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1.1. “Introduction”




1.1 Introduction

= In regression analysis the dependent variable
not only frequently affected by gquantitative (ratio
scale variables like price, income, output, etc) bt
also qualitative variables (nominal scale variable

like sex, race, nationality, etc)
= Such variables should be included in the model

< Dummy variables are commonly used as proxie
for qualitative factors such as sex, religion, etc

<= Dummy variable Is synonymously with  nor
measurable, qualitative in nature, nominal scale
non numeric variable.




1.1 Introduction

Qualitative information?

= |ltis a non measurable information that we obtain

or gather for a given variable.

< |t Is an indicator variable that iIs non measurable
or non quantify in nature.

< |ndicator variable, binary variable, categorical
and dichotomous variable are USE
iInterchangeable.




1.1 Introduction

= Not all information caneasilybe quantified.

% S0, needo incorporate gualitative information .

Example: 1. Effect of belongingto a certain group:
@ (Gender, location, marital status, occupation
@ Beneficiary of a program/policy

2. Ordinal variables:

@ Answers to yes/no (or scaled) questions...

= Effect of some guantitative variable may differ

betweengroups/categories:

® Returns to education may differ between
sexes or betweewrthnic groups ...




1.1 Introduction

Example 2. Suppose the firm utilized two types c
production process to obtain its output.
Y. =a + D + u.
Where Y Is output obtained
D is the dummy variable

0if theoutputis obtainedfrom machineA

1if theoutputis obtainedfrom machineB

Example '3: Does sex makes any difference In a colle
teachers salary, assuming that all other variables suc
as age, education level, and experience etc are h
constant.

[).i=

Y, = B, + G,D +u,




1.1 Introduction

=Interest In determinants of belongingto a group
@ Determinants of being poor ...
<= Dummy dependent variable(loqit, probit...)
=Dummy_Variable: a variable devised to use
gualitative information In regressionanalysis.
= A dummy variable takes 2 values: usuallyO/1.
e.g.Y.=B,+p,*D+u; for Vi e group 1, and
for Vi & group 1.
»If D=0, E(Y) = E(Y|D=0) =,
»IfD=1,E(Y)=E(Y|D=1)=8,+ 8,
+Thus, the difference betweenthe two groups (in
meanvalues of Y) is E(Y|D=1) — E(Y|D-0) =4,.
% The significance of this difference Is testedy a t-
test of #, = 0.




L ab session

Use ‘lecture 1.xIS data to
practice what we learnt in
previous sections




1.2 "Dummy as
Independent
Variables




1.2 Dummy as Independent Variables

|. How we Include dummy variable as explanaton
variable?
% Constructing artificial variable, which take on

values of 1 or O,
+ O Indicating the absence of the attributes
+ 1 indicating the presence of that attributes




1.2 Dummy as Independent Variables

Il. ANOVA & ANCOVA?
= ANOVA: A regression model which contains

regressors (explanatory variables) that are a
exclusively dummy variables.

= ANCOVA: Regression model which contain:
guantitatively explanatory variables in addition to

dummy variables.
= A regression model which contains the mixed of botlqualitative

and guantitative variable.




1.2 Dummy as Independent Variables

I1l. Purpose of dummy variable

< |t allows for difference in intercept

= |t allow for difference In slopes

<= |t help us to estimate equations with cross equatia
restrictions

= Test for the stability of regression coefficients




1.2.1 Dummy variable Trap

% |t Is the Cautions In the use of dummy variable
what we called it as “Dummy variable Trap”

< We should iInclude (introduce) J-1 where | IS
number of variables

% The general rule Is that” If a qualitative variable

has m categori
variables’

es, Introduce only (@ dummy

= Example: Sex has two categories and hence
Introduced only asingledummy variable.

< |f this Is not fu
perfect multico

filled, we faced the problem of
linearity (perfect collinearity),

which Is called “c

ummy variable tra.”



1.2.1 Dummy variable Trap

<" The category for which no dummy variable Is
assigned is known as the

%" Hence, all comparisons are made In relation to th
bench mark category (we assigned O values)

= |If there Is a constant term In the regressiol
equation the number of dummies defined shoul
always be one less than the number of groupings |
that category.

< p/c the constant term Is the intercept for the bas
group and the coefficients of the dummy variable
measures differences In Intercept (the mea
difference)




1.

2.1 Dummy variable Trap

= |If the coefficients 5 attached to the dumm
variables D, are called differential Intercept

coefficients

+ Reasons: It tell by how much the value of the inteept
of the category that receives that value of 1 diffe from

the interce

& The Interce
of the benc
= |f we don't

ot coefficients of the base category.
ot value (@ ) represents thenean value

nmark category.
have constant term, we can’t used |-.

or m-1 because we don’t have dummy variabl

trap.



1.2.2 ANOVA Analysis

+ |t Is regression with qualitative variables.
A. A single dummy independent variable
<= The model specification will be:

Yi=a + [D +u B It doesn’t measure the slope
M= 0 N G Bl st e rather it measures the mean

1if male difference b/n the category
[B) A= =

01f female(otherwise)
Y Is annual salary of a college teacher

a |t measure the mean valu
of the bench category




1.2.2 ANOVA Analysis

s Example: Suppose a researcher wants to fin
out whether sex makes any difference In
college teachers’ salary, assuming othe
variables, education level, experiences, and a
being constant.

< Assuming the disturbance term satisfy the
usual assumptions, of the classical linec
regressionmodel, we obtain




1.2.2 ANOVA Analysis

Interpretation

<~ The mean (average) annual salary of female colle
teacher: E(Yi/Di=0)= 5o

<= The mean (average) annual salary of male colle
teacher: E(YI/Di=1)= 5, + 5

< The slope coefficientsg, “tells by how much th
mean salary of a male college teacher differs froi
the mean salary of his female counter part or

< the value of B, Is on average measures t
difference between intercept.”

& Po* b reflecting the mean salary of the mals
college professors or the average (mean) salary
non base group (actual value




1.2.2 ANOVA Analysis

= The implication of slope coefficients g, )

= The coefficient determines whether there |
discriminating on against female.

= |f then, for the same level of other factorsyvomen
earn less than men on average.

< A test of the null hypothesis that there is no se
discrimination (HO: B,=0 ) can be easily made k
running regression by OLS.

= Suppose we have the following regression result:




1.2.2 ANOVA Analysis
Example

Salry (1 Sex 0

27000
17500
42500
29000
23000
32000
18500
22000
24000
18500
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1.2.2 ANOVA Analysis
Brainstorm:
Based on the above table:
1. Estimate the coefficients of the variables
2. Square of correlation coefficient
3. Standard error and t-statistics
4. TSS, ESS and RSS

5. What makes this regression different fromr
simple regression you have learnt unde
Econometrics-17?

6. Interpret the result




Regression Result of above example

reg Salary

Sex

Source == df M5 Humber of okbsas = 10
Fi 1, g) = 4 73

Model 226204167 1 226204167 Frob > F = 0.0613
Residusl 382520833 2 47815104 .2 BE—sguared = 0.3716
2d] B-sguared = 0.2331

Total 028725000 2 87636111 .1 Hoot MSE = ©314.8
Salary Coerf . S5td. Err. t B>t [95% Conf. Interwvall]
Sex 9708 . 333 4453 .514 2.18 0.0&1 —584 54391 20001 .22
_consg 19125 3457 .423 5.53 0.001 11152 .17 27097 83

Y, =19125 + 9708.33D,
se (4463.514) (3457.423)

t

(5.53)

(2.18)



1.2.2 ANOVA Analysis

< |Interpretation :
= The estimated mean (average) salary of fema
college teacher is birr 19,125(, ).
% The mean salary of male college teachers is birr (
(b+5) =28,833.
A =9708 is the mean difference between male a
female college teachers.

= Since 5 Is statistically significant, the result
Indicate that the mean salary of two categorie
are different, actually, the female teacher’:
average salary Is lower than that of he
counterpart.




1.2.2 ANOVA Analysis

% |[nterpretation :

< |f all other variables are held constant, there Is se
discrimination Iin the salaries of the two sexes or th
salary of the female Is less than male by 9708,
average.

B. A multiple dummy independent variable

< |t Is when more than two distinct values are involved.

< Always when there are N variables we develop -l
dummy variables.

< Let, a given output is produced using three methods ¢
production says: Machine A, Machine B , and Machine

C. Y, = B,+ B,D,+ 5,D, +u,




1if
D, =5

D, =5

1.2.2 ANOVA Analysis

output is obtainedfrom machineA

0 otherwise(if it comesfrom B & C)
1if outputis obtainedfrom machineB
O otherwise(if it comesfrom A & C)

Interpretation

& A represents the mean value of output obtaine

from mac
e Ais the

nine C.

mean difference In output associate

with a change from machine C to machine A.



1.2.2 ANOVA Analysis

= (5,+p) It1s the mean value of output obtained fron
machine A.

= £ IS the mean difference in output associated wit
a change from machine C to machine B.

= (,+p) IS the mean value of output obtained fron
machine B.

= Exercise: Interpret the following model

Y. = [, + [,Gender + [, Instituion + U

‘1male = ‘1government
Gender =+« , Institutions = < _
Ofemale Oprivate




1.2.2 ANOVA Analysis

Example2.: Wage differential betweemale andfemale
< Two possible ways: a male or a female dummy.
1. Define amale dummy(male = 1 & female = 0).
= reg wage male
= Result: Y. =9.45+172.84D + U,
p-value: (0.000) (0.000)

< Interpretation the monthly wage of a male worker Is, C

average, $172.84 higher thatinat of a female worker.
<= This difference is significant at 1% level.
2. Define afemale dummyfemale = 1 & male = 0)
= reg wage female
= Result: Y, =182.29 —172.8D + (;

p-value: (0.000) (0.000) Interpretation ??




1.2.3 Analysis of Covariance (ANCOVA)

= Unlikke ANOVA, a regression model may contail
regressors that are all exclusively dummy, o
qualitative, in nature; ANCOVA, IS regression with &
mixture of qualitative and  quantitative
iIndependent variables.

|t IS regression on both qualitative and quantitative

iIndependent variables.

A. Single dummy independent variable
& Example: Suppose we identified two variables thatféect the salary of a given

employee
% Wage = 5, + f,gend + [,educ +u,
_ (1 female Gender & level o
gend = . :
0 male education is the onl
wage = wage rate of individual observed factor
educ= level of education affect wage.




1.2.3 Analysis of Covariance (ANCOVA)

Interpretation
< B measures the slope.

& A s the difference in hourly wage between female
and males, given the amount of education. Henc
the coefficient determines whether there |
discrimination against women.

=|f p.<0 , then for the same level of educatiol
women earns less than men, on average.

=|f we assume the zero conditional mea
assumptions E(U)=0, then:

B, = E(wage|gend =1, educ) — E(wage|gend = 0, educ)

= Key: the level of education Is the same In bot

iIndividuals; the difference, g Is due to gender only




1.2.3 Analysis of Covariance (ANCOVA)
Interpretation

% The intercept for male Is 3,

% The Iintercept for female Is 4+4

< Since there are just two groups, we only need tw
different intercepts. This means that, in addition tog,
we need to use only one dummy variable; we ha
chosen to include the dummy variable for females.

<-Using two dummy variables would introduce perfec
collinearity becausefemale+ male=1 |, which meansat
male Is a perfect linear function of female.

< Including dummy variables for both genders Is the
simplest example of the so-called dummy variable trag




< |[nterpretation:

Graph of wage = By + Sfermale + B,educ for & << 0.
wage

N\

wWwomen:
wage = (Be + Bo) + B, educ




1.2.3 Analysis of Covariance (ANCOVA)

Interpretation

+-Mean salary of female college professor:
E(Y/D =1,educ) = (B, + 3,) + B,educ

+-Mean salary of male college professor:
E(Y/D =0,educ) = 5, + 5,educ

= After we run OLS regression, If thet test show
that It is statistically significantwe reject the null
hypothesis that the male and female collec
professors’ levels of mean annual salary are tf
same, and we accept the alternative hypothesis




1.2.3 Analysis of Covariance (ANCOVA)

Features of the dummy variable regression model

< |ntroducing dummy variable

+ The general rule: If a qualitative variable has ‘m’ categorie:
Introduce only ‘m1’ dummy variables In our example, se»
has two categories, and hence we Iintroduced only @angle
dummy variable. If this rule is not followed, we shall fall into
what might be called the dummy variable trap, thatis, the
situation of perfect multicollinearity.

=The assignment of 1 and O values to t
categories, such as male and female, Is arbitratr




Features of the dummy variable regression model

¢ The group, category, or classification that iIs assigne
the value of O Is often referred to as the bas
benchmark, control, comparison, reference, or omitte
category.
= |t I1s the base In the sense that comparisons are & with

that category.

¢ The coefficient attached to the dummy variable D c

be called the differential intercept coefficient.

<+ b/c it tells by how much the value of the intercepterm of the
category that receives the value of 1 differs fronthe intercept
coefficient of the base category.



1.2.3 Analysis of Covariance (ANCOVA)

B. Dummy Variables for Multiple Categories

= Example: Suppose that, on the basis of the cros
sectional data, we want to regress the annui
expenditure on health care by an individual on
the income and education of the individual.

< Since the variable education iIs qualitative Ir
nature, suppose we consider three mutuall
exclusive levels of education: less than hig
school, high school, and college.

<="Now, unlike the previous case, we have mol
than two categories of the qualitative variable
education.




1.2.3 Analysis of Covariance (ANCOVA)

< Thus, following the rule that the number of
dummies be one less than the number
categories of the variable, we should introduc
two dummies to take care of the three levels |
education.

< Assuming that the three educational group
have a common slope but different intercepts i
the regression of annual expenditure on healt
care on annual income, we can use the followir
model: Y =4,+4D, +8,D, + X +u

<= Where Yi= annual expenditure on heath care

Xi= annual iIncome



1.2.3 Analysis of Covariance (ANCOVA)

1if high school education _ [1if college education
@Dlz . . D2_< .

O otherwise ! 0 otherwise
= \We arbitrarily treating the * less than high schoc

educatiorf category as the base category.

# Therefore, the intercept B, will reflect the interept
for this category.

< The differential intercepts g, andg, tell by how mub
the intercepts of the other two categories differ from
the intercept of the base category, which can be readi
checked as follows:

<> Assuming , we obtain from the above specification




1.2.3 Analysis of Covariance (ANCOVA)

ECY; [D, =0, D, =0,X;) =5, + 5 X,
% the mean health care expenditure functions for les
than high school

EY |D,=1 D, =0X)=(&4+t6)+56X
+-the mean health care expenditure functions for th
high schoo

E(Y, | D, =0, D, :lxi):(ﬂ0+ﬁ2)+/83?(i _
+-the mean health care expenditure functions for th
college.




College ethcation\

High school education

Less than lugh
school edacation

N — x




1.2.3 Analysis of Covariance (ANCOVA)

= |f a qualitative variable has more than one category
the choice of the bench mark category is strictly up t
the researcher.

< There Is a way suppressed this trap by introducing &
many dummy variable as the number of categoriaHl
that variable provide we do not introduce the intercept
(constant term) in such a model.

Y, = 6,D,+ 5,D,+ 5, X +u,

< \When we run regression, we use the non intercept apt in your
regression packages (suppressed intercept)




1.2.3 Analysis of Covariance (ANCOVA)

I. Dummy Variables for Multiple Categories :No Inteept Case
= |f there Is no Intercept, we have no comparisor
base group and we did not omitted one category.

N\

Y. =13,124D, +12,244D, +10,453D,

£ (546) (425) (462)
t 13 14 12
( ) ( ) ( )R2 = 0.2546
<=Where Y Is salary of teachers
{1 west {1 north
1 = : , D, = .
O otherwise O otherwise

1 south
D&, = .
0 otherwise



1.2.3 Analysis of Covariance (ANCOVA)
Interpretation

< Bi= the mean salary of teachers in west=13124

= B2= the mean salary of teachers in north=12244

% Bs=the mean salary of teachers in south=10453

II. Dummy Variables for Multiple CategoriesCase
when constant term is present

< Redo the above example, now assume we taket
as base category.

N\

Y. =13,456.63 - 845.23D, —-1245.14D,
s (234.56) (125.98) (262.45)
t  (21.26 ) (14.84) (13.68)




1.2.3 Analysis of Covariance (ANCOVA)
Interpretation

< The mean salary of teachers Iin the west Is abo
1:3,45636 5

<~ The mean salary of teachers in the north is lower b
845.23 and that Is the teachers In the south Is low
than 1245.15; the mean salary of teachers in the nor
13,456.63- 845.23=12611.4

s -845.23 tell us that the mean salary of teachers In tl
North i1s smaller by about 845.23 than the mean salal
of about 13456 for the bench mark category, west.

< N.B: Model with intercept is more appropriate than no
constant term b/c it facilitatescomparisons



1.2.3 Analysis of Covariance (ANCOVA)

<~ |[ntercept indicators variables:

% The above examples we have seen under ANCO\
analysis an example ointercept indicator variables, a
regression mixture of qualitative and quantitative
variables.

< |t affects only intercepit.

< |t Iinteract with dummy variables and qualitative
variables. This is why it affects only intercepts rathel
than slope. wage = B, + B,gend + B,educ + u,

B,+ B, + B,educ —-—-when D =1

15 on i OeClE: ~ St uie=— = when D =0

E(Y):{



& Then the difference b/n them is:

/81 - (/Bo T /81 + ,Bzeduc )_ (/Bo i ,Bzeduc )

e +ve: It IS greater than other
= -ve: It Is less than other



1.2.4 Interactions among Dummy Variables

= al +a2D2i +03D3i % ﬂxl T ui

<" Yi where annual expenditure on clothing

& Xi Income
(1if female
0 If male

(1if college graduate
| 0 otherwise

* In many applications there may be interaction betwen the two
qualitative variables D, andD, therefore theireffect on mean Y
may not be simply additive but multiplicative as wé

 Hence, we re specify the above model as follows:




1.2.4 Interactions among Dummy Variables

Y, =a,+ta,D, +a;D; +a,(D,Dy) + BX, +y,

ECY, |D,=1D,=1X;)=(a,+ta,+a;+a,)+ X

a,=d
a,=C
a,=d

Ifferentia
Ifferentia
Ifferentia

effectof
effectof
effectof

peingafemale
peingacollegegraduate

neingafemalegraduate

* Theaboveequatiorshowghat thanearclothingexpenditus

of graduatd

,emaless differentby a, from themearclothing

expenditugof female®r collegegraduates.
“If a,,a,anda, areall + ve,theaveragelothingexpenditug

of femaless higher(than théasecategorywhichheras
malenongraduateyutit ismuchmoresoif thefemalealso
happen tbegraduates.



1.2.4 Interactions among Dummy Variables

< Similarly, the average expenditure on clothing by :
college graduate tends to be higher than the ba
category but much more so if the graduate happen®tbe
a female.

< This shows how the interaction dummy modifies |
effect of the twaattributes considered individually.

< Whether the coefficient of the interaction dummy s
statistically significant can be tested by the usua test.

< |f It turns out to be significant, the simultaneouspresence
of the two attributes will attenuate or reinforce the

Individual effects of these attributes.

< Omitting a significant interaction term incorrectlyvill lead to a specificatior
bias.



1.2.4 Interactions among Dummy Variables
The Importance of interactions among dummy
variables
<~ help us to get influential variables
+-{o avolid misspecificationbias




1.2.5 Slope indicator variables

< The Interaction between dummy variables an
guantitative variables. They affect only slope
l.e, It does not affect intercept.

<-|t help us to captures the Iinteraction effect o
dummy and guantitative variables on dependen
variables

< Look at the following example

% The price of condominium house can be explained
a function of its characteristics such as Iits siz
location, number of bedrooms, age, floor and so on.



1.2.5 Slope indicator variables

= For our discussion, let us assume that th
number bed room of the house of the measure
IN numbers, nbdr, Is the only relevant variable In
determining house price.

prhou = £, + G,nbdr +u.,

= f, Is the value of an additional number of bet
rooms.

= b is the value of land alone

+We can use dummy variable and indicato
variable interchangeable.



1.2.5 Slope indicator variables

prhou = £, +¢nelb + S nbdr +u,
1if desirablaneibourhod

0if notdesirableneibourhod

= We make the reference group, non desirabl
group.

- |nstead of assuming that the effect of location o
house price causes a change in the intercept.

% Let us assume that the change is in the slope
the relationship.

nelb =




1.2.5 Slope indicator variables

=We can allow for a change In a slope «
iIncluding in the model anadditional explanatory
variable that Is equal to the product of ar
iIndicator variable and continuous variable.

<-In our model, the slope of the relationship Is th
value of an additional number of bed rooms.

= |f we assume 1 value for homes In desirab
neibourhood, and O other wise; we can speci

our model as follows:
prhou = S, + S,nbdr + «(nbdr * nelb) +u,




1.2.5 Slope indicator variables

- & The new variable (nbdr*neib) is the product number
of bedroom and the indicator variables, Is called a
Interaction variable as it captures the interaction of
location and number of bedroom on condominiurmn
house prices.

< Or It Is called a slope —indicator variable or a slopt
dummy variable, b/c it allows for the change in the
slope of the relationship.

% The slope indicator variable takes a value equal t
nbdr for houses In the desirable neibourhood, whe
neib=1, and 1t 1s 0 for homes In othe
neighbourhoods.



1.2.5 Slope indicator variables

<A slope Indicator variable Is treated as just like
any other explanatory variable Iin a regressiot
model.

+ B.nbdr + wnbdr ——--when D =1
E ( prhou ):{’BO Pr

B 5 panhor = —Fm i = =l when D =

< In the desirable neighbourhood, the price pe
additional number of bedrooms of a house g+«
< In the non desirable neighbourhood, the price
per additional number of bedrooms of a house I
b
= |f « >0 price per additional number of bedrooms
IS higher Iin the more desirable neighbourhoot



1.2.5 Slope indicator variables

= The effect of including a slope indicator variable
also can be see by using calculus.
= The partial derivatives of expected house pric
with respect to number of bed rooms
OE (prhou) _{/31+a) whenD =1
a(nbdr) |, whenD =0

@ .
If CO>O E(prhou) = S, + (8, + a)nbdr

sope=4, +«
e %/@/
= E(prhou) = 5, + B,nbdr
T slope= 4,

.

nbdr




1.2.5 Slope indicator variables

< |f we assume that house locationaffects both the
intercept and the slope, then both affects can be
Incorporated into a single model.

<~ The model specificationwill be:

prhou = 5, +¢neib + S nbdr + ¢.(nbdr * neib) +u.

(Bt )+ (L, +w)nbdr ———-when D =1

E ( prho =
ld e {,80+,81nbdr ———————— when D=0

<~ Look numerical example from Principle of Econometrics




1.3 “Structural
Stability”




1.3 Structural Stabillity

< Testing for structural stability is help us to find
out whether two or more regressions are differg
where the difference may be In the intercepts c
the slopes or both.

= Suppose we are Interested In estimating
simple saving function that relates domesiti
household savings (S) with gross domes
product (Y) for Ethiopia.

s Suppose further that, at a certain point o
time, a series of economic reforms have be:
iIntroduced.




1.3 Structural Stabillity

= S0 far we assumed that the intercept an
all the slope coefficients f's) are the
same/stable for the whole set of
observations.Y = Xp + e

= But, structural shifts and/or group
differences are common in thaeal world.
May be:
=-the Intercept differs/changes, or
=-the (partial) slope differs/changes, or

= poth differ/change across categories
time period.




1.3 Structural Stabillity

<= The hypothesis here Is that suclreforms might have

considerably influenced the

savings-  INCoOMme

relationship, that is, the relationship betweensavings
and income might be different in the post reform
period as comparedto that in the pre-reform period.

< If this hypothesis Is true, then we say a structural

change has happened

<= HO: Economic reforms might not have influenced tr

savings and national income re
% H1: Economic reforms might
savings and national income re

& How do we checkif this iIs s0?

ationship
nave Influenced th

ationship



1.3 Structural Stabillity

<-We can test structural stability of testing parametet
by using two methods.

1. Using Dummy variables
2. Chow's test

1. Using dummy variables
* Write the savings function as:
S =6, + 5D, + B,Y, + B:(Y,D,) +u,
where S, is household saving at timet,Y, isGDP at timet and

_ | Oif pre—reform(<199)
) aif post — reform(>1991)

t




1.3 Structural Stabillity

= A. Is the differential slope coefficient
iIndicating how much the slope coefficient of th
pre-reform period savings function differs from
the slope coefficient of the savings function |
the post reform period.

< Declision rule:

=|f s.and B, are both statistically significant a
judged by the t-test, the pre-reform and post
reform regressions differ in both the intercept
and the slope




1.4 Structural Stabillity

=|f only s, Is statistically significant, then the
pre-reform and post-reform regressionsdiffer
only Iin the Intercept (meaning the marginal
propensity to save (MPS) Is the same for pre
reform and post-reform periods).

=|f only 58, Is statistically significant, then the
two regressions differ only in the slope (MPS).

< Check structural stability for the f/wing

regression result:
S =-20.76005+5.9991D, +2.616285Y, —0.5298177Y,D,)
se (604  (64) (.57) (.6035149)



1.4 Structural Stabillity

Example 2: Using the DVR to Test for Structural
Break:
=~ Recall the example of consumptioriunction:
period 1: cons = a4+ B,*InC;+u; VS.
period 2:cons = a,+ B,*INC;+Uu;
= Let's define a dummy variable D, where:
for the period 1974-1991, and
for the period 1992-2006

<~ Then, cons = ay+ta,*D ;+B,*Inc;+p,(D,*InC;)+u;
For period 1:cons = (agt+a,)+(By+p,)INC+u
For period 2 (base categorygons= ay,+ B,“INnC,+u
= Regressingconsoninc, D, and (D,*Inc) gives:
cons= 1.95+ 152D, + 0.806inc — 0.056D,*Iinc)
p-value: (0.968) (0.010) (0.000) (0.002)




1.4 Structural Stabllity

=" D,=1 for 1 € period-1 & D,=0 for | € period-2:
period 1 (19741991). cons = 153.95+
0.75%InC
period 2 (19922005):cons= 1.95+ 0.806*IncC
< The Chow test Is equivalent to testingr,=p,=0
In:
cons=1.95+152D,+0.806*Inc— 0.05€D,*Inc)
< This gives:F(2, 29) = 6.76; pvalue = 0.0039
= Then, reject Hy! There Is a structural break!



1.4 Structural Stabllity

< For a total of m categories usem-1dummied
< |ncluding m dummies (1 for each group) results Ir

perfect multicollinearity (dummy variable trap). e.g.: 2
groups & 2 dummies:
¢ constant=D + D, !l

X=[constant D, D]
1 X,, 1 O
X=/1 X, 1 O
1 X,; 0 1




1.4 Structural Stabillity

2. Chow’s test

% One approach for testing the presence of structuralkchange
(structural instability) is by means of Chow’s test The steps
iInvolved in this procedure:

+ _Step l:Estimate the regression equation for the whole perd
(pre-reform plus post-reform periods) and find theerror sum of

squares ( ESS) or RRSS.

- Step 2:Estimate equation (model) using the available datan the pre-reform
period (say, of size n 1), and find the error sumfequares (ESS1) or RSS1
< Step 3:Estimate equation (model) using the available data the pre-reform
period (say, of size n 2), and find the error sumfesquares (ESS2) or RSS2.
& Step 4:.Calculate RSSr-RSS1+RSS2.

& Step 5:Calculate the Chow test statistic
- _ (RSS,—Rs§))/k

~ Rsy, /§n1+nz-2k) _ ¥
% Where Kk is number of estimated regression coeffiams




1.4 Structural Stabillity

a
=s F(k,nl+n2—2k) Is the critical value from the t-
distribution with k (In our case k=2) and nl1+nr2k
degrees of freedom from a given significance leve
< Decision rule Reject the null hypothesis of
identical intercepts and slopes for the pre-reform
and post reform :)erigds, that Is

1 =P P EesF

¥ 4 :
<" |.e, Rejecting HO means there Is a structura

change.




1.4 Structural Stabillity

e Example: RSS1=64499436.865 (Error sum
squares In the pre-reform period); n=12
RSS2=2,726,652,790.434 (Error sum of squares
the post-reform period); n2=11;

+-RSSR=13,937,337,067.461 (Error sum of squar
for the whole period)

= RSS=RSS1+RSS2=2,791,152,227.299

< The test statistics Is:

- __(RSS,-RSS))/k _ (13937,337,067461-2,791152227.2)/2 _
° RS, /(n+n,—2k) (2791152227299 /(12+11-2(2))

< The tabulated value from the Fdistribution with 2
and 19 degrees of freedom at the 5% level
significance Is 3.52.




1.4 Structural Stabillity

< Decision: Since the calculated value of F excee
the tabulated value, we reject the null hypothesis ¢
identical intercepts and slopes for the pre-reforn
and post reform periods at the 5% level o
significance.

<-Hence, we can conclude that there Is a structur:
break.



1.4 Structural Stability

Draw backs:

= Chow’s test does not tell us whether the differenc
(change) in the slope only, in the intercept only
In both the intercept and the slope.

The Chow Tests

<-Using an Ftest to determine whether asingle
regressionis more efficient than two/more separatt
regressions on suksamples.




1.4 Structural Stability

% The stages In running the Chow test are:

1. Run 2 separate regressions (say, before & after w
or policy reform, ...) & save RSS's:RSS & RSS..

" RSS hasn,—(K+1) df& RSS hasn,—(K+1) df.

+RSS + RSS = URSSwith n,+n,—2(K+1) df

2. Estimate pooled model (under | B's are stable).

" RSS from this model is RRSS with n—(K+1) df
wheren = n;+n..

3. The test-statistic (under H): [RRSS_URSE]/

(K+1)

==

cal URS
. g Sin— 2K + 1]
4.Find the critical value: Fy.,; , »k.1)from table.

5.1f F_,>F. reject H, of stable parameters (anc
favour H_: there Is structural break).




1.4 Structural Stability

e.q.. we have the ff results from estimation of re:
consumption from real disposable income:
I. For the period 19741991:cons = a,+,*InC;+u,
Consumption =153.95+ 0.75Income
p-value: (0.000) (0.000)
RSS=4340.26114R? = 0.9982
Il. For the period 19922006:cons = a,+ B,*INC;+u.
Consumption =1.95+ 0.806'Income
p-value: (0.975) (0.000)
RSS=10706.2127R? = 0.9949
. For the period 1974-2006:cons = a+ p*inc+u
Consumption =77.64+ 0.79Income
t-ratio. (4.96) (155.56)
RSS= 22064.6663R? = 0.9987




1.4 Structural Stability

1.URSS= RSS + RSS = 15064.474
2.RRSS=22064.6663
TK=1landK+1=2;n=18,n=15,n = 33.
3.Thus, [22064.66@ - 15064.47%

= =
e 15064.47/1/

4.p-value = Prol{F-tab > 62.%632981) £.003883

5.Reject H, at a=1%. Thus, there Is structural break.

= The pooled consumption model is an Inadequa
specification; we should run separate regressions.

= The above method of calculating the Chow te:
breaks down If eithern, < K+1or n, < K+1L

<~ Solution: use Chow’s second (predictive) test!

=6./632981




1.4 Structural Stability

= |f, for instance, n, < K+1, then the Fstatistic will be

altered as follows: IRRSS- RSSLY
n2

I:cal Y RSSl

n,—(K+1)

d The Chow test tells if the parameters differ or
average, but not which parameters differ.

d Also, it requires that all groups have the same?.

< This assumption Is questionable: If parameters ca
be different, then so can the variances be.

= 0One way of correcting for unequal 0% is to use
dummy variable regression with robust standarc
errors.




1.4 Structural Stability

Using Dummy variables vs Chow’s test

= Comparing the two methods, It IS
preferable to use the method of
dummy variables regression.

= This I1s because with the method of
DVR:

1. We run only one regression.

2.\We can test whether the change Is
the intercept only, In the slope only, o
In both.




Lab session

Use % data to
practice what we learnt In
previous sections




END OF CHAPTER ONE
THANK YOU FOR BEING WITH ME

BEING @ COMMITTED
Stay Safe!




2.2,"Dummy dependent

variable’ :

Qualitative Response

Model




2.2.1 Introduction

< Qualitative Response Model shows situations
which the dependent variable In a regressio
equation simply represents a discrete choic
assuming only a limited number of values

< Such a model Is called
oLimited dependent variable
oDiscrete dependent variable
oQualitative response

Cateqgories of Qualitative Response Models
*there are two broad categories of QRM




2.2.1 Introduction

1. Binomial Model: 1t shows the choice betwee

two alternatives
e.g: Decision to participate in labor force or not

2. Multinomial models: the choice between mor

than two alternatives
e.g: Y= 1, occupation is farming
=2, occupation is carpentry

=0, government employee

Important terminologies

B Binary variables: variables that have two categoris and used tc
an event that has occurred or some characteristiggesent.




2.2.1 Introduction

= Qrdinal __ variables: variables that have
categories that can be ranked.

=Example: Rank according to educatior
attainment (Y)

(0if primaryeducation
1if secondargducation
| 21If universityeducation

= Nominal variables variables occur when
there are multiple outcomes that cannot b
ordered.

Y =

\




2.2.1 Introduction

= Example: Occupation can be grouped a
farming, fishing, carpentry etc.

Oif farming N.B: Numbers are
y = JLiF fishermen assigned arbitrarily
2 1f carpentry

3if governmenemployee

& Count variables, indicate the number of times
some event has occurred.

= Example: How many years of education yo
have attend?

*|n all of the above situations, the variable
are discrete valued.




2.2.2 Qualitative Choice Analysis

< In such cases Instead of standard regressi
models, we apply different methods of modelin
and analyzing discrete data.

= Qualitative choice models may be used when
decision maker faces a choice among:

& The number of choices If finite

= The choices are mutually exclusive (th
person chooses only one of the alternatives)

= The choices are exhaustive (all possit
alternatives are included)




Qualitative choice analysis

< Throughout our discussion we shall restric
ourselves to cases of qualitative choice where t
set of alternatives Is binary

= For the sake of convenience the depende
variable is given a value of O or 1.

= Example: Suppose the choice Is whether
work or not. The discrete dependent variable
we are working with will assume only twc
values 0 and 1: _{1if i individual isworking

" |0if i™ individual is notworking

wherei=1, 2, ..., n.




Qualitative choice analysis

% The independent variables (called factors) that arexpected ta
affect an individual’s choice may be X = age, X = marital
status, X; = gender, X, = education, and the like.

% These are represented by a matrix X.

Regression Approach

% The economic interpretation of discrete choice mode Is
typically based on the principle of utility maximization leading to
the choice of, say, A over B if the utility of A egeeds that of B.

@ Let Ul be the utility from working/seeking work and let WP be
the utility form not working. Then an individual wi |l choose to
be part of the labour force if Ut -U° > 0 , and this decisior
depends on a number of factors X.




Qualitative choice analysis

&= The probability that the i individual chooses
alternative 1th (i.e. works) given his/her individual
characteristics, XilIs:

P =pr(Y, =1/ X;)=Pr[(U* -U"), >0]=G(X,, /)

< The vector of parameters s=.5....4) ( measurdset
Impact of changes In X (say, age , marital statu
gender, education, occupation, and the like) on thr
probability of labor force participation.

= the probability that the it individual chooses
alternative O (i.e. not to work) Is given by:

pr(Y, =0/ X,)=1-P =1-Pr[U* -U°), >0 =1-G(X,, B)




Qualitative choice analysis

+"Here PI Is called the response probability an
(1-P1 ) 1s called the nonresponse probabillity.

= The mean response of theti individual given
his/her individual characteristics X Is:
E(Y, /X =1*{G(Xi,B) }+0*{1-G(X,,B) }=G(X,,B)

< The problem Is thus to choose the appropriat
form of cwx.5.

® There are several methods to analyze regression nwld where
the dependent variable is binary.

< the four most commonly used approaches to estimagnbinary
response models (Type of binomial models). Theseea




Qualitative choice analysis

= Linear probability models

< The logit model

% The probit model

% The tobit (censored regression) model
1. The Linear Probability Models (LPM)

= The term linear probability model is used tc
denote a regression model In which th
dependent variable y I1s a dichotomous variabl
taking the value 1 or O.




Linear Probability Models

= In the 1960's and early 1970’s thelinear
probability model was widely used mainly
because It Is a model that can beasily estimated
using multiple regression analysis.

= A “limited dependent variable" y Is one which
takes a limited set of values. The most commc
cases are: Binary: yfo} ;  Multinomialyoz.¥ ;
Integer: Integeryf012,.}.ys re .

< The traditional approach to the estimation of limited

dependent variable models Isparametric maximum
likelihood.




Linear Prohabllity Models
& A parametric model I1s constructed, allowing the

construction of the likelihood function.

= A more modern approach Is semparametric,
eliminating the dependence on a parametri
distributional assumption. We will limit our
discuss to parametric approach.

=When we use a linear regression model
estimate probabilities, we call the model th
linear probability model.

< The linear probability model is the regressior
model applied to abinary dependentvariable.




Linear Probability Models

< The linear probability model defines ¢x z-xs

= The regression model when Y Is a binar
variable Is thus,Y=8, + BX, + B, X, +..+ BX, +e=XB+¢

=Where y takes only two value: 0 & 1, an

s.cannot be interpreted as the change in Y given
one-unit increase in X holding all other factors
constant rather Y changes either fromOto 1 o
from 1 to O.

=|f we assume that the zero conditional mea
assumption holds, that isgy=0c , then we have,

alhaiavre




Linear Probability Models

E(Y) =5 *BX HBX, T A BX = XB

FopY=UX) =4+ % +BX, +.+fX =X = It says that the
probability of success Is a linear function of th
X]; 1t Is called the response probabillity

F PY=0/X)=1-pr(Y=UX) [t IS the  Nnon-response
probability , and it is also a linear function of the
X; .

# |nterpretation of LPM
= The response probability iIs linear In tf

parameters of X




Linear Probability Models

= Example: Suppose that from hypothetical dat:
of house ownership and income and thus, tt
LPM estimated by OLS (on home ownership) i
given as follows: ¥ = -©=457 +o.10212<

(0. 1228 (0. 0082
T = (-7.6984) (LZ2.515)

R = O.8048
% The above regression is interpreted as follows

% The Iintercept of —0.9457 gives the “probability” that a family with zero
Income will own a house. Since this value is negatl, and since probability
cannot be negative, we treat this value as zero.

® The slope value of 0.1021 means that for a unit chge in income, on the
average the probability of owning a house increasdsy 0.1021 or about 1C
percent. This is so whether the income level is irgased or not. This seem
patently unrealistic. In reality one would expect hat P, is non-linearly related
to X;.




Linear Probability Models

“f ;, measures the change in the probabillity c

success when Xgchanges, holding other factor:
fixed.

< Advantages of LPM Easy to estimate anc
Interpret; It is too simple.

& Drawbacks of LPM:

1. The dependent variable Is discrete while the Iingendent
variable 1s the combination of discrete and continaus
variables.

2. Usually we arbitrarily (or for convenience) use (and 1 for Yi.
If we use other values for Yi, say 3 and 4, willlao change evel
If the vector of factors Xi remains unchanaec




Linear Probability Models

3. Error term assumes only two values.
=|f Yi=1 then - -1-xs with the Probabillity, Pi;
= If Yi=0 then ¢, =-x,5 with Probability, 1-Pi;

% The variance of the disturbance terms depenc
on the X’s and Is thus not constant.; I.e., erro
term Is not normally distributed.

= Now by definition vae)=ee -ecnr=ecy  SINC&e, =0 [
assumption. Therefore, using the precedin

probablllty dlstrlbutlon of we obtain:
Var(e)=E(e; )= (- A X (1-P)+ (1- X (P)




Linear Probability Models

= This shows that the varlance of U s
heteroscedastic because It depends on th
conditional expectation of Y, which, of course
depends on the value taken by X.

< Thus, the OLS estimator ofg Ignefficient and
the standard errors are biased resulting In
Incorrect test.

4. The expectation (mean) of conditional on th
exogenous variables Xi Is non sense.

Setting this mean to zero as

Ee/ X)=(1-X PP +(-X Bf(—P)=P—X [ -the classical regression

analysis




Linear Probabllity Models

E(g/X)=0=P =X

Y =R+g ==Y R

oThat Is, the binary (discrete) disturbance term Is
equal to the difference between a binary variabl
Yi and a continuous response probability Pi
Clearly this does not make sense.

<the probability of an event Is always a numbe
between 0 and 1 (inclusive). But here we can s
that: Pi=p(M=1X,)=X,;8 , Ile., Pl céake on
any value (even negative numbers) leading
nonsense probabillities, the fitting probabilities




Linear Probabllity Models

5. NonSensical Predictions

< The LPM produces predicted values outside th
normal range of probabilities (0,1). It predicts
value of Y that are negative and greater than 1.

= This I1s the real problem with the OLS
estimation of the LPM.

6. Non-normality of U

< Although OLS does not require the disturbance (U’'s)to be normally
distributed, we assumed them to be so distributedof the purpose of
statistical inference, that is, hypothesis testingetc. But the assumption of
normality for U ; is no longer tenable for the LPMs because like;YU; takes on
only two values.




Linear Probabllity Models

/. Functional Form

< Since the model Is linear, a unit increase In .
results in a constant change of in the probabilit
of an event, holding all other variables constant.

= The Increase Is the same regardless of t
current value of X.

8. Questionable Value of Ras a Measure ©

Goodness of Fit (lower Rvalues )

< In sum, non-normality of ui; possiblility of Yi lyin g outside the O-
1 range; hetroscedasticity of Ui, lower R2 values; he basic
problem is not logically attractive.




Linear Probabllity Models

< pb/c the above mentioned problems, the LPN
model isnot recommend for empirical works

< Therefore, what we need Is a (probability
model that has the following two features:

= As X Increases, P= E(Y = 1/X) increases bu
never steps outside the-Q interval.

= The relationship between Pand X IS non
linear, that Is, “ one which approacheszero at
slower and slower rates as Xgets small anc

approachesone at slower and slower rates a
X. nets verv larae”




Linear Probabllity Models

oo e

+The above Sshaped curve is very much similar witr
the cumulative distribution function (CDF) of a
random variable.

=the CDF of a random variable X is simply the
probability that it takes a value less than or equal to,
were X, IS some specified numerical value of X.

< In short, F(X), the CDF of X, is F(X =X,) = P(X < X,).




Linear Probabllity Models

# Therefore, one can easily use the CDF to model reggsions
where the response variable is dichotomous, takingr1 values.

% The CDFs commonly chosen to represent the 0-1 regpse
models are.

o the logistic — which gives rise to the logit model

othe normal — which gives rise to the probit (or normt)
model

2. Loqgit model

e Although LPM is simple to estimate and use, but the two mo
Important disadvantages are:

 the fitted probabilities can be less than zero ormgater than
one and

* the partial effect of any explanatory variable is onstant.




Logit model

*These limitations of the LPM can be overcom
by using more sophisticated binary respons
models.

PEY =1/ X) =P(Y =1/ X, X, 0.0, X )

< In a binary response model, Interest lies primarily in the

response probability.

= where we use X to denote the full set of explanatpwvariables.

* For example, when Y is an employment indicator, X mght
contain various individual characteristics such agducation, age
marital status, and other factors that affect emplgment status,
Including a binary indicator variable for participation in a
recent job training program.




Logit model

< In the LPM, we assume that the respons
probability is linear in a set of parameters, g

< To avoid the LPM limitations, consider a clas:
of binary response models of the form.

P(Y =1/ X) =G(5, + B X, + 5, X, +...+ B X, ) = G(XP)

= Where G Is a function taking on values strictly
between 0 & 1:0<G(9<1 for all real numbers z.

= This ensures that the estimated respon:
probabilities are strictly between zero and one.




Logit model

< Various nonlinear functions have Dbeel
suggested for the function G In order to mak
sure that the probabilities are between zero an
one.

<-|In the logit model, G Is the logistic function:

exp( z) = A (s e’

[1+exp(2)] 1+ e

=which IS between zero and one for all reeé
numbers z. This I1s the cumulative distribution
function (cdf) for a standard logistic random
variable.

G(z) =




Logit model

=the response probability P(Y =1/X) Is evaluate

as. P=P(Y = ]JX)— "
=the non response probability P(Y =0/X) I
evaluated as:

|
1+e¥ 1+e¥

="Note that. both response and non response
probabilities lie in the interval [0 , 1] , and
hence, are interpretable.

< Odd ratio: the ratio of the response probabilities
(P1) to the non response probabillities (P1).

1-P=P(Y=0X)=1-




Logit model

< For the logit model, the odds ratio Is given by:

e

P P(Y ]P() 1+exﬁ P N ST RPN S SRV > SR § 9
1-P  P(Y = qX) 1
1+e*

< The natural logarithm of the odds ratio(log
odds ratio) Is:

L= In( 5

) = BTAX LK+ ALK

= (the log of the odds ratio) is linear in X as wel
as g (the parameters). L Is called the logianad
hence the name logit model Is given to It.




Logit model

< Thus, the logodds ratio is a linear function of
the explanatory variables.

< For the LPM it i1s Pi, which Is assumed to be
linear function of the explanatory variables.

+ Features of logit model

% As P goes from O to 1 (i.e., ag varies from —o to +x0), the logit L
goes from - to +wo. That Is, although the probabilities (of
necessity) lie between 0 and 1, the logits are notlsounded.

< Although L is linear in X, the probabilities themselves are not
This property is in contrast with the LPM model wheae the
probabllities increase linearly with X.




Logit model

= |f L, the logit becomes negative and increasing
large In magnitude as the odds ratio decreas
from 1 to O and becomes increasingly large ar
positive as the odds ratio increases from 1
Infinity.

= LPM assumes thatPi Is linearly related to X,

the logit model assumes that the log of the od«
ratio is linearly related to X, .

Interpretation: Be remind that we doesnotdirectly

Interpreted the coefficients of the variable:
rather we infternrated their marninal efferte and




Logit model

=2, the slope, measures the change In for a
unit change inX, that is, it tells how the logodds
iIn favor of owning a house change as Iincon
changes by a unit, say, birr 1000.

< The Intercept, f1 Is the value of the logodds |

favor of owning a house If iIncome Is zero.
The terpretation of the logit model is as follows:

f3,— the slope measures the change in L for a unit change in X.

f3,— the intercept tells the value of the log-odds in favor of probability of

if regressors are is zeto.




Probit model

= The estimating model that emerges from th

normal CDF Is popularly known as the probit
model.

<-|n the probit model, G Is the standard norma
cumulative distribution function (cdf ), which Is
expressed as an integral:

< In the probit model, G Is the standard norma
cumulative distribution function

G(2) =d(2) = fga(v)dv
= Where (2 Is the standard normal density




Probit model

D2 =(2n) " exptz’ 12
= The estimating model that emerges from th
normal CDF Is popularly known as the probit

model.

“"Here the observed dependent variable Y, take
on one of the values 0 and 1 using the followir
criteria.

& Define a latent variable Y such that Y'=X.8+s

1if Y.">0
Y = )
0if Y.”<0




Probit model

= The latent variable Y is continuous (e < Y* <
),
<[t generates the observed binary variable Y.

& An observed variable, Y can be observed in tw
states:

= If an event occurs It takes a value of 1
= |If an event does not occur It takes a value of

& The latent variable i1Is assumed to be a lines¢
function of the observed X's through the
structural model.




Probit model

+="However, since the latent dependent variable
unobserved the model cannot be estimated usii
OLS.

=~ Maximization of the likelihood function for
either the probit or the logit model Is
accomplished by nonlinear estimation method:
Maximum likelihood can be used instead.

<~ Most often, the choice Iis between normal error
and logistic errors, resulting In the probit
(normit) and logit models, respectively.

=~




Probit model

= The coefficients derived from the maximun
likelihood (ML) function will be the coefficients
for the probit model, If we assume a norme
distribution.

= |f we assume that the appropriate distribution
of the error term Is a logistic distribution, the
coefficients that we get from the ML function
will be the coefficient of the logit model.

& |n both cases, as with the LPM, It IS assume
that E[[1/X.] =0




Probit model

< In the probit model, 1t Is assumed that Var

(Li/X,) = 1; In the logit model, it Is assumed tha
Var (LilX;) =z .

*"Hence, the estimates of the parameterss( ’

from the two models are not directly
comparable.

= But as Amemiyasuggests, a logiestimate of a
parameter multiplied by 0.625 gives a fairly
good approximation of the probit estimate of the
same parameter.




Probit model

= Similarly the coefficients of LPM and logit
models are related as follows:

T ppm = 0.25 441, €XCept for intercept
T 5 1pm = 0.25 4 + 0.5 for intercept

= The standard normal cdf has a shape ver
similar to that of the logistic cdf.

( )




Probit model

= The estimating model that emerges from th
normal CDF Is popularly known as the probit
model, although sometimes it is also known :
the normit model.

=" Note that both the probit and the logit models
are estimated Dby Maximum Likelihood
Estimation.




Probit model

< Interpreting the Probit and Logit Model Estimate

< The coefficients give the signs of the partial effects
each Xj] on the response probability, and the statistice
significance of Xj Is determined by whether we cal
reject HO: Bj=0 at a sufficiently small significance level

=" However, the magnitude of the estimated parameters
dZ/dX) has no particular interpretation. We care about
the magnitude of dProlgY)/dX.

= From the computer  output for a probit or logit
estimation, you caninterpret the statistical significance
and sign of each coefficient directly




Probit model

= In the Ilinear regression model the slope
coefficient measures the change in the avera
value of the regressandor a unit change in the
value of a regressor with all other variables
held constant.

= In the LPM, the slope coefficient measure
directly the change in the probabllity of an even
occurring as the result of a unit change Iin th
value of a regressoy with the effect of all other
variables held constant.




Probit model

< In the logit model the slope coefficient of :
variable gives the change In the log of the odi«
assoclated with a unit change In that variable
again holding all other variables constant.

= But as noted previously, for the logitmodel the
rate of change Iin the probability of an even
happening is given byg] Pi(1 — P1 ), where g] Is
the (partial regression) coefficient of the|th
regressor. But in evaluatingPi , all the variables
iIncluded In the analysis are involved.




Probit model

<-|n the probit model,as we saw earlier, the rate c
change In the probability is somewhat complicate
and Is given bygj f (Zi1 ), wheref (Zi) Is the density
function of the standard normal variable andZi =
pl + p2X2 + - - - BkXki , that Is, the regressior
model used Iin the analysis.

< Thus, In both the logit and probit models all the
regressors are involved in computing the changes
probability, whereas in the LPM only the ji
regressor Is Iinvolved. This difference may be or
reason for the early popularity of the LPM model.




Probit vs logit model

Is_logit or probit model is preferable?

<~ In most applications the models are quite similarthe main
difference being that the logistic distribution hasslightly
fatter taills.

< That Is to say, the conditional probability Pi approaches
zero or one at a slower rate in logit than in probit

% Therefore, there is no compelling reason to choosame over
the other.

< In practice many researchers choose the logit mod
because of its comparative mathematical simplicity.

#- The standard normal cdf has a shape very similar tohat of
the logistic cdf.




Probit vs logit model

= The probit and logit models differ Iin the

specification of the distribution of the error term
u.

% The difference between the specification an
the linear probability model is that in the linaer
probability model we analysesthe dichotomous
variables as they are, where as we assume f
existence of an underlying latent variable fo
which we observe a dichotomous realization.




Probit vs logit model

< The probit model and the logit model are not
directly comparable. The reason Is that
although the standard logistic (the basis of log)
and the standard normal distributions (the basis
of probit) both have a mean value of zero, the
varlances are different; 1 for the standaro
normal (as we already know) andz?/3 for the
logistic distribution, where = 22/7.

= Therefore, If you multiply the probit coefficient
by about 1.81 (which is approximately =z/\ 3),
vou will get approximately theloqit coefficient.




Probit vs logit model

= The R2’s for the linear probability model are
significantly lower than those for the logitand
probit models. Alternative ways of comparing
the models would be:

= To calculate the sum of squared deviatior
from predicted probabilities

= To compare the percentages correctl
predicted

= To look at the derivatives of the probabillities

with respect to a particular independent
variahle.




Tobit Model

= An extension of the probit model is the tobit mode
developed by James Tobin.

<" Let us consider the home ownership example.

= Suppose we want to find out the amount of money tr
consumer spends Iin buying a house In relation to his
ner income and other economic variables.

= |f a consumer does not purchase a house, obviously
nave no data on housing expenditure for suc
consumers; we have such data only on consumers w
actually purchase a house.




Tobit Model

% Thus, consumers are divided Iinto two groups, on
consisting of say, N consumers about whom we hav
iInformation on the regressors (say income, interest ral
etc) as well as the regresand amount of expenditure
on housing) and another consisting of say, N
consumers about whom we have information only o
the regressors but on not the regressand

<= A sample In which information on regressandis
available only for some observations is known as
censored sample. Therefore, the tobit model Is als

known as a censored regression model




Tobit Model

< Mathematically, we can express the tobitmodel

asS
Y _{IBO +/81X1i +U, If RHS>0

0, otherwise

= Where RHS= right hand side

< The method of maximum likelihood can be use
to estimate the parameters of such models.

Measuring goodness of fit

#The conventional measure of goodness of fit?R
IS not particularly meaningful In binary
regressand models. Measures similar to R




Measuring goodness of fit

="Measures based on likelihood ratios: Th

conventional measure of goodness of fitR is
not particularly meaningful In  binary
regressandmodels.

® Measures similar to R, called pseudo R are
available, and there are a variety of them.

Measures based on likelihood ratios

= lLet L grbe the maximum likelihood function when
maximized with respect to all the parameters and L be
the maximum likelihood function when maximized
with restrictions 4=C .




Measuring goodness of fit

L 2
R =1- (&)

LUR .
=the qualitative dependent variable model, th

likelihood function attains an absolute
maximum of 1. This means that,t« < Lw =1

#Cragg and Uhler (1970) suggested a pszeudo2
that lies betweenOand 1. 2 - _Lw" —Len

2

2
(- Lin)Lygn

= Mc Fadden (1974) defined Ras

_log Lk
log L,

R?=1




Measuring goodness of fit

< Another goodness-ofit measure that is usually
reported Is the soecalled percent correctl
predicted which I1s computed as follows. Fo
each I, we compute the estimated probabiliy
that Yi takes on the value oneyi

< |If vi>0.5 the prediction of Yi is unity, and if" <Q
YiI Is predicted to be zero. The percentage ¢
times the predicted v matches the actual |
(which we know to be zero or one) Is the perce

1if Y, =05

correctly predicted. " * {o (¥, <05

CountR? = number of correct predictions
total number of observations




Brainstorm questions

1. Why LPM Is not recommendable for empirical
analysis?

2. Drive logodds ratio.

3. For logit and probit model we can use OL!
estimators.

4. For logit and probit model we can us
7~ maximum likelihood estimators.

5. The variance that logit model assume I
where as probit model assumes 1.




Lab session

Use “lecture 2.xIS data to
practice what we learnt In
previous sections




END OF CHAPTER TWO

THANK YOU FOR BEING WITH ME

BEING @ COMMITTED
stay Safe!




CHAPTER THREE

Introduction to Basic Regression Analysis with
Time Series Data

3.1 Nature of the Time Series data

3.2 Stationary & non stationary stochastic
Processs

3.3 Trend & Difference stationary stochastic
process

3.4 Integrated Stochastic Process

3.5 Tests of Stationary 141




3.1 Nature of the Time Series data
=" Time series datahave become sdrequently and
iIntensively used in empirical research and thus,
econometricians have recentljpegunto pay very
careful attention to suchdata.

=~ Time series datare data collectedfor a single
entity (person, firm, and country) collected
(observed) atmultiple time periods.

A time series Is asequence of numerical datmn
which each item Is associatedwith a particular
Instant in time.

Example: Monthly unemployment, weekly measures of mone
supply, M1 and M2, daily closing prices of stocd ##dices, ando on




3.1 Nature of the Time Series data

=" Thus, the way we collect time series datacan be
characierised as dally (stock prices, weather
report), weekly (gasoline suppliedin thousands of
barrels), monthly (unemployment rate, CPI),
guarterly (GDP), & annual (GDP, Budget).

=-Quinquennially: Every 5 years (e.g: the census ¢
manufactures)

Decennially(e.g: Census of population)

Exchange rates daily date for 2 years=30
observation

Inflation rate for Ethiopia, quarterlx 4\e}lata for 30

vinAare —DN)3 N—19C ~AlheAamviatiAar




3.1 Nature of the Time Series data
. | o Ethion ; Jal
data for 40 yrs; 40*1= 40 observations.
& Time Series dataVs Cross sectional data

Cross sectional

* [t coming with temporal ordering over

period of time on a single entity. « At a given point of time
» the past can affect the future, but not » a different sample has drawn from
vice versa the population will generally yield
« We have d/t data for d/t samples different values of the independent
« Also viewed as random varaibles; we and dependent variables
do not know what the annual growth in * We have d/t data for d/t year
output will be in Ethiopia during the » The OLS estimates computed from
coming year. i.e, the outcomes of these d/t random samples will generally
random variables are not foreknown. differ and this why we consider OLS

estimators to be random variables.




3.1 Nature of the Time Series data

=~ A sequence of randomvariables indexedby time is
called a stochastic process or a time series proce
(“Stochastic” Is a synonymfor random.)

<= When we collect a time series dataset, we obtain
one possible outcome, or realization, of th
stochastic process.

=~ \We can only see a single realization, because v
cannot go back in time and start the process ovel
again.

This Is analogous tocross-sectional analysis wher
we cancollect only one randomsamplegs




3.1 Nature of the Time Series data

Important terminology

< Univariate analysis examines asingle data
series

<~ Bivariate analysis examines gair of series

= The term vector Indicates that we are
considering a number of series: two, three, or
more.

< The term “vector’ is a generalization of the
univariate and bivariate cases.
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3.2 Stationary and nomrstationary Stochastic
Processes

< A random or stochastic processis a collection of
random variables orderedin time.

= |f we let Y denote a random variable, and if it iIs
continuous, we denote It asy(t), but If it is discrete,
we denotedit as Yt.

= Example of Yt i1s GDP, CPI, PDI; since most
economic data arecollectedat discrete points intime,
we use Yt notation

= If we let Y represent GDS, for our data we have
Y1,Y2,Y3,...,Y21,Y22,Y23, where the subscript 1
denotes the first observation(i.e., GDSof 1991/1992
and the subscript 23 denotes the lastlabgervatiofi.e.,



3.2 Stationary and nomstationary Stochastic
Processes

EFEXample O Y [S electro cardiograrm, record
of heart activity.

%"N.B: Each of these Y’s Is a random variable.
A. Stationary Stochastic Processes

= A stochastic process Is saido be stationary
“If Its mean and variance are constant over
time and the value of the covariance between
the two time periods depends onlyon the
distance or gapor lag betweenthe two time

periods and not the actual time at which the
covariance is computec. 148




3.2 Stationary and non-stationary Stochastic Processes

= |[n the time series literature, sucha stochastic
process IS knownas a weakly stationary, or
covariance  stationary, or  seconebrder
stationary, or wide sense, stochastic process.

=" To explain weak stationarity, let Yt be a

stochastic time series witlthese properties:
Mean : E(Y,) = U
Variance:Var (Y,) = E(Y, — p)? = o°?

Covaiiance y, = E(Y, - ) (Y., ~ 4]
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3.2 Stationary and nomstationary Stochastic
Processes

¥ Where vk, the covariance (or autocovariance) a
[ag K, 1S The covariance betweerthe values of Yt

and Yt+k that Is, betweentwo Y values k periods
apart.

= |f k=0, we obtainy0, whichis simply the variance
of Y(=062); If k=1,y1 Is the covariance betweemwo
adjacent values of Y.

= E[(Y, = 1) (Y — 1))

Suppose we shift the originof Y from Ytto Yt+m
(say, from 1997to 2002for our GDS data). Now If
Yt Is to be stationary, the mean, variance, an
autocovariances of Yt+m must be the same a

those of Yt. 150




3.2 Stationary and nomstationary Stochastic

Processes
%" In short, If a time series Is stationary, itS mean, variance

and autocovariance (at various fags) remairthe same nc
matter at what point we measure them that is, they are

time invariant

%= Such a time series will tendto return to Iits mean
(called mean reversion) and fluctuations around this
mean  (measuredby its variance) will have a broadly
constant amplitude.

If a time series Is not stationary inthe sense just defined
it iIs called a nonstationary time series (keepn mind we
are talking only about weak stationarity).

In other words, a nonstationary time series will have ¢
time-varying mean or a time-varying varigagqe or both.




3.2 Stationary and non-stationary Stochastic Processes

Why Stationary time series are important?

¥ Because If a time series isonstationary, we can
study Its behavior only for the time period under
consideration

% Each set of time series datawill therefore be for
a particular episode.

=~ AS a consequence, It Is not possible tgeneralize
it to other time periods. Therefore, for the
purpose offorecasting such (nonstationary) time
series maybe of little practical value.

. Non stationary Stochastic Processes

A special type of stochastic process (or tim
series), Is called, gurely random, ?g%Vhlte NOISE
proces.




3.2 Stationary and non-stationary Stochastic Processes
=~ We call a stochastic process purelyandom If It

has zero mean, constant varianceécZ, and IS
serially uncorrelated.

=~ One of the classical example ohon stationary
time series is the randomwalk model (RWM).

=" |t Is often said that asset prices, suchas stock

prices or exchange rates, followa random walk;

that Is, they are nonstationary.

We have twotypes of randomwalks

+ (1) random walk without drift (i.e., no
constant or intercept term) and

+ (2) random walk with drift (1.5 constan

A e e Y - — - _—aN




3.2 Stationary and non-stationary Stochastic Processes
1. Randomwalk without drift

== Suppose Uy Is a white noise error term with
mean0 and variance

= Then the series Y Is saidto be a randomwalk if

Y. =Y * U - shows, the value of Y at time t s
equal to its value at time (t—1) plus a random
shock thus itis an AR (1) model.

We canthink of Y, =v_ +u, as aregressiorf
Y at time t on its value laggedone period

Y, =Y, U,

Y, =Y +tu, =Y, +u, +u,

Y, =Y, +u, =Y, +u, +uU, +Uu, 154




3.2 Stationary and non-stationary Stochastic Processes
= |If the process startedat some time 0 with a

—value of Yo, we Nawer, + > U,
E(Y,) = E(Yo + D u) =Y,
Var (Y,) =to*

= the meanof Y Is equal toits Initial, or starting,
value, whichis constant but as t increases, It

variance increases Iindefinitelythus violating a
condition of stationarity .

In short, the RWM without drift IS a
nonstationary stochastic proces$n practice YO
IS often set at zero, iInwhich case El%Yé) =0.




3.2 Stationary and non-stationary Stochastic Processes
¥ An Interesting feature of RWM Is the persistence
ef—Fandem—sheele&ef,—Fandeme#eps)—WMGh IS
clear from Y: = Y. * 2 v« Ytisthe sum of initial
YO plus the sumof random shocks.

=~ As a result, the impact of a particular shockdoes
not die away

= For example, if U,=2 rather than U,=0, thenall
Yt's from Y2 onward will be 2 units higher and
the effect of this shocknever dies out.

That 1Is why random walk Is said to have an
Infinite memory. The implication Is that, random
walk remembers the shoclorever; that Is, It has
Infinite memory . 156




3.2 Stationary and norstationary Stochastic Processes

= \\e canrewrite the above equationas:y. =Y, + 2. u,
(Y: = Y1) =AY, = u,

= \\Where A IS the first difference operator. It Is
easyto show that, while Yt Is nonstationary, Its
first difference Is stationary In other words, the
first differences of a random walk time series are
stationary.

. RandomWalk with Drift

et us modify v.=v,+yu as follows:
Y =o+7Y,_ | +u,
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3.2 Stationary and non-stationary Stochastic Processes

="\Where 6 Is known as the drift parameter. The
name drift comes from the fact that if we write
the precedingequatiolw, - v, -ar,= s+,

="t shows that Yt drifts upward or downward,
depending on & being positive or negative. It Is
alsoan AR(1) model.

= Following the procedure discussedfor random
walk without drift , it can be shownthat for the
random walk with drift model :
EF =Y, +t5
Fari{¥,) =t
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3.2 Stationary and non-stationary Stochastic Processes
< As you can see forRWM with drift, the mean

as well as the variance increases over time.

< Thus, It violating the conditions of (weak)
stationary. In short, RWM, with or without
drift, Is a nonstationary stochastic process.

< The random walk model is anexample of what
IS known In the literature as a unit root
Process. Y=pF  +tu;-12p=]

Unit Root Stochastic Process

& Let us write the RWM as:

% This model resembles the Markov first-or %fgautoregressie
model that we discussei on autocorrelation.




3.2 Stationary and nomstationary Stochastic Processes

= _|If p=1, becomes a RWMwithout drift). If p isin
fact 1, we face what Is knownas the unit root
problem, that Is, a situation of nonstationary; we
already know that in this case the variance of Y1
IS not stationary.

== The name unit root Is due tahe fact that p=1.
Thus the terms nonstationary, randomwalk, and
unit root can be treated as synonymous.lf,
however, p|<1, that Is If the absolute value ofp
IS less thanone, thenit can be shownthat the

time series Yt Is stationaryin the sense we hav
defined it. 160




3.3 Trend Stationary and Difference Stationary Shastic Processes

If the trend In a time series is completelypredictable and not variable, we call it a
deterministic trend, whereas if it is not predictable, we call it astochastic trend

% To make the definition more formal, consider the following model of the ime series
Y

t _
= Y., =58 +06t+GY ,+u, (a)
% Where ut is a white noise error termand wheret is time measured chronologically.

% Now we have the following possibllities:
RWM without drift :

Pureandonwalk: If in(a).5.=0,5 =0,5, =1, weget --———---- (b)=non stationary
¥ =¥, ,+L7,
,ﬁ}*’t :F: —}*':_1 =U: IR EEE R (c)=stationary, Hence, a

RWM without drift IS a difterence stationary process (DSP).
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3.3 Trend Stationary and Difference Stationary Shastic Processes

RWM with drift: Ppureandonwalk withdritt: If in (a),5, # 0, 3, =0, 5, =1, weget
Io=By T +U; =mmmmmm - (d)-non stationary

LTy =0l =By U e (e)—stationary, this means
Yt will exhibit a positive (p1>0) or negative
(B1<0) trend. Such a trend Is called a
stochastic trend Equation (e) is a DSPprocess
because the nonstationarity in Yt can be
eliminatedby takingfirst differences of the time
series

Dete 'm | n |St| C tre Nn d . Pureandorwalk wittirift If in (a)4,#0 4 %06, =1 wege

Yt = B, + [t +u, , whichis called a trend stationa.r@ﬁocess (TSP).




3.3 Trend Stationary and Difference Stationary
Stochastic Processes

< Although the mean of Yt is pO+plt, which is
not constant, its variance (®2) Is constant

<-0Once the values ofp0 and Bl are known, the
mean can be forecastedperfectly. Therefore, If
we subtract the mean of Yt from Yt, the
resulting series will be stationary, hence the
name trend stationary.

detrending
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3.3 Trend Stationary and Difference Stationary
Stochastic Processes

Random walk with drift & deterministic
trend: If in(a)B, 20,5, 20,5, =1, weget

Yio=6+Gt+Y,  +U, _(f) non stationary
Deterministic trend with stationary AR (1)

component:
Ifin(@)5,#0,06, #0, 5, <1,weget
Y, =8, +6t+LY_ +U._, which IS

stationary around the deterministic trend.
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3.4 Integrated Stochastic Process

~TFhetrandem-walk-medeHsaspectheecaseof a

more general class of stochastic processe:
known asintegrated processes

=the RWM without drift is nonstationary, but
its first difference Is stationary.

+=the RWM without drift integrated of order 1,
denotedas I(1).

= Similarly, If a time series has tobe differenced
twice (l.e., take the first difference of the first
differences) tomake It stationary, we call such
a time series integratedof order 2. 165




3.4 Integrated Stochastic Process
< |n general, If a (honstationary) time series ha
to be differencedd times to make It stationary,
that time series Is saidto be integrated of order
d. A time series Yt Iintegrated of order d Is
denotedas Yt ~I(d).

= |f a time series Yt Is stationary to begin with
(l.e., It does not require anydifferencing), It is
said to be Integrated of order zero, denotedby
Yt ~1(0).

< Thus, we will use the terms ‘Stationary time

series” and “time series integrafgg of order
7arn” tn mear the came thinn




3.4 Integrated Stochastic Process
=-Most economic time series are generall{(1); that

—they generally become stationary onty after
taking their first differences.
Properties of Integrated Series
= Let Xt, Yt and Zt be three time series

L If Xt ~I(0) and Yt ~I(1),then Zt =(Xt +Yt)=I(1);
that Is, a linear combination or sum of stationary
and nonstationary time series Is nonstationary

. If Xt ~I(d), then Zt =(a+bXt)=I(d), where a and
b are constants. That Is, a linear combinationof

an I(d) series Is alsol(d). Thus, if )it6f7vl(0), then
7t =(a+hXt\~1( N\




3.4 Integrated Stochastic Process
Ni._If Xt ~I(d1) and Yt ~I(d2), then Zt =(aXt
+bYt) ~I(d2), where d1<d.
Iv. If Xt ~I(d) and Yt ~I(d), then Zt =(aXt
+bYt)~I(d*); d* Is generally equal to d, but In
some cases d*<d
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3.0 Tests of Stationarity: The Unit Root Te

= A test of stationarity (or nonstationarity)
that has becomewidely popular over the
past several years Is theinit root test.

& Yt=plt—14+ut—-1<p <]l ()
= where ut IS a white noiseerror term

=We know that if p =1, that Is, In the caseof
the unit root, (1) becomes a randomwalk
model without drift, which we know Is a
nonstationary stochasticprocess.
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3.5 Tests of Stationarity: The Unit Root Test

=" Therefore, why not simply regressYt on its (one
period) lagged value Yt —1 and find out If the
estimated p Is statistically equal to 17

< If 1t Is, then Yt Is nonstationary. This Is the

general Idea behind the unit root test of
stationarit y.

For theoretical reasons, we manipulate (i) a

follows: Subtract Yt -1 from both sides of (i) to
obtain: Y -Y_,=0Y Y.ty

=(p-DI;+u | which cari 786 written
alternativelv A, =&+t el (ii)




3.5 Tests of Stationarity: The Unit Root Test

=Where 6 = (p—1) and , as usual, Is the first-
difference operator.

% |n practice, therefore, instead of estimating
(1), we estimate (i) and test:

<~ the (null) hypothesis thaté = 0, thenp = 1,
that Is we have a unit root (nonstationary).

=the t value of the estimatedcoefficient of Yt
—1 does not followthe t distribution evenin
large samples; that Is, it does not have an
asymptotic normal distribution. Thus, we
uset(tau) statistic. 171




3.5 Tests of Stationarity: The Unit Root Test
1. Dickey—Fuller (DF) test

=~ Dickey and Fuller have shown that under the
null hypothesis that 6 = 0, the estimatedt value
of the coefficient of Yt —1 follows the t(tau)

statistic.

& |n the literature the tau statisticor test iIs knowr
as theDickey—Fuller (DF) test

In conducting the DF test, It was assumedhat
the error term ut was uncorrelated.

the DF test is estimatedin three different forms,
that is, under three different null hyjotheses.




3.5 Tests of Stationarity: The Unit Root Test
¥ti1s arandom wallc - AY ; + 1,

Yt1s arandom walk with dret - AY, = 5, +dl,, + 1,
Yt 1s arandom walk with drift :
around a stochastic trend : AY, = S0+ G+, +u,

=\Where t Is the time or trend variable.

<Null hypothesis o = 0; that Is, there Is a unit
root—the time series Is nonstationary.

«Alternative hypothesis 6 Is less thanzero; that Is,
the time series Is stationary.
Decision rule: If /tau statistics/> /tau critical

value/; we rejectedthe null hypothesisg It means
that Yt Is a stationarv time series. 17




3.5 Tests of Stationarity: The Unit Root Test

2. Augmented Dickey—Fuller (ADF) Test

=~ In this case theu: are correlated, Dickey and
Fuller have developed a test, known as the
AugmentedDickey—Fuller (ADF) test.

= This test Is conducted by “augmenting” the
preceding three equations by adding the lagged
values of the dependent variableAYt -I.

The ADF test here consists of estimatingthe

following regression
AY, =08, + G+, + > aAl, | +u,
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[ . v Tl .

& |n ADF we still test whetheré = 0 and the ADF
test follows the same asymptotic distributionas
the DF statistic, so the same critical values cabe
used

<" Hypothesis we use under this test is:

H, :0=:there 15 a untt root .., the fume sentes 1 non statonary

H,:0 20 there s no uat root, 1.¢., the time serses s stationary (evel stattonary)

= Example: the GDP series using one lagged
difference of natural log of GDP of Ethiopia; the
results were as follows: 175




3.5 Tests of Stationarity: The Unit Root Test

AF, =0.0145 +0.0001548¢ + 0.01257, , + 0.00458AF, ,
(=7) (-038) (0.77) (034)  (0.25)

(1%CV =-4242;5%CV=-3540 )
- Decisionrule: The t(=t) value of the Yt —1 coefficient (
=0) Is 0.34, but this value inabsolute terms is much ess
than eventhe 1% and 5% critical t value of —4.242 and
-3.540 respectively, againsuggesting that evenafter
taking care of possible autocorrelationin the error
term, the Y series is not stationary.

. The Phillips—Perron(PP) Unit Root Tests

An important assumption of the DF test is that theerror terms ut are independently
and identically distributed. The ADF test adjusts the DF test to take care of possible
serial correlation in the error terms by adding the lagged difference terms of the

regressand.
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3.5 Tests of Stationarity: The Unit Root Test

%" Phillips and Perron usenonparametric statistical methoc
to take care of theserial correlation in the error terms
without adding lagged difference terms

¢ The Phillips-Perron test involves fitting the following
regression Y, = B, + Bt + pY., + U,

“-Under the null hypothesis thatp = 0, the PP Z(t) and Z(
) statistics have the same asymptotic distributions as ti
ADF t-statistic and normalized bias statistics.

One advantage of the PP tests over the ADF tests is tf
the PP tests are robust to general forms ¢
heteroscedasticity In the error term ut. Another
advantage Is that the user doesot have to specify a lag
length for the test regression. 177




3.5 Tests of Stationarity: The Unit Root Test

| tuation. lackof 1 hoth the ADF

and PPtests Is widelyacknowledged,

=-Usually ADF yields superior results than PP test,
If the data set hasno missing observations and
structural breaks whilst PP test also yields
superior results than ADF test, if the dataset have
some missing observations and have structural

breaks

ecision rule: since tests statistic, Z(t) value It
greater that critical values we reject the null

hypotheses of norstationary. 178




Next assignment

Yes

TUnit Root Test

w

Estimate
VAR

E—

Granger-Causality

Test

&

Estimate
IRF and
FEVD

Take first

difference

MNo

Mo

Mix order integration®

Granger-Causality

— W N™No
Statonary
+
Difference
-
Test for Tt Foot
Yes to all Stationary
h b d
Estimate ARDI.
Johansen CI
I
w
Presence of C1 Yes
Estimate WVECK I : Test

!

Estimiate IFRF and
FEVD




Next assignment

* The series steps we should followed to do
with time series analysis:

=Unit root-> stationary—> If all are

stationary at a level> optimum leg
length-> we run directly VAR model.

= Unit root - stationary-> Iif all stationary
at 1st difference - optimum length->

Johanson CO iIntegration->

VECM 2IRF& VDF - Granger

causality->
180



Lab Session

Use “ecture 3.x|S’ data to
practice what we learnt in
previous sections




END OF CHAPTER THREE

THANK YOU VERY MUCH FOR BEING WITH
ME

BEING@COMMITTED!
STAY SAFE!
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CHAPTER FOUR

INTRODUCTION TO SIMULTANEOUS
EQUATION MODELS

4.1 Nature of Simultaneous Equatiomodels

4.2 Simultaneity Bilas & Inconsistency of OLS
estimators

4.3 Solutionto Simultaneous Equations
4.4 |dentificationproblem
4.5 Formal Rules (Conditions) for Identification

4.6 Estimation of Simultaneous Equations
Models183
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4.1 Nature of Simultaneous Equation mod

# So far we have beerdiscussedby focusing exclusively

regression models In such models a dependent
variable I1s expressedas a linear function of one or
more explanatoryvariables.

< |.e, there was a single dependent variable Y andne or
more explanatory variables, X's.

% The cause-and-effectrelationship in single eqguation
models Dbetween the dependent and independent
variable is unidirectional.

< That Is, the explanatory variables are thecauseand
the independent variable is theeffect.

< But there are situations where such one-way or
unidirectional causation Iin the function Is not
meaningful.




4.1 Nature of Simultaneous Equation mod

< This occurs |Iif, for Instance, Y (dependen
variable) is not only function of X’s (explanatory

variables) but alsoall or some of the X's are, In
turn, determined by Y.

< There Is, therefore, atwo-way flow of influence
betweenY and (some of) the X’swhich in turn
makes the distinction between dependent anc
iIndependent variables a little doubtful.

% In simultaneous modelthere Is
eC —one for each of the mutually, or
jointly, dependent or endogenous variables.

<= The number of equationsin suchmodels isequal
to the number of jointly dependent or
endogenous variables Involved In the
phenomenonunder analysis.



4.1 Nature of Simultaneous Equation mod

» Unlike the single equation models, In

— simultaneous eguationmodels it Is not usually
possible  (possible only under specific
assumptions) toestimate a single equationof
the model without taking Into account the
iInformation provided by other equation of the
system

» |If one applies OLS to estimate the parameters
of each equation disregarding other equations
of the model, the estimates sobtained are not
only biasedbut alsoinconsistent,i.e. evenif the
sample size Increases Indefinitely, the
estimators donot converge totheir true values.




4.1 Nature of Simultaneous Equation mod

< Example: the classic example of simultaneou
causality in economics is supphand demand

< Both Prices andquantities adjust until supply
and demandare in equilibrium .

< A shock of demand or supply cause both
prices andquantities to move.

< As well known, the prices P of a commodity
and gquantity Q sold are determined by the
Intersection of the demandand supply curves
for that commodity.

= Look at the graph of dd and ss from class
discussion(?7??)



4.2 Model specification \

% Thus, assuming for simplicity that the demandand

—supply-—curves—are-linear-andadding-the-stochastic

disturbance term Ul and U2, we may write the
empirical dd and ss functionas:

Demand function :

Q" =B+ BPR+pBY, +U, ——= 5 <0
Supply function :

Q' =f+BR+BY,+Uy~~=5>0

& Equilibrium condition: Q,° = Q,°
< Where Qtd= quantity demand

& Qts=quantity supplied
& t=time: £,and f, arethe parameters 138




4.2 Model specification \

< B/C of simultaneous dependence between Q and P, then U
and Pt, and U2t and ptcannot be independent

= i—ult—m above eguation changes b/C changes 1T othe

variables affecting Qtd such as income, wealth and tastedhe
demand curve will shift upward if ult is +ve and downward if
ultis —ve.

% Thus, shift in demand curve changes both P and Q.

< Similarly, a change in U2t b/c of weather, import or export
restrictions, etc; will shift the ss curves, again affect bth P
and Q.

< B/c of this simultaneous dependence b/c Q and P, ult and |
and u2t and pt cannot be independentThus, a regression of
Q and P as in above equation would violate an important
assumptions of the classical linear regression model; narnye
the assumption of no correlation b/n the explanatory
variable(s) and the disturbance term
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1

< In simultaneous equation models variables are
classifiedas endogenous anéxogenous.

—@Eﬂdegeﬂeas—vaﬁables—am—\mﬁables—tha{—are
determined by the economic model (within the
system) and

* Exogenous variables are those determined from
outside of the system

* Exogenous variablesare also called predetermined
Since the exogenous variables are predetermine
they are supposedto be independent of the error
terms in the model/ nonstochastic

e are exogenous variableslagged exogenous variableand
lagged endogenous variabledPredetermined variables are
non-stochastic and hence independent of the disturbanc

terms. X, Xy and Yy_are regarded as predeterminec
(exogenous) variables.




& Structural models: A structural model

__describes the complete structure of  the

relationships amongthe economic variables.

< Structural equations of the model =
endogenous variables exogenous variablest
disturbances (randonvariables)

= The parameters of structural model expres:
the direct effectof each explanatory variable
on the dependent variable.

= The Variables not appearing in any function
explicitly may have anindirect effectand is taken into
1 accountby the simultaneous solutionof the system




+ Reducedform of the model: The reducedform
___af a structural madel is the model inwhich the
endogenous variablesre expressecda function
of the predetermined variables and the error
term only.
= Example: We may write the empirical demand-
and-supply functions as
Demand function: Qd= G5, + 5P+ 5T + 1
Supply function: Qs=a, + @, P+a,F +1iy
Equilibrium condition.: Od = QOs
Where, Qd=quantity demanded; Qs = quantity supplied; Y=income; P=price;
F= fertilizer, U, & U, are error terms. P and Q are endogenous variables and Y

and F exogenous variables.




4.3Definitions of Some Concepts

=" Example: The following simple Keynesianmodel
of Income determination can be consideredas a

structural model.
& C=a+ 5y + 07 ____(1)
= ¥F=0CO+ Z ____(2)

for oo =0 and O0=[3=1 )
FWwhere: C=consurnpuon expenditure; Z=non-

consumptionexpenditure ; Y=national income; C
and Y are endogenous variables while Z I
exogenous variable.

< Find the reduced form of the above structural
model. Since C andY are endogenous variable:
and only Z Is the exogenous variables, we have
express C andY In terms of Z.



4

4.3Definitions of Some Concepts \

%-To do this substitute Y=C+Z into equation (1).

C=ax+ 8C+ 2y + U7

C =+ B0+ 82+ U7
O — B0 =+ GF+ 17
C(l— )=+ 5F + 17

or Y Iy
= C_l—ﬁ_l_‘hl—ﬁJZ_l_l—ﬁ """ (3)
= Substituting again (3) into (2) we get;
- Y:L{LJDL .......... (4)
1-8 \1-B8) 1-p

< Equation (3) and (4) are called the reduced
form of the structural model of the above. We
canwrite this more formally as:



4.3 Definitions of Some Concepts

Structural form Reduced form equations
— equations
C=a+pfr+U - ) 7
c=_% | P |z. Y
1-6 \1-5) 1-8
F=C+Z C 1) 7
y- % 4| L |z+ L
1-5 \1-6) 1-F

= Parameters of the reducedorm measure thetotal
effect (direct and indirect) of a change In
exogenous variables orthe endogenous variable
For Instance, In the above reduced form
equation(1), [ 21 measures the total effect of
unit change In the non-consumption expenditure
on consumption This total effectis g , the
direct effect, times (1) the indirect effect.

1-p




4.4 Inconsistency and Simultaneity Bias of OLS Estimato

& Blasedness:

= The two-way causation in a relationship leads to violatior
of the important assumption of linear regression model
l.e. one variable can be dependent variable in one of th
equation but becomes also explanatory variable in th
other equations of the simultaneous-equation model.

= In this case E[XU] may be different from zero. To
showsimultaneity bias, let's consider the following simple
simultaneous equation model.

Y=a,+ta, X +U
X =0yt BY +5,2+V

X = f(Y)
= v = ¢ (x) this shows that the 2 way causation In
relationship  leads to violations of the important

assumptions linearregression model




== Suppose that the followingassumptions hold,

E(0)="0; E(V ) =20
EU?)=0’, EV?) =0’
E(UU,)=0, E(V,V,)=0, aso E(UiVi ) = 0;

=where X and Y are endogenous variables ar
Z 1S an exogenous variable.

% The reduced formof X of the above model I
obtained by substituting Y In the equation of

X =B+ Bay +a X +U) + BZ+V

o = Bot 0B, +[ B )Z+(’81U +V)
. 1-a,pb, 1-a,p, 1-a.b,




W

= Applying OLS to the first equation of the
above structural model will result In biased
estimator becauseovxu,)=gxu,)z0 . Now, let’

proof whether this expression
— /81 E(U 2) — ﬂla—u 20
1-a,b 1-a.5

& That 1S, covariance betweenX and U Is not
zero. As a conseqguence, if OLSs applied to
each equation of the model separatelythe
coefficients will turn out to be biased Now,
let’s examine howthe non-zero co-variance of
the error term and the explanatory variable
will lead to biasness INOLS estimates of the
parameters.




Estimators

% ConsistencyProblems: An estimator is saidto

_be consistent if its probability limit Is equal to

Its population value.
& |nconsistent estimates

B,0°U
plim( B,) = B, + 2

/BA1:/81+ E (Uvzj




4.5 Solution to the Simultaneous Equations

% The obvious solutionis to apply other methods of
estimation w/c gives better estimates of parameters.

& 1. the reduced form method or Indirect least
squares (ISLS)

< 2. the methodof instrumental variables

< 3. two stage least squares (2SLS)

< 4. limited information maximum likelihood (LIML)
< 5. the mixedestimation

% 6. Three stage least squares

< 7. Full information maximum likelihood (FIML)



| 4.5 Solution to the Simultaneous Equatic \

< N.B: 1-5---we canapplied to one equationat a time,
and 6-7----the systems methods b/c they are applle

to all equations of the systensimultaneously

& How to estimate the reduced form parameters?

* The estimates of the reduced from coefficientsrt(s )
may be obtained In two ways.

& 1. Direct estimation of the reduced coefficient
by applying OLS.

2. Indirect estimation of the reduced form
coefficients.




4.6 Direct estimation of the reduced form coefficients \

= Direct Method Express the three endogenol
variables(Ct , It , andYt ) asfunctions of the

two predetermined variables (Gt, andYt-1)
directly using #'s as the parameters of the
reducedform model as follows.

Ct=nllYt-1 +n12Gt + V1
FIt, =n21Yt-1 + 722Gt +V2
=Yt =a31lYt-1 + n32Gt + V3

FNote: 1l ,wl2 ,n21 ,n22 ,n31 , andn32 are
reduced from parameters.



4.6 Direct estimation of the reduced form coefficients
= The reducedform & 's may be estimatedby

the method of least- squares —narestriction
(LSNR).

* This means we camapply OLS to reduced
form equation because weexpress all the
endogenous variables In terms of
exogenous variables
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4.6 Direct estimation of the reduced form coefficients

= This method of obtaining the = 's Is called least
squares no restriction(LSNR) because itdoesn't take

Into consideration any information on the structural
parameters

* In this method what required is knowledge of the
predetermined variables appearing inthe systemnot
about the coefficients of structural questions.

04




4.7 Indirect estimation of the reduced for
coefficients

= [t Is known that there Is a relationship

— between the reduced form coefficients &
the structural parameters (explainedin the
table).

= Therefore, to obtain values of coefficients
estimate the structural parameters byany
appropriate econometric techniques and
then substitutes these estimates ino the
system of parameters relationships to
obtain indirectly .

* This indirect method involved three steps.

205




4.8 Indirect estimation of the reduced form coefbats \

= 1St step Solve the systenmof endogenous variables s
that each equation contains only predetermined
explanatory variables.

= 2nd step Obtain the estimates of the structural
parameters by any appropriate econometric method

= 39 step Substitute the estimates off's and y's in to
the system of parameters relations to find the
estimates of the reducedorm coefficients.

& Advantage of indirect estimation of the reduced-forr
coefficients

= Though it Is complicated, it has a very goo
Importance.

<-a) The derivation of parameters like,x's, p's & a's Is
mnre efficient hecaliee In thic wav we take In t




4.9 Recursive models

= A model Is called recursive If its structural
= the first equation Includes only the predetermined
variables in the right hand side.

* the second equation containpredetermined variables and
the first endogenous variable (of the first equation) Iin the
right hand side and so on.

= The special feature ofrecursive modelis that
Its equations maybe estimated,one at a time,
by OLS without simultaneous equations bias




4.9 Recursive models

OLS Is not applicable if there Is interdependence
betweenthe explanatory variables andthe error term.

In the simultaneous equationmodels, theendogenous
variables may dependon the error terms of the
model.

Hence, the OLS technique is not appropriate for
estimation of an equation in a simulations equations
model.

However, in a special type of simultaneous equation
model called Recursive, Triangular or Causal modge
the use of OLJrocedure ofestimationis appropriate.

Consider the following three equation system to
understandthe nature of suchmodels:



4.9 Recursive mode

= Note that:
}1 =y +.rb'll":{l "';'BL:X: "'Ul

Y, =a,, +o, Y, + X, + [, X, +U,

FFE — rI.'H] +rI.".—l}:l +ﬂr31};—1 _I_.r'b'.".-l":{l +.r'b'.".-1X1 +L'IT.".-

= Inthe above illustration, the X's and Y’s are exogenousand
endogenousvariables respectively.

= The disturbance terms followthe following assumptions.

B UL )=EU,U;))=EULU5) =0

= The above assumption is the most crucial
assumptionthat defines the recursive model




4.9 Recursive models \

= |f this does not hold the above systems no
longer recursive and OLS Is also no longer
valid.

= The first equation of the above systen
contains only the exogenous variables onhe
right hand side.

= Since byassumption, the exogenous variable
iIndependent of Ul , the first equationsatisfies
the critical assumption of the OLS procedure.

= Hence,OLS can be applied straight forwardly
to this equation.




4.9 Recursive models \

Let us build a hypothetical recursive model for
an agricultural commodity, say wheat.

The production of wheat =Y1; , may be assumec
to depend on exogenous factors: X2 = climatic
conditions; and X3=last season’s price. The retal
price =Y2 may be assumedio be the function of
production level Y1= and exogenous factor X4=
disposable income.

Finally, the price obtained by the producer = Y3
can be expressedn terms of the retail price; Y2
and exogenous factor; Xj= the cost of marketinc
the producer.

The relevant equations of the model maybe
describedas under:



4.9 Recursive models

Y, =a,+ta,X,+a,X,;+U,

Y, = a, ¥ Y, ¥ o, X, +U;
Y, =aq,+ B,Y, +ta,X;+U,

In the first equation, there are only exogenou:
variables andare assumedo be independent of U1.

In the secondequation, the causal relation between
Yl1land Y2 is in one direction.

Also Y1 is independent of U2 andcan be treated just
like exogenous variable.

Similarly since Y2 Is independent of U3, OLScan be
applied to the third equation.

Thus, we can rewrite the above equations< as follows:



4.9 Recursive models

Y,—a,—a,X,-a;X;=U,

_£1Y1+Y4_a4_a?x7l;U4

—ﬂ2Y2+_Y3—0’6_—0’7)_(5 =U, _
< We can again rewrite this in matrix form as

followe- -
1 o o][¥] [~ —& -, O o] x| [u,]
- B 1 O||K |+|-a, O 0 —a@ O X, | =|U,
0 -4 1|5l [-a 0O 0 0 -a| || U,
) 'l.'I: .‘l'.‘l:ll:-l Fir I ) ) I r:'I: 3::-. FiL I - .-:Il:r |
::ld"r_:_l:lrn-:ﬂ:u'zli' u-im:l:::-a“f ‘]I;r-'
— l:_

< The coefficient matrix of endogenous variables i
thus a triangular one; hence recursive models

> are alsocalled astriangular models.




4.9 Problems of simultaneous equation models \

= Simultaneous equationmodels create three distinct
problems. These are:

= |dentification of eachequationof the model
= Mathematical completeness of the model

- any model Is said to be (mathematically)
complete only when it possesses asmany
Independent equations as endogenous variable

- In other words If we happento know values of
disturbance terms, exogenous variables an
structural parameters, then all the endogenous
variables are uniquely determined

= Statistical estimationof each equation of the model




4.10 The identification problem \

< Of the three problems, we are going to discuss tHest
problem (the identification problem) in the followinc

section.

< The identification problem

= In simultaneous equation models, the Problem of
identification Is a problem of model formulation; it
does not concerrwith the estimationof the model

= The estimation of the model depends upon the
empirical data and the form of the model.

= |f the model is not in the proper statistical form, it may
turn out that the parameters may not
estimated eventhough adequate andrelevant data are
available.

* |In a language of econometricsa model Is said to b
identified only when it is in unique statistical formto
enable us to obtainunigue estimates of Iits paramete
from the sample data.




4.10 Identification Problem \

< The Identical concept concerns with whether the

numerical estimates of structural equations can be

yotatned-fromtheestimatedredoucedformecoeffictents

# Look at a simple Keynesian model, to illustrate
problem of identification (look at “Introduction t
Econometrics: theory and practice with Stata”
Tesfaye E,)

= An identification may be either exactly (fully or just
identified) or over identified or under identification.

A. Under identification (SEP>REP)

* |t occurs when the parameters ofstructural equation Is

nigher than reducedform parameters.

 |f the coefficients of the structural equations are
greater than the coefficients of the reduced form, ther

we can say that the equation is under identified.




Under identification(SEP>REP)

Od =a, +a, P +U, 10.32
“Qd =4 + 5P +U, 10.33

Od = (s 10.34

Where: Qd is quantity demand, Qs 15 quantity supplied and P 1s pnce

a, +a P+ U, = 8,+ 88 +U, 10.35

By rearranging equation ( 10.35), we obtain the following equations
af —fF =, —a, U, -U,

Bla,-B)=4 —a,+U, U,

R 10.36
5. @B
Let =, _ﬁu — i3y £ = U _L'II
a, —f -8,

P=1,+& 10.37




Substitute equation 1037 1n to equation 10.32

oi-aeal ()LDl

Eﬂ’ — o — II'--'lr-}.l'l-l:-'ll "'HLJE-} — L, + HLDI.! _HLUL +HLUL _JEL _Ul
24 _JEL 24 _JEL 24 _ﬁl

Od = o — af +af, —aya, + all, —aU, +a U, - U,

a, — fi a, — a, —
Od = a i, —aff T all, -fU,
a, — fi a, —
Let 7 = a i, —aff) £ _a U, - AU,
a, — i a, —

Then we can wrte equation number 10.38 as follows

15}2‘3‘:‘111 +&5

10.38

10.39



Under identification (SEP>REP)

= Equation number 10.37 and 10.39 were the two reduced forr
equations derived fromthe structural equations number 10.32
& 10.33.

= Now If you compare the number of structural equation
coefficients @O, a1, O and p1) are four where as from the
structural equations we haveonly two coefficients @O andxl).

= The coefficients of reduced formcontain the coefficients of the
structural equations i.e a0, al, p1 and p2 are found in 70 and
tl.

= But how we can find the values ofa0, al, p1 and g2 from =0
and ml. It is an ambiguous questior??

= Since it is not possible to find these values fromrzOandrl or
the coefficients of the structural equations are greater thar
the coefficients of the reduced formthen we can say that the
equation is under identified and we can not compute four

]gtructured coefficients from two reduced coefficients




Why under identification is happened?

* The reasonto have under identified function In
the previous demandand supply function was
that:

= The same variables P and Q are appearing |
both functions (only endogenous variables |
both equation)

= There I1s no additional information.
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Exact /Just/ Identification SEP=REP

= |t occurs when structural coefficients are equa
to reduced form coefficients.

= Now let’s mcorporate additional variable In the

de™gia,+afay:i, ~ 7777 T 77U OTTT 04 /e
Pr¢  os=4+4¢+U, 10.41
Od = s ldentity equation 10.42

Here the only new variable 15 Y which represents income & income 18
exogenous vanable. In the above function we have P, and () 15 endogenous &

only one exogenous variable Y.
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a, +a P +aY+U, =8, + 5P +U,
a P - R =4 —a,—a,Y+U, -U,

22

ﬁ{ﬂlt_ﬁl}=ﬁu -, —a,k +U, U,
=JE|}_EL_ "'I:F _I_Uz _UL
I
El_ﬂl EL_JEL El_ﬁl
— X ' o, -u
Let E,}=ﬁ'} L;F_l= 2 W, = 2 I
o _JEL o _JEL o _JEL

H =0, +I,F +,

Substituting 10.44 1n to equation 10.40.

— i i, ¥ o, =U
Ed=ﬂu+ﬂl ﬁn} L M I
o _JHL 2 _ﬁl o, _JHL

}+mF+UL

10.43

10.44



-4 l a, — f, JEL -4 a, —f3

_ afl, af ﬁlﬂz al JELL’
M a—-f a-f JEL JEL a, — fi

E'f-" — oL _Hﬂﬁl +x ﬁl] —a "'Iz Y L’ —U, J o, o, F_ﬁlﬂl F+a U, _JELUL

Let m, = a, fi, "'I:»JEL . JEI'LH.! __al, AU
& _JEL JEL JEL & -f a-p
Od = &, + 7Y+, 10.45

Equation number 1044 and 1045 are reduced- form equations and OLS
can be applied to estimate their parameters. In the structural equations (10.40
and 10.41) contains five structural coefficients o0,01,02 Bland [2. But there
are four reduced form equations coefficients (w0l ,m2and n3). Since the
number of T are less than (they are four) the structural coefficients (they are five

aloel, BOPL,o2, and B2) then we can not find unique solutions. But the supply
2. function is independently identified because




s = 0, + 1) +i,

In the supply equation of 10.41 there are two structural parameters (B0

~ and, 1) again in the reduced form equation of the supply equation we have two

pr

reduced form coefficients m2+n3 1.e why the supply function 18 identified. From
equation 10.41 we have

Os = A + 55

A =0s— B A

Substitute equation 1045 in place of Qs & equation number 10.44 in place of
p and you will get (afier simplification)

B, =, - A7, 10.46

Again from the same equation number 10.43 you can get the value of i1

g -2 A

l

equation number 10.34 and you will get after simplification.
B=—

———substitute 1in place of equation number 1045 and 1n place of Pl



Exact /Just/ Identification SEP=REP

= But in case of the demandunction a0, a1, and a2, is 3
structural coefficients but in reduced form of equation
the coefficients are two.

= Since In the demand function the coefficient of the
reduced form (10.45) Is less tharthe coefficients of the
structural equation (10.40).

= \We can concluded that the demand function is under
identified (r2,73) are less thaneO,01,and a?2).

= But Iin case of supply functionn2,n3 are equal top0 , p1
then it is just identified.

* In conclusion, we cansay that the supply function is
identified but the demandfunction is not identified on the
basis of this one carsay that the systemas a whole is not
identified.
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Over identification SEP<REBP

* [t occurs when the coefficients (parameters) o
structural equation Is less thanthe coefficients
(parameters) of reducedforms.

» Let's modify the demand function by
iIncorporating wealth (R) and supply function by
iIncorporating the lagged price we will have the
following equation.

20




Od=a, +aF, +a,Y+a,R+U,

Qs':ﬁﬂ +ﬁlﬁ +ﬁ3F:—1 + U,

10.47
10.48

Now we will have two endogenous vanables () and P1) & three exogenous

variables (Pt-1, Y and R).
At equilibnum, Qd=0)s
o, +aP +o.Y+a, R+U, =8 + P +5. P +U,
a i —BP =5 —a,+B.F,—a.Y —a.R+U, -U,
Flo, —g)=p5, —o, + B.F,_, —o,Y —a, R+ U, = U,
p _Bo—+BP, Y —aR+U, ~U,

] €k, _ﬂ]
Let
T :ﬂﬂ_ﬂﬂ.}r — — X, - = — e ﬂz _ﬂﬂ—.{rﬂ+ﬂ2FH}’—.-:r3R+U2—U]
a i | i) L 1
£ —.HJ (25 _ﬂ] £ —.ﬂ (25 _ﬂ] X _ﬂ]
R
g, = 2 1
a, — B,

P =m,+mY+rm,R+mP,, +c,
Substitute Pt in the demand or supply function

10.49

Od=o,+a(n0+mx ¥ +a,R+m. P +c, )+ +a,R+U,

After simplification you will obtain



Over identification SEP<REBP

= From equation number 10.47 and 10.48 we have
sevenstructural coefficients but in equation 10.49
and 10.45we haveeight reducedform coefficients.

= Since the coefficients of reducedorm coefficients
are greater than the reduced form coefficients we
cansaythat the systemas a whole is over identified

= A function (an equation) belongingto a systemof
simultaneous equations isidentifiled If it has a
unique statistical form, 1.e. If there Is no other
equation In the system, or formed by algebraic
manipulations of the other equations of the systen
contains  the same variables as th
function(equation) in question
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4.11 Formal Rules (Conditions) for Identification

ldentification problems do not just arise only on

two equation-models.

Using the above procedure, we can check
identification problems easilyif we have two or

three equations ina given simultaneous equatior
model.

However, for ‘n’ equations simultaneous equatior
model, sucha procedure isvery cumbersome

In general, for any number of equations ina given
simultaneous equation, we havetwo conditions
that needto be satisfiel to say that the model is Ii
generalidentified or not.

In the following section we will see the formal
conditions for identification.



Formal Rules (Conditions) for Identification

= Actually the term ‘identification’ was originally used to
denote the possibility (or impossibility) of deducing the
values of the parameters of the structural relations from
a knowledge of the reducedorm parameters.

= However, we think that the reduced form approach is
conceptually confusing and computationally more
difficult than the structural model approach, because |
requires the derivation of the reducedfrom first and then
examination of the values of the determinant formed
form some of the reducedorm coefficients.

* The reducedform eqguationis time consuming process
» The structural form approachis simpler and more useful

= Thus, the so called order and rank conditions of
identification lighten the task by providing a systematic

3q@vay.




Formal Rules (Conditions) for Identification

= There aretwo conditions which must be fulfilled for
an equationto be identified. These are:

= 1. theorder condition for identification
= 2. therank condition for identification

= The Identification of a system means the
identification of eachquestion

= The parameters identification in any equations
means there isunique value for eachparameter In
equations.

= Equation Is under identified when its statistical
form 1s not uniqgue/ When one or more of its
equation of the model are identified we can say th:
3ihe system as a whole Is under identified.




Formal Rules (Conditions) for Identification

= Equation identified: in this case a systems identified when all
the equations are identified.

* |n identified systemwe can have two options:

= if an equation is under identified it is Iimpossible to
estimate all its parameters using any econometri
technigues. However, if the equation Is identified It¢
coefficients (parameters) can be statistically estimated.

= If the equation is exactly identified appropriate methoo
for estimation Is the method of Indirect Least Square
(ILSM).

= If the equation is over identified, ILS will not give unigque

estimates of the parameters b/c it will not yield unigus
estimates of structural parameters.

= |n this case we use various methods. These are:

- 2SLS (Two Stages Least Squares)  or
32 -+ MLM(Maximum Likely hood methods)




A. The order condition for identification

= This condition is basedon a counting rule of the variables
Included and excludedfrom the particular equation.

= |t IS a necessary

but not sufficient condition for the

identification of an equation.

= The order condition
= For an equation to be

may be statedas follows.
identified the total number of varialdgendogenou:

and exogenous) excluded front must be equal to or greater than th
number of endogenous variables in the model less one.

= Let, G = total num
endogenous variab

per of equations (= total number of
es)

< K= number of tota
and predetermined)

variables in the model (endogenou:

=M= number of variables, endogenous andexogenous
iIncluded in a particular equation/ in a specific equation
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A. The order condition for identification

" Thenk -m) = (G-1)  tion may
D€ SV[ Excluded”

= [total numberof equations-1]
variable |

= The guidelines is that:
= If (K-M)>(G-1); the equationis identified.

" If (K-M)= (G-1); the equation Is just/exactly
identified.

" If (K -M)< (G-1); the equationis under identified.

34- If (K -M)>(G-1); the equationis over identified.




A. The order condition for identification

= Example 1:
Qs =a+a,Pta,l +U, ---—-(1)
Qs =pfot piP+tU, - ———--—-~- (2)

e Take the ddequation

« G= total number of equations/ total number of
endogenous variables2

o K=total number of exogenous and endogenou:
variables in equation (1), I.e., iIndemandequation=3

e The solutionis that: (K-M) (G1)

¢ (3-3) (2-1)8<1, we conclude that the deman
3gquation IS under identified.




A. The order condition for identification

& Take the ss equation
= Glven: G=2;: K=3: M=2;

= Solution:;
8 K-M--mmmmmm e G-1
" (3-2)---------- (2-1)

= 1=1-2> from these we canconclude that the
supply function is exactlyidentified.

= Example 2: Given the structural model and

determine whether the equationare identified or
3Bunder identified.




A. The order condition for identification

y, =3y, - 2Xx, + X, +u;, - - - -1
Yo = ¥Ya ¥ X3 ¥ U, == == = = =~ 2
Ys = Y1~ ¥, T 2Xgt Uz - - - - - 3

e Take equation (1);

* Given; M (endogenous and exogenous variables) in tf
specified equation is 4 (y1, y2, x1 and x2); K=6; G=3;

o (K-M)---------- (G-1)

¢ 6-4-----——------ (3-1)

o 2=2-—> this equation Is Iidentifled and It Is exactly
%denﬂﬁed.




A. The order condition for identification

 Take equation (2);

 Given; M (endogenous and exogenous variable
In this specified equation Is 3 (y2, y3, & X3
K=6; G=3;

* (K-M)---mmmmm-- (G-1)

¢ 6-3------------- (31)

e 3>2-—> this equation is identified and it is over
identified.
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A. The order condition for identification

e Take equation (3);

 Given; M (endogenous andexogenous variables) ir
this specifiedequationis 4 (Y3, y1, y2 andx3); K=6;
G=3;

o (K-M)---------- (G-1)

¢ 6-4-------————-- (3-1)

o 2=2-—> this equation is identifled and It is exactly
identified.

= Example 3: If a system contains 10equations with
15variables, tenendogenous andive exogenous, al
equation containing 11 variables Is not identified,
while another containing 5 variables is identified
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A. The order condition for identification

= For 1stequation we have:
F(G=10; K=15; M=11;
& Qrder condition:

& K-M> G-1

& 1511> 101

& 4<9-> that I1s the order condition 1S not
satisfied.

= For the 209 equation we have:
= 5=10; K=15;: M=5
= Order condition:

= (K-M)> (G-1); 10>9-----the order conditions
4(§atisfied.




B. The rank condition for identification

= The rank condition states that: In a systemof G
equations any particular equation is identified If
and only If it Is possible to construct at least one
nonzero determinant of order (G-1) from the
coefficients of the variables excludedfrom that
particular equation but contained In the other
equations of the model.

= The practical steps for tracing the identifiablity of
an equation of a structural model may be outlined
as follows.

= Firstly, write the parameters of all the equations
the model In a separatetable, noting that the
parameter of a variable excludedfrom an equation
41S equal tozero.




For example let a structural model be:

Y. = ¥y T X, T U,

YV, =¥, — VvV, —2x, +u,

= \Where y’s are the endogenous variables and

& v'e ara tha avnnanniic vvariahlacg
—y, +3y, +0y, —2x, +x, +0x, +u, =0

Oy, —v,+y, +0x, +0x, +x, tu, =0

= |gnoring the random disturbance the table of the
ADarameters of the model Is as follows:




Variables
— Equations W o
1* equation 1 3 0 2 1 0
™equation 0 y | 0 0 1
3" equation 1 1 0 0 Y

s Secondly Strke—out-the rowof coefficients—ofthe
. N o for idantifeation.

For example, If we want to examine the
identifiability of the secondequation of the model
we strike out the second row of the table of

coefficients.
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B. The rank condition for identification

= Thirdly, Strike out the columns in which a
being examined appears.

= Table of structural parameter

1stequ.
2%egy. 0O
3dequ. 1

1

-1

1

1

0

0

0

0

Equatio | Y1 X2
ons

1

2

= By deleting the relevant row and columns we are left with the
coefficients of variables not included in the particular eaqation, but

contained in the other equations of the model.

= For example, _ |
equation of the system, we will strike out the second, third and the
sixth columns of the above table, thus obtaining the followig tables.

44

If we are examining for identification the second



Table of structural parameters Table of parameters of

—excluded variables
A A A A A ¢ | A ¢
Vol !
M2 08 21 6 I 2 1
M 41 084 8 4
i+ 40 0 2 1 0 0
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B. The rank condition for identification

= Fourthly, form the determinant(s) of order (&) and examine
their value.

* Guide line:
» |f at least oneof these determinants is non-zero, the equatio
IS Identified.
= |f all the determinants of order (G-1) are zero, the equation is
under identified.

* |n the above example of exploration of the identifiability o the
second structural equation we have three determinants of aler
(G-1)=3-1=2. They are:

1

-1 =2

l 0

=0 A, =

-2 I‘

=0 A, =
0 0

(the symbol Astands for *determinant’) We see that we can form two non-

zero determinants of order G-1=3-1=2; hence the second equation of our system

406 is identified.




Fifthly, To see whether the equation 1s exactly identified or overidentified we
— use the order condition (K- M) 2(G-1). With this cnterion, 1f the equality sign

18 satisfied, that 1s 1f (K - M)=(G-1), the equation 15 exactly 1dentified. If the
equality sign holds, that 1s, 1f (K - M) <(G -1), the equation 15 overidentified
[n the case of the second equation we have;
(=3 K=6 M=3

And the counting rule (K - M)z (G -1) gives

(6-3)(3-1)
Therefore, the second equation of the model 1s overidentified.
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B. The rank condition for identification

= The Identification of a function is achievedby
assumingthat some variables of the model hav
zero coefficient In this equation, that iIs, we
assume that some variables daot directly affect
the dependent variable inthis equation.

= This, however, Is anassumption which can be
testedwith the sample data

= We will examine some tests of Iidentifyinc
restrictions in a subsequent section

= Some examples will illustrate the applicationof
4éhe two formal conditions for identification .




B. The rank condition for identification
D=a,+aF +a,F, +af +at+u

D=bh, +hP +b,P,+hC+b,t+w

= Example:

D=5
Where; D= quantity demanded
5= quantity supplied
P =price of the given commodity
P, =price of other commodities
Y=ncome
(= costs (index of prices of factors of production)
t= time trend. In the demand function it stands for ‘tastes’; n the supply
function 1t stands for ‘technology’.




Estimation of Simultaneous Equations Models

= To estimate the simultaneous equation models we adopt tw

approaches.

The first one Is single equation method also known as limited
iInformation method.
- In this single equation method we estimate each question e system
iIndividually .
The second one is systenmethods also known asfull information
methods.
- In this case we estimate all equations in the model simultameisly.

In practice system methods are not commonly used for variety of
reasons rather, single equation methods are often used.

The major single equation methods applied in the estimationof
simultaneous equation methods are:

o 1. Ordinary least squares (OLS)

o 2. Indirect least squares (ILS)

o 3. Two stage least squares (2SLS)
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1. Ordinary Least Squares

= We have seen that applying OLS on
simultaneous equation produce bilas &
Inconsistent parameters.

= But there Is one situation OLS can be applied

appropriately even In the context of
simultaneous equation

Y =a,+aX +a. X, +U, 10.51
Y, =f,+BX, +8.X,+U, 10.32
V=g +u X +p.X,+U, 10.33
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1. Ordinary Least Squares

= [n equation 10.51 the endogenous variables appear in the te& the
exogenous variables in the right hand side.

= Hence, OLS can apply straight forwardly to this question given all the
assumptions of OLS holds true.

= In equation 10.52 we can apply OLS provided that Y1 & U2 are
uncorrelated.

= Again we can apply OLS to the last equation if both Y1 & Y2 are
uncorrelated with U3.

= In this recursive system OLS can be applied to each equatior
separately & we do not face a simultaneous equation problem

= The reason for this is that clear, because there is no intergendence
among the endogenous variables.

= Thus, Y1 affect Y2 influence Y3 without being influenced by 3.
* In other words each equation exhibits aunilateral causal dependence.
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2. Indirect least square (ILS method)

= |[LS Is applicable only for just/exact identified
equations [(K-M) = (G-1)].

* The method of obtaining the estimates of the
structural coefficients using OLS of the reduced
form coefficients Is known as the method of

(ILS) Indirect least squares & the estimates
obtained are known as theindirect least squares

estimates.

* Indirect Least Square method involves the
following Steps




2. Indirect least square (ILS method)

= 1st:We first obtain the reducedform equation from
the structural equations. I.e. explaining the
endogenous variables as a functiof explanatory
(exogenous variables) & a stochastic term

=2nd: Apply OLS to the reduced form equations
individually . In this case the exogenous variable
are uncorrelated with the stochastic term

< 3rd: we obtain estimates of the original structural
coefficients from the estimated reducedform
coefficients obtainedin steptwo. ILS derives from
the fact that structural coefficients are obtained
iIndirectly from the OLS estimates of the reducet

form coefficients.
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3. Two-Stage Least Squares (2SLS) Method

» The 2SLS procedure Is generallyapplicable for
estimation of over-identified equations as It
provides unique estimators.

= Two-Stage Least Squares (2SLS) Metho
Involves the following steps

= ]St Estimate the reduced form equations by
OLS and obtain the predicted

=2 Replace the right hand side endogenou
variables In the structural equations by the
5gorresponding and estimate thenby OLS




Lab Session

Use “lecture 4.xIs’ data to
practice what we learnt in
previous sections




END OF CHAPTER FOUR

Thank you very much for being with me
for a while!

Stay Safe!
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CHAPTER FIVE

INTRODUCTION TO PANAL DATA
REGRESSION MODELS




5.1 Introduction

% The types of data that are generally available forempirical
analysis, namelyfime series, cross sectiorand panel.

% [n time series data we observe the values of one anore
variables over a period of time(e.g., GDP for several quarters ol
years).

® |[n cross-section data, values of one or more varigdds are
collected for several sample units, or entitiegt the same point ir
time (e.g., crime rates for 9 regions in Ethiopia for ajiven year).

% |n panel data the samecross-sectional unit (say a family or a fir
or a state) Is surveyed over time.

< |n short, panel data havepaceas well agime dimensions.




5.1 Introduction
<A panel of data consists ofa group of cross-section:
units (people, households, firms, states, countries) wi
are observedover time We will often refer to such units
as Individuals, with the term “individual” being used
generically, even when the unit of interest is not
person.

& Let us denote the number of cross-sectional units
(individuals) by N, and number of time periods In
which we observe thenas T.

& Panel data comes In several different “flavors,” eacl
of which introducesnew challengesand opportunities.




5.1 Introduction

< Peter Kennedyl, describes the different types
panel data sets as:

<" Long and narrow,” with “long” describing the time
dimension and “narrow” implying a relatively small
number of cross sectional units.

< “Short and wide” Indicating that there are many
iIndividuals observed over a relatively short period o
time.

= “Long and widg” Indicating that both N and T are
relatively large.

< A “long and narrow” panel may consist of data on
several firms over a period of time




5.1 Introduction

= Data on 221 State of Oromiahigh schools In
2014 and again in 2015, for 442 observatiol
total, Data on 9 states of Ethiopia, each state
observed In 3 years, for a total of 2
observations;

& Data on 500 Individuals, In five different
months, for 2500 observations total.




5.2 Other names of Panel Data

& Pooled data'_pQQ”Dg of time serjes and cross

sectional observations.

& Cross-sectional time-series data Combination
of time series and cross-section data.

< Micro -panel data, longitudinal data A study
over time of a variable or group of subjects.

< Panel data (also called longitudinal datajefers
to data for n different entities observed at T
different time periods.




5.3 Balanced and unbalanced data

+-When describing the cross sectional data it was useftL
to use a subscript to denote the entity; for instanceYi
referred to be the variable Yi for the ithentity.

< When describing panel data, we needome additional
notations to keeptrack of both the entity and thetime
period.

= This Is done by using two subscripts rather thanone:
The first, | refres to the entity., and the second,refers
to the time period of the observation

& Thus, Yit denotes the variable Y observedor the ith of
n entities inthe 1 th of T periods.




5.3 Balanced and unbalanced data

< Some additional terminology associated wit
panel data describes weather some observatio
are missing

= A balanced has all its observations, that is, tl
variables areobserved foreach entityand each
time period

= A panel that has some missing data for latst
one time periodfor at least one entity Is calle
an unbalanced panel




5.4 Why we use panel data?

< Panel data give:
<" more informative data
“ more variabllity
< |less collinearity among the variables

<> more degrees of freedom and more efficiency. Timi
series studies are plagued with multi-collinearity.

& Panel data arebetter able to:

< |dentify and measure effects that are simply not dectable In
pure cross-section or pure time-series data.

< study the dynamics of adjustment.

o Cross-sectional distributions that look relatively stable hide a
multitude of changes.




5.4 Why we use panel data?

< Panel data allows you to:
= Controlling for individual heterogeneity.

< Control for variables you cannot observe ol
measure like cultural factors or difference In
business practices across companies; or variabl
that change over time but not across entities (l.
national policies, federal regulations, internationa
agreements, etc.)

< This Is, It accounts for individual heterogeneity.

& Time-series and cross-section studies not controllir
this heterogeneityrun the risk of obtaining biased
results.




% Panel data models allow usto construct and test more
complicated behavioral modelsthan purely cross-section or

time-series data.
o For example, technical efficiency iIs better studiedand
modeled with panels.
< Micro panel data gathered onindividuals, firms and
households may be more accurately measuredthan
similar variables measured at themacro level

“ Blases resulting from aggregation over firms or
Individuals may bereduced or eliminated.




5.6 Limitation of panel data

1. Design and data collection problems: These include:

< problems of coverage (incomplete account of the pafation
of interest)

“-nonresponse (due to lack of cooperation of the respdent or
because of interviewer error)

#-recall (respondent not remembering correctly)
< frequency of interviewing

“ Interview spacing

“ reference period

%the use of bounding and

+time-in-sample bias.




5.6 Limitation of panel data

2. Distortions of measurement errors:

= Measurement errors may arise because of
faulty responses due tainclear questions

= Memory errors

= Deliberate distortion of responses (e.q.
prestige bias)

= |nappropriate informants

< Misrecording of responses andnterviewer
effects.




5.6 Limitation of panel data
d 3. Selectivity problems. These include:

(a) Self-selectivity: People choose not to wor
because the reservation wage Is higher the
the offered wage.

&= |n this case we observe the characteristics
these individuals but not their wage.

oSince only their wage Is missing, the sample
censored

oHowever, If we do not observe all data on thes
people this would be druncated sample.




5.7 Limitation of panel data

(b) NonresponseThis can occur at the initial wave of the
panel due torefusal to participate, nobody at home
untraced sample unit and other reasons.

= |tem (or partial) nonresponse occurs when one ¢
more questions are left unanswered or are found nc
to provide a useful response.

(c) Attrition: While nonresponse occurs also in cros
section studies, it Is a more serious problem Iin pane
because subsequent waves of the panel are still subj
to nonresponse.

<~ Respondents maydie, or move, or find that the cos
of responding Is high.




5.7 Limitation of panel data
&4, Short time-series dimension:

< Typical micro panels involve annual datacovering a
short time span for each individual.This means that
asymptotic arguments rely crucially on the numbet
of individuals tending to Iinfinity.

#-Increasing the time span of the panel isot without cost
either. In fact, this increases thechances of attrition
and increases the computational difficultyfor limited
dependent variable panel data models.

%5, Cross-section dependence: Macro panels
countries or regions with long time series that do nc
account for cross-country dependence may lead t
misleading inference.




5.8 Notation (Model specification ) for panel data

& Panel data consist of observations on theame n entitiesat two
or more time periods T.

& |f the data set contains observations on the varidbs X and Y,
then the data are denoted

(X F)i=lonmdi=],T 111

< Where the first subscript, I, refers to theentity being observed
and the second subscript, t, refers to thedate at which is
observed

< A double subscripis used to distinguish entities (states, family
country, individuals, etc.) and time periods.

< Consider the following simple panel data regressiomodel:

[ =B +BX, +BX, +6, iz 0T =] 12




5.9 Estimation of Panel Data Regression

=Where I= entity (state); n=number of entities, s
1I=1,...,n; t= time period (year, month, quarter, and sc
on); T= number of time periods, so that t=1,..., T

< Panel data with k regressors:
Fo=By+ BXt BXoy ot fX o+ e =n T =1, T 113

< \We havethree models to estimate panel data

1. Pooled model 2. Fixed Effect model RRandom
effect model

< A pooled model I1s one where the data omlifferent
iIndividuals are simply pooled together with no
provision for individual differences that might lead to
different coefficients.




5.10 Pooled data

= For an equation with two explanatory variables X1
and X2, a pooled model can be written as

};::ﬁﬂ-l-ﬁlxlr-l-ﬁlxlu-l-'?r .
The second thing to notice m (11.4) 1s that the coethicients ( ,,4,, 4, ) do not
have 1 or t subscripts. They are assumed to be constant for all individuals n all

time periods, and do not allow for possible mdividual heterogeneity. It 1s this
characteristic that leads to (11.4) being called a pooled model. If, in addition, we

assume the errorse, have zero mean and constant variance, are uncorrelated

over time (t) and individuals (1), and are uncorrelated with X1 and
X2, then there 1s nothing special about (11.4) that distingwishes 1t from the

multiple regression model studied mn Chapters three. The least squares estimator




5.10 Pooled data

= for ( pO 1 ,p2 ) has all its desirable properties.

& |t IS consistent and the usual t and F statistics are valid
In large samplesfor hypothesis testing and interval
estimation.

<= |If we also assume X1 and<2 are nonrandom, the leasit
squares estimator Is the minimum variance linear
unbiasedestimator in finite samples.

+=We will focus on large sample properties however,
because It Is typically unrealistic to assume X1 anX?2
are nonrandom, andour sample sizes are usually large

& Hence, the mainweakness of this model Is it doesnc
capture the hetrogenity among the entity.




5.11 The Fixed Effects (Entity/Time Fixed) Mode

< In the previous section we saw that one way !
recognize the existence of individual characteristics Iin
panel data model is toallow individual errors In
different time periods to be correlated

= A second way Is to relax the assumption thastll
iIndividuals have the same coefficientskExtending the
model in (11.4) along these lines, we can write

}rj.':ﬁfu-l-ﬁuxlr-'-ﬁ‘ﬂxlr-'-ﬁr .

< An | subscript has been added to each of the subscr
implying that ( .48, )can be different for each
iIndividual . This model Is a legitimate panel data mode
but It Is not suitable for panels that areshort and wide




5.11 The Fixed Effects (Entity/Time Fixed) Model

=" You may apply entity fixed effectsregression when yol
want to control for omitted variables that differ among
panels but areconstant over time

<-0On the other hand, If there areunobserved effects tha
vary across timerather than across panels, we appl
time fixed effects regressioimodel.

= Use fixedeffects (FE) whenever you are only intereste
In analyzing the impact of variables that vary over
time.

= FE explore the relationship between predictor anc
outcome variables within an entity (country, person
company, etc.).




5.11 The Fixed Effects (Entity/Time Fixed) Model

< Each entity has its own individual characteristics that may or
may not influence the predictor variables (for example beig a
male or female could influence the opinion toward @rtain issue
or the political system of a particular country coud have some
effect on trade or GDP or the business practices &t company
may Iinfluence its stock price).

< When using FE we assume that somethingithin the individual
may Impact or bias the predictor or outcome variabésand we
need to control for this.

< This Is the rationale behind the assumption of theorrelation
between entity’s error term and predictor variables

& FE removes the effect of thosetime-invariant characteristics
from the predictor variables so we can assess thequlictors’ net

effect.




5.11 The Fixed Effects (Entity/Time Fixed) Mode

< Another important assumption of the FE model is tha those
time-invariant characteristics are unique to theindividual and
should not be correlateawith other individual characteristics.

= Each entity is different therefore theentity’s error term and the constant
(which captures individual characteristics) shouldnot be correlated with

the others

< |f the error terms are correlated then FE Is no suitablesince
Inferences may not be correct and you need to modehat
relationship (probably using random-effects)

< Think of the following two variables panel regres®n model in
fixed effect form:

Take the data on mdividual i:

Frzﬁm+ﬁlxu:+ﬁ2’r2r+ﬁu I::]'""‘T -




= Average the data across time, by summing bof
sides of the equation and dividing by T.

1 T
;Z{}z = By + B X, + 5. X5, +E,) .
=1

Using the fact that the parameters do not change over time, we can simplify

this as

- 1 1 - l -
¥ = _Z}rj- =fu + 5 _Zﬂrm + 5, _Eﬂrzu "'_ZE.!-}
IS 'S 'S 'S

}Tj.r — ﬂl]f +ﬂ1‘ji_ru +ﬂ2f}h‘ + £,

The “‘bar’’ notation Y. indicates that we have averaged the values of ¥, over
time. Then, subtract (11.15) from (11.14), term by term, to get

Y, =8, +8X, +0.X,, +¢&,

—¥, =B +tBX, tF X, +E )

Y, =¥, =B(X,, X))+ B (X — X)) +(£, —F)




= In the last line of (10.16) note that the Intercep
parameter £, has fallenout. These data are said to b
In  deviation from the individual’'s mean” form, and if
we repeat this process for each individual, then we hay
a transformed model.

y, =P+, e, ILI7

Where y, =1, -1, indicates that the variables are in deviation from the mean

form.

Then we apply OLS to estimate equation (11.17).



sum....FEM
= FE:

® Intercept may differ across entity, but intercepts does not
vary overtime, that is it is time invariant.

<= Error terms are not correlated and each entity Is
different

the individual differencesin the intercept values of
each entity are reflected in the error term

One way to take into account the “individuality” of
each entity or each cross sectional unit is to let the
Intercept vary for each entity but still assume that the
slope coefficients are constant a cross firms.

olf T (is the number of time series data) is large and N
(the number of cross- sectional units) is small. The

I\I/'\n:l\f :ﬁ If\f\f\f\f 'alaliNaYalaalal! I+ﬂ+:f\ﬂﬂ| I\nﬂ\l:ﬂf\f f\ﬂA I_EI\II




5.12 The Random Effects Model

= |f you believe that someomitied variables may be
constant over timebut vary among panels and others
may befixed among panels but > then you
can applyrandom effects regression model.

% Random effects assume that thentity’s error term Is
not correlated with the predictors which allows for
time-invariant variables to play a role as explanatory
variables.

<" In random-effects you need to specify thosedividual
characteristics that may or may not influence the
predictor variables.




5.12 The Random Effects Model

=What we are essentially saying is that the entitie
iIncluded In our sample are a drawing from a mucl
larger universe of such population and that they have
common mean value for the intercept (7 ) and

< the Individual differences in the intercept values of
each entity are reflected in the error term.

< In random effects model (REM) or error component
model (ECM) It Is assumed thatthe intercept of an
individual unit iIs a random drawing from a much
larger population with a constant mean value




5.12 The Random Effects Model

< The Individual intercept is then expressed as a detion from
this constant mean value.

% One advantage of ECM over FEM is that it iIs econongal In
degrees of freedom, as we do not have to estimate dWoss-
sectional intercepts.

% We need only to estimate thenean value of the intercept and it:
variance.

< ECM Is appropriate In situations where the (random)intercept
of each cross-sectional unit is uncorrelated withhie regressors.



5.12 The Random Effects Model
= The basic ideaof random effects model Is tostart

—wWith

Yit :ai+lglxit+uit _____ (1)
» I[nstead of treating  as fixed, we assume that it I
a random variable with a meanvalue of a; (no

subscript i here).
= And the intercept value for individual entity can be

expressed as:
a=a+s&, 1=12,..N------- (2)
«\Where the random individual differencess . is a
random error term which are called random

effects,are analogous to random error terms,




5.12 The Random Effects Model

=~and we make the standard assumptions about ther
namely, that they have zero mean, are uncorrelate
across individuals, and have a constant variance;fu2 ,
that; Ef{u. )= []:_::L'.wf.!.rl.,.!.r}.} =0, = j:Varu,) =__E:Ii!.r:

& Substituting equ. (2) into equ (1), we get
Yy =a + [ X+ &y Uy - - - - - (3)

= a * [ X it wy
Random
+\Where +/
&

where w, = &+ U,

Regression




RE.... Sum

& RE:

s assume that theentity’s error term is not correlated with
the predictors which allows for time-invariant variables.

< |f it iIs assumed that the&; and X’s are uncorrelted,
ECM may be appropriate where as ifg. and X's are
correlated, FEM appropriate.

< Each entity have acommon mean value for the intercept.

<|f N Is large and T is small, and If the assumptien
underlying ECM (REM) hold, ECM estimators are more
efficient than FEM estimators.

<-the individual differences in the intercept values of each
entity are reflected in the error term.



5.13 Choosing between fixed and random effec

= To check for any correlation between the errol
component ul and the regressors in a random effec

model, we can use &lausmantesit.

< This test compares the coefficient estimates from tr
random effects model to those from the fixed effec

model.

< The idea underlying the Hausmarntest is that both the

random effects and fixed effects estimators a

|

consistentif there i1s no correlation between ul and the

explanatory variables xkit.



5.13 Hausmairtest

= If you are not exactly sure, which models, FE ©
RE you should use, you can do a test call
Hausmantesit.

< To run Hausmantest in Stata

= Run panel data>linear models>linear
regression> FE-> statistics> post estimation>
manage estimation resul>store in memory (save
as fixed> run RE - statistics> post estimation>
manage estimation resul>store in memory (save
as random)> statistics>
postestimation>tests>Hausmanspecification test




5.13 Hausmairtest

<~ The hypothesis we use to test Hausmadast:

& HQ: Rano
& H1: Fixeo

om effect Is appropriate model
effects Is appropriate model

& Decision Ru
alternative
hypothesis.

e: If Pvalue is less than 5%, we accept tr
hypothesis and we reject the nul

Example: Test. Ho: difference In coefficients nc

systematic

chi2(2) = (bBY[(V_b-V_B)*(-1)](b-B)

= 18.35
Prob>chi2=0.000



5.14 FE Vs RE

Functional forms

Intercepts

Error variances

Slopes

Estimation

Hyphothesis test

Y, =a; + B X, +U,

Varying a cross
groups/times

Constant

Constant

LSDV, within
effective model

Incremental F-test

Y, =a+ B X, +& +u,

Constant

Varying across
groups and/ times

Constant

GLS, FGLS

Breush-Pagan LM
tests



5.15 Additional Notes
Today ve shall be daveloping Panel Data using following methods:

[.Pooled OLS Regression Model
2. Fixed Effect or LSOV model
3, Randon Effect

Hore we have taken six Computer Companies such as 111, 222, 333, 444, 555 and 666 and we

have thees variables such as Sales of computer in voluns, Brice of the computer and Repairs
of computers. We want to check the relationship between Sales and other two explanatory

variables such as Price and Repairs,

Our data is from 2000 to 2010, So our obsavation would be 66,




Pooled Regression
|, POOLED REGRESSION:

Hore we pool all 66 observations together and run the regression model, neglecting the
cross section and time series nature of data,

The major problem with this model Lo that it does not distinguish between the various




Fixed effect or LSDV model
2, FIXED EFFECT OR LSDV MODEL :

The Fixed Effect or LSDV Me s for Heterogeneity or individuality among

ﬁﬁ computer companies by alloung to have its own intercept value.

The term fixed effect is due to the fact that although the intercept may differ across
computer companies, but intercept does not vary over time, that is it is time invariant.

3, RANDOM EFFECT MODEL:

Here our six companies have a common mean value for the intercept.

I shall Hausman Test to check which model (Fixed Effect or R effect




HausmanTest
EAUSHAN TEST:

Null Hypothasis: Randon-effects model appropriate
Altornative hypothesis: Fixed-offects model 1s appropriate

[f ] got a statistically significant P-valus, I shall use fixed effect modal, otherwise
Randon offect node).




Diagnostic Checking

DIAGNOSTIC CHECKING

Finally we shall check whether there is serial correlation in the resdual. Here, I shall
us¢ Pasaran CD (crose-sectional dependence) test to test whether the residuals
are correlated across entitles,

Mull : there ds 10 serial correlation
Alt: There is serial correlation,

END A




Summary

& Balanced panel: If each cross sections unit hi
the same number of time series observations.

<-Unbancedpanel: If the number of observations
differ among panel data members. Friends

= |nitially, we assume that the X's are nor
stochastic and the error term follows the
classical assumptiong;u) ~N©.o%

= Estimation of panel data regression Models
1. FEM

Yi =Bt BoXo + BaXge tUy  -mm--- A
1=12,3,....,Nn




FEM

= Estimation of the above model depends on tt
assumption we make about the:

" |ntercept
= Slope of coefficients

= Error term

» These possibilities are:

I. Assume that the Intercept and slope coefficien
are constant a cross time and spacand the
error_term__captures differences overtime ant

individuals.




FEM

. The slope coefficients are constant but th
Intercept varies over individuals.

. The slope coefficients are constant but th
Intercept varies over individuals, and time.

Iv. All coefficients are vary over individuals

V. The Intercept as well as slope coefficients va
over Individuals and time.

= Slope coefficients constant but the intercef
varies a cross individuals: the fixed effects c
Least Squares Dummy Variables (LSDV
regression on model.




FEM

<~ 0One way to take into account the “individuality”
of each company or each cross sectional unit
to let the intercept vary for each company bu
stil assume that the slope coefficients al
constant a cross firms.




FEM

& To see this, we write model A as
Y = B, +/82X2it+:33X3it tu, ————— —— B

< The subscript | on the intercept term to suggest thathe
Intercepts of say 4 firms may be different. This ma be
different to special features of each company.

= This may be dude to managerial style or managerie
philosophy.

<-|n the literature model (B) is known as fixed effetdue to the
fact that although the Intercepts may differ acros:s

Individuals, each individuals’s intercept does not &ry across
Individuals; that Is time invariant.




FEM

= |f we write the Intercept as 5. , It will sugges
that the intercept of each company or individua
IS time Invariant.

=How do we actually allow for the (FEM)
Intercept to vary between companies?
oBy using dummy variable tecniques (Differential

Intercept dummies). We can write equation (B) a
follows:

Yo = +aD, +anb; +a,b, +/82X2it +/83X3it +y, ————=C




FEM

= Where D2i= 1 If the observation belogdo Say
Ethiopia, O otherwise; D3i= 1 If the observatior
belongs to Kenya, 0 otherwise; D4i=1 if th
observation belongs to Uganda, O otherwise.

FSince we have 4 dummies, we haves used C

three dummies to avoid falling into the dummy
variable trap.

= FEM vs REM

< The challenge facing researchers is that: Whicr
model Is better, FEM or ECM?




FEM vs REM

& The answer Is that:

% The assumption that one makes about the likely coelation
between the individuals or cross section specific, error
component and the X regressors.

< |f it is assumed that the€ ; and X’s are uncorrgted, ECM may
be appropriate where as if €; and X's are correl@d, FEM
appropriate.

% As Woodridge “ In many applications, the whole reaswos for
using panel data is to all the unobserved effect g, ) to be
correlated with the explanatory variables.

& ECM assumptions underlying ECM is that the € i & a random
drawing from a large population.



FEM vs REM

1. If T (Is the number of time series data) Is larg
and N (the number of crosssectional units) Is
small. The choice is based on computation
convince andFEM may be preferable

2. When N is large and T Is small, the estimate
obtained by the two methods can diffe

significant.
= Recall, thatin ECM, 8. =8.+¢ | wherg
the cross -sectional random component

where as we treat g, as fixed and nt
randnm




FEM vs REM

3. ECM Is appropriate if we strongly believed that the
iIndividual or cross sectional units in our sample are nc
random drawings from a larger sample.

4. If the individual error component, ¢ and one or more
regressors are correlated, then the ECM estimator
are biased, where as those obtained from FEM ai
unbiased.

5. If N is large and T Is small, and If the assumptio
underlying ECM (REM) hold, ECM estimators ar
more efficient than FEM estimators.




HausmanTests

Hausman Tests

< |s there a formal test that will help us to choose between FEMand
ECM? Yes, atest was developed by Hausman in 1978.

< The hypothesis of Hausman test is that:
o HO: FEM and ECM estimateors donot differ substationally
o H1: FEM and ECM estimates differ substantially.
Or HO: REMis an appropriate model
H1: FEMis an appropriate model

Decision Rule: If the null hyphothesis Is rejected,
conclusion is that ECMs not appropriate model and we m
be better off using FEM, in which case statistical inferenad|
be conditionsonthé ; in the sample.



1. Panel regression models are based on par
data. Panel data consists of observations on tl
same crosssectional, or individual, units over
several time periods.

2. Advantages to using panel data
= They Increases the sample size considerabl

= By studying repeated cross section:
observations, panel data are better suited t
study the dynamics of change.

= |[f enable us to study more complicate




3. Disadvantage of using panel data

-such data involve both cross sectional and tirr
series data, problems that plague cross sectior
data (hetroscedasticity and time series dat:
(autocorrelation) needs to be addressed.




L ab session

Use “lecture 5.xIs’ data to
practice what we learnt in
previous sections




END OF CHAPTER FIVE

THANK YOU FOR BEING WITH ME

BEING @ COMMITTED
Stay Safe!







