
Ambo University WOliso Campus , STI

1 Object Oriented Software Engineering for Computer Science 2020

 Chapter Four: Analysis

 Analysis results in a model of the system that aims to be correct, complete, consistent, and

unambiguous. Developers formalize the requirements specification produced during

requirements elicitation and examine in more detail boundary conditions and exceptional cases.

Developers validate, correct and clarify the requirements specification if any errors or

ambiguities are found. The client and the user are usually involved in this activity when the

requirements specification must be changed and when additional information must be gathered.

In object-oriented analysis, developers build a model describing the application domain. For

example, the analysis model of a watch describes how the watch represents time: Does the watch

know about leap years? Does it know about the day of the week? Does it know about the phases

of the moon? The analysis model is then extended to describe how the actors and the system

interact to manipulate the application domain model: How does the watch owner reset the time?

How does the watch owner reset the day of the week? Developers use the analysis model,

together with nonfunctional requirements, to prepare for the architecture of the system

developed during high-level design.

This chapter, discuss the analysis activities in more detail. It focuses on the identification of

objects, their behavior, their relationships, their classification, and their organization. This

chapter also describes management issues related to analysis in the context of a multi-team

development project.

4.1. An Overview of Analysis

Analysis focuses on producing a model of the system, called the analysis model, which is

correct, complete, consistent, and verifiable. Analysis is different from requirements elicitation

in that developers focus on structuring and formalizing the requirements elicited from

users(Figure 4.1).

Ambo University WOliso Campus , STI

2 Object Oriented Software Engineering for Computer Science 2020

 Figure 4-1 Products of requirements elicitation and analysis (UML activity diagram).

This formalization leads to new insights and the discovery of errors in the requirements. As the

analysis model may not be understandable to the users and the client, developers need to update

the requirements specification to reflect insights gained during analysis, then review the changes

with the client and the users. In the end, the requirements, however large, should be

understandable by the client and the users.

There is a natural tendency for users and developers to postpone difficult decisions until later in

the project. A decision may be difficult because of lack of domain knowledge, lack of

technological knowledge, or simply because of disagreements among users and developers.

Postponing decisions enables the project to move on smoothly and avoids confrontation with

reality or peers. Unfortunately, difficult decisions eventually must be made, often at higher cost

when intrinsic problems are discovered during testing, or worse, during user evaluation.

Translating a requirements specification into formal or semiformal model forces developers to

identify and resolve difficult issues early in the development.

The analysis model is composed of three individual models: the functional model, represented

by use cases and scenarios, the analysis object model, represented by class and object diagrams,

and the dynamic model, represented by state machine and sequence diagrams (Figure 4-2). In

the previous chapter, we described how to elicit requirements from the users and describe them

as use cases and scenarios. In this chapter, we describe how to refine the functional model and

derive the object and the dynamic model. This leads to a more precise and complete specification

as details is added to the analysis model. We conclude the chapter by describing management

activities related to analysis. In the next section, we define the main concepts of analysis

Ambo University WOliso Campus , STI

3 Object Oriented Software Engineering for Computer Science 2020

Figure 4-4 The analysis model is composed of the functional model, the object model, and the

dynamic model. In UML, the functional model is represented with use case diagrams, the object

model with class diagrams, and the dynamic model with state machine and sequence diagrams.

4.3. Analysis Concepts

In this section, we describe the main analysis concepts used in this chapter. In particular, we

describe

Analysis Object Models and Dynamic Models

 Entity, Boundary, and Control Objects

 Generalization and Specialization

 4.3.1Analysis Object Models and Dynamic Models

The analysis model represents the system under development from the user’s point of view. The

analysis object model is a part of the analysis model and focuses on the individual concepts that

are manipulated by the system, their properties and their relationships. The analysis object

model, depicted with UML class diagrams, includes classes, attributes, and operations. The

analysis object model is a visual dictionary of the main concepts visible to the user.

The dynamic model focuses on the behavior of the system. The dynamic model is depicted with

sequence diagrams and with state machines. Sequence diagrams represent the interactions among

a set of objects during a single use case. State machines represent the behavior of a single object

(or a group of very tightly coupled objects). The dynamic model serves to assign responsibilities

to individual classes and, in the process, to identify new classes, associations, and attributes to be

added to the analysis object model.

Ambo University WOliso Campus , STI

4 Object Oriented Software Engineering for Computer Science 2020

When working with either the analysis object model or the dynamic model, it is essential to

remember that these models represent user-level concepts, not actual software classes or

components. For example, classes such as Database, Subsystem, Session Manager, Network,

should not appear in the analysis model as the user is completely shielded from those concepts.

Note that most classes in the analysis object model will correspond to one or more software

classes in the source code. However, the software classes will include many more attributes and

associations than their analysis counterparts. Consequently, analysis classes should be viewed as

high-level abstractions that will be realized in much more detail later. Figure 4-3 depicts good

and bad examples of analysis objects for the SatWatch example.

Figure 4-3 Examples and counterexamples of classes in the analysis object model of SatWatch.

 4.3.2. Entity, Boundary, and Control Objects

The analysis object model consists of entity, boundary, and control objects. Entity objects

represent the persistent information tracked by the system. Boundary objects represent the

interactions between the actors and the system. Control objects are in charge of realizing use

cases. In the 2Bwatch example, Year, Month, and Day are entity objects; Button and

LCDDisplay are boundary objects; Change Date Control is a control object that represents the

activity of changing the date by pressing combinations of buttons.

Modeling the system with entity, boundary, and control objects provides developers with

simple heuristics to distinguish different, but related concepts. For example, the time that is

tracked by a watch has different properties than the display that depicts the time. Differentiating

between boundary and entity objects forces that distinction: The time that is tracked by the

watch is represented by the Time object. The display is represented by the LCD Display. This

approach with three object types results in smaller and more specialized objects. The three

object-type approach also leads to models that are more resilient to change: the interface to the

system (represented by the boundary objects) is more likely to change than its basic

functionality (represented by the entity and control objects). By separating the interface from the

Ambo University WOliso Campus , STI

5 Object Oriented Software Engineering for Computer Science 2020

basic functionality, we are able to keep most of a model untouched when, for example, the user

interface changes, but the entity objects do not.

To distinguish between different types of objects, UML provides the stereotype mechanism to

enable the developer to attach such meta-information to modeling elements. For example, in

Figure 4-4, attach the «control» stereotype to the Change Date Control object. In addition to

stereotypes, we may also use naming conventions for clarity and recommend distinguishing the

three different types of objects on a syntactical basis: control objects may have the suffix Control

appended to their name; boundary objects may be named to clearly denote an interface feature

(e.g., by including the suffix Form, Button, Display, or Boundary); entity objects usually do not

have any suffix appended to their name. Another benefit of this naming convention is that the

type of the class is represented even when the UML stereotype is not available, for example,

when examining only the source code.

Figure 4.4. Analysis classes for the 2Bwatch example.

 4.3. 3. Generalization and Specialization

As we saw in Chapter 2, Modeling with UML, inheritance enables us to organize concepts into

hierarchies. At the top of the hierarchy is a general concept (e.g., an Incident, Figure 4-5), and at

the bottom of the hierarchy are the most specialized concepts (e.g., CatInTree, TrafficAccident,

BuildingFire, EarthQuake, ChemicalLeak). There may be any number of intermediate levels in

between, covering more-or-less generalized concepts (e.g., LowPriorityIncident, Emergency,

Disaster). Such hierarchies allow us to refer to many concepts precisely. When we use the term

Incident, we mean all instances of all types of Incidents. When we use the term Emergency, we

only refer to an Incident that requires an immediate response.

Generalization is the modeling activity that identifies abstract concepts from lower-level ones.

For example, assume we are reverse-engineering an emergency management system and

discover screens for managing traffic accidents and fires. Noticing common features among

these three concepts, we create an abstract concept called Emergency to describe the common

(and general) features of traffic accidents and fires.

Ambo University WOliso Campus , STI

6 Object Oriented Software Engineering for Computer Science 2020

Specialization is the activity that identifies more specific concepts from a high-level one.

For example, assume that we are building an emergency management system from scratch and

that we are discussing its functionality with the client. The client first introduces us with the

concept of an incident, then describes three types of Incidents: Disasters, which require the

collaboration of several agencies, Emergencies, which require immediate handling but can be

handled by a single agency, and LowPriorityIncidents, that do not need to be handled if

resources are required for other, higher-priority Incidents.

Figure 4-5 An example of a generalization hierarchy (UML class diagram). The top of the

hierarchy represents the most general concept, whereas the bottom nodes represent the most

specialized concepts.

In both cases, generalization and specialization result in the specification of inheritance

relationships between concepts. In some instances, modelers call inheritance relationships

generalization-specialization relationships. In this book, we use the term “inheritance” to

denote the relationship and the terms “generalization” and “specialization” to denote the

activities that find inheritance relationships.

4.4. Analysis Activities: From Use Cases to Objects

In this section, we describe the activities that transform the use cases and scenarios produced

during requirements elicitation into an analysis model. Analysis activities include:

 Identifying Entity Objects

 Identifying Boundary Objects

 Identifying Control Objects

 Mapping Use Cases to Objects with Sequence Diagrams

 Identifying Associations

Ambo University WOliso Campus , STI

7 Object Oriented Software Engineering for Computer Science 2020

 Identifying Aggregates

 Identifying Attributes

 Modeling State-Dependent Behavior of Individual Objects

 Modeling Inheritance Relationships

 Reviewing the Analysis Model

4.4.1. Identifying Entity Objects

As described in Chapter 3, Requirements Elicitation, participating objects are found by

examining each use case and identifying candidate objects. Natural language analysis is an

intuitive set of heuristics for identifying objects, attributes, and associations from a requirements

specification.

Abbott’s heuristics maps parts of speech (e.g., nouns, having verbs, being verbs, adjectives) to

model components (e.g., objects, operations, inheritance relationships, classes). Table 4-1

provides examples of such mappings by examining the ReportEmergency use case (Figure 4-6).

Natural language analysis has the advantage of focusing on the users’ terms. However, it

suffers from several limitations. First, the quality of the object model depends highly on the style

of writing of the analyst (e.g., consistency of terms used, verbification of nouns). Natural

language is an imprecise tool, and an object model derived literally from text risks being

imprecise. Developers can address this limitation by rephrasing and clarifying the requirements

specification as they identify and standardize objects and terms. A second limitation of natural

language analysis is that there are many more nouns than relevant classes. Many nouns

correspond to attributes or synonyms for other nouns. Sorting through all the nouns for a large

requirements specification is a time-consuming activity. In general, Abbott’s heuristics work

well for generating a list of initial candidate objects from short descriptions, such as the flow of

events of a scenario or a use case.

Table 4-1 Abbott’s heuristics for mapping parts of speech to model components

Ambo University WOliso Campus , STI

8 Object Oriented Software Engineering for Computer Science 2020

The following heuristics can be used in conjunction with Abbott’s heuristics:

Developers name and briefly describe the objects, their attributes, and their responsibilities as

they are identified. Uniquely naming objects promotes a standard terminology. For entity objects

we recommend always to start with the names used by end users and application domain

specialists. Describing objects, even briefly, allows developers to clarify the concepts they use

and avoid misunderstandings (e.g., using one object for two different but related concepts).

Developers need not, however, spend a lot of time detailing objects or attributes given that the

analysis model is still in flux. Developers should document attributes and responsibilities if they

are not obvious; a tentative name and a brief description for each object is sufficient otherwise.

There will be plenty of iterations during which objects can be revised. However, once the

analysis model is stable, the description of each object should be as detailed as necessary

For example, after a first examination of the ReportEmergency use case , use application domain

knowledge and interviews with the users to identify the objects Dispatcher, EmergencyReport,

FieldOfficer, and Incident. Note that the EmergencyReport object is not mentioned explicitly by

name in the ReportEmergency use case. Step 4 of the use case refers to the emergency report as

the “information submitted by the FieldOfficer.” After review with the client, we discover that

this information is usually referred to as the “emergency report” and decide to name the

corresponding object EmergencyReport. The definition of entity objects leads to the initial

analysis model described in Table 5-2. Note that this model is far from a complete description of

the system implementing the ReportEmergency use case. In the next section, we describe the

identification of boundary objects.

Ambo University WOliso Campus , STI

9 Object Oriented Software Engineering for Computer Science 2020

Table 4-2 Entity objects for the ReportEmergency use case.

4.4.2. Identifying Boundary Objects

Boundary objects represent the system interface with the actors. In each use case, each actor

interacts with at least one boundary object. The boundary object collects the information from

the actor and translates it into a form that can be used by both entity and control objects.

Boundary objects model the user interface at a coarse level. They do not describe in detail the

visual aspects of the user interface. For example, boundary objects such as “menu item” or

“scroll bar” are too detailed. First, developers can discuss user interface details more easily with

sketches and mock-ups. Second, the design of the user interface continues to evolve as a

consequence of usability tests, even after the functional specification of the system becomes

stable. Updating the analysis model for every user interface change is time consuming and does

not yield any substantial benefit.

Heuristics for identifying boundary objects

 Identify user interface controls that the user needs to initiate the use case (e.g.,

ReportEmergencyButton).

 Identify forms the users needs to enter data into the system (e.g.,

EmergencyReportForm).

 Identify notices and messages the system uses to respond to the user (e.g.,

AcknowledgmentNotice).

 When multiple actors are involved in a use case, identify actor terminals (e.g.,

DispatcherStation) to refer to the user interface under consideration.

Ambo University WOliso Campus , STI

10 Object Oriented Software Engineering for Computer Science 2020

 Do not model the visual aspects of the interface with boundary objects (user mock-ups

are better suited for that).

 Always use the end user’s terms for describing interfaces; do not use terms from the

solution or implementation domains.

Table 4-3 Boundary objects for the ReportEmergency use case.

4.4.3. Identifying Control Objects

Control objects are responsible for coordinating boundary and entity objects. Control objects

usually do not have a concrete counterpart in the real world. Often a close relationship exists

between a use case and a control object; a control object is usually created at the beginning of a

use case and ceases to exist at its end. It is responsible for collecting information from the

boundary objects and dispatching it to entity objects. For example, control objects describe the

behavior associated with the sequencing of forms, undo and history queues, and dispatching

information in a distributed system.

Initially, the developers model the control flow of the ReportEmergency use case with a control

object for each actor: ReportEmergencyControl for the FieldOfficer and ManageEmergency-

Control for the Dispatcher, respectively (Table 4-4).

The decision to model the control flow of the ReportEmergency use case with two control

objects stems from the knowledge that the FieldOfficerStation and the DispatcherStation are

actually two subsystems communicating over an asynchronous link. This decision could have

Ambo University WOliso Campus , STI

11 Object Oriented Software Engineering for Computer Science 2020

been postponed until the system design activity. On the other hand, making this concept visible

in the analysis model allows us to focus on such exception behavior as the loss of

communication between both stations.

Heuristics for identifying control objects

 Identify one control object per use case.

 Identify one control object per actor in the use case.

 The life span of a control object should cover the extent of the use case or the extent of a

user session. If it is difficult to identify the beginning and the end of a control object

activation, the corresponding use case probably does not have well-defined entry and exit

conditions.

Table 4-4 Control objects for the ReportEmergency use case.

4.4.4. Mapping Use Cases to Objects with Sequence Diagrams

A sequence diagram ties use cases with objects. It shows how the behavior of a use case (or

scenario) is distributed among its participating objects. Sequence diagrams are usually not as

good a medium for communication with the user as use cases are, since sequence diagrams

require more background about the notation. For computer savvy clients, they are intuitive and

can be more precise than use cases. In all cases, however, sequence diagrams represent another

shift in perspective and allow the developers to find missing objects or grey areas in the

requirements specification.

This section, model the sequence of interactions among objects needed to realize the

use case. Figures 4-7 through 4-9 are sequence diagrams associated with the ReportEmergency

Ambo University WOliso Campus , STI

12 Object Oriented Software Engineering for Computer Science 2020

use case. The columns of a sequence diagram represent the objects that participate in the use

case. The left-most column is the actor who initiates the use case. Horizontal arrows across

columns represent messages, or stimuli, that are sent from one object to the other. Time proceeds

vertically from top to bottom. For example, the first arrow in Figure 4-7 represents the press

message sent by a FieldOfficer to an ReportEmergencyButton. The receipt of a message

triggers the activation of an operation. The activation is represented by a vertical rectangle from

which other messages can originate. The length of the rectangle represents the time the

operation is active. In Figure 4-7, the operation triggered by the press message sends a create

message to the ReportEmergencyControl class. An operation can be thought of as a service that

the object provides to other objects. Sequence diagrams also depict the lifetime of objects.

Objects that already exist before the first stimuli in the sequence diagram are depicted at the top

of the diagram. Objects that are created during the interaction are depicted with the «create»

message pointing to the object. Instances that are destroyed during the interaction have a cross

indicating when the object ceases to exist. Between the rectangle representing the object and the

cross (or the bottom of the diagram, if the object survives the interaction), a dashed line

represents the time span when the object can receive messages. The object cannot receive

messages below the cross sign. For example, in Figure 4-7 an object of class

ReportEmergencyForm is created when object of ReportEmergencyControl sends the «create»

message and is destroyed once the EmergencyReportForm has been submitted.

Figure 4-7 Sequence diagram for the ReportEmergency use case.

In general, the second column of a sequence diagram represents the boundary object with which

the actor interacts to initiate the use case (e.g., ReportEmergencyButton). The third column is a

control object that manages the rest of the use case (e.g., ReportEmergency– Control). From

Ambo University WOliso Campus , STI

13 Object Oriented Software Engineering for Computer Science 2020

then on, the control object creates other boundary objects and may interact with other control

objects as well (e.g., ManageEmergencyControl).

Figure 4-8 Sequence diagram for the ReportEmergency use case (continued from Figure 4-

7)

Figure 4-9 Sequence diagram for the ReportEmergency use case (continued from Figure 4-8).

By constructing sequence diagrams, we not only model the order of the interaction among

the objects, we also distribute the behavior of the use case. That is, we assign responsibilities to

each object in the form of a set of operations. These operations can be shared by any use case in

which a given object participates. Note that the definition of an object that is shared across two

or more use cases should be identical; that is, if an operation appears in more than one sequence

diagram, its behavior should be the same.

Ambo University WOliso Campus , STI

14 Object Oriented Software Engineering for Computer Science 2020

Heuristics for drawing sequence diagrams

 The first column should correspond to the actor who initiated the use case.

 The second column should be a boundary object (that the actor used to initiate the use

case).

 The third column should be the control object that manages the rest of the use case.

 Control objects are created by boundary objects initiating use cases.

 Boundary objects are created by control objects.

 Entity objects are accessed by control and boundary objects.

 Entity objects never access boundary or control objects; this makes it easier to share

entity objects across use cases.

4.4.5. Identifying Associations

Whereas sequence diagrams allow developers to represent interactions among objects over time,

class diagrams allow developers to describe the interdependencies of objects. We described the

UML class diagram notation in Chapter 2, Modeling with UML, and use it throughout the book

to represent various project artifacts (e.g., activities, deliverables). In this section, we discuss the

use of class diagrams for representing associations among objects.

An association shows a relationship between two or more classes. For example, a FieldOfficer

writes an EmergencyReport (see Figure 5-13). Identifying associations has two advantages. First,

it clarifies the analysis model by making relationships between objects explicit (e.g., an

EmergencyReport can be created by a FieldOfficer or a Dispatcher). Second, it enables the

developer to discover boundary cases associated with links. Boundary cases are exceptions that

must be clarified in the model. For example, it is intuitive to assume that most

EmergencyReports are written by one FieldOfficer. However, should the system support

EmergencyReports written by more than one? Should the system allow for anonymous

EmergencyReports? Those questions should be investigated during analysis by discussing them

with the client or with end users.

Associations have several properties:

 A name to describe the association between the two classes. Association names are

optional and need not be unique globally.

Figure 4-11 An example of association between the EmergencyReport and the FieldOfficer

classes.

Ambo University WOliso Campus , STI

15 Object Oriented Software Engineering for Computer Science 2020

 A role at each end, identifying the function of each class with respect to the associations

(e.g., author is the role played by FieldOfficer in the Writes association).

 A multiplicity at each end, identifying the possible number of instances (e.g., * indicates

a FieldOfficer may write zero or more EmergencyReports, whereas 1 indicates that each

EmergencyReport has exactly one FieldOfficer as author).

Initially, the associations between entity objects are the most important, as they reveal

more information about the application domain. According to Abbott’s heuristics (see

Table 4-1), associations can be identified by examining verbs and verb phrases denoting a

state (e.g., has, is part of, manages, reports to, is triggered by, is contained in, talks to,

includes). Every association should be named, and roles should be assigned to each end.

Heuristics for identifying associations

 Examine verb phrases.

 Name associations and roles precisely.

 Use qualifiers as often as possible to identify namespaces and key attributes.

 Eliminate any association that can be derived from other associations.

 Do not worry about multiplicity until the set of associations is stable.

 Too many associations make a model unreadable.

4. 4.6. Identifying Aggregates

Aggregations are special types of associations denoting a whole–part relationship. For example,

a FireStation consists of a number of FireFighters, FireEngines, Ambulances, and a LeadCar. A

State is composed of a number of Counties that are, in turn, composed of a number of Townships

(Figure 4-12). An aggregation is shown as a association with a diamond on the side of the whole

part.

There are two types of aggregation, composition and shared. A solid diamond denotes

composition. A composition aggregation indicates that the existence of the parts depends on the

whole. For example, a County is always part of exactly one State, a Township is always part of a

County. As political boundaries do not change often, a Township will not be part of or shared

with another County (at least, in the life time of the emergency response system).

A hollow diamond denotes a shared aggregation relationship, indicating the whole and

the part can exist independently. For example, although a FireEngine is part of at most one

FireStation at the time, it can be reassigned to a different FireStation during its life time.

Ambo University WOliso Campus , STI

16 Object Oriented Software Engineering for Computer Science 2020

Figure 4-12 Examples of aggregations and compositions (UML class diagram). A State is

composed of many Counties, which in turn is composed of many Townships. A FireStation

includes FireFighters, FireEngines, Ambulances, and a LeadCar.

Aggregation associations are used in the analysis model to denote whole–part concepts.

Aggregation associations add information to the analysis model about how containment

concepts in the application domain can be organized in a hierarchy or in a directed graph.

Aggregations are often used in the user interface to help the user browse through many

instances. For example, in Figure 4-12, FRIEND could offer a tree representation for

Dispatchers to find Counties within a State or Townships with a specific County. However, as

with many modeling concepts, it is easy to over-structure the model. If you are not sure that the

association you are describing is a whole–part concept, it is better to model it as a one-to-many

association, and revisit it later when you have a better understanding of the application domain.

4. .4.7. Identifying Attributes

Attributes are properties of individual objects. For example, an EmergencyReport, as described

in Table 4-2, has an emergency type, a location, and a description property (see Figure 5-16).

These are entered by a FieldOfficer when she reports an emergency and are subsequently

tracked by the system. When identifying properties of objects, only the attributes relevant to the

system should be considered. For example, each FieldOfficer has a social security number that

is not relevant to the emergency information system. Instead, FieldOfficers are identified by

badge number, which is represented by the badgeNumber property.

Figure 4-13 Attributes of the EmergencyReport class.

Ambo University WOliso Campus , STI

17 Object Oriented Software Engineering for Computer Science 2020

Properties that are represented by objects are not attributes. For example, every

EmergencyReport has an author that is represented by an association to the FieldOfficer class.

Developers should identify as many associations as possible before identifying attributes to

avoid confusing attributes and objects. Attributes have:

 A name identifying them within an object. For example, an EmergencyReport may have

a reportType attribute and an emergencyType attribute. The reportType describes the

kind of report being filed (e.g., initial report, request for resource, final report). The

emergencyType describes the type of emergency (e.g., fire, traffic, other). To avoid

confusion, these attributes should not both be called type.

 A brief description.

 A type describing the legal values it can take. For example, the description attribute

of an EmergencyReport is a string. The emergencyType attribute is an enumeration that

can take one of three values: fire, traffic, other. Attribute types are based on predefined

basic types in UML.

Note that attributes represent the least stable part of the object model. Often, attributes are

discovered or added late in the development when the system is evaluated by the users. Unless

the added attributes are associated with additional functionality, the added attributes do not

entail major changes in the object (and system) structure. For these reasons, the developers need

not spend excessive resources in identifying and detailing attributes that represent less important

aspects of the system. These attributes can be added later when the analysis model or the user

interface sketches are validated.

Heuristics for identifying attributes

 Examine possessive phrases.

 Represent stored state as an attribute of the entity object.

 Describe each attribute.

 Do not represent an attribute as an object; use an association instead (see Section 5.4.6).

 Do not waste time describing fine details before the object structure is stable.

4.4.8. Modeling State-Dependent Behavior of Individual Objects.

Sequence diagrams are used to distribute behavior across objects and to identify operations.

Sequence diagrams represent the behavior of the system from the perspective of a single use

case. State machine diagrams represent behavior from the perspective of a single object.

Viewing behavior from the perspective of each object enables the developer to build a more

formal description of the behavior of the object, and consequently, to identify missing use cases.

By focusing on individual states, developers may identify new behavior. For example, by

examining each transition in the state machine diagram that is triggered by a user action, the

developer should be able to identify a flow step in a use case that describes the actor action that

Ambo University WOliso Campus , STI

18 Object Oriented Software Engineering for Computer Science 2020

triggers the transition. Note that it is not necessary to build state machines for every class in the

system. Only objects with an extended lifespan and state-dependent behavior are worth

considering. This is almost always the case for control objects, less often for entity objects, and

almost never for boundary objects.

Figure 4-14 displays a state machine for the Incident class. The examination of this state

machine may help the developer to check if there are use cases for documenting, closing, and

archiving Incidents. By further refining each state, the developer can add detail to the different

user actions that change the state of an incident. For example, during the Active state of an

indicate, FieldOfficers should be able to request new resources, and Dispatchers should be

able to allocate resource to existing incidents.

Figure 4-14 UML state machine for Incident.

Ambo University WOliso Campus , STI

19 Object Oriented Software Engineering for Computer Science 2020

4.4.9.Modeling Inheritance Relationships between Objects

Generalization is used to eliminate redundancy from the analysis model. If two or more classes

share attributes or behavior, the similarities are consolidated into a superclass. For example,

Dispatchers and FieldOfficers both have a badgeNumber attribute that serves to identify them

within a city. FieldOfficers and Dispatchers are both PoliceOfficers who are assigned

different functions. To model explicitly this similarity, we introduce an abstract PoliceOfficer

class from which the FieldOfficer and Dispatcher classes inherit (see Figure 4-15).

Figure 4-15 An example of inheritance relationship (UML class diagram).

4.4.10. Reviewing the Analysis Model

The analysis model is built incrementally and iteratively. The analysis model is seldom correct

or even complete on the first pass. Several iterations with the client and the user are necessary

before the analysis model converges toward a correct specification usable by the developers for

design and implementation. For example, an omission discovered during analysis will lead to

adding or extending a use case in the requirements specification, which may lead to eliciting

more information from the user.

Once the number of changes to the model are minimal and the scope of the changes localized,

the analysis model becomes stable. Then the analysis model is reviewed, first by the developers

(i.e., internal reviews), then jointly by the developers and the client. The goal of the review is to

make sure that the requirements specification is correct, complete, consistent, and unambiguous.

Moreover, developers and client also review if the requirements are realistic and verifiable. Note

that developers should be prepared to discover errors downstream and make changes to the

specification. It is, however, a worthwhile investment to catch as many requirements errors

upstream as possible. The review can be facilitated by a checklist or a list of questions.

The following questions should be asked to ensure that the model is correct:

 Is the glossary of entity objects understandable by the user?

 Do abstract classes correspond to user-level concepts?

 Are all descriptions in accordance with the users’ definitions?

Ambo University WOliso Campus , STI

20 Object Oriented Software Engineering for Computer Science 2020

 Do all entity and boundary objects have meaningful noun phrases as names?

 Do all use cases and control objects have meaningful verb phrases as names?

 Are all error cases described and handled?

The following questions should be asked to ensure that the model is consistent:

 Are there multiple classes or use cases with the same name?

 Do entities (e.g., use cases, classes, attributes) with similar names denote similar

concepts?

 Are there objects with similar attributes and associations that are not in the same

generalization hierarchy?

The following questions should be asked to ensure that the system described by the analysis

model is realistic:

 Are there any novel features in the system? Were any studies or prototypes built to

ensure their feasibility?

 Can the performance and reliability requirements be met? Were these requirements

verified by any prototypes running on the selected hardware?

4.4.11. Documenting Analysis

The RAD(Requirement Analysis Documenting), once completed and published, will be

baselined and put under configuration management. The revision history section of the RAD will

provide a history of changes including the author responsible for each change, the date of the

change, and brief description of the change.

Ambo University WOliso Campus , STI

21 Object Oriented Software Engineering for Computer Science 2020

Figure 4-15 Overview outline of the Requirements Analysis Document (RAD). See Figure 4-16

for a detailed outline.

