Chapter 3

Common Digital Components

Integrated Circuits

- Integrated circuit (IC) is the basic building block of digital circuits.
- it is a small silicon semiconductor crystal, called a *chip*.
- As the technology of ICs has improved, the number of gates that can be put in a single chip has increased.

Small-scale integration (SSI)

devices contain several (usually less than 10) independent gates in a single package.

Medium-scale integration (MSI)

devices contain approximately 10 to 200 gates in a single package.

E.g To form decoders, adders, and registers.

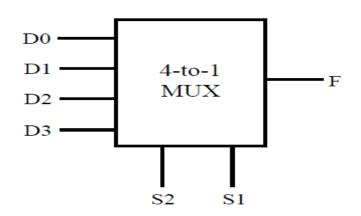
Large-scale integration (LSI)

devices contain between 200 and a few thousands gates in a single package.

Eg. processors, memory chips, and programmable modules.

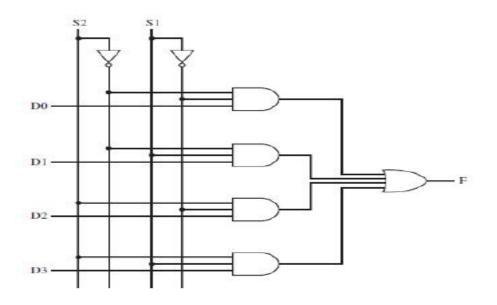
Very-large-scale integration (VLSI)

devices contain thousands of gates in a single package.


E.g large memory arrays and complex microcomputer chips.

Classification of digital integrated circuit

- Digital integrated circuits are also classified based on the specific circuit technology to which they belong.
- The most popular logic families of integrated circuits are:
- TTL Transistor-transistor logic
- ECL Emitter-coupled logic
- MOS Metal-oxide semiconductor
- CMOS Complementary metal-oxide semiconductor


Multiplexers

- ➤ Multiplexer is a combinational circuit that receives binary information from one of 2ⁿ input data & directs to one output.
- > The multiplexer connects multiple inputs to a single output.

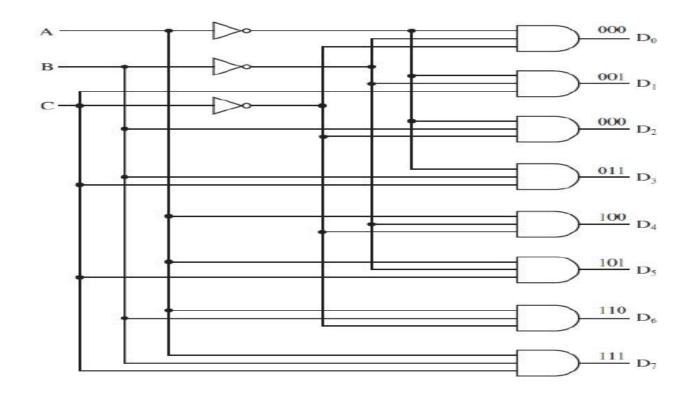
S2	S1	F		
0	0	D0		
О	1	D1		
1	O	D2		
1	1	D3		

Block diagram & Truth table of a 4-to-1 multiplexer

An implementation of a 4-to-1 multiplexer using AND, OR, and NOT gates

- > Multiplexers are used in digital circuits to *control* signal and data routing.
- > An example is the loading of the program counter (PC).

Demultiplexer


- The De multiplexer performs the inverse function of a multiplexer.
- > It connects a single input to one of several outputs.

5/31/2020

Decoders

- A decoder is a combinational circuit with a number of output lines, only one of which is selected at any time, depending on the pattern of input lines.
 - ➤ In general, a decoder has n inputs and 2ⁿ outputs.
 - Decoders find many uses in digital computers. Ex. address decoding.
 - > The other is binary-to- octal conversion.

5/31/2020

Decoder with 3 inputs and $2^3 = 8$ outputs

Encoders

- > An encoder is a digital circuit that performs the inverse operation of a decoder.
- An encoder has 2ⁿ (or less) input lines and n output lines. The output lines generate the binary code corresponding to the input value.
- > An ex. of an encoder is the octal-to-binary encoder.

Inputs							Outputs			
D,	D_6	D_5	D4	D_3	D_2	D_1	Do	A2	A_1	A_0
0	0	0	0	0	0	0	1	0	0	0
o	0	o	0	o	0	1	0	o	o	1
o	0	o	0	o	1	o	o	o	1	0
0	0	o	0	1	0	o	o	o	1	1
0	0	o	1	o	o	o	0	1	o	o
o	0	1	o	o	0	o	o	1	o	1
0	1	o	0	o	0	o	0	1	1	0
1	o	o	o	0	0	o	o	1	1	1

Registers

- A register is a group of flip-flops with each flip- flop capable of storing one bit of information.
 - > It is a digital circuit used within the CPU to store one or more bits of data.
 - > Two basic types of registers are commonly used: parallel registers and shift registers.

Parallel Registers

- > consists of a set of 1-bit memories that can be read or written simultaneously. Is used to store data.
- > e.g The 8-bit register- D Flip-Flops

Shift Register

- ➤ A shift register accepts and/or transfers information serially.
- Data are input only to the leftmost flip-flop
- > they can be used within the ALU to perform logical shift and rotate functions.

5/31/2020

Binary Counters

- > Another useful category of sequential circuit is the counter.
- A counter is a register whose value is easily incremented by 1 modulo the capacity of the register; that is, after the maximum value is achieved the next increment sets the counter value to 0.
- ➤ Thus, a register made up of n flip-flops can count up to 2ⁿ-1.
- ➤ An example of a counter in the CPU is the program counter.

5/31/2020

Memory Units

- > memory units are, the amount of data that can be stored in the storage unit. This storage capacity is expressed in terms of Bytes.
- > is a collection of storage cells together with associated circuits needed to transfer information in and out of storage.
- > The memory stores binary information in groups of bits called words.

5/31/2020

the main memory storage units

- Bit (Binary Digit)
- Nibble
- Byte
- Word

5/31/2020

RAM-(Random Access Memory

- is the internal memory of the CPU for storing data, program, and program result.
- In RAM the memory cells can be accessed for information transfer from any desired random location
- The two operations that a RAM can perform are the write and read operations.
- The write signal specifies a *transfer-in* operation and the read signal specifies a *transfer-out* operation.

5/31/2020

• Communication between a memory and its environment is achieved through data input and output lines, address selection lines, and control lines that specify the direction of transfer.

Steps of transferring a new word to be stored into memory

Are:

- 1. Apply the binary address of the desired word into the address line.
- 2. Apply the data bits that must be stored in memory into the data input lines.
 - 3. Activate the write input.
 - The steps that must be taken to transferring a stored word out of memory are:
- 1. Apply the binary address of the desired word into the address lines.
 - 2. Activate the read input.

5/31/2020

ROM (Read-Only Memory)

- ➤ A ROM is a memory unit that performs only the read operation.
- This implies that the binary information stored in a ROM is permanent and was created during the fabrication process.
- Thus, a given input to the ROM (address lines) always produces the same output (data lines).

5/31/2020