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CHAPTER ONE

Regression with Qualitative 
Information

Dummy Variables Regression 
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1.1. “Introduction”



 In regression analysis the dependent variable is 
not only frequently affected by quantitative (ratio 
scale variables like price, income, output, etc) but 
also qualitative variables (nominal scale variables 
like sex, race, nationality, etc)
 Such variables should be included in the model

 Dummy variables are commonly used as proxies 
for qualitative factors such as sex, religion, etc

 Dummy variable is synonymously with  non 
measurable, qualitative in nature, nominal scale, 
non numeric variable.

1.1 Introduction



Qualitative information?

 It is a non measurable information that we obtain
or gather for a given variable.

 It is an indicator variable that is non measurable
or non quantify in nature.

 Indicator variable, binary variable, categorical
and dichotomous variable are use
interchangeable.

1.1 Introduction



1.1 Introduction
 Not all information caneasilybe quantified.
 So, needto incorporate qualitative information .
Example: 1. Effect of belongingto a certain group:

 Gender, location, marital status, occupation
 Beneficiary of a program/policy

2. Ordinal variables: 
 Answers to yes/no (or scaled) questions...

 Effect of some quantitative variable may differ
betweengroups/categories:

 Returns to education may differ between
sexes or betweenethnic groups …



Example 2: Suppose the firm utilized two types of 
production process to obtain its output.

Where Y is output obtained
D is the dummy variable

Example 3: Does sex makes any difference in a college 
teachers salary, assuming that all other variables such 
as age, education level, and experience etc are held 
constant.

1.1 Introduction

ii uDY ++= βα





=
B machine from obtained isoutput   theif 1

A machine from obtained isoutput   theif 0
iD

ii uDY ++= 10 ββ



1.1 Introduction
Interest in determinants of belongingto a group

 Determinants of being poor …
Dummy dependent variable(logit, probit…)

Dummy Variable: a variable devised to use
qualitative information in regressionanalysis.

 A dummy variable takes 2 values: usually0/1.
e.g.Y i=β0+β1*D+u; for ∀i ϵ group 1, and

for ∀i ∉ group 1.
If D = 0, E(Y) = E(Y|D = 0) = β0
If D = 1, E(Y) = E(Y|D = 1) = β0 + β1

Thus, the difference betweenthe two groups (in
meanvalues of Y) is: E(Y|D=1) – E(Y|D=0) = β1.

The significance of this difference is testedby a t-
test ofβ1 = 0.



Lab session

Use “lecture_1.xls” data to 
practice what we learnt in 

previous sections



1.2 “Dummy as 
Independent 
Variables”



1.2 Dummy as Independent Variables
I. How we include dummy variable as explanatory 

variable?
 Constructing artificial variable, which take on

values of 1 or 0,
0 indicating the absence of the attributes
1 indicating the presence of that attributes



1.2 Dummy as Independent Variables

II. ANOVA & ANCOVA?
 ANOVA: A regression model which contains 

regressors (explanatory variables) that are all 
exclusively dummy variables.

 ANCOVA: Regression model which contains 
quantitatively explanatory variables in addition to 
dummy variables. 

 A regression model which contains the mixed of both qualitative 
and quantitative variable. 



III. Purpose of dummy variable
It allows for difference in intercept
It allow for difference in slopes
It help us to estimate equations with cross equation 

restrictions
Test for the stability of regression coefficients

1.2 Dummy as Independent Variables



 It is the Cautions in the use of dummy variables, 
what we called it as “Dummy variable Trap”

 We should include (introduce) j-1 where j is 
number of variables

 The general rule is that” If a qualitative variable 
has m categories, introduce only (m-1) dummy 
variables.”

 Example: Sex has two categories and hence we 
introduced only a singledummy variable. 

 If this is not fulfilled, we faced the problem of 
perfect multicollinearity (perfect collinearity), 
which is called “dummy variable trap.”

1.2.1 Dummy variable Trap



The category for which no dummy variable is 
assigned is known as the base, bench mark, control, 
comparison, reference, or omitted category. 

Hence, all comparisons are made in relation to the 
bench mark category (we assigned 0 values)

 If there is a constant term in the regression 
equation the number of dummies defined should 
always be one less than the number of groupings by 
that category.

 b/c the constant term is the intercept for the base 
group and the coefficients of the dummy variables 
measures differences in intercept (the mean 
difference)

1.2.1 Dummy variable Trap1.2.1 Dummy variable Trap



 If the coefficients      attached to the dummy 
variables D, are called differential intercept 
coefficients.

Reasons: It tell by how much the value of the intercept 
of the category that receives that value of 1 differs from 
the intercept coefficients of the base category. 

 The intercept value (    ) represents the mean value 
of the benchmark category. 

 If we don’t have constant term, we can’t used j-1 
or m-1 because we don’t have dummy variable 
trap.

1.2.1 Dummy variable Trap

iβ

α



1.2.2 ANOVA Analysis

It is regression with qualitative variables.

A. A single dummy independent variable

 The model specification will be:

Y is annual salary of a college teacher
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1.2.2 ANOVA Analysis

Example: Suppose a researcher wants to find 
out whether sex makes any difference in a 
college teachers’ salary, assuming other 
variables, education level, experiences, and  age 
being constant. 

Assuming the disturbance term satisfy the
usual assumptions, of the classical linear
regressionmodel, we obtain:



1.2.2 ANOVA Analysis
Interpretation
 The mean (average) annual salary of female college 

teacher: E(Yi/Di=0)=
 The mean (average) annual salary of male college 

teacher: E(Yi/Di=1)=
 The slope coefficients     “tells by how much the 

mean salary of a male college teacher differs from 
the mean salary of his female counter part or

 the value of     is on average measures the 
difference between intercept.”

 reflecting the mean salary of the male 
college professors or the average (mean) salary of 
non base group (actual value).

0β

10 ββ +

1β

1β

10 ββ +



The implication of slope coefficients (    ) :
The coefficient determines whether there is 

discriminating on against female.
 If then, for the same level of other factors, women 

earn less than men on average.
A test of the null hypothesis that there is no sex 

discrimination (H0:          ) can be easily made by 
running regression by OLS.

Suppose we have the following regression result:

1.2.2 ANOVA Analysis

1β

01 =β



1.2.2 ANOVA Analysis

Observation Salary (Y) Sex (D)

1 27000 1

2 17500 0

3 42500 1

4 29000 1

5 23000 0

6 32000 1

7 18500 1

8 22000 0

9 24000 1

10 18500 0

Example



1.2.2 ANOVA Analysis

Brainstorm:

Based on the above table:

1. Estimate the coefficients of the variables
2. Square of correlation coefficient 

3. Standard error and t-statistics
4. TSS, ESS and RSS

5. What makes this regression different from 
simple regression you have learnt under 
Econometrics-I?

6. Interpret the result



(2.18)          (5.53)t        

(3457.423)  (4463.514)   

33.970819125ˆ

se

DY ii +=

Regression Result of above example

1.2.2 ANOVA Analysis



1.2.2 ANOVA Analysis
Interpretation :
The estimated mean (average) salary of female 

college teacher is birr 19,125(=     ). 
The mean salary of male college teachers is birr (

=28,833.
=9708 is the mean difference between male and 
female college teachers.

Since    is statistically significant, the results 
indicate that the mean salary of two categories 
are different, actually, the female teacher’s 
average salary is lower than that of her 
counterpart. 

0β̂
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1.2.2 ANOVA Analysis
 Interpretation :
 If all other variables are held constant, there is sex 

discrimination in the salaries of the two sexes or the 
salary of the female is less than male by 9708, on 
average. 

B. A multiple  dummy independent variable
 It is when more than two distinct values are involved.
Always when there are N variables we develop N-1 

dummy variables. 
 Let, a given output is produced using three methods of 

production says: Machine A, Machine B , and Machine 
C. 

ii uDDY +++= 22110 βββ



1.2.2 ANOVA Analysis

Interpretation
 represents the mean value of output obtained 

from machine C.
 is the mean difference in output associated 

with a change from machine C to machine A.
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1.2.2 ANOVA Analysis
 it is  the mean value of  output obtained from 

machine A. 
 is the mean difference in output associated with 

a change from machine C to machine B.
 is the mean value of output obtained from 

machine B. 
Exercise: Interpret the following model

)( 10 ββ +
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1.2.2 ANOVA Analysis
Example2.: Wage differential betweenmale andfemale
Two possible ways: a male or a female dummy.
1. Define amale dummy(male = 1 & female = 0).
 reg wage male
 Result: Y i = 9.45+ 172.84*D + ûi

p-value: (0.000) (0.000)
Interpretation the monthly wage of a male worker is, on

average, $172.84 higher thanthat of a female worker.
This difference is significant at 1% level.
2. Define afemale dummy(female = 1 & male = 0)
 reg wage female
 Result:  Y i = 182.29 – 172.84*D + ûi

p-value: (0.000) (0.000) Interpretation??



1.2.3 Analysis of Covariance (ANCOVA)
Unlike ANOVA, a regression model may contain 

regressors that are all exclusively dummy, or 
qualitative, in nature; ANCOVA , is regression with a 
mixture of qualitative and quantitative  
independent variables.

It is regression on both qualitative and quantitative 
independent variables.
A. Single dummy independent variable

 Example: Suppose we identified two variables that affect the salary of a given 
employee.

wage =  wage rate of individual
educ= level of education

iueducgendWage +++= 210 βββ


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Gender & level of
education is the only
observed factors
affect wage.



1.2.3 Analysis of Covariance (ANCOVA)

 measures the slope.
 is the difference in hourly wage between females 

and males, given the amount of education. Hence, 
the coefficient determines whether there is 
discrimination against women.

If           , then for the same level of education, 
women earns less than men, on average.

If we assume the zero conditional mean 
assumptions E(U)=0, then:

Key: the level of education is the same in both 
individuals; the difference,     is due to gender only. 

2β

1β

01 <β
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1β

Interpretation



1.2.3 Analysis of Covariance (ANCOVA)

The intercept for male is 
The intercept for female is 
Since there are just two groups, we only need two 

different intercepts. This means that, in addition to   , 
we need to use only one dummy variable; we have 
chosen to include the dummy variable for females.

Using two dummy variables would introduce perfect 
collinearity because                      , which means that 
male is a perfect linear function of female.

 Including dummy variables for both genders is the 
simplest example of the so-called dummy variable trap,

0β

10 ββ +

0β

1=+ malefemale

Interpretation



1.2.3 Analysis of Covariance (ANCOVA) 
Interpretation:



Mean salary of female college professor: 

Mean salary of male college professor: 

After we run OLS regression, if the t test shows 
that it is statistically significant, we reject the null 
hypothesis that the male and female college 
professors’ levels of mean annual salary are the 
same, and we accept the alternative hypothesis. 

1.2.3 Analysis of Covariance (ANCOVA) 

educeducDYE 210 )(),1/( βββ ++==

educeducDYE 20),0/( ββ +==

Interpretation



Introducing  dummy variable   
The general rule:  If a qualitative variable has ‘m’ categories, 
introduce only ‘m-1’ dummy variables.  In our example, sex 
has two categories, and hence we introduced only a single 
dummy variable. If this rule is not followed, we shall fall into 
what might be called the dummy variable trap, that is, the 
situation of perfect multicollinearity.  

The assignment of 1 and 0 values to two 
categories, such as male and female, is arbitrary.

1.2.3 Analysis of Covariance (ANCOVA)
Features of the dummy variable regression model 



1.2.3 Analysis of Covariance (ANCOVA)

The group, category, or classification that is assigned 
the value of 0 is often referred to as the base, 
benchmark, control, comparison, reference, or omitted 
category.  
It is the base in the sense that comparisons are made with 

that category.  

The coefficient   attached to the dummy variable D can 
be called the differential intercept coefficient.

b/c it tells by how much the value of the intercept term of the 
category that receives the value of 1 differs from the intercept 
coefficient of the base category. 

Features of the dummy variable regression model 



B. Dummy Variables for Multiple Categories 
Example: Suppose that, on the basis of the cross-

sectional data, we want to regress the annual 
expenditure on health care by an individual on 
the income and education of the individual.

Since the variable education is qualitative in 
nature, suppose we consider three mutually 
exclusive levels of education: less than high 
school, high school, and college. 

Now, unlike the previous case, we have more 
than two categories of the qualitative variable 
education.  

1.2.3 Analysis of Covariance (ANCOVA)



Thus, following the rule that the number of 
dummies be one less than the number of 
categories of the variable, we should introduce 
two dummies to take care of the three levels of 
education. 

Assuming that the three educational groups 
have a common slope but different intercepts in 
the regression of annual expenditure on health 
care on annual income, we can use the following 
model: 

Where Yi= annual expenditure on heath care
X i= annual income 

1.2.3 Analysis of Covariance (ANCOVA)

iiiii uXDDY ++++= 322110 ββββ



1.2.3 Analysis of Covariance (ANCOVA)

 ;
We arbitrarily treating the “ less than high school 

education” category as the base category.
 Therefore, the intercept      will reflect the intercept 

for this category.  
The differential intercepts      and    tell by how much 

the intercepts of the other two categories differ from 
the intercept of the base category, which can be readily 
checked as follows: 

 Assuming , we obtain from the above specification
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1.2.3 Analysis of Covariance (ANCOVA)

the mean health care expenditure functions for less 
than high school

the mean health care expenditure functions for the 
high school

the mean health care expenditure functions for the 
college. 

iii XXDDYE 3021 ),0,0|( ββ +===
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1.2.3 Analysis of Covariance (ANCOVA)

12 ββ >



1.2.3 Analysis of Covariance (ANCOVA)
If a qualitative variable has more than one category, 

the choice of the bench mark category is strictly up to 
the researcher.

There is a way suppressed this trap  by introducing as 
many dummy variable as the number of categorical of 
that variable provide we do not introduce the intercept 
(constant term) in such a model. 

When we run regression, we use the non intercept option in your 
regression packages (suppressed intercept)

ii uXDDY +++= 32211 βββ



1.2.3 Analysis of Covariance (ANCOVA)

i. Dummy Variables for Multiple Categories :No Intercept Case
If there is no intercept, we have no comparison, 

base group and we did not omitted one category. 

Where Y is salary of teachers

(12)            (14)              (13)t       
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1.2.3 Analysis of Covariance (ANCOVA)

 B1= the mean salary of teachers in west=13124
 B2= the mean salary of teachers in north=12244
 B3= the mean salary of teachers in south=10453
ii. Dummy Variables for Multiple Categories :Case 

when constant term is present
 Redo the above example, now assume we take west

as base category.

(13.68)            (14.84)              )  (21.26t     

(262.45)          (125.98)           (234.56)   

14.124523.84563.456,13ˆ
32

se

DDYi −−=

Interpretation



1.2.3 Analysis of Covariance (ANCOVA)

The mean salary of teachers in the west is about 
13,456.63.

The mean salary of teachers in the north is lower by 
845.23 and that is the teachers in the south is lower 
than 1245.15; the mean salary of teachers in the north 
13,456.63- 845.23=12611.4

 -845.23 tell us that the mean salary of teachers in the 
North is smaller by about 845.23 than the mean salary 
of about 13456 for the bench mark category, west.

N.B: Model with intercept is more appropriate than no 
constant term b/c it facilitates comparisons.

Interpretation



1.2.3 Analysis of Covariance (ANCOVA)

 Intercept indicators variables:
The above examples we have seen under ANCOVA 

analysis an example of intercept indicator variables, a 
regression mixture of qualitative and quantitative 
variables.

 It affects only intercept. 
 It interact with dummy variables and qualitative 

variables. This is why it affects only intercepts rather 
than slope.
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1.2.3 Analysis of Covariance (ANCOVA)

Then the difference b/n them is:

+ve: it is greater than other

-ve: it is less than other      

)()( 202101 educeduc ββββββ +−++=



1.2.4 Interactions among Dummy Variables 

Y i where annual expenditure on clothing

 X i income

• In many applications there may be interaction between the two 
qualitative variables      and     therefore their effect on mean Y 
may not be simply additive but multiplicative as well

• Hence, we re specify the above model as follows:

iiiii uXDDY ++++= βααα 33221
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1.2.4 Interactions among Dummy Variables 
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1.2.4 Interactions among Dummy Variables 

Similarly, the average expenditure on clothing by a 
college graduate tends to be higher than the base 
category but much more so if the graduate happens to be 
a female. 

 This shows how the interaction dummy modifies the 
effect of the twoattributes considered individually.

Whether the coefficient of the interaction dummy is 
statistically significant can be tested by the usual t test.  

If it turns out to be significant, the simultaneous presence 
of the two attributes will attenuate or reinforce the 
individual effects of these attributes.  
Omitting a significant interaction term incorrectly will lead to a specification 

bias.   



1.2.4 Interactions among Dummy Variables

The importance of interactions among dummy
variables

 help us toget influential variables
to avoid misspecificationbias



1.2.5 Slope indicator variables

The interaction between dummy variables and 
quantitative variables. They affect only slope, 
i.e, it does not affect intercept.

It help us to captures the interaction effect of 
dummy and quantitative variables on dependent 
variables

Look at the following example 
The price of condominium house can be explained as  

a function of its characteristics such as its size, 
location, number of bedrooms, age, floor and so on.



1.2.5 Slope indicator variables

For our discussion, let us assume that the 
number bed room of the house of the measured 
in numbers, nbdr, is the only relevant variable in 
determining house price.

 is the value of an additional number of bed 
rooms.

 is the value of land alone
We can use dummy variable and indicator 
variable interchangeable.

iunbdrprhou ++= 10 ββ

1β

0β



1.2.5 Slope indicator variables

We make the reference group, non desirable 
group.

Instead of assuming that the effect of location on 
house price causes a change in the intercept.

Let us assume that the change is in the slope of 
the relationship.

iunbdrneibprhou +++= 10 βψβ



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=
dneibourhoo desirablenot  if 0
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1.2.5 Slope indicator variables

We can allow for a change in a slope by 
including in the model an additional explanatory 
variable that is equal to the product of an 
indicator variable and continuous variable.

In our model, the slope of the relationship is the 
value of  an additional number of bed rooms.

If we assume 1 value for homes in desirable 
neibourhood, and 0 other wise; we can specify 
our model as follows: 

iuneibnbdrnbdrprhou +++= )*(10 ωββ



1.2.5 Slope indicator variables

The new variable (nbdr*neib) is the product number 
of bedroom and the indicator variables, is called an 
interaction variable as it captures the interaction of 
location and number of bedroom on condominium 
house prices.

Or it is called a slope –indicator variable or a slope 
dummy variable, b/c it allows for the change in the 
slope of the relationship.

The slope indicator variable takes a value equal to 
nbdr for houses in the desirable neibourhood, when 
neib=1, and it is 0 for homes in other 
neighbourhoods.



A slope indicator variable is treated as just like 
any other explanatory variable in a regression 
model.

In the desirable neighbourhood, the price per 
additional number of bedrooms of a house is 

In the non desirable neighbourhood, the price 
per additional number of bedrooms of a house is    

.
If          price per additional number of bedrooms 

is higher in the more desirable neighbourhood.

1.2.5 Slope indicator variables
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The effect of including a slope indicator variable 
also can be see by using calculus. 

The partial derivatives of expected house price 
with respect to number of bed rooms

If





1.2.5 Slope indicator variables
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If we assume that house locationaffects both the
intercept and the slope, then both affects can be
incorporated into a single model.

The model specificationwill be:

 Look numerical example from Principle of Econometrics

1.2.5 Slope indicator variables
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1.3 “Structural  
Stability ”



Testing for structural stability is help us to find 
out whether two or more regressions are different, 
where the difference may be in the intercepts or 
the slopes or both. 

Suppose we are interested in estimating a 
simple saving function that relates domestic 
household savings (S) with gross domestic 
product (Y) for Ethiopia. 

Suppose further that, at a certain point of 
time, a series of economic reforms have been 
introduced. 

1.3 Structural  Stability



1.3 Structural  Stability
So far we assumed that the intercept and 

all the slope coefficients (βj 's) are the 
same/stable for the whole set of 
observations. Y = Xβ + e

But, structural shifts and/or group 
differences are common in the real world. 
May be:
the intercept differs/changes, or
the (partial) slope differs/changes, or
both differ/change across categories or 

time period.



 The hypothesis here is that suchreforms might have
considerably influenced the savings- income
relationship, that is, the relationship betweensavings
and income might be different in the post reform
period as comparedto that in the pre-reform period.

 If this hypothesis is true, then we say a structural
change has happened.
 H0: Economic reforms might not have influenced the

savings and national income relationship
 H1: Economic reforms might have influenced the

savings and national income relationship

 How do we checkif this is so?

1.3 Structural  Stability



We can test structural stability of testing parameter 
by using two methods.

1. Using Dummy variables
2. Chow’s test

1. Using dummy variables
* Write the savings function as:

1.3 Structural  Stability
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1.3 Structural  Stability

 Is the differential slope coefficient 
indicating how much the slope coefficient of the 
pre-reform period savings function differs from 
the slope coefficient of the savings function in 
the post reform period. 

Decision rule: 
If           are both statistically significant as 

judged by the t-test, the pre-reform and post-
reform regressions differ in both the intercept
and the slope. 

31   ββ and

3β



If only      is statistically significant, then the 
pre-reform and post-reform regressions differ 
only in the intercept (meaning the marginal 
propensity to save (MPS) is the same for pre-
reform and post-reform periods).

If only       is statistically significant, then the 
two regressions differ only in the slope (MPS). 

Check structural stability for the f/wing 
regression result:

1.4 Structural  Stability
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1.4 Structural  Stability
Example 2:  Using the DVR to Test for Structural 

Break:
 Recall the example of consumptionfunction:

period 1: consi = α1+ β1*inc i+ui vs.
period 2: consi = α2+ β2*inc i+ui

 Let’s define a dummy variable D1, where:
for the period 1974-1991, and 
for the period 1992-2006

 Then, consi = α0+α1*D1+β0*inc i+β1(D1*inc i)+ui
For period 1:consi = (α0+α1)+(β0+β1)inci+ui
For period 2 (base category):consi= α0+ β0*inc i+ui
 Regressingconson inc, D1 and (D1*inc) gives:

cons= 1.95+ 152D1 + 0.806*inc – 0.056(D1*inc)
p-value: (0.968) (0.010) (0.000) (0.002)



1.4 Structural  Stability

D1=1 for i ϵ period-1 & D1=0 for i ϵ period-2:
period 1 (1974-1991): cons = 153.95 + 

0.75*inc
period 2 (1992-2005): cons= 1.95+ 0.806*inc

The Chow test is equivalent to testing α1=β1=0 
in:      

cons=1.95+152D1+0.806*inc – 0.056(D1*inc)
This gives: F(2, 29) = 6.76; p-value = 0.0039. 
Then, reject H0! There is a structural break!



1.4 Structural  Stability
 For a total of m categories, use m–1dummies!
 Including m dummies (1 for each group) results in 

perfect multicollinearity (dummy variable trap). e.g.: 2 
groups & 2 dummies:

 constant = D1 + D2 !!!
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2. Chow’s test
 One approach for testing the presence of structural change 

(structural instability) is by means of Chow’s test. The steps 
involved in this procedure:

 Step 1: Estimate the regression equation for the whole period 
(pre-reform plus post-reform periods) and find the error sum of 
squares ( ESSR ) or RRSS.

 Step 2: Estimate equation (model) using the available data in the pre-reform 
period (say, of size n 1), and find the error sum of squares (ESS1) or RSS1

 Step 3: Estimate equation (model) using the available data in the pre-reform 
period (say, of size n 2), and find the error sum of squares (ESS2) or RSS2.

 Step 4: Calculate RSSUR= RSS1+RSS2.
 Step 5: Calculate the Chow test statistic

 Where  k is number of estimated regression coefficients

1.4 Structural  Stability
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 is the critical value from the t-
distribution with k (in our case k=2) and n1+n2-2k 
degrees of freedom from a given significance level, 

 Decision rule: Reject the null hypothesis of 
identical  intercepts and slopes for the pre-reform 
and post reform periods, that is 

 i.e, Rejecting H0 means there is a structural 
change.

1.4 Structural  Stability
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Example: RSS1=64499436.865 (Error sum of 
squares in the pre-reform period); n1=12; 
RSS2=2,726,652,790.434 (Error sum of squares in 
the post-reform period); n2=11;

RSSR=13,937,337,067.461 (Error sum of squares 
for the whole period)

RSSU=RSS1+RSS2=2,791,152,227.299
The test statistics is: 

The tabulated value from the F-distribution with 2 
and 19 degrees of freedom at the 5% level of 
significance is 3.52.

1.4 Structural  Stability
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Decision: Since the calculated value of F exceeds 
the tabulated value, we reject the null hypothesis of 
identical intercepts and slopes for the pre-reform 
and post reform periods at the 5% level of 
significance. 

Hence, we can conclude that there is a structural 
break.

1.4 Structural  Stability



Draw backs:
Chow’s test does not tell us whether the difference 

(change) in the slope only, in the intercept only or 
in both the intercept and the slope.

The ChowTests
Using an F-test to determine whether a single 

regressionis more efficient than two/more separate 
regressions on sub-samples.

1.4 Structural  Stability



The stages in running the Chow test are:
1. Run 2 separate regressions (say, before & after war 

or policy reform, …) & save RSS's: RSS1 & RSS2. 
RSS1 has n1–(K+1) df& RSS2 has n2–(K+1) df.
RSS1 + RSS2 = URSSwith n1+n2–2(K+1) df.
2. Estimate pooled model (under H0: β's are stable).
RSS from this model is RRSS with n–(K+1) df

where n = n1+n2. 
3. The test-statistic (under H0):

4. Find the critical value: FK+1,n-2(K+1) from table.
5. If Fcal>Ftab, reject H0 of stable parameters (and 

favour Ha: there is structural break).

1.4 Structural  Stability

1)]2(K[n
URSS

1)(K
URSS][RRSS

F

+−

+
−

=cal



e.g.: we have the ff results from estimation of real 
consumption from real disposable income:

i. For the period 1974-1991: consi = α1+β1*inc i+ui
Consumption = 153.95+ 0.75*Income

p-value:  (0.000)   (0.000)
RSS= 4340.26114; R2 = 0.9982

ii. For the period 1992-2006: consi = α2+ β2*inc i+ui
Consumption = 1.95+ 0.806*Income

p-value:    (0.975)   (0.000)
RSS= 10706.2127; R2 = 0.9949

iii. For the period 1974-2006: consi = α+ β*inc i+ui
Consumption = 77.64+ 0.79*Income

t-ratio:    (4.96)   (155.56)
RSS= 22064.6663; R2 = 0.9987

1.4 Structural  Stability



1. URSS= RSS1 + RSS2 = 15064.474
2. RRSS= 22064.6663
K = 1 and K + 1 = 2; n1 = 18, n2 = 15, n = 33.
3. Thus,                                           

4. p-value = Prob(F-tab > 6.7632981) = 0.003883
5. Reject H0 at α=1%. Thus, there is structural break.
The pooled consumption model is an inadequate 

specification; we should run separate regressions.
The above method of calculating the Chow test 

breaks down if either n1 < K+1 or n2 < K+1.
Solution: use Chow’s second (predictive) test!

6.7632981
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If, for instance, n2 < K+1, then the F-statistic will be 
altered as follows:

 The Chow test tells if the parameters differ on 
average, but not which parameters differ.

 Also, it requires that all groups have the same σ2. 
This assumption is questionable: if parameters can 

be different, then so can the variances be.
One way of correcting for unequal σ2 is to use 

dummy variable regression with robust standard 
errors.
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1.4 Structural  Stability
Using Dummy variables vs Chow’s test  

Comparing the two methods, it is 
preferable to use the method of 
dummy variables regression.

This is because with the method of 
DVR:

1. We  run only one regression.
2. We  can test whether the change is in 

the intercept only, in the slope only, or 
in both.



Lab session

Use “Chowtest.xls” data to 
practice what we learnt in 
previous sections



END OF CHAPTER ONE

THANK YOU FOR BEING WITH ME
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2.2.“Dummy dependent 
variable” :

Qualitative Response 

Model



2.2.1 Introduction 

Qualitative Response Model shows situations in 
which the dependent variable in a regression 
equation simply represents a discrete choice 
assuming only  a limited number of values

Such a model is called
Limited dependent variable
Discrete dependent variable
Qualitative response

Categories of Qualitative Response Models 

there are two broad categories of QRM





2.2.1 Introduction

1. Binomial Model: it shows the choice between 
two alternatives

e.g: Decision to participate in labor force or not 

2. Multinomial models: the choice between more 
than two alternatives

e.g: Y= 1, occupation is farming
=2, occupation is carpentry

=0, government employee

Important terminologies
Binary variables: variables that have two categories and used to 
an event that has occurred or some characteristics present.



2.2.1 Introduction 

Ordinal variables: variables that have 
categories that can be ranked. 

Example: Rank according to education 
attainment  (Y)

Nominal variables: variables occur when 
there are multiple outcomes that cannot be 
ordered. 









=
education university if 2 

educationsecondary  if 1

educationprimary  if 0

Y



2.2.1 Introduction 

Example: Occupation can be grouped as 
farming, fishing, carpentry etc. 

Count variables: indicate the number of times 
some event has occurred. 

Example: How many years of education you 
have attend?

In all of the above situations, the variables 
are discrete valued.













=

employee government if 3 

carpentry if 2 

fishermen if 1

farming if 0

Y

N.B: Numbers are 
assigned arbitrarily



2.2.2 Qualitative Choice Analysis

In such cases instead of standard regression 
models, we apply different methods of modeling 
and analyzing discrete data.

Qualitative choice models may be used when a 
decision maker faces a choice among:  
The number of choices if finite

The choices are mutually exclusive (the 
person chooses only one of the alternatives)

The choices are exhaustive (all possible 
alternatives are included)



Qualitative choice analysis

Throughout our discussion we shall restrict 
ourselves to cases of qualitative choice where the 
set of alternatives is binary. 

For the sake of convenience the dependent 
variable is given a value of 0 or 1.
Example: Suppose the choice is whether to 

work or not. The discrete dependent variable 
we are working with will assume only two 
values 0 and 1:







=
king is notworindividualiif

workingisindividualiif
Y

th

th

i
   0

     1

where i = 1, 2, …, n. 



Qualitative choice analysis

The independent variables (called factors) that are expected to 
affect an individual’s choice may be X1 = age, X2 = marital 
status, X3 = gender, X4 = education, and the like. 

These are represented by a matrix X. 

Regression Approach
The economic interpretation of discrete choice models is 

typically based on the principle of utility maximization leading to 
the choice of, say, A over B if the utility of A exceeds that of B. 

 Let U1 be the utility from working/seeking work and let U0 be 
the utility form not working. Then an individual wi ll choose to 
be part of the labour force if U1 -U0 > 0 , and this decision 
depends on a number of factors X.



Qualitative choice analysis

The probability that the i th individual chooses 
alternative 1th (i.e. works) given his/her individual 
characteristics,  Xi is:

The vector of parameters                     ( measures the 
impact of changes in X (say, age , marital status, 
gender, education, occupation, and the like) on the 
probability of labor force participation.  

 the probability that the i th individual chooses 
alternative 0 (i.e. not to work) is given by:
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Qualitative choice analysis

Here Pi is called the response probability and 
(1-Pi ) is called the non-response probability. 

The mean response of the ith individual given 
his/her individual characteristics Xi is:

The problem is thus to choose the appropriate 
form of         . 

There are several methods to analyze regression models where 
the dependent variable is binary.

 the four most commonly used approaches to estimating binary 
response models (Type of binomial models).  These are:
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Qualitative choice analysis

Linear probability models
The logit model 

The probit model
The tobit (censored regression) model

1. The Linear Probability Models (LPM) 

The term linear probability model is used to 
denote a regression model in which the 
dependent variable y is a dichotomous variable 
taking the value 1 or 0.



Linear Probability Models

In the 1960’s and early 1970’s the linear 
probability model was widely used mainly 
because it is a model that can be easilyestimated 
using multiple regression analysis.

A “limited dependent variable" y is one which 
takes a limited set of values. The most common 
cases are: Binary:      ;   Multinomial:     ;    
;Integer:                         .

The traditional approach to the estimation of limited 
dependent variable models is parametric maximum 
likelihood. 

}{ 1,0εy }{ ky ,...,2,1,0ε

}{ ,2,...1,0 :Integer εy +Ry  ε



Linear Probability Models
A parametric model is constructed, allowing the 

construction of the likelihood function.

A more modern approach is semi-parametric, 
eliminating the dependence on a parametric 
distributional assumption. We will limit our 
discuss to parametric approach.

When we use a linear regression model to 
estimate probabilities, we call the model the 
linear probability model. 

The linear probability model is the regression 
model applied to a binary dependent variable.



Linear Probability Models

The linear probability model defines 
The regression model when Y is a binary 

variable is thus,
Where y takes only two value: 0 & 1, and     

cannot be interpreted as the change in Y given a 
one-unit increase in Xj,, holding all other factors 
constant rather  Y changes either from 0 to 1 or 
from 1 to 0.

If we assume that the zero conditional mean 
assumption holds, that is,     , then we have, as 
always, 
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Linear Probability Models

  it says that the 
probability of success is a linear function of the 
Xj; it is called the response probability.

 it is the non-response 
probability , and it is also a linear function of the 
Xj .

Interpretation of LPM

The response probability is linear in the 
parameters of Xj .
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Linear Probability Models

Example: Suppose that from hypothetical data 
of house ownership and income and thus, the 
LPM estimated by OLS (on home ownership) is 
given as follows: 

 The above regression is interpreted as follows

 The intercept of –0.9457 gives the “probability” that a family with zero 
income will own a house. Since this value is negative, and since probability 
cannot be negative, we treat this value as zero. 

 The slope value of 0.1021 means that for a unit change in income, on the 
average the probability of owning a house increases by 0.1021 or about 10 
percent. This is so whether the income level is increased or not. This seems 
patently unrealistic. In reality one would expect that Pi is non-linearly related 
to Xi. 



Linear Probability Models

 measures the change in the probability of 
success when Xjchanges, holding other factors 
fixed.

Advantages of LPM: Easy to estimate and 
interpret; it is too simple.

Drawbacks of LPM:
1. The dependent variable is discrete while the independent 

variable is the combination of discrete and continuous 
variables.

2. Usually we arbitrarily (or for convenience) use 0 and 1 for  Yi . 
If we use other values for Yi , say 3 and 4, will also change even 
if the vector of factors Xi remains unchanged.

jβ



Linear Probability Models

3. Error term assumes only two values.
If Yi=1 then             with the Probability, Pi;

 If Yi=0 then              with Probability, 1-Pi;
 The variance of the disturbance terms depends 

on the X’s and is thus not constant.; i.e., error 
term is not normally distributed.

Now by definition                  since     by 
assumption. Therefore, using the preceding 
probability distribution of  we obtain: 
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Linear Probability Models

This shows that the variance of Ui is 
heteroscedastic because it depends on the 
conditional expectation of Y, which, of course, 
depends on the value taken by X.

 Thus, the OLS estimator of     is inefficient and 
the standard errors are biased, resulting in 
incorrect test. 

4. The expectation (mean) of  conditional on the 
exogenous variables Xi is non sense.

β

βββε iiiiiii XPPXPXXE −=−−+−= )1)(()1()/(
Setting this mean to zero as in 

the classical regression 
analysis 



Linear Probability Models

That is, the binary (discrete) disturbance term is 
equal to the difference between a binary variable 
Yi and a continuous response probability Pi. 
Clearly this does not make sense.

the probability of an event is always a number 
between 0 and 1 (inclusive). But here we can see 
that:                                     ,  i.e., Pi can take on 
any value (even negative numbers) leading to 
nonsense probabilities, the fitting probabilities 
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Linear Probability Models

5.   Non-Sensical Predictions 

The LPM produces predicted values outside the 
normal range of probabilities (0,1). It predicts 
value of Y that are negative and greater than 1.

This is the real problem with the OLS 
estimation of the LPM.

6. Non-normality of Ui
 Although OLS does not require the disturbance (U’s) to be normally 

distributed, we assumed them to be so distributed for the purpose of 
statistical inference, that is, hypothesis testing, etc. But the assumption of 
normality for U i is no longer tenable for the LPMs because like Yi, Ui takes on 
only two values. 



Linear Probability Models

7. Functional Form 

Since the model is linear, a unit increase in X 
results in a constant change of in the probability 
of an event, holding all other variables constant.

The increase is the same regardless of the 
current value of X. 

8. Questionable Value of R2 as a Measure of 
Goodness of Fit (lower R2 values )

 In sum, non-normality of ui; possibility of Yi lyin g outside the 0-
1 range; hetroscedasticity of Ui; lower R2 values; the basic 
problem is not logically attractive.



Linear Probability Models

b/c the above mentioned problems, the LPM 
model is not recommend for empirical works.

Therefore, what we need is a (probability) 
model that has the following two features: 

As Xi increases, Pi = E(Y = 1/X) increases but 
never steps outside the 0-1 interval.

The relationship between Pi and Xi is non-
linear, that is, “ one which approaches zero at 
slower and slower rates as Xi gets small and 
approaches one at slower and slower rates as 
X i gets very large” 



Linear Probability Models

The above S-shaped curve is very much similar with 
the cumulative distribution function (CDF) of a 
random variable. 

the CDF of a random variable X is simply the 
probability that it takes a value less than or equal to x0, 
were x0 is some specified numerical value of X.

 In short, F(X), the CDF of X, is F(X = x0) = P(X ≤ x0). 



Linear Probability Models

Therefore, one can easily use the CDF to model regressions 
where the response variable is dichotomous, taking 0-1 values. 

The CDFs commonly chosen to represent the 0-1 response 
models are.

 the logistic – which gives rise to the logit model
 the normal – which gives rise to the probit (or normit) 

model
2. Logit model

• Although LPM is simple to estimate and use, but the two most 
important disadvantages are:

• the fitted probabilities can be less than zero or greater than 
one and

• the partial effect of any explanatory variable is constant.



Logit model

These limitations of the LPM can be overcome 
by using more sophisticated binary response 
models.

 In a binary response model, interest lies primarily in the 
response probability.

where we use X to denote the full set of explanatory variables. 
For example, when Y is an employment indicator, X might 

contain various individual characteristics such as education, age, 
marital status, and other factors that affect employment status, 
including a binary indicator variable for participa tion in a 
recent job training program.
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Logit model

In the LPM, we assume that the response 
probability is linear in a set of parameters,      . 

 To avoid the LPM limitations, consider a class 
of binary response models of the form. 

Where G is a function taking on values strictly 
between 0 & 1:                for all real numbers z.

This ensures that the estimated response 
probabilities are strictly between zero and one. 
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Logit model

Various nonlinear functions have been 
suggested for the function G in order to make 
sure that the probabilities are between zero and 
one. 

In the logit model, G is the logistic function:

which is between zero and one for all real 
numbers z. This is the cumulative distribution 
function (cdf) for a standard logistic random 
variable. 
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Logit model

the response probability P(Y =1/X) is evaluated 
as:

the non response probability P(Y =0/X) is 
evaluated as:

Note that: both response and non- response 
probabilities lie in the interval [0 , 1] , and 
hence, are interpretable.

Odd ratio: the ratio of the response probabilities 
(Pi) to the non response probabilities (1-Pi). 
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Logit model

For the logit model, the odds ratio is given by:

The natural logarithm of the odds  ratio(log-
odds ratio) is: 

L(the log of the odds ratio) is linear in X as well 
as    (the parameters). L is called the logitand 
hence the name logit model is given to it.
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Logit model

Thus, the log-odds ratio is a linear function of 
the explanatory variables. 

For the LPM it is Pi, which is assumed to be a 
linear function of the explanatory variables.

Features of logit model
As P goes from 0 to 1 (i.e., as Z varies from −∞ to +∞), the logit L 

goes from −∞ to +∞. That is, although the probabilities (of 
necessity) lie between 0 and 1, the logits are not so bounded.

Although L is linear in X, the probabilities themselves are not. 
This property is in contrast with the LPM model where the 
probabilities increase linearly with X.



Logit model

If L, the logit becomes negative and increasingly 
large in magnitude as the odds ratio decreases 
from 1 to 0 and becomes increasingly large and 
positive as the odds ratio increases from 1 to 
infinity.

LPM assumes that Pi is linearly related to Xi, 
the logit model assumes that the log of the odds 
ratio is linearly related to Xi .

Interpretation: Be remind that we doesnotdirectly 
interpreted the coefficients of the variables 
rather we interpreted their marginal effects and 



Logit model

β2, the slope, measures the change in L for a 
unit change in X, that is, it tells how the log-odds 
in favor of owning a house change as income 
changes by a unit, say, birr 1000. 

The intercept, β1 is the value of the logodds in 
favor of owning a house if income is zero. 



Probit model

The estimating model that emerges from the 
normal CDF is popularly known as the probit
model. 

In the probit model, G is the standard normal 
cumulative distribution function (cdf ), which is 
expressed as an integral:

 In the probit model, G is the standard normal 
cumulative distribution function

Where        is the standard normal density
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Probit model

The estimating model that emerges from the 
normal CDF is popularly known as the probit
model. 

Here the observed dependent variable Y, takes 
on one of the values 0 and 1 using the following 
criteria.

 Define a latent variable Y* such that  
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Probit model

The latent variable Y* is continuous (-∞ < Y* < 
∞). 

It generates the observed binary variable Y. 
An observed variable, Y can be observed in two 

states: 
if an event occurs it takes a value of 1

if an event does not occur it takes a value of 0
The latent variable is assumed to be a linear 

function of the observed X’s through the 
structural model. 



Probit model

However, since the latent dependent variable is 
unobserved the model cannot be estimated using 
OLS. 

Maximization of the likelihood function for 
either the probit or the logit model is 
accomplished by nonlinear estimation methods. 
Maximum likelihood can be used instead. 

Most often, the choice is between normal errors 
and logistic errors, resulting in the probit
(normit) and logit models, respectively.





Probit model

The coefficients derived from the maximum 
likelihood (ML) function will be the coefficients 
for the probit model, if we assume a normal 
distribution. 

If we assume that the appropriate distribution 
of the error term is a logistic distribution, the 
coefficients that we get from the ML function 
will be the coefficient of the logit model.

 In both cases, as with the LPM, it is assumed 
that E[∈i/X i] = 0



Probit model

In the probit model, it is assumed that Var
(∈i/X i) = 1; In the logit model, it is assumed that 
Var (∈i/X i) =      . 

Hence, the estimates of the parameters ( ’s) 
from the two models are not directly 
comparable. 

But as Amemiya suggests, a logitestimate of a 
parameter multiplied by 0.625 gives a fairly 
good approximation of the probit estimate of the 
same parameter. 
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Probit model

Similarly the coefficients of LPM and logit
models are related as follows: 

 LPM = 0.25 Logit,  except for intercept 
 LPM = 0.25 Logit + 0.5 for intercept

The standard normal cdf has a shape very 
similar to that of the logistic cdf.
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Probit model

The estimating model that emerges from the 
normal CDF is popularly known as the probit
model, although sometimes it is also known as 
the normit model. 

Note that both the probit and the logit models 
are estimated by Maximum Likelihood 
Estimation.



Probit model

Interpreting the Probit and Logit Model Estimates
The coefficients give the signs of the partial effects of 

each Xj on the response probability, and the statistical 
significance of Xj is determined by whether we can 
reject H0: Bj=0 at a sufficiently small significance level.

However, the magnitude of the estimated parameters ( 
dZ/dX) has no particular interpretation. We care about 
the magnitude of dProb(Y)/dX. 

From the computer   output for a probit or logit
estimation, you can interpret the statistical significance 
and sign of each coefficient directly.



Probit model

In the linear regression model, the slope 
coefficient measures the change in the average 
value of the regressandfor a unit change in the 
value of a regressor, with all other variables 
held constant.

In the LPM, the slope coefficient measures 
directly the change in the probability of an event 
occurring as the result of a unit change in the 
value of a regressor, with the effect of all other 
variables held constant.



Probit model

In the logit model the slope coefficient of a 
variable gives the change in the log of the odds 
associated with a unit change in that variable, 
again holding all other variables constant. 

But as noted previously, for the logitmodel the 
rate of change in the probability of an event 
happening is given by βj Pi(1 − Pi ), where βj is 
the (partial regression) coefficient of the jth
regressor. But in evaluating Pi , all the variables 
included in the analysis are involved.



Probit model

In the probit model, as we saw earlier, the rate of 
change in the probability is somewhat complicated 
and is given by βj f (Zi ), where f (Zi) is the density 
function of the standard normal variable and Zi = 
β1 + β2X2i + · · · +βkXki , that is, the regression 
model used in the analysis.

Thus, in both the logit and probit models all the 
regressors are involved in computing the changes in 
probability, whereas in the LPM only the jth

regressor is involved. This difference may be one 
reason for the early popularity of the LPM model.



Probit vs logit model

Is  logit or probit model is preferable?
 In most applications the models are quite similar, the main 

difference being that the logistic distribution has slightly 
fatter tails.

 That is to say, the conditional probability Pi approaches 
zero or one at a slower rate in logit than in probit.

 Therefore, there is no compelling reason to choose one over 
the other. 

 In practice many researchers choose the logit model 
because of its comparative mathematical simplicity. 

The standard normal cdf has a shape very similar to that of 
the logistic cdf.



Probit vs logit model

The probit and logit models differ in the 
specification of the distribution of the error term 
u. 

 The difference between the specification and 
the linear probability model is that in the linaer
probability model we analyses the dichotomous 
variables as they are, where as we assume the 
existence of an underlying latent variable for 
which we observe  a dichotomous realization. 



Probit vs logit model

The probit model and the logit model are not 
directly comparable. The reason is that, 
although the standard logistic (the basis of logit) 
and the standard normal distributions (the basis 
of probit ) both have a mean value of zero, their 
variances are different; 1 for the standard 
normal (as we already know) and π2/3 for the 
logistic distribution, where π ≈ 22/7. 

Therefore, if you multiply the probit coefficient 
by about 1.81 (which is approximately = π/√ 3), 
you will get approximately the logit coefficient. 



Probit vs logit model

The R2’s for the linear probability model are 
significantly lower than those for the logit and 
probit models. Alternative ways of comparing 
the models would be:

To calculate the sum of squared deviations 
from predicted probabilities

To compare the percentages correctly 
predicted

To look at the derivatives of the probabilities 
with respect to a particular independent 
variable.    



Tobit Model

An extension of the probit model is the tobit model 
developed by James Tobin. 

Let  us consider the home ownership example. 
Suppose we want to find out the amount of money the 

consumer spends in buying a house in relation to his or 
her income and other economic variables. 

If a consumer does not purchase a house, obviously we 
have no data on housing expenditure for such 
consumers; we have such data only on consumers who 
actually purchase a house. 



Tobit Model

Thus, consumers are divided into two groups, one 
consisting of say, N1 consumers about whom we have 
information on the regressors (say income, interest rate 
etc) as well as the regresand( amount of expenditure 
on housing) and another consisting of say, N2
consumers about whom we have information  only on 
the regressors but on not  the regressand.

 A sample in which information on regressand is 
available only for some observations is known as a 
censored sample. Therefore, the tobit model is also 
known as a censored regression model. 



Tobit Model

Mathematically, we can express the tobitmodel 
as

Where RHS= right hand side

The method of maximum likelihood can be used 
to estimate the parameters of such models.

Measuring goodness of fit

The conventional measure of goodness of fit,R2 , 
is not particularly meaningful in binary 
regressand models. Measures similar to R2, 
called pseudo R2 , are available.
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Measuring goodness of fit

Measures based on likelihood ratios: The 
conventional measure of goodness of fit,R2 , is 
not particularly meaningful in binary 
regressandmodels.

 Measures similar to R2, called pseudo R2, are 
available, and there are a variety of them. 

Measures based on likelihood ratios 
Let  LURbe the maximum likelihood function when 

maximized with respect to all the parameters and LR be 
the maximum likelihood function when maximized 
with restrictions         .0=iβ



Measuring goodness of fit

the qualitative dependent variable model, the 
likelihood function attains an absolute 
maximum of 1. This means that,

Cragg and Uhler (1970) suggested a pseudo R2 

that lies between 0 and 1.  

Mc Fadden (1974) defined R2 as
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Measuring goodness of fit

Another goodness-of-fit measure that is usually 
reported is the so-called percent correctly 
predicted, which is computed as follows. For 
each i, we compute the estimated probability 
that Yi takes on the value one,        .

 If   >0.5  the prediction of Yi is unity, and if  <0  
Yi  is predicted to be zero. The percentage of 
times the predicted             matches the actual Yi 
(which we know to be zero or one) is the percent 
correctly predicted.
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Brainstorm questions

1. Why LPM is not recommendable for empirical 
analysis?

2. Drive logodds ratio.
3. For logit and probit model we can use OLS 

estimators.
4. For logit and probit model we can use 

maximum likelihood estimators.
5. The variance that logit model assume is          

where as probit model assumes 1.

2
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Lab session

Use “lecture_2.xls” data to 
practice what we learnt in 
previous sections



END OF CHAPTER TWO

THANK YOU FOR BEING WITH ME

BEING @ COMMITTED
stay Safe!
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CHAPTER THREE 

Introduction to Basic Regression Analysis with 
Time Series Data

3.1 Nature of the Time Series data
3.2 Stationary & non stationary stochastic

Processs
3.3 Trend & Difference stationary stochastic

process
3.4 IntegratedStochastic Process

3.5 Tests of Stationary
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3.1 Nature of the Time Series data
Time series datahave become sofrequently and

intensively used in empirical research and thus,
econometricians have recentlybegun to pay very
careful attention to suchdata.

 Time series dataare data collectedfor a single
entity (person, firm, and country) collected
(observed) atmultiple timeperiods.

A time series is asequence of numerical datain
which each item is associatedwith a particular
instant in time.

Example: Monthly unemployment, weekly measures of money
supply, M1 and M2, daily closing prices of stock indices, andso on
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3.1 Nature of the Time Series data

Thus, the way we collect time series datacan be
characterised as daily (stock prices, weather
report), weekly (gasoline suppliedin thousands of
barrels), monthly (unemployment rate, CPI),
quarterly (GDP), & annual (GDP, Budget).

Quinquennially: Every 5 years (e.g: the census of
manufactures)

Decennially(e.g: Census of population)
Exchange rates daily date for 2 years=730

observation
Inflation rate for Ethiopia, quarterly data for 30

years=30*4=120observation.
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3.1 Nature of the Time Series data

Gross domestic investment inEthiopia of annual
data for 40 yrs; 40*1= 40 observations.

Time Series dataVs Cross sectional data

Time Series

• It coming with temporal ordering over
period of time on a single entity.

• the past can affect the future, but not
vice versa

• We have d/t data for d/t samples
• Also viewed as random varaibles; we

do not know what the annual growth in
output will be in Ethiopia during the
coming year. i.e, the outcomes of these
random variables are not foreknown.

Cross sectional

• At a given point of time
• a different sample has drawn from

the population will generally yield
different values of the independent
and dependent variables

• We have d/t data for d/t year
• The OLS estimates computed from

d/t random samples will generally
differ and this why we consider OLS
estimators to be random variables.
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3.1 Nature of the Time Series data

 A sequence of randomvariables indexedby time is
called a stochastic process or a time series process.
(“Stochastic” is a synonymfor random.)

 When we collect a time series dataset, we obtain
one possible outcome, or realization, of the
stochastic process.

 We can only see a single realization, because we
cannot go back in time and start the process over
again.

 This is analogous tocross-sectional analysis where
we cancollect onlyone randomsample.)
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3.1 Nature of the Time Series data

Important terminology :
Univariate analysis examines asingle data

series.
Bivariate analysis examines apair of series.

The term vector indicates that we are
considering a number of series: two, three, or
more.

The term ‘‘vector’’ is a generalization of the
univariate and bivariate cases.
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 A random or stochastic processis a collection of
random variables orderedin time.

If we let Y denote a random variable, and if it is
continuous, we denote it asY(t) , but if it is discrete,
we denotedit as Yt .

Example of Yt is GDP, CPI, PDI; since most
economic data arecollectedat discrete points in time,
we use Yt notation.

If we let Y represent GDS, for our data we have
Y1,Y2,Y3,...,Y21,Y22,Y23, where the subscript 1
denotes the first observation(i.e., GDSof 1991/1992)
and the subscript 23 denotes the last observation(i.e.,
GDSof 2014/2015).

3.2 Stationary and non-stationary Stochastic 
Processes 



3.2 Stationary and non-stationary Stochastic 
Processes 

Example of Y(t) is electro cardiogram, record 
of heart activity.

N.B: Each of these Y’s is a random variable.
A. Stationary Stochastic Processes

 A stochastic process is saidto be stationary
“ if its mean and variance are constant over
time and the value of the covariance between
the two time periods depends onlyon the
distance or gapor lag betweenthe two time
periods and not the actual time at which the
covarianceis computed. 148
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3.2 Stationary and non-stationary Stochastic Processes 

 In the time series literature, sucha stochastic
process is known as a weakly stationary, or
covariance stationary, or second-order
stationary, or wide sense, stochastic process.

 To explain weak stationarity, let Yt be a
stochastic time series withthese properties:

µ=)(: tYEMean
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Where γk, the covariance (or autocovariance) at
lag k, is the covariance betweenthe values of Yt
and Yt+k , that is, betweentwo Y values k periods
apart.

If k= 0, we obtainγ0, which is simply the variance
of Y(=σ2); if k= 1,γ1 is the covariance betweentwo
adjacent values of Y.

Suppose we shift the originof Y from Yt to Yt+m
(say, from 1997to 2002for our GDS data). Nowif
Yt is to be stationary, the mean, variance, and
autocovariances ofYt+m must be the same as
those of Yt.

3.2 Stationary and non-stationary Stochastic 
Processes 

)])([( 111 µµγ −−= +tYYE
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3.2 Stationary and non-stationary Stochastic 
Processes  

In short, if a time series is stationary, its mean, variance,
and autocovariance (at various lags) remainthe same no
matter at what point we measure them; that is, they are
time invariant.

 Such a time series will tend to return to its mean
(called mean reversion) and fluctuations around this
mean (measuredby its variance) will have a broadly
constant amplitude.

If a time series is not stationary inthe sense just defined,
it is called a nonstationary time series (keepin mind we
are talking only about weakstationarity).

In other words, a nonstationary time series will have a
time-varying meanor a time-varying varianceor both.
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3.2 Stationary and non-stationary Stochastic Processes 

Why Stationary time series are important?
Because if a time series isnonstationary, we can

study its behavior only for the time period under
consideration.

Each set of time series datawill therefore be for
a particular episode.

As a consequence, it is not possible togeneralize
it to other time periods. Therefore, for the
purpose of forecasting, such(nonstationary) time
series maybe of little practical value.

A. Non stationary Stochastic Processes
A special type of stochastic process (or time

series), is called, apurely random, or white noise,
process.
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3.2 Stationary and non-stationary Stochastic Processes 

 We call a stochastic process purelyrandom if it
has zero mean, constant varianceσ2, and is
serially uncorrelated.

 One of the classical example ofnon stationary
time series is the randomwalk model (RWM).

 It is often said that asset prices, suchas stock
prices or exchange rates, followa random walk;
that is, they are nonstationary.

 We have twotypes of randomwalks
(1) random walk without drift (i.e., no
constant or intercept term) and
(2) random walk with drift (i.e., a constant
term is present).
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3.2 Stationary and non-stationary Stochastic Processes 

1. Randomwalk without drift
 Suppose ut is a white noise error term with

mean0 and variance .
 Then the series Yt is saidto be a randomwalk if

 shows, the value of Y at time t is
equal to its value at time (t−1) plus a random
shock; thus it is an AR (1) model.

 We canthink of as a regressionof
Y at time t on its value laggedone period.
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3.2 Stationary and non-stationary Stochastic Processes 

 If the process started at some time 0 with a
value of Y0, we have

 the mean of Y is equal toits initial, or starting,
value, which is constant, but as t increases, its
variance increases indefinitely, thus violating a
condition of stationarity .

 In short, the RWM without drift is a
nonstationary stochastic process. In practice Y0
is oftenset at zero, inwhich case E (Yt) =0.

tuYY += 01
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3.2 Stationary and non-stationary Stochastic Processes 

An interesting feature of RWM is the persistence
of random shocks (i.e., randomerrors), which is
clear from : Yt is the sum of initial
Y0 plus the sumof random shocks.

As a result, the impact of a particular shockdoes
not die away.

 For example, if U2=2 rather than U2=0, thenall
Yt’s from Y2 onward will be 2 units higher and
the effect of this shocknever dies out.

 That is why random walk is said to have an
infinite memory. The implication is that, random
walk remembers the shockforever; that is, it has
infinite memory.

tuYY += 01
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3.2 Stationary and non-stationary Stochastic Processes 

☞We canrewrite the above equationas:

☞Where is the first difference operator. It is
easyto show that, while Yt is nonstationary, its
first difference is stationary. In other words, the
first differences of a random walk time series are
stationary.

2. RandomWalk with Drift
Let us modify as follows:

tuYY += 01

tttt uYYY =∆=− − )( 1

∆

+= iuYY 01



158

3.2 Stationary and non-stationary Stochastic Processes 

Where δ is known as the drift parameter. The
name drift comes from the fact that if we write
the precedingequationas .

it shows that Yt drifts upward or downward,
depending on δ being positive or negative. It is
alsoan AR(1) model.

Following the procedure discussedfor random
walk without drift , it can be shownthat for the
random walk with drift model :
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3.2 Stationary and non-stationary Stochastic Processes 

As you can see forRWM with drift, the mean
as well as the variance increases over time.

Thus, it violating the conditions of (weak)
stationary. In short, RWM, with or without
drift, is a nonstationary stochastic process.

The random walk model is anexample of what
is known in the literature as a unit root
process.

Unit Root Stochastic Process

Let us write the RWM as:
This model resembles the Markov first-order autoregressive

model that wediscussedon autocorrelation.
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3.2 Stationary and non-stationary Stochastic Processes 

 If ρ=1, becomes a RWM(without drift). If ρ is in
fact 1, we face what is knownas the unit root
problem, that is, a situation of nonstationary; we
already know that in this case the variance of Yt
is not stationary.

 The name unit root is due tothe fact that ρ=1.
Thus the terms nonstationary, randomwalk, and
unit root can be treated as synonymous.If,
however, |ρ|<1, that is if the absolute value ofρ
is less thanone, then it can be shown that the
time series Yt is stationaryin the sense we have
defined it .
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3.3 Trend Stationary and Difference Stationary Stochastic Processes

If the trend in a time series is completelypredictable and not variable, we call it a
deterministic trend, whereas if it is not predictable, we call it astochastic trend.
 To make the definition more formal, consider the following model of the time series

Yt.

 --------- -------(a)
 Where ut is a white noise error termand wheret is time measured chronologically.

 Now we have the following possibilities:
RWM without drift :

--------(b)=non stationary

……………………….. --------(c)=stationary, Hence, a

RWM without drift is a difference stationary process (DSP).

get  we,1,0,0 (a),in  If : walkrandom Pure 210 === βββ
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3.3 Trend Stationary and Difference Stationary Stochastic Processes

RWM with drift:
----------(d)-non stationary

-----------(e)—stationary, this means
Yt will exhibit a positive ( β1>0) or negative
(β1<0) trend. Such a trend is called a
stochastic trend. Equation (e) is a DSPprocess
because the nonstationarity in Yt can be
eliminatedby taking first differences of the time
series.

Deterministic trend:
, which is called a trend stationary process (TSP).

get  we,1,0,0 (a),in  If :drift  walk withrandom Pure 210 ==≠ βββ

get  we,1,0,0 (a),in  If :drift  walk withrandom Pure 210 =≠≠ βββ

0 1 tY t t uβ β= + +



3.3 Trend Stationary and Difference Stationary 
Stochastic Processes

Although the mean of Yt is β0+β1t, which is
not constant, its variance (=σ2) is constant.

Once the values ofβ0 and β1 are known, the
mean can be forecastedperfectly. Therefore, if
we subtract the mean of Yt from Yt, the
resulting series will be stationary, hence the
name trendstationary.

This procedure of removing the (deterministic)
trend is calleddetrending.
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3.3 Trend Stationary and Difference Stationary 
Stochastic Processes

Random walk with drift & deterministic
trend:

-----(f) non stationary
Deterministic trend with stationary AR (1)

component:

, which is
stationary around the deterministic trend.
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get  we1, 0, 0, (a)in  If 210 =≠≠ βββ

get  we1, 0, 0, (a)in  If 210 <≠≠ βββ

ttt UYtY +++= −1210 βββ



3.4 Integrated Stochastic Process

The random walk model is a specific case of a
more general class of stochastic processes
known asintegrated processes.

the RWM without drift is nonstationary, but
its first difference is stationary.

the RWM without drift integrated of order 1,
denotedas I(1).

Similarly, if a time series has tobe differenced
twice (i.e., take the first difference of the first
differences) tomake it stationary, we call such
a time series integratedof order 2. 165



3.4 Integrated Stochastic Process

In general, if a (nonstationary) time series has
to be differencedd times to make it stationary,
that time series is saidto be integratedof order
d. A time series Yt integrated of order d is
denotedas Yt∼I(d).

If a time series Yt is stationary to begin with
(i.e., it does not require anydifferencing), it is
said to be integrated of order zero, denotedby
Yt ∼I(0).

Thus, we will use the terms “stationary time
series” and “time series integrated of order
zero” to meanthe samething.
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3.4 Integrated Stochastic Process
Most economic time series are generallyI(1); that

is, they generally become stationary only after
taking their first differences.

Properties of IntegratedSeries

Let Xt, Yt and Zt be three time series

i. If Xt ∼I(0) and Yt ∼I(1),then Zt =(Xt +Yt)=I(1);
that is, a linear combination or sum of stationary
and nonstationary time series is nonstationary.

ii. If Xt ∼I(d), then Zt =(a+bXt)=I(d), where a and
b are constants. That is, a linear combinationof
an I(d) series is alsoI(d). Thus, if Xt ∼I(0), then
Zt =(a+bXt)∼I(0).
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3.4 Integrated Stochastic Process

iii. If Xt ∼I(d1) and Yt ∼I(d2), then Zt =(aXt
+bYt)∼I(d2), where d1<d2.

iv. If Xt ∼I(d) and Yt ∼I(d), then Zt =(aXt
+bYt)∼I(d*); d* is generally equal to d, but in
some cases d*<d.
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3.5 Tests of Stationarity: The Unit Root Test 

A test of stationarity (or nonstationarity)
that has becomewidely popular over the
past several years is theunit root test.

 ------------------(i)
whereut is a white noiseerror term
We know that if ρ =1, that is, in the caseof

the unit root, (i) becomes a random walk
model without drift, which we know is a
nonstationary stochasticprocess.





3.5 Tests of Stationarity: The Unit Root Test

Therefore, why not simply regressYt on its (one
period) lagged value Yt −1 and find out if the
estimated ρ is statistically equal to1?

 If it is, then Yt is nonstationary. This is the
general idea behind the unit root test of
stationarit y.

For theoretical reasons, we manipulate (i) as
follows: Subtract Yt −1 from both sides of (i) to
obtain:

, which can be written
alternatively ----------------------------(ii)170
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3.5 Tests of Stationarity: The Unit Root Test 

Where δ = (ρ−1) and  , as usual, is the first-
difference operator. 

In practice, therefore, instead of estimating 
(i), we estimate (ii) and test:

 the (null) hypothesis that δ = 0, then ρ = 1, 
that is we have a unit root (nonstationary).

the t value of the estimatedcoefficient of Yt
−1 does not followthe t distribution evenin
large samples; that is, it does not have an
asymptotic normal distribution . Thus, we
useτ(tau) statistic.
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3.5 Tests of Stationarity: The Unit Root Test 

1. Dickey–Fuller (DF) test

 Dickey and Fuller have shown that under the
null hypothesis that δ = 0, the estimatedt value
of the coefficient of Yt −1 follows the τ(tau)
statistic.

 In the literature the tau statisticor test is known
as theDickey–Fuller (DF) test

 In conducting the DF test, it was assumedthat
the error term ut was uncorrelated.

 the DF test is estimatedin three different forms,
that is, under three different null hypotheses.



3.5 Tests of Stationarity: The Unit Root Test 

Where t is the time or trend variable.
Null hypothesis, δ = 0; that is, there is a unit

root—the time series is nonstationary.
Alternative hypothesis, δ is less thanzero; that is,

the time series is stationary.

Decision rule: If /tau statistics/> /tau critical
value/; we rejectedthe null hypothesis, it means
that Yt is a stationary time series. 173
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3.5 Tests of Stationarity: The Unit Root Test 

2. Augmented Dickey–Fuller (ADF) Test

 In this case theut are correlated, Dickey and
Fuller have developed a test, known as the
AugmentedDickey–Fuller (ADF) test.

 This test is conducted by “augmenting” the
preceding three equations by adding the lagged
values of the dependent variableΔYt -i.

The ADF test here consists of estimatingthe
following regression:



3.5 Tests of Stationarity: The Unit Root Test 
 In ADF we still test whether δ = 0 and the ADF

test follows the same asymptotic distributionas
the DF statistic, so the same critical values canbe
used.

Hypothesis we use under this test is:

Example: the GDP series using one lagged
difference of natural log of GDP of Ethiopia; the
results were as follows: 175
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3.5 Tests of Stationarity: The Unit Root Test 

Decisionrule: The t(=τ) value of the Yt −1 coefficient (
=δ) is 0.34, but this value inabsolute terms is muchl ess
than eventhe 1% and 5% critical τ value of −4.242 and
-3.540 respectively, againsuggesting that evenafter
taking care of possible autocorrelation in the error
term, the Y series is not stationary.

3. The Phillips–Perron(PP) Unit Root Tests
 An important assumption of the DF test is that theerror terms ut are independently

and identically distributed. The ADF test adjusts the DF test to take care of possible
serial correlation in the error terms by adding the lagged difference terms of the
regressand.
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3.5 Tests of Stationarity: The Unit Root Test 

Phillips and Perron use nonparametric statistical methods 
to take care of the serial correlation in the error terms 
without adding lagged difference terms.

The Phillips-Perron test involves fitting the following
regression:

Under the null hypothesis that ρ = 0, the PP Z(t) and Z(   
) statistics have the same asymptotic distributions as the 
ADF t-statistic and normalized bias statistics.

 One advantage of the PP tests over the ADF tests is that 
the PP tests are robust to general forms of 
heteroscedasticity in the error term ut. Another 
advantage is that the user does not have to specify a lag 
length for the test regression.

ttt uYtY +++= − 110 ρββ
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3.5 Tests of Stationarity: The Unit Root Test 

In some situation, lackof power in both the ADF
and PPtests is widelyacknowledged,

Usually ADF yields superior results thanPP test,
if the data set hasno missing observations and
structural breaks whilst PP test also yields
superior results than ADF test, if the dataset have
some missing observations and have structural
breaks

Decision rule: since tests statistic, Z(t) value is
greater that critical values we reject the null
hypotheses of nonstationary.



Next assignment
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Next assignment

The series steps we should followed to do 
with time series analysis:

Unit root stationary if all are 
stationary at a level optimum leg 
length we run directly VAR model.

Unit root stationary if all stationary 
at 1st difference  optimum length
Johanson co integration
VECMIRF& VDF  Granger 
causality

180



Lab Session

Use “lecture_3.xls” data to 
practice what we learnt in 

previous sections
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END OF CHAPTER THREE

THANK YOU VERY MUCH FOR BEING WITH 
ME

BEING@COMMITTED!

STAY SAFE!



CHAPTER FOUR

INTRODUCTION TO SIMULTANEOUS 
EQUATION MODELS

4.1 Nature of Simultaneous Equationmodels
4.2 Simultaneity Bias & Inconsistency of OLS
estimators
4.3 Solutionto Simultaneous Equations
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4.1 Nature of Simultaneous Equation models

 So far we have beendiscussedby focusing exclusively
on the problemsand estimationsof a single equation
regression models. In such models, a dependent
variable is expressedas a linear function of one or
more explanatoryvariables.

 i.e, there was a single dependent variable Y andone or
more explanatory variables, X’s.

 The cause-and-effectrelationship in single equation
models between the dependent and independent
variable is unidirectional.
 That is, the explanatory variables are thecauseand

the independent variable is theeffect.
 But there are situations where such one-way or

unidirectional causation in the function is not
meaningful.1



4.1 Nature of Simultaneous Equation models

 This occurs if, for instance, Y (dependent
variable) is not only function of X’s (explanatory
variables) but alsoall or some of the X’s are, in
turn, determined by Y.

 There is, therefore, a two-way flow of influence
betweenY and (some of) the X’swhich in turn
makes the distinction between dependent and
independent variables a little doubtful.

 In simultaneous modelthere is more than one
equation –one for each of the mutually, or
jointly, dependent or endogenous variables.

 The number of equationsin suchmodels isequal
to the number of jointly dependent or
endogenous variables involved in the
phenomenonunder analysis.

1



4.1 Nature of Simultaneous Equation models

 Unlike the single equation models, in
simultaneous equationmodels it is not usually
possible (possible only under specific
assumptions) to estimate a single equationof
the model without taking into account the
information provided by other equation of the
system.

 If one applies OLS to estimate the parameters
of each equation disregarding other equations
of the model, the estimates soobtained are not
only biasedbut alsoinconsistent,i.e. evenif the
sample size increases indefinitely, the
estimators donot converge totheir true values.1



4.1 Nature of Simultaneous Equation models

 Example: the classic example of simultaneous
causality in economics is supplyand demand.

 Both Prices andquantities adjust until supply
and demandare in equilibrium .

 A shock of demand or supply cause both
prices andquantities to move.

 As well known, the prices P of a commodity
and quantity Q sold are determined by the
intersection of the demandand supply curves
for that commodity .

 Look at the graph of dd and ss from class
discussion(???)

1



Thus, assuming for simplicity that the demandand
supply curves are linear and adding the stochastic
disturbance term U1 and U2, we may write the
empirical dd and ss functionas:





Equilibrium condition:
 Where Qtd= quantity demand
 Qts=quantity supplied

 t=time; 188
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 B/C of simultaneous dependence between Q and P, then U1t
and Pt, and U2t and ptcannot be independent.

 If u1t in above equation changes b/c changes in other
variables affecting Qtd such as income, wealth and tastes),the
demand curve will shift upward if u1t is +ve and downward if
u1t is –ve.

 Thus, shift in demand curve changes both P and Q.
 Similarly, a change in U2t b/c of weather, import or export

restrictions, etc; will shift the ss curves, again affect both P
and Q.

 B/c of this simultaneous dependence b/c Q and P, u1t and Pt
and u2t and pt cannot be independent.Thus, a regression of
Q and P as in above equation would violate an important
assumptions of the classical linear regression model; namely
the assumption of no correlation b/n the explanatory
variable(s) and the disturbance term.

189
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In simultaneous equation models variables are
classifiedas endogenous andexogenous.

 Endogenous variables: are variables that are
determined by the economic model (within the
system) and

Exogenous variables: are those determined from
outside of the system.

Exogenous variablesare also called predetermined.
Since the exogenous variables are predetermined,
they are supposedto be independent of the error
terms in the model/ nonstochastic.
are exogenous variables,lagged exogenous variablesand

lagged endogenous variables. Predetermined variables are
non-stochastic and hence independent of the disturbance
terms. , and are regarded as predetermined
(exogenous) variables.

1
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4.3Definitions of Some Concepts

Structural models: A structural model
describes the complete structure of the
relationships amongthe economic variables.

 Structural equations of the model =
endogenous variables+ exogenous variables+
disturbances (randomvariables).

The parameters of structural model express
the direct effect of each explanatory variable
on the dependent variable.

The Variables not appearing in any function
explicitly may have an indirect effectand is taken into
accountby the simultaneous solutionof the system.191



4.3Definitions of Some Concepts

Reducedform of the model: The reducedform
of a structural model is the model inwhich the
endogenous variablesare expresseda function
of the predetermined variables and the error
term only.

Example: We may write the empirical demand-
and-supply functions as

192



4.3Definitions of Some Concepts

Example: The following simple Keynesianmodel
of income determination can be consideredas a
structural model.

 =------------(1)
 ------------(2)
where: C=consumption expenditure; Z=non-

consumptionexpenditure ; Y=national income; C
and Y are endogenous variables while Z is
exogenous variable.

Find the reduced form of the above structural
model. Since C andY are endogenous variables
and only Z is the exogenous variables, we have to
express C andY in terms of Z.

193



4.3Definitions of Some Concepts

To do this substitute Y=C+Z into equation (1).

 -------(3)
Substituting again (3) into (2) we get;

 ----------(4)

Equation (3) and (4) are called the reduced
form of the structural model of the above. We
canwrite this more formally as:194
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4.3 Definitions of Some Concepts

Parameters of the reducedform measure thetotal
effect (direct and indirect) of a change in
exogenous variables onthe endogenous variable.
For instance, in the above reduced form
equation(1), measures the total effect of a
unit change in the non-consumption expenditure
on consumption. This total effect is , the
direct effect, times ,the indirect effect.
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4.4 Inconsistency and Simultaneity Bias of OLS Estimators

 Biasedness:
 The two-way causation in a relationship leads to violation

of the important assumption of linear regression model,
i.e. one variable can be dependent variable in one of the
equation but becomes also explanatory variable in the
other equations of the simultaneous-equation model.

 In this case E[XiUi] may be different from zero. To
showsimultaneity bias, let’s consider the following simple
simultaneous equation model.

 this shows that the 2 way causation in a
relationship leads to violations of the important
assumptions linearregression model
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Suppose that the followingassumptions hold,

where X and Y are endogenous variables and 
Z is an exogenous variable.

The reduced formof X of the above model is 
obtained by substituting Y in the equation of 
X.
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4.4 Inconsistency and Simultaneity Bias of OLS Estimators

 Applying OLS to the first equation of the
above structural model will result in biased
estimator because . Now, let’s
proof whether this expression.

 That is, covariance betweenX and U is not
zero. As a consequence, if OLSis applied to
each equation of the model separately the
coefficients will turn out to be biased. Now,
let’s examine howthe non-zero co-variance of
the error term and the explanatory variable
will lead to biasness inOLS estimates of the
parameters.198
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Estimators

 ConsistencyProblems: An estimator is saidto
be consistent if its probability limit is equal to
its population value.

 Inconsistent estimates
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4.5 Solution to the Simultaneous Equations

 The obvious solution is to apply other methods of
estimationw/c gives better estimates of parameters.

 1. the reduced form method or indirect least
squares (ISLS)

 2. the methodof instrumental variables
 3. two stage least squares (2SLS)
 4. limited information maximum likelihood (LIML)
 5. the mixedestimation
 6. Three stage least squares
 7. Full information maximum likelihood (FIML)

200



4.5 Solution to the Simultaneous Equations

 N.B: 1-5---we canapplied to one equationat a time,
and 6-7----the systems methods b/c they are applied
to all equations of the systemsimultaneously.

How to estimate the reduced form parameters?

 The estimates of the reduced from coefficients (π’s ) 
may be obtained in two ways.

1. Direct estimation of the reduced coefficients 
by applying OLS.

2. Indirect estimation of the reduced form 
coefficients.

2



4.6 Direct estimation of the reduced form coefficients

 Direct Method: Express the three endogenous
variables(Ct , It , andYt ) as functions of the
two predetermined variables (Gt, andYt-1)
directly using π’s as the parameters of the
reducedform model as follows.

Ct = π11Yt-1 + π12Gt + V1

It , =π21Yt-1 + π22Gt +V2
Yt =π31Yt-1 + π32Gt + V3
Note: π11 , π12 , π21 , π22 , π31 , and π32 are 

reduced from parameters.

2



4.6 Direct estimation of the reduced form coefficients
 The reduced form π ’s may be estimatedby

the method of least- squares –norestriction
(LSNR).
 This means we canapply OLS to reduced

form equation because weexpress all the
endogenous variables in terms of
exogenous variables.
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4.6 Direct estimation of the reduced form coefficients

 This method of obtaining the π 's is called least
squares no restriction(LSNR) because itdoesn't take
into consideration any information on the structural
parameters.

 In this method what required is knowledge of the
predetermined variables appearing in the systemnot
about the coefficients of structural questions.
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4.7 Indirect estimation of the reduced form 
coefficients

 It is known that there is a relationship
between the reduced form coefficients &
the structural parameters (explainedin the
table).

 Therefore, to obtain values of coefficients
estimate the structural parameters byany
appropriate econometric techniques and
then substitutes these estimates into the
system of parameters relationships to
obtain indirectly .

 This indirect method involved three steps.
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4.8 Indirect estimation of the reduced form coefficients

 1st step: Solve the systemof endogenous variables so
that each equation contains only predetermined
explanatory variables.

 2nd step: Obtain the estimates of the structural
parameters by any appropriate econometric method.

 3rd step: Substitute the estimates ofβ's and γ's in to
the system of parameters relations to find the
estimates of the reducedform coefficients.
Advantage of indirect estimation of the reduced-form 

coefficients

 Though it is complicated, it has a very good 
importance.

a) The derivation of parameters like, π's, β's & α's is 
more efficient because in this way we take in to 2



4.9 Recursive models

 A model is called recursive if its structural
equations canbe orderedin sucha way that:
 the first equation includes only the predetermined

variables in the right hand side.
 the second equation containspredetermined variables and

the first endogenous variable (of the first equation) in the
right hand side and so on.

 The special feature ofrecursive model is that
its equations maybe estimated,one at a time,
by OLS without simultaneous equations bias.

207



4.9  Recursive models

208

 OLS is not applicable if there is interdependence
betweenthe explanatory variables andthe error term .

 In the simultaneous equationmodels, theendogenous
variables may depend on the error terms of the
model.

 Hence, the OLS technique is not appropriate for
estimation of an equation in a simulations equations
model.

 However, in a special type of simultaneous equations
model called Recursive, Triangular or Causal model,
the use of OLSprocedure ofestimation is appropriate.

 Consider the following three equation system to
understand the nature of suchmodels:



4.9 Recursive models

 Note that: 

 In the above illustration, the X’s and Y’s are exogenousand
endogenousvariables respectively.

 The disturbance terms followthe following assumptions.

 The above assumption is the most crucial
assumptionthat defines the recursive model.

2



4.9 Recursive models

 If this does not hold, the above systemis no
longer recursive and OLS is also no longer
valid.

 The first equation of the above system
contains only the exogenous variables onthe
right hand side.

 Since byassumption, the exogenous variable is
independent of U1 , the first equationsatisfies
the critical assumptionof the OLS procedure.

 Hence,OLS can be applied straight forwardly
to this equation.

210



4.9 Recursive models

 Let us build a hypothetical recursive model for
an agricultural commodity, say wheat.

 The production of wheat =Y1; , may be assumed
to depend on exogenous factors: X2 = climatic
conditions; and X3=last season’s price. The retail
price =Y2 may be assumedto be the function of
production level Y1= and exogenous factor X4=
disposable income.

 Finally, the price obtained by the producer = Y3
can be expressedin terms of the retail price; Y2
and exogenous factor; Xj= the cost of marketing
the producer.

 The relevant equations of the model maybe
describedas under:211



4.9 Recursive models

 In the first equation, there are only exogenous
variables andare assumedto be independent of U1.

 In the secondequation, the causal relation between
Y1and Y2 is in one direction.

 Also Y1 is independent of U2 andcan be treated just
like exogenous variable.

 Similarly since Y2 is independent of U3 , OLScan be
applied to the third equation.

 Thus, wecan rewrite the aboveequationsasfollows:
212
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4.9 Recursive models

 We can again rewrite this in matrix form as
follows:

 The coefficient matrix of endogenous variables is
thus a triangular one; hence recursive models
are alsocalledastriangular models.213
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4.9 Problems of simultaneous equation models

 Simultaneous equationmodels create three distinct
problems. These are:
 Identification of eachequationof the model

 Mathematical completeness of the model

 any model is said to be (mathematically)
complete only when it possesses asmany
independent equations as endogenous variables.

 In other words if we happen to know values of
disturbance terms, exogenous variables and
structural parameters, then all the endogenous
variables are uniquely determined.

 Statistical estimationof eachequationof the model
214



4.10 The identification problem

Of the three problems, we are going to discuss the first 
problem (the identification problem) in the following 
section.

The identification problem
 In simultaneous equation models, the Problem of

identification is a problem of model formulation; it
does not concernwith the estimationof the model.

 The estimation of the model depends up on the
empirical data and the form of the model.

 If the model is not in the proper statistical form, it may
turn out that the parameters may not uniquely
estimatedeventhough adequate andrelevant data are
available.

 In a language of econometrics,a model is said to be
identified only when it is in unique statistical form to
enable us to obtainunique estimates of its parameters
from the sample data.

2



4.10 Identification Problem

The identical concept concerns with whether the
numerical estimates of structural equations can be
obtained from the estimated reduced formcoefficients.
Look at a simple Keynesian model, to illustrate the

problem of identification (look at “Introduction to
Econometrics: theory and practice with Stata” by
Tesfaye E,)

An identification may be either exactly (fully or just
identified) or over identified or under identification.

A. Under identification (SEP>REP)
• It occurs when the parameters ofstructural equation is

higher than reducedform parameters.
• If the coefficients of the structural equations are

greater than the coefficients of the reduced form, then
we can say that the equation is under identified.

2



Under identification(SEP>REP)

Example: look at f/wing demand and supply equations

2



Under identification (SEP>REP)
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Under identification (SEP>REP)

 Equation number 10.37 and 10.39 were the two reduced form
equations derived fromthe structural equations number 10.32
& 10.33.

 Now if you compare the number of structural equation
coefficients (α0, α1, β0 and β1) are four where as from the
structural equations we haveonly two coefficients (π0 andπ1).

 The coefficients of reduced formcontain the coefficients of the
structural equations i.eα0, α1, β1 and β2 are found in π0 and
π1.

 But how we can find the values ofα0, α1, β1 and β2 from π0
and π1. It is an ambiguous question??

 Since it is not possible to find these values fromπ0andπ1 or
the coefficients of the structural equations are greater than
the coefficients of the reduced formthen we can say that the
equation is under identified and we can not compute four
structured coefficients from two reduced coefficients.219



Why under identification is happened?

 The reasonto have under identified function in
the previous demandand supply function was
that:
 The same variables P and Q are appearing in 

both functions (only endogenous variables in 
both equation)

 There is no additional information.
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Exact /Just/ Identification (SEP=REP)

 It occurs when structural coefficients are equal 
to reduced form coefficients. 

 Now let’s incorporate additional variable in the
demand function in order to solve the above
problem.
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Exact /Just/ Identification (SEP=REP)
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Exact /Just/ Identification (SEP=REP)
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Exact /Just/ Identification (SEP=REP)
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Exact /Just/ Identification (SEP=REP)

 But in case of the demandfunction α0, α1, and α2, is 3
structural coefficients but in reduced form of equation
the coefficients are two.

 Since in the demand function the coefficient of the
reduced form (10.45) is less thanthe coefficients of the
structural equation (10.40).

 We can concluded that the demand function is under
identified (π2,π3) are less thanα0,α1,andα2).

 But in case of supply functionπ2,π3 are equal toβ0 , β1
then it is just identified.

 In conclusion, we cansay that the supply function is
identified but the demandfunction is not identified on the
basis of this one cansay that thesystemas a whole is not
identified.

225



Over identification (SEP<REP)

 It occurs when the coefficients (parameters) of
structural equation is less than the coefficients
(parameters) of reducedforms.

 Let’s modify the demand function by
incorporating wealth (R) and supply function by
incorporating the lagged price we will have the
following equation.
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Over identification (SEP<REP)
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Over identification (SEP<REP)

 From equation number 10.47 and 10.48 we have
sevenstructural coefficients but in equation 10.49
and 10.45we haveeight reducedform coefficients.

 Since the coefficients of reducedform coefficients
are greater than the reduced form coefficients we
cansaythat the systemas a whole is over identified.

 A function (an equation) belonging to a systemof
simultaneous equations isidentified if it has a
unique statistical form, i.e. if there is no other
equation in the system, or formed by algebraic
manipulations of the other equations of the system,
contains the same variables as the
function(equation) in question.
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4.11 Formal Rules (Conditions) for Identification

 Identification problems do not just arise only on
two equation-models.

 Using the above procedure, we can check
identification problems easily if we have two or
three equations ina given simultaneous equation
model.

 However, for ‘n’ equations simultaneous equation
model, sucha procedure isvery cumbersome.

 In general, for anynumber of equations ina given
simultaneous equation, we havetwo conditions
that needto be satisfied to say that the model is in
generalidentified or not.

 In the following section we will see the formal
conditions for identification.
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Formal Rules (Conditions) for Identification

 Actually the term ‘identification’ was originally used to
denote the possibility (or impossibility) of deducing the
values of the parameters of the structural relations from
a knowledge of the reducedform parameters.

 However, we think that the reduced form approach is
conceptually confusing and computationally more
difficult than the structural model approach, because it
requires the derivation of the reducedfrom first and then
examination of the values of the determinant formed
form some of the reducedform coefficients.

 The reducedform equation is time consuming process.
 The structural form approach is simpler and more useful.
 Thus, the so called order and rank conditions of

identification lighten the task by providing a systematic
way.230



Formal Rules (Conditions) for Identification

 There are two conditions which must be fulfilled for
an equation to be identified. These are:
 1. theorder condition for identification
 2. therank condition for identification

 The identification of a system means the
identification of eachquestion.

 The parameters identification in any equations
means there isunique value for eachparameter in
equations.

 Equation is under identified when its statistical 
form is not unique/  When one or more of its 
equation of the model are identified we can say that 
the system as a whole is under identified. 231



Formal Rules (Conditions) for Identification

 Equation identified: in this case a systemis identified when all
the equations are identified.

 In identified system we can have two options:
 if an equation is under identified it is impossible to

estimate all its parameters using any econometric
techniques. However, if the equation is identified its
coefficients (parameters) can be statistically estimated.

 If the equation is exactly  identified appropriate method 
for estimation is the method of Indirect Least Square 
(ILSM).

 If the equation is over identified, ILS will not give unique 
estimates of the parameters b/c it will not yield unique 
estimates of structural parameters. 

 In this case we use various methods. These are:
 2SLS (Two Stages Least Squares) or
 MLM(Maximum Likely hood methods)232



A. The order condition for identification

 This condition is basedon a counting rule of the variables
included and excludedfrom the particular equation.

 It is a necessary but not sufficient condition for the
identification of an equation.

 The order condition may be statedas follows.
 For an equation to be identified the total number of variables (endogenous

and exogenous) excluded fromit must be equal to or greater than the
number of endogenous variables in the model less one.

Let, G = total number of equations (= total number of
endogenous variables)

K= number of total variables in the model (endogenous
and predetermined)

M= number of variables, endogenous andexogenous,
included in a particular equation/ in a specific equation.
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A. The order condition for identification

 Then the order condition for identification may 
be symbolically expressed as:

 The guidelines is that:
 If (K -M)> (G-1); the equationis identified.
 If (K -M)= (G-1); the equation is just/exactly

identified.
 If (K -M)< (G-1); the equationis under identified.
 If (K -M)>(G-1); the equationis over identified.
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A. The order condition for identification

Example 1:

• Take the ddequation
• G= total number of equations/ total number of

endogenous variables=2
• K=total number of exogenous and endogenous

variables in equation (1), i.e., indemandequation=3
• The solution is that: (K -M)________(G-1)
• (3-3)____(2-1)=0<1, we conclude that the demand

equation is under identified.235
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A. The order condition for identification

Take the ss equation
 Given: G=2; K=3; M=2;

 Solution:
 K-M-------------G-1

 (3-2)--------------(2-1)

 1=1 from these we canconclude that the
supply function is exactlyidentified.

Example 2: Given the structural model and
determine whether the equationare identified or
under identified.236



A. The order condition for identification

• Take equation (1);
• Given; M (endogenous and exogenous variables) in this 

specified equation is 4 (y1, y2, x1 and x2); K=6;  G=3;
• (K-M)----------(G-1)
• 6-4-------------(3-1)
• 2=2-- this equation is identified and it is exactly 

identified.
237
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A. The order condition for identification

• Take equation (2);
• Given; M (endogenous and exogenous variables) 

in this specified equation is 3 (y2, y3, & x3); 
K=6;  G=3;

• (K-M)----------(G-1)
• 6-3-------------(3-1)

• 3>2-- this equation is identified and it is over
identified.
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A. The order condition for identification

• Take equation (3);
• Given; M (endogenous andexogenous variables) in

this specifiedequation is 4 (y3, y1, y2 andx3); K=6;
G=3;

• (K-M)----------(G-1)
• 6-4-------------(3-1)
• 2=2-- this equation is identified and it is exactly

identified.
 Example 3: if a system contains 10equations with

15 variables, tenendogenous andfive exogenous, an
equation containing 11 variables is not identified,
while another containing5 variables is identified.
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A. The order condition for identification

 For 1st equation we have:
G=10; K=15; M=11;
Order condition: 
 K-M> G-1
 15-11> 10-1
 4<9 that is the order condition is not 

satisfied. 
 For the 2nd equation we have:
 G=10; K=15; M=5
 Order condition: 
 (K-M)> (G-1); 10>9-----the order conditions 

satisfied. 240



B. The rank condition for identification

 The rank condition states that: in a systemof G
equations any particular equation is identified if
and only if it is possible to construct at least one
nonzero determinant of order (G-1) from the
coefficients of the variables excludedfrom that
particular equation but contained in the other
equations of the model.

 The practical steps for tracing the identifiablity of
an equation of a structural model may be outlined
as follows.

 Firstly, write the parameters of all the equations of
the model in a separate table, noting that the
parameter of a variable excludedfrom an equation
is equal tozero.241



B. The rank condition for identification

 Where y’s are the endogenous variables and 
 x’s are the exogenous variables

 Ignoring the random disturbance the table of the 
parameters of the model is as follows:242



B. The rank condition for identification

Secondly, Strike out the row of coefficients of the
equationwhich is beingexaminedfor identification .
For example, if we want to examine the
identifiability of the secondequation of the model
we strike out the second row of the table of
coefficients.
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B. The rank condition for identification

 Thirdly, Strike out the columns in which anon-zero coefficient of the
equationbeing examined appears.

 Table of structural parameter

 By deleting the relevant row and columns we are left with the
coefficients of variables not included in the particular equation, but
contained in the other equations of the model.

 For example, if we are examining for identification the second
equation of the system, we will strike out the second, third and the
sixth columns of the above table, thus obtaining the following tables.
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Equatio
ons

Y1 Y2 Y3 X1 X2 X3

1st equ. -1 3 0 -2 1 0

2nd equ. 0 1 1 0 0 1

3rd equ. 1 1 1 0 0 2



B. The rank condition for identification
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B. The rank condition for identification

 Fourthly, form the determinant(s) of order (G-1) and examine
their value.

 Guide line:

 If at least oneof these determinants is non-zero, the equation
is identified.

 If all the determinants of order (G-1) are zero, the equation is
under identified.

 In the above example of exploration of the identifiability of the
second structural equation we have three determinants of order
(G-1)=3-1=2. They are:
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B. The rank condition for identification
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B. The rank condition for identification

 The identification of a function is achievedby
assumingthat some variables of the model have
zero coefficient in this equation, that is, we
assume that some variables donot directly affect
the dependent variable inthis equation.

 This, however, is anassumption which can be
testedwith the sample data.

 We will examine some tests of identifying
restrictions in a subsequent section.

 Some examples will illustrate the applicationof
the two formal conditions for identification .
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B. The rank condition for identification

Example: 

2



Estimation of Simultaneous Equations Models

 To estimate the simultaneous equation models we adopt two
approaches.

 The first one is single equation method, also known as limited
information method.

 In this single equation method we estimate each question inthe system
individually .

 The second one is systemmethods also known asfull information
methods.

 In this case we estimate all equations in the model simultaneously.
 In practice system methods are not commonly used for variety of

reasons rather, single equation methods are often used.
 The major single equation methods applied in the estimationof

simultaneous equation methods are:
 1. Ordinary least squares (OLS)
 2. Indirect least squares (ILS)
 3. Two stage least squares (2SLS)
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1. Ordinary Least Squares

 We have seen that applying OLS on
simultaneous equation produce bias &
inconsistent parameters.

 But there is one situation OLS can be applied
appropriately even in the context of
simultaneous equation.
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1. Ordinary Least Squares

 In equation 10.51 the endogenous variables appear in the left & the
exogenous variables in the right hand side.

 Hence, OLS can apply straight forwardly to this question given all the
assumptions of OLS holds true.

 In equation 10.52 we can apply OLS provided that Y1 & U2 are
uncorrelated.

 Again we can apply OLS to the last equation if both Y1 & Y2 are
uncorrelated with U3.

 In this recursive system OLS can be applied to each equation
separately & we do not face a simultaneous equation problem.

 The reason for this is that clear, because there is no interdependence
among the endogenous variables.

 Thus, Y1 affect Y2 influence Y3 without being influenced by Y3.
 In other words each equation exhibits aunilateral causal dependence.
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2. Indirect least square (ILS method)

 ILS is applicable only for just/exact identified
equations [(K-M) = (G-1)].

 The method of obtaining the estimates of the
structural coefficients usingOLS of the reduced
form coefficients is known as the method of
(ILS) indirect least squares & the estimates
obtained are known as theindirect least squares
estimates.

 Indirect Least Square method involves the
following Steps
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2. Indirect least square (ILS method)

1st:We first obtain the reducedform equation from
the structural equations. i.e. explaining the
endogenous variables as a functionof explanatory
(exogenous variables) & a stochastic term.

2nd: Apply OLS to the reduced- form equations
individually . In this case the exogenous variables
are uncorrelatedwith the stochastic term.

3rd: we obtain estimates of the original structural
coefficients from the estimated reduced-form
coefficients obtainedin step two. ILS derives from
the fact that structural coefficients are obtained
indirectly from the OLS estimates of the reduced
form coefficients.
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3. Two-Stage Least Squares (2SLS) Method

 The 2SLS procedure is generallyapplicable for
estimation of over-identified equations as it
provides unique estimators.

 Two-Stage Least Squares (2SLS) Method
involves the followingsteps.

1st: Estimate the reduced form equations by
OLS and obtain the predicted .

2nd: Replace the right hand side endogenous
variables in the structural equations by the
corresponding andestimate themby OLS.255

Ŷ

Ŷ



Lab Session

Use “lecture_4.xls” data to 
practice what we learnt in 

previous sections



END OF CHAPTER FOUR

Thank you very much for being with me 
for a while!

Stay Safe!
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CHAPTER FIVE

INTRODUCTION TO PANAL DATA
REGRESSION MODELS



The types of data that are generally available for empirical 
analysis, namely, time series, cross section, and panel. 

 In time series data we observe the values of one or more 
variables over a period of time (e.g., GDP for several quarters or 
years). 

 In cross-section data, values of one or more variables are 
collected for several sample units, or entities, at the same point in 
time (e.g., crime rates for 9 regions in Ethiopia for a given year). 

 In panel data, the samecross-sectional unit (say a family or a firm 
or a state) is surveyed over time.

 In short, panel data have spaceas well as timedimensions.

5.1 Introduction



A panel of data consists of a group of cross-sectional 
units (people, households, firms, states, countries) who 
are observed over time. We will often refer to such units 
as individuals, with the term ‘‘individual’’ being used 
generically, even when the unit of interest is not a 
person.

 Let us denote the number of cross-sectional units 
(individuals) by N, and number of time periods in 
which we observe them as T.

 Panel data comes in several different ‘‘flavors,’’ each 
of which introduces new challenges and opportunities. 

5.1 Introduction



Peter Kennedy1; describes the different types of 
panel data sets as:

‘‘ Long and narrow,’’ with ‘‘long’’ describing the time 
dimension and ‘‘narrow’’ implying a relatively small 
number of cross sectional units.

 ‘‘ Short and wide,’’ indicating that there are many 
individuals observed over a relatively short period of 
time.

 ‘‘ Long and wide,’’ indicating that both N and T are 
relatively large.

A ‘‘long and narrow’’ panel may consist of data on 
several firms over a period of time.

5.1 Introduction



5.1 Introduction

Data on 221 State of Oromiahigh schools in 
2014 and again in 2015, for 442 observations 
total; Data on 9 states of Ethiopia, each state is 
observed in 3 years, for a total of 27 
observations; 

Data on 500 individuals, in five different 
months, for 2500 observations total.



Pooled data:-pooling of time series and cross-
sectional observations.

Cross-sectional time-series data:- Combination 
of time series and cross-section data.

Micro -panel data, longitudinal data: A study 
over time of a variable or group of subjects.

Panel data (also called longitudinal data)refers 
to data for n different entities observed at T 
different time periods.

5.2 Other names of Panel Data



When describing the cross sectional data it was useful
to use a subscript to denote the entity; for instance,Yi
referred to be the variable Yi for the ithentity.

When describing panel data, we needsome additional
notations to keeptrack of both the entity and the time
period.

This is done by using two subscripts rather thanone:
The first , i refres to the entity., and the second,t, refers
to the time period of the observation.

Thus, Yit denotes the variable Y observedfor the ith of
n entities in the i th of T periods.

5.3 Balanced and unbalanced data



Some additional terminology associated with 
panel data describes weather some observations 
are missing. 

A balanced has all its observations, that is, that 
variables are observed for each entity and each 
time period. 

A panel that has some missing data for at least 
one time period for at least one entity is called 
an unbalanced panel..

5.3 Balanced and unbalanced data



Panel data give:
 more informative data
more variability
 less collinearity among the variables
 more degrees of freedom and more efficiency. Time-

series studies are plagued with multi-collinearity.
Panel data are better able to:

 identify and measure effects that are simply not detectable in 
pure cross-section or pure time-series data.

study the dynamics of adjustment. 
 Cross-sectional distributions that look relatively stable hide a 

multitude of changes.

5.4 Why we use panel data?



Panel data allows you to:
 Controlling for individual heterogeneity.

Control for variables you cannot observe or 
measure like cultural factors or difference in 
business practices across companies; or variables 
that change over time but not across entities (i.e. 
national policies, federal regulations, international 
agreements, etc.) 

This is, it accounts for individual heterogeneity.
Time-series and cross-section studies not controlling 

this heterogeneity run the risk of obtaining biased 
results.

5.4 Why we use panel data?



5.4 Why we use panel data?

Panel data models allow us to construct and test more 
complicated behavioral models than purely cross-section or 
time-series data. 

 For example, technical efficiency is better studied and 
modeled with panels.

Micro panel data gathered on individuals, firms and 
households may be more accurately measured than 
similar variables measured at the macro level.
Biases resulting from aggregation over firms or 

individuals may be reduced or eliminated.



1. Design and data collection problems: These include:
 problems of coverage (incomplete account of the population 

of interest) 

nonresponse (due to lack of cooperation of the respondent or 
because of interviewer error) 

recall (respondent not remembering correctly)
 frequency of interviewing

interview spacing 
reference period 
the use of bounding and 

time-in-sample bias.

5.6 Limitation of panel data



5.6 Limitation of panel data

2. Distortions of measurement errors: 

Measurement errors may arise because of
faulty responses due tounclear questions

 Memory errors
Deliberate distortion of responses (e.g.

prestige bias)

Inappropriate informants
Misrecording of responses andinterviewer

effects.



5.6 Limitation of panel data
 3. Selectivity problems. These include:

(a) Self-selectivity: People choose not to work 
because the reservation wage is higher than 
the offered wage. 

In this case we observe the characteristics of 
these individuals but not their wage. 
Since only their wage is missing, the sample is 

censored. 
However, if we do not observe all data on these 

people this would be a truncated sample.



5.7 Limitation of panel data

(b) Nonresponse: This can occur at the initial wave of the 
panel due to refusal to participate, nobody at home, 
untraced sample unit, and other reasons.
Item (or partial) nonresponse occurs when one or 

more questions are left unanswered or are found not 
to provide a useful response.

(c) Attrition: While nonresponse occurs also in cross-
section studies, it is a more serious problem in panels 
because subsequent waves of the panel are still subject 
to nonresponse. 
Respondents may die, or move, or find that the cost 

of responding is high.



5.7 Limitation of panel data
4. Short time-series dimension:

 Typical micro panels involve annual data covering a 
short time span for each individual.This means that 
asymptotic arguments rely crucially on the number 
of individuals tending to infinity.

Increasing the time span of the panel is not without cost 
either. In fact, this increases the chances of attrition 
and increases the computational difficulty for limited 
dependent variable panel data models.

5. Cross-section dependence: Macro panels on 
countries or regions with long time series that do not 
account for cross-country dependence may lead to 
misleading inference.



5.8 Notation (Model specification ) for panel data 

Panel data consist of observations on the same n entities at two 
or more time periods T.

 If the data set contains observations on the variables X and Y, 
then the data are denoted

Where the first subscript, i, refers to the entity being observed, 
and the second subscript, t, refers to the date at which is 
observed. 

A double subscript is used to distinguish entities (states, family, 
country, individuals, etc.) and time periods.

 Consider the following simple panel data regression model:



5.9 Estimation of Panel Data Regression 

Where i= entity (state); n=number of entities, so 
i=1,…,n; t= time period (year, month, quarter, and so 
on); T= number of time periods, so that t=1,…, T

Panel data with k regressors:

We have three models to estimate panel data
1. Pooled model   2. Fixed Effect model 3. Random 

effect model
A pooled model is one where the data on different 

individuals are simply pooled together with no 
provision for individual differences that might lead to 
different coefficients. 



5.10 Pooled data

 For an equation with two explanatory variables X1 
and X2, a pooled model can be written as



5.10 Pooled data

for ( β0 ,β1 ,β2 ) has all its desirable properties.
It is consistent, and the usual t andF statistics are valid

in large samples for hypothesis testing and interval
estimation.

 If we also assume X1 andX2 are nonrandom, the least
squares estimator is the minimum variance linear
unbiasedestimator in finite samples.

We will focus on large sample properties, however,
because it is typically unrealistic to assume X1 andX2
are nonrandom, andour sample sizes are usually large.

Hence, the mainweakness of this model is it doesnot
capture the hetrogenity among the entity.



5.11 The Fixed Effects (Entity/Time Fixed) Model

In the previous section we saw that one way to 
recognize the existence of individual characteristics in a 
panel data model is to allow individual errors in 
different time periods to be correlated.

A second way is to relax the assumption that all 
individuals have the same coefficients.Extending the 
model in (11.4) along these lines, we can write

An i subscript has been added to each of the subscripts, 
implying that (         ) can be different for each 
individual . This model is a legitimate panel data model, 
but it is not suitable for panels that are short and wide.



5.11  The Fixed Effects (Entity/Time Fixed) Model

You may apply entity fixed effects regression when you 
want to control for omitted variables that differ among 
panels but are constant over time.

On the other hand, if there are unobserved effects that 
vary across time rather than across panels, we apply 
time fixed effects regression model.

Use fixed-effects (FE) whenever you are only interested 
in analyzing the impact of variables that vary over 
time.

FE explore the relationship between predictor and 
outcome variables within an entity (country, person, 
company, etc.). 



5.11  The Fixed Effects (Entity/Time Fixed) Model

 Each entity has its own individual characteristics that may or 
may not influence the predictor variables (for example being a 
male or female could influence the opinion toward certain issue 
or the political system of a particular country could have some 
effect on trade or GDP or the business practices of a company 
may influence its stock price).

 When using FE we assume that something within the individual 
may impact or bias the predictor or outcome variables and we 
need to control for this.
This is the rationale behind the assumption of the correlation 

between entity’s error term and predictor variables. 
FE removes the effect of those time-invariant characteristics 

from the predictor variables so we can assess the predictors’ net 
effect.



Another important assumption of the FE model is that those 
time-invariant characteristics are unique to the individual and 
should not be correlated with other individual characteristics.
Each entity is different therefore the entity’s error term and the constant 

(which captures individual characteristics) should not be correlated with 
the others.

 If the error terms are correlated then FE is no suitable since 
inferences may not be correct and you need to model that 
relationship (probably using random-effects.)

Think of  the following two variables panel regression model in 
fixed effect form:

5.11  The Fixed Effects (Entity/Time Fixed) Models



Average the data across time, by summing both 
sides of the equation and dividing by T.

5.11  The Fixed Effects (Entity/Time Fixed) Models



5.11 The Fixed Effects (Entity/Time Fixed) Models

In the last line of (10.16) note that the intercept 
parameter        has fallen out. These data are said to be 
in ‘‘ deviation from the individual’s mean’’ form, and if 
we repeat this process for each individual, then we have 
a transformed model.



Sum….FEM
FE:

intercept may differ across entity, but intercepts does not 
vary overtime, that is it is time  invariant. 

Error  terms are not correlated and each entity is 
different 

 the individual differencesin the intercept values of
each entity are reflected in the error term.

 One way to take into account the “individuality” of
each entity or each cross sectional unit is to let the
intercept vary for each entity but still assume that the
slope coefficients are constant a cross firms.

 If T (is the number of time series data) is large and N
(the number of cross- sectional units) is small. The
choice is basedon computational convince and FEM



If you believe that some omitted variables may be 
constant over timebut vary among panels, and others 
may be fixed among panels but vary over time, then you 
can apply random effects regression model.

 Random effects assume that the entity’s error term is 
not correlated with the predictors which allows for 
time-invariant variables to play a role as explanatory 
variables. 

In random-effects you need to specify those individual 
characteristics that may or may not influence the 
predictor variables.

5.12 The Random Effects Model



What we are essentially saying is that the entities 
included in our sample are a drawing from a much 
larger universe of such population and that they have a 
common mean value for the intercept (= α ) and

 the individual differences in the intercept values of 
each entity are reflected in the error term.

In random effects model (REM) or error component 
model (ECM) it is assumed that the intercept of an 
individual unit is a random drawing from a much 
larger population with a constant mean value.

5.12 The Random Effects Model



5.12 The Random Effects Model

The individual intercept is then expressed as a deviation from 
this constant mean value. 

One advantage of ECM over FEM is that it is economical in 
degrees of freedom, as we do not have to estimate N cross-
sectional intercepts. 

We need only to estimate the mean value of the intercept and its 
variance. 

ECM is appropriate in situations where the (random) intercept 
of each cross-sectional unit is uncorrelated with the regressors.



5.12 The Random Effects Model
 The basic ideaof random effects model is tostart

with

 Instead of treating as fixed, we assume that it is
a random variable with a mean value of (no
subscript i here).

 And the intercept value for individual entity can be 
expressed as:

Where the random individual differences is a 
random error term which are called random 
effects,are analogous to random error terms,

)1(1 −−−−−++= ititiit UXY βα

iα

(2)-------N1,2,...,i      , =+= ii εαα
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5.12 The Random Effects Model

and we make the standard assumptions about them, 
namely, that they have zero mean, are uncorrelated 
across individuals, and have a constant variance      , so 
that; 

Substituting equ. (2) into equ. (1), we get

Where 


2
uσ

itit

itititit

wXβ α 

uXY

++=
−−−−−+++=

1

1

   

)3(εβα

itiit uwwhere += ε 

Regression 

Random 
effect



RE…. Sum

RE:

assume that the entity’s error term is not correlated with 
the predictors which allows for time-invariant variables.

If it is assumed that the      and X’s are uncorrelated, 
ECM may be appropriate where as if      and X’s are 
correlated, FEM appropriate. 

Each entity have a common mean value for the intercept.
If N is large and T is small, and if the assumptions 

underlying ECM (REM) hold, ECM estimators are more 
efficient than FEM estimators. 

the individual differences in the intercept values of each 
entity are reflected in the error term.

iε
iε



5.13 Choosing between fixed and random effects

To check for any correlation between the error 
component ui and the regressors in a random effects 
model, we can use a Hausmantest.

This test compares the coefficient estimates from the 
random effects model to those from the fixed effects 
model.

 The idea underlying the Hausmantest is that both the 
random effects and fixed effects estimators are 
consistentif there is no correlation between ui and the 
explanatory variables xkit.



5.13 Hausmantest

 If you are not exactly sure, which models, FE or 
RE you should use, you can do a test called 
Hausmantest. 

 To run Hausman test in Stata
 Run panel datalinear modelslinear

regression FE statistics post estimation
manage estimation resultstore in memory (save 
as fixed) run RE statistics post estimation
manage estimation resultstore in memory (save 
as random) statistics
postestimationtestsHausmanspecification test



5.13 Hausmantest

The hypothesis we use to test Hausmantest:
H0: Random effect is appropriate model
H1: Fixed effects is appropriate model

Decision Rule: If P-value is less than 5%, we accept the 
alternative hypothesis and we reject the null 
hypothesis.
Example: Test:  Ho:  difference in coefficients not 
systematic

chi2(2) = (b-B)'[(V_b-V_B)^(-1)](b-B)
=    18.35

Prob>chi2=0.000



5.14 FE   Vs   RE

FE models RE models

Functional forms

Intercepts Varying a cross 
groups/times

Constant 

Error variances Constant Varying across
groups and/ times

Slopes Constant Constant 

Estimation LSDV, within 
effective model

GLS, FGLS

Hyphothesis test Incremental F-test Breush-Pagan LM 
tests

ititiit uXY ++= 1βα itititit uXY +++= εβα 1



5.15 Additional Notes 



Pooled Regression 



Fixed effect or LSDV model



HausmanTest



Diagnostic Checking 



Summary 

Balanced panel: If each cross sections unit has 
the same number of time series observations.

Unbancedpanel: If the number of observations 
differ among panel data members. Friends 

Initially, we assume that the X’s are non 
stochastic and the error term follows the 
classical assumptions, 

Estimation of panel data regression Models
1. FEM
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FEM

Estimation of the above model depends on the 
assumption we make about the:

 Intercept
 Slope of coefficients

 Error term
These possibilities are:

i. Assume that the intercept and slope coefficients 
are constant a cross time and space and the 
error term captures differences overtime and 
individuals.



FEM

ii. The slope coefficients are constant but the 
intercept varies over individuals.

iii. The slope coefficients are constant but the 
intercept varies over individuals, and time.

iv. All coefficients are vary over individuals
V. The intercept as well as slope coefficients vary 

over  individuals and time.
 Slope coefficients constant but the intercept 

varies a cross individuals: the fixed effects or 
Least Squares Dummy Variables (LSDV) 
regression on model.



FEM

One way to take into account the “individuality” 
of each company or each cross sectional unit is 
to let the intercept vary for each company but 
still assume that the slope coefficients are 
constant a cross firms.



FEM

To see this, we write model A as



The subscript i on the intercept term to suggest that the 
intercepts of say 4 firms may be different. This may be 
different to special features of each company.

This may be dude to managerial style or managerial 
philosophy. 

In the literature model (B) is known as fixed effect due to the 
fact that although the intercepts may differ across 
individuals, each individuals’s intercept does not vary across 
individuals; that is time invariant. 

BuXXY itititiit −−−−−−−+++= 33221 βββ



FEM

If we write the intercept as     , it will suggest 
that the intercept of each company or individual 
is time invariant.  

How do we actually allow for the (FEM) 
intercept to vary between companies?

By using dummy variable tecniques (Differential 
intercept dummies). We can write equation (B) as 
follows:

it1β
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FEM

Where D2i= 1 if the observation belogsto Say 
Ethiopia, 0 otherwise; D3i= 1 if the observation 
belongs to Kenya, 0 otherwise; D4i=1 if the 
observation belongs to Uganda, 0 otherwise.

Since we have 4 dummies, we haves used only 
three dummies to avoid falling into the dummy 
variable trap.

FEM vs REM
The challenge facing researchers is that: Which 

model is better, FEM or ECM?



FEM vs REM

The answer is that:

The assumption that one makes about the likely correlation 
between the individuals or cross section specific, error 
component   and the X regressors.

 If it is assumed that the      and X’s are uncorrelated, ECM may 
be appropriate where as if      and X’s are correlated, FEM 
appropriate. 

As Woodridge “ In many applications, the whole reasons for 
using panel data is to all the unobserved effect  (    ) to be 
correlated with the explanatory variables.

ECM assumptions underlying ECM is that the        are a random 
drawing from a large population. 

iε

iε

iε
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FEM vs REM

1. If T (is the number of time series data) is large 
and N (the number of cross-sectional units) is 
small. The choice is based on computational 
convince and FEM may be preferable.

2. When N is large  and T is small, the estimates 
obtained by the two methods can differ 
significant.

 Recall, that in ECM,                     , where      is 
the cross –sectional random component, 
where as we treat      as fixed and not 
random. 

ii εββ += 11 iε
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FEM vs REM

3. ECM is appropriate if we strongly believed that the 
individual or cross sectional units in our sample are not 
random drawings from a larger sample. 

4. If the individual error component,      and one or more 
regressors are correlated, then the ECM estimators 
are biased, where as those obtained from FEM are 
unbiased.

5. If N is large and T is small, and if the assumptions 
underlying ECM (REM) hold, ECM estimators are 
more efficient than FEM estimators. 

iε



HausmanTests

Hausman Tests
 Is there a formal test that will help us to choose between FEMand

ECM? Yes, a test was developed by Hausman in 1978.
 The hypothesis of Hausman test is that:

 H0: FEM and ECM estimateors donot differ substationally
 H1: FEM and ECM estimates differ substantially.

 Or H0: REMis an appropriate model

 H1: FEMis an appropriate model

 Decision Rule: If the null hyphothesis is rejected, the
conclusion is that ECMis not appropriate model and we may
be better off using FEM, in which case statistical inferences will
be conditions on the in the sample.iε



1. Panel regression models are based on panel 
data. Panel data consists of observations on the 
same cross-sectional, or individual, units over 
several time periods.

2. Advantages to using panel data
 They increases the sample size considerably

 By studying repeated cross sectional 
observations, panel data are better suited to 
study the dynamics of change.

 If enable us to study more complicated 
behavioural models.



3. Disadvantage of using panel data
-such data involve both cross sectional and time 

series data, problems that plague cross sectional 
data (hetroscedasticity) and time series data 
(autocorrelation) needs to be addressed.



Lab session

Use “lecture_5.xls” data to 
practice what we learnt in 

previous sections
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