
CHAPTER ONE: INTRODUCTION

TO SE

OBJECT ORIENTED

SOFTWARE ENGINEERING

Session - 1

Requirements for this Course

You may be proficient in a programming language, but

you have no or limited experience in analysis or design

of a system

You want to learn more about the technical aspects of

analysis and design of complex software systems

Objectives of the Course
Appreciate Software Engineering:

Build complex software systems in the context of frequent change

•Understand how to
produce a high quality software system within time
while dealing with complexity and change

•Acquire technical knowledge (main emphasis)

OUTLINE

 The Nature of Software

 What is Software Engineering?.

 Software Engineering and the Engineering Profession

 Stakeholders in Software Engineering

 Software Quality

 Activities Common to Software Projects

 An Overview of Object Oriented Systems Development

 Object Basics

 Object Oriented Systems Development Life Cycle

1.1. The Nature of Software

Software is intangible
•Hard to understand development effort

Software is easy to reproduce
•Cost is in its development

- in other engineering products,
manufacturing is the costly stage

The industry is labor-intensive
Hard to automate

6

The Nature of Software ...
Untrained people can hack something together

Quality problems are hard to notice

Software is easy to modify
People make changes without fully understanding it

Software does not ‘wear out’
It deteriorates by having its design changed: erroneously, or

in ways that were not anticipated, thus making it complex
Conclusions

•Much software has poor design and is getting worse
•Demand for software is high and rising
•We are in a perpetual ‘software crisis’
•We have to learn to ‘engineer’ software

7

Types of Software
Custom

For a specific customer

Generic
Sold on open market
Often called COTS (Commercial Off The Shelf)
Shrink-wrapped

Embedded
Built into hardware
Hard to change

8

Types of Software

Differences among custom, generic and embedded

software
 Custom Generic Embedded

Number of copies in use

low medium high

Total processing power

devoted to running this type

of software

low high medium

Worldwide annual

 development effort

high medium low

9

Types of Software
Real time software

E.g. control and monitoring systems
Must react immediately
Safety often a concern

Data processing software
Used to run businesses
Accuracy and security of data are key

10

1.2 What is Software Engineering?

The process of solving customers’ problems by the

systematic development and evolution of large, high-quality

software systems within cost, time and other constraints

Other definitions:
IEEE: (1) the application of a systematic, disciplined, quantifiable approach
to the development, operation, maintenance of software; that is, the
application of engineering to software. (2) The study of approaches as in
(1).
The Canadian Standards Association: The systematic activities involved in
the design, implementation and testing of software to optimize its
production and support.

11

What is Software Engineering?…

Solving customers’ problems
This is the goal of software engineering
Sometimes the solution is to buy, not build
Adding unnecessary features does not help solve the problem
Software engineers must communicate effectively to identify and
understand the problem

Systematic development and evolution
An engineering process involves applying well understood techniques in
a organized and disciplined way
Many well-accepted practices have been formally standardized

e.g. by the IEEE or ISO
Most development work is evolution

12

What is Software Engineering?…
Large, high quality software systems

Software engineering techniques are needed
because large systems cannot be completely
understood by one person
Teamwork and co-ordination are required
Key challenge: Dividing up the work and ensuring
that the parts of the system work properly together
The end-product must be of sufficient quality

13

1.3 Software Engineering and the Engineering

Profession

The term Software Engineering was coined in
1968
People began to realize that the principles of
engineering should be applied to software
development

Engineering is a licensed profession
 In order to protect the public
Engineers design artifacts following well accepted
practices which involve the application of science,
mathematics and economics
Ethical practice is also a key tenet of the profession

14

Software Engineering and the Engineering

Profession
Ethics in Software Engineering:

Software engineers shall
•Act consistently with public interest
•Act in the best interests of their clients
•Develop and maintain with the highest standards
possible
•Maintain integrity and independence
•Promote an ethical approach in management
•Advance the integrity and reputation of the profession
•Be fair and supportive to colleagues
•Participate in lifelong learning

15

1.4 Stakeholders in Software Engineering

1. Users
Those who use the software

2. Customers
Those who pay for the software

3. Software developers

4. Development Managers

16

1.5 Software Quality...
Usability

Users can learn it and fast and get their job done easily

Efficiency
It doesn’t waste resources such as CPU time and memory

Reliability
It does what it is required to do without failing

Maintainability
It can be easily changed

Reusability
Its parts can be used in other projects, so reprogramming is not
needed

17

1.6 Activities Common to

Software Projects...
Requirements and specification

Includes
Domain analysis
Defining the problem
Requirements gathering

Obtaining input from as many sources as possible
Requirements analysis

Organizing the information
Requirements specification

Writing detailed instructions about how the software
should behave

18

Activities Common to Software Projects...

Design
Deciding how the requirements should be implemented,
using the available technology
Includes:

Systems engineering: Deciding what should be in
hardware and what in software
Software architecture: Dividing the system into
subsystems and deciding how the subsystems will interact
Detailed design of the internals of a subsystem
User interface design
Design of databases

19

Activities Common to Software Projects…

Modeling
Creating representations of the domain or the software

•Use case modeling
•Structural modeling
•Dynamic and behavioral modeling

Programming
Quality assurance

Reviews and inspections
Testing

Deployment
Managing the process

20

1.7 Difficulties and Risks in Software

Engineering

• Complexity and large numbers of details

• Uncertainty about technology

• Uncertainty about requirements

• Uncertainty about software engineering skills

• Constant change

• Deterioration of software design

• Political risks

Object-oriented analysis and design
• Object-oriented analysis and design (OOAD) is a popular

technical approach for

• analyzing, designing an application, system, or business

• by applying the object oriented paradigm and

• visual modeling throughout the development life cycles for better communication

and product quality.

• Object-oriented programming (OOP) is a method

• based on the concept of “objects",

• which are data structures that contain data,

• in the form of fields,

• often known as attributes;

• and code, in the form of procedures,

• often known as methods.

Continued…

• What is OOAD?- Object-oriented analysis and design (OOAD)

is a software engineering approach that models a system as a

group of interacting objects .

• Analysis — understanding, finding and describing concepts in the

problem domain.

• Design — understanding and defining software solution/objects

that represent the analysis concepts and will eventually be

implemented in code.

• OOAD - A software development approach that emphasizes a

logical solution based on objects.

• Software development is dynamic and always undergoing

major change.

Continued…

System development refers to all activities that go into producing

information system solution.

System development activities consist of

 system analysis,

 modelling,

 design,

 implementation,

 testing and maintenance.

A software development methodology series of processes

can lead to the development of an application.

Practices, procedures, and rules used to develop software, totally

based on system requirements

ORTHOGONAL VIEWS OF THE SOFTWARE

Two Approaches,

Traditional Approach

Objected-Oriented Approach

TRADITIONAL APPROACH

• Collection of programs or functions.

• A system that is designed for performing certain

actions.

• Algorithms + Data Structures = Programs.

• Software Development Models (Waterfall,

Spiral, Incremental, etc..)

ORTHOGONAL VIEWS OF THE SOFTWARE

Difference between Traditional and Object Oriented

Approach

Object-oriented Approach

•Object Oriented Development is a new way of

thinking about software based on abstractions

that exist in the real world as well as in the program.

•Object Oriented Development is a method of design

encompassing the process of object-oriented

decomposition and a notation for depicting logical

and physical as well as static and dynamic models of

the system under design.

OBJECT-ORIENTED APPROACH …

An approach to the solution of problems in which all

computations are performed in the context of objects.
•The objects are instances of classes, which:

-are data abstractions
-contain procedural abstractions that operate on the
objects

•A running program can be seen as a collection of objects
collaborating to perform a given task

Continued…

OBJECT ORIENTED APPROACH

• OO development offers a different model from the traditional

software based on functions and procedures.

• software is a collection of discrete object that encapsulate

their data as well as the functionality.

• Each object has attributes (properties) and method

(procedures).

• software by building self contained modules or objects that

can be easily REPLACED, MODIFIED AND REUSED.

• Objects grouped in to classes and object are responsible

for itself.

EXAMPLES OF OBJECT ORIENTED SYSTEMS

In OO system , “everything is object”.

A spreadsheet cell, bar chart, title in bar chart, report,

numbers, arrays, records, fields, files, forms,

an invoice, etc.

A window object is responsible for things like opening, sizing, and

closing itself.

A chart object is responsible for things like maintaining data and

labels even for drawing itself.

BENEFITS OF OBJECT ORIENTATION

Faster development,

Reusability,

Increased quality

modeling the real world and provides us with the stronger

equivalence of the real world‘s entities (objects).

Raising the level of abstraction to the point where application can be

implemented in the same terms as they are described.

WHY OBJECT ORIENTATION

OO Methods enables to develop set of objects that work together

software similar to traditional techniques.

It adapts to

• Changing requirements

• Easier to maintain

• More robust

• Promote greater design

• Code reuse

Continued…

Others

• Higher level of abstraction

• Seamless transition among different phases of software

development.

• Encouragement of good programming technique.

• Promotion of reusability.

TRADITIONAL APPROACH
•The traditional view of a computer program is that

of a process that has been encoded in a form that

can be executed on a computer.

• This view originated from the fact that the first

computers were developed mainly to automate a

well-defined process (i.e., an algorithm) for

numerical computation, and dates back to the first

stored-program computers.

•Accordingly, the software creation process was

seen as a translation from a description in some

‘natural’ language to a sequence of operations

that could be executed on a computer.

TRADITIONAL APPROACH

•The ‘process-centred’ approach used to software

development is called top-down functional

decomposition.

•The first step in such a design was to recognise

what the process had to deliver (in terms of input

and output of the program), which was followed by

decomposition of the process into functional

modules.

TRADITIONAL APPROACH…..
As many would argue, this paradigm is still the best

way to introduce the notion of programming to a

beginner, but as systems became more complex,

its effectiveness in developing solutions became

suspect.

•This change of perspective on part of the software

developers happened over a period of time and was

fuelled by several factors including the high cost of

development and the constant efforts to find uses for

software in new domains(OOSE).

TRADITIONAL APPROACH

The traditional approach to software development tends toward

writing a lot of code to do all the things that have to be done.

Algorithmic Centric Methodology – only the algorithm that can

accomplish the task.

Data-Centric Methodology - think about the data to build a

structure based on the algorithm

You are the only active entity and the code is just basically a lot of

building materials.

OBJECTS AND CLASSES

Objects

• The concepts of objects and classes are intrinsically

linked with each other and form the foundation of object–

oriented paradigm.

• Identity that distinguishes it from other objects in the

system.

• State that determines the characteristic properties of an

object as well as the values of the properties that the

object holds.

• Behavior that represents externally visible activities

performed by an object in terms of changes in its state.

Class

• A class represents a collection of objects having same
characteristic properties that exhibit common behavior.

• Creation of an object as a member of a class is called
instantiation.

• Thus, object is an instance of a class.

• Example: Circle – a class

x, to the center

a, to denote the radius of the circle

• Some of its operations can be defined as follows:

findArea(), method to calculate

areafindCircumference(), method to calculate

circumference

Object oriented Methodologies

• Many methodologies have been developed for object

oriented development.

• A methodology usually includes

• Notation : Graphical representation of classes and their

relationships with interactions.

• Process : Suggested set of steps to carry out for

transforming requirements into a working system.

• Tool (CASE): Software for drawings and documentation

SESSION - 2

OVERVIEW OF UNIFIED APPROACH(UA)

The unified approach (UA) is a methodology for software

development.

Booch, Rumbaugh, Jacobson methodologies gives the best

practices, processes and guidelines for OO oriented software

development.

Combines with the OMT (Object Modeling Technique
in Unified Modelling Language(UML).

 UA utilizes the unified modeling language (UML) which is a set of

notations and conventions used to describe and model an

application.

Continued…

Layered Architecture

• UA uses layered architecture to develop applications.

• Creates object that represent elements to the user through

interface or physically stored in database.

• The layered approach consists of user interface, business, access

layers.

• This approach reduces the interdependence of the user interface,

database access and business control.

• More robust and flexible system.

UML – Unified modeling language: Introduction
•UML is a notation that resulted from the unification of OMT

(Object Modeling Technique).

•The goal of UML is to provide a standard notation that can

be used by all object-oriented methods and to select and

integrate the best elements of precursor notations(OMT &

OOSE).
•For example, UML includes the use case diagrams introduced by
OOSE and uses many features of the OMT class diagrams.

•UML also includes new concepts that were not present in

other major methods at the time, such as extension

mechanisms and a constraint language.

•UML has been designed for a broad range of applications.

UML – Unified modeling language: Introduction

Hence, UML provides constructs for a broad range of

systems and activities (e.g., distributed systems, analysis,

system design, deployment).

System development focuses on three different models of

the system.

The functional model, represented in UML with use case

diagrams, describes the functionality of the system from the

user’s point of view.

The object model, represented in UML with class

diagrams, describes the structure of the system in terms of

objects, attributes, associations, and operations.

The dynamic model, represented in UML with interaction

diagrams, state diagrams, and activity diagrams,

describes the internal behavior of the system.

UML – Unified modeling language:

Introduction
• UML focuses on standard modeling language and not a

standard process.

• UML focuses the concept of

Booch, Rambaugh and

Jacobson.

• The UML is a standard graphical design for object-

oriented graphical design and a medium for presenting

important analysis and design concepts.

UML Diagrams

• Use Case Diagrams

• Class Diagrams

• Package Diagrams

• Interaction Diagrams

• Sequence

• Collaboration

• Activity Diagrams

• State Transition Diagrams

• Deployment Diagrams

USE CASE DIAGRAMS

Introduction
Use-cases are descriptions of the functionality of a system from a

user perspective.

•Depict the behaviour of the system, as it appears to an outside user.
•Describe the functionality and users (actors) of the system.

system, the use cases (functionality) they use, and

Show the relationships between the actors that use the

relationship between different use cases.

 Document the scope of the system.

 Illustrate the developer’s understanding of the user’s

requirements.

Use Case Diagrams
• A use case diagram at its simplest is a representation of

a user's interaction with the system that shows the

relationship between the user and the different use cases

in which the user is involved.

Components of use case diagram

1. Actor

 2. Use case

3: System boundary

4: Relationship

Actor
An actor instance is someone or

something outside the system that interacts with the

system.

•An actor is anything that exchanges data with the

system.

•An actor can be a user, external hardware, or

another system.

How to Find Actors

• Actors:

• Supply/use/remove information

• Use the functionality.

• Will be interested in any requirement.

• Will support/maintain the system.

• The system’s external resources.

• The other systems will need to interact with this one.

Documenting Actor Characteristics
Brief Description:

• What or who the actor represents?

• Why the actor is needed?

• What interests the actor has in the system?

Actor characteristics might influence how the system is

developed:

• The actor's scope of responsibility.

• The physical environment in which the actor will be using

the system.

• The number of users represented by this actor.

Use case

• A set of scenarios that describes an interaction between a user

and a system, including alternatives.

• Example

How to Find Use Cases

• What are the system tasks for each actor you

have identified?

• Does the actor need to be informed about certain

occurrences in the system?

• Will the actor need to inform the system about sudden,

external changes?

• Does the system supply the business with the correct

behavior?

• Can all features be performed by the use cases you have

identified?

• What use cases will support and maintain the system?

• What information must be modified or created in the

system?

Use cases types:

• System start and stop.

• Maintenance of the system (add user, …).

• Maintenance of data stored in the system.

• Functionality needed to modify behavior in the system.

System Boundary

 It is shown as a rectangle.

It helps to identify what is external versus internal, and

what the responsibilities of the system are.

The external environment is represented only by actors.

Relationship
•

•

Relationship is an association between use case and actor.

There are several Use Case relationships:

 Association

 Extend

 Generalization

 Uses

 Include

Relationship …… Continue

Association: communication between an actor and a use

case; Represented by a solid line.

• Generalization: relationship between one general use case and

a special use case (used for defining special alternatives)

• Represented by a line with a triangular arrow head toward the

parent use case.

Include Relationship

Include relationships insert additional behavior into a

base use case

use cases that are included as parts of other use cases.

Enable to factor common behavior.

The base use case explicitly incorporates the behavior of

another use case at a location specified in the base.

Extend Relationship
The extended relationship is used to indicate that use case
completely consists of the behavior of another use case at
one or specific point
use cases that extend the behavior of other core use cases.
Enable to factor variants
The base use case implicitly incorporates the behavior of
another use case at certain points called extension points
It is shown as a dotted line with an arrow point and labeled
<<extend>>

Login
Register

New User

<< extend>>

• Include: a dotted line labeled <<include>> beginning at base

use case and ending with an arrows pointing to the include use

case. The include relationship occurs when a chunk of behavior is

similar across more than one use case. Use “include” in stead of

copying the description of that behavior.

<<include>>

• Extend: a dotted line labeled <<extend>> with an

arrow toward the base case. The extending use case may

add behavior to the base use case. The base class declares

“extension points”.

<<extend>>

Example: Library management System

• A generalized description of how a system will be used.

• Provides an overview of the intended functionality of the

system

Use Case Diagrams(cont.)

Continued…

• Pay Bill is a parent use case and Bill Insurance is the child use

case. (generalization)

• Both Make Appointment and Request Medication include

Check Patient Record as a subtask.(include)

• The extension point is written inside the base case

• Pay bill; the extending class Defer payment adds the behavior

of this extension point. (extend)

 Use case Description
:Each use case may include all or part of the following

 Title or Reference Name - meaningful name of the UC

 Author/Date - the author and creation date

 Modification/Date - last modification and its date

 Purpose - specifies the goal to be achieved

 Overview - short description of the processes

 Cross References - requirements references

 Actors - agents participating

 Pre Conditions - must be true to allow execution

 Post Conditions - will be set when completes normally

 Normal flow of events - regular flow of activities

 Alternative flow of events - other flow of activities

 Exceptional flow of events - unusual situations

 Implementation issues - foreseen implementation problems

Example- Money Withdraw
Use Case: Withdraw Money

Author: G rou p 3

Date: 20-03-2020

Purpose: To withdraw some cash from user’s bank account

Overview: The use case starts when the customer inserts his
card into the system. The system requests the user PIN. The
system validates the PIN. If the validation succeeded, the
customer can choose the withdraw operation else alternative
1 – validation failure is executed. The customer enters the
amount of cash to withdraw. The system checks the amount
of cash in the user account, its credit limit. If the withdraw
amount in the range between the current amount + credit
limit the system dispense the cash and prints a withdraw
receipt, else alternative 2 – amount exceeded is executed.

Cross References: R1.1, R1.2, R7

Example- Money Withdraw ---continue

Actors: Customer

Pre Condition:
– The ATM must be in a state ready to accept transactions

– The ATM must have at least some cash on hand that it can dispense

– The ATM must have enough paper to print a receipt for at least one
transaction

Post Condition:
– The current amount of cash in the user account is the amount before

the withdraw minus the withdraw amount

– A receipt was printed on the withdraw amount

– The withdraw transaction was audit in the System log file

Typical course of events

Example- Money Withdraw ---continue

•

Object Oriented Design and
Analysis

• Alternative flow of events:

– Step 3: Customer authorization failed. Display an
error message, cancel the transaction and eject the
card.

– Step 8: Customer has insufficient funds in its account.
Display an error message, and go to step 6.

– Step 8: Customer exceeds its legal amount. Display an
error message, and go to step 6.

Exceptional flow of events:

– Power failure in the process of the transaction before step
9, cancel the transaction and eject the card

Example- Money Withdraw ---continue

SESSION - 3

Class diagram

• Used for describing structure and behavior in the use
cases

• Provides a conceptual model of the system in terms of
entities and their relationships

• Used for requirement capture, end-user interaction

• Detailed class diagrams are used for developers

Class representation

• Each class is represented by a rectangle subdivided into three
compartments

• Name

• Attributes

• Operations

• Modifiers are used to indicate visibility of attributes and operations.

• ‘+’ is used to denote Public visibility (everyone)

• ‘#’ is used to denote Protected visibility (friends and derived)

• ‘-’ is used to denote Private visibility (no one)

• By default, attributes are hidden and operations are visible.

An example of Class

OO Relationships

• There are two kinds of Relationships

• Generalization (parent-child relationship)

• Association (student enrolls in course)

• Associations can be further classified as

• Aggregation

• Composition

OO Relationships: Generalization

OO Relationships: Association

• Represent relationship between instances of classes

• Student enrolls in a course

• Courses have students

• Courses have exams

• Etc.

• Association has two ends

• Role names (e.g. enrolls)

• Multiplicity (e.g. One course can have many students)

• Navigability (unidirectional, bidirectional)

Association: Multiplicity and Roles

University

Person

1

0..1

employer

*

*

Multiplicity

Symbol Meaning

1

0..1

M..

N
*

0..*

1..*

One and only one

Zero or one

From M to N (natural language)

From zero to any positive integer

From zero to any positive integer

From one to any positive integer

teacher

Role

Role

“A given university groups many people;

some act as students, others as teachers.

A given student belongs to a single

university; a given teacher may or may not

be working for the university at a particular

time.”

student

Association: Model to Implementation

Class Student {

Course enrolls[4];

}

Class Course {

Student have[];

}

Student Course
enrolls has

* 4

OO Relationships: Composition

Class W

Class P1 Class P2

Composition: expresses a relationship

among instances

of related classes. It is a specific kind of

Whole-Part relationship.

It expresses a relationship where an instance

of the Whole-class has the responsibility to

create and initialize instances of each Part-

class.

It may also be used to express a relationship

where instances of the Part-classes have

privileged access or visibility to

certain attributes and/or behaviors defined

by the Whole-class.

Whole Class

Part Classes

Automobile

Engine Transmission

Example

OO Relationships: Aggregation

Class C

Class E1 Class E2

AGGREGATION

Aggregation: expresses a relationship among

instances of related classes. It is a specific kind of

Container-Containee relationship.

Aggregation should be used to express a more

informal relationship than composition expresses.

That is, it is an appropriate relationship where the

Container and its Containees

It expresses a relationship where an instance of the

Container-class has the responsibility to hold and

maintain instances of each Containee-class that

have been created outside the Container-class.

Containee Classes

Aggregation is appropriate when Container and

Containees have no special access privileges to each

other.

Container Class

Bag

Apples Milk

Example

Aggregation vs. Composition

•Composition is really a strong form of aggregation

•components have only one owner

•components cannot exist independent of their owner

•components live or die with their owner

e.g. Each car has an engine that can not be shared with

other cars.

•Aggregations may form "part of" the aggregate, but may not be

essential to it. They may also exist independent of the aggregate.

e.g. Apples may exist independent of the bag.

Session 3

Interaction Diagram -

Sequence diagram

Collaboration Diagram

Interaction Diagram

• From the name Interaction it is clear that the diagram is

used to describe some type of interactions among the

different elements in the model.

• So this interaction is a part of dynamic behavior of the

system.

• This interactive behavior is represented in UML by two

diagrams known as Sequence diagram and

Collaboration diagram.

• The basic purposes of both the diagrams are similar.

Sequence diagram emphasizes on time sequence of

messages and collaboration diagram emphasizes on the

structural organization of the objects that send and

receive messages.

• The purposes of interaction diagram can be describes as:

To capture dynamic behavior of a system.

To describe the message flow in the system.

To describe structural organization of the objects.

To describe interaction among objects.

Interaction Diagram

The following factors are to be identified clearly before

drawing the interaction diagram:

• Objects taking part in the interaction.

• Message flows among the objects.

• The sequence in which the messages are flowing.

•Object organization.

Example :

Making a phone call.

Sequence Diagram(Telephone call)

Sequence Diagrams – Object Life Spans

• Creation

• Create message

• Object life starts at that point

• Activation

• Symbolized by rectangular
stripes

• Place on the lifeline where object
is activated.

• Rectangle also denotes when
object is deactivated.

• Deletion

• Placing an ‘X’ on lifeline

• Object’s life ends at that point

Activation bar

A

B
Create

X
Deletion

Return

Lifeline

Collaboration Diagram

• A collaboration diagram also shows the passing of

messages between objects, but focuses on the objects

and messages and their order instead of the time

sequence.

• The sequence of interactions and the concurrent threads

are identified using sequence numbers.

• A collaboration diagram shows an interaction the

relationships among the objects playing the different roles.

• The UML Specification suggests that collaboration

diagrams are better for real-time specifications and

for complex scenarios than sequence diagrams.

Collaboration Diagram(Telephone call)

Use Case diagram – Telephone Call

Activity Diagram

Activity Diagram

• Activity Diagram – a special kind of State chart diagram,
but shows the flow from activity to activity

• Activity state –non-atomic execution, ultimately result in

some action; a composite made up of other activity/action
states; can be represented by other activity diagrams

• Action state –atomic execution, results in a change in

state of the system or the return of a value (i.e., calling
another operation, sending a signal, creating or
destroying an object, or some computation); non-
decomposable

continued…

• Activity diagram is basically a flow chart to represent the

flow form one activity to another activity.

• The activity can be described as an operation of the

system.

• So the control flow is drawn from one operation to another.

• This flow can be sequential, branched or concurrent.

• Activity diagrams deals with all type of flow control by

using different elements like fork, join etc.

• The basic purposes of activity diagrams are similar to

other four diagrams.

continued…

• It captures the dynamic behavior of the system.

• Other four diagrams are used to show the message flow

from one object to another but activity diagram is used to

show message flow from one activity to another.

• Activity diagrams are not only used for visualizing dynamic

nature of a system but they are also used to construct the

executable system by using forward and reverse

engineering techniques.

• The only missing thing in activity diagram is the message

part.

How to draw Activity Diagram?

• Activity diagrams are mainly used as a flow chart consists

of activities performed by the system.

• So before drawing an activity diagram we should identify

the following elements:

• Activities

• Association

• Conditions

• Constraints

Example : order management system

• Send order by the customer

• Receipt of the order

• Confirm order

• Dispatch order

Uses of Activity Diagrams

• Modeling work flow by using activities.

• Modeling business requirements.

• High level understanding of the system's functionalities.

• Investigate business requirements at a later stage.

Example : ATM System

