
Ambo University,Woliso Campus, STI

1 Object Oriented Software Engineering for Computer Science 2020

Chapter Three: Requirements Elicitation

3.1. An Overview of Requirements Elicitation

Requirements elicitation focuses on describing the purpose of the system. The client, the

developers, and the users identify a problem area and define a system that addresses the problem.

Such a definition is called a requirements specification and serves as a contract between the

client and the developers. The requirements specification is structured and formalized during

analysis to produce an analysis model. Both requirements specification and analysis model

represent the same information. They differ only in the language and notation they use; the

requirements specification is written in natural language, whereas the analysis model is usually

expressed in a formal or semiformal notation. The requirements specification supports the

communication with the client and users. The analysis model supports the communication

among developers. They are both models of the system in the sense that they attempt to represent

accurately the external aspects of the system. Given that both models represent the same aspects

of the system, requirements elicitation and analysis occur concurrently and iteratively.

Requirements elicitation and analysis focus only on the user’s view of the system. For example,

the system functionality, the interaction between the user and the system, the errors that the

system can detect and handle, and the environmental conditions in which the system functions

are part of the requirements. The system structure, the implementation technology selected to

build the system, the system design, the development methodology, and other aspects not

directly visible to the user are not part of the requirements.

Figure 3-1 Products of requirements elicitation and analysis (UML activity diagram).

Ambo University,Woliso Campus, STI

2 Object Oriented Software Engineering for Computer Science 2020

Requirements elicitation includes the following activities:

 Identifying actors. During this activity, developers identify the different types of users

the future system will support.

 Identifying scenarios. During this activity, developers observe users and develop a set

of detailed scenarios for typical functionality provided by the future system. Scenarios

are concrete examples of the future system in use. Developers use these scenarios to

communicate with the user and deepen their understanding of the application domain.

 Identifying use cases. Once developers and users agree on a set of scenarios, developers

derive from the scenarios a set of use cases that completely represent the future system.

Whereas scenarios are concrete examples illustrating a single case, use cases are

abstractions describing all possible cases. When describing use cases, developers

determine the scope of the system.

 Refining use cases. During this activity, developers ensure that the requirements

specification is complete by detailing each use case and describing the behavior of the

system in the presence of errors and exceptional conditions.

 Identifying relationships among use cases. During this activity, developers identify

dependencies among use cases. They also consolidate the use case model by factoring

out common functionality. This ensures that the requirements specification is

consistent.

 Identifying nonfunctional requirements. During this activity, developers, users, and

clients agree on aspects that are visible to the user, but not directly related to

functionality. These include constraints on the performance of the system, its

documentation, the resources it consumes, its security, and its quality

During requirements elicitation, developers access many different sources of information,

including client-supplied documents about the application domain, manuals and technical

documentation of legacy systems that the future system will replace, and most important, the

users and clients themselves. Developers interact the most with users and clients during

requirements elicitation. We focus on two methods for eliciting information, making

decisions with users and clients, and managing dependencies among requirements and other

artifacts:

 Joint Application Design (JAD) focuses on building consensus among developers,

users, and clients by jointly developing the requirements specification.

 Traceability focuses on recording, structuring, linking, grouping, and maintaining

dependencies among requirements and between requirements and other work

products.

Ambo University,Woliso Campus, STI

3 Object Oriented Software Engineering for Computer Science 2020

3.2. Requirements Elicitation Concepts

 3.2.1. Functional Requirements

Functional requirements describe the interactions between the system and its environment

independent of its implementation. The environment includes the user and any other external

system with which the system interacts. For example Satellite Watch is a wrist watch that

displays the time based on its current location. SatWatch uses GPS satellites (Global Positioning

System) to determine its location and internal data structures to convert this location into a time

zone.

The information stored in SatWatch and its accuracy measuring time is such that the watch

owner never needs to reset the time. SatWatch adjusts the time and date displayed as the watch

owner crosses time zones and political boundaries. For this reason, SatWatch has no buttons or

controls available to the user. SatWatch determines its location using GPS satellites and, as such,

suffers from the same limitations as all other GPS devices (e.g., inability to determine location at

certain times of the day in mountainous regions). During blackout periods, SatWatch assumes

that it does not cross a time zone or a political boundary. SatWatch corrects its time zone as soon

as a blackout period ends. SatWatch has a two-line display showing, on the top line, the time

(hour, minute, second, time zone) and on the bottom line, the date (day, date, month, year). The

display technology used is such that the watch owner can see the time and date even under poor

light conditions. When political boundaries change, the watch owner may upgrade the software

of the watch using the WebifyWatch device (provided with the watch) and a personal computer

connected to the Internet.

The above functional requirements focus only on the possible interactions between SatWatch and

its external world (i.e., the watch owner, GPS, and WebifyWatch). The above description does

not focus on any of the implementation details (e.g., processor, language, display technology)

 3.2.2 Nonfunctional Requirements

Nonfunctional requirements describe aspects of the system that are not directly related to the

functional behavior of the system. Nonfunctional requirements include a broad variety of

requirements that apply to many different aspects of the system, from usability to performance.

The FURPS+ model2 used by the Unified Process [Jacobson et al., 1999] provides the following

categories of nonfunctional requirements:

 Usability is the ease with which a user can learn to operate, prepare inputs for, and

interpret outputs of a system or component. Usability requirements include, for example,

conventions adopted by the user interface, the scope of online help, and the level of user

documentation. Often, clients address usability issues by requiring the developer to

follow user interface guidelines on color schemes, logos, and fonts.

Ambo University,Woliso Campus, STI

4 Object Oriented Software Engineering for Computer Science 2020

 Reliability is the ability of a system or component to perform its required functions

under stated conditions for a specified period of time. Reliability requirements include,

for example, an acceptable mean time to failure and the ability to detect specified faults

or to withstand specified security attacks. More recently, this category is often replaced

by dependability, which is the property of a computer system such that reliance can

justifiably be placed on the service it delivers. Dependability includes reliability,

robustness (the degree to which a system or component can function correctly in the

presence of invalid inputs or stressful environment conditions), and safety (a measure of

the absence of catastrophic consequences to the environment).

 Performance requirements are concerned with quantifiable attributes of the system,

such as response time (how quickly the system reacts to a user input), throughput

(how much work the system can accomplish within a specified amount of time),

availability (the degree to which a system or component is operational and accessible

when required for use), and accuracy.

 Supportability requirements are concerned with the ease of changes to the system

after deployment, including for example, adaptability (the ability to change the system

to deal with additional application domain concepts), maintainability (the ability to

change the system to deal with new technology or to fix defects), and

internationalization (the ability to change the system to deal with additional

international conventions, such as languages, units, and number formats). The ISO

9126 standard on software quality [ISO Std. 9126], similar to the FURPS+ model,

replaces this category with two categories: maintainability and portability (the ease

with which a system or component can be transferred from one hardware or software

environment to another).

3.2.3. Completeness, Consistency, Clarity, and Correctness

Requirements are continuously validated with the client and the user. Validation is a critical step

in the development process, given that both the client and the developer depend on the

requirements specification. Requirement validation involves checking that the specification is

complete, consistent, unambiguous, and correct. It is complete if all possible scenarios through

the system are described, including exceptional behavior (i.e., all aspects of the system are

represented in the requirements model). The requirements specification is consistent if it does

not contradict itself. The requirements specification is unambiguous if exactly one system is

defined (i.e., it is not possible to interpret the specification two or more different ways). A

specification is correct if it represents accurately the system that the client needs and that the

developers intend to build (i.e., everything in the requirements model accurately represents an

aspect of the system to the satisfaction of both client and developer).

The correctness and completeness of a requirements specification are often difficult to establish,

especially before the system exists. Given that the requirements specification serves as a

contractual basis between the client and the developers, the requirements specification must be

Ambo University,Woliso Campus, STI

5 Object Oriented Software Engineering for Computer Science 2020

carefully reviewed by both parties. Additionally, parts of the system that present a high risk

should be prototyped or simulated to demonstrate their feasibility or to obtain feedback from the

user. In the case of SatWatch described above, a mock-up of the watch would be built using a

traditional watch and users surveyed to gather their initial impressions. A user may remark that

she wants the watch to be able to display both American and European date formats.

 3.2.4. Realism, Verifiability, and Traceability

Three more desirable properties of a requirements specification are that it be realistic, verifiable,

and traceable. The requirements specification is realistic if the system can be implemented

within constraints. The requirements specification is verifiable if, once the system is built,

repeatable tests can be designed to demonstrate that the system fulfills the requirements

specification. For example, a mean time to failure of a hundred years for SatWatch would be

difficult to verify (assuming it is realistic in the first place). The following requirements are

additional examples of non verifiable requirements:

 The product shall have a good user interface.—Good is not defined.

 The product shall be error free.—Requires large amount of resources to establish.

 The product shall respond to the user with 1 second for most cases.—“Most cases” is

not defined.

A requirements specification is traceable if each requirement can be traced throughout the

software development to its corresponding system functions, and if each system function can be

traced back to its corresponding set of requirements. Traceability includes also the ability to

track the dependencies among requirements, system functions, and the intermediate design

artifacts, including system components, classes, methods, and object attributes. Traceability is

critical for developing tests and for evaluating changes. When developing tests, traceability

enables a tester to assess the coverage of a test case, that is, to identify which requirements are

tested and which are not. When evaluating changes, traceability enables the analyst and the

developers to identify all components and system functions that the change would impact.

3.3. Requirements Elicitation Activities

 This section describes the requirements elicitation activities. These map a problem

statement into a requirements specification that represent as a set of actors, scenarios, and use

cases (see Chapter 2, Modeling with UML). It also discusses heuristics and methods for eliciting

requirements from users and modeling the system in terms of these concepts. Requirements

elicitation activities include:

 Identifying Actors

 Identifying Scenarios

 Identifying Use Cases

 Refining Use Cases

Ambo University,Woliso Campus, STI

6 Object Oriented Software Engineering for Computer Science 2020

 Identifying Relationships Among Actors and Use Cases

 Identifying Initial Analysis Objects.

 Identifying Nonfunctional Requirements.

The methods described in this section are adapted from OOSE [Jacobson et al., 1992], the

Unified Software Development Process [Jacobson et al., 1999], and responsibility-driven design

[Wirfs-Brock et al., 1990]

 3.3.1 Identifying Actors

Actors represent external entities that interact with the system. An actor can be human or an

external system. In the SatWatch example, the watch owner, the GPS satellites, and the

WebifyWatch serial device are actors (see Figure 3-2). They all exchange information with the

SatWatch. Note, however, that they all have specific interactions with SatWatch: the watch

Figure 3.2. Actors for the SatWatch system. WatchOwner moves the watch (possibly

across time zones) and consults it to know what time it is. SatWatch interacts with GPS

to compute its position. WebifyWatch upgrades the data contained in the watch to reflect

changes in time policy (e.g., changes in daylight savings time start and end dates).

3.3.2 Identifying Scenarios

A scenario is a narrative description of what people do and experience as they try to make use of

computer systems and applications. A scenario is a concrete, focused, informal description of a

single feature of the system from the viewpoint of a single actor. Scenarios cannot (and are not

intended to) replace use cases, as they focus on specific instances and concrete events (as

opposed to complete and general descriptions). However, scenarios enhance requirements

elicitation by providing a tool that is understandable to users and clients.

Ambo University,Woliso Campus, STI

7 Object Oriented Software Engineering for Computer Science 2020

Figure 3.3 warehouseOnFire scenario for the ReportEmergency use case.

Note that this scenario is concrete, in the sense that it describes a single instance. It does not

attempt to describe all possible situations in which a fire incident is reported. In particular,

scenarios cannot contain descriptions of decisions. To describe the outcome of a decision, two

scenarios would be needed, one for the “true” path, and another one for the “false” path.

3.3.3 Identifying Use Cases

A scenario is an instance of a use case; that is, a use case specifies all possible scenarios for a

given piece of functionality. A use case is initiated by an actor. After its initiation, a use case

may interact with other actors, as well. A use case represents a complete flow of events through

the system in the sense that it describes a series of related interactions that result from its

initiation.

Figure 3.4 depicts the use case ReportEmergency of which the scenario warehouseOnFire

(see Figure 3-3) is an instance. The FieldOfficer actor initiates this use case by activating the

“Report Emergency” function of FRIEND. The use case completes when the FieldOfficer actor

receives an acknowledgment that an incident has been created. The steps in the flow of events

are indented to denote who initiates the step. Steps 1 and 3 are initiated by the actor, while steps

2 and 4 are initiated by the system. This use case is general and encompasses a range of

scenarios. For example, the ReportEmergency use case could also apply to the fenderBender

scenario. Use cases can be written at varying levels of detail as in the case of scenarios.

Ambo University,Woliso Campus, STI

8 Object Oriented Software Engineering for Computer Science 2020

Figure 3.4 An example of a use case, ReportEmergency. Under ReportEmergency, the left

column denotes actor actions, and the right column denotes system responses.

Generalizing scenarios and identifying the high-level use cases that the system must

support enables developers to define the scope of the system. Initially, developers name use

cases, attach them to the initiating actors, and provide a high-level description of the use case.

The name of a use case should be a verb phrase denoting what the actor is trying

to accomplish. The verb phrase “Report Emergency” indicates that an actor is attempting to

report an emergency to the system (and hence, to the Dispatcher actor). This use case is not

called “Record Emergency” because the name should reflect the perspective of the actor, not the

system. It is also not called “Attempt to Report an Emergency” because the name should reflect

the goal of the use case, not the actual activity.

Attaching use cases to initiating actors enables developers to clarify the roles of the

different users. Often, by focusing on who initiates each use case, developers identify new actors

that have been previously overlooked.

Describing a use case entails specifying four fields. Describing the entry and exit

conditions of a use case enables developers to understand the conditions under which a use case

Ambo University,Woliso Campus, STI

9 Object Oriented Software Engineering for Computer Science 2020

is invoked and the impact of the use case on the state of the environment and of the system. By

examining the entry and exit conditions of use cases, developers can determine if there may be

missing use cases. For example, if a use case requires that the emergency operations plan dealing

with earthquakes should be activated, the requirements specification should also provide a use

case for activating this plan. Describing the flow of events of a use case enables developers and

clients to discuss the interaction between actors and system. This results in many decisions

about the boundary of the system, that is, about deciding which actions are accomplished by the

actor and which actions are accomplished by the system. Finally, describing the quality

requirements associated with a use case enables developers to elicit nonfunctional requirements

in the context of a specific functionality.

3.3.4 Refining Use Cases

Figure 3-5 is a refined version of the ReportEmergency use case. It has been extended to

include details about the type of incidents known to FRIEND and detailed interactions indicating

how the Dispatcher acknowledges the FieldOfficer.

Figure 3-5 Refined description for the ReportEmergency use case. Additions emphasized in

italics.

Ambo University,Woliso Campus, STI

10 Object Oriented Software Engineering for Computer Science 2020

The use of scenarios and use cases to define the functionality of the system aims at

creating requirements that are validated by the user early in the development. As the design and

implementation of the system starts, the cost of changing the requirements specification and

adding new unforeseen functionality increases. Although requirements change until late in the

development, developers and users should strive to address most requirements issues early. This

entails many changes and much validation during requirements elicitation. Note that many use

cases are rewritten several times, others substantially refined, and yet others completely dropped.

To save time, much of the exploration work can be done using scenarios and user

interface mock-ups.

The following heuristics can be used for writing scenarios and use cases:

Heuristics for developing scenarios and use cases

 Use scenarios to communicate with users and to validate functionality.

 First, refine a single scenario to understand the user’s assumptions about the system. The

user may be familiar with similar systems, in which case, adopting specific user interface

conventions would make the system more usable.

 Next, define many not-very-detailed scenarios to define the scope of the system. Validate

with the user.

 Use mock-ups as visual support only; user interface design should occur as a separate

task after the functionality is sufficiently stable.

 Present the user with multiple and very different alternatives (as opposed to extracting a

single alternative from the user). Evaluating different alternatives broadens the user’s

horizon. Generating different alternatives forces developers to “think outside the box.”

 Detail a broad vertical slice when the scope of the system and the user preferences are

well understood. Validate with the user.

3.3.5 Identifying Relationships among Actors and Use Cases

Even medium-sized systems have many use cases. Relationships among actors and use cases

enable the developers and users to reduce the complexity of the model and increase its

understandability. We use communication relationships between actors and use cases to describe

the system in layers of functionality. We use extend relationships to separate exceptional and

common flows of events. We use include relationships to reduce redundancy among use cases.

Communication relationships between actors and use cases

Communication relationships between actors and use cases represent the flow of

information during the use case. The actor who initiates the use case should be distinguished

from the other actors with whom the use case communicates. By specifying which actor can

invoke a specific use case, we also implicitly specify which actors cannot invoke the use case.

Similarly, by specifying which actors communicate with a specific use case, we specify which

Ambo University,Woliso Campus, STI

11 Object Oriented Software Engineering for Computer Science 2020

actors can access specific information and which cannot. Thus, by documenting initiation and

communication relationships among actors and use cases, we specify access control for the

system at a coarse level. The relationships between actors and use cases are identified when use

cases are identified.

Figure 3-6 Example of communication relationships among actors and use cases in FRIEND

(UML use case diagram). The FieldOfficer initiates the ReportEmergency use case, and the

Dispatcher initiates the OpenIncident and AllocateResources use cases. FieldOfficers cannot

directly open an incident or allocate resources on their own.

Extend relationships between use cases

A use case extends another use case if the extended use case may include the behavior of

the extension under certain conditions. In the FRIEND example, assume that the connection

between the FieldOfficer station and the Dispatcher station is broken while the FieldOfficer is

filling the form (e.g., the FieldOfficer’s car enters a tunnel). The FieldOfficer station needs to

notify the FieldOfficer that his form was not delivered and what measures he should take.

Figure 3-7 Example of use of extend relationship (UML use case diagram). ConnectionDown

extendsthe ReportEmergency use case. The ReportEmergency use case becomes shorter and

solely focused onemergency reporting.

Include relationships between use cases

Redundancies among use cases can be factored out using include relationships. Assume,

for example, that a Dispatcher needs to consult the city map when opening an incident (e.g., to

Ambo University,Woliso Campus, STI

12 Object Oriented Software Engineering for Computer Science 2020

assess which areas are at risk during a fire) and when allocating resources (e.g., to find which

resources are closest to the incident). In this case, the ViewMap use case describes the flow of

events required when viewing the city map and is used by both the OpenIncident and the

AllocateResources use cases

Figure 3-8 Example of include relationships among use cases. ViewMap describes the flow

of events for viewing a city map (e.g., scrolling, zooming, query by street name) and is used

by both OpenIncident and AllocateResources use cases.

Factoring out shared behavior from use cases has many benefits, including shorter

descriptions and fewer redundancies. Behavior should only be factored out into a separate use

case if it is shared across two or more use cases. Excessive fragmentation of the requirements

specification across a large number of use cases makes the specification confusing to users and

clients.

Extend versus include relationships

Include and extend are similar constructs, and initially it may not be clear to the developer

when to use each one. The main distinction between these constructs is

the direction of the relationship. For include relationships, the event triggering the target (i.e.,

included) use case is described in the flow of event of the source use case. For extend

relationships, the event triggering the source (i.e., extending) use case is described in the source

use case as a precondition. In other words, for include relationships, every including use case

must specify where the included use case should be invoked. For extend relationships, only the

extending use case specifies which use cases are extended. Hence, a behavior that is strongly

tied to an event and that occurs only in a relatively few use cases should be represented with an

included relationship. These types of behavior usually include common system functions that

can be used in several places (e.g., viewing a map, specifying a filename, selecting an element).

Conversely, a behavior that can happen anytime or whose occurrence can be more easily

specified as an entry condition should be represented with an extend relationship. These types of

behavior include exceptional situations (e.g., invoking the online help, canceling a transaction,

dealing with a network failure).

Ambo University,Woliso Campus, STI

13 Object Oriented Software Engineering for Computer Science 2020

3.3.6 Identifying Initial Analysis Objects

One of the first obstacles developers and users encounter when they start collaborating with each

other is differing terminology. Although developers eventually learn the users’ terminology, this

problem is likely to be encountered again when new developers are added to the project.

Misunderstandings result from the same terms being used in different contexts and with different

meanings.

To establish a clear terminology, developers identify the participating objects for each

use case. Developers should identify, name, and describe them unambiguously and collate them

into a glossary. Building this glossary constitutes the first step toward analysis, which we

discuss in the next chapter. The glossary is included in the requirements specification and, later,

in the user manuals. Developers keep the glossary up to date as the requirements specification

evolves. The benefits of the glossary are many fold: new developers are exposed to a consistent

set of definitions, a single term is used for each concept (instead of a developer term and a user

term), and each term has a precise and clear official meaning. The identification of participating

objects results in the initial analysis object model. The identification of participating objects

during requirements elicitation only constitutes a first step toward the complete analysis object

model. The complete analysis model is usually not used as a means of communication between

users and developers, as users are often unfamiliar with object-oriented concepts. However, the

description of the objects (i.e., the definitions of the terms in the glossary) and their attributes are

visible to the users and reviewed

Many heuristics have been proposed in the literature for identifying objects. Here are a

selected few:

Heuristics for identifying initial analysis objects

 Terms that developers or users must clarify to understand the use case

 Recurring nouns in the use cases (e.g., Incident)

 Real-world entities that the system must track (e.g., FieldOfficer, Resource)

 Real-world processes that the system must track (e.g., EmergencyOperationsPlan)

 Use cases (e.g., ReportEmergency)

 Data sources or sinks (e.g., Printer)

 Artifacts with which the user interacts (e.g., Station)

 Always use application domain terms.

During requirements elicitation, participating objects are generated for each use case. If

two use cases refer to the same concept, the corresponding object should be the same. If two

objects share the same name and do not correspond to the same concept, one or both concepts

are renamed to acknowledge and emphasize their difference. This consolidation eliminates any

ambiguity in the terminology used.

Ambo University,Woliso Campus, STI

14 Object Oriented Software Engineering for Computer Science 2020

3.3.7 Identifying Nonfunctional Requirements

Nonfunctional requirements describe aspects of the system that are not directly related to its

functional behavior. Nonfunctional requirements span a number of issues, from user interface

look and feel to response time requirements to security issues. Nonfunctional requirements are

defined at the same time as functional requirements because they have as much impact on the

development and cost of the system.

Nonfunctional requirements can impact the work of the user in unexpected ways. To

accurately elicit all the essential nonfunctional requirements, both client and developer must

collaborate so that they identify (minimally) which attributes of the system that are difficult to

realize are critical for the work of the user. In the mosaic display example above, the number of

aircraft that a single mosaic display must be able to handle has implications on the size of the

icons used for displaying aircraft, the features for identifying aircraft and their properties, the

refresh rate of the data, and so on.

3.4. Managing Requirements Elicitation

 The previous section, described the technical issues of modeling a system in terms of use

cases. Use case modeling by itself, however, does not constitute requirements elicitation. Even

after they become expert use case modelers, developers still need to elicit requirements from the

users and come to an agreement with the client. In this section, we describe methods for eliciting

information from the users and negotiating an agreement with a client. In particular, we

describe:

3.4.1 Negotiating Specifications with Clients: Joint Application Design

Joint Application Design (JAD) is a requirements method developed at IBM at the end of the

1970s. Its effectiveness lies in that the requirements elicitation work is done in one single

workshop session in which all stakeholders participate. Users, clients, developers, and a trained

session leader sit together in one room to present their viewpoints, listen to other viewpoints,

negotiate, and come to a mutually acceptable solution. The outcome of the workshop, the final

JAD document, is a complete requirements specification document that includes definitions of

data elements, work flows, and interface screens. Because the final document is jointly

developed by the stakeholders (that is, the participants who not only have an interest in the

success of the project, but also can make substantial decisions), the final JAD document

represents an agreement among users, clients, and developers, and thus minimizes requirements

changes later in the development process.

3.4.2 Maintaining Traceability

Traceability is the ability to follow the life of a requirement. This includes tracing where the

requirements came from (e.g., who originated it, which client need does it address) to which

aspects of the system and the project it affects (e.g., which components realize the requirement,

Ambo University,Woliso Campus, STI

15 Object Oriented Software Engineering for Computer Science 2020

which test case checks its realization). Traceability enables developers to show that the system is

complete, testers to show that the system complies with its requirements, designers to record the

rationale behind the system, and maintainers to assess the impact of change.

Consider the SatWatch system we introduced at the beginning of the chapter. Currently,

the specification calls for a two-line display that includes time and date. After the client decides

that the digit size is too small for comfortable reading, developers change the display

requirement to a single-line display combined with a button to switch between time and date.

Traceability would enable us to answer the following questions:

 Who originated the two-line display requirement?

 Did any implicit constraints mandate this requirement?

 Which components must be changed because of the additional button and display?

 Which test cases must be changed?

The simplest approach to maintaining traceability is to use cross-references among

documents, models, and code artifacts. Each individual element (e.g., requirement, component,

class, operation, test case) is identified by a unique number. Dependencies are then documented

manually as a textual cross-reference containing the number of the source element and the

number of the target element. Tool support can be as simple as a spreadsheet or a word

processing tool. This approach is expensive in time and person power, and it is error prone.

However, for small projects, developers can observe benefits early.

3.4.3 Documenting Requirements Elicitation

The results of the requirements elicitation and the analysis activities are documented in the

Requirements Analysis Document (RAD). This document completely describes the system in

terms of functional and nonfunctional requirements. The audience for the RAD includes the

client, the users, the project management, the system analysts (i.e., the developers who

participate in the requirements), and the system designers (i.e., the developers who participate in

the system design). The first part of the document, including use cases and nonfunctional

requirements, is written during requirements elicitation. The formalization of the specification in

terms of object models is written during analysis.

The first section of the RAD is an Introduction. Its purpose is to provide a brief overview

of the function of the system and the reasons for its development, its scope, and references to the

development context (e.g., reference to the problem statement written by the client, references to

existing systems, feasibility studies). The introduction also includes the objectives and success

criteria of the project.

The second section, Current system, describes the current state of affairs. If the new

system will replace an existing system, this section describes the functionality and the problems

Ambo University,Woliso Campus, STI

16 Object Oriented Software Engineering for Computer Science 2020

of the current system. Otherwise, this section describes how the tasks supported by the new

system are accomplished now.

The third section, Proposed system, documents the requirements elicitation and the

analysis model of the new system. It is divided into four subsections:

 Overview presents a functional overview of the system.

 Functional requirements describes the high-level functionality of the system.

 Nonfunctional requirements describes user-level requirements that are not directly

related to functionality. This includes usability, reliability, performance, supportability,

implementation, interface, operational, packaging, and legal requirements.

 System models describes the scenarios, use cases, object model, and dynamic models

for the system. This section contains the complete functional specification, including

mock-ups illustrating the user interface of the system and navigational paths

representing the sequence of screens. The subsections Object model and Dynamic

model are written during the Analysis activity, described in the next chapter.

The RAD should be written after the use case model is stable, that is, when the number of

modifications to the requirements is minimal. The requirements, however, are updated

throughout the development process when specification problems are discovered or when the

scope of the system is changed. The RAD, once published, is baselined and put under

configuration management.4 The revision history section of the RAD will provide a history of

changes include the author responsible for each change, the date of the change, and a brief

description of the change.

Requirements Analysis Document

1. Introduction

1.1 Purpose of the system

1.2 Scope of the system

1.3 Objectives and success criteria of the project

1.4 Definitions, acronyms, and abbreviations

1.5 References

1.6 Overview

2. Current system

3. Proposed system

3.1 Overview

3.2 Functional requirements

3.3 Nonfunctional requirements

3.3.1 Usability

3.3.2 Reliability

3.3.3 Performance

Ambo University,Woliso Campus, STI

17 Object Oriented Software Engineering for Computer Science 2020

3.3.4 Supportability

3.3.5 Implementation

3.3.6 Interface

3.3.7 Packaging

3.3.8 Legal

3.4 System models

3.4.1 Scenarios

3.4.2 Use case model

3.4.3 Object model

3.4.4 Dynamic model

3.4.5 User interface—navigational paths and screen mock-ups

4. Glossary

Figure 4-9Outline of the Requirements Analysis Document (RAD). Sections in italics are

completed during analysis (see next chapter).

