
Packages
A package is a container of classes and interfaces.
A package represents a directory that contains related group of classes and interfaces.
For example, when we write statements like: import java.io.*; Here we are importing classes of
java.io package. Here, java is a directory name and io is another sub directory within it. The ‘*’
represents all the classes and interfaces of that io sub directory.
We can create our own packages called user-defined packages or extend the available packages.
User-defined packages can also be imported into other classes and used exactly in the same way
as the Built-in packages.
Packages provide reusability.

General form for creating a package:
package packagename;
e.g.: package pack; package lubak;

The first statement in the program must be package statement while creating a package.
While creating a package except instance variables, declare all the members and the class
itself as public then only the public members are available outside the package to other
programs.

Program 1:Write a program to create a package pack with Addition class.
//creating a package
package pack;
public class Addition
{
private double d1,d2;
public Addition(double a,double b)
{
d1 = a;
d2 = b;
}
public void sum()
{
System.out.println ("Sum of two given numbers is : " + (d1+d2));
}
}
Compiling the above program:

The –d option tells the Java compiler to create a separate directory and place the .class file in that
directory (package).
The (.) dot after –d indicates that the package should be created in the current directory. So, output
package pack with Addition class is ready.

Program 2:Write a program to use the Addition class of package pack.
//Using the package pack
import pack.Addition;

class Use

{
public static void main(String args[])
{
Addition ob1 = new Addition(10,20);
ob1.sum ();
}
}
Output:……………

Program 3:Write a program to add one more class Subtraction to the same package pack.
//Adding one more class to package pack:
package pack;
public class Subtraction
{
private double d1,d2;
public Subtraction(double a, double b)
{
d1 = a;
d2 = b;
}
public void difference()
{
System.out.println ("dnce of two given numbers is : " + (d1 - d2));
}
}
Compiling the above program:……………..

Compiling the above program:

Program 4:Write a program to access all the classes in the package pack.
//To import all the classes and interfaces in a class using import pack.*;
import pack.*;
class Use
{
public static void main(String args[])
{
Addition ob1 = new Addition(10.5,20.6);
ob1.sum();
Subtraction ob2 = new Subtraction(30.2,40.11);
ob2.difference();
}
}
In this case, please be sure that any of the Addition.java and Subtraction.java programs will not
exist in the current directory. Delete them from the current directory as they cause confusion for
the Java compiler. The compiler looks for byte code in Addition.java and Subtraction.java files
and there it gets no byte code and hence it flags some errors.

Output:……………

Exceptions
 An error in a program is called bug. Removing errors from program is called debugging.
 There are basically three types of errors in the Java program:

1) Compile time errors: Errors which occur due to syntax or format is called compile time
errors. These errors are detected by java compiler at compilation time. Desk checking is
solution for compile-time errors.

2) Runtime errors: These are the errors that represent computer inefficiency. Insufficient
memory to store data or inability of the microprocessor to execute some statement is
examples to runtime errors. Runtime errors are detected by JVM at runtime.

3) Logical errors: These are the errors that occur due to bad logic in the program. These errors
are rectified by comparing the outputs of the program manually.

Exception: An abnormal event in a program is called Exception.
Exception may occur at compile time or at runtime.

A) Exceptions which occur at compile time are called Checked exceptions.
e.g.: ClassNotFoundException, NoSuchMethodException, NoSuchFieldException etc.

B) Exceptions which occur at run time are called Unchecked exceptions.
eg: ArrayIndexOutOfBoundsException, ArithmeticException, NumberFormatException etc.

Exception Handling: Exceptions are represented as classes in java.

Example 1:Program 1:Write a program which tells the use of try, catch and finally block.

// Exception example
class ExceptionExample
{
public static void main(String args[])
{
try
{
System.out.println ("open files");
int n=args.length;
System.out.println ("n="+n);
int a=45/n;
System.out.println ("a="+a);
int b[]={10,19,12,13};
b[50]=100;
}
catch (ArithmeticException ae)
{
System.out.println ("ae");
System.out.println ("plz type data while executing the program");
}

catch (ArrayIndexOutOfBoundsException aie)

{
System.out.println ("aie");
System.out.println ("please see that array index is not within the range");
}

finally
{
System.out.println ("close files");
}
}
}
Output :

 throws Clause: throws clause is useful to escape from handling an exception. throws clause
is useful to throw out any exception without handling it.

Program 2: Write a program which shows the use of throws clause.
// not handling the exception
import java.io.*;
class Sample
{
void accept()throws IOException
{
BufferedReader br=new BufferedReader (new InputStreamReader(System.in));
System.out.print ("enter ur name: ");
String name=br.readLine ();
System.out.println ("Hai "+name);
}
}
class ExceptionNotHandle
{ public static void main (String args[])throws IOException
{ Sample s=new Sample ();
s.accept ();
}}

