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                                                                                     Chapter one: Columns

Chapter one: Columns
1.1 Introduction
A column is a vertical structural member transmitting axial compression loads with or without moments. The cross sectional dimensions of a column are generally considerably less than its height. Column support mainly vertical loads from the floors and roof and transmit these loads to the foundation 

In construction, the reinforcement and concrete for the beam and slabs in a floor are place once the concrete has hardened; the reinforcement and concrete for the columns over that floor are placed followed by the next higher floor.

 Columns may be classified based on the following criteria:

a) Classification on the basis of geometry; rectangular, square, circular, L-shaped, T-shaped, etc. depending on the structural or architectural requirements.

b) Classification on the basis of composition; composite columns, infilled columns, etc.

c) Classification on the basis of lateral reinforcement; tied columns, spiral columns.

d) Classification on the basis of manner by which lateral stability is provided to the structure as a whole; braced columns, un braced columns. 

e) Classification on the basis of sensitivity to second order effect due to lateral displacements; sway columns, non-sway columns. 

f) Classification on the basis of degree of slenderness; short column, slender column.

g) Classification on the basis of loading: axially loaded column, columns under uni-axial bending, columns under biaxial bending.

B. Composite/Infilled Columns

a) Composite columns: columns in which steel structural members are encased in a concrete. Main reinforcement bars positioned with ties or spirals are placed around the structural member.
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Infilled columns: columns having steel pipes filled with plain concrete or lightly reinforced concrete.

C. Tied/Spiral Columns

a) Tied columns: columns where main (longitudinal) reinforcements are held in position by separate ties spaced at equal intervals along the length). Tied columns may be, square, rectangular, L-shaped, circular or any other required shape. And over 95% of all columns in buildings in non sesmic regions are tied columns.
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Fig. 1.1 Tied column and its typical arrangement
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b) Spiral columns: columns which are usually circular in cross section and longitudinal bars are wrapped by a closely spaced spiral.
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                                           Fig. 1.2 Spiral column 

Behavior of Tied and Spiral columns:

The load deflection diagrams (see Fig. 1.3) show the behavior of tied and spiral columns subjected to axial load.


[image: image2] Fig. 1.3 load deflection behavior of tied and spiral columns 

The initial parts of these diagrams are similar. As the maximum load is reached vertical cracks and crushing develops in the concrete shell outside the ties or spirals, and this concrete spalls off. When this happens in a tied column, the capacity of the core that remains is less than the load and the concrete core crushes and the reinforcement buckles outward between the ties. This occurs suddenly, with out warning, in a brittle manner.

When the shell spalls off in spiral columns, the column doesn’t fail immediately because the strength of the core has been enhanced by the tri axial stress resulting from the confinement of the core by the spiral reinforcement. As a result the column can undergo large deformations before collapses (yielding of spirals). Such failure is more ductile and gives warning to the impending failure. 

Accordingly, ductility in columns can be ensured by providing spirals or closely spaced ties.

C. Braced/Un braced Columns

a) Un braced columns
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The unbraced structure is one in which frames action is used to resist horizontal loads. In such a structure, the horizontal loads are transmitted to the foundations through bending action in the beams and columns. The moments in the columns due to this bending can substantially reduce their axial (vertical) load carrying capacity. Unbraced structures are generally quit flexible and allow horizontal displacement (see Fig). When this displacement is sufficiently large to influence significantly the column moments, the structure is termed a sway frame. 

b) Braced columns:
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Although, fully non sway structures are difficult to achieve in practice, EBCS-2 or EC-2 allows a structure to be classified as non sway if it is braced against lateral loads using substantial bracing members such as shear walls, elevators, stairwell shafts, diagonal bracings or a combination of these (See Fig.). A column with in such a non sway structure is considered to be braced and the second order moment on such column, P-∆ is negligible. This may be assumed to be the case if the frame attracts not more than 10% of the horizontal loads.

E. Sway/Non-Sway Columns

a) Sway frame

A frame may be considered as sway if the effects of horizontal displacements of its nodes (p-∆) are significant to be considered in design. In sway frame, the bending moment the column is increased by an additional amount P∆, where p is the axial force and ∆ is the relative displacements of the ends of the column (see Fig. 1.4). Thus to maximize the axial load capacity of columns, non sway structures should be used whenever possible.

b) Non-sway frame

A frame may be considered as non-sway if its response to in-plane horizontal forces is sufficiently stiff so that the additional internal forces or moments arising from horizontal displacements of its nodes can be neglected in design. 

A frame may be classified as non-sway for a given load case if the critical load ratio for that load case satisfies the criterion:
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 Where: Nsd is the design value of the total vertical load

             Ncr is its critical value for failure in a sway mode

In Beam-and-column type plane frames in building structures with beams connecting each column at each story level may be classified as non-sway for a given load case, when first-order theory is used, the horizontal displacements in each story due to the design loads (both horizontal and vertical), plus the initial sway imperfection  satisfy the following criteria. 
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Where:

(   is the horizontal displacement at the top of the story, relative to the bottom of the story

L   is the story height

H   is the total horizontal reaction at the bottom of the story 

N is the total vertical reaction at the bottom of the story,

For frame structures, the effects of imperfections may be allowed for in frame analysis by means of an equivalent geometric imperfection in the form of an initial sway imperfection (assuming that the structure is inclined to the vertical at an angle) ( determined by:

(a) For single storey frames or for structures loaded mainly at the top

               tan (=1/150

(b) For other types of frames

                tan ( =1/200

Where the effects of imperfections are smaller than the effects of design horizontal actions, their influence may be ignored. Imperfections need not be considered in accidental combinations of actions.

The displacement ( in the above equation shall be determined using stiffness values for beams and columns corresponding to the ultimate limit state. As an approximation, displacements calculated using moment of inertia of the gross section may be multiplied by the ratio of the gross column stiffness Ig to the effective column stiffness Ie (see the following section) to obtain (. 

All frames including sway frames shall also be checked for adequate resistance to failure in non-sway modes 

Determination of storey Buckling Load Ncr
Unless more accurate methods are used, the buckling load of a story may be assumed to be equal to that of the substitute beam-column frame defined in Fig. and may be determined as:
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 EMBED Equation.3  
Where: EIe is the effective stiffness of the substitute column designed using the equivalent reinforcement area.

             Le is the effective length. It may be determined using the stiffness properties of the gross concrete section for both beams and columns of the substitute frame (see Fig.) 

In lieu of a more accurate determination, the effective stiffness of a column EIe may be taken as:

Ele = 0.2EcIc + EsIs


Where:

Ec   =   1100fcd 

Es        is the modulus of elasticity of steel

Ic, Is, are the moments of inertia of the concrete and reinforcement sections, respectively, of the substitute column, with respect to the centroid of the concrete section (see Fig. 1.6c)

or alternatively
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Where:   Mb  is the balanced moment capacity of the substitute column 

             1/rb is the curvature at balanced load and may be taken as 
[image: image7.wmf]3

b

10

d

5

r

1

-

÷

ø

ö

ç

è

æ

=


The equivalent reinforcement areas, As,tot, in the substitute column to be used for calculating Is and Mb may be obtained by designing the substitute column at each floor level to carry the story design axial load and amplified sway moment at the critical section. The equivalent column dimensions of the substitute column may be taken as shown in Fig, below, in the case of rectangular columns. Circular columns may be replaced by square columns of the same cross-sectional area. In the above, concrete cover and bar arrangement in the substitute columns shall be taken to be the same as those of the actual columns.

The amplified sway moment, to be used for the design of the substitute column, may be found iteratively taking the first-order design moment in the substitute column as an initial value.

In lieu of more accurate determination, the first-order design moment, Mdl, at the critical section of the substitute column may be determined using:          
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 Where α1 and α2 are defined before and shall not exceed 10.
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Fig. 1.6 Substitute multi storey beam-column frame

F, Short/Slender Columns

a) Short columns
They are columns with low slenderness ratio and their strengths are governed by the strength of the materials and the geometry of the cross section. 

b) Slender columns
They are columns with high slenderness ratio and their strength may be significantly reduced by lateral deflection. 

When an unbalanced moment or as moment due to eccentric loading is applied to a column, the member responds by bending as shown in Fig. below. If the deflection at the centre of the member is ( and at the centre there is a force P, then a total moment is M + P(. The second order bending component P(  is due to the extra eccentricity of the axial load which results from the deflection. If the column is short ( is small and this second order moment is negligible. If on the other hand, the column is long and slender, ( is large and P( must be calculated and added to the applied moment M. 
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Fig.1.7 

Slenderness Ratio
The significance of P( (i.e. whether a column is short or slender) is defined by a slenderness ratio. 

In EBCS 2, the slenderness ratio is defined as follows:

a) For isolated columns, the slenderness ratio is defined by:
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        Where:     Le is the effective buckling length

    i is the minimum radius of gyration. The radius of gyration is equal to 
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        Where:   I is the second moment of area of the section

                     A is cross sectional area

b) For multistory sway frames comprising rectangular sub frames, the following expression may be used to calculate the slenderness ratio of the columns in the same story. 
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Where:  A is the sum of the cross-sectional areas of all the columns of the story

    Kl-is the total lateral stiffness of the columns of the story (story rigidity), with modulus of elasticity taken as unity 

     L-is the story height

Limits of Slenderness

· The slenderness ratio of concrete columns shall not exceed 140

· Second order moment in a column can be ignored if

a) For sway frames, the greater of
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b) For non-sway frames
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Where M1 and M2 are the first-order (calculated) moments at the ends, M2 being always positive and greater in magnitude than M1, and M1 being positive if member is bent in single curvature and negative if bent in double curvature

Effective Length of Columns

Effective buckling length is the length between points of inflection of columns and it is the length which is effective against buckling. The greater the effective length, the more likely the column is to be buckle.

The effective length of the column Le can be determined from Fig. 1.8, alignment charts (see Fig. 1.9), or using approximate equations.

a) Figure is used when the support conditions of the column can be closely represented by those shown in the figure below.
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Fig. 1.8 Effective length factors for centrally loaded columns with various idealized conditions
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The alignment chart (see Fig. 1.9) is used for members that are parts of a framework. The effect of end restrained is quantified by the two end restrain factors α1 and α2
           
[image: image18.wmf]b

b

cm

col

col

cm

L

I

E

L

I

E

or

/

/

)

 

(

2

1

å

å

=

b

a

a

       

Where Ecm  is modulus of elasticity of concrete

 Lcol is column height

 Lb is span of the beam

 Icol, Ib are moment of inertia of the column and beam respectively

 ( is factor taking in to account the condition of restraint of the beam at the opposite end

( = 1.0 opposite end elastically or rigidly restrained

( = 0.5 opposite end free to rotate

( = 0 for cantilever beam
Note that: If the end of the column is fixed, the theoretical value of α is 0, but α value of 1 is recommended for use.  On the other hand, if the end of the member is pinned, the theoretical value of α is infinity, but α value of 10 is recommended for use.  The rational behind the foregoing recommendations is that no support in reality can be truly fixed or pinned.
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      Fig. 1.9 Alignment Charts/Nomograph for effective length of columns in continuous frames  

c) The following approximate equations can be used provided that the values of α1 and α2 don’t exceed 10 (see EBCS 2).

(a) Non-sway mode
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(b) In Sway mode
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Or Conservatively,
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Where α1 and α2 are as defined above and αm is defined as: 
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Note that: for flat slab construction, an equivalent beam shall be taken as having the width and thickness of the slab forming the column strip.

G. Classification of Columns on the Basis of Loading

a) Axially loaded columns
They are columns subjected to axial or concentric load with out moments. They occur rarely.

When concentric axial load acts on a short column, its ultimate capacity may be obtained, recognizing the nonlinear response of both materials, from:

                 Pdo = fcd (Ag – Ast) + Ast fyd
Where Ag-is gross concrete area

            Ast-is total reinforcement area

When concentric axial load acts on a long column (
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             Pdul = Cr pdo where 
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b) Column under uni-axial bending  

Almost all compression members in concrete structures are subjected to moments in addition to axial loads. These may be due to the load not being centered on the column or may result from the column resisting a portion of the unbalanced moments at the end of the beams supported by columns.

When a member is subjected to combined axial compression pd and moment Md, it is more convenient to replace the axial load and the moment with an equivalent pd applied at eccentricity ed as shown below.
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 Fig. 1.10 Equivalent eccentricity of column load

Interaction diagram 

The presence of bending in axially loaded members can reduce the axial load capacity of the member
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To illustrate conceptually the interaction between moment and axial load in a column, an idealized homogenous and elastic column with a compressive strength, fcu, equal to its tensile strength, ftu, will be considered. For such a column failure would occurs in a compression when the maximum stresses reached fcu as given by:
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Dividing both sides by fcu gives:


[image: image28.wmf]1

=

+

I

f

My

A

f

P

cu

cu


The maximum axial load the column could support is obtained when M = 0, and is Pmax = fcu A. 

Similarly the maximum moment that can be supported occurs when P=0 and is Mmax = fcu I /C. 

Substituting Pmax and Mmax gives:
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This is known as interaction equations because it shows the interaction or relationship between P and M at failure. It is plotted as line AB (see Fig.). A similar equation for a tensile load, P, governed by ftu, gives line BC in the figure. The plot is referred to as an interaction diagram.

Points on the lines represent combination of P and M corresponding to the resistance of the section. A point inside the diagram such as E represents a combination of P and M that will not cause failure. Load combinations falling on the line or outside the line, such as point F will equal or exceed the resistance of the section and hence will cause failure.

Interaction Diagrams for Reinforced concrete Columns

Since reinforced concrete is not elastic and has a tensile strength that is lower than its compressive strength, the general shape of the diagram resembles Fig. 1.11   

[image: image30.jpg]P, -axis Axis of bending

& <& _10.0035

Compression controls

0.0035

2

€ =€, = E
Balanced condition

0.0035
M, M, M, - axis E &>€

Compression
controls

Balanced strain
P condition

Tension
controls

J

M, bending moment Tension controls




      Fig. 1.11 Interaction diagram for column in combined bending and axial load

Balanced condition: For a given cross section the design axial force Pb acts at one specific eccentricity eb to cause failure by simultaneous yielding of tension steel and crushing of concrete (see Fig. 1.11)

Tension failure controls: For a very large eccentricity of the axial force Pn, the failure is triggered by yielding of the tension steel.  The horizontal axis corresponds to an infinite value of e, i.e. pure bending at moment capacity Mo (see Fig. 1.11)

Compression failure controls: For a very small eccentricity of the axial force Pn, the failure is governed by concrete compression. The vertical axis corresponds to e = 0 and Po is the capacity of the column if concentrically loaded (see Fig. 1.11) 
Interaction diagrams for columns are generally computed by assuming a series of strain distributions, each corresponding to a particular point on the interaction diagram, and computing the corresponding values of P and M (strain compatibility analysis).

The calculation process can be illustrated as follow for one particular strain distribution.
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In the actual design, interaction charts prepared for uniaxial bending can be used. The procedure involves:

· Assume a cross section, d’ and evaluate 
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Compute:

· Normal force ratio: 
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· Moment ratios:  
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· Select suitable chart which satisfy
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 ratio:

· Enter the chart and pick ( (the mechanical steel ratio), if the coordinate ((, () lies with in the families of curves. If the coordinate ((, () lies out side the chart, the cross section is small and a new trail need to be made.

· Compute 
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· Check Atot satisfies the maximum and minimum provisions 

· Determine the distribution of bars in accordance with the charts requirement 

c) Column under Bi-axial bending

There are situations in which axial compression is accompanied by simultaneous bending about both principal axes of the section. This is the case in corner columns, interior or edge columns with irregular column layout. For such columns, the determination of failure load is extremely laborious and making manual computation difficult. 

Consider the Rc column section shown under axial force p acting with eccentricities ex and ey, such that ex = My/p, ey = Mx/p from centroidal axes (Fig. 1.12c).

In Fig. 1.12a the section is subjected to bending about the y axis only with eccentricity ex. The corresponding strength interaction curve is shown as Case (a) (see Fig. 1.12d). Such a curve can be established by the usual methods for uni-axial bending. Similarly, in Fig. 1.12b the section is subjected to bending about the x axis only with eccentricity ey. 
The corresponding strength interaction curve is shown as Case (b) (see Fig. 1.12d). For case (c), which combines x and y axis bending, the orientation of the resultant eccentricity is defined by the angle (:
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Bending for this case is about an axis defined by the angle ( with respect to the x-axis. For other values of (, similar curves are obtained to define the failure surface for axial load plus bi-axial bending.

Any combination of Pu, Mux, and Muy falling out side the surface would represent failure. Note that the failure surface can be described either by a set of curves defined by radial planes passing through the Pn axis or by a set of curves defined by horizontal plane intersections, each for a constant Pn, defining the load contours (see Fig. 1.12d).
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Fig. 1.12 Interaction diagram for compression plus bi-axial bending

Computation commences with the successive choice of neutral axis distance c for each value of q. Then using the strain compatibility and stress-strain relationship, bar forces and the concrete compressive resultant can be determined. Then Pn, Mnx, and Mny (a point on the interaction surface) can be determined using the equation of equilibrium (see below).


[image: image41.wmf](1*)

        

          

          

          

          

          

          

P

 

 

P

 

P

 

 

P

    

    

0

 

 

F

st

sc

c

n

h

+

+

=

Þ

=

å


where: 
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Since the determination of the neutral axis requires several trials, the procedure using the above expressions is tedious. Thus, the following simple approximate methods are widely used.

a) Load contour method: It is an approximation on load versus moment interaction surface (see Fig. 1.12). Accordingly, the general non-dimensional interaction equation of family of load contours is given by:     
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Where:  Mdx = pd ey
             Mdy   =  pd ex
             Mdxo = Mdx when Mdy = 0 (design capacity under uni-axial bending about x) 

             Mdyo = Mdy when Mdx = 0 (design capacity under uni-axial bending about y) 

b) Reciprocal method/Bresler’s equation: It is an approximation of bowl shaped failure surface by the following reciprocal load interaction equation.
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  Where: Pd = design (ultimate) load capacity of the section with eccentricities edy and edx
              Pdxo = ultimate load capacity of the section for uni axial bending with edx only (edy = 0)

         Pdyo = ultimate laod capacity of the section for uni axial bending with edy only (edx = 0)

          Pdo = concentric axial load capacity (edx = edy = 0)
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However interaction charts prepared for biaxial bending can be used for actual design. The procedure involves:

· Select cross section dimensions h and b and also h’ and b’

· Calculate 
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   (range of values of 0.05, 0.1, 0.15, …, 0.25 are available)
· Compute:

· Normal force ratio:   
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· Moment ratios:  
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· Select suitable chart which satisfy
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 ratio:

· Enter the chart to obtain (
· Compute 
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· Check Atot satisfies the maximum and minimum provisions 

· Determine the distribution of bars in accordance with the charts requirement

Circular columns

When load eccentricities are small, spirally reinforced columns show greater ductility (greater  toughness) than tied columns. However the difference fades out as the eccentricity is increased.

Interaction Diagram for Circular columns

The strain compatibility solution described in the preceding section can also be used to calculate the points on an interaction diagram for circular columns

Consider the following circular cross section reinforced with 6 longitudinal bars
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Calculations can be carried out in the same way as in the previous section except that for circular columns the concrete compression zone subject to the equivalent rectangular stress distribution has the shape of a segment of a circle (see above).

To compute the compressive force and its moment about the centroid of the column, it is necessary to be able to compute the area and centroid of the segment.
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The area of the segment is:
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The moment of this area about the centre of the column is:
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Where ( is expressed in radians.

The shape of interaction diagram of a circular column is affected by the number of bars and their orientation relative to the direction of the neutral axis. Thus the moment capacity about axis x-x (see above) is less than that about axis y-y.

Since the designer has little control over the arrangement of bars in a circular column, the interaction diagram should be computed using the least favorable bar orientation. But for circular columns with more than 8 bars, this problem vanishes as the bar placement approaches a continuous ring.

Design or analysis of spirally reinforced columns is usually carried out by means of design aids.

Design of columns as per EBCS 2

I. General

The internal forces and moments may generally be determined by elastic global analysis using either first order theory or second order theory.

b) First-order theory, using the initial geometry of the structure, may be used in the following cases

· Non-sway frames 

· Braced frames                                            

· Design methods which make indirect allowances for second-order effects.

c) Second-order theory, taking into account the influence of the deformation of the structure, may be used in all cases.

II. Design of Non sway Frames

Individual non-sway compression members shall be considered to be isolated elements and be designed accordingly.

Design of Isolated Columns

For buildings, a design method may be used which assumes the compression members to be isolated. The additional eccentricity induced in the column by its deflection is then calculated as a function of slenderness ratio and curvature at the critical section

Total eccentricity

1. The total eccentricity to be used for the design of columns of constant cross-section at the critical section is given by:
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Where: ee is equivalent constant first-order eccentricity of the design axial load

     ea is the additional eccentricity allowance for imperfections. For isolated columns:
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   e2  is the second-order eccentricity 

First order equivalent eccentricity 

1. For first-order eccentricity e0 is equal at both ends of a column
ee = eo

2. [image: image94.jpg]


For first-order moments varying linearly along the length, the equivalent eccentricity is the higher of the following two values:

ee = 0.6e02 + 0.4eo1


         ee = 0.4e0
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where  e01 and e02  are the first-order eccentricities at the ends, e02 being positive and greater in magnitude than e01. 

            e01 is positive if the column bents in single curvature  and negative if the column bends in double curvature.

3. For different eccentrics at the ends, (2) above, the critical end section shall be checked for first order moments:

etot = e02 + ea


Second order eccentricity 

1. The second-order eccentricity e2 of an isolated column may be obtained as
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Where Le is the effective buckling length of the column

K1= (/20 - 0.75    for 
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K1= 1.0 for ( >35 

l/r is the curvature at the critical section.

2. The curvature is approximated by:
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where   d is the effective column dimension in the plane of buckling 

k2 =Md /Mb
Md is the design moment at the critical section including second-order effects 

Mb  is the balanced moment capacity of the column.

3. The appropriate value of k2 may be found iteratively taking an initial value corresponding to first-order actions.

III. Design of Sway Frames.

The second order effects in the sway mode can be accounted using either of the following two methods:

a) Second-order elastic global analysis: When this analysis is used, the resulting forces and moment may directly be used for member design.

b) Amplified Sway Moments Method: In this method, the sway moments found by a first-order analysis shall be increased by multiplying them by the moment magnification factor:
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where    Nsd is the design value of the total vertical load

  Ncr is its critical value for failure in a sway mode.

The amplified sway moments method shall not be used when the critical load ratio 
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Sway moments are those associated with the horizontal translation of the top of story relative to the bottom of that story. They arise from horizontal loading and may also arise from vertical loading if either the structure or the loading is asymmetrical.

As an alternative to determining 
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 direct, the following approximation may be used in beam and-column type frames
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where (, L, H and N are as defined before.

In the presence of torsional eccentricity in any floor of a structure, unless more accurate methods are used, the sway moments due to torsion should be increased by multiplying them by the larger moment magnification factor (s, obtained for the two orthogonal directions of the lateral loads acting on the structure.

Effect of Creep


Creep effects may be ignored if the increase in the first-order bending moments due to creep deformation and longitudinal force does not exceed 10%.

The effect of creep can be accounted by:

a) For isolated columns in non-sway structures, creep may be allowed for by multiplying the curvature for short-term loads( see the expression of curvature in second order eccentricity)  by (1 + (d), where (d, is the ratio of dead load design moment to total design moment, always taken as positive.

b) For sway frames, the effective column stiffness may be divided by (1 + (d), where (d, is as defined above.

Slender columns bent about the major axis

A slender column bent about the major axis may be treated as bi-axially loaded with initial eccentricity ea acting about the minor axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

Biaxial Bending of Columns

a) Small Ratios of Relative Eccentricity

     Columns of rectangular cross-section which are subjected to biaxial bending may be checked separately for uni-axial bending in each respective direction provided the relative eccentricities are such that k 
[image: image73.wmf]£

 0.2; where k denotes the ratio of the smaller relative eccentricity to the larger relative eccentricity.

The relative eccentricity, for a given direction, is defined as the ratio of the total eccentricity, allowing for initial eccentricity and second-order effects in that direction, to the column width in the same direction.

b) Approximate Method 

Columns of rectangular cross-section which are subjected to biaxial bending may be checked separately for uni-axial bending in each respective.

If the above condition is not satisfied, the following approximate method of calculation can be used, in the absence of more accurate methods. 

For this approximate method, one-fourth of the total reinforcement must either be distributed along each face of the column or at each corner. The column shall be designed for uni-axial bending with the following equivalent uni-axial eccentricity of load, eeq along the axis parallel to the larger relative eccentricity:
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where    etot denotes the total eccentricity in the direction of the larger relative eccentricity

               k   denotes the relative eccentricity ratio as defined in above.

                     α   may be obtained from the following table  as a function of the relative normal force 
[image: image75.wmf]c

cd

u

sd

A

f

N

=

u

 

	(
	0


	0.2


	0.4


	0.6


	0.8


	
[image: image76.wmf]³

1.0



	α
	0.6


	0.8


	0.9


	0.7


	0.6


	0.5




Detailing

Size: The minimum lateral dimension of a column shall be at least 150 mm.

Longitudinal Reinforcement:

a) The area of longitudinal reinforcement shall neither be less than 0.008Ac nor more than 0.08AC. The upper limit shall be observed even where bars overlap. 

b) For columns with a larger cross-section than required by considerations of loading, a reduced effective area not less than one-half die total area may be used to determine minimum reinforcement and design strength

c) The minimum number of longitudinal reinforcing bars shall be 6 for bars in a circular arrangement and 4 for bars in a rectangular arrangement

d) The diameter of longitudinal bars shall not be less than 12 mm

Lateral Reinforcement

a) The diameter of ties or spirals shall not be less than 6 mm or one quarter of the diameter of the longitudinal bars.

b) The center-to-center spacing of lateral reinforcement shall not exceed:

· 12 times the minimum diameter of longitudinal bars.

· least dimension of column

· 300 mm

c) Ties shall be arranged such that every bar or group of bars placed in a corner and alternate longitudinal bar shall have lateral support provided by the corner of a tie with an included angle of not more than 1350 and no bar shall be further than 150 mm clear on each side along the tie from such a laterally supported bar( see Fig. )

d) Up to five longitudinal bars in each corner may be secured against lateral buckling by means of the main ties. The center-to-center distance between the outermost of these bars and the corner bar shall not exceed 15 times the diameter of the tie (see Fig.)

smax  =   350 mm

e) Spirals or circular ties may be used for longitudinal bars located around the perimeter of a circle. The pitch of spirals shall not exceed 100 mm.
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                    a)  Measurement between laterally                                (b) Requirements for main 

                               supported column bars                                               and intermediate ties

       Fig. 1.13
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Sample Design charts taken from EBCS 2, part 2
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Fig. 1.4 Sway frame/unbraced columns
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Fig.1.5 Non-sway frame/braced columns
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