CHAPTER 4

4. Kani Method of Analysis

4.1 Introduction

Kani method may be considered as a further simplification of moment distribution method. In analyzing using Kani method;
i. Frame analysis is carried out by solving the slope - deflection equations by successive approximations. Useful in case of side sway as well.
ii. Operation is simple, as it is carried out in a specific direction. If some error is committed, it will be eliminated in subsequent cycles if the restraining moments and distribution factors have been determined correctly.

Consider a typical member AB loaded as shown below:

Fig 4.1 General beam element under end moments and loads
As discussed in the slope deflection method, the slope deflection equation can be written as:

$$
\begin{equation*}
M_{A B}=M_{A B}^{F}+2 M_{A B}^{\prime}+M_{B A}^{\prime} \tag{4.1}
\end{equation*}
$$

Where:
$M_{A B}^{F}$: Fixed end moments at A due to applied loads
$M_{A B}^{\prime}:$ Rotation contribution of end A of member $\mathrm{AB}=\frac{E I}{L}\left(2 \theta_{A}\right)$
$M_{B A}^{\prime}:$ Rotation contribution of end B of member $\mathrm{AB}=\frac{E I}{L}\left(\theta_{B}\right)$
The near and far end rotation contributions of end A of member AB are given in Eq. (4.2) below.

$$
\begin{equation*}
M_{A B}^{\prime}=\frac{E I}{L}\left(2 \theta_{A}\right)=2 E k_{A B} \theta_{A} \text { and } M_{B A}^{\prime}=\frac{E I}{L}\left(\theta_{B}\right)=E k_{A B} \theta_{B} \tag{4.2}
\end{equation*}
$$

Where: $k_{A B}=\frac{I_{A B}}{L_{A B}}$

Now consider a generalized joint E in a frame shown in the following figure where members $E B$, $E C, E D$ and $E A$ meet. It carries a moment M.

where: $k_{E A} k_{E C,} k_{E B,} k_{E D}$ are stiffness
factors of members $E A, E C, E B$ and $E D$ respectively.

Fig 4.2
From equilibrium of joint $E, \Sigma M_{E}=0$

$$
\begin{equation*}
\sum \mathrm{M}_{\mathrm{E}}=M_{E B}+M_{E C}+M_{E D}+M_{E A}=0 \tag{4.3}
\end{equation*}
$$

Write these moments in the form of Eq. (4.1)

$$
\begin{equation*}
\Sigma M_{E}=\sum M_{(E B+E C+E D+E A)}^{F}+2 \sum M_{(E B+E C+E D+E A)}^{\prime}+\sum M_{(B E+C E+D E+A E)}^{\prime}=0 \tag{4.4}
\end{equation*}
$$

Let the net FEM at joint $E=M_{\mathrm{E}}^{\mathrm{F}}=M_{E B}^{F}+M_{E C}^{F}+M_{E D}^{F}+M_{E A}^{F}$. This moment is also called restrained moment at joint E. The total near end rotation contribution from Eq. (4.4) becomes:

$$
\begin{equation*}
\sum M_{(E B+E C+E D+E A)}^{\prime}=-\frac{1}{2}\left[M_{\mathrm{E}}^{\mathrm{F}}+\sum M_{(B E+C E+D E+A E)}^{\prime}\right]=0 \tag{4.5}
\end{equation*}
$$

Upon substitution and simplification the following equation is obtained.

$$
\begin{aligned}
\sum M_{(E B+E C+E D+E A)}^{\prime} & =-2\left[E k_{E B} \theta_{E}+E k_{E C} \theta_{E}+E k_{E D} \theta_{E}+E k_{E A} \theta_{E}\right] \\
& =-2 E \theta_{E}\left(k_{E B}+k_{E C}+k_{E D}+k_{E A}\right] \\
& =-2 E \theta_{E} \sum k_{E}
\end{aligned}
$$

Thus, the rotation of joint E, θ_{E}, can be written as follow:

$$
\begin{equation*}
\theta_{E}=-\frac{\sum M_{(E B+E C+E D+E A)}^{\prime}}{2 E \sum k_{E}} \tag{4.6}
\end{equation*}
$$

where:
$\sum k_{E}=$ sum of the member stiffnesses framing in at joint E

From Eq. (4.2), the rotation contribution of end E of member $E B, M_{E B}^{\prime}$ is:

$$
\begin{equation*}
M_{E B}^{\prime}=2 E k_{E B} \theta_{E} \tag{4.7}
\end{equation*}
$$

Substituting Eq. (4.6) in to Eq. (4.7) gives the following near end moment equation for member EB.

$$
\begin{equation*}
M_{E B}^{\prime}=2 E k_{E B}\left(\frac{-\sum M_{(E B+E C+E D+E A)}^{\prime}}{2 E \sum k_{E}}\right)=-\frac{k_{E B}}{\sum k_{E}}\left(\sum M_{(E B+E C+E D+E A)}^{\prime}\right) \tag{4.8}
\end{equation*}
$$

Combining Eqs. (4.5) and (4.8) yields the following general equation;

$$
\begin{equation*}
\sum M_{E B}^{\prime}=-\frac{1}{2} \frac{k_{E B}}{\sum k_{E}}\left(M_{\mathrm{E}}^{\mathrm{F}}+\sum M_{(B E++E+D E+A E)}^{\prime}\right) \tag{4.9}
\end{equation*}
$$

Thus, the rotation contribution of near end of member $E B$ is $-1 / 2$ of the sum of the rotations contributions of far ends of members meeting at E.

Note that the sum of rotation factors of different members meeting at a joint is equal to $-1 / 2$.
\Rightarrow If net fixed end moment at any joint along with sum of the far end contribution of members meeting at that joint are known then near end moment contribution can be determined.
\Rightarrow If far end contributions are approximate, near end contributions will also be approximate.
\Rightarrow When far end contributions are not known (as in the first cycle), they can be assumed to be zero.

Rules for calculating rotation contributions:

4.2 Without sides way

Definition: "Restrained moment at a joint is the algebraic sum of FEM's of different members meeting at that joint."

1. Sum of the restrained moment of a joint and all rotation contributions of the far ends of members meeting at that joint is multiplied by respective rotation factors to get the required near end rotation contribution. For the first cycle when far end contributions are not known, they may be taken as zero ($1^{\text {st }}$ approximation).
2. By repeated application of this calculation procedure and proceeding from joint to joint in an arbitrary sequence but in a specific direction, all rotation contributions are known. The process is usually stopped when end moment values converge. This normally happens after three or four cycles. But values after $2^{\text {nd }}$ cycle may also be acceptable for academic.

4.3 With side sway (joint translations)

In this case in addition to rotation contribution, linear displacement contributions(Sway contributions) of columns of a particular storey are calculated after every cycle as follows:

Fig 4.3 Sidesway Frame

For the first cycle

(A) \rightarrow Linear Displacement Contribution (LDC) of a column = Linear displacement factor (LDF) of a particular column of a story multiplied by [storey moment + contributions at the ends of columns of that story]
\Rightarrow Linear displacement factor (LDF) for columns of a story $=-3 / 2$
\Rightarrow Linear displacement factor of a column $=\frac{-3}{2} \frac{k}{\sum k}$
Where $k=$ stiffness of the column being considered
Σk is the sum of stiffness of all columns of that storey.
(B) \rightarrow Storey moment $=$ Storey shear $\mathrm{x} 1 / 3$ of storey height.
(C) \rightarrow Storey shear : It may be considered as reaction of column at horizontal beam / slab levels due to lateral loads by considering the columns of each sotrey as simply supported beams in vertical direction. "If applied load gives +R value (according to sign conversion of slope deflection method), storey shear is +ve or vice versa."

For $1^{\text {st }}$ cycle with side sway

(D) Near end contribution of various $=$ respective rotation contribution factor members meeting at that joint $\quad \times$ [Restrained moment + far end contributions]

Linear displacement contributions will be calculated after the end of each cycle for the columns only.

For $2^{\text {nd }}$ and subsequent cycles

respective rotation contribution factor
(E) Near end contribution of various $=\times[$ Restrained moment + far end contributions + members meeting at that joint linear displacement contribution of columns of different storeys meeting at that joint]

Rules for the calculation of final end moments (sidesway cases)

(F) \rightarrow For beams, End moment $=$ FEM +2 near end contribution + Far end contributions.
(G) \rightarrow For columns, End moment. $=$ FEM +2 near end contribution + Far end contribution + linear displacement contribution of that column for the latest cycle.

