
Ambo University WOliso Campus , STI,

1 Object Oriented Software Engineering for Computer Science 2020

Chapter Six: Software Quality Assurance
6.1. Introduction

Testing is the process of analyzing a system or system component to detect the differences

between specified (required) and observed (existing) behavior. Unfortunately, it is impossible to

completely test a nontrivial system. First, testing is not decidable. Second, testing must be

performed under time and budget constraints. As a result, systems are often deployed without

being completely tested, leading to faults discovered by end users.

Testing is often viewed as a job that can be done by beginners. Managers would assign the new

members to the testing team, because the experienced people detested testing or are needed for

the more important jobs of analysis and design. Unfortunately, such an attitude leads to many

problems. To test a system effectively, a tester must have a detailed understanding of the whole

system, ranging from the requirements to system design decisions and implementation issues. A

tester must also be knowledgeable of testing techniques and apply these techniques effectively

and efficiently to meet time, budget, and quality constraints.

 6.2. An overview of testing

Reliability is a measure of success with which the observed behavior of a system conforms to

the specification of its behavior. Software reliability is the probability that a software system

will not cause system failure for a specified time under specified conditio. Failure is any

deviation of the observed behavior from the specified behavior. An erroneous state (also called

an error) means the system is in a state such that further processing by the system will lead to a

failure, which then causes the system to deviate from its intended behavior. A fault, also called

“defect” or “bug,” is the mechanical or algorithmic cause of an erroneous state. The goal of

testing is to maximize the number of discovered faults, which then allows developers to correct

them and increase the reliability of the system.

We define testing as the systematic attempt to find faults in a planned way in the

implemented software. Contrast this definition with another common one: “testing is the process

of demonstrating that faults are not present.” The distinction between these two definitions is

important. Our definition does not mean that we simply demonstrate that the program does what

it is intended to do. The explicit goal of testing is to demonstrate the presence of faults and

nonoptimal behavior. Our definition implies that the developers are willing to dismantle things.

Moreover, for the most part, demonstrating that faults are not present is not possible in systems

of any realistic size.

Most activities of the development process are constructive: during analysis, design, and

implementation, objects and relationships are identified, refined, and mapped onto a computer

environment. Testing requires a different thinking, in that developers try to detect faults in the

system, that is, differences between the reality of the system and the requirements. Many

developers find this difficult to do. One reason is the way we use the word “success” during

testing. Many project managers call a test case “successful” if it does not find a fault; that is,

they use the second definition of testing during development. However, because “successful”

denotes an achievement, and “unsuccessful” means something undesirable, these words should

not be used in this fashion during testing.

This material treat testing as an activity based on the falsification of system models, which is

based on Popper’s falsification of scientific theories [Popper, 1992]. According to Popper, when

testing a scientific hypothesis, the goal is to design experiments that falsify the underlying

Ambo University WOliso Campus , STI,

2 Object Oriented Software Engineering for Computer Science 2020

theory. If the experiments are unable to break the theory, our confidence in the theory is

strengthened and the theory is adopted (until it is eventually falsified). Similarly, in software

testing, the goal is to identify faults in the software system (to falsify the theory). If none of the

tests have been able to falsify software system behavior with respect to the requirements, it is

ready for delivery. In other words, a software system is released when the falsification attempts

(tests) show a certain level of confidence that the software system does what it is supposed to do.

There are many techniques for increasing the reliability of a software system:

 Fault avoidance techniques try to detect faults statically, that is, without relying on the

execution of any of the system models, in particular the code model. Fault avoidance

tries to prevent the insertion of faults into the system before it is released. Fault

avoidance includes development methodologies, configuration management, and

verification.

 Fault detection techniques, such as debugging and testing, are uncontrolled and

controlled experiments, respectively, used during the development process to identify

erroneous states and find the underlying faults before releasing the system. Fault

detection techniques assist in finding faults in systems, but do not try to recover from the

failures caused by them. In general, fault detection techniques are applied during

development, but in some cases they are also used after the release of the system. The

blackboxes in an airplane to log the last few minutes of a flight is an example of a fault

detection technique.

 Fault tolerance techniques assume that a system can be released with faults and that

system failure can be dealt with by recovering from them at runtime. For example,

modular redundant systems assign more than one component with the same task, then

compare the results from the redundant components. The space shuttle has five onboard

computers running two different pieces of software to accomplish the same task

This course, focus on fault detection techniques, including reviews and testing. A

review is the manual inspection of parts or all aspects of the system without actually

executing the system.

There are two types of reviews: walkthrough and inspection. In a code walkthrough, the

developer informally presents the API (Application Programmer Interface), the code, and

associated documentation of the component to the review team. The review team makes

comments on the mapping of the analysis and object design to the code using use cases and

scenarios from the analysis phase. An inspection is similar to a walkthrough, but the

presentation of the component is formal. In fact, in a code inspection, the developer is not

allowed to present the artifacts (models, code, and documentation). This is done by the

review team, which is responsible for checking the interface and code of the component

against the requirements. It also checks the algorithms for efficiency with respect to the

nonfunctional requirements. Finally, it checks comments about the code and compares them

with the code itself to find inaccurate and incomplete comments. The developer is only

present in case the review needs clarifications about the definition and use of data structures

or algorithms. Code reviews have proven to be effective at detecting faults. In some

experiments, up to 85 percent of all identified faults were found in code reviews.

Debugging assumes that faults can be found by starting from an unplanned failure. The

developer moves the system through a succession of states, ultimately arriving at and

identifying the erroneous state. Once this state has been identified, the algorithmic or

Ambo University WOliso Campus , STI,

3 Object Oriented Software Engineering for Computer Science 2020

mechanical fault causing this state must be determined. There are two types of debugging:

The goal of correctness debugging is to find any deviation between observed and specified

functional requirements. Performance debugging addresses the deviation between observed and specified

nonfunctional requirements, such as response time.

Testing is a fault detection technique that tries to create failures or erroneous states in a

planned way. This allows the developer to detect failures in the system before it is released

to the customer. Note that this definition of testing implies that a successful test is a test that

identifies faults. We will use this definition throughout the development phases. Another

often-used definition of testing is that “it demonstrates that faults are not present.” We will

use this definition only after the development of the system when we try to demonstrate that

the delivered system fulfills the functional and nonfunctional requirements.

If we used this second definition all the time, we would tend to select test data that have a

low probability of causing the program to fail. If, on the other hand, the goal is to

demonstrate that a program has faults, we tend to look for test data with a higher probability

of finding faults. The characteristic of a good test model is that it contains test cases that

identify faults. Tests should include a broad range of input values, including invalid inputs

and boundary cases; otherwise, faults may not be detected. Unfortunately, such an approach

requires extremely lengthy testing times for even small systems.
Figure 6-1 depicts an overview of testing activities:

 Test planning allocates resources and schedules the testing. This activity should

occur early in the development phase so that sufficient time and skill is dedicated to

testing. For example, developers can design test cases as soon as the models they

validate become stable.

 Usability testing tries to find faults in the user interface design of the system. Often,

systems fail to accomplish their intended purpose simply because their users are

confused by the user interface and unwillingly introduce erroneous data.

 Unit testing tries to find faults in participating objects and/or subsystems with

respect to the use cases from the use case model.

 Integration testing is the activity of finding faults by testing individual components

in combination. Structural testing is the culmination of integration testing involving

all components of the system. Integration tests and structural tests exploit knowledge

from the SDD (System Design Document) using an integration strategy described in

the Test Plan (TP).

 System testing tests all the components together, seen as a single system to identify

faults with respect to the scenarios from the problem statement and the requirements

and design goals identified in the analysis and system design, respectively:

 Functional testing tests the requirements from the RAD and the user manual

 Performance testing checks the nonfunctional requirements and additional design

goals from the SDD. Functional and performance testing are done by developers.

 Acceptance testing and installation testing check the system against the project

agreement and is done by the client, if necessary, with help by the developers.

Ambo University WOliso Campus , STI,

4 Object Oriented Software Engineering for Computer Science 2020

Figure 6-1 Testing activities and their related work products (UML activity diagram).

Swimlanes indicate who executes the test.

 6.2. Testing concepts

In this section, we present the model elements used during testing (Figure 6-2):

 A test component is a part of the system that can be isolated for testing. A component

can be an object, a group of objects, or one or more subsystems.

 A fault, also called bug or defect, is a design or coding mistake that may cause

abnormal component behavior.

 An erroneous state is a manifestation of a fault during the execution of the system. An

erroneous state is caused by one or more faults and can lead to a failure.

 A failure is a deviation between the specification and the actual behavior. A failure is

triggered by one or more erroneous states. Not all erroneous states trigger a failure.2

 A test case is a set of inputs and expected results that exercises a test component with

the purpose of causing failures and detecting faults.

 A test stub is a partial implementation of components on which the tested component

depends. A test driver is a partial implementation of a component that depends on the

Ambo University WOliso Campus , STI,

5 Object Oriented Software Engineering for Computer Science 2020

test component. Test stubs and drivers enable components to be isolated from the rest of

the system for testing.

 A correction is a change to a component. The purpose of a correction is to repair a fault.

Note that a correction can introduce new faults.

Figure 11-2 Model elements used during testing (UML class diagram).

 6.3. Testing activities
This section describe the technical activities of testing. These include

 Component inspection, which finds faults in an individual component through the

manual inspection of its source code

 Usability testing, which finds differences between what the system does and the users’

expectation of what it should do

 Unit testing, which finds faults by isolating an individual component using test stubs

and drivers and by exercising the component using test cases

 Integration testing, which finds faults by integrating several components together

 System testing, which focuses on the complete system, its functional and

nonfunctional requirements, and its target environment
6.3.1. Component Inspection

Inspections find faults in a component by reviewing its source code in a formal meeting.

Inspections can be conducted before or after the unit test. The first structured inspection process

was Michael Fagan’s inspection method [Fagan, 1976]. The inspection is conducted by a team of

developers, including the author of the component, a moderator who facilitates the process, and

one or more reviewers who find faults in the component. Fagan’s inspection method consists of

five steps:

 Overview. The author of the component briefly presents the purpose and scope of the

component and the goals of the inspection.

 Preparation. The reviewers become familiar with the implementation of the

component.

 Inspection meeting. A reader paraphrases the source code of the component, and the

inspection team raises issues with the component. A moderator keeps the meeting on

track.

 Rework. The author revises the component.

Ambo University WOliso Campus , STI,

6 Object Oriented Software Engineering for Computer Science 2020

 Follow-up. The moderator checks the quality of the rework and may determine the

component that needs to be re-inspected.

The critical steps in this process are the preparation phase and the inspection meeting. During the

preparation phase, the reviewers become familiar with the source code; they do not yet focus on

finding faults. During the inspection meeting, the reader paraphrases the source code, that is, he

reads each source code statement and explains what the statement should do. The reviewers then

raise issues if they think there is a fault. Most of the time is spent debating whether or not a fault

is present, but solutions to repair the fault are not explored at this point. During the overview

phase of the inspection, the author states the objectives of the inspection. In addition to finding

faults, reviewers may also be asked to look for deviations from coding standards or for

inefficiencies.

Fagan’s inspections are usually perceived as time-consuming because of the length of the

preparation and inspection meeting phase. The effectiveness of a review also depends on the

preparation of the reviewers. David Parnas proposed a revised inspection process, the active

design review, which eliminates the inspection meeting of all inspection team members. Instead,

reviewers are asked to find faults during the preparation phase. At the end of the preparation

phase, each reviewer fills out a questionnaire testing his or her understanding of the component.

The author then meets individually with each reviewer to collect feedback on the component.

Both Fagan’s inspections and the active design reviews have been shown to be usually more

effective than testing in uncovering faults. Both testing and inspections are used in safety-critical

projects, as they tend to find different types of faults.
6.3.2 Usability Testing

Usability testing tests the user understands of the system. Usability testing does not compare the

system against a specification. Instead, it focuses on finding differences between the system and

the users’ expectation of what it should do. As it is difficult to define a formal model of the user

against which to test, usability testing takes an empirical approach: participants representative of

the user population find problems by manipulating the user interface or a simulation thereof.

Usability tests are also concerned with user interface details, such as the look and feel of the user

interface, the geometrical layout of the screens, sequence of interactions, and the hardware. For

example, in case of a wearable computer, a usability test would test the ability of the user to issue

commands to the system while lying in an awkward position, as in the case of a mechanic

looking at a screen under a car while checking a muffler.

The technique for conducting usability tests is based on the classical approach for conducting a

controlled experiment. Developers first formulate a set of test objectives, describing what they

hope to learn in the test. These can include, for example, evaluating specific dimensions or

geometrical layout of the user interface, evaluating the impact of response time on user

efficiency, or evaluating whether the online help documentation is sufficient for novice users.

The test objectives are then evaluated in a series of experiments in which participants are trained

to accomplish predefined tasks (e.g., exercising the user interface feature under investigation).

Developers observe the participants and collect data measuring user performance (e.g., time to

accomplish a task, error rate) and preferences (e.g, opinions and thought processes) to identify

specific problems with the system or collect ideas for improving it.

There are two important differences between controlled experiments and usability tests. Whereas

the classical experimental method is designed to refute a hypothesis, the goal of usability tests is

Ambo University WOliso Campus , STI,

7 Object Oriented Software Engineering for Computer Science 2020

to obtain qualitative information on how to fix usability problems and how to improve the

system. The other difference is the rigor with which the experiments are performed. It has been

shown that even a series of quick focused tests starting as early as requirements elicitation is

extremely helpful. Nielsen uses the term discount usability engineering to refer to simplified

usability tests that can be accomplished at a fraction of the time and cost of a fullblown study,

noting that a few usability tests are better than none at all [Nielsen & Mack, 1994]. Examples of

discount usability tests include using paper scenario mock-ups (as opposed to a videotaped

scenario), relying on handwritten notes as opposed to analyzing audio tape transcripts, or using

fewer subjects to elicit suggestions and uncover major defects (as opposed to achieving statistical

significance and using quantitative measures).

There are three types of usability tests:

 Scenario test. During this test, one or more users are presented with a visionary

scenario of the system. Developers identify how quickly users are able to understand

the scenario, how accurately it represents their model of work, and how positively

they react to the description of the new system. The selected scenarios should be as

realistic and detailed as possible. A scenario test allows rapid and frequent feedback

from the user. Scenario tests can be realized as paper mock-ups3 or with a simple

prototyping environment, which is often easier to learn than the programming

environment used for development. The advantage of scenario tests is that they are

cheap to realize and to repeat. The disadvantages are that the user cannot interact

directly with the system and that the data are fixed.

 Prototype test. During this type of test, the end users are presented with a piece of

software that implements key aspects of the system. A vertical prototype completely

implements a use case through the system. Vertical prototypes are used to evaluate

core requirements, for example, response time of the system or user behavior under

stress. A horizontal prototype implements a single layer in the system; an example

is a user interface prototype, which presents an interface for most use cases (without

providing much or any functionality). User interface prototypes are used to evaluate

issues such as alternative user interface concepts or window layouts. A Wizard of Oz

prototype is a user interface prototype in which a human operator behind the scenes

pulls the levers. Wizard of Oz prototypes are used for testing natural language

applications, when the speech recognition or the natural language parsing subsystems

are incomplete. A human operator intercepts user queries and rephrases them in terms

that the system understands, without the test user being aware of the operator. The

advantages of prototype tests are that they provide a realistic view of the system to

the user and that prototypes can be instrumented to collect detailed data. However,

prototypes require more effort to build than test scenarios.

 Product test. This test is similar to the prototype test except that a functional version

of the system is used in place of the prototype. A product test can only be conducted

after most of the system is developed. It also requires that the system be easily

modifiable such that the results of the usability test can be taken into account.

6.3.3. Unit Testing

Unit testing focuses on the building blocks of the software system, that is, objects and

subsystems. There are three motivations behind focusing on these building blocks. First,

unit testing reduces the complexity of overall test activities, allowing us to focus on

smaller units of the system. Second, unit testing makes it easier to pinpoint and correct

Ambo University WOliso Campus , STI,

8 Object Oriented Software Engineering for Computer Science 2020

faults, given that few components are involved in the test. Third, unit testing allows

parallelism in the testing activities; that is, each component can be tested independently

of the others.

The specific candidates for unit testing are chosen from the object model and the system

decomposition. In principle, all the objects developed during the development process

should be tested, which is often not feasible because of time and budget constraints. The

minimal set of objects to be tested should be the participating objects in use cases.

Subsystems should be tested as components only after each of the classes within that

subsystem have been tested individually.

6.3.4 Integration Testing.

Unit testing focuses on individual components. The developer discovers faults using equivalence

testing, boundary testing, path testing, and other methods. Once faults in each component have

been removed and the test cases do not reveal any new fault, components are ready to be

integrated into larger subsystems. At this point, components are still likely to contain faults, as

test stubs and drivers used during unit testing are only approximations of the components they

simulate. Moreover, unit testing does not reveal faults associated with the component interfaces

resulting from invalid assumptions when calling these interfaces. Integration testing detects

faults that have not been detected during unit testing by focusing on small groups of components.

Two or more components are integrated and tested, and when no new faults are revealed,

additional components are added to the group. If two components are tested together, we call this

a double test. Testing three components together is a triple test, and a test with four components

is called a quadruple test. This procedure allows the testing of increasingly more complex parts

of the system while keeping the location of potential faults relatively small (i.e., the most

recently added component is usually the one that triggers the most recently discovered faults).

 6.3.5 System Testing

Unit and integration testing focus on finding faults in individual components and the interfaces

between the components. Once components have been integrated, system testing ensures that

the complete system complies with the functional and nonfunctional requirements. Note that

vertical integration testing is a special case of system testing: the former focuses only on a new

slice of functionality, whereas the system testing focuses on the complete system.

During system testing, several activities are performed:

 Functional testing. Test of functional requirements (from RAD)

 Performance testing. Test of nonfunctional requirements (from SDD)

 Pilot testing. Tests of common functionality among a selected group of end users in the

target environment

 Acceptance testing. Usability, functional, and performance tests performed by the

customer in the development environment against acceptance criteria (from Project

Agreement)

 Installation testing. Usability, functional, and performance tests performed by the

customer in the target environment. If the system is only installed at a small selected set

of customers it is called a beta test.

 6.4. Managing testing.

In previous sections, we showed how different testing techniques are used to maximize the

number of faults discovered. In this section, we describe how to manage testing activities to

minimize the resources needed. Many testing activities occur near the end of the project, when

resources are running low and delivery pressure increases. Often, trade-offs lie between the

Ambo University WOliso Campus , STI,

9 Object Oriented Software Engineering for Computer Science 2020

faults to be repaired before delivery and those that can be repaired in a subsequent revision of the

system. In the end, however, developers should detect and repair a sufficient number of faults

such that the system meets functional and nonfunctional requirements to an extent acceptable to

the client.
 6.4.1 Planning Testing
Developers can reduce the cost of testing and the elapsed time necessary for its completion

through careful planning. Two key elements are to start the selection of test cases early and to

parallelize tests.

Developers responsible for testing can design test cases as soon as the models they validate

become stable. Functional tests can be developed when the use cases are completed. Unit tests of

subsystems can be developed when their interfaces is defined. Similarly, test stubs and drivers

can be developed when component interfaces are stable. Developing tests early enables the

execution of tests to start as soon as components become available. Moreover, given that

developing tests requires a close examination of the models under validation, developers can find

faults in the models even before the system is constructed. Note, however, that developing tests

early on introduces a maintenance problem: test cases, drivers, and stubs need to be updated

whenever the system models change.
6.4.2Documenting Testing

Testing activities are documented in four types of documents, the Test Plan, the Test Case

Specifications, the Test Incident Reports, and the Test Summary Report:

 The Test Plan focuses on the managerial aspects of testing. It documents the scope,

approach, resources, and schedule of testing activities. The requirements and the

components to be tested are identified in this document.

 Each test is documented by a Test Case Specification. This document contains the

inputs, drivers, stubs, and expected outputs of the tests, as well as the tasks to be

performed.

 Each execution of each test is documented by a Test Incident Report. The actual results

of the tests and differences from the expected output are recorded.

 The Test Report Summary document lists all the failures discovered during the tests that

need to be investigated. From the Test Report Summary, the developers analyze and

prioritize each failure and plan for changes in the system and in the models. These

changes in turn can trigger new test cases and new test executions.

The Test Plan (TP) and the Test Case Specifications (TCS) are written early in the process,

as soon as the test planning and each test case are completed. These documents are under

configuration management and updated as the system models change.

Ambo University WOliso Campus , STI,

10 Object Oriented Software Engineering for Computer Science 2020

6.4.3 Assigning Responsibilities

Testing requires developers to find faults in components of the system. This is best done when

the testing is performed by a developer who was not involved in the development of the

component under test, one who is less reticent to break the component being tested and who is

more likely to find ambiguities in the component specification. For stringent quality

requirements, a separate team dedicated to quality control is solely responsible for testing. The

testing team is provided with the system models, the source code, and the system for developing

and executing test cases. Test Incident Reports and Test Report Summaries are then sent back to

the subsystem teams for analysis and possible revision of the system. The revised system is then

retested by the testing team, not only to check if the original failures have been addressed, but

also to ensure that no new faults have been inserted in the system. For systems that do not have

stringent quality requirements, subsystem teams can double as a testing team for components

developed by other subsystem teams. The architecture team can define standards for test

procedures, drivers, and stubs, and can perform as the integration test team. The same test

documents can be used for communication among subsystem teams.

 6.4.4 Regression Testing.

Object-oriented development is an iterative process. Developers modify, integrate, and retest

components often, as new features are implemented or improved. When modifying a component,

developers design new unit tests exercising the new feature under consideration. They may also

retest the component by updating and rerunning previous unit tests. Once the modified

component passes the unit tests, developers can be reasonably confident about the changes

within the component. However, they should not assume that the rest of the system will work

with the modified component, even if the system has previously been tested. The modification

can introduce side effects or reveal previously hidden faults in other components. The changes

can exercise different assumptions about the unchanged components, leading to

erroneous states. Integration tests that are rerun on the system to produce such failures are called

regression tests.

The most robust and straightforward technique for regression testing is to accumulate all

integration tests and rerun them whenever new components are integrated into the system. This

requires developers to keep all tests up-to-date, to evolve them as the subsystem interfaces

change, and to add new integration tests as new services or new subsystems are added. As

regression testing can become time consuming, different techniques have been developed for

selecting specific regression tests. Such techniques include

 Retest dependent components. Components that depend on the modified component are

the most likely to fail in a regression test. Selecting these tests will maximize the

likelihood of finding faults when rerunning all tests is not feasible.

 Retest risky use cases. Often, ensuring that the most catastrophic faults are identified is

more critical than identifying the largest number of faults. By focusing first on use

cases that present the highest risk, developers can minimize the likelihood of

catastrophic failures.

 Retest frequent use cases. When users are exposed to successive releases of the same

system, they expect that features that worked before continue to work in the new

release. To maximize the likelihood of this perception, developers focus on the use

cases that are most often used by the users.

Ambo University WOliso Campus , STI,

11 Object Oriented Software Engineering for Computer Science 2020

In all cases, regression testing leads to running many tests many times. Hence, regression

testing is feasible only when an automated testing infrastructure is in place, enabling developers

to automatically set up, initialize, and execute tests and compare their results with a predefined

oracle. We discuss automated testing in the next section.

 6.4.5 Automating Testing
Manual testing involves a tester to feed predefined inputs into the system using the user

interface, a command line console, or a debugger. The tester then compares the outputs

generated by the system with the expected oracle. Manual testing can be costly and error prone

when many tests are involved or when the system generates a large volume of outputs. When

requirements change and the system evolves rapidly, testing should be repeatable. This makes

these drawbacks worse, as it is difficult to guarantee that the same test is executed under the

same conditions every time.

The repeatability of test execution can be achieved with automation. Although all aspects of

testing can be automated (including test case and oracle generation), the main focus of test

automation has been on execution. For system tests, test cases are specified in terms of the

sequence and timing of inputs and an expected output trace. The test harness can then execute a

number of test cases and compare the system output with the expected output trace. For unit and

integration tests, developers specify a test as a test driver that exercises one or more methods of

the classes under tests.

The benefit of automating test execution is that tests are repeatable. Once a fault is corrected as a

result of a failure, the test that uncovered the failure can be repeated to ensure that the failure

does not occur anymore. Moreover, other tests can be run to ensure (to a limited extent) that no

new faults have been introduced. Moreover, when tests are repeated many times, the cost of

testing is decreased substantially. However, note that developing a test harness and test cases is

an investment. If tests are run only once or twice, manual testing may be a better alternative.

