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Instructional Objectives: 
 

At the end of this lesson, the student should be able to: 
 
• analyse rectangular slabs simply supported at three edges and free at the 

other edge considering the two possible yield patterns, employing (i) the 
method of segmental equilibrium and (ii) the method of virtual work, 

• analyse square slab with forking yield patterns when the corners are having 
inadequate reinforcement, 

• predict yield lines of fan pattern for slabs in case this may be a possibility,  
• analyse the fan pattern of yield lines to determine the collapse loads of 

triangular and circular slabs with different support conditions, 
• analyse the fan pattern of yield lines to determine the collapse loads of 

circular slabs clamped along the circumference and having a column support 
at the centre. 

 
 
12.32.1  Introduction 
 
 Rectangular / square slabs may have different yield patterns depending on 
the support conditions and type of loads. Simply supported slabs at three edges 
and free at the other edge may have two types of yield patterns depending on the 
ratio of moment resisting capacities and the aspect ratio. This lesson first takes 
up such slabs to determine the condition for selecting a particular one out of the 
two possible yield patterns. The case of a square slab having forking yield 
pattern is explained when the corner reinforcement is inadequate. Several cases 
of triangular and circular slabs with or without a central column support are taken 
up to explain the yield lines of fan pattern. 
 
 All the expressions are derived by employing the method of either 
segmental equilibrium or virtual work. In some cases both the methods are taken 
up to compare the values. 
 
 
12.32.2 Rectangular Slabs Simply Supported at Three 
Edges and Free at the Other  Edge Considering Yield 
Pattern 1  
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Figure 12.31.4c of Lesson 31 shows the yield pattern 1 of such slabs 
involving one additional unknown y. So, there are two unknowns – y and w to be 
determined. The yield pattern divides the slab into three segments marked by 1, 
2 and 3 (Fig.12.32.1a). The slab carrying uniformly distributed load of w kN/m2, 
undergoes deflection of Δ at point E. The free body diagrams of segments 1 and 
2 are shown in Figs.12.32.1b and c, respectively. Due to symmetry, segments 1 
and 3 are identical. Segment 1 is subdivided into two parts as 11 and 12. We 
employ the method of segmental equilibrium first. 
 
 
(A) Method of segmental equilibrium 
 
 Here, the nodal forces are zero since the moment capacities of three 
intersecting yield lines are identical. The equilibrium equation of segment 1 is 
developed taking the moments of loads and moments of segment 1 about AB, 
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and equating the same to zero. Thus, we get: (Lx/2) (Ly – y) w (Lx / 4) + (Lx /4)y 
w (Lx / 6) – Mx Ly = 0, 
 
or w = (24 Mx Ly) / {3Lx2 (Ly – y) + Lx

2 y}    
 (12.41) 
 
Similarly, the equilibrium equation of segment 2 is developed by taking moment 
of loads and moments of segment 2 about the base BC and equating the same 
to zero, which gives:  (Lx / 2) y w (y/3) – My Lx = 0 
 
or w = 6 My / y2         
 (12.42) 
 
Equating the expression of w from Eqs.12.41 and 12.42, we get: 
 24 Mx Ly / {3Lx

2 (Ly – y) + Lx
2 y} = 6My / y2

 
or 4 Mx Ly y2 + 2My Lx

2 y – 3 My Lx
2 Ly = 0    

 (12.43) 
 
The solution of Eq. 12.43 is  
 

y = [-2 My Lx
2 + {4 My

2 Lx
4 + 48 Mx My Lx

2 Ly
2}1/2] / 8Mx Ly  

 (12.44) 
 
After getting the value of y from Eq. 12.44, the value of the collapse load w is 
obtained from either Eq. 12.41 or Eq. 12.42. The condition that y < Ly gives: 
(- 2)(My/Mx) Lx

2 + {(4) (My/Mx)2 Lx
4 + 48(My / Mx) Lx

2 Ly
2} < 8Ly

2

 
or  My / Mx < 4 (Ly/Lx)2       
 (12.45) 
 
 
(B) The method of virtual work 
 
Referring to Figs.12.32.1a, b and c, total external work done by the loads of three 
segments TEW is as follows: TEW = 2w [(Lx/2) (Ly-y) (Δ/2) + (Lx/2)y (Δ/3)] 
 
or        TEW = w Lx (3Ly – y) (Δ/6)       
 (12.46) 
 
Total internal work done by the yield moments TIW is: TIW = 2 Mx (Ly) θx + My (y) 
θy.

Using θx = 2Δ / Lx and θy = Δ/y, we have 
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 TIW = Δ {4Mx (Ly/Lx) + My (Lx/y)}    
 (12.47) 

 
From the two equations of TEW and TIW (Eqs. 12.46 and 12.47), we have 
 
  w = (24 Mx Ly y + (My Lx

2) / {Lx
2 (3y Ly – y2)}  

 (12.48) 
 
This is the only equation in the method of virtual work to determine y and the 
collapse load w. Differentiating w with respect to y and equating that to zero to 
get the lowest w, we have: Lx

2 (3y Ly – y2) (24 Mx Ly) – (24 Mx Ly y + 6My Lx
2) Lx

2 
(3Ly – 2y) = 0 

 
or 4 Mx Ly y2 + 2 My Lx

2 y – 3My Lx
2 Ly = 0    

 (12.43) 
 
 Thus, the method of virtual work gives the same equation (Eq. 12.43) as 
that obtained by the method of segmental equilibrium. After getting the value of y 
from Eq. 12.44, the value of the collapse load w is obtained from Eq. 12.48. 
 
 
12.32.3 Rectangular Slabs Simply Supported at Three 
Edges and Free at the Other Edge Considering Yield Pattern 
2 
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Figure 12.31.4d of Lesson 31 shows that yield pattern 2 of such slabs 

involving one additional unknown x. So, there are two unknowns – x and w to 
determine. The yield pattern divides the slab into three segments marked by 1, 2 
and 3. The slab, carrying the uniformly distributed load of w kN/m2, undergoes 
deflection of Δ along EF (Fig.12.32.2a). Free body diagrams of segments 1 and 2 
are shown in Figs.12.32.2b and c, respectively. Due to symmetry, segments 1 
and 3 are identical. Segment 2 is further subdivided into three parts 21, 22 and 
23, of which sub-segments 21 and 23 are also symmetrical. We consider the 
method of segmental equilibrium first.  

 
(A) Method of segmental equilibrium 
 
 The nodal forces on the left and right of point E of the yield line BE are (+) 
V, acting downward and (-) V, acting upward, respectively. Similarly, nodal forces 
on the left and right of point F of yield line CF are (-) V, acting upward and (+) V, 
acting downward, respectively. The magnitude of the nodal force, as given in 
Eq.12.23 of Lesson 31, is 
 
 V = My cot α = My (AE/AB) = My (x/Ly)    
 (12.49) 
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We now develop the equilibrium equation of segment 1 taking moments of loads 
and moments of segment 1 about AB and equating the same to zero. 
 
 w (x/2) Ly (x/3) + Vx – Mx Ly = 0, which gives,  
 
            w = 6 (MxLy

2 – My x2) / (x2 Ly
2)                                                   

(12.50) 
 
Similarly, the equilibrium equation of segment 2 is developed by taking moment 
of loads and forces of segment 2 about BC and equating the same to zero. 
 
2 w (x/2) (Ly) (Ly/3) + w (Lx – 2x) Ly (Ly/2) – 2V Ly – 2My x = 0 , which gives, 
 
 w = (24 My x) / { Ly

2 (3Lx – 4x)}     
 (12.51) 
 
Equating the two expressions of w from Eqs.12.50 and 12.51, we have, 
 

)xL(L

xM

Lx

)xMLM(6

xy

y

y

yyx

43

24
222

22

−
=

−
 

 
or  3(My / Mx) Lx x2 + 4 Ly

2 x – 3Ly
2 Lx = 0    

 (12.52) 
 
The solution of the above equations is: 
 

x = [- 4Ly
2 + {16 Ly

4 + 36 (My / Mx) Lx
2 Ly

2}1/2] / {6 Lx (My / Mx)} 
 (12.53) 
 
From Fig. 12.32.2a, it is evident that x < Lx / 2. So, we get from Eq. 12.53 for the 
condition that x < Lx/2, 
 

- 4 Ly
2 + {16 Ly

4 + 36 (My / Mx) Lx
2 Ly

2}1/2 〈 (Lx / 2) (6 Lx) (My /Mx), which 
finally gives 

 
 (My / Mx) > (4/3) (Ly / Lx)2       
 (12.54) 
 
Therefore, Eq. 12.54 shall be used to confirm if yield pattern 2 is possible or not. 
After getting the value of x from Eq. 12.53 (the solution of Eq. 12.52), the 
collapse load w is determined either from Eq. 12.50 or from Eq. 12.51. 
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(B) Method of virtual work 
 
Referring to Figs. 12.32.2a, b and c, the total external work done by the loads of 
three segments TEW is as follows: TEW = 2 (W1) + 2 (W21) + W22  = 2{(x/2) Ly 
w (Δ/3)} + 2 {(x/2) Ly w (Δ/3)}+ (Lx – 2x) Ly w (Δ/2) 
 
or TEW = w Ly (Δ/6) (3 Lx – 2x)      
 (12.55) 
 
The total internal work done by the yield moments TIW is: TIW = 2 Mx Ly θx + 2 
My x θy. Using θx =  Δ/x and θy = Δ/Ly,  we have: TIW = 2Mx Ly (Δ/x) + 2 Myx (Δ/Ly), 
 
or TIW = Δ{2Mx Ly/x + 2 My x/Ly)     
 (12.56) 
 
From the two expressions of TEW and TIW (Eqs. 12.55 and 12.56), we have: w 
(Ly/6) (3Lx – 2x) = 2Mx (Ly/x) + 2My (x/Ly), 
 
or  w = {12 Mx Ly

2 + 12 My x2} / {Ly
2 (3x Lx – 2x2)   

 (12.57) 
 

The above is the only equation to determine x and the collapse load w in 
the method of virtual work. Differentiating w with respect to x and setting that to 
zero shall give the lowest load. Hence, we have: Ly

2 (3 x Lx – 2x2) (24 My x) – (12 
Mx Ly

2 + 12 My x2) Ly
2 (3Lx – 4x) = 0,  

 
or   3 (My / Mx) Lx x2 + 4 Ly x2 – 3Ly

2 Lx = 0    
 (12.52) 
 

Thus, the method of virtual work gives the same equation (Eq.12.52) as 
that obtained by the method of segmental equilibrium. After getting the value of y 
from Eq.12.52 (or Eq.12.53, the solution of Eq.12.52), the collapse load w is 
determined from Eq. 12.57. 

 
 
12.32.4 Special Cases for Predicting Yield Patterns 
 

Let us examine the two conditions of Eqs.12.45 and 12.54 for determining 
the correct yield pattern. 

 
Equation 12.45 specifies that for the yield pattern 1, (My / Mx) < 4 (Ly /Lx)2, 

while Eq. 12.54 specifies that for the yield pattern 2, My/Mx > 4/3 (Ly/Lx)2. 
However, for slabs when both the conditions are satisfied, it appears that both 
the yield patterns are possible. In such cases, both the yield patterns should be 
considered and the one giving the lowest load (either 1 or 2) is the correct yield 
pattern. We explain the above taking two specific cases of square slabs having 
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simply supported edges on three sides and free at the other side, as shown in 
Fig.12.32.1a, with two different ratios of My / Mx. 
 
(i) Case 1: Ly / Lx = 1 and My / Mx = 1.5 
 
     Here, (My/Mx) is less than 4 (Ly /Lx)2 (= 4). So, yield pattern 1 is possible. 
Similarly, (My/Mx) is greater than (4/3) (Ly/Lx)2 (= 4/3). So, yield pattern 2 is also 
possible. Therefore, we should consider both the yield patterns and select the 
one giving the lowest value of the collapse load. 
 
For the yield pattern 1, the value of the collapse load is obtained from any of the 
three equations (Eqs.12.41, 12.42 and 12.48), after determining the value of y 
from Eq.12.43. The results are as follows. 
 

4 Mx Ly y2 + 2My Lx
2 y – 3 My Lx

2 Ly = 0    
 (12.43)  
 
Using My = 1.5 Mx and Ly = Lx, we have 
 
 4y2 + 3Lx y – 4.5 Lx

2 = 0      
 (12.58) 
 
from which       y = 0.75 Lx       
 (12.59) 
 
Using the value of y in the three equations, we get the value of w as: 
 

From Eq.12.41:  2
2 2

24
16

3
x y

x x
x y x

M L
w (

L ( L y ) ( L y )
= =

− +
M / L )   

 (12.60) 
 
From Eq. 12.42: w = 6My / y2 = 16 (Mx / Lx

2)     
 (12.60) 
 

From Eq. 12.48: )L/M(
)yyL(L

LMyLM
w xx

yx

xyyx 2
22

2
16

3

624
=

−

+
=   

 (12.60) 
 
We now consider yield pattern 2 in which the unknown distance x is obtained 
from Eq. 12.52, which is  
 
 3 (My / Mx) Lx x2 + 4 Ly2 x – 3Ly2 Lx = 0    
 (12.52) 
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When My = 1.5 Mx and Ly = Lx, the above equation becomes 
 
 4.5 x2 + 4 Lx x – 3 Lx

2 = 0      
 (12.61) 
 
which gives x = 0.4852 Lx       
 (12.62) 
 
Using the value of x in Eqs. 12.50, 12.51 and 12.57, we get the value of w as 
given below. 
 

From Eq. 12.50: 
2 2

2
2 2

6
16 488x y y

x x
y

( M L M x )
w .

x L
−

= = ( M / L )   

 (12.63) 
 

From Eq. 12.51: )L/M(.
)xL(L

x)M(
w xx

xy

y 2
2 48816

43

24
=

−
=    

 (12.63) 
 

From Eq. 12.57: )L/M(.
)xxL(L

xMLM
w xx

xy

yyx 2
22

22
48816

23

1212
=

−

+
=   

 (12.63) 
 
Computing the values of w from Eqs. 12.60 and 12.63, it is evident that yield 
pattern 1 is the correct yield pattern. 
 
(ii) Case 2:  Ly / Lx =1 and My/Mx = 3.5 
 
      Here also both the conditions of Eqs. 12.45 and 12.54 are satisfied. So, we 
consider them separately. Proceeding in the same manner, we determine the 
values of y and w for yield pattern 1, and x and w for yield pattern 2. Only the 
final results are given below. 
 
(a) For the yield pattern 1,    y = 0.966 Lx       
 (12.64) 
 
and w = 22.487 (Mx /Lx

2)       
 (12.65) 
 
(b) For the yield pattern 2, x = 0.377 Lx      
 (12.66) 
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and w = 21.222 (Mx / Lx
2)       

 (12.67) 
 
Thus, in this case the yield pattern 2 is the correct yield pattern. 
 
 
12.32.5 Square Slabs with Forking Yield Pattern 
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Yield lines of two-way slabs having inadequate corner reinforcement fork 
out before they reach the corners, as shown in Fig.12.31.4e of Lesson 31. We 
analyse a square slab having simply supported edges in all four sides subjected 
to uniformly distributed load w kN/m2 and having yield pattern as shown in 
Fig.12.32.3a. Yield lines divide the slab into symmetrical segments, of which we 
consider segments 1 and 2 employing the method of segmental equilibrium. 

 
The yield lines have two unknown parameters x and r (Fig.12.32.3a), 

where x is the distance AE and r is the perpendicular distance GV from point G to 
the yield line EF. In segment 1, EF is the negative yield line, and EG and FG are 
positive yield lines. Figure 12.32.3b shows the free body diagram of segment 1. 
The negative and positive moments are represented by Mnb and Mpb, 
respectively. These moments are resolved into their respective components Mnx, 
Mny, Mpx and Mpy along the sides of the slab, as shown in the figure. Segment 2 is 
shown in Fig.12.32.3c which is bounded by yield lines FG, GO, OH and HI, and 
the side FI. All the yield lines of segment 2 are having positive moment Mpb which 
are resolved as Mpx and Mpy along the sides of the square slab. Segment 2 is 
further subdivided into four sub-segments marked by 21, 22, 23 and 24 of which 
sub-segments 21 and 23 are symmetrical. 
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Before we take up the equilibrium of the two segments, let us determine 
the dimensions of different lengths of the two segments. With reference to 
Figs.12.32.3a, b and c, 

 
AE = AF = BI = BU = x (assumed) 
GV = r (assumed) 
AK = KG = GJ = AJ = {(x /√2) + r}/ √2 = r/√2 + x/ 2 
FK = EJ = AJ – AE = r/√2 – x/2 
 
We further assume that Mnx = Mny = Mn and Mpx = Mpy = Mp.

 
The area of triangle EFG = (1/2) (EF) (FG) = x r /√2. 
 
Taking moments of the loads and moments of segment 1 about EF and equating 
the same to zero, we get: w (area EFG) (r /3) + (- Mnx AF – Mny AE + Mpy EJ – 
Mpx JG – Mpy GK + Mpx KF) cos 450 = 0 
 
or   r = {6(Mn + Mp) / w}½     
 (12.68) 
 
We now consider the equilibrium of segment 2 taking moment of loads and 
moment about FI. For easy understanding, the contributions of different sub-
segments are computed separately and then added with the contribution of the 
moments. The contributions of different sub-segments and intermediate addition 
are: 
 

(i) For the sub-segment 21: 

            )3/(
222

)2/1()3/KG()KG)(FK)(2/1(
2

wx
2

r  xrw ⎟
⎠

⎞
⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛
−=   

 
(ii) For the sub-segment 22:                                                                          
  

( )2/
222

2L)2/()KG)(KS(
2

2 wx
2

r  xrw ⎟
⎠

⎞
⎜
⎝

⎛
+

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛
+−=  

 
(iii) For the sub-segment 24: (1/2) (GH) {(L/2) – KG} {KG + {(L/2 – KG)/3} 
w 
 
 = 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛
+−+⎟

⎠
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⎛
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⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
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⎛
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⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠

⎞
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⎝

⎛
+− 3/

22222
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222
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2
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           = 
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⎦
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(iv) The addition of {2 (sub-segment 21) + (sub-segment 22)}  
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(v) Therefore, {2 (sub-segment 21) + (sub-segment 22) + (sub-segment 24)} 
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(vi) Including the contributions of moment, the equilibrium equation of segment 2 
becomes 
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  0)2(
2423126

3232

=−−+−−− xLMwLwrxwxxrw p   

 (12.69) 
 
Using the expression of r from Eq.12.68 in the above equation, we have: - w 
6(Mn + Mp) x / 6w – wx3/12 – (w x2/3√2) {6(Mn + Mp)/w}1/2  + (w L3/24) – Mp (L-2x) 
= 0 
 
or  w x3/ 12 + x2{w (Mn + Mp) / 3}1/2 + (Mn – Mp)x + MpL – wL3/24 = 0 
 (12.70) 
 
Setting  dw/dx = 0, Eq.12.70 finally gives: 
 
 wx2/4 + 2x{ (Mn + Mp) w/3}1/2 + (Mn-Mp) = 0    
 (12.71) 
 
which has the solution of x as 
 

x = 2{(Mn + 7Mp) / 3 w}1/2 – 4 {(Mn + Mp) / 3w}1/2    
 (12.72) 
 
Thus, the three unknowns x, r and w are determined from the three equations, 
Eqs. 12.68, 12.70 and 12.72. 
 
We now consider two cases below: (i) with adequate corner reinforcement and 
(ii) with inadequate corner reinforcement. 
 
Case (i): When the corner reinforcement is adequate 
 
The value of x = 0 when the corner reinforcement is adequate as there will be no 
forking of the yield line. Putting x = 0 in Eq. 12.70, we have: MpL – wL3 / 24 = 0 
 
or  w = 24 Mp / L2       
 (12.73) 
 
Using x = 0 in Eq. 12.72, we get:  Mn + 7Mp = 4 (Mn + Mp), which gives: 
                                               Mn = Mp                                                             
(12.74) 
 
Using w = 24 Mp /L2 and Mn = Mp from Eqs 12.73 and 12.74 in Eq. 12.68, we 
have: 
 
                         r = L / √2     
 (12.75) 
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Case (ii):  When the corner reinforcement is inadequate  
 
In this case,  Mn = 0 and only Mp is present. Putting Mn = 0 in Eq. 12.71, we have: 
 
 x = 2(7Mp / 3w)1/2 – 4 (Mp /3w)1/2 = 0.746 (Mp/w)1/2   
 (12.76) 
 
Using Mn = 0 and substituting the value of x from Eq.12.76 in Eq.12.70, we have: 
 w x3/12 + x2 (w Mp/3)1/2 – Mpx + MpL – wL3 / 24 =0 
 
or  wL3 – 24 MpL + 9.3624 Mp (Mp/w)1/2 = 0    
 (12.77) 
 
The numerical solution of w of Eq.12.77 is:  
 
 w = 22 M /L2        
 (12.78) 
 
The two values of w of the two cases (i) and (ii) reveal the reduction of w by 
about 8.33 per cent (= 24 – 22 / 0.24) when the corner reinforcement is such that 
Mn = 0. Therefore, it is justified to reduce the load carrying capacity by ten per 
cent rather than involving in the complicated analysis. 
 
Further, if the negative moment carrying capacity Mn is larger than Mp, the value 
of x becomes negative. In that case, the yield pattern is the same as that with 
adequate corner reinforcement. 
 
 
12.32.6 Yield Lines of Fan Pattern 
 

Triangular or circular slabs subjected to uniformly distributed loads or point 
loads may have yield lines of fan pattern. We explain below different cases of 
such slabs to estimate the collapse loads. 
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(A) Triangular slab subjected to a point load 
 

Figure 12.32.4a shows a triangular slab clamped along the three edges 
and subjected to a point load P away from the edges and corners. 
Negative yield line of approximately circular pattern is formed with positive 
yield lines radiating outward from the point of application of the load. 
Assuming the resisting moment capacities of Mp and Mn per unit length for 
positive and negative moments, respectively, we consider one segment 
ODE, as shown in Fig.12.32.4b. The angle DOE is dθ and the resultant of 
the positive moments Mp along DO and OE, is Mp rdθ along DE, as shown 
in Fig.12.32.4c. The resultant Mp rdθ is in the same direction of the 
negative moment Mn rdθ along DE. The fractional part of the total load P 
acting on the segment is P dθ / 2π. 
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Taking moment of the load and moments of the segment DOE about DE 
and equating the same to zero, we have: (Mp + Mn) r dθ  - P(dθ / 2π) r = 0, 
which gives: 
 
  P = 2π (Mp + Mn)                   
(12.79) 

 
If we assume Mn = kMp, Eq.12.79 gives: 
 
  P = 2π Mp (1 + k)      
 (12.80) 
 
When Mn = Mp i.e., k =1, we have: 
 
  P = 4π Mp       
 (12.81) 
 

Equations12.79 to 12.81 reveal that the collapse load P is independent of 
the radius of the fan patterns of yield lines. Thus, at the collapse load, the 
triangular slab clamped along three edges may have complete fan pattern of 
yield lines of any radius without any change of the collapse load. However, it is 
necessary that the boundaries must have the resisting moment capacities Mn at 
all points. 

 
(B) Simply supported circular slabs subjected to uniformly distributed load 
w kN/m2
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Figure 12.32.5a shows the positive yield lines of radiating type having the 
moment resistance capacity of Mp per unit length. Figure 12.32.5b shows the free 
body diagram of the segment DOE making an angle dθ at the center of the slab. 
 
 Equating the moment of the load and moment about DE to zero, we have: 
MpR dθ =  (1/2) (R dθ) R  w (R/3), which gives:      
 
                           w = 6 Mp / R2                  
(12.82) 
 
 
(C) Clamped circular slab subjected to uniformly distributed load w kN/m2

 
 

 
 
Figure 12.32.6a shows the circular slab clamped at the periphery having 

negative yield lines along the periphery of moment resisting capacity of Mn per 
unit length. Positive yield lines radiating from the centre of the slab are also 
shown in the figure having moment resisting capacity of Mp per unit length. 
Figure 12.32.6b shows the free body diagram of one segment DOE where dθ is 
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the angle made by the yield lines DO and OE at the centre. As explained earlier, 
the resultant of the two positive moments Mp of magnitude MpR dθ and the 
negative moment Mn are in the same direction as shown in the figure. 
Equating the moment of load and moments of segment DOE about DE to zero, 
we have: Mp r dθ + Mn  r dθ - (1/2) (rdθ) r w (r/3) = 0. This gives: 
 
 w = 6(Mn + Mp) / R2       
 (12.83) 
 
Assuming Mn =  kMp,   Eq.12.83 gives: 
 
 w = 6 Mp (1 + k) / R2       
 (12.84) 
 
 
(D) Circular slabs clamped along the circumference and having a column 

support at the centre 
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In many practical examples of circular slabs, a column support is provided 
at the centre. The yield pattern of a circular slab clamped along the periphery and 
having a central column support, subjected to uniformly distributed load of w 
kN/m2 is shown in Fig.12.32.7a. 
 
 Negative yield lines of moment resisting capacity Mn are along the 
periphery and radiating from the centre of the slab. Positive yield line is shown in 
approximately circular pattern having a radius of r. Figure 12.32.7b shows the 
free body diagram of a segment OCD where dθ is the angle made by the yield 
lines OC and OD at the centre. 
 
 Figure 12.32.7c shows the deflection profile of the segment OCD having a 
deflection of Δ along AB. The segment is further divided into four sub-segments 
11, 12, 13 and 14, of which sub-segments 13 and 14 are symmetrical. The 
deflection of the centroid of the sub-segment 11 (OAB) is 2 Δ/3 at G and the 
deflection of the centroid of the sub-segments 13 and 14 is Δ/3. The deflection of 
the centroid of the sub-segment 12 is Δ/2. We employ the method of virtual work 
here. The external work done by the loads of the four sub-segments are 
presented in Table 12.1 giving the respective area of the sub-segment and the 
deflection at the centroid. By summing them considering that the work done by 
the load of segment ACE is the same as that of segment BDF, the total external 
work done TEW is as follows: 
 
 TEW = (w Δdθ) {r2 / 3 + r (R –r) / 2 + (R – r)2 / 6}   
 (12.85) 
 
The internal works done by different positive and negative yield lines of the 
segment OCD are furnished in Table 12.2 giving the respective moment and 
rotation. The total internal work (TIW) is then obtained by summing them 
considering that the work done by the moment of yield line AC is the same as 
that of yield line BD. Thus, the expression of TIW is, 
 
TIW = Δ{Mn (AB) / r + 2 Mn (CE) / (R – r) + Mn (CD) / (R – r) + Mp (AB) / r + Mp 
(AB) / (R – r)}                                                                            
(12.86) 
 
Table 12.1: Total External Work (TEW) by loads of segment OCD 
 
Sl. 
No. 

Sub-Segment Area Deflection at 
the centroid 

External work done 

1. OAB (11) (r/2) r dθ 2 Δ/3 wΔ dθ  (r2 / 3) 
2. AEFB (12) r dθ  (R – r) Δ/2 (wΔ dθ ) {r (R – r)/2} 
3. ACE and BFD 

(13 and 14) 
(R – r) (R – r) (dθ 
/2) 

Δ/3 (wΔ dθ ) {(R – r)2 / 6} 

 Adding, we get: TEW = (wΔ dθ ) {(r2 / 3) + r (R – r) / 2 + (R – r)2 / 6} …   Eq. 
(12.85) 
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Table 12.2: Total Internal Work (TIW) by positive and negative yield lines of 
segment OCD 
 
Sl. 
No. 

Yield line Moment Rotation  Internal work done 

1. OA and 
OB 

Mn (AB) Δ/r Mn (AB) (Δ/r) 

2. AC and BD 2 Mn 
(CE) 

Δ/(R – r) 2 Mn (CE) {Δ/(R – r)} 

3. CD Mn (CD) Δ/(R – r) Mn (CD) {Δ/(R – r)} 
4. AB Mp (AB) {Δ/r + Δ/(R – r)} Mp (AB) {Δ/r + Δ/(R – r)} 
Adding, we get: TIW = Δ{Mn (AB)/r + 2Mn (CE)/(R – r) + Mn(CD)/(R – r) + 
Mp(AB) /r + Mp (AB)/(R – r)} … Eq. (12.86) 
 
Equating the two works TEW and TIW form Eqs.12.85 and 12.86, and assuming 
that Mn = Mp = M, we get: w dθ { r2/3 + r(R-r) / 2 + (R – r)2/6} = M { 2(AB)/ r =                           
(2 CE + CD + AB) / (R –r)} 
 
or   w dθ { R (R + r) / 6} = M{2 (dθ) + 2R (dθ) / (R-r)} 
 
or w = {12M (2 R – r)} / {R (R2 – r2)}     
 (12.87) 
 
Setting dw/dr = 0, we have the most critical layout of the mechanism and then 
 
 r2 – 4 R r + R2 = 0       
 (12.88) 
 
which has a solution, 
 
 r = 0.2679 R        
 (12.89) 
 
Using the value of r from Eq. 12.89 in Eq. 12.87, we have  
 
 w = 22.39 (M / R2)       
 (12.90) 
 
or  M = w R2 / 22.39       
 (12.91) 
 
 
12.32.7 Practice Questions and Problems with Answers 
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 Q.1:  Determine the collapse load for the two possible yield patterns of a 
rectangular slab, simply supported at three edges and free at the other 
edge, when subjected to uniformly distributed loads employing (i) method of 
segmental equilibrium and (ii) method of virtual work. 

 
A.1: secs. 12.32.2 and 3  
 
Q.2: When do the yield lines of square slabs fork before reaching the corners? 

What should be the approach to estimate the uniformly distributed collapse 
load in such cases? 

 
A.2: sec. 12.32.5 
 
Q.3: Determine the collapse point load in a triangular slab clamped along the 

three edges. 
 
A.3: sec. 12.32.6 – part A 
 
Q.4: Determine the uniformly distributed collapse load of a circular slab clamped 

along the periphery. 
 
A.4: sec. 12.32.6 – part C 
 
Q.5: Determine the uniformly distributed collapse load of a circular slab having 

clamped support along the periphery and a column support at the centre of 
the slab. 

 
A.5: sec.12.32.6 – part D 
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12.32.9 Test 32 with Solutions 
 
Maximum Marks = 50, Maximum Time = 30 minutes 
 
Answer all questions. 
 
TQ.1:  Choose the correct answer for each of the following statements. 

  (4 × 5 = 20 Marks) 
(A) Rectangular slabs simply supported at three edges and free at the other 

edge will have yield pattern 1 (Fig.12.32.1a),  
 

(i) when (Mx/ My)  < 4 (Ly / Lx) 
(ii) when (My / Mx) < 4 (Ly / Lx)2 
(iii) when (Mx /My)  < 4 (Ly/ Lx)2 
(iv) when (My / Mx) > 4 (Ly/ Lx)2 

 

A.TQ.1 (A): (ii). 
 
(B) Nodal forces are to be considered when 
 

(i) the slab is subjected to vertical loads at the corners of the slab 
(ii) the slab is one-way 
(iii) the slab is polygonal having more than five corner node points 

Version 2 CE IIT, Kharagpur 
 



(iv) when the yield line meets a free edge 
 
A.TQ.1 (B): (iv) 
 
(C) Rectangular slabs simply supported at three edges and free at the other 

edge will have yield pattern 2 (Fig.12.32.2a),  
 

(i)  when (My/ Mx) > (4/3) (Ly / Lx)2

(ii)  when (Mx/ My)  > (4/3) (Ly / Lx)2

(iii)  when (Mx/ My)  = (4/3) (Ly / Lx)2

(iv)  when (My/ Mx)  = (4/3) (Ly / Lx)2

 
A.TQ.1 (C): (i) 
 
(D) Yield lines of fan pattern will occur in  
 

(i) any slab having a central cut out 
(ii) any slab subjected to unsymmetrical loading 
(iii) any slab having point load 
(iv) any slab having torsional moment 

 
A.TQ.1 (D): (iii) 
 
TQ.2: Determine the uniformly distributed collapse load of a circular slab having 

clamped support along the periphery and a column support at the centre of 
the slab. 

 
(30 marks) 

A.TQ.2: sec.12.32.6 – part D 
 
 
12.32.10  Summary of this Lesson 
 
 This lesson explains two different yield patterns of two-way slabs simply 
supported on three edges and free at the other edge. The expressions of 
determining the respective collapse loads are derived both by the method of 
segmental equilibrium and method of virtual work. The forking out type of yield 
pattern of square / rectangular slabs having inadequate corner reinforcement is 
explained. Slabs subjected to point loads or circular slabs having yield lines of 
fan pattern are taken up to determine the collapse loads. Practical circular slabs 
supported at the periphery and with a central column support is also taken up in 
this lesson. 
 
 

Version 2 CE IIT, Kharagpur 
 


	Yield Line Analysis for Slabs
	Two-way Rectangular, Square, Triangular and Circular Slabs
	Instructional Objectives:
	12.32.1 Introduction
	12.32.2 Rectangular Slabs Simply Supported at Three Edges and Free at the Other Edge Considering Yield Pattern 1
	(A) Method of segmental equilibrium
	(B) The method of virtual work

	12.32.3 Rectangular Slabs Simply Supported at Three Edges and Free at the Other Edge Considering Yield Pattern 2
	(A) Method of segmental equilibrium
	(B) Method of virtual work

	12.32.4 Special Cases for Predicting Yield Patterns
	12.32.5 Square Slabs with Forking Yield Pattern
	12.32.6 Yield Lines of Fan Pattern
	(A) Triangular slab subjected to a point load
	(B) Simply supported circular slabs subjected to uniformly distributed load w kN/m2
	(C) Clamped circular slab subjected to uniformly distributed load w kN/m2
	(D) Circular slabs clamped along the circumference and having a column support at the centre

	12.32.7 Practice Questions and Problems with Answers
	12.32.8 References
	12.32.9 Test 32 with Solutions
	12.32.10 Summary of this Lesson



