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11::  IINNTTRROODDUUCCTTIIOONN  

 

Definition: Econometrics deals with the measurement of economic relationships.  

Econometrics is a combination of economic theory, mathematical economics and statistics, but it 

is completely distinct from each one of these three branches of science. The relationships and 

differences among these sciences are pointed out below.  

 

A. Economic theory makes statements or hypotheses that are mostly qualitative in nature 

Ex. Microeconomic theory states that, other things remaining the same, a reduction in the price 

of a commodity is expected to increase the quantity demanded of that commodity. But the theory 

itself does not provide any numerical measure of the relationship between the two: that is it does 

not tell by how much the quantity will go up or down as a result of a certain change in the price 

of the commodity. It is the job of econometrician to provide such numerical statements.  

 

B. The main concern of Mathematical economics is to express economic theory in mathematical 

form (equations) without regard to measurability or empirical verification of the theory. Both 

economic theory and mathematical economics state the same relationships. Economic theory 

uses verbal exposition but mathematical economics employs mathematical symbolism. Neither 

of them allows for random elements which might affect the relationship and make it stochastic. 

Furthermore, they do not provide numerical values for the coefficients of the relationships.  

 

Although econometrics presupposes the expression of economic relationships in mathematical 

form, like mathematical economics it does not assume that economic relationships are exact 

(deterministic).  

- It assumes that relationships are not exact 

- Econometric methods are designed to take in to account random disturbances which create 

deviations from the exact behavioral patterns suggested by economic theory and 

mathematical economics.  

- Econometrics provides numerical values of the coefficients of economic phenomena.  

 



3 

 

C. Economic Statistics is mainly concerned with collecting, processing, and presenting 

economic data in the form of charts and tables. It is mainly a descriptive aspect of economics. It 

does not provide explanations of the development of the various variables and it does not provide 

measurement of the parameters of economic relationships.  

 

TThhee  eeccoonnoommeettrriicciiaann  oofftteenn  nneeeeddss  ssppeecciiaall  mmeetthhooddss  ssiinnccee  tthhee  ddaattaa  aarree  nnoott  ggeenneerraatteedd  aass  tthhee  rreessuulltt  ooff  

aa  ccoonnttrroolllleedd  eexxppeerriimmeenntt..  TThhiiss  ccrreeaatteess  ssppeecciiaall  pprroobblleemmss  nnoott  nnoorrmmaallllyy  ddeeaalltt  wwiitthh  iinn  mmaatthheemmaattiiccaall  

ssttaattiissttiiccss..  MMoorreeoovveerr,,  ssuucchh  ddaattaa  aarree  lliikkeellyy  ttoo  ccoonnttaaiinn  eerrrroorrss  ooff  mmeeaassuurreemmeenntt,,  aanndd  tthhee  

eeccoonnoommeettrriicciiaann  mmaayy  bbee  ccaalllleedd  uupp  oonn  ttoo  ddeevveelloopp  ssppeecciiaall  mmeetthhooddss  ooff  aannaallyyssiiss  ttoo  ddeeaall  wwiitthh  ssuucchh  

eerrrroorrss  ooff  mmeeaassuurreemmeenntt..    

 

To Conclude: Econometrics is an amalgam of economic theory, mathematical economics, 

economic statistics, and mathematical statistics. Yet, it is a subject that deserves to be studied in 

its own right for the above mentioned reasons. 

 

1.2 GOALS OF ECONOMETRICS 

 

Three main goals of econometrics 

1. Analysis: - Testing Economic Theory  

Economists formulated the basic principles of the functioning of the economic system using 

verbal exposition and applying a deductive procedure. Economic theories thus developed in an 

abstract level were not tested against economic reality. Econometrics aims primarily at the 

verification of economic theories.  

 

2. Policy-Making 

In many cases we apply the various econometric techniques in order to obtain reliable estimates 

of the individual coefficients of the economic relationships from which we may evaluate 

elasticities or other parameters of economic theory (multipliers, technical coefficients of 

production, marginal costs, marginal revenues, etc.) The knowledge of the numerical value of 

these coefficients is very important for the decisions of firms as well as for the formulation of the 
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economic policy of the government. It helps to compare the effects of alternative policy 

decisions.  

3. Forecasting 

In formulating policy decisions it is essential to be able to forecast the value of the economic 

magnitudes. Such forecasts will enable the policy-maker to judge whether it is necessary to take 

any measures in order to influence the relevant economic variables.  

 

1.3 DIVISION OF ECONOMETRICS 

 

 

 

 

 

 

 

Econometrics may be divided in to two broad categories 

1. Theoretical Econometrics 

2. Applied Econometrics 

 

- Theoretical Econometrics is concerned with the development of appropriate methods for 

measuring economic relationships specified by econometric models. In this aspect, 

econometrics leans heavily on mathematical statistics. For example, one of the tools that is 

used extensively is the method of least squares. It is the concern of theoretical econometrics 

to spell out the assumptions of this method, its properties, and what happens to these 

properties when one or more of the assumptions of the method are not fulfilled.  

- In applied Econometrics we use the tools of theoretical econometrics to study some special 

field(s) of economics, such as the production function, consumption function, investment 

function, demand and supply functions, etc.  

Applied econometrics includes the applications of econometric methods to specific branches of 

economic theory. It involves the application of the tools of theoretical econometrics for the 

analysis of economic phenomena and forecasting economic behavior.  

Econometrics 

Applied  Theoretical  

Classical   Bayesian   Classical   Bayesian   
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1.4 METHODOLOGY OF ECONOMETRICS 

 

In any econometric research we may distinguish four stages:  

AA..  SSppeecciiffiiccaattiioonn  ooff  tthhee  mmooddeell  

The first, and the most important, step the econometrician has to take in attempting the study of 

any relationship between variables is to express this relationship in mathematical form, that is 

to specify the model, with which the economic phenomenon will be explored empirically. This 

is called the specification of the model or formulation of the maintained hypothesis. It involves 

the determination of: 

i) the dependent and explanatory variables which will be included in the model. The 

econometrician should be able to make a list of the variables that might influence the 

dependent variable. 

. General economic theories, 

. Previous studies in any particular field and 

. Information about individual condition in a particular case, and the actual behavior 

of the economic agents may indicate the general factors that affect the dependent 

variable. 

ii) the a priori theoretical expectations about the sign and the size of the parameters of the 

function. These a priori definitions will be the theoretical criteria on the basis of which 

the results of the estimation of the model will be evaluated  

      . Economic theory 

      . Other applied research 

    . Information about possible special features of the phenomena being studied will    

contain suggestions about the sign and size of the parameters. 

Example: Consider the following simple consumption function:  

                 C = B0 + B1Y+ U 

Where:    C = Consumption function 

               Y = level of income 

In this function the coefficient B1 is the marginal propensity to consume (MPC) and should 

be positive with a value less than unity (0<B1<1). The constant intercept, Bo of the function 

is expected to be positive. This is because when income is zero, consumption will assume a 
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positive value; people will spend past savings, will borrow or find other means for covering 

their needs. 

 

iii) the mathematical form of the model (number of equations liner or non-linear form of 

these equations, etc).  

 

The specification of the econometric model will be based on economic theory and on any 

available information relating to the phenomenon being studied. The econometrics must know 

the general laws of economic theory, and furthermore, he must gather any other information 

relevant to the particular characteristics of the relationship as well as all studies already 

published on the subject by other research workers.  

The most common errors of specification are: 

- the omission of some variables from the functions 

- the omission of some equations 

- the mistaken mathematical form of the functions.  

 

BB..  EEssttiimmaattiioonn  ooff  tthhee  MMooddeell  

Having specified the econometric model, the next task of the econometrician is to obtain 

estimates (numerical values) of the parameters of the model from the data available; consider the 

Keynesian consumption function.  

C = o + 1Y+ U 

Where C  is consumption 

            Y is income 

If 1 = 0.8 this value provides a numerical estimates of the marginal propensity to consume 

(MPC). If also supports Keynes‟ hypothesis that MPC is less than 1.  

The stage of estimation includes the following steps. 

- Gathering of statistical observations (data) on the variables included in the model 

- Examination of the identification conditions of the function in which we are 

interested. 

-  Examination of the aggregation problems involved in the variables of the 

function.  
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- Examination of the degree of correlation between the explanatory variables. 

- Choice of the appropriate econometric technique for the estimation of the function 

and critical examination of the assumptions of the chosen technique and of their 

economic implications for the estimates of the coefficients.  

 

CC..  EEvvaalluuaattiioonn  ooff  EEssttiimmaatteess  

AAfftteerr  tthhee  eessttiimmaattiioonn  ooff  tthhee  mmooddeell  tthhee  eeccoonnoommeettrriicciiaann  mmuusstt  pprroocceeeedd  wwiitthh  tthhee  eevvaalluuaattiioonn  ooff  tthhee  

rreessuullttss  ooff  tthhee  ccaallccuullaattiioonnss  tthhaatt  iiss  wwiitthh  tthhee  ddeetteerrmmiinnaattiioonn  ooff  tthhee  rreelliiaabbiilliittyy  ooff  tthheessee  rreessuullttss..  TThhee  

eevvaalluuaattiioonn  ccoonnssiissttss  ooff  ddeecciiddiinngg  wwhheetthheerr  tthhee  eessttiimmaatteess  ooff  tthhee  ppaarraammeetteerrss  aarree  tthheeoorreettiiccaallllyy  

mmeeaanniinnggffuull  aanndd  ssttaattiissttiiccaallllyy  ssaattiissffaaccttoorryy..  VVaarriioouuss  ccrriitteerriiaa  mmaayy  bbee  uusseedd..    

- Economic a prior criteria: – These are determined by the principles of economic theory 

and refer to the sign and the size of the parameters of economic relationships. In 

econometric jargon we say that economic theory imposes restrictions on the signs and 

values of the parameters of economic relationships. 

- Statistical criteria: – These are determined by statistical theory and aim at the 

evaluation of the statistical reliability of the estimates of the parameters of the model. 

The most widely used statistical criteria are the correlation coefficient and the 

standard deviation ( or the standard error) of the estimates. These concepts will be 

discussed in the subsequent units. Note that the statistical criteria are secondary only to 

the a priori theoretical criteria. The estimates of the parameters should be rejected in 

general if they happen to have the wrong sign or size even though the pass the statistical 

criteria. 

- Econometric criteria: – are determined by econometric theory. It aims at the 

investigation of whether the assumptions of the econometric method employed are 

satisfied or not in any particular case. When the assumptions of an econometric 

technique are not satisfied it is customary to re specify the model. 

 

DD..  EEvvaalluuaattiioonn  ooff  tthhee  ffoorreeccaassttiinngg  ppoowweerr  ooff  tthhee  eessttiimmaatteedd  mmooddeell  

The final stage of any econometric research is concerned with the evaluation of the forecasting 

validity of the model. Estimates are useful because they help in decision-making. A model, after 

the estimation of its parameters, can be used in forecasting the values of economic variables. The 
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econometrician must ascertain how good the forecasts are expected to be in other words he must 

test the forecasting power of the model.  

 

It is conceivably possible that the model is economically meaningful and statistically and 

econometrically correct for the sample period for which the model has been estimated, yet it may 

very well not be suitable for forecasting due, for example, to rapid change in the structural 

parameters of the relationship in the real world.  

 

Therefore, the final stage of any applied econometric research is the investigation of the stability 

of the estimates, their sensitivity to changes in the size of the sample.  

 

One way of establishing the forecasting power of a model is to use the estimates of the model for 

a period not included in the sample. The estimated value (forecast value) is compared with the 

actual (realized) magnitude of the relevant dependent variable. Usually there will be a difference 

between the actual and the forecast value of the variable, which is tested with the aim of 

establishing whether it is (statistically) significant. If after conducting the relevant test of 

significance, we find that the difference between the realized value of the dependent variable and 

that estimated from the model is statistically significant, we conclude that the forecasting power 

of the model, its extra – sample performance, is poor. 

 

Another way of establishing the stability of the estimates and the performance of the model 

outside the sample of data from which it has been estimated, is to re-estimate the function with 

an expanded sample, that is a sample including additional observations. The original estimates 

will normally differ from the new estimates. The difference is tested for statistical significance 

with appropriate methods.  

 

Reasons for a model‟s poor forecasting performance 

a) The values of the explanatory variables used in the forecast may not be accurate 

b) The estimates of the coefficients  s'  may be poor, due to deficiencies of the sample 

data. 
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c) The estimates are „good‟ for the period of the sample, but the structural background 

conditions of the model may have changed from the period that was used as the basis for 

the estimation of the model, and therefore, the old estimates are not „good‟ for forecasting. 

The whole model needs re-estimation before it can be used for prediction.  

Example . Suppose that we estimate the demand function for a given commodity with a single 

equation model using time-series data for the period 1950 – 68 as follows  

           
tQ̂ = 100 + 5Yt – 30Pt 

TThhiiss  eeqquuaattiioonn  iiss  tthheenn  uusseedd  ffoorr  „„ffoorreeccaassttiinngg‟‟  tthhee  ddeemmaanndd  ooff  tthhee  ccoommmmooddiittyy  iinn  tthhee  yyeeaarr  11997700,,  aa  

ppeerriioodd  oouuttssiiddee  tthhee  ssaammppllee  ddaattaa..    

 Given Y1970 = 1000 and P1970 = 5 

tQ̂ = 100 + 5(1000) – 30(5) = 4, 950 units. 

If the actual demand for this commodity in 1970 is 4, 500 there is a difference of 450 between 

the estimated from the model and the actual market demand for the product. The difference can 

be tested for significance by various methods. If it is found significant, we try to find out what 

are the sources of the error in the forecast, in order to improve the forecasting power of our 

model.  

 

1.5 THE NATURE AND SOURCES OF DATA FOR ECONOMETRIC ANALYSIS 

 

The success of any econometric analysis ultimately depends on the availability of the appropriate 

data. Let us first discuss the types of data and then we will see the sources and limitations of the 

data.  

 

1.5.1 Types of Data 

 

There are three types of data 

a) Time series data 

TThhiiss  iiss  aa  sseett  ooff  oobbsseerrvvaattiioonnss  oonn  tthhee  vvaalluueess  tthhaatt  aa  vvaarriiaabbllee  ttaakkeess  aatt  ddiiffffeerreenntt  ttiimmeess..  SSuucchh  ddaattaa  mmaayy  

bbee  ccoolllleecctteedd  aatt  rreegguullaarr  ttiimmee  iinntteerrvvaallss::  ddaaiillyy,,  wweeeekkllyy,,  mmoonntthhllyy,,  qquuaarrtteerrllyy,,  aannnnuuaallllyy  eettcc..    

Example. data on stock prices, unemployment rate, GDP etc 

Data may be qualitative or quantitative 
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Qualitative data are sometimes called dummy variables or categorical variable. These are 

variables that cannot be quantified.  

  Example: male or female, married or unmarried, religion, etc 

Quantitative data are data that can be quantified 

  Example: income, prices, money etc.  

 

b) Cross-Section data 

These data give information on the variables concerning individual agents (consumers or 

producers) at a given point of time.  

Example: 

           - the census of population conducted by CSA.  

            -survey of consumer expenditure conducted by Addis Ababa university 

Note that due to heterogeneity, cross- sectional data have their own problems.  

 

c) Pooled Data 

These are repeated surveys of a single (cross-section) sample in different periods of time. They 

record the behavior of the same set of individual microeconomic units over time. There are 

elements of both time series and cross sectional data.  

 

The panel or longitudinal data also called micro panel data, is a special type of pooled data in 

which the same cross-sectional unit is surveyed over time.  

 

1.5.2 The Sources of Data 

 

A governmental agency, an international agency, a private organization or an individual may 

collect the data used in empirical analysis.  

Example. Governmental in Ethiopia: - MEDAC, MOF, CSA, NBE 

                 International agencies: - International Monetary Fund (IMF), World Bank (WB) 

 

The individual (researcher) himself may collect data through interviews or using questionnaire.  

In the social sciences the data that one generally obtains is non-experimental in nature; that is not 

subject to the control of the researcher. For example, data on GNP, unemployment, stock prices 
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etc are not directly under the control of the investigator. This often creates special problems for 

the researcher in pinning down the exact cause or causes affecting a particular situation.  

 

LLiimmiittaattiioonnss  

Although there is plenty of data available for economic research, the quality of the data is often 

not that good. Reasons are:  

- Since most social science data are not experimental in nature, there is the possibility of 

observational errors. 

- Errors of measurement arising from approximations and round offs.  

- In questionnaire type surveys, there is the problem of non-response 

- Respondents may not answer all the questions correctly 

- Sampling methods used in obtaining data 

- Economic data is generally available at a highly aggregate level. For example most macro 

data like GNP, unemployment, inflation etc are available for the economy as a whole.    

- Because of confidentiality, certain data can be published only in highly aggregate form For 

example, data on individual tax, production, employment etc at firm level are usually 

available in aggregate form. 

 

Because of all these and many other problems, the researcher should always keep in mind that 

the results of research are only as good as the quality of the data. Therefore, the results of the 

research may be unsatisfactory due to the poor quality of the available data (may not be due to 

wrong model) 

 

1.8 REFERENCES 

 

Gujarati, D., Basic Econometrics. 

Kmenta, J., Elements of Econometrics, Macmillan, New York, 1971 

Koutsoyiannis, A., Theory of Econometrics, 2
nd

 ed. Pal grave, 1977. 
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2. CORRELATION THEORY 

 

2.1. Basic concepts of Correlation 

 

Correlate has a relationship or connection in which one thing affects or depends on another. It 

implies establish a correlation between each of two or more related or complementary things. 

Correlation is a mutual relationship or connection, the process of correlating two or more 

things. It is the extent to which two variables are interdependent. Unlike regression, this 

calculation is not used to predict the value of one variable from the other. It is Statistics 

interdependence of variable quantities. 

 

2.2. Coefficient of Linear Correlation 

 

 Correlation Coefficient 

Correlation coefficient is a statistical number between +1 and -1 calculated so as to represent 

the linear interdependence of two variables or sets of data. (Symbol: r.) 
 

 The quantity r, called the linear correlation coefficient, measures the strength and the direction 

of a linear relationship between two variables. The linear correlation coefficient is sometimes 

referred to as the Pearson product moment correlation coefficient in honor of its developer Karl 

Pearson.  

 The mathematical formula for computing r is: 

    
 ∑    ∑   ∑  

√ ∑ 
 
  ∑  

 √ ∑ 
 
  ∑  

 
      or      

∑     

√∑  
 
 √∑  

 
  where xi = Xi- X,   yi = Yi-Y 

where n is the number of pairs of data.  

An increase in one variable may cause an increase in the other variable, or a decrease in one 

variable may cause decrease in the other variable. When the variables move in the same direction 

like this they are said to be positively correlated. The positive correlation may be termed as 

direct correlation. If a decrease in one variable causes an increase in the other variable or vice 

versa, the variables are said to be negatively correlated. The negative correlation may be termed 

as inverse correlation. In case the two variables are not at all related they are said to be 

independent or uncorrelated 

 The value of r is such that -1 < r < +1. The + and – signs are used for positive linear correlations 

and negative linear correlations, respectively.  
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 Positive correlation: If x and y have a strong positive linear correlation, r is close to +1. r value of 

exactly +1 indicates a perfect positive fit. Positive values indicate a relationship between x and y 

variables such that as values for x increase, values for y also increase.  

 Negative correlation: If x and y have a strong negative linear correlation, r is close to -1. r value 

of exactly -1 indicates a perfect negative fit. Negative values indicate a relationship between x 

and y such that as values for x increase, values for y decrease.  

 No correlation: If there is no linear correlation or a weak linear correlation, r is close to 0. A 

value near zero means that there is a random, nonlinear relationship between the two variables  

  Note that r is a dimensionless quantity; that is, it does not depend on the units employed.  

  A perfect correlation of ± 1 occurs only when the data points all lie exactly on a straight line. If r 

= +1, the slope of this line is positive. If r = -1, the slope of this line is negative.  

 A correlation greater than 0.8 is generally described as strong, whereas a correlation less than 0.5 

is generally described as weak. These values can vary based upon the "type" of data being 

examined. A study utilizing scientific data may require a stronger correlation than a study using 

social science data.  

Properties of simple correlation coefficient 

Coefficient of correlation lies between –1≤ r ≤1 

If r = 0 indicate that there is no linear relationship between two variables. 

If r = -1 or +1 indicate that there is perfect negative (inverse) or positive (direct) linear 

relationship between two variables respectively. 

A coefficient of correlation(r) that is closes to zero shows the relationship is quite weak, whereas 

r is closest to +1 or -1, shows that the relationship is strong. 

Note that 

relation does not depend on the positiveness and negativeness of r . 

 coefficient 

should be the same in sign. 

The correlation between two variables is linear if a unit changes in one variable result in a 

constant change in the other variable. Correlation can be studied through plotting scattered 

diagrams. 
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Figure: Slopes of simple linear regression lines 

 

2.3. Types of Correlation Coefficient 

 

Simple correlation coefficient: It is computed for continuous variables (interval ratio). It is 

developed by Karl Pearson and it is sometimes said to be Pearson correlation coefficient. It is 

computed based on data if Y is dependent variable on X as follows: 

    
 ∑    ∑   ∑  

√ ∑ 
 
  ∑  

 √ ∑ 
 
  ∑  

 
      or      

∑     

√∑  
 
 √∑  

 
  where xi = Xi- X,   yi = Yi-Y 

where n is the number of pairs of data.  

Example: If the following data is given for you as data collected from a given market on quantity and 

price find the simple correlation coefficient and discuss the type of relationship between the 

variables. Based on your knowledge of economics and simple correlation coefficient, what are the 

variables expressed as quantity? 
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Q P Q
2
 P

2
 PiQi qi pi qi

2
 pi

2
 piqi 

10 2 100 4 20 -51 -9 2601 81 459 

20 4 400 16 80 -41 -7 1681 49 287 

50 6 2500 36 300 -11 -5 121 25 55 

40 8 1600 64 320 -21 -3 441 9 63 

50 10 2500 100 500 -11 -1 121 1 11 

60 12 3600 144 720 -1 1 1 1 -1 

80 14 6400 196 1120 19 3 361 9 57 

90 16 8100 256 1440 29 5 841 25 145 

90 18 8100 324 1620 29 7 841 49 203 

120 20 14400 400 2400 59 9 3481 81 531 

SUM=610 110 47700 1540 8520 0 0 10490 330 1810 

 

 

Rank Correlation  

Sometimes we come across statistical series in which the variables under consideration are not 

capable of quantitative measurement, but can be arranged in serial order. This happens when we 

dealing with qualitative characteristics (attributes) such as beauty, efficient, honest, intelligence 

….etc. in such case one may rank the different items and apply the spearman method of rank 

difference for finding out the degree of relationship. The greatest use of this method (rank 

correlation) lies in the fact that one could use it to find correlation of qualitative variables, but 

since the method reduces the amount of labor of calculation, it is sometimes used also where 

quantitative data is available. It is used when statistical series are ranked according to their 

magnitude and the exact size of individual item is not known. Spearman‟s correlation coefficient 

is denoted by r'. Steps r'  

i. Rank the different items in X and Y.  

ii. Find the difference of the ranks in a pair, denote them by di  

iii. Use the following formula  

 

      
 ∑  
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Where di is the difference between ranks of corresponding pairs of X and Y 

Example: 

A market researcher asks two experts to express the preferences for 12 different brands of Soap 

Brands of soap X Y Di Di
2
 

A 9 7 2 4 

B 10 8 2 4 

C 4 3 1 1 

D 1 1 0 0 

E 8 10 -2 4 

F 11 12 -1 1 

G 3 2 -1 1 

H 2 6 -4 16 

I 5 5 0 0 

J 7 4 3 9 

K 12 11 1 1 

L 6 9 -3 9 

 50 

 

       
 ∑  

 

       
 

       
     

         
            = 1416/1716 = 0.825 
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3. SIMPLE LINEAR REGRESSION MODELS 
 

3.1. Basic Concepts and Assumptions 

 

3.1.1 The Modern Interpretation of Regression 

Broadly speaking, we may say Regression analysis is concerned with the study of the dependence of one 

variable, the dependent variable, on one or more other variables, the explanatory variables, with a view to 

estimating and/or predicting the (population) mean or average value of the former in terms of the known 

or fixed (in repeated sampling) values of the latter. 

 

Example  

Dependent Variable Y; Explanatory Variable Xs 

1. Y = Personal Consumption Expenditure X = Personal Disposable Income 

2. Y = Demand; X = Price 

3. Y = % Change in Demand; X = % Change in the advertising budget 

4. Y = Crop yield; Xs = temperature, rainfall, sunshine, fertilizer 

 

Statistical versus Deterministic Relationships 

In statistical relationships among variables we essentially deal with random or stochastic variables, that 

is, variables that have probability distributions. In functional or deterministic dependency, on the other 

hand, we also deal with variables, but these variables are not random or stochastic. In regression 

analysis, we are concerned with STATISTICAL DEPENDENCE among variables (not Functional or 

Deterministic), we essentially deal with RANDOM or STOCHASTIC variables (with the probability 

distributions). 

Regression versus Causation 

Although regression analysis deals with the dependence of one variable on other variables, it does not 

necessarily imply causation. In the words of Kendall and Stuart, “A statistical relationship, however 

strong and however suggestive, can never establish causal connection: our ideas of causation must come 

from outside statistics, ultimately from some theory or other.” 

Regression versus Correlation 

Closely related to but conceptually very much different from regression analysis is correlation analysis, 

where the primary objective is to measure the strength or degree of linear association between two 

variables. In regression analysis, however, we are not primarily interested in such a measure. Instead, we 

try to estimate or predict the average value of one variable on the basis of the fixed values of other 

variables. 
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3.1.2 TERMINOLOGY AND NOTATION 

In the literature the terms dependent variable and explanatory variable are described variously. A 

representative list is: 

 

If we are studying the dependence of a variable on only a single explanatory variable, such as that of 

consumption expenditure on real income, such a study is known as simple, or two-variable, regression 

analysis. However, if we are studying the dependence of one variable on more than one explanatory 

variable, as in the crop-yield, rainfall, temperature, sunshine, and fertilizer examples, it is known as 

multiple regression analysis. 

 

3.1.3 Types of Data Required for Economic Analysis 

The success of any econometric analysis ultimately depends on the availability of the appropriate data. 

Three types of data may be available for empirical analysis: time series, cross-section, and pooled (i.e., 

combination of time series and cross section) data. 

Time Series Data 

A time series is a set of observations on the values that a variable takes at different times. Such data may 

be collected at regular time intervals, such as daily (e.g., stock prices, weather reports), weekly (e.g., 

money supply figures), monthly [e.g., the unemployment rate, the Consumer Price Index (CPI)], 

quarterly (e.g., GDP), annually (e.g., government budgets). 

 

Dependent Variable  

         

Explained Variable  

         

Predictand 

         

Regressand 

         

Response 

         

Endogenous 

Explanatory Variable(s) 

           

Independent Variable(s) 

           

Predictor(s) 

           

Regressor(s) 

           

Stimulus or control variable(s) 

           

Exogenous (es) 
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Cross-Section Data Cross-section data are data on one or more variables collected at the same point in 

time. 

Pooled Data In pooled, or combined, data are elements of both time series and cross-section data. 

 

3.1.4 A Note on the Measurement Scales of Variables 

The variables that we will generally encounter fall into four broad categories: ratio scale, interval scale, 

ordinal scale, and nominal scale. It is important that we understand each. 

Ratio Scale For a variable X, taking two values, X1 and X2, the ratio X1/X2 and the distance (X2 − X1) are 

meaningful quantities. Also, there is a natural ordering (ascending or descending) of the values along the 

scale. Therefore, comparisons such as X2 ≤ X1 or X2 ≥ X1 are meaningful. Most economic variables belong 

to this category. E.g., it is meaningful to ask how big this year‟s GDP is compared with the previous 

year‟s GDP. 

Interval Scale An interval scale variable satisfies the last two properties of the ratio scale variable but not 

the first. Thus, the distance between two time periods, say (2000–1995) is meaningful, but not the ratio of 

two time periods (2000/1995). 

Ordinal Scale A variable belongs to this category only if it satisfies the third property of the ratio scale 

(i.e., natural ordering). Examples are grading systems (A, B, C grades) or income class (upper, middle, 

lower). For these variables the ordering exists but the distances between the categories cannot be 

quantified.  

Nominal Scale Variables in this category have none of the features of the ratio scale variables. Variables 

such as gender (male, female) and marital status (married, unmarried, divorced, separated) simply denote 

categories. 

 

3.1.5. Two-Variable Regression Analysis: Some Basic Ideas 

 

 A HYPOTHETICAL EXAMPLE 

 

As noted in Section 2.1.1, regression analysis is largely concerned with estimating and/or predicting the 

(population) mean value of the dependent variable on the basis of the known or fixed values of the 

explanatory variable(s). To understand this, consider the data given in Table 2.1.  
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The data in the table refer to a total population of 60 families in a hypothetical community and their 

weekly income (X) and weekly consumption expenditure (Y), both in dollars. The 60 families are divided 

into 10 income groups (from $80 to $260) and the weekly expenditures of each family in the various 

groups are as shown in the table. Therefore, we have 10 fixed values of X and the corresponding Y values 

against each of the X values. 

There is considerable variation in weekly consumption expenditure in each income group, which can be 

seen clearly from Figure 2.1. But the general picture that one gets is that, despite the variability of weekly 

consumption expenditure within each income bracket, on the average, weekly consumption expenditure 

increases as income increases. 

 

Fig 3.1.5 Conditional distribution of expenditure for various level of income (data of table 2.1) 
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X

Y
80   100   120   140   160   180   200   220   240   260

Weekly 
family 
consumption 
expenditure 
Y ($)

55     65     79     80   102   110   120   135   137   150

60     70     84     93   107   115   136   137   145   152

65     74     90     95   110   120   140   140   155   175

70     80     94   103   116   130   144   152   165   178

75     85     98   108   118   135   145   157   175   180

-- 88      -- 113   125   140    -- 160   189   185

-- -- -- 115     -- -- -- 162    -- 191

Total 325   462   445   707   678   750   685   1043   966  1211

Mean 65      77     89    101   113   125   137   149     161   173

Table 2-1: Weekly family income X ($),  and consumption Y ($)
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To see this clearly, in Table 2.1 we have given the mean, or average, weekly consumption expenditure 

corresponding to each of the 10 levels of income. Thus, corresponding to the weekly income level of $80, 

the mean consumption expenditure is $65, while corresponding to the income level of $200, it is $137. In 

all we have 10 mean values for the 10 subpopulations of Y. We call these mean values conditional 

expected values, as they depend on the given values of the (conditioning) variable X. Symbolically, we 

denote them as E(Y |X), which is read as the expected value of Y given the value of X. 

It is important to distinguish these conditional expected values from the unconditional expected value of 

weekly consumption expenditure, E(Y). If we add the weekly consumption expenditures for all the 60 

families in the population and divide this number by 60, we get the number $121.20 ($7272/60), which is 

the unconditional mean, or expected, value of weekly consumption expenditure, E(Y); it is unconditional 

in the sense that in arriving at this number we have disregarded the income levels of the various families. 

Obviously, the various conditional expected values of Y given in Table 2.1 are different from the 

unconditional expected value of Y of $121.20. When we ask the question, “What is the expected value of 

weekly consumption expenditure of a family,” we get the answer $121.20 (the unconditional mean). But 

if we ask the question, “What is the expected value of weekly consumption expenditure of a family whose 

monthly income is, say, $140,” we get the answer $101 (the conditional mean). 

Geometrically, a population regression curve (line) is simply the locus of the conditional means of the 

dependent variable for the fixed values of the explanatory variable(s). 

 

3.1.5.1 The Concept Of Population Regression Function (PRF) 

 
From the preceding discussion, it is clear that each conditional mean E(Y | Xi) is a function of Xi, where Xi 

is a given value of X. Symbolically,  

E(Y | Xi) = f (Xi) ------------------------------------------------------------------- (3.1.1) 

Where f (Xi) denotes some function of the explanatory variable X. In the above example, E(Y | Xi) is a 

linear function of Xi. Equation (2.2.1) is known as the conditional expectation function (CEF) or 

population regression function (PRF) or population regression (PR) for short. It states merely that the 

expected value of the distribution of Y given Xi is functionally related to Xi. In simple terms, it tells how 

the mean or average response of Y varies with X. 

As a first approximation or a working hypothesis, we may assume that the PRF E(Y | Xi) is a linear 

function of Xi, say, of the type 

E(Y | Xi) = β1 + β2 Xi -------------------------------------------------------------- (3.1.2) 

Where β1 and β2 are unknown but fixed parameters known as the regression coefficients 

It is clear from Figure 2.1 that, as family income increases, family consumption expenditure on the 

average increases, too. But, what about the consumption expenditure of an individual family in relation to 

its (fixed) level of income? It is obvious from Table 2.1 and Figure 2.1 that an individual family‟s 

consumption expenditure does not necessarily increase as the income level increases. For example, from 

Table 2.1 we observe that corresponding to the income level of $100 there is one family whose 



22 

 

consumption expenditure of $65 is less than the consumption expenditures of two families whose weekly 

income is only $80. But notice that the average consumption expenditure of families with a weekly 

income of $100 is greater than the average consumption expenditure of families with a weekly income of 

$80 ($77 versus $65). 

We see from Figure 2.1 that, given the income level of Xi, an individual family‟s consumption 

expenditure is clustered around the average consumption of all families at that Xi, that is, around its 

conditional expectation. Therefore, we can express the deviation of an individual Yi around its expected 

value as follows: 

                  ui = Yi − E(Y | Xi) 

                             or 

                 Yi = E(Y | Xi) + ui ------------------------------------------------------- (3.1.3) 

where the deviation  ui is an unobservable random variable taking positive or negative values. 

Technically, ui is known as the stochastic disturbance or stochastic error term. 

How do we interpret (2.2.3)? We can say that the expenditure of an individual family, given its income 

level, can be expressed as the sum of two components: (1) E(Y | Xi), which is simply the mean 

consumption expenditure of all the families with the same level of income. This component is known as 

the systematic, or deterministic, component, and (2) ui, which is the random, or nonsystematic, 

component. Stochastic disturbance term is a surrogate or proxy for all the omitted or neglected variables 

that may affect Y but are not (or cannot be) included in the regression model. 

If E(Y | Xi) is assumed to be linear in Xi, as in Eq. (2.2.2), Eq. (2.2.3) may be written as 

Yi = E(Y | Xi) + ui 

    = β1 + β2 Xi + ui ----------------------------------------------- (3.1.4) 

We call this equation stochastic specification of the PRF (true PRF) 

3.1.6. The Sample Regression Function (SRF) 

It is about time to face up to the sampling problems, for in most practical situations what we have is but a 

sample of Y values corresponding to some fixed X’s. Therefore, the task now is to estimate the PRF on the 

basis of the sample information. 

As an illustration, pretend that the population of Table 2.1 was not known to us and the only information 

we had was a randomly selected sample of Y values for the fixed X’s as given in Table 2.2. 

The question is: From the sample of Table 2.2 can we predict the average weekly consumption 

expenditure Y in the population as a whole corresponding to the chosen X’s? In other words, can we 

estimate the PRF from the sample data? As one surely suspects, we may not be able to estimate the PRF 

“accurately” because of sampling fluctuations. 
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Plotting the data of Tables 2.2 a and 2.2 b, we obtain the scatter diagram given in Figure 2.2. In the scatter 

diagram two samples regression lines are drawn so as to “fit” the scatters reasonably well: SRF1 is based 

on the first sample, and SRF2 is based on the second sample. Which of the two regression lines represents 

the “true” population regression line? There is no way we can be absolutely sure that either of the 

regression lines shown in Figure 2.2 represents the true population regression line (or curve).  

Table 2-2 a: A random 
sample from the population

Y X
------------------

70 80
65   100
90   120
95 140

110 160
115 180
120 200
140 220
155 240
150 260

------------------

Table 2-2 b: Another random 
sample from the population

Y X
-------------------

55      80
88 100
90 120
80 140
118 160
120 180
145 200
135 220
145 240
175 260

--------------------

 

 

SRF1

SRF2

Weekly Consumption 

Expenditure (Y)

Weekly Income (X)
 

Fig 2.2 

The regression lines in Figure 2.2 are known as the sample regression lines. They represent the population 

regression line, but because of sampling fluctuations they are at best an approximation of the true PR. 

Now, analogously to the PRF that underlies the population regression line, we can develop the concept of 

the sample regression function (SRF) to represent the sample regression line. The sample counterpart of 

(2.2.2) may be written as 

  ̂i =  ̂1
 
+  ̂2Xi ----------------------------------------------------------------------------- (3.1.5) 

where  ̂i is read as “Y-hat‟‟ or “Y-cap‟‟ 

 ̂i = estimator of E(Y | Xi) 

  ̂1
 
= estimator of β1                                               ̂2 = estimator of β2 
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Note that an estimator, also known as a (sample) statistic, is simply a rule or formula or method that tells 

how to estimate the population parameter from the information provided by the sample at hand. A 

particular numerical value obtained by the estimator in an application is known as an estimate. 

Now just as we expressed the PRF in two equivalent forms, (2.2.2) and (2.2.4), we can express the SRF 

(2.2.5) in its stochastic form as follows: 

 

Yi =  ̂1
 
+  ̂2Xi +  ̂i ------------------------------------------------------------------------- (3.1.6) 

 

Where, in addition to the symbols already defined,
  ̂i denotes the (sample) residual term. Conceptually  ̂i 

is analogous to ui and can be regarded as an estimate of ui.  

To sum up, our primary objective in regression analysis is to estimate the PRF 

Yi = β1 + β2Xi + ui ----------------------------------------------------------------------- (3.1.4) 

On the basis of the SRF 

Yi =  ̂1
 
+  ̂2Xi +  ̂i -------------------------------------------------------------------------

 
(3.1.6) 

because more often than not our analysis is based upon a single sample from some population: 

 The deviations of the observations from the line may be attributed to several factors. 

(1) Omission of variables from the function 

In economic reality each variable is influenced by a very large number of factors. However, not 

all the factors influencing a certain variable can be included in the function for various reasons. 

(2) Random behavior of the human beings 

The scatter of points around the line may be attributed to an erratic element which is inherent in 

human behavior. Human reactions are to a certain extent unpredictable and may cause deviations 

from the normal behavioral pattern depicted by the line. 

(3) Imperfect specification of the mathematical form of the model  

We may have linearised a possibly nonlinear relationship. Or we may have left out of the model 

some equations. 

(4) Errors of aggregation 

We often use aggregate data (aggregate consumption, aggregate income), in which we add 

magnitudes referring to individuals whose behavior is dissimilar. In this case we say that 

variables expressing individual peculiarities are missing. 

 

(5) Errors of measurement  

This refers to errors of measurement of the variables, which are inevitable due to the methods of 

collecting and processing statistical information.  

The first four sources of error render the form of the equation wrong, and they are usually referred to 

as error in the equation or error of omission. The fifth source of error is called error of measurement 

or error of observation.  
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In order to take in to account the above sources of error we introduce in econometric functions a 

random variable u called random disturbance term of the function, so called because u is supposed to 

disturb the exact linear relationship which is assumed to exist between X and Y. 

 

3.1.7 The Meaning of the Term Linear 

Linearity can be interpreted in two different ways. 

Linearity in the Variables 

The first and perhaps more “natural” meaning of linearity is that the conditional expectation of Y is a 

linear function of Xi, such as, for example, (2.2.2). Geometrically, the regression curve in this case is a 

straight line. In this interpretation, a regression function such as E(Y | Xi) = β1 + β2   
  is not a linear 

function because the variable X appears with a power or index of 2. 

Linearity in the Parameters 

The second interpretation of linearity is that the conditional expectation of Y, E(Y | Xi), is a linear function 

of the parameters, the β‟s; it may or may not be linear in the variable X. In this interpretation E(Y | Xi) = 

β1 + β2  
  is a linear (in the parameter) regression model. 

 

Of the two interpretations of linearity, linearity in the parameters is relevant for the development of the 

regression theory to be presented shortly. Therefore, from now on the term “linear” regression will always 

mean a regression that is linear in the parameters; the β‟s (that is, the parameters are raised to the first 

power only). It may or may not be linear in the explanatory variables, the X‟s. 

3.1.8. The Ordinary Least Squares Methods (OLS) 

 

To estimate the coefficients    and    we need observations on X, Y and u. yet u is never observed like 

the other explanatory variables, and therefore in order to estimate the function Yi = β1 + β2Xi + ui, we 

should guess the values of u, that is we should make some reasonable assumptions about the shape of the 

distribution of each ui (its means, variance and covariance with other u‟s). These assumptions are guesses 

about the true, but unobservable, value of ui.  

 

THE ASSUMPTIONS UNDERLYING THE METHOD OF LEAST SQUARES 

The linear regression model is based on certain assumptions, some of which refers to the distribution of 

the random variable u, some to the relationship between u and the explanatory variables, and some refers 

to the relationship between the explanatory variables themselves. 

1. ui is a random real variable and has zero mean value: E(ui) = 0 (or E(uiXi) = 0) 

 This implies that for each value of X, u may assume various values, some positive, 

and some negative but on average zero. 

 Further E(Yi) = β1 + β2Xi gives the relationship between X and Y on the average, i.e. 

when X takes on value Xi , then Y will on the average take on E(Yi) (or E(YiXi)) 
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2. The variance of ui is constant for all i, i.e., var(uiXi) = E(  
 Xi) =   , and is called the 

assumptions of common variance or homoscedasticity. 

 The implication is that for all values of X, the values of u show the same dispersion 

around their mean. 

 The consequence of this assumption is that var(yiXi) = 
      

 If on the other hand the variance of Y population varies as X changes, a situation of 

non-constancy of the variance of Y, called heteroscedasticity arises.  

3. ui has a normal distribution, i.e., ui ∼ N(0,   ), which also implies  

Yi ∼ N(β1 + β2Xi,  
 ).   

4. The random terms of different observations are independent, cov(uiuj) =E(uiuj) = 0 for i ≠ j 

where i and j run from 1 to n. This is called the assumption of no autocorrelation (serial) 

among the error terms. 

 The consequence of this assumption is that cov(YiYj) = 0, for i ≠ j i.e. no 

autocorrelation among the Y‟s.  

5. Xi‟s are a set of fixed values in the process of repeated sampling which underlies the linear 

regression model, i.e. they are non-stochastic. 

6. u is independent of the explanatory variables, i.e., cov(uiXi) = E(uiXi) = 0. 

7. Variability in X values. The X values in a given sample must not all be the same. 

Technically, var(X) must be a finite positive number. 

8. The regression model is correctly specified. 
 

3.2. THE LEAST SQAURE CRITERION AND NORMAL EQUATIONS OF OLS 

Thus far we have completed the work involved in the first stage of any econometric application, namely 

we have specified the model and stated explicitly its assumptions. The next step is the estimation of the 

model, that is, the computation of the numerical values of its parameters. 
 

The linear relationship Yi = β1 + β2Xi + ui holds for the population of the values of X and Y, so that we 

could obtain the numerical values of β1 and β2 only if we could have all the possible values of X, Y and u 

which form the population of these variables. Since this is impossible in practice, we get a sample of 

observed values of Y and X, specify the distribution of the u‟s and try to get satisfactory estimates of the 

true parameters of the relationship. This is done by fitting a regression line through the observations of the 

sample, which we consider as an approximation to the true line. 

The method of ordinary least squares is one of the econometric methods which enable us to find the 

estimate of the true parameter and is attributed to Carl Friedrich Gauss, a German mathematician. To 

understand this method, we first explain the least squares principle. 

 

Recall the two-variable PRF: 

Yi = β1 + β2Xi + ui ------------------------------------------------------------------ (3.1.4) 

 

However, as noted in earlier, the PRF is not directly observable. We estimate it from the SRF: 

Yi = 
  ̂ 

 
+  ̂2Xi +  ̂i ---------------------------------------------------------------- (3.1.6) 

    =  ̂i +  ̂i --------------------------------------------------------------------------- (*) 
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Where
  ̂i is the estimated (conditional mean) value of Yi 

 

But how is the SRF itself determined? To see this, let us proceed as follows. First, express (*) as 

 ̂i = Yi −  ̂i
 

     = Yi −  ̂ −  ̂2Xi ---------------------------------------------------------------- (3.2.1) 

which shows that the  ̂i (the residuals) are simply the differences between the actual and estimated Y 

values. 

 

Now given n pairs of observations on Y and X, we would determine the SRF in such a manner that it is as 

close as possible to the actual Y. To this end, we adopt the least-squares criterion, which states that the 

SRF can be fixed in such a way that 

∑  ̂ 
 = ∑       ̂   

2 

        =∑       ̂     ̂     
2 
---------------------------------------------------- (3.2.2) 

is as small as possible, where  ̂i
2
 are the squared residuals. 

 

It is obvious from (3.2.2) that ∑  ̂ 
  

= f ( ̂ ,  ̂2) that is, the sum of the squared residuals is some function of 

the estimators  ̂1 and  ̂2. For any given set of data, choosing different values for  ̂ and  ̂2will give 

different  ̂‟s and hence different values of ∑  ̂ 
 . 

 

The principle or the method of least squares chooses  ̂1 and  ̂2 in such a manner that, for a given sample 

or set of data, ∑  ̂ 
  is as small as possible. In other words, for a given sample, the method of least squares 

provides us with unique estimates of β1 and β2 that give the smallest possible value of ∑  ̂ 
 . 

 

The process of differentiation yields the following equations for estimating β1 and β2. Differentiating Eq. 

(3.2.2) partially with respect to  ̂1 and  ̂2, we obtain  

  ∑  ̂ 
  

  ̂  
 = -2∑       ̂     ̂      = 0 

 
  ∑  ̂ 

  

  ̂  
 = -2∑       ̂     ̂         = 0 

 

Setting these equations to zero gives, the normal equations below 

∑   = n  ̂1 +  ̂2∑   ----------------------------------------------------- (3.2.3) 
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∑     =  ̂ ∑   +  ̂2∑  
  --------------------------------------------- (3.2.4) 

where n is the sample size. These simultaneous equations are known as the normal equations.
 

 

Solving the normal equations simultaneously, we obtain 

 

 and  

 

 

 

where   and  are the sample means of X and Y and where we define  xi =  (Xi −  ) and yi = (Yi −  ). 

The above lowercase letters in the formula denote deviations from mean values.  Equation (3.2.6) can be 

obtained directly from (3.2.3) by simply dividing both sides of the equation by n. 

 

Note that, by making use of simple algebraic identities, formula (3.2.5) for estimating β2 can be 

alternatively expressed as 

 ̂2 = 
∑    

∑  
  = 

∑    

∑  
    ̅  = 

∑    

∑  
    ̅  ---------------------------------------------------- (3.2.7) 

 

The estimators obtained previously are known as the least-squares estimators, for they are derived from 

the least-squares principle. We finally write the regression line equation as  ̂i =  ̂ 
 
+  ̂2Xi. 

 Interpretation of estimates 

 Estimated intercept,  ̂1: The estimated average value of the dependent variable when the 

independent variable takes on the value zero 

 Estimated slope,  ̂2: The estimated change in the average value of the dependent variable 

when the independent variable increases by one unit. 

  ̂  gives average relationship between Y and X. i.e.  ̂  is average value of Y given Xi. 
 

Example 1  

A random sample of ten families had the following income and food expenditure (in $ per week) 

Families A B C D E F G H I J 

Family income 20 30 33 40 15 13 26 38 35 43 

Family expenditure 7 9 8 11 5 4 8 10 9 10 

 

Estimate the regression line of food expenditure on income and interpret your results. 

 

�̂�2 = 
𝑛∑𝑌𝑖 𝑋𝑖   ∑𝑋𝑖∑𝑌𝑖

𝑛Σ𝑋 
   ∑𝑋𝑖 

               

    =  
∑ 𝑋𝑖 – 𝑋  𝑌𝑖   𝑌 

∑ 𝑋𝑖 – 𝑋 
  ----- (3.2.5) 

     = 
∑𝑥𝑖𝑦𝑖

∑𝑥𝑖
  

�̂�1 = 
𝛴𝑋𝑖

 ∑𝑌𝑖    ∑𝑋𝑖∑𝑋𝑖𝑌𝑖

𝑛Σ𝑋 
   ∑𝑋𝑖 

  

�̂�1 = �̅� - �̂�2�̅� ---------------- (3.2.6) 
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Note the following numerical properties of estimators obtained by the method of OLS. 

1. The OLS estimators are expressed solely in terms of the observable (i.e., sample) quantities (i.e., X 

and Y). Therefore, they can be easily computed. 

2. They are point estimators. 

3. Once the OLS estimates are obtained from the sample data, the sample regression line can be easily 

obtained. The regression line thus obtained has the following properties: 

3.1. It passes through the sample means of Y and X. 

3.2. The mean value of estimated Y =  ̂  is equal to the actual value of Y. i.e.  ̅̂ =  ̅ 

3.3. The mean value of the residuals  ̂i is zero. 

3.4. As a result of the preceding property, the sample regression Yi =  ̂1
 
+  ̂2Xi +  ̂i can be expressed 

in an alternative form where both Y and X are expressed as deviations from their mean values. 

i.e. yi =  ̂    +  ̂i . The SRF can also be written as  ̂  =  ̂   , whereas in the original units of 

measurement it was   ̂i =  ̂1
 
+  ̂2Xi. The above equations are called the deviation form. 

3.5. The residuals  ̂i are uncorrelated with the predicted Yi. 

3.6. The residuals  ̂i are uncorrelated with Xi. 

 

3.3 PRECISION OR STANDARD ERRORS OF LEAST-SQUARES ESTIMATES 

It is evident that least-squares estimates are a function of the sample data. But since the data are likely to 

change from sample to sample, the estimates will change ipso facto. Therefore, what is needed is some 

measure of “reliability” or precision of the estimators  ̂1 and  ̂2. In statistics the precision of an estimate 

is measured by its standard error (se). The standard errors of the OLS estimates can be obtained as 

follows: 

 

 

 

 

 

 

 

Where var = variance and se = standard error and where σ
2
 is the constant or homoscedastic variance of ui 

of Assumption 2. 

 

All the quantities entering into the preceding equations except σ
2
 can be estimated from the data. σ

2
 itself 

is estimated by the following formula: 

 ̂   
∑  ̂ 

 

   
 

var(�̂�2) = 
𝜎 

∑𝑥𝑖
  ------------------------------------------------------------------------------- (3.3.1)                                    

 

se(�̂�2) = σ β̂   
 = 

𝜎

√∑𝑥𝑖
 
 --------------------------------------------------------------------- (3.3.2)   

var(�̂�1) = 
∑𝑋𝑖

  𝜎 

𝑛∑𝑥𝑖
  ---------------------------------------------------------------------------- (3.3.3)   

 

�̂� σ √ 𝜎
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Where  ̂   is the OLS estimator of the true but unknown σ
2
 and where the expression n − 2 is known as 

the number of degrees of freedom (df), ∑  ̂ 
  being the sum of the residuals squared or the residual sum 

of squares (RSS).
1 

 

Once ∑  ̂ 
   is known,  ̂ can be easily computed. ∑  ̂ 

  itself can be computed either from (3.2.2) or from 

the following expression. 

∑  ̂ 
   ∑  

    ̂ 
 ∑  

  --------------------------------------------------------------------- (3.3.5) 

 

Compared with Eq. (3.2.2), Eq. (3.3.5.) is easy to use, for it does not require computing  ̂  for each 

observation. 

 

Since    ̂   
∑    

∑  
 , an alternative expression for computing ∑  ̂ 

  is 

∑  ̂ 
   ∑  

   
 ∑     

 

∑  
  ---------------------------------------------------------------------- (3.3.6) 

Note: The term number of degrees of freedom means the total number of observations in the sample (= n) less the number of 

independent (linear) constraints or restrictions put on them. In other words, it is the number of independent observations out of a 

total of n observations. The general rule is this: df = (n − number of parameters estimated). 

 

Note that the positive square root of  ̂   

 ̂   √
∑  ̂ 

 

   
 ------------------------------------------------------------------------ (3.3.7) 

is known as the standard error of estimate or the standard error of the regression (se). It is simply the 

standard deviation of the Y values about the estimated regression line and is often used as a summary 

measure of the “goodness of fit” of the estimated regression line. 

 

Note the following features of the variances (and therefore the standard errors) of  ̂  and  ̂ . 

1 The variance of   ̂  is directly proportional to    but inversely proportional to∑  
 . 

2 The variance of   ̂   is directly proportional to     and ∑  
  but inversely proportional to∑  

  and the 

sample size n. 
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A NUMERICAL EXAMPLE 

We illustrate the econometric theory developed so far by considering the Keynesian consumption 

function discussed in the Introduction. As a test of the Keynesian consumption function, we use the 

sample data of Table 2.2a, which for convenience is reproduced as Table 3.2.  

Table 3.2: hypothetical data on weekly family consumption expenditure Y and weekly family   income X 

Y($) X($) 

70 80 

65 100 

90 120 

95 140 

110 160 

115 180 

120 200 

140 220 

155 240 

150 260 

 

Table 3.3 raw data based on table 3.2 

 
  

   
 

  

   
 

    

   
 

  
 

   
 

          ̅
   

 
          ̅

   
 

  
 

   
 

    

    
 ̂ 

   
 

 ̂        ̂ 
    

 

 70 80 5600 6400 -90 -41 8100 3690 65.1818 4.8181 

 65 100 6500 10000 -70 -46 4900 3220 75.3636 -10.3636 

 90 120 10800 14400 -50 -21 2500 1050 85.5454 4.4545 

 95 140 13300 19600 -30 -16 900 480 95.7272 -0.7272 

 110 160 17600 25600 -10 -1 100 10 105.9090 4.0909 

 115 180 20700 32400 10 4 100 40 116.0909 -1.0909 

 120 200 24000 40000 30 9 900 270 125.2727 -6.2727 

 140 220 30800 48400 50 29 2500 1450 136.4545 3.5454 

 155 240 37200 57600 70 44 4900 3080 145.6363 8.3636 

 150 260 39000 67600 90 39 8100 3510 156.8181 -6.8181 

Sum 1110 1700 205500 322000 0 0 33000 16800 
1109.9995 

≈ 1110.0 
0 

Mean 111 170 nc nc 0 0 nc nc 111 0 

 

 

 

 

The raw data required to obtain the estimates of the regression coefficients, their standard errors, etc., are 

given in Table 3.3. From these raw data, the following calculations are obtained. 

�̂�1 = �̅� - �̂�2�̅� 

     = 111 − 0.5091(170) 

�̂�2 = 
∑𝑥𝑖𝑦𝑖

∑𝑥𝑖
                                              

    = 16,800/33,000 = 0.5091 

Notes: ≈ symbolizes “approximately equal to”; nc means “not computed.” 
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 ̂1 = 24.4545                     var ( ̂1) = 41.1370            and            se ( ̂1) = 6.4138 

 ̂2 = 0.5091                       var ( ̂2) = 0.0013              and            se ( ̂2) = 0.0357 

                   cov ( ̂1,  ̂2) = −0.2172                      ̂  = 42.1591 

r
2
 = 0.9621                     r = 0.9809                                      df = 8 

 

The estimated regression line therefore is      

     ̂  = 24.4545 + 0.5091Xi 

The associated regression line are interpreted as follows: Each point on the regression line gives an 

estimate of the expected or mean value of Y corresponding to the chosen X value; that is,  ̂  is an estimate 

of E(Y | Xi). The value of  ̂2 = 0.5091, which measures the slope of the line, shows that, within the 

sample range of X between $80 and $260 per week, as X increases, say, by $1, the estimated increase in 

the mean or average weekly consumption expenditure amounts to about 51 cents. The value of  ̂1 = 

24.4545, which is the intercept of the line, indicates the average level of weekly consumption expenditure 

when weekly income is zero. 

 

3.3.1 PROPERTIES OF LEAST-SQUARES ESTIMATORS:  

THE GAUSS–MARKOV THEOREM 

 
Given the assumptions of the classical linear regression model, the least-squares estimates possess some 

ideal or optimum properties. These properties are contained in the well-known Gauss–Markov theorem. 

An estimator, say the OLS estimators  ̂2, is said to be a best linear unbiased estimator (BLUE) of β2 if the 

following hold: 

1 It is linear, that is, a linear function of a random variable, such as the dependent variable Y in the 

regression model. 

2 It is unbiased, that is, its average or expected value, E( ̂2), is equal to the true value, β2. 

3 It has minimum variance in the class of all such linear unbiased estimators; an unbiased estimator 

with the least variance is known as an efficient estimator. 

In the regression context it can be proved that the OLS estimators ( ̂1,  ̂2) are BLUE. 

 

3.4. REGRESSION THROUGH THE ORIGIN 

There are occasions when the two-variable PRF assumes the following form: 

Yi = β2Xi + ui -------------------------------------------------- (3.3.8) 
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In this model the intercept term is absent or zero, hence the name regression through the origin. How do 

we estimate models like (3.1.5)? To answer these questions, let us first write the SRF of (3.1.5), namely, 

Yi =  ̂2Xi +  ̂i ------------------------------------------------------- (3.3.9) 

 

Now applying the OLS method to (3.3.9), we obtain the following formulas for  ̂2 and its variance 

 ̂2 = 
∑     

   
          and                                      where    is estimated by  

 

The differences between the two sets of formulas should be obvious: In the model with the intercept term 

absent, we use raw sums of squares and cross products but in the intercept-present model, we use 

adjusted (from mean) sums of squares and cross products. Second, the df for computing  ̂  is (n − 1) in 

the model without intercept and (n − 2) in the model with intercept. 

3.5: STATISTICAL TESTS OF SIGNIFICANCE OF THE LEAST SQUARE ESTIMATES 

 

After estimation of the parameters, the next stage is to establish the criteria for judging the goodness of 

the parameter estimates. As indicated in chapter one, we divide the available criteria in to three groups: 

theoretical a prior criteria, statistical criteria and econometric criteria. The theoretical criteria (sign and 

size of the coefficients) are set by economic criteria and defined in the stage of the specification of the 

model. In this chapter, we develop the statistical criteria for the evaluation of the parameter estimates. 

 

The two most commonly used tests in econometrics are the following: 

1. The square of the correlation coefficient, r
2
, which is used to judge the explanatory power of the 

linear regression of Y on X. 

2. The standard error of the parameter estimated and is applied for judging the statistical reliability 

of the estimates of the regression coefficients  ̂1 and  ̂2. It provides a measure of the degree of 

confidence we attribute to the estimates  ̂1 and  ̂2 
 

3.5.1 THE COEFFICIENT OF DETERMINATION r 
2
: A MEASURE OF “GOODNESS OF FIT” 

After the estimation of the parameters and the determination of the least squares regression line, we need 

to know how good is the fit of this line to the sample observations of Y and X, i.e. we need to measure the 

dispersion of the observations around the regression line. If all the observations were to lie on the 

regression line, we would obtain a “perfect” fit, but this is rarely the case. Generally, there will be some 

positive  ̂i and some negative  ̂i. What is needed is that these residuals around the regression line are as 

small as possible. 

 

The coefficient of determination r
2
 (two-variable case) or R

2
 (multiple regression) is a summary measure 

that tells how well the sample regression line fits the data. r
2 
shows the percentage of the total variation of 

the dependent variable that can be explained by the independent variable X. 

var(β̂2) = 
      

ΣX 
      σ̂   

∑  ̂ 
  

𝑛  
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To compute this r
2
, we proceed as follows: Recall that 

Yi =  ̂  +  ̂i 

 

Or in the deviation form 

yi =  ̂  +  ̂i ---------------------------------------------------------------------------------------- (3.4.1) 

Squaring (4.1.1) on both sides and summing over the sample, we obtain 

∑  
  ∑  ̂ 

   ∑  ̂ 
    ∑  ̂  ̂   

∑  
  ∑  ̂ 

   ∑  ̂ 
   -------------------------------------------------- (3.4.2) 

∑  
   ̂ 

 ∑  
   ∑  ̂ 

   

Since ∑  ̂  ̂  = 0 (why?) and  ̂  =  ̂    

 

The various sums of squares appearing in (4.1.2) can be described as follows: 

 ∑  
   ∑      ̅   = total variation of the actual Y values about their sample mean, which may 

be called the total sum of squares (TSS). 

 ∑  ̂ 
   ∑  ̂    ̅̂  

   ∑  ̂    ̅  
   ̂ 

 ∑  
  = variation of the estimated Y values about their 

mean which is called sum of squares due to regression [i.e., due to the explanatory variable(s)], or 

explained by regression, or simply the explained sum of squares (ESS). 

 ∑  ̂ 
 = residual or unexplained variation of the Y values about the regression line, or simply the 

residual sum of squares (RSS). 
 

Thus, (4.1.2) is  

TSS = ESS + RSS ----------------------------------------------------------------- (3.4.3) 

 

and shows that the total variation in the observed Y values about their mean value can be partitioned into 

two parts, one attributable to the regression line and the other to random forces because not all actual Y 

observations lie on the fitted line. Geometrically, 
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           Fig. 4.1 Breakdown of the variation of Yi into two components 

 

Now dividing (3.4.3) by TSS on both sides, we obtain 

1 = 
   

   
  

   

   
 

   = 
∑  ̂    ̅  

 

∑      ̅  
  

∑  ̂ 
 

∑      ̅  
    

 

We now define r
2
 as 

r
2
 = 

∑  ̂    ̅  
 

∑      ̅  
  

   

   
 -------------------------------------------------------- (3.4.5)   

 

or, alternatively, as 

 

--------------------------------------------------------------------------------- (3.4.6) 

 

r
2
 can be computed more quickly from the following formula: 

r
2
 = 

   

   
 

∑  ̂ 
 

∑  
   

 ̂ 
 ∑  

 

∑  
   ̂ 

 (
∑  

 

∑  
 ) ------------------------------------------- (3.4.7) 

If we divide the numerator and the denominator of (4.1.7) by the sample size n (or n − 1 if the sample 

size is small), we obtain 

�̅� 

𝑋𝑖  0 

𝑌𝑖  

�̂�1
 + �̂�2Xi 

SRF 

�̂�𝑖 

Y 

X 

𝑌𝑖   �̅� = total 

�̂�𝑖   �̅�𝑖 = due to regression 

�̂�𝑖 = due to residual 

r2 = 1 - 
∑ �̂�𝑖

 

∑ 𝑌𝑖  �̅�  
 

    = 1 - 
   

   
 

--------------------------------------- (3.4.4) 
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r
2
 =  ̂ 

 (
  
 

  
 ) ------------------------------------------------------------------------- (3.4.8) 

where   
  and   

  are the sample variances of Y and X, respectively. 

 

Since   ̂  ∑    ∑  
 ⁄  Eq. (4.1.7) can also be expressed as 

r 
2 
= 

 ∑     
 

∑  
 ∑  

  -------------------------------------------------------------------------------- (3.4.9) 

 

Two properties of r
2
 may be noted: 

1. It is a nonnegative quantity. (Why?) 

2. Its limits are 0 ≤ r
2
≤ 1. An r

2
 of 1 means a perfect fit, that is,  ̂  = Yi for each i. On the other hand, 

an r
2
 of zero means that there is no relationship between the regressand and the regressor 

whatsoever (i.e.,  ̂   = 0). 
 

A quantity closely related to but conceptually very much different from r
2 

is the coefficient of 

correlation, which is a measure of the degree of association between two variables. It can be computed 

either from 

r = ±√    ---------------------------------------------------------------------------------- (3.4.10) 

 

or from its definition 

r = 
∑    

√ ∑  
   ∑  

  

  

r = 
 ∑         ∑    ∑   

√[ ∑X 
    ∑X  

 ][ ∑  
    ∑   

 ]

 

 

Some of the properties of r are as follows: 

1. It can be positive or negative, the sign depending on the sign of the term in the numerator 

2. It lies between the limits of −1 and +1; that is, −1 ≤ r ≤ 1. 

3. It is symmetrical in nature; that is, the coefficient of correlation between X and Y (rXY) is the same 

as that between Y and X (rYX). 

4. It is a measure of linear association or linear dependence only; it has no meaning for describing 

nonlinear relations like Y = X
2
 

 

Example: 1 Find the value of r
2 
for the numerical example given 0n table 3.2 and interpret it? 

 

 r
2
 = 0.9621 and r = 0.9809                                       

-------------------------------------------- (3.4.11) 
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The value of r
2
 of 0.9621 means that about 96 percent of the variation in the weekly consumption 

expenditure is explained by income. The coefficient of correlation of 0.9809 shows that the two variables, 

consumption expenditure and income, are highly positively correlated. 

 

Reporting the results of regression analysis 

It has become customary to write all the results of regression analysis by writing out the estimated 

regression equation with all the values estimated (the standard errors, r
2
, …) with the standard errors of 

the regression parameters put in parenthesis just under the respective values as shown below.  

   ̂  =
 ̂ 

     ̂   
  

 ̂   

     ̂   
 , r

2
 = …,  ̂  = …, n = … 

 

3.5.2. TEST OF SIGNIFICANCE OF THE PARAMETER ESTIMATES  

 
The classical theory of statistical inference consists of two branches, namely, estimation and 

hypothesis testing. We have thus far covered the topic of estimation of the parameters of the (two 

variable) linear regression model. Note that, since these are estimators, their values will change from 

sample to sample. Therefore, these estimators are random variables. Since  ̂ ,  ̂ , and  ̂  are random 

variables, we need to find out their probability distributions, for without that knowledge we will not be 

able to relate them to their true values. 

 

To find out the probability distributions of the OLS estimators, we proceed as follows. Specifically, 

consider  ̂ ,. It can be shown as 

 ̂  = ∑     --------------------------------------------------------------------------------------- (3.5.1) 

 

where     
  

∑  
 . But since the X‟s are assumed fixed, or nonstochastic, Eq. (3.5.1) shows that  ̂  is a 

linear function of Yi, which is random by assumption. But since Yi = β1 + β2Xi + ui, we can write (3.5.1) 

as 

 ̂  = ∑               -------------------------------------------------------------------- (3.5.2) 

 

Because ki, the betas, and Xi are all fixed,  ̂  is ultimately a linear function of the random variable ui, 

which is random by assumption. Therefore, the probability distribution of  ̂  (and also of  ̂ ) will depend 

on the assumption made about the probability distribution of ui. 

 

With the assumption that ui follow the normal distribution, the OLS estimators have the following 

properties; 

  ̂  (being a linear function of ui) is normally distributed with 
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Mean: E( ̂   =    --------------------------------------------------------------------- (3.5.3) 

var( ̂  :   ̂ 

 = 
∑  

  

 ∑  
  

  ---------------------------------------------------------------- (3.5.4) 
 

Or more compactly, 

 ̂ ~ N(  ,  
 ̂ 

 ) 
 

 Then by the properties of the normal distribution the variable Z, which is defined as 

Z = 
 ̂    

  ̂ 

 ------------------------------------------------------------------------------- (3.5.5) 
 

follows the standard normal distribution, that is, a normal distribution with zero mean and unit ( = 

1) variance, or Z ∼ N(0, 1) 
 

  ̂  (being a linear function of ui) is normally distributed with 

Mean: E( ̂ ) =    --------------------------------------------------------------------- (3.5.6) 

var( ̂ ):  
 ̂ 

 = 
  

∑  
  --------------------------------------------------------------------- (3.5.7) 

 

Or, more compactly, 

 ̂  ~ N(  ,  
 ̂ 

 ) 
 

 Then Z = 
 ̂    

  ̂ 

  ------------------------------------------------------------------------ (3.5.8) 

also follows the standard normal distribution. 

 (n − 2)( ̂ /σ
2
) is distributed as the χ

2
 (chi-square) distribution with (n − 2)df. 

 

 The important point to note is that the normality assumption enables us to derive the 

probability, or sampling, distributions of  ̂ and  ̂  (both normal) and  ̂  (related to the chi 

square). This simplifies the task of establishing confidence intervals and testing (statistical) 

hypotheses. 
 

3.5.3 CONFIDENCE INTERVALS FOR REGRESSION ESTIMATES 

The theory of estimation consists of two parts: point estimation and interval estimation. We have 

discussed point estimation thoroughly previously where we introduced the OLS method of point 

estimation. In this section we first consider interval estimation and then take up the topic of hypothesis 

testing, a topic intimately related to interval estimation. 

 

In order to define how close to the estimate the true parameter lies, we must construct confidence 

intervals for the true parameter, in other words we must establish limiting values around the estimates 

within which the true parameter is expected to lie with a certain degree of confidence. In this respect we 

say that with a given probability the population parameter will be within the defined confidence interval 

or confidence limits. 

 

How are the confidence intervals constructed? If the sampling or probability distributions of the 

estimators are known, one can make confidence interval statements. We choose a probability in advance 

and refer to it as the confidence level (confidence coefficient). It is customary in econometrics to choose 

the 95 percent confidence level. This means that in repeated sampling the confidence limits, computed 

from the sample, would include the true population parameter in 95 percent of the cases. In other 5 

percent of the cases the population parameter will fall outside the confidence limits.   
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Confidence interval from the standard normal distribution  

Z distribution will be employed either if we know the true standard deviation    ̂  
, or when we have a 

large sample (n > 30), because, for large samples, the sample standard deviation, se, is a reasonably good 

estimate of the unknown population standard deviation.  

 The Z statistic for  ̂  is  

  
 ̂      

   ̂  

 

 

Our first task is to choose a confidence coefficient designated by α. We next look at the standard normal 

table and find out the probability of the value of Z lying between    

 
 and   

 
 is 1- α. This may be written 

as follows 

P{   

 
      

 
} = 1- α 

 

Substituting Z =   ̂          ̂  
⁄  and rearranging slightly, we get 

P,   

 
 

 ̂      

   ̂  

    

 
- = 1- α 

P{ ̂     

 
   ̂  

       ̂      

 
   ̂  

} = 1- α 

 

Thus the (1- α)100  percent confidence interval for    is 

 ̂     
 
   ̂  

       ̂      
 
   ̂  

 

or 

   =  ̂  ±   

 
   ̂  

 

 

The meaning of the confidence interval is that the unknown population parameter,   , will lie within the 

defined limits (1- α)100 times out of 100. 
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Example: 2 If   ̂  = 8.4 and    ̂  
 = 2.2, choosing a value of 95 percent for the confidence coefficient, 

construct confidence interval for    and interpret it? 

 

Confidence interval from the student’s t distribution  

The student‟s t distribution is applicable when  

 The population variance is unknown, and the sample with which we work is small (n < 30) 

provided that the population of the parameters is normal  

 

In econometric applications the true variances of the estimates,  
 ̂ 

 and  
 ̂ 

 , are unknown, because they 

involve the true variance of the random term,   , which is unknown. We may, however, use the unbiased 

estimate  ̂  = ∑  
    ⁄  (K is number of parameters estimated) and obtain estimates of the variances of 

the coefficients,   
 ̂ 

  and   
 ̂ 

 . 

 

The t distribution is always symmetric, with mean equal to zero and variance       ⁄ , which 

approaches unit when n is large. Clearly as n increases, the t distribution approaches the Standard Normal 

distribution Z ~ N(0,1). 

 

The procedure for constructing a confidence interval with the t distribution is similar to the one outlined 

earlier with the main difference that in this case we must take in to account the degrees of freedom.  

The t statistic for  ̂  is  

t = 
 ̂      

    ̂  

. 

 

We first choose a confidence coefficient α. We next look at the t table and find out the probability of the 

value of t lying between    
 
 and   

 
 with n – K degrees of freedom is 1- α. This may be written as follows 

P{   
 
      

 
} = 1- α 

 

Substituting t =   ̂           ̂  
⁄  and rearranging slightly, we get 

P,   
 
 

 ̂      

    ̂  

    
 
- = 1- α 

P{ ̂     
 
    ̂  

       ̂      
 
    ̂  

} = 1- α 
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Thus the (1- α)100  percent confidence interval for    is 

 ̂     
 
    ̂  

       ̂      
 
    ̂  

 with n – K degrees of freedom 

or 

   =  ̂  ±   
 
    ̂  

 with n – K degrees of freedom 

 

The meaning of the confidence interval is that the unknown population parameter,   , will lie within the 

defined limits  ̂  ±   
 
    ̂  

 with n – K degrees of freedom (1- α)100 times out of 100. 

 

Example: 3 Suppose we have estimated the following regression line from a sample of 20 observations. 

 ̂ = 
     
      

  
     
      

 

Construct confidence interval for  ̂  and  ̂  and give interpretation for each? 

 

CONFIDENCE INTERVAL FOR σ
2 

As pointed out in Section 3.5.2 under the normality assumption, the variable 

𝜒2
 = (n-2)

 ̂ 

   

 

follows the χ
2
 distribution with n − 2 df.  Therefore, we can use the χ

2
 distribution to establish a 

confidence interval for σ
2
  

P{      ⁄
   𝜒   𝜒  ⁄

 } = 1-𝛼 

 

where the χ
2
 value in the middle of this double inequality is as given by the above equation and where 

      ⁄
  and 𝜒  ⁄

  are two values of χ
2 

(the critical  χ
2 

values) obtained from the chi-square table for n − 2 

df. 

 

Substituting χ
2
 = (n-2)

 ̂ 

   and rearranging the terms, we obtain 

P{     
 ̂ 

   ⁄
            

 ̂ 

      ⁄
 } = 1-𝛼 
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which gives the 100(1 − α)% confidence interval for σ
2
. 

 

Example: 4 If   ̂  = 42.1591 and df = 8, then construct confidence interval for σ
2
 taking 𝛼 =5% and 

interpret it? 

 

3.7. HYPOTHESIS TESTING 

 
The concept of statistical hypothesis testing may be stated simply as follows: Is a given observation or 

finding compatible with some stated hypothesis or not? The word “compatible,” as used here, means 

“sufficiently” close to the hypothesized value so that we do not reject the stated hypothesis. 
 

There are two mutually complementary approaches for devising such rules, namely, confidence interval 

and test of significance. In the confidence-interval procedure we try to establish a range or an interval 

that has a certain probability of including the true but unknown βi, whereas in the test-of-significance 

approach we hypothesize some value for βi and try to see whether the computed  ̂  lies within reasonable 

(confidence) limits around the hypothesized value. 

 

In general, the following are the steps involved in testing a statistical hypothesis: 

Step 1. State the null hypothesis H0 and the alternative hypothesis H1  

(e.g., H0: μ = 69 and H1: μ ≠ 69). 

Step 2. Select the test statistic (e.g.,  ̅). 

Step 3. Determine the probability distribution of the test statistic (e.g.,  ̅ ~N(μ, σ
2
/n). 

Step 4. Choose the level of significance (i.e., the probability of committing a type I error) α.
2 

Step 5. Using the probability distribution of the test statistic, establish a 100(1 − α)% confidence 

interval. If the value of the parameter under the null hypothesis (e.g., μ = μ* = 69) lies in this confidence 

region, the region of acceptance, do not reject the null hypothesis. But if it falls outside this interval (i.e., 

it falls into the region of rejection), you may reject the null hypothesis. Keep in mind that in not rejecting 

or rejecting a null hypothesis you are taking a chance of being wrong α percent of the time. 

 

In practice, there is no need to estimate the confidence interval explicitly. One can compute the test 

statistic and see whether it lies within the acceptance or rejection (critical) region.  We can summarize the 

t test of significance approach to hypothesis testing as shown in Table 4.1. 
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•• Table 4Table 4--1: Decision Rule for t1: Decision Rule for t--test of significancetest of significance

t < - t,df2 < 2*2 2*Left-tail

t > t,df2 > 2*2  2*Right-tail

|t| > t/2,df2 # 2*2 = 2*Two-tail

Reject H0

if

H1H0
Type of 

Hypothesis

 

Notes:   
  is the hypothesized numerical value of β2. 

|t | means the absolute value of t. 

tα or    ⁄  means the critical t value at the α or α/2 level of significance. 

df: degrees of freedom, (n − 2) for the two-variable model, (n − 3) for the three variable model, and so on. 

The same procedure holds to test hypotheses about β1 and to undertake Z-test. 

 

Example: 5 Suppose that from a sample of size n = 20, we estimate the following consumption function 

 ̂ = 
   

      
+ 

     
      

 

Test the hypothesis H0:    = 0. 

 

Example: 6 Suppose  ̂ = 29.48 and    ̂  
 = 36.0. Test the hypothesis H0:   = 25.0. 

 

The χ
2
 test of significance approach to hypothesis testing is summarized in Table 4.2. 

 

Table 4.2: A summary of the 𝜒2 
test 

Types of hypothesis H1:  the alternative hypothesis Critical region: reject Ho if  

      
     >   

      ̂  

  
  >      

  

      
     <   

      ̂  

  
  <        

  

   =   
     ≠   

    
    ̂  

  
  >    ⁄    

   or  <        ⁄    
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Note:   
  is the value of σ

2
 under the null hypothesis. The first subscript on χ

2
 in the

 
last column is the level of 

significance, and the second subscript is the degrees of
 
freedom. These are critical chi-square values. 

 

In statistics, when we reject the null hypothesis, we say that our finding is statistically significant. On the 

other hand, when we do not reject the null hypothesis, we say that our finding is not statistically 

significant. 

 

We use two-sided hypothesis test when we do not have a strong a priori or theoretical expectation about 

the direction in which the alternative hypothesis should move from the null hypothesis. Sometimes we 

have a strong a priori or theoretical expectation (or expectations based on some previous empirical work) 

that the alternative hypothesis is one-sided or unidirectional rather than two-sided, and we use in this case 

one sided hypothesis test. 

 

The “Zero” Null Hypothesis and the “2-t” Rule of Thumb 

A null hypothesis that is commonly tested in empirical work is H0: β2 = 0, that is, the slope coefficient is 

zero. The objective of “zero” null hypothesis is to find out whether Y is related at all to X, the explanatory 

variable. If there is no relationship between Y and X to begin with, then testing a hypothesis such as β2 = 

0.3 or any other value is meaningless. This null hypothesis can be easily tested by the confidence interval 

or the t-test approach discussed in the preceding sections. But very often such formal testing can be 

shortcut by adopting the “2-t” rule of significance, which may be stated as 

 

 

 

 

 

This statement assumes a two-tail test conducted at 5 percent level of significance. 

 

Example: 7 Suppose that we have estimated the following supply function from a sample of 700 

observations (n = 700) 

Y = 
   
    

 + 
     
     

 

Conduct the Z-test for the hypothesis H0:   = 0? 

 

“2-t” Rule of Thumb. If the number of degrees of freedom is 20 or more and if α, the level of 

significance, is set at 0.05, then the null hypothesis βi = 0 can be rejected if the t value  

[ = 
β̂ 

   β̂  

)] computed from t = 
β̂    β 

   β̂  

 exceeds 2 in absolute value. 
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4. MULTIPLE REGRESSIONS 

 

The two-variable model studied extensively in the previous chapter is often inadequate in 

practice. In our consumption–income example, for instance, it was assumed implicitly that only 

income X affects consumption Y. But economic theory is seldom so simple for, besides income, 

a number of other variables are also likely to affect consumption expenditure. An obvious 

example is wealth of the consumer. Therefore, we need to extend our simple two-variable 

regression model to cover models involving more than two variables. Adding more variables 

leads us to the discussion of multiple regression models, that is, models in which the dependent 

variable, or regressand, Y depends on two or more explanatory variables, or regressors. The 

simplest possible multiple regression model is three-variable regression, with one dependent 

variable and two explanatory variables. 

In this chapter we shall extend the simple linear regression model to relationships with two 

explanatory variables and consequently to relationships with any number of explanatory 

variables. 

4.1 MODELS WITH TWO EXPLANATORY VARIABLES  

4.1.1 The normal equations 

The population regression model with two explanatory variables is given as 

                      ,      i = 1, 2, …, n -------------------------------- (4.1.1) 

 

 

    is the intercept term which gives the average values of Y when   and   are zero. 

    and    are called the partial slope coefficient, or partial regression coefficients. 

    measures the change in the mean value of Y resulting from a unit change in the    

given   (i.e. holding the value of   constant). Or equivalently   measures the direct or 

net effect of  a unit change in   on the mean value of Y( net of any effect that   may 

have on the mean of Y). The interpretation of    is also similar. 

 

To complete the specification of our simple model we need some assumptions about the random 

variable u. These assumptions are the same as in the single explanatory variable model 

developed in chapter 3. That is: 

 Zero mean value of   , or E(  |   ,    ) = 0 for each i  

 No serial correlation, or cov(  ,   ) = 0   where  i ≠ j  

 Homoscedasticity, or var(  ) =     

 Normality of     i.e    ∼ N(0,   ) 

Random 

component 

Systematic 

component  
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 Zero covariance between    and each X variable, or cov(  ,    ) = cov(  ,    ) = 0  

 No specification bias, or the model is correctly specified  

 No exact collinearity between the X variables, or no exact linear relationship between 

  and    

__________________________ 

For notational symmetry, Eq. (4.1.1) can also be written as                          with the provision that 

    = 1 for all i. 

The assumption of no collinearity is a new one and means the absence of possibility of one of the 

explanatory variables being expressed as a linear combination of the other. Existence of exact 

linear dependence between    and    would mean that we have only one independent variable in 

our model than two. If such a regression is estimated there is no way to estimate the separate 

influence of        and        on Y, since such a regression gives us only the combined 

influence of   and   on Y. 

To see this suppose        then 

                       

                           

                      

       𝛼       ,   where 𝛼 =          

Estimating the above regression yields the combined effect of    and    as represented by 

𝛼           where there is no possibility of separating their individual effects which are 

represented by    and   . 

This assumption does not guarantee there will not be correlations among the explanatory 

variables; it only means that the correlations are not exact or perfect, as it is not impossible to 

find two or more (economic) variables that may not be correlated to some extent. Likewise the 

assumption does not guarantee absence of non-linear relationships among X‟s either.    

Having specified our model we next use sample observations on Y,    and    and obtain 

estimates of the true parameters   ,    and   : 

 ̂   ̂   ̂      ̂     

where  ̂ ,  ̂ ,  ̂  are estimates of the true parameters   ,    and    of the relationship. 

As before, the estimates will be obtained by minimizing the sum of squared residuals 

∑  ̂ 
   ∑     ̂  

   ∑      ̂   ̂      ̂      
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A necessary condition for this expression to assume a minimum value is that its partial 

derivatives with respect to  ̂ ,  ̂ , and  ̂  be equal to zero: 

 ∑      ̂   ̂      ̂      
  

  ̂ 

 

 ∑      ̂   ̂      ̂      
 

  ̂ 

 

 ∑      ̂   ̂      ̂      
 

  ̂ 

 

Performing the partial differentiations we get the following system of three normal equations in 

three unknown parameters  ̂ ,  ̂ , and  ̂  

∑     ̂   ̂ ∑      ̂ ∑     

∑        ̂ ∑     ̂ ∑   
   ̂ ∑        

∑        ̂ ∑     ̂ ∑        ̂ ∑   
   

From the solution of this system (by any method, for example using determinants) we obtain 

values for  ̂ ,  ̂ , and  ̂ . 

 

Also by solving the system of normal equations 

∑        ̂ ∑   
   ̂ ∑        

∑        ̂ ∑        ̂ ∑   
   

 

The following formulae, in which the variables are expressed in deviations from their mean, may 

be obtained for estimating the values of the parameter estimates. 

 ̂   ̅   ̂  ̅   ̂  ̅   

 ̂  
 ∑       ∑   

    ∑       ∑       

 ∑   
   ∑   

    ∑       
 

  

 ̂  
 ∑       ∑   

    ∑       ∑       

 ∑   
   ∑   

    ∑       
   

where          ̅,             ̅    and            ̅   

----------- (4.1.2) 

-------------------------------------------- (4.1.3) 

------------------------------------- (4.1.4) 
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4.1.2 The coefficient of multiple determination (or the squared multiple correlation 

coefficient)    

In the two-variable case we saw that r
2
 measures the goodness of fit of the regression equation; 

that is, it gives the proportion or percentage of the total variation in the dependent variable Y 

explained by the (single) explanatory variable X. This notation of r
2
 can be easily extended to 

regression models containing more than two variables. Thus, in the three variable model we 

would like to know the proportion of the variation in Y explained by the variables X2 and X3 

jointly. The quantity that gives this information is known as the multiple coefficient of 

determination and is denoted by R
2
; conceptually it is akin to r

2
. 

   
∑  ̂ 

∑  
  

∑  ̂   ̅  

∑    ̅  
   

∑  ̂ 
 

∑  
 

   
 ̂ ∑       ̂ ∑     

∑  
                   

The value of R
2
 lies between 0 and 1. The higher R

2
 the greater the percentage of the variation of 

Y explained by the regression plane, that is, the better the „goodness of fit‟ of the regression 

plane to the sample observations. The closer R
2
 to zero, the worse the fit. 

4.1.3 The mean and variance of the parameter estimates  ̂ ,  ̂ , and  ̂   

The mean of the estimates of the parameters in the three-variable model is derived in the same 

way as in the two-variable model. The estimates  ̂ ,  ̂ , and  ̂  are unbiased estimates of the true 

parameters of the relationship between Y, X2 and X3: their mean expected value is the true 

parameter itself. 

   ̂                             ̂                           ̂      

The variance of the parameter estimates are obtained by the following formulae 

     ̂    ̂ *
 

 
 

 ̅ 
  ∑    

   ̅  
 ∑   

    ̅  ̅ ∑       

 ∑    
   ∑   

    ∑        
+ 

     ̂    ̂ 
∑   

 

 ∑   
   ∑   

    ∑        
 

     ̂    ̂ 
∑   

 

 ∑   
   ∑   

    ∑        
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where  ̂  ∑  ̂ 
      ⁄ , K being the total number of parameters which are estimated. In the 

three-variable model K = 3.  

  

4.2 THE GENERAL LINEAR REGRESSION MODEL 

 

In this section we will extend the method of least squares to models including any number 𝓀 of 

explanatory variables. There are some rule of thumb by which we can derive (a) the normal 

equations, (b) the coefficients of multiple determination, (c) the variances of the coefficients, for 

relationships including any number of explanatory variables.  

4.2.1 Derivations of the normal equations 

The general linear regression model with 𝓀 explanatory variables is of the form  

                             

 

There are K parameters to be estimated (K = 𝓀+1). Clearly the system of normal equations will 

consist of K equations, in which the unknowns are the parameters  ̂ ,  ̂ ,  ̂ , …,  ̂ , and the 

known terms will be the sums of squares and the sums of products of all the variables in the 

structural equation. 

In order to derive the K normal equations without the formal differentiation procedure, we start 

from the equation of the estimated relationship 

    ̂   ̂        ̂      ̂  

and we make use of the assumptions 

∑  ̂    and ∑          where (j = 1, 2, 3, …, K) 

The normal equations for a model with any number of explanatory variables may be derived in a 

mechanical way, without recourse to differentiation. We will introduce a practical rule of thumb, 

derived by inspection of the normal equations of the two-variable and the three-variable models. 

We begin by rewriting these normal equations. 

1. Model with one explanatory variables 

Structural form                

Estimated form     ̂   ̂      ̂  

 

             Normal equations  

  ∑𝑌𝑖  𝑛�̂�  �̂� ∑𝑋 𝑖  

  ∑𝑋 𝑖𝑌𝑖  �̂� ∑𝑋 𝑖  �̂� ∑𝑋 𝑖
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2. Models with two explanatory variables 

Structural form                      

Estimated form     ̂   ̂      ̂      ̂  

 

              

             Normal equations   

Comparing the normal equations of the above models, we can generalize the procedure to find 

the K
th

 equation of the normal equations for the K-variable model which may be obtained by 

multiplying the estimated form of the K-variable model by     and then summing over all 

sample observations. The estimated form of the model is 

    ̂   ̂      ̂        ̂      ̂  

Multiplication through by     yields 

 

       ̂      ̂         ̂           ̂    
   ̂     

 

and summation over the n sample observation gives the required K
th

 equation  

∑         ̂ ∑     ̂  ∑        ̂ ∑          ̂ ∑   
   

given that by assumption ∑  ̂        

The generalization of the linear regression model with the variables expressed in deviations from 

their means is the same. Thus the estimated form of the K-variable model in deviation form is 

    ̂      ̂        ̂      ̂  

The K
th 

equation is derived by multiplying through the estimated form by     and summing over 

all the sample observations 

∑       ̂ ∑        ̂ ∑          ̂ ∑   
    

 

4.2.2 Generalization of the formula for R
2 

  The generalization of the formula of the coefficient of multiple determination may be derived 

by inspection of the formulae of R
2
 for the two-variable and three-variable models.  

1. Model with one explanatory variable 

     

  
 ̂ ∑     

∑  
  

 

 

  ∑𝑌𝑖  𝑛�̂�  �̂� ∑𝑋 𝑖  �̂� ∑𝑋 𝑖  

  ∑𝑌𝑖𝑋 𝑖  �̂� ∑𝑋 𝑖  �̂� ∑𝑋 𝑖
  �̂� ∑𝑋 𝑖𝑋 𝑖  

∑𝑌𝑖𝑋 𝑖  �̂� ∑𝑋 𝑖  �̂� ∑𝑋 𝑖𝑋 𝑖  �̂� ∑𝑋 𝑖
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2. Model with two explanatory variables 

       

  
 ̂ ∑       ̂ ∑     

∑  
  

 

By inspection we see that for each additional explanatory variable the formula of the squared 

multiple correlation coefficients includes an additional term in the numerator, formed by the 

estimate of the parameter corresponding to the new variable multiplied by the sum of products of 

the deviations of the new variable and the dependent one. For example, the formula of the 

coefficient of multiple determinations for the K-variable model is 

        

  
 ̂ ∑       ̂ ∑         ̂ ∑    

∑  
  

 

4.2.3 The adjusted coefficient of determination:  ̅  

The inclusion of additional explanatory variables in the function can never reduce the 

coefficients of multiple determination and will usually raise it. By introducing a new regressor 

we increase the value of the numerator of the expression for R
2
, while the denominator remain 

the same (∑  
  the total variations of Yi is given in any particular sample). 

To correct for this defect we adjust R
2
 by taking into account the degrees of freedom, which 

clearly decrease as new regressors are introduced in the function. The expression for the adjusted 

coefficient of multiple determination is:  

 ̅          
   

   
      

or 

 ̅    *
∑  

      ⁄

∑  
      ⁄

+ 

where R
2 

is the unadjusted multiple correlation coefficient, n is the number of sample 

observations and K is the number of parameters estimated from the sample. If n is large  ̅  and 

R
2
 will not differ much. But with small samples, if the number of regressors (X‟s) is large in 

relation to the sample observations,  ̅  will be much smaller than R
2
 and can even assume 

negative values, in which case  ̅  should be interpreted as being equal to zero. 
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4.2.4 Generalization of the formulae of the variances of the parameter estimates  

The generalization of the formulae of the variances of the parameter estimates is facilitated by 

the use of determinants. In the preceding sections we have developed the formulae of the 

variances of the estimates for models with one and two explanatory variables. 

1. Model with one explanatory variable 

     ̂     
 

∑   
  

2. Model with two explanatory variables 

     ̂     
∑   

 

 ∑   
   ∑   

    ∑       
 
 
 

     ̂     
∑   

 

 ∑   
   ∑   

    ∑       
 
 
 

 

The above expressions may be written in the form of determinants as follows. The normal 

equations of the model with two explanatory variables, written in deviation form, are 

 ∑         ̂  ∑   
    ̂  ∑         

 ∑        ̂  ∑         ̂  ∑   
    

 

The terms in the parentheses are the „knowns‟ which are computed from the sample 

observations, while  ̂  and  ̂  are the unknowns. The known terms appearing on the right-hand 

side may be written in the form of a determinant 

|
∑    

 ∑      

∑      ∑   
  

|  | |  

 

The variance of each parameter is the product of    multiplied by the ratio of the minor 

determinant
1
 associated with this parameters divided by the (complete) determinant.    

Thus  
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     ̂      
|

∑   
 ∑      

∑      ∑   
  

|

|
∑   

 ∑      

∑      ∑   
  

|

    
∑   

 

|
∑   

 ∑      

∑      ∑   
  

|

    
∑   

 

 ∑   
   ∑   

    ∑       
  

 

     ̂      
|

∑   
 ∑      

∑      ∑   
  

|

|
∑   

 ∑      

∑      ∑   
  

|

    
∑   

 

|
∑   

 ∑      

∑      ∑   
  

|

    
∑   

 

 ∑   
   ∑   

    ∑       
  

 

Examing the above expressions of the variances of the coefficient estimates we may generalize 

as follows. The variances of the estimates of the model including 𝓀-explanatory variables can be 

computed by the ratio of two determinants: the determinant appearing in the numerator is the 

minor formed after striking out the row and column of the terms corresponding to the coefficient 

whose variance is being computed; the determinant appearing in the denominator is the complete 

determint of the known terms appearing on the rihgt-hand side of the normal equations. For 

example the variance of  ̂  is given by the following expression. 

     ̂      

|
|

∑   
 ∑       ∑      

∑      ∑   
        ∑      

   
∑      ∑      ∑   

 

|
|

|
|

∑   
 ∑       ∑      

∑      ∑   
        ∑      

   
∑      ∑      ∑   

 

|
|

 

Example 1 

The table below contains observations on the quantity demanded (Y) of a certain commodity, its 

price (X2) and consumers‟ income (X3). Fit a linear regression to these observations and test the 

overall goodness of fit (with R
2
) as well as the statistical reliability of the estimates  ̂   ̂   ̂ .  

Quantity 

demanded 

100 75 80 70 50 65 90 100 110 60 

Price  5 7 6 6 8 7 5 4 3 9 

Income 1,000 600 1,200 500 300 400 1,300 1,100 1,300 300 

____________________ 

1
The minor determinant for each parameter is formed by the elements of the determinant left after striking out the 

row and column including the parameter 
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5.3 HYPOTHESIS TESTING IN MULTIPLE REGRESSION: 

Once we go beyond the simple world of the two-variable linear regression model, hypothesis 

testing assumes several interesting forms, such as the following: 

1. Testing hypotheses about an individual partial regression coefficient 

2. Testing the overall significance of the estimated multiple regression model, that is, 

finding out if all the partial slope coefficients are simultaneously equal to zero  

 

Hypothesis testing about individual regression coefficients 

The procedure for testing the significance of the partial regression coefficients is the same as that 

discussed for the two-variable case, i.e. we just use the t-test (or Z-test) to test a hypothesis about 

any individual partial regression coefficient. 

Assuming   ∼        ,  the estimators  ̂ ,  ̂ , and  ̂  are BLUE and normally distributed with 

means equal to true   ,   , and    and the variances given in section 5.2.4. Furthermore, 

      ̂   ⁄  follows the χ
2
 distribution with n − 3 df. 

Upon replacing    by its unbiased estimator  ̂  in the computation of the standard errors, each 

of the following variable 

  
 ̂    

    ̂  
 

  
 ̂    

    ̂  
 

  
 ̂    

    ̂  
 

follows the t distribution with n− 3 df. 

Therefore, the t distribution can be used to establish confidence intervals as well as test statistical 

hypotheses about the true population partial regression coefficients. Similarly, the χ
2
 distribution 

can be used to test hypotheses about the true   . 

To illustrate the procedure consider the following test 

        

                                                 i = 1, 2, …, K 
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 ̂ 

    ̂  
∼      , K = 𝓀 + 1 = number of variables. Similarly the 100(1-𝛼) percent level of 

confidence interval for    will be given by     ̂     ⁄         ̂       [   ] 

 

Example 2    

A production function is estimated as  

 ̂  
   

      
 

     

       
 

     

       
             

      
    

       

where   = labor,   = capital, and Y = output 

 

Test the hypothesis     ,      at 𝛼 = 5% using the test of significance and confidence 

interval approach 

Testing the overall significance of the sample regression 

Throughout the previous section we were concerned with testing the significance of the 

estimated partial regression coefficients individually, that is, under the separate hypothesis that 

each true population partial regression coefficient was zero. But now consider the following 

hypothesis: 

           

This null hypothesis is a joint hypothesis that    and    are jointly or simultaneously equal to 

zero. A test of such a hypothesis is called a test of the overall significance of the observed or 

estimated regression line, that is, whether Y is linearly related to both    and   . Can the joint 

hypothesis given above be tested by testing the significance of  ̂  and  ̂  individually as in the 

previous section? The answer is no, and the reasoning is as follows. 

In testing the individual significance of an observed partial regression coefficient, we assume 

implicitly that each test of significance was based on a different (i.e., independent) sample. But 

to test a joint hypothesis, if we use the same sample data, we shall be violating the assumption 

underlying the test procedure. 

In other words, although the statements 

 [ ̂     ⁄     ̂       ̂     ⁄     ̂  ]    𝛼 

 [ ̂     ⁄     ̂       ̂     ⁄     ̂  ]    𝛼 
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are individually true, it is not true that the probability that the intervals 

[ ̂     ⁄     ̂    ̂     ⁄     ̂  ] 

simultaneously include    and    is   𝛼  , because the intervals may not be independent 

when the same data are used to derive them. To state the matter differently, testing a series of 

single [individual] hypotheses is not equivalent to testing those same hypotheses jointly. The 

intuitive reason for this is that in a joint test of several hypotheses any single hypothesis is 

“affected‟‟ by the information in the other hypotheses. 

The upshot of the preceding argument is that for a given example (sample) only one confidence 

interval or only one test of significance can be obtained. How, then, does one test the 

simultaneous null hypothesis that    =    = 0? The answer follows. 

The analysis of variance approach to testing the overall significance of an observed 

multiple regression: the F test 

For reasons just explained, we cannot use the usual t test to test the joint hypothesis that the true 

partial slope coefficients are zero simultaneously. However, this joint hypothesis can be tested by 

the analysis of variance (ANOVA) technique. 

In Chapter 3, we developed the following identity: 

∑  
  ∑  ̂ 

  ∑  ̂ 
   

that is, TSS = ESS + RSS, which decomposed the total sum of squares (TSS) into two 

components: explained sum of squares (ESS) and residual sum of squares (RSS). A study of 

these components of TSS is known as the analysis of variance (ANOVA) from the regression 

viewpoint. In this technique, we test the significance of the ESS or the null hypothesis   

       . 

Under the assumptions of the regression model            

   

   
∑ ̂ 

 

   𝜒     
     and 

   

  
 

∑  ̂ 
 

  
 𝜒     

   

Further the two chi-square distributions are independent and thus under the null hypothesis 

        

  
𝜒     

    ⁄  

𝜒     
    ⁄

 
      ⁄  

      ⁄
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What use can be made of the preceding F ratio? Let us take the two variable case 

  
 ̂ 

 ∑  
 

∑  ̂ 
      ⁄

 

  
 ̂ 

 ∑  
 

 ̂ 
 

It can be shown that 

   ̂ 
 ∑  

        
 ∑  

   and 

 (
∑  ̂ 

 

   
)     ̂      

 

(Note that    and   appearing on the right sides of these equations are the true parameters.) 

Therefore, if    is in fact zero, both the above equations provide us with identical estimates of 

true   . In this situation, the explanatory variable X has no linear influence on Y whatsoever and 

the entire variation in Y is explained by the random disturbances ui. If, on the other hand,     is 

not zero, the two equations will be different and part of the variation in Y will be ascribable to X. 

Therefore, the F ratio provides a test of the null hypothesis        . Since all the quantities 

entering into this equation can be obtained from the available sample, this F ratio provides a test 

statistic to test the null hypothesis that true    is zero. All that needs to be done is to compute the 

F ratio and compare it with the critical F value obtained from the F tables at the chosen level of 

significance. 

Next the ANOVA table will be prepared as follows  

Source of variation Sum of squares 

(SS) 

Degrees of freedom 

(df) 

Mean sum of squares 

(MSS) 

Explained sum of squares ∑  ̂ 
   𝓀 = K-1 ∑  ̂ 

       ⁄   

Residual sum of squares ∑  ̂ 
   n-K ∑  ̂ 

      ⁄   ̂   

Total sum of squares ∑  
   n-1 Fratio = ratio of MSS 

 

Associated with any sum of squares is its df, the number of independent observations on which it 

is based. TSS has n-1df because we lose 1 df in computing the sample mean  ̅. RSS has n−K df. 

(Why?)  ESS has 𝓀 = K-1df. Mean sum of squares is obtained by dividing SS by their df. 
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 We can generalize the F-testing procedure as follows. 

Given the K-variable regression model: 

                             

To test the hypothesis 

                

(i.e., all slope coefficients are simultaneously zero) versus 

H1: Not all slope coefficients are simultaneously zero 

Compute 

  
     ⁄

     ⁄
 

        ⁄

       ⁄  
 

If F >            , reject H0; otherwise you do not reject it, where             is the 

critical F value at the α level of significance and (K − 1) numerator df and (n − K) denominator 

df. 

A summary of the F-statistic 

Null hypothesis 

   

Alternative hypothesis 

H1 

Critical region 

Reject    if 

  
    

    
    

    
 

  
             

  
    

    
    

    
 

  
     ⁄          

Or 
  
 

  
         ⁄          

 

Notes: 

1.   
  and   

 
 are the two population variances. 

2.   
  and   

 
 are the two sample variances. 

3. ndf and ddf denote, respectively, the numerator and denominator df. 

4. In computing the F ratio, put the larger   value in the numerator. 

5. The critical F values are given in the last column. The first subscript of F is the level of significance and the 

second subscript is the numerator and denominator df. 
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Example 3  

With reference to the production function regression in the previous example suppose you are 

given with the following intermediary results 

   ̂    ̂     

  ̂     ̂    

Test the joint hypothesis            

 

An important relationship between R
2
 and F 

There is an intimate relationship between the coefficient of determination R
2
 and the F test used 

in the analysis of variance. More generally, in the K-variable case, if we assume that the 

disturbances are normally distributed and that the null hypothesis is 

                

then it follows that 

  
        ⁄

       ⁄  
 

follows the F distribution with K − 1 and n − K df. (Note: The total number of parameters to be 

estimated is K, of which one is the intercept term.) 

Let us manipulate the above equation as follows: 

  
   

   

   

   
 

  
   

   

   

       
 

  
   

   

      ⁄

         ⁄  
 

  
   

   

  

    
 

  
       ⁄

           ⁄
 

Normal equations 
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where use is made of the definition R
2
 = ESS/TSS. The above shaded equation shows how F and 

R
2
 are related. These two vary directly. When R

2
 = 0, F is also zero. The larger the R

2
, the 

greater the F value. In the limit, when R
2
 = 1, F is infinite. Thus the F test, which is a measure of 

the overall significance of the estimated regression, is also a test of significance of R
2
. In other 

words, testing the null hypothesis                 is equivalent to testing the null 

hypothesis that (the population) R
2
 is zero. 

One advantage of the F test expressed in terms of R
2
 is its ease of computation: All that one 

needs to know is the R
2
 value. Therefore, the overall F test of significance can be recast in terms 

of R
2
 as shown in the table below 

Source of variation Sum of squares 

(SS) 

Degrees of freedom 

(df) 

Mean sum of squares 

(MSS) 

Explained sum of squares R
2
.TSS 𝓀 = K-1           ⁄   

Residual sum of squares (1- R
2
).TSS n-K                ⁄   

Total sum of squares TSS n-1  

 

  
         ⁄

               ⁄
 

       ⁄

           ⁄
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5. DUMMY VARIABLE REGRESSION ANALYSIS 
 

In Chapter 3 we discussed briefly the four types of variables that one generally encounters in 

empirical analysis: These are: ratio scale, interval scale, ordinal scale, and nominal scale. The 

types of variables that we have encountered in the preceding chapters were essentially ratio 

scale. But this should not give the impression that regression models can deal only with ratio 

scale variables. Regression models can also handle other types of variables mentioned 

previously. In this chapter, we consider models that may involve not only ratio scale variables 

but also nominal scale variables. Such variables are also known as indicator variables, 

categorical variables, qualitative variables, or dummy variables. 

5.1 DEFINITIONS AND THE NATURE OF DUMMY VARIABLES 

In regression analysis the dependent variable, or regressand, is frequently influenced not only by 

ratio scale variables (e.g., income, output, prices, costs, height, temperature) but also by variables 

that are essentially qualitative, or nominal scale, in nature, such as sex, race, color, religion, 

nationality, geographical region, political upheavals, and party affiliation. For example, holding 

all other factors constant, female workers are found to earn less than their male counterparts or 

nonwhite workers are found to earn less than whites. This pattern may result from sex or racial 

discrimination, but whatever the reason, qualitative variables such as sex and race seem to 

influence the regressand and clearly should be included among the explanatory variables, or the 

regressors.  

Since such variables usually indicate the presence or absence of a “quality” or an attribute, such 

as male or female, black or white, Catholic or non-Catholic, Democrat or Republican, they are 

essentially nominal scale variables. One way we could “quantify” such attributes is by 

constructing artificial variables that take on values of 1 or 0, 1 indicating the presence (or 

possession) of that attribute and 0 indicating the absence of that attribute. For example 1 may 

indicate that a person is a female and 0 may designate a male; or 1 may indicate that a person is a 

college graduate, and 0 that the person is not, and so on. Variables that assume such 0 and 1 

values are called dummy variables. Such variables are thus essentially a device to classify 

data into mutually exclusive categories such as male or female. 

Dummy variables can be incorporated in regression models just as easily as quantitative 

variables. As a matter of fact, a regression model may contain regressors that are all exclusively 

dummy, or qualitative, in nature. Such models are called Analysis of Variance (ANOVA) 

models 
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5.2 ANOVA MODELS 

It is not absolutely essential that dummy variables take the values of 0 and 1. The pair (0,1) can 

be transformed into any other pair by a linear function such that Z = a + bD(b ≠ 0), where a and 

b are constants and where D = 1 or 0. When D = 1, we have Z = a + b, and when D = 0, we have 

Z = a. Thus the pair (0, 1) becomes (a, a + b). For example, if a = 1 and b = 2, the dummy 

variables will be (1, 3). This expression shows that qualitative, or dummy, variables do not have 

a natural scale of measurement. That is why they are described as nominal scale variables. 

ANOVA models are used to assess the statistical significance of the relationship between a 

quantitative regressand and qualitative or dummy regressors. They are often used to compare the 

differences in the mean values of two or more groups or categories, and are therefore more 

general than the t test which can be used to compare the means of two groups or categories only. 

To illustrate the ANOVA models, consider the following example. 

Example 5.1 

Public school teachers‟ salaries by geographical region 

Table 5.1 gives data on average salary (in dollars) of public school teachers in 51 states. These 

51 areas are classified into three geographical regions: (1) Northeast and North Central (21 states 

in all), (2) South (17 states in all), and (3) West (13 states in all). For the time being, do not 

worry about the format of the table and the other data given in the table. 

Suppose we want to find out if the average annual salary (AAS) of public school teachers differs 

among the three geographical regions of the country. If you take the simple arithmetic average of 

the average salaries of the teachers in the three regions, you will find that these averages for the 

three regions are as follows: $24,424.14 (Northeast and North Central), $22,894 (South), and 

$26,158.62 (West). These numbers look different, but are they statistically different from one 

another? There are various statistical techniques to compare two or more mean values, which 

generally go by the name of analysis of variance. But the same objective can be accomplished 

within the framework of regression analysis. 

To see this, consider the following model: 

Yi = β1 + β2D2i + β3D3i + ui -----------------------------------------------------------(5.2.1) 

where Yi = (average) salary of public school teacher in state i 

D2i = 1 if the state is in the Northeast or North Central 

      = 0 otherwise (i.e., in other regions of the country) 

D3i = 1 if the state is in the South    = 0 otherwise (i.e., in other regions of the country) 
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Example 5.1  

Table 5.1 Average Salary Of Public School Teachers, By State 

Salary Spending D2 D3    Salary Spending D2 D3 
19583 3346 1 0 22795 3366 0 1 

20263 3114 1 0 21570 2920 0 1 

20325 3554 1 0 22080 2980 0 1 

26800 4642 1 0 22250 3731 0 1 

29470 4669 1 0 20940 2853 0 1 

26610 4888 1 0 21800 2533 0 1 

30678 5710 1 0 22934 2729 0 1 

27170 5536 1 0 18443 2305 0 1 

25853 4168 1 0 19538 2642 0 1 

24500 3547 1 0 20460 3124 0 1 

24274 3159 1 0 21419 2752 0 1 

27170 3621 1 0 25160 3429 0 1 

30168 3782 1 0 22482 3947 0 0 

26525 4247 1 0 20969 2509 0 0 

27360 3982 1 0 27224 5440 0 0 

21690 3568 1 0 25892 4042 0 0 

21974 3155 1 0 22644 3402 0 0 

20816 3059 1 0 24640 2829 0 0 

18095 2967 1 0 22341 2297 0 0 

20939 3285 1 0 25610 2932 0 0 

22644 3914 1 0 26015 3705 0 0 

24624 4517 0 1 25788 4123 0 0 

27186 4349 0 1 29132 3608 0 0 

33990 5020 0 1 41480 8349 0 0 

23382 3594 0 1 25845 3766 0 0 

20627  2821 0 1     

Note: D2 = 1 for states in the Northeast and North Central; 0 otherwise. 

         D3 = 1 for states in the South; 0 otherwise. 

Note that (5.2.1) is like any multiple regression model considered previously, except that, instead 

of quantitative regressors, we have only qualitative, or dummy, regressors, taking the value of 1 

if the observation belongs to a particular category and 0 if it does not belong to that category or 

group. Hereafter, we shall designate all dummy variables by the letter D. 

Table 5.1 shows the dummy variables thus constructed. 

What does the model (5.2.1) tell us? Assuming that the error term satisfies the usual OLS 

assumptions, on taking expectation of (5.2.1) on both sides, we obtain: 

Mean salary of public school teachers in the Northeast and North Central: 

E(Yi |D2i = 1, D3i = 0) = β1 + β2------------------------------------------------------------------- (5.2.2) 

Mean salary of public school teachers in the South: 
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E(Yi |D2i = 0, D3i = 1) = β1 + β3------------------------------------------------------------------- (5.2.3) 

You might wonder how we find out the mean salary of teachers in the West. If you guessed 

that this is equal to β1, you would be absolutely right, for 

Mean salary of public school teachers in the West: 

E(Yi |D2i = 0, D3i = 0) = β1------------------------------------------------------------------------- (5.2.4) 

In other words, the mean salary of public school teachers in the West is given by the intercept, 

β1, in the multiple regression (5.2.1), and the “slope” coefficients β2 and β3 tell by how much 

the mean salaries of teachers in the Northeast and North Central and in the South differ from the 

mean salary of teachers in the West. But how do we know if these differences are statistically 

significant? Before we answer this question, let us present the results based on the regression 

(5.2.1). Using the data given in Table 5.1, we obtain the following results: 

Yˆi = 26,158.62 − 1734.473D2i − 3264.615D3i 

  se = (1128.523)    (1435.953)       (1499.615) 

   t = (23.1759)       (−1.2078)         (−2.1776)                                                                  (5.2.5) 

        (0.0000)*       (0.2330)*        (0.0349)*               R2 = 0.0901 

where * indicates the p values. 

As these regression results show, the mean salary of teachers in the West is about $26,158, that 

of teachers in the Northeast and North Central is lower by about $1734, and that of teachers in 

the South is lower by about $3265. The actual mean salaries in the last two regions can be easily 

obtained by adding these differential salaries to the mean salary of teachers in the West, as 

shown in Eqs. (5.2.3) and (5.2.4). Doing this, we will find that the mean salaries in the latter two 

regions are about $24,424 and $22,894. But how do we know that these mean salaries are 

statistically different from the mean salary of teachers in the West, the comparison category? 

That is easy enough. All we have to do is to find out if each of the “slope” coefficients in (5.2.5) 

is statistically significant. As can be seen from this regression, the estimated slope coefficient for 

Northeast and North Central is not statistically significant, as its p value is 23 percent, whereas 

that of the South is statistically significant, as the p value is only about 3.5 percent. Therefore, 

the overall conclusion is that statistically the mean salaries of public school teachers in the West 

and the Northeast and North Central are about the same but the mean salary of teachers in the 

South is statistically significantly lower by about $3265.  

A caution is in order in interpreting these differences. The dummy variables will simply point out 

the differences, if they exist, but they do not suggest the reasons for the differences. Differences 

in educational levels, in cost of living indexes, in gender and race may all have some effect on 
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the observed differences. Therefore, unless we take into account all the other variables that may 

affect a teacher‟s salary, we will not be able to pin down the cause(s) of the differences. 

From the preceding discussion, it is clear that all one has to do is see if the coefficients attached 

to the various dummy variables are individually statistically significant. This example also shows 

how easy it is to incorporate qualitative, or dummy, regressors in the regression models. 

 Caution in the Use of Dummy Variables 

Although they are easy to incorporate in the regression models, one must use the dummy 

variables carefully. In particular, consider the following aspects: 

1. In Example 5.1, to distinguish the three regions, we used only two dummy variables, D2 and 

D3. Why did we not use three dummies to distinguish the three regions? Suppose we do that and 

write the model (5.2.1) as: 

Yi = α + β1D1i + β2D2i + β3D3i + ui------------------------------------------------------------- (5.2.6) 

where D1i takes a value of 1 for states in the West and 0 otherwise. Thus, we now have a dummy 

variable for each of the three geographical regions. 

Using the data in Table 5.1, if you were to run the regression (5.2.6), the computer will “refuse” 

to run the regression (try it). Why? The reason is that in the setup of (5.2.6) where you have a 

dummy variable for each category or group and also an intercept, you have a case of perfect 

collinearity, that is, exact linear relationships among the variables. Why? Refer to Table 5.1. 

Imagine that now we add the D1 column, taking the value of 1 whenever a state is in the West 

and 0 otherwise. Now if you add the three D columns horizontally, you will obtain a column that 

has 51 ones in it. But since the value of the intercept " is (implicitly) 1 for each observation, you 

will have a column that also contains 51 ones. In other words, the sum of the three D columns 

will simply reproduce the intercept column, thus leading to perfect collinearity. In this case, 

estimation of the model (5.2.6) is impossible. 

The message here is: If a qualitative variable has m categories, introduce only (m − 1) 

dummy variables. In our example, since the qualitative variable “region” has three categories, 

we introduced only two dummies. If you do not follow this rule, you will fall into what is called 

the dummy variable trap, that is, the situation of perfect collinearity or perfect 

multicollinearity, if there is more than one exact relationship among the variables. 

This rule also applies if we have more than one qualitative variable in the model, an example of 

which is presented later. Thus we should restate the preceding rule as: For each qualitative 

regressor the number of dummy variables introduced must be one less than the categories 

of that variable. Thus, if in Example 5.1 we had information about the gender of the teacher, we 

would use an additional dummy variable (but not two) taking a value of 1 for female and 0 for 

male or vice versa. 
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2. The category for which no dummy variable is assigned is known as the base, benchmark, 

control, comparison, reference, or omitted category. And all comparisons are made in relation 

to the benchmark category. 

3. The intercept value (β1) represents the mean value of the benchmark category. In Example 

5.1, the benchmark category is the Western region. Hence, in the regression (5.2.5) the intercept 

value of about 26,159 represents the mean salary of teachers in the Western states. 

4. The coefficients attached to the dummy variables in (5.2.1) are known as the differential 

intercept coefficients because they tell by how much the value of the intercept that receives the 

value of 1 differs from the intercept coefficient of the benchmark category. For example, in 

(5.2.5), the value of about −1734 tells us that the mean salary of teachers in the Northeast or 

North Central is smaller by about $1734 than the mean salary of about $26,159 for the 

benchmark category, the West. 

5. If a qualitative variable has more than one category, as in our illustrative example, the choice 

of the benchmark category is strictly up to the researcher. Sometimes the choice of the 

benchmark is dictated by the particular problem at hand. In our illustrative example, we could 

have chosen the South as the benchmark category. In that case the regression results given in 

(5.2.5) will change, because now all comparisons are made in relation to the South. Of course, 

this will not change the overall conclusion of our example (why?). In this case, the intercept 

value will be about $22,894, which is the mean salary of teachers in the South. 

6. We warned above about the dummy variable trap. There is a way to circumvent this trap by 

introducing as many dummy variables as the number of categories of that variable, provided we 

do not introduce the intercept in such a model. Thus, if we drop the intercept term from (5.2.6), 

and consider the following model, 

Yi = β1D1i + β2D2i + β3D3i + ui ------------------------------------------------------------------ (5.2.7) 

we do not fall into the dummy variable trap, as there is no longer perfect collinearity. But make 

sure that when you run this regression, you use the no intercept option in your regression 

package. 

How do we interpret regression (5.2.7)? If you take the expectation of (5.2.7), you will find that: 

β1 = mean salary of teachers in the West 

β2 = mean salary of teachers in the Northeast and North Central. 

β3 = mean salary of teachers in the South. 

In other words, with the intercept suppressed, and allowing a dummy variable for each category, 

we obtain directly the mean values of the various categories. 
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The results of (5.2.7) for our illustrative example are as follows: 

Yˆi = 26,158.62D1i + 24,424.14D2i + 22,894D3i 

    se = (1128.523)         (887.9170)      (986.8645)                                                  (5.2.8) 

    t =   (23.1795)*         (27.5072)*      (23.1987)* 

                                                     R
2
 = 0.0901 

where * indicates that the p values of these t ratios are very small. 

As you can see, the dummy coefficients give directly the mean (salary) values in the three 

regions, West, Northeast and North Central, and South. 

7. Which is a better method of introducing a dummy variable: (1) introduce a dummy for each 

category and omit the intercept term or (2) include the intercept term and introduce only (m − 1) 

dummies, where m is the number of categories of the dummy variable? As Kennedy notes: Most 

researchers find the equation with an intercept more convenient because it allows them to 

address more easily the questions in which they usually have the most interest, namely, whether 

or not the categorization makes a difference, and if so, by how much. If the categorization does 

make a difference, by how much is measured directly by the dummy variable coefficient 

estimates. Testing whether or not the categorization is relevant can be done by running a t test of 

a dummy variable coefficient against zero (or, to be more general, an F test on the appropriate 

set of dummy variable coefficient estimates) 

5.2.1 ANOVA MODELS WITH TWO QUALITATIVE VARIABLES 

In the previous section we considered an ANOVA model with one qualitative variable with three 

categories. In this section we consider another ANOVA model, but with two qualitative 

variables, and bring out some additional points about dummy variables. 

Example 5.2 

Hourly wages in relation to marital status and region of residence 

From a sample of 528 persons, the following regression results were obtained: 

ˆYi = 8.8148 + 1.0997D2i − 1.6729D3i 

   se = (0.4015)   (0.4642)       (0.4854) 

   t = (21.9528)   (2.3688)       (−3.4462)                                                                     (5.2.9) 

        (0.0000)*   (0.0182)*      (0.0006)* 

                                                    R
2
 = 0.0322 



68 

 

where Y = hourly wage ($) 

D2 = married status, 1 = married, 0 = otherwise 

D3 = region of residence; 1 = South, 0 = otherwise 

and * denotes the p values. 

In this example we have two qualitative regressors, each with two categories. Hence we have 

assigned a single dummy variable for each category Which is the benchmark category here? 

Obviously, it is unmarried, non-South residence. In other words, unmarried persons who do not 

live in the South are the omitted category. Therefore, all comparisons are made in relation to this 

group. The mean hourly wage in this benchmark is about $8.81. Compared with this, the average 

hourly wage of those who are married is higher by about $1.10, for an actual average wage of 

$9.9 ( = 8.81 + 1.10). By contrast, for those who live in the South, the average hourly wage is 

lower by about $1.67, for an actual average hourly wage of $7.14. 

Are the preceding average hourly wages statistically different compared to the base category? 

They are, for all the differential intercepts are statistically significant, as their p values are quite 

low. 

The point to note about this example is this: Once you go beyond one qualitative variable, you 

have to pay close attention to the category that is treated as the base category, since all 

comparisons are made in relation to that category. This is especially important when you have 

several qualitative regressors, each with several categories. But the mechanics of introducing 

several qualitative variables should be clear by now. 

5.3 The ANCOVA Models: Regression With A Mixture Of Quantitative And Qualitative 

Regressors 

ANOVA models of the type discussed in the preceding sections, although common in fields such 

as sociology, psychology, education, and market research, are not that common in economics. 

Typically, in most economic research a regression model contains some explanatory variables 

that are quantitative and some that are qualitative. Regression models containing an admixture of 

quantitative and qualitative variables are called analysis of covariance (ANCOVA) models. 

ANCOVA models are an extension of the ANOVA models in that they provide a method of 

statistically controlling the effects of quantitative regressors, called covariates or control 

variables, in a model that includes both quantitative and qualitative, or dummy, regressors. We 

now illustrate the ANCOVA models. 

To motivate the analysis, let us reconsider Example 5.1 by maintaining that the average salary of 

public school teachers may not be different in the three regions if we take into account any 

variables that cannot be standardized across the regions. Consider, for example, the variable 
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expenditure on public schools by local authorities, as public education is primarily a local and 

state question. To see if this is the case, we develop the following model: 

Yi = β1 + β2D2i + β3D3i + β4Xi + ui------------------------------------------------------------- (5.3.1) 

where Yi = average annual salary of public school teachers in state ($) 

           Xi = spending on public school per pupil ($) 

         D2i = 1, if the state is in the Northeast or North Central 

               = 0, otherwise 

           D3i = 1, if the state is in the South 

                 = 0, otherwise 

The data on X are given in Table 5.1. Keep in mind that we are treating the West as the 

benchmark category. Also, note that besides the two qualitative regressors, we have a 

quantitative variable, X, which in the context of the ANCOVA models is known as a covariate, 

as noted earlier. 

Example 5.3 

Teacher‟s salary in relation to region and spending on public school per pupil 

From the data in Table 5.1, the results of the model (5.3.1) are as follows: 

ˆYi = 13,269.11 − 1673.514D2i − 1144.157D3i + 3.2889Xi 

    se = (1395.056)    (801.1703)    (861.1182)       (0.3176)                                                   (5.3.2) 

    t = (9.5115)*        (−2.0889)*     (−1.3286)**     (10.3539)* 

                                                                             R
2
 = 0.7266 

where * indicates p values less than 5 percent, and ** indicates p values greater than 5 percent. 

As these results suggest, ceteris paribus: as public expenditure goes up by a dollar, on average, a 

public school teacher‟s salary goes up by about $3.29. Controlling for spending on education, we 

now see that the differential intercept coefficient is significant for the Northeast and North-

Central region, but not for the South. These results are different from those of (5.2.5). But this 

should not be surprising, for in (5.2.5) we did not account for the covariate, differences in per 

pupil public spending on education.  
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6. ECONOMETRIC PROBLEMS 

 

6.1. MULTICOLLINREARITY 
 

THE NATURE OF MULTICOLLINEARITY 

Originally, the term multicollinearity meant the existence of a “perfect,” or exact, linear relationship 

among some or all explanatory variables of a regression model.  For the K-variable regression involving 

explanatory variable   ,   , . . . ,    (where    = 1 for all observations to allow for the intercept term), 

an exact linear relationship is said to exist if the following condition is satisfied: 

                   ....................................................... 6.1.1 

Where   ,   , . . . ,    are constants such that not all of them are zero simultaneously. 

Today, however, the term multicollinearity is used in a broader sense to include the case of perfect 

multicollinearity, as shown by (6.1.1), as well as the case where the X variables are intercorrelated but not 

perfectly so, as follows: 

                      …………………..………… 6.1.2 

where    is a stochastic error term. 

To see the difference between perfect and less than perfect multicollinearity, assume, for example, that 

    ≠ 0. Then, (6.1.1) can be written as 

     
  

  
    

  

  
      

  

  
    …………………..………… 6.1.3 

which shows how    is exactly linearly related to other variables or how it can be derived from a linear 

combination of other X variables. In this situation, the coefficient of correlation between the variable    

and the linear combination on the right side of (6.1.3) is bound to be unity. 

Similarly, if    ≠ 0, Eq. (6.1.2) can be written as 

     
  

  
    

  

  
      

  

  
    

 

  
   ………………………6.1.4 

which shows that    is not an exact linear combination of other X‟s because it is also determined by the 

stochastic error term   . 

Why does the classical linear regression model assume that there is no multicollinearity among the X‟s? 

The reasoning is this: If multicollinearity is perfect in the sense of (6.1.1), the regression coefficients 

of the X variables are indeterminate and their standard errors are infinite. If multicollinearity is 

less than perfect, as in (6.1.2), the regression coefficients, although determinate, possess large 

standard errors (in relation to the coefficients themselves), which means the coefficients cannot be 

estimated with great precision or accuracy. The proofs of these statements are given as follows. 
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Estimation in the presence of perfect multicollinearity 

The fact that in the case of perfect multicollinearity the regression coefficients remain indeterminate and 

their standard errors are infinite can be demonstrated readily in terms of the three-variable regression 

model. Using the deviation form, where all the variables are expressed as deviations from their sample 

means, we can write the three-variable regression model as 

    ̂      ̂      ̂  …………………………………………… 6.1.5  

Now from Chapter 4 we obtain 

 ̂  
 ∑       ∑   

    ∑       ∑        

 ∑   
   ∑   

    ∑       
 

 

 ̂  
 ∑       ∑   

    ∑       ∑        

 ∑   
   ∑   

    ∑       
 

 

Assume that     = λ    , where λ is a nonzero constant. Substituting this into the formula for  ̂ , we 

obtain 

 ̂  
 ∑       ∑     

     ∑        ∑   
  

 ∑   
     ∑   

      ∑   
   

 ……………………………. 6.1.6 

 
 

 
 

which is an indeterminate expression. Verify that  ̂  is also indeterminate. 

Why do we obtain the result shown in (6.1.6)? Recall the meaning of  ̂ : It gives the rate of change in the 

average value of Y as X2 changes by a unit, holding X3 constant. But if X3 and X2 are perfectly 

collinear, there is no way X3 can be kept constant: As X2 changes, so does X3 by the factor λ.  This 

means, there is no way of disentangling the separate influences of X2 and X3 from the given sample: For 

practical purposes X2 and X3 are indistinguishable. 

Estimation in the presence of “high” but “imperfect” multicollinearity 

Generally, there is no exact linear relationship among the X variables, especially in data involving 

economic time series. Thus, turning to the three-variable model in the deviation form given in (6.1.5), 

instead of exact multicollinearity, we may have 

            …………………………………………………………. 6.1.7 

where λ ≠ 0 and where vi is a stochastic error term such that ∑       . (Why?) 

In this case, estimation of regression coefficients β2 and β3 may be possible. For example, substituting 

(6.1.7) into the formula for  ̂ , we obtain 

 ̂  
∑         

 ∑   
  ∑  

     ∑      ∑       ∑   
  

∑   
    ∑   

  ∑  
     ∑   

   
 ………………….6.1.8 
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where use is made of ∑       .  A similar expression can be derived for  ̂ . 

Now, unlike (6.1.6), there is no reason to believe a priori that (6.1.8) cannot be estimated. Of course, if vi 

is sufficiently small, say, very close to zero, (6.1.8) will indicate almost perfect collinearity and we shall 

be back to the indeterminate case of (6.1.6). 

 SOURCES OF MULTICOLLINEARITY 

Multicollinearity may be due to the following factors: 

1. The data collection method employed, for example, sampling over a limited range of the 

values taken by the regressors in the population. 

2. An overdetermined model. This happens when the model has more explanatory variables 

than the number of observations. 

3. Inherent nature of the data. Especially in time series data, where the regressors included 

in the model share a common trend, that is, they all increase or decrease over time. For 

example, in the regression of consumption expenditure on income, wealth, and 

population, the regressors income, wealth, and population may all be growing over time 

at more or less the same rate, leading to collinearity among these variables. 
 

 CONSEQUENCES OF MULTICOLLINEARITY 

In cases of near or high multicollinearity, one is likely to encounter the following consequences: 

1. Although BLUE, the OLS estimators have large variances, making precise estimation 

difficult. 

2. Because of consequence 1, the confidence intervals tend to be much wider, leading to the 

acceptance of the “zero null hypothesis” (i.e., the true population coefficient is zero) 

more readily. 

3. Also because of consequence 1, the t ratio of one or more coefficients tends to be 

statistically insignificant. 

4. Although the t ratio of one or more coefficients is statistically insignificant, R
2
, the 

overall measure of goodness of fit, can be very high. 

5. The OLS estimators and their standard errors can be sensitive to small changes in the 

data. 
The preceding consequences can be demonstrated as follows. 

Large Variances of OLS Estimators 

To see large variances, it is necessary and can be shown for the model (6.1.5) the variances of  ̂  and  ̂  

are given by 

     ̂    
  

∑   
       

  
 …………………………….. 6.1.9 

     ̂    
  

∑   
       

  
 …………………………….. 6.1.10 
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where     is the coefficient of correlation between X2 and X3. 

It is apparent from (6.1.9) and (6.1.10) that as     tends toward 1, that is, as collinearity increases, the 

variances of the two estimators increase and in the limit when     = 1, they are infinite. 

The speed with which variances and covariances increase can be seen with the variance-inflating factor 

(VIF), which is defined as 

    
 

      
  

 ………………………………..…….. 6.1.11 

VIF shows how the variance of an estimator is inflated by the presence of multicollinearity. As    
  

approaches 1, the VIF approaches infinity. That is, as the extent of collinearity increases, the variance of 

an estimator increases, and in the limit it can become infinite. As can be readily seen, if there is no 

collinearity between X2 and X3, VIF will be 1. 

Using this definition, we can express (6.1.9) and (6.1.10) as 

     ̂    
  

∑   
     

     ̂    
  

∑   
     

which show that the variances of  ̂ and  ̂ are directly proportional to the VIF. 

The results just discussed can be easily extended to the k-variable model. In such a model, the variance of 

the Kth coefficient can be expressed as: 

     ̂    
  

∑  
      

  
……………………………… 6.1.12 

where    ̂ = (estimated) partial regression coefficient of regressor Xj 

                  
  = R

2
 in the regression of Xj on the remaining (K − 2) regressions  

            [Note: There are (K − 1) regressors in the K-variable regression model.] 

           ∑  
  ∑     ̅  

   

We can also write (6.1.12) as 

     ̂    
  

∑  
      ……………….………… (6.1.13) 

As you can see from this expression,      ̂   is proportional to    and VIF but inversely proportional to 

∑  
 . The last one states that the larger the variability in a regressor, the smaller the variance of the 

coefficient of that regressor, assuming the other two ingredients are constant, and therefore the greater the 

precision with which that coefficient can be estimated. 
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Wider Confidence Intervals 

Because of the large standard errors, the confidence intervals for the relevant population parameters tend 

to be larger. 

“Insignificant” t Ratios 

Recall that to test the null hypothesis that, say, β2 = 0, we use the t ratio, that is,  ̂    ⁄  ̂  , and compare 

the estimated t value with the critical t value from the t table. But as we have seen, in cases of high 

collinearity the estimated standard errors increase dramatically, thereby making the t values smaller. 

Therefore, in such cases, one will increasingly accept the null hypothesis that the relevant true population 

value is zero. 

 DETECTION OF MULTICOLLINEARITY 

Multicollinearity is essentially a sample phenomenon, arising out of the largely non-experimental data 

collected in most social sciences. Multicollinearity is also a question of degree and not of kind. Some 

rules of thumb for detecting it or measuring its strength are as follows. 

1. High R
2
 but few significant t ratios. If R

2
 is high, say, in excess of 0.8, the F test in 

most cases will reject the hypothesis that the partial slope coefficients are simultaneously 

equal to zero, but the individual t tests will show that none or very few of the partial slope 

coefficients are statistically different from zero. 

2. High pair-wise correlations among regressors. Another suggested rule of thumb is that 

if the pair-wise or zero-order correlation coefficient between two regressors is high, say, 

in excess of 0.8, then multicollinearity is a serious problem. High zero-order correlations 

are a sufficient but not a necessary condition for the existence of multicollinearity 

because it can exist even though the zero-order or simple correlations are comparatively 

low (say, less than 0.50). 

3. High variance inflation factor. The larger the value of     , the more “troublesome” or 

collinear the variable Xj. As a rule of thumb, if the VIF of a variable exceeds 10, which 

will happen if   
  exceeds 0.90, that variable is said be highly collinear. 

 

 REMEDIAL MEASURES 

What can be done if multicollinearity is serious? We have two choices:  

(1) do nothing or (2) follow some rules of thumb. 
 

Rule-of-Thumb Procedures 

1. Combining cross-sectional and time series data (pooling the data) 
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2. Dropping a variable(s). When faced with severe multicollinearity, one of the “simplest” 

things to do is to drop one of the collinear variables. But in dropping a variable from the 

model we may be committing a specification bias or specification error. 

3. Transformation of variables. Suppose we have time series data on consumption 

expenditure, income, and wealth. One reason for high multicollinearity between income 

and wealth in such data is that over time both the variables tend to move in the same 

direction. One way of minimizing this dependence is to proceed as follows. 
If the relation 

                     ………………………………… 6.1.14 
holds at time t, it must also hold at time t − 1 because the origin of time is arbitrary anyway. Therefore, 

we have 

                               ……………...……… 6.1.15 

 

If we subtract (6.5.2) from (6.5.1), we obtain 

                                         ……..………… 6.1.16 

Where           . Equation (6.1.16) is known as the first difference form because we run the 

regression, not on the original variables, but on the differences of successive values of the variables. 

The first difference regression model often reduces the severity of multicollinearity because, although the 

levels of X2 and X3 may be highly correlated, there is no a priori reason to believe that their differences 

will also be highly correlated. 

Another commonly used transformation in practice is the ratio transformation. Consider the model: 

                     ………………………………… 6.1.17 
where Y is consumption expenditure in real dollars, X2 is GDP, and X3 is total population. Since GDP 

and population grow over time, they are likely to be correlated. One “solution” to this problem is to 

express the model on a per capita basis, that is, by dividing (6.1.17) by X3, to obtain: 

  

   
   (

 

   
)    (

   

   
)      

  

   
  ……………………...… 6.1.18 

Such a transformation may reduce collinearity in the original variables. 

4. Additional or new data. Since multicollinearity is a sample feature, it is possible that in 

another sample involving the same variables collinearity may not be as serious as in the 

first sample. Sometimes simply increasing the size of the sample may attenuate the 

collinearity problem. For example, in the three-variable model we saw that 

     ̂    
  

∑   
       

  
 

Now as the sample size increases, ∑   
  will generally increase. (Why?) Therefore, for 

any given    , the variance of   ̂  will decrease, thus decreasing the standard error, which 

will enable us to estimate β2 more precisely. 
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IS MULTICOLLINEARITY NECESSARILY BAD? 

If the sole purpose of regression analysis is prediction or forecasting, then multicollinearity is not a 

serious problem because the higher the R
2
, the better the prediction. But, if the objective of the analysis is 

not only prediction but also reliable estimation of the parameters, serious multicollinearity will be a 

problem because we have seen that it leads to large standard errors of the estimators. 

6.2 HETEROSCEDASTICITY 

 

6.2.1 THE NATURE OF HETEROSCEDASTICITY 

As noted in Chapter 3, one of the important assumptions of the classical linear regression model is that 

the variance of each disturbance term   , conditional on the chosen values of the explanatory variables, is 

some constant number equal to   . This is the assumption of homoscedasticity, or equal (homo) spread 

(scedasticity), that is, equal variance. Symbolically, 

    
                   ……………………………… 6.2.1         

 

Diagrammatically, in the two-variable regression model homoscedasticity can be shown as in Figure 6.2.1 

 

 

 

 

 

 

 

 

 

 

 

 

                            Fig 6.2.1 Homoscedastic disturbances 
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As Figure 6.2.1shows, the conditional variance of    (which is equal to that of   ), conditional upon the 

given   , remains the same regardless of the values taken by the variable X. 

In contrast, consider Figure 6.2.2 below, which shows that the conditional variance of    increases as X 

increases. Here, the variances of    are not the same. Hence, there is heteroscedasticity. Symbolically, 

    
     

  ………………………………………………… 6.2.1' 

Notice the subscript of   , which reminds us that the conditional variances of    (= conditional variances 

of   ) are no longer constant. 

 

 

 

 

 

 

 

 

 

 

 

 

                                Fig 6.2.2 Heteroscedastic disturbances 

 

To make the difference between homoscedasticity and heteroscedasticity clear, assume that in the two-

variable model           , Y represents savings and X represents income. Figures 6.2.1 and 6.2.2 

show that as income increases, savings on the average also increase. But in Figure 7.1 the variance of 

savings remains the same at all levels of income, whereas in Figure 6.2.2 it increases with income. It 

seems that in Figure 6.2.2 the higher income families on the average save more than the lower-income 

families, but there is also more variability in their savings. 

6.2.2 SOURCES OF HETEROSCEDASTICITY 

1. As people learn, their errors of behavior become smaller over time. In this case,   
  is 

expected to decrease. E.g. Typing errors Vs Hours of typing practice 
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2. As incomes grow, people have more discretionary income and hence more scope for 

choice about the disposition of their income. Hence,   
  is likely to increase with income. 

Thus in the regression of savings on income one is likely to find   
  increasing with 

income (as in Figure 6.2.2) because people have more choices about their savings 

behavior. 

3. As data collecting techniques improve,   
  is likely to decrease. Thus, banks that have 

sophisticated data processing equipment are likely to commit fewer errors in the monthly 

or quarterly statements of their customers than banks without such facilities. 

4. Heteroscedasticity can also arise as a result of the presence of outliers. An outlying 

observation, or outlier, is an observation that is much different (either very small or very 

large) in relation to the observations in the sample. More precisely, an outlier is an 

observation from a different population to that generating the remaining sample 

observations. The inclusion or exclusion of such an observation, especially if the sample 

size is small, can substantially alter the results of regression analysis. 

5. Heteroscedasticity may be due to omission of some important variables from the model. 

For example, in the demand function for a commodity, if we do not include the prices of 

commodities complementary to or competing with the commodity in question, the 

residuals obtained from the regression may give the distinct impression that the error 

variance may not be constant. 

6. Another source of heteroscedasticity is skewness in the distribution of one or more 

regressors included in the model. Examples are economic variables such as income, 

wealth, and education. It is well known that the distribution of income and wealth in most 

societies is uneven, with the bulk of the income and wealth being owned by a few at the 

top. 
 

Note that the problem of heteroscedasticity is likely to be more common in cross-sectional than in time 

series data. In cross-sectional data, one usually deals with members of a population at a given point in 

time, such as individual consumers or their families, firms, industries, or geographical subdivisions such 

as state, country, city, etc. Moreover, these members may be of different sizes, such as small, medium, or 

large firms or low, medium, or high income. In time series data, on the other hand, the variables tend to 

be of similar orders of magnitude because one generally collects the data for the same entity over a period 

of time. Examples are GNP, consumption expenditure, savings, or employment over some period of time. 

6.2.3 OLS ESTIMATION IN THE PRESENCE OF HETEROSCEDASTICITY 

In the presence of heteroscedasticity,  ̂  is still linear unbiased and consistent estimator. But,  ̂  is no 

longer best (i.e. have no minimum variance). Then what is BLUE in the presence of heteroscedasticity? 

The answer is given in the following discussion. 

The method of generalized least squares (GLS) 

Why is the usual OLS estimator of    not best, although it is still unbiased? Unfortunately, the usual OLS 

method does not make use of the “information” contained in the unequal variability of the dependent 

variable Y. It assigns equal weight or importance to each observation. But a method of estimation, known 

as generalized least squares (GLS), takes such information into account explicitly and is therefore 
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capable of producing estimators that are BLUE. To see how this is accomplished, let us continue with the 

now-familiar two-variable model: 

               …………………………….. 6.2.3.1 

which for ease of algebraic manipulation we write as 

                  …………………………… 6.2.3.2 

where     = 1 for each i. One can see that these two formulations are identical. 

 

Now assume that the heteroscedastic variances   
  are known. Divide (6.2.3.2) through by    to obtain 

  

  
   (

   

  
)    (

   

  
)  (

  

  
) ……………...……… 6.2.3.3 

which for ease of exposition we write as 

  
    

    
    

    
    

  .......……………………… 6.2.3.4 

where the starred, or transformed, variables are the original variables divided by (the known)   .We use 

the notation   
  and   

 , the parameters of the transformed model, to distinguish them from the usual OLS 

parameters    and   . 

What is the purpose of transforming the original model? To see this, notice the following feature of the 

transformed error term   
 : 

        
       

     (
  

  
)
 
 

    
 

  
     

                              since   
  is known 

    
 

  
    

                         since     
     

  

      

which is a constant. That is, the variance of the transformed disturbance term   
  is now homoscedastic. 

Since we are still retaining the other assumptions of the classical model, the finding that it is    that is 

homoscedastic suggests that if we apply OLS to the transformed model (6.2.3.3) it will produce 

estimators that are BLUE. In short, the estimated   
  and   

  are now BLUE and not the OLS estimators 

 ̂  and  ̂ . 

This procedure of transforming the original variables in such a way that the transformed variables satisfy 

the standard least-squares assumptions and then applying OLS to them is known as the method of 

generalized least squares (GLS). The estimators thus obtained are known as GLS estimators, and it is 

these estimators that are BLUE. 
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The actual mechanics of estimating   
  and   

  are as follows. First, we write down the SRF of (6.2.3.3) 

  
  

  ̂ 
 (

   

  
)   ̂ 

 (
   

  
)  (

 ̂ 

  
) 

or 

  
    

    
    

    
    

 …………………………….. 6.2.3.5 

Now, to obtain the GLS estimators, we minimize 

∑  ̂ 
  

 ∑   
    

    
    

    
      

that is, 

∑(
 ̂ 

  
)
 
 ∑ *(

  

  
)    ̂ 

 (
   

  
)   ̂ 

 (
   

  
) +

 
.…………. 6.2.3.6 

∑   ̂ 
  ∑       ̂ 

   ̂ 
    

  ,    where       
 ⁄  

The actual mechanics of minimizing (7.3.6) follow the partial derivative techniques. Using this 

techniques, the GLS estimator of   
  and   

  is given as follows 

 ̂ 
  

 ∑    ∑          ∑       ∑     

 ∑    ∑     
    ∑      

  …………………....…. 6.2.3.7 

 ̂ 
   ̅   ̂ 

  ̅ 
     where     ̅  

∑    

∑  
  and  ̅ 

  
∑     

∑  
 ... 6.2.3.8 

Thus, in GLS we minimize a weighted sum of residual squares with       
 ⁄  acting as the weights, but 

in OLS we minimize an unweighted or (what amounts to the same thing) equally weighted RSS. As 

(6.2.3.6) shows, in GLS the weight assigned to each observation is inversely proportional to its σi , that is, 

observations coming from a population with larger σi will get relatively smaller weight and those from a 

population with smaller σi will get proportionately larger weight in minimizing the RSS (6.2.3.6).  

Since (6.2.3.6) minimizes a weighted RSS, it is appropriately known as weighted least squares (WLS), 

and the estimators thus obtained and given in (6.2.3.7) and (6.2.3.8) are known as WLS estimators. But 

WLS is just a special case of the more general estimating technique, GLS. Note that if     , a constant 

for all i,  ̂ 
  is identical with  ̂ . 

CONSEQUENCES OF HETEROSCEDASTICITY 

I. The least square estimators become inefficient. I.e. no longer with minimum variance 

property although they are still linear and unbiased. 

     ̂   
∑   

   
 

 ∑   
  

  ,      when heteroscedasticity is taken in to account 

II. The formulas for obtaining OLS variances of the estimates are biased, thus invalidating 

tests of significance. 
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III. The prediction of the Y for a given value of X would be inefficient (since they are based 

on the  ̂‟s which have high variance.  

 
 DETECTION OF HETEROSCEDASTICITY 

More often than not, in economic studies there is only one sample Y value corresponding to a particular 

value of X. And there is no way one can know   
  from just one Y observation. Therefore, in most cases 

involving econometric investigations, heteroscedasticity may be identified based on the examination of 

the OLS residuals  ̂  since they are the ones we observe, and not the disturbances   . One hopes that they 

are good estimates of   , a hope that may be fulfilled if the sample size is fairly large. 

Informal Methods 

1) Nature of the Problem Very often the nature of the problem under consideration 

suggests whether heteroscedasticity is likely to be encountered. For example,  

 The residual variance around the regression of consumption on income increased 

with income. 

 As a matter of fact, in cross-sectional data involving heterogeneous units, 

heteroscedasticity may be the rule rather than the exception. 

 

2) Graphical Method If there is no a priori or empirical information about the nature of 

heteroscedasticity, in practice one can do the regression analysis on the assumption that 

there is no heteroscedasticity and then examination of the residual squared  ̂ 
  to see if 

they exhibit any systematic pattern. Although  ̂ 
 are not the same thing as   

  they can be 

used as proxies especially if the sample size is sufficiently large. An examination of the 

 ̂ 
  may reveal patterns such as those shown in Figure 7.3. 
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(a)            (b) (c) 
 

 

 

 

 

 

 

 

 

 

 (d) (e) 

Fig 6.2.3 Hypothetical patterns of estimated squared residuals 

In Figure 6.2.3,  ̂ 
 are plotted against  ̂ , the estimated    from the regression line, the idea being to find 

out whether the estimated mean value of Y is systematically related to the squared residual. In Figure 

6.2.3a it can be seen that there is no systematic pattern between the two variables, suggesting that perhaps 

no heteroscedasticity is present in the data. Figure 6.2.3 b to e, however, exhibits definite patterns. For 

instance, Figure 6.2.3c suggests a linear relationship, whereas Figure 6.2.3d and e indicates a quadratic 

relationship between  ̂ 
  and  ̂  . Using such knowledge, one may transform the data in such a manner that 
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the transformed data do not exhibit heteroscedasticity. Instead of plotting  ̂ 
 against  ̂ , one may plot them 

against one of the explanatory variables, especially if plotting  ̂ 
  against  ̂  results in the pattern shown in 

Figure 6.2.3a. This is useful for cross check. 

 REMEDIAL MEASURES 

As we have seen, heteroscedasticity does not destroy the unbiasedness and consistency properties of the 

OLS estimators, but they are no longer efficient, not even asymptotically (i.e., large sample size). This 

lack of efficiency makes the usual hypothesis-testing procedure of dubious value. Therefore, remedial 

measures may be called for. There are two approaches to remediation: when   
  is known and when   

  is 

not known. 

When   
  Is Known: The Method of Weighted Least Squares 

If   
  is known, the most straightforward method of correcting heteroscedasticity is by means of weighted 

least squares, for the estimators thus obtained are BLUE. 

When   
  Is Not Known 

Since the true   
  are rarely known, there is another way of obtaining consistent estimates of the variances 

of OLS estimators even if there is heteroscedasticity. This is by doing some plausible assumptions about 

heteroscedasticity pattern. To illustrate this, let us revert to the two-variable regression model: 

              

We now consider several assumptions about the pattern of heteroscedasticity. 

 

 

 

If it is believed that the variance of    is proportional to the square of the explanatory variable X, one may 

transform the original model as follows. Divide the original model through by   : 

  
  

 
  

  
    

  

  
 

                                  
 

  
       ……. 6.2.3.10 

where    is the transformed disturbance term, equal to 
  

  
 . Now it is easy to verify that 

    
    (

  

  
)
 

 
 

  
     

   

                 using (7.6.1) 

Assumption 1: The error variance is proportional to 𝑋𝑖
 : 

𝐸 𝑢𝑖
   𝜎 𝑋𝑖

  …………………………….. 6.2.3.9 
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Hence the variance of    is now homoscedastic, and one may proceed to apply OLS to the transformed 

equation (6.2.3.10), regressing  
  

  
 on 

 

  
 . Notice that in the transformed regression the intercept term    is 

the 

slope coefficient in the original equation and the slope coefficient    is the intercept term in the original 

model. Therefore, to get back to the original model we shall have to multiply the estimated (6.2.3.10) by 

  . 

 

 

 

If it is believed that the variance of   , instead of being proportional to the squared   , is proportional to  

   itself, then the original model can be transformed as follows: 

  

√  

 
  

√  

   √   
  

√  

 

                            
 

√  
   √      ….. 6.2.3.12 

Where    
  

√  
 and where    > 0 

Given assumption 2, one can readily verify that     
     , a homoscedastic situation. Therefore, one 

may proceed to apply OLS to (7.6.4), regressing 
  

√  
 on 

 

√  
 and √   . Note an important feature of the 

transformed model: It has no intercept term. Therefore, one will have to use the regression-through-the-

origin model to estimate    and   . Having run (6.2.3.12), one can get back to the original model simply 

by multiplying (6.2.3.12) by √   . 

 

 

 

Equation (6.2.3.13) postulates that the variance of    is proportional to the square of the expected value of 

Y. Now                                                      

Therefore, if we transform the original equation as follows, 

 
  

     
 

  

     
   

  

     
 

  

     
 

                            
 

     
   

  

     
    …........ 6.2.3.14 

Assumption 2: The error variance is proportional to Xi. The square root transformation: 

𝐸 𝑢𝑖
   𝜎 𝑋𝑖 …………………………...… 6.2.3.11 

Assumption 3: The error variance is proportional to the square of the mean value of Y. 

𝐸 𝑢𝑖
   𝜎 [𝐸 𝑌𝑖 ]

  ………………..……… 6.2.3.13 



85 

 

where    
  

     
, it can be seen that     

     ; that is, the disturbances    are homoscedastic. Hence, it 

is regression (6.2.3.14) that will satisfy the homoscedasticity assumption of the classical linear regression 

model. 

The transformation (6.2.3.14) is, however, in operational because       depends on β1 and β2, which are 

unknown. Of course, we know  ̂   ̂   ̂   , which is an estimator of      . Therefore, we may 

proceed in two steps: First, we run the usual OLS regression, disregarding the heteroscedasticity problem, 

and obtain  ̂ . Then, using the estimated  ̂ , we transform our model as follows: 

  

 ̂ 
   (

 

 ̂ 
)    (

  

 ̂ 
)     …………….……… 6.2.3.15 

Where    
  

 ̂ 
. In Step 2, we run the regression (6.2.3.15). Although  ̂  are not exactly      , they are 

consistent estimators; that is, as the sample size increases indefinitely, they converge to true      . 

Hence, the transformation (6.2.3.15) will perform satisfactorily in practice if the sample size is reasonably 

large. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assumption 4: A log transformation such as 

𝑙𝑛𝑌𝑖  𝛽  𝛽 𝑙𝑛𝑋𝑖  𝑢𝑖 ……………………….... 6.2.3.16 

𝑌𝑖  𝛽  𝛽 𝑋𝑖  𝑢𝑖
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7. NON LINEAR REGRESSION AND TIME SERIES ECONOMETRICS 

7.1 Non Linear Regression Models: Overview 

On previous chapters we have seen linear regression models, that is, models that are linear in the 

parameters and/or models that can be transformed so that they are linear in the parameters. On 

occasions, however, for theoretical or empirical reasons we have to consider models that are 

nonlinear in the parameters. In this chapter we take a look at such models and study their special 

features. 

7.1.1 Intrinsically Linear and Intrinsically Nonlinear Regression Models 

When we started our discussion of linear regression models on Chapter 3, we stated that our 

concern is basically with models that are linear in the parameters; they may or may not be linear 

in the variables. If a model is nonlinear in the parameters it is a nonlinear (in-the-parameter) 

regression model whether the variables of such a model are linear or not. However, one has to be 

careful here, for some models may look nonlinear in the parameters but are inherently or 

intrinsically linear because with suitable transformation they can be made linear-in-the-

parameter regression models. But if such models cannot be linearized in the parameters, they are 

called intrinsically nonlinear regression models. From now on when we talk about a nonlinear 

regression model, we mean that it is intrinsically nonlinear. In short, we will call them NLRM. 

To drive the distinction between the two, let us consider the following models. 

Are the following models linear regression models? Why or why not? 

a. Yi = e
β1 + β2Xi + ui

  

b. ln Yi = β1 + β2 
 

  
  + ui  

c. Yi = β1 + (0.75 − β1)e
− β2(Xi−2)

 + ui 

d. Yi = β1 +   
 Xi + ui  

Models c and d are intrinsically nonlinear because there is no simple way to linearize them. 

Model b is obviously a linear regression model. What about Models a? Taking the logarithms on 

both sides of a, we obtain lnYi = β1 +   
 Xi + ui, which is linear in the parameters. Hence Model a 

is intrinsically a linear regression model. 

 Estimation Of Nonlinear Regression Models 

To see the difference in estimating linear and nonlinear regression models, consider the 

following two models: 

Yi = β1 + β2Xi + ui ------------------------------------------------------------7.1.1 
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Yi = β1 
    + ui----------------------------------------------------------------7.1.2 

By now you know that (7.1.1) is a linear regression model, whereas (7.1.2) is a nonlinear 

regression model. Regression (7.1.2) is known as the exponential regression model and is often 

used to measure the growth of a variable, such as population, GDP, or money supply. Suppose 

we consider estimating the parameters of the two models by OLS. In OLS we minimize the 

residual sum of squares (RSS), which for model (7.1.1) you should remember from what you 

have learned in previous chapters. Observe very carefully by remembering that in these 

equations the unknowns (β‟s) are on the left-hand side and the knowns (X and Y) are on the right-

hand side. As a result we get explicit solutions of the two unknowns in terms of our data. 

Now see what happens if we try to minimize the RSS of (7.1.2).  

∑    Yi     = β1 
     -----------------------------------------------------------------------7.1.3 

∑    YiXi     =   ∑    
       ------------------------------------------------------------7.1.4 

Unlike the normal equations in the case of the linear regression model, the normal equations for 

nonlinear regression have the unknowns (the   ˆ‟s) both on the left- and right-hand sides of the 

equations. As a consequence, we cannot obtain explicit solutions of the unknowns in terms of the 

known quantities. To put it differently, the unknowns are expressed in terms of themselves and 

the data! Therefore, although we can apply the method of least squares to estimate the 

parameters of the nonlinear regression models, we cannot obtain explicit solutions of the 

unknowns. Incidentally, OLS applied to a nonlinear regression model is called nonlinear least 

squares (NLLS). So, what is the solution? 

 ESTIMATING NONLINEAR REGRESSION MODELS: THE TRIAL-AND-

ERROR METHOD 

To set the stage, let us consider a concrete example. The data in Table 7.1relates to the 

management fees that a leading mutual fund in the United States pays to its investment advisors 

to manage its assets. The fees paid depend on the net asset value of the fund. As you can see, the 

higher the net asset value of the fund, the lower are the advisory fees, which can be seen clearly 

from Figure 7.1. 

To see how the exponential regression model in (7.1.2) fits the data given in Table 7.1, we can 

proceed by trial and error.  
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TABLE 7.1 ADVISORY FEES CHARGED AND ASSET SIZE 

                  Fee,                  % Asset* 

1                0.520                    0.5       ' 

2                0.508                    5.0      . 

3                0.484                    10        ' 

4                0.46                      15        ' 

5                0.4398                  20        ' 

6                0.4238                  25        . 

7                0.4115                  30        . 

8                0.402                    35        . 

9                0.3944                  40        . 

10              0.388                    45        . 

11              0.3825                  55        . 

12              0.3738                  60        . 

*Asset represents net asset value, billions of dollars. 

               0.56 

               0.52 

               0.48      

  Fee, %   0.44          

               0.40              

               0.36                             

                      0   10   20   30  40   50   60   70          

                               Asset, billions of dollars 

FIGURE 7.1 Relationship of advisory fees to fund assets. 
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Suppose we assume that initially β1 = 0.45 and β2 = 0.01. These are pure guesses, sometimes 

based on prior experience or prior empirical work or obtained by just fitting a linear regression 

model even though it may not be appropriate. At this stage do not worry about how these values 

are obtained. 

Since we know the values of β1 and β2, we can write (7.1.2) as: 

ui = Yi − β1e 
β2Xi

 = Yi − 0.45e
0.01Xi

  

Therefore, 

∑      
 = ∑    (Yi − 0.45e

0.01Xi 
)
2
---------------------------------------------------------------------------7.1.5 

Since Y, X, β1, and β2 are known, we can easily find the error sum of squares in (7.1.5). 

Remember that in OLS our objective is to find those values of the unknown parameters that will 

make the error sum of squares as small as possible. This will happen if the estimated Y values 

from the model are as close as possible to the actual Y values. With the given values, we obtain 

  
 = 0.3044. But how do we know that this is the least possible error sum of squares that we can 

obtain? What happens if you choose another value for β1 and β2, say, 0.50 and −0.01, 

respectively? Repeating the procedure just laid down, we find that we now obtain &   
  = 

0.0073. Obviously, this error sum of squares is much smaller than the one obtained before, 

namely, 0.3044. But how do we know that we have reached the lowest possible error sum of 

squares, for by choosing yet another set of values for the β‟s, we will obtain yet another error 

sum of squares? 

As you can see, such a trial-and-error, or iterative, process can be easily implemented. And if 

one has infinite time and infinite patience, the trial and-error process may ultimately produce 

values of β1 and β2 that may guarantee the lowest possible error sum of squares. But you might 

ask, how did we go from (β1 = 0.45; β2 = 0.01) to (β1 = 0.50; β2 = −0.1)? Clearly, we need 

some kind of algorithm that will tell us how we go from one set of values of the unknowns to 

another set before we stop. Fortunately such algorithms are available, and they will be discussed 

in the next section. 

 Algorithm Approaches To Estimating Nonlinear Regression Models 

 

There are several approaches, or algorithms, to estimate NLRMs: (1) direct search or trial and 

error, (2) direct optimization, and (3) iterative linearization. 

 Direct Search or Trial-and-Error or Derivative-Free Method 

In the previous section we showed how this method works. Although intuitively appealing 

because it does not require the use of calculus methods as the other methods do, this method is 

generally not used. First, if an NLRM involves several parameters, the method becomes very 

cumbersome and computationally expensive. For example, if an NLRM involves 5 parameters 
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and 25 alternative values for each parameter are considered, you will have to compute the error 

sum of squares (25)
5
 = 9,765,625 times! Second, there is no guarantee that the final set of 

parameter values you have selected will necessarily give you the absolute minimum error sum of 

squares. In the language of calculus, you may obtain a local and not an absolute minimum. In 

fact, no method guarantees a global minimum. 

 Direct Optimization 

In direct optimization we differentiate the error sum of squares with respect to each unknown 

coefficient, or parameter, set the resulting equation to zero, and solve the resulting normal 

equations simultaneously. We have already seen this in Eqs. (7.1.3) and (7.1.4). But as you can 

see from these equations, they cannot be solved explicitly or analytically. Some iterative routine 

is therefore called for. One routine is called the method of steepest descent. We will not discuss 

the technical details of this method as they are somewhat involved, but the reader can find the 

details in the references. 

Like the method of trial and error, the method of steepest descent also involves selecting initial 

trial values of the unknown parameters but then it proceeds more systematically than the hit-or-

miss or trial-and-error method. One disadvantage of this method is that it may converge to the 

final values of the parameters extremely slowly. 

 Iterative Linearization Method 

In this method we linearize a nonlinear equation around some initial values of the parameters. 

The linearized equation is then estimated by OLS and the initially chosen values are adjusted. 

These adjusted values are used to relinearize the model, and again we estimate it by OLS and 

readjust the estimated values. This process is continued until there is no substantial change in the 

estimated values from the last couple of iterations. The main technique used in linearizing a 

nonlinear equation is the Taylor series expansion from calculus. Rudimentary details of this 

method are given on (Gujarati: Basic Econometrics, Fourth Edition for interested reader) in Appendix 14A, 

Section 14A.2. Estimating NLRM using Taylor series expansion is systematized in two 

algorithms, known as the Gauss–Newton iterative method and the Newton–Raphson iterative 

method. Since one or both of these methods are now incorporated in several computer packages, 

and since a discussion of their technical details will take us far beyond the scope of the course at 

this level, there is no need to dwell on them here. 

7.2. Time Series Analysis  

7.2.1. Meaning and Components of Time series Analysis 

A time series is a set of observations on the value that a variable takes at different times. A time 

series data is a set of observations taken at specified times, usually, at "equal intervals". 
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The time series elements are classified into four basic types of variations, which account for the 

changes in the series over a period of time. These four types of patterns, variations, movements 

are often called the component or elements of time series.  These are: 

1) Secular Trend                    3) Cyclical Variations 

2) Seasonal Trend                   4) Irregular Variations 

 

In traditional or classical time series analysis, it is ordinarily assumed that there is a 

multiplicative relationship between these four components. That is, it is assumed that any 

particular value in series is the product of factors that can be attributed to the various 

components. Symbolically, it is given as: 

       Y = T x S x C x I 

Where T = trend 

           C = cyclical 

           S = seasonal 

           I = irregular 

If the above model is employed, the seasonal, cyclical and irregular items are not viewed as 

absolute amounts, but rather as relative magnitude. 

7.2.1.1 Secular Trend 

Trend is the variation of the value of a variable that can be observed in a long period of time. It is 

the general tendency of the data to grow or to decline over a long period of time. Trend is 

broadly divided under two heads: linear and  nonlinear  trends. 

 The methods of Measuring Trend 

The following three methods are used for measuring trend: 

- Graphic method 

- The semi - average method 

- The method of Least Squares 

A. Graphic method 

This is the simplest method of studying trend. Under this method the given data are plotted on 

graph paper and a trend line is fitted to the data just by inspecting the graph of the series. There 

is no formal statistical criterion where the adequacy of such a line can be judged and the 

judgment depends on the discretion of the individual researcher. This method is not frequently 

used since its approach is not exact. 
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B. Methods of Semi- Averages 

This method is used in such a way that the given data are divided into two parts preferably, with 

equal number of years. For example, you are given data from 1982 to 1999, that is over a period 

of 18 years, the two equal parts will be first nine years, i.e. from 1982 to1990 and from 1991 to 

1999. In the case of total number of years not divisible by 2 such as 9, 11,13 etc, two equal parts 

can be made simply by ignoring the middle year. 

Example: Fit a trend line to the following data by the method of semi-averages 

            Year                    Sales 

1994                    102 

1995                    105 

1996                    114 

1997                    110 

1998                    108 

1999                    116 

2000                    112 

Since seven years are given, the middle year should be omitted and an average of the first three 

years and the last three years shall be obtained. The averages of the first three years is 

(102+105+114)/3 = 107 and the average o the last three years is 

(108+116+112)/3 = 112 

Thus, you get two points 107 and 112, which shall be plotted corresponding to their respective 

middle years, i.e. 1995 and 1999. By joining these two points; you shall obtain the required trend 

line. 

C. Method of Least Squares 

This method is most widely used in practice. When this method is applied, a trend line is fitted to 

the data in such a way that the following two conditions are satisfied: 

1) ∑      
 

 
  . The sum of deviations of the actual values of Y and the computed values of 

Y is zero 

2) ∑      
 

 

2
 is the least, that is the sum of the squares of the deviations of the actual and 

computed values is the least one. The method of least squares can be used either to fit a 

straight line trend or a parabolic trend. The straight line trend is represented by the equation. 

Yc = a+bX 

In order to determine the value of the constants a and b, the following equations are to be solved 

∑       ∑    
 
 

. 

∑     ∑      ∑    
 
 

2
 where, n represents number of years and X is the time period. 

You can measure the variable X from any point of time in origin such as the first year. However 

this calculations are very much simplified when the midpoint in time is taken as the positive 

values in the second half so that ∑      , the above two normal equations would take the form: 
 

∑      
 

. 

∑     ∑    
 
 

2
    ,          b = ∑  

 

 
 )/ ∑    

2
)               a =  ∑        

The constant 'a' give the arithmetic mean of Y and the constant 'b' indicates the rate of change. 

Example1:  The following is production of a sugar factory in thousand quintals 
 

Year              1983   1984   1985   1986   1987   1988   1989 

Production         80       90       92      83       94       99      92 
 

Required 
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1. Fit a straight line trend 

2. Estimate the likely sales of the company in 1990 

Solution 

Year                Production(Y)        Time(X)              XY               X
2
 

1983                    80                            -3                    -240            9 

1984                    90                            -2                    -180            4 

1985                    92                            -1                     -92             1  

1986                    83                             0                       0              0  

1987                    94                             1                       94             1 

1988                    99                             2                       198           4 

1989                    92                             3                       276           9  .   

Total                   630                            0                       56             28 

 

1)      Yc = a+bX 

a =  ∑        = 630/7 = 90 

b = ∑  
 

 
 )/ ∑    

2
) = 56/28 = 2   

                        Yc = a+bX = 90 + 2X  

2) Forecasting  for 1990. Since 1990 is four years later than the base year, X =4. Therefore it is 

possible to find the value of the Yc when X = 4,  Yc = 90 + 2(4) = 98 units 

 

Exercise Calculate the trend values by the method of least squares from the data given below 

and fit a straight trend line and estimate the sale for the year 2003. 

 

Year    1996   1997   1998   1999   2000 

Sales       12      18      20       23       27 

 

7.2.1.2 Seasonal Variations 

Seasonal variations are periodic movements in business activity, which occur regularly every 

year and have their origin in the nature of the year itself. Seasonal variation exists only when 

data are given in a period which is less than a year(monthly, weekly, semi-annually, daily etc). 

However, it does not exist in the data that are given in annual basis or more than a year period 

interval. Nearly every type of business activity is liable to a seasonal influence to a greater or 

lesser degree and as such, these variations are regarded as normal phenomenon recurring every 

year. Although the word 'seasonal' seems to imply a connection with the season of the year, the 

term is meant to include any kind of variation, which is of periodic nature and whose repeating 

cycle are of relatively short duration. The factors that cause seasonal variations are climate and 

weather conditions, Customs, Traditions and Habits 

 

 Methods of Measuring Seasonal Variations 

When data are expressed annually, there is no seasonal variation. However, monthly or quarterly 

data frequently exhibit strong seasonal movements and considerable interest attaches to devise a 

pattern of average seasonal variation. There are several methods of measuring seasonal 

variations. However, the following methods are popularly used in practice: 

 Method of simple averages 

 Ratio to trend method 
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 Ration to moving average method 

 Link relatives method 

A. Method of simple averages 

This is the simplest method of obtaining a seasonal index. The following steps are necessary for 

computing the index: 

 Average the unadjusted data by years and months or quarters if the data are given 

quarterly. 

 Find the totals of the data in each month, quarter or a period in which the data are given. 

 Divide each total by the number of years for which data are given. 

 Obtain an average of monthly averages by dividing the total of monthly averages by 12. 

Taking the average of monthly averages as 100, compute the percentage. 

 Seasonal Index for January = Monthly Average for January X 100 

                                              Average of monthly averages 

Example: Consumption of monthly electric power in KW hours of for street lighting in a given 

company from 1995-1999 is given in the following table. 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1995 318 281 278 250 231 216 223 245 269 302 325 347 

1996 342 309 299 268 249 236 242 262 288 321 342 364 

1997 367 328 320 287 269 251 259 284 309 345 367 394 

1998 392 349 342 311 290 273 282 305 328 364 389 417 

1999 420 378 370 334 314 296 305 330 356 396 422 425 

Find out seasonal variation by the method of monthly averages. 

 

Solution; 

Mont

h 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total Aver. 

1995 318 281 278 250 231 216 223 245 269 302 325 347   

1996 342 309 299 268 249 236 242 262 288 321 342 364   

1997 367 328 320 287 269 251 259 284 309 345 367 394   

1998 392 349 342 311 290 273 282 305 328 364 389 417   

1999 420 378 370 334 314 296 305 330 356 396 422 425   

Total 1839 1645 1609 1450 1353 1272 1311 1426 1550 1728 1845 1947 18975 1581.2

5 

Avera

ge 

367.

8 

329 321.

8 

290 270.

6 

254.

4 

262.

2 

285.

2 

310 345.

6 

369 394.

8 

3800.4 316.7 

% 116.

1 

103.

9 

101.

6 

91.6 85.4 80.3 82.8 90.1 97.9 109.

1 

116.

5 

124.

7 

1200 100 

 

seasonal index for January =(367.8/316.7)x100= 116.1 

seasonal index for February =(329/316.7)x100= 103.9 

seasonal index for July =(262.2/316.7)x100= 82.8 
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B. Ratio-to-Trend Method 

This method of calculating a seasonal index is relatively simple and yet an improvement over the 

method of simple average explained in the preceding section. The  method assume that the 

seasonal variation for  a given month is a constant fraction of the trend. First T eliminates the 

trend component by dividing the original. 

T*S*C*I  = S*C*I   

     T 

The random elements are supposed to disappear when the ratio are averaged. A careful selection 

of a period of years used in the computation is expected to cause the influences of prosperity or 

depression to offset each other and thus remove the cycle. This method requires the following 

steps. 

Step1: Compute the trend values by applying the method of least squares. 

Step2: Divide the original data month by month by the corresponding trend values and multiply 

the ratio by 100. The values obtained are now free from trend. 

Step3: In order to free from irregular and cyclical movements, the irregular given for various 

years for the months(January, February, etc) should be averaged; and 

Step4: The seasonal index for each month is expressed as a percentage of the average month. 

The sum of 12 values must equal 1,200 or 100%. If it does not, an adjustment is made by 

multiplying each index by a suitable factor(1200). This gives the final seasonal index. 

Example:  Find the seasonal variations by ration to trend method from the data given below 

 

Year         1st quarter           2nd quarter            3rd quarter           4th quarter 

1996                30                       40                        36                      34 

1997                34                       52                        50                      44 

1998                40                       58                         54                     48 

1999                74                       76                         68                     42 

2000                80                       92                         86                     82 

 

Solution 

To determine seasonal variation by ration to trend method, first you will determine the trend of 

yearly data and then convert it to quarterly data. First, calculate the trend values. 

 

Year         Yearly total           Yearly average    Time(X)        XY      X
2
      Trend values 

1996               140                      35                      -2              -70       4                 32 

1997               180                      45                      -1               -45      1                 44 

1998               200                      50                       0                0        0                  56 

1999               260                      65                       1                65       1                  68 

2000               340                      85                       2                170     4                  80 

Total                                          280                     0                 120    10                  

 

Yc = a+bX 

a =  ∑        = 280/5 = 56 

b = ∑  
 

 
 )/ ∑    

2
) = 120/10 = 12 

Quarterly increment =  12/4 = 3 
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Calculation of quarterly trend values: Consider 1997. The trend value of 1997 indicates the trend 

value of the middle quarter of the year. The middle quarter is found half of the second and half of 

the 3rd quarter. Therefore the trend value of the 2nd quarter is given as 44- 3/2 = 42.5 and the 

trend value of the 3rd quarter is 44+3/2 = 45.5. After this subtract 3 from the 2nd quarter trend 

value to get the trend value of the first quarter and add three to get the trend value of the 4th 

quarter to the trend value of the 3rd quarter. The trend values for each quarter are given in the 

following table. 

                     Trend values 

Year         1st quarter           2nd quarter            3rd quarter           4th quarter 

1996                27.5                    30.5                      33.5                     36.5 

1997                39.5                    42.5                      45.5                     48.5 

1998                51.5                     54.5                     57.5                     60.5 

1999                63.5                     66.5                     69.5                     72.5 

2000                75.5                     78.5                     81.5                     84.5 

 

The ration to trend values can be found by dividing the original data by the trend values 

expressed in percentage. 

Quarterly values as percentage of trend values 

Year         1st quarter           2nd quarter            3rd quarter           4th quarter 

1996              109.1                   131.1                   107.5                     93.1 

1997               86.1                   122.4                    109.9                     90.7 

1998               77.7                   106.4                    93.9                       79.3 

1999               85                     114.3                     97.8                       85.5 

2000              106                     117.1                    105.5                     84.5 

Total             463.9                   591.3                     514.6                    445.6 

Average         92.78                  118.26                    102.92                   89.12 
 

Since 92.78 + 118.26 + 102.92 + 89.12 =403.08 is greater than 400, you have to find the 

correction factor and multiply each seasonal index by the correction factor. 

CF = 
   

                                   
 = 

   

      
 , then the adjusted seasonal index will be given as 

follows: 

1st quarter  = 92          

2nd quarter  = 117.4           

3rd quarter  = 102.2         

4th quarter = 88.4 

C. Ratio- to- moving average method  

The ratio to the moving average is the most widely used method of measuring seasonal 

variations. The following steps are important in measuring seasonal variations using the ration to 

moving average method: 

Step1: Compute the centered 12 month moving average from the original data. This contains 

trend and cyclical variations. 

Step2: Express the original data for each month as percentage of the centered 12 month moving 

average. 

Step3: Divide each month data by the corresponding centered 12 month moving average and list 

the quotient. 
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Step4: Compute the average of each month for the quotient that we obtained in step 3. By doing 

so the irregular component will be removed.  
   

 
   

The sum of seasonal index should be 1200. If the sum is different from 1200. If the sum is 

different from 1200, compute the correction factor and multiply each month's seasonal index by 

the correction factor. The correction factor is obtained as, 

CF = 
    

                            
 

 

D. Link Relatives Method 

 This method involves the following steps. 

Step1: Calculate the link relatives of the seasonal figures 

              LR = 
                       

                        
      

Step2: Calculate the average of the link relatives for each season 

Step3: Convert the averages into chain relatives on the base of the last season 

Step4: Calculate the chain relatives of the first season on the base of the last season 

Step5:  For correction, chain relatives of the first season calculated by the first method is 

deducted from the chain relative of the first season calculated by the second method. 

Step6: Express corrected chain relatives as percentage of their averages. These Provide the 

required seasonal indices by the method of link relatives. 

 

7.2.3 Cyclical Variations 

The term cycle refers to recurrent variations in time series that usually last longer than a year and 

regular, neither in amplitude nor in length. Cyclical fluctuations are long term movements that 

represent consistently recurring rises and declines in activity. They are resulted mainly from 

business cycles. A business cycle consists of the up and down movements of business activity 

from some sort of statistical trend. There are four well defined periods or phases in the business 

cycle. These are prosperity, decline, depression and improvement. The study of cyclical 

variations is extremely useful in framing suitable policies for stabilizing the level of business 

activity, i.e. for avoiding the periods of booms and depressions as both are bad for the economy. 

 

7.2.3.1 Measurement of Cyclical Variations 

Despite their importance, business cycles are most difficult types of fluctuations to measure. This 

is because successive cycles vary widely in timing, amplitude and pattern. Because of such 

reason it is impossible to construct meaningful typical cycle indices of curves similar to those 

that have been developed for trends and seasonality. The important methods used to measure 

cyclical variations are: 

1. Residual Method 

2. Reference Cycle Analysis Method 

3. Direct Method 

4. Harmonic Analysis Method 

Among the above methods the one that is frequently used and convenient is the first method. 

Therefore only that method will be discussed here. 

A. Residual Method 
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This method is most commonly used method. It consists of eliminating seasonal and then trend 

variations to obtain the cyclical and irregular movements. 

                  

                                                         
       

 
        

 
     

 
     

The data are usually smoothed in order to obtain cyclical movements, which are sometimes 

termed as the cyclical relatives since they are always expressed in percentages. This is because 

cyclical, irregular or the cyclical movements remain residuals. As a result, this procedure is 

referred to as the residual method 

 

7.2.4 Irregular Variations 

Irregular variations refers to such variations in business activities which do not repeat in a 

definite pattern. It includes all types of variations other than those accounting for the trend, 

seasonal and cyclical movements. Irregular movements are considered to be largely random, 

being the result of chance factors, which like the fall of a coin, are wholly unpredictable. 

Irregular variations are caused by such special occurrences as flood, earthquakes, strikes and 

wars. Sudden changes in demand or rapid technological progress may also be included in this 

category. By their nature, these movements are irregular and unpredictable. Quantitatively it is 

almost impossible to separate-out the irregular movements and the cyclical movements. 

Therefore while analyzing time series, the trend and seasonal variations are measured separately 

and cyclical and irregular variations are left altogether. 

 

7.2.4.1 Measurement of Irregular Variations 

The irregular component in the time series represents the residue of fluctuations after trend, 

seasonal and cyclical movements have been accounted for. Thus if the original data is divided by 

T, S, and C you will get I.   TSCI/TSC = I 

In practice the cycle itself is erratic and interwoven with irregular movements that it is 

impossible to separate them. in the analysis of time series into its components, trend and seasonal 

movements are usually measured directly, while cyclical and irregular fluctuations are left 

altogether after the other elements have been removed. 

 

 

 

 

 

 

Good luck------------ 


