, .; by adding an edge from a vertex of X to u and an edge from a vertex of ¥ to v. We
will choose different vertices of X and ¥ for each spanning teee,

We added a subtle implicit assumption in the proof: We took it for granted that a maximum
always exists. If all the x;s are positive integers, then there ase finitely many possible sets
whose sum is 3, and se & maximum always exists. However, if some of the ks are real
aumbers, then a maximum may not exist. Hence, the proof, as is, is valid only for integess.

Chapter 3

36

8

314

345

H is easy 10 remove the recursion:

Ty=Th-D+af2=T{n-D+n-1}Y2+n/2= - =
P 2243424 - 2= n{n+ D4+ 172,

Let # be a power of 2. We guess that T (n)y<cn (logyn¥. We have to verify {see Section
354y that (1) ¢2(log,2)" 24, and that (2 ¢ (20 (log,{2m)* 2 2ca {logyn ¥ + dn log,(2n),
for some value of ¢. We can simplify (2) to

2en (logn ¥ +4dcn logyn + 2en 2 2en (log;rr}2 + 4 logyn + 4n,
Both inequalities clearty hold for ¢ 22,

We have

a=nel
" log,e FEUEY |

¥ itlogyi < j xlogyxdx = —~—ki21 [x“‘logx««x“‘ﬂ | =0 (n** ogn).
I A=

i=f £=

The functions £ {n)=3n, g(ny=2n, and g (n) =r (#)=n form a counterexampie to the claim.

420

3.17

319

32t

325

Sketches of Solutions to Selected Exercises

We can construct the two functions by letting one of them grow fast for ail even numbers
and the other one grow fast for the odd numbers. We define the functions recursively. Let

f(H=g(hy=1.

fin=H+1 when # is odd
Fim= fir=D+{gn-1¥ whenniseven

and
gin-bH+1 when # is even
g{n)= " PRI s
gin=N1+{f(n-bHy whennisodd

£ (my is abous the square of g (#) for ali even numbers, and g () is about the square of f (#)
for ail odd numbers, Therefore, f (m)2 0 (g(a)) and g{n)= O (f (M.

We can use Theorem 3 4, since mr and ¢ are constanis, The result is

S(n)=0[n st "’”"ﬂ‘

The sclution is T(ny=0{n). To prove i1, we guess that T'{#} < dn for some constant 4. We
have to show that

k &
dn2 Y, aldnib)+cn=dn Y a;lh;+cn.

i=l i=l

£
Since f=1-% a;/b; > 0, the inequality above hoids for d 2 ¢/f.
f=tf

If we repiace the term T({ V|) with T(x/2), then we get the typical divide-and-conquer
recurrence relation, whose solution, by Theorem 3.4, is O (# logn}y. Thus, since v is no
greater than #/2 for n 22, T{ny=0{n log n}. However, it is possibie that T{»} is smailer
than that. Let’s try T{n)=cn. The base case implies that ¢ 21. Consider 2n. We have o0
prove that

2en zen + Nen +n,
which is clearly true forc =2 and 7 2 2.

a. If n is a power of 2, then the upper part of the recurrence will always be used. In this
case, we can substitute k for », and obiain the foliowing recurrence relation for
T'(ky=T¢2%),

Thi=T&=-D+1, TG =1,
The solution of this recurrence relation is cleasly Tk =k + 1.

b. Consider now n=2"~1. If we use the bottom parnt of the recurrence, thes T(x) is
replaced by Fin— 1323, and (- 1w2=2""~1. In other words, if we start with
a=2"~1, then we will always use the botzom par of the recusTence relation, because the
numbers involved will always be of the form 2/ —1 for some j. We can now define
Tk =T (2 — 1), and obtain the recurrence relation

Thy=2% -1, T{)=1

The solution of this recurrence relation is clearly T'(4)=2*"'. The recurrence relation

Sketches of Selutions te Selected Exercises 421

behaves differently for powers of 2 and for nonpowers of 2, because its definition is
vastly different berween even numbers and odd numbers. We can restrict ourselves to
powers of 2 if the solution of the recurrence relation is a function that behaves “*nicely.””
In particutar, the expressions for the running times of most algorithms are monotonicatly
increasing functions, Hf the difference between the value of T'{n) and T(2a) is no more
than a constant and if T¢{») is monotonically increasing, then T{m) for # <m < 2n is no
more than a constang times T'(n). Therefore, the analysis for powess of 2 is sufficient in
that case.

Chapter 4

4.5

4.12

4,13

4.15

Since 16 is occupied, B {16’s parent) must be occupied. By the same argument, 4, 2, and |
must be occupied. Thus, § is the mirimal number of heap elements in an array of size 16,

We will use an array of size n and store element 7 at location i. Therefore, insertions are
easy. A removal is more complicated, since { is nof specified and we do not know which
locations are occupied. We handle removals by linking all the occupied locations in a
linked fist. An insertion of / thus invelves marking the ith location and inserting i to the list.
A removal deletes the first element from the list and unmarks that element.

We firsz remove an arbitrary element from one of the heaps {e.g., the top of one of them),
and rearrange this heap. We then inser the removed element as a new reot such that the
roots of the two heaps are connected 10 it as its children, The new root may not be in its
appropriate piace, but it takes O {log {m +#n)) steps to move it down the combined heap to a
correct piace.

We use AV trees so that insertions and deletions can be done in Ologn} steps. To
perform Find_Next(x} we use the reguiar search algorithm for x, except that we branch right
if we meet x and x is not a leaf. If ¥ is not a leaf, then the search leads us to the desired
ciement. I xis a leaf, then the element for which we are looking is the last node on the path
from the root to x where we braach to the left (if we always branch to the right, then x is the
largest element in the tree). We can, during the search, store a pointer to the last node from
which we branch eft and use it if x is found to be a leaf,

We use AVL trees so that insertions and deletions can be done in O {fog #) steps. We add a
new field to every node v, denoted by v, which contains the number of descendants of v
(including v). We can use this field to find the rank of a node v (namely, the aumber of
elemenss in the tree that are smatler than or equal to v.Key) during the search. This is done
by the use of induction as follows. We assume thar we know the ranks of all nodes on the
path frem the root to some node w, and show how to find the ranks of the children of w.
Denote the rask of node v by v.Rank.

w.Left Rank =w.Rank —w . Left Right. D ~ 1.

w.Right Rank =w.Rank + w.Right Left. D + |

(If any of the children does not exist, the D value is taken as 0.) To perform
Find_Next(x, k) we first find v such that v.Key = x {if there is no such node, then the search
is unsuccessfui). We then search for the node with rank v.Runk + 4 I is as easy to search
according to ranks as it is according to keys. We are not yet done, however. Since we have
introduced a new field, we must show how to maintain this field when insertions or deletion

422

4.20

4.27

4.29

Sketches of Solutions to Selected Exercises

take place. This is done as follows, When we insert (delete} an element we incremest
{decremens) the descendant fields in all nodes along the search path. (MNotice that, if the
insertion or the deletion is unsuccessful, we must redo these changes.}

Here is another question: Why did we add a descendant field instead of a rank field, which
would have made the search for a key with a specified rank much easier?

Let the height of the ““left” tree (i.e., the tree with the smaller elements) be £, and the
height of the right wee be k,. Assume that i, 2h, (the other case is similar). First, delete
the maximai element from the ieft tree. Denote this efement by r. Then, use r as a new root
for the right tree, and insert this root in the appropriate place on the right side of the left
tree. More precisely, traverse the ieft tree, taking only right branches, for A — A, steps. Let
the rode at that piace be v, and iis parent p. The new concatenated tree will have r in piace
of v as the right child of p, v as the left child of » and the root of the right tree as the right
child of r (the right tree remains below ifs root on the right side of r). It is easy to verify
that this is a consistent binary search tree. This insertion may invalidate the AVL property,
in which case we can use the usual remedy of a rotation.

Le: T, be the worst AVL tree of height k (namely, the tree with the fewest nodes), 7', is
clearly a tree with a root and one child. T, is a tree with a root and two children such that
one of the children has one child of its ows, and the other child is a leaf. In general, we
assume that we know how to construct T, and consider T, . T, must have a child that is
a root of a subtree of height A Since this subtree must satisfy the AVL property and we
wang & tree with fewest nodes, we should use T,. Furthermore, since the AVL property
must also be satisBed at the root, the other child of the roof must be the oot of a subtree of
height at least &£ — 1. The subtree with fewest nodes for this child is thus T},_,. Therefore,
1441 consists of a root connected to T, and 7,_;. The number of nodes N(h+ 1Y in T,
satisfies

N+ D=Nh)+Nh-D+ 1.

This is the Fibonacc: recurrence relation, Hs solution leads to the lower bound on the
number of nodes in an AVL free. This fower bound can then be used to prove the upper
bousnd on the height of an AVL tree with # nodes given in the theorem.

We use the extra array, denoted by S, to store sums of pumbers in a special way. Let's
assume §1st that n =2f — I for some £. We store in 5 [2°7] the sum of all numbers from | to
241 By doing so, we have divided the probiem into two subproblems of half the size —
maintaining the left side of the array {from | 10 27" =13, and the right side of the array
{from 2~ + 1 1o 2* - 1}. Each subproblem can be solved by induction. The first subpreblem
can be solved independently, except that every time an Add operation is performed, the
appropriate change in $[247'] must be made, The sccond subprobiem can also be solved
independently, except that we add the value of §[2F*] to the retumed value of Partial_sum.
If we look beyond the recursion, what happens is that S/} helds the sum of the numbers
from A{j] 1o A{i}, where j is the closest index to j that is divided by a higher degree of 2
than {. For example, §[12} holds the sum A 9]+ A [10) + A [111+A[12), and 5{6] helds the
value of A[51+A[6]. We leave the exact details to the reader.

We can implement all the operations in the exercise, except for Add_all, in a straightforward
way by using AVL frees. To support Add_all{y), we associate one more global variable,
Scale, with the tree. Add_all(y) simply adds y to Scale. Find value(x) adds Scafe to the
value associated with x. fasert(X, Value) sets the value of x as Value —Scale.

Sketches of Solutions to Selected Exercises 423

Chapter 5

54

512

5.14

515

521

The loop invariant is the following:

Only one person among the first next — 1 persons can be the candidate, and
that person is i if next = j, or j if next = i,

The solution is simifar to that of the maximum consecutive subseguence problem, except
that we strengthen the induction hypethesis even further. We assume that we know (1) the
subsequence with the maximal product, {2) the subsequence that ends at the end with the
maximal product, (3) the subsequence with the minimal negative product, and (4) the
subsequence that ends at the end with the minimal regative product. We leave it o the
reader 10 handle all these cases,

The sotution is trivial for a tree with one or two vertices. Suppose that we kaow how o
solve the problem for a tree with # vertices, and consider a tree T with 2 + 1 vertices. Lety
be an arbitrary leaf in T, and let w be the only vertex connected 1o v. Tf we remove v, we are
feft with a smalier tree T°. The distance between v and any vertex u in T is 1 plus the
distance between w and u.

Let v be an arbitrary vertex in G, which we designate as the root of the tree. H we remove v
from the free, we obtain several smaller trees whose roots are the vertices that were adjacent
te v. We can repeat this process, each time ob:aining new roots and smaller trees, nati all
edges are removed. We will solve the problem by induction on the rumber of times we
have to perform this process unti} all edges are removed. [the path corresponding to the
diameter of the tree does not contain the root, then the diameter of the ree is also the
diameter of one of the smatler trees, which we find by induction. If the root is contained in
the path corresponding to the diameter, then this path connects two vertices in two separate
smatler trees that are farthest away from the root. This observation suggests the following
induction hypothesis (which is stronger than the straightforward one),

Induction hypothesis: We know how (o find the diameter of subtrees with <
n vertives, and how to find the maximal distance from a fixed root.

The base case is trivial. Given a tree with # vertices, we designate v as the root, and solve
the probiem by induction for all the subtrees rooted at the chiidren of v. Neotice that the
distances we find are those o the children of v, and rot those to v. However, to find the
distances {0 v, we need only to add 1 to ail the distances. After deing that, we compare the
maximum diameter found among the subtrees with the sum of the :wo maximum distances
from v. The larger of the two is the diameter.

We assume that a subset whose sum is & exists, Use the black box for the input set without
one of the elements. If the answer is yes, then there is a selutior without this element; if
the answer is no, ther the element is necessary. In either case, the probiem has been
reduced, since the status of one element has been determined.

Chapter 6

6.3

We can use binary search by cutting the text i half and renning the program on ene half. If
an error occurs, then we know that it is in that half and we can continue in the same manner;
if no ervor occurs, then it is in the other half. (We assume that the offending string has not
been cut.}

424

6.14

6.14

6.19

6.20

6.22

Sketches of Solutions te Selected Exercises

We firs: modify algorithm Partition (Fig. 6.9} such thal, if the pivot is not equal to X [Left §,
then the pivet is frst exchanged with X [Left]. Let X[1)=1, X{n]=2, and let ali other
elemtents be greater than 2. In this case, the pivot will clearly be X [#]. Algorithm Partition
will first excharge X [1] with X{n] as mentioned above, then exchange X [n] with X{2]
(since X[n] is now < 2 and X [2]>2). Since all other elemenis are greater than 2, no other
exchanges will take piace. The result of the partition is to put 1 and 2 at their correct places
in the beginning of the array. Quicksort will then recursively sort the array from the third
index to the last one, To continue this pattern, we need to put the third smallest element in
the third position, and, since the eiement in the last position in the array after the partition
was originally in the second position, we need to put the fourth smallest element in the
second position. For exampie, if # =8, then a bad order willbe 1,4,3,6,5,8,7, 2,

Divide the set into two equal-sized subsets (or into two sets with sizes different by 1 if the
size of the original set is odd). Solve each subproblem recussively, and merge the results.
Each recursive solution produces twe results, the maximal and minimal element. Only two
comparisons are required to merge the two soluiions; one to compare the two maximals, and
one 1o compare the two minimals. The following recurrence relation is obtained:

Tmy=2Tw/2y+2, T(D=1.

It is easy tc verify by induction that T(n)=3n/2-2: T(2)=3-2/2-2=1, and T{2n) =
2T (n)+2 = 2(3n/2~2)+2 = 3n ~2. The savings come from the base case! k rakes only
one comparison to find both minimum and maximum between two numbers. We do it (at
the final unfolding of the recursion) for r/2 pairs, so we save about #/2 comparisons. It is
interesting to neote that more than 3#/2 - 2 comparisons may be needed if a2 is not a power of
2. For example, since T{3)=3, we have T{6)=8, T(12}=18, and so on. The algorithm
suggested in Section 6.5.1 is better in this case.

Consider w =A [#/2] {we assume withous loss of generality that n is even). If w2z, then z
must gppear in the array between A[1] and A[#/2]). This is true because the difference
between consecutive elements in the array is at most 1, and therefore no number can be
skipped. Ef w <z, then, by a similar argument, z must appear between A [n/2+ 1) and A [n}.
I either case, we cut the search space in half with each comparison, The maximai number
of comparisons is thus [fog,n}.

We can use the simple information-theoretic bound. The number of possible answers o the
guestion posed by Exercise 6.19 is n (2 can be equal to A[], A [2}, and so on). Therefore,
any decision tree that solves this problem must have at least n Ieaves {where the fth leaf
corresponds to the answer **z is equal 10 A {#]""). The height of such a decision tree must be
at least [log,n.

a. Sort the set §; then, for each element 2 of §, perform binary search for the number x -z,

b. We use induction.

Induction hypothesis: We know how to solve the problem far a sorted set
of <n elements.

Assume that § is sorted in increasing order. Consider S[1] and S[n), and let
»=5111+58|n]. I y=x, then we are done. H y > x, then clearly S [# } cannot be part of
the solution because Sin}+S5li}>x for all i. Therefore, we can eliminate S[#} from
consideration and solve the remaining problem by induction. I y <, then, by a similar
argument, we can eliminate S]1],

6.26

6.28

6.29

6.31

6.33

6.36

Sketches of Solutions to Selected Exercises 425

Sort the set, and pair the smallest element with the largest, the second smallest with the
second iargest, and so on. This procedure is correct for the following reasons. Suppose that
there is ancther partition with a better bouad, in which x| and x, are not matched. Let x, be
matched in this partition with x; and x, with x;. But then, we can change the pastition so
that x is matched with x, and x; is matched with x;, without increasing the maximai sum,
which is a congradiction.

The permutation a,,a,, .., 4, defines a total order on x,;, vy, .., 5, That i5, we can
‘““compare’’ any pair of elements x; and x; by comparing a; te 4;. We want to rearrange the
x5 such that the a5 will appear in order. Therefore, any sorting algorithm that sorts
according to the values of the a;s and moves bhoth x; and ¢, together wili lead to the desired
ouscome. Since we want an in-place algorithm, we can use, for exampie, heapsort.

Initially, put all the 4 minimal elements of the sequences in & heap. Then, in each step,
remove the minimal element in the heap and insert the next element from the corresponding
seuence.

a. Insert each eiement into a balanced binary search tree (e.g., an AVL tree}. Each node of
the tree has a key and a pointer 10 a linked list of all the elemenis with the same key.
Since the number of different keys is G(loga), the number of nodes in the tree is
O (log n) and therefore the tree’s height is O (loglogn). After we consinsct the ree we
can append the different linked lists to one list by performing inorder traversal of the
tree.

1. The lower bound for sorting does not apply 1o this problem, because the lower hound
proof assumed that all permutations are possible valid inputs. In this problem, we
restrict the possible inpuis 1o only those with O (log) different values,

The sum of heights is at most

Tiny=2 % [log(tn+ 1y,

imt
To evaluate T (1) we start with a smalf concrete example. Consider T(7):
T(7) = log, 8+ logy4 +[log,8/3] +log; 2 +] log,8/51 +[log,8/6] +[log, 8/ 7}

=3+2+2+1+1+1+1

There are 4 {=(n + 1)/2) terms of size 1, two terms of size 2, and one term of size 3. Let's
assume that n+ F=2% [t is not difficult to see that 7 (n} will consist of (1 + 13/2 terms of
size 1, (n + 13/4 terms of size 2, and s0 on, up to one term of size & (This is exactly the
heights of all nodes in a complete binary tree.) So, overail

&
T{ny= Y, i2*"
jal
This sum was shown to be O (s} in Section 3.4. I #n+ | is not a power of 2, then there can
be at mrost an exira contribution of 1 1o each term, adding no more than 4.

Suppese that algorithm A finds that x; is the &th largest element by making a series of
comparisons whose results cannot determine whether a certain element x; is greater or
smaller than x;. This implies that the outcome of the comparisons is consistent with x;
being equal to a value y > x; and (o a value z <x,. But both cases lead to a different kth
largest element, which is a contradiction.

426

6.38

6.41

6.44

6.46

6.51

6.54

6.6}

6.61

Sketches of Solutions to Selected Exercises

The idea is to consider 2k elements at a time. We start with the first 2k elements, and find
their median. All elements greater than the median can be eliminated. We now look at the
next £ elements and do the same. This process requires approximately n/k phases, each
consisting of computing the median of 2k elements.

There are exacily # + 1 possible answers to this problem, so every decision tree thas solves
the problem must have at least # + | feaves, The claim follows immediately,

This problem is discussed in Section 10.2.

The basic idea is to construct the next table for the part of the pattern that is known, and 10
extend it as more characters of the pattern become known. This is not hard to do, since the
construction of the nexs table is similar to the regular pattern matching probiem {see also
Takaoka [19861}

Part I serves as a geod hint for the solution of part a. We find the minimal edis distance
(and the minimal edit sequence) between T and P under the assumption that no
repiacements are allowed (the same algorithm can be used, except that the cost of a
replacement is set to 23. The LCS of the two sequences is the set of characters that are
matched in the mirimal edit sequence {i.e., those that are not inveolved in the insertions or
deletionsy. The SCS is the LCS plus all the insertions and deletions. We leave the proof to
the reader.

The easiest way to scive this problem is to use the reguiar sequence comparison aigorithm,
except that the initial values of C(f, 0) {see algorithm Minima! Edit Distance) are (. n
other words, inserting the beginning of A does not cost anything, which is exactly what we
wani.

The {not surprising) answer is that it is beiter to he correct than to be fast. Given a Las
Vegas algorithm that runs in expected time T {n) and aiways produces the correct resuit, we
can iransform it into & Monte Cario aigorithm by enforcing :ermination of the algorithm
after 47 (#} steps, if it has pot already terminated. Since its expected running time is 7 (x),
the probability that it does not terminate after 4T (1) steps is no more than 1/4. When we
enforce termination, we output an arbitrary answer. The algorithm now runs in
{guaranteed) time ¢ (¥ () and so more than 1/4 probability of error.

A little harder question; Show that i is sufcient 10 run the aigorithm for 2T (n) steps.

We use the majority algorithm, except that we keep up to three different candidates. Each
element is compared to the caadidates, and if it is equal 10 one of them, then the
correspending multiplicity is incremented. Otherwise, if the new element is different from
the existing three candidates, then we can decrement the multipicity of alf candidate {by the
same argument as i the majority algorithm — we can efiminate fouy distinet values from
consideration). If there are less than shree candidates, we add the current element as 2 new
candidate. At the end, afl remaining candidates are compared to all the clements.

Chapter 7

1.4

Let T be a tree that satisfies the conditions of the problem, and consider the rest of the graph.
Let ¢ be an edge not in T, Since T is a DFS iree, £ must be a back edge; that is, ¢ must
connect a verlex to its ancesior. However, since T is also a BFS tree, £ must connect iwo
vertices at the same level or at neighboring levels. This is a contradicsion; hence, she only
graphs that satisfy the constrainis of the problem are trees.

18
124

7.27

7.29

1.34

1.35

7.37

7.40

7.42

Sketches of Solutions to Selected Exercises 427

The ciaim is wrong.

The conditions of the problem imply that G is Eulerian. Consider an Eulerian circuit C in G,
and its traversal.

Perform a DFS (a BFS will do just as well), and construct the DFS tree. Prove that any icaf
in that tree satisfies the conditions of the problem.

The solution is by induction. The base case is simpie. We want to reduce the problem to
one with # — | numbers, and still have the same constraints. Since all 4,5 are positive and
their sum is 2n ~ 2, there exists at least one & such that 4, = 1. There alse exists j such that
d; > 1. So, we can remove d; from the list and subtract 1 from d;. This is a valid problem
of size # -1 (everything is still positive and the sum is 27 —4), which we sclve it by
induction. We find a tree T with the corresponding degrees. We need only to add a leaf to
the vertex correspending te d; in T to find the tree that solves the original problem.

We use the KMP pattern-marching algorithm (Section 6.7) in combination with a DFS-like
{preorder) traversal of the tree. During the traversal, we maintain the status of eack vertex
in regard to curren: potential matching. That is, we define v.match to be equal to the size of
the maximal prefix in the pattern that matches the suffix of the path from the root o v. {This
is exactly the same information that is maintained by the KMP algorithm.} preWORK for v
is defined by including v's character as the next step in the KMP algorithm, and computing
v.amatch. postWORK is defined by restoring the status of v — that is, by continsing the
matching from v using v.match, The running time of this algorithm is linear in the number
of vertices in the tree,

Without the cycle, the graph would have been a tree for which the problem is casy (pick a
root and direct all edges away from it). We can discover the cycle by DFS when the frst
{and only) edge leading to a previously visited vertex is found. The cycle can be directed so
that it becomes a directed cycle and all its vertices have indegree 1. All other edges should
be directed away from the cycle. This can be achieved by starting asother DBFS from any
vertex on the cyele and directing ali edges in the direction they are visited during the search.
The single back edge will point to the root of the search which wiil have indegree 1 {as wil
ail other vertices).

Perform DFS on the graph, and build a DFS tree 7. Since all the other edges in the graph
are back edges relative to 7, we can direct all edges of T to peint away from the root and ali
other edges to point toward vertices that are closer fo the root {i.e., toward the ancestors).

Modify the topoiogical sort aigorithm so that all vertices of indegree 0 are removed together
from the gueue and are put in one group. The algorithm handies these vestices as before
(i.e., it removes their emanating edges by decrementing the corresponding indegrees), and
then again all vertices of indegree 0 are removed. Prove that the groups satisfy the
conditions of the problem, and that there are no more than £ + 1 of them.

Use BFS starzing at v. Each edge (x, ¥) encountered through the search, such that y is a new
vertex, is part of a shortest path from v to y. A common error is to increment the count of
shortest paths to ¥y when {x, y} is encountered. However, there may already be several
known shortest paths to x, and each one of them is a part of a shortest path te y {ending with
the edge ¢x, y)). Hence, the correct solution s to add the number of shortest paths 1o x
{which is already known} to the count of shortest paths to y. All counts are initialized to 0.

7.45

7.48

1.50

7.52

7.55

7.60

7.64

Skeiches of Solutions to Selected Exercises

The main idea is not to use a heap. Instead, we find a new minimum path by looking at alf
the vertices. This takes O (| V |) time, but now the update for each edge takes only coastant
time (since no heap is maiatained).

Add 1o each edge & weight of Ti where # stands for a unit. Use the same algorithm, except
that the length of a path is its regular length plus the sum of units. The usits are used to
compare two paths with the same regular weight. Instead of using artificial units, it may be
possible 10 add a very small number x to the weight of ecach edge. The value of ¥ must be
small enough that it does not affect paths with different regular weight. For exampie, x can
be tzken as m/{|V | + 1}, where m is the precision of the weights (e.g., if they are integers,
then m =1}

We use induction on &, and find not only the path to w, but also the paths to all other
vertices. For simplicity, we discuss findiag only the lengths of the paths, rather than the
paths themselves. The case of k=1 is obvious. Denote by w.5P, the length of the shortest
path from v to w which contains exactly & edges. Assume that we know the shortest paths,
which contain exactly & — 1 edges, from v to all other vertices. That is, we know the values
of w.SP, ., for all w. We now need to consider all edges, and for each edge (x, y) set y.5P,
10 %8P +length(x, v) if it is smaller than the current y.5P,. The runniag time is thus
OUEL- V).

Algorithm Improved_Acyelic_Shortest_Parhs (Fig. 7.16) works for negative-cost edges as
well, (Hint for a proof: Whenever a vertex is considered, all the paths leading to it from the
source have been compared.}

The graph must be Eulerian, since each cycle adds a degree of 2 to each of its vertices, On
the other hand, the edges of an Eulerian graph can always be partitioned into a set of cycles.
It is enough to note that there exists at least one cycle in an Eulerian graph, and that
removing a cycle from an Eulerian graph gives a set of {possibly one) connected Eulerian
graphs.

This is an excellent example for a solution by induction. The induction will be on the
number of vertices. The base case is simple. Let v be any leaf in the tree. We would like to
remove v, to solve the problem for the remaining tree, and 1o fiad a value of S{v) that
satisfies the requirements. If the edge connected to v points toward v, then the reduction is
simple: Let the edge be (w, v}; then, $(v) can be set 1o S(w)_s{ Alw, v}}, and it is easy 10
see that the requirements are satisfied. The difficeit case is when the edge is (v, w). In that
case, we set §(v) to be equal 10 S{w) and change all the other subsets by adding the label
Alv, wito them. His easy to verify that all the requirements are satisfied.

Start with F as the current *‘minimal’ spanning tree and add edges ro it according to the
algorithen in Exercise 7.59.

First find the MCST, call it T. (The answer for ail edges of T is obviously T itself.) For
each pair of vertices v and w, find the maximum-cost edge in the {unique) path connecting v
to win 7. This is a preprocessing step. We may not need the information for alf pairs, but it
is simpler to compute it for alt of them. A minimum-cost spanning iree containing the edge
(x, ¥) is obtained by adding the edge (x, y) to T, then removing the maximum-cost edge
from the unique cycle that is formed {or the second largest, if (%, y) is the maximum}. This
edge is the maximum-cost edge on the path from x to y in T, whose identity we obtained in
the preprocessing step. The preprocessing step can be done by using DFS on T for |V |

167

7.68

170

7.7%

7.74

Sketches of Solutions to Selected Exercises 429

times, each time staszsing from another vertex.

{ncreasing ali costs by a constant does not change an MCST, because only the refative order
of the costs is important for the algorithm. Whenever costs are used in the algorithm, they
are compared to each other with a simple comparison { **<'* or **>""). They are not used {or
masipulated) in any other way. Therefore, since adding a conssant to all costs does not
change the order of the costs, it also does not change the result.

(This is just a sketch of 2 rather complicated algorithm.} First, we notice that we can
concentrate on T and ignore the rest of the graph. Since T has already been found o be an
MCST, every other edge in G completes a cycle with the edges of T in which it is a
maximum-cost edge. Adding another vertex does not change tha: fact. We wili also
assume, for simplicity, that v is connected to all vertices in T (eg., we can add dummy
edges with infigite cost). We use induction on the number of vertices in 7. Consider T as a
rooted free (with an arbitrary root), and lock at an internai vertex w connected to several
icaves. Each pair of leaves x and y connected to w defines a cycle of four edges with v and
w (containing the edges (w, &}, (x, v), (v, ¥), and (v, w)). The maximum-cost edge of this
cycle should be deleted, which creates a new leaf in the new graph. This leaf is guaranteed
to be in the new MCST, which will reduce the size of the problem. We are not quite done,
since w may have only one leaf 2. In that case, the cycle is a triangle coasisting of (w, 1),
{z, v), and (v, w). The difficul: case is when (v, w) is the maximum-cost edge in this cycle
and needs to be removed. This case is difficult because no new leaf is found. However, we
can stifl reduce the problem by “‘compressing’ w. We replace the two edges {w, z) and
{w, p} (where p is the parent of w in the rooted tree} by one edge {(p,), and set the cost of
this new edge as the maximal cost of the two old edges. We leave it to the reader to
complete this argument into an algorithm. One needs to prove that the compression is vatid,
and to design the appropriate data structure to maintain the necessary information during the
running of the algorithm.

The main idea is 10 solve the problem backward. Instead of deleting vertices in the way the
problem is stated, we add vertices in the opposite order. We use the union-find data
structuge (Section 4.5) 10 maintain the set of components currentiy in the graph. We start
with vertex # and add iz as one component to the data structure. We then consider vertices
n-1i, a~2, and so on. For each vertex {, we first add it as & compenent, then check al
edges (4, j) such that j > i. For each such edge (i, j), we check whether i and j belong 10
the same component (using the &nd operation), and, if not, we join the two corresponding
components {using the union operation). We stop when one componesnt contains more than
ni2 vertices.

Since every cycle in G mus: contain an edge from the feedback-edge set F, the set of edges
E —F cagnot contain a cycle. We want to minimize the size of F, which is the same as
maximizing the size of £ —F. The largest set of edges with ao cycle in a graph corresponds
10 a spanning tree (or sparning forest, if the graph is not consected). Hence, the minimum-
size feedback-edge set in an undirecied graph is a complement of a spanning tree of the
graph, and its size is |E{ -}V |+ (assuming that the graph is connected). The
corresponding problem for directed graphs is NP-complete (see Chapter 11}

Check all the edges not in the tree. 1f there is an edge (v, w) such that v.5P + cost(v, w) <
w.SP (where ©.SP is the length of the shortest path to x via the tree), then the tree is
obviously not a shortest-path tree. B remains e prove that, if no such edge exists, then the
tree is indeed a shortest-path tree.

438

1.9

7.84

7.85

787

789

Sketches of Solutions to Selected Exercises

Find a topologicat order, and then check, for all vertices with consecutive labels, if they are
connected in the graph. H they are, then the topological order gives a Hamiltonian path. On
the other hand, if there exists a Hamiltonian path, then any topological order wili sort the
vertices according 1o their place in that path.

We proved in Section 7.9 that two edges are contained in a cycle if and enly if they are in
the same bicomnected component. Hence, we need only to remove ¢ from the graph and ©
ru# the biconnected components algorithm to determine whether a and b beloag to the same
biconnected component in the graph without ¢.

We will prove a slightly stronger theorem (and feave it to the reader to show that iz implies
the claim in the exercise}.

{1 Theorem A.2

If v and w are two vertices of the same biconnected component B, then any simple
path between v and w is contained in B.

Proof. There is obviousiy at feast ene simple path between v and w in B, Tf there is
path that is not contained in B, then it has 1o leave B and to come back. H has to feave B
from one component and to come back through another (since it is simple, and two
components can be connected only through ene articulation point). But that would imply
the existence of a cycle involving more thas one biconnected component, which is
impossible.

Pick an arbitrary articulation point v. Remove v ard its incident edges from the graph and
find the different connected componenis of the resulting graph. Then put back the removed
edges into the appropriaie components, Consider now cach component scparately, and
perform the same procedure by pickiag another articulation point, and so on.

A first approach may be to try to modify the strongly connected component algorithm to
updale the High values more accurately. For example, instead of using DFS numbers, we
can use the currently known High values. In other wonds, when an edge (v, w) is
considered for the purpose of computing v.High, we use w.High instead of w.DFS in the
computation. However, w.High may be updated later (e.g., one of its other children may
have a path to a higher vertex}, Updating al the vertices that used the previous vaiue of
w.High may be too costly. We use another approach.

Denote the largest DFS number reachabie from v by v.Real Migh. All the vertices in the
same strongly connected compenent have the same characteristics as far as reachability is
concerned. That is, if any of them can reach a vertex w, then all of them can reach w.
Hence, it is sufficient 1o compute v.Real High for one representative of each strongly
connected component, We first use the strongly comnected compenent algorithm to
construcs the SCC graph SG. Each node in SG is marked with the DFS sumber of the root
of the corresponding strongly connected component {this is the vertex with the highest DFS
number in the component). SG must be acyclic, so we have reduced the problem to that of
finding the Rea! High values of acyclic graphs. The advastage of this reduction is that it
solves the problem with repeated updating that we had before. Since 5G is acyctic, there
are mo back cdges. Therefore, at the time the edge (v. w) (in SG) is used to vpdate
v.Real_High, the value of w.Real_High is the correct final value, We leave it te the reader
to prove this fact — for example, by induction (the proof is nol [rivial).

792

795

7.99

7.160

7.104

Sketches of Solutions to Selected Exercises 431

a. Suppose that v belongs to a vertex basis B. Ff v is not on a cycle and v has a nonzero
indegree, then there exists a vertex w such that (w, v) is an edge and w is a0t reachable
from v. For B 1o be a vertex basis, either w belongs to B or there is a path from some
veriex in B to w. In either case, however, there is also a path from a verzex in B to v, and
v can be removed from B. This contradicts the minimality of B.

b, Since no vertex is on a cycle in an acyclic graph, it follows from part a that orly the
vertices of indegree (can be in a vertex basis. But, it is aiso true that each vertex of
indegree 0 must be in any vertex basis, since there is no path leading to it. Hence, the
unigue vertex basis of an acyclic graph is the set of vertices of indegree 0 (we proved in
Section 7.3 that this set is not empty).

Given a general graph now, we frst 8nd the SCC graph {see Section 7.9). As we have
shown, the SCC graph is acyclic. Any vertex in a strongly connected component covers
ali other vertices in this component. Hence, it is sufficient t0 choose one of the vertices
in each component. Thus, a vertex basis consists of one vertex (any veriex) from each
compenent that corresponds to a node of indegree 0 in the SCC graph.

Consider the tree as a rooted tree with an arbitrary root. Take an arbitrary leaf v and march
it to 115 paren: w. Remove both from the tree {and all other *‘brothers’ that become
disconnected). Soive the resulting problem by induction. We need to prove that the edge
{v, w) indeed belongs to a maximum maiching. Let M bhe a maximum maiching. H M does
not contain (v, w), then v is not matched (it is connected only to w). I (¥, w) is in the
maximum matching, then simply replace it with {v, w}. | is stil} a matching, and it has the
same cardinatity,

a. A graph must not include a vertex of degree 0 to have such a cover. When we remove an
arbitrary vertex, we may end up with a component that consists of only one vertex,

b. We now assume that the graph contzins only vertices of degree >0, and we make sure
that the reduced graph satisfies this condition. Only vertices of degree ! pose any
problem. So, if the graph contains any vertex of degree 1, we remove one such vertex
with its edge and add this edge (which is a star graph by itself) to the cover. Only one
degree of one other vertex is reduced by 1. It is easy to see tha: this is now a valid
reduction.

We use binary search in combination with the maximum-matching algorithm described in
Section 7.10. Let’s solve first the problem of verifving whether there exists a maximum
matching such that alf of its edges have weights <x (for some given x). This problem can
be solved by remaving from the graph all edges of weight > x and applying the maximum-
matching algorithm te see whether the maximum matching in the remaining graph has the
same number of edges as the maximum matching in the original graph. The cost of this
verification is dominated by the cost of the maximum-matching algorithm, which is
O (it m). There are m edges in G, so there are at most m different possibitities for weights.
We can now use binary search to find the smallest x such that x is a weight of some edge
and there is a maximum matching such that all of its edges have weights Sxv. (For an
algorithm with a lower time complexity, see Gabow and Tarian [19881.)

We use divide and conquer. We divide the players inlo two equal-sized groups and
construct a chain as required for each group. We then merge the two chains in exactly the
same way as regular merge. We leave it to the reader to verify the commeciness of this
procedure. The similarity of this algorithm to mergesort is nol incidental; sec Exercise
i0.18.

432

Sketches of Solutions to Selected Exercises

7.106 Clearly, at least & colors are necessary, since all edges incident fo the same vertex must be

colored differently. We will show that & colers are also sufficient. We want to use divide
and conguer, buz we have to divide the problem such that the subproblems are the same as
the originai preblem. If we divide into two smaller subgraphs, we have to ensure that the
degrees of all vertices in each subgraph are equal and that they are a power of 2. This is
achieved by finding an Eulerian circuit of the graph (such a circuit exists, since all degrees
are even). Then, we traverse the circuit and divide the edges into two groups by alternating
berween the two groups {i.e., the first edge goes o the first group, the second to the second
group, the third o the first group, and so on). Each group defines a subgraph with all the
original vertices and one-half of the original edges. The degree of each vertex in each
subgraph is exactly /2, since whenever an edge entering a vertex is put in ene group, the
next edge {which is ieaving the vertex) will be put in the second group. The rest can be
done by induction. We now have graphs with fewer edges and, more important, smaller
degrees. We color all the edges of the two subgraphs separately, but we use distinct colors
for each group. Therefore, we can just put the twe colorings together. The compiexity of
this algorithm is dominated by the algorithm for finding Eulerian circuits, which takes linear
time but which has to be performed for cach subgraph. The number of stages of this
algorithm is log,k {since & is halved at cach stage)h hence, the total running time is
O{E | log k). (Rt is interesting 1o aote that every graph whose maximal degree is & can be
edge-colored with at most k + 1 colors; see, for exampte, Chartrand and Lesniak [1986].)

7.108 A common appreach to this problem {(judging from students’ examinations) is to consider a

roat of the tree (any vertex can serve as the root), to find migimam vertex covers for all the
subtrees below the root, and then 1o include the root in the vertex cover uniess all its
children are afready included in the vertex covers of the subtrees. This seems like a good
approach, since the roo: must indeed belong to the vertex cover if any of Hs childres does
not belong, However, there may be many different minimum vertex covers (see Fig. A1}
For a given subiree, it is possible that there is a minimum vertex cover that includes its root
and one that does not include the root. Therefore, this approach does not necessarily lead to
minimum vertex covers (uniess more precauions are taken). A different reduction can be
achieved by considering a leaf first. The edge from a leaf 1o its parent must be covered, and
can be covered by either the leaf or its parent. There is no advantage to choosing the leaf,

® .

Figure A.1 A tree with two minimum vertex covers.

7.109

1114

Sketches of Selutions to Selected Exercises 433

since it does not cover anything eise. More precisely, there s a minimunt veriex cover that
inctudes the parent. Therefore, if we choose the parent (of any arbitrary ieaf), remove it
and all its incident edges, and then solve the remaining problem by induction, we are
guaranteed to have a minimum vertex cover, [t is not difficult to implement this algorithm
in lingar time.

It is easy to see that the weight of a vertex cover in this case must be egual to at least the
number of edges {since all edges must be covered and each contributes at least a cost of | to
the cover). A cover that includes exactly one vertex from each edge is thus the misimum-
weight cover. We will show that such a cover can atways be found.

Sohation 1: Perform a BFS with an arbitrary vertex v as the root, and assign each vertex a
level number according to its distance from v. Now add all vertices with odd level numbers
(even level numbers wiil do just as well) 1o the vertex cover. The resuit will be & vertex
cover, since every edge connects vertices from swo adjacent levels, so one of them has odd
level number. Furthermore, each edge is covered by exactly one vertex, so the cover is
migimum,

Selution 2: The induction hypothesis states that we know how 1o solve the problems for all
trees with < n vertices. Pick an arbitrary leaf v and remove it {and its incident edge) from
the tree. Let the ealy vertex adjacent 1o v be w, and let G’ be the remaining tree. Solve the
problem for G by induction. Consider again the original tree G. I w is used in the
minimum-weight vertex cover of G, then this cover is still valid; otherwise, inglude v in
the cover for G. We have to prove that in both cases the cover of G is minimal. But, the
size of a minimum-weight vertex cover of G must be at least § more than the minimum-
weight cover of (', since the extra edge must be covered by either v or w (and it costs |
more in either case, since the degree of w is increased). We achieve this bound, se the
resuiting vertex cover is minimal,

Let v be an arbitrary vertex of GG. Denote the set of vertices adiacent 1o v by N(v). If »
belongs to the vertex cover, then none of the vertices in N {v) can belong te the vertex cover
{since the vertices in the cover should be independens). Furthermore, ali the vertices
adjacent to vertices from N (v) must belong to the cover, since thart is the only way to cover
those edges. In particular, if any two vertices of N {(v) are adjacent, then the edge between
them cannot be covered, and the procedure fails, This procedure is continued until either i
fails, in which case v cannot belong to the vertex cover, or a vertex cover is found. All the
steps of the procedure are determined by the choice of 1 hence, the veriex cover that is
found is the orly one containing v that satisfies the conditions of the problem. [f this cover
is not too large, then we are done; otherwise, v cannot belong to the vertex cover. But, if we
determine that v cannot belong to the vertex cover, then all its adjacent vertices must belong
10 the cover, and we can apply the same proceduse,

T.1#6 Each interval /; is represented by two numbers (/;, r;} (the left and right endpoints). Sort the

intervals accerding to the r;s. Denote the intervals in the sorted order by [, 1., ... {, {ie.,
ry is the minimum ameng the right endpoints). We claim that there is a maximum
independent ser that includes 7. To prove it, take any maximum independent set and
consider the interval /; in it such that r; is minimum among all other right endpoints in the
set. Since r is the global minirmum, »;2r,. Bui that implies that /; does net intersect with
any other interval in the set (except possibly with /% hence, /; van replace /;, and the
modified set is still maximum independent set. The algorithm Tollows directly by induction,
because we know how to handle /.

434 Sketches of Solutions to Selected Exercises

7119 a. Let v, va, v3, and v4 be a cycle of length 4 (in that order). Consider the adjacency

matrix of the graph., and assume that the main diagonal is 0 (i.e. a vertex is not
considered adjacent to itself). The rows corresponding to v, and v, both contain ls
corresponding to v, and vy, This is, IS some sense, a characterization of a cycle of
length 4. {Notice that the matrix is symemetric since the graph is undirected.) We can
look at all pairs of rows, and for each pair check its intersection. In other words, for each
pair of vertices, we check all the other vertices that are adjacent to both of them. There
is a square if and only if any such intersection contains at least two vertices, Any row
intersection (which is basically a row and operation) can be performed in linear time.
Fhere are O (| V |*) pairs of vertices, so the overal! running time is O (1V 1)

. Use an adjacency-ist representation. Figst sort all the edges in all the lists. Then show

that the intersection between two rows described in part a can be performed in time
proportional to the number of edges incident to the two correspending vestices.

7.120 Compute the maximwr number of sguares that can be contained in & graph with | V|

vertices, and show that it may be more than O (|V |- |E |). Therefore, just histing ail
squares may take more than O ({V |+ | £ |) time.

Chapter 8

8.6

8.11

B.16

The counterexampie is given in Fig, A.2. The circled poiat will be removed by Graham's
scan even though it is on the hull.

Sort the vestices of the polygon in a cyclic order according fo the angles of the fine segment
they make with ¢ (and a Sxed line). Then scan these vertices in that order. Start with an
arbitrary vertex v, and determine the number of edges of the polygon that intersect with the
half-line passing through ¢ and v using the algorithe presented in Section 8.2. Then,
whenever a vertex w is visited, one can in constant time determine whether the line through
¢ and w intersects one more edge, one less edge, or the same number of edges,

Divide the plane inte vertical columns of width 4 starting with the mianimal x coordinate
among the poinis and ending with the largest x coordinate. Find the points with the minimal

]

P

Figure A2 A counter exaraple for Exercise 8.6.

8.17

8.22

8.26

8.28

L

Sketches of Solutions te Selected Exercises 435

and maximal y coordinates in each of the columns. This can be done in time O {n +X/d}
since the column that contains a given point can be found in constant time. Apply a
procedure similar 1o Graham's scan fo all the minimal points and then to ail the maximai
points. TFhis results in two convex paths, which can easily be connected at both ends 1o
form & convex polygon C. € is not necessarily the convex hull of the points, but it is casy to
show that the distance of any point from the set outside the hui to the hull is at mosz .

The gift-wrapping algorithm can be applied to this problem withous additional complexity.
The necessary observation here is that each point is compared against all other remaining
points. Thus, the aigorithm requires # — | comparisons (o find the frst vertex of the hull,
—2 comparisons to find the second, and so on. After the huil is discovered, all its vertices
are marked with the appropriate depth, and removed. The same algorithm continues. The
first vertex on it requires n —k comparisons (where & — 1 is the number of vertices removed
so far), and se en. Overall, O (n%) steps are required.

The only difficuit case is that of finding intersections between all vertical line segments and
the segments with 435-degree angle {the other cases are either symmelric or can be handied
by the algorithm in Section 8.6). We use the same approach as the intersection algorithm of
Section 8.6, The segments are sorted according to the x coordinates of their endpeints. The
ling-sweep algorithm is performed in the same way. A segment with 45-degree angle is
inserted when its ieft endpoint is meeting the sweeping line, and is deleted when its right
endpeint is meeting the sweeping line. We now have 1o find intersections between a new
vertical line and several candidate segments with 43-degree angles. This is done as follows.
For each segment with 45-degree angle, we compute the intersection of the full line
overlapping the segment with the x axis. We use this value when we perform the range
gueries. The range is set as foliows. The left point of the range is the intersection between
the line with 45-degree angle that contains the top endpoint of the vertical line and the x
axis. The right point of the range is the intersection between the line with 45-degree angle
that contains the bottom endpoint of the vertical line and the x axis. We have converted the
problem to a one-dimensional range query, and the complexity remains the same,

We strengthen the induction hypothesis a little.

Induction hypothesis: We know how to mark all the intervals comtained in
other intervals among a set of < n intervals, and how to find the largest right
endpoint among them.

We first sort the intervals according to their ieft endpoinis. Assume that we solved the
probiem for the 8rst (leftmost) # — 1 intervals, and consider the nth interval, H its right
endpoint is larger than the Iargest right endpoint so far, then it is not contained in any
interval; we update the largest right endpoint. Otherwise, it is contained in another
interval; we mark it.

The intersection of two rectangies whose edges are paralle! to the axes can be computed in
constani time. Furthermore, either this intersection is empty or it is a rectangie. Hence, we
can solve the problem in finear time by intersecting one rectangle after the other in any
order.

We give only a rough sketch of & solution. The basic idea is to divide each polygen into
slabs and 1o intersect the slabs separately. First, we sort all the vertices according to their x
coordinates. This sorting can be done in linear time, becanse the cyclic order of the vertices
in each polygon is known. We associate with each vertex a vertical line, and we use these

436

834

Sketches of Solutions to Selected Exercises

verticat lines to divide the two polygons into slabs, as in shown in Fig. A.3. Since we know
the sorted order of the vertical lines, we need only to compute intersections between disjoint
pairs of siabs. An intersection hetween two slabs can be computed in constant time,
because e¢ach slab has at most four edges. We can then assembie the corresponding
ingersections inte a polygon in finear time,

An intersection of wriangies is a convex polygon. We can intersect two triangles in constant
time, and we can intersect two convex polygons in linear time (Exercise 8.31). Thus, a
divide-and-conguer aigorithm that divides the set of triangles into two sets, computes the
intersection of all triangles in each set recursively, and then intersects the two resulting
cenvex polygons has a runaing time of O (1 log 1)

Chapter 9

9.2

$.10

9.16

One exampie is # =15 The methad presented in Section 9.2 requires 6 muitiplications
(e = xx? k. It is possible to compute x'® with enly 5 multiplications
' = (ex ¥y See [Knuth 1981, p. 443] for a detailed discussion of this issue.

We use the notation of Section 9.5.2. We need to compute (B +C +D +F +G)X. We make
the foliowing definitions, which correspend directly to the seven muitipiications in the four
types of products introduced in Section 952: z| = ble+f), 2, = c(g+h), 23 =
{c~hXethyzya=la~he zs=(a—~cHg—e), 2o =(d—W, and z9 = (d~b)f~Hh) We
now look at the contribution of ¢ach of the matrices. B contributes [z, 2. O, O] (we write it
as & row matrix instead of as a column matrix for convenience), C coniributes [0, 0, 2, 2,4
D contributes [0, 25, —z3, 0} F contributes [z, 0, 2, +25, 0); and G contributes [0, 24 +24,
0, z4l. So, overall, we have p = () = 2,425, + =2 Cy = 2+ +Zp+27,52C,, =
Iptoatzgvzg,and r=Cy, =2y 4+ 24 There are 18 additions and 7 multiplications.

The hard part of this problem is proving that such a representation always exists. We prove
that it does by induction. It is casy to verify the base case. Let 2 >2 be an integer, and Jet
F (k) be the largest Fibonacci number not lagger than n (e, Flk¥srand Fth+ 13> n). We
claim that F{k}>n/2, since otherwise F{k+1)=F(k}+F(k-1)<n By the induction
hypothesis, n ~F{k) can be represented as a sum of at most log,{n—F (k) Fibonacci

Figure A.3 Intersection of two convex polygons by the slab method.

9.19

0.23

9.29

Sketches of Solutions to Seleeted Exercises 437

numbers, But, since n —F (k) <F (%), adding F (%) to the representation of n—F (k) still
keeps the numbers distinct; furthermore, it is casy to see that loga(n ~F (k5 +1 < logan,
To find the representation we need, we compute ail Fibonacci numbess untii we seach one
that is larger than or equal te #; we can then foliow the proof given here.

We denote the four parts of the first polynomial by a,, b, ¢, and 4, and the four parts of
the second polynomial by a,, b, c;, and d5. We can iJlustrate the probiem using a 4x4
table as shown in Fig. A.4. This table is similar to the 2x 2 table that was given in Section
9.4. Each entry in the table corresponds to a product of two parts of the polynomials, We
do not have to compute the vaiue of cach entry, only the sum of values in each of the
diagonals shown in the figure. Each of these diagonals corresponds to the coefficient of a
certain degree in the product of the polynomials. The foliowing % products are sufficient o
compute the values of all the diagonals: (1} a, ray, (2) b b3, (3 (g + b)) (g + by (&)
Cy o, {5Yd dy, B (i +d)y (eatda) (Dav0){as+), By b +d |} (by+d;),
and (9) {a, +h+¢+d;) lay+hy+0y+dy). We leave it to the reader 1o verify that all
diagonals can be computed from these 9 products. The corresponding recurrence refation is
T (1) =9T(n/4) + 0 (n), which implics that T(n}=0 (1") = 0 (n), which is the same as
the running time of the algorithm that divides each polynomial into two parts. Is that
equality coincidental, or is there a good reason for #? In other words, what are the
similarities between the twe algorithms?

Winograd's algorithm assumes commutativity of multiplication (i.e. it assumes that
£oy=y %) If we use Winograd's algorithm as the base of the recussion, we have to be able
to substitute matrices for elements, but we cannet de that because matrix multipication is
not commutative.,

We solve the problem by induction on 2. The case of n =1 is trivial. Assume that we know
the solution for n > |, and consider n+1. Denote by Mii j] the product M, x « -+ xM,.
The best way to compute M [1..n+ 1] is first to compute M[1..0] and M[i+ 1.n+ |}, for
some (as yet unknown) i, and then to multiply the two products. We can find the value of ¢
that leads to the minimum cost by trying all possibilities, We know the hest way o
compute Mi1../] by induction, However, we need to know how to compute M i + 1.1 + {].
Tao do that, we strengthen the induction hypothesis.

Stronger induction hypothesis: We know the best way to compute M{i]
forallisi<j<n.

.
L . . -
. .
/K] <
2 .
. . -
. ¢ -
b - ’ ’
2 . p
o . -
s I
7 :
.
(] .
- “
. . .
-+ Id ’
. . .
o - . p
2 . .
. . .
p . -

Figure A.4 Finding the product of two polynomials by dividing them into four parts.

438

Sketches of Solutions to Selected Exercises

To extend this hypothesis to 7+ |, we need to compute Miin+1] for all 15i5n We
soive this problem by yet another (nested) induction, this time on ¢ in a reversed order. For
i =#, there is only one way fo compule the product M[r.n+1]; hence, the problem is
trivial. Assume that we know the best way to compute M [i.n + 1] and consider i — 1. We
can now perform the reduction. We check for each f, i < j <n+ i, the cost of compuiing
M[i-1.] (which we know by the original inductien), the cost of computing
M [j+it.n+1] (which we know by the nested induction), and the cost of multiplying both
products, We then choose the j that minimizes this cost. Overall, the two induction
processes correspond to two loops, the first of size #, the second of size n —1, and the inside

" H H

loop consists of n—i sieps. The total number of sieps is thus ¥ 3 ¥ @ (1), which is
k=] dmp ey

.

Chapter 10

10.3

0.5

We show that the interval-containment problem can be solved by using the maximal-points
algorithm. For each interval I;=(L; R}, we define a point in the plane such that its x
coordinate is —L; and its y coordinate is R;. We leave it to the reader to verify that an
interval is contained in another interval if and only if the corresponding point is not
maximal.

Split each vertex that corresponds $o a university iate two vertices. Connect both of those
vertices o all the students who were admitied to that university. This is a regular bipastite
maltching probiem.

10.12 The simplest solution to this problers is by reduction. We construct a new grapk H with two

10.15

16.17

10,20

10,24

vertices w; and w, for each vertex w of G. We call w, the tail vertex of w, and w, the
head vertex of w. The edges of H are the following. For each edge (w, #) in G, we add the
edge (w,, k) with cost 0 to H. In other words, we make all edges go from head vertices to
tail vertices. n addition, we add an edge (&, u,) with cost ¢ (u) for each vertex u in G
The problem becomes the regular single-sousce shortest-paths problem from v, to all tail
vertices,

The simpiest counterexampie involves only one variable x. The objective function, which
we ry 1o maximize, is simply ¥, and the only two constraints are x <0 and x #0. This
problem has no solution, since there is no maximum number smalier than 0.

The linear program can be changed casily, but it is much gasier o notice that the best
solution is for every organization to donate its maximurs.

Fo compute the square of a matrix, we indeed need only five multiplications of matrices haif
its size. However, these are muitiplications of two arbitrary matrices, not sguarings of
matrices of half the size.

We show how to use such an algorithm 1o sort. Given a sequence X, Xy, ..., X, of distinct
numbers that we wish to sort, we associale a point p; with each x; such that all points lie on
a fixed line and the distance of poimt p, from a fixed origin is x,. Il is easy to see that the
minirum-cost spanning tree must connect each point te its neighbors on the line — namely,
the tree is a chain. The tree has wo leaves, which are the maximum and minimum elements
of the sequence, If we know the minimum-cost spanning tree, then we can find the sorted
order of the paints in linear lime as follows. First, we find the minimum among the peints,

Sketches of Solutions to Selected Exercises 439

say x;. The chain defined by the tree gives us the sorted order, and we can foliow it in linear
time. Thus, we have a lower bound of Ln log n} for this problem under the decision tree
model (which is the meode! under which the lower bound for sorting was proved).

Chapter 11

113 O(n*}is a polynemial in n, but it is an exponential function in £, Since & is part of the input

1111

11.14

il.16

(and may be as high as #), this is not a polynemial-time algorithm.

We use a reduction from the regular vertex-cover problem. Let G =(V, E) be an arbitrary
undirected graph, and let 7 be the set of vestices of odd degree in G. We modify G by
adding three new vertices, x, y, and z, which are connected to each other (in a triangle). We
also connect x 10 all vertices in U, [t is now easy to prove that the modified graph has a
vertex cover of size K if and only if G has a vertex cover of size K - 2.

The problem is obviousty in NP, since we can guess the subset and check its induced
subgraph in polynomial time. We use a reduction from 38AT. {etE=C, Oy - -G, be
an arbitrary instance of 35AT. We construct a graph G =(V, E) with 4n + 1 vertices as
foliows, For each ciause €, we inciude four vertices, one associated with the clause itself,
and the other three associated with the corresponding variables, The four vertices
associated with a clause are fuily connected to one ancther. We also connect any two
vertices in the graph that are associated with x and ¥ for any variable v, Finally, we add one
additional vertex » which is connected to all vertices associated with variables (but not 1o
the vertices associated with the clauses themselves). We claim that the graph has a subset
of size 2n + | that induces an acyclic graph if and only i the expression is satisfiable,

i, H the expression is satisfiable, then we can find a consistent truth assignment satisfying
every clause. The subset witl consist of the vertex r, the n vertices corresponding to the
clauses, and one vertex for each clause corresponding to the variable that satisfies the
clause {ties are broken arbitrarily). This subset induces an acyclic graph since r is
connected only to variables, and two variables are not connected if they belong to a
consistent truth assignment.

2. If there exists & subset § with 2 + 1 vertices that induces an acyclic graph, then we claim
that § includes r and exactly two vertices from every clause. Indeed, § cannet include
maore than two vertices from one clause, since such vertices are connected (and thus form
a triangle). Also, since § includes », it cannot include two vertices that correspond to x
and X for some variable x, Fherefore, it is possible to obtain a truth assignment for £.

We use a reduction from 35AT. Let C=(xr+y+z} be a clause in an arbitrary 35AT
probiem:. We replace C with the following three clauses (the g;s are all new variables):
(x+a,+a3), (v+ay+as), and {z +as+a,). In the i-in-3-SAT problem, exactly one of
the variables in each of the three clauses above must be satisfied. We want to guarantee that
at least one of x, y, or z is satistied. We do that by adding more clauses that guarantee that
no more than ene of a,, a1, and a5 is satisfied, and no more than one of g;., a4, and a4 is
satisfied. The clauses are {u| +ay+aq), (@y+as+ag), (@g+a, +agh (gy+a,+ap)
{aq+ag+ayy) and (g +as+a)2). We leave the verification to the reader.

11.19 We reduce the clique problem to this problem. Let G =(V, £) and k be an arbitrary instance

of the clique problem. We need to convert (G into a regular graph R such that the cligue
probiem for &G can be solved by solving a clique problem for R. We cannot simply add
edges to G until G becomes regular, because this would potentiaily increase the sizes of the

440

11.25

11.29

11.33

Sketches of Solutions to Selected Exercises

cliques of . We must add vertices and edges to G such that no new cliques are formed.
Let 4 be the maximal degree of (7 if it is even or the maximal degree pius 1 otherwise, and
iet 1 be the number of vertices of G. For each vertex v of G with degree d(v) < d, we add
d ~d{v) vertices anid connect each of them to v. The total number of additional vertices is

dn =Y, d(v;)=dn - 2|E{. This number is even since we chose & to be even. Notice that
f=|

all the original vertices now have the same degree 4, and that no new cligues were added
(since each new vertex is connected to only one vertex). The only preblem is that the new
vertices have a degree of . We can change their degrees to 4 without introducing more
cligues by adding edges between them in the following way. We divide the set of new
vertices to two equal sets. We then connect each vertex of one set to exactly 4 — 1 vertices
of the other set. The new vertices thus induce & bipartite graph, which dees not contain
cliques of size >2. We leave it to the reader (o verify that it is possible to construct this
bipartite graph in the desired way.

If we could determine whether there exists a Hamiltonian path with specified end vertices,
then we could determine whether there exists any Hamiltonian path by just trying all pairs
of vertices. Therefore, a pelynomial-ime algorithm for this problem leads 10 a
polynomizl-time aigorithm for the Hamiltonian path problem, which in turn leads to
polynomial-time algorithms for all NP problems. Notice that this is not a pure reduction as
defined in Section 11.2, but it is sufficient.

We use a reduction from the vertex-cover problem. Let G=(V, E} and K be an arbitrary
instance of the vertex-cover problem. We construct a directed graph G” by replacing every
vertex v in 7 with two vertices v, and v; connected by a directed edge {v |, v3). We replace
each edge {v, w} of G with two directed edges, {w,, v,) and {v,, w), We now claim that
(' contains a feedback-edge set of size K if and only if G contains a vertex cover of size K.

We sketch a reduction from SAT. Let v be a vertex in & and let the edges adjacent to v be
{in the cyclic order} ¢ |, €, ..., e,. The Eulerian tour defines a pairing arong the edges of v,
such that the consecutive edges in the tour used o enter and leave v are paired. By the
conditions of the probiem, an edge e, can be paired either with ¢,_; or with ¢,,; (additions
and subtractions are done medulo k3. The main observation is that, if ¢; is paired with e,,;,
then the pairings for all other edges of v are fixed (e;,, must be paired with e,,3, and so on}.
The same is true if ¢; is paired with e,.,. In other words, there are only two ways of pairing
the edges of v. We will associate a vertex with each variable in the SAT expression, such
that the vatue of this variable in the truth assignment will correspond to the way the pairing
is done for this vertex in the towr. We have to make sure thal the truth assignment is
consistent {i.e., the values of x and X are complementary), and that every clause is satisfied.
We will have one vertex v, for every variable x, and one vertex ¥, for X, and we will connect
them such that a pairing for v, forces a certain pairing for v,. We associate the truth values
accordingly, Then, for each clause (x +y +2), we connect the correspending three vertices
such that at least one of the pairings that is associated with one the variables being true must
be taken. We leave the details (which are not straightforward) to the reader. The planar
case, which is more complicated, is proved in Bent and Manber {1987).

Chapter 12

12.13

We use the doubling method. In the first step, only one processor P, participates: P,
simply copies A[1] to A {2} In step i, there are 2°"! participating processers, and they copy

i2.16

1217
12.20

12.25

12.27

12.32

12.33

Sketches of Solutions to Selected Exercises 441

the array A [1.277] to A {27'+1..2°]. To improve the efficiency, use Brent's femma.

This problem can be solved in exactly the same way as the problem of finding the
maximuin,

The circuit for n =8 is given in Fig. A5,

Assign one processor P; to every pair of elements Afijand B[f). Py first compares A[{] 1o
Bij]. then compares A[i] 1o BEj+ 1} H A{i}is between B[k] and B[k + 1], then P, will
find that out and conclude that A [/]'s place in the final array is in the {/ + &)th position. The
same procedure can be applied to B.

We skesch an elegant selution using parallel prefix (the problem can also be solved directly).
We first compuie the paralel prefix on the Mark array with the + operation. The prefix
vatue of each record whose Mark value is 1 will be equal 1o its place in the compacted
array. We can then complement the Mark array to do the same for the other ¢lements.
Once all the indices are computed, the actual movement can be done in one (parallel) step,
since there are no conflicts.

1f we associate a processer with each record, then in one step cach processer can write its
index in the appropriate field of its successor. Each processor now knows its predecessor in
the list.

We cannot concentrate on each number separately, ki is true hat each number incurs at
most one more idle step, but a delay for one processor can cause more delays at other
processors if the numbers de not artive there fast enough.

We use induction. H the height of the tree is 2, then the left leaf sends s number x, to the
root, which then sends it down where it can be added to x,. Suppose that we have an
algorithm for height A, and consider height A+ 1. (We will consider only the case of
complete binary trees. [t is easy to modify the algorithm to the general case.) Let R be the
root, and R, and K be the root’s Jeft and right children. We call the sum over all the leaves
in a particuiar subtree the sum of the subtree. A straightforward solutien is to soive the

Xy Xy
A2 A2
X3 X3
X X
X5 Xs
e Xg
Xq Xq
Xy EL]

Figure A5 A parallel-prefix circuit.

442

12.37

12.40

12.42

Skeiches of Solutions to Selected Exercises

preblem separately for the left and right subtrees, then to broadcast the sum of the left
subtree {0 ail the leaves of the right subtree. Each leaf in the right subtree simply adds the
sum of the left subiree to the prefix it computed so far. The problem with this solution is
that its running time is O {#%), because the recurrence relation is Tk + =Ty +h We
can improve this solution by aoticing that there is no need o wait untif the left subtree has
finished its computation. The right subtree needs to obtain the sum of the left subtree, and
this sum can be available at the root at step A+ 1. Thus, the requirement from R; is that it
receives the sum of all its descendants and sends it up to the root. The requirement from Ry
is that it receives the sum from the root and sends it down to all its descendants, This leads
directly to the following rules: () each leaf starts by sending its value up (we have 1o
modify the simple solution for height 2 slightly, since the root needs to know the sum}; (2)
the internal nodes, when receiving values from below, add those values and sead them up;
(3) the internal nodes, when receiving values from above, send those values down to both
chifdren; and {4} the internal nodes also act as the roots of their own subtrees and send the
value they receive from their left children to their right children. We leave it the the reader
to verify that this is a correct algorithm and that its running fime is 24

Suppose first that we are interested only in computing x,. Processor P, computes g, b,
which is its contribution to the value of x,, and sends it to P5; processor P, adds o the
value it receives ¢ 3 - by and forwards that value to Py, and so on. After # — {1 steps, P, will
receive from P, the value of x| —a,, - b, and it wiil be able to complete the computation.
Now, to compute all the x;5, we pipeline this process, In the fisst step, each processor P;

computes u;., - b; (ali index caiculation are done module n), and sends it to Py, In the
il

Jth step, P, receives the value 3, oy By, adds to it @ - by, and sends it to Py,
k=i

(again, all index calculations are modulo n).

This problem can be soived directly, but it is easier to use a reduction 30 matrix
muitipiication. We first use the the ¢ permutation o build a permidation matrix § such that,
for each column £, only the entry at the o(i th row has a value of {, and all other entries at
that column have a value of 6. We can easily build this matrix and distribute it 1o the
appropriate processors in n steps. Permuting all the rows according to the permutation o is
the same as computing the product § - A, which we already know how to do in O {n) steps.
Permuting the columns can be dene in the same way with the permutation matrix Q, except
that the product is A - Q.

The straightforward induction solution is 10 compute the parallel prefix in each half-cube
separately in paratlel, then to broadcast the largest prefix in one haif-cube {designated as the
smalier one) to the other. {The base case of one dimension is trivial) Broadcast in a d-
dimensional cube takes d steps. Thus, the running time of this algorithm satisfies the
following recurrence relation: Ti(d + 1y=T(d)+d, which implies that T(d)=0 (d?). We
¢an improve this algorithm by strengthening the induction hypothesis. We assume that
every processor not only computes its corresponding prefix, but also computes the sum of
ali numbers in the cube. The base case of one dimension is still easy: The two processors
simply exchange their values. Given a (d + 1)~dimensienal cube, we divide it into two d-
dimensional cubes, and selve the problem by induction in both of them. But now, we do
not have to broadcast the sum of the feft cube. Since each node in the left cube knows the
sum, i can send the sum in one siep to its neighbor in the right cube. All the prefixes can
thus be computed in one more step. Furthermore, the sum of everything can also be
computed in one more step if the nodes in the right subtree send their {giobal) sum to their

Sketches of Selutions to Selected Exercises 443

neighbors in the left subtree. The recurrence relation is thus T(d + 1)=T{d)+2, which
implies that T{d) = 0 (d). The assignment of indices to processor should be clear from this
description.

12.48 There is a rich literature or the subject of gossip as it is related to computer networks; see,
for exampie Hedeiniemi, Hedetniemi, and Liestman [1988] for a survey. The exercise
presents a relatively simple gossip probtem. 1t can be solved by the pattern shown ia Fig,
A6, called butterfly, which has many other uses (the most notable is the parallel
computation of the FFT). Figure A.6 shows the solution for n =8.

first step second step third step
Xy LS|
X3 A2
X3 X
X4 Xy
Xs Xs
X Lo
Xy Xy
Xg Xy

Figure A.6 The solution of the gossip problem {Exercise 12.48) for n =8.

BIBLIOGRAPHY

Adel'son-Vel'skit G. M., and Y. M. Landis, “*An algorithm for the organization of
information,”’ Sovier Math. Dokl., 3 (1962), pp. 12591262,

Aho A. V., and M. J. Corasick, ""Efficient siring maiching: An aid 1o bibliographic
search,”” Communications of the ACM, 18 (June 1975}, pp. 333-340.

Aho A. V., J. E. Hoperoft, and J. D, Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974,

Aho A. V. J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms, Addison-
Wesley, Reading, MA, 1983

Ajtai M., 1. Komlos, and E. Szemerédi, **An O (n logn} sorting network,”” I5th Annual
ACM Symposium on Theory of Computing, Boston (April 1983), pp. 1-9.

AKL S. G., Parallel Sorting Algorithms, Academic Press, New York, 1985,

Aleltunas R., “'Randomized parallel communication,”” First ACM Symposium on
Principles of Distributed Computing, Ottawa (August 1982), pp. 60-72.

Almasi G. S., and A. Gottlieb, Highly Paratlel Computing, Benjamin/Cummings,
Redwood City, CA, 1989,

Angluin D)., and L. G. Valiant, **Fast probabilistic algorithms for Hamiltonian circuits
and matchings,”’ Journal of Computer and System Sciences, 18 (April 1979), pp.
155-193.

Apostolico A., and Z. Galil, Combinatorial Algorithms on Words, Springer-Verlag, New
York, 1985.

Arfazarov V. L., E. A, Dinic, M. A. Kronrod, and 1. A. Faradzev, "'On economical
construction of the transitive closure of a directed graph,” Soviet Math Dokl, 11
{May 1970}, pp. 12091210,

Atkinson M. D., and N. Santoro, '‘A practical algorithm for Boolean matrix
multiplication,”” Information Processing Letters, 29 {September 1988), pp. 37-38.

Attalah M.), R. Cole, and M. T. Goodrich, '*Cascading divide—and-conquer: A
technique for designing parallel algorithms,”” 28th Annwal Symposium on

445

446 Bibliography

Foundations of Computer Science, Los Angeles {October 1987), pp. 151160,

Auslander L., and S. V. Parter, 'On imbedding graphs in the plane,”” J. Math. and
Mech., 16 (May 1961), pp. 517-523,

Bach E., G. Miller, and 1. Shallit, **Sums of divisors, perfect numbers and factoring,”’
SIAM Journal on Computing, 18 (November 1986}, pp. 1143-1154,

Baer J.-L., and B. Schwab, “A comparison of tree—balancing algorithms,”
Communications of the ACM, 20 (May 1977}, pp. 322-330.

Bar-Yehuda R., and 5. Even, **A linear time approximation algorithm for the weighted
veriex cover problem,”” Journal of Algorithms, 2 (1981), pp. 198-203.

Batcher K. E., **Sorting networks and their applications,’’ in Proceedings AFIPS 32nd
Spring Joint Computer Conference, (1968), pp. 307-314.

Bates J. L. and R. L. Constable, ‘'Proofs as programs,”’ ACM Transactions on
Programming Languages and Systems, T (January 1985), pp. 113-136.

Bavel Z., Math Companion for Computer Science, Reston Publishing Company, Reston,
Virginia, 1982,

Beame P. W., 8. A, Cook, and H. }. Hoover, *‘Log depth circuits for division and related
problems,” SIAM Journat on Computing, 15 (February 1986}, pp. 9941003,

Beckenbach E., and R. Bellman, An Introduction to Inequalities, New Mathematical
Library, Random House, New York, 1961,

Bellman R. E., Dynamic Programming, Princeton Univessity Press, Princeton, NJ, 1957

Bent 8. W., and J. John, *‘Finding the median requires 2» comparisons,” 17th Annual
ACM Symposium on Theory of Computing, Providence, Rl (May 1985), pp.
213-21a.

Bent 8. W, and U. Manber, **On non-intersecting Eulerian circuits,” Discrete Applied
Mathemarics, 18 (1987), pp. 87-94.

Bentley J. L, Programming Pearls, Addison-Wesley, Reading, MA, 1986,

Bentley 1. L., M. G. Faust, and F. P. Preparata, ** Approximation algorithms for convex
hulls,” Communication of the ACM, 25 (January 1982}, pp. 64-68.

Bentley J. L., D. Haken, and J. B. Saxe, “*A general method for solving divide-and-
conguer recurrences,”” SIGACT News, (Fall 1980), pp. 3644,

Bentley J. 1., and B. W. Kernighan, ** Tools for printing indexes,”” Electronic Publishing,
1 (1988), pp. 3~17.

Bentley J. L., and T. Ottmann, “*Algorithms for reporting and counting geometric
intersections,”’ IEEE Transactions on Computers, C-28 {Sept, 1979), pp. 643-647.

Bibliography 447

Berge C., The Theory of Graphs and Its Applications, John Wiley and Sons, New York,
1962,

Berge C., Graphs and Hypergraphs, North Holland, London, 1973,

Berisekas D. P, and J. N, Tsitsiklis, Parallel and Distributed Computation, Numerical
Methods, Prentice-Hall, Englewood Cliffs, NJ, 1989.

Bitner 1. R., and E. M. Reingold, ‘‘Backtrack programming techniques,’
Communications of the ACM, 18 (November 1975), pp. 651-656.

Blelloch G., **Scans as primitive parallel operations,”’ 1987 International Conference on
Parallel Processing, {August 1987), pp. 355-362.

Blum M., R. W, Floyd, V. R, Pratt, R. L. Rivest, and R, E. Tarjan, *“Time bounds for
selection,”” Journal of Computer and System Sciences, T {1972}, pp. 448461,

Boliobis B., Graph Theory: An Introductory Course, Springer Verlag, New York, 1979,
Bollobds B., Combinatorics, Cambridge University Press, Cambridge, 1986.

Bondy I. A., and 11, 8, R. Murty, Graph Theory with Applications, Elsevier, New York,
1976.

Borodin A., “'On relating time and space to size and depth,”’ SIAM Journal on
Computing, 6 (December 1977), pp. 733-744.

Borodin A., and J. E. Hopcroft, *'Routing, merging and sorting on parallel models of
computation,’’ Journal of Computer and System Sciences, 30 (1985}, pp. 130-145.

Borodin A., and 1. Munro, The Computational Complexity of Algebraic and Numeric
Probiems, Elsevier Computer Science Library, New York, 1975.

Boyer R. 8., and J. 5. Moore, **A fast string searching algorithm,”” Communications of
the ACM, 20 {October 1977, pp. 762-772.

Brélaz D., "'New methods to color the vertices of a graph,” Communications of the
ACM, 22 (April 1979), pp. 251-256.

Brigham E. O., The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, NJ, 1974,
Brualdi R, A, Introductory Combinatorics, North Holland, New York, 1977,

Burge W. H., Recursive Programming Techniques, Addison-Wesley, Reading, MA,
1975,

Bussey W. H,, “*Origin of mathematical induction,”” American Mathematical Monthly,
24 (1917), pp. 199-207.

Capobianco M., and J. C. Moliuzzo, Examples and Counterexamples in Graph Theory,
North-Helland, New York, 1978,

Carter J. L., and M. N, Wegman, “‘Universal classes of hash functions,” Journal af

448 Bibliography

Computer and System Sciences, 18 (April 1979), pp. 143154,

Chand D. R., and S. S. Kapur, *'An algorithm for convex polytopes,”” Journal of the
ACM, 17 (January 1970}, pp. 78-86.

Chandy K. M., and J. Misra, Parallel Program Design: A Foundation, Addison-Wesley,
Reading, MA, 1988,

Chartrand (., Graphs as Mathematical Models, Wadsworth International Group,
Belmont, CA, 1977,

Chartrand G., and 1. Lesmiak, Graphs & Digraphs, Second Edition, Wadsworth &
Brooks/Cole, Monterey, CA, 1986.

Cheriton D, and R. E. Tarjan, *'Finding minimum spanning trees,’” SIAM Journal on
Computing, 5 (December 1976), pp. 724-T742.

Choueka Y., A.S. Fraenkel, §.T. Klein, and Y. Perl, “*Huffman coding without bit-
manipulation,”” Proceedings of the Eighth Annual ACM-SIGIR Conference,
Montreal, Canada (1985), pp. 122-130.

Christofides N., Graph Theory: An Algorithmic Approach, Academic Press, London,
1975,

Christofides N., 'Worst-case analysis of a new heuristic for the traveling salesman
problem,” Technical Report, Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh, PA, 1976,

Cohen J., and M. Roth, “"On the implementation of Strassen’s fast multiplication
algorithm,”” Acra Informatica, 6 (1976), pp. 341-355.

Cole R., “Slowing down sorting networks to obtain faster sorting algorithms,'' 25th
Annual Symposium on Foundations of Computer Science, Singer Island (October
1984}, pp. 255-259.

Cole R., **Parallel merge sort,”” SIAM Jownal on Computing, 17 (August 1988), pp.
770785,

Cole R., and U. Vishkin, *‘Deterministic coin tossing and accelerating cascades: micro
and macro techniques for designing parallel algorithms,” I8th Anmnual ACM
Symposium on Theory of Computing, Berkeley (May 1986), pp. 206-219.

Cook S. A., “*The complexity of theorem proving proceudres,” Third Annual ACM
Symposium on Theory of Computing, New York (1971}, pp. 151-158.

Cook 8. A., **An overview of computational complexity,”” Communications of the ACM,
26 (June 1983), pp. 400-408.

Cook 8. A., and C. Dwork, **Bounds on the time of paralte]l RAMs to compute simple
functions,”’ I4th Annual ACM Symposium on Theory of Computing, San Francisco
{May 1982}, pp. 231~233.

Bibliography 449

Cooley J. M., and . W. Tuckey, **An algorithm for the machine calculation of complex
Fourier series,”” Math. Comp., 19 (1963), pp. 297-301.

Coppersmith D, and 8. Winograd, **Matrix multiplication via arithmetic progressions,”
19th Annual ACM Symposium on Theory of Computing, New York (May 1987}, pp.
-6,

Culberson [, *'The effects of updates in binary search trees,” I7th Annual ACM
Symposium on Theary of Computing, Providence, Rl (May 1985), pp. 205-212.

Danizig G. B., ""On the shortest route through a newtwork,”” Managememt Science, 6
(1960), pp. 187-190.

Pantzig G. B., Linear Progranwming and Extensions, Princeton University Press,
Princeton, NI, 1963,

Dekel E., D. Nassimi, and 3. Sahni, “*Parallel matrix and graph algorithms,’” SIAM
Journal on Computing, 10 (November 1981), pp. 657-675.

Denardo E. V., Dynamic Programming, Prentice-Hall, Englewood Cliffs, NJ, 1982,

Deo N., Graph Theory with Applications to Engineering and Computer Science,
Prentice-Hall, Englewood Cliffs, NJ, 1974,

Peo N., and C. Pang, '*Shortest-path algorithms: Taxonomy and annotation,’” Networks,
14 (1984), pp. 275-323.

Dershowitz N., The Evolution of Programs, Bitkhauser, Boston, 1983,

Diffie W., and M. E. Hellman, **New directions in cryptography,’’ IEEE Transactions on
Informarion Theory, IT-22 (June 1976}, pp. 644-651.

Dijkstra E. W., "'A note on two problems in connexion with graphs,” Numerische
Mathematik, 1 {1959), pp. 269-271,

Dijkstra E. W, A Discipline of Programming, Prentice-Hall, Englewood Chiffs, NJ, 1976.

Dobkin D. P, and J. £, Munro, *‘Determining the mode,”” Theoretical Computer Science,
12 (1980), pp. 255-263.

Dreyfus S, E., and A. M. Law, The Art and Theory of Dynamic Programming, Academic
Press, New York, 1977.

Dvorak, S., and B. Durian, **Unstable linear time O(1) space merging,”” The Computer
Journal, 31 (1988), pp. 279-283,

Ebert], “‘Computing Eulerian trails,”” Information Processing Letters, 28 (June 1988),
pp. 93-97.

Edelsbrunnes H., Algorithms in Combinatorial Geomerry, Springer-verlag, Berlin, 1987,

Edmonds 1., and R. M. Karp, **Theoretical improvements in algorithmic efficiency for
network flow problems,’” Journal of the ACM, 19 (1972), pp. 248-264,

450 Bibliography

Elliot D. F., and K. R, Rao, Fast Transforms: Algorithms Analyses, Applications,
Academic Press, New York, 1982,

Eppinger J. L., “*An empirical study of insertion and deletion in binary search trees,”
Communications af the ACM, 26 (September 1983}, pp. 663-669.

Ix]

FErdos P., and A. Szekers, '*A combinatorial problem in geometry,”” Compositio

Mathematica, 2 (1933), pp. 463-470.

Erdos P., and L. Spencer, Probabilistic Methods in Combinatorics. Academic Press, New
York, 1974,

Fuler L., “‘Solutic problematis ad geometriam situs pertinentis,”” Commentarii
Academiae Scientiarum Petropolitanae, 8 (1736}, pp. 128-140.

Even S., Graph Algorithms, Computer Science Press, Rockville, MD, 1979,

Even S., and R. E. Tarjan, A combinatorial problem which is complete in polynomial
space,” Journal of the ACM, 23 (1976), pp. 710-719.

Fagin R., J. Nievergelt. N. Pippenger, and H. R. Strong, '‘Extendible hashing — a fast
access method for dynamic files,”” ACM Transaction on Database Systems, 4
(September 1979), pp. 315-353.

Feng T., *'A survey of interconnection networks,”’ Computer, 14 (December 1981), pp.
12-27.

Fich F. E., “‘New bounds for parallel prefix circuits,”” 15th Annual ACM Symposium on
Theory of Computing, Boston {April 1983), pp. 100-109,

Fischer M. 1., “*Efficiency of equivalence algorithms,”’ in Complexity and Computations,
R. E. Miller and J. W, Thatcher, eds., Plenum Press, New York, 1972, pp. 153-168,

Fischer M. J., and A. R. Meyer, **Boolean matrix multiplication and transitive closure,’’
{EEE]2th Annual Symposium on Switching and Automata Theory, East Lansing, Ml
{October 1971), pp. 129131,

Fischer M. J., and M. O. Rabin, “‘Super-exponential complexity of Presburger
arithmetic,”” in Complexity of Computation, R. M. Karp Ed., SIAM~AMS, 1974,

Fischer M. 1, and S. L. Salzberg, *‘Finding a majority among n votes,”” Journal of
Algorithms, 3 (1982), pp. 375-379.

Flajolet P, and J. S. Vitter, **Average-case analysis of algorithms and data structures,”
Technical Report 718, INRIA, France, August 1987.

Floyd R. W., **Algorithm 97: Shortest paths,”” Communications of the ACM, 5 {June
1962), pp. 345.

Floyd R. W, **Assigning meanings to programs,’’ Symposium on Appliied Mathematics,
American Mathematical Society (1967), pp. 19-32.

Biblicgraphy 451

Floyd R. W, and R. L. Rivest, **Expected time bounds for selection,”” Communication of
the ACM, 18 (March 1975), pp. 165-172.

Flynn M. L, ““Very high-speed computing systems,”” Proceedings of the [EEE, 54
(1966), pp. 15011909,

Ford L. R,, “*Network flow theory,”” The Rand Corporation P-293, Santa Monica, CA
{1956).

Ford L. R., and D. R. Fulkerson, **Maximal flow through a network,”’ Canadian Journal
of Mathematics, 8 (1936), pp. 399-404,

Ford L. R., and D. R. Fulkerson, Flows in Networks, Princeton University Press,
Princeton, NJ, 1962,

ford L. R, and 8. M. Johnson, *A tournament problem,'" American Mathematical
Monthly, 66 (1959), pp. 387-385.

Fortune S., and J. Hopcroft, ‘A note on Rabin’s nearest-neighbor algorithm,”
Information Processing Letters, 8 (1979}, pp. 2023,

Fox G. C., M. A. Johnson, G, A, Lyzenga, 8. W, Ouo, J. K. Salmon, and D. W. Walker,
Solving Problems on Concurrent Processors, Volume 1: General Techniques and
Regular Problems, Prentice-Hall, Englewood Cliffs, NJ, 1988,

Franco J., "'On the probabilistic performance of algorithms for the satisfiability
problem,”” Information Processing Letters, 23 (August 1986}, pp. 103-106,

Frederickson G., **Distributed algorithms for selection in seis,”” Journal of Computer and
System Sciences, 37 (December 1988), pp. 337-348,

fredman M. L., and R. E. Tarjan, “*Fibonacci heaps and and their uses in network
optimization,”’ Journal of the ACM, 34 (July 1987), pp. 596-615.

Gabow H. N., “"An efficient implementation of Edmonds’s algorithm for maximum
matching on graphs,’” Jowrnal of the ACM, 23 (1976}, pp. 221234,

Gabow H. N., Z. Galil, T. H. Spencer, and R. E. Tarian, '"Efficient algorithms for finding
minimum spanning trees in undirected and directed graphs,’”’ Combinatorica, 6
(19863, pp. 109-122.

Gabow H. N, and R, E. Tarjan, *' Algorithms for twe bottleneck optimization problems,”
Journal of Algorithms, 9 (September 1988), pp. 411-417.

Galit Z., **On improving the worst case running time of the Boyer-Moore string
searching algorithm,”’ Communications of the ACM, 22 {September 1979}, pp.
505-308.

Galil Z., *'Effictent algorithms for finding maximum matching in graphs,”’ Computing
Surveys, 18 (March 1986}, pp. 23--38.

452 Bibliography

Galler B. A., and M. 1. Fishcer, ' An improved equivalence algorithm,”” Communications
of the ACM, T {1964), pp. 301303

Garey M. R., and D. 8. Johnson, Computers and Intraciability, A Guide 1o the Theory of
NP-completeness, W. H. Freeman, San Francisco, CA, 1979,

Gehringer E. F., D. P. Siewiorek, and Z. Segall, Parallel Processing: The cm®
Experience, Digital Press, Bedford, MA, 1987,

Gibbons A., Algorithmic Graph Theory, Cambridge University Press, Cambridge, 1985,

Gibbons A., and W. Rytter, Efficient Parallel Algorithms, Cambridge University Press,
Cambridge, 1988.

Goldberg A. V., and R. E. Tarjan, “'A new approach to the maximal-flow problem,”
Journal of the ACM, 35 (October 1988), pp. 921-940.

Goldwasser S., and J. Killian, **Almost all primes can be quickly certified,” /8th Annual
ACM Symposium on Theory of Computing, Berkeley (May 1986), pp. 316-329.

Golomb 8., and L. Baumernt, **Backtrack programming,”” Journaf of the ACM, 12 (1965},
pp. 516524,

Golovina L. L, and 1. M. Yaglom, Induction in Geometry (translated from Russian}, D, C,
Heath, Boston, 1963.

Golumbic M., Algorithmic Graph Theory and Perfect Graphs, Academic Press, New
York, 1980.

Gondran M., and M. Minoux, Graphs and Algorithms, John Wiley & Sons, New York,
1984,

Gonnet G. H., Handboaok of Algerithms and Data Structures, Addison-Wesley, Reading,
MA, 1984,

Graham R. L., **An efficient algorithm for determining the convex hull of a planar set,”
Information Processign Letters, 1 (1972}, pp. 132-133,

Graham R. L., D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley,
Reading, MA, 19890

Gray F,, Pulse Code Communication, US Patent 2632058 (March 1953).

Greenberg A., and U. Manber, **A probabilistic pipeline algorithm for &-selection on the
tree machine,"* IEEE Transactions on Computers, C-36 {(March 1987), pp. 359-362.

Greene D. H., and D. E. Knuth, Mathematics for the Analysis of Algorithms, Birkhauser,
Boston, 1982,

Gries D, The Science of Programming, Springer-Veriag, New York, 1981,

Grotschel M., L. Lovdsz, and A, Schrijver, **The ellipsoid method and its consequences
in combinatorial optimization,”’ Combinatarica, 1 {1981) pp. 169-197.

Bibliography 453

Guibas 1. J., and A. M. Odlyzko, *'A new proof of the linearity of the Boyer-Moore
string searching algorithm,”* SIAM Journal on Computing, 9 (1980), pp. 672-682.

Gusfield D.. and L. Pitt. *‘Equivalent approximation algorithms for node cover,”
information Processing Letters, 22 (May 19863, pp. 291-294,

Guting R. H., and D. Wood, “‘Finding rectangles intersections by divide-and-conquer,”
IEEE Transactions on Computers, €-33 (July 1984), pp. 771-775.

Hall M., Combinatorial Theory, Second Edition, John Wiley and Sons, New York, 1986,

Hall P., **On representatives of subsets,”” Journal of the London Mathematical Sociery,
10 ¢1935), pp. 26-30.

Hamming R. W., Coding and Information Theory, Second Edition, Prentice-Hall,
Englewood Cliffs, NJ, 1986,

Harary F., Graph Theory, Addison-Wesley, Reading, MA, 1969,

Hedemiemi S. T., 8. M. Hedetniemi, and A. L. Liestman, ** A survey of broadcasting and
£ossiping in communication networks,”” Networks, to appear (1989).

Hibbard T. N., "*Some combinatorial properties of certain trees with applications to
searching and sorting,”’ Journal of the ACM, 9 {January 1962), pp. 13-28.

Hillis W. B, The Connection Machine, MIT Press, Cambridge, MA, 1985.

Hillis W. D., and G. L. Steele, *Data parallel algorithms,”’ Compnunications of the ACM,
29 (December 1986), pp. 1170~1183.

Hinrichs K., . Nievergelt, and P. Schorn, *Plane-sweep solves the closest pair problem
elegantly,”” Informaticn Processing Letters, 26 (1988), pp. 255-261.

Hirschberg D. S, “*A linear-space algorithm for computing maximal common
subsequences,”” Communications of the ACM. 18 (June 1975}, pp. 341-343.

Hirschberg D. 8., “"Recent results on the complexity of common-subsequence
problems.”” in Time Wraps, String Edits, and Macromolecules: The Theory and
Practice of Sequence Comparison, D. Sankoff and 1. B, Kruskal, eds., Addison-
Wesley, Reading, MA, 1983,

Hoare C. A, R, *Quickson,”” The Computer Journal, (1962), pp. 10-15,

Hoffman C. M., Group Theoretic Algarithms and Graph Isomorphism, Lecture Notes in
Computer Science, 136, Springer-Verlag, New York, 1982

Hofri M., Probabilistic Analysis of Algorithms, Springer-Verlag, New York, 1987.

Hong, }.-W.. Computation: Computability, Similarity and Duality, Pitman. London,
1986,

Hoperoft }. £., and R. M. Karp, **An n? algorithm for maximum matchings in bipartite
graphs,” SIAM Jowrnal on Computing, 2 (December 1973), pp. 225-231.

484 Bibliography

Hoperoft J. E., and R. E. Tarjan, **Dividing a graph into friconnected components,”’
SIAM Journal on Computing, 2 (September 1973}, pp. 135-158,

Hoperoft J. E., and R. E. Tarjan, **Efficient planarity testing,”” Journal of the ACM, 21
(October 1974), pp. 549-568.

Hoperoft J. E., and). D. Ullman, “*Set-merging algorithms,” SIAM Jowrnal on
Computing, 2 (December 1973), pp. 294-303.

Horowitz E., and 8. Sahni, Fundamentals of Computer Algorithms, Computer Science
Press, Rockville, MD (1978).

Horowitz E., and A. Zorat “‘Divide and conquer for parallel processing,”’ IEEE
Transactions on Computers, C-32 (June 1983), pp. 582-585.

Hu T. C., Integer Programming and Network Flows, Addison-Wesley, Reading, MA,
1969,

Huang B. C., and M. A. Langsion, "*Practical in-place merging,”” Communications of the
ACM, 3 (March 1988), pp. 348-352.

Huffman D. A., “*A method for the construction of minimum redundancy codes,”
Proceedings of the IRE, 40 {September 1952), pp. 10981101,

Hunt 1. W, and T. G. Szymanski, " A fast algorithm for computing longesi common
subsequences,”’ Communications of the ACM, 26 (May 1977), pp. 350353,

Hwang K.. and F. A, Briggs, Computer Architectire and Parallel Processing, McGraw-
Hill, New York, 1984.

incerpi ., and R. Sedgewick, *Practical variations of shellsort,”” Information Processing
Letters, 26 (1987) pp. 37-43.

fai A., and M. Rodeh, “*Finding a minimum circuit in a graph,’” SIAM Journal on
Computing, T (November 1978), pp. 413-423.

Jagadish H. V., and T. Kailath, **A family of new efficient arrays for matrix
multiplication,”” [EEE Transactions on Computers, C-38 (January 1989), pp.
149155,

Johnsen D. S., A. Demers, 1. D. Ullman, M. R. Garey. and R. L. Graham, ‘*Worst case
performance bounds for simple one-dimensional packing algorithms,”" SIAM
Jaurnal on Computing, 3 (1974), pp. 299-325,

Iohnson D, B., “*Efficient algorithms for shortest paths in sparse networks,”’ Journal of
the ACM. 24 (January 1977), pp. 1-13.

Jones D. W., “*An empirical comparison of priority-queue and event-set
implementations,”” Communications of the ACM, 29 {Aprit 1986), pp. 300-311.

Karatsuba A.. and Yu. Ofman, Multiplication of multidigit numbers on automata,’’
translated in Sov. Phys. Dokl 7 (1963}, pp. 595-596. Originally appeared in Dok!.
Akad. Nauk S55R, 145 (1962), pp. 293294,

Bibliography 455

Karlin A. R., and E. Upfal, *Paralle]l hashing — An efficient implementation of shared
memory,”’ 18th Annual ACM Symposium on Theory of Computing, Berkeley (May
1986), pp. 160~168,

Karmarkar N., ‘A new polynomial time algorithm for linear programming,’
Combinaterica, 4 (1984), pp. 373-395.

Karmarkar N., and R. M, Karp, “An efficient approximation scheme for the one-
dimensional bin packing problem,”” 23th Annual Symposium on Foundations of
Computer Science, (November 1982), pp. 312-320.

Karp R. M., ""Reducibilitics among combinatorial problems,” in Complexity of
Computer Computations, R. E. Miller and }. W. Thatcher, eds., Plenum Press, New
York (1972), pp. 85-103.

Karp R. M., M. Saks, and A. Wigderson, ''On a search problem related to branch-and-
bound procedures,’” 27th Annual Symposium on Foundations of Computer Science,
Toronto (October 1986}, pp. 19-28.

Karp R. M., ‘‘Combinatorics, complexity, and randomness,”’ Communications of the
ACM, 29 (February 1986), pp. 98109,

Karp R. M., and M. O. Rabin, **Efficient randomized pattern-matching algorithms,”’ IBM
Journal of Research and Development, 31 (March 1987), pp. 249-260,

Khachian L. G., **A polynomial algorithm in linear programming,”’ Soviet Math, Doki.,
20 (1979), pp. 191-194,

King K. N., and B. Smith-Thomas, “‘An optimal algorithm for sink-finding,”
Information Processing Letters, 14 (May 1982), pp. 109-111.

Klee V., and G. L. Minty, “‘How good is the simplex algorithm?"" in fnequalities 11, O.
Shisha, ed., Academic Press, New York (1972}, pp. 159-175.

Klee V., R. E. Ladner, and R. Manber, *'Signsolvability revisited,”” Linear Algebra and
its Applications, 59 (1984), pp. 131157,

Knuth D. E.,, The Art of Computer Programming, Volume 1/ Fundamental Algorithms,
Second edition, Addison-Wesley, Reading, MA, 1973a.

Knuth D, E.,, The Art of Computer Programming, Volume 3/ Sorting and Searching,
Addison-Wesley, Reading, MA, 1973b.

Knuth B. E., “Estimating the efficiency of backtrack programs,” Mathematics of
Computation, 29 {1975}, pp. 121-136.

Knauth D. E., **Big omicron and big omega and big theta,”” SIGACT News, {April-June
1976), pp. 18-24,

Kauth D. E., The Art of Compiiter Programming, Volume 2/ Seminumerical Algorithms,
Second edition, Addison-Wesley, Reading, MA, 198t.

456 Biblography

Knuth . E., “Dynamic Huffman coding,”" Journal of Algorithms, 6 (1985}, pp.
163-180.

Knuth D, E,, . H. Morris, and V. R. Pratt, *‘Fast pattern maiching in strings,”’ S/IAM
Journal ont Computing, 6 (June 1977), pp. 323-350.

Kronrod, M. A., “*An optimal ordering algorithm withowt a field of operation,”’ (in
Russian), Dok. Akad. Nauk. SSSR, 186 (1969), pp. 1256-1258.

Kruskal 1. B, **On the shortest spaaning subtree of a graph and the traveling salesman
problem,”” Proceedings of the American Mathematical Society, 71 (1956), pp.
48-50.

Kruskal C. P., L. Rudolph, and M. Snir, “The power of parallel prefix,”” IEEE
Transactions on Compurers, C-34 (November 1985), pp. 965-968,

Kruskal C. P., L. Rudolph, and M. Snir, “Efficient parallel algorithms for graph
problems,”’ /986 International Conference on Parallel Frocessing, {August 1986),
pp. 869-876.

Kruskal C. P., L. Rudolph, and M. Snir, **Techniques for parallel manipulation of sparse
matrices,”’ IBM Research report RC-13364, (December 1987},

Kung H. T., “'Let’s design algorithms for VLSI systems,”” Proceedings of the Caltech
Conference on VLSI, (1979}, pp. 65-90.

Kung H. T., **Why systlic architecture,”” Compurer, 15 (January 1982), pp. 37-46.

Kung H. T, and C. E. Leiserson, ‘‘Algorithms for VLSI processor arrays,”” in
Introduction to VLSI Systems, C. Mead and L. Conway, eds., Addison-Wesley,
Reading, MA, (1980}, pp. 271-292.

Kurtz T., and U. Manber, **A probabilistic distributed algorithm for set intersection and
its analysis,”” Theoretical Computer Science, 49 (1987), pp. 267-282.

Ladner R. E., *'On the structure of polynomial time reducibility,”’ Journal of the ACM,
22 (January 1975), pp. 155171

Ladner R, E.. and M. J. Fischer, *‘Paraltel prefix computation,”’ Journal of the ACM, 27
{October 1980), pp. 831-838.

Lakatos 1., Proafs and Refutations: The Logic of Mathematical Discovery, Cambridge
University Press, Cambridge, 1976.

Lawler E. L., Combinatorial Optimization: Networks and Matroids, Holt, Rinehart &
Winston, New York, 1976.

Lawler E. L., J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, The Traveling
Salesman Problem, John Wiley & Sons, New York, 1985,

Lempel A., S. Even, and 1. Cederbaum, **An algorithm for planarity testing of graphs,”’
Theory of Graphs: An International Symposium, Rome (July 19663, pp. 215-232.

Bibliography 457

Levin L. A, *Universal sorting problems,”” Problemy Peredaci Informacii, 9 (1973}, pp.
115-116. English translation in Problems of Information Transmission, 9 (1973),
pp. 265-266.

Lin 8., and B. W. Kemighan, "‘An effective hearistic for the traveling salesman
problem,”” Operations Research, 21 (1973), pp. 498-516.

Lipovski G. I, and M. Malek, Parallel Computing: Theory and Comparisons, John
Wiley & Sons, New York, 1987,

Lipson l. D, Elements of Algebra and Algebraic Computing, Bejamin Cummings, Menlo
Park, CA, 1981,

Lipton R. J., and D. Loprestt, ‘*A systolic array for rapid string comparison,”’
Proceedings of the 1985 Chapel Hill Conference on VLSI, (1985), pp. 363-376.

Litwin W., “*Linear hashing: A new tool for file and table addressing,”” Proceedings of
the Sixth Conference on Very Large Databases, Montreal, Canada (1980} pp.
212-223.

Lovasz L., *'Coverings and colorings of hypergraphs,”” Proceedings of the Fourth
Southeastern Conference on Combinatorics, Graph Theory, and Computing, Utilitas
Mathematica, Winnipeg ¢1973), pp. 3-12.

Lovasz L., Combinatorial Problems and Exercises, North Holland, Amsterdam, 1979,
Lovisz L., and M. B. Plummer, Marching Theory, North Holland, Amsterdam, 1986,
Lucas E., Recreations Mathematiques, Paris, 1882,

Lueker G. 8., “‘Some techniques for solving recurrences,”” Computing Swrveys, 12
{(December 1980}, pp. 419436,

Luks E. M., "“Isomorphism of graphs of bounded valence can be tested in polynomial
time,” Journal of Computer and System Sciences, 25 (1982), pp. 42-65.

Lynch T. L., Data Compression Techniques and Applications, Van Nostrand Reinhold,
New York, 985,

Maggs B. M., and S. A. Plotkin, “‘Minimum-cost spanning tree as a path-finding
problem,” Information Processing Letters, 26 (January 1988), pp. 291-293.

Manacher G. K., **The Ford-lohnson sorting algorithm is not optimal,”” Journal of the
ACM, 26 (July 1979), pp. 441-456.

Manber U., *'On maintaining dynamic information in a concurrent environment,”” SIAM
Jownal on Computing, 15 (November 1986}, pp. 11301142,

Manber U., **Using induction to design algorithms,”” Communications of the ACM, 31
{November 1988), pp. 1300-1313.

Manber U., and L. McVoy, *Efficient storage of nonadaptive routing tables,”” Merworks,
1B (1988), pp. 263-272.

458 Bibliography

Manber U., and E. Myers, “'Suffix arrays: A new method for on-line string searches,”
first Annuat ACM-SIAM Symposium on Discrere Algorithms {(January 1990).

Manna Z., Lectures on the Logic of Computer Programming, CBMS~NSF Regional
Conference series in Applied Mathematics, SIAM, Philadelphia, PA, 1980,

Manna Z., and R. Waldinger, *‘The origin of a binary search paradigm,”” Science of
Computer Programming, 9 (1987) pp. 37-83.

Masek W.], and M. S. Paterson, “‘How to compute string-edit distances quickly,”” in
Time Warps, String FEdits, and Macromolecules: The Theory and Practice of
Sequence Comparison, D. Sankoff and J. B. Kruskal, eds., Addison-Wesley,
Reading, MA (1983), pp. 337-349,

McCreight, E. M., "' A space-economical suffix tree construction algorithm,”” Journal of
the ACM 23 (1976), pp. 262-272.

Megidde N., "'Applying parallel computation algorithms in the design of serial
atgorithms,”” Journal of the ACM, 30 (October 1983) , pp. 852-865.

Mehlhorn K., Data Structures and Algorithms 3: Multi-Dimensional Searching and
Computational Geometry, Springer-Verlag, Berlin, 1984,

Menger K., **Zur aligeminen Kurventheorie,”” Fund, Marh., 10 (1927}, pp. 95-115.

Meyer A. R., and L. Stockmeyer, **The equivalence problem for regular expression with
squaring requires exponential space,” [3th Annugl Symposium on Switching and
Automata Theory, {1972), pp. 125-129.

Minieka E., Optimization Algorithms for Networks and Graphs, Marcel Dekker, New
York, 1978,

Mirzaian A, ' A halving technique for the longest stuttering subsequence problem,"’
Information Processing Letters, 26 (1987), pp. 71-75,

'

Misra [, and D. Gries, “Finding repeated elements,”” Science of Computer

Programming, 2 (1982), pp. 143-152.

Moffat A., and T. Takaoka, ‘*An all pair shortest path algorithm with expected time
O (n*logn)," SIAM Journal on Computing, 16 (December 1987), pp. 1023-1031,

Moitra A., and S. S. Iyengar, *‘Discussion of parallel algorithms,’’ Technical Report
TR-86-759, Department of Computer Science, Cornell University (June 1986).

Moret B. M. E., “‘Decision trees and diagrams,”’ Computing Surveys, 14 (December
1982), pp. 593-623. :

Munro 1., **Problems related to matrix multiplication,” in Computational Complexity, R.
Rustin, ed,, Algorithmics Press, New York, 1971,

Myers E. W., “*An O(ND) difference algorithm and its variations,”* Algorithmica, 1
{1986), pp. 251266,

Bibliography 459

Myers E. W., “'A four-Russians algorithm for regular expression pattern matching,”
Technical Report #88-34, Department of Computer Science, University of Arizona,
October 1988,

Nishizeki T., and N. Chiba, Planar Graphs, Theory and Algorithms, Annals of Discrete
Mathematics, 32, North Holland, Netherlands, 1988,

Ore O., “*Note on Hamiltontan circuit,”’ American Mathematical Monthly, 67 (1960}, p.
55.

Ore O., Graphs and Their Uses, Random House, New York, 1963,

Pan V., *‘Strassen’s algorithm is not optimal,”” I9th Annual Symposium on Foundations
of Computer Science, Ann Arbor, MI (October 1978), pp. 166-176.

Pan V., How to Multiply Matrices Faster, Lecture Notes in Computer Science, Volume
129, Springer-Verlag, Berlin, 1984.

Papadimitriou C. H., and K. Steiglitz, Combinatorial Optimization: Algorithms and
Complexity, Prentice-Hall, Englewood Cliffs, NJ, 1982,

Parbermy L., Parallel Complexity Theory, John Wiley & Sons, New York, 1987,

Paull M. C., Algorithm Design: A Recursion Transformation Framework, John Wiley &
Sons, New York, 1988,

Pearl J., Heuristics — Intelligent Search Straregies for Computer Problem Solving,
Addison-Wesley, Reading, MA, 1984.

Perl Y., A. hai, and H. Avni, ““Interpolation search — A loglogN search,”
Conununications of the ACM, 21 (July 1978}, pp. 550-553.

Polya G., Induction and Analogy in Mathematics, Princeton University Press, Princeton,
NJ, 1954,

Polya G., How to Solve It, Second Edition, Princeton University Press, Princeton, NI,
1957.

Polya G., Mathematical Discovery, Combined Edition, John Wiley & Sons, New York,
1681,

Polya 3., and G. Szego, Aufgaben und Lehrsarze aus der Analysis, Volume 1, Berlin,
Springer, 1927, p. 7.

Polya G., and G. Szego, Problems and Theorems in Analysis I, Springer-Verlag, Berlin,
1972,

Preparata F. P., and M. |. Shamos, Computational Geometry: An ftraduction, Springer-
Verlag, New York, 1985,

Prim R. C., “*Shortest conpection networks and some generalizations,”’ Bell Sysiem
Technical Journal, 36 {1957), p. 1389.

460 Bibliography

purdom P. W, and C. A. Brown, The Analysis of Algorithms, Holt, Rinehart & Winston,
New York, 1985a,

purdom P. W, and C. A. Brown, *“The pure literal rule and polynomial average time,”’
SIAM Journal on Computing, 14 {November 1985b}, pp. 943-953.

Quinn M.)., Designing Efficient Algorithms for Parallel Computers, McGraw-Hill, New
York, 1987,

Quinn M. J, and N. Deo, ‘‘Parallel graph algorithms,”" Computing Surveys, 16
(September 1984), pp. 319-348,

Rabin M. Q., “‘Probabilistic algorithms,"” in Algorithms and Complexity, Recent Results
and New Directions, J. F. Traub, ed., Academic Press, New York, 1976, pp. 21-39.

Raghavan P., “*Probabilistic construction of deterministic algorithms: Approximating
packing integer programs,’” 27th Annual Symposium on Foundations of Computer
Science, Toronto {October 1986), pp. 1018,

Ranade A. G., “How to emulate shared memory,”” 28th Annual Symposium on
Foundations of Computer Science, Los Angeles (October 1957), pp. 185-194,

Reed D. A., and R. M. Fujimoto, Multicomputer Networks: Message-Based Parallel
Processing, MIT Press, Cambridge, MA, 1987.

Reif J. H., and L. G. Valiang, ' A logarithmic time sort for lincar size networks,” Journal
of the ACM, 34 (January 1987), pp. 60-76.

Reingold E. M., and W, . Hansen, Dara Structures, Little, Brown, Boston, MA, 1983,
Richards B., *'Parallel sorting — A bibliography,”’ SIGACT News, 18 (Summer 1986).

Rivest R. L., A. Shamir, and L. M. Adleman, ‘A method for obtaining digital signatures
and public-key cryptosystems,"” Communications of the ACM, 21 (February 1978),
pp. 120-126.

Roberts F. S., Applied Combinatorics, Prentice-Hall, Englewood Cliffs, NJ, 1984.

Rodeh M., “‘Finding the median distributively,” Jowrnal of Computer and System
Sciences, 24 (1982), pp. 162-166.

Ronse C., **A bibliography on digital and computational convexity,”” Manuscript MI85,
Philips Research Laboratory, Brussels, (February 1987).

Rosenberg A. L., "'On the time required to recognize properties of graphs,’’ SIGACT
News, (1973}, pp. 15-16.

Runge C., and H. Konig, Die Grundlehrn der mathematischen Wissenschften, Springer,
Berlin, 1924,

Ryser H. J., "*Combinatorial properties of matrices of zeros and ones,”’ Canadian
Journal of Mathematics, 9 {1937}, pp. 371377

Bibliegraphy 461

Rytter W., **Fast recognition of pushdown automaton and context-free languages,”
Information and Control, 67 (1985) pp. 12-22.

Sankoff D, and J. B. Kruskal, Time Wraps, String Edits, and Macromolecules: The
Theory and Practice of Sequence Comparisen, Addison-Wesley, Reading, MA,
1983,

Savitch W. I, “‘Relationships between nondeterministic and deterministic tape
complexities,”” Journal of Computer and System Sciences, 4 (19703, pp. 177192,

Schaback R., ““On the expected sublinearity of the Boyer-Moore algorithm,” SIAM
Journal on Computing, 17 {August 1988), pp. 648-658.

Schonhage A., M. S. Paterson, and N. Pippenger, *‘Finding the median,”” Journal of
Computer and System Science, 13 (October 1976}, pp. 184-199,

Schrijver A., Theory of Linear and Integer Programming, John Wiley & Sons,
Chichester, 1986.

Sedgewick R., Quicksort, Garland, New York, 1978,
Sedgewick R., Algorithms, Second Edition, Addison-Wesley, Reading, MA, 1988,

Sedgewick R, and J. 8. Viuer, *‘Shortest paths in Euclidean graphs,” Algorithmica, 1
{1986), pp. 31-48,

Shamos M. L, and D. Hoey, “*Closest-point problems,” [6th Annual Symposium on
Foundations of Computer Science, Berkeley (October 1975}, pp. 151162,

Shamos M. 1., and D. Hoey, "“Geometric intersection problems,” [7th Annual
Symposium on Foundations of Computer Science, Houston (October 1976), pp.
208-215.

Shelt D. L., *"A high-speed sorting procedure’’ Communications of the ACM, 2 {July
1959), pp. 30-32.

Shiloach Y, and U. Vishkin, *'Finding the maximum, merging, and sorting in a paralle]
computation model,”” Journal of Algorithms, 3 {March 1981}, pp. 88-102.

Shrira L., N. Francez, and M. Rodeh, *'Distributed £ selection: From a sequential 10 a
distributed algorithm,”’ Secand ACM Symposium on Principles of Distributed
Computing, Ottawa (August 1983), pp. 143-153,

Siegel H. J., Interconnection Networks for Large Scale Parallel Processing: Theory and
Case Studies, Lexington Books, Lexington, MA, 1983,

Sleator D. D, and R, E, Tarjan, “*Self-adjusting binary search trees,”’ Journal of the
ACM, 32 (luly 1985), pp. 652-686.

Smit G. V., **A comparison of three string matching algorithms,”” Software — Practice
and Experience, 12 (1982}, pp. 5766,

52 Bibliography

olovay R., and V. Strassen, '* A fast Monte-Carlo test for primality,”” SIAM Journal on
Computing, 6 (March 1977), pp. 84—83; erratum (February 1978), p. 118,

ominski E 8., The Method of Mathematical Induction, {translated from Russian), D. C.
Heath, Boston, 1963,

jpafford E. H., "'The Internet worm program: An analysis,”” Technical Report CSD-
TR-823, Department of Computer Science, Purdue University (November 1988).

spira P. M., **A new algorithm for finding all shortest paths in a graph of positive arcs in
average time O (nziogzn),” SIAM Journal on Computing, 2 (1973), pp. 28-32.

Siandish T. A., Data Structure Techniques, Addison-Wesley, Reading, MA_, 1980.

Stanton ., and D. White, Constructive Combinatorics, Springer-Verlag, New York,
1986.

Stout Q. F., "*Supporting divide-and-conquer algorithms for image processing,’’ Journal
of Parallel and Distributed Computing, 4 (1987}, pp. 95-115,

Strassen V., “Gaussian elimination is not optimal,” Nwmerische Mathematik, 13 (1969},
pp. 354-356.

Takaoka T., “*An on-line pattern matching algorithm,”” Information Processing Letters,
22 (May 1986), pp. 329-330.

Tarjan R. E., "'Depth first scarch and linear graph algorithms,”” SIAM Journal on
Computing, 1 (June 1972), pp. 146—160.

Tarjan R. E., “*Efficiency of a good but not linear set union algorithm,”’ Journal of the
ACM, 22 (April 1975), pp. 215-225.

Tarjan R. E., Data Structures and Network Algorithms, SIAM, Philadelphia, PA, 1983.

Tarjan R. E., “*Amortized computational complexity,”” SIAM Journal on Applied and
Discrete Mathematics, 6 (1985), pp. 306-318,

Tarjan R. E., and J. van Leeuwen, "“Worst case analysis of set union algorithms,”
Journal of the ACM, 31 {April 1984), pp. 245-281.

Tarjan R. E., and U. Vishkin, **An efficient parallel biconnectivity algorithm,”” STAM
Journal on Computing, 14 (November 1985), pp. 862-874.

Tarry G., **Le probleme des labyrinths,"” Nouvelles Ann. de Math, (1895}, p. 187.
Toussaint G., Computational Geometry, North Holland, Amsterdam, 1984.

Turner 1. S., **Almost all k-colorable graphs are easy to color,”” Journal of Algorithms, 9
{1988}, pp. 63-82.

Tutte W. T., Graph Theory, Encyclopedia of Mathematics, Volume 21, Addison-Wesley,
Reading, MA, 15284,

Bibliography 463

Uhr L., Paraliel Computer Vision, Academic Press, New York, 1987.

Ukkonen E., **Algorithms for approximate string maiching,”” Information and Control,
64 (1985}, pp. 100118,

Ullman J. D., Computational Aspects of VLSI, Computer Science Press, Rockville, MD,
1984,

Upfal E., “Efficient schemes for parallel communication,” First ACM Symposium on
Principles of Distributed Computing, Ottawa {August 1982), pp. 55-59.

Upfal E., and A. Wigderson, **How to share memory in a distributed system,”’ Journal of
the ACM, 34 (January 1987), pp. 116—127,

Vacca G., "*Maurolycus, the first discoverer of the principle of mathematical induction,”’
Bulletin of the American Mathematical Society, 16 {1909), p. 70.

Vaidya P. M., "*Geometry helps in matching,”” 20th Annual ACM Symposium on Theory
af Computing, Chicago (May 1988}, pp. 422423,

Valiant L. G., *'Parallelism in comparisons problems,”” SIAM Journal on Computing, 4
{September 1975), pp. 348-355.

Valiant L. G., “*A scheme for fast parallel communication,”’ SIAM Journal on
Computing, 11 (May 1982), pp. 350361,

Valiant L. G., and (3. 1. Brebner, ‘*Universal schemes for parallel communication,”” /3th
Annual ACM Sympaosium on Theory of Computing, Milwaukee (May 1981), pp.
263-277.

van der Nat M., “'On interpolation search,”” Communications of the ACM, 22 (December
1979}, p. 681,

van Leeuwen J., "'Graph algorithms,’’ Technical Report RUU-CS-86-17, Department of
Computer Science, University of Utrecht, Utrecht, The Netherlands, (October 19846).

von Neumann J,, Collected Works, 8§, Macmillan, New York, 1963, pp. 91-99.

Vishkin U., “*Randomized paralie! speedups for list ranking,”” Journal of Paraliel and
Disiributed Computing, 4 (1987), pp. 319333,

Vinter 1. S., “‘Design and analysis of dynamic Huffman coding,”’ 26¢h Annual Symposium
on Foundations of Computer Science, Portland, OR (October 1983), pp. 293-302.

Vitter J. S., and W. C. Chen, Design & Analysis of Coalesced Hashing, Oxford
University Press, New York, 1987,

von Neumann 1., Collected Works, 8, Macmillan, New York, 1963.

Wagner R. A, and M.], Fischer, “*The string-to-string correction problem,”” Journal of
the ACM, 21 (January 1974), pp. 168—-173.

464 Bibliography

warren H. S., “"A modification of Warshall’s algorithm for transitive closure of binary
relations,”” Communications of the ACM, 18 (April 1975}, pp. 218-220.

Warshall S., ' A theorem on Boolean matrices,”” Journal of the ACM, 9 (January 1962),
pp. 11-12.

Wegman M. N., and J. L. Carter, *‘New classes and applications of hash functions,’” 20th
Amnual Sympostum on Foundations of Computer Science, {Qctober 1979), pp.
175-182.

Weiner, P., *‘Linear pattern maiching algorithm,”” I4th IEEE Symposium on Switching
and Automata Theory, lowa City, fowa (October 1973), pp. I~11.

Whitney H., ‘*Congruent graphs and the connectivity of graphs,”” American Journal of
Mathematics, 54 (1932), pp. 15068,

Wigderson A., *'Improving the performance guarantee for approximate graph coloring,”’
Journal of the ACM, 38 (October 1983), pp. 729735,

wilf H. S., “Backtrack: An O(1} expected time algorithm for the graph coloring
problem,” Information Processing Letters, 18 (1984), pp. 119-121,

Willtams J. W,], “‘Algorithm 232: Heapsort,” Communications of the ACM, 7 (June
19643, p. 701

Winograd S., “*A new algorithm for inner product,’” IEEE Transactions on Computers,
C-17 (1968), pp. 693694,

Winograd 5., *On the number of multiplications necessary 1o compute certain
functions,”’ Communications on Pure and Applied Mathematics, 23 (1970a), pp.
165170,

Winograd 8., **The algebraic complexity of functions,”” Proceedings of the International
Congress of Mathematicians, 3 {1970b), pp. 283288,

Winograd S., **Some remarks on fast multiplication of polynomials,” in Complexity of
Sequential and Parallel Numerical Algorithms, 1. F. Traub, ed., Academic Press,
New York (1973}, pp. 181-196.

Winograd S., Arithmetic Complexity of Computations, SIAM, Philadelphia, PA, 1980.
Wirth N., Algorithms & Data Structures, Prentice-Hall, Englewood Cliffs, NJ, 1986,

Yao A., “An O(|E |loglog |V |) algorithm for finding minimum spanning trees,”
Information Processing Letters, 4 (1975), pp. 21-23.

Yao A., “*Probabilistic computations — toward a unified measure of complexity,” I8th
Annual Symposium on Foundations of Computer Science, Providence, RI {October
1977y, pp. 222-227.

Ziv 1., and A. Lempel, *‘Compression of indiviual sequences via variable-rate coding,”
IEEE Transactions on Information Theory, TF-24 {September 1978), pp. 530-536.

o 41
G ¥
a3 41-42, 174, 316, 410
@ 41
1 4t
o 4]

Aanderaa, 8. 0. 113
Abstract data types 62
Ackerman’s function 86
Acyclic coliection of sets 372
Acyclic graph, see Directed acyclic graph
Addition, parallel 379-380, 411
Adel'son-Vel'skii, G. M, 75
Adiacency list representation 84
Adiacency matrix representation B4
Adieman, L. M. 295, 316
Abho, A. V. 85, 174, 175, 305, 316, 336
Ajeat, M, 410
AkL 5. G. 409
Aleliunas, R, 411
Algebraic algorithms 293-320, 436-438
Algorithm
aigebraic 293-320, 436-438
analysis of 37-60
approximation 357, 363-367
definition of |
distributed 208, 376
divide-and-conguer 103104, 113114,
131,137, 141, 144, 158, 169, 172,
176, 183, 264, 278-281, 286, 287,
289, 299304, 311314, 316-319,
379-380, 383, 394-396, 409410, 43]
efficient, definition of 34}
geometric 102104, 265-291, 331333,
434-436
graph 95-96, 98101, 185-264, 325-326,

347-149, 351-354, 356-363, 369,
I10-374, 414-415, 426434
greedy 210-211, 235, 237, 363
for interconnection networks 378,
389-403
notation for 4
sumeric 293-320, 379-38(0), 398401,
404-407
parallet 214, 216, 304, 375-416
probabilistic 138164, 175, 287, 320,
402-403
ropning time of an 42
sequences and sets 119183
systolic 404409, 411,416
All shertest paths problem 212-214, 322
Almasi, G. 5, 409
Alternating path 236
Amaortized complexity 55, 83, 86
Analysis of algorithms 37-60
Ancestor {in a tree) 193
Angluin, D. 369
Anti-Gray codes 33
Apostolico, A. 1758
Approximate convex hull 289
Approximation algonithms 357, 363367
Arborescence 66, 186
Arithmetic geometsic mean theorem 24-26,
35-36
Arithmetic sum $1-12, 31,53
Arlazarov, V. L. 317
Array, definition of 63
Articulation poiat 218, 223, 260, 430
ASCII 146
Assembly line 404
Assignment problem 330-331
Asymptotic complexity, definition of 38
Atkinsen, M. . 317

R ¥4

466 Index

Attaiah, M. 1. 410

Augmenting path 239

Auslander, |.. 248

AVL tree 75-77, 104, 114115, 130
Avai, H. 174

b-Matching 338
Bach, E. 297
Backtracking 358-363, 369, 373
Baer, J. -L. 86
Bag 87
Balance factor 75, 104106, 248
Bar-Yebuda, R. 369
Batcher, K, E. 394, 410
Bates, J. L. 106
Baumert, .. 369
Bavel, Z. 35
Beame, P. W, 410
Beckenbach, E. 31
begin 5
Bielloch, G. 409
Bellman, R.E, 31,114
Bent, S. W. 174, 440
Bentley, 1, L. 55, 106, 287
Berge, C. 247
Bertsekas, D. P. 409
BFS, see Breadth-first search
Biconnected
component 217-223, 249, 259260, 430
extension 259
graph, definition of 217
edge-biconnected 259
Bin packing 357, 363-365, 370, 371, 374
Binary numbers, conversion to 26-28, 36
Binary search 120125, 283, 342, 43¢
Binary tree 34, 115
complete 34, 263-264
Binary search tree 7177, 86, 285
Biology, molecular 149, 155
Bipartite graph 111112, 117, 187, 372
Bipartite matching 235-238, 337, 357
Bisection 125
Bitner, J. R. 369
Blum, M. 174
Bohr, N, 35
Bollobds, B. 175, 247, 248
Bolzano method 125
Bondy, J. A, 247

Boolean matrix multipiication 304--309, 317,
319-320, 325-326

Borodin, A. 316,410

Bottleneck problems 254, 257, 261, 338

Boyer, R. 8. 155,174

Boyer-Moore aigorithm 155, 174

Branch-and-bound 358-363, 370

Breadth-first-search 95, 189, 198—199, 238,
246, 249, 426,427

Brebner, G, J. 410

frélaz, D. 369

Brent's lemma 381, 383, 384, 441

Bridge, in a graph 34, 220

Briggs, F A. 409

Brigham, E. Q. 317

Broadcast 396-398, 406,412

Broadcast network 256

Brélaz, D. 365

Brown, C. A, 55, 369

Brualdi, R. A. 55,336

Bucket sort 127129, 142, 164

Burge, W.H. 113

Bussey, W. H. 30

Butterfly neswork 411

Capacity 238

Capobiance, M. 247

Carrol, L. 175

Carter, J. 1.. 86

Cauchy, A. L. 24

Cederbaum, |, 248

Celebrity preblem 98-101, 113-114

Chaisning, separate 79

Chand, B. R, 286

Chandy, K. M. 409

Characteristic equation 50

Chartrand, G. 247, 432

Chavey, D. 31

Chen, C. W, 86

Cheriton, . 247

Chiba, N, 247

Choueka, Y. 175

Cheistofides, N. 248, 370

Circle 34, 270, 271, 290, 332

Circuit, in a graph 186
Eulerian 187, see glse Eulerian graph
Hamilionian 243-244; see also

Hamiltosian cycle

Circult, model of parallel computing 378, 410
Clique problem 348, 351-352, 386, 361, 370,
n.mn
Closed path, in the plane 266
Closest pair problem 278281, 287, 289
Clustering 80
CNF 346
Coalesced hashing 86
Cohen, J. 304, 317
Cole, R, 410-411
Collision {in hashing} 78-80
Coloring problems 14, 161164, 175, 252,
369
edge coloring 262, 432
k-coloring 369
plane colonng 14
3-coloring 352-354, 370, 371, 373
Communication network 146, 256, 329
Complement of a graph 348
Complete binary tree 34, 263-264
Complete graph 96, 244, 263, 356
Complex numbers 318
Complexity
amortized 53, 83
asymptotic 38
computational complexity 344
space 42
time 42
Component
biconnected 217223, 249, 259-260, 430
comnected 187, 192, 415
strongly consected 226233, 247, 250,
251, 260
Compression
dara 145-148, 174, 177, 180, 334-335
path 82, 86
Computational complexity 344
Computer security 186
Concatenate operation 88
Concurrent-read concurrent-write, see CRCW
Concurrent-read exclusive-write, see CREW
Condensation graph 226
Conjunctive rormal form 346
Connected component 187, 192, 415
Connected graph 186
Congection machine 376, 410
co-NP 368
Constable, R. L. 106
Context-free language 317

Index 467

Conversion
binary to decimal 36
decimal to binary 26-28
Convex hull 273-277, 286-289
approximate 289
stretcking a 273
Convex path 266, 276
Convex polygon, definition of 266
Convolution 405407
Cook, 5. A. 344, 346, 368, 410
Cook’s theorem 347
Cooley, 1. M. 317
Coppersmith, D. 316
Corasick, ML J. 174
Counter circuit 414
Cover
edge 262
set 353
by 3-sets 372
vertex 262263, 348, 355-356, 358, 363,
371, 373,432-433
CRCW 378,383, 410, 412, 413
CREW 378, 382,410,412, 415
Critical node (in an AVL tree) 75
Cross edge, in depth-first search 194
Cross product 413
Cryptography 295-297
Cube-connected-cycles 390
Culberson, 1. 86
Cut (in a network) 241
Cycle (in a graph) 186
even-cycle probiem 230
Hamiltonian 248, 372
edd-cycle problem 233-234, 246

DAG, see Birected acyclic graph

Dantzig, G. B. 247, 336

Bata compression 145148, 174

Data structures 6i-90

Data types, abstract 62

de Bruijn sequence 252

Deadlock 6

Decimal represeniation 31

Decimal to binary conversion 26-28, 36

Decision tree 141143, 174, 177, 332-333,
3385, 424, 426, 438439

Decoding 147

Becreasing DFS pumbers 223

468 Index

Decreasing frst £t 364
Decryption 295

Degree of a vertex 186
Degree sequence 252, 262
Dekel, E. 410

Deletion
in a binary search ree 73-74

in a heap 69-70
Denardo, E. V. 114
Dense graphs, algorithms for 234--235,
244-246
Deo, N, 247,410
Depth of a circust 378
Depth-first search 95, 189197, 221225,

227-233, 246-250, 388, 426-427, 429

back edge 194
cross edge 194
forward edge 194
nonrecursive impiementation 194
numbers 192, 223
tree 192-196
Dershowitz, N, 4, 113
Descendant {in a tree} 193, 388
Deterministic algorithm, definition of 158
DFS, see Depth-first search
Biameter
of a graph 113, 389
of a set of poinis 340
Dictionary 71
Diffie, W. 316
Ditkstra, E. W, 113, 247
Diikstra's algorithm 204-208, 247, 254
Dinic, E. A. 317
Directed acyclic graph 197, 199-203, 226,
246, 249, 253, 255, 258, 260, 338,
371, 378, 430431
Distributed algorithms 208, 376
Divide-and-conguer algorithms 103104,
113-114, 131, 137, 141, 144, 158,
169, 172, 176, 183, 264, 278281,
286, 287, 289, 269304, 311314,
316-319, 379380, 383, 394396,
409-410, 431
Divide-and-conguer recurrence relations
30-51
Divide-and-crush 382
DNA 149
Bobkin, . P. 175
Dodecahedron 6

Dominating set 348-349
Domination of points 28%

Domino principle 91

Doubie hashing 80

Double induction 18

Double rotation (in an AVL tree} 75

Doubling technique 123, 386389, 409, 411,

440

Dreyfus, 8. E, 114

Dummy variable 66

Burian, B, 174

Dvorak, 8, 174

Bwork, C. 410

Dynamic programming 108-11¢, 114,
155158, 407

Ear decomposition 34
Ebert, J. 247
Edelsbrunner, H. 286
Edge
coloring 262, 432
cover 262
in the plane 266
of agraph 83, 186
of a planar map 17
Edge-biconnected graph 259
Edge-disjoint paths 23-24
Edit steps 155
Editing a text file 149
Edmonds, J. 243
Efficiency of paralle} algorithms 376
Efficient algerithm, definition of 341
Election, 1988 Presidential 8
Element, definition of 62
Eflion, D. F. 317
Eilipsoid algorithm 336
Embedding wees 263
Emaulation 377
Encoding 146
Encryption 255
end 5
Eppinger, I. L. 86
Equations, system of 315
Erdos, P. 175
EREW 378, 380381, 383389, 414,
412415
Errors
in design by induction 111-112

in induction proofs 28-29
in reductions 334-336
Euclidean graph 254, 365
traveling salesman 365-367
Euclid’s aigorithm 294, 297-298, 316, 318
Euler, L. 187, 247
Euler’s conszant 53
formula 17-18§, 30
tour technique 387-389, 409411, 414
Euterian graph 187190, 247, 251-252, 373,
432
Even, 5. 247, 248, 336, 369
Even-cycle problem 230, 369
Exact cover by 3-sets 372
Exclusive-read exclusive-write, see EREW
Exponentiation 294-297
Extendible hashing 86

Fagin, R. 86

Faradzev, L A, 317

Fast Fourier transform 309317, 443
inverse 3{4-316

Faust, M. . 287

Federal Express 321

Feedback-edge set 257, 373, 429

Feng, T. 411

FET 309-317, 443

Fibonacci numbers 34-35, 46, 49, 60, 318

Fich, F. E. 410

FIFQ (firs-in-first-ous) 62

File comparisons 155

Fingerprinting 174

First it 364, 370, 374

Fischer, M. J. 86, 175, 317, 369, 380, 410

Flajolet, P. 55

Flow, network 238-243, 246, 248, 327, 329,

338

Fioyd, R. W. 113, 174, 247

Fiynn, M. J. 410

Felding priaciple 377

Ford, L. R, 174,248

Ford and Jobnson sorting 178

Forest 186187

Fortune, 8. 287

Forward edge (in DFS} 194

Four-Russian algorithm 306-109, 316, 317

Fox, G. C. 409

Fraenkel, A. 8. 175

Index 469

Francez, N. 410

France, 1. 369

Frederickson, €. 410

Fredman, M. L. 247

Free trees 83

Frequency 146

Fuiimoto, R. M. 400

Fulkerson, D. R, 248

Full-history recurrence refations 5153, 57,
137

Fusniction, one-to-one 96-98

(iabow, H. N. 247, 248, 366, 431
Galil, Z. 174, 175, 247, 248
Galler, B. A. 86
Garey, M, R, 344, 355, 356, 363, 369
GCD 297-298, 318
of polynomials 318
Gehringer, E. F. 409
Geometric algorithms 102104, 265-291,
331333, 434-436
Geometric series 53
Gibbons, A, 247, 409
Gift-wrapping algorithm 274275, 286
Gillis, J. 30
Girth of a graph 255
Geldberg, A. V. 248
Goldstine, H. H. 113
Goldwasser, 5. 369
Golomb, 5. 369
Golovina, L. 1. 31
Golumbic, M. 247
Gomory, R. E. 248
Gondran, M., 247, 248
Gonnet, (3. H, 85,86, 175
Goodrick, M. T. 410
Gossip problem 416
Gottlieb, A, 408
Graham, R. 1. 55, 286
Graham's scan 275-277, 287288
Graph
algorithms 9596, 98101, 185-264,
325-326, 347-349, 351-354,
356363, 369, 3710374, 414-415,
426-434
biconnected 217; see also Biconnected
compenent
bipartite 111-112, 117, 187, 372

470 Index

Graph (continued) Gray, F. 31

coloring problems 252, 369, 352354, Gray code 20-23, 31, 33-34, 320

370, 371,373 open 22,320
complement of a 348 ansi 33-34
complete 96, 244, 263, 3536 Greatest common divisor 297-298, 318
cordensation 226 of polynomiais 318
connected, definition of 186 Greedy algorithms 210-211, 235, 237, 363
decompaosition 217-234 Greenberg, A, 398,410
definitions {86187 Greene, DL H. 85
dense 234-235, 244246 Grid, see Mesh
diameter 113, 389 Grid poiygon 290
directed, definition of 186 Cries, D, 4,31, 113,175
directed acyclic, see Directed acyclic Grotschel, M. 336

graph Guessing 11-14, 43-44, 47-49, 58, 345
edge biconnecied, definition of 25% Guibas, L. |, 174
embedding 415-416 Gusfield, D. 369
Euclidean 254, 365 Guting, R, H, 287
Euierian 187190, 247, 251252, 373,

432
ginhof a 255 Haken, D. 55

Haif plane 291

Hamiltonian 243-246, 36%

induced 95-96, 114, 187, 251

injective 253

inzerval 263,433

isomerphism 248, 369

toin 89

kernel 255

matching 234-238, 248, 251, 260-261,
291, 338, 342, 366, 431, see also
Mazchiag probiems

multigraph 186

pianar 248, 338

proofs by induction, involving 18-19,
23-324,34,35

regular 372

representation of §3-84

residual 242

self loops ina 186

Hali, M. 336
Hali, P, 323, 336
Hail's theorem 324, 336
Hamiltog, W. R. 6, 243
Hamilter's puzzle. 6
Hamilton's quaternions 319
Hamiltonian cycle 243-246, 248, 261, 356,
369
path 258, 356, 372,373
Hamming, R. W. 31
Hansen, W. J. &5
Harary, F. 247
Harmonic series 53-54
Hash functions 79
universal 86
Hashing 78-80, §6
coalesced 86
doubic 80

:gﬁfz;ﬁ;% exiendibie 86
strongly connected 226-233, 247, 250, Heap 68-70, 87, 138-141, 148, 178, 179,
251,260 206, 428

Heapsort 137-141, 174
Hedetniemi, 3. M. 443
Hedetniemi, 5. T. 443

Height of a node in a tree 104
Hellman, M. E. 316

Heuristic 231, 254, 369
HEX 369

subgraph 186

subgraph induced 187
traversal of & 185199
undirected 186

unilateral 260

unipathic 260

weighted, definition of 187, 201

Hibbard, T. N. 86

Hidden-line elimination 102104, 282

Hillis, W. D. 410

Hinrichs, K. 287

Hirschberg, D. 8. 175

Hoare, C. A.R. 174

Hoey, D. 287

Hoffman, C. M, 248

Hofri, M. 35

Hong, 1.-W. 409

Hoover, H. J, 410

Hopcroft, J. E. 8S, 86, 175, 248, 261, 287,
305, 316, 336, 410

Horner's rule 92-94, 114, 128, 310,412

Horewitz, E. 369, 410

House, analegy to aigorithm design 2

Hu, T.C, 248

Huang, B.C. 174

Huffman, D. A. 148, {74

Huffman's encoding 145148, 174, 177, 180,
334-335

Hunt, I. W, 175

Hwang, K. 409

Hypercube 385-390, 401403, 415

Incerpi, L. 174
Incident masrix 325
Increasing subsequence problem 167-169,
175
Indegree of a vertex, definition of 186
Independent set 19, 262-263, 356, 371, 433
Induced subgraph 95-96, 114, 187, 25¢
Induction 3, 9-36 {and virtually everywhere}
choosing the base of 137, 167, 172
choosing the order of 17, 30, 9294,
96101, 112113, 128, 200, 202-203,
221, 282-283
common errors 28-29, 111112
definizion 10
double i8
doubte usage 14
generalization |i4
reversed 25, 244-246
sirengthening the hypothesis 22-24, 93,
105-10%, §13, 145, 162, 167169,
281,282,379, 418,423, 428, 4335,
437, 442
strong 10, 109, 157

Index 471

variations of 10~11, 25
Information-theoretic lower bound 142
Injective graph 253
knner product 305
In-place sort 127, 13], 135, 137,174, 178
Enput size 38, 294
Insertion
in & binary search tree 71-72
in a heap 69-70
sort 130
Integer lincar programming 331, 336,
361-363, 371

Integrai 54

Interconnection network, algorithms 378,
389403

Interpolation 310

Interpelation search 125127

Intersection problems 267-270, 281-285,
287, 289291

Interval graph 263, 433

Invariant, loop 26-28, 31, 36, 113114, {34,
176-177

Inventor’s paradox 24, 113

Inverse fast Fourier transform 314-316

Isomorphism, graph 248, 369

Itai, A. 174,336

Iyengar, 5. S. 410

Jagadish, H. V. 411

John, | 174

johnsen, D. B. 247

Johnson, D. 1, 344, 355, 356, 363, 369, 370,
Johason, 8. M. 174

Join graphs 89

Jones, B, W, B6

K-connectivity 217

kik-smailest clement 143145, 174, 179,
396399

Kailath, T. 41

Kapur, 8. 8. 286

Karatsuba, A. 316

Karlin, A. R. 86,411

Karmarkar, N. 336, 370

Karp, R. M. 174, 175, 241, 261, 346, 368, 370

Kemel of a graph 2355

Kegnighan, B. W, 370

Khachian, L. G. 336

472 Index

Kiliian, J. 369

King, K. N. 113

Klee, V. 336, 36%

Klein, 8. T. 175

KMP algorithm 148-155, 174, 323, 427

Knapsack problem 8, 108-111, 114-115, 357,

370

Kruth, D. E. 55, 77, 85, 86, 94, 153, 160,
173, 174, 175, 316, 369, 436

Kauth-Mormis-Prag aigorithm 148155, 174,
323,427

Komids, J. 410

Konig, . 317

Konigsberg bridge problem 187

Kronrod, M. A, 174, 317

Kruskal, J. B, 175,247, 410

Kung, H. T. 411

Kustz, T. 86

Ladner, R. E. 369, 380, 410

Lakatos, 1. 30

Landis, Y. M. 75

Langston, M. A. 174

Language-recognition 342

nondeterministic 344

Las Vegas algorithms 15%; see also
Probabilistic aigorithms

Lattice point 33

Law, A, M. 114

Lawler, E. L. 248, 366, 370

Least common muitipie 318

Leiserson, C. E. 411

Lempel, A, 174, 248

Length of a path 20t

Lenstra, 1. K. 370

Lesniak, L. 247,432

Level (in breadth-frst search) 198

Levin, L. A. 368

Lexicographic sort 128

Liestman, A. L. 443

Lin, 8. 370

Line 14, 2565

Line segment 266

Line-sweep technigue 281287, 435

Linear congruential method 160

Linear probing (in hashing) 79

Linear programming 322, 327-331, 336,
338-339

standard form of 328
Linear search 173
Lines in general position in the plane 13
{inked Jists 64
Lipovski, G. I. 408
Lipson, J. B, 309, 316
Lipton, R, 1. 411
Litwin, W. 86
E.cad balancing 380
Local reduction 356
Logarithms, rules of 54
Longest increasing subsequence 167-169,
175
Loop invariant 26-28, 31, 36, 113114, 134,
176177
Lopresti, D. 411
Lovisz, L. 31, 175, 248, 336
Lower bound 174, 178, 180, 331334, 33¢
information-theoretic 142
for sorting 141143
Lower triangular matrix 339
Lucas, E. 247
Lueker, G. S5, 55
Luks, E. M. 248, 36%
Lynck, T.J. i74

Maggs, B. M. 336
Maiority problem 164-166, 175
Malek, M. 409
Manacher, G. K. 174
Manber, U. 4, 55, 86, 113, 175, 248, 308,
419, 440
Manber, R. 369
Manna, Z. 4, 113,173
Masek, W. 1. 317
Matching problems 234-238, 248, 251,
260-261, 291, 338, 342, 366, 431
b 338
bipartite 235-238, 324, 337, 357
perfect 35,234
string 148-155
J-dimensional 356
Mathematical induction, see Induction
Matrix
adjacency 84,99, 323, 339
Boolean muitiptication 304-30%, 317,
319, 320, 325-326
and graphs 246, 325326, 336, 339-340

incident 325
inversion 336
lower trianguiar 339
multiplication 301309, 316, 313,
325-326, 333-334, 336, 339,
398400, 410, 412, 416
permutation 319
square of & 319,334
symmetric 333-334
transpose 333
upper triangular 339
vector multiplication, by 404-403
Maurolycus, F. 30
Max-flow min-cut theorem 242
Maximum-consecutive subsequence problem
1061067
Maximum clement in a set 143144, 169171
176, 380-382
Maze probiem 6, 247
McCreight, E. M. 175
MCST, see Minimum-cost spanning tree
McVoy, L. 4,248
Median 144145, 174, 179, see also kth-
smallest ¢lement
Megiddo, N. 411
Mehlhorn, K. 286
Menger, K. 217218
Merge
mergesort 104, 130-131, 174, 281,
393-3935, 410
paralle] 394--396, 413
spiit 393
Mesh 389, 398-400, 414
of trees 390
Meyer, A. R. 317, 369
Miller, R, 297
MIMI» 376, 410
Minickas, E. 248
Minimum-cost spanning tree 208-212, 247,
249, 255, 257, 338, 340, 365, 428, 429
Minimusm element in a set 143144, 165171,
176, 380-382
Minoux, M. 247-248
Minty, G. L. 336
Mirzatan, A. 173
Misra, J. 175, 409
Mode of a multiset 171173
Moffat, A. 247
Moitra, A. 410

Index 473

Molecular biology 149, 155
Meolluzzo, J. C. 247
Monotenically increasing function 48
Mente Carlo algorithms 159
Moere, 1. 8. 155,174
Moret, B. M. E. 174
Morris, I. H. 155, 174
Muiticompuzer 378
Multigraph 186, 259, 262
Multiple-instruction multiple-data 376, 410
Multiplication
of Boolean matrices 304-309, 317,
319-320
of general matrices 301308, 316, 318,
325-326, 333334, 336, 339,
398400, 410, 412, 416
of polynomials 298-300, 309, 316-317,
319
Multiplicity of an element 164, 171
Multiset 171173
Musro, £ 175, 316, 336
Murty, U. S.R. 247
Myers, E. W. 4, 175, 317

Nassimi, 1. 410
Negative cost, shortest paths 255, 258
Neighborhood {of a vertex) 19
Network
broadcast in 256
communication 146, 208, 256, 329
cut 241
inserconnection 378, 389403
sorting on a 393-3%6
Network Sow 238-243, 246, 248, 324, 327,
329,338
Newton, £, 94
Nievergelt, I. 86, 287
Nil pointer 66
Nishizeki, T. 247
Node, definition of 186; see also Vertex
Nonconvex pelygon 267-270
Nondeterministic algorithm 344--346, 370
language recognition 344
MNonuniform model of compulation 143
Notation
algorithms 4
graphs 8384, 186187
geometry 265-266

474 Index

NP-completeness 341-374

NP-compiete problems 175, 244, 246,
345-357, 368-374, 429, 435440

Numeric algorithms 293-320, 379380,
398-401, 404407

o Notation 41

0 Notation 3%

(0 Notation 41-42, 174, 316, 410

Oblective function 327, 361

QOctaj tree 390

Odd-cycie problemn 233-234, 246

Odd—even mergesort 393-396, 410, 411

Odd-even transposition sort 396-393, 411,
414

Odlyzko, A. M. 174

Ofman, Yu. 316

1-in-3 SAT 371

One-to-one function 96-98

Open Gray code 22-23, 320

Order statistics 143-145, 174, 179, 396399

Ore, 0. 247, 248

Ottmann, T. 287

Outdegree of a vertex, definition of 186

P (class of problems) 341
P=NP problem 345
Packing, bin 363-368, 370-371, 374
Pan, V. 316
Pang, C, 247
Papadimigriou, C. H. 248, 336
Paradox, inventor 24
Paralicl algorithms 214, 216, 304, 375-416
addition 379-380, 411
efficiency of 376
foiding principie 377
matrix multiplication 398-401, 404-405,
410, 416
merge 394-396, 410, 413
models of 375379, 405-411
prefix 382-385, 410,411, 413,415
ranking 385-387
routing 401-403
selection 396-399, 410, 414
sequence comparisons 407-409, 411, 416
sorting 390-396, 410,411, 413, 414
speedup of 376
tree operations 387389,

Parberry, £, 409
Parter, 5. V. 248
Partition (for quicksorty 133135, 144-143,
176
Partition problem 357
Pascal 4
Pascal’s triangie 3§
Patashnik, O. 53
Paterson, M. S. 174, 317
Path 186
alternating 236
augmenting 239
compression 82, 86
convex 266, 276
Hamilzonian 258, 372-373
length of a 201
shortest, see Shortest-paths probiems
simpie 186
Pattern matching, see String matching
Pasl, M. C. 4
Pearl, J. 369
Perfect matching 35, 234
Perfect shuffie 390
Perfect speedup 376
Perl, Y. 174175
Permutation 142, 182
Permutation matrix 319
Philanthropist problem 330, 335
Pigeonhole principie 34, 175, 395
Pipeline 396-397, 405
Pippenger, N. 86, 174
Pitt, L. 369
Piver 133, 136-137, 144, 396
Planar graph 248, 338
Planar map 17
Plotkin, 5. A. 336
Plummer, M. D. 248
Poli, public-opinion 165
Polya, G. 24, 30, 31, 113, 169
Polygon 33, 266-277, 287290
convex 266, 273-277, 286-289
grid 290
reguiar 291
simple 266, 270-272, 288, 331333
Polynomial division 318
evaluation 92-94, 114, 128,310, 412
greatest common divisor 318
multiplication 298--300, 309, 316-317,
39

Index 475

Polynomial-time hierarchy 369 Reed, D. A. 409
Fool &7 Regular graph 372
Prait, V. R. 155, 174 Reguiar poiygon 291
Prefix constraint 146 Reif, 1. H, 410
Prefix, paralle] 382-385, 410, 411, 413, 415 Reingoid, E. M. 85, 369
Preparata, F. P. 286, 287, 365 Repeated squaring 297, 317
Prim, R. C. 247 Representation of graphs 83-84
Primatity testing 369 Residual graph 242
Primitive root of uaity 313, 315 Reversed induction 25, 244-246
Priority queue 62, 68, 86 Revision maintenance 135
Priority search 207, 246 Richards, D. 410
Probabilistic algorithms 158164, 175, 287, Ring 308

320, 402-403 Rinnooy Kan, A.H. G. 370
Probabilistic proof 175 Rivest, R. L. 174, 285,316
Proximity problems 278-281 RNA 149
Pruhs, K. 175 Robers, F. S. 55
Pseudopolynomial algorithm 357 Rodeh, M. 175, 336,410
Pseudorandom numbers 160 Ronse, C. 287
PSPACE 368 Rooted tree, definition of 66, 83, 186
Public-key encryption scheme 295-297, 316 Rosenberg, A. L. 113
Puablic-opinion pell 165 Rotating line 270
Purdom, P. W. 53, 369 Rotation {in AVL trees) 75

Roth, M. 304, 317

Round-robin tournament 183

Routing problem 329-330

Routing in a hypercube 401-403

RSA public-key encryption scheme 295-297,
316

Rudelph, L. 410

Runge, C. 317

Quad tree 390

Quaternions 319

Queue, priority 62, 68, 86
Quicksert 131137, 144, 174, 176
Quing, M. 1. 409410

Rabin, M. O. 174, 287, 36% Running time of an algeorithm 42
Radix sort 127-129 Ryser,H.J. 175
Raghavan, P. 175 Rytter, W. 317, 409

Ranade, A. G, 411
Random access machine 344

Random number 160, 175, 415 Satmni, S. 369,410

Range search 283, 435 Saks, M. 175

Salzberg, S. L. 175
R Sankoff, E). 175
Ranking in linked kists 385-387 Santoro‘Nl a1
Rao, K. R. 317 AL

SAT (satisfiability) problem 346-347,

gano}rlla;!num;er 3”8’2 350-354, 357, 370, 371, 440
eachable vertex SAT, -in-3 371

Realizable sequence 175, 183
) SAT, 2-in-4 371
Recurrence relations 46--53, 53, 56, 57, 58, 59 . ! o
. Savitch, W. 1. 368
divide-and-conguer 50-51
. . Saxe, L. B, 55
wish full history 51-53, 137
. . Schaback, R. 174
Recursion, unfolding 194 Scheduling 185
Reduction 215,239, 246, 317, 321340, 442, caliing
Schonhage, A. 174
see also NP-completeniess

476 Index

Schern, P. 287
Schrijver, A, 336
Schwab, B. 86
Search
binary 120-125, 285, 342, 431
in binary search trees 71
breadth-firs: 85, 189, 1981599, 238, 246,
249, 426, 427
depth-first 95, 189197, 221-225,
227--233, 246-250, 388, 426427, 429
interpotation 125127
linear 173
priority 207, 246
Secondary collision (in hashing} 80
Security 186
Sedgewick, R. 174
Seed 160
Segall, Z. 409
Selection problem 143145, 174, 179,
396-395
Selection sort 130
Self-adjusting trees 86
Self foops in a graph 186
Separate chaining 79
Sequence algorithms 16107, 119183, 317,
324-325, 337, 407409
Sequence comparisons 155-158, 175,
181182, 317, 324-325, 337, 407-409
Set algorithms 119-183, 380-383; see also
Sequence algorithms
cover 355
Shatiig, I. 297
Shamir, A. 205, 316
Shamos, M. | 286-287, 365
Shared-memeory aigorithms 378-38%
Shell, B L. 174
Shellsort 174
Shiloach, Y. 410
Shmoys, D. B. 370
Shortesi-paths problems 185, 201-208,
212-214, 247, 249, 253, 254, 255,
257, 258, 322, 325,338,427, 428, 429
Shrira, 1. 410
Siegel, H. |. 411
Siewiorek, D. P. 409
SIMD 376, 410
Simple graph 186
Simple path 186
Simple polygon 266, 270-272, 288, 331-333

Simplex aigorithm 336
Singie-instruction multiple-data 376
Singie-source shoriest paths 201208
Sink 99
Size of an inpur 38, 294
Skyline problem 102104, 115
Stack variable 328
Sleator, . I». 86
Smi, G. V. 174
Smith-Thomas, B. 113
Snir, M. 410
Solovay, R. 369
Sominskii, . 8. 31
Sorting
bucket §27-129, 142, 164
Ford and Johnson 178
heapsort 137141, 174
in-place 127,131, 174
insertion 130
lexicographic 128, 178
lower bound for 141143
mergesort 130131
network 393-396, 410
odd-even transposition 390-363, 411, 414
parallel 390--396, 413-414
quicksort 131137, 144, 174, 176
radix 127-12%
selection 130
topological 199-201, 249, 427, 430
Space complexity 42
Spafford, E. H. 173
Spanning forest 187
Spanning tree 35, 186, 371, 429; see also
Minimusm-cost sparning tree
Speedup 376
Spencer, }. 175, 247
Spira, P. M. 247
Split graph 263
Square of a matrix 319, 334
Square root 272
Stable algorithm 304
Stack 194
Standard form of linear programming 328
Standish, T. A. 85
Stanton, D, 173
Steele, G L. 410
Steiglitz, K. 248, 336
Stirling’s approximation 54, 142
Stockmeyer, L. 369

Stout, Q. F. 410

Strassen, V. 369

Strassen’s algorithm 301-305, 316, 318, 319,
326

Strengthening the induction hypothesis
22-24, 93, 105109, 113, 145, 162,
167169, 281, 282, 379, 418, 423,
428, 435, 437, 442

String matching 148-155, 174-175, 177,
180-18t¢, 323, 427

Strong, H. R. 86

Streag induction 10, 109, 157

Strongly connected component 226233, 247,
230, 251, 260

Stuttering subsequence problem 124

Subgraph 1B6-187

induced 95-56, 114, 187

Subseguence, longest increasing 167-169

Summation problems 11, 1516

Summation technique 43-46, 54-55

Suppeorting {ine 274

Symmetric matrix 333-334

Synchronization 376

System of equations 315

System of distinct representatives 323-324

Systolic algorithms 378, 404409, 411, 416

Szego, G. 31, 169

Szekeres, AL 175

Szemerédi, E. 410

Szymanski, T. G. 175

Takacka, T. 247, 426

Talmud 30

Tarian, R. E. 55, 85, 86, 174, 247, 248, 369,
410, 431

Tarry, G. 247

3-Coloring 3523584, 370, 371, 373

3-Dimensional Matching 356

3SAT 350-354, 357, 370, 371,439

Time complexity 42

Timetable 374

Topological sost 199-20%, 249, 427, 430

Toussaini, G. 286

Towers of Hanoi 116

Tractable problem 341

Transitive closure 214216, 248,317, 322,
339

Transpose of a matrix 333, 414

Index 477

Transposition sort 390-393, 411,414
Traveling salesman 356, 365-367, 374
Euclidean 365-367
Traversal (of a graph) 185199
Tree 18, 34, 66-77, i86
ancestor ina 193
AVL 75-77, 104, 114-115
balancing 75
biconnected 221
binary 34,115
binary search 7117, B6
breadth-first 198199
complete binary 34, 263-264
decision 141143, 174, 177, 332-333,
335, 424, 426, 438-439
descendant ina 193
depth-first 192196
deletion from a 73-74
embedding for 263
expiicit represensation of a 67
free 83
height of a nede ina 104
smphicit representation of 8 6768
insertion iatoc a 71-72
machine 396-398
minimum-cost spanning 208-212, 247,
249, 255, 257, 338, 340, 365, 428, 429
octal 390
quad 3990
rooted 66, 83, 186
self-adjusting 86
shortess-path. 208
spanning 35, 186, 371, 429; see also
Minimum-cost spansing tree
Triangle incquality 365
Triangular matrix 339
Trémaux, 247
Trotter, W. T, 114
Truth assignment 346
Tsitsiklis, }. N, 40%

TSP, see Traveling salesman probiem
Tuckey, I. W, 317

Turing machine 344, 346-347
Turner, J. §. 369

Tutte, W. T. 247

2-in-4 SAT 371

Ubr, £, 3%6

478 Index

Ukkonen E. 175

Uilman, J. D. 85, 86, 175, 303, 316, 336, 409,
411

tndirected graph, definition of 83, 186

Uniiateral graph 260

Linion of polygons 250

Union-find probiem BO-B3, 86, 256, 420

tnipathic graph 260

EIniversal hash functions 86

Upfal, E. 86,411

Upper triangular matrix 339

Vacca, G, 30
Vaidya, P. M. 366
Vaiiant, L. G. 369, 402, 410
van der Na;, M. 174
van Leeuwen, 1. 86, 247, 336
Veriex 83, 186
basis 260, 431
cover 262-263, 348, 355-356, 158, 363,
371, 373, 432433
degree of 186
indegree of 186
outdegree of 186
of a planar map 17
of a polygon 266
reachability of 186
Virus 173
Vishkig, U. 410
Vitter, 1. 8. 55,86, 174
VLSI 263
von Neumann, J. £13,174

Voronoi diagram 287
Voting 164

Wagner, R, A, 175
Waldinger, R, 173

Warren, H, 5. 248
Warshall, 8, 248

Wegman, M. N. 86
Weighted graph 187
Weiner, P, 175

White, D. 173

Whitaey, H. 217
Wigderson, A. 173, 369, 41
Wild card 174

Wilf, H. 8. 369

Williams, J. W. J, 174
Winograd, 5. 316
Winograd's aigorithm 301, 316, 31%
Wirth, N. 83

Wood, T3, 287

Worm 173

Worst-case 38-3¢
Wrap-around 398

X3C problem 372

Yaglom, L. M. 31
Yao, A. 175, 247

Ziv, 1, 174
Zoraz, A. 410

S
- %?{“‘?%«‘w‘
o gi’gfgg{l\ i

Jéjg}»\\’\\%‘

i

o
G
L

2

§«»\§§}5 \ - |
. .
{\) C\\’;’Zg?%é />/ /?«Rié:&%%};i v \X%{’{b%) 3 L %

P
o S
\)2.3; s ‘iz;éﬁ;,}zé%uj <§} §?§? S
i

Vi
o
S

o

na
.

o
S

e
R
i
RS
o

T 6{&2 o ‘z'g‘(S : :

SR e -

S \f%:\\;gé,&% L :
Sy

A

	Cover
	Preface
	Contents
	1. Introduction
	Exercises

	2. Mathematical Induction
	2.1 Introduction
	2.2 Three Simple Examples
	2.3 Counting Regions in the Plane
	2.4 A Simple Coloring Problem
	2.5 A More Complicated Summation Problem
	2.6 A Simple Inequality
	2.7 Euler's Formula
	2.8 A Problem in Graph Theory
	2.9 Gray Codes
	2.10 Finding Edge-Disjoint Paths in a Graph
	2.11 Arithmetic versus Geometric Mean Theorem
	2.12 Loop Invariants: Converting a Decimal Number to Binary
	2.13 Common Errors
	2.14 Summary
	Bibliographic Notes and Further Reading
	Exercises

	3. Analysis of Algorithms
	3.1 Introduction
	3.2 The O Notation
	3.3 Time and Space Complexity
	3.4 Summations
	3.5 Recurrence Relations
	3.5.1 Intelligent Guesses
	3.5.2 Divide and Conquer Relations
	3.5.3 Recurrence Relations with Full History

	3.6 Useful Facts
	3.7 Summary
	Bibliographic Notes and Further Reading
	Exercises

	4. Data Structures
	4.1 Introduction
	4.2 Elementary Data Structures
	4.3 Trees
	4.4 Hashing
	4.5 The Union-Find Problem
	4.6 Graphs
	4.7 Summary
	Bibliographic Notes and Further Reading
	Exercises

	5. Design of Algorithms By Induction
	5.1 Introduction
	5.2 Evaluating Polynomials
	5.3 Maximal Induced Subgraph
	5.4 Finding One-to-One Mappings
	5.5 The Celebrity Problem
	5.6 A Divide-and-Conquer Algorithm: The Skyline Problem
	5.7 Computing Balance Factors in Binary Trees
	5.8 Finding the Maximum Consecutive Subsequence
	5.9 Strengthening the Induction Hypothesis
	5.10 Dynamic Programming: The Knapsack Problem
	5.11 Common Errors
	5.12 Summary
	Bibliographic Notes and Further Reading
	Exercises

	6. Algorithms Involving Sequences and Sets
	6.1 Introduction
	6.2 Binary Search and Variations
	6.3 Interpolation Search
	6.4 Sorting
	6.4.1 Bucket Sort and Radix Sort
	6.4.2 Insertion Sort and Selection Sort
	6.4.3 Mergesort
	6.4.4 Quicksort
	6.4.5 Heapsort
	6.4.6 A Lower Bound for Sorting

	6.5 Order Statistics
	6.5.1 Maximum and Minimum Elements
	6.5.2 Finding the kth-Smallest Element

	6.6 Data Compression
	6.7 String Matching
	6.8 Sequence Comparisons
	6.9 Probabilistic Algorithms
	6.9.1 Random Numbers
	6.9.2 A Coloring Problem
	6.9.3 A Technique for Transforming Probabilistic Algorithms Into Deterministic Algorithms

	6.10 Finding a Majority
	6.11 Three Problems for Exhibiting Interesting Proof Techniques
	6.11.1 Longest Increasing Subsequence
	6.11.2 Finding the Two Largest Elements in a Set
	6.11.3 Computing the Mode of a Multiset

	6.12 Summary
	Bibliographic Notes and Further Reading
	Exercises

	7. Graph Algorithms
	7.1 Introduction
	7.2 Eulerian Graphs
	7.3 Graph Traversals
	7.3.1 Depth-First Search
	7.3.2 Breadth-First Search

	7.4 Topological Sorting
	7.5 Single-Source Shortest Paths
	7.6 Minimum-Cost Spanning Trees
	7.7 All Shortest Paths
	7.8 Transitive Closure
	7.9 Decompositions of Graphs
	7.9.1 Biconnected Components
	7.9.2 Strongly Connected Components
	7.9.3 Examples of the Use of Graph Decomposition

	7.10 Matching
	7.10.1 Perfect Matching in Very Dense Graphs
	7.10.2 Bipartite Matching

	7.11 Network Flows
	7.12 Hamiltonian Tours
	7.12.1 Reversed Induction
	7.12.2 Finding Hamiltonian Cycles in Very Dense Graphs

	7.13 Summary
	Bibliographic Notes and Further Reading
	Exercises

	8. Geometric Algorithms
	8.1 Introduciton
	8.2 Determining Whether a Point Is Inside a Polygon
	8.3 Constructing Simple Polygons
	8.4 Convex Hulls
	8.4.1 A Straightforward Approach
	8.4.2 Gift Wrapping
	8.4.3 Graham's Scan

	8.5 Closest Pair
	8.6 Intersections of Horizontal and Vertical Line Segments
	8.7 Summary
	Bibliographic Notes and Further Reading
	Exercises

	9. Algebraic and Numeric Algorithms
	9.1 Introduction
	9.2 Exponentiation
	9.3 Euclid's Algorithm
	9.4 Polynomial Multiplication
	9.5 Matrix Multiplication
	9.5.1 Winograd's Algorithm
	9.5.2 Strassen's Algorithm
	9.5.3 Boolean Matrices

	9.6 The Fast Fourier Transform
	9.7 Summary
	Bibliographic Notes and Further Reading
	Exercises

	10. Reductions
	10.1 Introduction
	10.2 Examples of Reductions
	10.2.1 A Simple String-Matching Problem
	10.2.2 Systems of Distinct Representatives
	10.2.3 A Reduction Involving Sequence Comparisons
	10.2.4 Finding a Triangle in Undirected Graphs

	10.3 Reductions Involving Linear Programming
	10.3.1 Introductions and Definitions
	10.3.2 Examples of Reductions to Linear Programming

	10.4 Reductions for Lower Bounds
	10.4.1 A Lower Bound for Finding Simple Polygons
	10.4.2 Simple Reductions Involving Matrices

	10.5 Common Errors
	10.6 Summary
	Bibliographic Notes and Further Reading
	Exercises

	11. NP-Completeness
	11.1 Introduction
	11.2 Polynomial-Time Reductions
	11.3 Nondeterminism and Cook's Theorem
	11.4 Examples of NP-Completeness Proofs
	11.4.1 Vertex Cover
	11.4.2 Dominating Set
	11.4.3 3SAT
	11.4.4 Clique
	11.4.5 3-Coloring
	11.4.6 General Observations
	11.4.7 More NP-Complete Problems

	11.5 Techniques for Dealing with NP-Complete Problems
	11.5.1 Backtracking and Branch-and-Bound
	11.5.2 Approximation Algorithms with Guaranteed Performance

	11.6 Summary
	Bibliographic Notes and Further Reading
	Exercises

	12. Parallel Algorithms
	12.1 Introduction
	12.2 Models of Parallel Computation
	12.3 Algorithms for Shared-Memory Machines
	12.3.1 Parallel Addition
	12.3.2 Maximum-Finding Algorithms
	12.3.3 The Parallel-Prefix Problem
	12.3.4 Finding Ranks in Linked Lists
	12.3.5 The Euler's Tour Technique

	12.4 Algorithms for Interconnection Networks
	12.4.1 Sorting on an Array
	12.4.2 Sorting Networks
	12.4.3 Finding the kth-Smallest Element on a Tree
	12.4.4 Matrix Multiplication on the Mesh
	12.4.5 Routing in a Hypercube

	12.5 Systolic Computation
	12.5.1 Matrix-Vector Multiplication
	12.5.2 The Convolution Problem
	12.5.3 Sequence Comparions

	12.6 Summary
	Bibliographic Notes and Further Reading
	Exercises

	Sketches of Solutions to Selected Exercises
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	Bibliography
	Index

