

<u>**Retaining walls:**</u> are structures used to provide lateral stability of earth or other material where conditions disallow the mass to assume its natural slope.

6.1. Common Types of retaining walls

- 1.Gravity walls:
 - Made of plain concrete or stone masonry.
 - Depends upon its weight for stability.
 - Trapezoidal in section with the base projecting beyond the face and back of the wall.
 - No tensile stress in any portion of the wall.
 - Economically used for walls less than 6m high.

2. Cantilever walls

- Made of reinforced concrete material.
- Inverted T-shaped in section with each projecting acts as a cantilever.
- Economically used for walls 6 to 7.5m high.

3. Counter fort walls

- Made of reinforced concrete materials
- Consists of cantilever wall with vertical brackets known as counter fort placed behind face of wall
- Ordinarily used for walls height greater than 6.0m

6.2. Common Proportions of Retaining walls

The usual practice in the design of retaining walls is to assign tentative dimensions and then check for the overall stability of the structure.

ii) Cantilever wall

6.3. Forces on Retaining Walls

The forces that should be considered in the design of retaining walls include

- Active and passive earth pressures
- Dead weight including the weight of the wall and portion of soil mass that is considered to act on the retaining structure
- Surcharge including live loads, if any
- Water pressure, if any
 - Contact pressure under the base of the structure

6.4. Stability of Retaining Walls

Retaining walls should be designed to provide adequate stability against sliding, overturning, foundation bearing failure and overall or deep foundation failure.

1. Sliding stability

Horizontal resisting force Horizontal sliding force F_R

 P_{Ah}

Factor of safety \geq 1.5 for granular soils Factor of safety \geq 2.0 for cohesive soils

Sum of moments to resist overturning

Sum of overturning moments

Factor of safety =

Factor of safety \geq 1.5 for granular backfill Factor of safety \geq 2.0 for cohesive backfill

If the line of action of the resultant force on wall acts within the middle third width of the base, wall is safe against overturning M_{s}

 M_{a}

3. Foundation stability 6*e* Rv 1+ q_t Where e = eccentricity of R_v $q_t \leq q_{all}$, qall = qult/F.S F.S = Factor of safety = 2 and 3 for granular and cohesivesoils, respectively.

Deep foundation failure (Overall stability)

If layer of weak soil is located within a depth of about 1 ½ times the height of the retaining wall the overall stability of retaining wall should be investigated.

E.g. using Swedish circle method.