Civil Engineering Department                                                                               Chapter 3                                                   

3 Boundary Layer Theory 

INTRODUCTION 

In 1904 prendtl developed the concept of the boundary layer. It provides an important link between ideal- fluid flow and real-fluid flow.  For fluids having relatively small viscosity, the effect of internal friction in a fluid is appreciable only in a narrow region surrounding the fluid boundaries. From this hypothesis, the flow outside the narrow region near the solid boundaries can be considered as ideal flow or potential flow. Relation with the boundary- layer region can be computed from the general equations for vitreous fluids, but use of the momentum equation permits the developing of approximate equation for boundary- layer growth.

Description of the Boundary Layer

It was assumed that the shearing action was occurring in a fluid sandwiched between a moving belt and a stationary solid surface. The fluid was thus bounded on two sides. It may have occurred to the reader that such a situation is not common in Hydraulic engineering. Some flow (e.g. the flow of air around a building) are bounded on one side only, while others (e.g. the flow through a pipe are compliantly surrounded by a stationary solid surface To develop the boundary layer concept, it is helpful to begin with a flow bounded on one side only consider, therefore, a rectilinear flow passing over a stationary flat plate which lies parallel to the flow (Fig 3.1 a)

Fig 3- 1 Development of a boundary layer

The incident flow (i-e the flow just up stream of the plate) has a uniform velocity U∞. As the flow comes into contact with the plate, the layer of fluid immediately adjacent to the plate decelerates (due to viscous friction) and comes to rest. This follows from the postulate that in viscous fluids a thin layer of fluid actually ‘adheres’ to a solid surface. There is then a considerable shearing action between the layer of fluid on the plate surface and the second layer of fluid. The second layer is therefore forced to decelerate (though it is not quite brought to rest) creating a shearing action with the third layer of fluid, and so on. As the fluid passes further along the plate, the zone in which shearing action occurs tends to spread further out words (Fig 3-1b). This zone is known as a ‘boundary layer’ out side the boundary layer the flow remains effectively free of shear, so the fluid here is not subjected to viscosity- related forces. The fluid flow out side a boundary layer may therefore be assumed to act like an ideal fluid

Boundary layer equations 

Although the basic structure of a boundary layer is clear, the engineer usually needs a precise numerical description for each particular problem. The basic parameters and equations required will now be developed. In the interests of simplicity, this treatment will be restricted to a two- dimensional incompressible flow with constant pressure. 

A. the boundary layer thickness, δ,   is the distance in the y-direction from the solid surface to the outer edge of the boundary layer. Since the velocity distribution in the boundary layer is asymptotic to U∞, it is difficult to measure an exact value for δ. The usual convention is to assume that the edge of the boundary layer occurs where       
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B. The displacement thickness, δ*, is the distance by which a streamline is displaced due to the boundary layer. Consider the velocity distribution at a section in the boundary layer (Fig 3.2). In side boundary layer, the velocity is everywhere less than in the free stream. The discharge through this cross section is correspondingly less than the discharge through the same cross-sectional area in the free stream. This deficit in discharge can be quantified for unit width and an equation may then be developed for δ*.
                      Deficit of discharge through an element = 
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Fig 3-2 Velocity distribution in a boundary layer

In the free stream an equivalent discharge would pass through a layer of depth   δ*, so
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C. The momentum thickness
[image: image5.wmf]q

 is analogous to the displacement thickness. It may be defined as the depth of a layer in the free stream, which would pass a momentum flux equivalent to the deficit due to the boundary layer. 

                     Mass flow through element = 
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                     Deficit of momentum flux 
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                     Deficit through whole boundary layer section = 
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In the free stream, an equivalent momentum flux would pass through a layer of depth, θ, and unit width, so that 
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D.  The definition of kinetic energy thickness 
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follows the same pattern, leading to the equation 
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E.  The momentum integral equation is used to relate certain boundary layer parameters so that numerical estimates may be made. Consider the longitudinal section through a   boundary layer (Fig 3.3), the section is bounded on it outer side by a streamline, BC, and    is l m wide. The discharge across CD is
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Fig   3-3 Longitudinal Section through a boundary layer.

The momentum flux (= ρ Q x velocity) is there fore  
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As BC is a streamline, the drcharge across AB must be the same are that across CD
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   The    incident velocity at AB is U∞, so the momentum flux is 
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Boundary layers are actually very thin, so it is reasonable to assume the velocities are in the   X – direction. The loss of   momentum flux is due to the frictional shear force (FS ) at the  solid surface. Therefore 

                                             - FS = 
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 The negative sing follows from the fact that the frictional resistance acts in the opposite sense to the velocity. The equation may be rearranged to give 

                                      FS   =  
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The frictional shear at the solid surface is not a constant, but varies with X, due to the growth of the boundary layer. The shear force may therefore be expressed as 

                                             FS = 
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Where  
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 is the shear stress between the fluid and the slid surface. The momentum integral equation is therefore.

                                                  
[image: image22.wmf]q

r

t

2

0

0

¥

=

ò

U

L


3.1 BOUNDARY LAYER ALONG   A LONG THIN PLATE        AND ITS CHARACTERISTICS 

Consider a long thin plate held stationary in the direction parallel to the flow in a stream of velocity U∞ are shown in Fig 3.4 
The plate is said to be held at zero incidence to the velocity of flow and the velocity of flow is known as ‘free stream velocity’ or ‘ambient velocity’ or ‘potential velocity’ .At the leading edge of the plate the thickness of the boundary layer is zero, but on down stream, for the fluid in contact with the boundary the velocity of flow is reduced to zero and at some distance δ from the boundary the velocity is nearly U∞. Hence a velocity gradient is set up which develops shear resistance to the flow and retards the motion of the fluid. Near the leading edge of the plate the fluid is retarded in thin layer. In other words, the boundary layer near the leading edge is relatively thin. As this retarded layer of fluid moves downstream, due to continued action of shear resistance more and more fluid is retarded. Thus the thickness of the boundary layer δ goes on increasing in the down stream direction as shown in Fig 3.4 .The various factors which influence the thickness of the boundary layer forming along a flat smooth plate are noted below 
1 The boundary layer thickness increases are the distance from the leading edge increases 

2 The boundary layer thickness decreases with the increase in the velocity of flow of the approaching stream of fluid 

3 Greater is the kinematics viscosity of the fluid greater is the boundary layer thickness. 

4 The boundary layer   thickness is considerably affected by the pressure gradient (∂p/∂x) in the direction of flow. In the cese of a flat plate placed in a stream of uniform Velocity U∞ the pressure may also be assumed to be uniform i.e. (∂p/∂x) = 0 However, if the pressure gradient is negative as in the case of a converging flow and it accelerates the retarded fluid in the boundary layer. As Such the boundary layer growth is retarded in the presence of negative pressure gradient. On the other hand if the pressure gradient is positive as in the case of divergent flow the fluid in the boundary layer is further decelerated and hence assists in thickening of the boundary layer. 

        Fig 3.4 Boundary layer and velocity distribution at   

                    Successive points along a flat plate. 

As the boundary layer develops, up to a certain portion of the plate from the leading edge, the flow in the boundary layer exhibits all the characteristics of laminar flow. This is so irrespective of whether the flow of the incoming stream is laminar or turbulent. This is known as laminar boundary layer. If the plate is sufficiently long, then beyond some distance from the leading edge the laminar boundary layer becomes unstable and the flow in the boundary layer exhibits the characteristics between theses of laminar and turbulent flow. This region of the boundary layer is usually small and is known are transition region. After the transition region the flow in the boundary layer becomes turbulent. In this portion of the boundary layer there is a rapid increase in its thickness and it is known as turbulent boundary layer. If the plate is very smooth, even in the region of turbulent boundary layer, there is a very thin layer just adjacent to the boundary in which the flow is laminar. This thin layer is commonly known as laminar sub layer, and its thickness in represented by 
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  The velocity distribution in a laminar boundary layer is parabolic (U∞-u) ~ (
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; and for turbulent boundary layer the velocity distribution has been found to follow approximately either the one-seventh power law U∞2~y 1/7 or it is logarithmic U∞~ logy .For laminar sub layer the velocity distribution is parabolic, but since its thickness 
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 is usually very small, a linear distribution can be assumed. 

The change of boundary layer from laminar to turbulent mainly depend on the velocity of flow U∞ of the approaching stream of fluid, the length X measured along the plate from the lending edge, the mass density ρ of fluid and its dynamic viscosity μ. As such the Reynolds number   R ex (ρU∞ X/μ) (the suffix X indicating that it is calculated with the distance x are the characteristic length) becomes a significant parameter in indicating the change of boundary layer from laminar to turbulent. The value of Rex at which the boundary layer may change from laminar to turbulent vainer from 3 x 105 to 6 x105.

However, change of boundary layer from laminar to turbulent is also affected by several other factors such as roughness of the plate curvature, pressure, pressure gradient and intensity and scale of turbulence  

  I.   LAMINAR BOUNDARY LAYER

 For the   laminar boundary layer prandtl assumed that (trinomial velocity distribution    
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 For an assumed distribution which satisfiers the boundary conditions u = 0, y =0 and u = U∞, Y =
[image: image27.wmf]d

, the boundary – layer thickness as well as the shear at the boundary can be determined. The velocity distribution is assumed to have the same for at each value of X,  
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The prandtl assumption satisfy the boundary condition shear stress equation can be written 
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At the boundary
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  Then equate the two expressions fro 
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Since 
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is a function of X only in this equation integrating gives 
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If 
[image: image38.wmf]d

=0 for x = 0, the constant of integration is zero Solving for 
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in which Rex U∞x / ν is a Reynolds number based on the distance X from the leading edge of the plate. This equation from boundary – layer thickness in laminar flow shows that 
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increases as the squire root of the distance from the leading edge.

Substituting the value 
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 EMBED Equation.3  [image: image43.wmf]d
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The shear stress varies inversely as the square root of x and directly as the three halves power of the velocity. The drag on one side of the plate of unit with is 

                                    Fs=F Drag=  
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→Laminar boundary layer occur 

                                         (NR)L < 5 x 105 

And drag coefficient 

                                       CD    = 
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The drag can be expressed in terms of a drag coefficient CD Times the stagnation pressure ρ U∞2 /2 and the area of plate l (per unit breath) 

                                  Drag = CD  
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II. Turbulent Boundary Layer 

The momentum equation can be used to determine turbulent boundary- layer growth and shear stress along a smooth plate in a manner analogous to the treatment of the laminar boundary layer. The universal velocity- distribution law for smooth pipes provides the best basis, but the calculations are involved. A simpler approach is used prandtl one- seventh- power law .it is u/U∞ = (y/r) 1/7, in which y is measured from the wall of the pipe and ro is the pipe radios. Applying it to flat plates produces 
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The method used to calculate the laminar boundary layer gives 

                 
[image: image51.wmf](

)

dx

d

U

d

dx

d

U

d

r

h

h

h

d

r

t

2

7

/

1

1

0

2

0

72

7

7

/

1

1

¥

¥

=

-

=

ò


By equating the expressions for shear stress, the differential equation for boundary layer thickness 
[image: image52.wmf]d

 is obtained as
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After integrating and then assuming that the boundary layer is turbulent over the whole length of the plate so that the initial conditions x = 0, 
[image: image54.wmf]d

  = 0 can be used.
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The thickness increases more rapidly in the turbulent boundary layer. In it the thickness increases as x 4/5, but in the laminar boundary layer 
[image: image56.wmf]d

vainer are x1/2  

To determine the drag on a smooth, flat plate 
[image: image57.wmf]d

is eliminated in equation 
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The drag per unit width on one side of the plate is 
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Assumed a logarithmic velocity distribution for the flow in the boundary layer and obtained the semi- empirical relation as noted below 
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    3.3 SEPARATION OF BOUNDARY LAYER

A long a flat plate the boundary layer continues to grow in the down stream direction, regardless of the length of the plate, when the pressure gradient remains zero. With the pressure decreasing in the down stream direction, as in the conical reducing section the boundary layer tends to be reducing in thickness. 

For adverse pressure gradients, that are which pressure increasing in the down stream direction, the boundary layer thickens rapidly .The adverse gradient and the boundary shear decrease the momentum in the boundary layer, and if both act over a sufficient distance, they cause the boundary layer to come to rest. They cause the boundary layer to come to rest. Their phenomenon is called separation.

Fig. Boundary separation point
        Drag and lift on a sphere and cylinder   

Take an airfoil immersed in a fluid moving with velocity V

Fig. Airfoil immersed in water
F = f (A, μ, V, ρ, K) 

K = Bulls modules of elasticity of the fluid  

Analyzing the above equation then dimensional analyses established the following relation ship

      Then, 
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                                II Lift force
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Where    CD   =Dreg coefficient  

               CL    =Lift coefficient 
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 F is the resultant force 

tan
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             θ= the angle between the two forces

I.  Drag on a sphere 

At very low Reynolds number, Re≤1 there is no flow   separation from a sphere, the wave is laminar and the drag is predominantly friction drag. Stokes has shown analytically, for very low remolds number flows where inertia forces may be neglected, that drag force on a sphere of dynamometer, D, moving at speed, V, through a fluid of Viscosity,
[image: image68.wmf]m

 is given by


              FD = 3 πμVD

And   
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Cylinder

Two type of flow condition prevail when the fluid move around on stationary cylindrical members

I                                                                                 
a) Irotating uniform flow around a cylinder         b) Irotating flow of constant                                                                                              

                                                                                     Circulation around a cylinder.                                
                                                rO = Raider of cylinder

V = Uniform flow of fluid

V1 =Velocity at   angle 
[image: image72.wmf]q


       V2 = velocity when the circulation ( is there a round cylinder 

    Then 

                      V1 = 2 V sin(                       V2 =  
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                       V=V1+V2                      Assume U=V 

For stagnation points 
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The magnitude of the lift exerted on the cylinder due to the composite flow pattern may be determined by integrating over the entire surface of the cylinder, the components of the pressure forces on elementary surface areas normal to the direction of uniform flow. Applying Bernoulli’s equation between any point in the unaffected flow and any point on the surface of the cylinder, the pressure at any point on the cylinder is obtained as 
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in which P0 is the pressure in the uniform flow at some distance a head of the cylinder by substituting the value U from the above expediting 
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The lift d FL acting on an elementary surface area of the cylinder (Lr0dθ) as shown in the figure. 
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In which L is the length of the cylinder. The negative sine has been introduced because the pressure force is always directed to wards the surface, and hence for sin θ being positive its component is negative being in the vertical down ward direction the total FL exerted on the cylinder is obtained by integration are   
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    Which is reduces to a simple relationship
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