
Ambo University WOliso Campus , STI

1 Object Oriented Software Engineering for Computer Science 2020

Chapter Five: Object oriented System Design

5.1. Introduction
 System design is the transformation of an analysis model into a system design model. During

system design, developers define the design goals of the project and decompose the system into

smaller subsystems that can be realized by individual teams. Developers also select strategies for

building the system, such as the hardware/software strategy, the persistent data management

strategy, the global control flow, the access control policy, and the handling of boundary

conditions. The result of system design is a model that includes subsystem decomposition and a

clear description of each of these strategies.

System design is not algorithmic. Developers have to make trade-offs among many design goals

that often conflict with each other. They also cannot anticipate all design issues that they will

face because they do not yet have a clear picture of the solution domain. System design is

decomposed into several activities, each addressing part of the overall problem of decomposing

the system:

 Identify design goals. Developers identify and prioritize the qualities of the system that

they should optimize.

 Design the initial subsystem decomposition. Developers decompose the system into

smaller parts based on the use case and analysis models. Developers use standard

architectural styles as a starting point during this activity.

 Refine the subsystem decomposition to address the design goals. The initial

decomposition usually does not satisfy all design goals. Developers refine it until all

goals are satisfied.

5.2. An overview of system design.

Analysis results in the requirements model described by the following products:

 a set of nonfunctional requirements and constraints, such as maximum response time,

minimum throughput, reliability, operating system platform, and so on

 a use case model, describing the system functionality from the actors’ point of view

 an object model, describing the entities manipulated by the system

 a sequence diagram for each use case, showing the sequence of interactions among

objects participating in the use case.

The design goals are derived from the nonfunctional requirements. Design goals guide the

decisions to be made by the developers when trade-offs are needed. The subsystem

decomposition constitutes the bulk of system design. Developers divide the system into

manageable pieces to deal with complexity: each subsystem is assigned to a team and realized

independently. For this to be possible, developers need to address system-wide issues when

decomposing the system. In this chapter, we describe the concept of subsystem decomposition

and discuss examples of generic system decompositions called “architectural styles.” In the next

chapter, we describe how the system decomposition is refined to meet specific design goals.

Figure 5-1 depicts the relationship of system design with other software engineering activities.

Ambo University WOliso Campus , STI

2 Object Oriented Software Engineering for Computer Science 2020

Figure 5-1 the activities of system design (UML activity diagram).

5.3 System design concepts.
5.3.1 Subsystems and Classes

In order to reduce the complexity of the application domain, we identified smaller parts called

“classes” and organized them into packages. Similarly, to reduce the complexity of the solution

domain, we decompose a system into simpler parts, called “subsystems,” which are made of a

number of solution domain classes. A subsystem is a replaceable part of the system with well-

defined interfaces that encapsulates the state and behavior of its contained classes. A subsystem

typically corresponds to the amount of work that a single developer or a single development

team can tackle. By decomposing the system into relatively independent subsystems,

concurrent teams can work on individual subsystems with minimal communication overhead. In

the case of complex subsystems, we recursively apply this principle and decompose a

subsystem into simpler subsystems (see Figure 5-2)

Figure 5-2 Subsystem decomposition (UML class diagram)

 5.3.2 Services and Subsystem Interfaces

A subsystem is characterized by the services it provides to other subsystems. A service is a set

of related operations that share a common purpose. A subsystem providing a notification

service, for example, defines operations to send notices, look up notification channels, and

subscribe and unsubscribe to a channel. The set of operations of a subsystem that are available

Ambo University WOliso Campus , STI

3 Object Oriented Software Engineering for Computer Science 2020

to other subsystems form the subsystem interface. The subsystem interface includes the name

of the operations, their parameters, their types, and their return values. System design focuses

on defining the services provided by each subsystem that is, enumerating the operations, their

parameters, and their high-level behavior. Object design will focus on the application

programmer interface (API), which refines and extends the subsystem interfaces. The API

also includes the type of the parameters and the return value of each operation.

5.3.3 Coupling and Cohesion

Coupling is the number of dependencies between two subsystems. If two subsystems are

loosely coupled, they are relatively independent, so modifications to one of the subsystems will

have little impact on the other. If two subsystems are strongly coupled, a modification to one

subsystem is likely to have impact on the other. A desirable property of subsystem

decomposition is that subsystems are as loosely coupled as reasonable. This minimizes the

impact that errors or future changes in one subsystem have on other subsystems.

Cohesion is the number of dependencies within a subsystem. If a subsystem contains many

objects that are related to each other and perform similar tasks, its cohesion is high. If a

subsystem contains a number of unrelated objects, its cohesion is low. A desirable property of

subsystem decomposition is that it leads to subsystems with high cohesion.

5.4 System design activities: From objects to subsystems

System design consists of transforming the analysis model into the design model that takes into

account the nonfunctional requirements described in the requirements analysis document. This

material illustrates these activities with an example, MyTrip, a route planning system for car

drivers. We start with the analysis model from MyTrip; then we describe the identification of

design goals (Section 5.4.1) and the design of initial system decomposition (Section 5.4.2).

6.4.1 Identifying Design Goals

The definition of design goals is the first step of system design. It identifies the qualities that our

system should focus on. Many design goals can be inferred from the nonfunctional requirements

or from the application domain. Others will have to be elicited from the client. It is, however,

necessary to state them explicitly such that every important design decision can be made

consistently following the same set of criteria.

Design goals for MyTrip

 Reliability: MyTrip should be reliable [generalization of nonfunctional requirement 2].

 Fault Tolerance: MyTrip should be fault tolerant to loss of connectivity with the routing

service [rephrased nonfunctional requirement 2].

 Security: MyTrip should be secure, i.e., not allow other drivers or nonauthorized users

to access a driver’s trips [deduced from application domain].

 Modifiability: MyTrip should be modifiable to use different routing service

[anticipation of change by developers].
6.4.2 Identifying Subsystems

The initial subsystem decomposition should be derived from the functional requirements. For

example, in the MyTrip system, we identify two major groups of objects: those that are involved

during the PlanTrip use case and those that are involved during the ExecuteTrip use case. The

Trip, Direction, Crossing, Segment, and Destination classes are shared between both use cases.

This set of classes is tightly coupled as it is used as a whole to represent a Trip. We decide to

assign them with PlanningService to the PlanningSubsystem, and the remainder f the classes are

Ambo University WOliso Campus , STI

4 Object Oriented Software Engineering for Computer Science 2020

assigned to the RoutingSubsystem (Figure 6-29). This leads to only one association crossing

subsystem boundaries. Note that this subsystem decomposition is a repository in which the

PlanningSubsystem is responsible for the central data structure.

Another heuristic for subsystem identification is to keep functionally related objects together. A

starting point is to assign the participating objects that have been identified in each use case to

the subsystems. Some group of objects, as the Trip group in MyTrip, are shared and used for

communicating information from one subsystem to another. We can either create a new

subsystem to accommodate them or assign them to the subsystem that creates these objects.
Heuristics for grouping objects into subsystems

 Assign objects identified in one use case into the same subsystem.

 Create a dedicated subsystem for objects used for moving data among subsystems.

 Minimize the number of associations crossing subsystem boundaries.

 All objects in the same subsystem should be functionally related.

5.5 Documenting system design

System design is documented in the System Design Document (SDD). It describes design goals

set by the project, subsystem decomposition (with UML class diagrams), hardware/software

mapping (with UML deployment diagrams), data management, access control, control flow

mechanisms, and boundary conditions. The SDD is used to define interfaces between teams of

developers and serve as a reference when architecture-level decisions need to be revisited. The

audience for the SDD includes the project management, the system architects (i.e., the

developers who participate in the system design), and the developers who design and implement

each subsystem. Figure 5-3 is an example template for a SDD.

The first section of the SDD is an Introduction. Its purpose is to provide a brief overview of the

software architecture and the design goals. It also provides references to other documents and

traceability information (e.g., related requirements analysis document, references to existing

systems, constraints impacting the software architecture).

The second section, Current software architecture, describes the architecture of the system

being replaced. If there is no previous system, this section can be replaced by a survey of current

architectures for similar systems. The purpose of this section is to make explicit the background

information that system architects used, their assumptions, and common issues the new system

will address.

The third section, Proposed system architecture, documents the system design model of the new

system. It is divided into seven subsections:

 Overview presents a bird’s-eye view of the software architecture and briefly describes

the assignment of functionality to each subsystem.

 Subsystem decomposition describes the decomposition into subsystems and the

responsibilities of each. This is the main product of system design.

 Hardware/software mapping describes how subsystems are assigned to hardware and

off-the-shelf components. It also lists the issues introduced by multiple nodes and

software reuse.

 Persistent data management describes the persistent data stored by the system and the

data management infrastructure required for it. This section typically includes the

description of data schemes, the selection of a database, and the description of the

encapsulation of the database.

Ambo University WOliso Campus , STI

5 Object Oriented Software Engineering for Computer Science 2020

 Access control and security describes the user model of the system in terms of an

access matrix. This section also describes security issues, such as the selection of an

authentication mechanism, the use of encryption, and the management of keys.

 Global software control describes how the global software control is implemented. In

particular, this section should describe how requests are initiated and how subsystems

synchronize. This section should list and address synchronization and concurrency

issues.

 Boundary condition describes the start-up, shutdown, and error behavior of the

system. (If new use cases are discovered for system administration, these should be

included in the requirements analysis document, not in this section.)

The fourth section, Subsystem services, describes the services provided by each subsystem.

Although this section is usually empty or incomplete in the first versions of the SDD, this

section serves as a reference for teams for the boundaries between their subsystems. The

interface of each subsystem is derived from this section and detailed in the Object Design

Document.

The SDD is written after the initial system decomposition is done; that is, system architects

should not wait until all system design decisions are made before publishing the document. The

SDD, moreover, is updated throughout the process when design decisions are made or problems

are discovered. The SDD, once published, is baselined and put under configuration management.

The revision history section of the SDD provides a history of changes as a list of changes,

including author responsible for the change, date of change, and brief description of the change.

Figure 5-3 Example outline for the System Design Document (SDD).

5.6 An overview of object design

Conceptually, software system development fills the gap between a given problem and an

existing machine. The activities of system development incrementally close this gap by

identifying and defining objects that realize part of the system.

Ambo University WOliso Campus , STI

6 Object Oriented Software Engineering for Computer Science 2020

Analysis reduces the gap between the problem and the machine by identifying objects

representing problem-specific concepts. During analysis the system is described in terms of

external behavior such as its functionality (use case model), the application domain concepts it

manipulates (object model), its behavior in terms of interactions (dynamic model), and its

nonfunctional requirements.

System design reduces the gap between the problem and the machine in two ways. First, system

design results in a virtual machine that provides a higher level of abstraction than the machine.

This is done by selecting off-the-shelf components for standard services such as middleware,

user interface toolkits, application frameworks, and class libraries. Second, system design

identifies off-the-shelf components for application domain objects such as reusable class

libraries of banking objects.

After several iterations of analysis and system design, the developers are usually left with

a puzzle that has a few pieces missing. These pieces are found during object design. This

includes identifying new solution objects, adjusting off-the-shelf components, and precisely

specifying each subsystem interface and class. The object design model can then be partitioned

into sets of classes that can be implemented by individual developers.

Figure 5-4 Object design closes the gap between application objects identified during

requirements and off-the-shelf components selected during system design (stylized UML class

diagram)

Object design includes four groups of activities

 Reuse. Off-the-shelf components identified during system design are used to help in the

realization of each subsystem. Class libraries and additional components are selected

for basic data structures and services. Design patterns are selected for solving common

problems and for protecting specific classes from future change. Often, components

and design patterns need to be adapted before they can be used. This is done by

Ambo University WOliso Campus , STI

7 Object Oriented Software Engineering for Computer Science 2020

wrapping custom objects around them or by refining them using inheritance. During all

these activities, the developers are faced with the same buy-versus-build trade-offs they

encountered during system design

 Interface specification. During this activity, the subsystem services identified during

system design are specified in terms of class interfaces, including operations, arguments,

type signatures, and exceptions. Additional operations and objects needed to transfer

data among subsystems are also identified. The result of service specification is a

complete interface specification for each subsystem. The subsystem service

specification is often called subsystem API (Application Programmer Interface)

 Restructuring. Restructuring activities manipulate the system model to increase code

reuse or meet other design goals. Each restructuring activity can be seen as a graph

transformation on subsets of a particular model. Typical activities include transforming

N-ary associations into binary associations, implementing binary associations as

references, merging two similar classes from two different subsystems into a single

class, collapsing classes with no significant behavior into attributes, splitting complex

classes into simpler ones, and/or rearranging classes and operations to increase the

inheritance and packaging. During restructuring, we address design goals such as

maintainability, readability, and understandability of the system model.

 Optimization. Optimization activities address performance requirements of the system

model. This includes changing algorithms to respond to speed or memory requirements,

reducing multiplicities in associations to speed up queries, adding redundant

associations for efficiency, rearranging execution orders, adding derived attributes to

improve the access time to objects, and opening up the architecture, that is, adding

access to lower layers because of performance requirements.

Object design is not sequential. Although each group of activities described above

addresses a specific object design issue, they usually occur concurrently. A specific off-the-

shelf component may constrain the number of types of exceptions mentioned in the

specification of an operation and thus may impact the subsystem interface. The selection of

a component may reduce the implementation work while introducing new “glue” objects,

which also need to be specified. Finally, restructuring and optimizing may reduce the

number of components to be implemented by increasing the amount of reuse in the system.

Usually, interface specification and reuse activities occur first, yielding an object design

model that is then checked against the use cases that exercise the specific subsystem.

Restructuring and optimization activities occur next, once the object design model for the

subsystem is relatively stable. Focusing on interfaces, components, and design patterns

results in an object design model that is much easier to modify. Focusing on optimizations

first tends to produce object design models that are rigid and difficult to modify.

 5.7. Object design concepts

 5.7.1. Reuse Concepts: Solution Objects, Inheritance, and Design Patterns

As we saw in Chapter 2, Modeling with UML, class diagrams can be used to model both the

application domain and the solution domain. Application objects, also called “domain

objects,” represent concepts of the domain that are relevant to the system. Solution objects

represent components that do not have a counterpart in the application domain, such as

persistent data stores, user interface objects, or middleware. During analysis, we identify entity

objects and their relationships, attributes, and operations. Most entity objects are application

Ambo University WOliso Campus , STI

8 Object Oriented Software Engineering for Computer Science 2020

objects that are independent of any specific system. During analysis, we also identify solution

objects that are visible to the user, such as boundary and control objects representing forms and

transactions defined by the system. During system design, we identify more solution objects in

terms of software and hardware platforms. During object design, we refine and detail both

application and solution objects and identifies additional solution objects needed to bridge the

object design gap.

5.7.2.Specification Inheritance and Implementation Inheritance

During analysis, we use inheritance to classify objects into taxonomies. This allows us to

differentiate the common behavior of the general case, that is, the superclass (also called the

“base class”), from the behavior that is specific to specialized objects, that is, the subclasses

(also called the “derived classes”). The focus of generalization (i.e., identifying a common

superclass from a number of existing classes) and specialization (i.e., identifying new

subclasses given an existing superclass) is to organize analysis objects into an understandable

hierarchy. Readers of the analysis model can start from the abstract concepts, grasp the core

functionality of the system, and make their way down to concrete concepts and review

specialized behavior. For example, when examining the analysis model for the FRIEND

emergency response system described in Chapter 3, Requirements Elicitation, we first focus on

understanding how the system deals with Incidents in general, and then move to the differences

in handling Traffic Accidents or Fires.

The focus of inheritance during object design is to reduce redundancy and enhance

extensibility. By factoring all redundant behavior into a single superclass, we reduce the risk of

introducing inconsistencies during changes (e.g., when repairing a defect) since we have to

make changes only once for all subclasses. By providing abstract classes and interfaces that are

used by the application, we can write new specialized behavior by writing new subclasses that

comply with the abstract interfaces. For example, we can write an application manipulating

images in terms of an abstract Image class, which defines all the operations that all Images

should support, and a series of specialized classes for each image format supported by the

application (e.g., GIFImage, JPEGImage). When we need to extend the application to a new

format, we only need to add a new specialized class.

5.8. Object design activities

System design and object design introduce a strange paradox in the development process. On the

one hand, during system design, we construct solid walls between subsystems to manage

complexity by breaking the system into smaller pieces and to prevent changes in one subsystem

from affecting other subsystems. On the other hand, during object design, we want the software

to be modifiable and extensible to minimize the cost of future changes. These are conflicting

goals: we want to define a stable architecture to deal with complexity, but we also want to allow

flexibility to deal with change later in the development process. This conflict can be solved by

anticipating change and designing for it, as sources of later changes tend to be the same for

many systems:

 New vendor or new technology. Commercial components used to build the system are

often replaced by equivalent ones from a different vendor. This change is common and

generally difficult to cope with. The software marketplace is dynamic, and vendors might

go out of business before your project is completed.

 New implementation. When subsystems are integrated and tested together, the overall

system response time is, more often than not, above performance requirements. System

Ambo University WOliso Campus , STI

9 Object Oriented Software Engineering for Computer Science 2020

performance is difficult to predict and should not be optimized before integration.

Developers should focus on the subsystem services first. This triggers the need for more

efficient data structures and algorithms—often under time constraints.

 New views. Testing the software with real users uncovers many usability problems.

These often translate into the need to create additional views on the same data.

 New complexity of the application domain. The deployment of a system triggers ideas

of new generalizations: a bank information system for one branch may lead to the idea

of a multi-branch information system. The application domain itself might also

increase in complexity: previously, flight numbers were associated with one plane, and

one plane only, but with air carrier alliances, one plane can now have a different flight

number from each carrier.

 Errors. Many requirements errors are discovered when real users start using the system

5.8.1. Encapsulating Data Stores with the Bridge Pattern

Consider the problem of incrementally developing, testing, and integrating subsystems realized

by different developers. Subsystems may be completed at different times, delaying the

integration of all subsystems until the last one is completed. To avoid this delay, projects often

use a stub implementation in place of a specific subsystem so that the integration tests can start

even before the subsystems are completed. In other situations, several implementations of the

same subsystem are realized, such as a reference implementation that realizes the specified

functionality with the most basic algorithms, or an optimized implementation that delivers better

performance at the cost of additional complexity. In short, a solution is needed for dynamically

substituting multiple realizations of the same interface for different uses.
5.8.2 Encapsulating Legacy Components with the Adapter Pattern

As the complexity of systems increases and the time to market shortens, the cost of software

development significantly exceeds the cost of hardware. Hence, developers have a strong

incentive to reuse code from previous projects or to use off-the-shelf components. Interactive

systems, for example, are now rarely built from scratch; they are developed with user interface

toolkits that provide a wide range of dialogs, windows, buttons, or other standard interface

objects. Interface engineering projects focus on re-implementing only part of an existing system.

For example, corporate information systems, costly to design and build, must be updated to new

client hardware. Often, only the client side of the system is upgraded with new technology; the

back end of the system left untouched. Whether dealing with off-the-shelf component or legacy

code, developers have to deal with code they cannot modify and which usually was not designed

for their system.

5.9. Managing object design

This section discusses management issues related to object design. There are two primary

management challenges during object design:

 Increased communication complexity. The number of participants involved during this

phase of development increases dramatically. The object design models and code are

the result of the collaboration of many people. Management needs to ensure that

decisions among these developers are made consistently with project goals.

 Consistency with prior decisions and documents. Developers often do not appreciate

completely the consequences of analysis and system design decisions before object

design. When detailing and refining the object design model, developers may question

some of these decisions and reevaluate them. The management challenge is to maintain

Ambo University WOliso Campus , STI

10 Object Oriented Software Engineering for Computer Science 2020

a record of these revised decisions and to make sure all documents reflect the current

state of development.

5.9. Documenting object design.

Object design is documented in the Object Design Document (ODD). It describes object design

trade-offs made by developers, guidelines they followed for subsystem interfaces, the

decomposition of subsystems into packages and classes, and the class interfaces. The ODD is

used to exchange interface information among teams and as a reference during testing. The

audience for the ODD includes system architects (i.e., the developers who participate in the

system design), developers who implement each subsystem, and testers.

There are three main approaches to documenting object design:

 Self-contained ODD generated from model. The first approach is to document the object

design model the same way we documented the analysis model or the system design

model: we write and maintain a UML model and generate the document automatically.

This document would duplicate any application objects identified during analysis. The

disadvantages of this solution include redundancy with the Requirements Analysis

Document (RAD) and a high level of effort for maintaining consistency with the RAD.

Moreover, the ODD duplicates information in the source code and requires a high level

of effort whenever the code changes. This often leads to an RAD and an ODD that are

inaccurate or out of date.

 ODD as extension of the RAD. The second approach is to treat the object design model as

an extension of the analysis model. In other terms, the object design is considered as the

set of application objects augmented with solution objects. The advantage of this

solution is that maintaining consistency between the RAD and the ODD becomes much

easier as a result of the reduction in redundancy. The disadvantages of this solution

include polluting the RAD with information that is irrelevant to the client and the user.

Moreover, object design is rarely as simple as identifying additional solution objects.

Often, application objects are changed or transformed to accommodate design goals or

efficiency concerns.

 ODD embedded into source code. The third approach is to embed the ODD into the

source code. Once the ODD becomes stable, we use the modeling tool to generate class

stubs. We describe each class interface using tagged comments that distinguish source

code comments from object design descriptions. We can then generate the ODD using a

tool that parses the source code and extracts the relevant information. Once the object

design model is documented in the code, we abandon the initial object design model. The

advantage of this approach is that the consistency between the object design model and

the source code is much easier to maintain: when changes are made to the source code,

the tagged comments are updated and the ODD regenerated. In this section, we focus

only on this approach.

The fundamental issue is one of maintaining consistency among two models and the source

code. Ideally, we want to maintain the analysis model, the object design model, and the

source code using a single tool. Objects would then be described once, and consistency

among documentation, stubs, and code would be maintained automatically.

Presently, however, UML modeling tools provide facilities for generating a document from a

model or class stubs from a model. For example, the glossary of the RAD can be generated

from the analysis model by collating the description fields attached to each class. The class

Ambo University WOliso Campus , STI

11 Object Oriented Software Engineering for Computer Science 2020

stub generation facility, called forward engineering, can be used in the self-contained ODD

approach to generate the class interfaces and stubs for each method.

Figure 5-5 Embedded ODD approach. Class stubs are generated from the object design

model. The object design model is then documented as tagged comments in the source code.

The initial object design model is abandoned and the ODD is generated from the source code

instead using a tool such as Javadoc (UML activity diagram).

