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Instructional Objectives: 
 

At the end of this lesson, the student should be able to: 
 

• derive the expression for determining the work done by bending and 

twisting moments when the yield lines are at angles with the directions of 

reinforcing bars, 

• state the need for considering the nodal forces and to estimate their values 

when one yield line meets another yield line or a free edge, 

• to select the possible yield pattern of a two-way slab supported at four sides 

either by simple supports or fixed supports, 

• to finalise the yield patterns and to evaluate the collapse loads of two-way 

slabs, either simply supported or clamped at four sides,  

• apply the theory in solving numerical problems of slabs to finalise the yield 

pattern and to determine the collapse load employing (i) the method of 

segmental equilibrium and (ii) the method of virtual work. 

 
 
12.31.1  Introduction 
  

Lesson 30 introduces the yield line analysis, which is an upper bound 
method of analysis for slabs. The different rules for predicting the yield lines are 
stated. The two methods i.e., (i) method of segmental equilibrium and (ii) method 
of virtual work are explained. Applications of both the methods are illustrated 
through numerical problems of one-way slabs – either simply supported or 
continuous. 

 
This lesson presents the derivations of the expressions for determining 

bending and torsional moments when yield lines are at angles with the directions 
of reinforcement. The need for the nodal forces and their determinations are 
explained when yield line meets another yield line or the free edge. Thereafter, 
different possible yield patterns of two-way slabs are explained. Numerical 
illustrative problems of two-way slabs with or without nodal forces are illustrated. 
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12.31.2 Work Done by Yield Line Moments 
 

 
Normally, the reinforcing bars are placed in two mutually perpendicular 

directions parallel to the sides of rectangular and square slabs. However, the 
yield lines may be at an angle with the direction of reinforcing bars as shown in 
Fig. 12.31.1, in which the yield line AB of length L has bending moment Mb and 
twisting moment Mt per unit length of the yield line. The slab segment is 
undergoing rigid body rotation whose components are θx and θy. The horizontal 
and vertical projections of the yield line are having moment capacities of Mx and 
My per unit length, respectively. All moments and rotations are shown using the 
right hand thumb rule. The following expression is derived for obtaining the 
absolute values of the work done by Mb and Mt on the yield line AB. 

 
With reference to Fig. 12.31.1, the total work done by the bending and 

twisting moments Mb and Mt is, 
 

 W = Mb L (θx cos θ + θy sin θ) + Mt L (- θx sin θ + θy cos θ)             
(12.19) 
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Equating the work done by bending and twisting moments Mb and Mt along the 
yield line AB with the respective work done by their components along the 
projections of the yield line, we have the following two equations: 
 
 Mb L = Mx L sin θ sin θ + My L cosθ  cosθ ,   which gives 
 
 Mb  = Mx sin2θ + My cos2θ      
 (12.20) 
 
and 
 Mt L = Mx sin θ cos θ - My L cos θ sin θ ,     which gives 
 
 Mt = (Mx – My) sinθ  cosθ     
 (12.21) 
 
Substituting the expressions of Mb and Mt from Eqs.12.20 and 12.21 in Eq.12.19, 
we have, W = (Mx sin2θ + My cos2θ) (θx L cosθ + θy L sinθ) +  (Mx – My) sinθ cosθ 
(-θx L sinθ + θy L cosθ),  which gives 
 
 W = Mx L sinθ θy + My L cosθ θx
or 
 W = Mx Ly θy + My Lx θx      
 (12.22) 
 
The two terms on the right hand side of Eq. 12.22 give the external work done by 
the moments MxLy and MyLx acting on the horizontal and vertical projections of 
the yield line. 
 
It is thus seen that the expression of Eq.12.19 involving bending and twisting 
moments Mb and Mt may be replaced by Mx and My of Eq.12.22 to get the same 
work done by Eq. 12.22 as that of Eq. 12.19. 
 
12.31.3 Special Conditions at Edges and Corners 
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Figures 12.30.5d, e and f of Lesson 30 present yield patterns of slabs 

when positive yield lines intersect the free edges at angles. In actual case, 
however, both bending and twisting moments are zero at the free or simply 
supported edges. The directions of the principal stresses are, therefore, parallel 
and perpendicular to the respective edge. Accordingly, the yield lines should 
enter the edge perpendicular to it, which is confirmed by experimental tests also. 
In Fig. 12.31.2a, it is shown that the yield line ADC normally turns quite close to 
the edge, say at D, which is at a distance s. The yield line is approximated by 
extending it in a straight line AB to the edge introducing a pair of concentrated 
shear force, (+) V and (-) V, as shown in Fig. 12.31.2b. These shear forces, 
which are parallel, equal and opposite forces for the equilibrium, are designated 
as nodal forces acting upward at an obtuse corner, marked by (-)ve sign on the 
left of the yield line AB and acting downward at an acute corner, marked by (+)ve 
sign on the right of the yield line AB, as shown in Fig. 12.31.2b. 

 
They are, in fact, the static equivalent of twisting moments and shear 

forces near the edge. We now establish the required expression for determining 
the magnitude of these nodal forces V. 

 

 
Figure 12.31.3a shows an element ACB of a slab where the yield line AB 

is making an angle α with the free edge CB. The angle between the yield line AB 
and the element side AC (i.e., angle CAB) is dα. The bending and twisting 
moments Mb and Mt on the yield lines AB and AC are shown in Fig. 12.31.3a, 
neglecting their differential increments. The free body diagram is shown in Fig. 
12.31.3b. The distances BD, AD and BC are Lx, Ly and dLx, respectively. Taking 
moments about the line AC and equating it to zero, we get  My (Lx +dLx) cos (α - 
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dα) – My Lx cos (α - dα) + Mx Ly sin (α - dα) Mx Ly sin (α - dα) – V dLx sin (α - dα) 
= 0    

or V sin (α - dα) = My cos (α - dα) 
 

or V (sin α cos dα - cos α sin dα) = My (cos α cos dα + sin α sin dα) 
 
For small values of dα, sin dα = 0 and cos dα = 1. So, we have  V sin α = My cos 
α 
 
or  V = My cot α        
 (12.23) 
 
 Equation 12.23 gives the magnitude of the nodal force V where α is 
measured anticlockwise. When α = 90 degree,  V = 0, i.e., the nodal force is zero 
if the yield line intersects the free edge at an angle of 90 degree. 

 
The nodal force V shall be used in the method of segmental equilibrium as 

we consider the equilibrium of individual segment. In the method of virtual work, 
however, the work done is determined for the entire slab involving all the 
elements, when the total work done by the positive and negative nodal forces is 
zero. Hence, it is not needed to consider the nodal force in the method of virtual 
work. 
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Figures 12.31.4a and b present two typical yield patterns of two-way slabs 

clamped at four sides and Fig. 12.31.4c and d show two typical yield patterns of 
a slab simply supported on three sides and free at one side. In all the yield 
patterns, it is assumed that the yield lines enter the corners between the two 
intersecting sides. It may not be the case always. Sometimes, yield lines fork 
before they reach the corner as shown in Fig. 12.31.4e and thus form corner 
lever. The triangular element EFB in Fig. 12.31.4e will pivot about the axis EF 
and lift off the supports if the corner is not held down. It has been observed that 
such yield patterns with corner levers are more critical than those without them. 
However, these patterns are generally neglected. It should be mentioned that the 
introduction of corner levers makes the analysis more complicated and does not 
produce much error by neglecting them. This is illustrated in Lesson 32. 

 
 
12.31.4 Two-way Slabs of Yield Pattern 1 of Figure 
12.31.4a 
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We consider the two-way slab of Fig. 12.31.4a subjected to uniformly 
distributed collapse load of intensity w kN/m2. Yield pattern 1 divides the slab into 
four segments marked by 1, 2, 3 and 4 in Fig. 12.31.5a, where the positive and 
negative yield lines are shown along with the positive and negative nodal forces. 
The slab undergoes a displacement Δ at the center point O. The free body 
diagrams of segments 1 and 2 are shown in Figs. 12.31.5b and c, respectively. 
The positive and negative moments along x and y directions are designated by 
Mpx, Mpy, Mnx and Mny in these two figures. We are employing both (A) the 
method of segmental equilibrium and (B) the method of virtual work to determine 
the magnitude of the collapse load w of the slab. 

 
(A) Method of segmental equilibrium 
 
 At the equilibrium, the moment of all the forces and moments of segment 
1 about the left edge AB is zero. This gives (Fig. 12.31.5b): (1/2) (Lx /2) (Ly) 
w(Lx/6) – V(Lx/2) – Mnx Ly – Mpx Ly= 0 
 
or wLxLy  – 12 V = 24 (Mpx + Mnx) (Ly / Lx)    
 (12.24) 
 
 Similarly, at the equilibrium, the moment of all forces and moments of 
segment 2 about the bottom edge BC is zero. This gives (Fig. 12.31.5c):  (1/2) Lx 
(Ly/2) w (Ly/6) + V (Ly/2) – Mny Lx – Mpy Lx = 0 
 
or, wLxLy + 12 V = 24 (Mpy + Mny) (Lx / Ly)    
 (12.25) 
 
Eliminating V from Eqs. 12.24 and 12.25 by adding the two equations, we have 
 
 2w Lx Ly = 24 {(Mpx + Mnx)(Ly / Lx)+ (Mpy + Mny) (Lx / Ly)} 
 
or  w = 12 {(Mpx + Mnx) / Lx

2 + (Mpy + Mny) / Ly
2}   

 (12.26) 
 
The collapse load w is determined from Eq. 12.26 from known values of Mpx, Mnx 
Mpy and Mny.
 
(B) Method of virtual work 
 
 The total external work done by the load in causing the segments to 
undergo deflection and the total internal work done by the moments in rotating all 
the four segments are computed. As mentioned in sec. 12.31.3, the effect of all 
the nodal forces is zero. Accordingly, the total external work done (TEW) is, 
 

TEW = 4 (1/2) Lx (Ly/2) w (Δ/3) = wLx Ly (Δ/3)   
 (12.27) 
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The total internal work done (TIW) is, 
 

TIW = 2 (Mpx + Mnx) Ly θx + 2 (Mpy + Mny) Lx θy 

                    = 4Δ {(Mpx + Mnx) (Ly /Lx) + (Mpy + Mny) (Lx / Ly)}  
 (12.28) 
 
Equating the two works from Eqs. 12.27 and 12.28 

w Lx Ly  (Δ/3) = 4Δ{(Mpx + Mnx) (Ly /Lx) + (Mpy + Mny) (Lx/Ly)}  

or  w = 12 {(Mpx + Mnx) / Lx
2 + (Mpy+Mny) / Ly

2}    
 (12.26) 
 
The above equation is the same as obtained by the method of segmental 
equilibrium to get the value of the collapse load w. 
 
We now consider the two cases below, first the square and simply supported at 
all edges and secondly the square and clamped at all edges. 
 
Case (i) Square and simply supported slab 
 
For square and simply supported slab, Lx = Ly = L,  Mnx = Mny = 0 and let us 
assume Mpx = Mpy = Mp. Using the conditions mentioned above in Eq. 12.26, we 
get 
 
  w = 24 Mp / L2       
 (12.29) 
 
or,  Mp = w L2/24       
 (12.30) 
 
Case (ii) Square and clamped slab 
 
For square and clamped slab, let us assume Mpx =Mpy = Mnx = Mny = Mp. Using 
these conditions in Eq. 12.26, we get   
 
  w = 48 Mp / L2       
 (12.31) 
 
or  Mp = wL2/48       
 (12.32) 
 
The values of  w and Mp in the two cases above reveal that the factored load 
intensity of a clamped slab is twice of that of simply supported slab having the 
same moment carrying capacity Mp. Further, we observe that for the same 
factored load intensity w, a clamped slab would have half the factored moment of 
simply supported slab and, therefore, would be economic.  
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12.31.5 Two-way Slabs of Yield Pattern 2 of Figure 
12.31.4b 
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We now consider the two-way slab having the yield pattern 2 as shown in 
Fig. 12.31.4b and subjected to uniformly distributed collapse load of intensity w 
kN/m2. Yield pattern 2 divides the slab into four segments marked by 1, 2, 3 and 
4 in Fig. 12.31.6a, where the positive and negative yield lines are shown. The 
slab undergoes a displacement of Δ along the yield line EF. The free body 
diagrams of segments 1 and 2 are shown in Figs. 12.31.6b and c, respectively. 
The positive and negative moments along x and y directions are designated by 
Mpx, Mpy, Mnx and Mny in these two figures. We are employing both (A) method of 
segmental equilibrium and (B) method of virtual work to determine the distance x 
and the magnitude of the collapse load w of the slab. 
 
(A) Method of segmental equilibrium 
 
At the equilibrium, the moment of all the forces and moments of segment 1 about 
the left edge AB is zero. This gives (Fig. 12.31.6b): (Ly/2) x w (x/3) – (Mpx + Mnx) 
= 0 
 
or   w =  6 (Mpx + Mnx) / x2       
 (12.33) 
 
Similarly, at the equilibrium, the moment of all forces and moments of segment 2 
about the bottom edge BC is zero. This gives (Fig. 12.31.6c): (1/2) x (Ly/2) (Ly/6) 
2w + w(Lx – 2x) (Ly/2) (Ly/4) – (Mpy + Mny)Lx = 0  
 
or, w = 24 (Mpy + Mny) Lx /{2x Ly

2 + 3Ly
2 (Ly –2x)}   

 (12.34) 
 
Equating the two expressions of w from Eqs. 12.33 and 12.34, we have 
 

)2(32

)(24)(6
222 xLxLxL

LMM
x
MM

yy

xnypynxpx

−+

+
=

+
 

 
or,       4 (Mpy + Mny) Lxx2 + 4 (Mpx + Mnx) Ly

2 x – 3 (Mpx + Mnx) Lx Ly
2 = 0 

 (12.35) 
 
Equation 12.35 is used to determine the values of x when Mpx, Mpy, Mnx and Mny 
are known. Thereafter, Eq. 12.34 is used to determine the magnitude of the 
collapse load w. 
 
(B) Method of virtual work 
 
 The total external work done by the load in causing deflection of the four 
segments of  Fig. 12.31.6a,  TEW is: 
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TEW = 2W1 + 2 (W21 + W22 + W23), where W1 is the work done for the segment 1 
and the work done of segment 2 is subdivided into three parts as W21, W22 and 
W23. Noting that W21 = W23, we get the TEW as, 
 
TEW = 2w{(1/2)x Ly (Δ/3)} + 2w {(1/2)x (Ly/2) (Δ/3) + 2w {(Lx-2x) (Ly/2) (Δ/2)} 
 
         = (wΔ/6) (3 Lx Ly – 2x Ly)      
 (12.36) 
 
The total internal work done by the yield moments (TIW) is, 
 
TIW = 2 (Mpx + Mnx) θx Ly + 2 (Mpy + Mny) θy Lx

        = 2 (Mpx + Mnx) (Δ/x) Ly + 2 (Mpy + Mny) (2Δ/Ly) Lx   
 (12.37) 
 
Equating the two works from Eqs. 12.36 and 12.37, we have, 
  
 (w Δ/6) (3Lx Ly - 2x Ly) = 2 (Mpx + Mnx) (Δ/x) + 2 (Mpy + Mny) (2Δ/Ly) Lx
 

or  
)23(

)( 24)(12
22

2

xxLL

xLMMLMM
w

xy

xnypyynxpx

−

+++
=     

 (12.38) 
 
To get the minimum collapse load, we put dw/dx = 0, which gives 
 
Ly

2 (3x Lx – 2x2) {24 Lx (Mpy + Mny)} – 12 [(Mpx + Mnx) Ly
2 + 24 x Lx (Mpy + Mny)] 

(3Lx – 4x) Ly
2 = 0 

 
or   4 (Mpy + Mny) Lx x2 + 4 (Mpx + Mnx) Ly

2 x – 3 (Mpx + Mnx) LxLy
2 = 0 

 (12.35) 
 
The above equation is the same as obtained by the method of segmental 
equilibrium to determine the values of x. Thereafter, Eq. 12.38 is used to get the 
value of w, the collapse load. 
 
We observe two points from secs. 12.31.4 and 12.31.5. They are as follows:  
 
(i) Only one equation (Eq. 12.26) is needed for determining the value of the 
collapse load w for the yield pattern 1 of Fig. 12.31.5a. On the other hand, two 
equations are need for the yield pattern 2. This is because the yield pattern 1 is 
already determined but the yield pattern 2 is determined only after finding the 
values of x. Therefore, two equations are needed for determining the two 
unknowns x and w in the case of yield pattern 2. 
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(ii) The one equation needed for the yield pattern 1 is the same equation (Eq. 
12.26) by the two methods, viz. method of segmental equilibrium and method of 
virtual work. Out of the two equations needed for the yield pattern 2, only one 
equation (Eq. 12.35) is the same by both the methods. After getting the values of 
x from Eq. 12.35, the values of collapse load w is determined from Eq. 12.33 by 
the method of segmental equilibrium and Eq. 12.38 by the method of virtual work. 
 
Let us now take up Eq. 12.35, which is used to determine the values of x in the 
case of yield pattern 2. Substituting the value of x = Lx/2 in Eq. 12.35, we get 
 
4 (Mpy + Mny) (Lx

3  )(1/4) + 4 (Mpx + Mnx) Ly
2 (Lx/2) – 3 (Mpx + Mnx) Lx Ly

2 = 0 
 

or, 2

2

Ly
Lx

MM
MM

nypy

nxpx =
+

+
       

 (12.39) 
 
Noting that, x = L/2  gives the yield pattern 1 of Fig.12.31.5a, Eq.12.39 is used to 
check if the slab has the yield pattern 1 from the known values of Mpx, Mnx, Mpy, 
Mny, Lx and Ly of the slab. 
 
Similarly, it can be shown that for the yield pattern 2, i.e., when  x < Lx/2, the 
required condition is: 
 

                       
2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
<

+

+

y

x

nypy

nxpx

L
L

MM
MM

      

 (12.40) 
 
We now take up numerical problems in the next section for the purpose of 
illustration. 
 
 
12.31.6 Numerical Problems 
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Problem 1. Determine the yield pattern and collapse load of the trapezoidal slab 

of Fig.12.31.7a having clamped edges along BA, AF and FE while the 
edge BE is free. Given that  Mn = Mp = 70 kNm/m. Employ the method 
of segmental equilibrium. 

 
Solution 1. Here, in this problem the yield pattern drawn in Fig.12.31.7a shows 

that there is one additional unknown x to finalise the yield pattern. 
Thus, we have two unknowns x and the collapse load w. 

 
 The yield pattern divides the slab into three segments marked by 1, 2 

and 3. Yield lines AC and FD meet the free edge BE. So, we have to 

Version 2 CE IIT, Kharagpur 
 



consider the nodal forces (+)V and (-)V, as shown on the left and right 
of C. Since the problem is symmetrical, segments 1 and 3 are 
identical. We first consider the equilibrium of segment 1 having 
positive moment Mp along yield line AC and negative moment Mn 
along yield line AB (Fig. 12.31.7b). The nodal force V at C of segment 
1 is negative, i.e., acting downward. 

 
 Equation 12.23 gives the magnitude of the nodal force V = Mn cot α, 

where α is the angle ACB.  
  
Geometric properties: 
 

In triangle ABK, the side AB = (BK2 + AK2)1/2 = 6 m. The angle ABC = 
600. Assuming the angle BAK = θ, we have sinθ = BK/BA = 0.5 giving 
θ = 300. The line CJ is perpendicular to AB. The angle JCB = 300 
gives BJ = BC cos 60 = 0.5x. Therefore, AJ = 6 - 0.5x. The distance 
CJ = BC sin 60 =31/2 (x/2). From triangle ACK, we have cotα = CK/AK 
= (x-3)/3(3)1/2. Area of the triangle ABC = (1/2) (BC) (AK) = (x/2) 
3(3)1/2. The load of segment 1 is acting at a distance of CJ/3 from the 
side AB, which is equal to 05x/(3)1/2. Taking moments of load of the 
segment 1, nodal force V and considering Mn and Mp about the edge 
AB, we have: 

 
 Mp (AJ) + Mn (AB) – V (CJ) – w (area of segment ABC) (CJ/3) = 0 
 
 Substituting the values of Mp, Mn, V, AJ, AB, CJ and the area of 

triangle ABC, we have 
 
 70 (6 –0.5x) + 70 (6) – {70 (x – 3) / 3 (3)1/2} (3)1/2 (x/2) – (x/2) 3(3)1/2 w 

(3)1/2 (x/2) / 3 = 0 
 
 or   w = 4(2520 – 35x2) / 9x2      (i) 
 

Now, we take up segment 2 for writing the equilibrium equation. The 
segment is subdivided into three parts marked by 21, 22 and 23. The sub-parts 
21 and 23 are identical. The area of the triangle ACH = (1/2) (x - 3) 3 (3)1/2 and 
the load is considered at a distance of CH/3 = (3)1/2 m from the edge AF. The 
area of rectangle CDGH = (12 - 2x) 3(3)1/2 and the load is considered at a 
distance of (3/2) (3)1/2 from the edge AF. The equilibrium equation of segment 2 
is obtained by taking moments of loads on this segment, two nodal forces of (+) 
V at C and D about the edge AF and considering Mp along AC and FD and Mn 
along AF (Fig.12.31.7c). This gives 2Mp (AH) + Mn(AF) + 2V (CH) – 2w(area of 
sub segment AHC) (HC/3) – w (area of rectangle CDGH) (HC/2) = 0. Substituting 
the values of Mp, Mn, V, AH, AF, CH and the areas of triangle AHC and rectangle 
CDGH, we have, 
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2 (70) (x – 3) + 70 (6) + 2{(70) (x-3) / 3 (3)1/2} 3(3)1/2 – 2 w (1/2) (x –3) (3) (3)1/2 
(3)1/2 + w [{6 – 2(x – 3)} 3 (3)1/2 (3/2) (3)1/2 ] = 0 
 
This gives 
 
 w = (280 x – 420) / (135 – 18 x)      (ii) 
 
Equating the two expressions of w from Eqs. (i) and (ii), we have: 
 
 4 (2520 – 35x2) / 9x2 = (280x – 420) / (135 – 18x) 
 
This gives 
 
 x2 + 12x – 90 = 0        (iii) 
 
Solving we get x = 5.2249 m 
 
From Eq. (i) w =  4 (2520 – 35x2) / 9x2 = 25.465 kN/m2

From Eq. (ii) w = (280x – 420) / (135 – 18x) = 25.4695 kN/m2

 
So, we get the same value of w from Eqs. (i) and (ii). Thus, the yield pattern is 
finalised when  x = 5.2249 m and the collapse load of the slab is 25.4695 kN/m2. 
 

 
 
Problem 2. Determine the yield pattern and the collapse load of the two-way slab 

of Fig.12.31.8 which is having clamped edges along four sides. 
Assume that Mpx = Mnx = 50 kNm/m and Mpy = Mny = 70 kNm/m. 
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Solution 2. In this problem, we have to find out whether yield pattern 1 or 2 will 
be the governing from Eqs.12.39 and 12.40 of sec.12.31.5. 

 
 From the given data, we have:  
 
(Mpx + Mnx) / (Mpy + Mny) = 100/140 = 0.714 and Lx

2 /Ly
2 = 64/36 = 1.77. 

Therefore, yield pattern 2 will govern (see Eq. 12.40). 
 

Thus, we have two unknowns: (i) the value of x for finalising the yield 
pattern and (ii) the value of the collapse load w. Since, the governing 
equations of yield pattern 2 are derived in sec.12.31.5, the problem is 
solved by direct application of the equations. 
 
We have Eq.12.35 to determine the value of x. Using the values of 
Mpx, Mnx, Mpy, Mny, Lx and Ly in Eq. 12.35, we have: 
 

4 (Mpy + Mny) Lx x2 + 4 (Mpx + Mnx) Ly
2 x – 3 (Mpx + Mnx) Lx Ly

2 = 0                          
(12.35)   
 
or 4 (140) (8) x2 + 4 (100) (36) x – 3 (100) (8) (36) = 0 
or 14 x2 + 45 x – 270 = 0,  which gives x = 3.069 m 
 

Now, we use the three equations (Eqs.12.33 and 12.34 by the method 
of segmental equilibrium and Eq. 12.38 by the method of virtual work). 
Using the values of Mpx, Mpy, Mnx, Mny, Lx, Ly and x in those three 
equations, we determine the value of w for comparing them. 

 
(i)   Eq.12.33 (i.e., w = 6 (Mpx + Mnx) x2 ) gives w  =  63.69 kN/m2  
 

     (ii) Eq. 12.34 (i.e., 
)2(32

)(24
22 xLLxL

LMM
w

xyy

xnypy

−+

+
= ) gives w = 63.69 kN/m2

    (iii) Eq.12.38 (i.e., 
)23(

)(24)(12
22

2

xxLL

xLMMLMM
w

xy

xnypyynxpx

−

+++
= ) gives                     

w = 63.69 kN/m2.  
 
 Thus, we observe that the collapse load is the same from the three 
equations. Usually, they may differ marginally depending on the truncation of the 
value of x. 
 
12.31.7 Practice Questions and Problems with Answers. 
 
Q.1: Establish the work done by the yield line moments Mb and Mt when the 

yield line is at an angle with the two orthogonal directions of the 
reinforcement. 
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A.1: See sec. 12.31.2 
 
Q.2: Explain the nodal force and derive the expression to determine its value. 
 
A.2: See sec. 12.31.3 
 
Q.3: Draw the possible two yield patterns of a two-way slab clamped at four 

sides. Derive the equation to find out which one will govern in a particular 
case given the values of Mpx, Mnx, Mpy, Mny, Lx and Ly. 

 
A.3: Figures 12.31.4a and b are the two possible yield patterns. For finding the 

governing yield pattern, the equations (Eqs. 12.39 and 12.40) are 
established in sec. 12.31.5. 
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Q.4: (a) Establish the general equations for determining the yield pattern and 

uniformly distributed collapse load of an isosceles triangular slab, shown 
in Fig. 12.31.9 having the positive and negative moment capacity of Mp 
and Mn, respectively. Use the method of virtual work. 
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 (b) Determine the specific yield pattern and uniformly distributed collapse 
load of such a slab when      B = 6 m, 2L = 12 m, Mp = 9 kNm/m and Mn = 
12 kNm/m, as shown in Fig.12.31.10. Use method of virtual work. 

 
A.4: (a): The possible yield pattern is drawn in Fig.12.31.9 having unknown y. 

Thus, we have two unknowns y and the collapse load w of the slab. The 
yield pattern divides the slab into three segments of which segments 2 
and 3 are symmetrical. 

 
 Geometric properties. 
 
 The angle DEJ = θ = tan-1 (L/B). The perpendicular distance from G to ED 

is GH =  EG sinθ = (B – y) {sin tan-1 (L/B)}. The length of side DE = (B2 + 
L2)1/2. 

 
 Let us assume the displacement of the slab at point G = Δ. The rotation of 

the segment 1 = θ1 = Δ/y and the rotation of the segments 2 and 3 = θ2 = 
Δ/GH = Δ / [(B-y){sin tan-1 (L/B)}]. 

 
 The total external work (TEW) done by the loads of three segments is 

obtained considering the displacement of the centroid of all three 
segments as Δ/3. 

Thus, 
 TEW = (1/2) (2L) (B) w (Δ/3) = B L w Δ/3                                     

 (1) 
 
The internal work done by the negative yield lines DF, DE and EF is:  
                                         Mn {(DF) (θ1) + 2(DE) (θ2)}                                                

(2A) 
 
 For the positive yield moment along DG, let us project DG along DE and 

DF. The projected lengths are DH and DJ, respectively. Similarly, 
projecting the moments of positive yield lines of EG and FG along the 
sides of the triangle DEF, we have the total internal works done by the 
three positive yield lines = Mp {(DF) (θ1) + 2(DE)(θ2)}                          
(2B) 

 
 Therefore, the total internal work done (TEW) is obtained adding the two 

expressions of  2A and 2B as:  
 
  TIW = (Mp + Mn) {(DF) (θ1) + 2 (DE) (θ2)}                                           

(2) 
 
 Equating TEW and TIW from Eqs. 1 and 2, we have 
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  (B)(L) w Δ/3 = (Mp + Mn) {(DF) (θ1) + 2 (DE) (θ2)}                               
(3) 

 
 Substituting the values of DF, DE, θ1 and θ2, we have from Eq. 3 
 
 (B)(L) w Δ/3 = (Mp + Mn) [(2L) (Δ/y) + 2 (B2 + L2)1/2 Δ / [(B-y) {sin tan-1 

(L/B)}]] 
 

  or, ⎥
⎦
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(4) 
 
 Equation 4 is the only one equation from the method of virtual work to 

determine y and w. Therefore, we differentiate w with respect to y to get 
the lowest value of the load and determine y. Thereafter, Eq. 4 shall be 
used to find the value of w. 

 

 :gives 0=
dy
dw  

)}/( tan){sin(
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or [L{sin tan-1 (L/B)} – (B2 + L2)1/2] y2 – [2 (L) (B) {sin tan-1 (L/B)}] y + LB2           

{sin tan-1 (L/B)} = 0                                                                                              
(5) 

 
 Thus, Eqs. 4 and 5 are the general equations to determine y and w of the 

slab. 
 
A 4.  (b): For the specific case when 2L = 12 m, B = 6 m, Mp = 9 kNm/m and Mn 

= 12 kNm/m, we have angle DEJ = θ = 450. The distance GH = EG sinθ = 
(6-y) / (2)1/2. The length of side DE = EF = (36 + 36)1/2 = 6(2)1/2 m. The 
rotations θ1 = Δ/y and θ2 = Δ/[(B-y) {sin tan-1 (L/B)}] = Δ(2)1/2 / (6-y). 

 
 Equating the TEW and TIW from Eqs. 1 and 2 of A.4a, we have: 
 

                                12 24
12 6
p n( M M )

w
y y

+ ⎧ ⎫
= +⎨ ⎬−⎩ ⎭

                                                        

(6) 
 

              :gives 0=
dy
dw  y2 + 12y – 36 = 0                                                                        

(7) 
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 Solution of Eq. 7 gives y = 2.485 m. Using the value of y in Eq. 6, we get w 
= 20.399 kN/m2. 
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Maximum Marks = 50 Maximum Time = 30 
minutes 

 
Answer all questions. 
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TQ.1: Determine the yield pattern and the uniformly distributed collapse load w 

kN/m2 of the triangular slab shown in Fig. 12.31.11a having simple 
supports along AB and AC and the edge BC is free. The reinforcing bars 
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along x and y directions have the moment capacities Mx = 50 kNm/m and 
My = 60 kNm/m, respectively. Use both the methods i.e., (i) method of 
segmental equilibrium and (ii) method of virtual work. 

[25×2 = 50] 
 
A.TQ.1: (i) Method of segmental equilibrium. The yield pattern of the slab is 

drawn in Fig.12.31.11a involving x as unknown. Thus, we have two 
unknowns x and w here. 

 
 The yield pattern divides the slab into two segments 1 and 2, whose free 

body diagrams are shown in Figs. 12.31.11b and c, respectively. The 
nodal force V has the magnitude (90 – 15x)/ 2 obtained from Eq.12.23  ( V 
= My cotα). 

 
 Taking moment of all forces and moments of segment 1 about AB and 

equating it to zero gives 
 

  (1/2) x (8) w (DE)/3 – V (DE) – 8 Mx sin β- My (6-x) cosβ = 0, which 
gives 
 
  w = (-18 x2 + 1608) / (3.2) x2                                                                   
(1) 
 

Similarly, taking moment of all forces and moments about AC of segment 
2 and equating it to zero gives: (1/2) (6-x) w (8) (6-x) / 3 + V (CD) – 8 Mx = 
0, which gives, 

 
  w = (-22.5 x2 + 270 x + 390) / (144 + 4x2 – 48x)                                      
(2) 
  
 Equating Eqs. 1 and 2   
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xx
x

x
484144

3902705.22
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2

2

2

2
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++−

=
+−  

 
 or,   27 x2 – 804 x + 2412 = 0                                                                        
(3) 
 
 which gives x = 3.3847 m. 
 

From Eq. 1:  w = (1608 – 18x2) / 3.2 x2 = 38.2369 kN/m2 and  
From Eq.2:  w = (-22.5 x2+ 270 x + 390) / (144 + 4 x2 – 48 x) = 38.2369 
kN/m2. 

 
 (ii) Method of virtual work 
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 Total external work TEW = {w (Δ) / 3 (2)} {8x + (6 – x) 8} = 8 wΔ                   
(4) 
  

Total internal work TIW = 8Mx (θ1) sin β + (6-x) My θ1 cos β + (6-x) My θ2 
cos 90 + 8 Mx θ2

 
  = 8 (50) (Δ / DE) (0.8) + (6 – x) (60) (Δ/DE) (0.6) + 0 + 8 (50) Δ/(6-
x)} 
  

  = ⎥
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⎤
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−

+
−

+
)x(x

)x(
x

Δ
6
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(5) 
 
 Equating Eqs. 4 and 5 
 

  400 45 6 4008 Δ Δ
6

( x )w
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 or,   ⎥⎦
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xx
w

6
40045670

8
1                                                                           

(6) 
 

Equation 6 is the only equation to determine x and w. Differentiating w 
with respect to x and equating it to zero will give the lowest value of w. 
Thus, dw/dx = 0 gives: 

 
  (-) 670/(x2) + 400 / (6 –x)2  = 0 
 
 or,  27 x2 – 804 x + 2412 = 0                           
(7) 
 

Equation 7 is the same as Eq. 3, obtained by the method of segmental 
equilibrium. The solution of Eq.7 is the same as that of Eq.3 and so, we 
get x = 3.3847 m. 

 
 Using the value of x in Eq.6, we get 
 

  2369.38
6
40045670

8
1

=⎥⎦
⎤

⎢⎣
⎡

−
+−=

xx
w kN/m2

 
Thus, we get the same values of x and w by both methods. 
 
 

Version 2 CE IIT, Kharagpur 
 



12.31.10   Summary of this Lesson 
 

This lesson presents the derivations of the expressions for determining 
the work done by bending and twisting moments when yield lines are at 
angles with the two orthogonal directions of the reinforcing bars. The 
need for the nodal forces and their determination are explained when one 
yield line meets another yield line or the free edge. Different possible 
yield patterns of two-way slabs are explained. Numerical problems are 
solved for the purpose of illustration taking examples with or without 
nodal forces employing both (i) method of segmental equilibrium and (ii) 
method of virtual work. Illustrative examples, practice problems and 
problem of test will give a clear understanding of analysing the slabs by 
the two methods. 
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