

 DEPARTMENT OF COMPUTER SCIENCE

COMPUTER OGANIZATION AND ARCHITECTURE HANDOUT FOR 2ND YEAR

EXTENTION STUDENT

 PREPARED BY CHALTU M.

 MAY 25,2020

 AMBO,ETHIOPAI

COMPUTER ORGANIZATION AND ARCHITECTURE Page ii

Table of Contents
1. .. i

2. Chapter 1: Digital Circuitry Logic.. 0

1.1 Introduction ... 0

1.2 Logic Gates .. 2

1.3 Boolean Algebra .. 3

1.4 Combinational Circuits .. 5

1.5 Sequential Circuits ... 10

1.6 Flip-Flops ... 11

1.6.1 S-R Flip-Flops ... 12

1.6.2 J-K Flip-Flops ... 13

1.6.3 D Flip Flop ... 14

3. Chapter 2 .. 15

2.1 Number systems .. 15

2.1.1 Converting from one base to another ... 16

2.2 Representation of Integers (Fixed point Representation) ... 21

2.2.1 Sign-Magnitude Representation ... 21

2.2.2 One’s Complement Integer Representation ... 22

2.2.3 Two’s Complement Integer Representation .. 22

2.3 Floating Point Numbers ... 22

2.4 Codes .. 23

2.4.1 Binary Coded Decimal (BCD) ... 23

2.4.2 Characters .. 24

4. Chapter 3: Common Digital Components .. 25

3.1 Integrated Circuits ... 25

3.5 Multiplexers ... 26

3.6 Demultiplexer ... 28

3.7 Decoders ... 28

3.8 Encoders ... 29

3.9 Registers ... 30

3.10 Binary Counters ... 32

COMPUTER ORGANIZATION AND ARCHITECTURE Page iii

5. Chapter 4: Register Transfer and Micro operation .. 33

4.1 Register Transfer ... 33

4.2 Bus and Memory Transfers ... 35

4.3 Memory Transfer .. 37

4.4 Arithmetic and Logic Micro operations .. 37

4.4.1 Arithmetic Micro operations ... 37

4.4.2 Logic micro operations ... 38

4.5 Shift micro operations ... 40

6. Chapter 5: Basic Computer Organization and Design ... 42

7. 5.1 Instruction Codes ... 42

5.2 Computer Registers ... 43

5.3 Common Bus Systems .. 44

5.4 Computer Instructions ... 46

5.5. Timing and Control .. 47

5.6 memory reference instruction ... 48

5.7 Instruction Cycle ... 49

5.8 Input-Output .. 50

5.9 Design of Basic Computer .. 51

5.10 Design of accumulator logic .. 52

5.11. Central Processing Unit. .. 52

5.12 General Register Organizations 53

5.13 Control Word .. 55

5.14 Stack Organization. ... 57

5.14.1 Register Stack. ... 57

5.14.2 Memory Stack .. 59

5.15 Instruction Formats ... 61

5.15.1 Three-address Instruction ... 63

5.15.2 Two- Address Register... 63

5.15.3 One-Address Instruction .. 64

5.15.4 Zero-Address Instruction .. 64

5.16 Addressing Mode .. 65

5.16.1 Direct and Indirect Addressing Modes .. 66

5.17 Data Transfer and Manipulation. ... 68

5.18 Reduced Instruction Set computer (RISC). .. 71

COMPUTER ORGANIZATION AND ARCHITECTURE Page iv

5.19 CISC Instruction: .. 73

8. Chapter 6: Memory Organization .. 74

6.1 Memory Hierarchy: ... 74

6.2 Main Memory ... 74

6.2.1 Connection of RAM and CPU .. 77

6.3 Cache Memory .. 79

6.3.1 Placement of Cache memory in the computer ... 80

6.3.2 Replacement Algorithms of Cache Memory .. 83

6.3.3 Writing into Cache ... 84

6.4 Secondary memory ... 86

6.4.1 Magnetic Disk ... 87

6.4.2 Optical Disk ... 90

6.4.2 Magnetic Tape... 93

9. Chapter 7: Input / Output Organization ... 94

7.1 Peripheral (External) Devices ... 94

7.2 Input output Interfaces .. 95

7.3 Classification of External devices ... 95

7.4 Input/output Problems ... 96

7.5 Input / Output Techniques (Data transfer mode) ... 98

7.6 I/O commands .. 99

7.8 I/O Mapping ... 100

7.10 Direct Memory Access (DMA)... 102

7.10.1 Advantages of DMA .. 106

7.11 Serial communication ... 107

10. Chapter 8: Introduction to Parallel Processing .. 108

8.1 Parallel processing’ ... 108

8.3 Pipelining .. 111

8.4 Vector Processing ... 114

Chapter 1: Digital Circuitry Logic

1.1 Introduction

 A digital implies that the information in the computer represented by variables that take

limited number of discrete values.

The digital computer is a digital system that performs various computational tasks. Digital

computers use the binary number system, which has two digits: 0 and 1. A binary digit is

called a bit.

Computer system is subdivided in to two functional entities are hard ware and software of the

computer.

Hardware of the computer is divided in to 3 major parts: they includes cpu, RAM and input

and output processor (IOP).

Computer architecture: refers to those attributes of a system visible to a programmer or,

put another way, those attributes that have a direct impact on the logical execution of a

program. Examples of architectural attributes include the instruction set, the number of bits

used to represent various data types (e.g., numbers, characters), I/O mechanisms, and

techniques for addressing memory.

 Computer organization refers to the operational units and their interconnections that realize

the architectural specifications. Organizational attributes include those hardware details

transparent to the programmer, such as control signals; interfaces between the computer and

peripherals; and the memory technology used.

The computer designer is concerned with structure and function characteristics of computer

system:

 Structure: The way in which the components are interrelated

 Function: The operation of each individual component as part of the structure

 Computers can perform four basic functions:

 Data processing

 Data storage

 Data movement

 Control

COMPUTER ORGANIZATION AND ARCHITECTURE Page 1

There are four main structural components:

 Central processing unit (CPU): Controls the operation of the computer and performs its

data processing functions; often simply referred to as processor.

 Main memory: Stores data.

 I/O: Moves data between the computer and its external environment.

 System interconnection: Some mechanism that provides for communication among

CPU, main memory, and I/O.

A computer system can be subdivided into two functional entities: hardware and software.

Computer Hardware consists all of the electronic component and electromechanical

devices that comprises the physical entities of the devicese.

Computer software consists of the instructions and data that the computer manipulates to

perform various data-processing tasks. A sequence of instructions for the computer is called

a program.

 Figure 1.1: Block Diagram of Digital Computer.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 2

1.2 Logic Gates

Binary information in digital computers represented by physical quantities called signal.

The fundamental building block of all digital logic circuits is the gate. Logical functions are

implemented by the interconnection of gates. A gate is an electronic circuit that produces an

output signal that is a simple Boolean operation on its input signals. The basic gates used in

digital logic are AND, OR, NOT, NAND, NOR, and XOR. Each gate is defined in three

ways: graphic symbol, algebraic notation, and truth table. Note that the inversion (NOT)

operation is indicated by a circle.

 Figure 1.2: Basic logic gates

COMPUTER ORGANIZATION AND ARCHITECTURE Page 3

1.3 Boolean Algebra

The digital circuitry in digital computers and other digital systems is designed, and its

behavior is analysed, with the use of a mathematical discipline known as Boolean algebra.

The name is in honor of an English mathematician George Boole, who proposed the basic

principles of this algebra in 1854 in his essay.

Boolean algebra makes use of logical variables and logical operators. The possible values for

a logical variable are either TRUE or FALSE. For ease of use, these values are,

conventionally, represented by 1 and 0 respectively. A system in which the only possible

values are 0 and 1 is the binary number system. Likewise, it is similar to the binary states of

digital electronics and that is why Boolean algebra is used to analyse digital circuits. The

logical operators of Boolean algebra are AND, OR, and NOT, which are symbolically

represented by dot (∙), plus sign (+), and over bar (¯). Often the dot is omitted in Boolean

expression. Hence, A∙B is written as AB without the dot.

 Table 1.1: Truth table for Boolean operators

A Boolean function can be expressed algebraically with logic variables and logic operators.

Example, F= x +y’z

A Boolean function can be represented by a truth table and a logic diagram. Truth table and

logic diagram of Boolean function F is shown below.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 4

 Table 1.2: important identities of Boolean algebra.

 These identities are useful in simplifying Boolean functions in order to find simple circuit

designs.

 Table 1.3: Basic identities of Boolean algebra

For example, consider the following Boolean algebra expression:

 AB’ + C’D + AB’ + C’D

By letting A= AB’ + C’D the expression be written as A + A. From identity element of Table

1-3, we find that A+A =A. Thus, the expression can be simplified as:

 AB’ + C’D + AB’ + C’D = AB’ + C’D

COMPUTER ORGANIZATION AND ARCHITECTURE Page 5

Example:1. Simplify the expression x’y’z+yz+xz

Solution x’y’z+yz+xz

 =z(x’y’+y+x) (distributive property)

 =z(x’+y+x) (adsorption)

 =z(x’+x+y) (commutativity)

 =z(1+y) (complementation)

 =z(1)=z (Dominance law)

2. Simplify the expression: F=ABC+ABC’+A’C

K-MAP Simplification

Rules for K-map simplification

 1. Group may not contain zero.

 2. We can group by 1, 2, 4and8 grouping:2^n cells.

 3. Each group should be large as possible.

 4. Cell contain 1 must be grouped.

 5. Groups may be overlap.

 6. Opposite grouping and corner grouping are allowed.

 7. There should be as few groups as possible.

Example: 1.simlify the expression A’B’C’+A’BC’+A’BC+ABC’

 =A’C’+A’B+BC’

 2.simplify F(A,B,C)=(0,2,4,5,6)

1.4 Combinational Circuits

 A combinational circuit is an interconnected set of gates whose output at any time is a

function only of the input at that time. As with a single gate, the appearance of the

input is followed almost immediately by the appearance of the output, with only gate

delays. In general terms, a combinational circuit consists of n binary inputs and m

binary outputs.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 6

 Combinational circuits have no feedback (a feedback is an output that is given back to

one of the inputs of the circuit)

 Adders are simple examples of arithmetic circuits.

 They serve as a basic building blocks for the construction of more complicated

arithmetic circuits.

 A combinational circuit can be defined in three ways:

 Truth table : For each of the 2n possible combinations of input signals, the

binary value of each of the m output signals is listed.

 Graphical symbols : The interconnected layout of gates is depicted.

 Boolean equations: Each output signal is expressed as a Boolean function of

its input signals.

Common Combinational Circuits are:

Adders (Half Adder & Full Adder): Binary addition differs from Boolean algebra in that the

result includes a carry term. Thus,

Implementation of Boolean Functions :Any Boolean function can be implemented in

electronic form as a network of gates. For any given function, there are a number of

alternative realizations. Consider the Boolean function represented by the truth table .We can

express this function by simply itemizing the combinations of values of A, B, and C that

cause F to be 1:

COMPUTER ORGANIZATION AND ARCHITECTURE Page 7

There are three combinations of input values that cause F to be 1, and if any one of these

combinations occurs, the result is 1. This form of expression, for self-evident reasons, is

known as the sum of products (SOP) form. Figure 1-3 shows a straight forward

implementation with AND, OR, and NOT gates.

 Figure 1.3 Truth table for function in equation

 Figure 1.4 Sum of production implementation

Half Adder

 A digital arithmetic circuit that carries out the addition of two bits is called a half adder.

 It has two input variables and two outputs variables (sum & carry).

COMPUTER ORGANIZATION AND ARCHITECTURE Page 8

 S=X Y, C=xy

X Y S(sum) C(carry)

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

 Table 1.4: Truth Table of half adder.

 Figure 1.5: Logic Diagram Figure 1.6: Block Diagram

Full Adder

 We are not only interested in performing addition on just a single pair of bits.

 Rather, we wish to add two n-bit numbers along with a carry from a previous bitwise addition

(performs addition of three bits).

 Such digital circuit is called a full adder.

A combination of two half adders creates a full adder.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 9

Cin X Y Sum Carry

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Table 1.5: Truth Table of full adder.

S= X Y Cin

C= XY + (X Y)Cin

 Figure 1.7 Logic Diagram Figure 1.8 Block Diagram

COMPUTER ORGANIZATION AND ARCHITECTURE Page 10

 Multiple-Bit Adder

 By combining a number of full adders, we can have the necessary logic to implement a

multiple-bit adder.

 The output from each adder depends on the carry from the previous adder.

 E.g Construction of a 32-bit adder using 8-bit adders

 Figure 1.9 Block Diagram

1.5 Sequential Circuits

 In case of combinational circuits, the value of each output depends on the values of

signals applied to the inputs.

 However, in case of Sequential Circuits, the values of the outputs depend not only on

the present values of the inputs but also on the past behavior of the circuit.

 Sequential circuits consist of a combinational circuit and some memory elements. The

memory elements are used to store information about the past.

 Such circuits include storage elements that store the values of logic signals.

 Flip-flops can store a one-bit data (information).

 The value stored in a flip-flop is called the state of the flip-flop, and is designated by

the letter Q.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 11

 A second output, Q’ is also usually provided, which is the complement of the state of

the flip-flop.

 Figure 1.10: diagram of sequential circuit

1.6 Flip-Flops

 The memory elements used in sequential circuits are called flip-flops. Flip-flops can store or

remember a 0 or a 1 (a Boolean value). We use the term bit (binary digit) to refer to a

Boolean value.

 So, flip-flops can store a one-bit data (information).

 flip-flops is The simplest form of sequential circuit.

 There are a variety of flip-flops, all of which share two properties:

 The flip-flop is a bistable device, i.e. has two stable states.

 It exists in one of two states and, in the absence of input- function as a 1-bit memory.

 The flip-flop has two outputs, Q and the complement of Q.

 E.g S-R, J-K & D flip-flops

COMPUTER ORGANIZATION AND ARCHITECTURE Page 12

 Figure 1.10 basic types of Flip Flops

1.6.1 S-R Flip-Flops

 The circuit has two inputs, S (Set) and R (Reset), and two outputs, Q & complement of Q.

 Mostly, events in the digital computer are synchronized to a clock pulse, so that changes

occur only when a clock pulse occurs.

 the clock signal is a Boolean variable that alternatingly takes the values 0 and 1.

 The S and R inputs are passed to the NOR gates only during the clock pulse.

 Only when the clock signal changes [0-1] can output affected according to the values of input

S and R.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 13

 Figure 1.11 S-R Flip-Flops

1.6.2 J-K Flip-Flops

 Like S–R flip-flops, it has two inputs.

 However, in this case all possible combinations of input values are valid.

 Intermediate state of S-R type is defined in J-K flip- flops.

 Figure 1.12:J-K Flip-flop

COMPUTER ORGANIZATION AND ARCHITECTURE Page 14

1.6.3 D Flip Flop

 The D(data) flip-flop -data flip-flop uses for storage of one bit of data.

 The output of the D flip-flop is always equal to the most recent value applied to the input.

 Hence, it remembers and produces the last input.

 Figure 1.13 D Flip-Flop

COMPUTER ORGANIZATION AND ARCHITECTURE Page 15

Chapter 2

2.1 Number systems

Basically, there are two types of number systems.

I. Non-positional number system: The value of a symbol (digit) in a number does not

depend on the position of the digit in number.

 II. Positional number system: The value of a symbol in the number is determined by its

position, the symbol and the base of the number system.

Decimal number system

The decimal number system, also called the base 10 number system, is the number system we

use in our day-to-day life. The decimal number system has 10 different symbols identified as

0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

Binary number system

The binary number system, also known as base 2 number system, has two digits 0 and 1. The

two digits of the binary number system correspond to the two distinct states of the digital

electronics.

Data Representation

Data in computers is represented in binary form. The represented data can be number, text,

movie, color (picture), sound, or anything else. We enter data into a computer using letters,

digits & special symbols. But inside the computer, there is no color, letter, digit or any other

character inside the computer system unit. Computers understand and respond to only the

flow of electrical charge. They also have storage devices that work based on magnetism. This

shows that the overall structure of computers work only in binary conditions (the semi-

conductors are conducting or not conducting, a switch is closed or opened, a magnetic spot is

magnetized or demagnetized). Hence, data must be represented in the form of binary code

COMPUTER ORGANIZATION AND ARCHITECTURE Page 16

that has a corresponding electrical signal. The form of binary data representation system we

are seeking is similar to the binary number system in mathematics.

The number systems (bases) we will discuss are: decimal, binary, octal, and hexadecimal

Data representation using the binary number system results in a large string of 0s and 1s. This

makes the represented data large and difficult to read. For the sake of writing the binary

strings in a short hand form and make them readable, the octal and the hexadecimal number

systems are used.

Octal number system

Octal number system, also called base 8 number system, has 8 different symbols: 0, 1, 2, 3, 4,

5, 6, and 7.

Hexadecimal number system

The hexadecimal number system, also called base 16 number system, has 16 different

symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. It is used to write binary numbers in

short form. Memory addresses and MAC addresses are usually written in hex.

2.1.1 Converting from one base to another

I. Conversion from Decimal to Base m

Step 1: Divide the given decimal number by m (the desired base). The result will have a

quotient and a remainder.

Step 2: Repeat step 1 until the quotient becomes 0, the quotient is 0 whenever the number <

m.

Step 3: Collect and arrange the remainders in such a way that the first remainder is the least

significant digit and the last remainder is the most significant digit.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 17

Example: Convert the following decimal number 47 into binary, octal, and hexadecimal.

a. Conversion to binary In order to convert the given decimal numbers into binary (base 2),

they are divided by 2.

 Hence the result is 1011112.

b. Conversion to octal: Here the numbers are divided by 8 because the required base is octal

(base 8).

c. Conversion to hexadecimal Since the conversion now is into hexadecimal (base 16) the

given decimal numbers are divided by 16.

The hexadecimal equivalent for the decimal 15 is F and that of 2 is 2. Therefore, 47 = 2F16

 II. Conversion from Base m to Decimal

Step 1: Multiply each digit by its positional value.

Step 2: Calculate the sum of the products you get in step 1.

Example 1: Convert the binary number 110001 and 1011.1101 into decimal.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 18

a.1100012 = (1 × 2
5
) + (1 × 2

4
) + (0 × 2

3
) + (0 × 2

2
) + (0 × 2

1
) + (1 × 2

0
) = (1 × 32) + (1 × 16)

+ (0 × 8) + (0 × 4) + (0 × 2) + (1 × 1) = 32 + 16 + 0 + 0 + 0 + 1 = 49

Therefore, 1100012 = 49.

b. 1011.11012 =(1 x 2
3
) + (0 x 2

2
) + (1 x 2

1
) x (1 x 2

0
) + (1 x 2

-1
) + (1 x 2

-2
) + (0 x 2

-3
)

(+ 1 x 2
-4

) = (1x 8) + (0 x 4) + (1 x 2) + (1 x1) + (1 x ½) + (1 x ¼) + (0 x1/8) + (1 x 1/16) = 8

+ 0 + 2

+ 1+ ½ + ¼ + 0 + 1/16 = 11 + 13/16 =11.8

There fore, 1011.11012 = 11.8.

Example 2: Convert the octal number 22 into decimal.

228 = (2 × 8
1
) + (2 × 8

0
) = (2 × 8) + (2 × 1) = 16 + 2 = 18

Therefore, 228 = 18

Example 3: Convert the hexadecimal number D1 into decimal.

D116 = (13 × 16
1
) + (1 × 16

0
)

Therefore, D116 = 209

III. Conversion from Binary to Octal

It is possible to use decimal number system as an intermediate base to convert from any base

to any other base. However, for conversion from binary to octal or vice versa, there is a very

simple method.

Step 1: Group the binary digits (bits) starting from the rightmost dig into 3 bits. If the

remaining bits at the leftmost position are fewer than 3, add 0s at the front.

 Step 2: For each 3-bit binary string, find the corresponding octal number.

Example: Convert the binary numbers 110011 and 1101111 to octal.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 19

The bits are grouped in three with the equivalent octal digit given below the three bit group.

Thus, 1100112 = 638

The result is 11011112 = 1578.

IV. Conversion from Octal to Binary

Step 1: For each octal digit, find the equivalent three digit binary number.

Step 2: If there are leading 0s for the binary equivalent of the leftmost octal digit, remove

them.

 Example: Find the binary equivalent for the octal numbers 73 and 160.

Therefore, 738 = 1110112

Thus, 1608 = 11100002

 From Binary to Hexadecimal

 One possible way to convert a binary number to hexadecimal, is first to convert the binary

number to decimal and then from decimal to hex. The simple steps states are stated below.

Step 1: Starting from the rightmost bit, group the bits in 4. If the remaining bits at the

leftmost position are fewer than 4, add 0s at the front.

Step 2: For each 4-bit group, find the corresponding hexadecimal number.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 20

Example: Convert the binary numbers 1110110001 and 10011110 to hexadecimal.

Therefore, 11101100012 = 2B116

Therefore, 100111102 = 9E16

VI. Conversion from Hexadecimal to Binary

Step 1: For each hexadecimal digit, find the equivalent four digit binary number.

Step 2: If there are leading 0s for the binary equivalent of the leftmost hexadecimal digit,

remove them.

Example: Find the binary equivalents for the hexadecimal numbers 1C and 823.

Thus, 1C16 = 111002

Hence, 82316 = 1000001000112.

VII. Conversion from Octal to Hexadecimal of Vice Versa

The decimal number system can be used as an intermediate conversion base. second

alternative is using the binary number system as an intermediate base.

Step 1: Convert the given number into binary.

Step 2: Convert the binary number you got in step 1 into the required base.

Example : Convert the octal number 647 to hexadecimal.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 21

 Therefore, 6478 = 1A716

Example 2: Find the octal equivalent for the hexadecimal number 3D5

Therefore, 3D516 = 17258

2.2 Representation of Integers (Fixed point Representation)

 If the numbers we want to represent are only positive (unsigned) integers, the solution is

straightforward; simply represent the unsigned integer with its binary value. For example, 34

is represented as 00100010 in 8 bits.

Signed integer representations are sign magnitude, 1’s complement, 2’s and complement.

2.2.1 Sign-Magnitude Representation

In mathematics, positive integers are indicated by a preceding + sign (although usually it is

avoided) a preceding – sign identify the integer as a negative number. In computers, there is

no place for a + or a – sign; there are only 0s and 1s. A similar way of representing + and –

signs is to treat the most significant bit as a sign bit the remaining bits are used to represent

the magnitude of the integer. By convention a 0 on the sign bit indicates the integer is

positive and a 1 indicates the integer is a negative.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 22

As example, the sign-magnitude representation of 79 and -79 in 8 bits are 01001111 and

11001111 respectively.

2.2.2 One’s Complement Integer Representation

Every number system has two complement systems. For a given base n the complements are

n’s complement and (n-1)’s complement. Thus, in decimal numbers system (base 10), the

complement systems are 10’s complement and 9’s complement. Similarly, in binary number

system, the complements are 2’s complement and 1’s complement. Using complements in

binary number systems makes subtraction and logical negation very simple. Furthermore,

using complements makes arithmetic operations simple. The one’s complement of a binary

integer is found by inverting all 0s to 1s and all 1s to 0s. In one’s complement integer

representation, the negative of an integer is represented by its complement.

For example, the one’s complement representation of 16 and -16 in 8 bits are 00010000 and

11101111 respectively.

2.2.3 Two’s Complement Integer Representation

The two’s complement of an integer is found by adding 1 to its one’s complement. As a

reminder, in binary arithmetic, 0+1 = 1 and 1+1 = 0 with a carry of 1 to the next higher

significant bit. A shortcut method to find the two’s complement of a number is to keep all the

bits up to and including the first 1 from the right and invert all the others.

Example, two’s complement representation of 19 and -19 in 8 bits are 00010011 and

11101101 respectively.

2.3 Floating Point Numbers

Floating Point representation of a number has two parts. The first part represents a signed,

fixed-point number called the mantissa. The second part designates the position of the

decimal (or binary) point and is called the exponent. Floating point is always represented as

follows:

COMPUTER ORGANIZATION AND ARCHITECTURE Page 23

 m x r
e
 where, m (mantissa) r(radix) and e(exponent)

For example, the decimal, +6132.789.

 Fraction Exponent Scientific Notation (floating point)

e.g +0.6132789 +04 +0.6132789 x10
+4

Only the mantissa m and the exponent e are physically represented in the register (including

their signs).

e.g + 1001.11

 Fraction Exponent

 01001110 000100

 The fraction has 0 in the leftmost position to denote positive the binary point of the fraction

follows the sign bit but is not shown in register. The floating- point number is equivalent to

m x r

e =
 +(.1001110)2 x 2

+4

2.4 Codes

2.4.1 Binary Coded Decimal (BCD)

The BCD (Binary Coded Decimal), also called packed decimal, in order to have

representations for the ten digits of the decimal number system, we need a four bit string.

Thus 0 = 0000, 1 = 0001, 2 = 0010, …, and 9 = 1001. In BCD, multiples of 8 bits, in which

the bits are grouped in 4, are used to represent decimal numbers. Thus the decimal number

461 is represented as 0000 0100 0110 0001.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 24

2.4.2 Characters

Text documents contain strings of characters. Characters refer to letters of the alphabet, the

ten digits (0 through 9), punctuation marks, characters that are used to format the layout of

text on pages such as the newline, space, and tab characters, and other characters that are

useful for communication. The American version of IRA is called American Standard Code

for Information Interchange (ASCII). Even though IRA used 8 bits, each character is

represented by 7 bits; hence a total of 128 characters are represented. The eighth bit is used

for parity (error detection).

Another character encoding system is the EBCDIC (Extended Binary Coded Decimal for

Interchange Code). It uses 8 bits per character (and a ninth parity bit), thus represents 256

characters. As with IRA, EBCDIC is compatible with BCD. In the case of EBCDIC, the

codes 11110000 through 11111001 represent the digits 0 through 9. ASCII is a standard for

use in the United States. Many countries adapted their own versions of ASCII. There are also

8-bit versions of ASCII.

To allow encoding of characters of all the languages in the world, a character set known as

the Unicode is devised. The Unicode character has variants known as UTF-8, UTF-16, and

UTF-32. UTF-8 is the same as ASCII. UTF-16 and UTF-32 use 16-bit and 32-bit per

character respectively.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 25

Chapter 3: Common Digital Components

 3.1 Integrated Circuits

 Integrated circuit (IC) is the basic building block of digital circuits.

 An integrated circuit is a small silicon semiconductor crystal, called a chip.

 The various gates are interconnected inside the chip to form the required circuit.

 As the technology of ICs has improved, the number of gates that can be put in a single

chip has increased.

 Small-scale integration (SSI) devices contain several (usually less than 10)

independent gates in a single package.

 Medium-scale integration (MSI) devices contain approximately 10 to 200 gates in a

single package.

E.g To form decoders, adders, and registers.

 Large-scale integration (LSI) devices contain between 200 and a few thousands

gates in a single package.

Eg. processors, memory chips, and programmable modules.

 Very-large-scale integration (VLSI) devices contain thousands of gates in a single

package.

 E.g large memory arrays and complex microcomputer chips.

Digital integrated circuits are also classified based on the specific circuit technology to which

they belong.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 26

 The basic circuit in each technology is either a NAND, a NOR, or an inverter gate.

 The most popular logic families of integrated circuits are:

 TTL Transistor-transistor logic

o has been in operation for many years and is considered as standard.

 ECL Emitter-coupled logic

o has an advantage in systems requiring high-speed operation.

 MOS Metal-oxide semiconductor

o is suitable for circuits that need high component density.

 CMOS Complementary metal-oxide semiconductor

o Preferable in systems requiring low power consumption.

3.5 Multiplexers

 Multiplexer is a combinational circuit that receives binary information from one of 2
n

input data & directs to one output.

 The multiplexer connects multiple inputs to a single output.

 At any time, one of the inputs is selected to be passed to the output.

E.g a 4-to-1 multiplexer

 There are four input lines, labelled D0, D1, D2, and D3.

 One of these lines is selected to provide the output signal F.

 To select one of the four possible inputs, a 2-bit selection code is needed, and this is

implemented as two select lines S1 and S2.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 27

Figure 3.1: Block diagram Figure 3.2: Truth table of a 4-to-1 multiplexer

 Figure 3.3: An implementation of a 4-to-1 multiplexer using AND, OR, and NOT gates

COMPUTER ORGANIZATION AND ARCHITECTURE Page 28

 Multiplexers are used in digital circuits to control signal and data routing.

 An example is the loading of the program counter (PC).

3.6 Demultiplexer

 The demultiplexer performs the inverse function of a multiplexer.

 It connects a single input to one of several outputs.

3.7 Decoders

 A decoder is a combinational circuit with a number of output lines, only one of which

is selected at any time, depending on the pattern of input lines.

 In general, a decoder has n inputs and 2
n

outputs.

 Decoders find many uses in digital computers.

 One example is address decoding.

 The other is binary-to- octal conversion.

Decoder with 3 inputs and 2
3
 = 8 outputs

COMPUTER ORGANIZATION AND ARCHITECTURE Page 29

 Figure 3.4:3-to 8 line Decoder

3.8 Encoders

 An encoder is a digital circuit that performs the inverse operation of a decoder.

 An encoder has 2
n
 (or less) input lines and n output lines. The output lines generate

the binary code corresponding to the input value.

 An example of an encoder is the octal-to-binary encoder.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 30

 Figure 3.5: Truth Table Octal to binary Encoder.

3.9 Registers

 A register is a group of flip-flops with each flip- flop capable of storing one bit of

information.

 A register is a digital circuit used within the CPU to store one or more bits of data.

 An n-bit register has a group of n flip-flops and is capable of storing n bits of binary

information.

 In addition to Flip-Flops, it may have combinational gates that perform certain data

processing.

 Two basic types of registers are commonly used: parallel registers and shift registers.

Parallel Registers

 A parallel register consists of a set of 1-bit memories that can be read or written

simultaneously. Is used to store data.

e.g The 8-bit register- D Flip-Flops

COMPUTER ORGANIZATION AND ARCHITECTURE Page 31

Shift Register

 A shift register accepts and/or transfers information serially.

 Data are input only to the leftmost flip-flop.

 Shift registers can be used to interface to serial I/O devices.

 With each clock pulse, data are shifted to the right, one position, and the rightmost bit

is transferred out.

 In addition, they can be used within the ALU to perform logical shift and rotate

functions.

5-bit Shift Register

COMPUTER ORGANIZATION AND ARCHITECTURE Page 32

3.10 Binary Counters

 Another useful category of sequential circuit is the counter.

 A counter is a register whose value is easily incremented by 1 modulo the capacity of the

register; that is, after the maximum value is achieved the next increment sets the counter

value to 0.

 Thus, a register made up of n flip-flops can count up to 2
n
-1.

 An example of a counter in the CPU is the program counter.

 Counters can be designated as asynchronous or synchronous, depending on the way in which

they operate.

 Asynchronous counters are relatively slow because the output of one flip-flop causes a change

in the status of the next flip-flop.

 In a synchronous counter, all of the flip-flops change state at the same time.

 Because the latter type is much faster, it is the kind used in CPUs.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 33

Chapter 4: Register Transfer and Micro operation

A digital system is an interconnection of digital hardware modules that accomplish a specific

information-processing task. Digital systems vary in size and complexity from a few

integrated circuits to a complex form of interconnected and interacting digital computers.

Digital system design invariably uses a modular approach. The modular are constructed from

such digital components as register, decoders, arithmetic elements, and control logic.

Digital modules are best defined by the registers they contain and the operations that are

performed on the data stored in them. The operations executed on data stored in registers are

called micro operations. A micro operation is an elementary operation performed on the

information stored in one or more registers.

Examples of micro operation are shift, count, clear, and load.

Register Transfer Language

The symbolic notation used to describe the micro operation transfers among registers is

called a register transfer language. The term “register transfer” implies the availability of

hardware logic circuits that can perform a micro operation and transfer the result of operation

to some other register. A programming language is a procedure for writing symbols to

specify a given computational process.

4.1 Register Transfer

Computer registers are designed by capital letters (some time followed by numerals) to

denote the functions of the registers. For example, Memory address register is designated by

MAR, PC (program counter), IR (instruction register) and R1 (process register).

The individual flip-flops in an n-bit register are numbered in sequence from 0 to n-1, starting

from 0 in the rightmost position and increasing toward the left.

Information transfer from one register to another is designed in symbolic form by means of a

replacement operator.

Example, R2←R1,

Denotes the transfer of the content of register R1 into register R2.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 34

R1 7 6 5 4 3 2 1 0

R2 PC(H) PC(L)

15 0 15 8 7 0

(a) Register R (b) Showing individual bits

(C) Numbering of bits (d) Divided into two parts

 Figure 4.1: Block diagram of registers.

Normally, we want the transfer to occur only under a predefined control condition. This can be shown

by means of if-then statement.

 If (P=1) then (R2←R1)

where P is a control signal generated in the control section. But, sometimes it is convenient to

separate the control variables from the register transfer operation by specifying a control

function. A control function is a Boolean variable that is equals to 1or 0.

 P: R2←R1

The control condition terminated with a colon and denotes that the transfer operation be

executed by the hardware only if P=1. Every statement written in a register transfer notation

implies a hardware construction for implementing the transfer.

Control

Circuit
R2

R1

Clock
LoadP

n

Clock

Load

(a) Block diagram that shows transfer of any n bits from R1 to R2

(b) Timing diagram

COMPUTER ORGANIZATION AND ARCHITECTURE Page 35

 Figure 4.2 Shows transfer of content of R1 to R2.

Register R2 has a load input that is activated by the control variable P. It is assumed that the

control variable is synchronized with the same clock as the one applied to the register. P is

activated in the control section by the rising edge of a clock pulse t. The next positive

transmission of clock at time t+1 finds the load input active and the inputs of R2 are then

loaded into the register. P may go back to 0 at time t+1, otherwise, the transfer will occur

with every clock pulse transmission.

A comma is used to separate two or more operations that are executed at the same time.

 T: R2←R1, R1←R2, exchanges of the contents of two registers during common clock

pulse (T=1).

Symbol Description Examples

Letters (and numerals) Denotes a register MAR, R2

Parentheses () Denotes a part of a register R2(0-7), R2(L)

Arrow ← Denotes transfer of information R2←R1

Comma , Separates two microoperations R2←R1, R1←R2

 Table 4.1: Basic Symbols for Register Transfers

4.2 Bus and Memory Transfers

A typical computer has many registers, and paths must be provided to transfer information

from one register to another. An efficient way for transferring information between registers

in a multiple-register configuration is a common bus system. A bus structure consists of a set

of common lines, one for each bit of a register. Control signals determine which register the

bus selects during each particular register transfer.

Two ways of constructing, a common bus system is with multiplexers & three-State Bus

Buffers

COMPUTER ORGANIZATION AND ARCHITECTURE Page 36

 Figure 4.3: Bus system for four registers.

The transfer of information from a bus into one of many destination registers can be

accomplished by connecting the bus lines to all of the destination registers. The symbolic

statement that includes bus transfer is:

 BUS ←C, R1←BUS

The content of register C is placed on the bus, and the content of the bus is loaded into

register R1 by activating control input. If the bus is known to exist, only the register transfer

can be shown:

 R1←C

Three-State Bus Buffers AND, NAND & Buffer gates

The bus system can be constructed with three-state gates instead of multiplexers. A three-

state gate is a digital circuit that exhibits three states. Two of the states are signals equivalent

to logic 1 and 0 as in a conventional gate. The third state is a high- impedance state. The

high-impedance state behaves like an open circuit, which means that the output is

disconnected and does not have logic significance.

Output Y=A if C=1

High Impedance if C=0

Normal input A

Control input C

 Figure 4.4: Graphic symbols for three-state buffer

COMPUTER ORGANIZATION AND ARCHITECTURE Page 37

To construct a common bus for four registers of n bits each using three state buffers.

4.3 Memory Transfer

The transfer of information from a memory word to the outside environment is called read

operation. The transfer of new information to be stored into the memory is called a write

operation. A memory word is symbolized by M. It is important to specify the address of M

when writing memory transfer operations.

 Read: DR←M[AR]

This causes a transfer of information into DR (Data Register) from the memory word M

selected by the address in AR (Address Register).

 Write: M[AR]←R1

This causes a transfer of information from R1 into the memory word M selected by the

address in AR.

4.4 Arithmetic and Logic Micro operations

4.4.1 Arithmetic Micro operations

The basic arithmetic micro operations are addition, subtraction, increment and decrement.

The arithmetic micro operation defined by the statement

 R3←R1 + R2

specifies an add micro operation. It states that contents of register R1 are added to the

contents of register R2 and the sum transferred to register R3.

Substruction is most often implemented through complementation and addition.

Example, ̅̅̅̅

 ̅̅̅̅ is the symbol for the 1’s complement of R2. Adding 1 to the 1’s complement produces the

2’s complement. Adding the contents of R1 to the 2’s complement of R2 is equivalent to R1-

R2.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 38

Symbolic Designation Description

R3←R1 + R2 Contents of R1 plus R2 transferred to R3

R3←R1 –R2 Contents of R1 minus R2 transferred to R3

R2← ̅̅ ̅̅ Complement the contents of R2 (1’s complement)

R2← ̅̅ ̅̅ + 1 2’s complement the contents of R2 (negative)

R3←R1 + ̅̅ ̅̅ + 1 R1 plus the 2’s complement of R2 (substruction)

R1←R1 + 1 Increment the contents of R1 by one

R1←R1- 1 Decrement the contents of R1 by one

 Table 4.2: Arithmetic Micro operation

The increment and decrement micro operations are symbolized by plus one and minus- one

operation, respectively.

4.4.2 Logic micro operations

Logic micro operations specify binary operations for strings of bits stored in registers. These

operations consider each bit of the register separately and treat them as a binary variables.

For Example, the exclusive-OR microoperation,

 P: R1←R1 R2

 1010 Contents of R1

 1100 Contests of R2

 0110 Contents of R1 after P=1

COMPUTER ORGANIZATION AND ARCHITECTURE Page 39

The contents of R1, after the execution of the micro operation, is equals to bit-by-bit

exclusive- OR operation on pairs of bits in R2 and previous values of R1.

Special symbols will be adopted for the logic micro operation OR), AND (∧), and

complement to distinguish them from Boolean functions symbols. The complement micro

operation is the same as 1’s complement and over bar is used.

For example,

 P + Q: R1←R2 + R3, R4 V R5

the + between P and Q is an OR operation between two binary variables of a control function.

The + between R1 and R2 specifies an add micro operation. The OR micro operation is

designated by V between registers R4 and R5

Some Applications

Logic micro operations are very useful for manipulating individual bits or a portion of a word

stored in a register. They can be used to change bit values, delete a group of bits, or insert

new bit values into a register.

Selective-set: The selective-set operation sets to 1 the bits in register A where there are

corresponding 1’s in register B. It does not affect bit positions that have 0’s in B.

e.g 1010 A Before

 1100 B (logic operand)

 1110 A after, the corresponding micro operation is A←A V B

Selective-complement: The selective-complement operation complements bits in A where

there are corresponding 1’s in B. It does not affect bit positions that have 0’s in B.

e.g 1010 A before

 1100 B (logic operand)

 0110 A after , the corresponding logic micro operation A←A B

Selective-clear: The selective-clear operation clears to 0 the bits in A only where there are

corresponding 1’s in B.

e.g 1010 A before

 1100 B (logic operand)

 0010 A after

The corresponding logic micro operation is A← A ∧ ̅

COMPUTER ORGANIZATION AND ARCHITECTURE Page 40

4.5 Shift micro operations

Shift micro operation are used for serial transfer of data. They are also used in conjunction

with arithmetic, logic, and other data processing. The content of a register is shifted to the

left or the right. At the same time that the bits are shifted, the first flip-flop receives its binary

information from the serial input. During a shift-left operation the serial input transfers a bit

into the rightmost position. During a shift-right operation the serial input transfers a bit into

the leftmost position. There are three types of shifts: logical, circular, and arithmetic.

 A logical shift is one that transfers 0 through the serial input.

 Example, R1←shl R1

 R2←shr R2

are two micro operations that specifies a 1-bit shift to the left of the content of register R1 and

a shift to the right of the content of register R2. The register symbol must be the same on both

sides of the arrow.

The circular shift (also known as a rotate operation) circulates the bits of the register around

the two ends without loss of information. This is accomplished by connecting the serial

output of the shift register to its serial input.

Symbolic Destination Description

R←shl R Shift-left register R

R←shr R Shift-right register R

R←cil R Circular shift-left register R

R←cir R Circular shift-right register R

R←ashl R Arithmetic shift-left register R

R←ashr R Arithmetic shift-right register R

 Table 4.3: Shift micro operations

COMPUTER ORGANIZATION AND ARCHITECTURE Page 41

An arithmetic shift is a microoperation that shifts a signed binary number to the left or right.

An arithmetic shift-left multiplies a signed bit binary number by 2. An arithmetic shift-right

divides the number by 2. Arithmetic shifts must leave the sign bit unchanged because the sign

of the number remains the same when it is multiplied or divided by 2.

Rn-1 Rn-2 R1 R0

 Arithmetic shift right

Sign bit

The leftmost bit in a register holds the sign bit, and the remaining bits hold the number. The

sign bit is 0 for positive and 1 for negative. Negative numbers are in 2’s complement form.

Bit Rn-1 in the leftmost position holds the sign bit. Rn-2 is the most significant bit of the

number and R0 is the least significant bit. The arithmetic shift-right leaves the sign bit

unchanged and shifts the number (including the sign bit) to the right. Thus, Rn-1 remains the

same, Rn-2 receives the bit from Rn-1 , and so on for the other bits in the register. The bit in R0

is lost.

The arithmetic shift-left inserts a 0 into R0, and shifts all other bits to the left. The initial bit of

Rn-1 is lost and replaced by the bit from Rn-2. A sign reversal occurs if the bit in Rn-1 changes

in value after the shift. This happens if the multiplication by 2 causes an overflow. An

overflow occurs after an arithmetic shift left if initially, before the shift, Rn-1 is not equal to

Rn-2. An overflow flip-flop Vs can be used to detect an arithmetic shift-left overflow.

 Vs =Rn-1 Rn-2

If Vs=0, there is no overflow, but if Vs=1, there is an overflow and a sign reversal after the

shift. Vs must be transferred into the overflow flip-flop with the same clock pulse that shifts

the register.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 42

Chapter 5: Basic Computer Organization and Design

 5.1 Instruction Codes

The internal organization of a digital system is defined by the sequence of micro-operations it

performs on data stored in its registers. The user of the computer can control the process by

means of a program. A program is a set of instructions that specify the operations, operands,

and the sequence by which processing has to occur.

The computer reads each instruction from memory and places it in a control register. The

control then interprets the binary code of the instruction and proceeds to execute it by issuing

a sequence of micro-operations.

An Instruction Code is a group of bits that instructs the computer to perform a specific

operation. It is usually divided into parts, each having its own particular interpretation. The

most basic part of an instruction code is its operation part. The operation code of an

instruction is a group of bits that defines such operations as Add, Subtract, Multiply, Shift

and Complement. The operation part of an instruction code specifies the operation to be

performed. This operation must be performed on some data stored in processor registers or

in memory. An instruction must specify not only the operation but also the registers or the

memory words where the operands are to be found.

 Stored Program Organization

The simplest way to organize a computer is to have one processor register and an instruction

code format with two parts. The first part of instruction code specifies the operation to be

performed and the second specifies an address. The memory address tells the control where

to find an operand in memory. This operand is read from memory and used as the data to be

operated on together with the data stored in processor register. Instructions are stored in one

section of memory and data in another. The operation is performed with memory operands

and the content of AC. Figure 5-1 below depicts this type of organization.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 43

 Figure 5-1: Stored program organization

Note: Computers that have a single processor register usually assign to the term Accumulator

(AC).

Example: For a memory unit with 4096 words we need 12 bits to specify an address (Since

2
12

 = 4096). If we store each instruction in one 16 bit memory word, we have available 4-bits

for the operation code OP-Code. To specify one out of 16 possible operations and 12 bits

specify the address of an operand. The control reads a 16-bit instruction from the program

portion of memory. It uses the 12-bit address part of the instruction to read 16-bit operand

from the data portion of memory. It then executes the operation specified by the operation

code.

5.2 Computer Registers

Computer instructions are usually stored in consecutive memory locations and executed

sequentially one at a time. The control reads an instruction from specific address in memory

and executes it. It then continues by reading the next instruction in sequence and executes it

and so on. This type of instruction sequencing needs a counter to calculate the address of the

next instruction after execution of the current instruction is completed. It is also necessary to

provide a register in a control unit for storing the instruction code after it is read from the

memory. The data register (DR) holds the operand read from memory. The accumulator (AC)

register is a general purpose processing register. The instructions read from memory are

placed in instruction register (IR). The temporary register (TR) is used for holding temporary

data during the processing.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 44

 Table 5-1: List of registers for the basic computer

The memory address register (AR) has 12 bits since this is the width of a memory address.

The program counter (PC) also has 12 bits and it holds the address of the next instruction to

read from memory after the current instruction is executed. The PC goes through a counting

sequence and causes the computer to read sequential instructions previously stored in

memory.

 Figure 5-2: Basic Computer Registers and Memory

5.3 Common Bus Systems

The basic computer has eight registers, a memory unit, and a control unit. Paths must be

provided to transfer information from one register to another and between memory and

registers. Path between each and every register would cause too many wires running around

the registers. A better solution is the use of a common bus.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 45

 Figure 5-3: Basic computers connected to a common bus

The specific output that is selected for the bus lines at any given time is determined from the

binary value of the selection variables S2, S1, and S0. The number along each output shows

the decimal equivalent of the required binary selection. For example, the number along the

output DR is 3. The 16-bit output of DR are placed on the bus line when S2S1S0=011 since

this is the binary value of decimal number 3. The lines from the common bus are connected

to the inputs of each register and the data inputs of the memory. The particular register whose

LD (load) input is enabled receives the data from the bus during the next clock pulse

transition. The memory receives the content of the bus when its write input is activated. The

memory places its 16-bit output onto the bus when the read input is activated and

S2S1S0=111.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 46

5.4 Computer Instructions

The basic computer has three instruction code formats. Each format has 16 bits. The

operation code (opcode) part of the instruction contains three bits and the meaning of the

remaining depends on the operation code encountered. A memory-reference instruction uses

12 bits to specify an address and one bit to specify the addressing mode I (I = 0 for direct

address and I = 1 for Indirect address).The register-reference instructions are recognized by

the operation code 111 with a 0 in the left most bit (bit 15) of the instruction. A register-

reference instruction specifies an operation on or a test of the AC register. Input-output

instructions do not need to refer to the memory and are recognized by operation code 111

with a 1 in the leftmost bit of the instruction. The remaining 12 bits are used to specify the

type of input-output operations or test performed.

 Figure 5-4: Instruction format of basic computer.

Instruction Set Completeness

A computer should have a set of instructions so that the user can construct machine language

program to evaluate any function that is known to be computable. The set of instructions are

said to be complete if the computer includes a sufficient number of instructions in each of the

following categories:

1. Arithmetic, Logical and Shift Instructions.

2. Instructions for moving information to and from memory and processor registers.

3. Program control instructions together with instructions that check status conditions.

4. Input and Output instructions.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 47

 Table 5-2: Basic computer instructions

Arithmetic, logical and shift instructions provide computational capabilities for processing

the type of data that the user may wish to employ. The bulk of the binary information in a

digital computer is stored in memory, but all computations are done in processor registers.

Therefore, the user must have the capability of moving information between these two units

5.5. Timing and Control

In order to control the steps of the instruction cycle, it is necessary to introduce a counter,

whose output is used as input to the control logic. Sequence Counter Register (SC) is a

register that holds a count value, can be reset/cleared to zero and can be incremented (or

decremented).

COMPUTER ORGANIZATION AND ARCHITECTURE Page 48

by one. Each instruction will require a specified number of time steps to complete a sequence

of micro-operations. Each step of the sequence is marked by a count value in SC. The SC

outputs a string of bits whose value is in the range from 0 to 2
L-

1. Eg. for L=3, from 0 to 7.

The counter is incremented to provide the sequence of timing signals T0, T1, T3….Tx out of

the Lx2
L
 decoder, (where x = 2

L-
1).

The timing and control unit is the component that determines what the ALU should do at a

given instant. There are two kinds of control organization:

1. Hardwired Control

2. Micro programmed Control

Hardwired control: The control logic is implemented with digital circuits (decoders, flip-

flops, etc.). It has the advantage that it can be optimized to produce a fast mode of operation

but requires changes in the wiring among the various components if the design has to be

modified or changed.

Micro programmed control: Control information is stored in a control memory. Required

modifications can be done by updating the micro-program in control memory.

5.6 memory reference instruction

in order to specify he micro operation needed for the execution of each Instructions, it is

necessary that the function they are intended to perform be defined precisely. We will

know show that the function of the memory reference Instruction can be defined

precisely by means of Register Transfer notation .they are a number of memory

reference instruction, the Decoded Output Di for i=0,1,2,3.4.5 and 6 for the operation

Decoders that belongs to each instruction is described bellow. The actual execution

of the instruction in the bus system will require a sequence of micro operation. This is

because data stored in the memory cannot processed directly. The data must be read

from memory to register where they can be operated on with logical circuit.examples

of some basic memory reference Instruction are:

COMPUTER ORGANIZATION AND ARCHITECTURE Page 49

AND to AC

 it is an instruction that performs an AND logic operation on pairs of bits.the result of

operation is eransferred to AC the micro opration that execuete these Instruction are,

ADD to AC

This Instruction adds the content of the memory word specified by the effective address to

the value of the AC.

The sum is transferred to the AC and the output carry Cout is transferred to E (Extended

Accumulator) flip flop.

The micro operation needed to Execute this Instruction are

LDA Load to AC

 this Instruction transfer the memory word specified by the effective address to AC.the micro

operation needed to execute this Instruction are

At the bus system there is no direct path from the bus into the AC.the adder and logic circuit

receive information from DR which can be transferred in to AC.therefore,it is

necessary to read the memory word in to DR first and then transfer the content of DR

in to AC.

STA Store AC

this Instruction store the content of AC in to the memory word specified by the effective

address since the out put of the AC is applied to the bus and the data in put of memory

is connected to the bus, we can execute this Instruction with one micro operation.

5.7 Instruction Cycle

A program residing in the memory unit of the computer consists of a sequence of

instructions. The program is executed by going through a cycle for each instruction; the so

called fetch-decode-execute cycle. Each instruction cycle in turn is subdivided into a

sequence of phases. In the basic computer each instruction cycle consists of the following

phases:

COMPUTER ORGANIZATION AND ARCHITECTURE Page 50

1. Fetch an instruction from memory

2. Decode the instruction

3. Read the effective address from memory if the instruction has an indirect address

4. Execute the instruction

Upon the completion of step 4, the control goes back to step 1 to fetch, decode and execute

the next instruction. This process continues indefinitely unless a HALT instruction is

encountered.

I. Fetch the instruction

Initially, the program counter PC is loaded with the address of the first instruction in the

program and SC is cleared to 0, providing a decoded timing signal T0. After each clock

pulse, SC is incremented by one, so that the timing signals go through a sequence T0, T1, T2

and so on. Since the address lines of the memory unit are hardwired to AR, address of the

instruction to be fetched must first be placed in AR. Thus the first register transfer in an

instruction cycle should be transferring the content of PC (address of the instruction to be

brought in for execution) to AR

T0: AR ← PC

Bus selects PC, LD(AR) = 1. Next the current instruction is brought from memory into IR

and PC is incremented

T1: IR ← M[AR], PC ← PC + 1. Bus selects RAM, Memory read is set, LD(IR) = 1,

INR(PC) = 1

II. Decode the instruction

T2: D0, ... , D7 ← Decode IR(12-14), AR ← IR(0-11), I ← IR(15)

Therefore, micro-operations for the fetch and decode phases can be specified by the

following register transfer statements.

T0: AR ← PC

T1: IR ← M[AR], PC ← PC + 1

T2: D0, …, D7 ← Decode IR(12-14), AR ← IR(0-11), I ← IR(15)

5.8 Input-Output

A computer instruction can serve no useful purpose unless it communicates with the external

environment. Instructions and data stored in memory must come from some input device.

Computational results must be transmitted to the user through some output device.

Input-Output Configuration

The terminal sends and receives serial information. Each quantity of information has eight

bits of an alphanumeric code. The serial information from the keyboard is shifted into the

input register INPR. The serial information for the printer is stored in the output register

OUTR. These two register communicate with a communication interface serially and with the

AC in parallel.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 51

 Figure 5.5: Input-Output Configurations

The input register INPR consists of eight bits and holds alphanumeric input information. The

1-bit input flag FGI is a control flip-flop. The flag is needed to synchronize the timing rate

difference between the input devices and the computer. Initially, the input flag (FGI) is

cleared to 0. When a key is struck in the keyboard, an 8-bit alphanumeric code is shifted into

INPR and FGI is set to 1. The FGI is cleared to 0 when the information is accepted by the

computer.

 The output register OUTR works similarly but the direction of information flow is reversed.

Initially, FGO is set to 1. The computer checks the flag bit, if it is 1, the information from AC

is transferred in parallel to OUTR and FGO is cleared to 0. The output device accepts the

coded information, prints the corresponding character and when the operation is completed, it

sets FGO to 1.

5.9 Design of Basic Computer

The basic computer consists of the following hardware components;

 A memory unit with 4096 words of 16-bits each

 Nine registers: AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC

 Seven flip-flops: I, S, E, R, IEN, FGI, and FGO (to hold 1-bit of information)

 Two decoders: a 3x8 operation decoder and a 4x16 timing decoder

 A 16-bit common bus

 Control logic gates

 Adder and logic circuit connected to the input of AC.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 52

5.10 Design of accumulator logic

The adder and logic circuit has three sets of input. One set of 16 input comes from output of

AC another set of 16 input comes from the data register DR a third set of input eight input

comes from the input register INPR the output of the adder and logic circuit provides the data

input for the register, in addition, it is necessary to include logic gate controlling the

LD,INR and CLR in the register and for controlling the operation of the adder and logic

circuit.in order to design the logic associated with AC,it is necessary to go over the register

transfer statements

5.11. Central Processing Unit.

The part of the computer that performs the bulk of data processing operations is called the

Central processing unit and is referred to as the CPU. The CPU is made up of three major

parts The register set stores intermediate data used during the execution of the instructions.

The Arithmetic and Logic unit (ALU) performs the required micro-operations for executing

the instructions. The control unit supervises the transfer of information among the registers

and instructs the arithmetic and logic units as to which operation to perform. The CPU

performs a variety of functions dictated by the type of instructions that are incorporated in the

computer. Computer architecture is sometimes defined as the computer structure and

behavior as seen by the programmer that uses machine language instructions. This includes

the instruction formats, addressing modes, the instruction sets and the general organizations

of the CPU registers

COMPUTER ORGANIZATION AND ARCHITECTURE Page 53

 Figure5.6: major components of CPU

 5.12 General Register Organizations .

In the programming examples of the previous chapter, we have shown that memory locations

are needed for storing pointers, counters, return addresses, temporary results and partial

product during multiplication. Having to refer to memory locations for such applications is

time consuming because memory access is the most time consuming operation in a computer.

It is more convenient and more efficient to store these intermediate values in processor

register. When a large number of registers are included in the CPU, It is most efficient to

connect them through a common bus system. The registers communicate with each other not

only for direct data transfers, but also while performing various micro operations.

 A bus organization for 7-CPU registers is shown Figure 5-2. The output of each register is

connected to multiplexers (MUX) to form the two buses A and B. The selection lines in each

multiplexer select one register or the input data for the particular bus. The A and B busses

form the inputs to common arithmetic logic unit.

The operation selected in the ALU determines the arithmetic or Logic micro-operation that is

to be performed. The result of micro-operation is available for output data and also goes in to

the inputs of all the registers. The register that receives the information from the output bus is

selected by a decoder. The decoder activates one of the register load inputs, thus providing a

transfer path between the data in the output bus and the inputs of the selected destination

register.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 54

The control unit that operates the CPU bus system directs the information flow through the

register and ALU by selecting the various components in the system. For example, to perform

the operation

 R1 R2 + R3, the control must provide binary selection variables to the following selector

inputs:

 1. MUX A selector (SELA): to place the content of R2 into bus A.

 2. MUX selector (SELB): to place the content of R3 into bus B.

 3. ALU operation selector (OPR): to provide the arithmetic add A +B.

 4. Decoder destination selector (SELD): to transfer the content of output bus in to R1.

The four control selection variables are generated in the control unit and must be available at

the beginning of a clock cycle. The data from the two source registers propagates through the

gates in the multiplexers and the ALU, to the output bus, and into the inputs of the destination

register, all during the clock cycle interval. Then, when the next clock transition occurs, the

binary information from the output bus is transferred into R1. To achieve a fast response

time, the ALU is constructed with high speed circuits. The busses are implemented with

multiplexers or three state gates.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 55

5.13 Control Word

There are 14 binary selection inputs in the unit, and their combined value specifies a control

word. The 14-bit control word is illustrated in Figure 5-2 (b). It consists of four fields. Three

fields contain three bits each, and one field has five bits. The three bits SELA select a source

register for the A input of the ALU. The three bits of SELB select a register for the B input of

the ALU. The Three bits of SELD selects a destination register using the decoder and its

seven load outputs. The five bits of the OPR select one of the operations in the ALU. The 14-

bit control word when applied to the selection inputs specify a particular micro operation.

The encoding of the register selection is specified in the following Table.

 Table 5.3 Encoding of Register selection Fields

The 3-bit binary code listed in the first column of Table 5-1 specifies the binary code for each

of the three fields. The register selected by fields SELA, SELB, and SELD is the one whose

decimal number is equivalent to the binary number in the code. When SELA or SELB is 000,

the corresponding multiplexer selects the external input data. When SELD=000, no

destination register is selected but the contents of the output bus are available in the external

output.

The ALU provides arithmetic and logic operation. In addition, the CPU must provide shift

operations. The shifter may be placed in the input of the ALU to provide a pre-shift

capability, or at the output of the ALU to provide post-shifting capability. In some cases, the

shift operations are included with the ALU.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 56

A control word of 14-bits is needed to specify a micro-operation in the CPU. The control

word for a given micro-operation can be derived from the selection variables. For example,

the subtract micro operation given by the statement R ← R2 - R3 specifies R2 for the input A

of the ALU, R3 for the B inputs of the ALU, R1 for the destination register, and an ALU

operation to subtract A - B. Thus, the control word is specified by the four fields and the

corresponding binary value for each field is obtained from the encoding list in Table 5-1 and

Table 5-2. The binary control word for the subtraction micro operation is 010 011 001 00101

and is obtained as follows:

 Table 5.4 Examples of micro operation

The control word for this micro-operation and a few others are listed in Table 5-3. The

increment and transfer micro-operations do not use the B input of the ALU. For these cases,

the B field is marked with a dash.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 57

 Table 5.5 examples of micro operation for the cpu

5.14 Stack Organization.

A useful feature that is included in the CPU of most computers is a stack or last- in, first-out

(LIFO) list. A stack is a storage device that stores information in such a manner that the item

stored last is the first item retrieved. The stack in digital computers is essentially a memory

unit with an address register that can count only (after an initial value is loaded into it). The

register that holds the address for the stack is called a stack pointer (SP) because its value

always points at the top in the stack.

The two operations of a stack are the insertion and deletion of items. The operation of the

insertion is called PUSH (or push-down) because it can be thought of as the result of pushing

a new item on top. The operation of deletion is called POP (or pop-up) because it can be

thought as the result of removing one item so that the stack pops up. However, nothing is

pushed or popped in a computer stack. In computers, these operations are simulated by

incrementing or decrementing the stack pointer register.

5.14.1 Register Stack.

A stack can be placed in a portion of a large memory or it can be organized as a collection of

a finite number of memory words or registers. Figure 5-6 shows the organizations of a 64-

word register stack. The stack pointer register SP contains a binary number whose value is

equal to the address of the word that is currently on top of the stack. Three items are placed in

COMPUTER ORGANIZATION AND ARCHITECTURE Page 58

the stack: A, B and C in that order. Item C is on top of the stack so that the content of SP is

now 3. To remove the top item, the stack is popped by reading the memory word at address 3

and decrementing the content of SP. Item B is now on top of the stack since SP holds address

2. To insert a new item, the stack is pushed by incrementing SP and writing a word in the

next higher location in the stack. Note that item C has been read out but not physically

removed. This does not matter because when the stack is pushed, a new item is written in its

place.

 Figure 5.6 block diagram of 64 word stack

In a 64-word stack, the stack pointer contains 6-bits because 26 = 64. Since SP has only 6-

bits it cannot exceed a number greater than 63 (111111 in binary). When 63 is incremented

by 1, the result is 0 since 111111+ 1 = 1000000 in binary, but SP can accommodate only the

6 list significant bits. Similarly, when 000000 is decremented by 1, the result is 111111. The

1-bit register FULL is set to 1 when the stack is full, and the 1-bit register EMTY is set to 1

when the stack is empty of items. DR is the data register that holds the binary data to be

written in to or read out of the stack.

Initially, SP is cleared to 0, EMTY is set to 1 and FULL is cleared to 0, so that points to the

word at address 0 and the stack is marked empty and not full. If the stack is not full (if FULL

= 0), a new item is inserted with the PUSH operation. The PUSH operation is implemented

with the following sequence of micro-operations SP SP + 1 Increment stack pointer M[SP]

DR Write item on top of the stack If (SP = 0) then (FULL 1) Check if stack is full EMTY 0

Mark the stack not empty

COMPUTER ORGANIZATION AND ARCHITECTURE Page 59

The stack pointer is incremented so that it points to the address the next higher word. A

memory write operation inserts the word from DR in to the top of the stack. Note that SP

holds the address of the top of the stack and that M[SP] denotes the memory word specified

by the address presently available in SP. The first item stored in the stack is at address 1. The

last item is stored at address 0. If SP reaches 0, the stack is full of items, so FULL is set to 1.

This condition is reached if the top item prior to the last push was in location 63 and after

incrementing SP, the last item is stored in location 0. Once an item is stored in location 0,

there are no more empty registers in the stack. If an item is written in the stack, obviously the

stack cannot be empty, so EMTY is cleared to 0.

A new item is deleted from the stack if the stack is not empty (if EMTY = 0). The pop

operation consists of the following sequences of microoperations: DR M[SP] Read item

from the top of the stack SP SP - 1 Decrement stack pointer If (SP = 0) then (EMTY 1)

Check if stack is empty FULL 0 Mark the stack not full

The top item is read from the stack into DR. The stack pointer is then decremented. If its

value reaches 0, the stack is empty, so EMTY is set to 1. This condition is reached if the item

read was in location 1. Once this item is read out, SP is decremented and reaches the value of

0, which is the initial value of SP. Note that if a pop operation reads the

item from location 0 and then SP is decremented, SP changes to 111111, which is equivalent

to decimal 63. In this configuration the word in address 0 receives the last item in the stack.

Note also that an erroneous operation will result if the stack is pushed when FULL=1 or

popped when EMTY=1.

5.14.2 Memory Stack

A stack can exist as standalone unit or can be implemented in random access memory

attached to a CPU. The implementation of a stack in the CPU is done by assigning a portion

of memory to stack operation and using a processor register as a stack pointer. Figure 5-7

shows a portion of computer memory partitioned into three segments: Program, Data, and

Stack.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 60

The program counter PC points at the address of the next instruction in the program. The

address register ER points at an array of data. The stack pointer SP points at the top of the

stack. The three registers are connected to a common address bus, and either one can provide

an address for memory. PC is used during the fetch phase to read an instruction. AR is used

during the execute phase to read an operand. SP is used to push or POP items into or from the

stack.

 Figure5.7 computer memory

the initial value of SP is 4001 and the stack grows with decreasing addresses. Thus the first

item stored in the stack is at address 4000, the second item is stored at address 3999, and the

last address that can be used for the stack is 3000. No provisions are available for stack limit

checks. We assume that the items in the stack communicate with a data register DR. A new

item is inserted with the push operation as follows: SP ← SP - 1 M[SP] DR

The stack pointer is decremented so that it points at the address of the next word. A memory

write operation inserts the word from DR into the top of the stack. A new item is deleted with

the pop operation as follows:

DR M[SP] SP SP + 1

The top item is read from the stack into DR. The stack pointer is then incremented to point at

the next item in the stack.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 61

Most computers do not provide hardware to check for stack overflow (full stack) or

underflow (empty stack). The stack limits can be checked by using to processor registers: one

to hold the upper limit (3000 in our example), and the other to hold the lower limit (4001 in

the example). After a push operation, SP is compared with the upper limit register and after a

pop operation SP is compared with the lower limit register. The two micro-operations

needed for either the push or pop are: 1. An access to memory through SP and 2. Updating

SP.

5.15 Instruction Formats

A computer will usually have a variety of instruction code formats. The bits of the instruction

are divided into groups called Fields. The most common fields found in instruction formats

are: 1. An operation code field that specifies the operation to be performed 2. An address

field that designate a memory address or a processor register 3. A mode field that specifies

the way the operand or the effective address is determined

Computers may have instruction of several lengths containing varying number of addresses.

The number of address field in the instruction format of a computer depends on the internal

organization of its registers.

To illustrate the influence of the number of addresses on computer programs, we will

evaluate the arithmetic statement X = (A+B)*(C+D) using zero, one, two, or three address

instructions. We will use Most computers fall into one of three types CPU organizations. 1.

Single accumulator organization 2. General register organization 3. Stack organization

In an accumulator-type organization, all operations are performed with an implied

accumulator register. The instruction format in this type of computer uses one address field.

For example, the instruction that specifies an arithmetic addition is defined by an assembly

language:

COMPUTER ORGANIZATION AND ARCHITECTURE Page 62

ADD X, where X is the address of the operand.

 Which results AC ←AC + M[X]

AC is the accumulator register and M[X] symbolizes the memory word located at address X.

The instruction format in a computer with a general register organization type needs two or

three register address fields.

e.g ADD R1, R2, R3 R1←R2 + R3.

The number of address field in the instruction can be reduced from three to two if the

destination register is the same as one of the source register.

e.g ADD R1, R2 denotes R1←R1 + R2. Only register addresses for R1 and R2 need be

specified in this instruction.

e.g ADD R1, X denotes R1←R1 + M[x]. It has two address fields, one for register R1 and

the other for the memory address X.

Computers with multiple processor registers use the move instruction with a mnemonics

MOV to symbolize a transfer instruction.

e.g MOV R1, R2 denotes R1←R2 (or R2←R1) depending on the particular computer. Thus,

transfer-type instructions need two address fields to specify the source and the destination.

Computers with stack-organization would have PUSH and POP instructions which require an

address field.

e.g PUSH X will push the word at address X to the top of the stack.

Operation-type (e.g ADD) instructions do not need an address field in stack-organized

computers. This is because the operation is performed on the two items that are on top of the

stack.

symbols ADD, SUB, MUL and DIV for four arithmetic operations; and LOAD and STORE

for transfers to and from memory and AC register. We will assume that the operands are in

memory addresses A, B, C, and D, and the result must be stored in memory at address X.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 63

5.15.1 Three-address Instruction

Computers with three-address instruction formats can use each address field to specify either

a processor register or a memory operand.

The program in assembly language that evaluates X = (A+B) * (C+D) is shown below,

together with comments that explain the register transfer operation of each instruction.

ADD R1, A, B R1← M[A] + M[B]

 ADD R2, C, D R2← M[C] + M[D]

 MUL X, R1,R2 M[X] ←R1 * R2

It is assumed that the computer has two processor registers, R1 and R2. The symbol M[A]

denotes the operand at memory address symbolized by A. The advantage of three-address

format is that it results in short programs when evaluating arithmetic expressions. The

disadvantage is that the binary-coded instructions require too many bits to specify three

addresses.

5.15.2 Two- Address Register

Two-address instructions are the most common in commercial computers. Here again each

address field can specify either a processor register or a memory word.

The program to evaluate X = (A+B) *(C+D) is shown as follows:

 MOV R1, A R1 ←M[A] ADD R1, B R1 ←R1 + M[B] MOV R2, C R2 ←M[C]

ADD R2, D R2 ←R2 + M[D] MUL R1, R2 R1 ←R1 * R2 MOV X, R1 M[X]←R1

COMPUTER ORGANIZATION AND ARCHITECTURE Page 64

The MOV instruction moves or transfers the operands to and from memory and processor

registers.

5.15.3 One-Address Instruction

 One-address instructions use an implied accumulator (AC) register for all data

manipulations. For multiplication and division there is a need for a second register. However,

here we will neglect the second register and assume that the AC contains the result of all

operations. The

program to evaluate X= (A+B) *(C+D) is:

 LOAD A AC ←M[A] , ADD B AC ←AC + M[B] , STORE T M[T] ←AC,

 LOAD C AC ←M[C], ADD D AC ←AC + M[D],

 MUL T AC ←AC * M[T], STORE X M[X] ←AC

All operations are done between the AC register and a memory operand. T is the address of a

temporary memory location required for storing the intermediate result.

5.15.4 Zero-Address Instruction

A stack-organized computer does not use an address field for instructions ADD and MUL.

The PUSH and POP instructions, however, need an address field to specify the operand that

communicates with the stack. The following program shows how X = (A+B) * (C+D) will be

written for a stack-organized computer (TOS stands for top-of-stack)

PUSH A TOS← A, PUSH B TOS ←B, ADD TOS ←(A + B),

 PUSH C TOS ←C

PUSH D TOS ←D, ADD TOS ←(C + D) , MUL TOS ←(C + D) (A + B),

POP X M[X] ←TOS.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 65

5.16 Addressing Mode

The operation field of an instruction specifies the operation to be performed. This operation

must be executed on some data stored in computer registers or memory words. The way the

operands are chosen during program execution is dependent on the addressing mode of the

instruction. The addressing mode specifies a rule for interpreting or modifying the address

field of the instruction before the operand is actually referenced. Computers use addressing

mode techniques for the purpose of accommodating one or both of the following provisions.

1. To give programming versatility to the user by providing such facilities as pointers to

memory, counters for loop control, indexing of data and program relocation. 2. To reduce the

number of bits in the addressing field of the instruction

The availability of the addressing modes give the experienced assembly language

programmer flexibility for writing programs that are more efficient with respect to the

number of instructions and execution time.

To understand the various addressing mode to be presented in this section, it is important that

we understand the basic operation cycle of the computer.

 The control unit of a computer is designed to go through an instruction cycle that is divided

into three major phases. 1. Fetch the instruction from memory 2. Decode the instruction 3.

Execute the instruction

There is one register in the computer called the program counter (PC) that keeps track of the

instructions in the program stored in memory. PC holds the address of the instruction to be

executed next and incremented each time an instruction is fetched from memory. The

decoding done in step 2, determines the operation to be performed, the addressing mode of

the instruction, and the location of the operand.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 66

5.16.1 Direct and Indirect Addressing Modes

It is sometimes convenient to use the address bits of an instruction code not as an address but

as an actual operand. When the second part of an instruction code specifies an operand, the

instruction is said to have an immediate operand.

When the second part specifies the address of an operand, the instruction is said to have

direct address. This is in contrast to a third possibility called indirect address, where the

bits in the second part of the instruction designate an address of memory word in which the

address of the operand is found.

 Figure 5.8: Direct and indirect addressing modes

Implied Mode: In this mode the operands are specified implicitly in the definition of the

instruction. For example, the instruction “complement accumulator” is an implied mode

instruction because the operand in the accumulator register is implied in the definition of the

instruction. In fact, all register reference instructions that use an accumulator are implied

mode instructions. Zero-address instructions in stack organized are implied mode instructions

since the operands are implied to be on top of the stack.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 67

Immediate Mode: In this mode the operand is specified in the instruction itself. In other

words, an immediate mode instruction has an operand field rather than an address field. The

operand field contains the actual operand to be used in conjunction with the operation

specified in the instruction. Immediate mode instructions are useful for initializing registers

to a constant value.

When the address field specifies a processor register, the instruction is said to be in the

register mode.

Register Mode: In this mode the operands are in registers that reside within the CPU. The

particular register is selected from a register field in the instruction. A k-bit field can specify

any of the 2k registers.

Register Indirect Mode: In this mode the instruction specifies a register in the CPU whose

contents give the address of the operand in memory. In other words, the selected register

contains the address of the operand rather than the operand itself. Before using a register

indirect mode instruction, the programmer must ensure that the memory address of the

operand is placed in the processor register with a previous instruction. A reference to the

register is then equivalent to specifying a memory address. The advantage of the register

indirect mode instruction is that the address field of the instruction uses fewer bits to select a

register than would have been required to specify a memory address directly.

Autoincrement and Autodecrement Mode: This is similar to the register indirect mode

except that the register is incremented or decremented after (or before) its value is used to

access memory. When the address stored in the register refers to a table of a data in memory,

it is necessary to increment or decrement the register after every access to the table. The

address field of an instruction is used by the control unit in CPU to obtain the operand from

memory.

Direct Addressing Mode: In this mode the effective address is equal to the address part of

the instruction. The operand resides in memory and its address is given directly by the

address field of the instruction. In a branch type of instruction the address field specifies the

actual branch address.

Indirect Addressing Mode: In this mode the address field of the instruction gives the

address where the effective address is stored in memory. Control fetches the instruction from

memory and uses its address part to access memory again to read the effective address.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 68

Relative Addressing mode: In this mode the content of program counter is added to the

address part of the instruction in order to obtain the effective address. The address part of the

instruction is usually a signed number (in 2’s complement representation) which can be either

negative or positive.

5.17 Data Transfer and Manipulation.

Computers provide an extensive set of instruction to give the user the flexibility to carry out

various computational tasks. The instruction set of different computers differ from each other

mostly in the way the operands are determined from the address and mode fields. The actual

operations available in the instruction set are not very different from one computer to another.

It so happens that the binary code assignments in the operation code field is different in

different computers, even for the same operation. It may also happen that the

symbolic name given to instructions in the assembly language notation is different in

different computers, even for the same instruction. Most computer instructions can be

classified in to three categories.

 1. Data transfer instruction.

2. Data manipulation instruction

 3. Program control instruction

Data transfer instruction.

 Data transfer instructions move data from place to place in the computer to another without

changing the data content. The most common transfers are between memory and processor

registers, between processor register and input or output, and between the processor registers

themselves. Table 5-5 gives lists of eight data transfer instructions used in many computers.

Accompanying each instruction is mnemonic symbol.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 69

 Table 5.6 Lists of data transfer Instruction

Data Manipulation

 Data manipulation instructions perform operations on data and provide the computational

capabilities for the computer. The data manipulation instructions in a typical computer are

usually divided into three basic types.

1. Arithmetic instruction

 2. Logical and bit manipulation

 3. Shift instruction

a. Arithmetic Instruction

The four basic arithmetic operations are addition, subtraction, multiplication and division.

Most computers provide instructions for all four operations. Some small computers have only

addition and possibly subtraction instructions. The multiplication and division must then be

generated by means of software subroutines.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 70

The four basic arithmetic operations are sufficient for formulating solution to scientific problems.

when expressed in terms of numeri analysis methods.

 Table 5.7 Basic Arithmetic operations

b. Logical and Bit manipulation Instructions

Logical instructions perform binary operations on strings of bits stored in registers. They are

useful for manipulating individual bits or a group of bits that represent binary–coded

information. The logical instructions consider each bit of the operands separately and treat it

as a Boolean variable. By proper application of the logical instructions it is possible to change

bit values, to clear a group of bits or to insert new bit values into the operands stored in

registers or memory words. Some logical and bit manipulation instructions are listed in Table

5-8 as follows.

 Table 5-8 Some logical and bit manipulation instructions

COMPUTER ORGANIZATION AND ARCHITECTURE Page 71

c. Shift Instruction

 Instructions to shift the content of an operand are quite useful and are often provided in

several variations. Shifts are operations in which the bits of a word are moved to the left or

right. The bit shifted in at the end of the word determines the type of shift used. Shift

instructions may specify either logical shifts, arithmetic shifts, or rotate type operations. In

either case the shift may be to the right or to the left.

 Table 5.9 Lists of shift operation

5.18 Reduced Instruction Set computer (RISC).

An important aspect of computer architecture is the design of the instruction set for the

processor. The instruction set chosen for a particular computer determines the way that

machine language programs are constructed. Early computers had small and simple

instruction sets, forced mainly by the need to minimize the hardware to implement them. As

digital hardware became cheaper with the advent of integrated circuits, computer instructions

tended to increase both in number and complexity. Many computers have instruction sets that

include more than 100 and sometimes even more than 200 instructions. These computers also

employ a variety of data types and a large number of addressing modes. A computer with a

large number of instructions is classified as a complex instruction set computer, abbreviated

as CISC. In the early 1980s, a number of computer designers recommended that computers

use fewer instructions with simple constructs so they can be executed much faster within the

CPU without having to use memory as often. This type of computer is classified as a

Reduced Instruction Set Computer (RISC).

COMPUTER ORGANIZATION AND ARCHITECTURE Page 72

RISC characteristics

 • Relatively few instructions

• Relatively few addressing modes

 • Memory access limited to load and store instructions

 • All operations done within the register of the CPU

 • Fixed length, easily decoded instruction format

 • Single cycle instruction execution

 • Hard-wired rather than micro-programmed control

 • A relatively large number of registers in the processor

 • Use overlapped register windows to speed up procedure call and return

 • Efficient instruction pipeline

 • Compiler support for efficient transmission high-level language programs into machine

language programs

COMPUTER ORGANIZATION AND ARCHITECTURE Page 73

5.19 CISC Instruction:

 CISC refers to Complex Instruction Set Computer

CISC characteristic

• Large number of instructions – typically from 100 to 250 instructions

• Some instructions that perform specialized tasks and are used infrequently

• A large variety of addressing modes – typically from 5 to 20 different modes

 • Variable length instruction formats

 • Instructions that manipulate operands in memory RISC characteristics

COMPUTER ORGANIZATION AND ARCHITECTURE Page 74

Chapter 6: Memory Organization

6.1 Memory Hierarchy:

A computer system is equipped with a hierarchy of memory subsystems. There are several

memory types with very different physical properties. The important characteristics of

memory devices are cost per bit, access time, data transfer rate, alterability and compatibility

with processor technologies. Figure shows the hierarchy of memory in a typical memory

with a trend in access time, amount of storage, and cost per byte.

 Figure 6.1 memory hierarchy

 Design constraints: How much? How fast? How expensive?

 Faster access time, greater cost per bit

 Greater capacity, smaller cost per bit,

 Greater capacity, slower access time.

6.2 Main Memory

The main memory (RAM) stores data and instructions. the capacity of the memory is 128

words of 8 bits (one byte) per word.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 75

 Figure 6.2 Block diagram of RAM

 RAMs are built from semiconductor materials. Semiconductor memories fall into two

categories, SRAMs (static RAMs) and DRAMs (dynamic RAMs).

DYNAMIC RAM (DRAM)

 is made with cells that store data as charge on capacitors. The presence or absence of charge

in a capacitor is interpreted as a binary 1 or 0. Because capacitors have a natural tendency to

discharge, DRAMs require periodic charge refreshing to maintain data storage.

STATIC RAM (SRAM)

In a SRAM, binary values are stored using traditional flip-flop logic-gate. A static RAM will

hold its data as long as power is supplied to it. Static RAM’s are faster than dynamic RAM’s.

Dynamic Verses Static RAM

 Dynamic RAM:

 It requires periodic refreshing.

 Each cell stores bit with a capacitor and transistor.

 Large storage capacity

 Needs to be refreshed frequently.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 76

 Used to create main memory.

 Slower and cheaper than SRAM.

 is simpler and hence smaller than the static RAM.

 it is denser and less expensive.

 Static RAM:

 a bit of data is stored using the state of a flip-flop.

 Applying power is enough (no need for refreshing).

 Retains value indefinitely, as long as it is kept powered.

 Mostly uses to create cache memory of CPU

 Faster and more expensive than DRAM.

ROM

 ROM is used for storing programs that are permanently resident in the computer and for

tables of constants that do not change in value once the production of the computer is

completed The ROM portion of main memory is needed for storing an initial program

called bootstrap loader, which is to start the computer software operating when power is

turned on.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 77

 Figure 6.3 Block diagram of ROM

Types of ROM

ROM: The data is actually wired in the factory. The data can never be altered.

PROM: Programmable ROM. It can only be programmed once after its fabrication. It

requires special device to program.

EPROM: Erasable Programmable ROM. It can be programmed multiple times. Whole

capacity need to be erased by ultraviolet radiation before a new programming activity. It

cannot be partially programmed.

EEPROM: Electrically Erasable Programmable ROM. Erased and programmed electrically.

It can be partially programmed. Write operation takes considerably longer time compared to

read operation

6.2.1 Connection of RAM and CPU

Data transfer between the main memory and the CPU register takes place through two

registers namely MAR (memory address register) and MDR (memory data register). If MAR

is k bits long and MDR is n bits long, the main memory unit can contain up to 2k addressable

locations.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 78

During a “memory cycle‟ n bits of data are transferred between main memory and CPU.

This transfer takes place over the processor bus, which has k address lines and n data lines.

The CPU initiates a memory operation by loading the appropriate data into registers MDR

and MAR, and setting either Read or Write memory control line to 1. When the required

operation is completed the memory control circuitry sends Memory Function Completed

(MFC) signal to CPU.

Memory Address Map is a pictorial representation of assigned address space for each chip in

the system.

 Figure 6.4 Connection of RAM to CPU

The time that elapses between the initiation of an operation and completion of that operation

is called memory access time. The minimum time delay between two successive memory

operations is called memory cycle time. The cycle time is usually slightly lower than the

access time.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 79

6.3 Cache Memory

 Cache memory is a small, high-speed RAM buffer located between the CPU and main

memory.

 Cache memory holds a copy of the instructions (instruction cache) or data (operand or data

cache) currently being used by the CPU.

 The main purpose of a cache is to accelerate your computer while keeping the price of the

computer low.

• The cache is the fastest component in the memory hierarchy and approaches the speed of

CPU component

• When CPU needs to access memory, the cache is examined

 • If the word is found in the cache, it is read from the fast memory

 • If the word addressed by the CPU is not found in the cache, the main memory is accessed

to read the word

• When the CPU refers to memory and finds the word in cache, it is said to produce a hit

• Otherwise, it is a miss

COMPUTER ORGANIZATION AND ARCHITECTURE Page 80

• The performance of cache memory is frequently measured in terms of a quantity called hit

ratio

 Hit ratio = hit / (hit+miss)

• The basic characteristic of cache memory is its fast access time

 • Therefore, very little or no time must be wasted when searching the words in the cache

 • The transformation of data from main memory to cache memory is referred to as a mapping

process.

6.3.1 Placement of Cache memory in the computer

Types of Cache Mapping

 1. Direct Mapping

2. Associative Mapping

3. Set Associative Mapping

COMPUTER ORGANIZATION AND ARCHITECTURE Page 81

Direct Mapping

 The direct mapping technique is simple and inexpensive to implement. In general case, there

are 2^k words in cache memory and 2^n words in main memory (in our case, k=9, n=15)

 The n bit memory address is divided into two fields: k-bits for the index and n-k bits for the

tag field

When the CPU wants to access data from memory, it places an address. The index field of

CPU address is used to access address.

 The tag field of CPU address is compared with the associated tag in the word read from

the cache.

If the tag-bits of CPU address is matched with the tag-bits of cache, then there is a hit and

the required data word is read from cache.

 If there is no match, then there is a miss and the required data word is stored in main

memory. It is then transferred from main memory to cache memory with the new tag.

Addressing relationships between main and cache memories

COMPUTER ORGANIZATION AND ARCHITECTURE Page 82

Associative Mapping

 An associative mapping uses an associative memory.

 This memory is being accessed using its contents.

 Associative memory is expensive compared to RAM

 Each line of cache memory will accommodate the address (main memory) and the

contents of that address from the main memory.

 That is why this memory is also called Content Addressable Memory (CAM). It

allows each block of main memory to be stored in the cache.

A CPU address of 15 bits is places in the argument register and the associative memory us

searched for a matching address

 • If the address is found, the corresponding 12bits data is read and sent to the CPU

• If not, the main memory is accessed for the word

If the cache is full, an address-data pair must be displaced to make room for a pair that is

needed and not presently in the cache

COMPUTER ORGANIZATION AND ARCHITECTURE Page 83

Set Associative Mapping

 That is the easy control of the direct mapping cache and the more flexible mapping of the

fully associative cache.

 In set associative mapping, each cache location can have more than one pair of tag + data

items.

 That is more than one pair of tag and data are residing at the same location of cache memory.

If one cache location is holding two pair of tag + data items, that is called 2-way set

associative mapping.

The disadvantage of direct mapping is that two words with the same index in their address

but with different tag values cannot reside in cache memory at the same time

 Set-Associative Mapping is an improvement over the direct-mapping in that each word of

cache can store two or more word of memory under the same index address

6.3.2 Replacement Algorithms of Cache Memory

Replacement algorithms are used when there are no available space in a cache in which to

place a data. Four of the most common cache replacement algorithms are described below:

Least Recently Used (LRU):

 The LRU algorithm selects for replacement the item that has been least recently used by the

CPU.

First-In-First-Out (FIFO):

 The FIFO algorithm selects for replacement the item that has been in the cache from the

longest time.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 84

Least Frequently Used (LRU):

 The LRU algorithm selects for replacement the item that has been least frequently used by

the CPU.

Random:

 The random algorithm selects for replacement the item randomly.

6.3.3 Writing into Cache

 When memory write operations are performed, CPU first writes into the cache memory.

These modifications made by CPU during a write operations, on the data saved in cache;

need to be written back to main memory or to auxiliary memory.

 These two popular cache write policies (schemes) are: Write-Through and Write-Back.

Write-Through

 In a write through cache, the main memory is updated each time the CPU writes into cache.

 The advantage of the write-through cache is that the main memory always contains the same

data as the cache contains.

 This characteristic is desirable in a system which uses direct memory access scheme of data

transfer. The I/O devices communicating through DMA receive the most recent data.

Write-Back

 In a write back scheme, only the cache memory is updated. During the updating, locations in

the cache memory are marked by a flag so that later on, when the word is removed from the

cache, it is copied into the main memory.

 The words are removed from the cache time to time to make room for a new block of words.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 85

Virtual Memory

 The term virtual memory refers to something which appears to be present but actually it is

not.

 The virtual memory technique allows users to use more memory for a program than the real

memory of a computer.

 So, virtual memory is the concept that gives the illusion to the user that they will have main

memory equal to the capacity of secondary storage media.

Concept of Virtual Memory

 A programmer can write a program which requires more memory space than the capacity of

the main memory. Such a program is executed by virtual memory technique.

 The program is stored in the secondary memory. The memory management unit (MMU)

transfers the currently needed part of the program from the secondary memory to the main

memory for execution.

 This to and fro movement of instructions and data (parts of a program) between the main

memory and the secondary memory is called Swapping.

Address Space And Memory Space.

 Virtual address is the address used by the programmer and the set of such addresses is called

the address space or virtual memory.

 An address in main memory is called a location or physical address. The set of such

locations in main memory is called the memory space or physical memory.

 CPU generated logical address consisting of a logical page number plus the location within

that page (x).

COMPUTER ORGANIZATION AND ARCHITECTURE Page 86

It must be mapped onto an actual (physical) main memory address by the operating system

using mapper.

 If the page is present in the main memory, CPU gets the required data from the main

memory.

If the mapper detects that the requested page is not present in main memory, a page fault

occurs and the page must be read from secondary storage into a page frame in main memory.

6.4 Secondary memory

Devises that provides backup storage are called an Auxiliary memory (Secondary memory)

 It stores information that is not necessarily in current use.

 It is slower and having higher capacity than primary memory.

 This kind of memory is large, slow and inexpensive.

 It is non-volatile storage media i.e. the contents are not erased when the power is

switched off.

 Magnetic disk, Magnetic tape and optical disk are the examples of secondary storage.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 87

6.4.1 Magnetic Disk

 Magnetic disks are the foundation of external memory on virtually all computer

systems.

 A disk is a circular platter constructed of nonmagnetic material called the substrate

coated with a magnetisable material.

 More suitable than magnetic tapes for a wider range of applications such as

supporting direct access of data

 It is a thin, circular plate made of metal & plastic, which is coated with iron-oxide.

 We can randomly access the data.

 They must be stored in dust free environment.

 It stores large amount of data.

 The magnetic disks come in different sizes.

 Due to large storage capacity of magnetic disks and lesser failures the use of these

devices increasing day by day.

 Due to their low cost and high data recording densities, the cost per bit of storage is

low for magnetic disks.

 An additional cost benefit is that magnetic disks can be erased and reused many times

 Suitable for both on-line and off-line storage of data

 Data transfer rate for a magnetic disk system is normally higher than a magnetic tape

system.

There are two types of Magnetic Disks:

 FLOPPY DISK

 HARD DISK

COMPUTER ORGANIZATION AND ARCHITECTURE Page 88

a. Floppy disks are:

 Very large amount of data can be stored in a small storage space.

 It is a portable, inexpensive storage medium that consists of thin, circular, flexible

plastic Mylar film.

 It was introduced by IBM in 1972.

 Standard floppy disk has storage capacity up to 1.44MB.

 Floppy disks are compact, lightweight and easily portable from one place to another.

 Most popular secondary storage medium used in small computers.

 Also known as floppies or diskettes

 Types of Floppy disks:

5¼-inch diskette, whose diameter is 5¼-inch. It is encased in a square, flexible vinyl jacket.

 3½-inch diskette, whose diameter is 3½-inch. It is encased in a square, hard plastic jacket.

 Advantages

 Reusable, portable, Handy.

 Very low price

 Provide random access of data

 Disadvantages

 Not Durable and Prone to damage

 Very low Capacities

COMPUTER ORGANIZATION AND ARCHITECTURE Page 89

b. Hard Disk

 Round, flat piece of rigid metal (frequently aluminium) disks coated with magnetic

oxide.

 It is a storage device that contains one or more inflexible, circular patterns that store

data, instructions & information.

 We can store documents, presentation, database, e-mails, messages, music, video,

software etc.

 Come in many sizes, ranging from 1 to 14-inch diameter.

 Hard disk of capacities 10GB, 20GB, 40GB and even more are easily available.

 RAID (Redundant Array of Independent Disks)

To achieve greater performance and higher availability, servers and larger systems use RAID

disk technology.

 RAID is a family of techniques for using multiple disks as a parallel array of data storage

devices, with redundancy built in to compensate for disk failure.

 RAID is a set of physical disk drives viewed by the operating system as a single

logical drive.

 Data are distributed across the physical drives of an array.

 Redundant disk capacity is used to store parity information, which guarantees data

recoverability in case of a disk failure.

 the RAID array creates significant performance and reliability gains.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 90

4.2 Optical Disk

 Is a Laser beam technology for recording and reading of data on the disk.Laser beam

technology is used for recording/reading of data on the disk. Also known as laser disk

/ optical laser disk, due to the use of laser beam technology. Proved to be a promising

random access medium for high capacity secondary storage because it can store

extremely large amounts of data in a limited space.

 Access times for optical disks are typically in the range of 100 to 300 milliseconds

and that of hard disks are in the range of 10 to 30 milliseconds.

 The most popular optical disk uses a disk of 5.25 inch diameter with storage capacity

of around 650 Megabytes.

 The optical disk became the preferred medium for music, movies and software programs

because, its

 Compact

 lightweight

 durable and digital

 the optical disk also provides a minimum of 650 MB of data storage.

Advantage of Optical Disk

 The cost-per-bit of storage for optical disks is very low because of their low cost and

enormous storage density.

 Optical disk drives do not have any mechanical read/write heads to rub against or

crash into the disk surface. This makes optical disks a more reliable storage medium

than magnetic tapes or magnetic disks.

 Optical disks have a data storage life in excess of 30 years. This makes them a better storage

medium for data archiving as compared to magnetic tapes or magnetic disks.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 91

Limitation of Optical disk

 Data once recorded, cannot be erased and hence the optical disks cannot be reused.

 The data access speed for optical disks is slower than magnetic disks.

 Optical disks require a complicated drive mechanism.

Optical Disk Types:

Compact Disk(CD):

Is A non-erasable disk that stores digitized audio information. The standard system uses 12-

cm disks and can record more than 60 minutes of uninterrupted playing time.

Compact Disk Read-Only Memory (CD-ROM):

 A non-erasable disk used for storing computer data. The standard system uses 12-cm disks

and can hold more than 650 Mbytes.

Recordable CD (CD-R):

 The user can write to the disk only once.

CD-RW:

 The user can erase and rewrite to the disk multiple times.

Digital Versatile Disk (DVD):

 A technology for producing digitized, compressed representation of video information, as

well as large volumes of other digital data

COMPUTER ORGANIZATION AND ARCHITECTURE Page 92

DVD Rewritable (DVD-R)

the user can write to the disk only once. Only one-sided disks can be used.

DVD Rewritable (DVD-RW):

The user can erase and rewrite to the disk multiple times. Only one-sided disks can be used.

 The Blu-ray Disc: is a technology plat form that can store sound and video while

maintaining high quality and also access the stored content in an easy way to-use.

 Advantage of Blu-ray Disc are:.

 Large recording capacity up to 27 GB.

 High-speed data transfer rate 36 Mbps.

 Easy to use disc cartridge.

Both the Compact Disk CD and the CD-ROM (compact disk read-only memory) share a

similar technology. The main difference is that CD-ROM players are more rugged and

have error correction devices to ensure that data are properly transferred from disk to

computer.

• The optical disk is removable, allowing the disk itself to be used for archival storage. Most

magnetic disks are no removable.

Disadvantages of CD-ROM are as follows:

 • It is read-only and cannot be updated.

 • It has an access time much longer than that of a magnetic disk drive, as much as

half a second.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 93

 The CD-RW has the obvious advantage over CD-ROM and CD-R that it can be rewritten and

thus used as a true secondary storage.

 A key advantage of the optical disk is that the engineering tolerances for optical disks are

much less severe than for high-capacity magnetic disks.Thus, they exhibit higher reliability

and longer life,as much as a CD-ROM

6.4.2 Magnetic Tape

 Magnetic Tape is a plastic ribbon which is usually ½ inch or ¼ inch wide & 50 to

2400 feet long.

 It is coated with iron-oxide material.

 It is similar to the tape of audio cassettes of tape recorders. Data is stored as binary

digits.

 Data is accessed sequentially so searching becomes difficult.

 Tape systems use the same reading and recording techniques as disk systems..

 Magnetic tape was the first kind of secondary memory.It is still widely used as the

lowest-cost, slowest-speed member of the memory hierarchy.

Advantages:

 Store data up to few gigabytes and Low cost

 Magnetic tape used by both mainframes and microcomputers

 Disadvantages:

 Sequential access so searching becomes difficult.

 We can either read or write data at one time

COMPUTER ORGANIZATION AND ARCHITECTURE Page 94

Chapter 7: Input / Output Organization

7.1 Peripheral (External) Devices

Input or output devices attached to the computer are called peripherals. Among the most

known peripherals some of them are, keyboard display unit and printers.

 Video monitors are the most commonly used peripheral. They consists keyboard as the input

device and display unit as an output devices.

The input and output organization of a computer is a function of a size of computer and

devices connected to it.

The difference between a small and large system is mostly depends on the amount of

hardware the computer has available for communicating with peripheral unit and the number

of peripheral connected to the system.

The input/output subsystem of a computer, referred to as I/O, provides an efficient mode of

communication between the central system and the outside environment. Programs and data

must be entered into computer memory for processing and results obtained from

computations must be recorded or displayed for users. A computer serves no useful purpose

without the ability to receive information from an outside source and to transmit results in a

meaningful form. I/O operations are accomplished through a wide assortment of external

devices that provide a means of exchanging data between the external environment and the

computer. An external device attaches to the computer by a link to an I/O module. The link is

used to exchange control, status, and data between the I/O module and the external device.

An external device connected to an I/O module also called Interface is often referred to as a

peripheral device or simply a peripheral.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 95

7.2 Input output Interfaces

Input output Interfaces provides method for transferring information between internal storage

and external IO devices

Peripheral connected to the computer needs special communication link for interacting them

with the central processing unit. The purpose of communication link is to resolve the

difference exist between the central computer and each peripheral. These components are

called peripheral units.

7.3 Classification of External devices

External devices broadly can be classified into three categories:

 Human readable: suitable for communicating with the computer user. Examples: Screen,

keyboard, video display terminals (VDT) and printers.

 Machine readable: suitable for communicating with equipment. Examples: magnetic disk &

tapes systems, Monitoring and control, sensors and actuators which are used in robotics.

 Communication: These devices allow a computer to exchange data with remote devices,

which may be machine readable or human readable. Examples: Modem, Network Interface

Card (NIC)

COMPUTER ORGANIZATION AND ARCHITECTURE Page 96

Asynchronous data transfer

The internal operation in digital system is synchronized by means of clock pulse supplied by

a common pulse generator. Two units such as cpu and an I/O are designed independently of

each other, if the register in the interface share a common clock with the cpu registers, the

transfer between the two units is called to be synchronous.in most case the internal timing in

each unit is independent from the other in that each uses its own private clock for internal

register.in such cases the two units are said to be asynchronous to each other. This approach

is widely used in most computers systems.

7.4 Input/output Problems

Wide variety of peripherals and delivering different amounts of data per second Work at

different speeds Send/receive data in different formats all slower than CPU and RAM. Hence

I/O modules are used as a solution.

 Input/output Module: It is the entity within a computer that is responsible for the control

of one or more external devices and for the exchange of data between those devices and main

memory and/or CPU.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 97

I/O Module Function The major functions or requirements for an I/O module fall into the

following five categories.

 Control & Timing

 CPU Communication

 Device Communication

 Data Buffering and

 Error Detection

 During any period of time, the CPU may communicate with one or more external devices

in unpredictable patterns on the program’s need for I/O. The internal resources, main

memory and the CPU must be shared among number of activities including handling data

I/O. Thus the I/O device includes a control and timing requirement to coordinate the flow

of traffic between internal resources and external devices to the CPU. Thus CPU might

involve in sequence of operations like:

 CPU checks I/O module device status

 I/O module returns device status

 If ready, CPU requests data transfer

 I/O module gets data from device

 I/O module transfers data to CPU

I/O module must have the capability to engage in communication with the CPU and external

device. Thus CPU communication involves

Command decoding: The I/O module accepts commands from the CPU carried on the

control bus.

Data: data are exchanged between the CPU and the I/O module over data bus

COMPUTER ORGANIZATION AND ARCHITECTURE Page 98

Status reporting:. I/O module can report with the status signals.common used status signals

are BUSY or READY. Various other status signals may be used to report various error

conditions.

Address recognition:

 just as each memory word has an address, there is address associated with every I/O device.

Thus I/O module must be recognized with a unique address for each peripheral it controls.

The I/O module must also be able to perform device communication. This communication

involves commands,status information, and data. Some of the essentials tasks are listed

below:

 Error detection: I/O module is often responsible for error detection and subsequently

reporting errors to the CPU.

 Data buffering: the transfer rate into and out of main memory or CPU is quite high, and

the rate is much lower for most of the peripherals. The data is buffered in the I/O module

and then sent to the peripheral device at its rate.

7.5 Input / Output Techniques (Data transfer mode) :

Three techniques are possible for I/O operations or data transfer mode. They are:

 Programmed I/O

 Interrupt driven

 Direct Memory Access (DMA)

COMPUTER ORGANIZATION AND ARCHITECTURE Page 99

Programmed I/O :With Programmed I/O, data are exchanged between the CPU and

the I/O module. The CPU executes a program that gives it direct control of the I/O

operation, including sensing device status, sending a read or write command and

transferring data. When CPU issues a command to I/O module, it must wait until I/O

operation is complete. If the CPU is faster than I/O module, there is wastage of CPU

time. The I/O module does not take any further action to alert CPU. That is it doesn’t

interrupt CPU. Hence it is the responsibility of the CPU to periodically check the

status of the I/O module until it finds that the operation is complete. The sequences of

actions that take place with programmed I/O are:

 CPU requests I/O operation

 I/O module performs operation

 I/O module sets status bits

 CPU checks status bits periodically

 I/O module does not inform CPU directly

 I/O module does not interrupt CPU

7.6 I/O commands

 To execute an I/O related instruction, the CPU issues an address, specifying the particular

I/O module and external device and an I/O command. Four types of I/O commands can

be received by the I/O module when it is addressed by the CPU. They are

 A control command: is used to activate a peripheral and tell what to do. Example: a

magnetic tape may be directed to rewind or move forward a record.

 A test command: is used to test various status conditions associated with an I/O

module and its peripherals. The CPU wants to know the interested peripheral for use.

It also wants to know the most recent I/O operation is completed and if any errors

have occurred.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 100

 A read command: it causes the I/O module to obtain an item of data from the

peripheral and place it in an internal buffer. The CPU then gets the data items by

requesting I/O module to place it on the data bus.

 A write command: it causes the I/O module to take an item of data from the data bus

and subsequently transmit the data item to the peripheral.

 7.8 I/O Mapping

 When the CPU, main memory, and I/O module share a common bus two modes of

addressing are possible.

 Memory mapped I/O

 Devices and memory share an address space

 I/O looks just like memory read/write

 No special commands for I/O

 Large selection of memory access commands available

 Isolated I/O

 Separate address spaces

 Need I/O or memory select lines

 Special commands for I/O and Limited set

COMPUTER ORGANIZATION AND ARCHITECTURE Page 101

7.9 Priority interrupt

Data transfer between CPU and I/O device is initiated by the CPU.how ever the CPU cannot

start the transfer unless the device is ready to communicate with the cpu.

A priority interrupt is a system that establish a priority over various sources to determine

which condition is to be serviced first when two or more requests arrives simultaneously.

When two devices interrupt the computer at the same time,the computer services the devices

with the higher priority first.

Interrupt Driven I/O.

 Using Program-controlled I/O requires continuous involvement of the processor in the I/O

activities. It is desirable to avoid wasting processor execution time. An alternative is for the

CPU to issue an I/O command to a module and then go on other work. The I/O module will

then interrupt the CPU requesting service when it is ready to exchange data with the CPU.

The CPU will then execute the data transfer and then resumes its former processing. Based on

the use of interrupts, this technique improves the utilization of the processor. With Interrupt

driven I/O, the CPU issues a command to I/O module and it does not wait until I/O operation

is complete but instead continues to execute other instructions. When I/O module has

completed its work it interrupts the CPU. An interrupt is more than a simple mechanism for

coordinating I/O transfers. In a general sense, interrupts enable transfer of control from one

program to another to be initiated by an event that is external to a computer. Execution of the

interrupted program resumes after completion of execution of the interrupt service routine.

The concept of interrupts is useful in operating systems and in many control applications

where processing of certain routines has to be accurately timed relative to the external events.

Using Interrupt Driven I/O technique CPU issues read command.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 102

I/O module gets data from peripheral while CPU does other work and I/O module interrupts

CPU checks the status if no error that is the device is ready then CPU requests data and I/O

module transfers data. Thus CPU reads the data and stores it in the main memory. Basic

concepts of an Interrupt

An interrupt is an exception condition in a computer system caused by an event external to

the CPU. Interrupts are commonly used in I/O operations by a device interface (or controller)

to notify the CPU that it has completed an I/O operation. An interrupt is indicated by a signal

sent by the device interface to the CPU via an interrupt request line (on an external bus).

7.10 Direct Memory Access (DMA)

Interrupt driven and programmed I/O require active CPU intervention.

 Transfer rate is limited

 CPU is tied up DMA is the solution for these problems

 Direct Memory Access is capabilities provided by some computer bus architectures that

allow data to be sent directly from an attached device (such as a disk drive) to the memory on

the computer’s motherboard. The microprocessor (CPU) is freed from involvement with the

data transfer, thus speeding up overall computer operation.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 103

When the CPU wishes to read or write a block of data, it issues a command to the DMA

module and gives following information: CPU tells DMA controller:

 Whether to read or write

 Device address

 Starting address of memory block for data

 Amount of data to be transferred The CPU carries on with other work.

 Thus DMA controller steals the CPU‟s work of I/O operation.

 The DMA module transfers the entire block of data

 One word at a time, directly to or from memory, without going through CPU.

When the transfer is complete, DMA controller sends interrupt when finished Thus CPU

is involved only at the beginning and at the end of the transfer.

DMA Configurations

The DMA mechanism can be configured in variety of ways. Some of the common

configurations are discussed here.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 104

Single Bus Detached DMA

 In this configuration all modules share the same system bus. The DMA module that is

mimicking the CPU uses the programmed I/O to exchange the data between the memory and

the I/O module through the DMA module. This scheme may be inexpensive but is clearly

inefficient. The features of this configuration are:

 Single Bus, Detached DMA controller

 Each transfer uses bus twice

 I/O to DMA then DMA to memory

 CPU is suspended twice

Single Bus, integrated DMA

 Here, there is a path between DMA module and one or more I/O modules that do not include

the system bus. The block diagram of single bus Integrated DMA is as shown in Figure 7-5.

The DMA logic can actually be considered as a part of an I/O module or there may be a

separate module that controls one more I/O modules.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 105

The features of this configuration can be considered as: Single Bus, Integrated DMA

controller

 Controller may support >1 device

 Each transfer uses the bus once

 DMA to memory CPU is suspended once

 DMA using an I/O bus

 one further step of the concept of integrated DMA is to connect I/O modules to DMA

controller using a separate bus called I/O bus. This reduces the number of I/O interfaces in

the DMA module to one and provides for an easily expandable configuration. The block

diagram of DMA using I/O bus is as shown in Figure below. Here the system bus that the

DMA shares with CPU and main memory is used by DMA module only to exchange data

with memory. And the exchange of data between the DMA module and the I/O modules

takes place off the system bus that is through the I/O bus.

The features of this configuration are:

 Separate I/O Bus Bus supports all DMA enabled devices

 Each transfer uses bus once

 DMA to memory

COMPUTER ORGANIZATION AND ARCHITECTURE Page 106

CPU is suspended once With both Programmed I/O and Interrupt driven I/O the CPU is

responsible for extracting data from main memory for output and storing data in main

memory for input. Table indicates the relationship among the three techniques.

7.10.1 Advantages of DMA

DMA has several advantages over polling and interrupts. DMA is fast because a dedicated

piece of hardware transfers data from one computer location to another and only one or two

bus read/write cycles are required per piece of data transferred. In addition, DMA is usually

required to achieve maximum data transfer speed, and thus is useful for high speed data

acquisition devices. DMA also minimizes latency in servicing a data acquisition device

because the dedicated hardware responds more quickly than interrupts and transfer time is

short. Minimizing latency reduces the amount of temporary storage (memory) required on an

I/O device. DMA also off-loads the processor, which means the processor does not have to

execute any instructions to transfer data. Therefore, the processor is not used for handling the

data transfer activity and is available for other processing activity. Also, in systems where the

processor primarily operates out of its cache, data transfer is actually occurring in parallel,

thus increasing overall system utilization.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 107

7.11 Serial communication

A data communication processor is an I/O processor that distribute and collect data from

many remote terminals connected through telephone and other communication lines it is a

specialized I/O processor designed to communicate directly with data communication

network. The most striking difference between I/O processor and data communication

processor is in the way processor communicate with the I/O devices.an I/O processor

communicate with the peripherals through common I/O bus that is comprised of many data

and control lines. All peripherals share common bus and use it to transfer information to and

from I/O processor. A data communication processor communicates with each terminal

through a single pairs of wires.

Data can be transmitted between two points in three different modes: simplex, half duplex

and full duplex.

A simplex line carries information in one direction only. This mode is seldom used in data

communication because the receiver cannot communicate to the transmitter with indicate the

occurrence of error examples of simplex transmission are radio and television broadcasting.

Half duplex transmission system is one that have capable of transmitting in both direction

but, data can transmitted in only one direction at a time. A pair of wire is needed for mode.

A full duplex transmission can send and receive data in both directions simultaneously. This

can be achieved by means of a four wire link, with a different pair of wires dedicated to each

direction of transmission. The communication lines, modems and other equipment used in the

transmission of information between two more stations is called data link.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 108

Chapter 8: Introduction to Parallel Processing

A traditional way to increase computer system performance is to use multiple processors that

can execute in parallel to support a given workload. The most common multiple-processor

organizations is symmetric multiprocessors (SMPs) SMP consists of multiple similar

processors within the same computer, interconnected by a bus or some sort of switching

arrangement. Each processor has its own cache and so it is possible for a given line of data to

be present in more than one cache. When more than one processor is implemented on a

single chip, the configuration is referred to as multiprocessor system. This design scheme is

used to replicate some of the components of a single processor so that the processor can

execute multiple threads/processes/tasks concurrently. Instruction pipelining, at least to the

extent of overlapping fetch and execute operations, has been around for a long time. Both of

these are examples of performing functions in parallel. As computer technology has evolved,

and as the cost of computer hardware has dropped, computer designers have sought more and

more opportunities for parallelism.

8.1 Parallel processing’

 Parallel processing/computing, uses multiple processing elements simultaneously to solve a

problem.

Parallel processing or parallel computing is a form of computation in which many

calculations are carried out simultaneously, operating on the principle that large problems can

often be divided into smaller ones, which are then solved concurrently (“in parallel”).

COMPUTER ORGANIZATION AND ARCHITECTURE Page 109

The following are important points about parallel processing:

 A parallel processing system is able to perform concurrent data processing to achieve

faster execution time.

 The system may have two or more ALUs and be able to execute two or more

instructions at the same time

 Also, the system may have two or more processors operating concurrently

 Goal is to increase the throughput – the amount of processing that can be

accomplished during a given interval of time

Parallel processing can be classified from:

 The internal organization of the processors

 The interconnection structure between processors

 The flow of information through the system

 The number of instructions and data items that are manipulated simultaneously

 The sequence of instructions read from memory is the instruction stream

 The operations performed on the data in the processor is the data stream

 Parallel processing may occur in the instruction stream, the data stream, or both

COMPUTER ORGANIZATION AND ARCHITECTURE Page 110

Computer can be classified as:

 Single instruction stream, single data stream – SISD

 Single instruction stream, multiple data stream – SIMD

 Multiple instruction stream, single data stream – MISD

 Multiple instruction stream, multiple data stream – MIMD

 SISD – Instructions are executed sequentially. Parallel processing may be achieved by

means of multiple functional units or by pipeline processing

 SIMD – Includes multiple processing units with a single control unit. All processors

receive the same instruction, but operate on different data.

 MISD-- The same data stream flows through a linear array of processors executing

different instruction streams.

 MIMD – A computer system capable of processing several programs at the same

time.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 111

8.3 Pipelining

 Pipelining is an implementation technique where multiple instructions are overlapped in

execution. Pipelining refers to the technique in which a given task is divided into a number of

subtasks that need to be performed in sequence. Each subtask is performed by a given

functional unit

Arithmetic Pipeline

 Pipeline arithmetic units are usually found in very high speed computers. They are used to

implement floating-point operations, multiplication of fixed-point numbers, and similar

computations encountered in scientific problems. Example for floating-point addition and

subtraction is shown below. The inputs are two normalized floating-point binary numbers X

and Y where X = A x 2a and Y = B x 2b

A and B are two fractions that represent the mantissas

A and b are the exponents

Four segments are used to perform the following sub operations:

 1. Compare the exponents

 2. Align the mantissas

3. Add or subtract the mantissas

 4. Normalize the result

COMPUTER ORGANIZATION AND ARCHITECTURE Page 112

Instruction Pipeline:

 Pipeline processing can occur not only in the data stream but also in the instruction

stream as well. An instruction pipeline reads consecutive instructions from memory

while previous instructions are being executed in other segments. Whenever there is

space in the buffer, the control unit initiates the next instruction fetch phase. The

following steps are needed to process each instruction:

 1. Fetch the instruction from memory

 2. Decode the instruction

 3. Calculate the effective address

4. Fetch the operands from memory

 5. Execute the instruction

 6. Store the result in the proper place

COMPUTER ORGANIZATION AND ARCHITECTURE Page 113

RISC Pipelines:

 A RISC (Reduced Instruction Set Computer) processor pipeline operates in much the same

way, although the stages in the pipeline are different. While different processors have

different numbers of steps, they have basically variations of these five steps:

1. fetch instructions from memory

 2. read registers and decode the instruction

3. execute the instruction or calculate an address

 4. access an operand in data memory

 5. write the result into a register

 The length of the pipeline is dependent on the length of the longest step. Because RISC

instructions are simpler than those used in pre-RISC processors (now called CISC, or

Complex Instruction Set Computer), they are more conducive to pipelining. While CISC

instructions varied in length, RISC instructions are all the same length and can be fetched in a

single operation. Ideally, each of the stages in a RISC processor pipeline should take 1 clock

cycle so that the processor finishes an instruction each clock cycle and averages one cycle per

instruction (CPI). Among the characteristics attributed to RISC is its ability to use an efficient

instruction pipeline.

COMPUTER ORGANIZATION AND ARCHITECTURE Page 114

8.4 Vector Processing

 The part of a computer that carries out the instructions of various programs is the central

processing unit (CPU).

 The CPU, also called a processor, receives a program's instructions; decodes those

instructions, breaking them into individual parts; executes those instructions; and reports the

results, writing them back into memory.

 The format for the processor comes in one of two primary types: vector and scalar.

 The difference between the two is that scalar processors operate on only one data point at a

time, while vector processors operate on an array of data.

 Many scientific problems require arithmetic operations on large arrays of numbers.

 These numbers are usually formulated as vectors and matrices of floating point numbers.

 A vector is an ordered set of a one dimensional array of data items. A vector V of length n is

represented as a row vector by V= [V1, V2, V3,...,Vn].

.

