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Introduction 

Between the development and the implementation of the Eurocodes that are 
currently published and in effect in many countries across Europe a number of 
years have passed. Given the long time of initial adoption of the Eurocodes some 
of the tests and methods of verification used in the current standards originate from 
the 1980s or 1990s. As is inherent in any standard, the Eurocodes have no 
educational character; their purpose is not to explain how they originated or 
developed. For Eurocode 4, this actually means that EN 1994-2004 no longer 
represents the state of the art for composite construction in Europe. The current 
level of scientific knowledge is not represented in the codes and they obviously do 
not take account of any forms of interaction between steel and concrete that now 
exist in the European construction markets but where the techniques were 
developed after adoption of the code. Only the next generation of Eurocode 4 due 
to come into force in 2018 as EN 1994-2018 will be based on the reactions and 
comments of the construction industry to the current standard. 
 
In the meantime, we thought it highly necessary for practicing engineers to know 
well the details of calculation in accordance with the standard EN 1994-2004 that 
is currently published. This is exactly why we have compiled these fully worked 
out numerical examples in this book. The examples provided herein are intended 
for anyone involved in the detailed design of a composite structure of steel and 
concrete. 
 
The examples listed in Chapter A represent the calculation of the values of the 
time-dependent concrete deformations due to creep and shrinkage. These values 
are included in EN 1992 (Design of concrete structures) but are used in EN 1994 as 
well. The final values of the creep coefficient are determined by means of 
nomograms in EN 1992. However, EN 1994 does not provide any nomograms for 
the determination of the final values of shrinkage deformations. For that reason, the 
nomograms that can be found in literature have not been used in these examples. 
The values of the time-dependent concrete deformations are given in the examples 
so as to enable the structural engineers to use them in practice. 
 
The examples given in Chapter B refer to beams composed of steel profiles and 
concrete flanges. Although these structural elements have been thoroughly 
discussed in EN 1994, there are still some dilemmas about the calculation of the 
serviceability limit state. Those dilemmas are pointed out and commented at the 
end of the examples. It should be expected that they will be solved or better 
substantiated in the next edition of the Eurocode. Current practice utilises more and 
more often beams composed of structural steel and concrete with increased 
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strength, but they are still not adequately represented in the current standard. 
Similarly, although frequently used, pre-stressed elements are not covered by the 
rules of EN 1994 at all. The examples given in Chapter B show in a detailed way a 
set of problems associated with the calculation of the bearing capacity of the shear 
connectors whose resistance is determined by a push-out test. The present test does 
not give sufficiently accurate data on ductility, so it will be necessary to present a 
more accurate, but also a more expensive, test in the future. Steel girders with 
openings, connected with concrete flanges represent a modern technical solution 
frequently applied, but there are no corresponding guidelines in EN 1994. 
 
Chapter C provides examples for the calculation of composite columns consisting 
of structural steel and concrete. The recommendation of EN 1994-1-1 is that the 
calculation should be performed according to a simplified method. But when it 
comes to columns with non-uniform or asymmetric cross-sections, the verification 
can be produced only by a general method. Such a method is not convenient for 
practical purposes, so the standard does not contain any more detailed guidelines 
for its application. Even if a computer (software) support is used, it is necessary to 
know in advance the rules of the simplified method. For that reason, the articles 
associated with the simplified method are discussed in detail in Chapter C. For 
columns subjected only to axial pressure, the produced verification is the same for 
both structural steel and composite columns so the “ ” procedure can be used. 
However, for columns subjected to axial compression and bending, the verification 
is produced according to the second-order theory – through the introduction of 
equivalent imperfection. The imperfection is added only in the plane where a 
failure is to be expected. If it is not obvious which plane is in question, the 
verification should be produced for both planes. So, for instance, if the column is 
subjected to axial compression and uniaxial bending, the verification is frequently 
produced for axial force and biaxial bending. The modification of the new EN 
1994-2018 will comprise the amendment to or correction of some informative 
Annexes because they have not been accepted by some countries. This refers 
specifically to the fire resistance of columns of concrete-filled tubes covered by the 
Annex H, EN 1994-1-1. 
 
In the numerical examples given in Chapter D, the composite slabs consisting of 
steel profiled sheets and concrete are discussed. They highlight the complexities 
involved in their calculation, and also some dilemmas, which probably need to be 
resolved in the future. For the next generation EN 1994-2018 currently being 
developed, one special interest represents the introduction into the standard of new 
guidelines for some new types of composite slabs. These new types adhere to the 
principle that it is desirable to have more “hollow space” within the slab cross-
section which reduces the amount of concrete as well as the slab’s weight but still 
results in an effective flexural stiffness. 
 
Fatigue problems are discussed in the examples included in Chapter E. A complete 
estimation of the fatigue of composite elements consisting of structural steel and 
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concrete is given by EN 1994 only for headed studs. The fatigue estimation is 
produced for structural steel (EN 1993), concrete (EN 1992) and reinforcement 
(EN 1992), from which it can be concluded that such estimation represents a very 
complex problem. 
 
The final chapter, F, deals with structural solutions for the joints applied most 
frequently in practice. 
 
In recent years, composite elements consisting of steel and concrete have not, for 
various reasons, had the chance to be applied to any great extent – certainly not to 
the extent that they deserve. However, bearing in mind all the previously stated 
facts and also some of the dilemmas about the further development of the new 
generation of the Eurocode, we can say that there is now a new opportunity for the 
application of composite elements. 
 
Zagreb, October 2014 The authors 
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A1 Determination of creep and shrinkage values 

1. Purpose of example 

It is necessary to determine the values of creep and shrinkage of concrete in a 
composite beam with cross-section shown in Figure A1.1 as follows: 
 

The values of the creep coefficient at t = , the final creep coefficient ( , t0), 
and at t = 90 days which is denoted with (90, t0), 
The values of the total shrinkage strain at t =  which is denoted with cs( ) 
(the final value) and at t = 90 days which is denoted with cs(90). 

2. Cross-section 

 
 
 
 
 
 
 
 

Figure A1.1 Cross-section 

3. Input data 

Concrete strength class: C 20/25 20,0ckf =  N/mm2 

 20,0 13,3
1,5

ck
cd

c

f
f = = =  N/mm2 

 30000cmE =  N/mm2 
Type of cement: N, strength class according to EN 197-1, 32,5 R 0=  
 1 4ds =  
 2 0,12ds =  

Relative humidity: inside conditions  RH 50% 
First loading t0 = 28 days 
Beginning of drying ts = 3 days 

Plate 200x16

b = 2500 

160

432 
592 

Plate 400x12
Plate 200x16 
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4. Creep coefficients 

4.1 Determination of final creep coefficient 

For the calculation of the final creep coefficient ( , t0) the following is valid: 
 
- the perimeter of that part which is exposed to drying, u 
 

 2 · u= b  
 

2 · 2500 5000u = =  mm 
 
- the notional size of the cross-section, h0 
 

0
2 · 2 · 2500 · 160 160

5000
cA

h = = =
u

 mm 16=  cm 

 
- t0 = 28 days, 
- inside conditions, the ambient relative humidity RH 50 %, 
- the concrete strength class C 20/25, 
- the type of cement – cement class N, strength class 32,5 R. 
 
The final value of creep coefficient ( , t0) is determined using the nomogram 
shown in Figure 3.1, EN 1992-1-1. The process of determining the final value of 
the creep coefficient, taking into account these assumptions, is given in Figure 
A1.2: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A1.2 Method for determining the creep coefficient 
 
The value of the final creep coefficient found from Figure A1.2 is: 
 

t = ( , t0) = 3,00 

2nd step

3rd step

4th step

5th
 st

ep
 1st step 

h0 = 160mm t = 3,00
h0 [mm]

t0 
R1 

2 
3 
5 

N S 

10 

20 
30 
50 

100 
( , t0) 

7,0 6,0 5,0 4,0 3,0 2,0 1,0 0 100 300 500 700 900 1100 1300 1500

C20/25 
C25/30 
C30/37 
C35/45 
C40/50 
C45/55 
C50/60 
C60/75 
C80/95 

C55/67 
C70/85 
C90/105 



Example A1 5 
 

 

4.2 Determination of creep coefficient at time t = 90 days 

The value of creep coefficient (t, t0) for some arbitrary time t can be calculated 
from: 
 

0 0 0( , ) = · ( , )ct t t t  
 
where: 

0 is the notional creep coefficient, 
c(t, t0) is a coefficient to describe the development of creep with time after 

loading (at t0 = 0, c(t, t0) = 0, and at t = , c(t, t0) = 1), 
 
The value of 0 is obtained as: 
 

0 0= · ( )· ( )RH cmf t  
 
where: 

RH is a factor to allow for the effect of relative humidity on the notional 
creep coefficient and is calculated as follows: 

3
0

1 – 1001
0,1RH
RH /= +

· h
     for fcm  35 N/mm2 

1 23
0

1 – / 100[1 + · ]·
0,1·RH
RH=

h
     for > 35cmf  N/mm2 

RH is the relative humidity of the ambient environment (in %), 
h0 is the notional size of the cross-section of the member (h0 in mm), 

0 = 2 /ch A u  

Ac is the cross-sectional area of concrete (mm2), 
u is the perimeter of the member in contact with the atmosphere (mm), 
(fcm) is a factor to allow for the effect of concrete strength on the notional 

creep coefficient and is determined as follows: 
16,8( ) =cm

cm

f
f

 

 
where: 

fcm is the mean compressive cylinder strength of concrete at the age of 28 
days (N/mm2, fcm = fck + 8 N/mm2), 

(t0) is a factor to allow for the effect of concrete age at loading on the 
notional creep coefficient and is determined as follows: 
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0 0,20
0

1( ) =
(0,1 + )

t
t

 

 
The effect of the type of cement on the creep coefficient of concrete can be taken 
into account by modifying the age of loading t0 according to the following 
expression: 
 

0 0, 1,2
0,

9=  · [ 1]
2T

T

t t +
+t

  0,5 days 

 
where: 

 is the factor that takes into account the development of concrete 
strength as a function of type of cement, 

t0,T is the temperature-adjusted age of concrete at loading in days. 
 
The effect of elevated or reduced temperatures within the range 0–80°C on the 
maturity of concrete can be taken into account by adjusting the concrete age 
according to the following expression: 
 

– (4000/[273+ ( )–13,65])

=1
 · i

n
 T t

T ii
t = e t  

 
where: 

tT is the temperature-adjusted concrete age which replaces t in the 
corresponding expressions, 

T( ti) is the temperature in °C during the time period ti, 
ti is the number of days where a temperature T prevails. 

 
0,30

0
0

( – )
( , ) = [ ]

+ ( – )c
H

t t
t t

t t
 

 
where: 

t is the age of concrete in days at the time considered (in days), 
t0 is the age of concrete at first loading (in days), 
t  t0 is the non-adjusted duration of loading in days, 

H is the coefficient depending on the relative humidity (RH in %) and the 
notional member size (h0 in mm), and is estimated according to 
expressions: 

18
0= 1,5 ·[1 + (0,012 · ) ]  ·  + 250H  RH h   1500      for cmf   35 N/mm2 

18
0 3= 1,5 ·[1 + (0,012 · ) ]  ·  + 250 · H  RH h   31500 ·     for > 35cmf  N/mm2 
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i are correction factors which take into account the influence of the 
concrete strength according to the following expressions: 

 
0,7

1 = [35 / ]cmf  
 

0,2
2 = [35 / ]cmf  

 
0,5

3 = [35 / ]cmf  
 
Thus, the mean compressive cylinder strength of concrete from Table 3.1, EN 
1992-1-1 is: 
 

=  + 8cm ckf f  N/mm2 = 20 + 8 = 28  N/mm2 
 

0=  (type of cement N) 
 
Correction factors which taken into account the influence of the concrete strength 
are: 
 

0,7 0,7
1 = [35 / ] [35 / 28] 1,17cmf = =  

 
0,2 0,2

2 = [35 / ] = [35 / 28] 1,05cmf =  
 

0,5 0,5
3 = [35 / ] = [35 / 28] = 1,12cmf  

 
The factor to allow for the effect of relative humidity on the notional creep 
coefficient 0 for cmf   35 N/mm2 is: 
 

33
0

1 – 100 1 – 50 1001 1 1,92
0,1 0,1 160RH
RH / /= + = + =

· h ·
 

 
The factor to allow for the effect of concrete strength on the notional creep 
coefficient 0 is: 
 

16,8 16,8( ) = = = 3,18
28cm

cm

f
f

 

 
The effect of the type of cement on the creep coefficient of concrete can be taken 
into account by modifying the age of loading t0 according to the following 
expression, where t0,T = t0 = 28 days: 
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0 0, 1,2 1,2
0,

9 9=  · [ 1] = 28 · [ 1]
2 2 28

0
T

T

t t + +
+t +

 

 
0 = 28t  days  0,5 days 

 
The factor to allow for the effect of concrete age at loading on the notional creep 
coefficient 0 is: 
 

0 0,20 0,2
0

1 1( ) = = = 0,49
(0,1 + ) (0,1 + 28 )

t
t

 

 
The coefficient depending on the relative humidity (RH in %) and the notional 
member size h0 for cmf   35 N/mm2 is: 
 

18
0= 1,5 ·[1 + (0,012 · ) ]  ·  + 250 =H  RH h  

18      = 1,5 ·[1 + (0,012 ·50) ]  · 160 + 250 = 490  1500 
 
The coefficient to describe the development of creep with time after loading is: 
 

0,3 0,30
0

0

( – ) (90 – 28)( , ) = [ ] = [ ] = 0,52
+ ( – ) 490 + (90 – 28)c

H

t t
t t

t t
 

 
The notional creep coefficient 0 is: 
 

0 0=  · ( ) · ( ) = 1,92 · 3,18 · 0,49 = 2,99RH cmf t   3,0 
 
The value of notional creep coefficient represents the value of the final creep 
coefficient ( , t0) found from Figure A1.2. Thus, this result confirms the accuracy 
of the results obtained from the Figure A1.2  see Section 4.1. 
 
At t = 90 days the creep coefficient (t, t0) is: 
 

0 0 0( , ) =  · ( , ) = 2,99 · 0,52 = 1,55ct t t t  

5. Shrinkage strains 

5.1 Determination of final value of shrinkage strain 

The total shrinkage strain of concrete, cs, is composed of two components: 
 

cs( ) = cd( ) + ca( ) 
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where: 
 

cd( ) is the drying shrinkage strain, 
ca is the autogenous shrinkage strain (this develops during hardening of the 

concrete). 
 
The final value of the drying shrinkage strain cd( ) is: 
 

cd( ) ,0=  · h cdk  
 
where: 
 
kh is a coefficient depending on the notional size of the member h0, Table 

A1.1, 
cd,0 is the nominal unrestrained drying shrinkage value, which can be taken 

from Table A1.2 or can be calculated by means of the following 
expression: 

 
–6

,0 1 2= 0,85 · [(220 +110 · ) · exp(– )] · 10  · 
10
cm

cd ds ds RH
f

 ·  

 
3( ) = 1,55 ·[1 – ( ) ] 

100RH
RHRH  

 
where: 
 
fcm is the mean compressive cylinder strength of concrete at the age of 28 

days (N/mm2, fcm = fck + 8 N/mm2), 
dsi are factors which depend on the type of cement, 

RH is the ambient relative humidity (%). 
 
Table A1.1 Values for factor kh for calculation of final value of drying 

shrinkage strain 
h0 [mm] kh 

100 1,00 
200 0,85 
300 0,75 
 500 0,70 

(1) h0 – notional size of member (mm) 

(2) h0 = 2 x (cross-sectional area of concrete Ac)/(perimeter of member in contact 
with atmosphere) 
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Table A1.2 Nominal unrestrained drying shrinkage values of cd,0 (in ‰) for 
concrete with cement class N 
 Relative Humidity 

fck,cy/fck,cube (N/mm2) Inside conditions, 50% Outside conditions, 80% 
20/25 0,54 0,30 
40/50 0,42 0,24 
60/75 0,33 0,19 
80/95 0,26 0,15 
90/105 0,23 0,13 

 

 
The final value of the drying shrinkage strain cd( ) are determined using Tables 
A1.1 and A1.2. 
 
The nominal unrestrained drying shrinkage value cd,0 according to Table A1.2 for 
concrete strength class C 20/25 and RH 50% is 0,54‰. 
 
The factor kh depending on the notional size of the member h0 according to Table 
A1.1 is: 
 
For h0 = 100 mm  kh = 1,0 
For h0 = 200 mm  kh = 0,85 
 
Linear interpolation: 
 

For h0 = 160 mm  200 – 160= 0,85 +  · (1,0 – 0,85)
200 – 100hk  

 
kh = 0,91 
 
The final value of the drying shrinkage strain is: 
 

cd( ) = –4 –4
,0 · = 0,91 · 5,4 · 10 = 4,91 · 10h cdk  

 
The final value of the autogenous shrinkage strain is: 
 

ca( ) –6 –6 –5= 2,5 · ( -10) · 10 = 2,5 · (25 -10) · 10 = 3,75 · 10ckf  
 
The total shrinkage strain cs( ) is: 
 

cs( ) = cd( ) + ca( ) –4 –5 –4= 4,91 · 10 + 3,75 · 10 = 5,29 · 10  
 

cs( ) = 0,529 ‰ 
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5.2 Determination of shrinkage strain at time t = 90 days 

The total shrinkage strain at time t is calculated as: 
 

cs(t) = cd(t) + ca(t) 
 
The value of the drying shrinkage strain cd at time t is: 
 

cd(t) ,0= ( , ) ·  · ds s h cdt t k  
 
where: 
 

3
0

( – )
( , ) =

( – ) + 0,04
s

ds s

s

t t
t t

t t h
 

t is the age of the concrete at the time considered, in days, 
ts is the age of the concrete in days at the beginning of drying shrinkage; 

normally this is at the end of the curing of the concrete. 
 
The value of the autogenous shrinkage strain ca at the age of concrete t, is given 
with the following expression: 
 

ca(t) = ( ) · as t ca( ) 
 
where: 
 

( ) = 1 – exp(–0,2 )as t t , t in days 
 

ca( ) –6= 2,5 · ( – 10) · 10ckf  
 
The drying shrinkage strain is: 
 

cd(t) ,0= ( , ) ·  · ds s h cdt t k  
 

3 3
0

( – ) (90 – 3)( , ) = = = 0,52
( – ) + 0,04 (90 – 3) + 0,04 160

s
ds s

s

t t
t t

t t h
 

 
From Section 5.1 kh = 0,91. 
 

1 = 4ds    2 = 0,12ds  
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–6
,0 1 2

–6 –4

= 0,85[(220 +110 · ) · exp(–  · / 10)] · 10  · 

= 0,85[(220 +110 · 4) · exp(–0,12 · 28 / 10) ]· 10  · 1,36 = 5,45 · 10
cd ds ds cm RHf

 

 
3 3( ) = 1,55 ·[1 – ( / 100) ] = 1,55 ·[1 – (50 / 100) ] = 1,36RH RH RH  

 
cd(t) –4 –4

,0= ( , ) ·  · = 0,52 · 0,91 · 5,45 · 10 = 2,58· 10ds s h cdt t k  
 
The autogenous shrinkage strain is: 
 

ca(t) = ( ) · as t ca( ) 
 

ca( ) –6 –6 –5= 2,5 · ( – 10) · 10 = 2,5 · (25 -10) · 10 = 3,75 · 10ckf  
 

( ) = 1 – exp(–0,2 ) = 1 – exp(–0,2 90) = 0,85as t t  
 

ca(t) = ( ) · as t ca( ) –5 –5= 0,85 · 3,75 · 10 = 3,19 · 10  
 
The total shrinkage strain is: 
 

cs(t) = cd(t) + ca(t) 
 

–4 –5 –4(90) = 2,58 · 10 + 3,19 · 10 = 2,89 · 10 = 0,289 ‰cs  

6. Commentary 

The effects of time-dependent strains of concrete (creep and shrinkage) in the 
analysis of structural elements of composite structures are different according to 
whether they are observed in the level of cross-section or static system. 
 
The effects of creep and shrinkage of concrete produce internal forces and 
moments in cross-sections, and curvatures and longitudinal strains in members. 
The effects that occur in statically determinate systems are classified as primary 
effects. In statically indeterminate system, the primary effects of creep and 
shrinkage are associated with additional action effects, such that the total effects 
are compatible. These are classified as secondary effects and are considered as 
indirect actions which are sets of imposed deformations. 
 
Computational methods, principles and basic equations for estimating the time-
dependent strains of concrete are given in EN 1992-1-1. The determination of 
the final value of the creep coefficient ( , t0) for concrete under normal 
environmental conditions is possible using nomograms. However, for the 
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determination of the values of shrinkage strains we need to use the extensive 
numerical procedure. 
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A2 Determination of creep and shrinkage values on an 
example composite highway bridge 

1. Purpose of example 

The values of creep and shrinkage of the concrete deck slab of a composite 
highway bridge are calculated at different time periods in the age of the concrete. 
For the corresponding values of creep and shrinkage and types of loading, the 
corresponding values of modular ratio, nL, and the shrinkage strains are 
determined. Also, the primary effects of shrinkage are calculated. In the example, 
the following cases are considered: 
 

calculation of the modular ratio nL for permanent action not changing with time. 
Two ages are considered: the first loading, which is applied at the age of t0 = 28 
days, and the end of the design life, for which it is assumed that t = . 
calculation of the modular ratio nL for permanent action not changing with time 
at bridge opening. Two ages are considered: the age at which the permanent 
actions are imposed, which is 28 days (t0 = 28 days), and the age at opening to 
traffic, which is 63 days (t = 63 days). 
calculation of the modular ratio nL for shrinkage at t =  and the value of the 
total shrinkage deformation at t =  denoted as cs( ). The age of concrete at 
the first loading is t0 = 1 day (the beginning of drying shrinkage). 
calculation of the modular ratio nL for shrinkage at bridge opening, for which 
the age is 63 days (t = 63 days) and the value of the total shrinkage deformation 
at t = 63 denoted as cs(63). The age of concrete at the first loading is t0 = 1 day 
(the beginning of drying shrinkage). 
calculation of the primary effects of shrinkage only for the long-term situation. 

2. Cross-section 

 
 
 
 
 
 
 
 
 
 

Figure A2.1 Cross-section of composite bridge 

2000 9300 2000 

3700 3700 3700

1100 

h0 = 250 

 500 × 60  980 × 14
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3. Input data 

Concrete strength class: C 40/50 = 40,0ckf  N/mm2 

 40,0= = = 26,7
1,5

ck
cd

c

f
f  N/mm2 

 = 35000cmE  N/mm2 
 
Type of cement: N, strength class according to EN 197-1, 32,5 R = 0  
 1 = 4ds

 

 2 = 0,12ds  

Relative humidity: RH 70% 
First loading t0 = 28 days 
Beginning of drying ts = 1 day 

4. Calculation of modular ratio nL for permanent action constant 
in time 

4.1 Calculation of modular ratio nL for permanent action constant in 
time at time t =  

For the age of concrete t  , (t, t0) = 0, where 0 is the notional creep 
coefficient which may be estimated from: 
 

0 0= · ( )· ( )RH cmf t  
 
For the mean compressive cylinder strength of concrete fcm > 35 N/mm2, calculated 
according to Table 3.1, EN 1992-1-1, factor RH, which allows for the effect of 
relative humidity on the notional creep coefficient, is determined as follows: 
 

1 23
0

1 – / 100= [1 + · ]·
0,1·RH

RH
h

 

 
The mean compressive cylinder strength of concrete is: 
 

= + 8cm ckf f  N/mm2 = 40 + 8 = 48  N/mm2 
 

0,7 0,7
1

35 35= [ ] = [ ] = 0,802
48cmf
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0,2 0,2
2

35 35= [ ] = [ ] = 0,939
48cmf

 

 
For a 250 mm thick slab (h0 = 250), factor RH is: 
 

3

1 – 70 / 100= [1 + ·0,802]·0,939 = 1,298
0,1· 250RH  

 
The factor to allow for the effect of concrete strength on the notional creep 
coefficient 0 is: 
 

16,8 16,8( ) = = = 2,42
48cm

cm

f
f

 

 
The effect of the type of cement on the creep coefficient of concrete can be taken 
into account by modifying the age of loading t0 according to the following 
expression, where t0,T = t0 = 28 days: 
 

0 0
0 0, 1,2 1,2

0,

9 9= ·[ +1] = 21·[ +1]
2 + 2 + 28T

T

t t
t

 

 
0 = 28t  days  0,5 day 

 
The factor to allow for the effect of concrete age at loading on the notional creep 
coefficient 0 is: 
 

0 0,20 0,20
0

1 1( ) = = = 0,488
(0,1 + ) (0,1 + 28 )

t
t

 

 

Thus, the notional creep coefficient is: 
 

0 0= · ( )· ( )RH cmf t
  

0 = 1,298·2,42·0,488 = 1,533  
 
The value of the modulus of elasticity of concrete at the age of 28 days will be used 
for the determination of all the short-term effects and resistances, and therefore the 
modular ratio n0 is: 
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0
210000= = = 6,0
35000

s

cm

E
n

E
 

 
For the permanent action constant in time, L = 1,1 and therefore: 
 

0= ·(1 + · )L L tn n
  

0 0= ( , ) =t t t  
 

= 6,0·(1 +1,1·1,533) = 16,1Ln  
 
We can take into account the influence of concrete creep for permanent action 
constant in time and t =  for permanent and constant actions by reducing the 
modulus of elasticity: 
 

210000= = = 13043
16,1

a
L

L

E
E

n
 N/mm2 

4.2 Calculation of modular ratio nL for permanent action constant in 
time at opening to traffic t = 63 days 

If the design effects need to be determined at the time of opening the bridge to 
traffic (the age of concrete at opening to traffic is 63 days), the creep coefficient 
should be modified to reflect the short duration of loading (short-term loading). 
The effect of the age of the concrete at the time of opening on the creep coefficient 
was taken into account in this way. In this example, the average age of concrete at 
which the permanent actions are imposed is 28 days (t0 = 28 days) and the age of 
concrete at opening to traffic is 63 days (t = 63 days). The creep coefficient is 
modified by the parameter c(t, t0) and in this case, with t  t0 = 35 days, the value 
of the parameter c(t, t0) is calculated as follows: 
 

0,30
0

0

( – )
( , ) = [ ]

+ ( – )c
H

t t
t t

t t
 

 
0,5 0,5

3
35 35= [ ] = [ ] = 0,854

48cmf
 

 
18

0 3= 1,5·[1 + (0,012· ) ]· + 250·H RH h  1500 · 3     for > 35cmf  N/mm2 
 

18= 1,5 [1 + (0,012 70) ] 250 + 250 0,854H · · · ·  1500 · 0,854 
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= 604,76 < 1500 0,854 = 1281H ·  
 

0,3 0,30
0

0

( – ) (63 – 28)( , ) = [ ] = [ ] = 0,418
( + – ) (604,76 + 63 – 28)c

H

t t
t t

t t
 

 
At t = 63 days, the creep coefficient (t, t0) is: 
 

0 0 0( , ) = ( , ) = 1,533 0,418 = 0,641ct t · t t ·  
 
The value of the modulus of elasticity of concrete at the age of 28 days will be used 
for the determination of all short-term effects and resistances, and therefore the 
modular ratio n0 is: 
 

0
210000= = = 6,0
35000

s

cm

E
n

E
 

 
Thus, for permanent loads at opening to traffic: 
 

0 0= (1 + ( , ))L Ln n · · t t  
 

= 6,0 (1 +1,1 0,641) = 10,2Ln · ·  
 
The influence of concrete creep for permanent action constant in time and t = 63 
days can be taken into account directly by the reduced modulus of elasticity: 
 

210000= = = 20588
10,2

a
L

L

E
E

n
 N/mm2 

5. Calculation of modular ratio nL for shrinkage and shrinkage 
strains 

5.1 Calculation of modular ratio nL for shrinkage and shrinkage strains 
at time t =  

The autogenous shrinkage strain at t =  is: 
 

ca( ) –6= 2,5 ( – 10) 10ck· f ·  
 

ca( ) –6 –5= 2,5 (40 – 10) 10 = 7,5 10· · ·  
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The drying shrinkage depends on the nominal unrestrained drying shrinkage, given 
by expression (B.11) in B.2, EN 1992-1-1 (or by interpolation in Table 3.2, EN 
1992-1-1): 
 

–6
,0 1 2= 0,85 [(220 +110 ) exp(– )] 10

10
cm

cd ds ds RH
f

· · · · · ·  

 
3( ) = 1,55 [1 – ( ) ]

100RH
RHRH ·  

 
For 70% relative humidity, fck = 40 N/mm2 and class N cement: 
 

1 = 4ds  
 

2 = 0,12ds  
 

3= 1,55 [1 – ( / 100) ]RH · RH  
 

3= 1,55 [1 – (70 / 100) ] = 1,018RH ·  
 

–6
,0 1 2= 0,85 [(220 +110 ) exp(– )] 10

10
cm

cd ds ds RH
f

· · · · · ·  

 
–6

,0
40= 0,85 [(220 +110 4) exp(–0,12 )] 10 1,018
10cd · · · · · ·  

 
–4

,0 = 3,53·10cd  
 
The final value of the drying shrinkage strain cd( ) is given by: 
 

cd( ) ,0= ·h cdk  
 
kh = 0,80 (from Table 3.3, EN 1992-1-1, with h0 = 250). 
 
Thus, the drying shrinkage at t =  is: 
 

–4 –5= 0,80·3,53·10 = 28,2·10cd  
 
The total shrinkage strain is: 
 

cs = ca( ) + cd( ) 
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–5 –5 –5= 7,5·10 + 28,2·10 = 35,7·10cs  
 
For the modular ratio, the creep factor is calculated as for long-term loading but the 
age at first loading is assumed to be 1 day and thus: 
 

0 0,20 0,20
0

1 1( ) = = = 0,91
(0,1 + ) (0,1 +1 )

t
t

 

 
The final creep coefficient is calculated as above for long-term effects but with 

(t0) = 0,91, and therefore: 
 

0 0= · ( )· ( )RH cmf t  
 

0 = 1,298·2,42·0,91 = 2,86  
 
The value of the modulus of elasticity of concrete at the age of 28 days will be used 
for the determination of all short-term effects and resistances, and therefore the 
modular ratio n0 is: 
 

0
210000= = = 6,0
35000

s

cm

E
n

E
 

 
For shrinkage, L = 0,55 and thus: 
 

0 0= ·(1 + · ( , ))L Ln n t t  
 

= 6,0·(1 + 0,55·2,86)= 15,4Ln  

5.2 Calculation of modular ratio nL for shrinkage and shrinkage strains 
at opening to traffic t = 63 days 

The autogenous shrinkage strain at t = 63 days is: 
 

ca(t) = as(t) · ca( ) 
 
where: 
 

( ) = 1 – exp(–0,2 )as t t  
 

( ) = 1 – exp(–0,2 63) = 0,796as t  
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Thus: 
 

ca(t) = as(t) · ca( ) 
 

–5 –5(63) = 0,796·7,5·10 = 5,97·10ca  
 
The drying shrinkage strain at t = 63 days is: 
 

,0( ) = ( , )· ·cd ds s h cdt t t k  
 

3
0

( – )
( , ) =

( – ) + 0,04
s

ds s

s

t t
t t

t t h
 

 
For t = 63 and ts = 1 (see clause 5.4.2.2(4), EN 1994-2): 
 

3

(63 – 1)= = 0,282
(63 – 1) + 0,04 250

ds  

 
Thus the drying shrinkage at t = 63 days is: 
 

–4 –5= 0,282·0,80·3,53·10 = 7,96·10cd  
 
The total shrinkage strain is: 
 

= (63) + (63)cs ca cd  
 

–5 –5 –5= 5,97·10 +7,96·10 = 13,93·10cs  
 
At opening to traffic (t = 63 days) the creep coefficient is modified by parameter 

c(t, t0) and in this case is: 
 

0,3 0,30
0

0

( – ) (63 – 1)( , ) = [ ] = [ ] = 0,490
( + – ) (604,76 + 63 – 1)c

H

t t
t t

t t
 

 
At t = 63 days the creep coefficient (t, t0) is: 
 

0 0 0( , ) = · ( , ) = 2,86·0,490 = 1,40ct t t t  
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The value of the modulus of elasticity of concrete at the age of 28 days will be used 
for the determination of all short-term effects and resistances, and therefore the 
modular ratio n0 is: 
 

0
210000= = = 6,0
35000

s

cm

E
n

E
 

 
For shrinkage, L = 0,55 and thus: 
 

0 0= ·(1 + · ( , ))L Ln n t t  
 

= 6,0·(1+ 0,55·1,40) = 10,6Ln  

6. Primary effects of shrinkage 

It is assumed that, for the majority of the shrinkage, the length of continuous 
concrete slab is such that shear lag effects are negligible. The effective area of the 
concrete flange is taken as the actual area, for both the shrinkage and its primary 
effects. 
 
From Section 5.1, the modular ratio for shrinkage is nL = 15,4 and the total 
shrinkage strain is cs = 35,7·10 5. 
 
From clause 2.4.2.1, EN 1992-1-1, the recommended partial factor for shrinkage is 

SH = 1,0, so the design shrinkage strain, for both serviceability and ultimate limit 
states, is: 
 

cs = 1,0·35,7·10 5 = 35,7·10 5 
 
To restore the slab to its length before shrinkage, the tensile force Ncs applies to the 
concrete a tensile stress of: 
 

cs( ) –5 210000· = 35,7·10 · = 4,87
15,4

a

L

E
n

 N/mm2 

 
The area of the concrete cross-section is: 
 

= 3700·250 + 500·50 = 950000cA  mm2 
 
The tensile force Ncs to restore the slab to its length before shrinkage is: 
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–5
–3· · 35,7·10 ·950000·210000= = ·10 = 4625

15,4
cs c a

cs
L

A E
N

n
 kN 

 
For nL = 15,4, the location of the neutral axis of the uncracked unreinforced section 
is as shown in Figure A2.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A2.2 Cross-section of composite beam and primary shrinkage stresses  
 with nL = 15,4 

 
The area of the steel cross-section is: 
 

= (500·60)·2 + 980·14 = 73720aA  mm2 
 
The ideal cross-sectional area of the composite section (the cross-section is 
considered as the transformed section), the sum of the area of steel section and the 
area of the concrete slab in “steel” units, is: 
 

= + / = 73720 + 950000 / 15,4 = 135408id a c LA A A n  mm2 
 
The second moment of area of the steel section is: 
 

= 17340057333aI  mm4 
 
The second moment of area of the concrete section is: 
 

= 5370614035cI  mm4 
 
The distance between the centroidal axes of the concrete and the steel section a is: 
 

Tc

beff=3700 mm

Ts 

Ta 

hc=250 mm

aa

a
ac

ha=1100 mm 

50 mm

 500 × 60 

 500 × 60

 980 × 14

0,90

1,91
45,6 

11,2
Ts - centroid of composite section 
Tc - centroid of concrete

Ta - centroid of steel section

zc=171 mm
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1100= + = +171 = 721
2 2
a

c
h

a z  mm 

 
The distance between the centroidal axes of the steel section and the composite 
section aa is: 
 

950000= · = 721· = 328,5
· 135408·15,4
c

a
id L

A
a a

A n
 mm 

 
The distance between the centroidal axes of the concrete and the composite section 
ac is: 
 

73720= · = 721· = 392,5
135408

a
c

id

A
a a

A
 mm 

 
The ideal second moment of area of the composite section is: 
 

2 2= + · + ( + · ) /id a a a c c c LI I A a I A a n  
 

2 2= 17340057333 + 73720·328,5 + (5370614035 + 950000·392,5 ) / 15,4idI  
 

10= 3,51475·10idI  mm4 
 
The location of the neutral axis of the uncracked unreinforced section is 392,5 mm 
below the centroid of the concrete area. The total external force is zero, so force Ncs 
is balanced by applying a compressive force of 4625 kN and a sagging moment of 
4625·0,3925 = 1815 kNm to the composite section. 
 
The long-term primary shrinkage stresses in the cross-section are as follows, with 
compression positive: 
 
At the top of the slab 
 

3 3

10

4625·10 4625·10 ·392,5·521,5 1= –4,87 + ( + ) = –0,90
135408 15,43,51475·10

 N/mm2 

 
At the interface, in concrete 
 

3 3

10

4625·10 4625·10 ·392,5·221,5 1= –4,87 + ( + ) = –1,91
135408 15,43,51475·10

 N/mm2 
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At the interface, in steel 
 

3 3

10

4625·10 4625·10 ·392,5·221,5= + = 45,6
135408 3,51475·10

 N/mm2 

 
At the bottom of the steel beam 
 

3 3

10

4625·10 4625·10 ·392,5·878,5= – = –11,2
135408 3,51475·10

 N/mm2 

7. Commentary 

For different time periods the values of creep and shrinkage of concrete are 
variable. These values are used for taking into account the effects of creep and 
shrinkage in determining the modular ratios nL for concrete, which depends on 
the type of loading (index L). The modular ratio nL is determined according to 
clause 5.4.2.2(2), EN 1994-1-1. It is still used for the calculation of the bending 
stiffness of the cross-section composite beams. 
 
The primary effects of shrinkage are calculated for uncracked cross-sections. 
After cracking, these effects remain in the concrete between cracks, but have 
negligible influence on stresses at the cracked cross-sections, at which stresses 
are verified. 
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A3 Determination of creep and shrinkage values and 
their effects at calculation of bending moments 

1. Purpose of example 

The purpose of the example is to show the calculation of the value of time-
dependent strains of concrete due to creep and shrinkage. These values influence 
the determination of the effects of actions. In this example, the effect of action is 
related to the calculation of the design bending moment at the internal support of 
the continuous composite beam. This moment is obtained by summing the bending 
moment due to the actions (permanent and variable) and the bending moment due 
to shrinkage. 
 
Primary and secondary effects due to creep and shrinkage of the concrete flange 
must be taken into account appropriately. These effects can be neglected in the 
analysis for verifications of ultimate limit states other than fatigue for composite 
elements with cross-sections of classes 1 and 2 and which do not need to take into 
account the lateral torsional buckling. For the serviceability limit state, these 
effects must be taken into account for the cross-sections of classes 1 and 2. 
 
In this example, all the cross-sections are in class 1, and the cross-section and the 
static system are shown in Figure A3.1. Thus, the analysis of the influence of 
shrinkage for the ultimate limit state is not necessary. Despite the fact that the 
cross-section is in class 1, the method that takes into account the effects of 
shrinkage on the internal forces and bending moments is shown. 
 
For this continuous beam, the global analysis is performed with defined regions of 
cracking of concrete, clause 5.4.2.3(2), EN 1994-1-1. The section is assumed to 
crack if the extreme-fibre tensile stress in concrete exceeds twice the mean value of 
the axial tensile strength, 2·fcm, given by EN 1992-1-1. The simplified method of 
allowing for cracking, clause 5.4.2.3(3), EN 1994-1-1, is used in this example. 
 
This means that the effects of cracking of concrete are taken into account using the 
„cracked“ flexural stiffness EaI2, over 15% of the span on each side of each internal 
support, and as the „uncracked“ flexural stiffness EaI1 elsewhere. 
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2. Static system, cross-section and actions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A3.1 Static system and cross-section of beam 
 
Actions 
 
a) Permanent action 
 
Remark: 
 
According to EN 1991-1-1 the density of normal weight concrete is 24 kN/m3, 
increased by 1 kN/m3 for normal percentage reinforcement. 

 
Concrete slab area per m width: 
 

1000c cA = h  
 

1000 120 120000cA = =  mm2 1200=  cm2 
 
concrete slab (the dry density) and reinforcement: 
 
 25 0,120 25 3,00cA = =  kN/m2 
 
-concrete slab ,1 = 2,5·3,00 = 7,50kg  kN/m 
 
-steel beam IPE 400 ,2 = 0,663kg  kN/m 

L1 =10,0 m L2 = 10,0 m 
A B C 

gk,1, gk,2, gk,3, qk 

IPE 400

b = 2,5 m

hc = 120 mm 

ha = 400 mm 

2,5 cm²/m' transverse reinforcement 

2,5 cm²/m' 
transverse 
reinforcement
b = 2,5 m 

ba = 180 mm 
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-floor finishes ,3 = 1,5·2,5 = 3,75kg  kN/m 
 
b) Variable action 
 
-imposed floor load, category of use C1 = 3,0·2,5 = 7,50kq  kN/m 

3. Input data 

Concrete strength class: C 25/30 = 25ckf  N/mm2 

 25= = = 16,7
1,5

ck
cd

c

f
f  N/mm2 

 = 31000cmE  N/mm2 
Type of cement: N, strength class according to EN 197-1, 32,5 R = 0  
 1 = 4ds

 

 2 = 0,12ds  

Relative humidity RH 70% 
First loading t0 = 1 day 

4. Creep and shrinkage 

4.1 Determination of final creep coefficient 

For the calculation of the final creep coefficient ( , t0) the following is valid: 
 
- the perimeter of that part which is exposed to drying, u 
 

= 2· – au b b  (ba is not usually taken into account in the calculation) 
= 2·2500 – 180 = 4820u  mm 

 
- the notional size of the cross-section, h0 

0
2 2 2500 120 125

4820
c· A · ·h = = =

u
 mm 12,5=  cm 

 
- 0 1t =  day, 
- the ambient relative humidity, RH 70%, 
- the concrete strength class C 25/30, 
- the type of cement – cement class N, strength class 32,5 R. 
 
Since the relative humidity RH = 70% is given, the final value of creep coefficient 

( , t0) will be determined using the nomogram shown in Figure 3.1, EN 1992-1-1 
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by means of the linear interpolation for the values RH = 50% and RH = 80% . The 
process of determining the final value of creep coefficient for these assumptions is 
given in Figures A3.2 and A3.3: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A3.2 Determination of the final value of creep coefficient (RH = 50%) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure A3.3 Determination of the final value of creep coefficient (RH = 80%) 
 
From the diagram of Figure A3.2 for RH 50% we can find 50% 5,3RH=

t = , and from 

the diagram of Figure A3.3 for RH = 80% we can find 80% 3,8RH=
t = . 

 
By means of linear interpolation, for the relative humidity RH = 70% we get: 
 

70% 50%
70% 50% 50% 80%

80% 50%

–= – ( – )
–

RH= RH= RH= RH=
t t t t

RH RH
RH RH

 

t = 3,8 h0 = 125 mm 

t0 

R
1 

2 
3 
5 

N S 

10 

20 
30 
50 

100 
( , t0) 

6,0 5,0 4,0 3,0 2,0 1,0 0
h0 [mm] 

100 300 500 700 900 1100 1300 1500 

C20/25 
C25/30 
C30/37 
C35/45 
C40/50 C45/55 C50/60 
C60/75 
C80/95 

C55/67 
C70/85 
C90/105 

2nd step 

3th step 

4th step 

5th
 st

ep
 

1st step 

h0 = 125 mm t = 5,3 h0 [mm]

t0 
R1 

2 
3 
5 

N S 

10 

20 
30 
50 

100 
( , t0) 

7,0 6,0 5,0 4,0 3,0 2,0 1,0 0 100 300 500 700 900 1100 1300 1500

C20/25 
C25/30 
C30/37 
C35/45 
C40/50 
C45/55 
C50/60 
C60/75 
C80/95 

C55/67 
C70/85 
C90/105 

2nd step 

3th step 

4th step 

 
1st step 
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=70% 70 – 50= 5,3 – (5,3 – 3,8) = 4,3
80 – 50

RH
t  

 
If it is necessary to take non-linear creep into account, the creep coefficient can be 
calculated in accordance with clause B.1, EN 1992-1-1. Figure A3.4 shows the 
temporal evolution of creep coefficient. The final value is obtained by the method 
given in clause B.1, EN 1992-1-1, is 4,3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A3.4 Creep coefficient as a function of time t 
 
The modular ratio nL is calculated according to the following: 
 

0 (1 + )L L tn = n  
 

0
21000= = = 6,77
3100

a

cm

E
n

E
 

 
= 0,55L  for shrinkage in accordance with clause 5.4.2.2(6), EN 1994-1-1, 

 
0= (1 + ) = 6,77·(1 + 0,55·4,3) = 22,78L L tn n  

4.2 Determination of shrinkage strain 

The total shrinkage strain of concrete cs( ) at t =  is calculated as: 
 

cs( ) = cd( ) + ca( ) 
 
where: 
 

1 10 100 1000 10000 

5,0 
1,0 
1,5 

2,5 
2,0 

3,5 
4,0 

3,0 

0,0 

4,5 

t [days]

C
re

ep
 c

oe
ffi

ci
en

t 

4,3 

(t  ) 
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cd( ) is the drying shrinkage strain, 
ca( ) is the autogenous shrinkage strain (it develops during hardening of the 

concrete). 
 
The autogenous shrinkage strain at t =  is: 
 

ca( ) –6= 2,5·( – 10) ·10ckf  
 

ca( ) –6 –5= 2,5·(25 -10)·10 = 3,75·10  
 
The drying shrinkage depends on the nominal unrestrained drying shrinkage, given 
by expression (B.11) in B.2, EN 1992-1-1, (or by interpolation in Table 3.2, EN 
1992-1-1). The basic drying shrinkage strain, cd,0, is calculated using the following 
expression: 
 

-6
,0 1 2= 0,85·[(220 +110· )·exp(– · )] ·10 ·

10
cm

cd ds ds RH
f

 

 
For the relative humidity RH = 70%, fck = 25 N/mm2 and class N cement: 
 

= + 8cm ckf f = 25 + 8 = 33  N/mm2 
 

1 = 4ds  
 

2 = 0,12ds  
 

3= 1,55·[1 – ( / 100) ]RH RH  
 

3= 1,55·[1 – (70 / 100) ] = 1,018RH  
 

–6
,0 1 2= 0,85·[(220 +110· )·exp(– · )] ·10 ·

10
cm

cd ds ds RH
f

 
 

–6
,0

33= 0,85·[(220 +110·4)·exp(–0,12· )] ·10 ·1,018
10cd  

 
–4

,0 = 3,84·10cd

  
The drying shrinkage strain at time t is given by: 
 



Example A3 33 
 

 

,0( ) = ( , )· ·cd ds s h cdt t t k  
 
According to Table 3.3, EN 1992-1-1, and for h0 = 125, kh is calculated by means 
of linear interpolation: 
 
- from Table 3.3, EN 1992-1-1, for h0 = 100, it is found that kh = 1,0, 
- from Table 3.3, EN 1992-1-1, for h0 = 200, it is found that kh = 0,85, 
- by means of linear interpolation for h0 = 125: 
 

200 – 125= 0,85 + ·(1,0 – 0,85) = 0,96
200 – 100hk  

 
At t = , it holds that ds = 1. Thus, the drying shrinkage strain at t =  is: 
 

cd( ) ,0= ·h cdk  
 

cd( ) –4 –4= 0,96·3,84·10 = 3,69·10  
 
The total shrinkage strain of concrete at t =  is: 
 

cs( ) = cd( ) + ca( ) 
 

cs( ) –4 –5 –4= 3,69·10 + 3,75·10 = 4,07·10  
 
The dependence of shrinkage strain over time is shown in Figure A3.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A3.5 The dependence of shrinkage strain over time  
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5. Effective width of the concrete flange 

5.1 Cross-section at mid-span 

= 0,85· = 0,85·1000 = 850eL L  cm 
 

1 = / 8 = 850 / 8 = 106e eb L  cm 
 
The effective width of the concrete flange at mid-span is: 
 

1= 2· = 2·106 = 212eff eb b  cm < 250 cm 

5.2 Cross-section at support 

1 2= 0,25·( + ) = 0,25·(1000 +1000) = 500eL L L  cm 
 

1 = / 8 = 500 / 8 = 62,5e eb L  cm 
 
The effective width of the concrete flange at support is: 
 

1= 2· = 2·62,5 = 125eff eb b  cm < 250 cm 

6. Geometrical properties of composite cross-section at mid-span 

 
 
 
 
 
 
 
 
 
 

Figure A3.6 Cross-section of composite beam at mid-span 
 
The distance between the centroidal axes of the concrete and the steel section a is: 
 

40 12= + = + = 26
2 2 2 2
a ch h

a  cm 

 
Steel section IPE400 

Tc

beff=2120 mm

Ts

Ta

hc=120 mm

aa

a 
ac

ha=400 mm
Tc  centroid of concrete 
Ts  centroid of composite section
Ta  centroid of steel section 
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= 84,5aA  cm2 
 

= 23130a  cm4 
 
Concrete flange area 
 

= · = 212·12 = 2544c eff cA b h  cm2 
 

3 3· 212·12= = = 30528
12 12

eff c
c

b h
 cm4 

 
For t= , for the short-term loading 
 
The modular ratio for the short-term loading is: 
 

0 = / = 21000 / 3100 = 6,77a cmn E E  
 
From clause 5.4.2.2(11), EN 1994-1-1, the effects of creep may be allowed for by 
using the modular ratio nL = 2·n0 for both short-term and long-term loadings. Thus, 
the modular ratio is: 
 

= / (0,5· ) = 21000 / (0,5·3100) = 13,55L a cmn E E  
 
The ideal cross-sectional area of the composite section, the sum of the area of steel 
section and the area of the concrete slab in “steel” units, is: 
 

= + / = 84,5 + 2544 / 13,55 = 272,2id a c LA A A n  cm2 
 
The distance between the centroidal axes of the steel section and the composite 
section is: 
 

2544= · = 26· = 17,9
· 272,2·13,55
c

a
id L

A
a a

A n
 cm 

 
The distance between the centroidal axes of the concrete and the composite section 
is: 
 

84,5= · = 26· = 8,1
272,2

a
c

id

A
a a

A
 cm 

 
The ideal second moment of area of the composite section is: 



36 A     Creep and shrinkage 
 

 

2 2= + · + ( + · ) /id a a a c c c LI I A a I A a n  
 

2 2= 23130 + 84,5·17,9 + (30528 + 2544·8,1 ) / 13,55idI  
 

= 64776idI  cm4 
 
For t= , taking into account the effects of creep 
 
The modular ratio nL is calculated as: 
 

0= ·(1 + )L L tn n  
 
The modular ratio for the short-term loading is: 
 

0 = / = 21000 / 3100 = 6,77a cmn E E  
 
The creep multiplier nL in clause 5.4.2.2(2), EN 1994-1-1, takes account of the 
shape of the stress – time curve for the effect considered, and is 0,55 for shrinkage. 
 
The modular ratio for shrinkage effects is: 
 

0= ·(1 + ) = 6,77·(1 + 0,55·4,3)L L tn n  
 

= 22,78Ln  
 
The ideal cross-sectional area of the composite section, the sum of the area of steel 
section and the area of the concrete slab in “steel” units, is: 
 

= + / = 84,5 + 2544 / 22,78 = 196,2id a c LA A A n  cm2 
 
The distance between the centroidal axes of the steel section and the composite 
section is: 
 

2544= · = 26· = 14,8
· 196,2·22,78
c

a
id L

A
a a

A n
 cm 

 
The distance between the centroidal axes of the concrete and the composite section 
is: 
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84,5= · = 26· = 11,2
196,2

a
c

id

A
a a

A
 cm 

 
The ideal second moment of area of the composite section is: 
 

2 2= + · + ( + · ) /id a a a c c c LI I A a I A a n  
 

2 2= 23130 + 84,5·14,8 + (30528 + 2544·11,2 ) / 22,78idI  
 

= 56988idI  cm4 

7. Geometrical properties of composite cross-section at support 

 
 
 
 
 
 
 
 
 
 
 

Figure A3.7 Cross-section of composite beam at support 
 
In the slab at the internal support, the reinforcement is assumed to be 
As = 8 cm2/beff. 
 
The area of the cracked composite section: 
 

= + = 8 + 84,5 = 92,5s aA A A  cm2 

 
The distance between the neutral axis of the cracked composite section and the 
centroidal axis of the steel section is: 
 

= ·29 / = 8·29 / 92,5 = 2,5t sz A A  cm 
 
Second moment of area: 
 

2 2 2 2= + · + ·(29 – ) = 23130 + 84,5·2,5 + 8·(29 – 2,5) = 29276a a t s tI I A z A z  cm4 

beff = 125 cm 

hc=12 cm
3
9

Ta 

20
zt 

Ts

As=8 cm2/beff 
cracked concrete 

29

Ts  centroid of composite section 
Ta  centroid of steel section 



38 A     Creep and shrinkage 
 

 

8. Effects of creep and shrinkage 

In accordance with Section 5.4, EN 1994-1-1, the effects of actions may be 
calculated by elastic global analysis, even when the cross-sectional resistance is 
based on its plastic or non-linear resistance. 
 
Generally, when the elastic global analysis is applied, it is necessary to take into 
account the effects of the concrete cracking, creep and shrinkage, the sequence of 
construction and the pre-stressing. 
 
In accordance with EN 1994-1-1, for the calculation of the action effects of 
continuous composite beams, the simplified (approximate) methods based on the 
theory of elasticity and plasticity are applied. 
 
For continuous composite beams with the concrete flanges above the steel section 
and not prestressed, including beams in frames that resist horizontal forces by 
bracing, the following simplified method may be applied for calculation of action 
effects:  
 

All the ratios of the lengths of adjacent continuous spans (shorter/longer) 
between supports are at least 0,6.  
The effect of cracking can be taken into account by using the flexural stiffness 
EaI2 over 15% of the span on each side of each internal support, and as the 
uncracked values EaI1 elsewhere. 

 
The method, [35], is simple to implement and can be applied for the ultimate limit 
state and for the serviceability limit state. 

8.1 Design bending moment for internal support 

The design bending moment for the internal support is calculated for the static 
system and the design load, as shown in Figure A3.8. 
 
Combination of actions: 
 

,1 ,2 ,3= 1,35·( + + ) +1,5·d k k k ke g g g q  

 
The design value of actions in both spans is: 
 

=  1,35·(7,50 + 0,663 + 3,75) +1,5·7,50 =  27,3de  kN/m 
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Figure A3.8 Static system and design actions 
 
The calculation of the bending moment is carried out "by hand" according to the 
method given in [35]. 
 
Taking into account the symmetry of the structure and the load, the following 
statically indeterminate system is adopted for the calculation of the bending 
moment at point B, see Figure A3.9: 
 
 
 
 
 
 
 
 
 
 

Figure A3.9 Adopted static system – elastic propped cantilever with  
 change of section at 0,15L 

 
The second moment of area of the cracked cross-section at the support, Figure 
A3.7, is: 
 

= 29276I  cm4 
 
The second moment of area of the uncracked cross-section at mid-span is: 
 

= 64776idI  cm4 
 
The ratio of the second moments of area  is: 
 

 = (Iid(t = , nL = 13,55))/I 64776= = 2,21
29276

 

 
The design bending moment for the internal support, point B, excluding shrinkage 
effects, is calculated as follows [35]: 

A B C 

ed = 27,3 kN/m 

10,0 m 10,0 m 

B C 

ed

0,85 L 0,15 L 

MEd,B

I I
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2
+

,
· (0,110· + 0,890)= ( )·
4 (0,772· +1,228)

g q d
Ed B

e L
M  

 
2

+
,

27,30·10,00 (0,110·2,21 + 0,890)= ( )· = 263,6
4 (0,772·2,21 +1,228)

g q
Ed BM  kNm 

8.2 Secondary effects of shrinkage 

Shrinkage of the concrete flange causes sagging curvature and shortening of the 
composite beam. These are the primary effects of shrinkage. However, in a 
continuous beam, the curvature causes bending moments and shear forces. These 
are then the secondary effects. Both the curvature and the stresses from the primary 
effects are neglected in regions assumed to be cracked, clauses 5.4.2.2(8) and 
6.2.1.5(5), EN 1994-1-1. 
 
The hogging bending moment at the internal support is the important secondary 
effect for the considered beam. It is calculated as follows. Shrinkage is a permanent 
action, and so is not reduced by a combination factor 0. 
 
It is assumed that the concrete flange is separated from the steel beam. The 
concrete flange is shrunk due to shrinkage. The force that would cause the opposite 
effect – to extend the flange to its original length – is given by: 
 
Ncs = cs( ) · ES · Ac 
 
where: 
 

= a
S

L

E
E

n
 

 
 
 
 
 
 
 
 
 

Figure A3.10 Assumption – concrete flange is separated from the steel beam 
 
The total shrinkage strain, in accordance with EN 1992-1-1, is: 
 

ac

Ncsac

Ncs

Ncs
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cs( ) –4= 4,07·10  
 
The force that would cause the opposite effect, to extend the flange to its original 
length, is: 
 

21000= = = 922
22,78

a
S

L

E
E

n
 kN/cm2 

 
Ncs = cs( ) · ES · Ac

–4= 4,07·10 ·922·250·12 = 1126  kN 
 
The force Ncs acts at the centre of the concrete flange, at a distance ac above the 
centroid of the composite section: 
 

84,5= · = 26· = 11,2
196,2

a
c

id

A
a a

A
 cm 

 
The parts of the beam are reconnected. To re-establish equilibrium, an opposite 
force Ncs and a bending moment Ncs · ac (Figure A3.10) are applied to the 
composite section. 
 
The radius of curvature of the uncracked part of the beam is given by: 
 

· ·
=

·
a y

cs c

E I
R

N a
 

 
The second moment of area of the cracked cross-section is: 
 

= 29276I  cm4 
 
The ratio of the second moments of area  is: 
 

 = (Iid(t = , nL = 22,78))/I 56988= = 1,95
29276

 

 
The radius of curvature of the uncracked part of the beam is: 
 

· · 21000·1,95·29276= = = 95063
· 1126·11,2

a y

cs c

E I
R

N a
 cm = 950,6  m 

 
If the centre support is removed, from the geometry of the circle, the deflection  at 
that point is given by (Figure A3.11): 
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2 2(0,85· ) (0,85·1000,0)= = = 3,8
2· 2·95063

L
R

 cm 

 
 
 
 
 
 
 

Figure A3.11 Model for calculation of deflection  
 
The actual deflection at the middle is equal to zero. It is necessary to calculate the 
force P, applied at the point B, to reduce the deflection to zero, so the internal 
support can be replaced (Figure A3.12). 
 
 
 
 
 
 
 

Figure A3.12 Model for calculation force P 
 
The deflection due to the force P is: 
 

3· ·(0,13· + 0,20)= = 3,8
2· · ·a

P L
E I

 cm 

 
From the above expression the force P is: 
 

3 3

2· · · · 2·21000·29276·1,95·3,8= = = 20,1
·(0,13· + 0,20) 1000 ·(0,13·1,95 + 0,20)

aE I
P

L
 kN 

 
The secondary hogging bending moment at B is: 
 

, ,
· 20,1·10= = = 100,5
2 2Ed sh B

P LM  kNm 

 
The design bending moment due to the loads and shrinkage is: 
 

+
, , , ,= + = 263,6 +100,5 = 364,1g q

Ed B Ed B Ed sh BM M M  kNm 
 

R

0,85 L 0,30 L 0,85 L

P/2 P/2

P 

2 L
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By taking into account shrinkage, the ultimate design bending moment at the 
support B is increased by 38%. In accordance with clause 5.4.2.2(7), EN 1994-1-1, 
the shrinkage effects can be neglected for the ultimate limit state if resistance is not 
influenced by lateral-torsional buckling. When the resistance moments of the 
sections are determined by plastic theory, the elastic deformations – such as those 
from shrinkage  are negligible compared to the total deformations. 
 
However, if the resistance at the internal support is governed by lateral-torsional 
buckling, and if this resistance is significantly lower than the plastic resistance 
moment of the section, the inelastic behaviour due to the effect of shrinkage is not 
negligible. 

9. Commentary 

The previously used method of calculating of shrinkage effects is relatively 
complex for practical use. 
 
In the appropriate software, which allows analysis of elements taking into 
account the concrete and steel section, the shrinkage effects may be included as 
an alternate load by temperature as: 
 

· ·
=

· ·
cs c

sh
a id T

N a h
T

E
 

 
where: 
 
Ncs is the axial force due to shrinkage, 
ac is the distance between the centroidal axes of the concrete flange and the 

composite section, 
h is the overall depth of the composite section, 
Ea is the modulus of elasticity of structural steel, 
Iid is the ideal second moment of area of the composite section, 

T is the coefficient of thermal expansion, 12 · 10 6 K. 
 
This case of thermal action is taken into account only in the range of uncracked 
cross-sections of the beam over 85% of the span (0,85 L). 
 
However, in practice we can also use the procedure that was implemented in  
examples B6 and B7. 
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B Composite beams 
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B1 Effective width of concrete flange 

1. Purpose of example 

This example illustrates the method of calculation of the effective width of the 
concrete flange due to shear lag. The method is recommended in clause 5.4.1.2, EN 
1994-1-1. 
 
It is considered that a continuous composite beam consists of two spans and a 
cantilever, as shown in Figure B1.1. We need to calculate the value of the effective 
width of the concrete flange beff for the mid-span regions AB and CD, for the 
support regions BC and DE and for the support at A. The recapitulation of the 
obtained results is shown in Table B1.1. 

2. Static system and cross-section 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B1.1 Two-spans continuous beam and cross-section 

3. Calculation of effective width of the concrete flange 

The calculation of the effective width for the required regions is carried out in 
accordance with clause 5.4.1.2, EN 1994-1-1, using the expressions (5.3), (5.4) 
and (5.5). 
 

A B C D E 

L1 = 10 m L2 = 12 m L3 = 2,5 m 

b1 = 0,4 m
b0 = 0,2 m

b2 = 1,6 m 
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Figure B1.2 Effective width dimensions 

3.1 Support A 

0= + ·eff i eib b b  according to expression (5.4), EN 1994-1-1 
 

= (0,55 + 0,025· )e
i

ei

L
b

  1,0 according to expression (5.5), EN 1994-1-1 

 
1= 0,85·eL L  for beff,1 according to Figure 5.1, EN 1994-1-1 

 
b0 = 0,20 m 
 
L1 = 10,0 m 
 

= 0,85·10,0 = 8,5eL  m 
 

=
8

e
ei

L
b   bi 

 

1
8,5= = = 1,063

8 8
e

e
L

b  m > 1 = 0,4b  m 

 
Adopted: 1 = 0,4eb  m 
 

2
8,5= = = 1,063

8 8
e

e
L

b m < 2 = 1,6b  m 

 
Adopted: 2 = 1,063eb  m 

b0 be1 be2

b0 

beff

b1 b2 
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1 1= (0,55 + 0,025· / )e eL b   1,0 according to expression (5.5), EN 1994-1-1 
 

1 = (0,55 + 0,025·8,5 / 0,40) = 1,081  > 1,0 
 

2 2= (0,55 + 0,025· / )e eL b   1,0 according to expression (5.5), EN 1994-1-1 
 

2 = (0,55 + 0,025·8,5 / 1,063) = 0,750  < 1,0 
 

0 1 1 2 2= + · + · = 0,20 +1,0·0,40 + 0,750·1,063 = 1,40eff e eb b b b  m 

3.2 Mid-region AB 

0= +eff eib b b  according to expression (5.3), EN 1994-1-1 
 
b0 = 0,20 m 
 

=
8

e
ei

L
b  bi 

 
1= 0,85·eL L  for beff,1 according to Figure 5.1, EN 1994-1-1 

 
L1 = 10,0 m 
 

= 0,85·10,0 = 8,5eL m 
 

1
8,5= = = 1,063

8 8
e

e
L

b  m > 1 = 0,4b  m 

 
Adopted: 1 = 0,4eb  m 
 

2
8,5= = = 1,063

8 8
e

e
L

b  m < 2 = 1,6b  m 

 
Adopted: 2 = 1,063eb  m 
 

0 1 2= + + = 0,20 + 0,40 +1,063 = 1,663eff e eb b b b  m 
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3.3 Support region BC 

0= +eff eib b b  according to expression (5.3), EN 1994-1-1 
 
b0 = 0,20 m 
 

=
8

e
ei

L
b   bi 

 
1 2= 0,25·( + )eL L L  

 
For beff,2 according to Figure 5.1, EN 1994-1-1: 
 
L1 = 10,0 m 
 
L2 = 12,0 m 
 

= 0,25·(10,0 +12,0) = 5,50eL  m 
 

1
5,50= = = 0,688

8 8
e

e
L

b  m > 1 = 0,4b  m 

 
Adopted: 1 = 0,4eb  m 
 

2
5,50= = = 0,688

8 8
e

e
L

b m < 2 = 1,6b  m 

 
Adopted: 2 = 0,688eb  m 
 

0 1 2= + + = 0,20 + 0,40 + 0,688 = 1,288eff e eb b b b  m 
 

3.4 Mid-span region CD 

0= +eff eib b b  according to expression (5.3), EN 1994-1-1 
 
b0 = 0,20 m 
 

=
8

e
ei

L
b   bi 
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2= 0,70·eL L  for beff,1 according to Figure 5.1, EN 1994-1-1 
 
L2 = 12,0 m 
 

= 0,70·12 = 8,4eL m 
 

1
8,4= = = 1,050

8 8
e

e
L

b  m > 1 = 0,4b  m 

 
Adopted: 1 = 0,4eb  m 
 

2
8,4= = = 1,050

8 8
e

e
L

b  m > 2 = 1,6b  m 

 
Adopted: 2 = 1,050eb  m 
 

0 1 2= + + = 0,20 + 0,40 +1,050 = 1,650eff e eb b b b  m 

3.5 Support region DE 

0= +eff eib b b  according to expression (5.3), EN 1994-1-1 
 
b0 = 0,20 m 
 

=
8

e
ei

L
b   bi 

 
3= 2·eL L  for beff,2 according to Figure 5.1, EN 1994-1-1 

 
L3 = 2,5 m 
 

= 2·2,5 = 5,0eL  m 
 

1
5,0= = = 0,625

8 8
e

e
L

b  m > 1 = 0,4b  m 

 
Adopted: 1 = 0,4eb  m 
 

2
5,0= = = 0,625

8 8
e

e
L

b  m < 2 = 1,6b  m 
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Adopted: 2 = 0,625eb  m 
 

0 1 2= + + = 0,20 + 0,40 + 0,625 = 1,225eff e eb b b b  m 

4. Recapitulation of results 

Table B1.1 Effective width of the concrete flange beff of a continuous composite 
beam 

 Region 

 Support A AB BC CD DE 
Le (m) 8,50 8,50 5,50 8,40 5,00 

Le/8 (m) 1,063 1,063 0,688 1,050 0,625 
be1 (m) 0,40 0,40 0,40 0,40 0,40 
be2 (m) 1,063 1,063 0,688 1,050 0,625 
beff (m) 1,40 1,663 1,288 1,650 1,225 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B1.3 Effective width of the concrete flange of a continuous  
 composite beam 

5. Commentary 

Elastic global analysis may be based on the stiffness calculated using the results 
for AB and CD. However, the differences between these values are so small that 
the structural element ABCDE can be analysed as a beam of uniform section 
with the effective width of the concrete flange beff = 1,650 m. 

 

1,40 
1,663 

1,288
1,650

1,225 

L2/2 L3 L1/2 L1/4 L1/4 L2/4 L2/4

A B C D E 

L1 = 10 m L2 = 12 m L3 = 2,5 m 



Composite Structures according to Eurocode 4. Worked Examples.
First Edition. Darko Dujmović, Boris Androić, Ivan Lukačević.
© 2015 Ernst & Sohn GmbH & Co. KG. Published 2015 by Ernst & Sohn GmbH & Co. KG.

 53 
 

B2 Composite beam – arrangement of shear connectors 
in solid slab 

1. Purpose of example 

The purpose of the example is to show the calculation and the arrangement of the 
headed stud connectors in the case of the simple supported composite beam. The 
class of cross-section is such that we can calculate the resistance moment of the 
cross-section of the beam by means of rigid plastic theory. The thickness of the 
concrete slab is hc = 14 cm. 
 
The essence of the example is the calculation and the arrangement of the headed 
stud connectors in the solid slab. Therefore, the design of the beam is conducted 
more simply without considering creep and shrinkage of the concrete. Spacing and 
arrangement of the studs is determined according to the diagram of shear forces or 
by the shear flow, which is calculated according to the theory of elasticity which 
assumes a linear relationship between the shear force and the longitudinal shear 
force. The compressive normal force in the concrete flange Nc is transmitted to the 
composite beam by means of the headed studs. 

2. Static system, cross-section and actions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B2.1 Static system and cross-section 
 
Actions 
 
Permanent action 

Section 1-1 

b = 3,0 m b = 3,0 m 

IPE 360 

hc = 140 mm 

qk 
gk 

L = 11,0 m 

1

1

beff = 2,75 m 

IPE 360 
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- concrete slab and steel beam = 11,1kg  kN/m 
 
Variable action (including partitions) 
- variable and partitions = 15,0kq  kN/m 

3. Properties of materials 

Concrete strength class: C 25/30 = 25ckf  N/mm2 

 25= = = 16,7
1,5

ck
cd

c

f
f  N/mm2 

 
Structural steel: S355 = 355ykf  N/mm2 

 355= = = 355
1,0

yk
yd

M

f
f  N/mm2 

 
Shear connectors: ductile headed studs = 450uf  N/mm2 
 = 19d  mm 
 = 100sch  mm 

 100= = 5,3 > 4,0
19

sch
d

= 1,0  

 =RdP  73,7 kN 

4. Ultimate limit state 

4.1 Design values of combined actions and design values of effects of 
actions 

The design load of governed combination of actions is: 
 

= 1,35· +1,50·d k ke g q  
 

= 1,35·11,1 +1,50·15,0 = 37,5de  kN/m 
 
The calculation of effects of actions is: 
 

2 2· 37,5·11,0= = = 567
8 8

d
Ed

e L
M  kNm 
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11,0= · = 37,5· = 206
2 2Ed d
LV e  kN 

4.2 Effective width of concrete flange 

0 1 2= + +eff e eb b b b  
 

0 = 0b  
 
The distance between the centres of the rows of shear connectors is b0 = 0 because 
there is only one row of shear connectors. 
 

0
1 2

11,0= = = = 1,375
8 8e e
L

b b  m 

 
= 2·1,375 = 2,75effb  m < = 3,0b  m 

 
The effective cross-section of the concrete flange is shown in Figure B2.2. 
 
 
 
 
 
 
 
 
 
 
 

Figure B2.2 Effective cross-section of the concrete flange 

4.3 Plastic resistance moment of composite cross-section 

Since the main purpose of the example is to show the calculation and the 
arrangement of the headed stud connectors, a simplified verification for the 
ultimate limit state contains: a) Check of the resistance of the composite cross-
section to bending and b) Check of the resistance of the composite cross-section to 
vertical shear. 
 
The calculation of the plastic resistance moment Mpl,Rd can be performed in two 
ways: (a) by calculating the position of the plastic neutral axis, xpl, (b) directly 
without calculating xpl. 
 

3000 

3000 3000 

IPE 360 

140 

2750 
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a) By calculating of the position of the plastic neutral axis xpl 
 
If , ,>c f pl aN N , the plastic neutral axis is located in the thickness hc of the concrete 
of the slab: 
 

, ,>c f pl aN N  
 

· ·0,85· > ·eff c cd a ydb h f A f  
 
2,75·14·0,85·1,67  72,73·35,5  
 
5465 > 2582   the plastic neutral axis is located in the slab depth. 
 
The effective cross-section of the concrete flange, with dimensions, is shown in 
Figure B2.3. 
 
 
 
 
 
 
 
 
 

Figure B2.3 Effective cross-section of the concrete flange with dimensions 
 
The plastic neutral axis lies a distance xpl below the top of the concrete flange: 
 

· 72,73·35,5= = = 6,61
·0,85· 275·0,85·1,67

a yd
pl

eff cd

A f
x

b f
 cm < = 14,0ch  cm 

 
When the plastic neutral axis lies within the concrete slab, the plastic resistance 
moment Mpl,Rd may be determined from:  
 

, = · ·( + – )
2 2

pla
pl Rd a yd c

xh
M A f h  

 

,
36 6,61 1= 72,73·35,5·( +14 – )· = 741
2 2 100pl RdM  kNm 

 
b) Directly without calculating xpl 

beff = 2,75 m 

IPE 360 

0,85 fcd 

 fyd 

 hc 

 ha 

xpl  Nc,f

 Na = Npl,a 

+ –
2 2

pla
c

xh
h
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The design value of the plastic resistance of the structural steel section to normal 
force is: 
 

, = · = 72,73·35,5 = 2582pl a a ydN A f  kN 
 
The resistance of the effective area of the concrete flange acting compositely with 
the steel section is: 
 

, = ·0,85· = 275·14·0,85·1,67 = 5465c f c cdN A f  kN 
 
Since Npl,a < Nc,f the plastic neutral axis lies within the concrete slab. The lesser of 
the two values, Npl,a and Nc,f, is governed so that Na = Nc,f = Npl,a. The bending 
moment Mc, which takes the concrete flange, is: 
 

,

14,0 2582 1= · (1 – ) = 2582· (1 – )· = 95
2 2 5465 100
c a

c c
c f

h N
M N

N
 kNm 

 
The plastic resistance moment of the composite section Mpl,Rd is: 
 

,
1= + · = 95 + 2582·( + )· = 741

2 2 100
a c

pl Rd c a
h h

M M N z  kNm 

 
 
 
 
 
 
 
 

Figure B2.4 Stress blocks for calculating the resistance of the composite  
 cross-section 

 
Criterion: 
 

,

Ed

pl Rd

M
M

1,0 

 
567 = 0,77
741

 

 
0,77 < 1,0 , so the resistance moment of the composite cross-section is verified. 

beff = 2,75 m 

IPE 360 

 0,85 fcd

 fyd 

 hc 

 ha 

 Nc,f

 Npl,a

= +
2 2
a ch h

z

 Mc

 Ta 

 Tc 
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4.4 Vertical shear resistance 

The shear buckling resistance of the web should be verified, for the unstiffened 
web when: 
 

72>wh
t

 

 
where: 
 

235 235= = = 0,81
355yf

 

 
= 1,2 , the factor defined in EN 1993-1-5 

 
= – 2· = 360 – 2·12,7 = 335w a fh h t  mm 

 
72 72= ·0,81 = 48,6

1,2
 

 
335= = = 41,9
8,0

w w

w

h h
t t

 

 
Since 41,9 < 48,6, the condition is satisfied. The shear buckling resistance of the 
web need not be verified. 
 
Remark 
 
The resistance of the composite beam to vertical shear is normally taken as the 
shear resistance of the steel section according to clause 6.2.6, EN 1993-1-1, 
which gives: 
 

, , ,
0

( / 3)
= = V y

pl Rd pl a Rd
M

A f
V V  

 
For rolled I- and H-sections, if the load is applied parallel to the web, the shear 
area is calculated as: 
 

= – 2· · + ·( + 2· )V a a f f wA A b t t t r , but not less than · ·w wh t  
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The governed shear area AV is shown in Figure B2.5, and it is: 
 

= 72,73 – 2·17·1,27 +1,27·(0,8 + 2·1,8)VA  
 

= 35,1VA  cm2 
 
 
 
 
 
 
 
 

Figure B2.5 Governed shear area 
 

= 1,2  
 

· · = 1,2·33,5·0,8 = 32,2w wh t  cm2 
 
35,1 cm2 > 32,2 cm2 
 
Thus, AV = 35,1 cm2 
 
The design plastic shear resistance of the steel section is: 
 

, , ,
0

( / 3)
= = V y

pl Rd pl a Rd
M

A f
V V  

 

, , ,
35,5= = 35,1 = 719
3·1,0pl Rd pl a RdV V  kN 

 
Criterion: 
 

,

Ed

pl Rd

V
V

 1,0 

 
206 = 0,29 < 1,0
719

 

 
Since 0,29 < 1,0 , the condition is satisfied. 

d  h tw 
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4.5 Check of resistance of headed stud connectors 

The design value of the compressive normal force in the concrete flange Nc is 
transferred to the composite beam by means of the headed studs, as shown in 
Figure B2.6. 
 
 
 
 
 
 
 
 
 
 

Figure B2.6 Transfer of compressive normal force in concrete flange Nc by  
 means of studs 

 
Calculating the plastic resistance moment of the composite section Mpl,Rd is 
conducted so that the minimum force of Nc and Npl,a is multiplied by the lever arm 
z. In this example, the lesser force is Npl,a so that: 
 

,= = 2582c pl aN N  kN 
 
The design value of the compressive normal force in the concrete flange Nc can be 
reduced in the ratio of the degree of utilization (MEd/Mpl,Rd): 
 

,

567= = 2582· = 1976
741

Ed
c c

pl Rd

M
red N N

M
 kN 

 
where red Nc is the reduced compresive normal force in the concrete flange. 
 
Since the design resistance of each stud is = 73,7RdP  kN, the required number of 
studs can be determined for half span L/2 as: 
 

1976= =
73,7

c

Rd

red N
n

P
  27 studs 

 
In the elastic design, the shear connectors are spaced in accordance with the shear 
flow with a triangular distribution. If the span of the beam is divided into the 
several ranges where the studs are distributed at equal intervals, this leads to the 
idea that is shown in Figure B2.7. The total number of studs, n, is shared between 

L/2 

Nc 

Npl,a PRd The interface between steel and concrete 
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lengths of the ranges in proportion to the areas of the design shear force diagram of 
the considered ranges. This option results in uniform resistance in each length. The 
longitudinal shear resistance is made to match the peak value of shear flow over 
that length and the following assumptions are valid: 
 
- the peak shear flow within each length does not exceed the design longitudinal 

shear resistance per unit length by more than 10%, 
- the total design longitudinal shear over the length does not exceed the total 

design resistance for this length. 
 
This simplified model is shown in Figure B2.7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B2.7 Stepped form of shear flow 
 
The ranges in proportion to the areas of the shear force diagram are calculated as 
follows: 
 

1= ·
2V EdA V L  

 

= ·Vi
i

V

A
n n

A
 

 
 ni  n 

L/2 

n3 n2 n1 

AVi

VEd
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When determining the spacing of the studs, it is necessary to comply with the 
following conditions: 
 
- the minimum spacing of studs in the direction of the shear force eL  5d, but not 

greater than six times the thickness of the concrete slab or 800 mm, 
 
- the minimum spacing of studs in the direction transverse to the shear force eq  

2,5d. 
 
The arrangement of studs and the spacing of the studs are determined according to 
the diagram of the longitudinal shear flow. The half span of the beam is divided 
into three regions with the same areas of the shear flow. The lengths of these 
regions are 18%, 24% and 58% of the half span, L/2. The procedure is carried out 
as follows. 
 
The reduced compressive normal force in the concrete flange is: 
 

= 1976cN  kN 
 
Clause 6.6.1.3(5), EN 1994-1-1, refers to the calculation of the longitudinal shear 
flow according to elastic theory. This assumes the use of the expression: 
 

, = ·L Ed Ed
Sv V
I

 

 
where: 
 
I is the ideal second moment of area of the cross-section, 
S is the ideal first moment of area of the concrete slab or the steel section about 

the elastic neutral axis. 
 
Thus, the distribution of the shear flow is obtained as shown in Figure B2.8. 
 
 
 
 
 
 
 
 
 

Figure B2.8 Distribution of shear flow 
 

L/2 = 5500

vL,Ed (kN/m)
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The diagram of the elastic shear flow is triangular, and the design value of the 
shear flow at the first support is: 
 

, = 2· / ( / 2)L Ed cv N L  
 

, = 2·1976 / 5,5 = 719L Edv  kN/m 
 
Since we are dealing with the half span of the beam divided into three regions with 
the same shear flows, the model for calculating the lengths of the regions is formed 
as shown in Figure B2.9. 
 
 
 
 
 
 
 
 
 

Figure B2.9 Model for calculating the lengths of the regions 
 
In the first step, we calculate the length of the first region, a, and 2

,L Edv  according to 
Figure B2.10. 
 
 
 
 
 
 
 
 
 

Figure B2.10 Model for calculating the length of the first region 
 
The first equation is obtained from the calculation of the area of the triangle of the 
length x: 
 

2
,

2 3

·
= +

2
L Edv x

A A  

 
2

, · = 2·(659 + 659)L Edv x  
 

3
,L Edv2

,L Edv
1

,L Edv

A1 = A2 = A3 = Nc/3  
                    = 1976/3 
                      = 659 kN 

L/2 = 5500

a b c 

A1 A2 A3 

2
,L Edv1

,L Edv

L/2 = 5500

a x

A1 A2+A3
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2
, · = 2636L Edv x  

 
The second equation is obtained from the ratio of the sides of triangles according to 
Figure B2.10: 
 

1 2
, ,: = ( + ) :L Ed L Edv v a x x  

 
( + ) = 5,5a x  
 

1 2
, ,· = 5,5·L Ed L Edv x v  

 
Substituting the expression 1 2

, ,· = 5,5·L Ed L Edv x v  into 2
, · = 2636L Edv x , and rearranging 

gives: 
 

2
, = 587L Edv  kN/m 

 
The area of the first region from Figure B2.10 can be given in the following form: 
 

1 2 2
, , , 1( – )· + · =

2L Ed L Ed L Ed
av v v a A  

 
Substituting the previously calculated values in the above expression and the 
rearranging gives: 
 

= 1010a  mm 
 
In relation to the half span of the beam, the length of the first region a is: 
 

/ ( / 2) = 1010 / 5500 = 0,18a L  (18 %) 
 
Analogously, the value of 3

,L Edv  is calculated, and then the other percentages of the 
lengths of the regions 2 and 3: 24% and 58% (Figure B2.11). 
 
In each region, 10 studs are installed which are spaced uniformly over the length of 
the regions. 
 
In regions 1 and 2 there are five pairs of studs, while in region 3 there are 10 studs 
in a row. The arrangement of the studs is shown in Figure B2.11. 
 
Another option is that the half span of the beam is divided into two regions. If each 
region took 50% of the longitudinal shear force, the lengths of the regions should 
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be divided in a ratio of 30% : 70% of the half span, L/2. The calculation procedure 
is the same as in the previous case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B2.11 Arrangement of stud connectors with regard to the  
 shear flow diagram 

4.6 Check of the longitudinal shear resistance of the concrete flange 

The transverse reinforcement in the slab is designed for the ultimate limit state so 
that premature longitudinal shear failure or longitudinal splitting is prevented. 
Figure B2.12 shows the critical sections for the failure of the concrete flange due to 
longitudinal shear. For these sections it is necessary to implement the verification. 
 
 
 
 
 
 
 
 
 

Figure B2.12 Critical sections for failure of the concrete flange due to  
 longitudinal shear 

5. Commentary 

The example illustrates the arrangement of the studs according to clause 
6.6.1.3(5), EN 1994-1-1, which relates to “longitudinal shear calculated by 
elastic theory”. Clause 6.6.1.3(1)P and to a lesser extent 6.6.1.1(2)P, refer to the 

4·200

Arrangement of studs: 

Shear flow and the division of diagram into three equal areas:

5·300 10·300

100

300

5500

990 
= 0,18·5500

1320 
= 0,24·5500

3190 = 0,58·5500 

Region 1 
5 pairs of 

studs 

Region 2 
5 pairs of 

studs 

Region 3 
10 single  

studs 

1/3 1/3 1/3 
1

,L Ed
2

,L Ed

3
,L Ed

Longitudinal shear resistance of concrete flange 

90 

10 

100 

32 

Dimensions 
of stud 

 19 

80

2

2 2

2 

11 

100 140

2

2

140100
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“spacing” of the studs and the “appropriate distribution” of the longitudinal 
shear. The interpretation of “appropriate” depends on the applied method of 
analysis and the ductility of the studs. 
 
The spacing of the studs in accordance with clause 6.6.1.3(5), i.e. the studs being 
spaced “elastically”, can be applied generally. The more appropriate use of 
uniform spacing requires the studs to satisfy clause 6.6.1.3 (3), which implies, 
but does not require, the use of plastic resistance moment. The studs must be 
“ductile”, as defined in clauses 6.6.1.1(4)P and 6.6.1.1(5)P. This is normally 
achieved by satisfying clause 6.6.1.2. 
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B3 Simply supported secondary composite beam 
supporting composite slab with profiled sheeting 

1. Purpose of example 

This example deals with a simply supported secondary composite beam under 
uniformly distributed loads. The composite slab is 130 mm deep with the profiled 
steel sheeting running perpendicular to the steel beam. Analysis of the composite 
beam is performed for the construction stage and for the composite stage. The 
design checks are conducted for both ultimate limit state and serviceability limit 
state. It is assumed initially that unpropped construction is used, and that the whole 
length of concrete flange is cast before composite action is developed. However, 
the check has shown that the steel beam does not have sufficient resistance to 
lateral-torsional buckling. Instead of selecting the beam with the greater lateral-
torsional resistance, in this example it is assumed that the steel beam is fully 
propped. Also, the purpose of this example is to give the basis for some of the 
problems to be treated in more detail in the following examples. Therefore, this 
example is a “reference” for considering other examples. 

2. Static system, cross-section and actions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B3.1 Floor Layout 
 
 

5,
0 

m
 

3,0 m 

Secondary beams Primary beams 

5,
0 

m
 

3,0 m 3,0 m 3,0 m 3,0 m 3,0 m 
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= 130h  mm, = 79ch  mm, = 51ph  mm 
Figure B3.2 Static system and section of secondary composite beam 

 
Actions 
 
a) Permanent action 
 
Remark: 
 
According to EN 1991-1-1 the density of the normal weight concrete is 24 
kN/m3, increased by 1 kN/m3 for normal percentage reinforcement, and 
increased for the wet concrete by another 1 kN/m3. 

 
The concrete slab area per m width is: 
 

1 +1000= 1000· – ( · · )
2

r
c p

s

b b
A h h

b
 

 
1000 15 + 40= 1000·130 – ( · ·51) = 120803
152,5 2cA  mm2  1200 cm2 

 
- concrete slab and reinforcement (wet concrete) 
 
 ·26 = 0,120·26 = 3,12cA  kN/m2 
 
- concrete slab and reinforcement (dry concrete) 
 

h 

b = 3,0 m 

hc 

IPE 200 

br = 40 mm

bs = 152,5 mm 

b0 = 110 mm 

hp 
b1=15 mm 

L = 5 m 
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 ·25 = 0,120·25 = 3,00cA  kN/m2 
 
Construction stage 
 
- concrete slab 3,12  kN/m2 
 
- profiled steel sheeting 0,13  kN/m2 
 
- steel beam 0,20  kN/m2 
 
Total ,1 = 3,45kg  kN/m2 
 
Composite stage 
 
- concrete slab 3,00  kN/m2 
 
- profiled steel sheeting 0,13  kN/m2 
 
- steel beam 0,20  kN/m2 
 
Total ,2 = 3,33kg  kN/m2 
 
Floor finishes ,3 = 0,15kg  kN/m2 
 
b) Variable action 
 
Construction stage 
 
-construction loads ,1 = 0,50kq  kN/m2 
 
Composite stage 
 
- imposed floor load, category of use C1 = 3,00kq  kN/m2 
 
-movable partitions = 0,80kq  kN/m2 
 

Total ,2 = 3,80kq  kN/m2 
 
Remark: 
 
The variable actions qk = 3,00 kN/m2 and qk = 0,80 kN/m2 are mutually 
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independent. 

3. Properties of materials 

Concrete strength class: C 25/30 = 25ckf  N/mm2 

 25= = = 16,7
1,5

ck
cd

c

f
f  N/mm2 

 0,85 = 0,85·16,7 = 14,19cdf  N/mm2 
 = 31000cmE  N/mm2 
 
Reinforcement: ductility class B or C (Table C.1, EN 1992-1-1) = 500skf  N/mm2 

 500= = = 435
1,15

sk
sd

s

f
f  N/mm2 

 = 210000sE  N/mm2 
 
Structural steel: S275 = 275ykf  N/mm2 

 
275= = = 275
1,0

yk
yd

M

f
f  N/mm2 

 = 210000aE  N/mm2 
 
Shear connectors: ductile headed studs = 450uf  N/mm2 
 =19d  mm 
 = 100sch  mm 

 100= = 5,26 > 4,0
19

sch
d

 = 1,0 

 = 73,7RdP  kN 

4. Ultimate limit state 

4.1 Design values of combined actions and of the effects of actions for the 
construction stage 

,1 ,1= ·( · + · )d G k Q ke b g q  
 

= 3,0b  m beam spacing 
 

= 3,0·(1,35·3,45 +1,5·0,5) = 3,0·(4,65 + 0,75) = 16,2de  kN/m 
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2 2

,

· 16,2·5,0= = = 50,6
8 8

d
y Ed

e L
M  kNm 

 
· 16,2·5,0= = = 40,5
2 2

d
Ed

e L
V  kN 

4.2 Design values of combined actions and of the effects of actions for the 
composite stage 

,2 ,3 ,1= ·( · + · + · )d G k G k Q ke b g g q  
 

= 3,0b  m beam spacing 
 

= 3,0·(1,35·3,33 +1,35·0,15 +1,5·3,8) = 3,0·(4,70 +5,70) = 31,2de  kN/m 
 

2 2

,

· 31,2·5= = = 97,5
8 8

d
y Ed

e L
M  kNm 

 
· 31,2·5,0= = = 78,0
2 2

d
Ed

e L
V  kN 

4.3 Check for the construction stage 

4.3.1 Selection of steel cross-section 

When the steel beam is unpropped at the construction stage, the steel beam carries 
the total load for the construction stage ed = 16,2 kN/m. The plastic section 
modulus that is required to resist the construction stage maximum design bending 
moment is determined as: 
 

3
, 0

,

· 50,6·10 ·1,0= = = 184
275

y Ed M
pl y

y

M
W

f
 cm3 

 
Section IPE 200 is selected with the cross-section and the dimensions shown in 
Figure B3.3. 
 
 
 
 
 
 



72 B     Composite beams 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

, = 220,6pl yW  cm3 
= 28,48A  cm2 

= 200ah  mm 
= 100ab  mm 
= 5,6wt  mm 
= 8,5ft  mm 
=12r  mm 

, = 1943y aI  cm4 

, = 142,4z aI  cm4 

, = 12990w aI  cm6 

, = 6,98t aI  cm4 
Figure B3.3 Cross-section and dimensions of IPE 200 

4.3.2 Classification of the steel cross-section 

For tf = 8,5 mm the yield strength is fy = 275 N/mm2. 
 

235 235= = = 0,92
275yf

 

 
For the execution stage, the neutral axis is located in the half depth of the web of 
the steel section.  
 
The classification of steel cross-section is conducted according to Table 5.2, EN 
1993-1-1. 
 
Flange: 
 
The outstand of compression flange is: 
 

– – 2· 100 – 5,6 – 2·12= = = 35,2
2 2

a wb t r
c  mm 

 
35,2= = 4,14
8,5f

c
t

 

 
The limiting value for class 1 is: 
 

tw 
tf 

ba

ha
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f

c
t

9 = 9·0,92 = 8,28  

 
4,14 < 8,28   Therefore, the flange in compression is class 1. 
 
Web: 
 
Web subject to bending 
 

= = – 2· – 2· = 200 – 2·8,5 – 2·12 = 159a fc d h t r  mm 
 

159= = 28,39
5,6w

c
t

 

 
The limiting value for class 1 is: 
 

w

c
t

  72 = 72·0,92 = 66,24  

 
28,39 < 66,24   Therefore the web in bending is class 1. 
 
Therefore the cross-section in bending at the construction stage is class 1. At the 
composite stage, the cross-section will also be class 1. 

4.3.3 Plastic resistance moment of the steel cross-section 

The design resistance moment for class 1 sections is: 
 

,
, , ,

0

·
= = pl y yd

c Rd pl a Rd
M

W f
M M  

 

, ,
220,6·27,5= = = 6066,5

1,0c Rd pl RdM M  kNcm = 60,7 kNm 

 
Verify that: 
 

,

,

y Ed

c Rd

M
M

  1,0 
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50,6 = 0,83 < 1,0
60,7

 

 
Therefore the resistance moment is adequate. 

4.3.4 Shear resistance of the steel cross-section 

The shear buckling resistance of web should be verified, for an unstiffened web 
when: 
 

72>wh
t

 

 
where: 
 

235 235= = = 0,92
275yf

 

 
= 1,2 , the factor defined in EN 1993-1-5 

 
= – 2· = 200 – 2·8,5 = 183w a fh h t  mm 

 
72 72= ·0,92 = 55,2

1,2
 

 
183= = = 32,7
5,6

w w

w

h h
t t

 

 
Since 32,7 < 55,2, the condition is satisfied. The shear buckling resistance of web 
should not be verified. 
 
Remark: 
 
The resistance of the composite beam to vertical shear is normally taken as the 
shear resistance of the steel section according to clause 6.2.6, EN 1993-1-1, 
which gives: 
 

, , ,
0

( / 3)
= = V y

pl Rd pl a Rd
M

A f
V V  
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For rolled I- and H-sections and the load applied parallel to the web, the shear 
area is calculated as: 
 

= – 2· · + ·( + 2· )V a a f f wA A b t t t r , but not less than · ·w wh t  
 
The shear area AV is: 
 

= 28,48 – 2·10·0,85 + 0,85·(0,56 + 2·1,2)VA  
 

= 13,99VA  cm2 
 

= 1,2  
 

· · = 1,2·18,3·0,56 = 12,29w wh t  cm2 
 
13,99 cm2 > 12,29 cm2 
 
Therefore AV = 13,99 cm2. 
 
The design plastic shear resistance of the steel section is: 
 

, , ,
0

( / 3)
= = V y

pl Rd pl a Rd
M

A f
V V  

 

, , ,
27,5= = 13,99 = 222
3·1,0pl Rd pl a RdV V  kN 

 
Verify that: 
 

,

Ed

pl Rd

V
V

  1,0 

 
40,5 = 0,18 < 1,0
222

 

 
Therefore the shear resistance of the cross-section is adequate. 



76 B     Composite beams 
 

 

4.3.5 Interaction of M-V (bending and shear force) 

The reduction of the design resistance moment of the cross-section for the 
influence of shear force is defined in EN 1993-1-1. Because there is no shear force 
at the point of maximum bending moment (mid-span), no reduction (due to shear) 
in resistance moment is required. However, in this example, for pedagogic reasons, 
the check is carried out. 
 

,0,5· = 0,5·222 = 111pl RdV  kN 
 

= 40,5EdV  kN ,< 0,5 = 111pl RdV  kN, no reduction in the resistance moment 
 

, , ,= = 60,7y V Rd c RdM M  kNm 
 
Verify that: 
 

, ,

Ed

y V Rd

M
M

1,0 

 
50,6 = 0,83 < 1,0
60,7

, the resistance to combined shear and bending is satisfactory. 

 
Remark: 
 
Since there is no reduction of the plastic resistance moment of the steel section 
due to the shear force, the conducted verification is the same as in Section 4.3.3. 

4.3.6 Lateral-torsional buckling if the steel beam 

The resistance to the lateral-torsional buckling of the steel beam is carried out 
according to EN 1993-1-1. The elastic critical moment of lateral-torsional buckling 
is calculated using: 
 

22
2 2

1 2 22 2

( · ) · ·· ·
= · ·[ ( ) · + + ( · ) – · ]

( · ) · ·
w tz

cr g g
w z z

I k L G IE I kM C C z C z
k Ik L E I

 

 
L = 500 cm, the length between points at which the compression flange is laterally 

restrained 
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20,0= = = 10,0
2 2g
hz  cm, the distance of the shear centre from the point 

application of the load 
 

21000= = = 8077
2 (1 + ) 2· (1 + 0,3)

EG  kN/cm2 

 
= 1,0k    = 1,0wk  the effective length factors that depend on the support 

conditions at the end sections, 
1 = 1,127C  the coefficient that takes into account the shape of the 

moment diagram, 
2 = 0,454C  the coefficient that takes into account the destabilizing or 

stabilizing effect of the position of the load, 
 

2

2

2
2 2

2

·21000·142,4= 1,127· ·
(1·500)

1 12990 (1·500) ·8077·6,98[ ( ) · + + (0,454·10) – 0,454·10]
1 142,4 ·21000·142,4

crM

 

 
Mcr = 2626 kNcm = 26,3 kNm 
 
Non-dimensional slenderness: 
 

·
= y y

LT

cr

W f
M

 

 
for classes 1 and 2 Wy = Wpl,y 
 

,0
220,6·27,5= = 1,52 > = 0,4

2626
LT LT  

 
The reduction factor for lateral-torsional buckling – General method: 
 

22

1=
+ –

LT

LTLT LT

 but LT   1,0 

 
2

= 0,5[1 + ( – 0,2) + ]LT LTLT LT  
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200= = 2,0
100

h
b

  2 rolled I section  the buckling curve a is governed 

 
For the buckling curve a = 0,21LT , ( LT is the imperfection factor) 
 

2= 0,5 [1 + 0,21·(1,52 – 0,2) + 1,52 ] = 1,794LT  
 

2 2

1= = 0,36
1,794 + 1,794 – 1,52

LT  

 
The design buckling resistance moment is: 
 

,
1

·
= · y y

b Rd LT
M

W f
M  

 
for classes 1 and 2  Wy = Wpl,y 
 

,
220,6·27,5= 0,36· = 2184

1,0b RdM  kNcm = 21,8  kNm 

 
Verify that: 
 

,

Ed

b Rd

M
M

  1,0 

 
50,6 = 2,3
21,8

 

 
Therefore the buckling resistance moment of the steel beam is not adequate. 
 
Remark: 
 
Because the verification of the lateral-torsional buckling resistance of the steel 
beam in the execution stage when the steel beam is unpropped is not met, there 
are two options: 
 
Choose a steel section that has the greater resistance to lateral-torsional buckling 
or use propped construction. The solution with propped construction is selected 
in this case. 
 
During execution, the steel beam can be fully propped or unpropped. If the steel 
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beam is fully propped, the verification of the lateral-torsional buckling resistance 
of the steel beam at the execution stage is not necessary. However, if the steel 
beam is unpropped at the execution stage, it is possible to choose the solution in 
which the steel beam is laterally restrained along its length or it may be laterally 
restrained only at certain points of the span with the verification of the lateral-
torsional buckling resistance between points of lateral restraint.  
 
Considering the methods of construction, propped and unpropped, it is necessary 
to take into account the division of the loads from this point of view. In the case 
of unpropped construction, only the steel beam resists the permanent and 
variable loads during execution. When the steel beam is continuously propped, 
all loads take the composite beam. The methods of construction are as shown: 
 
Case a) The steel beam is unpropped during concreting 
 
 
 
 
 
 
 
 

Figure B3.4 Steel beam is unpropped during concreting 
 
Permanent loads Gk on the steel beam: 
 
- self-weight of the steel beam 
- concrete beam 
- construction loading 
- shuttering 
 
Variable loads Qk on the composite beam: 
 
- imposed load 
- floor finishes, movable partitions etc. 
 
Case b) The steel beam is continuously propped during concreting 
 
If the steel beam is supported at intervals along its length, with one or more 
supports, and these supports are removed, it is necessary that the reactions of 
supports “give back” to the composite beam at the locations of the props. 
 
 
 

Concrete 

Gk acts on the steel beam, and Qk acts 
on the composite beam 

Qk 
Gk
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Figure B3.5 Steel beam is continuously propped during concreting 

4.4 Check for the composite stage 

4.4.1 Effective width of the concrete flange 

The effective width of the concrete flange is calculated according to the expression 
(5.3), EN 1994-1-1: 
 

0= +eff eib b b  
 

0 = 0b  (there is only one row of shear connectors) 
 

5= = = = 0,625
8 8 8

e
ei

L Lb  m 

 
= 0 + (2·0,625) = 1,25effb  m < 3,0  m (beam spacing) 

4.4.2 Check of shear connection 

The design resistance of a single headed shear connector in a solid concrete slab, 
automatically welded in accordance with EN 14555, is determined as the smaller 
of: 
 

2
(1) 0,8· ( / 4)

= u
Rd

V

f d
P  (shank failure of the stud) 

 
2

(2) 0,29· · ·
= ck cm

Rd
V

d f E
P  (concrete failure) 

 
where: 
 

Concrete 

Temporary props 

Removing of temporary props 
All loads act on composite beam 

Gk + Qk 
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sc= 0,2 ( +1)
h
d

   for   3  sch
d

  4 

 

 = 1,0   for   sc > 4
h
d

 

 

 = 1,0   for   100= > 4
19

sch
d

 

 
2 3

(1) -30,29·1,0·19 25·31·10
= ·10 = 73,7

1,25RdP  kN  This resistance is governed 

 
2

(2) -30,8·450· ·19 4= ·10 = 81,7
1,25RdP  kN 

 
The influence of profiled sheeting to the resistance of the headed stud: 
 
For profiled sheeting with ribs running transverse to the supporting beam, the 
reduction factor kt is given by: 
 

00,7= ( )( )( – 1)sc
t

p pr

b h
k

h hn
  1,0 

 
(nr = 1,0 for a single stud per trough of profiled sheeting) 
 

0,7 112,5 100= ( )( )( – 1) = 1,48
51 511,0tk   1,0 

 
Adopted = 1,0tk  
 
Hence, the design resistance per stud in a rib where there is one stud per rib is (no 
reduction): 
 

(1)= = 73,7Rd RdP P  kN 
 
Since there is one stud per rib of the profiled sheeting, the spacing of the studs is 
152,5 mm. 
 
The number of studs for half span L/2 is: 
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5000 200– –
2 2 2 2= =
152,5 152,5

ahL

n  16 studs 

 
The design longitudinal force in the steel-concrete interface is: 
 

, = · = 16·73,7 = 1179L Ed RdV n P  kN 
 
The degree of shear connection  is: 
 

,

,

1179= = = 1,5 > 1,0
783

L Ed

pl a

V
N

 

 
Accordingly, the full shear connection is provided and no reduction in resistance 
moment is required. 

4.4.3 Plastic resistance moment of the composite cross-section 

According to clause 6.2.1.3, EN 1994-1-1, for the calculation of the resistance 
moment of the composite section at the mid-span sagging bending region, it is 
acceptable to use partial shear connection. However, in this case the full shear 
connection is applied. 

 
The design value of the compressive normal force in the concrete flange with full 
shear connection is: 
 

, = · ·0,85c f c eff cdN h b f  
 

–3
, = 79·1250·14,19·10 = 1401c fN  kN 

 
The design value of the plastic resistance of the structural steel section to normal 
force is: 
 

, = ·pl a a ydN A f  
 

2 –3
, = 28,48·10 ·275·10 = 783pl aN  kN 

 
The position of the plastic neutral axis xpl: 
 
The plastic neutral axis lies within the concrete slab in compression if the 
following condition is satisfied: 
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, ,>c f pl aN N  
 
1401 > 783   the plastic neutral axis lies within the concrete slab 
 

,=
·0,85·

pl a
pl

eff cd

N
x

b f
 

 

–3

783= = 44
1250·14,19·10plx  mm < = 79ch  mm 

 
The design value of the plastic resistance moment of the composite section with 
full shear connection Mpl,Rd is: 
 

, , ,= min( ; )·pl Rd c f pl aM N N z  
 

, ,= (0,5 + + – 0,5 )pl Rd pl a a c p plM N h h h x  
 

–3 –3
, = 783(0,5·200 +79 + 51 – 0,5·44)·10 = 783·208·10 = 163pl RdM  kNm 

 
 
 
 
 
 
 
 
 
 
 
Figure B3.6 Plastic stress distribution for a composite beam with profiled sheeting  

 and full shear connection in sagging bending 
 
Check: 
 

,

,

y Ed

pl Rd

M
M

  1,0 

 
97,5 = 0,60 < 1,0
163

 

beff = 1,25 m 

hch1 hsc 
hp  

ha 

ba

xpl

z 

Npl,a 

Nc,f 
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4.4.4 Lateral-torsional buckling of the composite beam 

Remark: 
 
The composite slab provides continuous restraint to the top flange of the steel 
beam, so the beam is not susceptible to lateral torsional buckling. 

4.4.5 Check of longitudinal shear resistance of the concrete flange 

4.4.5.1 Check of transverse reinforcement 

In practice it is usual to neglect the contribution of the steel sheeting, and the 
cross-sectional area of transverse reinforcement Asf at spacing sf should satisfied: 
 

·sf
sd

f

A
f

s , ·
cot

f
L Ed

h
 

 
where: 
 
Asf/sf  is the transverse reinforcement expressed in mm2/m, 
hf  is the depth of concrete above the profiled sheeting, see Figures B3.7 and 

B3.8, 
 is the angle between the diagonal strut and the axis of the beam (strut-

and-tie model), 
L,Ed is the design longitudinal shear flow in the concrete slab. 

 
Remark: 
 
The profiled steel sheeting with ribs transverse to the beam, continuous across 
the top flange of the steel beam and with mechanical interlocking contributes to 
the transverse reinforcement. Its contribution to the transverse reinforcement for 
the shear surface can be allowed for by replacing above expression by: 
 

,( · ) + ·sf
sd pe yp d

f

A
f A f

s , ·
cot

f
L Ed

h
 

 
where: 
 
Ape is the effective cross-sectional area of the profiled steel sheeting per unit 

length of the beam; for sheeting with holes, the net area should be used, 
fyp,d is the design yield of strength of the profiled steel sheeting. 
 
The contribution of the profiled steel sheeting is neglected in this example. 
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The transverse reinforcement (Asf/sf) expressed in mm2/m can be denoted as At, the 
cross-sectional area of the top transverse reinforcement, for failure due to shear in 
the failure plane, shown in Figure B3.7 as section a-a. 
 
 
 
 
 
 
 

Figure B3.7 Surface of potential failure in longitudinal shear 
 
It is necessary to ensure that the concrete flange can resist the longitudinal shear 
force transmitted to it by the shear connectors. At the steel-concrete interface, 
the distribution of longitudinal shear is influenced by yielding, by the spacing of 
the shear connectors, their load-slip properties, and shrinkage and creep of the 
concrete. The design resistance to longitudinal shear for the relevant shear 
failure surfaces is given in clause 6.2.4, EN 1992-1-1. The model is based on 
considering the flange to act like a system of compressive struts combined with a 
system of ties in the form of the transverse reinforcement. 
 
 
 
 
 
 
 
 
 
 
Figure B3.8 Determination of longitudinal shear forces in the concrete flange 
 
When the concrete flange is in compression, longitudinal shear flow L,Ed can be 
defined as: 
 

1,,1
, ,1

,

= = c effL Edc
L Ed

v v c eff

AVN
v

a a A
 

 
where: 
 
av is the critical length (the distance between two given sections, Figure 

B3.8), 
Nc1 is the change in the longitudinal compressive forces in the slab over the 

critical length av, see Figure B3.8. 

a

a

At

Concrete flange in compression: 

beff be,1 

be,2 

Nc1 

vL,Ed,1

VL = VL,Ed

av 

Ac1,eff

Nc1 + Nc1 

hf 
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,L EdV  is the design longitudinal shear force in the steel-concrete interface or in 
the concrete flange, 

 , ,= min( , , )L Ed pl a c RdV N N P  
 
The length av is L/2 that is the distance between the section where the moment is 
maximal and the support. 
 
The design longitudinal shear force is determined from the minimum resistance of 
the steel section, concrete and shear connectors. 
 

, ,= min( , , )L Ed pl a c RdV N N P  
 

, = 783pl aN  kN 
 

= · = 16·73,7 = 1179Rd RdP n P  kN 
 

, = 1401c fN  kN 
 
In this example, with full shear connection, the maximum force that can be 
transferred is limited by the resistance of the steel section over half of the span, and 
is given by 
 

, = 783L EdV  kN 
 
This force must be transferred over each half-span. As there are two shear planes 
(one on either side of the beam, running parallel to it), the design longitudinal shear 
stress is: 
 

,1
, = =

· 2· ·
L Edc

L Ed
f v f v

VN
v

h a h a
 

 
With 
 

= 435sdf  N/mm2 
 

= = 79f ch h  mm 
 
and 
 

= / 2 = 5000 / 2 = 2500va L  mm 
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the design longitudinal shear stress is: 
 

3

,
783·10= = 1,98

2·79·2500L Edv  N/mm2 

 
Remark: 
In order to prevent splitting of the concrete flange, for the adopted "truss model", 
according to clause 6.2.4(4) EN 1992-1-1, the angle  between the concrete 
diagonals and the longitudinal direction is limited to the values: 
 
26,5º    45º concrete flange in compression, 
 
38,6º    45º concrete flange in tension. 

 
In order to minimize the cross-sectional area of transverse reinforcement, the 
minimum angle  is selected. For the concrete flange in compression, the minimum 
angle  is: 
 

= 26,5º  
 

·sf
sd

f

A
f

s , ·
cot

f
L Ed

h
 

 
sf

f

A
s

, 31,98 79· = ·10 = 179
cot 435 cot 26,5

fL Ed

sd

h
f

 mm2/m 

 
The reinforcement provided is 8 mm bars at 150 mm, for which: 
 

2·8 1000= · = 335
4 150tA  mm2/m > 179 mm2/m 

 
According to EN 1994-1-1, clause 6.6.6.3, the minimum area of transverse 
reinforcement is determined in accordance with EN 1992-1-1, clause 9.2.2(5), 
which gives the minimum area of reinforcement as a proportion of the concrete 
area. The ratio is: 
 

,min
,

0,08
= ck

w
yr k

f
f

 

 
where: 
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fck is the characteristic compressive cylinder strength of the concrete at 28 
days in N/mm2, 

fyr,k = fsk is the characteristic yield strength of the reinforcement in N/mm2. 
 
The minimum area of transverse reinforcement is: 
 

,min
,

0,08 0,08 25= = = 0,0008
500

ck
w

yr k

f
f

 

 
= · = 79·1000 = 79000c cA h b  mm2 

 
,min ,min= · = 0,0008·79000 = 63s w cA A  mm2/m 

 
Since = 335tA  mm2/m ,min> = 63sA  mm2/m, the requirement of minimum 
transverse reinforcement is satisfied. 

4.4.5.2 Crushing of the concrete flange 

To prevent crushing of the compression struts in the flange, the following 
condition should be satisfied according to EN 1992-1-1, expression 6.22: 
 

,L Edv   Rdv  
 

,L Edv   · ·sin ·coscdf  
 
where: 
 

= 0,6·(1 – )
250

ckf
 

 is the angle between the concrete diagonals and the longitudinal direction. 
 
In order to minimize the resistance of the concrete compression strut, we select the 
minimum angle . For concrete flange in compression, the minimum angle  is: 
 

= 26,5°  
 

25= · ·sin ·cos = 0,6·(1 – )·16,7·sin26,5°·cos26,5° = 3,60
250Rd cdf  N/mm2 

 
Check: 
 



Example B3 89 
 

 

, = 1,98L Ed  N/mm2 < = 3,60Rd  N/mm2 
 
Therefore the crushing resistance of the concrete compression strut is adequate. 

5. Serviceability limit state 

5.1 General 

Chapter 7, EN 1994-1-1, is limited to provisions relating to serviceability that 
are specific to composite structures. Serviceability verifications for composite 
structures generally include checks of stress, deflection and vibration, as well 
control of crack width.  
 
For buildings, stress limitation is not required for beams if, in the ultimate limit 
state, no verification of fatigue is required and no pre-stressing by tendons and/or 
by controlled imposed deformations is provided. However, if stress limitation is 
required, clause 7.2, EN 1992-1-1, gives stress limits which may be applicable 
for buildings that have pre-stressing or fatigue loading. 
 
Since the deflection is one of the most important verifications of the 
serviceability limit state, it is necessary to explain in detail the problems 
associated with deflection calculation. Deflections due to loads applied to the 
composite member are calculated using elastic theory, taking into account the 
following effects: 
 
a) cracking of concrete, 
b) creep and shrinkage of concrete, 
c) sequence of construction, 
d) influence of local yielding of structural steel at internal support (for 

continuous beams), 
e) influence of incomplete interaction. 
 
For a more detailed explanation of these effects, see example B6. 
 
The expression for calculation of the maximum deflection of the beam due to 
uniformly distributed loads has the following general form: 
 

4·5= ·
384

d

L

e L
EI

 

 
where: 
 
ed is the design value of load from governed combination of actions, 



90 B     Composite beams 
 

 

L is the span of beam, 
EIL is the effective flexural stiffness of composite sections, which depends on 

the type of loadings; the different types of loading are distinguished by a 
subscript L, 

EL is the effective modulus of elasticity of concrete, which depends on the 
same type of loadings as for the flexural stiffness EIL. The effective 
modulus of elasticity of concrete EL is denoted by Ec,eff in EN 1994-1-1. 

 
When calculating the deformation, i.e. deflection, the effect of creep is taken into 
account by using the effective flexural stiffness of the composite section EIL. 
 
The practical calculation can be carried out according to: 
 

the procedure with the effective flexural stiffness of the composite section 
EIL, 
the procedure with the ideal second moment of area Ii,L, where the concrete 
flange is transformed in “steel” units by means of the appropriate modular 
ratio nL, see example B4. 

 
Thus, the effect of creep and shrinkage may be taken into account by using the 
effective modulus of elasticity of concrete Ec,eff, or by using the modular ratio nL 
which depends on the type of loadings. The expression for the effective modulus 
of elasticity of concrete Ec,eff  is: 
 

,
0

=
1 + · ( , )

cm
c eff

L

E
E

t t
 

 
The expression for the modular ratio nL is: 
 

0 0= (1 + · ) = ·L L t cn n n n  
 
where: 
 
nL is the modular ratio appropriate to the type of loading, 
n0 is the modular ratio for short-term loading, 

t is the creep coefficient, 
t is the age of the concrete in days at the time considered in the design, 
t0 is the age of the concrete in days at loading, 

L is the creep multiplier, which depends on the type of loading. 
 
For composite beams in structures for buildings, where the first-order elastic 
global analysis can be used, clause 5.4.2.2(11), EN 1994-1-1, allows for the 
nominal modular ratio to take the value 2·n0 for both short-term and long-term 
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loading. The exceptions are: 
 

structures for which second-order global analysis is required according to 
clause 5.2, EN 1994-1-1, 
structures for buildings mainly intended for storage, 
structures pre-stressed by controlled imposed deformations – this would 
apply, for example, to the bending of steel beams by jacking before concrete 
is cast around one of the flanges. 

 
When the conditions according to clause 5.4.2.2(11) do not apply, the modular 
ratio for use in the analysis of the effects of long-term loading, nL, depends on 
the type of loadings and the creep coefficient t. The creep coefficient depends 
on the age of the concrete at first loading, t0, and the age of the concrete at the 
time observed in the analysis, which is usually taken as “infinite”. 
 
Figure B3.9 illustrates two possible methods taking into account the creep for 
composite structural members. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B3.9 Two possible methods taking into account 
 the creep for composite structural members 

 
Clause 5.4.2.2(4), EN 1994-1-1 states that the age of concrete at the time of 
loading by the effects of shrinkage should generally be assumed to be one day. 
However, in clause 5.4.2.2(3), EN 1994-1-1, for permanent loads on composite 
structures cast in several phases, one mean value t0 can be used for the 
calculation of the creep coefficient t. 
 
For the time-dependent strains of the concrete, it is always important to define 
the time of the beginning of the effect of certain phenomena. For example, the 
following values are common for t0 (the age of the concrete on first loading) and 
t (the age at the time considered in the analysis): 
 

Yes 

For composite beams, 
assume an effective 

modulus (clause 
5.4.2.2(11))  

and determine a nominal 
modular ratio, n. 

No 

For composite beams, determine modular 
ratios n0 for short-term loading and nL for 

permanent loads. For a combination of 
short-term and permanent loading, estimate 
the proportions of loading and determine a 

modular ratio n from n0 and nL. 

Does clause 5.4.2.2(11), EN 1994-1-1, on use a nominal modular ratio 
apply? 
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t0 = 1 day, the age of loading by the effects of shrinkage, 
t0 = 28 days, hardened concrete, i.e. the age of concrete on the first loading, 
t = , the age at the time considered in the analysis, which is normally taken as 
“infinity”. 
 
For structural elements propped during construction, the age at first loading can 
be considered to be when the props are removed. 
 
Types of loadings and the corresponding flexural stiffness EIL 
 
In this example, the following values are used: 
 

Short-term loading 
 

= 0L  0
0

= = =
1 + 0· ( , )

cm cm
cm

c

E E
E E

n t t
 0EI  flexural stiffness 

 
Permanent loading constant in time 

 

= =1,10L P  
0

= =
1 +1,10· ( , )

cm cm
P

c

E E
E

n t t
 PEI  flexural stiffness 

 
Action effects caused by shrinkage of concrete 

 

= = 0,55L S  
0

= =
1 + 0,55· ( , )

cm cm
S

c

E E
E

n t t
 SEI  flexural stiffness 

 
Effective flexural stiffness of composite sections 
 
The flexural stiffness of the composite section of the beam with full shear 
connection is shown in the general format: 
 

2· · ·
= · + · + ·

· + ·
a a c c

a a c c
a a c c

E A E A
EI E I E I a

E A E I
 

 
If the influence of creep on the flexural stiffness of composite section is taken 
into account, in the above expression the effective modulus of elasticity of 
concrete EL is introduced. After rearranging, the effective flexural stiffness EIL is 
obtained. In this case the expression is: 
 

2· · ·
= · + · + ·

· + ·
a a L c

L a a L c
a a L c

E A E A
EI E I E I a

E A E I
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For example, for short-term loading the creep multiplier is L = 0 and the 
modulus of elasticity is E0 = Ecm. In this case the expression for the flexural 
stiffness EI0 is: 
 

20
0 0

0

· · ·
= · + · + ·

· + ·
a a c

a a c
a a c

E A E A
EI E I E I a

E A E I
 

 
The same procedure is used for calculating the flexural stiffness of the EIP and 
EIS with the corresponding effective modulus of elasticity of concrete EP and ES. 
 
Combination of actions for serviceability limit state 
 
The expressions for the combinations of actions for serviceability limit state 
design are given in EN 1990 for three possible combinations: 
 

 Characteristic combination 
 

,1 0,2 ,2+ + ·k k kG Q Q  and 0,1 ,1 ,2+ · +k k kG Q Q  
 
This is the least favourable combination and it is normally used for verifying 
irreversible limit states. An example of such a limit state is deformations that 
result from the yielding of steel. Also, this combination is applied when 
deformation causes cracking of a brittle floor finish or damage to fragile 
partitions. In this case, 0,1 and 0,2 denote the combination factors for the 
characteristic value of variable action, and the leading variable action is denoted 
with Q1. 
 

 Frequent combination 
 

1,1 ,1 1,2 ,2+ · + ·k k kG Q Q  
 
This combination is used in the case of reversible limit states, such as the elastic 
deflection of composite beams due to variable actions. However, if the 
deformation causes cracking of brittle finish floor structures or damage to fragile 
partitions then the limit state is not reversible. In this case, the verification must 
be carried out for the higher less probable loading of the characteristic 
combination. Then 1,1 and 1,2 denote the combination factors for the frequent 
value of variable action. 
 

 Quasi-permanent combination 
 

2,1 ,1 2,2 ,2+ · + ·k k kG Q Q  
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This combination is used for the estimation of deformation for the reversible 
limit states or the long-term effects such as creep and shrinkage of concrete, as 
well as for the appearance of the structure. Then 2,1 and 2,2 denote the 
combination factors for the quasi-permanent value of variable action. 
 
According to EN 1990, for serviceability verification (deflections and vibrations) 
for permanent and variable actions the characteristic combination or the 
frequent combination apply. To determine the deflection due to creep we use the 
quasi-permanent combination. However, which combination will be chosen 
depends on the National Annex. 
 
In the case of only one variable action Q1, the combinations are: 
 
characteristic: 1+kG Q  
 
frequent: 1 1+ ·kG Q  
 
quasi-permanent: 2 1+ ·kG Q  
 
In this example, for a building with floors in category B, office areas, the 
following combination factors  are selected: 
 

1 = 0,5  
 

2 = 0,3  
 
Deflections of composite beam 
 
If the deformation does not cause cracking of the floor structure or damage to 
partition walls then the serviceability limit state is reversible. In this case, the 
frequent combination is used. In this example, such a situation is assumed. 
Therefore, the frequent combination of permanent and variable actions G and Q 
should be used to determine the deflection of the composite beam: 
 

1 1 1+ · = + 0,5·k kG Q G Q  
 
The quasi-permanent combination should be used to determine the deflection 
due to creep: 
 

2 1 1+ · = + 0,3·k kG Q G Q  
 
The effects of shrinkage are independent of the action, so that the deflection is 
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calculated based on the moment Mcs, where Mcs is the bending moment due to 
shrinkage. 
 
If the steel beam is fully propped, the total deflection of the composite beams is 
obtained by summing the following deflections: 
 
Composite stage (verifications according to clause 7.3.1, EN 1994-1-1) 
 

 Permanent action 
 
 
 
 
 
 

t = 0  short-
term cross 

section 
1 

 Frequent value of variable action (frequent combination) 
 
 
 
 
 
 

t = 0  short-
term cross 

section 
2,1 

 Creep, deflection 22 = a) - b) 
 
 
 
 
 
 

t =   long-
term cross 

section  
(t0 = 28 days) 

2,2  
 
 
 
 
 

t = 0  short-
term cross 

section 

 Shrinkage 
 
 
 
 
 
 

t =   long-
term cross 

section  
(t0 = 1 day) 

2,3 

 
The total deflection is obtained from: 

EI0

1·qk,2 

EIS

Mcs 

EI0

gk,2+·gk,3 

EIP

(gk,2 + gk,3 + 2·qk,2)

a) 

b) 

EI0

(gk,2 + gk,3 + 2·qk,2)
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1 2,1 2,2 2,3= + + +  
 
where: 
 

1  is the deflection due to the permanent actions (the first loading is applied 
at age t0 = 28 days), 

2,1  is the deflection due to the frequent value of the variable action at the time 
of first loading, 

2,2  is the deflection due to creep under the quasi-permanent value of variable 
action at time t = , 

2,3  is the deflection due to shrinkage. 
 
If the steel beam at construction stage is unpropped, the calculation of deflection 
is performed separately for the construction stage and for the composite stage. 
 
Construction stage (verifications according to clause 7.3.1, EN 1993-1-1) 
 

 Permanent and variable action (characteristic combination) 
 
 
 
 
 
 

steel cross-
section 0 

 
The total deflection is obtained from: 
 

0=  (verification for the construction stage) 
 
where: 
 

0  is the deflection of the steel beam at the execution stage. 
 
Composite stage (verifications according to clause 7.3.1, EN 1994-1-1) 
 

 Permanent action 
 
 
 
 
 
 

Immediately 
after casting 

concrete 
(no shear 

connection) 

1,1 

EaIa

gk,1 + qk,1 

EaIa

gk,1 
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t = 0  short-
term cross 

section 
1,2 

 Frequent value of variable action (frequent combination) 
 
 
 
 
 
 
 

t = 0  short-
term cross 

section 
2,1 

 Creep (quasi-permanent combination), deflection 22 = a)  b) 
 
 
 
 
 
 
 

t =   long-
term cross 

section  
(t0 = 28 days) 

2,2  
 
 
 
 
 
 

t = 0  short-
term cross 

section 

 Shrinkage 
 
 
 
 
 

t =   long-
term cross 

section  
(t0 = 1 day) 

2,3 

 
The total deflection is obtained from: 
 

1,1 1,2 2,1 2,2 2,3= + + + +  (verification for the composite stage) 
 
where: 
 

EI0

1·qk,2

EIS

Mcs 

EIP

(gk,3 + 2·qk,2) 

a) 

b) 

EI0

(gk,3 + 2·qk,2) 

EI0

gk,3 
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1,1  is the deflection due to permanent action immediately after casting 
concrete (no shear connection), 

1,2  is the deflection due to loads of floor finishes, partitions on the composite 
beam (first loading), 

2,1  is the deflection due to the frequent value of variable action at the time of 
first loading, 

2,2  is the deflection due to creep under the quasi-permanent value of variable 
action at time t = , 

2,3  is the deflection due to shrinkage. 

5.2 Calculation of deflections 

5.2.1 Construction stage deflection 

Since that the verification has shown that the steel beam does not have sufficient 
resistance to lateral-torsional buckling, the steel beam is fully propped at the 
construction stage. In this case, there is no deflection of the steel beam. 

5.2.2 Composite stage deflection 

The total deflection of the composite beam has to be determined for the composite 
stage, i.e. for the stage when the concrete has hardened, and temporary props of 
steel beam have been removed. 
 
Determination of creep coefficient and shrinkage 
 
For the calculation of the creep coefficient (t, t0) the following is valid: 
 
- the perimeter of that part which is exposed to drying, u 
 

=u b  
 
- the notional size of the cross-section, h0 
 

0
2· 2· ·

= = = 2· = 2·79 = 158c c
c

A b h
h h

u b
 mm 

- 0 = 1t  day, 0 = 28t  days, 
- the ambient relative humidity, RH 50%, 
- the concrete strength class C 25/30, 
- the type of cement – cement class S, strength class 32,5 N. 
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The final value of creep coefficient ( , t0) will be determined using the 
nomogram shown in Figure 3.1, EN 1992-1-1. The process of determining the final 
value of creep coefficient for these assumptions is given in Figures B3.10 and 
B3.11: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B3.10 Determination of the final value of creep coefficient, t0 = 1 day 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B3.11 Determination of the final value of creep  
 coefficient, t0 = 28 days 

 
The following creep coefficients are obtained: 
 

t = ( , t0 = 1 day) = 5,8 
t = ( , t0 = 28 days) = 2,8 

 
The total shrinkage strain, according to clause 3.1.4, EN 1992-1-1, at the age of 
concrete at the beginning of drying shrinkage ts = 3 days and the age at the time 
considered in the analysis t = , is: 
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cs( ) = 4,14  10 4 
cs( ) = 0,414 ‰ 

 
Effective flexural stiffness of composite section 
 
The effective flexural stiffness of composite section EIL as explained previously is: 
 

2· · ·
= · + · + ·

· + ·
a a L c

L a a L c
a a L c

E A E A
EI E I E I a

E A E A
 

 
a) Short-term loading 
 

= 21000aE  kN/cm2   = 1943aI  cm4   = 28,48aA  cm2 
 

3 3· 125·7,9= = = 5136
12 12

eff c
c

b h
I  cm4 

 
= · = 125·7,9 = 987,5c eff cA b h  cm2 

 
The distance between the centroidal axes of the concrete flange and the steel 
section is: 
 

20 7,9= + + = +5,1 + = 19,05
2 2 2 2
a c

p
h h

a h  cm 

 
= 1cn  

 

0
3100= = = 3100
1,0

cm

c

E
E

n
 kN/cm2   0=LE E  

 
2

0
21000·28,48·3100·987,5= 21000·1943 + 3100·5136 + ·19,05

21000·28,48 + 3100·987,5
EI  

 
0 = 238295590EI  kNcm2 = 23829  kNm2 

 
b) Permanent loading constant in time 
 

= 1 +1,10·cn ( ,t0) = 1 +1,10·2,8 = 4,08  
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3100= = = 760
4,08

cm
P

c

E
E

n
 kN/cm2, =L PE E  

 
221000·28,48·760·987,5= 21000·1943 + 760·5136 + ·19,05

21000·28,48 + 760·987,5PEI  

 
= 165494202PEI  kNcm2 = 16549  kNm2 

 
c) Action effects caused by shrinkage-primary effects 
 

= 1 + 0,55·cn ( ,t0) = 1 + 0,55·5,8 = 4,19  
 

3100= = = 740
4,19

cm
S

c

E
E

n
 kN/cm2   =L SE E  

 
221000·28,48·740·987,5= 21000·1943 +740·5136 + ·19,05

21000·28,48 + 740·987,5SEI  

 
= 163960845SEI  kNcm2 = 16396  kNm2 

 
Calculation of deflections 
 

 Deflection due to permanent action, the first loading is applied at age t0 = 28 
days 

 
,2 ,3= ·( + ) = 3,00·(3,33 + 0,15) = 10,44d k ke b g g  kN/m 

 
0= = 23829LEI EI  kNm2, for short-term loading 

 
4 4

1
0

·5 5 10,44·5= · = · ·1000 = 3,6
384 384 23829

de L
EI

 mm 

 
 Deflection due to the frequent value of the variable action at the time of the first 

loading t0 = 28 days 
 
For a building with floors in category B, office areas, the combination factor  is: 

1 = 0,5. 
 

1 ,2= · · = 3,00·0,5·3,8 = 5,7d ke b q  kN/m 
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0= = 23829LEI EI  kNm2, for short-term loading 
 

4 4

2,1
0

·5 5 5,70·5= · = · ·1000 = 1,9
384 384 23829

de L
EI

 mm 

 
 Deflection due to creep under the quasi-permanent value of the variable action 

at time t = . 
 
This deflection is the difference of the deflections at time t =  and at the time of 
the first loading t0 = 28 days. 
 

,2 ,3 2 ,2= ·( + + · ) = 3,00·(3,33 + 0,15 + 0,3·3,8) = 13,9d k k ke b g g q  kN/m 
 

0 = 23829EI  kNm2, for short-term loading 
 

= 16549PEI  kNm2, permanent action constant in time 
 

4 4

2,2
0

· ·5 5= · – ·
384 384

d d

P

e L e L
EI EI

 

 
4 4

2,2
5 13,9·5 5 13,9·5= · ·1000 – · ·1000 = 6,8 – 4,7 = 2,1

384 16549 384 23829
 mm 

 
 Deflection due to shrinkage 

 
=cs csN ( ) –4· · = 4,14·10 ·740·125·7,9 = 303S cE A  kN 

 
· 21000·28,48= · = ·19,05 = 8,6

· + · 21000·28,48 + 740·987,5
a a

c
a a S c

E A
a a

E A E A
 cm 

 
8,6= · = 303· = 26,1
100cs cs cM N a  kNm 

 
2 2

2,3

·1 1 26,1·5= · = · ·1000 = 5,0
8 8 16396

cs

S

M L
EI

 mm 

 
The effects of shear connection on the deflection of the beam can be neglected 
because there was full shear connection. 
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Deflection limits for composite beams are the same as for steel beams, and are 
determined by the National Annex. 
 
Recommended limiting values for deflection of composite beams are: 
 

tot 250
L , the deflection due to total load 

 

var 360
L , the deflection due to the variable load 

 
The deflection due to the permanent action is: 
 

1 = 3,6  mm 
 
The deflection due to the variable load, creep and shrinkage is: 
 

2 2,= = 1,9 + 2,1 + 5,0 = 9,0i  mm 
 
The total deflection due to permanent and variable loads, creep and shrinkage is: 
 

1 2= + = 3,6 + 9,0 = 12,6tot  mm 5000= = 20,0
250 250

L  mm 

 
The total deflection meets the criterion L/250. 
 
The deflection due to variable load, creep and shrinkage is: 
 

var 2= = 9,0  mm 5000= = 13,9
360 360

L  mm 

 
The deflection due to variable load, creep and shrinkage meets the criterion L/360. 

5.3 Simplified calculation of deflections 

Remark: 
 
As a simplification for the structures of buildings according to clause 
5.4.2.2(11), EN 1994-1-1, the effects of creep may alternatively be taken into 
account by replacing the concrete area, Ac, by the effective steel area Ac/n for 
both short-term and long-term loading, where n is the nominal modular ratio 
corresponding to the effective modulus of elasticity of concrete Ec,eff adopted as 
Ecm/2. 
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0
2·

= = 2a

cm

E
n n

E
 

 
Thus the nominal modular ratio n is: 
 

0= 2 = 2·6,8 = 13,6n n  
 
In this example, the deflection is calculated with effective flexural stiffness EIL. 
The same result would be obtained if the procedure is applied with the ideal second 
moment of area Ii,L so that the values of the concrete are reduced by the 
corresponding modular ratio nL. 
 
In this case, the simplified flexural stiffness values are taken into account for creep: 
 

,
3100= = = 1550

2 2
cm

c eff
E

E  kN/cm2   =L SE E  

 
, 2

,
,

· · ·
= · + · + ·

· + ·
a a c eff c

L a a c eff c
a a c eff c

E A E A
EI E I E I a

E A E A
 

 
221000·28,48·1550·987,5= 21000·1943 +1550·5136 + ·19,05

21000·28,48 +1550·987,5PEI  

 
= = 204827738P LEI EI  kNcm2 = 20483  kNm2 

 
Remark: 
 
In contrast to the previous procedure for calculating deflection, a different 
simplification is used here. Deflections due to permanent action, variable action 
and creep are not calculated separately (using frequent and quasi-permanent 
combinations). 
These deflections are calculated in a single step using the characteristic 
combination. 

 
The following deflections are obtained: 
 
a) Deflection due to the permanent action on the composite section (permanent 
action and the associated value of creep) 
 

,2 ,3= ·( + ) = 3,00·(3,33 + 0,15)= 10,44d k ke b g g  kN/m 
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4

1

·5= ·
384

d

P

e L
EI

 

 
4

1
5 10,44·5,0= · ·1000 = 4,1

384 20843
 mm 

 
b) Deflection due to the variable action on the composite section (variable action 
and the associated value of creep) 
 
ed = b · qk,2 = 3,00 · 3,8 = 11,4 kN/m 
 

4

2,1
·5= ·

384
d

P

e L
EI

 

 
4

2,1
5 11,40·5,0= · ·1000 = 4,5

384 20843
 mm 

 
c) Deflection due to shrinkage that was previously calculated is: 
 

2,3 = 5,0  mm 
 
The total deflection due to permanent and variable action, creep and shrinkage is: 
 

1 2,1 2,3= + + = 4,1 + 4,5 +5,0 = 13,6tot  mm 

5.4 Pre-cambering of the steel beam 

In high-rise buildings and industrial buildings it may be necessary to use a steel 
beam with pre-cambering. This is normally only adopted for beams longer than 10 
m. For composite beams that are executed unpropped their own weight must be 
taken by the steel beam. This can result in excessive deflections. In this situation, 
where permanent load deflections are excessive, pre-cambering may be 
appropriate. However, in the case of propped execution, pre-cambering can be 
appropriate for beams with greater spans. The components of the pre-camber of the 
steel beam are represented schematically in Figure B.3.12. For the deflection due to 
variable load, the steel beam can be cambered to compensate this deflection 
completely or only partially. Usually, the deflection due to the imposed load is 
compensated only partially – see the upper part of the deflection 2,1 in Figure 
B3.12. 
 
A general recommendation is to design any pre-cambering to eliminate the dead 
load deflection and the deflection due to creep and shrinkage. Whether to take into 
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account the camber (or the pre-camber) due to variable action is determined 
separately for each case. 
 
 
 
 
 
 
 
 
 
 

Figure B3.12 Components of pre-camber of steel beam 
 
In the case of the composite beam with full shear connection, it is not necessary to 
take into account the influence of the degree of shear connection for calculating 
deflection. This also applies to the composite beam with partial shear connection, if 
the beam is unpropped, and the degree of shear connection is greater than  > 0,5. 
 
In this example, the deflections are: 
 

1 = 3,6  mm deflection due to the permanent action, the first loading is applied 
at age t0 = 28 days, 

 
2,1 = 1,9  mm deflection due to the frequent value of the variable action at the 

time of the first loading t0 = 28 days, 
 

2,2 = 2,1  mm deflection due to creep under the quasi-permanent value of 
variable action at time t = , 

 
2,3 = 5,0  mm deflection due to shrinkage, 

 
2,4 = 0  mm (the deflection due to floor finishes is not taken into account 

because its deflection is already included in the deflection 1). 
 
Therefore, the pre-cambering of steel beam is: 
 

= 3,6 +1,9 + 2,1 + 5,0 = 12,6p  mm 

1 self-weight 
2,1 imposed load 
2,2 creep 
2,3 shrinkage 
2,4 floor finishes 

1 
2,4 
2,3 
2,2 
2,1 

1

2,i 
p 
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5.5 Check of vibration of the beam 

The dynamic properties of composite floor systems should meet the criteria 
specified in clause A1.4.4, EN1990. This article states that the natural frequency of 
vibration of the structure or structural element should be kept above appropriate 
values, which depend on the function of the building and the source of the 
vibration. No values are given for either limiting frequencies or damping 
coefficients. However, it is proposed that criteria are agreed in consultation with 
the client and/or the relevant authority. 
 
If the natural frequencies are found to be greater than 4 Hz, the floor is considered 
acceptable for normal use, such as offices. 
 
Remark: 
 
The limitation of the natural frequency to 4 Hz is a fairly generally accepted 
industry standard for vibration. However, the satisfying of this criterion does not 
guarantee that the behaviour of structural element or structure in general will be 
appropriate. 

 
For the calculation of the natural frequency, the characteristic values of the 
permanent load for the composite stage, ed, are taken into account, as is the 
effective flexural stiffness of the composite section for short-term loading EI0. 
 
This total load is: 
 

,2 ,3= ( + ) = 3,00 (3,33 + 0,15) = 10,44d k ke b · g g ·  kN/m 
 
The deflection under this load is: 
 

4 4

0

·5 5 10,44·5= · = · ·1000 = 3,6
384 384 23829

de L
EI

 mm 

 
The natural frequency of the beam is therefore: 
 

18 18= = = 9,49
3,6

f  Hz  4 Hz    with      in mm 

 
The criterion is satisfied. However, the improved estimation of the natural 
frequency is carried out taking into account the dynamic modulus of elasticity of 
concrete Ed that can be 10% higher than the modulus of elasticity of concrete Ecm, 
and so the dynamic modulus of elasticity of concrete is: 
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= 1,1· = 1,1·3100 = 3410d cmE E  kN/cm2 
 
The effective flexural stiffness of composite section is: 
 

2· · ·
= · + · + ·

· + ·
a a d c

d a a d c
a a d c

E A E A
EI E I E I a

E A E A
 

 
221000·28,48·3410·987,5= 21000·1943 + 3410·5136 + ·19,05

21000·28,48 + 3410·987,5dEI  

 
= 242626250dEI  kNcm2 = 24263  kNm2 

 
For the calculation of the natural frequency, the characteristic values of the 
permanent load for the composite stage, ed = gk,2 + gk,3, and 10% of the variable 
actions are taken into account: 
 

,2 ,3 ,2= ·( + + 0,10· ) = 3,00·(3,33 + 0,15 + 0,10·3,8) = 11,58d k k ke b g g q  kN/m 
 
The deflection under this load is: 
 

4·5= ·
384

d
d

d

e L
EI

 

 
45 11,58·5= · ·1000 = 3,9

384 24263d  mm 

 
The natural frequency of the beam is therefore: 
 

18 18= = = 9,11
3,9d

f  Hz  4 Hz    with      in mm 

 
The criterion is satisfied for initial calculation purposes. However, the dynamic 
performance of the entire floor is carried out using a method such as the one in 
[51]. 

5.6 Control of crack width 

The appropriate theoretical model for cracking caused by restraint of the 
imposed deformation is different from that for cracking caused by applied 
loading. For this reason, design rules for control of cracking as two distinct 
procedures are introduced in EN 1994-1-1: 
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- for minimum reinforcement, clause 7.4.2, EN 1994-1-1, 
- for reinforcement to control cracking due to direct loading, clause 7.4.3, EN 

1994-1-1. 
 
Clause 7.3.1(4), EN 1992-1-1 permits cracking of uncontrolled width in some 
circumstances. For example, this is true for a simply supported beam with a 
continuous concrete slab on top of a steel beam. 
 
Clause 7.4.1(3), EN 1994-1-1 recommends the minimum reinforcement that will 
limit crack width to what is “acceptable”. For unpropped construction, the 
requirement is 0,2% of the area of concrete, and for propped construction this is 
doubled to 0,4%. The reinforcement area is calculated as a percentage of the 
concrete area above the profiled steel sheeting, using the depth used in beam 
design. 
 
The area of the concrete is: 
 

= · = 7,9·100 = 790c cA h b  cm2 
 
The criterion of minimum reinforcement is: 
 

sA 20,004· = 0,004·790·10 = 316cA  mm2/m 
 
The reinforcement provided is 10 mm bars at 200 mm, for which: 
 

2

,min
·10 1000= · = 393
4 200sA  mm2/m > 316 mm2/m 

 
For the adopted reinforcement, the maximum allowable thickness of slab hc is: 
 

,min 393= = = 98
0,004·1000 0,004·1000

s
c

A
h  mm 

 
The maximum allowable thickness of slab hc is higher than the existing thickness 
79 mm, so this criterion is met. 

6. Commentary 

This example deals with the design of a secondary composite floor beam. 
Verifications for the ultimate limit state and serviceability limit state were 
conducted in accordance with EN 1994-1-1. The verification of deflections is 
explained in great detail, because deflections may govern the design, especially 
where beams are designed as simply supported and unpropped at the 
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construction stage. The explanations are given for the application of a 
combination of actions from the aspects of ways of choosing a particular 
combination. According to EN 1990, there are three combinations of actions for 
the serviceability limit state: characteristic, frequent and quasi-permanent. The 
selection of an appropriate combination depends on whether the limit state is 
reversible or irreversible, that is whether or not the composite floor beam 
deflections cause cracking of a brittle floor finish or damage to fragile partitions. 
 
It should be noted that EN 1994-1-1 does not specify any limits for serviceability 
criteria, but limits may be given in the National Annex. In addition, the National 
Annex may give references to publications that contain non-contradictory 
complementary information (NCCI) that will assist the designer. 

 
 
 
 
 
 
 
 
 
 
 
 
 



Composite Structures according to Eurocode 4. Worked Examples.
First Edition. Darko Dujmović, Boris Androić, Ivan Lukačević.
© 2015 Ernst & Sohn GmbH & Co. KG. Published 2015 by Ernst & Sohn GmbH & Co. KG.

 111 
 

B4 Calculation of simply supported composite beam 
according to the elastic resistance of the cross-section 

1. Purpose of example 

It is necessary to design the simply supported composite beam according to the 
elastic-elastic procedure. Action effects are calculated by elastic global analysis 
and the resistance to bending is based on an elastic model. In the case of the 
elastic-elastic procedure the cross-section can be in class 3. The composite beam is 
a structural member of building category B, with office areas. In this case the 
combination factors  are: 
 

1 = 0,5 – for the frequent value of variable action, 
2 = 0,3 – for the quasi-permanent value of variable action. 

 
During execution, the steel beam is fully propped. For the simply supported beam, 
according to clause 7.3.1(4), EN 1992-1-1, cracking of uncontrolled width is 
permitted, and clause 7.4.1(3), EN1994-1-1, recommends the minimum 
reinforcement. Since it is using the elastic-elastic procedure, the design value of 
concrete strength will not be reduced by the value 0,85. One of the essential 
features of this example is to illustrate the determination of the effective flexural 
stiffness EIL by two procedures that are used in practice. The first procedure is the 
direct determination of the effective flexural stiffness, while the second is based on 
the modular ratio nL. The procedure for determining the resistance of the composite 
section due to the vertical shear force, taking into account the verification of stress 
in the concrete slab, is also shown in the example. This problem is not covered in 
EN 1994-1-1, clause 6.2.2. 

2. Static system, cross-section and actions 

 
 
 
 
 
 
 
 
 
 

Figure B4.1a Static system of composite beam 

q
gk

L = 10,0 m

1

1

Section 1-1 is shown in Figure B4.1b 
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Figure B4.1b Section 1-1 from Figure B4.1a 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B4.2 Cross-section of the composite beam for short-term loading 
 
Actions 
 
a) Permanent action 
 
Remark: 
 
According to EN 1991-1-1, the density of normal weight concrete is 24 kN/m3, 
increased by 1 kN/m3 for normal percentage reinforcement, and increased for 
wet concrete by another 1 kN/m3. 

 
Concrete slab area per m width: 
 

= 100· = 100·16,0 = 1600cA h  cm2 
 
- concrete slab and reinforcement (dry concrete) ·25 = 0,16·25 = 4,0cA  kN/m2 
 
- steel beam = 0,33  kN/m2 
 
- floor finishes = 2,0  kN/m2 
 
Total = 6,33kg  kN/m2 

Section 1-1

b = 3,0 m b = 3,0 m 

160 

ENA - elastic neutral axis 

17
7 

beff = 2,5 m

42
3 220 × 14

26
3 408 × 10

320 × 18

16
0 Tc (centroid of concrete)

17
7 

60
0 

Ta (centroid of steel   
    section)

a 
=

 3
52

 

a a
 =

 2
81

 

44
0 

eT,0 = 142 mm 

ac = 71 mm 

ENA 
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b) Variable action 
 
 = 5,0kq  kN/m2 

3. Properties of materials 

Concrete strength class: C 20/25 = 20ckf  N/mm2 

 20= = = 13,3
1,5

ck
cd

c

f
f  N/mm2 

 = 30000cmE  N/mm2 
 
Reinforcement: ductility class B or C (Table C.1, EN 1992-1-1) = 500skf  N/mm2 

 500= = = 435
1,15

sk
sd

s

f
f  N/mm2 

 = 210000sE  N/mm2 
 
Structural steel: S235 = 235ykf  N/mm2 

 235= = = 235
1,0

yk
yd

M

f
f  N/mm2 

 ,
235= = = 136

3 3
yd

a Rd

f
 N/mm2 

 = 210000aE  N/mm2 
 
Shear connectors: ductile headed studs = 450uf  N/mm2 
 = 22d  mm 
 = 125sch  mm 

 125= = 5,7 4,0
22

sch
>

d
  = 1,0  

 = 87,0RdP  kN 

4. Ultimate limit state 

4.1 Design values of the combined actions and of the effects of actions 

The design load for ultimate limit state is: 
 

= b·(1,35· +1,50· )d k ke g q  
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= 3,0·(1,35·6,33 +1,50·5,0) = 48,1de  kN/m 
 
The maximum design bending moment is: 
 

2 2· 48,1·10,0= = = 601
8 8

d
Ed

e L
M  kNm 

 
The maximum design shear force is: 
 

10,0= · = 48,1· = 241
2 2Ed d
LV e  kN 

4.2 Effective width of the concrete flange 

The effective width of the concrete flange is: 
 

0= +eff eib b b  
 

10= = = = 1,25
8 8 8

e
ei

L Lb  m 

 
0 = 0b  (there is only one row of shear connectors) 

 
= 0+ (2·1,25) = 2,5effb  m < 3,0  m (beam spacing) 

 
The effective cross-section of the concrete slab is shown in Figure B4.3. 
 
 
 
 
 
 
 
 
 

Figure B4.3 Effective cross-section of the concrete slab 

4.3 Elastic resistance moment of the composite cross-section 

4.3.1 Calculation of the centroid of the steel cross-section 

The area of steel cross-section is: 

3000 

3000 3000 

hc = 160 mm 

2500
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= 22,0·1,4 +1,0·40,8 + 32,0·1,8 = 30,8 + 40,8+57,6 = 129,2aA  cm2 
 
The distance between the centroidal axis of the steel section and the extreme fibre 
of the steel section is: 
 

30,8·0,7 + 40,8·21,8 +57,6·43,1= = 26,3
129,2ae  cm 

4.3.2 Second moment of area of the steel cross-section 

The second moment of area Ia for the top fibre of steel section is: 
 

3 3 31,4 40,8 1,8= 22,0· +1,0· + 32,0· +
12 12 12aI  

2 2 2 2+30,8·0,7 + 40,8·21,8 + 57,6·43,1 -129,2·26,3 = 42717  cm4 

4.3.3 Flexural stiffness of the composite cross-section 

The effective flexural stiffness of uncracked composite section is: 
 

2· · ·
= · + · + ·

· + ·
a a L c

L a a L c
a a L c

E A E A
EI E I E I a

E A E A
 

 
Determination of the creep coefficient and shrinkage 
 
For the calculation of the creep coefficient (t, t0) the following is valid: 
 
- the perimeter of that part which is exposed to drying, u 
 

= 2·u b  
 
- the notional size of the cross-section, h0 

0
2· ·

= = = = 160c c
c

A b h
h h

u b
 mm 

- 0 = 1t  day, 0 = 28t  days, 
- the ambient relative humidity, RH 50%, 
- the concrete strength class C 20/25, 
- the type of cement – cement class S, strength class 32,5 N. 
 
The final value of creep coefficient ( , t0) is determined using the nomogram 
shown in Figure 3.1, EN 1992-1-1. Example A3, shows the detailed procedure for 
the determination of creep coefficients. 
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The following creep coefficients are obtained: 
 

t = ( , t0 = 1 day) = 6,3 
t = ( , t0 = 28 days) = 3,1 

 
The total shrinkage strain, according to clause 3.1.4, EN 1992-1-1, at the age of 
concrete at the beginning of drying shrinkage ts = 3 days and at the time considered 
in the analysis t = , is: 
 

cs( ) –4= 4,26·10  
cs( ) = 0,426  ‰ 

 
The effective flexural stiffness of composite section EIL depends on the type of 
loadings, creep and shrinkage. This stiffness can be determined using the 
effective modulus of elasticity of concrete Ec,eff or using the modular ratio nL: 
 

, =
1 + ·

cm
c eff

L t

E
E          0= (1 + · )L L tn n  

 

, = cm
c eff

c

E
E

n
         = 1 + ·c L tn  

 
In practice, two numerical procedures are usually applied. 
 
a) The first numerical procedure 
The corresponding reduced flexural stiffness EIL can be calculated directly. For 
example, in the case of short-term loading, the creep multiplier is L = 0. 
Therefore, Ec,eff = Ecm = E0. This means that the effective flexural stiffness is EIL 
= EI0. The effective flexural stiffness EIP (permanent action constant in time) 
and EIS (shrinkage) is determined in a similar manner. 
 
b) The second numerical procedure 
For the corresponding type of loading, the modular ratio is calculated according 
to the expression 0= (1 + · )L L tn n  
 
In the next step the "ideal" values of the composite section (Iid, Aid, etc.) are 
calculated in a way that takes into account the cross-sectional values of the steel 
section and the cross-sectional values of concrete divided by the corresponding 
modular ratio nL (transformed cross-sectional values of concrete in “steel” units). 
For example, in the case of short-term loading, the creep multiplier is L = 0 and 

the modular ratio is 0= = a
L

cm

E
n n

E
. In this case, the ideal area of cross-section is: 
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0

1= ( ) + ( )·id a cA A steel A concrete
n

 

 
The other ideal values of composite section are calculated in a similar manner. 

 
In this example, the first numerical procedure is used, while the second method 
will be illustrated for educational purposes only in (a) below. 
 
Determination of the effective flexural stiffness of composite section EIL for: 
 
a) short-term loading, = 1cn   stiffness EI0 
b) permanent loading constant in time, t = , = 1 +1,10·cn ( , t0)  stiffness EIP 
c) primary effects due to shrinkage = 1 + 0,55·cn ( , t0)  stiffness EIS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B4.4 Cross-section of composite beam and dimensions 
 
a) Short-term loading, = 1cn  
 
The first numerical procedure 
 

0
3000= = = 3000
1,0

cm

c

E
E

n
 kN/cm2 

beff = 2,5 m

Tc (centroid of  
concrete) 

Ta (centroid of steel 
section) 

a a a
 

eT,0 

ea 
a c

 
ENA 

ENA - elastic neutral axis 

a distance between the centroidal axes of the concrete 
slab and the steel section 

ac distance between the centroidal axis of the concrete 
slab and the elastic neutral axis 

aa distance between the centroidal axis of the steel 
section and the elastic neutral axis 

ea distance between the centroidal axis of the steel 
section and the extreme fibre of the top flange of the 
steel section 

eT,0 distance between the top surface of the concrete slab 
and the elastic neutral axis

values depending on E0, 
EP, ES or depending on 
modular ratio nc 

T (centroid of 
composite section) 
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= · = 250·16 = 4000c c cA b h  cm2 ( =c effb b ) 
 
The distance between the centroidal axis of the concrete and the steel section is: 
 

16,0= + = 26,3 + = 34,3
2 2
c

a
h

a e  cm 

 
The elastic neutral axis (the centroid of composite section) lies within the concrete 
slab, and the distance between the centroidal axis of the steel section and the elastic 
neutral axis is: 
 

0

0

· 3000·4000= · = ·34,3 = 28,0
· + · 21000·129,2 + 3000·4000

c
a

a a c

E A
a a

E A E A
 cm 

 
The distance between the top surface of the concrete slab, and the elastic neutral 
axis is: 
 

,0
16,0= + – = 34,3 + – 28,0 = 14,3

2 2
c

T a
h

e a a  cm  = 16,0ch  cm 

 
The elastic neutral axis lies within the concrete slab, and the area of the concrete 
slab in compression Ac is: 
 

,0= · = 250·14,3 = 3575c eff TA b e  cm2 
 

,0 14,3= + – = 26,3 +16 – = 35,2
2 2
T

a c

e
a e h  cm 

 
0

0

· 3000·3575= · = ·35,2 = 28,1
· + · 21000·129,2 + 3000·3575

c
a

a a c

E A
a a

E A E A
 cm 

 
Therefore, the distance between the top surface of the concrete slab and the elastic 
neutral axis is: 
 

,0 = + – = 26,3 +16 – 28,1 = 14,2T a c ae e h a  cm 
 

3 3
,0· 250·14,2= = = 59652

12 12
eff T

c

b e
I  cm4 

 
The effective flexural stiffness of the composite section EI0 for short-term loading 
is: 
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20
0 0

0

· · ·
= = · + · + ·

· + ·
a a c

L a a c
a a c

E A E A
EI EI E I E I a

E A E A
 

 
2

0
21000·129,2·3000·3575= 21000·42717 + 3000·59652 + ·35,2
21000·129,2 + 3000·3575

EI  

 
0 = 3759029453EI  kNcm2 = 375903  kNm2 

 
The second numerical procedure 
 

0= ·L cn n n  
 

0
21000= = = 7,0
3000

a

cm

E
n

E
 

 
0= · = 7,0·1,0 = 7,0L cn n n  

 
The ideal cross-sectional area of the concrete flange is: 
 

= · = 250·16 = 4000c eff cA b h  cm2 
 

,
4000= = = 571,4

7
c

c L
L

A
A

n
 cm2 

 
The cross-sectional area of the steel section is: 
 

= 129,2aA  cm2 
 
The ideal area of the composite section is: 
 

, ,= + = 129,2 + 571,4 = 701i L a c LA A A  cm2 
 

16,0= + = 26,3 + = 34,3
2 2
c

a a
h

a e  cm 

 
The distance between the centroidal axes of the concrete and the composite section 
ac is: 
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1

,

· 129,2·34,3= = = 6,3
701

a a
c

i L

A a
a

A
 cm 

 
The centroid of the composite section lies within the concrete slab. Therefore, the 
procedure should be repeated in order to take into account the reduction of the area 
of the concrete flange. 
 
The concrete flange portion which is in compression is: 
 

1 1
,0

16= – ( – ) = 16 – ( – 6,3) = 14,3
2 2
c

T c c
h

e h a  cm 

 
The ideal cross-sectional area of concrete flange is: 
 

1
,0= · = 250·14,3 = 3575c eff TA b e  cm2 

 

,
3575= = = 510,7

7
c

c L
L

A
A

n
 cm2 

 
The cross-sectional area of the steel section is: 
 

= 129,2aA  cm2 
 
The ideal area of the composite section is: 
 

, ,= + = 129,2 +510,7 = 640i L a c LA A A  cm2 
 
The distance between the centroidal axes of the concrete and the composite section 
ac is: 

1
,0 14,3= + – = 26,3 +16 – = 35,2

2 2
T

a a c

e
a e h  cm 

 

,

· 129,2·35,2= = = 7,1
640

a a
c

i L

A a
a

A
 cm 

 
The concrete flange portion which is in compression is: 
 

1
,01

,0 ,0
14,3= – ( – ) = 14,3 – ( – 7,1) = 14,2

2 2
T

T T c

e
e e a  cm 
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The ideal second moment of area of the concrete flange is: 
 

3 3
,0· 250·14,2= = = 59652

12 12
eff T

c

b e
I  cm4 

 

,
59652= = = 8522

7
c

c L
L

I
I

n
 cm4 

 
The ideal second moment of area of the composite section is: 
 

2 2
,

, ,
,

· · 129,2·510,7·35,2= + + = 42717 + 8522 +
640

a c L a
i L a c L

i L

A A a
I I I

A
 

 
, = 42717 + 8522 +127761 = 179000i LI  cm4 

 
The effective flexural stiffness is calculated by multiplying the ideal second 
moment of area of the composite section by the modulus of elasticity of steel: 
 

= 21000aE  kN/cm2 
 

, = 179000i LI  cm4 
 

0 ,= · = 21000·179000 = 375900000a i LEI E I  kNcm2 
 
The effective flexural stiffness EI0 for short-term loading is: 
 

0 = 375900EI  kNm2 
 
Remark: 
 
The value of effective flexural stiffness obtained by the second numerical 
procedure is equal to the value of the effective flexural stiffness obtained by the 
first numerical method. 

 
b) Permanent loading constant in time 
 

= 1 +1,10·cn ( , t0 = 28 days) = 1 +1,10·3,1 = 4,41  
 

3000= = = 680
4,41

cm
P

c

E
E

n
 kN/cm2 
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= · = 250·16 = 4000c eff cA b h  cm2 
 

16= + = 26,3 + = 34,3
2 2
c

a
h

a e  cm 

 
· 680·4000= · = ·34,3 = 17,2

· + · 21000·129,2 + 680·4000
P c

a
a a P c

E A
a a

E A E A
 cm 

 
, = 42,3 – = 42,3 – 17,2 = 25,1T P ae a  cm  = 16,0ch  cm 

 
The elastic neutral axis (the centroid of composite section) lies within the steel 
section: 
 

3 3· 250·16,0= = = 85333
12 12

eff c
c

b h
I  cm4 

 
2· · ·

= = · + · + ·
· + ·

a a P c
L P a a P c

a a P c

E A E A
EI EI E I E I a

E A E A
 

 
221000·129,2·680·4000= 21000·42717 + 680·85333 + ·34,3

21000·129,2 + 680·4000PEI  

 
= 2553107304PEI  kNcm2 = 255311 kNm2 

 
c) Primary effects due to shrinkage 
 

= 1 + 0,55·cn ( , t0 = 1 day) = 1 + 0,55·6,3 = 4,47  
 

3000= = = 671
4,47

cm
S

c

E
E

n
 kN/cm2 

 
= · = 250·16 = 4000c eff cA b h  cm2 

 
16= + = 26,3 + = 34,3

2 2
c

a
h

a e  cm 

 
= · + · = 21000·129,2 + 671·4000 = 5397200s a a S cEA E A E A  kN 
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· 671·4000= · = ·34,3 = 17,1
· + · 21000·129,2 + 671·4000

S c
a

a a S c

E A
a a

E A E A
 cm 

 
, = 42,3 – = 42,3 – 17,1 = 25,2T S ae a  cm  = 16,0ch  cm 

 
The elastic neutral axis (the centroid of composite section) lies within the steel 
section: 
 

3 3· 250·16,0= = = 85333
12 12

eff c
c

b h
I  cm4 

 
2· · ·

= = · + · + ·
· + ·

a a S c
L S a a S c

a a S c

E A E A
EI EI E I E I a

E A E A
 

 
221000·129,2·671·4000= 21000·42717 + 671·85333 + ·34,3

21000·129,2 + 671·4000SEI  

 
= 2541706935SEI  kNcm2 = 254171  kNm2 

4.3.4 Check of the resistance moment of the composite cross-section 

The check for the bending moment will be conducted for the following criteria: 
 
a) The age of concrete on the first loading with the corresponding flexural 

stiffness EI0 
 
b) At time t =  with the corresponding flexural stiffness EIP 
 
c) For shrinkage with the corresponding flexural stiffness EIS and the axial 

stiffness EAS.  
 
The composite beam is simply supported, statically determinate and the time-
dependent secondary effects due to creep have no influence on bending 
moments. 
 
However, since EIP < EI0, the deflections are increased from the age of the 
concrete on first loading to time t = . 
 
For the check, we need to determine the stresses in the steel section a and in the 
concrete c: 
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= · ·a a a
ME z
EI

 

 

= · ·c c c
ME z
EI

 

 
In the case of the composite beam with full shear connection, the bending 
moment and the normal force act on the cross-section, and the stresses in the 
steel section a and in the concrete c are: 
 

= · + · ·a a a a
N ME E z
EA EI

 

 

= · + · ·c c c c
N ME E z
EA EI

 

 
The corresponding denotations are shown in Figure B4.5. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B4.5 Bending of the composite beam with full shear connection 
 
a) Check of bending moment, the age of concrete on the first loading with the 

corresponding flexural stiffness EI0 
 
Stresses due to sagging bending moment MEd are calculated at the following points 
of composite section 1, 2, 3, 4, 5 and 6, see Figure B4.6. 
 
Point 1 – stress in concrete flange at level 1 
 

= 601EdM  kNm 
 

= 0EdV  (corresponding design value of shear force) 

Tc (centroid of concrete)

Longitudinal
strain 

Stress 

c 

 y

z

a

Na 

Nc 

ENA 
T (centroid of  
 composite section) 

Ta (centroid of steel section) 

ac

aa

a

ENA  elastic neutral axis 

Ma 

Mc 
M 

c0 

+ 
a0 

ei 
zc

za
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0
0

= ·Ed
c c

M
E z

EI
 

 
,0= 0 – = 0 – 14,2 = –14,2c Tz e  cm 

 
0 = = 3000cmE E  kN/cm2 

 
4

0 = 375903·10EI  kNcm2 
 

4

60100= 3000 ·(–14,2) = –0,681
375903·10c  kN/cm2 

 
 
 
 
 
 
 
 
 
 
 

Figure B4.6 Points of the composite section and the distribution of normal  
 stresses (tensile stress positive) 

 
Point 6 - stress in steel section at level 6 
 

= 601EdM  kNm 
 

= 0EdV  (corresponding design value of shear force) 
 

0

= ·Ed
a a a

M
E z

EI
 

 
,0= 60,0 – = 60,0 – 14,2 = 45,8a Tz e  cm 

 
= 21000aE  kN/cm2

 

 
= 60100EdM  kNcm 

 

+ 

ENA 

ENA  elastic neutral axis   stress Shrinkage
t = 0

1

2

3

4

5
6

15,4

0,681
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4
0 = 375903·10EI  kNcm2 

 

4

60100= 21000· ·45,8 = 15,4
375903·10a  kN/cm2 

 
Check for concrete flange: 
 

0,681= = 0,51
1,33

c

cdf
 1,0, the condition is satisfied 

 
Check for steel section: 
 

15,4= = 0,66
23,5

a

ydf
 1,0, the condition is satisfied 

 
b) Check of the bending moment at time t =  with the corresponding flexural 

stiffness EIP 
 
Stresses due to sagging bending moment MEd are calculated in the following points 
of the composite section 1, 2, 3, 4, 5 and 6, see Figure B4.7. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B4.7 Points of the composite section and the distribution of normal stresses  

 at time t =  (tensile stress positive) 
 
Point 1 – stress in concrete flange at level 1 
 

= 601EdM  kNm 
 

= 0EdV  (corresponding design value of shear force) 
 

ENA  elastic neutral axis 

ENA 

1

2

3
4

5
6

  stress Shrinkage
t = 

17,3 1,53

0,402 +0,016

+ 
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= ·Ed
c P c

P

M
E z

EI
 

 
,= 0 – = 0 – 25,1 = –25,1c T Pz e  cm 

 
= 680PE  kN/cm2 

 
4= 255311·10PEI  kNcm2 

 

4

60100= 680 ·(–25,1) = –0,402
255311·10c  kN/cm2 

 
Point 6 - stress in the steel section at level 6 
 

= 601EdM  kNm 
 

= 0EdV  (corresponding design value of shear force) 
 

= ·Ed
a a a

P

M
E z

EI
 

 
,= 60,0 – = 60,0 – 25,1 = 34,9a T Pz e  cm 

 
= 21000aE  kN/cm2 

 
4= 255311·10PEI  kNcm2 

 

4

60100= 21000· ·34,9 = 17,3
255311·10a  kN/cm2 

 
c) Check of the bending moment, or shrinkage with the corresponding flexural 

stiffness EIS and the axial stiffness EAS. 
 
Point 1 – stress in the concrete flange due to shrinkage, which does not depend on 
the load 
 
The width of the concrete flange b = 3,0 m, beam spacing, is taken into account, so 
that the area of the concrete is Ac = b · hc. 
 
The compressive force in the concrete flange Ncs is: 
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=cs csN ( ) –4· · = 4,26·10 ·671·300·16 = 1372S cE A  kN 
 

= – = –1372csN N  kN 
 

= – = 34,3 – 17,1 = 17,2c aa a a  cm 
 
The bending moment due to the compressive force Ncs is: 
 

17,2= = · = 1372· = 236
100cs cs cM M N a  kNm 

 

= + · +cs cs cs
c S S c

s S c

N M N
E E z

EA EI A
 

 
,= 0,0 – = 0,0 – 25,2 = –25,2c T Sz e  cm 

 

4

1372 23600 1372= –671 + 671 ·(–25,2) + = +0,016
5397200 4000254171·10c  kN/cm2 

 
Point 6 – stress in the steel section due to shrinkage, which does not depend on the 
load 
 
The width of the concrete flange b = 3,0 m, beam spacing, is taken into account, so 
that the area of the concrete is Ac = b · hc. 
 
The compressive force in the concrete flange Ncs is: 
 

=cs csN ( ) –4· · = 4,26·10 ·671·300·16 = 1372S cE A  kN 
 

= – = –1372csN N  kN 
 

= – = 34,3 – 17,1 = 17,2c aa a a  cm 
 

= + ·cs cs
a a a a

S S

N M
E E z

EA EI
 

 
,= 60,0 – = 60,0 – 25,2 = 34,8a T Sz e  cm 
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4

1372 23900= –21000· + 21000· ·34,8 = 1,53
5397200 254171·10a  kN/cm2 

 
The maximum stress in the steel section is obtained as the sum of the stress at time 
t =  and the stress due to shrinkage: 
 

= 17,3 +1,53 = 18,83a  kN/cm2 
 
Check for steel section: 
 

18,83= = 0,80
23,5

a

ydf
 1,0, the condition is satisfied 

 
The maximum stress in the concrete is obtained as the sum of the stress at time t = 

 and the stress due to shrinkage: 
 

= –0,402 + 0,016 = –0,386c  kN/cm2 
 
Check for concrete: 
 

0,386= = 0,29
1,33

c

cdf
 1,0, the condition is satisfied 

4.4 Vertical shear resistance of the composite cross-section 

Bending stresses near a support are within the elastic range in the case of simply 
supported steel beams. They are within the elastic range even when the design 
ultimate load is applied (for example, 1,35·Gk + 1,5·Qk). However, in a 
composite beam, maximum slip occurs at the end supports. Due to this 
behaviour, estimation of the bending stresses by simple elastic theory, based on 
plain sections remaining plane, may be unreliable.  
 
From rates of change (d /dx) of bending stresses , the vertical shear stresses can 
be calculated. However, the estimation of this stresses near an end of the 
composite beam cannot easily be found. In tests conducted on composite beams, 
it has been shown that some of the vertical shear is resisted by the concrete slab. 
However, for this kind of behaviour, there is no simple design model. It has been 
found that the contribution of the concrete slab is influenced by whether the slab 
is continuous across the end support, by how much the slab is cracked and by 
local details of the shear connection. 
 
Therefore, in practice the resistance to vertical shear can be taken as the 
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resistance of the structural steel section unless the contribution from the concrete 
slab has been established. 
 
According to clause 6.2.2, EN 1994-1-1, this problem is not treated in detail. 
 
The distribution of shear stress depends on the time t. For this reason, the check 
for shear force is carried out for: 
 
a) The age of the concrete on the first loading with the corresponding flexural 

stiffness EI0 
 
- The centroid of the composite section (the elastic neutral axis) lies within the 

concrete slab 
- The first moment of area is = ·i i iS A e  
- The distance between the centroid of the composite section and the top 

surface of the concrete slab is ,0 = 14,2Te  cm 
 
b) At time t = : 
 
- The centroid of the composite section (the elastic neutral axis) lies within the 

steel section 
- The first moment of area is = ·i i iS A e  
- The distance between the centroid of composite section and the top surface 

of concrete slab is , = 25,1T Pe  cm 
 
ad a) The age of the concrete on first loading, the centroid of the composite 

section lies within the concrete slab (eT,0 = 14,2 cm) 
 
Stresses due to vertical force VEd are calculated at the following points of the 
composite section 1, 2, 3, 4, 5 and 6, see Figure B4.8. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B4.8 Points of the composite section and the distribution of shear stresses 

  stress

0,0194
4,78

3,48

ENA 

ENA  elastic neutral axis 

1

2

3

4

5
6
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Point 2 – shear stress in the concrete flange 
 

= 241EdV  kN 
 

,0
0 ,0· = ·( · )· = 3000·(14,2·250)·14,2 / 2

2
T

i i T eff

e
E S E e b  

 
4· = 7562·10i iE S  kNcm 

 
4

4
0

· 7562·10= · = 241· = 0,0194
· 375860·10 ·250
i i

c Ed
eff

E S
V

EI b
 kN/cm2 

 
Point 3 – shear stress in the steel section 
 

= 241EdV  kN 
 

· = (40,8·1,0)·(20,4 +1,4 +1,8) + (32,0·1,8)·(17,7 + 28,1 – 0,9)i i a aE S E E  
 

4· = 7453·10i iE S kNcm 
 

4

4
0

· 7453·10= · = 241· = 4,78
· 375860·10 ·1,0

i i
a Ed

w

E S
V

EI t
 kN/cm2 

 
Point 5 – shear stress in the steel section 
 

= 241EdV  kN 
 

4· = ·(32,0·1,8)·(17,7 + 28,1 – 0,9) = 5431·10i i aE S E  kNcm 
 

4

4
0

· 5431·10= · = 241· = 3,48
· 375860·10 ·1,0

i i
a Ed

w

E S
V

EI t
 kN/cm2 

 
The basic shear strength of the concrete according to [45] (there is no data about 
the basic shear strength of the concrete in EN 1992-1-1) is: 
 

, = 0,389·c Rd ctmf   0,15 kN/cm2 
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This basic shear strength of the concrete is based on the partial factor for 
unreinforced concrete c = 1,8. National Annexes could be recommend a different 
value of partial factor. 
 
For concrete strength class C 20/25: = 0,22ctmf  kN/cm2 
 

, = 0,389· = 0,389·0,22 = 0,0856c Rd ctmf  kN/cm2 
 
Check for the concrete: 
 

,

0,0194= = 0,23
0,0856

c

c Rd

 1,0, the condition is satisfied 

 
The basic shear strength of the structural steel is: 
 

, =
3
y

a Rd

f
 

 
For structural steel S 235: = 23,5yf  kN/cm2 
 

,
23,5= = = 13,6

3 3
y

a Rd

f
 kN/cm2 

 
Check for the steel section: 
 

,

4,78= = 0,35
13,6

a

a Rd

 1,0, the condition is satisfied 

 
Generally we can assume that only the web of the steel section resists the shear 
force. In this case the maximum shear stress is at the centroid of the steel cross-
section: 
 

= 241EdV  kN 
 

21,0·(17,7 – 1,8)· = (32,0·1,8)(17,7 – 0,9) + ·
2i i a aE S E E  

 
4· = 2298·10i iE S  kNcm 
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4· 2298·10= · = 241· = 6,17
· 21000·42717·1,0

i i
a Ed

a w

E S
V

EI t
 kN/cm2 

 
Check: 
 

,

6,17= = 0,45
13,6

a

a Rd

 1,0, the condition is satisfied 

 
Based on the calculated shear stresses it can be concluded that the concrete flange 
participates at approximately 22% in the transmission of the transverse force. 
 
b) At time t = , the centroid of the composite section lies within the web of 

the steel section (eT,P = 25,1 cm) 
 
Stresses due to vertical force VEd are calculated at the following points of the 
composite section 1, 2, 3, 4, 5 and 6, see Figure B4.9. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B4.9 Points of the composite section and the distribution of shear stresses 

 at time t =  
 
Point 2 - shear stress in the concrete flange 
 

= 241EdV  kN 
 

4· = · ·(25,1 – 8,0) = 680·4000·(25,1 – 8,0) = 4651·10i i P cE S E A  kNcm 
 

4

4

· 4651·10= · = 241· = 0,0176
· 255311·10 ·250

i i
c Ed

P

E S
V

EI b
 kN/cm2 

 
Point 3 - shear stress in the steel section 
 

ENA 

ENA  elastic neutral axis 

1

2

3
4

5
6

  stress
t = 

0,0176
4,90
4,96

3,88
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= 241EdV  kN 
 

4 4· = 4651·10 + 21000·30,8·8,4 = 5194·10i iE S  kNcm 
 

4

4

· 5194·10= · = 241· = 4,90
· 255311·10 ·1,0

i i
a

P w

E S
V

EI t
 kN/cm2 

 
Point 4 - shear stress in the steel section 
 

= 241EdV  kN 
 

2
4 47,7· = 5194·10 + 21000·1,0· = 5256·10

2i iE S  kNcm 

 
4

4

· 5256·10= · = 241· = 4,96
· 255311·10 ·1,0

i i
a Ed

P

E S
V

EI b
 kN/cm2 

 
Point 5 - shear stress in the steel section 
 

= 241EdV  kN 
 

4· = 21000·57,6·34,0 = 4113·10i iE S  kNcm 
 

4

4
0

· 4113·10= · = 241· = 3,88
· 255311·10 ·1,0

i i
a Ed

w

E S
V

EI t
 kN/cm2 

 
The basic shear strength of the concrete according to [45] (there is no data about 
the basic shear strength of the concrete in EN 1992-1-1) is: 
 

, = 0,389·c Rd ctmf  0,15 kN/cm2 
 
This basic shear strength of the concrete is based on the partial factor for 
unreinforced concrete c = 1,8. National Annexes may recommended a different 
value of partial factor. 
 
For concrete strength class C 20/25: = 0,22ctmf  kN/cm2 
 

, = 0,389· = 0,389·0,22 = 0,0856c Rd ctmf  kN/cm2 
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Check for the concrete: 
 

,

0,0176= = 0,20
0,0856

c

c Rd

 1,0, the condition is satisfied 

 
The basic shear strength of the structural steel is: 
 

, =
3
y

a Rd

f
 

 
For structural steel S 235: = 23,5yf  kN/cm2 
 

,
23,5= = = 13,6

3 3
y

a Rd

f
 kN/cm2 

 
Check for the steel section: 
 

,

4,96= = 0,36
13,6

a

a Rd

 1,0, the condition is satisfied 

 
The maximum shear stress in the steel section max a occurs at time t = . 
 
Verification of the shear buckling resistance for the web: 
 

> 72·w

w

h
t

    = 1,2  

 
40,8 1,0= = 40,8 72· = 72· = 60
1,0 1,2

w

w

h
<

t
 

 
The verification of the shear buckling resistance for the web is not necessary. 

4.5 Calculation of shear connection 

Based on the design vertical shear force VEd, we can calculate the longitudinal 
shear force per unit length of the beam or the longitudinal shear flow, b. 
Longitudinal shear flow b also depends on time t. In this case the age of the 
concrete on the first loading is taken into consideration. 
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The design longitudinal shear force per unit length, in the observed cross-sections, 
which is governed for the longitudinal shear failure, is denoted as L,Ed. The design 
longitudinal shear flow is: 
 

,
0

·
= = · i i

b L Ed Ed
E S

V
EI

 

 
= 241EdV  kN 

 
,0 4

0 ,0
14,2· = ·( · ) = 3000·(14,2·250) = 7562·10

2 2
T

i i T eff

e
E S E e b  kNcm 

 
4

0 = 375903·10EI  kNcm2 
 

4

, 4

7562·10= 241· = 4,85
375903·10L Ed  kN/cm 

 
The shear connectors are spaced in accordance with the shear flow with a 
triangular distribution. The span of the beam is divided into several ranges where 
the studs are distributed at equal intervals. The total number of studs, n, is shared 
between lengths of the ranges in proportion to the areas of the design shear force 
diagram of the considered ranges. In this case, the cross-section class 3, the peak 
shear flow within each length does not exceed the design longitudinal shear 
resistance per unit length. 
 
The following spacings of studs are selected: 
 
Range 1 
 

= 170Le  mm          87= = = 5,11
17,0

Rd
Rd

L

P
e

 kN/cm   with 12 studs 

 
Range 2 
 

= 250Le  mm          87= = = 3,48
25,0

Rd
Rd

L

P
e

 kN/cm   with 10 studs 

 
The design longitudinal shear force per unit length L,Ed and the design longitudinal 
shear resistance per unit length L,Rd are shown in Figure B4.10. 
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Figure B4.10 Design longitudinal shear force per unit length L,Ed and design 
 longitudinal shear resistance per unit length L,Rd 

 
The total design longitudinal shear force on half span of the beam is: 
 

, ,
1 1 1000= · · = ·4,85· = 1213
2 2 2 2L Ed L Ed

LV  kN 

 
The total design longitudinal shear resistance on half span of the beam is: 
 

= · = 24·87 = 2088Rd RdV n P  kN 
 
Check: 
 
VL,Ed  VRd 
 
1213  2088, the condition is satisfied 
 
The verification of the selected spacings of studs: 
 

= 170Le  mm and = 250Le  mm 
 

5· = 5·22 = 110Le > d  mm 
 
eL  800 mm 
 
eL  6· = 6·160 = 960ch  mm 

3000

4,85
2,91

3,48

5,11

2000

Range 1 Range 2 

n1 = 12 n2 = 12 
eL = 170 mm eL = 250 mm 
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4.6 Check of longitudinal shear resistance of the concrete flange 

4.6.1 Check of transverse reinforcement 

The cross-sectional area of transverse reinforcement is calculated according to 
the expression: 
 

·sf
sd

f

A
f

s
 , ·

cot
f

L Ed

h
 

 
where: 
 
Asf/sf  is the transverse reinforcement expressed in mm2/m, 
hf  is the thickness of concrete flange, see Figure B4.11, 
 is the angle between the diagonal strut and the axis of the beam (strut-and- 

tie model), 
L,Ed is the design longitudinal shear flow in the concrete slab. 

 
The transverse reinforcement (Asf/sf) expressed in mm2/m can be denoted as At for 
the top transverse reinforcement and Ab for the bottom transverse reinforcement.  
It is necessary to verify the failure due to shear in the failure plane shown in Figure 
B4.11 as section a-a and section c-c. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B4.11 Surfaces of potential failure in longitudinal shear 
 
a) Check for shear stress  in section a-a of slab 
 
The transverse reinforcement is selected for the transverse bending of the slab. 
 
Adopted: 
 
10 mm bars at 200 mm 

a

c

hc c

a

y

z, V

S
c

a

max  c
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= 10sd  mm   = 200Le  mm   = = 393t bA A  mm2   = + = 786s t bA A A  mm2 
 
From the design shear force VEd at section a-a of slab, it is possible to calculate the 
design longitudinal shear flow a: 
 

4

, 4
0

· 7562·10 125= = · · = 241· · = 2,42
250375860·10

i i i
L Ed a Ed

eff

E S b
V

EI b
 kN/cm 

 
, = 242L Ed  N/mm 

 
The longitudinal shear stress is calculated if the longitudinal shear flow is divided 
by the thickness of concrete flange hf: 
 

4

, 4
0

· 241 7562·10 125= · · = · · = 0,15
16 250375860·10

Ed i i i
L Ed

f eff

V E S b
h EI b

 kN/cm2 

 
, = 1,5L Ed  N/mm2 

 
Remark: 
 
In order to prevent splitting of the concrete flange, for the adopted “truss model”, 
according to clause 6.2.4(4) EN 1992-1-1, the angle  between the concrete 
diagonals and the longitudinal direction is limited to the value: 
 
26,5°    45° concrete flange in compression 
 
38,6°    45° concrete flange in tension 

 
In order to minimize the cross-sectional area of the transverse reinforcement, the 
minimum angle  is selected. For the concrete flange in compression, the minimum 
angle  is: 
 

= 26,5°  
 

·sf
sd

f

A
f

s
 , ·

cot
f

L Ed

h
 

 
sf

f

A
s

, 31,5 160· = ·10 = 275
cot 435 cot26,5

fL Ed

sd

h
f

 mm2/m < = 786sA  mm2/m 
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The required reinforcement has to be distributed so that one half is placed in the 
upper zone, the top reinforcement, and the other half in the lower zone, the bottom 
reinforcement. 
 
b) Check for shear stress  for shear surface c-c in the slab 
 
The local transmission of force through the shear connector in the concrete slab is 
carried out through the „surface surrounding the shear connector“. This is the shear 
surface c-c passing round the studs as shown in Figure B4.11. By means of 
appropriate transverse reinforcement, local failure of the concrete flange can be 
avoided. 
 
From the design shear force VEd, it is possible to calculate the design longitudinal 
shear flow b. Longitudinal shear flow b also depends on time t. In this case the 
age of the concrete on first loading is taken into consideration. 
 
The design longitudinal shear flow is: 
 

4

, 4
0

· 7562·10= = · = 241· = 4,84
375860·10

i i
L Ed b Ed

E S
V

EI
 kN/cm (range 1, Figure B4.10) 

 
, = 48,4L Ed  N/mm 

 
In this case the length of the shear surface b-b is: 
 

= 2· +1,5· = 2·12,5 +1,5·2,2 = 28,3f sch h d  cm 
 
The longitudinal shear stress is calculated if the longitudinal shear flow is divided 
by the thickness of the concrete flange hf: 
 

4

, 4
0

· 241 7562·10= · = · = 0,17
28,3 375860·10

Ed i i
L Ed

f

V E S
h EI

 kN/cm2 

 
, = 1,7L Ed  N/mm2 

 
In order to minimize the cross-sectional area of the transverse reinforcement, the 
minimum angle  is selected. For the concrete flange in compression, the minimum 
angle  is: 
 

= 26,5°  
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·sf
sd

f

A
f

s
 , ·

cot
f

L Ed

h
 

 
sf

f

A
s

, 31,7 283· = ·10 = 551
cot 435 cot26,5

fL Ed

sd

h
f

 mm2/m < 2 = 2·393 = 786bA  mm2/m 

 
According to EN 1994-1-1, clause 6.6.6.3, the minimum area of transverse 
reinforcement is determined in accordance with EN 1992-1-1, clause 9.2.2(5), 
which gives the minimum area of reinforcement as a proportion of the concrete 
area. The ratio is: 
 

,min
,

0,08
= ck

w
yr k

f
f

 

 
where: 
 
fck is the characteristic compressive cylinder strength of the concrete at 28 

days in N/mm2, 
fyr,k = fsk is the characteristic yield strength of the reinforcement in N/mm2. 

 
The minimum area of transverse reinforcement is: 
 

,min
,

0,08 0,08 20= = = 0,0007
500

ck
w

yr k

f
f

 

 
= · = 160,0·1000,0 = 160000c cA h b  mm2 

 
,min ,min= · = 0,0007·160000 = 112s w cA A  mm2/m 

 
Since + = 786t bA A  mm2/m ,min> = 112sA  mm2/m, the requirement of minimum 
transverse reinforcement is satisfied. 

4.6.2 Crushing of the concrete flange 

To prevent crushing of the compression struts in the flange, the following 
condition needs to be satisfied according to EN 1992-1-1, expression 6.22: 
 
vL,Ed  VRd 
 
vL,Ed  · ·sin ·coscdf  
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where: 
 

= 0,6·(1 – )
250

ckf
 

 is the angle between the concrete diagonals and the longitudinal direction. 
 
In order to minimize the resistance of the concrete compression strut, the minimum 
angle  is selected. For the concrete flange in compression, the minimum angle  
is: 
 

= 26,5°  
 

20= · ·sin ·cos = 0,6·(1 – )·1,33·sin26,5°·cos26,5° = 0,29
250Rd cdf  kN/cm2 

 
= 2,9Rd  N/mm2 

 
Check: 
 

, = 1,7L Edv  N/mm2 < = 2,9Rd  N/mm2 
 
Therefore the crushing resistance of the concrete compression strut is adequate. 
 
c) Concentrated longitudinal shear at the end of the concrete slab 
 
The primary effects of shrinkage cause the design concentrated longitudinal shear 
at the end of the concrete slab. The concentrated longitudinal shear force is equal to 
the longitudinal force in the steel section or in the concrete flange. However, it is 
necessary to take into consideration the direction (signed) of these forces. This 
force is in the concrete flange with a positive sign while in the steel section it has a 
negative sign. Thus, this force acts opposite to the longitudinal shear forces due to 
self-weight and variable load. 
 
This longitudinal shear force is obtained when the normal stress in the centroid of 
the steel section is multiplied by the area of steel section. The design shear force 
VL,Ed transferred across the steel-concrete interface can be triangular distributed  
over the length equal to beff. Where the ductile stud shear connectors are used, the 
design longitudinal shear flow can be uniformly distributed over the length beff. 
 
The normal stress is given as: 
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S S

N ME E z
EA EI

 

 
A calculation of primary shrinkage stress is given in Section 4.3.4 (c). The force N 
and the moment M are found from these, and the normal stress is: 
 

,0 4

1372 23900= –21000· + 21000· ·17,1 = –1,96
5397200 254171·10a  kN/cm2 

 
The shear force VL,Ed transferred across the steel-concrete interface is: 
 

, , ,0= = · = –1,96·129,2 = –253a S L Ed a aN V A  kN 
 
The design longitudinal shear flow is: 
 

,
,

2· 2·253= = = 2,02
250

L Ed
L Ed

eff

V
b

 kN/cm 

 
 
 
 
 
 
 
 
 
 
 
 

Figure B4.12 Distribution of longitudinal shear force along the  
 steel-concrete interface 

 
The design forces at the end of the concrete slab are reduced on the following 
value: 
 

, ,= · = 2,02·17,0 = 34,3d s L Ed LP e  kN 
 
Further verification is not necessary. 
 
 

beff 

L,Ed,max

L,Ed
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5. Serviceability limit state 

5.1 General 

Chapter 7, EN 1994-1-1, is limited to provisions relating to serviceability that 
are specific to composite structures. Serviceability verifications in the case of the 
composite structures generally include checks of stress, deflection and vibration 
as well control of crack width.  
 
For buildings, stress limitation is not required for beams if, in the ultimate limit 
state, no verification of fatigue is required and no pre-stressing by tendons and/or 
by controlled imposed deformations is provided. However, if the stress 
limitation is required, clause 7.2, EN 1992-1-1 gives stress limits which may be 
applicable for buildings that have pre-stressing or fatigue loading. 
 
Since the deflection is one of the most important verifications of the 
serviceability limit state, it is necessary to explain in detail the problems 
associated with the deflection calculation. Deflections due to loads applied to the 
composite member are calculated using elastic theory, taking into account the 
following effects: 
 
a) cracking of concrete, 
b) creep and shrinkage of concrete, 
c) sequence of construction, 
d) influence of local yielding of structural steel at internal support (for 

continuous beams), 
e) influence of incomplete interaction. 
 
For a more detailed explanation of these effects, see example B6. 
 
If the steel beam is fully propped, the total deflection of composite beams is 
obtained by summing the following deflections: 
 

1 2,1 2,2 2,3= + + +  
 
where: 
 

1  is the deflection due to the permanent actions (the first loading is applied 
at the age of t0 = 28 days), 

2,1  is the deflection due to the frequent value of the variable action at time of 
first loading, 

2,2  is the deflection due to creep under the quasi-permanent value of variable 
action at time t = , 
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2,3  is the deflection due to shrinkage. 

5.2 Calculation of deflections 

5.2.1 Construction stage deflection 

In this example, the steel beam is fully propped at the construction stage, and the 
deflection of the steel beam at the construction stage is: 
 

0 = 0  

5.2.2 Composite stage deflection 

The expression for calculation of the maximum deflection of the beam due to 
uniformly distributed loads has the following general form: 
 

4·5= ·
384

d

L

e L
EI

 

 
where: 
 
ed is the design value of load from the governed combination of action, 
L is the span of the beam, 
EIL is the effective flexural stiffness of the composite sections which depends 

on the type of loadings; the different types of loading are distinguished by 
a subscript L, 

EL is the effective modulus of elasticity of the concrete which depends on the 
same type of loadings as for the flexural stiffness EIL. The effective 
modulus of elasticity of concrete EL is denoted by Ec,eff in EN 1994-1-1. 

 
Calculation of deflections 
 

Deflection due to permanent action, the first loading is applied at age t0 = 28 
days 

 
= · = 3,0·6,33 = 19,0d ke b g  kN/m 

 
0= = 375903LEI EI  kNm2 

 
4 4

1
0

·5 5 19,0·10= · = ·100 = 0,66
384 384 375903

de L
EI

 cm 
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Deflection due to the frequent value of the variable action at the time of the first 
loading t0 = 28 days 

 
For a building with floors in category B, office areas, the combination factor is: 

1 = 0,5. 
 

2= · · = 3,0·0,5·5,0 = 7,5d ke b q  kN/m 
 

0= = 375903LEI EI  kNm2 
 

4 4

2,1
0

·5 5 7,5·10= · = ·100 = 0,26
384 384 375903

de L
EI

 cm 

 
Deflection due to creep under the quasi-permanent value of variable action at 
time t = . 

 
This deflection is the difference of deflections at time t =  and at the time of the 
first loading t0 = 28 days. 
 

2= ·( + · ) = 3,0·(6,33 + 0,5·5,0) = 26,5d k ke b g q  kN/m 
 

0 = 375903EI  kNm2, for short-term loading 
 

= 255311PEI  kNm2, permanent action constant in time 
 

4 4

2,2
0

· ·5 5= · – ·
384 384

d d

P

e L e L
EI EI

 

 
4 4

2,2
5 26,5·10 5 26,5·10= · ·100 – · ·100 = 1,35 – 0,92 = 0,43

384 255311 384 375903
 cm 

 
Deflection due to shrinkage 

 
2 2

2,3
·1 1 236·10= · = · ·100 = 1,16

8 8 254171
cs

S

M L
EI

 cm 

 
The effects of shear connection on the deflection of the beam can be neglected 
because there was full shear connection. 
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Deflection limits for composite beams are the same as for steel beams, and are 
determined by the National Annex. 
 
Recommended limiting values for deflection of composite beams are: 
 

tot 
250

L , the deflection due to the total load 

 

tot 
360

L , the deflection due to the variable load 

 
The deflection due to the permanent action is: 
 

1 = 0,66  cm 
 
The deflection due to variable load, creep and shrinkage is: 
 

2 2,= = 0,26 + 0,43 +1,16 = 1,85i  mm 
 
The total deflection due to the permanent and variable loads, creep and shrinkage 
is: 
 

1 2= + = 0,66 +1,85 = 2,51tot  mm 1000= = 4,0
250 250

L  mm 

 
The total deflection meets the criterion L/250. 
 
The steel beam is fully propped at the construction stage and the deflection of the 
steel beam at the construction stage is 0 = 0. 
 
The deflection due to variable load, creep and shrinkage is: 
 

var 2= = 1,85  mm 1000= = 2,78
360 360

L  mm 

 
The deflection due to the variable load, creep and shrinkage meets the criterion 
L/360. 

5.3 Pre-cambering of steel beam 

For the estimation of pre-cambering of the steel beam, the deflections due to the 
permanent load, creep and shrinkage are taken into account: 
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1 2,2 2,3= + +p  
 

= 0,66 + 0,43 +1,16p  
 

= 2,25p  cm 

5.4 Check of vibration of the beam 

For the calculation of the natural frequency, the characteristic values of the 
permanent load for the composite stage ed =b·gk is taken into account, and the 
effective flexural stiffness of composite section for short-term loading EI0. 
 
This load is: 
 
ed = 19,0 kN/m 
 
The deflection under this load is: 
 

4 4

0

·5 5 19,0·10= · = · ·100 = 0,66
384 384 375903

de L
EI

 cm = 6,6  mm 

 
The natural frequency of the beam is therefore: 
 

18 18= = = 7,01
6,6

f  Hz  4 Hz    with    in mm 

 
The criterion is satisfied. However, the improved estimation of the natural 
frequency is illustrated in example B3. 

5.5 Cracks 

If the composite beam is simply supported with continuous concrete slab on the top 
of the steel beam, the control of crack width is not required. However, the 
longitudinal reinforcement provided within the effective width of the concrete slab 
should be not less than 0,4% of the area of concrete. 
 
The area of concrete is: 
 

= · = 16,0·100 = 1600c cA h b  cm2 
 
Criterion of minimum reinforcement: 
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As 20,004· = 0,004·1600·10 = 640cA  mm2/m 
 
The reinforcement provided is 12 mm bars at 150 mm, for which: 
 

2

,min
·12 1000= · = 754
4 150sA  mm2/m > 640 mm2/m 

 
For the adopted reinforcement, the maximum allowable thickness of slab hc is: 
 

,min 754= = = 189
0,004·1000 0,004·1000

s
c

A
h  mm 

 
The maximum allowable thickness of slab hc is higher than the existing thickness 
of 160 mm, so this criterion is met. 

5.6 Stresses at the serviceability limit state 

For buildings the stress limitation is not required for beams if in the ultimate limit 
state the verification of fatigue is not required and the pre-stressing by tendons 
and/or by controlled imposed deformations is not provided. 

6. Commentary 

In the case of the cross-section class 3, the resistance of cross-section should be 
calculated by elastic resistance using the effective width of the concrete flange. 
For cross-sections of class 4, the effective structural steel section, determined 
according to EN 1993-1-5, must be taken into account. The stress limitations for 
calculating the elastic resistance to bending using the effective cross-section are 
recommended in clause 6.2.1.5, EN 1994-1-1. In the verification procedure, the 
stresses due to design effects of actions (MEd, NEd, VEd) need to be limited, in 
accordance with clause 6.2.1.5, EN 1994-1-1, as follows:  
 

c  fcd (concrete in compression) 
 

a  fyd (structural steel in compression or tension) 
 

s  fsd (reinforcement in compression or tension) 
 
The calculation should consider the method of execution (propped or 
unpropped), cracking of concrete and influences of creep and shrinkage. 
 
Since EN 1994-1-1 does not give guidelines for resistance of composite cross-
section relating to the vertical shear, the stresses due to the shear forces are 
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calculated for the two cases: 
 
a) The age of concrete on first loading with the corresponding flexural stiffness 
EI0 
b) At time t =  
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B5 Calculation of simply supported composite beam 
according to the plastic resistance of the cross-section 

1. Purpose of example 

The example shows the design of a simply supported composite beam according to 
the elastic–plastic procedure. Action effects are calculated by elastic global 
analysis and the resistance to bending is based on a plastic model. For the elastic–
plastic procedure, the cross-section should be at least in class 2. An important 
feature of this example is to explain the concept of the “partial shear connector”. 
The concepts of “full shear connection” and “partial shear connection” are 
applicable to composite beams for which plastic theory is used for calculating 
plastic resistance. Sufficient shear connection between the slab and the steel beam 
is needed to develop the full plastic resistance of the section. With composite 
beams, where sufficient connection exists, it is referred to as full shear connection. 
When the resistance moment of section increases with the number of shear 
connectors, the shear connection is partial. The shear connectors must be 
sufficiently ductile that the resistance moment with partial shear connection can be 
developed. 
 
The concrete slab was made with prefabricated elements where the concreting has 
been done on the site. The steel beam is fully propped at the construction stage and 
the verification of lateral-torsional buckling is not necessary. The ductile 
connectors used are spaced uniformly and it is necessary to verify that is 
Mpl,Rd/Mpl,a,Rd  2,5, clause 6.6.1.3(3), EN 1994-1-1. 

2. Static system, cross-section and actions 

 
 
 
 
 
 
 
 
 
 
 
 

Figure B5.1 Static system and the cross-section of the composite beam 

IPE 450 

Section 1-1

b = 3,0 m b = 3,0 m 

160 

qk
gk1, gk2

L = 11,0 m

1

1
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Figure B5.2 Cross-section of composite beam 
 
Actions 
 
Permanent action 
 
- concrete slab and reinforcement (dry concrete) 25·0,16 = 4,0  kN/m2 
 
- steel beam = 0,27  kN/m2 
 
- floor finishes = 2,5  kN/m2 
 
Total = 6,77kg  kN/m2 
 
Variable action 
 
- imposed floor load, category of use C3 = 5,00kq  kN/m2 

3. Properties of materials 

Concrete strength class: C 25/30 = 25ckf  N/mm2 

 25= = = 16,7
1,5

ck
cd

c

f
f  N/mm2 

 0,85 = 0,85·16,7 = 14,17cdf  N/mm2 
 = 31000cmE  N/mm2 
Reinforcement: ductility class B or C = 500skf  N/mm2 

beff = 3,0 m

hc = 11,0 cm h 

Concrete cast in situ

hsc

hp = 5,0 cm 

Prefabricated element 

1,5 · d 
At

Ab

tf 
r c c 

3,5 cm

dw haha tw

a 

ba

c

a 
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 500= = = 435
1,15

sk
sd

s

f
f  N/mm2 

 = 210000sE  N/mm2 
Structural steel: S355 = 355ykf  N/mm2 

 355= = = 355
1,0

yk
yd

M

f
f  N/mm2 

 , = = 204,9
3

yd
a Rd

f
 kN/cm2 

 = 210000aE  N/mm2 
 
Shear connectors: ductile headed studs = 450uf  N/mm2 
 = 22d  mm 
 = 125sch  mm 

 125= = 5,68 > 4,0
22

sch
d

= 1,0  

 = 98,9RdP  kN 

4. Ultimate limit state 

4.1 Design values of combined actions and of the effects of actions 

The design load for the ultimate limit state is: 
 

= ·( · + · )d G k Q ke b g q  
 

= 3,0b m beam spacing 
 

= 3,0·(1,35·6,77 +1,5·5,00) = 3,0·(9,14 + 7,5) = 49,9de  kN/m 
 
The maximum design bending moment is: 
 

2 2· 49,9·11,0= = = 755
8 8

d
Ed

e L
M  kNm 

 
The maximum design shear force is: 
 

11,0= · = 49,9· = 274
2 2Ed d
LV e  kN 
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4.2 Selection of cross-section 

Section IPE 450, grade 355, is selected with the cross-section and the dimensions 
shown in Figure B5.3. 
 
 
 
 
 
 
 
 
 
 
 

ha = 450 mm 
= 190ab  mm 
= 379d  mm 

= 14,6ft  mm 

= 9,4wt  mm 
= 21r  mm 

= 98,8aA  cm2 
= 33740aI  cm4 

Wpl,y = 1702 cm3 
Figure B5.3 Cross-section and dimensions of IPE 450 

4.3 Effective width of concrete flange 

The effective width of the concrete flange is: 
 

0= +eff eib b b  
 

11= = = = 1,375
8 8 8

e
ei

L Lb  m 

 
0 = 0b  (there is only one row of shear connectors) 

 
= 0 + (2·1,375) = 2,75effb  m < 3,0  m (beam spacing) 

 
The effective cross-section of the concrete slab is shown in Figure B5.4. 
 
 
 
 
 
 
 
 
 

Figure B5.4 Effective cross-section of the concrete slab 

ba 
z 

z

y y d ha 

r 

tw 
tf 

2750 

3000 3000 

160 
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4.4 Classification of the steel cross-section 

For tf = 14,6 mm the yield strength is fy = 355 N/mm2. 
 

235 235= = = 0,81
355yf

 

 
For the execution stage, the neutral axis is located in the half depth of the web of 
the steel section. 
 
The classification of the steel cross-section is conducted according to Table 5.2, 
EN 1993-1-1. 
 
Flange: 
 
The outstand of the compression flange is: 
 

– – 2· 190 – 9,4 – 2·21= = = 69,3
2 2

a wb t r
c  

 
69,3= = 4,75
14,6f

c
t

 

 
The limiting value for class 1 is: 
 

f

c
t

 9· = 9·0,81 = 7,29  

 
4,75 < 7,29   therefore the flange in compression is class 1 
 
Web: 
 
Web subject to bending 
 

= – 2· – 2· = 450 – 2·14,6 – 2·21 = 378,8a fc h t r  mm 
 

378,8= = 40,3
9,4w

c
t

 

 
The limiting value for class 1 is: 
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w

c
t

72· = 72·0,81 = 58,3  

 
40,3 < 58,3   therefore the web in bending is class 1. 
 
Therefore the cross-section in bending at the construction stage is class 1. At the 
composite stage, the cross-section will also be class 1. 

4.5 Check of shear connection 

For full shear connection, the lesser value of Ncf and Npl,a is governed: 
 

, ,= min( ; )L Ed cf pl aV N N  
 
The design value of the compressive normal force in the concrete flange with full 
shear connection is: 
 

= · ·0,85· = 275·11·0,85·1,67 = 4294cf eff c cdN b h f  kN 
 
The design value of the plastic resistance of the structural steel section to normal 
force is: 
 

, = · = 98,8·35,5 = 3507pl a a ydN A f  kN 
 
Thus, the design longitudinal force in the steel-concrete interface is equal to Npl,a: 
 

, ,= = 3507L Ed pl aV N  kN 
 
The required number of studs for full shear connection is: 
 

,, 3507= = = = 35,5
98,9

pl aL Ed
f

Rd Rd

NV
n

P P
 

 
The required minimum degree of shear connection  depending on the span of 
beam and uniform spacing of studs is: 
 

< 25L  m 
 

355= 1 – ( )·(0,75 – 0,03· )e
yk

L
f

           0,4 
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= 1 – (0,75 – 0,03·11) = 0,58  
 
0,58 > 0,4  
 
With respect to the minimum degree of shear connection, the required number of 
studs is: 
 

= · = 0,58·35,5 = 20,6fn n  
 
The adopted number of studs is = 30n . For this number of studs, the degree of 
shear connection is: 
 

30= = 0,85
35,5

 0,58 

 
The design longitudinal force in the steel-concrete interface is: 
 

, = · = 30·98,9 = 2967L Ed RdV n P  kN 
 
The following spacing of studs in the longitudinal direction is selected:  
 

11000= = = 183
2 2·30L
Le
n

 mm 

 
Verification of the criteria for the spacing of studs: 
 

= 183Le  mm > 5· = 5·22 = 110d  mm 
 

= 183Le  mm  800 mm 
 

= 183Le  mm  6· = 6·160 = 960h  mm 

4.6 Plastic resistance moment of the composite cross-section 

According to clause 6.2.1.3, EN 1994-1-1, for the determination of the resistance 
moment at mid-span, or the region of sagging bending, we can use partial shear 
connection. In this case the force transferred to the concrete is limited by the 
resistance of the shear connectors. 
 
If ductile shear connectors are used, the resistance moment can be calculated by 
means of rigid plastic theory according to 6.2.1.2, EN 1994-1-1. However, the 
reduced value of the compressive force in the concrete flange Nc should be taken 
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into account in place of the compressive normal force in the concrete flange with 
full shear connection Nc,f.  

 
The plastic neutral axis lies within the flange of the steel beam if: 
 

,<c pl aN N  
 

,
,0

· 98,8·35,5= = = 3507
1,0

a yd
pl a

M

A f
N  kN 

 
,= · = = 30·98,9 = 2967c c f RdN N P  kN 

 
2967 < 3507  the plastic neutral axis lies within the flange of the steel beam 
 

, = ( – · )pl a a V ydN A A f  
 

,
,

–
=

2
pl a c

pl f

N N
N  

 
For = 0 ,  is the parameter related to reduced design resistance moment, 
accounting for vertical shear: 
 

, = · = 98,8·35,5 = 3507pl a a ydN A f  kN 
 

,
,

– 3507 – 2967= = = 270
2 2

pl a c
pl f

N N
N  kN 

 

1
2967= = = 7,6

· 275·0,85·1,67
c

eff cd

N
x

b f
 cm < = 11ch  cm 

 
,

2
270= = = 0,25

· 30·35,5
pl f

f yd

N
x

b f
 cm < = 1,46ft  cm 

 
1= + + –

2 2
a

c p
h x

z h h  

 
45,0 7,6= 11,0 + 5,0 + – = 11 + 5,0 + 22,5 – 3,8 = 34,7

2 2
z  cm = 0,347  m 
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The design resistance moment of the composite section is: 
 

, 2= · + ( – )Rd c pl f aM N z N h x  
 

= 2967·0,347 + 270(0,45 – 0,00025)RdM  
 

= 1150RdM  kNm 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B5.5 Cross-section of the composite beam 
 
Since the design bending moment is MEd = 864 kNm, the check of the resistance of 
the composite section to bending is: 
 

Ed

Rd

M
M

 1,0 

 
755 = 0,66 < 1,0

1150
 the criterion is satisfied 

 
The ductile headed studs can be spaced uniformly according to 6.6.1.3(3), EN 
1994-1-1, if the following conditions are satisfied: 
 
- all critical sections in the span of the beam are in classes 1 or 2, 
- the values of shear connection  meet the conditions of clause 6.6.1.2, EN 
1994-1-1. 
 

- ,

, ,

pl Rd

pl a Rd

M
M

 2,5 

 
The first two conditions are met, so that should prove the third condition. 
Therefore, it is necessary to determine Mpl,a,Rd and Mpl,Rd. 

beff 0,85 fcd

Tc

 fyd

PNA 

Ta (centroid of  
       steel section) 

1

3

2

PNA - plastic neutral axis 

+ 

tw 

ba

hc 

ha 

hp 

4

- 
 x2

 zpl

tf

 fyd

 x1

Nc 

Nc 

 z 
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The design value of the plastic resistance moment of the structural steel section is: 
 

, , ,
35,5= · = 1702· = 604
100pl a Rd pl y ydM W f  kNm 

 
The design value of the plastic resistance moment of the composite section with 
full shear connection Mpl,Rd is calculated as follows. 
 
The plastic neutral axis lies within the thickness of the concrete flange if: 
 

, ,>c f pl aN N  
 

,
,0

· 98,8·35,5= = = 3507
1,0

a yd
pl a

M

A f
N  kN 

 
, = · ·0,85 = 11·275·0,85·1,67 = 4294c f c eff cdN h b f  kN 

 
4294 > 3507 , the plastic neutral axis lies within the thickness of concrete flange. 
 
In the case of full shear connection, the plastic neutral axis lies within the concrete 
flange, so that: 
 

, 3507= = = 8,98
·0,85· 275·0,85·1,67

pl a
pl

eff cd

N
x

b f
 cm  = 11,0ch  cm 

 
The design resistance moment of the composite section with the full shear 
connection Mpl,Rd is:  
 

, , , 1= min( ; )·pl Rd c f pl aM N N z  
 

, ,= (0,5 + + – 0,5 )pl Rd pl a a c p plM N h h h x  
 

–3 –3
, = 3507(0,5·450 +110 +50 – 0,5·89,8)·10 = 3507·340,1·10pl RdM  

 
, = 1193pl RdM  kNm 
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Figure B5.6 Cross-section for determination of the design plastic  
 resistance to bending 

 
Check: 
 

,

, ,

1193= = 1,98
604

pl Rd

pl a Rd

M
M

 2,5 

4.7 Vertical shear resistance of the composite cross-section 

The shear buckling resistance of the web should be verified, for an unstiffened 
web, when: 
 

72>wh
t

 

 
where: 
 

235 235= = = 0,81
355yf

 

 
= 1,2 , the factor defined in EN 1993-1-5 

 
= – 2 = 450 – 2·14,6 = 420,8w a fh h t  mm 

 
0,8172· = 72· = 48,60
1,2

 

 

beff 0,85 fcd

Tc

 fyd

PNA 

Ta (centroid of  
       steel section) 

1

3

2 

PNA - plastic neutral axis 

+ 

tw 

ba

hc 

ha 

hp 

4 

- 
 x2

tf

 fyd

 xpl = x1

Npl,a 

Nc,f 

 z1 
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420,8= = = 44,77
9,4

w w

w

h h
t t

 

 
Since 44,77 < 48,60, the condition is satisfied. The shear buckling resistance of the 
web need not be verified. 
 
Remark: 
 
The resistance of the composite beam to vertical shear is normally taken as the 
shear resistance of the steel section according to clause 6.2.6, EN 1993-1-1, 
which gives: 
 

, , ,
0

( / 3)
= = V y

pl Rd pl a Rd
M

A f
V V  

 
For rolled I- and H-sections, if the load is applied parallel to the web, the shear 
area is calculated as: 
 

= – 2· · + ·( + 2· )V a f f wA A b t t t r , but not less than · ·w wh t  
 
The shear area AV is: 
 

= 98,8 – 2·19·1,46 + (0,94 + 2·2,1)·1,46VA  
 

= 50,8VA  cm2 
 

= 1,2  
 

· · = 1,2·42,08·0,94 = 47,46w wh t  cm2 
 
50,8 cm2 > 47,46 cm2 
 
Therefore AV = 50,8 cm2. 
 
The design plastic shear resistance of the steel section is: 
 

, , ,
0

( / 3)
= = V y

pl Rd pl a Rd
M

A f
V V  
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,
35,5= 50,8 = 1041
3·1,0pl RdV  kN 

 
Verify that: 
 

,

Ed

pl Rd

V
V

 1,0 

 
274 = 0,26 < 1,0

1041
 

 
Therefore the shear resistance of the cross-section is adequate. 
 
As there is no shear force at the point of maximum bending moment (mid-span), no 
reduction (due to shear) in resistance moment is required. 

4.8 Check of longitudinal shear resistance of the concrete flange 

4.8.1 Check of transverse reinforcement 

The cross-sectional area of the transverse reinforcement is calculated according 
to the expression: 
 

·sf
sd

f

A
f

s
  , ·

cot
f

L Ed

h
 

 
where: 
 
Asf/sf  is the transverse reinforcement expressed in mm2/m, 
hf  is the thickness of the concrete flange, see Figures B5.7 and B5.8, 
 is the angle between the diagonal strut and the axis of the beam (strut-and-

tie model), 
L,Ed is the design longitudinal shear flow in the concrete slab. 

 
The transverse reinforcement (Asf/sf) expressed in mm2/m can be denoted as At for 
the top transverse reinforcement and as Ab for the bottom transverse reinforcement. 
It is necessary to verify the failure due to shear in the failure plane shown in Figure 
B5.7 as section a-a and section c-c. 
 
The transverse reinforcement provided is 8 mm bars at 150 mm, for which: 
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2·8 1000= = · = 335
4 150t bA A  mm2/m 

 
 
 
 
 
 
 
 

Figure B5.7 Surfaces of potential failure in longitudinal shear 
 
It is necessary to ensure that the concrete flange can resist the longitudinal shear 
force transmitted to it by the shear connectors. At the steel-concrete interface, 
the distribution of longitudinal shear is influenced by yielding, by the spacing of 
the shear connectors, their load-slip properties and shrinkage and creep of the 
concrete. The design resistance to longitudinal shear for the relevant shear 
failure surfaces is given in clause 6.2.4, EN 1992-1-1. The model is based on 
considering the flange to act like a system of compressive struts combined with a 
system of ties in the form of transverse reinforcement.   
 
 
 
 
 
 
 
 
 
 
Figure B5.8 Determination of longitudinal shear forces in the concrete flange 
 
When the concrete flange is in compression, longitudinal shear flow L,Ed can be 
defined as: 
 

1,,1
, ,1

,

= = c effL Edc
L Ed

v v c eff

AVN
v

a a A
 

 
where: 
 
av is the critical length (the distance between two given sections, Figure 

B5.8), 
Nc1 is the change of the longitudinal compressive forces in the slab over the 

a

a
cc

At

Ab

Concrete flange in compression: 

beff be,1 

be,2 

Nc1 

L,Ed,1

VL = VL,Ed

av 

Ac1,eff

Nc1 + Nc1 

hf 
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critical length av, see Figure B5.8. 
,L EdV  is the design longitudinal shear force in the steel-concrete interface or in 

the concrete flange, 
, ,= min( , , )L Ed pl a c RdV N N P  

 
The length av is L/2, which is the distance between the section where the moment is 
maximum and the support. 
 
The design longitudinal shear force is determined from the minimum resistance of 
the steel section, concrete and shear connectors. 
 

, ,= min( , , )L Ed pl a c RdV N N P  
 

, = 3507pl aN  kN 
 

= 2967RdP  kN 
 

, = 4294c fN  kN 
 
In this case, with partial shear connection, the maximum force that can be 
transferred is limited by the sum of the resistance of the studs, and is given by: 
 

, = = 2967L Ed RdV P  kN 
 
This force must be transferred over each half-span. 
 
Section a-a 
 

, = 2967L EdV  kN 
 

= 435sdf  N/mm2 
 
As there are two shear planes, see Figure B5.7, one on either side of the beam, 
running parallel to it, and with hf = hc = 110 mm (the prefabricated element is 
neglected), the design longitudinal shear stress is: 
 

= = 110f ch h  mm 
 

3
,1

,
2967·10= = = = 2,45

· 2 2·110·5500
L Edc

L Ed
f v f v

VN
h a h a

 N/mm2 
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Remark: 
 
In order to prevent splitting of the concrete flange, for the adopted "truss model", 
according to clause 6.2.4(4) EN 1992-1-1, the angle  between the concrete 
diagonals and the longitudinal direction is limited to the value: 
 
26,5º    45º concrete flange in compression 
 
38,6º    45º concrete flange in tension 

 
In order to minimize the cross-sectional area of the transverse reinforcement, the 
minimum angle  is selected. For the concrete flange in compression, the minimum 
angle  is: 
 

= 26,5°  
 

·sf
sd

f

A
f

s
  , ·

cot
f

L Ed

h
 

 
sf

f

A
s

 , 32,45 110· = · ·10 = 309
cot 435 cot26,5

fL Ed

sd

h
f

 mm2/m 

 
The reinforcement is obtained that is less than the selected reinforcement 

+ = 2·335 = 670t bA A  mm2/m. 
 
Section c-c 
 

, = 2967L EdV  kN 
 

= 435sdf  N/mm2 
 
The length hf of the shear surface c-c passing round the studs as shown in Figure 
B5.7 is: 
 

= 2· +1,5· = 2·125 +1,5·22 = 283f sch h d  mm 
 
The design longitudinal shear stress is: 
 

3
,1

,
2967·10= = = = 1,91

· · 283·5500
L Edc

L Ed
f v f v

VN
v

h a h a
 N/mm2 
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In order to minimize the cross-sectional area of the transverse reinforcement, the 
minimum angle  is selected. For the concrete flange in compression, the minimum 
angle  is: 
 

= 26,5°  
 

·sf
sd

f

A
f

s
  , ·

cot
f

L Ed

h
 

 
sf

f

A
s

 , 31,91 283· = · ·10 = 620
cot 435 cot 26,5

fL Ed

sd

h
f

 mm2/m 

 
The reinforcement is obtained that is less than the selected reinforcement 

+ = 2·335 = 670t bA A  mm2/m. 
 
According to EN 1994-1-1, clause 6.6.6.3, the minimum area of transverse 
reinforcement is determined in accordance with EN 1992-1-1, clause 9.2.2(5), 
which gives the minimum area of reinforcement as a proportion of the concrete 
area. The ratio is: 
 

,min
,

0,08
= ck

w
yr k

f
f

 

 
where: 
 
fck is the characteristic compressive cylinder strength of the concrete at 28 

days in N/mm2, 
fyr,k = fsk is the characteristic yield strength of the reinforcement in N/mm2. 

 
The minimum area of transverse reinforcement is: 
 

,min
,

0,08 0,08 25= = = 0,0008
500

ck
w

yr k

f
f

 

 
= · = 110·1000 = 110000c cA h b  mm2 

 
,min ,min= · = 0,0008·110000 = 88t w cA A  mm2/m 
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Since + = 670t bA A  mm2/m ,min> = 88tA  mm2/m, the requirement for minimum 
transverse reinforcement is satisfied. 

4.8.2 Crushing of the concrete flange 

To prevent crushing of the compression struts in the flange, the following 
condition should be satisfied according to EN 1992-1-1, expression 6.22: 
 
vL,Ed  vRd 
 
vL,Ed · ·sin ·coscdf  
 
where: 
 

= 0,6·(1 – )
250

ckf
 

 is the angle between the concrete diagonals and the longitudinal direction. 
 
In order to minimize the resistance of the concrete compression strut, the minimum 
angle  is selected. For the concrete flange in compression, the minimum angle  
is: 
 

= 26,5°  
 

25= · ·sin ·cos = 0,6·(1 – )·16,7·sin26,5°·cos26,5° = 3,60
250Rd cdf  N/mm2 

 
Check: 
 

= 2,45Ed  N/mm2 < = 3,60Rd  N/mm2 
 
Therefore the crushing resistance of the concrete compression strut is adequate. 

5. Serviceability limit state 

5.1 General 

Chapter 7, EN 1994-1-1 is limited to provisions relating to serviceability that are 
specific to composite structures. Serviceability verifications in the case of the 
composite structures generally include a check of stress, deflection and vibration 
as well as control of the crack width.  
 
For buildings, stress limitation is not required for beams if, in the ultimate limit 
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state, no verification of fatigue is required and no pre-stressing by tendons and/or 
by controlled imposed deformations is provided. However, if the stress 
limitation is required, clause 7.2, EN 1992-1-1, gives stress limits which may be 
applicable for buildings that have pre-stressing or fatigue loading. 
 
Since the deflection is one of the most important verifications of the 
serviceability limit state, it is necessary to explain in detail the problems 
associated with the deflection calculation. Deflections due to loads applied to the 
composite member are calculated using elastic theory, taking into account the 
following effects: 
 
a) cracking of the concrete, 
b) creep and shrinkage of the concrete, 
c) sequence of construction, 
d) influence of local yielding of the structural steel at the internal support (in 

case of continuous beams), 
e) influence of incomplete interaction. 
 
For a more detailed explanation of these effects, see example B6. 
 
If the steel beam is fully propped, the total deflection of composite beams is 
obtained by summing the following deflections: 
 

1 2,1 2,2 2,3= + + +  
 
where: 
 

1  is the deflection due to the permanent actions (the first loading is applied 
at age t0 = 28 days), 

2,1  is the deflection due to the frequent value of the variable action at the time 
of first loading, 

2,2  is the deflection due to creep under the quasi-permanent value of the 
variable action at time t = , 

2,3  is the deflection due to shrinkage. 

5.2 Calculation of deflections 

5.2.1 Construction stage deflection 

In this example, the steel beam is fully propped at the construction stage and the 
deflection of the steel beam at the construction stage is: 
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0 = 0  

5.2.2 Composite stage deflection 

The expression for calculation of the maximum deflection of the beam due to 
uniformly distributed loads has the following general form: 
 

4·5= ·
384

d

L

e L
EI

 

where: 
 
ed is the design value of the load from a governed combination of action, 
L is the span of the beam, 
EIL is the effective flexural stiffness of the composite sections which depends 

on the type of loadings; the different types of loading are distinguished by 
a subscript L, 

EL is the effective modulus of elasticity of the concrete, which depends on 
the same type of loadings as for the flexural stiffness EIL. The effective 
modulus of elasticity of the concrete EL is denoted by Ec,eff in EN 1994-1-
1. 

 
The total deflection of the composite beam will be determined for the composite 
stage, i.e. the concrete slab has hardened and any propps have been removed. 
 
Determination of creep coefficient and shrinkage 
 
For the calculation of the creep coefficient (t, t0) the following is valid: 
 
- the perimeter of that part which is exposed to drying, u 
 

=u b  
 
- the notional size of the cross-section, h0 
 

0
2· ·

= = = = 160c c
c

A b h
h h

u b
 mm 

- 0 = 1t  day, 0 = 28t  days, 
- the ambient relative humidity, RH 50%, 
- the concrete strength class C 25/30, 
- the type of cement  cement class S, strength class 32,5 N. 
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The final value of creep coefficient ( , t0) is determined using the nomogram 
shown in Figure 3.1, EN 1992-1-1. Example A3 shows the detailed procedure for 
determination of the creep coefficients. 
 
The following creep coefficients are obtained: 
 

t = ( , t0 = 1 day) = 5,8 
t = ( , t0 = 28 days) = 2,8 

 
The total shrinkage strain, according to clause 3.1.4, EN 1992-1-1, at the age of the 
concrete at the beginning of drying shrinkage ts = 3 days and the age at the time 
considered in the analysis t = , is: 
 

cs( ) –4= 4,14·10  
cs( ) = 0,414  ‰ 

 
Effective flexural stiffness of the composite section 
 
The effective flexural stiffness of the composite section EIL (in this case 
approximately hc = h) is: 
 

2· · ·
= · + · + ·

· + ·
a a L c

a a L c
a a L c

E A E A
EI E I E I a

E A E A
 

 
a) Short-term loading 
 

= 21000aE  kN/cm2   = 33740aI  cm4   = 98,8aA  cm2 
 

3 3· 275·16= = = 93867
12 12

eff
c

b h
I  cm4 

 
= · = 275·16 = 4400c effA b h  cm2 

 
The distance between the centroidal axes of the concrete flange and the steel 
section is: 
 

= 0,5·( + ) = 0,5·(16 + 45) = 30,5aa h h  cm 
 

= 1cn  
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0
3100= = = 3100
1,0

cm

c

E
E

n
 kN/cm2   0=LE E  

 
2

0
21000·98,8·3100·4400= 21000·33740 + 3100·93867 + ·30,5

21000·98,8 + 3100·4400
EI  

 
0 = 2674784657EI  Ncm2 = 267478  kNm2 

 
b) Permanent loading constant in time 
 

= 1 +1,10·cn ( , t0) = 1 +1,10·2,8 = 4,08  
 

3100= = = 760
4,08

cm
P

c

E
E

n
 kN/cm2   =L PE E  

 
221000·98,8·760·4400= 21000·33740 +760·93867 + ·30,5

21000·98,8 + 760·4400PEI  

 
= 1970953798PEI  Ncm2 = 197095  kNm2 

 
c) Primary effects due to shrinkage 
 

= 1 + 0,55·cn ( , t0) = 1 + 0,55·5,8 = 4,19  
 

3100= = = 740
4,19

cm
S

c

E
E

n
 kN/cm2   =L SE E  

 
221000·98,8·740·4400= 21000·33740 + 740·93867 + ·30,5

21000·98,8 + 740·4400SEI  

 
= 1956877034SEI  Ncm2 = 195688  kNm2 

 
Calculation of deflections 
 

 Deflection due to permanent action, the first loading is applied at age t0 = 28 
days 

 
= · = 3,0·6,77 = 20,3d ke b g  kN/m   and   0=LEI EI  
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4 4

1
0

·5 5 20,3·11= · = · ·100 = 1,45
384 384 267478

de L
EI

 cm 

 
 Deflection due to the frequent value of the variable action at the time of the first 

loading t0 = 28 days 
 
For a building with floors in category B, office areas, the combination factor  is: 

1 = 0,5. 
 

1= · · = 3,0·0,5·5,0 = 7,5d ke b q  kN/m 
 

0= = 264310LEI EI  kNm2, for short-term loading 
 

4 4

2,1
0

·5 5 7,5·11= · = · ·100 = 0,53
384 384 267478

de L
EI

 cm 

 
 Deflection due to creep under the quasi-permanent value of variable action at 

time t =  
 
This deflection is the difference of deflections at time t =  and at the time of the 
first loading t0 = 28 days. 
 

2= ·( + · ) = 3,0·(6,77 + 0,3·5,0) = 24,8d k ke b g q  kN/m 
 

0 = 267478EI  kNm2, for short-term loading 
 

= 197095PEI  kNm2, permanent action constant in time 
 

4 4

2,2
0

· ·5 5= · – ·
384 384

d d

P

e L e L
EI EI

 

 
4 4

2,2
5 24,8·11 5 24,8·11= · ·100 – · ·100 = 2,40 – 1,77 = 0,63

384 197095 384 267478
 cm 

 
Deflection due to shrinkage 

 
=csN cs( ) –4· · = 4,14·10 ·740·275·16 = 1348S cE A  kN 
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· 21000·98,8= · = ·30,5 = 11,87
· + · 21000·98,8 +740·4400

a a
c

a a S c

E A
a a

E A E A
 cm 

 
11,87= · = 1348· = 160
100cs cs cM N a  kNm 

 
2 2

2,3
1 1 160·11= · = · ·100 = 1,24
8 8 195688

cs

S

M vL
EI

 cm 

 
The effects of shear connection on the deflection of the beam can be neglected 
because the condition n/nf  0,5 is satisfied. 
 
Deflection limits for composite beams are the same as for steel beams, and are 
determined by the National Annex. 
 
Recommended limiting values for deflection of composite beams are: 
 

tot 250
L , the deflection due to the total load 

 

var 360
L , the deflection due to the variable load 

 
The deflection due to permanent action is: 
 

1 = 1,45  cm 
 
The deflection due to variable load, creep and shrinkage is: 
 

2 2,= = 0,53 + 0,63 +1,24 = 2,40i  cm 
 
The total deflection due to permanent and variable loads, creep and shrinkage is: 
 

1 2= + = 1,45 + 2,40 = 3,85tot  cm 1100> = = 4,4
250 250

L  cm 

 
The total deflection does not meet the criterion L/250. However, taking into 
account the pre-cambering calculated in Section 5.3 the criterion is satisfied. 
 
The steel beam is fully propped and its deflection at the construction stage is zero, 

0 = 0. 
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The deflection due to variable load, creep and shrinkage is: 
 

var 2= = 2,40  cm 1100= = 3,05
360 360

L  cm 

 
The deflection due to variable load, creep and shrinkage meets the criterion L/360. 

5.3 Pre-cambering of steel beam 

In this example, the pre-cambering of the steel beam involves deflections due to 
permanent loads, creep and shrinkage: 
 

1 2,2 2,3= + +p  
 

= 1,45 + 0,63 +1,24p  
 

= 3,32p  cm 

5.4 Check of vibration of the beam 

For the calculation of the natural frequency, the characteristic value of the 
permanent load for the composite stage, ed =b·gk, is taken into account and the 
effective flexural stiffness of composite section for short-term loading EI0. 
 

= · = 3,0·6,77 = 20,3d ke b g  kN/m 
 
The deflection under this load is: 
 

4 4

0

·5 5 20,3·11= · = · ·100 = 1,45
384 384 267478

kg L
EI

 cm 

 
The natural frequency of the beam is therefore: 
 

18 18= = = 4,7
14,5

f  Hz  4 Hz    with    in mm 

 
The criterion is satisfied for initial calculation purposes. However, the dynamic 
performance of the entire floor is carried out using a method such as the one in 
[51]. 
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5.5 Control of crack width 

The control of crack width for the simply supported beam with continuous concrete 
slab on the top of steel beam is not necessary. Clause 7.4.1(3), EN 1994-1-1 
recommends the minimum reinforcement which will limit crack width to what is 
“acceptable”, see example B3. 

6. Commentary 

For the design of composite beams in structures for buildings it is normal to 
select beams with steel sections such that the composite sections are in classes 1 
or 2. In such cases it is possible to use rigid plastic analysis provided that the 
cross-sections at locations of plastic hinges are in class 1. Further, the resistance 
moments of beams can be calculated using plastic theory and the limits of 
moment redistribution are more favourable than for classes 3 and 4. Where all 
beam cross-sections are in classes 1 or 2, it is possible to use partial shear 
connection. Therefore, as a rule, the cross-section of resistance is based on rigid 
plastic theory, and only in exceptional cases is it based on elastic analysis. 
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B6 Calculation of continuous beam over two spans by 
means of elastic–plastic procedure 

1. Purpose of example 

The example shows the design of a two-span composite beam using the elastic–
plastic procedure. Action effects are calculated by elastic global analysis and the 
resistance to bending is based on a plastic model. To use the elastic–plastic 
procedure, the cross-section should be at least in class 2. Analyses for ultimate 
limit state and serviceability limit state are also conducted by elastic global 
analysis. This example illustrates the method based on uncracked analysis with 
limited redistribution. In accordance with clause A1.4.2, EN 1990, serviceability 
limit states in buildings should take into account criteria related to floor stiffness. 
These criteria are expressed in terms of limits for vertical deflections and for 
vibrations. The serviceability criteria required in this example are: req = L/250 for 
the total load and req = L/360 for variable load. The natural frequency should not 
be less than 4 Hz. Generally, the serviceability criteria should be specified for each 
project and agreed with the client. However, in accordance with EN 1990, the 
relevant National Annexes could give recommended values for the serviceability 
criteria. The continuous beam is unpropped at the construction stage. The 
composite slab is cast in situ on profiled steel sheeting with profile height 51 mm, 
creating the overall slab thickness 150 mm. 

2. Static system, cross-section and actions 

 
 
 
 
 
 
 
 
 
 
 
 
 

h = 150 mm, hc = 99 mm, hp = 51 mm 
 

Figure B6.1 Cross-section of composite beam 

br = 15 mm b0 = 137,5 mm beff  

hch hsc 

hp 

ha 

ba

bs=152,5 mm
b1=10 mm 
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Figure B6.2 Floor layout and static system 
 
Actions 
 
a) Permanent action 
 
Remark: 
 
According to EN 1991-1-1 the density of normal weight concrete is 24 kN/m3, 
increased by 1 kN/m3 for normal percentage reinforcement, and increased for the 
wet concrete by another 1 kN/m3. 

 
The concrete slab area per m width is: 
 

1 +1000= 1000· – ( · · )
2

r
c p

s

b b
A h h

b
 

 
1000 10 +15= 1000·150 – ( · ·51) = 145820
152,5 2cA  mm2 =1458  cm2 

 
- concrete slab and reinforcement (wet concrete): 
 ·26 = 0,1458·26 = 3,79cA  kN/m2 
 
- concrete slab and reinforcement (dry concrete): 
 ·25 = 0,1458·25 = 3,64cA  kN/m2 

b 
=

 3
,0

 m
 

L1 = 10,0 m 

Slab span 

b 
=

 3
,0

 m
 

L2 = 10,0 m 

Composite 
beam 

L1 = 10,0 m L2 = 10,0 m
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Construction stage 
 
- concrete slab = 3,79  kN/m2 
- profiled steel sheeting = 0,17  kN/m2 
- steel beam = 0,30  kN/m2 
 
Total ,1kg = 4,26  kN/m2 
 
Composite stage 
 
- concrete slab = 3,64  kN/m2 
- profiled steel sheeting = 0,17  kN/m2 
- steel beam = 0,30  kN/m2 
 
Total ,2kg = 4,11  kN/m2 
 
Floor finishes ,3 = 0,50kg  kN/m2 
b) Variable action 
 
Construction stage 
 
- construction loads ,1 = 0,50kq  kN/m2 
 
Composite stage 
 
- imposed floor load, category of use C2 = 4,00  kN/m2 
- movable partitions = 0,50  kN/m2 
 

Total ,2kq = 4,50  kN/m2 
 

Remark: 
 
The variable actions qk = 4,00 kN/m2 and qk = 0,50 kN/m2 are mutually 
independent. 

3. Properties of materials 

Concrete strength class: C 40/50 = 40ckf  N/mm2 

 40= = = 26,7
1,5

ck
cd

c

f
f  N/mm2 
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 0,85 = 0,85·26,7 = 22,7cdf  N/mm2 
 = 35000cmE  N/mm2 
 = 3,5ctmf  N/mm2 
Reinforcement: ductility class B or C (Table C.1, EN 1992-1-1) = 460skf  N/mm2 

 460= = = 400
1,15

sk
sd

s

f
f  N/mm2 

 = 210000sE  N/mm2 
Structural steel: S275 = 275ykf  N/mm2 

 275= = = 275
1,0

yk
yd

M

f
f  N/mm2 

 = 210000aE  N/mm2 

Shear connectors: ductile headed studs = 450uf  N/mm2 
 =19d  mm 
 = 95sch  mm 

 95= = 5,0 > 4,0
19

sch
d

  = 1,0  

 = 82,0RdP  kN 

4. Ultimate limit state 

4.1 Design values of combined actions and of the effects of actions for the 
construction stage 

Remark: 
 
Calculation of internal forces and bending moments is carried out using 
commercial software. 

 
The design load determined by governed combination of actions is: 
 

,sup ,1 ,1= ·( · + · )d G k Q ke b g q  
 

= 3,0b  m beam spacing 
 

= 3,00·(1,35·4,26 +1,50·0,50) = 19,5de  kN/m 
 
a) Maximum design moment at the internal support 
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Figure B6.3 Design load for maximum design moment at support with  
 corresponding bending moment distribution 

 
, = 73,1Ed AV  kN 

, = 122Ed BV  kN 
 
b) Maximum design moment at mid-span 
 
Remark: 
 
For simplicity, in the determination of the maximum bending moment at mid-
span, the self-weight of the steel beam is neglected. This assumption produces a 
conservative result. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B6.4 Design load for maximum design moment at mid-span with  
 corresponding bending moment distribution 

 
, = 85,3Ed AV  kN 

, = 110Ed BV  kN 
 

244 kNm 

137 kNm 

A B C 

ed = 19,5 kN/m 

10,0 m 10,0 m 

ed = 19,50 kN/m

10,0 m 10,0 m 

187 kNm 

122 kNm 

A B C 
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Considering both load cases, the maximum design moments on the steel section 
during the execution stage are: 
 
- design negative moment , = 244Ed BM  kNm 
- design positive moment ,1 = 187EdM  kNm 
 
The maximum design shear force on the steel section is: , = 122Ed BV  kN. 

4.2 Design values of combined actions and of the effects of actions for the 
composite stage 

Remark: 
 
Calculation of internal forces and bending moments is carried out using 
commercial software. 

 
The design load determined by governed combination of actions is: 
 

,sup ,2 ,sup ,3 ,2= ·( · + · + · )d G k G k Q ke b g g q  
 

= 3,00·(1,35·4,11 +1,35·0,5 +1,50·4,50) = 38,9de  kN/m 
 
a) Maximum design moment at the internal support (load case 1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B6.5 Design load for maximum design moment at the support with  
 corresponding bending moment distribution (without 
 redistribution) 

 
, = 146Ed AV  kN 

38,9 kN/m 

10,0 m 10,0 m 

483 kNm 

275 kNm 
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, = 243Ed BV  kN 
 
b) Maximum design moment at mid-span (load case 2) 
 

,sup ,2 ,sup ,3 ,2= ·( · + · + · )d G k G k Q ke b g g q  
 

= 3,00·(1,35·4,11 +1,35·0,5 +1,50·4,50) = 38,9de  kN/m 
 

,min ,inf ,2 ,inf ,3= ·( · + · )d G k G ke b g g  
 

,min = 3,00·(1,00·4,11 +1,00·0,5) = 13,8de  kN/m 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B6.6 Design load for maximum design moment at mid-span with  
 corresponding bending moment distribution (without  
 redistribution) 

 
, = 162Ed AV  kN 

, = 227Ed BV  kN 
 
Considering both load cases, the maximum design moments on the composite 
section without redistribution are: 
 
- design negative moment , = 483Ed BM  kNm 
- design positive moment ,1 = 327EdM  kNm 
 
The maximum design shear force on the composite section is: 
 

, = 243Ed BV  kN 

13,8 kN/m 

10,0 m 10,0 m 

38,9 kN/m 

337 kNm 

327 kNm 
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For the design of continuous composite beams, the effects of cracking of 
concrete should be taken into account. Cracking of concrete reduces the flexural 
stiffness at the internal support, at regions of hogging bending moments, but not 
in sagging regions. The reduction of flexural stiffness should be taken into 
account in elastic global analysis. In EN 1994-1-1, several different methods are 
proposed for allowing for cracking in beams. The two methods for calculation of 
action effects based on elastic theory are shown in Figure B6.7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B6.7 Simplified methods for taking into account the effects of cracking 
 based on elastic theory 

 
In Method I, Figure B6.7, the internal forces and bending moments are 
determined for the characteristic combination of actions with uncracked flexural 
stiffness EaI1. According to clause 5.4.4, EN 1994-1-1, the bending moments can 
be redistributed if the required conditions are satisfied. In Method II, effects of 
cracking in composite beam are taken into account as follows. The first step is to 
determine the regions of beam, Lcr, where the extreme fibre concrete tensile 
stress, c, exceeds the limit value. For the ultimate limit state, the criterion is c > 
2 fctm (the extreme-fibre tensile stress in concrete exceeds twice the mean value 
of the axial tensile strength) and for the serviceability limit state c > 1,5 fctm, 
Figure B6.7. In the second step, the cracked stiffness is then adopted for such 

Method I 

Calculation based on uncracked 
analysis and redistribution of
bending moments 

ed

L1 L2 

EaI1 EaI1

Method II 

Calculation with defined 
regions of cracking of concrete 

ed 

L1 L2 

EaI1

L1,cr L2,cr 

EaI2
EaI1 

Simplified 

Method II 
Cracked analysis 

ed 

L1 L2 

EaI1

0,15 L1 0,15 L2 

EaI2
EaI1 

Method I 
Uncracked analysis with 
limited redistribution 
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sections in the cracked regions and the structure is re-analysed. In this analysis, 
the beams with cracked regions are treated as beams of non-uniform section. 
However, for continuous beams, we can use the simplification as follows. Where 
all the ratios of the length of adjacent continuous spans (shorter/longer) between 
supports are at least 0,6, the effects of cracking can be taken into account by 
using the flexural stiffness EaI2 over 15% of the span on each side of each 
internal support, and as the un-cracked values EaI1 elsewhere. The simplified 
Method II is shown in Figure B6.7. 

 
In this example, Method I is used. Accordingly, it is assumed that cross-sections in 
the hogging region are not cracked. 
 
Remark: 
 
The bending moments and internal forces are calculated using linear elastic 
global analysis so that, according to Table 5.1, clause 5.4.4, EN 1994-1-1, the 
appropriate redistribution of moments can be applied. 

 
It is assumed that the cross-section at the support is class 1, such that the bending 
moment at the support, determined by linear global analysis with uncracked 
sections, can be reduced to 40%. This is the maximum amount of the redistribution 
for cross-sections class 1 according to Table 5.1, clause 5.4.4, EN 1994-1-1. 
 
Remark: 
 
For a beam with all cross-sections in class 1 or class 2 only, we can increase the 
maximum moment at the support by amounts not exceeding 10% for uncracked 
analysis or 20% for cracked analysis. This increase would lead to a solution 
closer to rigid plastic global analysis. 

 
Adopting the maximum 40% reduction in support moment allowed, the maximum 
moments on composite section are: 
 
Design moment at the support (design hogging moment): 
 

, = 483·0,6 = 290Ed BM  kNm (load case 1) 
 
Design moment at mid-span (design sagging moment): 
 

,1 = 327 + 0,5·(0,4·325) = 392EdM  kNm (load case 2) 
 
The redistributed shear force is: 
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,
,max

10 290= · + = 38,9· + = 224
2 2 10

Ed B
Ed d

MLV e
L

 kN 

 
Remark: 
 
The redistributed design positive moment is an approximate value, assuming that 
the positive moment at mid-span increases by approximately 1/2 of the decrease 
in negative moment over the support. 

4.3 Check for the construction stage 

4.3.1 Selection of steel cross-section 

The approximate ratio of span to depth of the steel beam for a continuous 
composite secondary beam is: 
 

a

L
h

 25 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Wpl,y = 2194 cm3 
Wel,y = 1928 cm3 

Aa = 115,5 cm2 
ha = 500 mm 
ba = 200 mm 
tw = 10,2 mm 

tf = 16 mm 
r = 21 mm 

Iy,a = 48200 cm4 
Iz,a = 2142 cm4 

Iw,a = 1249000 cm6 
It,a = 89,29 cm4 
g = 90,7 kg/m 

Figure B6.8 Cross-section of steel beam IPE 500 
 
For span L = 10 m, the minimum depth of steel beam is: 
 

310·10= = = 400
25 25a
Lh  mm 

 
Section IPE 500 is selected with the cross-section and the dimensions shown in 
Figure B6.8. 

ba 
z 

z 

y y ha 

r

tw 

tf 
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4.3.2 Classification of the steel cross-section 

For tf = 16 mm, the yield strength is fy = 275 N/mm2. 
 

235 235= = = 0,92
275yf

 

 
For the execution stage, the neutral axis is located in the half depth of the web of 
the steel section. 
 
The classification of the steel cross-section is conducted according to Table 5.2, 
EN 1993-1-1. 
 
Flange: 
 
The outstand of the compression flange is shown in Figure B6.9. 
 
 
 
 
 
 
 
 

Figure B6.9 Classification of the flange (compressive stress is negative) 
 

– – 2· 200 – 10,2 – 2·21= = = 73,9
2 2

a wb t r
c  mm 

 
73,9= = 4,62
16f

c
t

 

 
The limiting value for class 1 is: 
 

f

c
t

 9· = 9·0,92 = 8,28  

4,62 < 8,28   Therefore, the flange in compression is class 1 
 
Web: 
 
The web subject to bending is shown in Figure B6.10. 
 

c 
tf 
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Figure B6.10 Classification of the web (compressive stress is negative) 
 

= = – 2· – 2· = 500 – 2·16 – 2·21 = 426a fc d h t r  mm 
 

426= = 41,8
10,2w

c
t

 

 
The limiting value for class 1 is: 
 

w

c
t

 72· = 72·0,92 = 66,2  

 
41,8 < 66,2   Therefore the web in bending is class 1 
 
The cross-section is class 1. 

4.3.3 Plastic resistance moment of the steel cross-section 

The design resistance moment for classes 1 and 2 cross sections is: 
 

,
, , ,

0

·
= = pl y yd

c Rd pl a Rd
M

W f
M M  

 
–2

, , ,
2194·27,5·10= = = 603

1,0c Rd pl a RdM M  kNm 

 
Verify that: 
 

,

,

y Ed

c Rd

M
M

 1,0 

ba 
z 

z 

y y c

r 

tw 
tf 
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244 = 0,40 < 1,0
603

 

 
Therefore the resistance moment is adequate. 

4.3.4 Shear resistance of the steel cross-section 

According to 6.2.2.3, EN 1994-1-1, the shear buckling resistance of an un-encased 
web should be verified using Section 5, EN 1993-1-5, if: 
 

72>wh
t

 

 
where: 
 

235 235= = = 0,92
275yf

 

 
= 1,2 , the factor defined in EN 1993-1-5 

 
= – 2· = 500 – 2·16 = 468w a fh h t  mm 

 
72 72· = ·0,92 = 55,2

1,2
 

 
468= = = 45,9
10,2

w w

w

h h
t t

 

 
Since 45,9 < 55,2, the condition is satisfied. The shear buckling resistance of the 
web need not be verified. 
 
Remark: 
 
The resistance of the composite beam to vertical shear is normally taken as the 
shear resistance of the steel section according to clause 6.2.6, EN 1993-1-1, 
which gives: 
 

, , ,
0

( / 3)
= = V y

pl Rd pl a Rd
M

A f
V V  
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For rolled I- and H-sections where the load is applied parallel to the web, the 
shear area is calculated as: 
 

= – 2· · + ·( + 2· )V a a f f wA A b t t t r , but not less than · ·w wh t  
 
The shear area AV is: 
 

= 115,5 – 2·20·1,6 +1,6·(1,02 + 2·2,1)VA  
 

= 59,9VA  cm2 
 

= 1,2  
 

· · = 1,2·46,8·1,02 = 57,3w wh t  cm2 
 
59,9 cm2 > 57,3 cm2 
 
Therefore, AV = 59,9 cm2. 
 
The design plastic shear resistance of the steel section is: 
 

, , ,
0

( / 3)
= = V y

pl Rd pl a Rd
M

A f
V V  

 

, , ,
59,9 27,5= = · = 951
1,0 3pl Rd pl a RdV V  kN 

 
Verify that: 
 

,

Ed

pl Rd

V
V

 1,0 

 
122 = 0,13 < 1,0
951

 

 
Therefore, the shear resistance of the cross-section is adequate. 

4.3.5 Interaction of M-V (bending and shear force) 

Where the shear force is less than half the plastic shear resistance its effect on the 
resistance moment can be neglected. 
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,0,5· = 0,5·951 = 476pl RdV  kN 
 

, = 122Ed BV  kN ,< 0,5 = 476pl RdV  kN no reduction in the resistance moment 
 

, , ,= = 603y V Rd c RdM M  kNm 
 
Verify that: 
 

,

,

y Ed

c Rd

M
M

 1,0 

 
244 = 0,40 < 1,0
603

, the resistance to combined shear and bending is satisfactory. 

4.3.6 Lateral-torsional buckling of the steel beam 

The continuous beam is unpropped at the construction stage. It is necessary to 
verify the resistance to lateral-torsional buckling of the steel beam according to 
EN 1993-1-1. 

 
The elastic critical moment of lateral-torsional buckling is calculated as: 
 

22
2 2

1 2 22 2

( · ) · ·· ·
= · ·[ ( ) · + + ( · ) – · ]

( · ) · ·
w tz

cr g g
w w z z

I k L G IE I k kM C C z C z
k k Ik L E I

 

 
L = 1000 cm the length between points at which the compression flange is 

laterally restrained, 
 

50,0= = = 25,0
2 2g
hz  cm the distance of the shear centre from the point of 

application of the load, 
 

21000= = = 8077
2(1 + ) 2·(1 + 0,3)

EG  kN/cm2 

 
The shape of the moment diagram and the load from Figure B6.3 give: 
 
- the effective length factors that depend on the support conditions at the end 

sections = 1,0k  and = 1,0wk , 
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- the coefficient which takes into account the shape of the moment diagram C1 
and the coefficient which takes into account the destabilizing or stabilizing 
effect of the position of the load C2 are found according to [3]. 

 
2 219,5·10,0= = – = –1,00

8 8·243
qL
M

 

 
0= = 0

243
 

 
1 = 2,22C  

 
2 = 0,88C  

 
2

2

2
2 2

2

· 21000·2142= 2,22· ·
(1·1000)

1 1249000 (1·1000) ·8077·89,29[ ( ) · + + (0,88·25) – 0,88·25]
1 2142 ·21000·2142

crM

 

 
Mcr = 29450 kNcm = 295 kNm 
 
Non-dimensional slenderness: 
 

·
= y y

LT

cr

W f
M

 

 
for classes 1 and 2 Wy = Wpl,y 
 

,0
2194·27,5= = 1,43 > = 0,4

29450
LT LT  

 
The reduction factor for lateral-torsional buckling – General method: 
 

22

1=
+ –

LT

LTLT LT

 but LT   1,0 

 
2

= 0,5 [1 + ( – 0,2) + ]LT LTLT LT  
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500= = 2,5 > 2
200

h
b

, rolled I-section  the buckling curve b is governed 

 
For the buckling curve b  = 0,34LT , ( LT is the imperfection factor). 
 

2= 0,5 [1 + 0,34·(1,43 – 0,2) +1,43 ] = 1,73LT  
 

2 2

1= = 0,37
1,73 + 1,73 – 1,43

LT  

 
The design buckling resistance moment is: 
 

,
1

·
= · y y

b Rd LT
M

W f
M  

 
for classes 1 and 2 Wy = Wpl,y 
 

,
2194·27,5= 0,37· = 22324

1,0b RdM  kNcm = 223  kNm 

 
Verify that: 
 

,

Ed

b Rd

M
M

 1,0 

 
244 = 1,09 > 1,00
223

 

 
Therefore, the buckling resistance moment of the steel beam is not adequate and 
the steel beam must be laterally restrained at the construction stage. 
 

Remark: 
 
Where the profiled steel sheeting spans perpendicularly to the beam and is 
attached to its top flange, the beam can be considered as restrained along its 
length. For this case, the verification is conducted according to EN 1993-1-1. 
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4.4 Check for the composite stage 

4.4.1 Effective width of the concrete flange 

The effective width of the concrete flange is calculated according to the expression 
(5.3), EN 1994-1-1: 
 

0= +eff eib b b  
 

0 = 0b  (there is only one row of shear connectors) 
 

=
8

e
ei

L
b  bi 

 
The equivalent span of the beam in the mid-span region (L1 = L2 = 10,0 m) in 
accordance with Figure 5.1, EN 1994-1-1 is: 
 

,1 1= 0,85· = 0,85·10,0 = 8,5eL L  m 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B6.11 Equivalent spans for effective width of the concrete flange and  
 effective width dimensions 

 

L1 = 10,0 m L2 = 10,0 m 

Le=0,25(L1+L2) for beff,2 

Le=0,85L1 for beff,1 Le=0,85L1 for beff,1 

b0 be1 be2

b0 

beff

b1 b2 
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1
3,0= = = 1,5

2 2
bb  m 

 

2
3,0= = = 1,5

2 2
bb  m 

 
1

1 =
8
e

e
L

b  b1 

 

1
8,5= = 1,063
8eb  m 1< = 1,5b  m 

 
Adopted: 1 = 1,063eb  m 
 

,2
2 =

8
e

e

L
b  b2 

 

2
8,5= = 1,063
8eb  m 2< = 1,5b  m 

 
Adopted: 2 = 1,063eb  m 
 

,1 0 1 2= + + = 0 +1,063 +1,063 = 2,125eff e eb b b b  m 
 
The equivalent span of the beam for the region at internal support (L1 = L2 = 10,0 
m) in accordance with Figure 5.1, EN 1994-1-1 is: 
 

,2 1 2= 0,25·( + ) = 0,25·(10,0 +10,0) = 5,0eL L L  m 
 

1
3,0= = = 1,5

2 2
bb  m 

 

2
3,0= = = 1,5

2 2
bb  m 

 
,2

1 =
8
e

e

L
b  b1 

 

1
5= = 0,625
8eb  m 1< =1,5b  m 
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Adopted: 1 = 0,625eb  m 
 

,2
2 =

8
e

e

L
b  b2 

 

2
5= = 0,625
8eb  m 2< =1,5b  m 

 
Adopted: 2 = 0,625eb  m 
 

,2 0 1 2= + + = 0 + 0,625 + 0,625 = 1,25eff e eb b b b  m 

4.4.2 Classification of the composite cross-section 

The local buckling of cross-sections affects the resistance and rotation capacity 
of sections. Therefore, local buckling should be considered in design. The 
classification of cross-sections of composite beams depends on the local 
slenderness of the flange (b/t) and the web (c/t) of steel beams, the position of 
the plastic neutral axis and the area of longitudinal reinforcement in the slab at 
the internal support.  
 
The section classification in EN 1993-1-1 is adopted for composite sections. 
Table 5.2 of EN 1993-1-1 gives limits for the width-to-thickness ratios for the 
compression parts of a section for each classification. In addition to the 
limitations of local slenderness of the flange and the web of steel beams, 
requirements for ductility of reinforcement in tension are given for class 1 and 
class 2. The reinforcement should have the ductility class B or C, Table C.1, EN 
1992-1-1, and according to clause 5.5.1(5), EN 1994-1-1, the minimum area of 
reinforcement As should satisfy the following condition: 
 
As  s · Ac 
 
with, 
 

=
235

y ctm
s c

sk

f f
k

f
 

 
where: 
 
Ac is the effective area of the concrete flange, 
fy is the nominal (characteristic) value of the yield strength of the structural 

steel in N/mm2, 
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fsk is the characteristic yield strength of the reinforcement N/mm2, 
fctm is the mean tensile strength of the concrete, 
 is a factor which is: 

  = 1,1 for the procedure plastic–plastic (cross-section class 1), 
  = 1,0 for the procedure elastic–plastic (cross-section class 2), 
kc is a coefficient which takes into account the stress distribution within the 

section immediately prior to cracking and is 
0

1= + 0,3
1 + / (2 )c

c

k
h z

 1,0 

hc is the thickness of the concrete flange, excluding any haunch or ribs, 
z0 is the vertical distance between the centroids of the uncracked concrete 

flange and the uncracked composite section, calculated using the modular 
ratio n0 = Ea/Ecm for short-term loading, i.e. at time of the first loading t0. 

4.4.2.1 Cross-section at mid-span 

The cross-section in bending at the construction stage is class 1 and therefore, at 
the composite stage, the cross-section is also class 1. 

4.4.2.2 Cross-section at the internal support 

Classification of flange 
 
At the internal support, a region of hogging bending, the bottom flange of steel 
section is in compression. According to the classification of the flange from section 
4.3.2, the flange satisfies the condition for class 1. 
 
Classification of web 
 
In composite beams subjected to hogging bending, addition of longitudinal 
reinforcement in the concrete flange increases the depth of the steel web in 
compression, ·c, in Figure B6.12. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B6.12 Classification of the web (compression is negative) 
 

ba 
z 

z 

y y c
·c

r 

tw 
tf 



198 B     Composite beams 
 

 

For > 0,5 , the limiting value for class 1 is: 
 
c
t

396·
13 – 1

 

 
= = 500 – 2·16 – 2·21 = 426c d  mm 

 
To classify the web, the position of the plastic neutral axis should be determined. 
 
The design resistance moment at internal support, MRd, can be calculated as: 
 

2
, , 0= · + – 0,25 · (1 – )·Rd si i a V Rd w ydM N z M t d f  

 
The area of longitudinal reinforcement in the concrete flange at the internal support 
rather affects the class of the web. It is necessary to choose a value for the area of 
longitudinal reinforcement. The reinforcement bars are assumed to be 16 mm at 
200 mm with 25 mm of the concrete cover, because larger diameter bars may not 
give the required control of crack widths. Therefore:  
 

= 16bard  mm,  2= · / 4 = 201bar barA d  mm2,  201·1000 200 = 1005  mm2/m 
 

,2= ·1005 / 1000 = 1250·1005 / 1000 = 1256s effA b  mm2 = 12,56  cm2 
 
The force in these bars is: 
 

= ·s sd sN f A  
 

–3= 400·1256·10 = 502sN  kN 
 
In the case of the hogging bending (moment at internal support), the plastic neutral 
axis lies within the web of the steel beam, as shown in Figure B6.13: 
 
According to 6.2.2.4, EN 1994-1-1, where the shear force exceeds half the shear 
resistance its effect on the resistance moment should be taken into account. The 
reduction factor for the design yield strength of the web is (1 – ), where: 
 

22
= ( – 1)Ed

Rd

V
V

 

 
and VRd is the design shear resistance. 
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Figure B6.13 Determination of the design resistance moment 
 in the hogging region 

 
For the design shear force = 243EdV  kN and the design shear resistance, 
determined in Section 4.3.4 for the steel section only, , , ,= = 951pl Rd pl a RdV V  kN is: 
 

243= = 0,26 < 0,50
951

Ed

Rd

V
V

 

 
Therefore, there is no reduction in the resistance moment. 
 
From equilibrium, the design tensile force in reinforcement =si sN N  and the 
design compressive force in the web 0= · ·si yd wN d f t , which gives: 
 

0
502= = = 17,9

· 1,02·27,5
s

w yd

N
d

t f
 cm 

 
The distance between the plastic neutral axis and the top of the slab zpl is: 
 

0 50 17,9= + + – = 9,9 +5,1 + – = 31,1
2 2 2 2
a

pl c p
h d

z h h  cm 

 
The distance between the centroid of the steel section and the centroid of the 
reinforcement is: 
 

50= + + – = 9,9 + 5,1 + – 2,5 = 37,5
2 2
a

i c p si
h

z h h z  cm 

 

 fsd

 

zsi

beff

Tc

PNA 
Ta (centroid of  
       steel section) 

1

3

2

PNA  plastic neutral axis 

tw 

ba

hc 

ha 

hp 

4

zpl 

tf

Nsi 

Nsi 

 zi

 fyd  fyd

 fyd

=
 

+ 

 fyd 

 fyd 

 fsd

 

+ + 

d0 
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Where the shear force reduces the resistance moment of the steel section, the 
reduced design resistance moment is: 
 

, , , , , , , ,= + ( – )(1 – )a V Rd pl f Rd pl a Rd p f RdM M M M  
 
In this case, there is no reduction in the resistance moment. Therefore, the design 
resistance moment of the steel section Mpl,a,Rd is taken into account instead of the 
reduced design resistance moment Ma,V,Rd. 
 
The design value of the plastic resistance moment of the steel section is: 
 

, , = 60300pl a RdM  kNcm = 603  kNm 
 
Therefore, the design value of the plastic resistance moment of the composite 
section at internal support is: 
 

2
0

, , ,

· ·
= · + –

4
w yd

pl Rd s i pl a Rd

t d f
M N z M  

 
2

,
1,02·17,9 ·27,5= 502·37,5 + 60300 – = 76878

4pl RdM  kNcm = 769  kNm 

 
For I-sections subject to major-axis bending and axial force with the neutral axis in 
the web, the parameter c can be calculated as: 
 

1 1= ( + – ( + ))
2 2 ·
a Ed

c f
w yd

h N
t r

c t f
 

 
In this case, the design axial compressive force NEd is equal to the design tensile 
force in reinforcement. The design axial compressive force NEd is: 
 

= = 502Ed sN N  kN 
 
The parameter c is: 
 

1 50 1 502= ( + – (1,6 + 2,1)) = 0,71
42,6 2 2 1,02·27,5c  

 
For  > 0,5, the limiting value for class 1 is: 
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426= = 41,8
10,2

c
t

396· 396·0,92= = 44,3
13 – 1 13·0,71 – 1

 

 
41,8 < 44,3   the web is class 1 
 
Therefore, the cross-section is class 1. 
 
All sections within the span of the composite beam, for both sagging and hogging 
regions, are in class 1. 
 
Minimum reinforcement area As 
 
Within the effective width of the composite section, the ductile reinforcement is 
selected. According to clause 5.5.1(5), EN 1994-1-1, the minimum area of 
reinforcement As should satisfy the following condition: 
 
As  s · Ac 
 
with, 
 

=
235

y ctm
s c

sk

f f
k

f
 

 
The area of reinforcement is: 
 

= 12,56sA  cm2, (bars 16 mm at 200 mm) 
 
The effective area of the concrete slab at the internal support is: 
 

,2= · = 125·9,9 = 1238c eff cA b h  cm2 
 
For the elastic–plastic procedure, the factor  is 1,0. 
 
The coefficient kc takes into account the stress distribution within the section 
immediately prior to cracking and is: 
 

0

1=
1 + / (2 )c

c

k
h z

 1,0 

 
The thickness of the concrete flange hc is 9,9 cm. The vertical distance between the 
centroids of the uncracked concrete flange and the uncracked composite section is 
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denoted by z0. It is calculated using the modular ratio n0 = Ea/Ecm for short-term 
loading, i.e. at the time of the first loading t0. 
 
The modular ratio n0 is: 
 

0
210= = = 6
35

a

cm

E
n

E
 

 
The effective width of the concrete flange at the internal support is: 
 

,2 = 125effb  cm 
 
Transformed to the ideal steel section, the effective width is: 
 

,2

0

125= = 20,8
6

effb
n

 cm 

 
The area of the ideal steel cross-section is: 
 

,2

0

= + · = 115,5 + 20,8·9,9 = 321,4eff
a c

b
A A h

n
 cm 

 
The distance between the neutral axis and the centroid of the steel section is: 
 

,2

0
0

50 9,9· ·( + + ) 20,8·9,9·( + + 5,1)2 2 2 2= = = 22,5
321,4

eff a c
c p

n

b h hh h
n

z
A

 cm 

 
Thus, the vertical distance between the centroids of the uncracked concrete flange 
and the uncracked composite section is: 
 

0 0
50 9,9= ( + + ) – = ( + + 5,1) – 22,5 = 35,1 – 22,5 = 12,6

2 2 2 2
a c

p n
h h

z h z  cm 

 
Therefore: 
 

0

1 1= + 0,3 = + 0,3 = 1,02
1 + / (2 ) 1 + 9,9 / (2·12,6)c

c

k
h z

 1,0 

 
= 1,00ck  
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275 3,5= = 1,0 1,0 = 0,890
235 235 460

y ctm
s c

sk

f f
k

f
 % 

 
The final verification of the minimum reinforcement is: 
 

= 12,56sA  cm2 · = 0,00890·1238 = 11,02s cA  cm2 
 
The condition is satisfied. 

4.4.3 Check of shear connection 

4.4.3.1 Resistance of the headed stud connectors 

The design resistance of a single-headed shear connector in a solid concrete slab 
is determined by shank failure of the stud ( (1)

RdP ) or by concrete failure ( (2)
RdP ). 

The design resistance of a single-headed shear connector in a solid concrete slab, 
automatically welded in accordance with EN 14555, should be determined as the 
smaller of: 
 

(1) (2)= min( , )Rd Rd RdP P P  
 

2
(1) 0,8· ·( · ) / 4

= u
Rd

V

f d
P  

 
2

(2) 0,29· · · ·
= ck cm

Rd
V

d f E
P  

 
where: 
 
d is the diameter of the shank of the stud (16 mm  d  25 mm), 
hsc is the overall nominal height of the stud, 
fu is the specified ultimate tensile strength of the material of the stud but not 

greater than 500 N/mm2, 
fck is the characteristic cylinder compressive strength of the concrete, 
Ecm is the mean value of the secant modulus of elasticity of the concrete, 

V is the partial factor for the stud ( V = 1,25), 
 is the correction factor which takes into account the ratio of the height of 

the stud to the diameter of its shank. 
 
The correction factor  is calculated as: 
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= 0,2[( ) +1]sch
d

     for     3 sch
d

 4 

 

= 1,0      for     > 4sch
d

 

 
Since hsc/d = 95/19 = 5,00, then  = 1. 
 
Therefore: 
 

2
(1) 0,8· ·( · ) / 4

= u stud
Rd

V

f d
P  

 
2

(1) –30,8·450·( ·19 ) / 4= ·10 = 82
1,25RdP  kN 

 
2

(2) 0,29· · · ·
= ck cm

Rd
V

d f E
P  

 
2 3

(2) –30,29·1·19 · 40·35·10
= ·10 = 99

1,25RdP  kN 

 
Remark: 
 
The resistance of headed studs used as shear connectors with profiled steel 
sheeting is less than the design resistance of headed studs used as shear 
connectors in a solid concrete slab. 
 
The resistance of a headed stud within profiled sheeting is determined by 
multiplying the design resistance for a headed stud connector in a solid concrete 
slab (PRd) by a reduction factor kl for profiled steel sheeting spanning parallel to 
the supporting beam, and kt for profiled steel sheeting spanning transverse to the 
supporting beam. 
 
For profiled steel sheeting spanning parallel to the supporting beam, the design 
resistance of a single-headed shear connector is: 
 

(1) (2)= ·min( , )Rd l Rd RdP k P P  
 
The reduction factor kl is calculated according to clause 6.6.4.1(2), EN 1994-1-1: 
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0= 0,6( )( – 1)sc
l

p p

b h
k

h h
 1,0 

 
where hsc is the overall height of the stud, but not greater than hp + 75 mm. 
 
For profiled steel sheeting spanning transverse to the supporting beam, the 
design resistance of a single-headed shear connector is: 
 

(1) (2)= ·min( , )Rd t Rd RdP k P P  
 
The reduction factor kt is calculated according to clause 6.6.4.2(1), EN 1994-1-1: 
 

00,70= ( – 1)sc
t

p pr

b h
k

h hn
 kt,max 

 
In the above expression nr is the number of studs in one rib at a beam 
intersection, not to exceed 2 in the calculations, and kt,max is the maximum value 
of the reduction factor kt which is given in Table 6.2, EN 1994-1-1. 

 
Since in this example the profiled steel sheeting has ribs running transverse to the 
supporting beam, we need to check the effect of a reduction factor, kt, on the shear 
connector resistance. 
 
The reduction factor depends on the overall height of the stud, hsc, the dimensions 
of the trough in the profiled sheeting (Figure B6.2), the thickness of the profiled 
sheeting (assumed to be be > 1,0 mm) and the number of studs per trough, nr. 
 
For a single stud per trough the number of studs per trough is nr = 1. 
 
The reduction factor kt is: 
 

00,7= · ·( – 1)sc
t

p pr

b h
k

h hn
 

 
0,7 140 95= · ·( – 1) = 1,66

51 511tk  but  1,00 according to Table 6.2, EN 1994-1-1 

 
Since 1,66 > 1,00, there is no reduction in the shear connector resistance. 
 
Therefore, the design shear connector resistance is: 
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(1)= = 82Rd RdP P  kN 

4.4.3.2 Arrangement of the headed studs and the degree of shear connection 

For the span with loading 38,9 kN/m, the end reaction is REd,A = 146 kN. The point 
of maximum positive moment is at a distance 146/38,9 = 3,75 m from the support. 
Therefore, for the positioning of the shear stud connectors between this support and 
the point of maximum positive moment there are 24 available troughs. There are 41 
shear stud positions between the internal support and the point of maximum 
negative moment. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B6.14 Arrangement of the stud connectors for load case 1 
 
For load case 2 the end reaction is REd,A = 162 kN. The point of maximum positive 
moment is at a distance 162/38,9 = 4,16 m  4,00 from the support. Therefore, for 
the positioning of the shear stud connectors between this support and the point of 
maximum positive moment there are 26 available troughs. There are 39 shear stud 
positions between the internal support and the point of maximum negative moment. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B6.15 Arrangement of the stud connectors for load case 2 
 
 

10,0 m 

250 

24 studs, one stud per rib,  
at 153 mm centres 

41 studs, one stud per rib, 
 at 153 mm centres 

3,75 m 
A B 

10,0 m 

250 

26 studs, one stud per rib, 
at 153 mm centres 

39 studs, one stud per rib, 
at 153 mm centres 

4,00 m 
A B 
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Remark: 
 
Partial shear connection is permitted in sagging regions of composite beams. 
Full shear connection is required in hogging regions of composite beams. 

 
The longitudinal shear force transfer, VL,Ed, between the support A and the point of 
maximum positive moment is: 
 

(1)
, = 24· = 24·82 = 1968L Ed RdV P  kN (load case 1) 

 
(1)

, = 26· = 26·82 = 2132L Ed RdV P  kN (load case 2) 
 
Remark: 
 
The assumed critical area is between the support A and the point of maximum 
positive moment because, between the point of maximum positive moment and 
the internal support there are significantly more studs, even if the studs within 
the hogging region of the beam are neglected. This assumption should be 
verified when the number of studs needed to yield the slab reinforcement in the 
hogging region is determined (see Section 4.4.4.2). 

 
The equivalent span of the beam at mid-span (L1 = L2 = 10,0 m) according to 
Figure 5.1, EN 1994-1-1, is: 
 

,1 1= 0,85· = 0,85·10,0 = 8,5eL L  m 
 
For Le  25 m, according to clause 6.6.1.2 (3), EN 1994-1-1, the limit for the 
degree of shear connection is: 
 

min
y

355= 1 – ( )·(1,00 – 0,04· ),eL
f

       0,4 

 

min
355= 1 – ( )·(1,00 – 0,04·8,5) = 0,15,
275

       0,4 

 
A larger value is adopted: 
 

min = 0,40  
 
The actual degree of shear connection, , is given by: 
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,

, ,

1968= = = = 0,62
3176

L Edc

c f pl a

VN
N N

, (load case 1) 

 
,

, ,

2132= = = = 0,67
3176

L Edc

c f pl a

VN
N N

, (load case 2) 

 
Both of these values are greater than min = 0,40 . Therefore the condition is 
satisfied. 

4.4.4 Resistance moment of the composite cross-section 

4.4.4.1 Resistance moment at mid-span 

According to clause 6.2.1.3, EN 1994-1-1, the partial shear connection can be 
used in the region of sagging bending. 
 
If ductile shear connectors are used, the resistance moment can be determined by 
means of rigid plastic theory in accordance with 6.2.1.2, EN 1994-1-1. However, 
the reduced value of the compressive force Nc must be taken into account instead 
of the force Nc,f. 
 
It is very convenient to use the diagram of partial shear connection, shown in 
Figure 6.5, EN 1994-1-1, for determining the resistance moment. According to 
clause 6.2.1.3(5), EN 1994-1-1, the design resistance moment of the composite 
beam in sagging region can be conservatively calculated by the straight line AC 
in Figure 6.5, EN 1994-1-1: 
 

, , , , ,
,

= + ( – )· c
Rd pl a Rd pl Rd pl a Rd

c f

N
M M M M

N
 

 
where: 
 
Mpl,a,Rd  is the design plastic resistance moment of the structural steel section 

alone in sagging region, 
Mpl,Rd  is the design plastic resistance moment of the composite section with full 

shear connection to sagging bending, 
Nc,f  is the design compressive force in the concrete flange with full shear 

connection, 
Nc is the design compressive force in the concrete flange. 

 
In this example, the simplified procedure is used. The procedure according to rigid 
plastic theory is used in examples B7 and B8. The number of shear studs between 
the supports and the point of maximum sagging bending moment varies between 
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the two load cases. Accordingly, the degree of shear connection varies between 
load case 1 and load case 2. Theoretically, it is necessary to consider the separate 
values of sagging resistance moment corresponding to the two load cases. 
 
However, in this example a conservative approach is adopted. The sagging 
resistance moment of the composite section is calculated using the minimum shear 
connection corresponding to load case 1. Then, this resistance moment is compared 
with the maximum sagging design moment corresponding to load case 2. 
 
The resistance moment for the sagging regions of the composite beam is calculated 
in the same way as for the simply supported composite beam. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B6.16 Cross-section of composite beam at mid-span 
 
The plastic neutral axis lies within the thickness of the concrete flange if: 
 

, ,>c f pl aN N  
 
The design plastic resistance of the structural steel section to normal force is: 
 

,
,0

· 115,5·27,5= = = 3176
1,0

a yd
pl a

M

A f
N  kN 

 
The design compressive resistance, Nc,f, neglecting the contribution of the 
reinforcement in compression according to clause 6.2.1.2(1), EN 1994-1-1, is: 
 

, = · ·0,85c f c eff cdN h b f  
 

–3
, = 99,0·2125·0,85·26,7·10 = 4774c fN kN 

 
4774 > 3176 , the plastic neutral axis lies within the thickness of concrete flange. 

beff 0,85 fcd

Tc

 fyd

PNA 

Ta (centroid of 
      steel section) 

1

3

2

PNA - plastic neutral axis 

+ 

tw 

ba

hc 

ha 

hp 

4

 x1 = zpl

tf

Npl,a 

Nc,f 

 z 
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Therefore, the design plastic resistance moment of the composite section with full 
shear connection in sagging region Mpl,Rd is: 
 

, ,= ·pl Rd pl aM N z  
 

, ,= ·(0,5 + + – 0,5 )pl Rd pl a a c p plM N h h h z  
 

,= <
·0,85

pl a
pl c

eff cd

N
z h

b f
 

 
3176= = 0,66

2125·0,85·2,67plz  cm < = 9,9ch  cm 

 
, = 3176·(0,5·50 + 9,9 +5,1 – 0,5·0,66) = 125992pl RdM  kNcm = 1260  kNm 

 
Thus, the design resistance moment of composite beam in the sagging region with 
the partial shear connection (using the minimum shear connection) is: 
 

, , , , ,
,

= + ( – )· c
Rd pl a Rd pl Rd pl a Rd

c f

N
M M M M

N
 

 
= 603 + (1260 – 603)·0,62 = 1010RdM  kNm 

 
The sagging bending moment is MEd = 392 kNm and the check is as follows: 
 

,

Ed

pl Rd

M
M

 1,0 

 
392 = 0,39 < 1,0

1010
, the condition is satisfied 

4.4.4.2 Resistance moment at the internal support 

The design plastic resistance moment in hogging region is determined in 
accordance with clause 6.2.1.2, EN 1994-1-1, assuming that there is the full 
shear connection between structural steel, reinforcement and concrete. The 
appropriate shear connection needs to be provided to ensure yielding of the 
reinforcement in tension. 
 
In other words, there need to be sufficient studs in the hogging region. 
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Therefore, the yielding of the reinforcement in tension occurs before failure of 
the studs. 

 
The required number of studs to ensure that yielding of the reinforcement in 
tension is determined if the design tensile force in reinforcement Ns is divided by 
the governed design resistance of the studs: 
 

(1)

502= = 6
82

s

Rd

N
P

 

 
Therefore, in the hogging region of the beam there are sufficient studs to yield the 
reinforcement in tension. 
 
The design plastic resistance moment in hogging region was calculated in Section 
4.4.2.2 at the classification of the composite section and it is: 
 

, = 769pl RdM  kNm 
 
The design bending moment at the internal support is MEd = 290 kNm and the 
check is as follows: 
 

,

Ed

pl Rd

M
M

 1,0 

 
290 = 0,38 < 1,0
769

, the condition is satisfied 

4.4.5 Lateral-torsional buckling of the composite beam 

Clause 6.4.3, EN 1994-1-1, gives guidance for the verification of buckling 
resistance moment of continuous beam in buildings. 
 
If the conditions, given in clause 6.4.3(1), EN 1994-1-1, are satisfied, the 
verification of lateral-torsional buckling is not necessary. 
 
The conditions are as follows: 
 
a) The ratio of adjacent spans 
 
The difference in length of adjacent spans is less than 20% of the shorter span. 
The length of the cantilever is less than 15% of the adjacent span. 
 
0,8  L/Li  1,20              Lk/L  0,15 
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b) The ratio of permanent and total design loads 
 
The loads are uniformly distributed on each span. The design permanent load is 
greater than the total design load by 40% or more. 
 

·
· + ·

G k

G k Q k

G
G Q

 0,4 

 
c) Shear connection 
 
The shear connection between the upper flange of the steel beam and the 
concrete flange should be provided in accordance with clause 6.6 (EN 1994-1-1). 
 
d) The inverted-U frame 
 
The same concrete flange is also attached to one or more supporting steel beams 
so that they form an inverted-U frame. 
 
e) The composite slab 
 
The span of the composite slab between the two supporting beams of the 
inverted-U frame should be taken into consideration. 
 
f) The lateral restraint of the bottom flange of the steel beam 
 
The bottom flange of steel beam is laterally restrained at each support. Also, the 
web of the steel beam is stiffened. 
 
g) Composite beams that are not partially encased 
 
The limitations of depth for steel beams of IPE section or HE section that are not 
partially encased are given in Table B6.1. 

 L  Li

 L  Li  L  Lk
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h) Composite beams that are partially encased 
 
The depth of partially encased composite beams does not exceed the limit given 
in Table B6.1 by more than 200 mm for steel grades up to S355 and by 150 mm 
for grades S420 and S460.  
 
Table B6.1 Maximum depth h (mm) of uncased steel beam, EN 1994-1-1 

Steel beam Nominal steel grade 
S235 S275 S355 S420 and S460 

IPE 600 550 400 270 
HE 800 700 650 500 

 
According to clause 6.3.2.2(4), EN 1993-1-1, the verification of lateral-torsional 
buckling for the member in bending may be neglected if at least one of the 
following conditions is satisfied: 
 

LT  ,0LT  or /Ed crM M  ,0LT , with maximum value ,0 = 0,4LT  
 
Verification of conditions: 
 
a) The ratio of adjacent spans 
 
The condition is satisfied because the spans L1 and L2 are the same. 
 
b) The ratio of permanent and total design loads 
 

,2 ,3

,2 ,3

· + · 1,35·4,11 +1,35·0,50= = 0,48 > 0,4
· + · + · 1,35·4,11 +1,35·0,50 +1,5·4,5

G k G k

G k G k Q k

g g
g g q

 

 
The condition is satisfied. 
 
c) Shear connection 
 
The condition is satisfied. 
 
d) The inverted-U frame 
 
The condition is satisfied. 
 
e) The composite slab 
 
The condition is satisfied. 
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f) Lateral restraint of the bottom flange of the steel beam 
 
The condition is satisfied. 
 
g) Composite beams that are not partially encased 
 
The condition is satisfied. 
 
h) Composite beams that are partially encased 
 
In this case, the composite beam is not partially encased. The condition is not 
governed. 
 
Since the conditions are satisfied, the additional verification to lateral-torsional 
buckling is not necessary. 

4.4.6 Check of longitudinal shear resistance of the concrete flange 

4.4.6.1 Check of transverse reinforcement 

In practice it is usual to neglect the contribution of the steel sheeting, and the 
cross-sectional area of the transverse reinforcement Asf at spacing sf should 
satisfy: 
 

·sf
sd

f

A
f

s
 , ·

cot
f

L Ed

h
 

 
where: 
 
Asf/sf  is the transverse reinforcement expressed in mm2/m, 
hf  is the depth of concrete above the profiled sheeting, see Figures B6.17 

and B6.18, 
 is the angle between the diagonal strut and the axis of the beam (strut-

and-tie model), 
vL,Ed is the design longitudinal shear flow in the concrete slab. 

 
Remark: 
 
In this example, the contribution of the profiled steel sheeting to the transverse 
reinforcement is neglected, although clause 6.6.6.4(4), EN 1994-1-1 allows that 
the contribution of the profiled steel sheeting with ribs transverse to the beam, 
continuous across the top flange of the steel beam and with mechanical 
interlocking to be taken into account. 
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The transverse reinforcement (Asf/sf) expressed in mm2/m can be denoted as At, the 
cross-sectional area of the top transverse reinforcement, for failure due to shear in 
the failure plane shown in Figure B6.17 as section a-a. 
 
 
 
 
 
 
 
 

Figure B6.17 Surface of potential failure in longitudinal shear 
 
When the concrete flange is in compression, longitudinal shear flow vL,Ed can be 
defined by the expression: 
 

1,,1
, ,1

,

= = c effL Edc
L Ed

v v c eff

AVN
v

a a A
 

 
where: 
 
av is the critical length (the distance between two given sections, Figure 

B6.18), 
Nc1 is the change in the longitudinal compressive forces in the slab over the 

critical length av, see Figure B6.18, 
VL,Ed is the design longitudinal shear force in the steel-concrete interface or in 

the concrete flange, 
, ,= min( , , )L Ed pl a c RdV N N P  

 
When the concrete flange is in tension, longitudinal shear flow vL,Ed can be 
defined by the expression: 
 

,1 1
, ,1

1 2

= =
+

L Eds s
L Ed

v v s s

VN A
v

a a A A
 

 
where: 
 
av is the critical length (the distance between two given sections, Figure 

B6.18), 
Ns1 is the change of the longitudinal tensile forces in the slab over the critical 

length av, see Figure B6.18, 
VL,Ed is the design longitudinal shear force in the steel-concrete interface or in 

the concrete flange, 

a

a

At
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, = min( , )L Ed s RdV N P  
 
 
 
 
 
 
 
 
 
 
 
Figure B6.18 Determination of longitudinal shear forces in the concrete flange 

 
In this example, only the region LI = 3,75 m (load case 1) is taken into 
consideration. The design longitudinal shear force is determined from minimum 
resistance of the steel section, concrete and shear connectors: 
 

, ,= min( , , )L Ed pl a c RdV N N P  
 

, = 3176pl aN  kN 
 

= 1968RdP  kN 
 

, = 4774c fN  kN 
 
The maximum force that can be transferred is limited by the resistance of the shear 
connectors, and the design shear stress, vL,Ed, is determined for one shear connector 
per trough of profiled sheeting: 
 

= 153va  mm 
 

, = = 82L Ed RdV P  kN 
 

= 400sdf  N/mm2 
 

= = 99f ch h  mm 
 

3
,1

,
82·10= = = = 2,71

· 2 2·99·153
L Edc

L Ed
f v f v

VN
h a h a

 N/mm2 

 

Concrete flange in tension: 
Ns1 

As1 

As2 

Ns1 + Ns1 

vL,Ed,1

VL = VL,Ed 

av 

hf 

Concrete flange in compression: 

beff be,1 

be,2 

Nc1 

vL,Ed,1

VL = VL,Ed

av 

Ac1,eff 

Nc1 + Nc1 

hf 
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Remark: 
 
In order to prevent splitting of the concrete flange, for the adopted "truss model", 
according to clause 6.2.4(4) EN 1992-1-1, the angle  between the concrete 
diagonals and the longitudinal direction is limited to the value: 
 
26,5º    45º concrete flange in compression 
 
38,6º    45º concrete flange in tension 

 
In order to minimize the cross-sectional area of the transverse reinforcement, the 
minimum angle  is selected. For the concrete flange in tension (in the region of 
the internal support), the minimum angle  is: 
 

= 38,6°  
 

·sf
sd

f

A
f

s
  , ·

cot
f

L Ed

h
 

 
sf

f

A
s

, 32,71 99· = ·10 = 535
cot 400 cot 38,6

fL Ed

sd

h
f

 mm2/m 

 
The reinforcement provided is 12 mm bars at 200 mm, for which: 
 

2·12 1000= · = 565
4 200tA  mm2/m > 535 mm2/m 

 
According to EN 1994-1-1, clause 6.6.6.3, the minimum area of transverse 
reinforcement is determined in accordance with EN 1992-1-1, clause 9.2.2(5), 
which gives the minimum area of reinforcement as a proportion of the concrete 
area. The ratio is: 
 

,min
,

0,08
= ck

w
yr k

f
f

 

 
where: 
 
fck is the characteristic compressive cylinder strength of the concrete at 28 

days in N/mm2, 
fyr,k = fsk is the characteristic yield strength of the reinforcement in N/mm2. 
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The minimum area of transverse reinforcement is: 
 

,min
,

0,08 0,08 40= = = 0,0011
460

ck
w

yr k

f
f

 

 
= · = 99·1000 = 99000c cA h b  mm2 

 
,min ,min= · = 0,0011·99000 = 109s w cA A  mm2/m 

 
Since = 565tA  mm2/m ,min> = 109sA  mm2/m, the requirement of minimum 
transverse reinforcement is satisfied. 

4.4.6.2 Crushing of the concrete flange 

To prevent crushing of the compression struts in the flange, the following 
condition should be satisfied according to EN 1992-1-1, expression 6.22: 
 
vL,Ed  vRd 
 
vL,Ed  · ·sin ·coscdf  
 
where: 
 

= 0,6·(1 – )
250

ckf
 

 the angle between the concrete diagonals and the longitudinal direction. 
 
In order to minimize the resistance of the concrete compression strut (in the mid-
span region), the minimum angle  is selected. For the concrete flange in 
compression, the minimum angle  is: 
 

= 26,5°  
 

40= · ·sin ·cos = 0,6·(1 – )·26,7·sin26,5°·cos26,5° = 5,37
250Rd cdf  N/mm2 

 
Check: 
 

, = 2,71L Ed  N/mm2 < = 5,37Rd  N/mm2 
 
Therefore the crushing resistance of the concrete compression strut is adequate. 
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5. Serviceability limit state 

5.1 General 

Chapter 7, EN 1994-1-1, is limited to provisions relating to serviceability that 
are specific to composite structures. Serviceability verifications in the case of 
composite structures generally include checks of stress, deflection and vibration 
as well as control of the crack width.  
 
For buildings, stress limitation is not required for beams if, in the ultimate limit 
state, no verification of fatigue is required and no pre-stressing by tendons and/or 
by controlled imposed deformations is provided. However, if the stress 
limitation is required, clause 7.2, EN 1992-1-1 gives stress limits which may be 
applicable for buildings that have pre-stressing or fatigue loading. 
 
Since the deflection is one of the most important verifications of the 
serviceability limit state, it is necessary to explain in detail the problems 
associated with the deflection calculation. Deflections due to loads applied to the 
composite member are calculated using elastic theory, taking into account the 
following effects: 
 
a) Cracking of concrete 
 
Cracking of concrete reduces the flexural stiffness in regions of hogging 
moments in the case of continuous composite beams. Several methods are 
proposed in EN 1994-1-1 for calculation of bending moments, internal forces 
and deformation, see Section 4.2. 
 
b) Creep and shrinkage of concrete 
 
The effect of creep and shrinkage may be taken into account by using the 
effective modulus of elasticity of concrete Ec,eff, or by using the modular ratio nL 
which depends on the type of loadings. The expression for the effective modulus 
of elasticity of the concrete Ec,eff  is: 
 

,
0

=
1 + · ( , )

cm
c eff

L

E
E

t t
 

 
The expression for the modular ratio nL is: 
 

0= (1 + )L L tn n  
 
where: 
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0n  is the modular ratio, Ea/Ecm, for short-term loading, 

cmE  is the secant modulus of elasticity of the concrete for short-term loading, 

t  is the creep coefficient (t, t0); this coefficient depends on both the age of 
the concrete on first loading, t0, and at the time considered in the analysis 
t, 

L  is the creep multiplier depends on the type of loading. 
 

Action Creep multiplier L 
Short-term loading  = 0 
Permanent action constant in time P = 1,10 
Shrinkage S = 0,55 
Pre-stressing by controlled imposed deformations D = 1,50 
Time-dependent action effects PT = 0,55 

 
 
 
 
 
 
 
 
 
 
 
 

Figure B6.19 Calculation of the deflection of the composite beam  
 due to creep at time t =  

 
 
 
 
 
 
 
 
 
 

Figure B6.20 Calculation of the deflection of the composite beam  
 due to shrinkage 

 
c) Sequence of construction 
 
The method of construction of composite beams can be propped or unpropped 

L1 (m) 

EIL = EIS (kN/m2)

L2 (m) 

0,15 L20,15 L1

EIL = EIS (kN/m2) EIa

McsMcsMcs Mcs 

ed (kN/m) 

L1 (m) 

EIL = EIP (kN/m2)

L2 (m) 

0,15 L20,15 L1

region of cracked concrete

EaI2 EIL = EIP (kN/m2)
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execution, Figure B6.21. 
 
 
 
 
 
 
 
 
 

Figure B6.21 Execution of the composite beam, unpropped and propped 
 
The method of construction affects the deflections of the composite beams. This 
influence may be governed especially for simply supported beams which are at 
the construction stage unpropped. In the case of propped execution, the props are 
retained until the concrete has achieved the compressive strength equivalent to 
grade C20/25, clause 6.6.5.2(4), EN 1994-1-1. In that case, elastic global 
analysis is sufficient, clause 7.3.1(2), EN 1994-1-1. 
 
In the case of unpropped execution, the load acts only on the steel beam, and 
deflections are calculated according to EN 1993-1-1. 
 
d) Influence of local yielding of the structural steel at the internal support 
 
The serviceability load can cause yielding at the internal support when the 
continuous beam, with steel beam in classes 1 or 2, is unpropped in execution, 
Figure B6.22. 
 
Local yielding is permitted for beams in buildings. However, yielding causes 
additional deflection, which should be taken into account. The method of 
calculation is given in clause 7.3.1(7), EN 1994-1-1. To calculate the bending 
moments at the internal support elastic analysis is used and effects of cracking of 
concrete are taken into account. In clause 7.3.1(7), EN 1994-1-1, the two values 
of reduction factors f2 are recommended which correspond to different checks. 
The value of f2 = 0,5 is recommended for permanent load: wet concrete on a 
steel beam. In this case the yield strength is reached before the concrete slab has 
hardened. The value of f2 = 0,7 is recommended when the yield strength is 
reached due to extra loading applied after the concrete slab has hardened. 
Accordingly, the second check is carried out with the load additional to that for 
the first check acting on the composite beam. 
 
The combination of actions for the second check are established depending on 
the function of the structure. According to EN 1990, there are three 
combinations: characteristic, frequent and quasi-permanent. For each analysis 

Props 

g - self 
weight 

L 

L 

R  of  
self-weight 
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that is performed, appropriate assumptions are required for the adjacent spans 
with regard to their loading and execution. 
 
The more accurate procedure for the determination of the effects of local 
yielding on deflections is shown in Figure B6.22. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B6.22 Determination of the effects of local yielding on deflections by a 
 more accurate procedure 

 
Influence of local yielding of structural steel at the internal support is considered 
in example B8. 
 
e) Influence of incomplete interaction 
 
Shear connectors are not rigid, and a small longitudinal slip occurs at the steel-
concrete interface, as shown in Figure B6.23. 
 
 
 
 
 
 
 
 
Figure B6.23 Longitudinal slip between the steel beam and the concrete flange  

 of a composite beam 
 
According to 7.3.1(4), EN 1994-1-1, the effects of incomplete interaction, i.e. 
the additional deflection caused by slip at the steel-concrete interface, can be 
neglected if: 

ed (kN/m)

L1 (m)

EaI1 

L2 (m)
Lcr Lcr

EaI1
EaI2

EaIeff

M

EaIeff

EaI2
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a) the calculation of the shear connection is in accordance with clause 6.6, EN 
1994-1-1, 

b) either not less shear connectors than half the number for full shear 
connection are used, or the forces resulting from an elastic behaviour and 
which act on the shear connectors in the serviceability limit state do not 
exceed PRd (this condition relates to the minimum value of the degree of 
shear connection which gives a higher limit ,  = 0,5, than the limit given in 
clause 6.6.1.2(1),  = 0,4). 

c) in case of a ribbed slab with ribs transverse to the beam, the height of the ribs 
does not exceed 80 mm. 

 
In the case where 0,4   < 0,5, ENV 1994-1-1 gives the following expression  
for additional deflection due to incomplete interaction: 
 

c= + ( – )(1 – )a c  
 
where: 
 

 = 0,5 or 0,3, for propped and unpropped construction, respectively, 
a is the deflection of the steel beam, 
c is the deflection of the composite beam with full shear connection, 
 is the degree of the shear connection. 

 
Both a and c are determined for the design load for the composite beam. 
 
Since the serviceability criteria could be specified for each project and agreed 
with the client, several simplifications of the calculation of deflections may be 
applied. These simplifications are acceptable in practice, particularly for 
composite beams in buildings. 
 
When the steel beam is unpropped at the construction stage, the calculation of 
deflection is performed separately for the construction stage and the composite 
stage. 
 
The total deflections are obtained from the expressions: 
 

0=  (verification for the construction stage) 
 

1,1 1,2 2,1 2,2 2,3= + + + +  (verification for the composite stage) 
 
where: 
 

0  is the deflection of the steel beam at the execution stage, 
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1,1  is the deflection of the steel beam due to permanent action immediately 
after casting concrete, 

1,2  is the deflection due to the loads of floor finishes and partitions on the 
composite beam (the first loading), 

2,1  is the deflection due to the frequent value of variable action at the time of 
first loading, 

2,2  is the deflection due to creep under the quasi-permanent value of variable 
action at time t = , 

2,3  is the deflection due to shrinkage. 

5.2 Calculation of deflections 

5.2.1 Construction stage deflection 

The deflection at the construction stage has been calculated by means of 
commercial software, using the flexural stiffness of the steel cross-section EaIa. 
 

= 21000aE  kN/cm2   = 48200aI  cm4 
 
Recommended limiting values for deflection are: 
 

tot  
250

L  

 

var  
360

L  

 
The total deflection due to permanent and variable actions, tot, during execution is 
determined for the following total load ed: 
 

,1 ,1= ·( + )d k ke b g q  
 

= 3,00·(4,26 + 0,50) = 14,3de kN/m 
 

= 101220a aE I  kNm2 
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Figure B6.24 Static system and load case 1 during execution 
 
The deflection (calculated using commercial software) is: 
 

tot = 7,6 mm < L/250 = 40,0 mm 
 
The condition is satisfied. 
 
The deflection due to variable actions, var, during execution is determined for the 
following variable load ed: 
 

,1= ·d ke b q  
 

= 3,00·0,50 = 1,50de kN/m 
 

= 101220a aE I  kNm2 
 
The critical load case for deflection is where only one span is fully loaded: 
 
 
 
 
 
 
 
 
 
 
 

Figure B6.25 Static system and load case 2 during execution 
 
The deflection (calculated using commercial software) is: 
 

EaIa  

ed = 1,50 kN/m 

10,0 m 10,0 m 

EaIa 

ed = 14,3 kN/m 

10,0 m 10,0 m 
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var = 1,3 mm < L/360 = 27,8 mm 
 
The condition is satisfied. 
 
Remark: 
 
The required conditions for deflections of the steel beam are satisfied. However, 
the buckling resistance moment of the steel beam is not adequate and the steel 
beam must be laterally restrained at the construction stage. 
 
The limitation of deflection is adopted according to the recommendation given in 
EN 1990. This value can be changed in accordance with the recommendation 
given in the National Annex. Furthermore, an absolute limit of 25 mm could be 
recommended in order to limit the effects of ponding of wet concrete during 
execution. 

5.2.2 Composite stage deflection 

The deflection of the composite beam has been calculated by means of commercial 
software, using the flexural stiffness of the composite section which depends on the 
type of loading EIL. 
 
Determination of the creep coefficient and shrinkage 
 
For the calculation of the creep coefficient (t, t0) the following is valid: 
 
- the perimeter of that part which is exposed to drying, u 
 

=u b  
 
- the notional size of the cross-section, h0 
 

0

2· ·
= = = = 99c c

c

A b h
h h

u b
 mm 

- 0 = 1t  day, 0 = 28t  days, 
- the ambient relative humidity, RH 50%, 
- the concrete strength class C 40/50, 
- the type of cement – cement class S, strength class 32,5 N. 
 
The final value of creep coefficient  = ( , t0 ) will be determined using the 
nomogram shown in Figure 3.1, EN 1992-1-1. Example B3, shows the detailed 
procedure for the determination of creep coefficients from nomograms. 
 
The following creep coefficients are obtained: 
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t = ( , t0 = 1 day) = 5,2 
t = ( , t0 = 28 days) = 2,5 

 
The total shrinkage strain, according to clause 3.1.4, EN 1992-1-1, at the age of 
concrete at the beginning of drying shrinkage ts = 3 days and at the age at the time 
considered in the analysis t = , is: 
 

cs( ) –4= 4,15·10  
cs( ) = 0,415 ‰ 

 
Effective flexural stiffness of the composite section 
 
The effective flexural stiffness of the composite section EIL is: 
 

2· · ·
= · + · + ·

· + ·
a a L c

a a L c
a a L c

E A E A
EI E I E I a

E A E A
 

 
a) Short-term loading 
 

= 21000aE  kN/cm2   = 48200aI  cm4   = 115,5aA  cm2 
 

3 3· 212,5·9,9= = = 17182
12 12

eff c
c

b h
I  cm4 

 
= · = 212,5·9,9 = 2104c eff cA b h  cm2 

 
The distance between the centroidal axes of the concrete flange and the steel 
section is: 
 

50 9,9= + + = +5,1 + = 35,05
2 2 2 2
a c

p
h h

a h  cm 

 
= 1cn  

 

0
3500= = = 3500
1,0

cm

c

E
E

n
 kN/cm2   0=LE E  

 
2

0
21000·115,5·3500·2104= 21000·48200 + 3500·17182 + ·35,5

21000·115,5 + 3500·2104
EI  
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0 = 3371719672EI  Ncm2 = 337172  kNm2 
 
b) Permanent loading, constant in time 
 

= 1 +1,10·cn ( , t0) = 1 +1,10·2,5 = 3,75  
 

3500= = = 933
3,75

cm
P

c

E
E

n
 kN/cm2   =L PE E  

 
221000·115,5·933·2104= 21000·48200 + 933·17182 + ·35,5

21000·115,5 + 933·2104PEI  

 
= 2395537987PEI  Ncm2 = 239554  kNm2 

 
c) Secondary effects due to shrinkage (statically indeterminate structure) 
 

= 1 + 0,55·cn ( , t0) = 1 + 0,55·5,2 = 3,86  
 

3500= = = 907
3,86

cm
S

c

E
E

n
 kN/cm2   =L SE E  

 
221000·115,5·907·2104= 21000·48200 + 907·17182 + ·35,5

21000·115,5 + 907·2104SEI  

 
= 2373766336SEI  Ncm2 = 237377  kNm2 

 
Remark: 
 
As a simplification for composite beams in structures for buildings where first-
order global analysis can be applied, clause 5.4.2.2(11), EN 1994-1-1, permits 
the modular ratio to be taken as 2·n0 for both short-term and long-term loading. 
The application of this simplification is shown in examples B3 and B8.  

 
Effects of cracking of the concrete 
 
Remark: 
 
As explained in Section 4.2, effects of cracking of the concrete may be taken 
into account using the simplified method II for continuous composite beams as 
well as beams in braced frames. According to the simplified method the effect of 
cracking is taken into account by using the flexural stiffness EaI2 over 15% of the 
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span on each side of each internal support, and as the un-cracked values EaI1 
elsewhere. The reinforcement may be taken into consideration.  

 
Therefore, in the region of the internal support the reduced flexural stiffness, EaI2, 
is used. The modulus of elasticity of steel is denoted as Ea. The second moment of 
area of the effective steel section calculated neglecting concrete in tension but 
including reinforcement is denoted as I2. At the internal support the concrete is in 
tension and the second moment of area of the steel section and the reinforcement in 
the slab, I2, is determined as follows. 
 
The total area of steel section and reinforcement is: 
 

= 12,56sA  cm2   = 115,5aA  cm2 
 

= + = 12,56 +115,5 = 128st s aA A A  cm2 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B6.26 Cross-section of composite beam at internal support 
 
The distance between the centroid of the cracked section and the top of concrete 
slab is: 
 

· + ( + + / 2)
= s s a c p a

st
st

A z A h h h
e

A
 

 
12,56·2,5 +115,5(9,9 +5,1 +50 / 2)= = 36,3

128ste  cm 

 
Therefore, the distance between the neutral axis and the centroid of the steel 
section, aa, is: 
 

ENA - elastic neutral axis 

zsi
beff

Ts (centroid of 
     reinforcement)

ENA 
Ta (centroid of 
      steel section) 

tw 

ba

hc

ha

hp

tf

a a
 

a s
 e s
t 
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50= + + – = + 5,1 + 9,9 – 36,3 = 3,7
2 2
a

a p c st
h

a h h e  cm 

 
The distance between the neutral axis and the centroidal axis of the reinforcement, 
as, is: 
 

50= + + – – = 9,9 + 5,1 + – 2,5 – 3,7 = 33,8
2 2
a

s c p si a
h

a h h z a  cm 

 
The second moment of area of the effective steel section neglecting concrete in 
tension but including reinforcement is: 
 

2 2 2
2= = + · + ( + + / 2) – ·st a s s a c p a st stI I I A z A h h h A e  

 
2 2 2= 48200 +12,56·2,5 +115,5(9,9 + 5,1 +50 / 2) – 128·36,3stI  

 
= 64414stI  cm4 

 
The reduced flexural stiffness is: 
 

2= = 1352694000st aEI E I  Ncm2 = 135269  kNm2 
 
Calculation of deflections 
 
The deflections have been calculated using commercial software. The concrete is 
cracked at a length of 0,15 L on each side of internal support. The reduced flexural 
stiffness EaI2 is allowed for in this region. At mid-span, the corresponding flexural 
stiffness is allowed for at the length of 0,85 L. 
 

 Deflection due to permanent action at the time immediately after casting 
concrete: 

 
,1= · = 3,00·4,26 = 12,78d ke b g  kN/m 

 
= 101220a aE I  kNm2 
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Figure B6.27 Static system - permanent action at the time  
 immediately after casting concrete 

 
1,1 = 6,8  mm 

 
 Deflection due to loads of floor finishes, partitions on the composite beam at 

time of first loading: 
 

,3= · = 3,00·0,50 = 1,5d ke b g  kN/m 
 

0= = 337172LEI EI  kNm2 
 

2 = 135269aE I  kNm2 
 
 
 
 
 
 
 
 
 
 
 

Figure B6.28 Static system – loads of floor finishes and partitions at the time  
 of first loading 

 
1,2 = 0,3  mm 

 
 Deflection due to the frequent value of variable action at the time of first 

loading 
 
For a building with floors in category B, office areas, the combination factor  is: 

EaIa  

ed = 12,78 kN/m 

10,0 m 10,0 m 

EIL 

0,15 L20,15 L1

EaI2

L2 L1 

EIL 

ed = 1,5 kN/m 
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1 = 0,5 
 

1 ,2= · · = 3,00·0,5·4,5 = 6,75d ke b q  kN/m 
 

0= = 337172LEI EI  kNm2 
 

2 = 135269aE I  kNm2 
 
 
 
 
 
 
 
 
 
 
 

Figure B6.29 Static system - frequent value of variable action at the time 
 of first loading 

 
2,1 = 2,0  mm 

 
 Deflection due to creep under the quasi-permanent value of the variable action 

at time t =  
 
This deflection is the difference of deflections at time t =  and at the time of first 
loading t0 = 28 days. 
 

,1 ,3 2 ,2= ·( + · ) = 3,00·(0,5 + 0,3·4,5) = 5,55d k ke b g q  kN/m 
 

,2 ,3= · = 3,00·0,50 = 1,5d ke b g  kN/m 
 

0= = 337172LEI EI  kNm2 
 

= = 239554L PEI EI  kNm2 
 

2 = 135269aE I  kNm2 
 
 
 

ed = 6,75 kN/m 

EIL 

0,15 L20,15 L1

EaI2

L2 L1 

EIL 
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Figure B6.30 Static system – deflection due to creep at time t =  (EIL = EIP)  
 and at the time of first loading (EIL = EI0) 

 
2,2 = 2,0 – 1,5 = 0,5  mm 

 
 Deflection due to shrinkage 

 
Ncs = cs( ) –4· · = 4,15·10 ·907·212,5·9,9 = 792S cE A  kN 
 

· 21000·115,5= · = ·19,05 = 10,66
· + · 21000·115,5 + 907·2104

a a
c

a a S c

E A
a a

E A E A
 cm 

 
= · = 792·10,66 = 8443cs cs cM N a  kNcm = 84,4  kNm 

 
= = 237377L SEI EI  kNm2 

 
2 = 135269aE I  kNm2 

 
 
 
 
 
 
 
 
 
 

Figure B6.31 Static system – deflection due to shrinkage 
 

2,3 = 2,3  mm 
 

EIL 

0,15 L20,15 L1

EaI2

L2 L1 

EIL 

ed,2 = 1,5 kN/m 
ed,1 = 5,55 kN/m

EIL 

0,15 L20,15 L1

EaI2

L2 L1 

EIL 

McsMcsMcs Mcs 
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The effects of shear connection on the deflection of the beam can be neglected 
because the condition n/nf  0,5 is satisfied. 
 
Remark: 
 
The limitations of deflections are adopted according to the recommendation 
given in EN 1990. These values can be changed in accordance with the 
recommendation given in the National Annex. 

 
Deflection limits for composite beams are the same as for steel beams, and are 
determined by the National Annex. 
 
Recommended limiting values for deflection of composite beams are: 
 

tot 250
L , the deflection due to the total load 

 

var 360
L , the deflection due to the variable load 

 
The deflection due to the permanent action is: 
 

1 1,= = 6,8 + 0,3 = 7,1i  mm 
 
The deflection due to the variable load, creep and shrinkage is: 
 

2 2,= = 2,0 + 0,5 + 2,3 = 4,8i  mm 
 
The total deflection due to the permanent and variable loads, creep and shrinkage 
is: 
 

1 2= + = 7,1 + 4,8 = 11,9tot  mm 10000= = 40,0
250 250
L  mm 

 
The total deflection meets the criterion L/250. 
 
The deflection due to variable load, creep and shrinkage is: 
 

var 2= = 4,8  mm 10000= = 27,8
360 360

L  mm 

 
The deflection due to variable load, creep and shrinkage meets the criterion L/360. 
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5.3 Pre-cambering of the steel beam 

In this example, the pre-cambering of the steel beam involves deflections due to 
permanent loads, creep and shrinkage: 
 

1 2,2 2,3= + +p  
 

= 7,1 + 0,5 + 2,3p  
 
The following value of pre-cambering is adopted: 
 

= 10,0p  mm 
 
For more detailed explanation see example B3. 

5.4 Check of vibration of the beam 

The natural frequency may be calculated in terms of the well-known expression 
that is often used in design: 
 

18=f  

 
where  is the maximum deflection in millimetres due to self-weight and other 
permanent loads. This well-known natural frequency expression may be used as the 
expression for determining the natural frequency of individual members, even 
when they are not simply supported, providing that the appropriate value of  is 
used. 
 
For the calculation of the natural frequency, the characteristic values of the 
permanent loads for the composite stage are taken into account, and the effective 
flexural stiffness of the composite section for short-term loading EI0. 
 

,2 ,3= ·( + ) = 3,00·(4,11 + 0,50) = 13,83d k ke b g g  kN/m 
 
The deflection under this load is approximately: 
 

4 4

0

·5 5 13,83·10= · = · ·100 = 0,53
384 384 337172

de L
EI

 cm 

 
The natural frequency of the beam is therefore: 
 



236 B     Composite beams 
 

 

18 18= = = 7,8
5,3

f  Hz  4 Hz    with  in mm 

 
The criterion is satisfied for initial calculation purposes. However, the dynamic 
performance of the entire floor is carried out using a method such as the one in 
[51]. 

5.5 Control of crack width 

5.5.1 Minimum reinforcement area 

The exposure class is XC1. For reinforced concrete elements according to EN 
1992-1-1 this means that the crack width should be limited to the maximum 
value wmax = 0,4 mm. 
 
Remark: 
 
For the exposure class XC1, the crack width has no influence on the durability of 
the structure, and this limit is set to guarantee acceptable appearance of 
structures. 
 
The required minimum area of reinforcement As for the slab of composite beam, 
according to clause 7.4.2(1), EN 1994-1-1, is: 
 

,= · · · · /s s c ct eff ct sA k k k f A  
 
where: 
 
fct,eff is the mean value of the tensile strength of the concrete effective at the 

time when the first crack may be expected to occur. Values of fct,eff can 
be taken as those for fctm (EN 1992-1-1, Table 3.1) or as flctm (EN 1992-1-
1, Table 11.3.1) taking into account the concrete strength class at the 
time when the occurrence of the first crack in the concrete is expected. If 
the time of the occurrence of cracks cannot be established, it is possible 
to adopt the minimum tensile strength of 3 N/mm2. 

Act is the cross-sectional area of the tensile zone of the concrete (due to 
direct loading and the primary effects of shrinkage). For simplicity, the 
cross-sectional area of the concrete may be adopted as the area 
determined by its effective width. 

s is the maximum stress allowed in the reinforcement immediately after 
cracking of the concrete. This stress can be taken as the characteristic 
value of the yield strength fsk. To satisfy the required width limits, lower 
values may be needed, depending on the diameter of the bar. These 
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values are given in Table 7.1, EN 1994-1-1. 
k, ks, kc are coefficients based on the calibration procedure. The magnitude of 

these coefficients, k, ks and kc, depend on the geometry of the cracked 
composite section. More detailed explanation is given below. 

 
The meaning of the coefficients, k, ks and kc, is: 
 
k allows for the effect of non-uniform self-equilibrating tensile stresses; it 

may be taken as 0,8. 
ks allows for the effect of the reduction of the normal force of the concrete 

slab due to initial cracking and local slip of the shear connection; it may 
be taken as 0,9. 

kc takes into account the stress distribution within the cross-section (the 
tensile zone of the concrete Act) immediately prior to cracking. 

 
The coefficient kc is calculated as: 
 

0

1= + 0,3
1 + / (2 )c

c

k
h z

 1,0 

 
where: 
 
hc is the thickness of the concrete flange, excluding any haunch or ribs, 
z0 is the vertical distance between the centroids of the uncracked concrete 

flange and the uncracked composite section, calculated using the modular 
ratio n0 = Ea/Ecm for short-term loading, i.e. at the time of first loading t0. 

 
Therefore, the values of coefficients k and ks are: 
 

= 0,8k  
 

= 0,9sk  
 
Calculation of coefficient kc  
 
The modular ratio n0 for short-term loading is: 
 

0
21000= = = = 6,00
3500

a
L

lcm

E
n n

E
 

 
The effective width of the concrete flange at internal support is: 
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,2 = 1,25effb  m 
 
Transformed to the ideal steel section, the effective width is: 
 

0

125= = 20,8
6,00

effb
n

 cm 

 
Geometrical properties of ideal cross-section: 
 
The area of the ideal steel cross-section is: 
 

,2
, ,

0

= + = + + · = 115,5 +12,56 + 20,8·9,9 = 334eff
i L st c L a sa c

b
A A A A A h

n
 cm2 

 
The distance between the centroid of the steel section and the top of concrete slab 
is: 
 

50 9,9= + + = + 5,1 + = 35,05
2 2 2 2
a c

st p

h h
a h  cm 

 
The vertical distance between the centroids of the uncracked concrete flange and 
the uncracked composite section is: 
 

0 ,
,

· (115,5 +12,56)·35,05= = = = 13,4
334

st st
ic L

i L

A a
z z

A
 cm 

 
The coefficient kc is: 
 

0

1 1= + 0,3 = + 0,3 = 1,03 > 1,0
1 + / (2 ) 1 + 99 / (2·134)c

c

k
h z

 

 
Adopted: kc = 1,00. 
 
If the time of the occurrence of the cracks cannot be established, the mean value of 
the tensile strength of the concrete effective at the time when the first crack may be 
expected to occur fct,eff, can be adopted as the minimum tensile strength of 3 
N/mm2. 
 
The cross-sectional area of the tensile zone of the concrete is: 
 

,2= · = 1250·99 = 123750ct eff cA b h  mm2 
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The maximum stress allowed in the reinforcement immediately after cracking of 
concrete s is chosen from Table 7.1, EN 1994-1-1: 
 

= 280s  N/mm2 
 
The maximum bar diameter *, for design crack width wk = 0,4 mm and for the 
chosen maximum stress allowed in reinforcement s, according to Table 7.1, EN 
1994-1-1, is: 
 

* = 16 mm 
 
Minimum area of reinforcement 
 
The required minimum area of reinforcement As is: 
 

,= · · · · / = 0,9·1,0·0,8·3,0·123750 / 280 = 955s s c ct eff ct sA k k k f A  mm2/beff 
 
The required minimum area of reinforcement = 9,55sA  cm2/beff is less than the 
cross-sectional area of the longitudinal reinforcement adopted in Section 4.2.2.2 as 
12,56 cm2/beff. 
 
The initial selected reinforcement is adequate. 

5.5.2 Control of cracking of the concrete due to direct loading 

The bending moment at the internal support is calculated for the quasi-permanent 
combination of actions at time t = . Since the steel beam is unpropped at the 
construction stage, the stresses in reinforcement are determined for the load of the 
floor finishes, gk,3, the quasi-permanent load, 2 qk,2, and shrinkage.  
 
The design load is: 
 

,3 2 ,2= ·( + · ) = 3,00·(0,5 + 0,3·4,5) = 5,55d k ke b g q  kN/m 
 
The corresponding flexural stiffnesses are: 
 

= = 239554L PEI EI  kNm2 
 

2 = 135269aE I  kNm2 
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Figure B6.32 Static system for calculation of the bending moment at the internal 
 support of the composite beam for quasi-permanent actions at time 
 t =  

 
The maximum bending moment at the internal support, calculated using 
commercial software, is: 
 
Mmax = 58,0 kNm 
 
The bending moment due to shrinkage is: 
 

= · = 792·10,66 = 8444cs cs cM N a  kNcm = 84,4  kNm 
 
The corresponding flexural stiffnesses are: 
 

= = 237377L SEI EI  kNm2 
 

2 = 135269aE I  kNm2 
 
 
 
 
 
 
 
 
 
 

Figure B6.33 Static system for calculation of the bending moment at the internal 
 support of the composite beam due to shrinkage 

 
The maximum bending moment at the internal support, calculated using 
commercial software, is: 

ed = 5,55 kN/m 

EIL 

0,15 L20,15 L1

EaI2

L2 L1 

EIL 

EIL 

0,15 L20,15 L1

EaI2 

L2 L1 

EIL 

McsMcsMcs Mcs 
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Mmax = 70,8 kNm 
 
The total bending moment is: 
 

= 58,0 + 70,8 = 129stM  kNm 
 
The distance between the neutral axis and the centroidal axis of reinforcement is: 
 

1= – = 36,3 – 2,5 = 33,8st st sz e z  cm 
 
The tensile stress in the reinforcement s can be calculated for direct loading as: 
 

,0= +s s s  
 
The stress in the reinforcement s,0 caused by bending moment acting on the 
composite section is calculated on the assumption that the concrete in tension is 
neglected. 

 
The geometrical properties of the cracked cross-section in accordance with Figure 
B6.26 are: 
 
cross-sectional area 
 

= + = 12,56 +115,5 = 128,0st s aA A A  cm2 
 
second moment of area 
 

= 64414stI  cm4 
 
The stress in the reinforcement s,0 caused by the bending moment acting on the 
cracked section is:  
 

2

,0
129·10= = ·33,8 = 6,77
64414

st
s st

st

M
z

I
 kN/cm2 = 67,7  N/mm2 

 
The correction of the stress in the reinforcement for tension stiffening is: 
 

0,4·
=

·
ctm

s
st s

f
 

 
with: 
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128·64414= = = 1,48
115,5·48200st

a a

AI
A I

 

 
The reinforcement ratio s is: 
 

,2

12,56= = = = 0,01015
· 9,9·125

s s
s

ct c eff

A A
A h b

 

 
The correction of the stress in the reinforcement for tension stiffening is: 
 

0,4· 0,4·0,35= = = 9,32
· 1,48·0,01015

ctm
s

st s

f
 kN/cm2 = 93,2  N/mm2 

 
Therefore, the tensile stress in the reinforcement s is: 
 

,0= + = 67,7 + 93,2 = 160,9s s s  N/mm2 
 

= 160,9s  N/mm2 
 
According to Table 7.1, EN 1994-1-1, the maximum bar diameter is s  32 mm. 
 
According to Table 7.2, EN 1994-1-1, the maximum bar spacing is  300 mm. 
 
The use of 16 mm bars at 200 mm spacing at internal support, with the cross-
sectional area 1005 mm2/m, satisfies both conditions. 

6. Commentary 

Clause 7.3, EN 1994-1-1, the serviceability limit state related to the 
deformations of structural members in buildings, does not provide a detailed 
procedure for determining the deflections of structural members. In some cases 
of continuous composite beams, the effects of cracking of concrete can 
significantly affect the determination of the deflections. Therefore, this issue is 
worked out in more detail in this example, illustrated by two distinct procedures: 
for minimum reinforcement according to clause 7.4.2, EN 1994-1-1, and for 
reinforcement to control cracking due to direct loading according to clause 7.4.3, 
EN 1994-1-1. Generally, the required criteria for both ultimate limit state and 
serviceability limit state are met. 
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B7 Calculation of continuous beam over two spans by 
means of plastic–plastic procedure 

1. Purpose of example 

We need to design a two-span composite beam according to the plastic–plastic 
procedure. In this example, action effects are calculated by rigid plastic global 
analysis (plastic hinge analysis), and the resistance to bending is based on a plastic 
model. For this procedure, all cross-sections of the composite beam should be in 
class 1. For the given continuous beam under uniformly distributed load, the first 
plastic hinge is formed at the internal support. The continuous beam has changed 
the static system from statically indeterminate to statically determinate. According 
to the static theorem, it is necessary to prove that assuming the formation of the 
plastic hinge at internal support, Mpl,Rd will not exceed the resistance of the section 
to bending at mid-span. The steel beam is fully propped at the construction stage, 
and the verification of lateral-torsional buckling is not necessary. However, the 
verification of lateral-torsional buckling of the continuous composite beam must be 
done in accordance with EN 1994-1-1. The total depth of the concrete slab, h, is 16 
cm. The concrete slab was made with prefabricated elements of thickness, hp = 5 
cm where concrete has been laid on site with thickness, hc, of 11 cm. In regions of 
sagging bending moments, partial shear connection is permitted, while in the 
region of hogging bending moments the full shear connection is required. The 
ductile headed stud connectors are applied with the diameter of the shank d = 22 
mm and the overall height hsc = 125 mm. The serviceability criteria are particularly 
strong, so that the deflection limit for variable action is req = L/500. The 
continuous beam is the structural member of a multi-storey commercial building in 
which there are brittle floor finishes and fragile partitions. In this case, the 
characteristic combination is used because the limit state is not reversible. The 
quasi-permanent combination is used for long-term effects such as deformations 
from creep of the concrete. For a building with floors in category B, office areas, 
the combination factor for quasi-permanent combination is 2 = 0,3. Since the steel 
beam is fully propped at the construction stage, it is necessary to perform the 
verification only for the composite stage. 
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2. Static system, cross-section and actions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B7.1 Floor layout and static system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

h = 160 mm, hc = 110 mm, hp = 50 mm 

Figure B7.2 Cross-section of composite beam 
 
Actions 
 
a) Permanent action 
 

b 
=

 3
,0

 m
 

L1 = 12,5 m 

Slab span 
b 

=
 3

,0
 m

 

Composite 
beam 

L2 = 12,5 m 

L2 = 12,5 m L1 = 12,5 m 

beff  

hc h 

Concrete cast in situ

hsc

hp

Prefabricated element

1,5 · d 
At

Ab
tf r 

c c 
3,5 cm

dw haha tw

a 

ba

a 

c 
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- concrete slab and reinforcement (dry concrete) 0,16·25 = 4,0  kN/m2 
 
- steel beam = 0,42  kN/m2 
 
Total ,1 = 4,42kg  kN/m2 
 
Floor finishes ,2 = 2,0kg  kN/m2 
 
b) Variable action 
 
- imposed floor load = 5,00  kN/m2 
 
Total = 5,00kq  kN/m2 

3. Properties of materials 

Concrete strength class: C 25/30 = 25ckf  N/mm2 

 25= = = 16,7
1,5

ck
cd

c

f
f  N/mm2 

 0,85 = 0,85·16,7 = 14,2cdf  N/mm2 
 = 31000cmE  N/mm2 
 = 2,6ctmf  N/mm2 
Reinforcement: ductility class B or C (Table C.1, EN 1992-1-1)) = 500skf  N/mm2 

 500= = = 435
1,15

sk
sd

s

f
f  N/mm2 

 = 210000sE  N/mm2 
Structural steel: S355 = 355ykf  N/mm2 

 355= = = 355
1,0

yk
yd

M

f
f  N/mm2 

 = 210000aE  N/mm2 
Shear connectors: ductile headed studs = 450uf  N/mm2 
 = 22d  mm 
 = 125sch  mm 

 125= = 5,7 > 4,0
22

sch
d

= 1,0  

 = 98,9RdP  kN 
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4. Ultimate limit state 

4.1 Design values of combined actions 

The design load determined by a governed combination of actions is: 
 

,1 ,2= ·( · + · + · )d G k G k Q ke b g g q  
 

= 3,0b  m beam spacing 
 

= 3,00·(1,35·4,42 +1,35·2,00 +1,50·5,0) = 48,50de  kN/m 

4.2 Selection of steel cross-section 

The approximate ratio of span to depth of the steel beam for a continuous 
composite secondary beam is: 
 

a

L
h

 25 

 
For span L = 12,5 m, the minimum depth of steel beam is: 
 

312,5·10= = = 500
25 25a
Lh  mm 

 
We can adopted section IPE 500 with the depth 500 mm. The cross-section of IPE 
500 and the steel grade S355 in bending is class 1. In the section at the internal 
support, a region of hogging bending, the plastic neutral axis moves up and the 
depth of the web in compression is increased. In this case, the cross-section of IPE 
500 is not in class 1. Therefore, the cross-section with lower depth of web is 
selected with approximately the same second moment of area as IPE 500. 
 
Thus, section HEA 400 is selected. 
 
Reinforcement 
 
Top longitudinal    10/150 mm, 5,24 cm2/m, zs = 2,5 cm 
 
Bottom longitudinal   10/150 mm, 5,24 cm2/m, zs = 10,5 cm 
 
Top transverse    10/150 mm, 5,24 cm2/m, zs = 3,5 cm 
 
Bottom transverse    10/150 mm, 5,24 cm2/m, zs = 13,5 cm 
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Wpl,y = 2562 cm3 
Wel,y = 2311 cm3 

Aa = 159,0 cm2 
ha = 390 mm 
ba = 300 mm 
tw = 11,0 mm 

tf = 19 mm 
r = 27 mm 

Iy,a = 45070 cm4 
d = 298 mm 

iz = 7,34 mm 
Figure B7.3 Cross-section of steel beam 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B7.4 Reinforcement in concrete slab 

4.3 Effective width of concrete flange 

The effective width of the concrete flange is calculated according to the expression 
(5.3), EN 1994-1-1: 
 

0= +eff eib b b  
 

0 = 0b  (there is only one row of shear connectors) 
 

=
8

e
ei

L
b  bi 

 
The equivalent span of the beam in the mid-span region (L1 = L2 = 12,5 m) in 
accordance with Figure 5.1, EN 1994-1-1 is: 
 

,1 1= 0,85· = 0,85·12,5 = 10,625eL L  m 

ba 
z 

z 

y y d ha 

r 

tw 
tf 

13,5 cm h hsc 

Prefabricated element

tf r 3,5 cm

dw haha tw

ba

c 

10,5 cm 

3,5 cm 2,5 cm 
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1
3,0= = = 1,5

2 2
bb  m 

 

2
3,0= = = 1,5

2 2
bb  m 

 
,1

,1 =
8
e

e

L
b  b1 

 

,1
10,625= = 1,328

8eb  b1 = 1,5 m 

 
Adopted: 1 = 1,328eb  m 
 

,1
2 =

8
e

e

L
b  b2 

 

2
10,625= = 1,328

8eb  b2 = 1,5 m 

 
Adopted: 2 = 1,328eb  m 
 

,1 0 1 2= + + = 0 +1,328 +1,328 = 2,656eff e eb b b b  m 
 
The equivalent span of the beam for the region at internal support (L1 = L2 = 12,5 
m) in accordance with Figure 5.1, EN 1994-1-1 is: 
 

,2 1 2= 0,25·( + ) = 0,25·(12,5 +12,5) = 6,25eL L L  m 
 

1
3,0= = = 1,5

2 2
bb  m 

 

2
3,0= = = 1,5

2 2
bb  m 

 
,2

1 =
8
e

e

L
b  b1 

 

1
6,25= = 0,781

8eb  b1 = 1,5 m 



Example B7 249 
 

 

Adopted: 1 = 0,781eb  m 
 

,2
2 =

8
e

e

L
b  b2 

 

2
6,25= = 0,781

8eb  b2 = 1,5 m 

 
Adopted: 2 = 0,781eb  m 
 

,2 0 1 2= + + = 0 + 0,781 + 0,781 = 1,562eff e eb b b b  m 

4.4 Classification of the composite cross-section 

The local buckling of cross-sections affects the resistance and rotation capacity 
of sections. Therefore, local buckling should be considered in the design. The 
classification of cross-sections of composite beams depends on the local 
slenderness of the flange (b/t) and of the web (c/t) of steel beams, the position of 
the plastic neutral axis and the area of longitudinal reinforcement in the slab at 
the internal support. 
 
The section classification in EN 1993-1-1 is adopted for composite sections. 
Table 5.2 of EN 1993-1-1 gives limits for the width-to-thickness ratios for the 
compression parts of a section for each classification. In addition to the 
limitations on the local slenderness of the flange and the web of the steel beam, 
requirements for the ductility of reinforcement in tension are given for class 1 
and class 2. The reinforcement should have ductility class B or C, Table C.1, EN 
1992-1-1, and according to clause 5.5.1(5), EN 1994-1-1, the minimum area of 
reinforcement As should satisfy the following condition: 
 
As  s · Ac 
 
with, 
 

=
235

y ctm
s c

sk

f f
k

f
 

 
where: 
 
Ac is the effective area of the concrete flange, 
fy is the nominal (characteristic) value of the yield strength of the structural 

steel in N/mm2, 
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fsk is the characteristic yield strength of the reinforcement N/mm2, 
fctm is the mean tensile strength of the concrete, 
 is a factor which is: 

  = 1,1 for the procedure plastic–plastic (cross-section class 1), 
  = 1,0 for the procedure elastic–plastic (cross-section class 2), 
kc is a coefficient that takes into account the stress distribution within the 

section immediately prior to cracking and is 
0

1= + 0,3
1 + / (2 )c

c

k
h z

  1,0 

hc is the thickness of the concrete flange, excluding any haunch or ribs, 
z0 is the vertical distance between the centroids of the uncracked concrete 

flange and the uncracked composite section, calculated using the modular 
ratio n0 = Ea/Ecm for short-term loading, i.e. at the time of first loading t0. 

 
Since the action effects are calculated by rigid plastic global analysis (plastic hinge 
analysis), all cross-sections of the composite beam should be class 1. 

4.4.1 Cross-section at mid-span 

Classification of flange 
 
The flange of the steel section is in compression, as shown in Figure B7.5. 
 
 
 
 
 
 
 
 

Figure B7.5 Classification of flange (compressive stress is negative) 
 

– – 2· 300 – 11,0 – 2·27= = = 117,5
2 2

a wb t r
c  mm 

 
117,5= = 6,18

19f

c
t

 

 
The limiting value for class 1 is: 
 

f

c
t

 9 = 9·0,81 = 7,29  

 

c 
tf 
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6,18 < 7,29   Therefore, the flange in compression is class 1. 
 
Classification of web 
 
The class of a steel web depends on the proportion of its depth that is in 
compression. For the I or HE sections subjected to bending half of the depth is in 
compression. In regions of sagging bending moments, the depth of steel web in 
compression is decreased or could be in tension because the plastic neutral axis is 
usually within the steel top flange or slab. Therefore, if the cross-section is class 1 
at internal support (region of hogging bending), then the cross-section is class 1 in 
the region of sagging bending. Thus, classification of the web is performed only for 
hogging bending. 

4.4.2 Cross-section at the internal support 

Classification of flange 
 
At the internal support, a region of hogging bending, the bottom flange of the steel 
section is in compression. According to the classification of the flange from section 
4.4.1, the flange satisfies the condition for class 1. 
 
Classification of web 
 
In composite beams subjected to hogging bending, the addition of longitudinal 
reinforcement in the concrete flange increases the depth of steel web in 
compression, ·c in Figure B7.6. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B7.6 Classification of web (compression is negative) 
 
For > 0,5 , the limiting value for class 1 is: 
 
c
t

396·
13 – 1

 

ba 
z 

z 

y y c 
·c

r 

tw 
tf 
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= – 2 – 2 = 390 – 2·19 – 2·27 = 298fc h t r  mm 
 

298= = 27,09
11

c
t

 

 
To classify the web, the position of the plastic neutral axis should be determined. 
 
The design resistance moment at internal support, MRd, can be calculated as: 
 

2
0

, , ,

· (1 – )·
= = · + –

4
w yd

Rd pl Rd si i a V Rd

t d f
M M N z M  

 
The area of the longitudinal reinforcement within the effective width at internal 
support beff,2 = 1,562 m is: 
 

1 = 5,24·1,562 = 8,185sA  cm2 (top longitudinal reinforcement) 
 

2 = 5,24·1,562 = 8,185sA  cm2 (bottom longitudinal reinforcement) 
 
The forces in these bars are: 
 

1 1= · = 8,185·43,5 = 356s s sdN A f  kN 
 

2 2= · = 8,185·43,5 = 356s s sdN A f  kN 
 
In the case of hogging bending (moment at the internal support), the plastic neutral 
axis lies within the web of the steel beam, as shown on Figure B7.7: 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B7.7 Cross-section and stress distributions for composite beam in 
 hogging bending 
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Ta (centroid of  
       steel section)

PNA - plastic neutral axis 

tw 

ba

hc 

ha 

hp 

tf 

d0 

 fsd

 zpl

Nsi 

= + M 

 zi 

 

 fyd

zsi

 fsd

 fyd

 

 fyd 

Nsi 

+ 

  fyd

+ 



Example B7 253 
 

 

According to 6.2.2.4, EN 1994-1-1, where the shear force exceeds half the shear 
resistance its effect on the resistance moment should be taken into account. The 
reduction factor for the design yield strength of the web is (1 – ), where: 
 

22
= ( – 1)Ed

Rd

V
V

 

 
and VRd is the design shear resistance. 
 
In this example there is no reduction in the resistance moment because the design 
shear force does not exceed half the design shear resistance, VEd < 0,5 VRd. 
 
From equilibrium, the design tensile force in reinforcement 1 2= +si s sN N N  and the 
design compressive force in web 0= · ·si yd wN d f t  which gives: 
 

1 2
0

+ 356 + 356= = = 18,23
· 1,1·35,5

s s

w yd

N N
d

t f
 cm 

 
The distance between plastic neutral axis and the top of the slab zpl is: 
 

0 39 18,23= + + – = 11,0 + 5,0 + – = 26,39
2 2 2 2
a

pl c p
h d

z h h  cm 

 
The distances between the centroidal axes of top and bottom longitudinal 
reinforcement and the top of the slab are, respectively: 
 

1 = 2,5sz  cm, 2 = 10,5sz  cm 
 
The distances between the centroid of the steel section and the centroids of the top 
and bottom reinforcement are, respectively: 
 

1 1
39= + + – = 11 + 5 + – 2,5 = 33

2 2
a

c p s
h

z h h z  cm 

 

2 2
39= + + – = 11 +5 + – 10,5 = 25

2 2
a

c p s
h

z h h z  cm 

 
Where the shear force reduces the resistance moment of the steel section, the 
reduced design resistance moment is: 
 

, , , , , , , ,= + ( – )(1 – )a V Rd pl f Rd pl a Rd p f RdM M M M  
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In this case, there is no reduction in the resistance moment. Therefore, the design 
resistance moment of the steel section Mpl,a,Rd is taken into account instead of the 
reduced design resistance moment Ma,V,Rd. 
 
The design value of the plastic resistance moment of the steel section is: 
 

,
, ,

0

· 2562·35,5= = = 90951
1,0

pl y yd
pl a Rd

M

W f
M  kNcm = 910  kNm 

 
Therefore, the design value of the plastic resistance moment of the composite 
section at internal support is: 
 

2
0

, , ,

· ·
= = · + –

4
w yd

Rd pl Rd si i pl a Rd

t d f
M M N z M  

 
2

,
1,1·18,23 ·35,5= = (356·33 + 356·25) + 91000 –

4Rd pl RdM M  

 
,= = 108404Rd pl RdM M  kNcm = 1084  kNm 

 
For I-sections subject to major-axis bending and axial force with the neutral axis in 
the web, the parameter c can be calculated as: 
 

1 1= ( + – ( + ))
2 2 ·
a Ed

c f
w yd

h N
t r

c t f
 

 
In this case, the design axial compressive force NEd is equal to the sum of the 
design tensile forces in reinforcement. The design axial compressive force NEd is: 
 

1 2= + = 356 + 356 = 712Ed s sN N N  kN 
 
The parameter c is: 
 

1 39 1 712= ( + – (1,90 + 2,7)) = 0,81
29,8 2 2 1,1·35,5c  

 
For  > 0,5, the limiting value for class 1 is: 
 

29,8= = 27,09
1,1

c
t

 396· 396·0,81= = 33,66
13 – 1 13·0,81 – 1
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27,09 < 33,66   the web is class 1 
 
Therefore the cross-section is class 1. 
 
Within the effective width of the composite section the ductile reinforcement is 
selected. According to clause 5.5.1(5), EN 1994-1-1, the minimum area of 
reinforcement As should satisfy the following condition: 
 
As  s · Ac 
 
with: 
 

=
235

y ctm
s c

sk

f f
k

f
 

 
The area of reinforcement is: 
 

1 2= + = 8,185 + 8,185 = 16,37s s sA A A  cm2 
 
The effective area of concrete slab at internal support is: 
 

,2= · = 156,2·11,0 = 1718,2c eff cA b h  cm2 
 
For the plastic–plastic procedure, the factor  is 1,1. 
 
The coefficient kc takes into account the stress distribution within the section 
immediately prior to cracking is: 
 

0

1=
1 + / (2 )c

c

k
h z

 1,0 

 
The thickness of the concrete flange hc is 11,0 cm. The vertical distance between 
the centroids of the uncracked concrete flange and the uncracked composite section 
is denoted by z0. It is calculated using the modular ratio n0 = Ea/Ecm for short-term 
loading, i.e. at time of the first loading t0. 
 
The modular ratio n0 is: 
 

0
210= = = 6,77
31

a

cm

E
n

E
 

 
The effective width of concrete flange at internal support is: 
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,2 = 156,2effb  cm 
 
Transformed to the ideal steel section, the effective width is: 
 

,2

0

156,2= = 23,1
6,77

effb
n

 cm 

 
The area of the ideal steel cross-section is: 
 

,2

0

= + · = 159 + 23,1·11,0 = 413,1eff
a c

b
A A h

n
 cm 

 
The distance between the neutral axis and the centroid of the steel section is: 
 

,2

0
0

39 11· ·( + + ) 23,1·11,0·( + +5,0)2 2 2 2= = =18,5
413,1

eff a c
c p

n

b h hh h
n

z
A

 cm 

 
Thus, the vertical distance between the centroids of the uncracked concrete flange 
and the uncracked composite section is: 
 

0 0
39 11= ( + + ) – = ( + + 5,0) – 18,5 = 30,0 – 18,5 = 11,5

2 2 2 2
a c

p n
h h

z h z  cm 

 
Therefore: 
 

0

1 1= + 0,3 = + 0,3 = 0,976
1 + / (2 ) 1 +11 / (2·11,5)c

c

k
h z

 1,0 

 
= 0,976ck  

 
355 2,6= = 1,1 0,976 = 0,854

235 235 500
y ctm

s c
sk

f f
k

f
 % 

 
The final verification of the minimum reinforcement is: 
 

= 16,37sA  cm2  · = 0,00854·1718,2 = 14,67s cA  cm2. 
 
The condition is satisfied. 
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All sections within the span of the composite beam, for both sagging and hogging 
regions, are in class 1. 

4.5 Calculation of effects of actions 

Rigid plastic analysis for the calculation bending moments and internal forces 
can be used if the conditions from clause 5.4.5, EN 1994-1-1, are satisfied. In the 
plastic design, structural failure (collapse) is presumed through the formation of 
a collapse mechanism. Collapse mechanisms are caused by the formation of one 
or more plastic hinges. At the plastic hinge the cross-section becomes fully 
plastic and may rotate at constant bending moment. Thus, the cross-sections 
where the plastic hinges occur, are capable of developing and sustaining their 
plastic resistance moment during the process of moment redistribution. The 
rotation capacity at each location of plastic hinge must exceed the required 
rotation. In clause 5.4.5, EN 1994-1-1, the provision on the sufficient rotation 
capacity of composite cross-section of continuous composite beams are given. 
The required capacity of rotation depends on the type of load, the ratio of 
adjacent spans and the ratio of the plastic resistance moment at internal support 
and the plastic resistance moment at mid-span. Since the plastic resistance 
moment in the hogging bending region is significantly lesser compared to that in 
the sagging bending region, the required rotation of section at internal support 
are obtained higher than the required rotation of only the steel beam. The steel 
compression flange at a plastic hinge location should be laterally restrained and 
the continuous beam should not be susceptible to lateral-torsional buckling. In 
continuous composite beams with uniformly distributed load the first plastic 
hinge is formed at internal support. It means that the bottom flange of steel 
section and the part of web are in compression, while the concrete flange is in 
tension. Therefore, the ductile reinforcement and the minimum reinforcement 
area must be provided in the concrete flange. 
 
Because of these reasons, before determining bending moments and internal 
forces according to rigid plastic analysis, it is necessary to verify compliance 
with the conditions given in clause 5.4.5, EN 1994-1-1.  

 
For the given continuous beam under uniformly distributed load, the first plastic 
hinge is formed at internal support. According to the static theorem, it is necessary 
to prove that assuming the formation of the plastic hinge at internal support, Mpl,Rd, 
will not be exceeded the resistance of section to bending in the mid-span. 
 
Therefore, the statically determined system is considered which is subjected to 
uniformly distributed load ed and the moment MEd = Mpl,Rd at the end of beam, see 
Figure B7.8. In this case, it is necessary to calculate the moment at mid-span MEd, 
as the effect of action. 
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Figure B7.8 Static system and loads needed to calculate plastic moment  
 resistance at mid-span 

 
The design load determined by governed combination of actions is: 
 

,sup ,1 ,sup ,2= ·( · + · + · )d G k G k Q ke b g g q  
 

= 3,0b  m beam spacing 
 

= 3,00·(1,35·4,42 +1,35·2,0 +1,50·5,0) = 48,5de  kN/m 
 
The reaction at the support A is: 
 

,1

1

·
= –

2
pl Rdd

Me L
A

L
 

 
48,5·12,5 1084= – = 303 – 86,7 = 216

2 12,5
A  kN 

 
The reaction at the support B is: 
 

,1

1

·
= +

2
pl Rdd

Me L
B

L
 

 
48,50·12,5 1084= + = 303 + 86,7 = 390

2 12,5
B  kN 

 
The point of maximum moment is at the distance l1 from the support A: 

ed 

A B
 MEd = Mpl,Rd 

L1 L2 

l1 l1 l2 

 MEd
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1
216= = = 4,45
48,5d

Al
e

 m 

 
2 1 1= – 2· = 12,5 – 2·4,45 = 3,6l L l  m 

 
The maximum sagging moment for uniformly distributed load ed and the moment 
MEd = Mpl,Rd at the end of beam is: 
 

2 2
1

1

· 48,50·4,45= · – = 216·4,45 – = 481
2 2

d
Ed

e l
M A l  kNm 

 
The shear forces are: 
 

= 0EdV  (at the point of maximum sagging moment MRd) 
 

, = = 390B EdV B  kN (at the support B, at the hogging moment Mpl,Rd) 

4.6 Check of shear connection 

Remark: 
 
The partial shear connection is permitted in sagging moment region. 
 
The full shear connection is required in hogging moment region, 

 
Region LI 
 

1= = 4,45IL l  m 
 
For full shear connection in sagging moment region LI, the minimum value of Ncf 
and Npl,a is governed: 
 

, , , ,1= min( ; ) = min( · ; · ·0,85· )L Ed pl a c f a yd eff c cdV N N A f b h f  
 
The design value of the plastic resistance of the structural steel section to normal 
force is: 
 

, = · = 159·35,5 = 5645pl a a ydN A f  kN 
 
The design value of the compressive normal force in the concrete flange with full 
shear connection is: 



260 B     Composite beams 
 

 

, ,1= · ·0,85· = 265,6·11·0,85·1,67 = 4147c f eff c cdN b h f  kN 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B7.9 Distribution of longitudinal shear for design of shear connection 
 
Thus, the design longitudinal force in the steel-concrete interface is equal to Nc,f: 
 

, ,= = 4147L Ed c fV N  kN 
 
The equivalent span of beam at mid-span (L1 = L2 = 12,5 m) according to Figure 
5.1, EN 1994-1-1, is: 
 

1= 0,85·eL L  for beff,1 
 

= 0,85·12,5 = 10,625eL  m 
 
For Le  25 m, according to clause 6.6.1.2 (3), EN 1994-1-1, the limit for the 
degree of shear connection is: 
 

min
y

355= 1 – ( )·(0,75 – 0,03· )eL
f

       0,4 

 

min
355= 1 – ( )·(0,75 – 0,03·10,625) = 0,569
355

       0,4 

 
Greater value is adopted: 
 

Nc,f

VL,Ed

l1

-

+
Nc,f

-

+

VL,Ed

l1

Nc,f

Nc,f

l2

VL,Ed 

Ns 

A B

 Mpl,Rd 

l1 l1 l2 

 MEd

Region LI Region LII 
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min = 0,569  
 
The design longitudinal force for the minimum required degree of shear connection 

= 0,569  is: 
 

, = ·4147,2 = 0,569·4147 = 2360L EdV  kN 
 
The required number of studs for region LI = 4,45 m is: 
 

, 2360= = = 23,9
98,9

L Ed

Rd

V
n

P
  adopted 30 studs 

 
The actual longitudinal shear force in region LI is: 
 

, = · = 30·98,9 = 2967L Ed RdV n P  kN 2360  kN 
 
The following spacing of studs in the longitudinal direction is selected: 
 

4450= = = 148,3
30 30

I
L

L
e  mm  adopted eL = 150 mm 

 
The verification of criteria for the spacing of studs: 
 
eL = 150 mm > 5d = 5 · 22 = 110 mm 
 
eL = 150 mm < 800 mm 
 
eL = 150 mm < 6 hc = 6 · 160 = 960 mm 
 
For uniform spacing of shear connectors the following condition must be satisfied: 
 

, ,

Rd

pl a Rd

M
M

 2,5 

 
Therefore, the design plastic resistance moment of the composite section does not 
exceed 2,5 times the design plastic resistance moment of the steel member alone. 
 
The plastic neutral axis lies within the thickness of top steel flange if it is: 
 

,<c pl aN N  
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The design value of the plastic resistance of the structural steel section to normal 
force is: 
 

, = · = 159·35,5 = 5645pl a a ydN A f  kN 
 
The design value of the compressive normal force in the concrete flange with full 
shear connection is: 
 

, ,1= = · ·0,85· = 265,6·11·0,85·1,67 = 4147c c f eff c cdN N b h f  kN 
 
Criterion: 
 
4147 < 5645  
 
The plastic neutral axis lies within the thickness of top steel flange. 
 
When the plastic neutral axis lies within the thickness of top steel and the shear 
force is necessary to take into account, Npl,a is: 
 

, = ( – · )pl a a V ydN A A f  
 
The design plastic resistance of the steel flange to normal force is: 
 

,
,

–
=

2
pl a c

pl f

N N
N  

 
The shear force does not exceed half the shear resistance and its effect on the 
resistance moment is neglected, i.e. = 0 . Therefore, the design plastic resistance 
of the structural steel section to normal force is: 
 

, = · = 159·35,5 = 5645pl a a ydN A f  kN 
 
The design plastic resistance of the steel flange to normal force is: 
 

,
,

– 5645 – 4147= = = 749
2 2

pl a c
pl f

N N
N  kN 

 
In accordance with Figure B7.10, the following values are calculated: 
 

,
1

,1

4147= = = 11,0
·0,85 265,6·0,85·1,67

c f

eff cd

N
x

b f
 cm  = 11ch  cm 
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,
2

749= = = 0,7
· 30·35,5
pl f

f yd

N
x

b f
 cm < = 1,9ft  cm 

 
1= + + –

2 2
a

c p
h x

z h h  

 
39,0 11,0= 11,0 + 5,0 + – = 11 + 5,0 +19,5 – 5,5 = 30,0

2 2
z  cm = 0,30  m 

 
The design resistance moment of the composite section in sagging region is: 
 

, , 2= · + ( – )Rd c f pl f aM N z N h x  
 

= 4147·0,30 + 749(0,39 – 0,007)RdM  
 

= 1531RdM  kNm 
 
The design plastic resistance moment of steel section Mpl,a,Rd is: 
 

–2
, , ,= · = 2562·35,5·10 = 910pl a Rd pl y ydM W f  kNm 

 
Check: 
 

,

, ,

1531= = 1,68 < 2,5
910

pl Rd

pl a Rd

M
M

 

 
Region LII 
 

1 1= – = 12,5 – 4,45 = 8,05IIL L l  m 
 

, = + = · + · = 30·98,9 +16,38·43,5 = 3680L Ed Rd s Rd s sdV P N n P A f  kN 
 
The required number of studs for region LII = 8,05 m is: 
 

, 3680= = = 37,2
98,9

L Ed

Rd

V
n

P
 

 
In region LII is adopted the same spacing between studs as in region LI: 
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eL = 150 mm 
 
The number of studs for region LII = 8,05 m is: 
 

8050= = = 53,7
150

II

L

L
n

e
  adopted 54 studs 

 
The actual longitudinal shear force in region LII is: 
 

, = · = 54·98,9 = 5341L Ed RdV n P  kN > 3680  kN 
 
The criteria for uniform spacing of shear connectors in region LII are satisfied and 
there are the same as region LI. 

4.7 Resistance moment of composite section at mid-span 

According to clause 6.2.1.3, EN 1994-1-1, the partial shear connection can be 
used in the region of sagging bending. 
 
If the ductile shear connectors are used, the resistance moment can be 
determined by means of rigid plastic theory in accordance with 6.2.1.2, EN 
1994-1-1. However, the reduced value of the compressive force Nc must be taken 
into account instead of the force Nc,f. 
 
It is very convenient to use the diagram of partial shear connection, shown in 
Figure 6.5, EN 1994-1-1, for determining the resistance moment. According to 
clause 6.2.1.3(5), EN 1994-1-1, the design resistance moment of composite 
beam in sagging region can be conservatively calculated by the straight line AC 
in Figure 6.5, EN 1994-1-1: 
 

, , , , ,
,

= + ( – )· c
Rd pl a Rd pl Rd pl a Rd

c f

N
M M M M

N
 

 
where: 
 
Mpl,a,Rd  is the design plastic resistance moment of the structural steel section 

alone in sagging region, 
Mpl,Rd  is the design plastic resistance moment of the composite section with full 

shear connection in sagging region, 
Nc,f is the design compressive force in the concrete flange with full shear 

connection, 
Nc is the design compressive force in concrete flange. 
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In this example, the resistance moment MRd is calculated by means of rigid plastic 
theory in accordance with clause 6.2.1.2, EN 1994-1-1, with taking into account 
the reduced value of the compressive force in the concrete flange Nc instead of Nc,f. 
The simplified procedure, with the conservative value of MRd, is illustrated in 
example B6. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B7.10 Determination of the design resistance moment in the sagging  
 region  PNA lies within flange of steel section 

 
The plastic neutral axis lies within the thickness of the top steel flange if it is: 
 

,<c pl aN N  
 
The design plastic resistance of the structural steel section to normal force is: 
 

,
,0

· 159·35,5= = = 5645
1,0

a yd
pl a

M

A f
N  kN 

 
The reduced design value of the compressive force in the concrete flange is: 
 

= · = 30·98,9 = 2967c I RdN n P  kN 
 
2967 < 5645 , the plastic neutral axis lies within the thickness of top steel flange. 
 
When the plastic neutral axis lies within the thickness of the top steel flange and 
the shear force is necessary to take into account, Npl,a is: 
 

, = ( – · )pl a a V ydN A A f  
 
The design plastic resistance of the steel flange to normal force is: 
 

PNA 

Ta (centroid of 
       steel section) 

PNA  plastic neutral axis 

tw 

ba

hc

ha

hp

tf

0,85 fcd

 x1  

 fyd

x2

+ 
Npl,a2

Npl,a1 = Npl,f 

Nc 



266 B     Composite beams 
 

 

,
,

–
=

2
pl a c

pl f

N N
N  

 
The shear force does not exceed half the shear resistance and its effect on the 
resistance moment is neglected, i.e. = 0 . Therefore, the design plastic resistance 
of the structural steel section to normal force is: 
 

, = · = 159·35,5 = 5645pl a a ydN A f  kN 
 
The design plastic resistance of the steel flange to normal force is: 
 

,
,

– 5645 – 2967= = = 1339
2 2

pl a c
pl f

N N
N  kN 

 
In accordance with Figure B7.10, the following values are calculated: 
 

1
,1

2967= = = 7,87
·0,85 265,6·0,85·1,67

c

eff cd

N
x

b f
 cm < = 11ch  cm 

 
,

2
1339= = = 1,26

· 30·35,5
pl f

f yd

N
x

b f
 cm < = 1,9ft  cm 

 
1= + + –

2 2
a

c p
h x

z h h  

 
39,0 7,87= 11,0 +5,0 + – = 11 +5,0 +19,5 – 3,94 = 31,56

2 2
z  cm = 0,316  m 

 
The design resistance moment of the composite section in sagging region is: 
 

, 2= · + ( – )Rd c pl f aM N z N h x  
 

= 2967·0,316 +1339(0,39 – 0,0126)RdM  
 

= 1443RdM  kNm 
 
The design value of bending moment at mid-span, as the effect of action, 
MEd = 481 kNm and the check is as follows: 
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Ed

Rd

M
M

 1,0 

 
481 = 0,33 < 1,0

1443
, the condition is satisfied 

4.8 Vertical shear resistance of the cross-section 

The shear buckling resistance of web should be verified, for unstiffened web when: 
 

72>wh
t

 

 
where: 
 

235 235= = = 0,92
275yf

 

 
= 1,2 , the factor defined in EN 1993-1-5 

 
= – 2 = 390 – (2·19) = 352w a fh h t  mm 

 
72 72= ·0,81 = 48,6

1,2
 

 
352= = = 32
11

w w

w

h h
t t

 

 
Since 32 < 48,6 the condition is satisfied. The shear buckling resistance of the web 
need not be verified. 
 
Remark: 
 
The resistance of the composite beam to vertical shear is normally taken as the 
shear resistance of the steel section according to clause 6.2.6, EN 1993-1-1, 
which gives: 
 

, , ,
0

( / 3)
= = V y

pl Rd pl a Rd
M

A f
V V  
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For rolled I- and H-sections and the load applied parallel to the web, the shear 
area is calculated as: 
 

= – 2· · + ·( + 2· )V a a f f wA A b t t t r , but not less than · ·w wh t  
 
The shear area AV is: 
 

= 159 – 2·30·1,9 +1,9(1,1 + 2·2,7)VA  
 

= 57,35VA  cm2 
 

= 1,2  
 

· · = 1,2·35,2·1,1 = 46,46w wh t  cm2 
 
57,35 cm2 > 46,46 cm2 
 
Therefore AV = 57,35 cm2. 
 
The design plastic shear resistance of the steel section is: 
 

, , ,
0

( / 3)
= = V y

pl Rd pl a Rd
M

A f
V V  

 

, , ,
35,5= = 57,35 = 1175
3·1,0pl Rd pl a RdV V  kN 

 
Verify that: 
 

,

Ed

pl Rd

V
V

 1,0 

 
390 = 0,33 < 1,0

1175
 

 
Therefore the shear resistance of the cross-section is adequate. 
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4.9 Interaction of M-V (bending and shear force) 

Where the shear force is less than half the plastic shear resistance its effect on the 
resistance moment can be neglected. 
 

,0,5· = 0,5·1175 = 588pl RdV  kN 
 

= 390EdV  kN ,< 0,5 = 588pl RdV  kN no reduction in the resistance moment 
 

, , ,= = 1443y V Rd pl RdM M  kNm 
 
Therefore, the assumption for the classification of the cross-section that the 
reduction factor  = 0 is confirmed. 
 
The condition at the internal support /Ed RdM M   1,0 is satisfied because in the 
plastic–plastic procedure the value ,=Ed pl RdM M  is adopted and confirmed in 
Section 4.5. 

4.10 Lateral-torsional buckling of the composite beam 

Clause 6.4.3, EN 1994-1-1, gives guidance for the verification of buckling 
resistance moment of continuous beams in buildings. 
 
If the conditions, given in clause 6.4.3(1), EN 1994-1-1, are satisfied, the 
verification of lateral-torsional buckling is not necessary. 
 
The conditions are as follows: 
 
a) The ratio of adjacent spans 
 
 
 
 
 
 
 
 
 
 
 
 
 

 L  Li

 L  Li  L  Lk
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0,8  L/Li  1,20                    Lk/L  0,15 
 
The difference in length of adjacent spans is less than 20% of the shorter span. 
The length of the cantilever is less than 15% of the adjacent span. 
 
b) The ratio of permanent and total design loads 
 
The loads are uniformly distributed on each span. The design permanent load is 
greater than the total design load by 40% or more. 
 

·
· + ·

G k

G k Q k

G
G Q

 0,4 

 
c) Shear connection 
 
The shear connection between the upper flange of the steel beam and the 
concrete flange should be provided in accordance with clause 6.6 (EN 1994-1-1). 
 
d) The inverted-U frame 
 
The same concrete flange is also attached to one or more supporting steel beams 
so that they form an inverted-U frame. 
 
e) The composite slab 
 
The span of the composite slab between the two supporting beams of the 
inverted-U frame should be taken into consideration. 
 
f) The lateral restraint of the bottom flange of the steel beam 
 
The bottom flange of the steel beam is laterally restrained at each support. Also, 
the web of the steel beam is stiffened. 
 
g) Composite beams that are not partially encased 
 
The limitations of depth for the steel beams of IPE section or HE section that are 
not partially encased are given in Table B7.1. 
 
h) Composite beams that are partially encased 
 
The depth of partially encased composite beams does not exceed the limit given 
in Table B7.1 by more than 200 mm for steel grades up to S355, and by 150 mm 
for grades S420 and S460. 
 



Example B7 271 
 

 

Table B7.1 Maximum depth h (mm) of uncased steel beam, EN 1994-1-1 

Steel beam Nominal steel grade 
S235 S275 S355 S420 and S460 

IPE 600 550 400 270 
HE 800 700 650 500 

 
According to clause 6.3.2.2(4), EN 1993-1-1, the verification of lateral-torsional 
buckling for a member in bending may be neglected if at least one of the 
following conditions is satisfied: 
 

LT   ,0LT    or   MEd/Mcr  ,0LT  with maximum value ,0LT = 0,4 
 
Verification of conditions: 
 
a) The ratio of adjacent spans 
 
The condition is satisfied because the spans L1 and L2 are the same. 
 
b) The ratio of permanent and total design loads 
 

,2 ,3

,2 ,3

· + · 1,35·4,42 +1,35·2,00= = 0,54 > 0,4
· + · + · 1,35·4,42 +1,35·2,00 +1,5·5,0

G k G k

G k G k Q k

g g
g g q

 

 
The condition is satisfied. 
 
c) Shear connection 
 
The condition is satisfied. 
 
d) The inverted-U frame 
 
The condition is satisfied. 
 
e) The composite slab 
 
The condition is satisfied. 
 
f) Lateral restraint of the bottom flange of the steel beam 
 
The condition is satisfied. 
 
g) Composite beams that are not partially encased 
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The condition is satisfied. 
 
h) Composite beams that are partially encased 
 
In this case, the composite beam is not partially encased. The condition is not 
governed. 
 
Since the conditions are satisfied, the additional verification for lateral-torsional 
buckling is not necessary. 

4.11 Check of longitudinal shear resistance of the concrete flange 

4.11.1 Check of transverse reinforcement 

The cross-sectional area of the transverse reinforcement is calculated according 
to the expression: 
 

·sf
sd

f

A
f

s
 , ·

cot
f

L Ed

h
 

 
where: 
 
Asf/sf  is the transverse reinforcement expressed in mm2/m, 
hf  is the thickness of the concrete flange, see Figures B7.11 and B7.12, 
 is the angle between the diagonal strut and the axis of the beam (strut-

and-tie model), 
vL,Ed is the design longitudinal shear flow in the concrete slab. 

 
The transverse reinforcement (Asf/sf) expressed in mm2/m can be denoted as At for 
the top transverse reinforcement and as Ab for the bottom transverse reinforcement. 
It is necessary to verify the failure due to shear in the failure plane shown in Figure 
B7.11 as sections a-a and c-c. 
 
 
 
 
 
 
 
 

Figure B7.11 Surfaces of potential failure in longitudinal shear 
 
The transverse reinforcement provided is 10 mm bars at 150 mm, for which: 
 

a

a
cc

At

Ab
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2·10 1000= = · = 524
4 150t bA A  mm2/m 

 
It is necessary to ensure that the concrete flange can resist the longitudinal shear 
force transmitted to it by the shear connectors. At the steel-concrete interface, 
the distribution of longitudinal shear is influenced by yielding, by the spacing of 
the shear connectors, their load-slip properties, and shrinkage and creep of 
concrete. The design resistance to longitudinal shear for the relevant shear 
failure surfaces is given in clause 6.2.4, EN 1992-1-1. The model is based on 
considering the flange to act like a system of compressive struts combined with a 
system of ties in the form of the transverse reinforcement. 
 
When the concrete flange is in compression, longitudinal shear flow vL,Ed can be 
defined as: 
 

1,,1
, ,1

,

= = c effL Edc
L Ed

v v c eff

AVN
v

a a A
 

 
where: 
 
av is the critical length (the distance between two given sections) Figure 

B7.12, 
Nc1 is the change of the longitudinal compressive forces in the slab over the 

critical length av, see Figure B7.12, 
VL,Ed is the design longitudinal shear force in the steel-concrete interface or in 

the concrete flange, 
 , ,= min( , , )L Ed pl a c RdV N N P  
 
When the concrete flange is in tension, longitudinal shear flow vL,Ed can be 
defined as: 
 

,1 1
, ,1

1 2

= =
+

L Eds s
L Ed

v v s s

VN A
v

a a A A
 

 
where: 
 
av is the critical length (the distance between two given sections) Figure 

B7.12, 
Ns1 is the change of the longitudinal tensile forces in the slab over the critical 

length av, see Figure B7.12, 
VL,Ed is the design longitudinal shear force in the steel-concrete interface or in 

the concrete flange,  
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 , = min( , )L Ed s RdV N P  
 
 
 
 
 
 
 
 
 
 
 

Figure B7.12 Determination of the longitudinal shear forces in the 
 concrete flange 

 
In the first case, the length av is LI = 4,46 m, while in the second case the length is 
LII = 8,04 m. 
 
Region LI 
 
The design longitudinal shear force is determined from the minimum resistance of 
the steel section, concrete and shear connectors: 
 

, , ,= min( , , )L Ed pl a c f RdV N N P  
 

, = 5645pl aN  kN 
 

, = 4147c fN  kN 
 

= 30·98,9 = 2967RdP  kN 
 
The maximum force between the point of maximum moment and the support A 
that can be transferred into the longitudinal shear flow is limited by the resistance 
of the shear connectors. 
 
Section a-a 
 

, = 2967L EdV  kN 
 

= 435sdf  N/mm2 
 

Concrete flange in tension: 
Ns1 

As1 

As2 

Ns1 + Ns1 

vL,Ed,1

VL = VL,Ed 

av 

hf 

Concrete flange in compression: 

beff be,1 

be,2 

Nc1 

vL,Ed,1

VL = VL,Ed

av 

Ac1,eff 

Nc1 + Nc1 

hf 
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As there are two shear planes, see Figure B7.11, one on either side of the beam, 
running parallel to it, and with hf = hc = 110 mm (the prefabricated element is 
neglected), the design longitudinal shear stress is: 
 

3
,1

,
2967·10= = = = 3,03

· 2· · 2·110·4450
L Edc

L Ed
f v f v

VN
v

h a h a
 N/mm2 

 
Remark: 
 
In order to prevent splitting of the concrete flange, for the adopted "truss model", 
according to clause 6.2.4(4) EN 1992-1-1, the angle  between the concrete 
diagonals and the longitudinal direction is limited to the value: 
 
26,5º    45º concrete flange in compression 
 
38,6º    45º concrete flange in tension 

 
In order to minimize the cross-sectional area of transverse reinforcement, the 
minimum angle  is selected. For the concrete flange in compression (at mid-span), 
the minimum angle  is: 
 

= 26,5º  
 

·sf
sd

f

A
f

s
  , ·

cot
f

L Ed

h
 

 
sf

f

A
s

  , 33,03 110· = ·10 = 382
cot 435 cot 26,5

fL Ed

sd

h
f

 mm2/m 

 
The reinforcement which is less than the selected reinforcement is obtained as

+ = 524 + 524 = 1048t bA A  mm2. 
 
Section c-c 
 

, = 2967L EdV  kN 
 

= 435sdf  N/mm2 
 
The length hf of the shear surface c-c passing round the studs as shown in Figure 
B7.11 is: 
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= 2· +1,5· = 2·125 +1,5·22 = 283f sch h d  mm 
 
The design longitudinal shear stress is: 
 

3
,1

,
2967·10= = = = 2,36

· · 283·4450
L Edc

L Ed
f v f v

VN
v

h a h a
 N/mm2 

 
In order to minimize the cross-sectional area of the transverse reinforcement, the 
minimum angle  is selected. For the concrete flange in compression (at mid-span), 
the minimum angle  is: 
 

= 26,5º  
 

·sf
sd

f

A
f

s
  , ·

cot
f

L Ed

h
 

 
sf

f

A
s

 , 32,36 283· = ·10 = 766
cot 435 cot 26,5

fL Ed

sd

h
f

 mm2/m 

 
The reinforcement which is less than the selected reinforcement is obtained as
2· = 2·524 = 1048bA  mm2. 
 
Region LII 
 
Section a-a 
 
In this region, there are both sagging and hogging bending. The design longitudinal 
shear force is the sum of the longitudinal shear forces from the two regions: 
 

, = + = 30·98,9 +16,38·43,5 = 3680L Ed Rd sV P N  kN 
 

= 435sdf  N/mm2 
 

= = 110f ch h  mm 
 

3
,1

,
3680·10= = = = 2,08

· 2· · 2·110·8050
L Edc

L Ed
f v f v

VN
v

h a h a
 N/mm2 
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In order to minimize the cross-sectional area of the transverse reinforcement, the 
minimum angle  is selected. For the concrete flange, with the assumption that it is 
in tension along the whole length of region LII, the minimum angle  is: 
 

= 38,6º  
 

·sf
sd

f

A
f

s
  , ·

cot
f

L Ed

h
 

 
sf

f

A
s

 , 32,08 110· = ·10 = 420
cot 435 cot 38,6

fL Ed

sd

h
f

 mm2/m 

 
The reinforcement which is less than the selected reinforcement is obtained as

+ = 524 + 524 = 1048t bA A  mm2. 
 
Section c-c 
 

, = 3680L EdV  kN 
 

= 435sdf  N/mm2 
 
The length hf of the shear surface c-c passing round the studs as shown in Figure 
B7.11 is: 
 

= 283fh  mm 
 
The design longitudinal shear stress is: 
 

3
,1

,
3680·10= = = = 1,62

· · 283·8050
L Edc

L Ed
f v f v

VN
v

h a h a
 N/mm2 

 
In order to minimize the cross-sectional area of the transverse reinforcement, the 
minimum angle  is selected. For the concrete flange with the assumptions that it is 
in tension along the whole length of region LII, the minimum angle  is: 
 

= 38,6º  
 

·sf
sd

f

A
f

s
  , ·

cot
f

L Ed

h
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sf

f

A
s

 , 31,62 283· = ·10 = 841
cot 435 cot 38,6

fL Ed

sd

h
f

 mm2/m 

 
The reinforcement which is less than the selected reinforcement is obtained as
2· = 2·524 = 1048bA  mm2. 
 
According to EN 1994-1-1, clause 6.6.6.3, the minimum area of transverse 
reinforcement is determined in accordance with EN 1992-1-1, clause 9.2.2(5), 
which gives the minimum area of reinforcement as a proportion of the concrete 
area. The ratio is: 
 

,min
,

0,08
= ck

w
yr k

f
f

 

 
where: 
 
fck is the characteristic compressive cylinder strength of the concrete at 28 

days in N/mm2, 
fyr,k = fsk is the characteristic yield strength of the reinforcement in N/mm2. 

 
The minimum area of transverse reinforcement is: 
 

,min
,

0,08 0,08 25= = = 0,0008
500

ck
w

yr k

f
f

 

 
= · = 110·1000 = 110000c cA h b  mm2 

 
,min ,min= · = 0,0008·110000 = 88s w cA A  mm2/m 

 
Since + = 1048t bA A  mm2/m ,min> = 88sA  mm2/m, the requirement for minimum 
transverse reinforcement is satisfied. 

4.11.2 Crushing of the concrete flange 

To prevent crushing of the compression struts in the flange, the following 
condition should be satisfied according to EN 1992-1-1, expression 6.22: 
 
vL,Ed  vRd 
 
vL,Ed  · ·sin ·coscdf  
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where: 
 

= 0,6·(1 – )
250

ckf
 

 is the angle between the concrete diagonals and the longitudinal direction. 
 
In order to minimize the resistance of the concrete compression strut, the minimum 
angle  is selected. For the concrete flange in compression (at mid-span), the 
minimum angle  is: 
 

= 26,5º  
 

25= · ·sin ·cos = 0,6·(1 – )·16,7·sin26,5º·cos26,5º= 3,60
250Rd cdf  N/mm2 

 
Check: 
 

, = 3,03L Ed  N/mm2 < = 3,60Rd  N/mm2 
 
Therefore the crushing resistance of the concrete compression strut is adequate. 

5. Serviceability limit state 

5.1 General 

Chapter 7, EN 1994-1-1, is limited to provisions relating to serviceability that 
are specific to composite structures. Serviceability verifications in the case of the 
composite structures generally include checks of stress, deflection and vibration 
as well control of crack width.  
 
For buildings, stress limitation is not required for beams if, in the ultimate limit 
state, no verification of fatigue is required and no pre-stressing by tendons and/or 
by controlled imposed deformations is provided. However, if the stress 
limitation is required, clause 7.2, EN 1992-1-1, gives the stress limits which may 
be applicable for buildings that have pre-stressing or fatigue loading. 
 
Since the deflection is one of the most important verifications of the 
serviceability limit state, it is necessary to explain in detail the problems 
associated with the deflection calculation. Deflections due to loads applied to the 
composite member are calculated using the theory of elasticity taking into 
account the following effects: 
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a) cracking of concrete, 
b) creep and shrinkage of concrete, 
c) sequence of construction, 
d) influence of local yielding of the structural steel at internal support (for 

continuous beams), 
e) influence of incomplete interaction. 
 
For a more detailed explanation of these effects, see example B6. 
 
If the steel beam is fully propped, the total deflection of composite beams is 
obtained by summing the following deflections: 
 

1 2,1 2,2 2,3= + + +  
 
where: 
 

1  is the deflection due to the permanent actions (the first loading is applied 
at the age of t0 = 28 days), 

2,1  is the deflection due to the frequent value of variable action at the time of 
first loading, 

2,2  is the deflection due to creep under the quasi-permanent value of the 
variable action at time t = , 

2,3  is the deflection due to shrinkage. 

5.2 Calculation of deflections 

5.2.1 Construction stage deflection 

In this example, the steel beam is fully propped at the construction stage and the 
deflection of the steel beam at the construction stage is: 
 

0 = 0  

5.2.2 Composite stage deflection 

The deflection of the composite beam has been calculated with commercial 
software, using the flexural stiffness of the composite section which depends on the 
type of loadings EIL. 
 
Determination of the creep coefficient and shrinkage 
 
For the calculation of the creep coefficient (t, t0) the following is valid: 
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- the perimeter of that part which is exposed to drying, u 
 

=u b  
 
- the notional size of the cross-section, h0 
 

0
2· ·

= = = = 160c c
c

A b h
h h

u b
 mm 

- 0 = 1t  day, 0 = 28t  days, 
- the ambient relative humidity, RH 50%, 
- the concrete strength class C 25/30, 
- the type of cement – cement class S, strength class 32,5 N. 
 
The final value of creep coefficient ( , t0) can be determined using the nomogram 
shown in Figure 3.1, EN 1992-1-1. Example B3, shows the detailed procedure for 
the determination of creep coefficients from nomograms. 
 
The following creep coefficients are obtained: 
 

t = ( , t0 = 1 day) = 5,8 
t = ( , t0 = 28 days) = 2,8 

 
The total shrinkage strain, according to clause 3.1.4, EN 1992-1-1, at the age of 
concrete at the beginning of drying shrinkage ts = 3 days and at the time considered 
in the analysis t = , is: 
 

cs( ) –4= 4,14·10  
 

cs( ) = 0,414  ‰ 
 
Effective flexural stiffness of the composite section 
 
The effective flexural stiffness of the composite section EIL (in this case 
approximately is hc = h) is: 
 

2· · ·
= · + · + ·

· + ·
a a L c

a a L c
a a L c

E A E A
EI E I E I a

E A E A
 

 
a) Short-term loading 
 

= 21000aE  kN/cm2,   = 45070aI  cm4, = 159,0aA  cm2 
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3 3· 265,6·16= = = 90658
12 12

eff
c

b h
I  cm4 

 
= · = 265,6·16 = 4250c effA b h  cm2 

 
The distance between the centroidal axes of the concrete flange and the steel 
section is: 
 

1 39 16= + = + = 27,5
2 2 2 2
ah h

a  cm 

 
= 1cn  

 

0
3100= = = 3100
1,0

cm

c

E
E

n
 kN/cm2, 0=LE E  

 
2

0
21000·159·3100·4250= 21000·45070 + 3100·90658 + ·27,5
21000·159 + 3100·4250

EI  

 
0 = 3242069539EI  kNcm2 = 324207  kNm2. 

 
b) Permanent loading constant in time 
 

= 1 +1,10cn · ( , t0) = 1 +1,10·5,8 = 7,38  
 

3100= = = 420
7,38

cm
P

c

E
E

n
 kN/cm2   =L PE E  

 
221000·159·420·4250= 21000·45070 + 420·90658 + ·27,5

21000·159 + 420·4250PEI  

 
= 1864198384PEI  kNcm2 = 186420  kNm2 

 
c) Secondary effects due to shrinkage (statically indeterminate structure) 
 

= 1 + 0,55cn · ( , t0) = 1 + 0,55·2,8 = 2,54  
 

3100= = = 1220
2,54

cm
S

c

E
E

n
 kN/cm2   =L SE E  
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221000·159·1220·4250= 21000·45070 +1220·90658 + ·27,5
21000·159 +1220·4250SEI  

 
= 2593058297SEI  kNcm2 = 259306  kNm2 

 
Remark: 
 
As a simplification for composite beams in structures for buildings where first-
order global analysis can be applied, clause 5.4.2.2(11), EN 1994-1-1, permits 
the modular ratio to be taken as 2·n0 for both short-term and long-term loading. 
The application of this simplification is shown in examples B3 and B8. 

 
Effects of cracking of concrete 
 
Remark: 
 
As explained in Section 4.2, example B6, effects of cracking of the concrete may 
be taken into account using the simplified method II for continuous composite 
beams as well beams in braced frames. According to the simplified method the 
effect of cracking is taken into account by using the flexural stiffness EaI2 over 
15% of the span on each side of each internal support, and as the uncracked 
values EaI1 elsewhere. The reinforcement may be taken into consideration. 

 
Therefore, in the region of the internal support the reduced flexural stiffness, EaI2, 
is used. The modulus of elasticity of steel is denoted by Ea. The second moment of 
area of the effective steel section calculated neglecting concrete in tension but 
including reinforcement is denoted with I2. At the internal support the concrete is in 
tension and the second moment of area of the steel section and the reinforcement in 
slab, I2, is determined as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B7.13 Cross-section of the composite beam at the internal support 
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The total area of steel section and reinforcement is: 
 

1 = 8,185sA  cm2, 2 = 8,185sA  cm2, = 159aA  cm2 
 

1 2= + + = 8,185 + 8,185 +159 = 175,4st s s aA A A A  cm2 
 
The distance between the centroid of the cracked section and the top of concrete 
slab is: 
 

1 1 2 2· + · + ( + + / 2)
= s s s s a c p a

st
st

A z A z A h h h
e

A
 

 
8,185·2,5 + 8,185·10,5 +159(11 +5 + 39 / 2)= = 32,8

175,4ste  cm 

 
Therefore, the distance between the neutral axis and the centroid of steel section, 
aa, is: 
 

39= + + – = + 5,0 +11,0 – 32,8 = 2,7
2 2
a

a p c st
h

a h h e  

 
The distance between the neutral axis and the centroidal axis of reinforcement, as, 
is: 
 

39= + + – – = 11,0 + 5,0 + – 6,5 – 2,7 = 26,3
2 2
a

s c p si a
h

a h h z a  cm 

 
The second moment of area of the effective steel section neglecting concrete in 
tension but including the reinforcement is: 
 

2 2 2 2
2 1 1 2 2= = + · + · + ( + + / 2) – ·st a s s s s a c p a st stI I I A z A z A h h h A e  

 
2 2 2 2= 45070 + 8,185·2,5 + 8,185·10,5 +159(11 + 5 + 39 / 2) – 175,4·32,8stI  

 
= 57701stI  cm4 

 
2= = 1211721000st aEI E I  kNcm2 = 121172  kNm2 
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Calculation of deflections 
 
The deflections have been calculated using commercial software. The concrete is 
cracked at a length of 0,15 L on each side of the internal support. The reduced 
flexural stiffness EaI2 is allowed for in this region. At mid-span, the corresponding 
flexural stiffness EaIL is allowed for at a length of 0,85 L. 
 

 Deflection due to permanent action, the first loading is applied at the age of t0 = 
28 days 

 
,1 ,2= ·( + ) = 3,00·(4,42 + 2,00) = 19,26d k ke b g g  kN/m 

 
0= = 324207LEI EI  kNm2 

 
2 = 121172aE I  kNm2 

 
 
 
 
 
 
 
 
 
 

Figure B7.14 Static system - permanent action at the time of first loading 
 

1 = 10,3  mm 
 

 Deflection due to the frequent value of the variable action at the time of first 
loading 

For a building with floors in category B, office areas, the combination factor  is: 
 

1 = 0,5 
 

1= · · = 3,00·0,5·5,0 = 7,5d ke b q  kN/m 
 

0= = 324207LEI EI  kNm2 
 

2 = 121172aE I  kNm2 
 
 

ed = 19,26 kN/m 

EIL 

0,15 L20,15 L1

EaI2

L2 L1 

EIL 
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Figure B7.15 Static system - frequent value of the variable action at the time 
 of first loading 

 
2,1 = 5,8  mm 

 
 Deflection due to creep under the quasi-permanent value of the variable action 

at time t =  
 
This deflection is the difference of deflections at time t =  and at time of first 
loading t0 = 28 days. 
 

,1 ,1 ,2 2= ·( + + · ) = 3,00·(4,42 + 2,00 + 0,3·5,0) = 23,76d k k ke b g g q  kN/m 
 

,2 ,1 ,2= ·( + ) = 3,00·(4,42 + 2,00) = 19,26d k ke b g g  kN/m 
 

0= = 324207LEI EI  kNm2 
 

= = 186420L PEI EI  kNm2 
 

2 = 121172aE I  kNm2 
 
 
 
 
 
 
 
 
 
 

Figure B7.16 Static system – deflection due to creep at time t =  (EIL = EIP)  
 and at the time of first loading (EIL = EI0) 

ed = 7,5 kN/m 

EIL 

0,15 L20,15 L1

EaI2

L2 L1 

EIL 

EIL 

0,15 L20,15 L1

EaI2

L2 L1 

EIL 

ed,2 = 19,26 kN/m 
ed,1 = 23,76 kN/m
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2,2 = 21,0 – 13,7 = 7,3  mm 
 

Deflection due to shrinkage 
 
Ncs = cs( ) –4· · = 4,14·10 ·1220·265,6·16 = 2146S cE A  kN 
 

· 21000·159= · = ·27,5 = 10,77
· + · 21000·159 +1220·4250

a a
c

a a S c

E A
a a

E A E A
 cm 

 
= · = 2146·10,77 = 23112 =cs cs cM N a  kNcm = 231  kNm 

 
= = 259306L SEI EI  kNm2 

 
2 = 121172aE I  kNm2 

 
 
 
 
 
 
 
 
 

Figure B7.17 Static system – deflection due to shrinkage 
 

2,3 = 9,6  mm 
 
The effects of shear connection on the deflection of the beam can be neglected 
because the condition n/nf  0,5 is satisfied. 
 
Remark: 
 
The limitations of deflections are adopted according to the recommendation 
given in EN 1990. These values can be changed in accordance with the 
recommendation given in the National Annex. 

 
Deflection limits for composite beams are the same as for steel beams, and are 
determined by the National Annex. 
 
Recommended limiting values for deflection of composite beams are: 
 

EIL 

0,15 L20,15 L1

EaI2 

L2 L1 

EIL 

McsMcs
Mcs Mcs 
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tot  
250

L , the deflection due to total load 

 

var  
360

L , the deflection due to variable load 

 
The deflection due to permanent action is: 
 

1 = 10,3  mm 
 
The deflection due to variable load, creep and shrinkage is: 
 

2 2,= = 5,8 + 7,3 + 9,6 = 22,7i  mm 
 
The total deflection due to permanent and variable loads, creep and shrinkage is: 
 

1 2= + = 10,3 + 22,7 = 33,0tot  mm 12500= = 50,0
250 250

L  mm 

 
The total deflection meets the criterion L/250. 
 
The deflection due to variable load, creep and shrinkage is: 
 

var 2= = 22,7  mm 12500= = 35,0
360 360

L  mm 

 
The deflection due to variable load, creep and shrinkage meets the criterion L/360. 

5.3 Pre-cambering of the steel beam 

In this example, the pre-cambering of the steel beam involves deflections due to 
permanent loads, creep and shrinkage: 
 

1 2,2 2,3= + +p  
 

= 10,3 +7,3 + 9,6p  
 
The following value of pre-cambering is adopted: 
 

= 27,2p  mm 
 



Example B7 289 
 

 

For more detailed explanation see example B3. 

5.4 Check of vibration of the beam 

The natural frequency may be calculated in terms of the well-known expression 
that is often used in design: 
 

18=f  

 
where  is the maximum deflection in millimetres due to self-weight and other 
permanent loads. This well-known natural frequency expression may be used as the 
expression for determining the natural frequency of individual members, even 
when they are not simply supported, providing that the appropriate value of  is 
used. 
 
For the calculation of the natural frequency, the characteristic values of the 
permanent loads for the composite stage are taken into account and the effective 
flexural stiffness of the composite section for short-term loading EI0. 
 

,1 ,2= ·( + ) = 3,00·(4,42 + 2,00) = 19,26d k ke b g g  kN/m 
 
The deflection under this load is approximately: 
 

4 4

0

·5 5 19,26·12,5= · = · ·100 = 1,89
384 384 324207

de L
EI

 cm 

 
The natural frequency of the beam is therefore: 
 

18 18= = = 4,1
18,9

f  Hz  4 Hz    with    in mm 

 
The criterion is satisfied for initial calculation purposes. However, the dynamic 
performance of the entire floor is carried out using a method such as the one in 
[51]. 

5.5 Control of crack width 

5.5.1 Minimum reinforcement area 

The exposure class is XC1. In the case of reinforced concrete elements according 
to EN 1992-1-1 this means that the crack width should be limited to the 



290 B     Composite beams 
 

 

maximum value wmax = 0,4 mm. 
 
Remark: 
 
For exposure class XC1, crack width has no influence on durability of the 
structure, but this limit is set to guarantee acceptable appearance of structures. 
 
The required minimum area of reinforcement As for the slab of composite beam, 
according to clause 7.4.2(1), EN 1994-1-1, is: 
 

,= · · · · /s s c ct eff ct sA k k k f A  
 
where: 
 
fct,eff is the mean value of the tensile strength of the concrete effective at the 

time when the first crack may be expected to occur. Values of fct,eff can 
be taken as those for fctm (EN 1992-1-1, Table 3.1) or as flctm (EN 1992-1-
1, Table 11.3.1) taking into account the concrete strength class at the 
time when the first crack of the concrete is expected to occur. If the time 
of occurrence of cracks cannot be established, it is possible to adopt the 
minimum tensile strength of 3 N/mm2. 

Act is the cross-sectional area of the tensile zone of the concrete (due to 
direct loading and primary effects of shrinkage). For simplicity, the 
cross-sectional area of the concrete may be adopted as the area 
determined by its effective width. 

s is the maximum stress allowed in the reinforcement immediately after 
cracking of the concrete. This stress can be taken as the characteristic 
value of the yield strength fsk. To satisfy the required width limits, the 
lower values may be needed, depending on the diameter of the bar. This 
values are given in Table 7.1, EN 1994-1-1. 

k, ks, kc are the coefficients based on the calibration procedure . The magnitude 
of these coefficients, k, ks and kc, depend on the geometry of the cracked 
composite section. More detailed explanation is given below. 

 
The meaning of the coefficients, k, ks, kc, is the following: 
 
k allows for the effect of non-uniform self-equilibrating tensile stresses; it 

may be taken as 0,8. 
ks allows for the effect of the reduction of the normal force of the concrete 

slab due to initial cracking and local slip of the shear connection; it may 
be taken as 0,9. 

kc takes into account the stress distribution within the cross-section (the 
tensile zone of the concrete Act) immediately prior to cracking. 
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The coefficient kc is calculated as: 
 

0

1= + 0,3
1 + / (2 )c

c

k
h z

 1,0 

 
where: 
 
hc is the thickness of the concrete flange, excluding any haunch or ribs, 
z0 is the vertical distance between the centroids of the uncracked concrete 

flange and the uncracked composite section, calculated using the modular 
ratio n0 = Ea/Ecm for short-term loading, i.e. at the time of first loading t0. 

 
Therefore, the values of coefficients k and ks are: 
 

= 0,8k  
= 0,9sk  

 
Calculation of coefficient kc 
 
The modular ratio n0 for short-term loading is: 
 

0
210000= = = = 6,77

3100
a

L
lcm

E
n n

E
 

 
The effective width of the concrete flange at the internal support is: 
 

,2 = 1,562effb  m 
 
Transformed to the ideal steel section, the effective width is: 
 

0

156,2= = 23,1
6,77

effb
n

 cm 

 
Geometrical properties of ideal cross-section: 
 
The area of the ideal steel cross-section is: 
 

,2
, ,

0

= + = + + · = 159 +16,37 + 23,1·11 = 429,5eff
i L st c L a s c

b
A A A A A h

n
 cm2 

 
The distance between the centroid of steel section and the top of concrete slab is: 
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39 11= + + = + 5,0 + = 30
2 2 2 2
a c

st p
h h

a h  cm 

 
The vertical distance between the centroids of the uncracked concrete flange and 
the uncracked composite section: 
 

0 ,
,

· (159 +16,37)·30= = = = 12,25
429,5

st st
ic L

i L

A a
z z

A
 cm 

 
The coefficient kc is: 
 

0

1 1= + 0,3 = + 0,3 = 0,99
1 + / (2 ) 1 +110 / (2·122,5)c

c

k
h z

 1,0 

 
Adopted: kc = 0,99. 
 
If the time of occurrence of the cracks cannot be established, the mean value of the 
tensile strength of the concrete effective at the time when the first crack may be 
expected to occur fct,eff, can be adopted as the minimum tensile strength of 3 
N/mm2. 
 
The cross-sectional area of the tensile zone of the concrete is: 
 

,2= · = 1562·110 = 171820ct eff cA b h  mm2 
 
The maximum stress allowed in the reinforcement immediately after cracking of 
concrete s is chosen from Table 7.1, EN 1994-1-1: 
 

= 360s  N/mm2 
 
The maximum bar diameter *, for design crack width wk = 0,4 mm and for the 
chosen maximum stress allowed in reinforcement s, according to Table 7.1, EN 
1994-1-1, is: 
 

* = 10 mm 
 
Minimum area of reinforcement 
 
The required minimum area of reinforcement As is: 
 

,= · · · · / = 0,9·0,99·0,8·3·171820 / 320 = 1148s s c ct eff ct sA k k k f A  mm2/beff 
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The required minimum area of reinforcement = 11,5sA  cm2/beff is less than the 
cross-sectional area of longitudinal reinforcement adopted in Section 4.4 as 16,37 
cm2/beff. 
 
The initial selected reinforcement is adequate. 

5.5.2 Control of cracking of the concrete due to direct loading 

The bending moment at the internal support is calculated for the quasi-permanent 
combination of actions at time t = . Since the steel beam is propped at the 
construction stage, the stresses in reinforcement are determined for permanent load 
gk,1 and load of floor finishes, gk,2, the quasi-permanent load, 2 qk, and shrinkage. 
 

,1 ,2 2= ·( + + · ) = 3,00·(4,42 + 2,00 + 0,3·5,0) = 23,76d k k ke b g g q  kN/m 
 

= = 186420L PEI EI  kNm2 
 

2 = 121172aE I  kNm2 
 
 
 
 
 
 
 
 
 
 

Figure B7.18 Static system for calculation of the bending moment at the internal  
 support of the composite beam for quasi-permanent actions at time  
 t =  

 
The maximum bending moment at the internal support, calculated using 
commercial software, is: 
 
Mmax = 407 kNm 
 
The bending moment due to shrinkage is: 
 

= · = 2146·10,77 = 23112 =cs cs cM N a  kNcm = 231  kNm 
 

= = 259306L SEI EI  kNm2 

ed = 23,76 kN/m 

EIL 

0,15 L20,15 L1

EaI2

L2 L1 

EIL 
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2 = 121172aE I  kNm2 
 
The maximum bending moment at the internal support due to shrinkage, calculated 
using commercial software, is: 
 
Mmax = 174 kNm 
 
 
 
 
 
 
 
 
 

Figure B7.19 Static system for calculation of the bending moment at the internal 
 support of the composite beam due to shrinkage 

 
The total bending moment, including shrinkage, is: 
 

= 407 +174 = 581stM  kNm 
 
The distance between the neutral axis and the centroidal axis of reinforcement is: 
 

1= – = 32,8 – 2,5 = 30,3st st sz e z  cm 
 
The tensile stress in reinforcement s can be calculated for direct loading as: 
 

,0= +s s s  
 
The stress in the reinforcement s,0 caused by bending moment acting on the 
composite section is calculated on the assumption that the concrete in tension is 
neglected. 

 
The geometrical properties of the cracked cross-section in accordance with Figure 
B7.13 are: 
 
cross-sectional area 
 

1 2= + + = 8,185 + 8,185 +159 = 175,4st s s aA A A A  cm2 
 
second moment of area 
 

EIL 

0,15 L20,15 L1

EaI2 

L2 L1 

EIL 

McsMcsMcs Mcs 
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= 57701stI  cm4 
 
The stress in the reinforcement s,0 caused by the bending moment acting on the 
cracked section is: 
 

2

,0
581·10= = ·30,3 = 30,5
57701

st
s st

st

M
z

I
 kN/cm2 = 305  N/mm2 

 
The correction of the stress in the reinforcement for tension stiffening is: 
 

0,4·
=

·
ctm

s
st s

f
 

 
with: 
 

175,4·57701= = = 1,41
159·45070st

a a

AI
A I

 

 
The reinforcement ratio s is: 
 

,1 ,2

,2

+ 8,185 + 8,185= = = = 0,00953
· 11·156,2

s ss
s

ct c eff

A AA
A h b

 

 
The correction of the stress in the reinforcement for tension stiffening is: 
 

0,4· 0,4·0,26= = = 7,7
· 1,41·0,00953

ctm
s

st s

f
 kN/cm2 = 77  N/mm2 

 
Therefore, the tensile stress in the reinforcement s is: 
 

,0= + = 305 + 77 = 382s s s  N/mm2 
 

= 382s  N/mm2 > = 360s  N/mm2 
 
The tensile stress in the reinforcement is higher than the steel stress given in Table 
7.1, EN 1994-1-1, for the maximum bar diameter * = 10 mm and the design crack 
width wk = 0,4 mm. 
 
For this reason, the maximum bar diameter * = 8 mm and the design crack width 
wk = 0,4 mm are selected from Table 7.1, EN 1994-1-1, with the steel stress 
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= 400s  N/mm2. In order to maintain the same area of reinforcement in the 
considered section, it is necessary to reduce the spacing between bars. 
 
The cross-sectional area of longitudinal reinforcement adopted in Section 4.4.2 is: 
 

,1 ,2= = 8,185s sA A  cm2/beff,2 
 
The cross-sectional area of the bar * = 8 mm is = 0,5barA  cm2. The required 
number of bars is: 
 

,1 8,185= = = 16,37
0,5

s

bar

A
n

A
 

 
Therefore, spacing between bars is: 
 

,2 156,2= = = 9,54
16,37

effb
x

n
 cm 

 
Thus, the final adopted reinforcement is: 
 
Top longitudinal   8/90 mm, 5,59 cm2/m, zs = 2,5 cm, 
 
Bottom longitudinal  8/90 mm, 5,59 cm2/m, zs = 10,5 cm, 
 
Top transverse   10/150 mm, 5,24 cm2/m, zs = 3,5 cm, 
 
Bottom transverse   10/150 mm, 5,24 cm2/m, zs = 13,5 cm. 

6. Commentary 

The design of a continuous beam according to the plastic–plastic procedure is 
illustrated in this example. In this case, action effects are calculated by rigid 
plastic global analysis (plastic hinge analysis), and the resistance to bending is 
based on a plastic model. Further, all cross-sections of the composite beam 
should be in class 1, i.e. the cross-sections of steel beams have sufficient rotation 
capacity. Rigid plastic global analysis can be used for ultimate limit state 
verifications other than fatigue. Also, this method is not applicable in cases 
where second-order effects have to be considered. For calculation internal 
forces, bending moments and deformations at serviceability limit state, the 
elastic global analysis should be used. The restrictions on the application of rigid 
plastic global analysis given in clause 5.4.5, EN 1994-1-1, are such that linear -
elastic global analysis will often be used for composite beams. 
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B8 Two-span composite beam – more detailed 
explanations of provisions of EN 1994-1-1 

1. Purpose of example 

This example demonstrates the design of the continuous composite beam which is 
the structural member of floor of a warehouse, shown in Figure B8.1. The floor of 
warehouse consists of two bays each with a span of 10,0 m. The transverse 
composite beams at 2,5 m centres are assumed to be continuous over a central 
longitudinal wall and attached to columns in the outer walls. The composite beam 
consists of steel IPE 450 section acting structurally with a lightweight concrete 
slab, the total depth 130 mm, by means of shear connectors attached to the top 
flange of the steel section. The design of composite slab and beam-column joints 
are not considered in this example. The structural arrangements used in this 
notional building are not typical of building design. This is because the structural 
solutions have been chosen to illustrate the application of many of the provisions of 
EN 1994-1-1. The continuous beam is unpropped at the construction stage. The 
composite slab is cast in situ on profiled steel sheeting with profile height 50 mm, 
creating an overall slab thickness of 130 mm. This example deals with important 
aspects of the design of the considered beam for the persistent design situations for 
ultimate limit state. The serviceability verifications are performed taking into 
account secondary effects of shrinkage. 

2. Static system, cross-section and actions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B8.1 Floor layout and static system 

Sl
ab

 sp
an

 

L1 = 10,0 m

Slab span

b 
=

 2
,5

 m
 

L2 = 10,0 m 

Composite 
beam 

L1 = 10,0 m L2 = 10,0 mA B C
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= 130h  mm, = 80ch  mm, = 50ph  mm 
Figure B8.2 Cross-section of the composite beam 

 
Actions 
 
a) Permanent action 
 
Remark: 
 
According to Table 11.1, clause 11.3, EN 1992-1-1 the density of lightweight 
aggregate concrete of density class 1.8 and strength class LC25/28 is 18,5 
kN/m3. According to EN 1991-1-1 the density is increased by 1 kN/m3 for 
normal percentage reinforcement, and increased for the wet concrete by another 
1 kN/m3. 

 
The concrete slab area per m width is: 
 

1 +1000= 1000· – ( · · )
2

r
c p

s

b b
A h h

b
 

 
1000 125 +75= 1000·130 – ( · ·51) = 104500
200 2cA  mm2 = 1050  cm2 

 
- concrete slab and reinforcement (wet concrete) 
 
 ·20,5 = 0,105·20,5 = 2,15cA  kN/m2 
 
- concrete slab and reinforcement (dry concrete) 
 

tw

st

beff  

hch hsc 
hp 

ha 

ba 

bs = 200 mm

b0 = 100 mm

hp/2 

br = 75 mm 
12/125 12/200 

bb = 75 mm 

zst = 42 mm 
zsl = 30 mm 

IPE 450

b1 = 125 mm
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 ·19,5 = 0,105·19,5 = 2,05cA  kN/m2 
 
Construction stage 
 
- concrete slab = 2,15  kN/m2 
 
- profiled steel sheeting = 0,17  kN/m2 
 
- steel beam = 0,30  kN/m2 
 

Total ,1kg = 2,62  kN/m2 
 
Composite stage 
 
- concrete slab = 2,05  kN/m2 
 
- profiled steel sheeting = 0,17  kN/m2 
 
- steel beam = 0,30  kN/m2 
 

Total ,2kg = 2,52  kN/m2 
 
Floor finishes ,3 = 1,00kg  kN/m2 
 
b) Variable action 
 
Construction stage 
 
- construction loads ,1 = 0,50kq  kN/m2 
 
Composite stage 
 
- imposed floor load (category of use C3) and movable partitions ,2kq = 7,00  kN/m2 

3. Properties of materials 

Concrete strength class: LC 25/28 = 25ckf  N/mm2 

 25= = = 16,7
1,5

ck
cd

c

f
f  N/mm2 

 0,85 = 0,85·16,7 = 14,2cdf  N/mm2 
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 = 31000cmE  N/mm2 
 = 2,6ctmf  N/mm2 
 = 20752lcmE  N/mm2 
 = 2,32lctmf  N/mm2 
 
Reinforcement: ductility class B or C (Table C.1, EN 1992-1-1) = 500skf  N/mm2 

 500= = = 435
1,15

sk
sd

s

f
f  N/mm2 

 = 210000sE  N/mm2 
 
Structural steel: S355 = 355ykf  N/mm2 

 355= = = 355
1,0

yk
yd

M

f
f  N/mm2 

 = 210000aE  N/mm2 

 
Shear connectors: ductile headed studs = 500uf  N/mm2 
 = 19d  mm 
 = 95sch  mm 

 95= = 5,0 > 4,0
19

sch
d

= 1,0  

4. Properties of cracked and uncracked cross-sections 

In this section, the calculation of elastic properties of cross-sections is illustrated 
taking into account changes of modular ratio, effective widths and the use 
cracked or uncracked sections.  

 
Calculation of the nominal modular ratio 

 
According to clause 11.3.1, EN 1992-1-1, the oven-dry density of the lightweight 
aggregate concrete of density class 1.8 is: 
 

= 1800  kg/m3 
 
The tensile strength of lightweight aggregate concrete may be obtained by 
multiplying the fctm value given in Table 3.1, EN 1992-1-1, by a coefficient for 
determining the tensile strength: 
 

1 = 0,4 + 0,6· / 2200 = 0,4 + 0,6·1800 / 2200 = 0,891  
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Thus, according to Table 11.3.1, EN 1992-1-1, the mean tensile strength is: 
 

1= · = 0,891·2,6 = 2,32lctm ctmf f  N/mm2 
 
Clause 11.3.2, EN 1992-1-1, gives: 
 

2= · = ·( )
2200lcm cm E cmE E E  

 
218,0= 31000·( ) = 20752

22lcmE  N/mm2 

 
Therefore, the modular ratio for short-term loading is: 
 

0
210= = = 10,1

20,75
a

lcm

E
n

E
 

 
As a simplification for composite beams in structures for buildings where first-
order global analysis can be applied, clause 5.4.2.2(11), EN 1994-1-1, permits 
the modular ratio to be taken as 2·n0 for both short-term and long-term loading. 

 
Accordingly, the nominal modular ratio n is: 
 

0= 2 = 2·10,1 = 20,2n n  
 
The elastic properties of cross-sections will be calculated for the following cases: 
 

Effective width of the concrete flange 
 

for the mid-span region = 2,23effb  m 

for the internal support region = 1,35effb  m 

at the end support = 1,84effb  m 
 
Remark: 
 
Calculation of the effective widths of the concrete flange is performed in Section 
5.4.1. 

 
Properties of steel cross-section 

 
The approximate ratio of span-to-depth of the steel beam for a continuous 
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composite beam is: 

a

L
h

25 

 
For span L = 12 m, the minimum depth of the steel beam is: 
 

310·10= = = 400
25 25a
Lh  mm 

 
The IPE 450 section is adopted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Wpl,y = 1702 cm3 
Wel,y = 1500 cm3 

Aa = 98,82 cm2 
ha = 450 mm 
ba = 190 mm 
tw = 9,4 mm 

tf = 14,6 mm 
r = 21 mm 

Iy,a = 33740 cm4 
Iz,a = 1676 cm4 

Iw,a = 791000 cm6 
It,a = 66,87 cm4 
g = 77,6 kg/m 

Figure B8.3 Cross-section of steel beam 
 

Calculation of the properties of the cross-section at the internal support, 
cracked concrete neglected 

 
The section from Figure B8.4 is considered. 
 
 
 
 
 
 
 
 
 
 
 

Figure B8.4 Cross-section at the internal support, cracked concrete neglected 
 

tw 
tf 

ba

ha

ENA  elastic neutral axis 

beff = 135 cm 

100 mm 

As = 1221 mm2/beff 

30 mm

ENA 

Ta (centroid of  
     steel section)

225 mm  zna

Tc
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Properties of the cross-section shown in Figure B8.4 are calculated as follows. 
Area 
 

= + = 9880 +1221 = 11101a sA A A  mm2 
 
The distance between the neutral axis and the centroidal axis of steel section 
 

100 + 225= 1221· = 36
11101naz  mm 

 
Second moment of area 
 

2 2 6= + · + ·(225 +100 – ) ·10y a a na s naI A z A z  
 

2 2 6 6= 337,4 + 9880·0,036 +1221·(0,225 + 0,100 – 0,036) ·10 = 452·10yI  mm4 
 
Flexural stiffness 
 

6 6= 210·452·10 = 94920·10a yE I  kNmm2 
 

Calculation of the properties of the uncracked cross-section at the internal 
support with modular ratio n0 = 10,1 

 
The effective width of the concrete flange in “steel” units is: 
 

0/ = 1,35 / 10,1 = 0,134effb n  m 
 
The section from Figure B8.5 is considered. 
 
 
 
 
 
 
 
 
 
 
 

Figure B8.5 Uncracked composite section at the internal support with  
 n0 = 10,1 

 

134 mm 

151 mm 

ENA 

Ta (centroid of 
     steel section)

164 mm 

Tc

beff  

ENA  elastic neutral axis 

90 mm 50 mm 

225 mm 

80 mm 

450 mm 
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Properties of the cross-section shown in Figure B8.5 are calculated as follows. 
 
Area 
 

0

= + · = 9880 +134·80 = 9880 +10720 = 20600eff
a c

b
A A h

n
 mm2 

 
The distance between the neutral axis and the centroidal axis of steel section 
 

90 + 225= 10720· = 164
20600naz  mm 

 
Second moment of area 
 

2 2 6 6= 337,4 + 9880·0,164 +10720·(0,225 + 0,090 – 0,164) ·10 = 848·10yI  mm4 
 
Flexural stiffness 
 

6 6= 210·848·10 = 178080·10a yE I  kNmm2 
 
Section modulus, top of slab, in concrete units 
 

6 6
,

10,1= 848·10 · = 44,8·10
(225 + 50 + 80 – 164)c topW  mm3 

 
Calculation of the properties of the uncracked section at the internal support 
with modular ratio n = 20,2 

 
The effective width of concrete flange in “steel” units is: 
 

/ = 1,35 / 20,2 = 0,067effb n  m 
 
The section from Figure B8.6 is considered. 
 
Properties of the cross-section shown in Figure B8.6 are calculated as follows. 
 
Area 
 

= + · = 9880 + 67·80 = 9880 +5360 = 15240eff
a c

b
A A h

n
 mm2 
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The distance between the neutral axis and the centroidal axis of steel section 
 

90 + 225= 5360· = 111
15240naz  mm 

 
Second moment of area 
 

2 2 6 6= 337,4 + 9880·0,111 + 5360·(0,225 + 0,090 – 0,111) ·10 = 682·10yI  mm4 
 
Flexural stiffness 
 

6 6= 210·682·10 = 143220·10a yE I  kNmm2 
 
Section modulus, top of slab, in concrete units 
 

6 6
,

20,2= 682·10 · = 56,5·10
(225 +50 + 80 – 111)c topW  mm3 

 
 
 
 
 
 
 
 
 
 
 
 

Figure B8.6 Uncracked composite section at the internal support with n = 20,2 
 

Calculation of the properties of the uncracked section at mid-span with 
modular ratio n0 = 10,1 

 
The effective width of concrete flange in “steel” units is: 
 

0/ = 2,23 / 10,1 = 0,221effb n  m 
 
The section from Figure B8.7 is considered. 
 
 
 

67 mm 

204 mm 

ENA 

Ta (centroid of  
     steel section)

111 mm 

Tc

beff  

ENA  elastic neutral axis 

90 mm 50 mm 

225 mm 

80 mm 

450 mm 
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Figure B8.7 Composite section at mid-span with n0 = 10,1 
 
Properties of the cross-section shown in Figure B8.7 are calculated as follows. 
 
Area 
 

= + · = 9880 + 221·80 = 9880 +17680 = 27560eff
a c

b
A A h

n
 mm2 

 
The distance between the neutral axis and the centroidal axis of steel section 
 

90 + 225= 17680· = 202
27560naz  mm 

 
Second moment of area 
 

2 2 6 6= 337,4 + 9880·0,202 +17680·(0,225 + 0,090 – 0,202) ·10 = 966·10yI  mm4 
 
Flexural stiffness 
 

6 6= 210·966·10 = 202860·10a yE I  kNmm2 
 
Section modulus, top of slab, in concrete units 
 

6 6
,

10,1= 966·10 · = 63,8·10
(225 +50 + 80 – 202)c topW mm3 

 
 
 

221 mm 

113 mm 

ENA 

Ta (centroid of  
     steel section)

202 mm 

Tc

beff  

ENA  elastic neutral axis 

90 mm 50 mm 

225 mm 

80 mm 

450 mm 
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Calculation of the properties of the uncracked section at mid-span with 
modular ratio n = 20,2 

 
The effective width of the concrete flange in “steel” units is: 
 

/ = 2,23 / 20,2 = 0,110effb n  m 
 
The section from Figure B8.8 is considered. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B8.8 Composite section at mid-span with n = 20,2 
 
Properties of the cross-section shown in Figure B8.8 are calculated as follows. 
 
Area 
 

= + · = 9880 +110·80 = 9880 + 8800 = 18680eff
a c

b
A A h

n
 mm2 

 
The distance between the neutral axis and the centroidal axis of steel section 
 

90 + 225= 8800· = 148
18680naz  mm 

 
Second moment of area 
 

2 2 6 6= 337,4 + 9880·0,148 + 8800·(0,225 + 0,090 – 0,148) ·10 = 799·10yI  mm4 
 
Flexural stiffness 
 

6 6= 210·799·10 = 167790·10a yE I  kNmm2 
 

110 mm 

167 mm 

ENA 

Ta (centroid of 
     steel section)

148 mm 

Tc

beff  

ENA  elastic neutral axis 

90 mm 50 mm 

225 mm 

80 mm 

450 mm 
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Section modulus, top of slab, in concrete units 
 

6 6
,

20,2= 799·10 · = 78,0·10
(225 + 50 + 80 – 148)c topW  mm3 

 
Modular ratio for effects of shrinkage 

 
In Figure 3.1, EN 1992-1-1, creep coefficients for normal-weight concrete are 
given in relation to the notional size of the cross-section. In this example, the 
concrete slab has only one surface exposed because the other is sealed by the 
profiled sheeting. Therefore, the notional size of the cross-section, h0, is twice its 
thickness. The mean thickness of the slab is 104,5 mm (Figure B8.2) and the 
notional size of the cross-section is: 
 

0 = 2·104,5 = 209h  mm 
 
According to clause 5.4.2.2(4), EN 1994-1-1, the age at loading can be presumed to 
be 1 day. The final value of the creep coefficient ( , t0) can be determined using 
the nomogram shown in Figure 3.1, EN 1992-1-1. Example B3, shows the detailed 
procedure for the determination of creep coefficients from nomograms. 
 
The following creep coefficient is obtained for normally hardening cement and 
indoor conditions: 
 

( ,t0 = 1 day) = 4,9 
 
The correction factor for lightweight concrete is given in clause 11.3.3(1), EN 
1992-1-1, which is ( /2200)2 = (1800/2200)2, giving the creep coefficient as: 
 

= ( 2200)· ( ,t0) 2= (18,0 / 22) ·4,9 = 3,28  
 
The creep multiplier L from clause 5.4.2.2(2), EN 1994-1-1, which depends on the 
type of loading, is 0,55 for secondary effects of shrinkage. The modular ratio for 
the effects of shrinkage is:  
 

0= ·(1 + · ) = 10,1·(1 + 0,55·3,28) = 28,3L tn n  
 

Calculation of the properties of the uncracked section at mid-span with 
modular ratio n = 28,7 

 
The effective width of the concrete flange in “steel” units is: 
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/ = 2,23 / 28,3 = 0,079effb n  m 
 
The section from Figure B8.9 is considered. 
 
 
 
 
 
 
 
 
 
 
 

Figure B8.9 Composite section at mid-span with n = 28,3 
 
Properties of the cross-section shown in Figure B8.9 are calculated as follows. 
 
Area 
 

= + · = 9880 + 79·80 = 9880 + 6320 = 16200eff
a c

b
A A h

n
 mm2 

 
The distance between the neutral axis and the centroidal axis of steel section 
 

90 + 225= 6320· = 123
16200naz  mm 

 
Second moment of area 
 

2 2 6 6= 337,4 + 9880·0,123 + 6320·(0,225 + 0,090 – 0,123) ·10 = 720·10yI  mm4 
 
Flexural stiffness 
 

6 6= 210·720·10 = 151200·10a yE I  kNmm2 
 
Section modulus, top of slab, in concrete units 
 

6 6
,

28,3= 720·10 · = 87,8·10
(225 + 50 + 80 – 123)c topW  mm3 

 
The results are shown in Table B8.1. 

79 mm 

192 mm 

ENA 

Ta (centroid of 
     steel section) 

123 mm 

Tc

beff  

ENA  elastic neutral axis 

90 mm 50 mm 

225 mm 

80 mm 

450 mm 



310 B     Composite beams 
 

 

Table B8.1 Elastic section properties of the composite cross-section 

Cross-section Modular 
ratio 

beff 
(m) 

Neutral 
axis 

(mm) 

Iy  
(106 mm4) 

Wc,top  
(106 mm3) 

1) Support, cracked, reinforced — 1,35 36 452 — 
2) Support, uncracked 10,1 1,35 164 848 44,8 
3) Support, uncracked 20,2 1,35 111 682 56,5 

4) Mid-span, uncracked 10,1 2,23 202 966 63,8 
5) Mid-span, uncracked 20,2 2,23 148 799 78,0 
6) Mid-span, uncracked 28,3 2,23 123 720 87,8 

5. Ultimate limit state 

5.1 Design values of the combined actions and of the effects of the actions 
for the construction stage 

The design load determined by governed combination of actions is: 
 

,sup ,1 ,1= ·( · + · )d G k Q ke b g q  
 

= 2,5b  m beam spacing 
 

= 2,50·(1,35·2,62 +1,50·0,50) = 10,7de  kN/m 
 
a) Maximum design moment at the internal support 
 
 
 
 
 
 
 
 
 
 
 

Figure B8.10 Design load for maximum design moment at the support with 
 the corresponding bending moment distribution 

 
, = 40,2Ed AV  kN 

, = 66,8Ed BV  kN 
 

133 kNm 

75,3 kNm 

A B C 

ed = 10,7 kN/m 

10,0 m 10,0 m 
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b) Maximum design moment at mid-span 
 
Remark: 
 
For simplicity, in the determination of the maximum bending moment at mid-
span, the self-weight of steel beam is neglected. This assumption produces a 
conservative result. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B8.11 Design load for the maximum design moment at mid-span with 
 the corresponding bending moment distribution 

 
, = 46,9Ed AV  kN 

, = 60,1Ed BV  kN 
 
Considering both load cases, the maximum design moments on the steel section 
during the execution stage are: 
 
- design negative moment , = 133Ed BM  kNm 
- design positive moment ,1 = 102EdM  kNm 
 
The maximum design shear force on the steel section is: 
 

, = 66,8Ed BV  kN 

5.2 Design values of the combined actions and of the effects of the actions 
for the composite stage 

For the design of continuous composite beams, the effects of cracking of the 
concrete should be taken into account. Cracking of concrete reduces the flexural 
stiffness at the internal support, a region of hogging bending moment, but not in 
the sagging regions. The reduction of the flexural stiffness should be taken into 

ed = 10,7 kN/m 

10,0 m 10,0 m 

102 kNm 

66,4 kNm 

A B C 
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account in elastic global analysis. In EN 1994-1-1, the several different methods 
are proposed for allowing for cracking in beams. The two methods for 
calculation of action effects based on elastic theory are shown in Figure B8.12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B8.12 Simplified methods for taking into account the effects of cracking 

 based on elastic theory 
 
In Method I, Figure B8.12, the internal forces and bending moments are 
determined for the characteristic combination of actions with uncracked flexural 
stiffness EaI1. According to clause 5.4.4, EN 1994-1-1, the bending moments can 
be redistributed if the required conditions are satisfied. In Method II, effects of 
cracking in composite beam are taken into account as follows. The first step is to 
determine the regions of beam, Lcr, where the extreme fibre concrete tensile 
stress, c, exceeds the limited value. For the ultimate limit state, the criterion is 

c > 2 fctm (the extreme-fibre tensile stress in concrete exceeds twice the mean 
value of the axial tensile strength) and for the serviceability limit state c > 1,5 
fctm, Figure B8.12. In the second step, the cracked stiffness is then adopted for 
such sections in cracked regions and the structure is re-analysed. In this analysis, 
the beams with cracked regions are treated as beams of non-uniform section. 
However, for continuous beams, we can use the simplification as follows. Where 
all the ratios of the length of adjacent continuous spans (shorter/longer) between 

Method I 

Calculation based on uncracked 
analysis and redistribution of
bending moments 

ed

L1 L2 

EaI1 EaI1

Method II 

Calculation with defined 
regions of cracking of concrete 

ed 

L1 L2 

EaI1

L1,cr L2,cr 

EaI2
EaI1 

Simplified 

Method II 
Cracked analysis 

ed 

L1 L2 

EaI1

0,15 L1 0,15 L2 

EaI2
EaI1 

Method I 
Uncracked analysis with 
limited redistribution 
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supports are at least 0,6, the effects of cracking can be taken into account by 
using the flexural stiffness EaI2 over 15% of the span on each side of each 
internal support, and as the un-cracked values EaI1 elsewhere. The simplified 
Method II is shown in Figure B8.12. 

 
In this example, the simplified Method II is used. Accordingly, it is assumed that 
cross-sections in the hogging region are cracked. 
 
Analyses for the ultimate and serviceability limit states are performed by the same 
methods, in accordance with the rules for global analysis from Section 5, EN 1994-
1-1, wherever possible. The effects of the behaviour of the joints, according to 
clause 5.1.2, EN 1994-1-1, are neglected in this case. According to clauses 5.2.2(1) 
and 5.4.1.1(1), EN 1994-1-1, first-order elastic global analysis is applied. 
 
In this case, the lateral-torsional buckling is the only type of instability that need be 
considered. The member imperfections for lateral-torsional buckling are taken into 
account in the expressions for determining the resistance to lateral-torsional 
buckling. In this way, the requirement according to clause 5.2.2(4), EN 1994-1-1, 
is satisfied. 
 
The analysis using Method I according to clause 5.4.2.3(2), EN 1994-1-1, shown in 
Figure 8.12, is carried out to illustrate the value of tensile stress in the beam at the 
internal support. The calculation is performed for uncracked sections and for the 
design imposed load, Figure B8.13. 
 
 
 
 
 
 
 
 
 
 
 

Figure B8.13 Continuous beam subjected to design imposed load 
 
The design imposed load is: 
 

,2= · ·d Q kq b q  
 

= 2,5b  m beam spacing 
 

= 2,50·1,50·7,00 = 26,3dq  kN/m 

MEd,B = 329 kNm 

 

A B C 

ed = 26,3 kN/m 

10,0 m 10,0 m 
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The design bending moment at internal support B, MEd,B, is: 
 

2 2

,
· 26,3·10,00= = = 329
8 8

d
Ed B

q L
M  kNm 

 
The tensile stress in the concrete at the internal support for the uncracked section 
with Wc,top = 44,8·106 mm3, Table B8.1, is: 
 

6
,

6
,

329·10= = = 7,34
44,8·10

Ed B
c

c top

M
W

 N/mm2 > = 2,32lctmf  N/mm2 

 
Thus, it is found that the tensile stress in the concrete at the internal support 
exceeds three times its tensile strength. It is important to note that shrinkage is 
neglected, which further increases the tensile stress. This method is impractical. 
Therefore, the analysis is carried out using the simplified Method II, according to 
clause 5.4.2.3(3), EN 1994-1-1, see Figure B8.12. 
 
The effects of cracking are taken into account by using the flexural stiffness EaI2 
over 15% of the span on each side of internal support, and as the uncracked values 
EaI1 elsewhere. According to clause 5.4.1.2(4), EN 1994-1-1, when elastic global 
analysis is used, the effective width at mid-span may be adopted over the whole of 
each span. However, in this example, the effective width beff for the cracked region 
is taken as 1,35 m. The adopted value of effective width is justified by the fact that 
the resistances are based on this value and the reinforcement outside this value can 
be quite light. 
 
Method II is the non-iterative method. According to clauses 5.4.2.3(3) to 
5.4.2.3(5), EN 1994-1-1, this method is applicable only for conventional 
continuous composite beam and beams in braced frames. 
 
a) Maximum design moment at the internal support (load case 1) 
 
The calculation is performed “by hand” according to the method given in [35]. 
Taking into account the symmetry of the structure and the load, the following 
statically indeterminate system is adopted for the calculation of the bending 
moment at point B, see Figure B8.14. 
 
For the uniformly distributed load per unit length, ed, and the ratio of the second 
moments of area , as shown in Figure B8.14, the expression for the elastic 
bending moment MEd at point B, according to [35], is: 
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2

,

· (0,110· + 0,890)= ( )·
4 (0,772· +1,228)

d
Ed B

e L
M  

 
( )

=
( )

y

y

I n
I cracked

 

 
 
 
 
 
 
 
 
 
 

Figure B8.14 Adopted static system – elastic propped cantilever with change  
 of section at 0,15L 

 
The design values of permanent and variable actions for the governed combination 
of actions are: 
 

,sup ,2 ,sup ,3= ·( · + · )d G k G kg b g g  
 

= 2,50·(1,35·2,52 +1,35·1,0) = 11,9dg  kN/m 
 

,2= · ·d Q kq b q  
 

= 2,50·1,50·7,00 = 26,3dq  kN/m 
 
Taking into account the data of the elastic properties of composite cross sections 
from Table B8.1, the following values are obtained: 
 

6

6

966·10= = 2,14
452·10

   
2

,
11,9·10,00 (0,110·2,14 + 0,890)= ( )· = 116

4 (0,772·2,14 +1,228)Ed BM  kN/m 

 
6

6

799·10= = 1,77
452·10

   
2

,
11,9·10,00 (0,110·1,77 + 0,890)= ( )· = 124

4 (0,772·1,77 +1,228)Ed BM  kN/m 

 
6

6

966·10= = 2,14
452·10

   
2

,
26,3·10,00 (0,110·2,14 + 0,890)= ( )· = 257

4 (0,772·2,14 +1,228)Ed BM  kN/m 

B C 

ed

0,85 L 0,15 L 

MEd,B

I I
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6

6

799·10= = 1,77
452·10

   
2

,
26,3·10,00 (0,110·1,77 + 0,890)= ( )· = 275

4 (0,772·1,77 +1,228)Ed BM  kN/m 

 
The results are given in Table B8.2. 
 
Table B8.2 Design bending moments at the fixed end of the propped cantilever 

Action ed (kN/m) n Iy (106 mm4)  MEd,B (kNm) 
Permanent 11,9 10,1 966 2,14 116 
Permanent 11,9 20,2 799 1,77 124 
Variable 26,3 10,1 966 2,14 257 
Variable 26,3 20,2 799 1,77 275 

 
Remark: 
 
The recommended value of 2 factor is 0,6 for variable loading in a warehouse, 
clause A1.2.2(1), EN 1990. The value 2·b·qk = 0,6·b·qk (= 0,6·2,5·7,0 = 10,50 
kN/m) is 40% of the value Q·b·qk =1,5·b·qk (= 1,5·2,5·7,0 = 26,3 kN/m). 
Therefore, some creep of the composite beam is likely. 
 
The design bending moment at internal support is governed for the 
dimensioning. Creep increases this bending moment, and the long-term effects 
of shrinkage are so significant for the case t, the time considered in the analysis, 
tends to  and is critical.  
 
Accordingly, the modular ratio, n = 2·n0 = 20,2, is used in this example for all 
action effects except shrinkage. 

 
Hence, the design bending moment at the internal support, excluding the effects of 
shrinkage, with n = 20,2, is: 
 

, = 275 +124 = 399Ed BM  kNm 
 
The reaction at the end support with the full design load of both spans 38,2 kN/m 
is: 
 

, = 38,2·5,0 – 399 / 10,0 = 151Ed AR  kN 
 
The point of maximum bending moment is at a distance of 151/38,2 = 3,95 m from 
the end support, and the maximum design sagging moment is: 
 

3,95= 151·3,95 – 38,2·3,95· = 298
2EdM  kNm 
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The vertical design shear force at internal support is: 
 

,
399= (11,9 + 26,3)·5 + = 231
10Ed BV  kN 

 
Remark: 
 
Redistribution of moments is not applied. According to clause 5.4.4(4), EN 
1994-1-1, redistribution is not permitted if allowance for lateral-torsional 
buckling is required, see Section 5.4.6. 

 
The calculation of bending moments and internal forces can be performed using 
commercial software for the static system and the design load shown in Figure 
B8.15. The concrete is cracked at a length of 0,15 L on each side of internal 
support. The flexural stiffness EaI2 in this region is 98910 kNm2. At mid-span, the 
concrete is uncracked at a length of 0,85 L in both spans. The flexural stiffness, for 
the uncracked section and the modular ratio n = 20,2, is 174090 kNm2. 
 
The obtained results, shown in Figure B8.15, are the same as the results obtained 
by the method given in [35]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B8.15 Static system, design load and corresponding bending moment  
 distribution (without redistribution) 

 
Secondary effects of shrinkage 
 
Shrinkage of the concrete flange causes sagging curvature and shortening of the 
composite beam. These are the primary effects of shrinkage. However, in a 
continuous beam, the curvature causes bending moments and shear forces. These 

399 kNm 

298 kNm 

EaI1 

0,15 L20,15 L1

EaI2

L2 L1 

EaI1 

ed = 38,2 kN/m 

3,95 m 6,05 m 
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are then the secondary effects. Both the curvature and the stresses from the primary 
effects are neglected in regions assumed to be cracked, clauses 5.4.2.2(8) and 
6.2.1.5(5), EN 1994-1-1. 
 
The hogging bending moment at the internal support is the important secondary 
effect for the considered beam. It is calculated as follows. Since shrinkage is a 
permanent action, it is not reduced by a combination factor 0. 
 
It is assumed that the concrete flange is separated from the steel beam, Figure 
B8.16a). The concrete above the profiled sheeting is taken into account and 
denoted as Ac. The concrete flange is shrunk due to shrinkage. The force that would 
cause the opposite effect, Ncs, to extend the flange to its original length, is given as: 
 

=cs csN ( ) · ·S cE A  
 
where: 
 

= =a cm
S

L c

E E
E

n n
 

 
0 0= · = ·(1 + · )L c L tn n n n  

 
= 1 + 0,55·cn ( ,t0) 

 
The force Ncs acts at the centre of the concrete flange, at a distance ac above the 
centroid of the composite section. The parts of the beam are reconnected. To re-
establish equilibrium, an opposite force Ncs and a bending moment Ncs·ac are 
applied to the composite section, Figure B8.16a. 
 
The radius of curvature of the uncracked part of the beam is given by: 
 

· ·
=

·
a y

cs c

E I
R

N a
 

 
If the centre support is removed, from the geometry of the circle, the deflection  at 
that point is (Figure B8.16b): 
 

2(0,85· )=
2·

L
R
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Figure B8.16 Secondary effects due to shrinkage 
 
The actual deflection in the middle is equal to zero. It is necessary to calculate the 
force P, Figure B8.16c, applied at the point B, to reduce the deflection to zero, so 
that the internal support can be replaced, Figure B8.16d. The secondary hogging 
bending moment at B is: 
 

, ,
·=
2Ed sh B

P LM  

 
Hence, the vertical shear force is P/2. For the cantilever, Figure B.8.16c, the force 
P can be found from: 
 

3 0,13· + 0,20= · ·
2 · ·a y

P L
E I

 

 
Using this procedure, the secondary effect in this beam, the hogging bending 
moment at internal support MEd,sh,B, is calculated as follows: 
 

= 2,5·0,08 = 0,20cA  m2 
 

= 210aE  kN/mm2 
 

= 28,3n  
 
According to Annex C, EN 1994-1-1, for a dry environment, the total shrinkage 
strain is: 

ac

Mcs

Msh,B 

Ncs

Ncs 

P/2

0,15 L 

0,85 L

P/2 P/2 

P 
2L

a) b)

c) d)

R

0,85 L 0,30 L 0,85 L 
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–6= –500·10cs  
 
The force Ncs is: 
 

=cs csN ( ) –6 6210· · = 500·10 · ·0,2·10 = 742
28,3S cE A  kN 

 
The force Ncs acts at the centre of the concrete flange, at a distance ac above the 
centroid of the composite section: 
 

·
= · = ·

· + ·
a a a

c
id a a S c

A E A
a a a

A E A E A
 

 
The distance between the centroidal axes of the concrete slab and the steel section, 
a, is:  
 

450 80= + + 50 = 315
2 2

a  mm 

 
The ideal second moment of area of composite section is: 
 

2500·80= + = 9880 + = 16947
28,3

c
id a

A
A A

n
 mm2 

 
The force Ncs acts at the centre of the concrete flange, at a distance ac above the 
centroid of the composite section: 
 

9880= 315· = 184
16947ca  mm 

 
The second moment of area of the cracked cross-section at internal support, Table 
B8.1, is: 
 

6( ) = 452·10yI cracked  mm4 
 
The second moment of area of the uncracked cross-section at mid-span with the 
modular ratio n = 28,3, Table B8.1, is: 
 

6( = 28,3) = 720·10yI n  mm4 
 
The ratio of the second moments of area  is: 
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6

6

( = 28,3) 720·10= = = 1,59
( ) 452·10

y

y

I n
I cracked

 

 
The radius of curvature of the uncracked part of the beam R is: 
 

6
6· · ( ) 210·1,59·452·10= = = 1,105·10

· 742·184
a y

cs c

E I cracked
R

N a
 mm = 1105  m 

 
With span L = 10 m, the deflection  is:  
 

2 3 2

3

(0,85· ) (0,85·10·10 )= = = 32,7
2· 2·1105·10

L
R

 mm 

 

From the expression for the deflection 3 0,13· + 0,20= · ·
2 · ( )·a y

P L
E I cracked

, the force P is: 

 
3 3

6

0,13· + 0,20 0,13·1,59 + 0,20= / ( ) = 32,7 / (10000 · ) = 12,1
2 · ( )· 210·452·10 ·1,59a y

P L
E cracked

 kN 

 
The hogging bending moment at the internal support MEd,sh,B is: 
 

, ,
·= = 12,1·10 = 121
2Ed sh B

P LM  kNm 

 
The design bending moment at the internal support, excluding the effects of 
shrinkage, with n = 20,2, is MEd,B = 399 kNm. The value of the hogging bending 
moment at the internal support MEd,sh,B is 23% of MEd,B. This high value is the result 
of the application of concrete with a large shrinkage and the continuous beam with 
two equal spans. According to clause 5.4.2.2(7), EN 1994-1-1, the hogging 
bending moment at the internal support MEd,sh,B can be neglected if the resistance is 
not influenced by lateral-torsional buckling. 
 
b) Maximum design moment at mid-span (load case 2) 
 
The maximum design moment in the sagging region is obtained in a span when the 
other span is subjected to the minimum load, the design value of permanent load 
gd = 11,9 kN/m, and is reduced by creep, so n = n0 = 10,1 is presumed. In the 
considered continuous beam, the flexural stiffness at mid-span is reduced further 
due to creep than is the flexural stiffness at the internal support, where the concrete 
is cracked. Therefore, the sagging bending moment (for uniformly distributed load) 
and the longitudinal shear are reduced over time. 
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Since the variable load is removed from one span, the design bending moment at 
the internal support, using data from Table B8.2, is: 
 

, = 116 + 257 / 2 = 245Ed BM  kNm 
 
The reaction at the end support with full design load in one span 38,2 kN/m is: 
 

, = 38,2·5,0 – 245 / 10,0 = 167Ed AR  kN 
 
The point of maximum bending moment is at a distance of 167/38,2 = 4,37 m from 
the end support, and the maximum design sagging moment is: 
 

4,37= 167·4,37 – 38,2·4,37· = 365
2EdM  kNm 

 
The calculation of bending moments and internal forces can be performed using 
commercial software for the static system and design load shown in Figure B8.17. 
The concrete is cracked at a length of 0,15 L on each side of internal support. The 
flexural stiffness EaI2 in this region is 98910 kNm2. At mid-span, the concrete is 
uncracked at a length of 0,85 L in both spans. The flexural stiffness, for uncracked 
section and the modular ratio n = 10,1, is 208320 kNm2. 
 
The obtained results, shown in Figure B8.17, are the same as the results obtained 
by the method given in [35]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B8.17 Static system, design load and the corresponding bending moment  
 distribution (without redistribution) 

11,9 kN/m 
38,2 kN/m 

365 kNm 

245 kNm 

EaI1 

0,15 L20,15 L1

EaI2

L2 L1 

EaI1 

4,37 m 5,63 m
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5.3 Check for the construction stage 

5.3.1 Classification of the steel cross-section 

For tf = 14,6 mm, the yield strength is fy = 355 N/mm2. 
 

235 235= = = 0,81
355yf

 

 
For the execution stage, the neutral axis is located in the half depth of the web of 
the steel section. 
 
The classification of the steel cross-section is conducted according to Table 5.2, 
EN 1993-1-1. 
 
Flange: 
 
The outstand of compression flange, Figure B8.18 is: 
 

– – 2· 190 – 9,4 – 2·21= = = 69,3
2 2

wb t r
c  mm 

 
69,3= = 4,75
14,6f

c
t

 

 
 
 
 
 
 
 
 

Figure B8.18 Classification of the flange (compressive stress is negative) 
 
The limiting value for class 1 is: 
 

f

c
t

9· = 9·0,81 = 7,29  

 
4,75 < 7,29   Therefore, the flange in compression is class 1. 
 
 

c 
tf 
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Web: 
 
The web subjected to bending, Figure B8.19 is: 
 

= = – 2· – 2· = 450 – 2·14,6 – 2·21 = 379a fc d h t r  mm 
 

379= = 40,3
9,4w

c
t

 

 
 
 
 
 
 
 
 
 
 
 

Figure B8.19 Classification of the web (compressive stress is negative) 
 
The limiting value for class 1 is: 
 

w

c
t

72· = 72·0,81 = 58,3  

 
40,3 < 58,3   Therefore the web in bending is class 1. 
 
Therefore, the cross-section is class 1. 

5.3.2 Plastic resistance moment of the steel cross-section 

The design resistance moment for classes 1 and 2 cross-sections is: 
 

,
, , ,

0

·
= = pl y yd

c Rd pl a Rd
M

W f
M M  

 
–2

, , ,
1702·35,5·10= = = 604

1,0c Rd pl a RdM M  kNm 

 
Verify that: 
 

b 
z 

z 

y y c

r

tw 
tf 
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,

,

y Ed

c Rd

M
M

 1,0 

 
133 = 0,22 < 1,0
604

 

 
Therefore the resistance moment is adequate. 

5.3.3 Shear resistance of the steel cross-section 

According to 6.2.2.3, EN 1994-1-1, the shear buckling resistance of an un-encased 
web should be verified using Section 5, EN 1993-1-5, if: 
 

72>wh
t

 

 
where: 
 

235 235= = = 0,81
355yf

 

 
= 1,2 , the factor defined in EN 1993-1-5 

 
= – 2· = 450 – 2·14,6 = 421w a fh h t  mm 

 
72 72= ·0,81 = 48,6

1,2
 

 
421= = = 44,8
9,4

w w

w

h h
t t

 

 
Since 44,8 < 48,6 the condition is satisfied. The shear buckling resistance of the 
web need not be verified. 
 
Remark: 
 
The resistance of the composite beam to vertical shear is normally taken as the 
shear resistance of the steel section according to clause 6.2.6, EN 1993-1-1, 
which gives the following expression: 
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, , ,
0

( / 3)
= = V y

pl Rd pl a Rd
M

A f
V V  

 
For rolled I- and H-sections when the load is applied parallel to the web, the 
shear area is calculated as: 
 

= – 2· · + ·( + 2· )V a f f wA A b t t t r , but not less than · ·w wh t  
 
The shear area AV is: 
 

= 9880 – 2· 190·14,6 + (9,4 + 2·21)·14,6vA  
 

= 5082vA  mm2 
 

= 1,2  
 

· · = 1,2·421·9,4 = 4749w wh t  mm2 
 
5082 mm2 > 4749 mm2 
 
Therefore, AV = 5082 mm2 = 50,8 cm2 
 
The design plastic shear resistance of the steel section is: 
 

, , ,
0

( / 3)
= = V y

pl Rd pl a Rd
M

A f
V V  

 

, , ,
50,8 35,5= = · = 1041
1,0 3pl Rd pl a RdV V kN 

 
Verify that: 
 

,

Ed

pl Rd

V
V

 1,0 

 
66,8 = 0,06 < 1,0
1041

 

 
Therefore, the shear resistance of the cross-section is adequate. 
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5.3.4 Interaction of M V (bending and shear force) 

Where the shear force is less than half the plastic shear resistance its effect on the 
resistance moment can be neglected. 
 

,0,5 · = 0,5·1041 = 521pl RdV  kN 
 

= 66,8EdV  kN ,< 0,5 = 521pl RdV  kN no reduction in the resistance moment 
 

, , ,= = 604y V Rd c RdM M  kNm 
 
Verify that: 
 

,

,

y Ed

c Rd

M
M

 1,0 

 
133 = 0,22 < 1,0
604

 

 
Since 0,22 < 1,00, the resistance to combined shear and bending is satisfactory. 

5.3.5 Lateral-torsional buckling of the steel beam 

The continuous beam is unpropped at the construction stage. It is necessary to 
verify the resistance to the lateral-torsional buckling of the steel beam according 
to EN 1993-1-1.  

 
The elastic critical moment of lateral-torsional buckling is calculated using the 
following expression: 
 

22
2 2

1 2 22 2

( · ) · ·· ·
= · · [ ( ) · + + ( · ) – · ]

( · ) · ·
w tz

cr g g
w z z

I k L G IE I kM C C z C z
k Ik L E I

 

 
L = 1000 cm is the length between points at which the compression flange is 

laterally restrained 
 

45,0= = = 22,5
2 2g
hz  cm, is the distance of the shear centre from the point 

application of the load 
 



328 B     Composite beams 
 

 

21000= = = 8077
2 (1 + ) 2·(1 + 0,3)

EG  kN/cm2 

 
For the shape of the moment diagram and the load from Figure B8.10 we have: 
 
- the effective length factors that depend on the support conditions at the end 
sections = 1,0k  and = 1,0wk , 
 
- the coefficient which takes into account the shape of the moment diagram C1 and 
the coefficient which takes into account the destabilizing or stabilizing effect of the 
position of the load C2 are found according to [3]. 
 

2 210,7·10,0= = – = –1,00
8 8·133
qL
M

 

 
0= = 0

133
 

 
1 = 2,22C    2 = 0,88C  

 
2

2

2
2 2

2

· 21000·1676= 2,22· ·
(1·1000)

1 791000 (1·1000) · 8077 · 66,87[ ( ) · + + (0,88·22,5) – 0,88·22,5]
1 1676 · 21000 ·1676

crM

 

 
Mcr = 22658 kNcm = 227 kNm 
 
Non-dimensional slenderness: 
 

·
= y y

LT

cr

W f
M

 

 
for classes 1 and 2 Wy = Wpl,y 
 

,0
1702 ·35,5= = 1,63 > = 0,4

22658
LT LT  

 
The reduction factor for lateral-torsional buckling – General method: 
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22

1=
+ –

LT

LTLT LT

 but LT  1,0 

 
2

= 0,5 [1 + ( – 0,2) + ]LT LTLT LT  
 

450= = 2,37 > 2
190

h
b

, rolled I section  the buckling curve b is governed 

 
For the buckling curve b = 0,34LT , ( LT is the imperfection factor). 
 

2= 0,5 [1 + 0,34·(1,63 – 0,2) + 1,63 ] = 2,07LT  
 

2 2

1= = 0,30
2,07 + 2,07 – 1,63

LT  

 
The design buckling resistance moment is: 
 

,
1

·
= · y y

b Rd LT
M

W f
M  

 
for classes 1 and 2 Wy = Wpl,y 
 

,
1702·35,5= 0,30· = 18126

1,0b RdM  kNcm = 181  kNm 

 
Verify that: 
 

,

Ed

b Rd

M
M

 1,0 

 
133 = 0,73 < 1,00
181

 

 
Therefore, the buckling resistance moment of the steel beam is adequate. 
 
Remark: 
 
Where the profiled steel sheeting spans perpendicularly to the beam and is 
attached to its top flange, the beam can be considered as restrained along its 
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length. For this case, the verification is conducted according to EN 1993-1-1. 

5.4 Check for the composite stage 

5.4.1 Effective width of the concrete flange 

In accordance with Figure 5.1, clause 5.4.1.2, EN 1994-1-1, for this beam we have: 
 
L1 = L2 = 10 m 
 
the equivalent span of the beam at mid-span region, 
 
Le = 0,85·L1 = 0,85·10,0 = 8,5 m for beff,1 
 
If it is assumed that is b0 = 0,1 m, then we get: 
 

1 2= = 2,5 / 2 – 0,1 / 2 = 1,20b b  m 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B8.20 Equivalent spans for the effective width of the concrete flange and  
 the effective width dimensions 

 
At mid-span, the effective width of the concrete flange is: 
 

= 0,1 + 2·8,5 / 8 = 2,23effb  m (but  2,5 m) 

L1 = 10,0 m L2 = 10,0 m 

Le=0,25(L1+L2) for beff,2 

Le=0,85L1 for beff,1 Le=0,85L1 for beff,1 

b0 be1 be2

b0 

beff

b1 b2 



Example B8 331 
 

 

Adopted: = 2,23effb  m 
 
The equivalent span of the beam for the region at the internal support is: 
 
Le = 0,25·20,0 = 5,0 m for beff,2 
 
The effective width of the concrete flange for the region at the internal support is: 
 

= 0,1 + 2·5 / 8 = 1,35effb  m 
 
At the end support we have bei = 1,20 m, so that the effective width of the concrete 
flange is: 
 

= 0,55 + 0,025·8,5 / 1,20 = 0,727i  
 

= 0,1 + 2·0,727·1,2 = 1,84effb  m 
 
The effective widths of the concrete flange beff of a continuous composite beam are: 
 

for the mid-span region = 2,23effb  m 

for the internal support region = 1,35effb  m 

at the end support = 1,84effb  m 

5.4.2 Classification of the composite cross-section 

The local buckling of cross-sections affects the resistance and rotational capacity 
of sections. Therefore, the local buckling should be considered in the design. The 
classification of cross-sections of composite beams depends on the local 
slenderness of the flange (b/t) and of the web (c/t) of steel beams, the position of 
the plastic neutral axis and the area of longitudinal reinforcement in the slab at 
the internal support.  
 
The section classification in EN 1993-1-1 is adopted for composite sections. 
Table 5.2 of EN 1993-1-1 gives limits for the width-to-thickness ratios of the 
compression parts of a section for each classification. In addition to the 
limitations of local slenderness of the flange and web of the steel beam, 
requirements for ductility of the reinforcement in tension are given for class 1 
and class 2. The reinforcement should have ductility class B or C, Table C.1, EN 
1992-1-1, and according to clause 5.5.1(5), EN 1994-1-1, the minimum area of 
reinforcement As should satisfy: 
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sA ·s cA  
 
with, 
 

=
235

y ctm
s c

sk

f f
k

f
 

 
where: 
 
Ac is the effective area of the concrete flange, 
fy is the nominal (characteristic) value of the yield strength of the structural 

steel in N/mm2, 
fsk is the characteristic yield strength of the reinforcement N/mm2, 
fctm is the mean tensile strength of the concrete, 
 is the factor which is: 

  = 1,1 for the procedure plastic–plastic (cross-section class 1), 
  = 1,0 for the procedure elastic–plastic (cross-section class 2), 
kc is a coefficient which takes into account the stress distribution within the 

section immediately prior to cracking and is 
0

1= + 0,3
1 + / (2 )c

c

k
h z

 1,0 

hc is the thickness of the concrete flange, excluding any haunch or troughs, 
z0 is the vertical distance between the centroids of the uncracked concrete 

flange and the uncracked composite section, calculated using the modular 
ratio n0 = Ea/Ecm for short-term loading, i.e. at time of the first loading t0. 

5.4.2.1 Cross-section at mid-span 

The cross-section in bending at the construction stage is class 1 and therefore, at 
the composite stage, the cross-section is also class 1. 

5.4.2.2 Cross-section at the internal support 

Classification of the flange 
 
At the internal support, a region of hogging bending, the bottom flange of the steel 
section is in compression. According to the classification of the flange from 
Section 5.3.1, the flange satisfies the condition for class 1. 
 
Classification of the web 
 
For the classification of steel cross section, clause 5.5.1(1)P, EN 1994-1-1, refers to 
clause 5.5.2, EN 1993-1-1. In Table 5.2, EN 1993-1-1 the depth of the web, c, is 
defined as the straight portion of the web between the root radii. 
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In composite beams subjected to hogging bending, addition of longitudinal 
reinforcement in the concrete flange increases the depth of the steel web in 
compression, ·c, in Figure B8.21. 
 
 
 
 
 
 
 
 
 
 
 

Figure B8.21 Classification of the web (compression is negative) 
 
For > 0,5 , the limiting value for class 1 is: 
 
c
t

396·
13 – 1

 

 
= = 450 – 2·14,6 – 2·21 = 379c d  mm 

 
To classify the web, the position of the plastic neutral axis should be determined. 
 
The design resistance moment at the internal support, MRd, can be calculated as: 
 

2
0

, , ,

· ·
= = · + –

4
w yd

Rd pl Rd si i a V Rd

t d f
M M N z M  

 
The area of longitudinal reinforcement in the concrete flange at the internal support 
significantly affects the class of the web. It is necessary to choose a value for the 
area of longitudinal reinforcement. The reinforcement bars are assumed to be 12 
mm at 125 mm, because larger-diameter bars may not give required control of 
crack widths. Therefore: 
 

= 12bard  mm 2= · / 4 = 113,1bar barA d  mm2 113,1·1000 125 = 904,8  mm2/m 
 

,2= ·904,8 / 1000 = 1350·904,8 / 1000 = 1221s effA b  mm2 = 12,21  cm2 
 
The force in these bars is: 
 

b 
z 

z 

y y c 
 c

r 

tw 
tf 
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= ·s sd sN f A  
 

-3= 435·1221·10 = 531sN  kN 
 
In the case of the hogging bending (moment at the internal support), the plastic 
neutral axis lies within the web of the steel beam, as shown in Figure B8.22: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B8.22 Determination of the design resistance moment in  
 the hogging region 

 
According to clause 6.2.2.4, EN 1994-1-1, where the shear force exceeds half the 
shear resistance its effect on the resistance moment should be taken into account. 
The reduction factor for the design yield strength of the web is (1 – ), where: 
 

22
= ( – 1)Ed

Rd

V
V

 

 
and VRd is the design shear resistance. 
 
For the design shear force , = 231Ed BV  kN and the design shear resistance, 
determined in Section 5.3.3 for the steel section only, , , ,= = 1041pl Rd pl a RdV V  kN is: 
 

231= = 0,22 < 0,50
1041

Ed

Rd

V
V

 

 
Therefore, there is no reduction in the resistance moment. 
 
From equilibrium the design tensile force in the reinforcement =si sN N  and the 
design compressive force in web 0= · ·si yd wN d f t  is: 

beff 
As = 1221 mm2/beff 

PNA 

Ta  ·c

Tc

PNA  plastic neutral axis 

tw

ba

hc 

ha 

tf

c 

 fsd

-

 zsi1

3

2

4

zpl 

Nsi

Nsi

 zi

 fyd  fyd

 fyd

=
-

+

 fyd 

 fyd

 fsd

- 

++

d0 
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0
531= = = 15,9

· 0,94·35,5
s

w yd

N
d

t f
 cm 

 
The distance between plastic neutral axis and the top of the slab zpl is: 
 

0 45 15,9= + + – = 8,0 +5,0 + – = 27,6
2 2 2 2
a

pl c p
h d

z h h  cm 

 
The distance between the centroid of the steel section and the centroid of the 
reinforcement is: 
 

45= + + – = 8,0 + 5,0 + – 3,0 = 32,5
2 2
a

i c p si
h

z h h z  cm 

 
Where the shear force reduces the resistance moment of the steel section, the 
reduced design resistance moment is: 
 

, , , , , , , ,= + ( – )(1 – )a V Rd pl f Rd pl a Rd p f RdM M M M  
 
In this case, there is no reduction in the resistance moment. Therefore, the design 
resistance moment of the steel section Mpl,a,Rd is taken into account instead of the 
reduced design resistance moment Ma,V,Rd. 
 
The design value of the plastic resistance moment of the steel section is: 
 

, , = 604pl a RdM  kNm 
 
Therefore, the design value of the plastic resistance moment of the composite 
section at the internal support is: 
 

2
0

, , ,

· ·
= · + –

4
w yd

pl Rd s i pl a Rd

t d f
M N z M  

 
2

,
0,94·15,9 ·35,5= 531·32,5 + 60400 – = 75548

4pl RdM  kNcm = 755  kNm 

 
For I-sections subject to major-axis bending and axial force with the neutral axis in 
the web, the parameter c can be calculated as: 
 

1 1= ( + – ( + ))
2 2 ·
a Ed

c f
w yd

h N
t r

c t f
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In this case, the design axial compressive force NEd is equal to the design tensile 
force in reinforcement. The design axial compressive force NEd is: 
 

= = 531Ed sN N  kN 
 
The parameter c is: 
 

1 45 1 531= ( + – (1,46 + 2,1)) = 0,71
37,9 2 2 0,94·35,5c  

 
For  > 0,5, the limiting value for class 1, table 5.2, EN 1993-1-1, is: 
 
c
t

396·
13 – 1

 

 
379 396· 396·0,81= = 40,3 > = = 39,0
9,4 13 – 1 13·0,71 – 1

c
t

 

 
40,3 > 39,0   the web is not class 1. 
 
For  > 0,5, the limiting value for class 2, table 5.2, EN 1993-1-1, is: 
 
c
t

456·
13 – 1

 

 
379 456· 456·0,81= = 40,3 < = = 44,9
9,4 13 – 1 13·0,71 – 1

c
t

 

 
40,3 < 44,9   the web is class 2. 
 
Therefore, the cross-section is class 2. 
 
The considered beam is class 2 at the internal support region and in class 1 at the 
mid-span region. 
 
Minimum reinforcement area As 
 
Within the effective width of the composite section, the ductile reinforcement is 
selected. According to clause 5.5.1(5), EN 1994-1-1, the minimum area of 
reinforcement As should satisfy the following condition: 
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sA ·s cA  
 
with: 
 

=
235

y ctm
s c

sk

f f
k

f
 

 
The area of reinforcement is: 
 

= 12,21sA cm2, (bars 12 mm at 125 mm) 
 
The effective area of concrete slab at the internal support is: 
 

,2= · = 135·8,0 = 1080c eff cA b h  cm2 
 
For the elastic–plastic procedure, the factor  is 1,0. 
 
The coefficient kc takes into account the stress distribution within the section 
immediately prior to cracking and is: 
 

0

1=
1 + / (2 )c

c

k
h z

 1,0 

 
The thickness of the concrete flange hc is 8,0 cm. The vertical distance between the 
centroids of the uncracked concrete flange and the uncracked composite section is 
denoted by z0. The vertical distance between the centroids of the uncracked 
concrete flange and the uncracked composite section is denoted by z0. 
 
The modular ratio n0 is: 
 

0
210= = = 10,1

20,75
a

lcm

E
n

E
 

 
The effective width of the concrete flange at the internal support is: 
 

,2 = 135effb  cm 
 
Transformed to the ideal steel section, the effective width is: 
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,2

0

135= = 13,4
10,1

effb
n

 cm 

 
The area of the ideal steel cross-section is: 
 

,2

0

= + · = 98,8 +13,4·8,0 = 206eff
a c

b
A A h

n
 cm2 

 
The distance between the neutral axis and the centroid of the steel section is: 
 

,2

0
0

45 8,0· ·( + + ) 13,4·8,0·( + + 5,0)2 2 2 2= = = 16,4
206

eff a c
c p

n

b h h
h h

n
z

A
 cm 

 
Thus, the vertical distance between the centroids of the uncracked concrete flange 
and the uncracked composite section is: 
 

0 0
45 8,0= ( + + ) – = ( + + 5,0) – 16,4 = 31,5 – 16,4 = 15,1

2 2 2 2
a c

p n
h h

z h z  cm 

 
Therefore: 
 

0

1 1= + 0,3 = + 0,3 = 1,09
1 + / (2 ) 1 + 8,0 / (2·15,1)c

c

k
h z

 1,0 

 
= 1,00ck  

 
= 2,32lctmf N/mm2 

 
355 2,32= = 1,0 1,0 = 0,70

235 235 500
y lctm

s c
sk

f f
k

f
 % 

 
The final verification of the minimum reinforcement is: 
 

= 12,21sA  cm2 · = 0,0070·1080 = 7,56s cA  cm2 
 
The condition is satisfied. 



Example B8 339 
 

 

5.4.3 Resistance moment of composite cross-section 

5.4.3.1 Resistance moment at mid-span 

According to clause 6.2.1.3, EN 1994-1-1, the partial shear connection may be 
used in the regions of sagging bending. 
 
If ductile shear connectors are used, the resistance moment can be determined by 
means of rigid plastic theory in accordance with 6.2.1.2, EN 1994-1-1. However, 
the reduced value of the compressive force Nc must be taken into account instead 
of the force Nc,f. 
 
It is very convenient to use the diagram of partial shear connection, shown in 
Figure 6.5, EN 1994-1-1, for determining the resistance moment. According to 
clause 6.2.1.3(5), EN 1994-1-1, the design resistance moment of the composite 
beam in sagging region can be conservatively calculated by the straight line AC 
in Figure 6.5, EN 1994-1-1: 
 

, , , , ,
,

= + ( – )· c
Rd pl a Rd pl Rd pl a Rd

c f

N
M M M M

N
 

 
where: 
 
Mpl,a,Rd  is the design plastic resistance moment of the structural steel section 

alone in sagging region, 
Mpl,Rd  is the design plastic resistance moment of the composite section with full 

shear connection in sagging region, 
Nc,f  is the design compressive force in the concrete flange with full shear 

connection, 
Nc is the design compressive force in the concrete flange. 

 
In this example, the calculation of plastic resistance moment of the composite 
section with full shear connection in sagging region was first implemented. To take 
into account the partial shear connection, the resistance moment MRd is calculated 
by means of rigid plastic theory in accordance with clause 6.2.1.2, EN 1994-1-1, 
taking into account the reduced value of the compressive force in the concrete 
flange Nc instead of Nc,f. The simplified procedure is illustrated in example B6. 
 
The plastic neutral axis lies within the thickness of top steel flange if it is: 
 

,<c pl aN N  
 
The design plastic resistance of the structural steel section to normal force is: 
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,
,0

· 9880·0,355= = = 3507
1,0

a yd
pl a

M

A f
N  kN 

 
In region of sagging bending, the reinforcement in compression is neglected and 
the available area of concrete is 2,23 m wide and 80 mm thick. The compressive 
force is: 
 

,= = 0,85· · · = 14,2·2,23·80 = 2533c c f cd eff cN N f b h  kN 
 
Since 2533 < 3507, the plastic neutral axis lies within the thickness of top steel 
flange. 
 
Assuming full shear connection, with the plastic neutral axis in the steel top flange, 
the design plastic resistance moment of the composite section with full shear 
connection in sagging region is determined by the following expression: 
 

, , , 2= · + ( – )pl Rd c f pl f aM N z N h x  
 
The design plastic resistance of the steel flange to normal force is: 
 

, ,
,

– 3507 – 2533= = = 487
2 2

pl a c f
pl f

N N
N  kN 

 
In accordance with Figure B8.23, the following values are calculated: 
 

3
,

1
2533·10= = = 80

·0,85· 2230·14,2
c f

eff cd

N
x

b f
 mm = = 80ch  mm 

 
,

2
487= = = 7,2

· 190·0,355
pl f

f yd

N
x

b f
 mm 

 
1= + + –

2 2
a

c p
h x

z h h  

 
450 80= 80 + 50 + – = 80 + 50 + 225 – 40 = 315
2 2

z  mm 

 
The design plastic resistance moment of the composite section in sagging region is: 
 

, , , 2= · + ( – )pl Rd c f pl f aM N z N h x  
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, = 2533·0,315 + 487·(0,450 – 0,0072)pl RdM  
 

, = 1014pl RdM  kNm 
 
The obtained value of design resistance will be reduced by the use of partial shear 
connection. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B8.23 Determination of design resistance moment in sagging region,  
 PNA lies within flange of steel section (full shear connection) 

 
According to Section 5.2, the maximum design moment in sagging region is: 
 

= 365EdM  kNm 
 
This value is significantly less than the design plastic resistance moment in 
sagging region Mpl,Rd = 1014 kNm, so we will use the lowest permitted degree of 
shear connection. The maximum design moment in sagging region, MEd, is even 
less than Mpl,a,Rd, which is 604 kNm. 

 
The equivalent span of beam at mid-span (L1 = L2 = 10,0 m) according to Figure 
5.1, EN 1994-1-1, is: 
 

,1 1= 0,85· = 0,85·10,0 = 8,5eL L  m 
 
For Le  25 m, according to clause 6.6.1.2 (3), EN 1994-1-1, with fy = 355 N/mm2, 
the limit for the degree of shear connection is: 
 

355= / = 1 – ( )·(0,75 – 0,03· )f e
y

n n L
f

   0,4 

 

beff 

PNA 

Ta 

Tc

PNA  plastic neutral axis 

tw

ba

hc 

ha 

tf

hp 

0,85 fcd

 x1 = hc -

 fyd

 x2

+
Npl,a2

Npl,a1 =Npl,f 

Nc,f
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355= / = 1 – ( )·(0,75 – 0,03·8,5) = 0,51
355fn n  

 
Remark: 
 
According to clause 6.6.1.2(3), EN 1994-1-1, a lower value is permitted if it 
satisfies the required conditions. However, the condition that there should be 
only one stud per trough of the profiled sheeting cannot be met. Therefore, the 
minimum number of studs in each half of the region of sagging bending is 
0,51·nf, where nf is the number of studs for full shear connection.  

 
Calculation of the design plastic resistance moment Mpl,Rd taking into account 
partial shear connection is performed by the procedure used above. A more 
detailed derivation of the method is given below. 
 
In accordance with Figure B8.24, the depth of the compressive stress block in 
the concrete flange, x1, is: 
 

1 =
·0,85·

c

eff cd

N
x

b f
 

 
The value of xc is always less than thickness of slab hc. 
 
From the distribution of longitudinal strain in the cross-section shown in Figure 
B8.24, it can be seen that the neutral axis in the slab, denoted as xn, is slightly 
greater than x1. 
 
It is generally assumed that the ratio x1/xn is between values 0,8 and 0,9 in the 
design of reinforced concrete slabs and beams. In the design of composite slabs 
and beams the less accurate assumption x1 = xn is adopted. This assumption is on 
the unsafe side but the procedure is much simpler. The error introduced in the 
design of composite beams is negligible. 
 
There is a second neutral axis, x1. This axis lies within the steel section. If this 
axis lies within the steel top flange, the stress block is as shown in Figure B8.24. 
 
In accordance with Figure B8.24, the depth x2 is defined by the following 
expression: 
 

,
2 =

·
pl f

f yd

N
x

b f
 

 
where: 
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,
,

–
=

2
pl a c

pl f

N N
N  

 
1= + + –

2 2
a

c p
h x

z h h  

 
 
 
 
 
 
 
 
 
 
 
 
Figure B8.24 Determination of the design resistance moment in the sagging  

 region; the PNA lies within the flange of the steel section (partial  
 shear connection) 

 
The design resistance moment of the composite section in sagging region is: 
 

, 2= · + ( – )Rd c pl f aM N z N h x  
 
The reduced design value of the compressive force in the concrete flange is: 
 

,= · = 0,51·2533 = 1292c c fN N  kN 
 
Since for Nc,f is x = hc = 80 mm, then x1 = · hc = 0,51·80 = 41 mm. 
 
The design plastic resistance of the steel flange to normal force is: 
 

,
,

– 3507 – 1292= = = 1108
2 2

pl a c
pl f

N N
N  kN 

 
In accordance with Figure B8.24, the following values are calculated: 
 

,
2

1108= = = 16,4
· 0,355·190
pl f

f yd

N
x

b f
 mm 
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tf
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1= + + –
2 2
a

c p
h x

z h h  

 
450 41= 80 + 50 + – = 80 + 50 + 225 – 20,5 = 334,5
2 2

z  mm 

 
The design resistance moment of the composite section in sagging region for 
partial shear connection is: 
 

, 2= · + ( – )Rd c pl f aM N z N h x  
 

= 1292·0,335 +1108·(0,450 – 0,016)RdM  
 

= 914RdM  kNm 
 
The design value of the bending moment at mid-span, as the effect of action, MEd = 
365 kNm and the check is: 
 

,

Ed

pl Rd

M
M

 1,0 

 
365 = 0,40 < 1,0
914

, the condition is satisfied 

5.4.3.2 Resistance moment at the internal support 

The design plastic resistance moment in hogging region is determined in 
accordance with clause 6.2.1.2, EN 1994-1-1, assuming that there is full shear 
connection between structural steel, reinforcement and concrete. The appropriate 
shear connection should be provided to ensure yielding of the reinforcement in 
tension. 
 
In other words, we need to provide a sufficient number of studs in the hogging 
region. Therefore, the yielding of the reinforcement in tension occurs before the 
failure of the studs. 

 
The design plastic resistance moment in hogging region was calculated in Section 
5.4.2.2 at the classification of the composite section and is: 
 

, = 755pl RdM  kNm 
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The design bending moment at the internal support is MEd = 399 kNm and the 
check is: 
 

,

Ed

pl Rd

M
M

1,0 

 
399 = 0,53 < 1,0
755

, the condition is satisfied 

 
Also, we need to calculate the characteristic plastic resistance moment, Mpl,Rk. The 
characteristic plastic resistance moment will be used in the check of lateral-
torsional buckling. With the partial factor for reinforcement s = 1 instead of s = 
1,15, the characteristic tensile force at yield increases to: 
 

, = 531·1,15 = 611s kN  kN 
 
From equilibrium, the characteristic tensile force in reinforcement ,=si s kN N  and 
the characteristic compressive force in web 0= · ·si yk wN d f t  is: 
 

,
0

611= = = 18,3
· 0,94·35,5
s k

w yk

N
d

t f
 cm 

 
The distance between the plastic neutral axis and the top of the slab zpl is: 
 

0 45 18,3= + + – = 8,0 + 5,0 + – = 26,4
2 2 2 2
a

pl c p
h d

z h h  cm 

 
The distance between the centroid of the steel section and the centroid of the 
reinforcement is: 
 

45= + + – = 8,0 + 5,0 + – 3,0 = 32,5
2 2
a

i c p si
h

z h h z  cm 

 
The characteristic value of the plastic resistance moment of the steel section is: 
 

, ,k = 604pl aM  kNm 
 
Therefore, the characteristic value of the plastic resistance moment of the 
composite section at the internal support is: 
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2
0

, , , ,

· ·
= · + –

4
w yk

pl Rk s k i pl a Rk

t d f
M N z M  

 
2

,
0,94·18,3 ·35,5= 611·32,5 + 60400 – = 77464

4pl RkM  kNcm = 775 kNm 

 
Remark: 
 
All of these resistances may need to be reduced to take into account lateral-
torsional buckling 

5.4.4 Check of shear connection – ductile headed stud shear connectors 

The degree of shear connection,  = 0,56 calculated in Section 5.4.3.1, enables the 
headed stud shear connectors to be treated as ‘ductile’. An alternative design, using 
non-ductile shear connectors, is illustrated in Section 5.4.5. 
 
According to clause 6.6.5.8(1), EN 1994-1-1, the height of the adopted stud of 19 
mm diameter must be at least: 
 
hp + 2·d = 50 +2·19 = 88 mm 
 
The adopted stud with the standard height of 95 mm, after welding, satisfies this 
rule. 

5.4.4.1 Resistance of headed stud shear connectors 

The design resistance of a single-headed shear connector in a solid concrete slab 
is determined by shank failure of the stud ( (1)

RdP ) or by concrete failure ( (2)
RdP ). 

The design resistance of a single-headed shear connector in a solid concrete slab, 
automatically welded in accordance with EN 14555, should be determined as the 
smaller of: 
 

(1) (2)= min( , )Rd Rd RdP P P  
 

2
(1) 0,8· ·( · ) / 4

= u
Rd

V

f d
P  

 
2

(2) 0,29· · · ·
= ck cm

Rd
V

d f E
P  

 
where: 
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d is the diameter of the shank of the stud (16 mm  d  25 mm), 
hsc is the overall nominal height of the stud, 
fu is the specified ultimate tensile strength of the material of the stud but not 

greater than 500 N/mm2, 
fck is the characteristic cylinder compressive strength of the concrete, 
Ecm is the mean value of the secant modulus of elasticity of the concrete, 

V is the partial factor for stud ( V = 1,25), 
 is the correction factor which takes into account the ratio of the height of 

the stud to the diameter of its shank. 
 
The correction factor  is calculated as: 
 

= 0,2[( ) +1]sch
d

     for     3 sch
d

 4 

 

= 1,0      for     > 4sch
d

 

 
Since hsc/d = 95/19 = 5,00, then  = 1. 
 
Therefore: 
 

2
(1) 0,8· ·( · ) / 4

= u
Rd

V

f d
P  

 
2

(1) –30,8·500·( ·19 ) / 4
= ·10 = 90,7

1,25RdP  kN 

 
2

(2) 0,29· · · ·
= ck cm

Rd
V

d f E
P  

 
2 3

(2) –30,29·1·19 · 25·20,75·10
= ·10 = 60,3

1,25RdP  kN 

 
The design resistance of a single-headed shear connector in a solid concrete slab is: 
 

(1) (2)= min( , )Rd Rd RdP P P  
 

(2)= = 60,3Rd RdP P kN 
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Remark: 
 
The resistance of headed studs used as shear connectors with profiled steel 
sheeting is less than the design resistance of headed studs used as shear 
connectors in a solid concrete slab. 
 
The resistance of a headed stud within profiled sheeting is determined by 
multiplying the design resistance for a headed stud connector in a solid concrete 
slab (PRd) by a reduction factor kl for profiled steel sheeting spanning parallel to 
the supporting beam and kt for profiled steel sheeting spanning transverse to the 
supporting beam. 
 
For profiled steel sheeting spanning parallel to the supporting beam, the design 
resistance a single-headed shear connector is: 
 

(1) (2)= ·min( , )Rd l Rd RdP k P P  
 
The reduction factor kl is calculated according to clause 6.6.4.1(2), EN 1994-1-1: 
 

0= 0,6( )( – 1)sc
l

p p

b h
k

h h
 1,0 

 
In the above expression hsc is the overall height of the stud, but not greater than 
hp + 75 mm. 
 
For profiled steel sheeting spanning transverse to the supporting beam, the 
design resistance a single-headed shear connector is: 
 

(1) (2)= ·min( , )Rd l Rd RdP k P P  
 
The reduction factor kt is calculated according to clause 6.6.4.2(1), EN 1994-1-1: 
 

00,70= ( – 1)sc
t

p pr

b h
k

h hn ,maxtk  

 
In the above expression nr is the number of studs in one trough at a beam 
intersection, not to exceed two in the calculations, and kt,max is the maximum 
value of the reduction factor kt which is given in Table 6.2, EN 1994-1-1. 

 
Since in this example the profiled steel sheeting with ribs run transverse to the 
supporting beam, we need to check the effect of a reduction factor, kt, on the shear 
connector resistance. 
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The reduction factor depends on the overall height of the stud, hsc, the dimensions 
of the trough in the profiled sheeting (Figure B8.2), the thickness of the profiled 
sheeting (assumed to be 1,0 mm) and the number of studs per trough, nr. 
 
For nr = 1, for one stud per trough, according to Table 6.2, EN 1994-1-1: 
 

00,7 0,7 100 95= · ·( – 1) = · ·( – 1) = 1,26
50 501

sc
t

p pr

b h
k

h hn
, but  0,85 

 
For nr = 2, for two studs per trough, according to Table 6.2, EN 1994-1-1: 
 

1,26 1,26= = = 0,89
2t

r

k
n

, but  0,70 

 
Hence, the design resistance per stud in a trough where there is one stud per trough 
is: 
 

,1 = 0,85·60,3 = 51,3RdP  kN 
 
The design resistance per stud in a trough where there are two studs per trough is: 
 

,2 = 0,7·60,3 = 42,2RdP  kN 
 
Therefore, the trough with two studs provides the equivalent of 2·PRd,2/PRd,1 = 
2·42,2/51,3 = 1,65 single studs. 

5.4.4.2 Arrangement of headed stud shear connectors and degree of shear 
connection 

Remark: 
 
Partial shear connection is permitted in sagging regions of composite beams. 
 
Full shear connection is required in hogging regions of composite beams. 
 
The assumed critical area is between the left-hand support and the point of 
maximum positive moment because between the point of maximum positive 
moment and the internal support there are significantly more studs, even if studs 
within the hogging region of the beam are neglected. This assumption should be 
verified when the number of studs needed to yield the slab reinforcement in the 
hogging region has been determined. 
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The point of maximum sagging moment is 4,37 m away from the far left-hand 
support, see Figure B8.17. The studs have to be provided within this length of 4,37 
m. The troughs of profiled steel sheeting are spaced at 0,2 m, Figure B8.25, so 21 
are available. 
 
 
 
 
 
 
 
 
 
 

Figure B8.25 Cross-section of the profiled steel sheeting 
 
The reduced design value of the compressive force in the concrete flange is Nc = 
1292 kN, and the longitudinal shear force transfer, VL,Ed, between the left-hand 
support A and the point of maximum positive moment is:  
 

, = = 1292L Ed cV N kN 
 
The longitudinal design shear force per unit length of the beam or the longitudinal 
design shear flow is: 
 

, = 1292 / 4,37 = 296L Edv  kN/m 
 
The required number of single studs is: 
 

,

,1

1292= = = 26
51,3

L Ed
s

Rd

V
n

P
 > 4370 = 21

200
, available troughs 

 
Therefore, two studs per trough have to be used over part of the span. 
 
In EN 1994-1-1, there are no recommendations on how non-uniform shear 
connectors should be arranged. Generally, it could be recommended that more 
studs are provided in regions adjacent to supports, where shear is highest. 
 
If the minimum number of troughs with two studs is n2s, the number of single studs 
required 26, the number of available troughs 21 and trough with two studs provides 
the equivalent of 1,65 single studs, then the following equation is valid: 
 

2 21,65· + 21 – = 26s sn n  

25 75 100

1,0 
88 

42 

12/200 

200
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Therefore, n2s is: 
 

2sn  7,7 
 
For the cracked section in hogging bending, the design tensile force in 
reinforcement is: 
 

= 531sN  kN 
 
The number of studs needed to yield the slab reinforcement in the hogging region 
is: 
 

,1

531= = 11
51,3

s

Rd

N
P

 

 
Therefore, the sufficient number of studs in hogging region is 11 so that the 
yielding of the reinforcement in tension occurs before the failure of the studs. 
 
For the maximum hogging bending moment at the internal support, from the 
internal support to the point of maximum sagging bending moment is 6,05 m, see 
Figure B8.15. Therefore, the available number of troughs is 6,05/0,20 = 30 for a 
total of 26 + 11 = 37 single studs. 
 
If the minimum number of troughs with two studs is n2h, the number of single studs 
required is 37, the number of available troughs 30 and the trough with two studs 
provides the equivalent of 1,65 single studs, then the following equation is valid: 
 

2 21,65· + 30 – = 37h hn n  
 
Therefore, n2h is: 
 

2hn  10,8 
 
The longitudinal design shear flow is: 
 

,
1292 + 531= = 303

6,02L Edv  kN/m 

 
The arrangement of studs is shown in Figure B8.26. This arrangement provides the 
equivalent of 27 (12 + 13 + 2) and 37 (18 + 17 + 2) studs within the lengths 4,4 m 
and 6,0 m, respectively. 
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From Figures B8.15 and B8.17 it can be seen that the maximum sagging and 
hogging bending moments are caused by different arrangements of variable load 
corresponding to load case 1 and load case 2. In this procedure, this arrangement of 
variable load is taken into account. Consequently, two studs near mid-span are 
effective for both sagging and hogging resistance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B8.26 Arrangement of studs 

5.4.5 Check of shear connection – non-ductile headed stud shear connectors 

In the previous section the shear connection was calculated for shear connectors 
that satisfied the definition “ductile” given in clause 6.6.1.2, EN 1994-1-1. The 
number and arrangement of shear connectors is shown in Figure B8.26. 
 
According to clause 6.6.1.3(5), EN 1994-1-1, it is possible to take into 
consideration the shear connectors that are not “ductile”. In this case, the 
longitudinal design shear flow, vL,Ed, is calculated by elastic theory. 
 
The “inelastic redistribution of shear” is not required, so clause 6.6.1.3(5), EN 
1994-1-1, on sufficient deformation capacity does not apply.  

 
Since the calculation of the design resistance moment MRd according to clause 
6.2.1.3(3), EN 1994-1-1, is not allowed, the stresses are calculated by elastic 
theory. According to clause 6.2.1.5(2), EN 1994-1-1, the limiting stresses are given 
as: 
 

0 

257 
296 

422 

1,6 4,0 4,4 7,8 10,0 

301 

13 12 2 17 18 

A B 

vL (kN/m) vL,Rd 

vL,Ed for maximum sagging
bending moment 

vL,Ed for maximum hogging
bending moment 

Number of troughs 

Equivalent number of single studs 

L (m) 

8 12 2 17 11 
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25= = = 16,7
1,5

ck
cd

C

f
f  N/mm2 

 
355= = = 355
1,0

yk
yd

M

f
f  N/mm2 

 
We need to calculate the maximum sagging bending moment which acts on the 
composite section. 
 
Remark: 
 
According to Table 5.1, EN 1994-1-1, the redistribution of the maximum 
hogging moment of 15% is permitted for cross-section class 2 and steel grade 
S355. 

 
The maximum design moment in the sagging region was calculated in Section 5.2, 
Figure B8.17, without the redistribution of the hogging moment. 
 
According to Figure B8.17, the bending moment at internal support is: 
 

, = 245Ed BM  kNm 
 
With redistribution of 15%, the bending moment at the internal support is: 
 

, = 0,85·245 = 208Ed BM  kNm 
 
The reaction at the end support with full design load in one span 38,2 kN/m is:  
 

,
208= 38,2·5,0 – = 170
10Ed AR  kN 

 
The point of maximum bending moment is at a distance of 170/38,2 = 4,45 m from 
the end support, and the maximum design sagging moment is: 
 

4,45= 170·4,45 – 38,2·4,45· = 378
2EdM  kNm 

 
The considered beam is unpropped at the construction stage. The steel beam at the 
construction stage is loaded by self-weight and the weight of the concrete slab. The 
static system and design loads are shown in Figure B8.27. 
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,sup= · ·d G ke b g  
 

= 2,5b  m beam spacing 
 

,1 = 2,50·1,35·2,32 = 7,83de  kN/m (concrete slab, profiled steel sheeting) 
 

,2 = 2,50·1,35·0,30 = 1,01de  kN/m (steel beam) 
 
 
 
 
 
 
 
 

Figure B8.27 Determination of the maximum sagging moment in the steel beam 
 
The design bending moment at internal support is: 
 

2 2
, = 0,125·1,01·10,0 + 0,0625·7,83·10,0 = 61,6Ed BM  kNm 

 
The reaction at the end support is: 
 

,
61,6= (1,01 + 7,83)·5,0 – = 38,0
10Ed AR  kN 

 
The point of maximum bending moment is at a distance of 38,0/8,84 = 4,30 m from 
the end support, and the maximum design sagging moment is: 
 

,
4,30= 38,0·4,30 – (1,01 +7,83)·4,30· = 81,7

2a EdM  kNm 

 
Therefore, the maximum design sagging moment acting on the composite section 
Mc,Ed is: 
 

, ,= – = 378 – 81,7 = 296c Ed Ed a EdM M M  kNm 
 
The mean stress in the 80 mm thick concrete slab, with beff = 2,23 m, is calculated 
in accordance with Figure B8.28. 
 
 
 

A B C 

7,83 kN/m 

10,0 m 10,0 m 

1,01 kN/m 
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Figure B8.28 Mean stress in the concrete slab 
 
In Section 4, the following properties of sections are calculated: 
 
Second moment of area 
 

6= 966·10yI  mm4 
 
Section modulus, top of slab, in concrete units 
 

6
, = 63,8·10c topW  mm3 

 
We need to calculate the section modulus at the bottom of the slab, 80 mm from 
the top of the slab. In accordance with Figure B8.28, the section modulus in 
concrete units is: 
 

6
,

10,1= 966· = 134·10
(225 + 50 – 202)c bottomW  mm3 

 
The design values of stresses at the top and bottom of the slab are: 
 

6
,

6
,

296·10= = = 4,6
63,8·10

c Ed
c

c top

M
W

 N/mm2 < = 16,7cdf  N/mm2 

 
and 
 

6
,

6
,

296·10= = = 2,2
134·10

c Ed
c

c bottom

M
W

 N/mm2 

 
The mean stress in the 80 mm thick concrete slab, with beff = 2,23 m, is: 

beff  

ENA 

Ta 

Tc

ENA  elastic neutral axis 

tw

ba

hc 

ha 

tf

hp 2,2 N/mm2 

202

73

m 

4,6 N/mm2 

153
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,
4,6 + 2,2= = 3,4

2c sr  N/mm2 

 
Remark: 
 
Shrinkage reduces both the compressive stress in the concrete and the moments 
at mid-span. The effects of shrinkage are neglected due to simplification of the 
procedure, and the results are conservative.  

 
Using the elastic section properties for the uncracked section at mid-span with n = 
10,1 from Table B8.1, the calculated stresses are rather below the limiting stresses 
given in clause 6.2.1.5(2), EN 1994-1-1. The mean stress in the 80 mm thick 
concrete slab, with beff = 2,23 m, is 3,4 N/mm2, and the longitudinal force in the 
slab is: 
 

,= · ·c c sr eff cN b h  
 

= 3,4·2,23·80 = 607cN  kN 
 
The force for full shear connection is: 
 

, = 0,85· · · = 14,2·2,23·80 = 2533c f cd eff cN f b h  kN 
 
Therefore, the degree of shear connection needed is: 
 

,

607= = = 0,24
2533

c

c f

N
N

 

 
The diagram of the elastic shear flow is triangular. The design shear flow at the end 
support is: 
 

,
607= 2· = 273
4,45L Edv  kN/m 

 
The same headed stud shear connectors are used, as before. However, these studs 
are not “ductile” at this low degree of shear connection. The design resistances of 
studs, (Section 5.4.4.1) are: 
 

,1 = 0,85·60,3 = 51,3RdP  kN (one stud per trough) 
 

,2 = 0,7·60,3 = 42,2RdP  kN (two studs per trough) 
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For the used profiled sheeting, the width of trough is 0,2 m, Figure B8.25. There 
are five troughs per metre. One stud per trough (vL,Rd = 51,3/0,2 = 257 kN/m) is not 
sufficient near the end support. Two studs per trough provide 422 kN/m (vL,Rd = 
2·42,2/0,2 = 422 kN/m). 
 
One stud every other trough can be provided near mid-span (vL,Rd = 257/2 = 128 
kN/m). Their spacing is 400 mm and it is less than the limiting values given in 
clause 6.6.5.3(3), EN 1994-1-1. 
 
The arrangement of studs is shown in Figure B8.29 in comparison with the 
arrangement of studs obtained in Section 5.4.4. Relatively large differences are the 
result of different degrees of shear connection,  = 0,51 and  = 0,24, and the 
design sagging moment in this case is unusually low, in comparison to the plastic 
resistance moment in sagging region. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B8.29 Longitudinal shear flow and shear resistance for length 4,4 m  
 (distance between the end support and the point of maximum 
 sagging moment) 

5.4.6 Lateral-torsional buckling of the composite beam 

5.4.6.1 Introductory consideration 

In a continuous composite beam, the top flange of the steel beam is laterally 
restrained by the concrete slab, while the bottom flange is restrained at the supports 
but not between the supports. In this case, beam buckling near the internal support 

Distance from 
end support (m) 

For “ductile” studs,
Sec. 5.4.4 

For elastic 
design, Sec. 5.4.5 

273 

Number
of troughs

257 

128 

422 

0 1,0 2,6 4,4 
5 8 9 

VL,Rd 

VL,Ed 

vL (kN/m) 

1,6
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may be expressed in terms of the distortion of the cross-section which results in the 
web bending. This failure is known as distortional buckling and the provisions in 
EN 1994-1-1 are related to distortional buckling. 
 
According to clause 6.4.1(3), EN 1994-1-1, it is permitted to use the provisions 
given in EN 1993-1-1 for steel beams. The simplified verification according to 
clause 6.4.3, EN 1994-1-1, is not applicable because the loading does not satisfy 
the condition given in clause 6.4.3(1), paragraph (b). In this example, the method 
according to clause 6.4.2, EN 1994-1-1, is used. The calculation of the elastic 
critical buckling moment at the internal support, Mcr, is required in this method. 
However, in EN 1994-1-1, there are neither recommendations nor information 
about the calculation of the elastic critical buckling moment. Expressions for Mcr 
can be found in [4], [34] or ENV 1994-1-1. 
 
The most critical case is when both spans are loaded with full design load. This 
case is considered with n = 20,2. 
 
The bending moments, given in Table B8.2, are shown in Figure B8.30. The effects 
of shrinkage are considered separately.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B8.30 Distributions of bending moments for ultimate limit state, excluding  
 shrinkage 

 
The bending moment for the simply supported case M0 and for the full design load 
ed is: 
 

= + = 11,9 + 26,3 = 38,2d d de g q  kN/m 
 

365 kNm 

245 kNm 4,37 m 5,63 m

399 kNm 

298 kNm 

3,95 m 6,05 m 

a) Full design load on both spans 

b) Design permanent load on both spans and design  
variable load only on one span 

A 
D

B C 

D

A B C 
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2 2

0

· 38,2·10= = = 478
8 8

de L
M  kNm 

 
According to Figure 7.82, from [4], for C4 is: 
 

0

399= = = 0,83
478

BM
M

   and   4 = 28,3C  

 
The elastic critical buckling moment at an internal support of the continuous 
beam is: 
 

2
1/24

2

· ·
= ·[( · + )· · ]c s

cr a at a afz
k C k L

M G I E I
L

 

 
where: 
 
L is the length of the beam between points at which the bottom flange of the 

steel member is laterally restrained (typically, the span length), 
Ga is the shear modulus for steel, 

210= = = 80,8
2·(1 + ) 2·(1 + 0,3)

a
a

a

E
G  kN/mm2 

It,a is the torsional moment of area of the steel section, 
ks is the rotational stiffness defined in clause 6.4.2(6), EN 1994-1-1, 
Iafz is the minor-axis second moment of area of the steel bottom flange, 
kc is a property of the composite section. 
 
For doubly symmetrical cross-section, the factor kc is given by: 
 

2 2

( · / )
=

[( / 4 + ) / + ]
s y ay

c
s x s

h I I
k

h i e h
with 

·
=

· ·( – )
ay

a c a

A I
e

A z A A
 

 
where: 
 
hs is the distance between the centroids of the flanges of the steel section, 
Iy is the second moment of area for major-axis bending of the cracked 

composite section of area A, 
Iay is the corresponding second moment of area of the steel section, 
zc is the distance between the centroid of the steel beam and the mid-depth of 

the slab, 
2 = ( + ) /x ay az ai I I A  where Iaz and Aa are properties of the steel section. 
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For calculation of the rotational stiffness, ks, the lesser of the ‘cracked’ flexural 
stiffnesses of the composite slab at a support and at mid-span, (EI)2 is governed. 
The value of flexural stiffness at the internal support is less and is governed for 
calculation of the rotational stiffness. In accordance with Figure B8.31, the value of 
the ‘cracked’ flexural stiffnesses of the composite slab is calculated neglecting the 
profiled sheeting. 
 
 
 
 
 
 
 
 
 

Figure B8.31 Cross-section of the composite slab 
 
In Figure B8.31 the cross-section of composite slab is shown with denotations: 
 
b0 is the mean width of the troughs, 
bs is the spacing of the troughs, 
hp is the depth of the profiled sheeting, 
As is the area of top reinforcement per unit width of slab, 
z is the lever arm. 
 
It is assumed that only the concrete in the trough is in compression. Its equivalent 
transformed area, Ae, in steel units, is: 
 

0 ·
=

·
p

e
s

b h
A

n b
 

 
The position of the elastic neutral axis is defined by dimensions a and c, so: 
 

· = ·e sA c A a  
 

+ =a c z  
 
The value of z is determined by the expression: 
 

= – –
2
p

s

h
z h d  

 

ds

b0

bs

z 

hp/2 

As 

br 

h 
c 
a 
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Assuming that each trough is rectangular, the second moment of area per unit 
width is: 
 

2
2 2= · + ·( + )

12
p

s e

h
I A a A c  

 
Using previously given expressions and after rearrangement, the following 
expression is obtained for the flexural stiffness: 
 

22

2

·· ·
( ) = [ + ]

+ 12
e ps e

a
s e

A hA A z
EI E

A A
 

5.4.6.2 Calculation of flexural stiffness (EI)2 of composite slab and ks 

Assuming that the buckling is caused by short-term loading, the modular ratio is n 
= 10,1. In accordance with denotations from Figure A8.31 and for given 
dimensions of profiled sheeting we have: 
 
As = 565 mm2/m (the assumption: 12 mm bars at 200 mm, placed bellow the 

reinforcement) 
 
zst = 42 mm 
 

= 50ph  mm 
 
Therefore Ae is: 
 

0 · 100 50= = · = 2,475
· 200 10,1

p
e

s

b h
A

b n
 mm2 = 2475eA  mm2/m 

 
The value of z is: 
 

= – –
2
p

st

h
z h z  

 
50= 130 – 42 – = 63
2

z  mm 

 
The flexural stiffness of the composite slab (EI)2 is: 
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22

2

·· ·
( ) = [ + ]

+ 12
e ps e

a
s e

A hA A z
EI E

A A
 

 
2 2

3 11
2

565·2475·63 2475·50( ) = 210·10 ·[ + ] = 4,92·10
565 + 2475 12

EI  Nmm2/m 

 
2( ) = 492EI  kNm2/m 

 
According to clause 6.4.2(6), EN 1994-1-1, the rotational stiffness ks is determined 
by: 
 

1 2

1 2

·
=

+s
k k

k
k k

 

 
The flexural stiffness of the cracked concrete or the composite slab in the direction 
transverse to the steel beam k1 is calculated as: 
 

2
1

( )
=

EI
k

a
 

 
For unit width of slab continuous across the four or more steel beams at spacing a 
= 2,5 m and  = 4, the value of k1 is: 
 

2
1

4( ) 4·492= = = 787
2,5

EI
k

a
 kNm/rad 

 
The flexural stiffness of the steel web k2, with hs = 435 mm for IPE 450, is: 
 

3 3

2 2 2

· 210·9,4= = = 110
[4· ·(1 – )] 4·435·(1 – 0,3 )

a w

s a

E t
k

h
 kN/rad 

 
The rotational stiffness ks is: 
 

1 2

1 2

· 787·110= = = 96,5
( + ) (787 +110)s

k k
k

k k
 kN/rad 

5.4.6.3 Calculation of kc 

For doubly symmetrical cross-section, the factor kc is: 
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2 2

( · / )
=

[( / 4 + ) / + ]
s y ay

c
s x s

h I I
k

h i e h
 

 
with: 
 

·
=

· ·( – )
ay

a c a

A I
e

A z A A
 

 
In the expressions for kc and e, the symbols are as given earlier, except that A is the 
area of the cracked composite section and zc is the distance between the centroid of 
the steel beam and mid-depth of the slab. 
 
The area of the cracked composite section is: 
 

= + = 9880 +1221 = 11101a sA A A  mm2 
 
The distance between the centroid of the steel beam and mid-depth of the slab is: 
 

= 225 +130 / 2 = 290cz  mm 
 
In the definition for zc, ‘slab’ means the 130 mm deep composite slab, not the 80 
mm depth of concrete that contributes to the composite section because the 
stiffness of the composite slab prevents rotation of the steel top flange. 
 
The value of e is: 
 

6· 11101·337,4·10= = = 1070
· ·( – ) 9880·290·1221

ay

a c a

A I
e

A z A A
 mm 

 
The value of ix is: 
 

+ 33740 +1676= = = 18,9
98,82

ay az
x

a

I I
i

A
 cm = 189 mm 

 
The value of kc with Iy = 452·106 mm4, second moment of area of section, cracked 
and reinforced, at the internal support is: 
 

2 2 2 2

( · / ) (435·452 / 337,4)= = = 1,14
[( / 4 + ) / + ] [(435 / 4 +189 ) / 1070 + 435]

s y ay
c

s x s

h I I
k

h i e h
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5.4.6.4 Calculation of Mcr and Mb,Rd 

The torsional moment of area of the steel section is: 
 

6
, = 0,669·10t aI  mm4 

 
The minor-axis second moment of area of the steel bottom flange is: 
 

3 614,6= 190 · = 8,345·10
12afzI mm4 

 
The elastic critical buckling moment Mcr is: 
 

2
1/24

2

· ·
= ·[( · + )· · ]c s

cr a at a afz

k C k L
M G I E I

L
 

 
2

1/2
2

1,14·28,3 96,5·10,00= ·[(80,8·0,669 + )·210·8,345] = 4338
10,00crM  kNm 

 
According to clause 6.4.2(4), EN 1994-1-1, the relative slenderness is calculated 
as: 
 

= Rk
LT

cr

M
M

 

 
where MRk is the characteristic resistance moment calculated in Section 5.4.3. 
 
The relative slenderness is: 
 

775= = = 0,423
4338

Rk
LT

cr

M
M

 

 
According to clause 6.4.2(1), EN 1994-1-1, the value of the reduction factor LT 
may be obtained from EN 1993-1-1, clauses 6.3.2.2 and 6.3.2.3. If the alternative 
method for rolled section is used, clause 6.3.2.3, EN 1993-1-1, the reduction factor 

LT is determined by the following expression: 
 

22

1=
[ + ( – · )]

LT

LTLT LT
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with: 
 

2
,0= 0,5·[1 + ·( – ) + · ]LT LT LTLT LT  

 
where: 
 

LT is the imperfection factor that depends on the appropriate buckling curve, 
2
LT  and  are parameters to be defined in the National Annexes. 

 
The recommended values are: 
 

2
LT 0,4  (minimum value) 

 
0,75  (maximum value) 

 
The buckling curves to be adopted depend on the geometry of the cross section of 
the member and the buckling curve c is specified for IPE 450 with LT = 0,49. 
 
The calculation of the reduction factor LT is: 
 

2
,0= 0,5·[1 + ·( – ) + · ]LT LT LTLT LT  

 
2= 0,5·[1 + 0,49·(0,423 – 0,4) + 0,75·0,423 ] = 0,573LT  

 

22

1=
[ + ( – · )]

LT

LTLT LT

 

 

2 2

1= = 0,987
0,573 + 0,573 – 0,75·0,423

LT  

 
The design buckling resistance moment is: 
 

, ,= · = 0,987·755 = 745b Rd LT pl RdM M  kNm 
 
The obtained value of Mb,Rd is well above the value of the design bending moment 
at the internal support, including the effects of shrinkage design, MEd = (399 + 121) 
= 520 kNm. The result is quite sensitive to the recommended values for ,0LT  and 

. 
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According to clause 6.3.2.2, EN 1993-1-1, the lateral-torsional effects can be 
neglected if at least one of the following conditions is satisfied: 
 

LT ,0LT  or /Ed crM M
2

,0LT  
 
In this case, MEd = 520 kNm and Mcr = 4338 kNm, gives: 
 

2 2
,0

520= = 0,12 < = 0,4 = 0,16
4338

Ed
LT

cr

M
M

 

 
The provision of bracing to the bottom flange is considered in the next section. 

5.4.6.5 Calculation of Mcr and Mb,Rd for laterally restrained bottom flange 

The factor C4 which takes into account the distribution of bending moment was 
used in the expression for Mcr. However, the values of this factor given in [4] are 
not suitable for design based on Mcr where the steel bottom flange is laterally 
restrained. 
 
From Figure B8.30a, with full design load on both spans, the distance of a point of 
contraflexure from the internal support is: 
 
10,00 – 2·3,95 = 2,10  m 
 
At this point is provided the lateral bracing, and the length of the beam between the 
points at which the bottom flange of the steel member is laterally restrained is 2,10 
m. Assuming that the distribution of bending moment over this 2,10 m length is 
linear, then from Figure 7.83, given in [4], the value of C4 is 11,1. Substituting 
these values into the expression for Mcr, the following value of the elastic critical 
buckling moment is obtained: 
 

2
1/24

2

· ·
= ·[( · + )· · ]c s

cr a at a afz

k C k L
M G I E I

L
 

 
2

1/2
2

1,14·11,1 96,5·2,1= [(80,8·0,669 + )·210·8,345] = 2487
2,1crM kNm 

 
The obtained value, Mcr = 2487 kNm, is much lower than the previous value Mcr = 
4338 kNm, see Section 5.4.8.4., for the length of the beam between points at which 
the bottom flange of the steel member is laterally restrained L = 10,0 m. The value 
of Mcr is over-conservative for short lengths of beam between lateral bracing. 
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For this and similar cases, it is recommended to find Mcr from elastic critical 
analysis by means of computer. 

5.4.7 Lateral-torsional buckling of the composite – simplified verification 

Clause 6.4.3, EN 1994-1-1, gives the method of simplified verification without 
direct calculation. The method illustrated in Section 5.4.6 is very comprehensive. 
Therefore, the simplified verification can be used when the conditions given in 
clause 6.4.3, EN 1994-1-1, are satisfied. The simplified verification was used in 
examples B6 and B7. Limitations of the simplified method will be illustrated in this 
section with reference to the continuous beam considered in this example. 
 
For further consideration the following results for hogging bending of the 
composite section at the internal support are relevant: 
 

, = 755pl RdM  kNm 
 

= 0,423LT  
 

= 0,987LT  
 

, ,= · = 0,987·755 = 745b Rd LT pl RdM M  kNm 
 
The design loads for ultimate limit state per unit length of beam are: 
 
permanent  gd = 11,9 kN/m 
 
variable   qd = 26,3 kN/m 
 
The steel section does not satisfy the condition in clause 6.4.3(1), g), EN 1994-1-1, 
because its depth, h = 450 mm, is higher than the limiting depth of 400 mm. The 
beam satisfies all other conditions except the one mentioned in clause 6.4.3(1), (b), 
EN 1994-1-1: the ratio of permanent to total loads is 11,9/38,2 = 0,31, far below 
the required minimum of 0,4. 
 
For IPE 450 with concrete-encased web the limit of depth is 600 mm and this 
would be the simplest way to satisfy the condition in clause 6.4.3(1), g), EN 1994-
1-1. In this case, the permanent load is increased to 15,6 kN/m due to additional 
concreting. 
 
The condition in clause 6.4.3(1), (b), EN 1994-1-1, that the design permanent load 
exceeds 40% of the total design load, is quite severe. In this case, it is: 
 



368 B     Composite beams 
 

 

15,6  0,4·(15,6 + qd) 
 
Therefore, the value of qd is: 
 
qd  23,4 kN/m 
 
This value corresponds to the characteristic imposed load on the floor of: 
 
23,4/(1,5·2,5) = 6,2 kN/m2 
 
The obtained value is significantly lower than the value of imposed floor load 

= 7kq  kN/m2. 
 
The slenderness LT  is a function of the variation of bending moment along the 
span. The limitations in clause 6.4.3(1) (a) and (b) are based on the results 
obtained by varying loadings on continuous beams and taking into account 
different ratios of the length of adjacent spans. Comparing the calculated value 

= 0,423LT  with the limitation given in clause 6.4.3(1) (b), EN 1994-1-1, which 
is 0,4, the difference is less than 10%. According to this criterion, the lateral-
torsional buckling is almost not governed. This result is inconsistent with the 
obtained value of characteristic imposed load according to the simplified 
method. The simplified methods are easy to apply but they have to cover such a 
wide a variety of situations that they are over-conservative for some of them. 

5.4.8 Check of the longitudinal shear resistance of the concrete flange 

5.4.8.1 Check of the transverse reinforcement 

The profiled steel sheeting with ribs transverse to the beam, continuous across 
the top flange of the steel beam and with mechanical interlocking contributes to 
the transverse reinforcement. According to clause 6.6.6.4, EN 1994-1-1, its 
contribution to the transverse reinforcement for the shear surface can be 
calculated from: 
 

,( · ) + ·sf
sd pe yp d

f

A
f A f

s , ·
cot

f
L Ed

h
 

 
where: 
 
Asf/sf is the transverse reinforcement expressed in mm2/m, 
hf  is the depth of concrete above the profiled sheeting, 
 is the angle between the diagonal strut and the axis of the beam (strut-

and-tie model), 
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L,Ed is the design longitudinal shear flow in the concrete slab, 
Ape is the effective cross-sectional area of the profiled steel sheeting per unit 

length of the beam; for sheeting with holes, the net area should be used, 
fyp,d is the design yield strength of the profiled steel sheeting. 
 
If the profiled steel sheeting with ribs transverse to the beam is discontinuous 
across the top flange of the steel beam, and stud shear connectors are welded to 
the steel beam directly through the profiled steel sheets, the term Ape·fyp,d in 
above expression should be replaced by: 
 

, /pb RdP s   but  ,·pe yp dA f  
 
where: 
 
Ppb,Rd is the design bearing resistance of a headed stud welded through the sheet 

according to clause 9.7.4, EN 1994-1-1, 
s is the longitudinal spacing centre-to-centre of the studs effective in 

anchoring the sheeting. 
 
According to clause 9.7.4, EN 1994-1-1, the design bearing resistance of a 
headed stud welded through the sheet is: 
 

, 0 ,= · · ·pb Rd d yp dP k d t f  
 
with: 
 

0= 1 + / dk a d  6,0 
 
where: 
 
dd0 is the diameter of the weld collar which may be taken as 1,1 times the 

diameter of the shank of the stud, 
a is the distance from the centre of the stud to the end of the sheeting, to be 

not less than 1,5 dd0, 
t is the thickness of the profiled sheeting. 

 
According to clause 6.6.6.4(2), EN 1994-1-1, shear surfaces that pass closely 
around a stud need not be considered. The detail of a stud welded through 
discontinuous profiled sheeting and the critical shear plane, labelled a-a, are shown 
in Figure B8.32. 
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Figure B8.32 Cross-section of composite beam and detail of a stud welded  
 through discontinuous profiled sheeting (in mm) 

 
When the concrete flange is in compression, longitudinal shear flow L,Ed can be 
defined by the expression: 
 

1,,1
, ,1

,

= = c effL Edc
L Ed

v v c eff

AVN
v

a a A
 

 
where: 
 
av is the critical length (the distance between two given sections) Figure 

B7.12, 
Nc1 is the change of the longitudinal compressive forces in the slab over the 

critical length av, Figure B8.33, 
,L EdV  is the design longitudinal shear force in the steel-concrete interface or in 

the concrete flange, 
 , ,= min( , , )L Ed pl a c RdV N N P  
 
When the concrete flange is in tension, longitudinal shear flow L,Ed can be 
defined by the expression: 
 

,1 1
, ,1

1 2

= =
+

L Eds s
L Ed

v v s s

VN A
v

a a A A
 

 
where: 
 
av is the critical length (the distance between two given sections) Figure 

B7.12, 
Ns1 is the change of the longitudinal tensile forces in the slab over the critical 

a

a

At
45

a

a

50

2040 35 
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length av, Figure B8.33, 
,L EdV  is the design longitudinal shear force in the steel-concrete interface or in 

the concrete flange, 
 , = min( , )L Ed s RdV N P  
 
 
 
 
 
 
 
 
 
 
 

Figure B8.33 Determination of the longitudinal shear forces in the 
 conrete flange 

 
In clause 6.6.6.1(4), EN 1994-1-1, states that the design longitudinal shear for the 
concrete slab should be “consistent with the design and spacing of the shear 
connectors”. This means that the resistance of the shear connection is determined 
by the longitudinal shear, rather than the design load. 
 
The maximum of the design longitudinal shear is where there are two studs per 
trough, and is: 
 

= 200va  mm 
 

, = 2·42,2 = 84,4L EdV  kN 
 

= = 80f ch h  mm 
 

3
,1

,
84,4·10= = = = 2,64

· 2 2·80·200
L Edc

L Ed
f v f v

VN
h a h a

 N/mm2 

 
For the design resistance of profiled sheeting (the bearing resistance of the 
sheeting) it refers to clause 9.7.4, EN 1994-1-1. The distance from the centre of the 
stud to the end of the sheeting a is 40 mm, Figure B8.32. 
 
The diameter of the weld collar, dd0, is taken as 1,1 times the diameter of the shank 
of the stud and is: 
 

Concrete flange in compression: Concrete flange in tension: 

beff be,1 

be,2 

Nc1 

vL,Ed,1

VL = VL,Ed

av 

Ac1,eff 

Nc1 + Nc1 

Ns1 

As1 

As2 

Ns1 + Ns1 

vL,Ed,1

VL = VL,Ed 

av 

hf 
hf 
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0 = 1,1·19 = 20,9dd  mm 
 
According to clause 9.7.4(3), EN 1994-1-1, the value of k  is: 
 

0

= 1 +
d

ak
d

 6,0 

 
40= 1 + = 2,91

20,9
k  

 
Since the composite slab has not yet been designed, the assumed thickness of the 
profiled sheeting is at least 0,9 mm, although in Figure B8.2 the sheet is 1,0 mm 
thick. The yield strength of the profiled sheeting is 350 N/mm2 and M = 1,0. The 
cross-sectional area is Ap = 1178 mm2/m. The design bearing resistance of a headed 
stud welded through the sheet according to clause 9.7.4, EN 1994-1-1, is: 
 

, 0 ,= · · · = 2,91·20,9·0,9·0,350 = 19,2pb Rd d yp dP k d t f  kN/shear stud 
 
According to clause 6.6.6.4(5), EN 1994-1-1, with a stud spacing of 200 mm, the 
shear resistance provided by the profiled sheeting is: 
 

,
, ,

19,2= = = 96
0,2

pb Rd
L pd Rd

P
v

s
 kN/m 

 
The shear resistance must not exceed the value of ,·pe yp dA f , which is: 
 
Ap·fyp,d, = 1178·0,350 = 412 kN/m 
 
The condition given in clause 6.6.6.4(5), EN 1994-1-1, is satisfied. 
 
Remark: 
 
In order to prevent splitting of the concrete flange, for the adopted “truss model”, 
according to clause 6.2.4(4) EN 1992-1-1, the angle  between the concrete 
diagonals and the longitudinal direction is limited to the values: 
 
26,5º    45º concrete flange in compression 
 
38,6º    45º concrete flange in tension 
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In order to minimize the cross-sectional area of the transverse reinforcement, the 
minimum angle  is selected. For the concrete flange with the assumptions that it is 
in tension (regions at the internal support), the minimum angle  is: 
 

= 38,6º  
 

,· + /sf
sd pb Rd

f

A
f P s

s
·
cot

f
Ed

h
 

 
sf

f

A
s

, 3 32,64 80 96· – = · ·10 – ·10 = 167
cot · 435 cot 38,6 435

f pb RdEd

sd sd

h P
f s f

 mm2/m 

 
The reinforcement is less than the selected reinforcement in the design for lateral-
torsional buckling of 565 mm2/m. 
 
The assessment of the area of the transverse reinforcement may also be affected by 
the need for crack control above the beam, which arises in the design of the 
composite slab. 
 

According to EN 1994-1-1, clause 6.6.6.3, the minimum area of transverse 
reinforcement is determined in accordance with EN 1992-1-1, clause 9.2.2(5), 
which gives the minimum area of reinforcement as a proportion of the concrete 
area. The ratio is: 
 

,min
,

0,08
= ck

w
yr k

f
f

 

 
where: 
 
fck is the characteristic compressive cylinder strength of the concrete at 28 

days in N/mm2, 
fyr,k = fsk is the characteristic yield strength of the reinforcement in N/mm2. 

 
The minimum area of transverse reinforcement is: 
 

,min
,

0,08 0,08 25= = = 0,0008
500

ck
w

yr k

f
f

 

 
= · = 80·1000 = 80000c cA h b  mm2 
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,min ,min= · = 0,0008·80000 = 64s w cA A  mm2/m 
 
Since = 565tA  mm2/m ,min> = 64sA  mm2/m, the requirement of minimum 
transverse reinforcement is satisfied. 

5.4.8.2 Crushing of the concrete flange 

To prevent crushing of the compression struts in the flange, the following 
condition should be satisfied according to EN 1992-1-1, expression 6.22: 
 

,L Edv Rdv  
 

,L Ed · ·sin ·coscdf  
 
where: 
 

= 0,6·(1 – )
250

ckf
 

 is the angle between the concrete diagonals and the longitudinal direction. 
 
In order to minimize the resistance of the concrete compression strut, the minimum 
angle  is selected. For the concrete flange in compression (at mid-span), the 
minimum angle  is: 
 

= 26,5º  
 

25= · ·sin ·cos = 0,6·(1 – ) ·16,7·sin26,5º·cos26,5º= 3,60
250Rd cdf  N/mm2 

 
Check: 
 

, <L Ed Rd  
 

, = 2,64L Ed  N/mm2 < = 3,60Rd  N/mm2 
 
Therefore the crushing resistance of the concrete compression strut is adequate. 

6. Serviceability limit sate 

6.1 General 

If the steel beam at the construction stage is unpropped, the calculation of the 
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deflection is performed separately for the construction stage and for the 
composite stage. 
 
The total deflection for the construction stage is obtained from: 
 

0=  (verification for the construction stage) 
 
where: 
 

0  is the deflection of the steel beam at the execution stage 
 
The total deflection for the composite stage is obtained from: 
 

1,1 1,2 2,1 2,2 2,3= + + + +  (verification for the composite stage) 
 
where: 
 

1,1  is the deflection due to the permanent action immediately after casting the 
concrete (no shear connection), 

1,2  is the deflection due to loads of the floor finishes and partitions on the 
composite beam (the first loading), 

2,1  is the deflection due to the frequent value of the variable action at the time 
of first loading, 

2,2  is the deflection due to creep under the quasi-permanent value of the 
variable action at time t = , 

2,3  is the deflection due to shrinkage. 
 
Secondary effects due to shrinkage in this beam are significant. The important 
secondary effect in this beam, the hogging bending moment at the internal support, 
is MEd,sh,B = 121 kNm. According to clause 7.3.1(8), EN 1994-1-1, the shrinkage 
effects should not be neglected at the serviceability verification of this beam 
because clause 7.3.1(8) does not refer to lightweight aggregate concrete, which is 
used in this case. 

6.2 Stress limits 

Serviceability stress verifications are not prescribed by EN 1994-1-1 and according 
to clause 7.2.2(1), EN 1994-1-1, there are no limitations on stresses. However, it is 
possible that serviceability loading may cause yielding at the internal supports. For 
the calculation of deflection of the unpropped continuous beam, the effect of local 
yielding of the structural steel over the internal support should be taken into 
account because it causes additional deflection, clause 7.3.1(7), EN 1994-1-1. 
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Yielding is an irreversible limit state. From a note to clause 6.5.3(2), EN 1990, the 
characteristic combination should be used for irreversible limit states. However, the 
actions for checking deflections depend on the requirements of serviceability. 
 
For unpropped beam at the construction stage, the stresses are calculated first for 
the non-composite section subjected to loading at the construction stage, and then 
the stresses for the composite section should be added. Static systems and loadings 
for the construction stage and composite stage are shown in Figures B8.34, B8.35 
and B8.36. For composite stage, we consider the characteristic combination with 
the variable load on both spans and 15% of each span cracked. The permanent 
load, except floor finishes, is assumed to act on the steel beam. The modular ratio n 
is taken as 20,2 for all of the loading except shrinkage, see clause 5.4.2.2(11), EN 
1994-1-1. For shrinkage, the modular ratio n is 28,3. The obtained results are 
shown in Table B8.3. 
 
Permanent action on steel beam – self-weight 
 

,1= ·d ke b g  
 

= 2,5·2,62 = 6,55de  kN/m 
 
The bending moment at the internal support is: 
 

2
, = 0,125·6,55·10,0 = 81,9Ek BM  kNm 

 
The second moment of area, steel beam is: 
 

6
, = 337,4·10y aI  mm4 

 
 
 
 
 
 
 
 
 
 

Figure B8.34 Permanent load on the steel beam 
 
The section modulus of the bottom flange of the steel section is: 
 

EaIa 

ed = 6,55 kN/m 

10,0 m 10,0 m 
A B C 
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6
, 6

,
337,4·10= = = 1,50·10

450
22

y a
a bot

a

I
W

h
 mm3 

 
The stress in the bottom flange of the steel section is: 
 

6
,

, 6
,

81,9·10= = = 54,6
1,50·10

Ek B
a bot

a bot

M
W

 N/mm2 

 
Permanent action on composite beam – floor finishes 
 

,3= ·d ke b g  
 

= 2,5·1,00 = 2,50de kN/m 
 
 
 
 
 
 
 
 
 
 

Figure B8.35 Permanent load on the composite beam 
 
The second moment of area (Table B8.1): 
 

6
2 ,= = 452·10y BI I  mm4, support, cracked, reinforced 

 
6= = 799·10L yI I  mm4, mid-span, uncracked, n = 20,2 

 
The bending moment at the internal support is: 
 

2

,
· 0,110· + 0,890= ·
4 0,772· +1,228

d
Ek B

e L
M  

 
6

6
,

799·10= = = 1,76
452·10

y

y B

I
I

 

 

A B C 

EIL 

0,15 L20,15 L1

EaI2

10,0 m10,0 m

EIL 

ed = 2,50 kN/m 



378 B     Composite beams 
 

 

2

,
2,50·10,0 0,110·1,76 + 0,890= · = 26,2

4 0,772·1,76 +1,228Ek BM  kNm 

 
The section at the internal support is considered, Figure B8.4, and the distance 
between the elastic neutral axis and the centroid of steel section is zna = 36 mm. 
 
The section modulus of the bottom flange of the steel section is: 
 

6
, 6

,
452·10= = = 1,73·10
450 + 36+

22

y B
a bot

a
na

I
W

h
z

 mm3 

 
The stress in the bottom flange of the steel section is: 
 

6
,

, 6
,

26,2·10= = = 15,1
1,73·10

Ek B
a bot

a bot

M
W

 N/mm2 

 
Variable action on the composite beam 
 

,2= ·d ke b q  
 

= 2,50·7,0 = 17,5de kN/m 
 
 
 
 
 
 
 
 
 

Figure B8.36 Imposed load on composite beam 
 
The second moment of area (Table B8.1) is: 
 

6
2 ,= = 452·10y BI I  mm4, support, cracked, reinforced 

 
6= = 799·10L yI I  mm4, mid-span, uncracked, n = 20,2 

 
The bending moment at internal support is: 

A B C 

EIL 

0,15 L20,15 L1

EaI2

10,0 m10,0 m

EIL 

ed = 17,5 kN/m 
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2

,

· 0,110· + 0,890= ·
4 0,772· +1,228

d
Ek B

e L
M  

 
6

6
,

799·10= = = 1,76
452·10

y

y B

I
I

 

 
2

,
17,5·10,0 0,110·1,76 + 0,890= · = 183

4 0,772·1,76 +1,228Ek BM  kNm 

 
The section at the internal support is considered, Figure B8.4, and the distance 
between the elastic neutral axis and the centroid of the steel section is zna = 36 mm. 
 
The section modulus of the bottom flange of the steel section is: 
 

6
, 6

,
452·10= = = 1,73·10
450 + 36+

22

y B
a bot

a
na

I
W

h
z

 mm3 

 
The stress in the bottom flange of the steel section is: 
 

6
,

, 6
,

183·10= = = 106
1,73·10

Ek B
a bot

a bot

M
W

 N/mm2 

 
Shrinkage 
 
The second moment of area (Table B8.1) is: 
 

6
, = 452·10y BI  mm4, support, cracked, reinforced 

 
The bending moment at the internal support, according to Section 5.2, is: 
 

, , = 121Ed sh BM  kNm, n = 28,3 
 
The section at the internal support is considered, Figure B8.4, and the distance 
between the elastic neutral axis and the centroid of the steel section is zna = 36 mm. 
 
The section modulus of the bottom flange of the steel section is: 
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6
, 6

,
452·10= = = 1,73·10
450 + 36+

22

y B
a bot

a
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W

h
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 mm3 

 
The stress in the bottom flange of the steel section is: 
 

6
, ,

, 6
,

121·10= = = 69,9
1,73·10

Ek sh B
a bot

a bot

M
W

 N/mm2 

The total compressive stress in the bottom flange of the steel section is: 
 

, , = 54,6 +15,1 +106 + 69,9 = 246Ek bot a  N/mm2 (= 0,69·fy) 
 
Therefore, the effect of yielding in the steel section does not need to be taken into 
account for serviceability verification. 
 
Table B8.3 Hogging bending moment at the internal support and stresses in the 

bottom flange of the steel section, for the characteristic combination 
of actions 

Action ed 
(kN/m) 

Modular 
ratio 

Iy,B  
(106 mm4) 

MEk,B 
(kNm) 

Wa,bot  
(106 mm3) 

a,bot 
(N/mm2) 

1. Permanent 
(on steel beam) 6,55 — 337,4 81,9 1,50 54,6 

2. Permanent 
(on composite 

beam) 
2,2 20,2 452 26,2 1,73 15,1 

3. Variable 17,5 20,2 452 183 1,73 106 
4. Shrinkage — 28,3 452 121 1,73 69,9 

6.3 Calculation of deflections 

6.3.1 Construction stage deflection 

The deflection at the construction stage has been calculated by means of 
commercial software, using the flexural stiffness of the steel cross-section EaIa. 
 

= 21000aE  kN/cm2   = 33740aI  cm4 
 
The recommended limiting values for deflection are: 
 

tot 250
L  
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var 360
L  

 
The total deflection due to the permanent and variable actions, tot, during 
execution is determined for the following total load ed: 
 

,1 ,1= ·( + )d k ke b g q  
 

= 2,5·(2,62 + 0,50) = 7,8de kN/m 
 

= 70854a aE I  kNm2 
 
 
 
 
 
 
 
 
 

Figure B8.37 Static system and load case 1 during execution 
 
The deflection (calculated using commercial software) is: 
 

tot = 5,9 mm < L/250 = 40,0 mm 
 
The condition is satisfied. 
 
The deflection due to the variable actions, var, during execution is determined for 
the following variable load ed: 
 

,1= ·d ke b q  
 

= 2,50·0,50 = 1,25de  kN/m 
 

= 70854a aE I  kNm2 
 
The critical load case for deflection is where only one span is fully loaded: 
 
 
 
 

EaIa 

ed = 7,8 kN/m 

10,0 m 10,0 m 
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Figure B8.38 Static system and load case 2 during execution 
 
The deflection (calculated using a commercial software) is: 
 

var = 1,6 mm < L/360 = 27,8 mm. The condition is satisfied. 
 
Remark: 
 
The limitation of the deflection is adopted according to the recommendation 
given in EN 1990. This value can be changed in accordance with the 
recommendation given in the National Annex. Furthermore, absolute limit of 25 
mm could be recommended in order to limit the effects of ponding of wet 
concrete during execution. 

6.3.2 Composite stage deflection 

When variable load acts only on one span, the maximum deflection in the span of 
the beam will occur at about 4,0 m. The condition from clause 7.3.1(4), (a), EN 
1994-1-1, is satisfied and the additional deflection caused by slip of the shear 
connection is neglected. 
 
The deflection of the composite beam has been calculated by means of commercial 
software, with 15% of each span assumed to be cracked. The frequent combination 
of actions is used, for which the combination factor, a building with floors in 
category C, is 1 = 0,7. 
 
Frequent combination is used in the case of reversible limit states, such as the 
elastic deflection of composite beams due to variable actions. However, if the 
deformation causes cracking of brittle floor finish structures or damage to fragile 
partitions then the limit state is not reversible. In this case, the verification must be 
carried out for the higher, less probable, loading of the characteristic combination. 
 

 Deflection due to the permanent action at time immediately after casting 
concrete 

EaIa 

ed = 1,25 kN/m 

10,0 m 10,0 m 
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,1= · = 2,50·2,62 = 6,55d ke b g  kN/m 
 

= 70854a aE I  kNm2 
 
 
 
 
 
 
 
 
 

Figure B8.39 Static system - permanent action at the time  
 immediately after casting the concrete 

1,1 = 5,0  mm 
 

Deflection due to the loads of floor finishes and partitions on the composite 
beam at the time of first loading 

 
,3= · = 2,5·1,00 = 2,50d ke b g  kN/m 

 
The value of the second moment of area for the cracked reinforced section at the 
internal support and for the uncracked section at mid-span with n = 10,1 are taken 
from Table B8.1: 
 

2 = 45200I  cm4, at internal support, cracked, reinforced 

0 = 96600I  cm4, at mid-span, uncracked, n = 10,1 
 
 
 
 
 
 
 
 
 
 

Figure B8.40 Static system – loads of the floor finishes and partitions at the time 
 of first loading 

 
Accordingly, the following flexural stiffnesses are used: 
 

EaIa  

ed = 6,55 kN/m 

10,0 m 10,0 m 

EIL 

0,15 L20,15 L1

EaI2 

L2 L1 

EIL 

ed = 2,50 kN/m 
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2 = 94920aE I  kNm2, at internal support 

0= = 202860LEI EI  kNm2, at mid-span 
 

1,2 = 0,8  mm 
 

 Deflection due to the frequent value of variable action at the time of first 
loading 

 
For a building with floors in category C, the combination factor  is. 
 

1 = 0,7 
 

1 ,2= · · = 2,50·0,7·7,0 = 12,25d ke b q  kN/m 
 
The value of second moment of area for the cracked reinforced section at the 
internal support and for the uncracked section at mid-span with n = 10,1 are taken 
from Table B8.1: 
 

2 = 45200I  cm4, at internal support, cracked, reinforced 

0 = 96600I  cm4, at mid-span, uncracked, n = 10,1 
 
Accordingly, the following flexural stiffnesses are used: 
 

2 = 94920aE I  kNm2 

0= = 202860LEI EI  kNm2 
 
 
 
 
 
 
 
 
 
 

Figure B8.41 Static system - frequent value of variable action at time 
 on the first loading 

 
2,1 = 6,0  mm 

 

ed = 12,25 kN/m

EIL 

0,15 L20,15 L1

EaI2

L2 L1 

EIL 
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 Deflection due to creep under the quasi-permanent value of the variable action 
at time t =  

 
This deflection is the difference of the deflections at time t =  and at the time of 
first loading t0. 
 

,1 ,3 2 ,2= ·( + · ) = 2,50·(1,0 + 0,6·7,0) = 13,00d k ke b g q  kN/m 
 

,2 ,3= · = 2,50·1,00 = 2,50d ke b g  kN/m 
 
The value of second moment of area for the cracked reinforced section at the 
internal support and for the uncracked section at mid-span with n = 10,1 and n = 
20,2 are taken from Table B8.1: 
 

2 = 45200I  cm4, at internal support, cracked, reinforced 

0 = 96600I  cm4, at mid-span, uncracked, n = 10,1 
= 79900PI cm4, at mid-span, uncracked, n = 20,2 

 
Accordingly, the following flexural stiffnesses are used: 
 

2 = 94920aE I  kNm2 

0= = 202860LEI EI  kNm2 
= = 167790L PEI EI  kNm2 

 
 
 
 
 
 
 
 
 
 
 

Figure B8.42 Static system – deflection due to creep at time t =  (EIL = EIP)  
 and at the time of first loading t0 (EIL = EI0) 

 
2,2 = 7,0 – 5,9 = 1,1  mm 

 
 Deflection due to shrinkage 

 

EIL 

0,15 L20,15 L1

EaI2

L2 L1 

EIL 

ed,2 = 2,50 kN/m 
ed,1 = 13,00 kN/m
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The primary bending moment due to shrinkage is calculated in accordance with the 
model given in Figure B8.43. 
 
According to Section 5.2, the axial force due to shrinkage is: 
 

= 742csN  kN 
 
 
 
 
 
 
 
 

Figure B8.43 Calculation of the primary bending moment due to shrinkage 
 
The force Ncs acts at the centre of the concrete flange, at a distance ac above the 
centroid of the composite section: 
 

·
= · = ·

· + ·
a a a

c
id a a S c

A E A
a a a

A E A E A
 

 
The distance between the centroidal axes of the concrete and the steel section, a, is: 
 

450 80= + + 50 = 315
2 2

a  mm 

 
The ideal cross-sectional area of the composite section is: 
 

2500·80= + = 9880 + = 16947
28,3

c
id a

A
A A

n
 mm2 

 
The force Ncs acts at the centre of the concrete flange, at a distance ac above the 
centroid of the composite section, which is: 
 

9880= 315· = 184
16947ca  mm 

 
The primary bending moment due to shrinkage is: 
 

= · = 742·18,4 = 13653cs cs cM N a  kNcm = 137  kNm 
 

ac

Ncsac

Ncs

Ncs
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The value of the second moment of area for the cracked reinforced section at the 
internal support and for the uncracked section at mid-span with n = 28,3 are taken 
from Table B8.1: 
 

2 = 45200I  cm4, at internal support, cracked, reinforced 
= 72000SI  cm4, at mid-span, uncracked, n = 28,3 

 
Accordingly, the following flexural stiffnesses are used: 
 

2 = 94920aE I  kNm2 
= = 151200L SEI EI  kNm2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B8.44 Static system – deflection due to shrinkage 
 

2,3 = 5,8  mm 
 

 Deflection due to shrinkage – alternative procedure 
 
For calculation of deflection due to shrinkage, the alternative procedure is 
illustrated using the results from Section 5.2. From Section 5.2 and Figure B8.16, 
the primary effect is uniform sagging curvature at radius R = 1105 m, with 
deflection  = 32,7 mm at the internal support. The secondary reaction at the 
internal support is 24,2 kN (MEd,sh,B = P·L/2). The primary deflection at point E, 
Figure B8.45a, can be calculated from the geometry of the circle. The primary 
deflection at point E is: 
 

2 2
1, = 32,7 – (1105 – 1105 – 4,5 )·1000 = 24E  mm 

Primary bending moment Mcs 

Secondary bending moment or 
hogging bending moment at the 
internal support MEd,sh,B 

MEd,sh,B = 121 kNm 

EIL 

0,15 L20,15 L1

EaI2

L2 L1 

EIL 

McsMcsMcs Mcs 
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The reaction of 24,2 kN at the internal support causes the upwards displacement at 
E and moves point B' back to point B. This displacement of 17,8 mm is calculated 
by elastic analysis of the model shown in Figure B8.45b, with 15% of each span 
cracked. 
 
 
 
 
 
 
 
 
 
 
 

Figure B8.45 Sagging deflection at point E due to shrinkage 
 
The obtained results are shown in Table B8.4. 
 
Table B8.4 Deflections at a distance of 4,0 m from the end support, due to 

shrinkage 

 Modular ratio Deflection (mm) 
Primary shrinkage 28,3 24 

Secondary shrinkage 28,3 17,8 
 
The total shrinkage deflection is only 6,2 mm because the secondary shrinkage 
compensates most of primary shrinkage. The primary shrinkage (high free 
shrinkage strain) could not be neglected in a simply supported beam. 
 
Remark: 
 
The limitations of deflections are adopted according to the recommendation 
given in EN 1990. These values can be changed in accordance with the 
recommendation given in the National Annex. 

 
Deflection limits for composite beams are the same as for steel beams, and are 
determined by the National Annex. 
 
Recommended limiting values for deflection of composite beams are: 
 

tot 250
L , the deflection due to the total load 

 

E A B 

32,8 mm17,8 mm

P = 24,2 kN 

12,1 kN 12,1 kN 

24 

4,5 

32,7 

8,5 1,5

A 

R

E
B

B' 

a) b) 

4,0 
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var 360
L , the deflection due to the variable load 

 
The deflection due to the permanent action is: 
 

1 1,= = 5,0 + 0,8 = 5,8i  mm 
 
The deflection due to the variable load, creep and shrinkage is: 
 

2 2,= = 6,0 +1,1 + 5,8 = 12,9i  mm 
 
The total deflection due to permanent and variable loads, creep and shrinkage is: 
 

1 2= + = 5,8 +12,9 = 18,7tot  mm 10000= = 40,0
250 250

L  mm 

 
The total deflection meets the criterion L/250. 
 
The deflection due to the variable load, creep and shrinkage is: 
 

var 2= = 12,9  mm 10000= = 27,8
360 360
L  mm 

 
The deflection due to the variable load, creep and shrinkage meets the criterion 
L/360. 

6.4 Control of crack width 

6.4.1 Minimum reinforcement area 

Clause 7.4.1(1), EN 1994-1-1, states that the limitation of crack width depends 
on the exposure classes according to EN 1992-1-1. Concrete in tension in a 
composite beam or slab for a building will usually be in exposure class XC3, for 
which a note to clause 7.3.1(5), EN 1992-1-1, gives the design crack width as 0,3 
mm. The procedure according to clause 7.4.1(3), EN 1994-1-1, is used. 
 
The required minimum area of reinforcement As for the slab of a composite 
beam, according to clause 7.4.2(1), EN 1994-1-1, is: 
 

,= · · · · /s s c ct eff ct sA k k k f A  
 
where: 
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fct,eff is the mean value of the tensile strength of the concrete, effective at the 
time when the first crack may be expected to occur. Values of fct,eff can 
be taken as those for fctm (EN 1992-1-1, Table 3.1) or as flctm (EN 1992-1-
1, Table 11.3.1) taking into account the concrete strength class at the 
time when the first crack of the concrete is expected the occurrence. If 
the time of occurrence of cracks cannot be established, it is possible to 
adopt the minimum tensile strength of 3 N/mm2. 

Act is the cross-sectional area of the tensile zone of the concrete (due to 
direct loading and primary effects of shrinkage). For the sake of 
simplicity, the cross-sectional area of the concrete may be adopted as the 
area determined by its effective width. 

s is the maximum stress allowed in the reinforcement immediately after 
cracking of the concrete. This stress can be taken as the characteristic 
value of the yield strength fsk. To satisfy the required width limits, the 
lower values can be needed, depending on the diameter of the bar. These 
values are given in Table 7.1, EN 1994-1-1. 

k, ks, kc are the coefficients based on the calibration procedure. The magnitude of 
these coefficients, k, ks, and kc, depend on the geometry of the cracked 
composite section. More detailed explanation is given below. 

 
The meaning of the coefficients, k, ks, kc, is as follows: 
 
k is the coefficient that allows for the effect of non-uniform self-

equilibrating tensile stresses, which may be taken as 0,8. 
ks is the coefficient that allows for the effect of the reduction of the normal 

force of the concrete slab due to initial cracking and local slip of the shear 
connection, which may be taken as 0,9. 

kc is the coefficient that takes into account the stress distribution within the 
cross-section (the tensile zone of concrete Act) immediately prior to 
cracking. 

 
The coefficient kc is calculated as: 
 

0

1= + 0,3
1 + / (2 )c

c

k
h z

 1,0 

 
where: 
 
hc is the thickness of the concrete flange, excluding any haunch or ribs, 
z0 is the vertical distance between the centroids of the uncracked concrete 

flange and the uncracked composite section, calculated using the modular 
ratio n0 = Ea/Ecm for short-term loading, i.e. at the time of first loading t0. 
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The cracks near the internal support caused by hogging bending of the beam are 
considered in this case. The cracks along the beam caused by hogging bending of 
the composite slab supported on the beam should also be taken into consideration. 
 
According to clause 5.4.1.2, EN 1994-1-1, the effective width at mid-span is 2,23 
m and at the internal support the effective width is 1,35 m. At the internal support 
at a length of 2,5 m (0,25 L) in each span, the slab should be in tension. It is very 
difficult to prove that sections 2,5 m from the internal support are never subjected 
to tension. Therefore, calculations are done for both effective widths. Uncracked 
unreinforced sections are assumed. According to the definition of z0, the modular 
ratio is n0 = 10,1. 
 
Therefore, the values of coefficients k and ks are: 
 

= 0,8k  
 

= 0,9sk  
 
Calculation of coefficient kc – composite section at the internal support 
 
The modular ratio n0 for short-term loading is: 
 

0
210000= = = = 10,1
20752

a
L

lcm

E
n n

E
 

 
The effective width of the concrete flange at the internal support is: 
 

= 1,35effb  m 
 
Transformed to the ideal steel section, the effective width is: 
 

0

135= = 13,4
10,1

effb
n

 cm 

 
The cross-section shown in Figure B8.5 is considered. In accordance with Figure 
B8.5 the vertical distance between the centroids of the uncracked concrete flange 
and the uncracked composite section is: 
 

0 = 151z  mm 
 
The coefficient kc is: 
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0

1 1= + 0,3 = + 0,3 = 1,09 > 1,0
1 + / (2 ) 1 + 80 / (2·151)c

c

k
h z

 

 
Adopted: kc = 1,00. 
 
Calculation of coefficient kc – composite section at mid-span 
 
The modular ratio n0 for short-term loading is: 
 

0
210000= = = = 10,1
20752

a
L

lcm

E
n n

E
 

 
The effective width of the concrete flange at mid-span is: 
 

= 2,23effb  m 
 
Transformed to the ideal steel section, the effective width is: 
 

0

223= = 22,1
10,1

effb
n

 cm 

 
The cross-section shown in Figure B8.7 is considered. In accordance with Figure 
B8.7 the vertical distance between the centroids of the uncracked concrete flange 
and the uncracked composite section: 
 

0 = 113z  mm 
 
The coefficient kc is: 
 

0

1 1= + 0,3 = + 0,3 = 1,04 < 1,0
1 + / (2 ) 1 + 80 / (2·113)c

c

k
h z

 

 
Adopted: kc = 1,0. 
 
If the time of occurrence of the cracks cannot be established, the mean value of the 
tensile strength of the concrete effective at the time when the first crack may be 
expected to occur, fct,eff, can be adopted as the minimum tensile strength of 3 
N/mm2. 
 
The maximum stress allowed in the reinforcement immediately after cracking of 
concrete s is chosen from Table 7.1, EN 1994-1-1: 
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= 280s  N/mm2 
 
The maximum bar diameter *, for a design crack width wk = 0,3 mm and for the 
chosen maximum stress allowed in reinforcement s, according to Table 7.1, EN 
1994-1-1, is: 
 

* = 12 mm 
 
Minimum area of reinforcement 
 
The required minimum area of reinforcement As for the slab of composite beam, 
according to clause 7.4.2(1), EN 1994-1-1, is: 
 

,= · · · · /s s c ct eff ct sA k k k f A  
 
From this expression, we obtain the following ratio: 
 

,· · · 0,9·1,0·0,8·3,0100· = 100· = 100· = 0,77
280

s c ct effs

ct s

k k k fA
A

 % 

 
However, clause 5.5.1(5), EN 1994-1-1, gives the limit, as the condition for the use 
of plastic resistance moment, which was calculated in Section 5.4.2.2. This limit is: 
 

= 0,70s  % 
 
Therefore, for the slab thickness, which is 80 mm above the profiled sheeting, the 
minimum reinforcement is calculated for the higher percentage of reinforcement 

= 0,77s . The minimum area of reinforcement is: 
 

,min = 0,0077·80·1000 = 616sA  mm2/m 
 
One layer of 12 mm bars at 125 mm spacing provides 904 mm2/m. 

6.4.2 Control of cracking of concrete due to direct loading 

According to clause 7.4.3(4), EN 1994-1-1, the bending moment at the internal 
support is calculated for the quasi-permanent combination of actions at time t = . 
 

,3 2 ,2= ·( + · ) = 2,50·(1,0 + 0,6·7,0) = 13,00d k ke b g q  kN/m 
 

= = 167790L PEI EI  kNm2 
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2 = 94920aE I  kNm2 
 
 
 
 
 
 
 
 
 
 

Figure B8.46 Static system for calculating the bending moment at the  
 internal support of the composite beam for the quasi- 
 permanent actions at time t =  

 
The maximum bending moment at the internal support, calculated using 
commercial software, is: 
 
MEd,max = 136 kNm 
 
The bending moment due to shrinkage according to Section 5.2 is: 
 

, , = 121Ed sh BM  kNm 
 
The total bending moment, including shrinkage, is: 
 

= 136 +121 = 257EdM  kNm 
 
According to Figure B8.4, the neutral axis of the cracked section is 319 mm below 
the top of the slab. 
 
The distance between the neutral axis and the centroidal axis of reinforcement is: 
 

= – = 31,9 – 3,0 = 28,9st st slz e z  cm 
 
The tensile stress in reinforcement s can be calculated for direct loading as: 
 

,0= +s s s  
 
The stress in the reinforcement s,0 caused by the bending moment acting on the 
composite section is calculated on the assumption that the concrete in tension is 
neglected. 

 

ed = 13,00 kN/m 

EIL 

0,15 L20,15 L1

EaI2

L2 L1 

EIL 
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The geometrical properties of the cracked cross-section in accordance with Figure 
B8.4 are: 
 
Cross-sectional area 
 

= + = 9880 +1221 = 11101st a sA A A  mm2 
 
Second moment of area 
 

6= 452·10stI  mm4 
 
The stress in the reinforcement s,0 caused by the bending moment acting on the 
cracked section is: 
 

6

,0 6

257·10= = ·289 = 164
452·10

Ed
s st

st

M
z

I
 N/mm2 

 
By means of the calculated values of Aa, As, Ia and I (internal support, cracked, 
reinforced, Table B8.1), the following value for st is obtained: 
 

6 6

6 6

( + )·· (9880 +1221)·452·10 11101·452·10= = = = = 1,51
· · 9880·337,4·10 9880·337,4·10

a s
st

a a a a

A A IA I
A I A I

 

 
For 12 mm bars at 125 mm spacing with As = 1221 mm2 and the effective width of 
1,35 m and the thickness of the concrete slab of 80 mm with Ac = 108·103 mm2, the 
following ratio is obtained: 
 

3

1221= = = 0,0113
108·10

s
s

c

A
A

 

 
According to expression (7.5), EN 1994-1-1, the correction of the stress in the 
reinforcement for tension stiffening is: 
 

0,4· 0,4·2,32= = = 54,4
· 1,51·0,0113

lctm
s

st s

f
 N/mm2 

 
According to expression (7.4), EN 1994-1-1, the tensile stress in the reinforcement 

s due to direct loading is: 
 

,0= + = 164 +54,4 = 218s s s  N/mm2 
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According to Table 7.1, EN 1994-1-1, the maximum bar diameter is s  16 mm. 
 
According to Table 7.2, EN 1994-1-1, the maximum bar spacing is  200 mm. 
 
The use of 12 mm bars at 125 mm spacing at internal support, with the cross-
sectional area 904 mm2/m, satisfies both conditions. 

7. Commentary 

This example illustrates the application of many of the provisions of EN 1994-1-
1. In accordance with the provisions of EN 1994-1-1, the following problems 
were studied in detail: 
 

buckling resistance moment of laterally unrestrained continuous composite 
beam and with laterally restrained bottom steel flange, 
partial shear connection with non-ductile connectors. 

 
Serviceability stress verifications are especially explained. According to EN 
1994-1-1, there are no limitations on stress. However, stress checks should be 
included as part of the serviceability criteria, because yielding under 
serviceability loading results with the additional deflection. 
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C Composite columns 
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C1 Composite column with concrete-filled circular hollow 
section subject to axial compression and verified using 
European buckling curves 

1. Purpose of example 

This example demonstrates the design of a composite column subject to axial 
compression. It is assumed to be pinned top and bottom. The concrete-filled 
column consists of a circular hollow section filled with concrete. In concrete-filled 
hollow sections no longitudinal reinforcement is normally necessary. In this 
example, the reinforcement is selected for educational reasons because the 
limitations of reinforcement are illustrated in this example. However, if the design 
for fire resistance is required, the longitudinal reinforcement can be used, clause 
6.7.5.2 (1), EN 1994-1-1. Since the considered member is subjected only to end 
compression, clause 6.7.3.5(2) enables buckling curves to be used. 
 
The columns without end moments are very rare in practice. However, the 
application of the simplified method of design for a column in axial compression is 
essential for understanding the behaviour of column in combined compression and 
bending. 

2. Static system, cross-section and design action effects 

Actions 
 
Permanent action = 4019

kGN  kN 
 
Variable action = 1550

kQN  kN 
 
Design action effect: 
 

, ,= +Ed G Ed Q EdN N N , 
 

= 1,35· +1,50·
k kEd G QN N N , 

 
= 1,35·4019 +1,50·1550 = 5425 + 2325 = 7750EdN  kN. 
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Figure C1.1 Static system and cross-section 

3. Properties of materials 

Concrete strength class: C 30/37 = 30ckf  N/mm2 

 30= = = 20
1,5

ck
cd

c

f
f  N/mm2 

 = 33000cmE  N/mm2 
 
Structural steel: S355 = 355ykf  N/mm2 

 
355= = = 355
1,0

yk
yd

M

f
f  N/mm2 

 = 210000aE  N/mm2 
 
Reinforcement: ductility class B or C = 500skf  N/mm2 

 500= = = 435
1,15

sk
sd

s

f
f  N/mm2 

 = 210000SE  N/mm2 

NGk
 

d = 406,4
15

5,
0 

14
3,

2 
10

9,
8 

59
,3

 

t = 8,8 
Concrete C 30/37 

Reinforcement 16  25, S500 CHS 406,4×8,8, S355 
z 

y 

L 
=

 L
e=

 3
,0

0 
m

 

NQk
 

Le – buckling length 
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4. Geometrical properties of the cross-section 

4.1 Selection of the steel cross-section and reinforcement 

It is assumed that only the axial compression load is applied, and the required fire 
resistance is R60. Since the composite columns are used in building, it is expected 
to set requirements for fire resistance. 
 
According to the literature [40] the trial column diameter, dtrial, is determined 
approximately according to the following formula: 
 

0,4·( – 1000)
= [ · ]

0,08·( + 20)
fire e

trial Ed
ck

t L
d N

f
 

 
With tfire = 60 min, which corresponds to the required fire resistance R60 in 
minutes, the trial diameter is obtained as follows: 
 

0,460·(3000 – 1000)= [ · 7750] = 370
0,08·(30 + 20)triald mm 

 
The CHS with diameter d = 406,4 mm is selected. 
 
For a concrete-filled circular hollow section, the minimum wall thickness is 
determined from the condition of the local buckling, Table 6.3, EN 1994-1-1: 
 

235max( ) = 90·
y

d
t f

 

 
235max( ) = 90· = 59,6
355

d
t

 

 
The minimum wall thickness is obtained as: 
 

min
406,4= = = 6,82

59,6 59,6
dt  

 
Thus, the minimum required wall thickness of the circular tube is 7,0 mm. The 
CHS 406,4x8,8 is selected. The selected circular hollow section with dimensions is 
shown in Figure C1.2. 
 
 
 



402 C     Composite columns 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

d = 406,4 mm 
t = 8,8 mm 

Aa = 110,0 cm2 
a = 21732 cm4 

Wpl,a = 1391 cm3 

Figure C1.2 Circular hollow section 
 
Remark: 
 
In concrete-filled hollow sections no longitudinal reinforcement is normally 
necessary. However, if the design for fire resistance is required, which is the 
case in this example, longitudinal reinforcement can be used, clause 6.7.5.2 (1), 
EN 1994-1-1. 

 
Initially, the assumed reinforcement is 16 bars with the diameter of 25 mm. The 
cross-sectional area of reinforcement is 78,6 cm2. This initial selection of 
reinforcement is made for educational reasons with the aim of explaining the 
limitations of reinforcement according to clause 6.7.3.1(3), EN 1994-1-1. 
 
The cross-sectional area of the structural steel section 406,4×8,8 is: 
 

= 110aA  cm2 
 
The cross-sectional area of the reinforcement with 16 bars of 25 mm is: 
 
dbar = 25 mm   Abar = 4,91 cm2 
 

= 16· = 16·4,91 = 78,6s barA A  cm2 
 
The cross-sectional area of the concrete is: 
 

2 1= ·( – 2· ) · –
4c sA d t A  

 
2 1= ·(40,64 2·0,88) · – 78,6

4cA –  

d 

t 

y 

z 
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= 1187 – 78,6 = 1109cA  cm2 
 
The ratio of reinforcement area to concrete area is: 
 

78,6= = = 0,071
1109

s
s

c

A
A

 = 7,1s % 

 
= 7,1% > 6%s  

 
Remark: 
 
According to clause 6.7.3.1(3), EN 1994-1-1, the ratio of reinforcement area to 
concrete area, s, should not exceed 6%. 

 
Since the ratio of reinforcement area to concrete area, s, is higher than 6%, the 
reinforcement should be reduced. This can be achieved in two ways, as follows. 
 
a) The same number of bars but a smaller diameter of bar 
 
With the ratio of reinforcement area to concrete area of 6%, the diameter of bar is: 
 

·0,06 4= ·
16

c
bar

A
d  

 
1109·0,06 4= · = 2,30

16 3,14bard  cm = 23,0  mm 

 
A diameter of 22 mm is adopted. 
 
The cross-sectional area of the reinforcement with 16 bars of 22 mm diameter is: 
 
dbar = 22 mm   Abar = 3,80 cm2 
 

= 16· = 16·3,80 = 60,8s barA A  cm2 
 
The ratio of reinforcement area to concrete area s is: 
 

= 1187 – 60,8 = 1126,2cA  cm2 
 

= 60,8sA  cm2 



404 C     Composite columns 
 

 

60,8= = = 0,054
1126,2

s
s

c

A
A

 = 5,4s % 

 
= 5,4% < 6%s  

 
b) Fewer bars but the same diameter of bar 
 
The adopted number of bars is 12 and the diameter of the bar is 25 mm. 
 
The cross-sectional area of the reinforcement with 12 bars of 25 mm diameter is: 
 
dbar = 25 mm   Abar = 4,91 cm2 
 

= 12· = 12·4,91 = 58,9s barA A  cm2 
 
The ratio of reinforcement area to concrete area s is: 
 

= 1187 – 58,9 = 1128cA  cm2 
 

= 58,9sA  cm2 
 

58,9= = = 0,052
1128

s
s

c

A
A

 = 5,2s % 

 
= 5,2% < 6%s  

 
In this example, the adopted reinforcement is 12 bars with the diameter of 25 mm. 
The cross-section of the composite column is shown in Figure C1.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C1.3 Cross-section of the composite column 
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4.2 Cross-sectional areas 

Structural steel 
 

= 110aA  cm2 
 
Reinforcement 
 

2·
= 12·

4
bar

s
d

A  

 
2·2,5= 12· = 58,9

4sA  cm2 

 
Concrete 
 

2

= · – –
4c a s
dA A A  

 
240,64= · – 110 – 58,9 = 1128

4cA  cm2 

4.3 Second moments of area 

Structural steel 
 

= 21732aI  cm4 
 
Reinforcement (in accordance with Figure C1.3) 
 

2 2 2
1 2 3= 2· · + 4· · + 4· ·s bar bar barI A y A y A y  

 
2 2 2= 2·4,91·15,5 + 4·4,91·13,42 + 4·4,91·7,75sI  

 
= 7076sI  cm4 

 
Concrete 
 

4( – 2· )= · –
64c s

d tI  
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4(40,64 – 2·0,88)= · – 7076 = 105094
64cI  cm4 

5. Steel contribution ratio 

According to clause 6.7.3.3(1), EN 1994-1-1, the steel contribution ratio, , is 
defined as: 
 

,

·
= a yd

pl Rd

A f
N

 

 
The term Aa·fyd is the contribution of the structural steel section to the plastic 
resistance of the composite section to the axial force. The design plastic 
resistance of the composite section to the axial force Npl,Rd is calculated 
according to clause 6.7.3.2(1), EN 1994-1-1. 
 
According to 6.7.1(4), EN 1994-1-1, the steel contribution ratio, , must satisfy 
the following conditions: 
 
0,2    0,9 
 
If  is less than 0,2, the column should be designed as a reinforced concrete 
member according to EN 1992-1-1. If  is larger than 0,9, the concrete is ignored 
in the calculations, and the column is designed as a structural steel member 
according to EN 1993-1-1. 

 
The term Aa·fyd is the contribution of the structural steel section to the plastic 
resistance of the composite section to the axial force: 
 

· = 110·35,5 = 3905a ydA f  kN 
 
The plastic resistance of the composite section to the axial force is: 
 

, = · + · + ·pl Rd a yd c cd s sdN A f A f A f  
 

, = 110·35,5 +1128·2,0 + 58,9·43,5pl RdN  
 

, = 3905 + 2256 + 2562 = 8723pl RdN  kN 
 
The steel contribution ratio, , is: 
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,

· 3905= = = 0,45
8723

a yd

pl Rd

A f
N

 

 
The steel contribution ratio, , must satisfy the following conditions: 
 
0,2    0,9 
 
Since the limits 0,2 <  = 0,45 < 0,9 are satisfied, the column can be classified as a 
composite column, and the provisions of EN 1994-1-1 can be used for the 
dimensioning. 
 
Remark: 
 
The confinement effects for concrete-filled circular tube can result in an increase 
of the cross-sectional plastic resistance, Npl,Rd. However, the value of  is not 
usually significantly changed. This means that for the calculation of steel 
contribution ratio, , we can use the following expression for the cross-sectional 
plastic resistance, Npl,Rd: 
 

, = · · ·pl Rd a yd c cd s sdN A f + A f + A f  

6. Local buckling 

According to clause 6.7.1(9), EN 1994-1-1, for concrete-filled circular hollow 
cross-section, the effect of local buckling can be ignored if the following condition 
is satisfied: 
 

235max( ) = 90·
y

d
t f

 

 
For the selected cross-section, the maximum slenderness is: 
 

406,4max( ) = = 46,2
8,8

d
t

 

 
The required condition is: 
 

235 23590· = 90· = 59,6
355yf
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Since 46,2 59,6< , the condition is satisfied. The effect of local buckling can be 
neglected. 

7. Effective modulus of elasticity for concrete 

For long-term loading the creep and shrinkage are taken into account in the 
design by a reduced flexural stiffness of the composite cross-section. Due to the 
influence of long-term creep effects on the effective elastic stiffness, the 
modulus of elasticity of the concrete, Ecm, should be reduced to the value Ec,eff: 
 

,
,

=
1 + ( ) ·

cm
c eff

G Ed
t

Ed

E
E

N
N

 

 
where: 
 

0= ( , )t t t  is the creep coefficient, defining the creep between times t and t0, 
related to the elastic deformation at 28 days, 

=t ( ,t0) is the final creep coefficient, 
t is the age of concrete at the time considered, 
t0 is the age of concrete at loading, 
NEd is the axial design force, 
NG,Ed is the permanent part of the axial design force NEd, NG,Ed = G·NGk. 

 
For the calculation of the creep coefficient (t, t0), the following is valid: 
 
- the perimeter of that part which is exposed to drying, u 
 

=u d·  
 

= 40,64 = 127,7u · cm 
 
- the notional size of the cross-section, h0 
 

0
2· 2·1128= = = 17,7

·40,64
cA

h
u

 cm = 177  mm 

- 0 = 7t  days, 
- inside conditions, the ambient relative humidity RH 50%, 
- the concrete strength class C 30/37, 
- the type of cement – cement class N, strength class 32,5 R. 
 



Example C1 409 
 

 

The final value of the creep coefficient ( , t0) is determined using the nomogram 
shown in Figure 3.1, EN 1992-1-1. The process of determining the final value of 
the creep coefficient, taking into account these assumptions, is given in Figure 
C1.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C1.4 Method for determining the creep coefficient 
 
The final value of creep coefficient ( , t0), found from Figure C1.4, is: 
 

t = ( , t0) = 3,1 
 
The design force for the permanent load, NG,Ed, and the total design force, NEd,  
are: 
 

, = ·
kG Ed G GN N  

 
, = 1,35·4019 = 5425G EdN  kN 

 
= 1,35· +1,50·

k kEd G QN N N  
 

= 1,35·4019 +1,50·1550 = 5425 + 2325 = 7750EdN  kN 
 
Accordingly, the value of Ec,eff is: 
 

,
,

3300= = = 1041
54251 + ( )·3,11 + ( )·
7750

cm
c eff

G Ed
t

Ed

E
E

N
N

 kN/cm2 
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Remark: 
 
The obtained value of effective modulus of elasticity is conservative. For 
concrete-filled hollow section, the drying of the concrete is significantly reduced 
by the steel section. Taking into consideration this favourable effect, the 
sufficient good estimation of the creep coefficient can be achieved if 25% of that 
creep coefficient is used: 
 

t,eff = 0,25· (t, t0) 
 
The same recommendation was adopted in [12]. 

 
Therefore, the following value of creep coefficient, is adopted: 
 

, 0= 0,25· ( , ) = 0,25·3,1 = 0,775t eff t t  
 
In this case, the effective modulus of elasticity for concrete is: 
 

,
,

,

3300= = = 2139
54251 + ( )·0,7751 + ( )·
7750

cm
c eff

G Ed
t eff

Ed

E
E

N
N

 kN/cm2 

 
Further calculation will be performed with this effective modulus of elasticity of 
concrete, Ec,eff = 2139 kN/m2. 
 
Remark: 
 
It should be noted that a conservative estimation of the effective modulus of 
elasticity is obtained according to EN 1994-1-1 because in the case of concrete-
filled hollow section the drying of the concrete is significantly reduced by the 
steel section. However, in the case of concrete-filled circular hollow section, the 
dimensioning of composite columns is rarely sensitive to the influence of creep 
coefficient t on the effective modulus elasticity of concrete Ec,eff. With this 
statement the conservative estimation of Ec,eff, according to EN 1994-1-1, can be 
justified in the case of concrete-filled hollow sections. 

8. Resistance of the cross-section to compressive axial force 

8.1 Plastic resistance of the cross-section without confinement effect 

The design plastic resistance of composite cross-section to compressive axial force, 
Npl,Rd, is given by the sum of the design resistances of components as: 
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, = · + 0,85· · + ·pl Rd a yd c cd s sdN A f A f A f  
 
Remark: 
 
The coefficient of 0,85 can be replaced with the value 1,0 due to better curing 
conditions in the case of concrete-filled hollow sections. 

 
The design plastic resistance of the composite cross-section to compressive axial 
force, Npl,Rd, is calculated according to the corrected expression: 
 

, = · + · + ·pl Rd a yd c cd s sdN A f A f A f  
 

, = 110·35,5 +1128·2,0 + 58,9·43,5pl RdN  
 

, = 3905 + 2256 + 2562 = 8723pl RdN  kN 
 
The characteristic value of the plastic resistance of the composite cross-section to 
compressive axial force, Npl,Rk, is determined by: 
 

, = · + · + ·pl Rk a yk c ck s skN A f A f A f  
 

, = 110·35,5 +1128·3,0 +58,9·50pl RkN  
 

, = 10234pl RkN  kN 

8.2 Plastic resistance of the cross-section taking into account 
confinement effect 

For composite columns with concrete-filled circular hollow sections, the 
increased strength of the concrete due to the confinement effect of the circular 
hollow section may be taken into account. Figure C1.5 illustrates the 
confinement effect of the circular hollow section. 
 
When the concrete-filled circular hollow sections are under axial compression, 
the concrete is not able to expand laterally, and triaxial stresses are developed in 
the concrete. For stresses of concrete c > 0,8 fck the Poisson’s ratio of concrete is 
higher than the Poisson’s ratio of structural steel. The confinement of the circular 
tube causes radial compressive stresses c,r. This results in increased concrete 
strength and higher strains of the concrete. At the same time, the circumferential 
tensile stresses a  in the steel tube also arise and reduce the axial resistance of 
the steel tube. The radial stresses also cause friction in the steel-concrete 
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interface, which increase the longitudinal shear resistance. The increased 
resistance of concrete must be taken into account only in the case of concrete-
filled circular hollow section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C1.5 Confinement effects for concrete-filled tubes of circular 
 cross-section 

 
The increase in strength of concrete caused by confinement may be taken into 
account if the relative slenderness, , does not exceed 0,5 and e/d < 0,1. The 
eccentricity of loading, e, is defined as: 
 

= Ed

Ed

M
e

N
 

 
where: 
 
MEd is the maximum design moment (second-order effects are ignored), 
NEd is the design axial force, 
d is the outer diameter of the circular hollow section. 
 
According to clause 6.7.3.2(6), EN 1994-1-1, when these conditions are 
satisfied, the design plastic resistance to compression taking into account the 
confinement effects may be obtained as: 
 

, = · · + · (1 + · · ) + ·y
pl Rd a a yd c cd c s sd

ck

ftN A f A f A f
d f

 

 
where: 
 
t is the wall thickness of the steel hollow section. 

,ck c

ck

f
f

 

0,35 0,30 0,25 0 0,05 0,10 0,15 0,20 

0,5

0 

1,0
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Concrete (EN 1992-1-1) 

,c r

ckf
 

, 1 2 ,+ck c ck c rf = f

1 = 1,00
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1=1,125
2=2,5 

d d-2tt 

a  a  
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c,ra fyd
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For members with e = 0, the values a = a0 and c = c0 are given by: 
 

0= = 0,25·(3 + 2· )a a , (but  1,0) 
 

2

0= = 4,9 – 18,5· +17·c c , (but  0) 
 
For members in combined compression and bending with 0 < e/d  0,1, the 
values a and c should be determined from the following expressions: 
 

a a0 a0
10·= + (1 – )· e

d
 

 

c c0= (1 – 10· )e
d

 

 
For e/d > 0,1, a = 1,0 and c = 0. 

 
The relative slenderness is = 0,355 , calculated in Section 9.1, and the relative 
slenderness does not exceed 0,5. 
 
The eccentricity of loading is: 
 

0= = = 0
7750

Ed

Ed

M
e

N
< 0,1 

 
The conditions are satisfied and the values a and c are: 
 

0= = 0,25·(3 + 2·0,355) = 0,928a a  
 

2
0= = 4,9 – 18,5·0,355 +17·0,355 = 0,475c c  

 
Therefore, the design plastic resistance to compression taking into account the 
confinement effects is: 
 

, 0 0= · · + · (1 + · · ) + ·y
pl Rd a a yd c cd c s sd

ck

ftN A f A f A f
d f

 

 

,
0,88 35,5= 0,928·110·35,5 +1128·2,0(1 + 0,475· · ) +58,9·43,5
40,64 3,0pl RdN  
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, = 0,928·3905 + 2256·1,122 + 2562pl RdN  
 

, = 3624 + 2531 + 2562pl RdN  
 

, = 8717pl RdN  kN 
 
Remark: 
 
Taking into account confinement effects according to the expression (6.33), EN 
1994-1-1, the design plastic resistance of the cross-section to compression is 
Npl,Rd = 8717 kN. The design plastic resistance calculated in Section 8.1 is Npl,Rd 
= 8723 kN. The higher design plastic resistance, which is Npl,Rd = 8723 kN, is 
adopted for further calculation 

 
Comparing the expressions for the plastic resistance with confinement effects and 
without confinement effects, it can be seen that the plastic resistance of structural 
steel is decreased for 7% while the plastic resistance of concrete is increased by 
12%. It follows that the increase in plastic concrete resistance has not contributed 
to the overall increase in the plastic resistance of the cross-section Npl,Rd. 

9. Resistance of the member in axial compression 

9.1 Verification of conditions for using simplified design method 

The cross-section of the composite column should be doubly symmetrical and 
uniform along the entire length of the column. 
 
This condition is satisfied. 
 
Relative slenderness 
 
To apply the simplified method it is necessary to satisfy the following condition: 
 

 2,0 
 
Relative slenderness, , is determined by the following expression: 
 

,= pl Rk

cr

N
N

 

 
For the determination of relative slenderness  and elastic critical force Ncr, it is 
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necessary to calculate the value of effective flexural stiffness of the cross-section 
of the composite column, (EI)eff, according to: 
 

,( ) = + +eff a a s s e c eff cEI E I E I K E I  
 
With the correction factor Ke = 0,6, the value (EI)eff is: 
 
( ) = 21000·21732 + 21000·7076 + 0,6·2139·105094effEI  
 

6( ) = 739,85·10effEI  kNcm2 
 
The elastic critical force, Ncr, for the pin-ended column and the buckling length Le, 
is determined by: 
 

2

2

( ) ·
= eff

cr
e

EI
N

L
, Le = L 

 
6 2

2

739,85·10 ·= = 81134
300crN  kN 

 
The relative slenderness, , is: 
 

10234= = 0,355
81134

 

 
Accordingly, = 0,355 < 2,0 , and the condition is satisfied. 
 
Remark: 
 
For the effective modulus of elasticity Ec,eff = 1041 kN/cm2, calculated according 
to EN 1994-1-1, the relative slenderness  is 0,373, so the condition 2,0  is 
also satisfied.  

 
The maximum permitted cross-sectional area of the longitudinal 
reinforcement 
 
The maximum cross-sectional area of the longitudinal reinforcement As,max that can 
be used in the calculation should not exceed 6% of the concrete area. This 
condition is satisfied, see Section 4. 
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Remark: 
 
All conditions from clause 6.7.3.1, EN 1994-1-1, are satisfied, so this allows the 
use of the simplified design method for composite columns. 

9.2 Check of resistance of the member in axial compression 

The resistance of the member subjected only to axial compression can be 
checked by second-order analysis according to clause 6.7.3.5, EN 1994-1-1, so 
as to take into account member imperfections. As a simplification in the case of 
the member subjected only to axial compression, the design value of the axial 
force NEd should satisfy the check based on European buckling curves, which 
can be written in the following format: 
 

,·
Ed

pl Rd

N
N

 1,0 

 
The reduction factor  is given by: 
 

2 2

1=
+ –

, but   1,0 

 
and 
 

2
0= 0,5·[1 + ·( – ) + ] , s 0 = 0,2  

 
Remark: 
 
The relevant buckling curves for cross-sections of composite columns are given in 
Table 6.5, EN1994-1-1, according to which, circular or rectangular hollow section 
columns filled with concrete or containing up to 3% reinforcement can be 
designed using buckling curve a with an imperfection factor  = 0,21. However, 
concrete-filled hollow section columns containing 3% to 6% can be designed 
using buckling curve b with an imperfection factor  = 0,34. 

 
The reinforcement ratio s is 5,2 %, within the limitations 3% < s 6%. Therefore 
from Table 6.5, EN1994-1-1, buckling curve b should be used. 
 
From Table 6.3, EN1993-1-1,  = 0,34 for buckling curve b so that  is: 
 

2= 0,5·[1 + 0,34·(0,355 – 0,2) + 0,355 ] = 0,589  
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The reduction factor  is: 
 

2 2

1= = 0,94 < 1,0
0,589 + 0,589 – 0,355

 

 
Check: 
 

,·
Ed

pl Rd

N
N

 1,0 

 
7750 = 0,95 < 1,0

0,94·8723
 

 
Since 0,95 < 1,0 , the check of composite column subjected to axial compression, 
which is implemented by means of the simplified method with the application of 
European buckling curves, is satisfied. 

10. Commentary 

The buckling resistance of concrete-filled circular hollow section was calculated 
from the plastic resistance of the cross-section and the elastic critical load (Euler 
buckling load) using the EN 1993-1-1 buckling curve b. The buckling curves 
take into account the member imperfections, geometric and structural 
imperfections, implicitly. In this example, the utilization is 95%. 
 
In this example, the increase in plastic concrete resistance due to confinement 
effects has not contributed to the overall increase in the plastic resistance of the 
cross-section Npl,Rd. However, when the plastic resistance of the cross-section, 
taking into account the confinement effects, is governed, then the buckling 
verification is performed with this plastic resistance. In this case, the relative 
slenderness  is calculated using the characteristic plastic resistance of cross-
section as:  
 

, = · · + · (1 + · · ) + ·y
pl Rk a a yk c ck c s sk

ck

ftN A f A f A f
d f

 

 
and the iterative procedure is needed for its calculation. 
 
To avoid the iterative procedure for calculation the relative slenderness , it is 
permitted to use the following expression for the characteristic plastic resistance: 
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, = · + · + ·pl Rk a yk c ck s skN A f A f A f  
 
The effects of confinement on the resistance enhancement of concrete depend on 
the slenderness of the composite columns and are significant only in stocky 
columns, < 0,2 . Also, the effects of confinement decrease as the bending 
moments are applied and are significant only for e/d < 0,05. 
 
It is important to note that imperfections are unavoidable and that they result in 
deviations from the behaviour of member subject to “perfectly centred load”. 
Imperfections may be divided into geometrical imperfections and structural 
imperfections. The influence of geometrical and structural imperfections can be 
allowed for by equivalent geometrical imperfections which are given in Table 
6.5, EN 1994-1-1, and depend on the buckling curve. Equivalent imperfections 
can be used directly as an eccentricity of the axial force for calculating the 
design moment. In that case the axially loaded column can be verified using 
second-order analysis according to clause 6.7.3.6, EN 1994-1-1. The use of 
buckling curves is limited to axially loaded members.  
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C2 Composite column with concrete-filled circular hollow 
section subject to axial compression, verified using 
European buckling curves and using second-order 
analysis taking into account member imperfections 

1. Purpose of example 

The composite column height 4,5 m is subjected to axial compression. The 
concrete-filled column consists of the circular hollow section (CHS) filled with 
concrete. It is assumed to be pinned top and bottom. The column is calculated 
using the simplified method of design in two ways. The first method is based on 
the application of European buckling curves, and the second is based on second-
order analysis, taking into account the imperfections. The purpose of this example 
is to compare the two methods, which are based on a simplified procedure 
verification of the composite column. According to EN 1994-1-1 both methods are 
permitted, and it is considered to be equivalent. However, according to clause 
6.7.3.5(1), EN 1994-1-1, the resistance of a member subjected to only axial 
compression can be verified primarily according to the second-order analysis 
taking into account the imperfections. Alternatively, the verification of the member 
is allowed using the European buckling curves. 
 
The calculation is based on these assumptions: 
 
a) When calculating the resistance of the member subjected to axial compression 

applying second-order analysis taking into account the imperfections, the check 
of cross-section resistance is calculated for combined compression and uniaxial 
bending. In that case, the interaction polygon ABCD is used. 

b) The second-order effects in determining the action effects are taken into account 
by means of an approximate method according to clause 6.7.3.4, EN 1994-1-1. 
This means that design bending moments are calculated according to first-order 
analysis multiplied by the correction factor k. 

2. Static system, cross-section and design action effects 

Actions 
 
Permanent action NG = 3000 kN 
 
Variable action NQ = 1300 kN 
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Design action effect: 
 

= · + ·Ed G G G QN N N  
 

= 1,35·3000 +1,50·1300 = 6000EdN kN 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C2.1 Static system and cross-section 

3. Properties of materials 

Concrete strength class: C 40/50 = 40ckf  N/mm2 

 40= = = 26,7
1,5

ck
cd

c

f
f  N/mm2 

 = 35000cmE  N/mm2 
Structural steel: S355 = 355ykf  N/mm2 

 355= = = 355
1,0

yk
yd

M

f
f  N/mm2 

 = 210000aE  N/mm2 

 
Reinforcement: ductility class B or C = 460skf  N/mm2 

NGk
 

406,4 

12
7,

0 
11

9,
0 

10,0 
Concrete C 40/50 

Reinforcement 10  16, S 500 CHS 406,4×10,0, S355 
z 

y 

L 
=

 L
e =

 4
,5

0 
m

 

NQk
 

Le – buckling length 
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 460= = = 400
1,15

sk
sd

s

f
f  N/mm2 

 = 210000SE  N/mm2 

4. Geometrical properties of the cross-section 

4.1 Selection of the steel cross-section and reinforcement 

It is assumed that only axial compression load is applied, and the required fire 
resistance is R30. 
 
Since the composite columns are used in building, it is expected settings for fire 
resistance will be required. 
 
According to the literature [40] the trial column diameter, dtrial, is determined 
approximately according to the following formula: 
 

0,4·( – 1000)
= [ · ]

0,08·( + 20)
fire e

trial Ed
ck

t L
d N

f
 

 
With tfire = 30 min, which corresponds to the required fire resistance R30 in 
minutes, the trial diameter is obtained as follows: 
 

0,430·(4500 – 1000)= [ · 6000] = 310
0,08·(40 + 20)triald  mm 

 
The CHS with the diameter d = 406,4 mm is selected. For a concrete-filled circular 
hollow section, the minimum wall thickness is determined from the condition of 
the local buckling, Table 6.3, EN 1994-1-1: 
 

235max( ) = 90·
y

d
t f

 

 
235max( ) = 90· = 59,6
355

d
t

 

 
The minimum wall thickness is obtained as: 
 

min
406,4= = = 6,82

59,6 59,6
dt  mm 
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Thus, the minimum required wall thickness of the circular tube is 7,0 mm. The 
CHS 406,4×10,0 is selected. The selected circular hollow section with the 
dimensions is shown in Figure C2.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

d = 406,4 mm 
t = 10,00 mm 

Aa = 124,5 cm2 
a = 24476 cm4 

Wpl,a = 1572 cm3 

Figure C2.2 Circular hollow section 
 
Remark: 
 
In concrete-filled hollow sections no longitudinal reinforcement is normally 
necessary. However, if the design for fire resistance is required, which is the 
case in this example, longitudinal reinforcement can be used, clause 6.7.5.2 (1), 
EN 1994-1-1. 

 
In this example, the selected reinforcement is 10 bars with the diameter of 16 mm. 
 
The cross-sectional area of the structural steel section 406,4×10,0 is: 
 

= 124,5aA  cm2 
 
The cross-sectional area of the reinforcement with 10 bars of 16 mm diameter is: 
 
dbar = 16 mm   Abar = 2,01 cm2 
 

= 10· = 10·2,01 = 20,1s barA A  cm2 
 
The cross-sectional area of the concrete is: 
 

2 1= ( – 2· ) · –
4c sA d t A  

 

d 

t 

y 

z 
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2 1= (40,64 – 2·1,00) · – 20,10
4cA  

 
= 1172,6 – 20,10 = 1153cA  cm2 

 
The ratio of reinforcement area to concrete area is: 
 

20,1= = = 0,017
1153

s
s

c

A
A

 = 1,7s % 

 
= 1,7s % < 6 % 

 
The limit of 6% in clause 6.7.3.1 (1), EN 1994-1-1, on the reinforcement is 
satisfied. 
 
Remark: 
 
According to clause 6.7.3.1(3), EN 1994-1-1, the ratio of reinforcement area to 
concrete area, s, should not exceed 6%. 

4.2 Cross-sectional areas 

Structural steel 
 

= 124,5aA  cm2 
 
Reinforcement 
 

2·
= 10·

4
bar

s

d
A  

 
2·1,6= 10· = 20,1

4sA cm2 

 
Concrete 
 

2

= · – –
4c a s
dA A A  

 
240,64= · – 124,5 – 20,1 = 1153

4cA  cm2 
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4.3 Second moments of area 

Structural steel 
 

= 24476aI  cm4 
 
Reinforcement 
 
It is assumed that there are stirrups 8 mm in diameter around the longitudinal 
reinforcement and that the concrete cover is 50 mm, see Figure C2.3. 
 

= – 2· = 406,4 – 2·10 = 386,4cd d t mm 
 

= – 50 – – 8
2 2

c bard d
R  

 
386,4 16= – 50 – – 8 = 127

2 2
R  mm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C2.3 Composite column cross-section 
 

1
16= – = 127 – = 119

2 2
bard

y R  mm 

 

2
360º= ·sin = 127·sin36º= 75
10

y R  mm 

 
2 2
1 2= 4· · + 4· ·s bar barA y A y  

 

406,4 

y1 y2

10,0 

z 

y 
dc 

R
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2 2= 4·2 01·11 9 + 4·2 01·7 5s , , , ,  
 

= 1591s  cm4 
 
Concrete 
 

4·( – 2· )= –
64c s

d t I  

 
4·(40 64 – 2·1 0)= – 1591 = 107834

64c
, ,  cm4 

4.4 Plastic section moduli 

Structural steel 
 

, = 1572pl aW  cm3 
 
Reinforcement 
 

, 1 2= 4· · + 4· ·pl s bar barW y A y A  
 

, = 4·11,9·2 01 + 4·7,5·2 01 = 156pl sW , , cm3 
 
Concrete 
 

3

, ,
( – 2· )= –

6pl c pl s
d tW W  

 
3

,
(40,64 – 2·1,0)= – 156 = 9459

6pl cW cm3 

5. Steel contribution ratio 

According to clause 6.7.3.3(1), EN 1994-1-1, the steel contribution ratio, , is 
defined as: 
 

,

·
= a yd

pl Rd

A f
N
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The term Aa·fyd is the contribution of the structural steel section to the plastic 
resistance of the composite section to axial force. The design plastic resistance of 
the composite section to axial force Npl,Rd is calculated according to clause 
6.7.3.2(1), EN 1994-1-1. 
 
According to 6.7.1(4), EN 1994-1-1, the steel contribution ratio, , must satisfy 
the following conditions: 
 
0,2    0,9 
 
If  is less than 0,2, the column should be designed as a reinforced concrete 
member according to EN 1992-1-1. If  is larger than 0,9, the concrete is ignored 
in the calculations, and the column is designed as a structural steel member 
according to EN 1993-1-1. 

 
The term Aa·fyd is the contribution of the structural steel section to the plastic 
resistance of composite section to axial force: 
 

· = 124,5·35,5 = 4420a ydA f kN 
 
The plastic resistance of the composite section to axial force is: 
 

, = · + · + ·pl Rd a yd c cd s sdN A f A f A f  
 

, = 124,5·35,5 +1153·2,67 + 20,1·40,0pl RdN  
 

, = 8302pl RdN  kN 
 
According to 6.7.1(4), EN 1994-1-1, the steel contribution ratio, , must satisfy the 
following conditions: 
 
0,2    0,9 
 
The steel contribution ratio, , is: 

,

· 4420= = = 0,532
8302

a yd

pl Rd

A f
N

 

 
Since the limits 0,2 <  = 0,532 < 0,9 are satisfied, the column can be classified as 
a composite column, and the provisions of EN 1994-1-1 can be used for the 
dimensioning. 
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Remark: 
 
The confinement effects of the concrete-filled circular tube can result in an 
increase of the cross-sectional plastic resistance, Npl,Rd. However, the value of  
is usually not significantly changed. This means that for the calculation of steel 
contribution ratio, , we can use the following expression for the cross-sectional 
plastic resistance, Npl,Rd: 
 

, = · + · + ·pl Rd a yd c cd s sdN A f A f A f  

6. Local buckling 

According to clause 6.7.1(9), EN 1994-1-1, for concrete-filled circular hollow 
cross-section, the effect of local buckling can be ignored if the following condition 
is satisfied: 
 

235max( ) = 90·
y

d
t f

 

 
For the selected cross-section, the maximum slenderness is: 
 

406,4max( ) = = 40,64
10,0

d
t

 

 
The required condition is: 
 

235 23590· = 90· = 59,6
355yf

 

 
Since 40,64 < 59,6 , the condition is satisfied. The effect of local buckling can be 
neglected. 

7. Effective modulus of elasticity for concrete 

For long-term loading creep and shrinkage are taken into account in design by a 
reduced flexural stiffness of the composite cross-section. Due to the influence of 
long-term creep effects on the effective elastic stiffness, the modulus of elasticity 
of the concrete, Ecm, should be reduced to the value Ec,eff in accordance with 
following equation: 
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,
,

=
1 + ( )·

cm
c eff

G Ed
t

Ed

E
E

N
N

 

 
where: 
 

0= ( , )t t t  is the creep coefficient, defining the creep between times t and t0, 
related to elastic deformation at 28 days, 

=t ( ,t0) is the final creep coefficient, 
t is the age of the concrete at the time considered, 
t0 is the age of the concrete at loading, 
NEd is the axial design force, 
NG,Ed is the permanent part of the axial design force NEd, NG,Ed = G NGk. 

 
For the calculation of the creep coefficient  (t, t0), the following is valid: 
 
- the perimeter of that part which is exposed to drying, u 
 

= ·u d  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C2.4 Perimeter which is “exposed” to drying 
 

= 40,64· = 127,7u cm 
 
- the notional size of the cross-section, h0 
 

0
2· 2·1153= = = 18,1 = 181

127,7
cA

h cm
u

mm 

 
- t0 = 28 days, 

d 

t 

z 

 y

u d 
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- inside conditions, the ambient relative humidity RH 50 %, 
- the concrete strength class C 40/50 
- the type of cement – cement class N, strength class 32,5 R. 
 
The final value of creep coefficient ( , t0) is determined using the nomogram 
shown in Figure 3.1, EN 1992-1-1. The process of determining the final value of 
the creep coefficient, taking into account these assumptions, is given in Figure 
C2.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C2.5 Method for determining the creep coefficient 
 
The final value of creep coefficient ( , t0), found from Figure C2.5, is: 
 

0= ( , ) = 1,9t t t  
 
The design force of the permanent load, NG,Ed, and the total design force, NEd,  
are: 
 

, = ·G Ed G GkN N  
 

, = 1,35·3000 = 4050G EdN  kN 
 

= 1,35· +1,50·Ed Gk QkN N N  
 

= 1,35·3000 +1,50·1300 = 4050 +1950 = 6000EdN  kN 
 
Accordingly, the value of Ec,eff is: 
 

t0 = 28 days 

h0 [mm]

t0 
R1 

2 
3 
5 

N S 
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1st step

2nd step

3th step

4th step

5th
 st
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,
,

3500= = = 1533
40501 + ( )·1,91 + ( )·
6000

cm
c eff

G Ed
t

Ed

E
E

N
N

 kN/cm2 

 
Further calculation is performed with the effective modulus of elasticity of 
concrete Ec,eff = 1533 kN/m2. 
 
Remark: 
 
It should be noted that a conservative estimation of effective modulus of 
elasticity is obtained according to EN 1994-1-1 because in the case of concrete-
filled hollow section the drying of the concrete is significantly reduced by the 
steel section (see example C1). However, in the case of concrete-filled circular 
hollow section the dimensioning of composite columns is rarely sensitive to the 
influence of creep coefficient t on the effective modulus elasticity of concrete 
Ec,eff. With this statement the conservative estimation of Ec,eff, according to EN 
1994-1-1, can be justified in the case of concrete-filled hollow sections. 

8. Resistance of the cross-section to compressive axial force 

8.1 Plastic resistance of the cross-section without confinement effect 

The design plastic resistance of the composite cross-section to axial compressive 
force, Npl,Rd, is given by the sum of the design resistances of components as 
follows: 
 

, = · + 0,85· · + ·pl Rd a yd c cd s sdN A f A f A f  
 
Remark: 
 
The coefficient of 0,85 can be replaced with the value 1,0 due to better curing 
conditions in the case of concrete-filled hollow sections. 

 
The design plastic resistance of composite cross-section to compressive axial force, 
Npl,Rd, is calculated according to the corrected expression: 
 

, = · + · + ·pl Rd a yd c cd s sdN A f A f A f  
 

, = 124,5·35,5 +1153·2,67 + 20,1·40,0pl RdN  
 

, = 4419 + 3079 + 804 = 8302pl RdN  kN 
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The characteristic value of the plastic resistance of the composite cross-section to 
compressive axial force, Npl,Rk, is: 
 

, = · + · + ·pl Rk a yk c ck s skN A f A f A f  
 

, = 124,5·35,5 +1153·4,00 + 20,1·46,0pl RkN  
 

, = 4420 + 4612 + 925 = 9957pl RkN  kN 

8.2 Plastic resistance of the cross-section taking into account the 
confinement effect 

For concrete-filled tubes of circular cross-section, the concrete component 
develops a higher strength because of the confinement from the steel section, see 
clause 6.7.3.2, EN 1994-1-1 and example C1. 
 
This increase in the strength of concrete can be taken into account in the 
calculation if the relative slenderness, , does not exceed 0,5 and the ratio e/d < 
0,1. The eccentricity of loading, e, is determined by the ratio MEd/NEd, and d is 
the outer diameter of the column. In this case is e = 0. 

 
The relative slenderness, , is calculated in Section 9.1 and is = 0,562 . 
 
Since = 0,562 > 0,5 , the condition is not satisfied. This means that the increase in 
strength of the concrete due to the confinement from the steel section is not taken 
into account. 
 
Further calculation is performed with the plastic resistant of the cross-section to 
compression Npl,Rd = 8302 kN. 

9. Resistance of the member in axial compression – using 
European buckling curves 

9.1 Verification of conditions for using the simplified design method 

The cross-section of the composite column should be doubly symmetrical and 
uniform along the entire length of the column. 
 
This condition is satisfied. 
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Relative slenderness 
 
To apply the simplified method it is necessary to satisfy the following condition: 
 

 2,0 
 
Relative slenderness, , is determined by the following expression: 

,= pl Rk

cr

N
N

 

 
For the determination of the relative slenderness  and the elastic critical force 
Ncr, it is necessary to calculate the value of the effective flexural stiffness of the 
cross-section of the composite column, (EI)eff, according to the expression: 
 

,( ) = · + · + · ·eff a a s s e c eff cEI E I E I K E I  
 
With the correction factor Ke = 0,6, the value (EI)eff is: 
 
( ) = 21000·24476 + 21000·1591 + 0,6·1533·107834effEI  
 

6( ) = 646,59·10effEI kNcm2 
 
The elastic critical force, Ncr, for the pin-ended column and the buckling length Le, 
is determined by: 
 

2

2

( ) ·
= eff

cr

EI
N

L
, Le = L 

 
6 2

2

646,59·10 ·= = 31514
450crN  kN 

 
, = 9957pl RkN kN 

 
The relative slenderness, , is: 
 

9957= = 0,562
31514

 

 
Accordingly = 0,562 < 2,0 , and the condition is satisfied. 
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Maximum permitted cross-sectional area of the longitudinal reinforcement 
 
The maximum cross-sectional area of the longitudinal reinforcement As,max that can 
be taken in the calculation should not exceed 6% of the concrete area. This 
condition is satisfied, see Section 4.1. 
 
Remark: 
 
All conditions from clause 6.7.3.1, EN 1994-1-1, are satisfied, so this allows the 
use of the simplified design method for composite columns. 

9.2 Check of resistance of the member in axial compression 

The resistance of the member subjected only to axial compression can be 
checked by second-order analysis according to clause 6.7.3.5, EN 1994-1-1, so 
as to take into account member imperfections. As a simplification in the case of 
the member subjected only to axial compression, the design value of the axial 
force NEd should satisfy the check based on European buckling curves, which 
can be written in the following format: 
 

,·
Ed

pl Rd

N
N

 1,0 

 
The reduction factor  is given by: 
 

2 2

1=
+ –

, but   1,0 

 
and 
 

2
0= 0,5·[1 + ·( – ) + ] , with 0 = 0,2  

 
Remark: 
 
The relevant buckling curves for cross-sections of composite columns are given 
in Table 6.5, EN1994-1-1. According to Table 6.5, EN 1994-1-1, circular or 
rectangular hollow section columns filled with concrete or containing up to 3% 
reinforcement can be designed using buckling curve a with an imperfection 
factor  = 0,21. However, concrete-filled hollow section columns containing 
from 3% to 6% can be designed using buckling curve b with an imperfection 
factor  = 0,34. 
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The reinforcement ratio s is 1,7 %. Therefore from Table 6.5, EN 1994-1-1, 
buckling curve a should be used. 
 
From Table 6.3, EN1993-1-1,  = 0,21 for buckling curve a so that  is: 
 

2= 0,5·[1 + 0,21·(0,562 – 0,2) + 0,562 ] = 0,696  
 
The reduction factor  is: 
 

2 2

1= = 0,90 < 1,0
0,696 + 0,696 – 0,562

 

 
Check: 
 

,·
Ed

pl Rd

N
N

 1,0 

 
6000 = 0,80 < 1,0

0,90·8302
 

 
Since 0,80 < 1,0, the check of the composite column subjected to axial 
compression, which is implemented by means of the simplified method with the 
application of European buckling curves, is satisfied. 
 
Figure C2.6 shows the principle of verification of the member in axial compression 
using European buckling curves. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C2.6 Principle of verification of the member in axial compression using  
 European buckling curves 

Euler’s curve 

Curve a 

 

  = 0,90 

 

1 

2 

Npl 

 = 0,562
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10. Resistance of the member in axial compression – using second-
order analysis, taking into account member imperfections 

10.1 General 

In accordance with clause 6.7.3.5 (1), EN 1994-1-1, the verification of the 
axially loaded column can be carried out using a second-order analysis taking 
into account the member imperfections. Figure C2.7 illustrates the assessment of 
the column resistance in accordance with clause 6.7.3.6, EN 1994-1-1. It is 
necessary to satisfy the following condition: 
 

, , ,

=
·

Ed Ed

pl N Rd d pl Rd

M M
M M M  

 
In this expression, MEd is the greatest of the end moments and the maximum 
bending moment within the column length. This moment is calculated according 
to clause 6.7.3.4, EN 1994-1-1, including imperfections (Table 6.5, EN 1994-1-
1) and second-order effects if necessary ( cr > 10). 
 
The condition can be written in the following form, in accordance with Figure 
C2.7: 
 

EdM ,= · ·Rd M d pl RdM M  
 
where: 
Mpl,N,Rd is the plastic resistance moment taking into account the axial force NEd, 

given by d·Mpl,Rd, see Figure C2.7, 
M is the coefficient related to bending of a composite column and is taken 

as 0,9 for steel grades between S235 and S355. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C2.7 Verification for combined compression and uniaxial bending 

Mpl,Rd

NEd

Npl,Rd
N 

M

M dMpl,Rd 

Mpl,N,Rd 

e0,d

e0,d equivalent initial 
bow imperfection 

NEd
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Geometrical and structural imperfections are represented by an equivalent 
geometrical imperfections e0,d as the initial curvature of member. 

10.2 Verification of conditions for using the simplified design method 

See Section 9.1. 

10.3 Resistance of the cross-section in combined compression and uniaxial 
bending 

Remark: 
 
In order to determine the resistance of the composite cross-section to combined 
compression and uniaxial bending, it is necessary to produce an axial load – 
bending moment (N–M) interaction curve. As a simplification, the interaction 
curve is replaced by an interaction polygon ACDB, clause 6.7.3.2 (5), EN 1994-
1-1. The N–M interaction polygon ACDB is shown in Figure 6.19, EN 1994-1-1. 
A modified version of the interaction polygon, which refers to the composite 
column with concrete-filled circular hollow cross-section, is shown in Figure 
C2.8. 
 
In order to produce the N–M interaction polygon, the cross-sectional capacities 
at points A to D should be determined, assuming the stress distributions 
indicated, see Figure C2.8. 
 
It should be noted that EN 1994-1-1 does not provide expressions for circular 
cross-sections filled with concrete. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C2.8 N M interaction polygon and corresponding stress distributions 
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Point A 
 
At point A, only the design plastic resistance of the cross-section is taken into 
account: 
 

, = · + 0,85· · + ·pl Rd a yd c cd s sdN A f A f A f  
 
Remark 
 
For concrete-filled hollow sections, the coefficient of 0,85 can be replaced with a 
value of 1,0 due to better curing conditions. 

 
The design plastic resistance of the composite cross-section to compression, Npl,Rd, 
is calculated according to the corrected expression: 
 

, = · + · + ·pl Rd a yd c cd s sdN A f A f A f  
 

, = 124,5·35,5 +1153·2,67 + 20,1·40,0 = 8302pl RdN  kN 
 
Point D 
 
The maximum design plastic resistance moment is determined as: 
 

max , , ,= · + · + ·Rd pl a yd pl c cd pl s sdM W f W f W f  
 
The maximum design plastic resistance moment, MmaxRd, at point D is: 
 

max , , ,= · + 0,5· · + ·Rd pl a yd pl c cd pl s sdM W f W f W f  
 

–2
max = (1572·35,5 + 0,5·9459·2,67 +156·40,0)·10 = 747RdM  kNm 

 
The design value of the resistance of the concrete to compression, Npm,Rd, is: 
 

2 2

,
·( – 2 ) ·(40,64 – 2·1,0)= · = ·2,67 = 3130

4 4pm Rd cd
d tN f kN 

 
The design axial force at the point of maximum design plastic resistance moment is 
0,5·Npm,Rd, and therefore is: 
 

,0,5· = 0,5·3130 = 1565pm RdN  kN 
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Point C 
 
Calculation of the design plastic resistance moment of the composite section, 
Mpl,Rd, is carried out as shown below. 
 
Determination of the position of the neutral axis depth, hn, when the axial force is 
zero: 
 

, ,– ·(2· – )
=

2· · + 4· ·(2· – )
pm Rd s n sd cd

n
cd yd cd

N A f f
h

d f t f f
 

 
where As,n is the reinforcement area within hn. Because it is at this point unknown, 
assumed to be (initial guess): 
 

, = 2· = 2·2,01 = 4,02s n barA A  cm2 
 
Thus, for the case when the axial force is equal to zero, hn is:  
 

3130 – 4,02·(2·40,0 – 2,67)= = 5,749
2·40,64·2,67 + 4·1,0·(2·35,5 – 2,67)nh  cm = 57,49 mm 

 
Plastic section moduli in region 2·hn 
 
Generally, the value of Wpl,s,n is equal to the value of Wpl,s. However, the worst case 
is where only two bars occur within hn, and these are on the centre line. 
Accordingly, the value of the plastic section modulus of reinforcement is: 
 
Wpl,s,n = 0 cm3 
 
The effective plastic section modulus of the concrete is: 
 

2
, , , ,= ( – 2· )· –pl c n n pl s nW d t h W  

 
2

, , = (40,64 – 2·1,0)·5,749 – 0 = 1277pl c nW  cm3 
 
The plastic section modulus of the steel section is: 
 

2
, , , , , ,= · – –pl a n n pl c n pl s nW d h W W  

 
2

, , = 40,64·5,749 – 1277 – 0 = 66pl a nW  cm3 
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The design plastic resistance moment of the composite section, Mpl,Rd, is calculated 
as follows: 
 

, max, ,= –pl Rd Rd n RdM M M  
 
where: 
 

, ,
, , , , ,

·
= · + · +

2
pl c n cd

n Rd pl a n yd pl s n sd

W f
M W f W f  

 
–2

,
1277·2,67= (66·35,5 + 0·40,0 + )·10 = 40,48

2n RdM  kNm 

 
The design plastic resistance moment of the composite section, Mpl,Rd, is: 
 

, = 747 – 40,48 = 707pl RdM  kNm 
 
Point B 
 
The design value of Mpl,Rd has previously been calculated in order to define point C 
on the N–M interaction polygon: 
 

, = 707pl RdM  kNm 
 
Previously calculated values at points A to D should be plotted to produce the N–M 
interaction polygon (Figure 6.19, EN 1994-1-1). 
 
According to the interaction polygon ACDB, Figure C2.9, plotted in accordance 
with Figure 6.19, EN 1994-1-1, the following value Mpl,N,Rd is obtained: 
 

, , , , , ,: · = ( – ) : ( – )pl Rd d pl N Rd pl Rd pm Rd pl Rd EdM M N N N N  
 

,
, , ,

, ,

–
=

–
pl Rd Ed

pl N Rd pl Rd
pl Rd pm Rd

N N
M M

N N
 

 

, ,
8302 – 6000= 707 = 315
8302 – 3130pl N RdM  kNm 

 
The value of d is: 
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, ,

,

315= = = 0,445 < 1,0
707

pl N Rd
d

pl Rd

M
M

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C2.9 N–M interaction polygon 
 
All values are calculated that are needed for drawing the N M interaction polygon, 
shown in Figure C2.9. 

10.4 Calculation of action effects according to second-order analysis 

According to clause 6.7.3.4 (3), EN 1994-1-1, which refers to clause 5.2.1(3), 
EN 1994-1-1, second-order effects can therefore be neglected if the load factor 

cr, which is the ratio between the elastic critical load and the corresponding 
applied loading, for elastic instability of the member exceeds 10. 
 
To calculate cr, the ends of the column are assumed to be pinned, and cr is 
found using the Euler formula for the elastic critical force Ncr,eff: 
 

2

2

( )
= eff,II

cr,eff
e

E
N

L
   Le = L 

 
The design value of the effective flexural stiffness (EI)eff,II, used to determine the 
internal forces and moments by second-order analysis, according to clause 
6.7.3.4(2), EN 1994-1-1, is defined as: 
 

0( ) = ·( · + · + · · )eff,II a a s s e,II cm cEI K E I E I K E I  
 
where: 

 Mpl,Rd = 707 kNm 

Npm,Rd = 3130 kN

Npl,Rd = 8302 kN

N 

M 

 A 

 B 

 C 

 D 
1/2 Npm,Rd = 1565 kN  Mmax,Rd=747 kNm 

NEd = 6000 kN

Mpl,N,Rd = 315 kNm 

d Mpl,Rd 
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Ke,II is a correction factor which should be taken as 0,5, 
K0 is a calibration factor which should be taken as 0,9. 

 
The value Ec,eff has been used in place of Ecm in the expression for (EI)eff,II in order 
to take into account the long-term effects, in the same way as calculated in Section 
7. Accordingly, the value of Ec,eff is: 
 

, = 1533c effE  kN/cm2 
 
The design value of the effective flexural stiffness (EI)eff,II is: 
 
( ) = 0 9·(21000·24476 + 21000·1591 + 0 5·1533·107834)eff,IIEI , ,  
 

6
,( ) = 567,06·10eff IIEI  kNcm2 

 
The elastic critical force, Ncr, for the pin-ended column, is: 
 

6 2

, 2

567,06·10 ·= = 27638
450cr effN  kN 

 
To check whether the effects of second-order analysis can be neglected, the value 
of cr must be higher than 10: 
 

, 27638= = = 4,61 < 10
6000

cr eff
cr

Ed

N
N

 

 
The value of cr is less than 10, so second-order effects must be considered. 
 
According to clause 6.7.3.4(5), EN 1994-1-1, the second-order effects can be 
calculated by multiplying the greatest first-order design bending moments by a 
factor k. 
 
Thus, the second-order effects may be considered according to the expression: 
 

, ,= ·Ed II Ed IM M k  
 
The factor k is given by: 
 

,

=
1 – /Ed cr eff

k
N N

 1,0 
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where: 
 
 is an equivalent moment factor given in Table 6.4, EN 1994-1-1, 

Ncr,eff is the critical axial force for the relevant axis and corresponding to the 
effective flexural stiffness (EI)eff,II, with the effective length taken as 
the physical length of the column. 

 
The design bending moment from the member imperfections is determined as: 
 

, 0,= ·Ed I Ed dM N e  
 
where: 
 
NEd is the design value of the axial force,  
e0,d is the equivalent member imperfection which is given in Table 6.5, EN 

1994-1-1, depending on the buckling curve. 
 
Thus, the equivalent member imperfection, for the buckling curve a, is: 
 

0, =
300d

Le  

 

0,
450= = 1,5
300de  cm 

 
The mid-length design bending moment due to NEd is: 
 

, 0,= · = 6000·0,015 = 90Ed I Ed dM N e  kNm 
 
For the design bending moment from the member imperfection, the equivalent 
moment factor is: 
 

= 1,0  
 
The correction factor is therefore: 
 

,

1,0= = = 1,28 > 1,0
1 – / 1 – 6000 / 27638Ed cr eff

k
N N

 

 
Thus, the maximum design bending moment according to the second-order 
analysis is: 
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, ,= · = 90·1,28 = 115,2Ed II Ed IM M k  kNm 
 
The effects of the action for the column, calculated according to second-order 
analysis taking into account the equivalent member imperfection e0,d, are shown in 
Figure C2.10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C2.10 Effects of action for the column, calculated according to 
 second-order analysis 

10.5 Check of the resistance of the member in combined compression and 
uniaxial bending 

It is necessary to satisfy the following condition: 
 

, , ,

=
·

Ed Ed

pl N Rd d pl Rd

M M
M M M  

 
The coefficient M is taken as 0,9 for steel grades between S235 and S355. 
 
The condition can be written in the following form: 
 

Ed

Rd

M
M

 1,0 

 
where: 

NEd = 6000 kN

L 
=

 4
,5

0 
m

 

e0,d 

NEd 

6000 kN

MEd

115,2 kNm 
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,=Ed Ed IIM M  
 

,= · ·Rd M d pl RdM M  
 
The maximum design moment according to second-order analysis is: 
 

,= = 115,2Ed Ed IIM M  kNm 
 
The design resistance moment MRd is, see Figure C2.9: 
 

,= · · = 0,9·0,445·707,0 = 283,2Rd M d pl RdM M  kNm 
 
Condition: 
 

115,2= = 0,41
283,2

Ed

Rd

M
M

 

 
Since 0,41 < 1,0 , the condition is satisfied. 

11. Commentary 

Dimensioning of the composite column in axial compression was carried out 
using the simplified method in two ways recommended in EN 1994-1-1: 
 

design based on the application of European buckling curves in which are 
“embedded” imperfections, 
design based on second-order analysis taking into account the member 
imperfections. 

 
In the first case the utilization is 80%, while in the second case the utilization is 
41%.  
 
For most composite columns, the simplified method requires the application of 
second-order analysis taking into account the member imperfections, clause 
6.7.3.4, EN 1994-1-1. For a member subject only to axial compression, clause 
6.7.3.5(2), EN 1994-1-1, enables buckling curves to be used. For columns in 
which this kind of check can be implemented, this is a useful simplification 
because these curves allow for member imperfections. The buckling curves are 
also useful as a preliminary check for columns with end moment. If the 
resistance to the axial force NEd is not sufficient, the considered column is clearly 
inadequate. 
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C3 Composite column with concrete filled circular hollow 
section subject to axial compression and uniaxial 
bending 

1. Purpose of example 

This example demonstrates the design of a composite column subject to axial 
compressive load and bending moment. The concrete-filled column consists of the 
circular hollow section filled with concrete. The considered composite column is 
isolated from the framework. It is assumed to be pinned top and bottom. The 
design load for the considered column on the ground floor of a building is made up 
of the variable and permanent load on the floor area immediately over the column 
and the load transmitted by the columns above. The total design axial load and the 
design bending moment are applied at the top of column, see Figure C3.1. 
 
The column is calculated using the simplified method of design in accordance with 
clause 6.7.3.6, EN 1994-1-1. Second-order effects are included in two ways, by 
using a first-order analysis modified with appropriate amplification according to 
clause 6.7.3.4(5), EN 1994-1-1, and by using exact second-order analysis. 
According to clause 5.3.2.3(1), EN 1994-1-1, a design value of equivalent initial 
bow imperfection has been taken from Table 6.5, EN 1994-1-1. The effects of the 
applied moment at the top of the column and the moment due to initial member 
imperfections have been combined. The maximum combined moment at either the 
mid-span or the support has been used as the design bending moment. For checking 
individual composite column, according to clause 5.3.2.1(3), EN 1994-1-1, an 
explicit treatment of imperfections is always required because the resistance 
expressions are for cross-sections only and action effects due to these 
imperfections are not allowed for. 
 
Actions 
 
Permanent action = 3000

kGN  kN 
 
 = 22,20

kGM  kNm 
 
Variable action = 1300

kQN  kN 
 
 = 20,00

kQM  kNm 
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2. Static system, cross-section and design action effects 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C3.1 Static system and cross-section 
 
Design action effect: 
 
Axial force 
 

= · + ·
k kEd G G Q QN N N  

 
= 1,35· +1,50·

k kEd G QN N N  
 

= 1,35·3000 +1,50·1300 = 4050 +1950 = 6000EdN  kN 
 
Bending moment at the top of the column: 
 

= · + ·
k kEd G G Q QM M M  

 
= 1,35· +1,50·

k kEd G QM M M  
 

= 1,35·22,20 +1,50·20,00 = 60EdM  kNm 
 

L 
=

 L
e =

 4
,5

0 
m

 
NGk

 + NQk
 

MGk
 + MQk

406,4 

12
7,

0 
11

9,
0 

10,0 
Concrete C 40/50 

Reinforcement 10  16, S500 CHS 406,4×10,0, S355 
z 

y 

Le – buckling length 



Example C3 447 
 

 

Bending moment at mid-height of the column: 
 

= 0,5·( · + · )
k kEd G G Q QM M M  

 
= 0,5·(1,35· +1,50· )

k kEd G QM M M  
 

= 0,5·(1,35·22,20 +1,50·20,00) = 30EdM  kNm 
 
Shear force 
 

= ( · + · ) /
k kEd G G Q QV M M L  

 
= (1,35· +1,50· ) /

k kEd G QV M M L  
 

= (1,35·22,20 +1,50·20,00) / 4,5 = 13,3EdV  kN 
 
Denotation of imperfections 
 
Imperfection about y-y axis is denoted by e0,z. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C3.2 Denotation of imperfection 

3. Properties of materials 

Concrete strength class: C 40/50 = 40ckf  N/mm2 

 40= = = 26,7
1,5

ck
cd

c

f
f  N/mm2 

 = 35000cmE  N/mm2 

406,4 

10,0 

z 

 y

e0,z 
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Structural steel: S355 = 355ykf  N/mm2 

 355= = = 355
1,0

yk
yd

M

f
f  N/mm2 

 = 210000aE  N/mm2 
 
Reinforcement: ductility class B or C = 460skf  N/mm2 

 460= = = 400
1,15

sk
sd

s

f
f  N/mm2 

 = 210000SE  N/mm2 

4. Geometrical properties of the cross-section 

4.1 Selection of the steel cross-section and reinforcement 

It is assumed that only the axial compression load is applied, and the required fire 
resistance is R30. 
 
Since the composite columns are used in buildings, fire resistance is required. 
 
According to the literature [40] the trial column diameter, dtrial, is determined 
approximately according to the following formula: 
 

0,4·( – 1000)
= [ · ]

0,08·( + 20)
fire e

trial Ed
ck

t L
d N

f
 

 
With tfire = 30 min, which corresponds to the required fire resistance R30 in 
minutes, the trial diameter is obtained as: 
 

0,430·(4500 – 1000)= [ · 6000] = 310
0,08·(40 + 20)triald  mm 

 
The CHS with diameter d = 406,4 mm is selected. 
 
For a concrete-filled circular hollow section, the minimum wall thickness is 
determined from the condition of the local buckling, Table 6.3, EN 1994-1-1: 
 

235max( ) = 90·
y

d
t f
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235max( ) = 90· = 59,6
355

d
t

 

 
The minimum wall thickness is obtained as: 
 

min
406,4= = = 6,82

59,6 59,6
dt  

 
Thus, the minimum required wall thickness of the circular tube is 7,0 mm. The 
CHS 406,4×10,0 is selected. The selected circular hollow section with the 
dimensions is shown in Figure C3.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

d = 406,4 mm 
t = 10,0 mm 

Aa = 124,5 cm2 
a = 24476 cm4 

Wpl,a = 1572 cm3 

Figure C3.3 Circular hollow section 
 
Remark: 
 
In concrete-filled hollow sections no longitudinal reinforcement is normally 
necessary. However, if the design for fire resistance is required, which is the 
case in this example, longitudinal reinforcement can be used, clause 6.7.5.2 (1), 
EN 1994-1-1. 

 
In this example, the selected reinforcement is 10 bars with a diameter of 16 mm. 
 
The cross-sectional area of the structural steel section 406,4×10,0 is: 
 

= 124,5aA  cm2 
 
The cross-sectional area of reinforcement with 10 bars of 16 mm diameter is: 
 
dbar = 16 mm, Abar = 2,01 cm2 

d 

t 

y 

z 
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= 10· = 10·2,01 = 20,1s barA A  cm2 
 
The cross-sectional area of concrete is: 
 

2 1= ( – 2· ) · –
4c sA d t A  

 
2 1= (40,64 – 2·1,00) · – 20,10

4cA  

 
= 1172,6 – 20,10 = 1153cA  cm2. 

 
The ratio of reinforcement area to concrete area is: 
 

20,1= = = 0,017
1153

s
s

c

A
A

 = 1,7s % 

 
= 1,7s % < 6 % 

 
The limit of 6% in clause 6.7.3.1 (1), EN 1994-1-1, on the reinforcement is 
satisfied. 
 
Remark: 
 
According to clause 6.7.3.1(3), EN 1994-1-1, the ratio of reinforcement area to 
concrete area, s, should not exceed 6%. 

4.2 Cross-sectional areas 

Structural steel 
 

= 124,5aA  cm2 
 
Reinforcement 
 

2·
= 10·

4
bar

s

d
A  

 
2·1,6= 10· = 20,1

4sA  cm2 
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Concrete 
 

2

= · – –
4c a s
dA A A  

 
240,64= · – 124,5 – 20,1 = 1153

4cA  cm2 

4.3 Second moments of area 

Structural steel 
 

= 24476aI  cm4 
 
Reinforcement 
 
It is assumed that there are stirrups 8 mm in diameter around the longitudinal 
reinforcement and a concrete cover of 50 mm, see Figure C3.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C3.4 Composite column cross-section 
 

= – 2· = 406,4 – 2·10 = 386,4cd d t  mm 
 

= – 50 – – 8
2 2

c bard d
R  

 
386,4 16= – 50 – – 8 = 127

2 2
R  mm 

 

406,4 

y1 y2

10,0 

z 

y 
dc

R
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1
16= – = 127 – = 119

2 2
bard

y R  mm 

 

2
360º= ·sin = 127·sin36º= 75
10

y R  mm 

 
2 2
1 2= 4· · + 4· ·s bar barA y A y  

 
2 2= 4·2 01·11 9 + 4·2 01·7 5s , , , ,  

 
= 1591s  cm4 

 
Concrete 
 

4·( – 2· )= –
64c s

d t I  

 
4·(40 64 – 2·1 0)= – 1591 = 107834

64c
, ,  cm4 

4.4 Plastic section moduli 

Structural steel 
 

, = 1572pl aW  cm3 
 
Reinforcement 
 

, 1 2= 4· · + 4· ·pl s bar barW y A y A  
 

, = 4·11,9·2 01 + 4·7,5·2 01 = 156pl sW , ,  cm3 
 
Concrete 
 

3

, ,
( – 2· )= –

6pl c pl s
d tW W  

 
3

,
(40,64 – 2·1,0)= – 156 = 9459

6pl cW cm3 
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5. Steel contribution ratio 

According to clause 6.7.3.3(1), EN 1994-1-1, the steel contribution ratio, , is 
defined as: 
 

,

·
= a yd

pl Rd

A f
N

 

 
The term Aa·fyd is the contribution of the structural steel section to the plastic 
resistance of the composite section to axial force. The design plastic resistance of 
composite section to axial force Npl,Rd is calculated according to clause 6.7.3.2(1), 
EN 1994-1-1. 
 
According to 6.7.1(4), EN 1994-1-1, the steel contribution ratio, , must satisfy 
the following conditions: 
 
0,2    0,9 
 
If  is less than 0,2, the column should be designed as a reinforced concrete 
member according to EN 1992-1-1. If  is larger than 0,9, the concrete is ignored 
in the calculations, and the column is designed as a structural steel member 
according to EN 1993-1-1. 

 
The term Aa·fyd is the contribution of the structural steel section to the plastic 
resistance of composite section to axial force: 
 

· = 124,5·35,5 = 4420a ydA f kN 
 
The plastic resistance of the composite section to axial force is: 
 

, = · + · + ·pl Rd a yd c cd s sdN A f A f A f  
 

, = 124,5·35,5 +1153·2,67 + 20,1·40,0pl RdN  
 

, = 8302pl RdN  kN 
 
According to 6.7.1(4), EN 1994-1-1, the steel contribution ratio, , must satisfy the 
following conditions: 
 
0,2    0,9 
 
The steel contribution ratio, , is: 
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,

· 4420= = = 0,532
8302

a yd

pl Rd

A f
N

 

 
Since the limits 0,2 <  = 0,532 < 0,9 are satisfied, the column can be classified as 
a composite column and the provisions of EN 1994-1-1 can be used for the 
dimensioning. 
 
Remark: 
 
The confinement effects for a concrete-filled circular tube can result in 
increasing the cross-sectional plastic resistance, Npl,Rd. However, the value of  
usually is not significantly changed. This means that for the calculation of steel 
contribution ratio, , we can use the following expression for the cross-sectional 
plastic resistance, Npl,Rd: 
 

, = · + · + ·pl Rd a yd c cd s sdN A f A f A f  

6. Local buckling 

According to Table 6.3, EN 1994-1-1, for concrete-filled circular hollow cross-
section, the effect of local buckling can be ignored if the following condition is 
satisfied, see Figure C3.5: 
 

235max( ) = 90·
y

d
t f

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C3.5 Cross-section of the composite column and notations 
 
For the selected cross-section, the maximum slenderness is: 
 

d 

t 

z 

 y
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406,4max( ) = = 40,64
10,0

d
t

 

 
The required condition is: 
 

235 23590· = 90· = 59,6
355yf

 

 
Since 40,64 < 59,6 , the condition is satisfied. The effect of local buckling can be 
neglected. 

7. Effective modulus of elasticity for concrete 

For long-term loading the creep and shrinkage are taken into account in design 
by a reduced flexural stiffness of the composite cross-section. Due to the 
influence of long-term creep effects on the effective elastic stiffness, the 
modulus of elasticity of the concrete, Ecm, should be reduced to the value Ec,eff in 
accordance with following equation: 
 

,
,

=
1 + ( )·

cm
c eff

G Ed
t

Ed

E
E

N
N

 

 
where: 
 

0= ( , )t t t  is the creep coefficient, defining the creep between times t and t0, 
related to the elastic deformation at 28 days, 

=t ( ,t0) is the final creep coefficient, 
t is the age of the concrete at the time considered, 
t0 is the age of the concrete at loading, 
NEd is the axial design force, 
NG,Ed is the permanent part of the axial design force NEd, NG,Ed = G NGk. 

 
For the calculation of the creep coefficient (t, t0), the following is valid: 
 
- the perimeter of that part which is exposed to drying, u 
 

= ·u d  
= 40,64· = 127,7u  cm 

 
- the notional size of the cross-section, h0 
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0
2· 2·1153= = = 18,1 = 181

127,7
cA

h cm
u

 mm 

- t0 = 28 days, 
- inside conditions, the ambient relative humidity RH 50 %, 
- the concrete strength class C 40/50 
- the type of cement – cement class N, strength class 32,5 R. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C3.6 Perimeter which is “exposed” to drying 
 
The final value of creep coefficient ( , t0) is determined using the nomogram 
shown in Figure 3.1, EN 1992-1-1. The process of determining the final value of 
the creep coefficient, taking into account these assumptions, is given in Figure 
C3.7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C3.7 Method for determining the creep coefficient 
 
The final value of creep coefficient ( , t0), found from Figure C3.7, is: 
 

t = ( , t0) = 1,9 

t0 = 28 days 

h0 [mm]

t0 
R1 

2 
3 
5 

N S 
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The design force of the permanent load, NG,Ed, and the total design force, NEd, are: 
 

, = ·G Ed G GkN N  
 

, = 1,35·3000 = 4050G EdN  kN 
 

= 1,35· +1,50·Ed Gk QkN N N  
 

= 1,35·3000 +1,50·1300 = 4050 +1950 = 6000EdN  kN 
 
Accordingly, the value of Ec,eff is: 
 

,
,

3500= = = 1533
40501 + ( )·1,91 + ( )·
6000

cm
c eff

G Ed
t

Ed

E
E

N
N

 kN/cm2 

 
Further calculation is performed with the effective modulus of elasticity of 
concrete Ec,eff = 1533 kN/m2. 
 
Remark: 
 
Note that a conservative estimation of the effective modulus of elasticity is 
obtained according to EN 1994-1-1 because in the case of concrete-filled hollow 
section the drying of the concrete is significantly reduced by the steel section, 
(see example C1). However, in the case of concrete-filled circular hollow section 
the dimensioning of composite columns is rarely sensitive to the influence of 
creep coefficient t on the effective modulus elasticity of concrete Ec,eff. With 
this statement the conservative estimation of Ec,eff, according to EN 1994-1-1, 
can be justified for concrete-filled hollow sections. 

8. Resistance of the cross-section to compressive axial force 

8.1 Plastic resistance of the cross-section without confinement effect 

The design plastic resistance of the composite cross-section to axial compressive 
force, Npl,Rd, is given by the sum of the design resistances of components as 
follows: 
 

, = · + 0,85· · + ·pl Rd a yd c cd s sdN A f A f A f  
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Remark: 
 
The coefficient of 0,85 can be replaced by the value 1,0 due to better curing 
conditions in concrete-filled hollow sections. 

 
The design plastic resistance of the composite cross-section to compressive axial 
force, Npl,Rd, is calculated according to the corrected expression: 
 

, , , , ,= + +pl Rd pl a Rd c Rd s RdN N N N  
 

, = · + · + ·pl Rd a yd c cd s sdN A f A f A f  
 

, = 124,5·35,5 +1153·2,67 + 20,1·40,0pl RdN  
 

, = 4419 + 3079 + 804 = 8302pl RdN  kN 

 
The characteristic value of the plastic resistance of the composite cross-section to 
compressive axial force, Npl,Rk, is determined by the following expression: 
 

, = · + · + ·pl Rk a yk c ck s skN A f A f A f  
 

, = 124,5·35,5 +1153·4,00 + 20,1·46,0pl RkN  
 

, = 4420 + 4612 + 925 = 9957pl RkN  kN 

8.2 Plastic resistance of the cross-section taking into account the 
confinement effect 

For concrete-filled tubes of circular cross-section, the concrete component 
develops a higher strength because of the confinement from the steel section, see 
clause 6.7.3.2, EN 1994-1-1 and example C1. 
 
This increase in the strength of concrete can be taken into account in the 
calculation if the relative slenderness, , does not exceed 0,5 and the ratio e/d < 
0,1. The eccentricity of loading, e, is determined by the ratio MEd/NEd, and d is 
the outer diameter of the column, see Figure C3.8. 

 
The design axial force is:   

= 6000EdN  kN 
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The design bending moment at the top of column is: 
 

= 60EdM  kNm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C3.8 Calculation of the eccentricity of loading, e 
 
The eccentricity of loading is: 
 

60= = = 0,01
6000

Ed

Ed

M
e

N
m 

 
0,01= = 0,025 < 0,1

0,406
e
d

, this condition is satisfied 

 
The relative slenderness, , is calculated in Section 9.1 and is = 0,562 . 
 
Since = 0,562 > 0,5 , the condition is not satisfied. This means that the increase in 
strength of the concrete due to the confinement from the steel section is not taken 
into account. 
 
Further calculation is performed with the plastic resistance of the cross-section to 
compression Npl,Rd = 8302 kN. 

406,4 

10,0 

z 

y 

 fc 

MEd 

 fy 

NEd 

 

 fy 

= Ed

Ed

M
e

N
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9. Verification of conditions for using the simplified design 
method 

The cross-section of the composite column should be doubly symmetrical and 
uniform along the entire length of the column. 
 
This condition is satisfied. 
 
Relative slenderness 
 
To apply the simplified method it is necessary to satisfy the following condition: 
 

 2,0 
 
Relative slenderness, , is determined as: 
 

,= pl Rk

cr

N
N

 

 
For the determination of the relative slenderness  and the elastic critical force 
Ncr, it is necessary to calculate the value of the effective flexural stiffness of the 
cross-section of the composite column, (EI)eff, according to the expression: 
 

,( ) = · + · + · ·eff a a s s e c eff cEI E I E I K E I  
 
With the correction factor Ke = 0,6, the value (EI)eff is: 
 
( ) = 21000·24476 + 21000·1591 + 0,6·1533·107834effEI  
 

6( ) = 646,59·10effEI  kNcm2 
 
The elastic critical force, Ncr, for the pin-ended column and the buckling length Le, 
is: 
 

2

2

( ) ·
= eff

cr

EI
N

L
, Le = L 

 
6 2

2

646,59·10 ·= = 31514
450crN  kN 
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, = 9957pl RkN kN 
 
The relative slenderness, , is: 
 

9957= = 0,562
31514

 

 
Accordingly = 0,562 < 2,0 , and the condition is satisfied. 
 
The maximum permitted cross-sectional area of the longitudinal 
reinforcement 
 
The maximum cross-sectional area of the longitudinal reinforcement As,max that can 
be taken in the calculation should not exceed 6% of the concrete area. This 
condition is satisfied, see Section 4.1. 
 
Remark: 
 
All conditions from clause 6.7.3.1, EN 1994-1-1, are satisfied, so that allows the 
use of the simplified design method for composite columns. 

10. Resistance of the member in axial compression 

Remark: 
 
Although the column is subjected to combined compression and bending, the 
check based on buckling curves is useful as the preliminary check for this 
column. If the resistance to the axial compressive force is not sufficient, the 
considered column is inadequate and it is necessary to select the stronger cross-
section. 

 
The resistance of a member subjected only to axial compression can be checked 
by second-order analysis according to clause 6.7.3.5, EN 1994-1-1, so as to take 
into account member imperfections. As a simplification in the case of the 
member subjected only to axial compression, the design value of the axial force 
NEd should satisfy the check based on the European buckling curves, which can 
be written as: 
 

,·
Ed

pl Rd

N
N

 1,0 

 
The reduction factor  is given by: 
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2 2

1=
+ –

, but   1,0 

 
and 
 

2
0= 0,5·[1 + ·( – ) + ] , with 0 = 0,2  

 
Remark: 
 
The relevant buckling curves for cross-sections of composite columns are given 
in Table 6.5, EN1994-1-1. According to Table 6.5, EN 1994-1-1, circular or 
rectangular hollow section columns filled with concrete or containing up to 3% 
reinforcement can be designed using buckling curve a with an imperfection 
factor  = 0,21. However, concrete-filled hollow section columns containing 
from 3% to 6% can be designed using buckling curve b with an imperfection 
factor  = 0,34. 

 
The reinforcement ratio s is 1,7 %. Therefore from Table 6.5, EN1994-1-1, 
buckling curve a should be used. 
 
From Table 6.3, EN1993-1-1,  = 0,21 for buckling curve a so that  is: 
 

2
0= 0,5·[1 + ·( – ) + ]  

 
2= 0,5·[1 + 0,21·(0,562 – 0,2) + 0,562 ] = 0,696  

 
The reduction factor  is: 
 

2 2

1= = 0,90 < 1,0
0,696 + 0,696 – 0,562

 

 
Check: 
 

,·
Ed

pl Rd

N
N

 1,0 

 
6000 = 0,80 < 1,0

0,90·8302
 

 
Since 0,80 < 1,0, the check of composite column subjected to axial compression is 
satisfied. It is not necessary to select the stronger cross-section. 
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11. Resistance of the member in combined compression and 
uniaxial bending 

11.1 General 

According to clause 6.7.3.6, EN 1994-1-1, the member in combined compression 
and uniaxial bending has sufficient resistance if the following condition is 
satisfied: 
 

, , ,

=
·

Ed Ed

pl N Rd d pl Rd

M M
M M M  

 
where: 
 
MEd is the greatest of the end moments and the maximum bending moment 

within the column length. This moment is calculated according to 
clause 6.7.3.4, EN 1994-1-1, including imperfections (Table 6.5, EN 
1994-1-1) and second-order effects if necessary ( cr > 10). 

Mpl,N,Rd is the plastic resistance moment taking into account the axial force NEd, 
given by d·Mpl,Rd, see Figure 6.18, EN 1994-1-1. 

Mpl,Rd is the plastic resistance moment, given by point B in Figure 6.18, EN 
1994-1-1. 

d is the factor related to design for compression and uniaxial bending. 
M is the coefficient related to bending of a composite column and is taken 

as 0,9 for steel grades between S235 and S355. 
 
The condition can be written in the following form: 
 

,

=
· ·

Ed Ed

Rd M d pl Rd

M M
M M

 1,0 

 
The calculation of the design bending moment MEd = MEd,II taking the initial 
bending moment about y-y axis, the imperfection e0,z, and second-order effects is 
shown in Figure C3.9. 
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Figure C3.9 Imperfection e0,z about the y-y axis 

11.2 Resistance of the cross-section in combined compression and uniaxial 
bending 

Remark: 
 
In order to determine the resistance of the composite cross-section to combined 
compression and uniaxial bending, it is necessary to produce an axial load – 
bending moment (N–M) interaction curve. As a simplification, the interaction 
curve is replaced by an interaction polygon ACDB, clause 6.7.3.2 (5), EN 1994-
1-1. 
 
The N–M interaction polygon ACDB is shown in Figure 6.19, EN 1994-1-1. The 
modified version of the interaction polygon, which refers to the composite 
column with concrete-filled circular hollow cross-section, is shown in Figure 
C3.10. 
 
In order to produce the N–M interaction polygon, the cross-sectional capacities 
at points A to D should be determined assuming the stress distributions 
indicated, see Figure C3.10. 
 
 
 

e

L 
e0,z 

A A

B B

 y

Section A-A
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 z

e0,z 
 y 

 z

NGk
 + NQk

 

MGk
 + MQk

NGk
 + NQk

 
MGk

 + MQk
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Figure C3.10 N M interaction polygon and corresponding stress distributions 
 
It should be noted that EN 1994-1-1 does not provide expressions for circular 
cross-sections filled with concrete. 

 
Point A 
 
At point A, only the design plastic resistance of the cross-section is taken into 
account: 
 

, = · + 0,85· · + ·pl Rd a yd c cd s sdN A f A f A f  
 
Remark: 
 
For concrete filled hollow sections, the coefficient of 0,85 can be replaced with a 
value of 1,0 due to better curing conditions. 

 
The design plastic resistance of composite cross-section to compression, Npl,Rd, is 
calculated according to the corrected expression: 
 

, = · + · + ·pl Rd a yd c cd s sdN A f A f A f  
 

, = 124,5·35,5 +1153·2,67 + 20,1·40,0 = 8302pl RdN  kN 
 
 
 

 fcd  fyd 

Npl,Rd 

 fcd 

 fcd

 fcd  fyd 

 fyd 

 fsd 

 fsd 

 fsd 

2Mpl,Rd 

Mpl,Rd 

Npm,Rd 

Mmax,Rd 

Npm,Rd/2 

 fyd 

 fsd 

hn 2hn

hn 2hnhn

 A 

 B 

 C 

 D 

 Mpl,Rd

Npm,Rd 

Npl,Rd 

N 

M

 A 

 B

 C

 D1/2 Npm,Rd 

 Mmax,Rd 
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Figure C3.11 Stress distributions for point A on the interaction polygon 
 
Point D 
 
The position of the plastic neutral axis and the stress distributions are shown in 
Figure C3.12. 
 
 
 
 
 
 
 
 
 
 
 

Figure C3.12 Stress distributions for point D on the interaction polygon 
 
The maximum design plastic resistance moment is determined by the following 
expression: 
 

max, , , , , , , , , , ,= + +y Rd pl y a Rd pl y c Rd pl y s RdM M M M  
 
The maximum design plastic resistance moment, MmaxRd, at point D is: 
 

max , , ,= · + 0,5· · + ·Rd pl a yd pl c cd pl s sdM W f W f W f  
 

–2
max = (1572·35,5 + 0,5·9459·2,67 +156·40,0)·10RdM  

 
max, = 747RdM  kNm 

d
t fcd  fyd 

Npl,Rd 

 fsd 

 y 

z 

fcd  fyd  fsd 

 Npm,Rd/2 

Mmax,Rd 

 y 

z 

d
t 
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The design value of the resistance of the concrete to compression, Npm,Rd, is: 
 

2 2

,
·( – 2 ) ·(40,64 – 2·1,0)= · = ·2,67 = 3130

4 4pm Rd cd
d tN f kN 

 
The design axial force at the point of maximum design plastic resistance moment is 
0,5·Npm,Rd, and therefore is: 
 

,0,5· = 0,5·3130 = 1565pm RdN  kN 
 
Point C 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C3.13 Stress distributions for point C on the interaction polygon 
 
Calculation of the design plastic resistance moment of the composite section, 
Mpl,Rd, is carried out as shown below. 
 
Determination of the position of the neutral axis depth, hn, when axial force is zero: 
 

, ,– ·(2· – )
=

2· · + 4· ·(2· – )
pm Rd s n sd cd

n
cd yd cd

N A f f
h

d f t f f
 

 
where Asn is the reinforcement area within hn. Because it is at this point unknown, it 
is assumed to be (initial guess): 
 

, = 2· = 2·2,01 = 4,02s n barA A  cm2 
 
Thus, for the case when the axial force is equal to zero, hn is: 
 

3130 – 4,02·(2·40,0 – 2,67)= = 5,749
2·40,64·2,67 + 4·1,0·(2·35,5 – 2,67)nh  cm = 57,49 mm 

fcd  fyd  fsd 

 y 
2hn

hn

 Npm,Rd 

Mpl,Rd 

z 

d
t 
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Plastic section moduli in region 2·hn 
 
Reinforcement 
 
Generally, the value of Wpl,s,n is equal to the value of Wpl,s. However, the worst case 
is where only two bars occur within hn, and these are on the centre line. 
Accordingly, the value of the plastic section modulus of reinforcement is: 
 
Wpl,s,n = 0 cm3 
 
Concrete 
 
Effective plastic section modulus of concrete: 
 

2
, , , ,= ( – 2· )· –pl c n n pl s nW d t h W  

 
2

, , = (40,64 – 2·1,0)·5,749 – 0 = 1277pl c nW  cm3 
 
Structural steel 
 
Plastic section modulus of the steel section: 
 

2
, , , , , ,= · – –pl a n n pl c n pl s nW d h W W  

 
2

, , = 40,64·5,749 – 1277 – 0 = 66pl a nW  cm3 
 
The design plastic resistance moment of the composite section, Mpl,Rd, is calculated 
as: 
 

, max, ,= –pl Rd Rd n RdM M M  
 
where: 
 

, ,
, , , , ,

·
= · + · +

2
pl c n cd

n Rd pl a n yd pl s n sd

W f
M W f W f  

 
–2

,
1277·2,67= (66·35,5 + 0·40,0 + )·10 = 40,48

2n RdM  kNm 

 
The design plastic resistance moment of the composite section, Mpl,Rd, is: 
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, = 747 – 40,48 = 707pl RdM  kNm 
 
Point B 
 
 
 
 
 
 
 
 
 
 
 

Figure C3.14 Stress distributions for point B on the interaction polygon 
 
The design value of Mpl,Rd has previously been calculated in order to define point C 
on the N M interaction polygon: 
 

, = 707pl RdM  kNm 
 
Previously calculated values at points A to D should be plotted to produce the N–M 
interaction polygon (Figure 6.19, EN 1994-1-1). 
 
According to the interaction polygon ACDB, Figure C3.15, plotted in accordance 
with Figure 6.19, EN 1994-1-1, the following value Mpl,,N,Rd is obtained: 
 

, , , , , ,: · = ( – ) : ( – )pl Rd d pl N Rd pl Rd pm Rd pl Rd EdM M N N N N  
 

,
, , ,

, ,

–
=

–
pl Rd Ed

pl N Rd pl Rd
pl Rd pm Rd

N N
M M

N N
 

 

, ,
8302 – 6000= 707 = 315
8302 – 3130pl N RdM  kNm 

 
The value of d is: 
 

, ,

,

315= = = 0,445 < 1,0
707

pl N Rd
d

pl Rd

M
M

 

 
 

fcd  fyd  fsd 

2hn
hn

Mpl,Rd 

 y 

z 

d
t 
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Figure C3.15 N–M interaction polygon 
 
The check is carried out by the factor = 0,445d . 

11.3 Calculation of action effects according to second-order analysis 

11.3.1 General 

According to clause 6.7.3.4 (3), EN 1994-1-1, which refers to clause 5.2.1(3), 
EN 1994-1-1, second-order effects can therefore be neglected if the load factor 

cr, which is the ratio between the elastic critical load and the corresponding 
applied loading, for elastic instability of the member exceeds 10. 
 
To calculate cr, the ends of the column are assumed to be pinned, and cr is 
found using the Euler formula for the elastic critical force Ncr,eff: 
 

2

2

( )
= eff,II

cr,eff
e

E
N

L
   Le = L 

 
The design value of the effective flexural stiffness (EI)eff,II, used to determine the 
internal forces and moments by second-order analysis, according to clause 
6.7.3.4(2), EN 1994-1-1, is defined by the following expression: 
 

0( ) = ·( · + · + · · )eff,II a a s s e,II cm cEI K E I E I K E I  
 
where: 
 

 Mpl,Rd = 707 kNm 

Npm,Rd = 3130 kN

Npl,Rd = 8302 kN

N 

M 

 A 

 B 

 C 

 D 
1/2 Npm,Rd = 1565 kN  Mmax,Rd=747 kNm 

NEd = 6000 kN

Mpl,N,Rd = 315 kNm 

d Mpl,Rd 
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Ke,II is a correction factor which should be taken as 0,5, 
K0 is a calibration factor which should be taken as 0,9. 

 
The value Ec,eff has been used in place of Ecm in expression for (EI)eff,II in order to 
take into account the long-term effects, in the same way as calculated in Section 7. 
Accordingly, the value of Ec,eff is: 
 

, = 1533c effE  kN/cm2 
 
The design value of the effective flexural stiffness (EI)eff,II is: 
 

0 ,( ) = ·( · + · + · · )eff,II a a s s e,II c eff cEI K E I E I K E I  
 
( ) = 0 9·(21000·24476 + 21000·1591 + 0 5·1533·107834)eff,IIEI , ,  
 

6
,( ) = 567,06·10eff IIEI  kNcm2 

 
The elastic critical force, Ncr, for the pin-ended column, is: 
 

2

2

( )
= eff,II

cr,eff
e

E
N

L
 

 
6 2

, 2

567,06·10 ·= = 27638
450cr effN  kN 

 
To check whether the effects of second-order analysis can be neglected, the value 
of cr must be higher than 10: 
 

, 27638= = = 4,61 < 10
6000

cr eff
cr

Ed

N
N

 

 
The value of cr is less than 10, so the second-order effects must be considered. 
 
Remark: 
 
Second-order effects are included in two ways: 
 
a) by using a first-order analysis modified with appropriate amplification 

according to clause 6.7.3.4(5), EN 1994-1-1, 
b) by using exact second-order analysis, the procedure which is not included in 

EN 1994-1-1. 
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11.3.2 Bending moments – approximate solution 

According to clause 6.7.3.4(5), EN 1994-1-1, the second-order effects can be 
calculated by multiplying the greatest first-order design bending moments by a 
factor k. 
 
Thus, the second-order effects may be considered according to the expression: 
 

, ,= ·Ed II Ed IM M k  
 
The factor k is given by: 
 

,

=
1 – /Ed cr eff

k
N N

 1,0 

 
where: 
 
 is an equivalent moment factor given in Table 6.4, EN 1994-1-1, 

Ncr,eff is the critical axial force for the relevant axis and corresponding to the 
effective flexural stiffness (EI)eff,II, with the effective length taken as 
the physical length of the column. 

 
The design bending moment from the member imperfections is determined by 
the following expression: 
 

, 0,= ·Ed I Ed dM N e  
 
where: 
 
NEd is the design value of the axial force,  
e0,d is the equivalent member imperfection, which is given in Table 6.5, EN 

1994-1-1, depending on the buckling curve. 
 
Remark: 
 
The reinforcement ratio s is 1,7 %. Therefore from Table 6.5, EN 1994-1-1, for 

s   3% the buckling curve a should be used. 
 
Therefore, for the buckling curve a, the equivalent member imperfection is: 
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0, =
300d

Le  

 

0,
450= = 1,5
300de  cm 

 
The design bending moments calculated according to first-order analysis are shown 
in Figure C3.16. 
 
The design values of bending moments are: 
 
The design bending moment at the top of the column is: 
 

, = 60Ed IM  kNm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C3.16 First-order bending moments, design values 
 
The design bending moment at the bottom of the column is: 
 

, = 0Ed IM  kNm 
 
The design bending moment due to imperfection is: 
 

, 0,= · = 6000·0,015 = 90Ed imp Ed dM N e  kNm 
 

MEd,I 
NEd 

L 
=

 4
,5

0 
m

 

e0,d 

60 kNm

90 kNm 

  MEd,I,imp MEd,I 
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Remark: 
 
The factor  from Table 6.4, EN 1994-1-1, allows for the shape of the bending 
moment diagram. When bending is caused by lateral loading on the column, the 
value of factor  is 1,0. For a column subjected to end moments, the factor  is 
calculated as: 
 

1 = 0,66 + 0,44·r  0,44 
 
where r is the ratio of the end-moments on the ends of the column ( 1  r  +1). 

 
Therefore, the two values of factor k must be calculated: 
 
- for the end moments, k1, 
- for the moment from the member imperfection, k2. 
 
Determination of factor k1 
 
The ratio of the end-moments on the ends of the column is: 
 

,

0= = 0,0
Ed I

r
M

 

 
The equivalent moment factor  is: 
 

1 = 0,66 + 0,44·r  0,44 
 

1 = 0,66 + 0,44·0 = 0,66  
 
Therefore, the factor k1 is: 
 

1
1

Ed cr,eff

0,66= = = 0,84 < 1,0
60001 – 1 –

27638

k
N N

 

 
Remark: 
 
According to clause 6.7.3.4(5), EN 1994-1-1, the value of factor k must be 1,0 or 
higher. It is over-conservative to use when combining two sets of second-order 
effects. Therefore, the calculated value of 0,84 is adopted. 
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Determination of factor k2 
 
For the bending moment from the member imperfection, according to Table 6.4, 
EN 1994-1-1, the equivalent moment factor  is: 
 

2 = 1,0  
 
Therefore, the factor k2 is: 
 

2
2

Ed cr,eff

1,0= = = 1,28 > 1,0
1 – 1 – 6000 27638

k
N N

 

 
The adopted value of the factor is: 
 
k2 = 1,28 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C3.17 Second-order bending moments, design values 
 
The design bending moment at mid-height, second-order effects are taken into 
account, is: 
 

, 1 , 2= · + · = 60·0,84 + 90·1,28 = 166Ed II Ed Ed impM M k M k  kNm 
 

b) Imperfection moment 
increased by the second-
order effects 

a) End moments increased
by second-order effect 

MEd,I 
NEd 

L 
=

 4
,5

0 
m

 e0,d 

60 kNm
90 kNm

0,66·60 

0,84·60 1,28·90 

+
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The check is performed with this bending moment: 
 

, max= = 166Ed IIM M  kNm 

11.3.3 Bending moments – exact solution 

The calculation of the action effects will be done by exact second-order analysis. 
 
The design bending moments calculated according to second-order analysis are 
shown in Figure C3.18. 
 
For the buckling curve a, the equivalent member imperfection is: 
 

0, =
300d

Le  

 

0,
450= = 1,5
300de  cm 

 
Second-order bending moments are calculated for the static system given in 
Figure C3.18 for the lateral load qd, the end-moments MEd and the initial bow 
imperfection e0,d. The coefficient r is the ratio of the end moments on the ends of 
the column. 
 
Second-order bending moments at any section along the length of column, , are 
calculated as: 
 

, 0
sin( ·(1 – )) + sin( · ) cos( ·(0,5 – ))( ) = ( ) + ( – 1)

sin cos( / 2)Ed I
rM M M  

 
The maximum second-order bending moment at section M is calculated as: 
 

2

max , 0 0
1 += [0,5· ·( +1) + ]· –

cos( 2)Ed I
cM M r M M  

 
where: 
 

,

| |
= ·

( )
Ed

e
eff II

N
L

E
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2
0 0, 2

1= ( · + 8· · )·d Ed dM q L N e  

 
The point of maximum bending moment is at a distance M from the bottom end 
of the column and it is calculated as: 
 

,

, 0

·(1 – ) 1= ·
·( +1) + 2· tan( 2)
Ed I

Ed I

M r
c

M r M
 

 
arctan( )= 0,5 +M

c  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C3.18 Static system and actions 
 
The lateral load is = 0dq , and the ratio of the end moments on the ends of the 
column is r = 0. 
 
Accordingly: 
 

,

| |
= ·

( )
Ed

e
eff II

N
L

E
 

 

6

6000= 450· = 1,46
567,06·10

 

NEd 

L 

e0,d 

r MEd,I 

x

qd 

MEd,I

 

MEd,I

r MEd,I 

Mmax

=M L
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2
0 0, 2

1= ( · + 8· · )·d Ed dM q L N e  

 
2

0 2

4,5 1= (0·4,5 + 8·6000· )· = 338
300 1,46

M  kNm 

 
The coefficient c is: 
 

,

, 0

·(1 – ) 1= ·
·( +1) + 2· tan( 2)
Ed I

Ed I

M r
c

M r M
 

 
60·(1 – 0) 1= · = 0,091

60·(0 +1) + 2·338 tan(1,46 2)
c  

 
The point of maximum bending moment is: 
 

arctan( )= 0,5 +M
c  

 
arctan( ) arctan(0,091)= 0,5 + = 0,5 + = 0,562

1,46M
c  

 
= · = 0,562·4,50 = 2,53Mx L  m 

 
The maximum second-order bending moment is: 
 

2

max
1 + 0,091= [0,5·60·(0 +1) + 338]· – 338 = 158

cos(1,46 2)
M  kNm 

 
Remark: 
 
The value of bending moment calculated by the exact method, max = 158M  kNm, 
is less than the value obtained by the approximate method , = 166Ed IIM  kNm. 
For the recommended value of k1 = 1,0 according to clause 6.7.3.4(5), EN 1994-
1-1, this difference is higher. 

 
The check will be performed for the design value of second-order bending moment 

, = 166Ed IIM  kNm. 
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11.3.4 Shear forces – approximate solution 

According to clause 5.2.2(5)B, EN 1993-1-1, second-order effects can be 
allowed for by multiplying the greatest first-order design bending moment by a 
factor k given by: 
 

,

=
1 – /Ed cr eff

k
N N

 1,0 

 
Accordingly, the approximate value of shear force can be obtained as: 
 

, = ·Ed II EdV V k  
 
In accordance with Figure C3.19, the first-order design shear force at the bottom of 
the column is: 
 

0,4· · 60 4·6000·0,015= + = + = 13 + 80 = 93
4,5 4,5

Ed dEd
Ed

N eM
V

L L
 kN 

 
In accordance with Figure C3.19, the first-order design shear force at the top of the 
column is: 
 

0,4· · 60 4·6000·0,015= – + = – + = –13 + 80 = 67
4,5 4,5

Ed dEd
Ed

N eM
V

L L
 kN 

 
The diagram of shear forces, calculated by first-order analysis for bending moment 
MEd,I and the equivalent lateral load due to imperfections, is shown in Figure 
C3.19. 
 
Therefore, the factor k1 is:

 
 

 
1

1
Ed cr,eff

0,66= = = 0,84 < 1,0
60001 – 1 –

27638

k
N N

 

 
The factor k2 is: 
 

2
2

Ed cr,eff

1,0= = =1,28 > 1,0
1 – 1 – 6000 27638

k
N N
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Figure C3.19 First-order design shear forces 
 
Therefore, the maximum design shear force, calculated by approximative second-
order analysis, is: 
 

0,
, 1 2

4· ·
= · + · Ed dEd

Ed II

N eM
V k k

L L
 

 

,
60 4·6000·0,015= 0,84· +1,28· = 11 +102 = 113
4,5 4,5Ed IIV  kN 

11.3.5 Shear forces – exact solution 

The design shear force calculated by exact second-order analysis is: 
 

, 0– ·cos( ·(1 – )) + cos( · ) sin( ·(0,5 – ))( ) = · [ ]+ · [ ]
sin cos( 2)

Ed I
Ed

M MrV
L L

 

 
At the bottom of the column is  = 0, the ratio of the end moments is r = 0, then the 
design shear force is: 
 

60,0 cos(1,46·0) 338 sin(1,46·(0,5 – 0))( = 0) = ·1,46·[ ]+ ·1,46·[ ]
4,5 sin1,46 4,5 cos(1,46 2)EdV  

93 kN 

67 kN 

NEd 

MEd,I 

 

0,4 Ed dEd N eM
– +

L L

, 0,4Ed I Ed dM N e
+

L L

0,
2

8 Ed dN e
L

NEd  

L 

e0,d 

MEd,I 
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( = 0) = 19,6 + 98,1 = 117,7EdV  kN 
 
At the top of the column  = 1,0, and the ratio of the end moments is r = 0, then the 
design shear force is: 
 

60,0 cos(1,46·1,0) 338 sin(1,46·(0,5 – 1,0))( = 1,0) = ·1,46·[ ]+ ·1,46·[ ]
4,5 sin1,46 4,5 cos(1,46 / 2)EdV  

 
( = 1,0) = 2,2 – 98,1 = –95,9EdV  kN 

 
The check will be performed for the design value of the second-order shear force 

, = 113Ed IIV  kN. 

11.4 Check of the resistance of the member in combined compression and 
uniaxial bending 

It is necessary to satisfy the following condition: 
 

,

=
· ·

Ed Ed

Rd M d pl Rd

M M
M M

 1,0 

 
The coefficient M is taken as 0,9 for steel grades between S235 and S355. 
 
The design value of the maximum design bending moment by the approximative 
second-order analysis is: 
 

,= = 166Ed Ed IIM M  kNm 
 
The design resistance moment MRd is, see Figure C3.15: 
 

,= · · = 0,9·0,445·707 = 283Rd M d pl RdM M  kNm 
 
Condition: 
 

166= = 0,59
283

Ed

Rd

M
M

 

 
Since 0,59 < 1,0 , the condition is satisfied. 
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The design value of the maximum design bending moment by the exact second-
order analysis is: 
 

,= = 158Ed Ed IIM M  kNm 
 
The design resistance moment MRd is, see Figure C3.15: 
 

,= · · = 0,9·0,445·707 = 283Rd M d pl RdM M  kNm 
 
Condition: 
 

158= = 0,56
283

Ed

Rd

M
M

 

 
Since 0,56 < 1,0 , the condition is satisfied. 

11.5 Check of plastic resistance of composite section to transverse shear 

In accordance with clause 6.7.3.2(4), EN 1994-1-1, for simplification VEd may be 
assumed to act on the structural steel section alone. According to clause 6.2.6(2), 
EN 1993-1-1, in the absence of torsion the design plastic shear resistance is 
given by: 
 

, ,
0

·( / 3)
= v y

pl a Rd
M

A f
V  

 
The shear area, Av, according to clause 6.2.6(3), EN1993-1-1, is calculated as: 
 

2·
= a

v
A

A  

 
where Aa is the cross-sectional area of the circular hollow section. 
 
According to clause 6.2.2.4(1), EN 1994-1-1, where the shear force is less than 
half the plastic shear resistance its effect on the resistance moment can be 
neglected. Therefore, the condition is: 
 

, ,< 0,5·Ed pl a RdV V  
 
The design value of the second-order shear force is: 
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,= = 113Ed Ed IIV V  kNm 
 
The shear area, Av, is: 
 

2·124,5= = 79,26vA  cm2 

 
The design plastic shear resistance is: 
 

, ,
79,26·(35,5 / 3)= = 1625

1,0pl a RdV  kN 

 
Check: 
 

, ,= 113 < 0,5· = 0,5·1625 = 813Ed pl a RdV V  kN 
 
The condition is satisfied and there is no reduction in the resistance moment. 

12. Check of the load introduction 

It is assumed that this column is one of several similar columns in a multistorey 
braced frame. The beams of the composite floor are attached to the column. The 
assumed design shear forces from beams, which act on the column, are: 
 

,1 = 500EdV  kN and ,2 = 700EdV  kN 
 
The eccentricity at the pin joint is 0,3 m (Figure C3.20) and the bending moment 
applied to the column at the loaded floor level is:  
 

,1 1 ,2 1= · + · = 500·0,3 – 700·0,3 = 60Ed Ed EdM V e V e  kNm 
 
The design axial load is: 
 

,1 ,2= + = 500 +700 = 1200Ed Ed EdN V V  kN 
 
The design axial load and the design bending moment are applied at the top of 
column, see Figure C3.20. 
 
The structural detail, shown in Figure C3.20, is provided for load introduction. The 
steel plate is inserted through the steel section, which ensures the loading of the 
concrete. Since the concrete is confined by the steel circular hollow section, the 
stresses below the gusset plate can reach very high values. 
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Figure C3.20 Load introduction into the concrete through the gusset plate 
 
According to clause 6.7.4.2(6), EN 1994-1-1, when a concrete-filled circular 
hollow section is only partially loaded from a gusset plate through the profile, 
the local design strength of concrete, c,Rd, under the gusset plate, resulting from 
the sectional forces of the concrete section, should be determined by: 
 

y c
c,Rd cd cL

ck 1

= ·(1 + · · )·
f Atf

a f A
, c cd

1

·A f
A

, ydf  

 
where: 
 
t is the wall thickness of the steel tube, 
a is the diameter of the tube, 
Ac is the cross-sectional area of the concrete, 
A1 is the loaded area under the gusset plate according to Figure C3.20, 

cL is 4,9 for circular steel tubes. 
 

MEd
NEd

VEd,1 VEd,2  c,Rd  fyd 

a 

Gusset  
plate 

e1 = 300 mme1 = 300 mm

e 

dc

Concrete area Ac

A1

ts 

l1 

MEd and NEd due 
to VEd,1 and VEd,2 
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The ratio Ac/A1 should not exceed 20. Welds between the gusset plate and the 
steel hollow section should be designed according to Section 4 of EN 1993-1-8. 

 
The eccentricity e is: 
 

6000= = = 5,0
1200

Ed

Ed

M
e

N
 cm 

 
The length l1 is (Figure C3.20): 
 

1 = 2·( / 2 – – ) = 2·(40,06 / 2 – 1,0 – 5,0) = 28,06l a t e  cm 
 
In accordance with the ratio Ac/A1 < 20, the wall thickness of the steel tube ts is: 
 

1

1153= = = 2,05
20· 20·28,06

c
s

A
t

l
 cm 

 
The adopted wall thickness of the steel tube ts is 2,2 cm. 
 
The loaded area under the gusset plate, A1, is: 
 

1 1= · = 28,06·2,2 = 61,7sA l t  cm2 
 
Therefore, the design compressive stress below the gusset plate is: 
 

c,Ed
1

1200= = = 19,4
61,7

EdN
A

 kN/cm2 

 
The local design strength of concrete, c,Rd, under the gusset plate is: 
 

y c
c,Rd cd cL

ck 1

= ·(1 + · · )·
f Atf

a f A
, c cd

1

·A f
A

, ydf  

 

c,Rd
1,0 35,5 1153= 2,67·(1 + 4,9· · )· = 23,9

40,64 4,0 61,7
 kN/cm2 

 
c cd

c,Rd
1

· 1153·2,67= 23,9 < = = 49,9
61,7

A f
A

 kN/cm2 

 
c,Rd yd= 23,9 < = 35,5f  kN/cm2 
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The design compressive stress below the gusset plate c,Ed = 19,4  kN/cm2 is less 
than the local design strength of concrete under the gusset plate c,Rd = 23,9  
kN/cm2. Accordingly, the condition is satisfied. 

13. Commentary  

The design of composite columns subject to compressive axial load and bending 
moment generally requires a second-order analysis. In this case, the analysis of 
the composite column was carried out in accordance with clause 6.7.3.4, EN 
1994-1-1, taking into account the second-order effects and the member 
imperfections. The resistance of the column in combined compression and 
uniaxial bending was performed in accordance with clause 6.7.3.6, EN 1994-1-1. 
 
This example illustrates the procedure of verification as follows: 
 
a) The preliminary check was performed for the column, subject only to axial 

compression, by means of the method based on buckling curves. If the 
resistance to the axial force NEd is not sufficient, the considered column is 
clearly inadequate and the stronger cross-section should be adopted. 

 
The utilisation is 80%. 
 
b) In the next step, the column subject to compressive axial load and bending 

was treated. Since the value of cr was less than 10, the second-order effects 
were taken into account in two ways: approximate and exact. The resistance 
of the column was performed by the method based on the interaction 
polygon. 

 
The utilisation is: 
 
59% (for the design value of the maximum second-order bending moment MEd,II 

calculated by the approximate method), 
 
56% (for the design value of the maximum second-order bending moment MEd,II 

calculated by the exact method). 
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C4 Composite column with concrete-filled rectangular 
hollow section subject to axial compression and 
uniaxial bending 

1. Purpose of example 

The concrete-filled column consists of the rectangular hollow section filled with 
concrete. It is assumed that this column is one of several similar columns in a 
multistorey braced frame. The beams of the composite floor are attached to the 
column. Global analysis provides for each column in a plane frame a design axial 
force, NEd, and applied end moments, MEd. Since the column consists of the 
rectangular hollow section filled with concrete, i.e. the double-symmetrical section 
with different geometrical properties about the principal axes, the check is carried 
out in several steps as described below. 
 
For each axis of symmetry, the buckling resistance to compression should be 
checked with the relevant relative slenderness of the composite column. However, 
in this example the relative slenderness z  is higher than the relative slenderness 

y  and the check is carried out only about the z-z axis. It is the preliminary check. 
 
In the presence of applied moment about the y-y axis, the resistance moment of the 
composite cross-section is checked with the relative slenderness y  of the 
composite column. Second-order effects are included by using a first-order analysis 
modified with appropriate amplification according to clause 6.7.3.4(5), EN 1994-1-
1. The application of the method for buckling resistance based on second-order 
analysis taking into account the imperfections means that about the z-z axis there is 
bending due to the imperfections of the member. This means that the verification of 
the composite column should be performed as for the column in compression and 
in biaxial bending. 
 
The first step is to check the column resistance under compression and uniaxial 
bending individually in each of the planes of bending. The second step is to check 
the column resistance in biaxial bending, taking into account imperfections in the 
plane in which failure is expected to occur. For the other plane of bending the 
effect of imperfections is neglected. If it is not obvious which plane is the more 
critical, checks should be made for both planes. 
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2. Static system, cross-section and design action effects 

Actions 
 
Permanent action 

1,
= 410

kGN  kN 

 
2,

= 110
kGN  kN 

 
Variable action 

1,
= 230

kQN  kN 

 
2,

= 70
kQN  kN 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C4.1 Static system and cross-section (bending about the y-y axis) 
 
Design action effect 
 
Axial force: 
 

1, 2, 1, 2,
= ·( + ) + ·( + )

k k k kEd G G G Q Q QN N N N N  

 

1, 2, 1, 2,
= 1,35·( + ) +1,50·( + )

k k k kEd G G Q QN N N N N  

 
= 1,35·(410 +110) +1,50·(230 +70) = 702 + 450 = 1152EdN  kN 

 

6,3 

Concrete C 40/50 

Reinforcement 4  20, S500 
RHS 140×260×6,3, S235 

z 

y 

140 

26
0 

87
 

43
 

41 29 

0,18 m 

NG1,k
 NG2,k

 

NQ1,k
 NQ2,k

 

L 
=

 L
e =

 4
,0

0 
m

 

Le – buckling length 



Example C4 489 
 

 

Bending moment at the top of the column: 
 

2, 2,, = · ·0,18 + · ·0,18
k ky Ed G G Q QM N N  

 

2 2,, = 1,35· ·0,18 +1,50· ·0,18
k ky Ed G QM N N  

 
, = 1,35·110·0,18 +1,50·70·0,18 = 27 +19 = 46y EdM  kNm 

 
Denotation of imperfections 
 
Imperfection about the y-y axis is denoted as e0,z. Imperfection about the z-z axis is 
denoted by e0,y. 
 
 
 
 
 
 
 
 
 
 
 

Figure C4.2 Denotation of imperfections 

3. Properties of materials 

Concrete strength class: C 40/50 = 40ckf  N/mm2 

 40= = = 26,7
1,5

ck
cd

c

f
f  N/mm2 

 = 35000cmE  N/mm2 
 
Structural steel: S235 = 235ykf  N/mm2 

 
235= = = 235
1,0

yk
yd

M

f
f  N/mm2 

 = 210000aE  N/mm2 
 
Reinforcement: ductility class B or C = 500skf  N/mm2 

6,3 

z 

y 

140 

26
0 

e0,z 

e0,y
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500= = = 435
1,15

sk
sd

s

f
f  N/mm2 

 = 210000SE  N/mm2 

4. Geometrical properties of the cross-section 

4.1 Selection of the steel cross-section and reinforcement 

The rectangular hollow section RHS 260×140×6,3 is selected. The selected cross-
section is shown in Figure C4.3. 
 
 
 
 
 
 
 
 
 
 
 

h = 260,0 mm 
b = 140,0 mm 

t = 6,3 mm 
Aa = 47,8 cm2 
y,a = 4259 cm4 
z,a = 1634 cm4 

Wpl,y,a = 403 cm3 
Wpl,z,a = 263 cm3 

Figure C4.3 Rectangular hollow section 
 

Remark: 
 
In concrete-filled hollow sections no longitudinal reinforcement is normally 
necessary. However, if the design for fire resistance is required, which is the 
case in this example, the longitudinal reinforcement can be used, clause 6.7.5.2 
(1), EN 1994-1-1. 

 
In this example, the selected reinforcement is four bars with a diameter of 20 mm. 
The cross-sectional area of the structural steel section RHS 260×140×6,3 is: 
 

= 47,8aA  cm2 
 
The cross-sectional area of the reinforcement with four bars of 20 mm diameter is: 
 
dbar = 20 mm, Abar = 3,14 cm2 
 

= 4· = 4·3,14 = 12,6s barA A  cm2 
 
The cross-sectional area of the concrete, neglecting the rounded corners of the steel 
section is: 

z 

 y  

t 

b 

h 
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= ( – 2· )·( – 2· ) –c sA h t b t A  
 

= (26,0 – 2·0,63)·(14,0 – 2·0,63) – 12,6cA  
 

= 302,6cA  cm2 
 
The ratio of reinforcement area to concrete area is: 
 

12,6= = = 0,042
302,6

s
s

c

A
A

 = 4,2s % 

 
= 4,2% < 6%s  

 
The limit of 6% in clause 6.7.3.1 (1), EN 1994-1-1, on the reinforcement is 
satisfied. 
 
Remark: 
 
According to clause 6.7.3.1(3), EN 1994-1-1, the ratio of reinforcement area to 
concrete area, s, should not exceed 6%. 

4.2 Cross-sectional areas 

Structural steel 
 

= 47,8aA  cm2 
 
Reinforcement 
 

= 12,6sA  cm2 
 
Concrete (rounded corners of the steel section neglected) 
 

= 302,6cA  cm2 

4.3 Second moments of area 

Bending about the y-y axis 
 
Structural steel 
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, = 4259y aI  cm4 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C4.4 Composite column cross-section 
 
Reinforcement 
 

2
, = 4· ·8,7y s barI A  

 
2

, = 4·3,14·8,7y sI  
 

2
, = 12,6·8,7 = 954y sI  cm4 

 
Concrete (rounded corners of the steel section neglected) 
 

3( – 2· )·( – 2· )= –
12y,c y,s

b t h tI I  

 
3 3(14,0 – 2·0,63)·(26,0 – 2·0,63) 12,74·24,74= – 954 = – 954 = 15122

12 12y,cI  cm4 

 
Bending about the z-z axis 
 
Structural steel 
 

, = 1634z aI  cm4 
 
Reinforcement 
 

2
, = 4· ·2,9z s barI A  

 

6,3 

z 

 y

140 

26
0 

87
 

43
 

41 291
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2
, = 4·3,14·2,9z sI  

 
2

, = 12,6·2,9 = 106z sI  cm4 
 
Concrete (rounded corners of the steel section neglected) 
 

3

, ,
( – 2· )·( – 2· )= –

12z c z s
h t b tI  

 
3 3

,
(26,0 – 2·0,63)·(14,0 – 2·0,63) 24,74·12,74= – 106 = – 106 = 4157

12 12z cI  cm4 

4.4 Plastic section moduli 

Bending about the y-y axis 
 
Structural steel 
 

, , = 403pl y aW  cm3 
 
Reinforcement 
 

, , ,= · = 4·3,14·8,7 = 109,3pl y s s i ii
W A z  cm3 

 
Concrete (rounded corners of the steel section neglected) 
 

2

, , , ,
( – 2· )·( – 2· )= –

4pl y c pl s y
b t h tW W  

 
2

, ,
(14,0 – 2·0,63)·(26,0 – 2·0,63)= – 109,3 = 1840,1

4pl y cW  cm3 

 
Bending about the z-z axis 
 
Structural steel 
 

, , = 263pl z aW  cm3 
 
Reinforcement 
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, , ,= · = 12,6·2,9 = 36,5pl z s s i ii
W A z  cm3 

 
Concrete (rounded corners of the steel section neglected) 
 

2

, , , ,
( – 2· )·( – 2· )= –

4pl z c pl s z
h t b tW W  

 
2

, ,
(26,0 – 2·0,63)·(14,0 – 2·0,63)= – 36,5 = 967,4

4pl z cW  cm3 

5. Steel contribution ratio 

According to clause 6.7.3.3(1), EN 1994-1-1, the steel contribution ratio, , is 
defined as: 
 

,

·
= a yd

pl Rd

A f
N

 

 
The term Aa·fyd is the contribution of the structural steel section to the plastic 
resistance of the composite section to axial force. The design plastic resistance of 
the composite section to axial force Npl,Rd is calculated according to clause 
6.7.3.2(1), EN 1994-1-1. 
 
According to 6.7.1(4), EN 1994-1-1, the steel contribution ratio, , must satisfy 
the following conditions: 
 
0,2    0,9 
 
If  is less than 0,2, the column should be designed as a reinforced concrete 
member according to EN 1992-1-1. If  is larger than 0,9, the concrete is ignored 
in the calculations, and the column is designed as a structural steel member 
according to EN 1993-1-1. 

 
The term Aa·fyd is the contribution of the structural steel section to the plastic 
resistance of the composite section to axial force: 
 

· = 47,8·23,5 = 1123,3a ydA f kN 
 
The plastic resistance of the composite section to axial force is: 
 

, = · + · + ·pl Rd a yd c cd s sdN A f A f A f  



Example C4 495 
 

 

, = 47,8·23,5 + 302,6·2,67 +12,6·43,5pl RdN  
 

, = 1123,3 + 807,9 +548,1 = 2479pl RdN  kN 
 
According to 6.7.1(4), EN 1994-1-1, the steel contribution ratio, , must satisfy the 
following conditions: 
 
0,2    0,9 
 
The steel contribution ratio, , is: 
 

,

· 47,8·23,5= = = 0,45
2479

a yd

pl Rd

A f
N

 

 
Since the limits 0,2 <  = 0,45 < 0,9 are satisfied, the column can be classified as a 
composite column and the provisions of EN 1994-1-1 can be used for the 
dimensioning. 
 
Remark: 
 
The containment effect is not present to the same extent in concrete-filled 
rectangular tubes because less circumferential tension can be developed. The 
increase of the compressive strength of the concrete is ignored.  

6. Local buckling 

According to Table 6.3, EN 1994-1-1, for concrete-filled rectangular hollow 
cross-section, the effect of local buckling can be ignored if the following 
condition is satisfied, see Figure C4.5: 
 

235max( ) = 52·
y

h
t f

 

 
 
 
 
 
 
 
 
 

Figure C4.5 Cross-section of composite column and denotations 

t 

z 

 y

b 

h 
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For the selected cross-section, the maximum slenderness is: 
 

260max( ) = = 41,3
6,3

h
t

 

 
The required condition is: 
 

235 23552· = 52· = 52
235yf

 

 
Since 41,3 < 52,0 , the condition is satisfied. The effect of local buckling can be 
neglected. 

7. Effective modulus of elasticity for concrete 

For long-term loading the creep and shrinkage are taken into account in the 
design by a reduced flexural stiffness of the composite cross-section. Due to the 
influence of long-term creep effects on the effective elastic stiffness, the 
modulus of elasticity of the concrete, Ecm, should be reduced to the value Ec,eff in 
accordance with: 
 

,
,

=
1 + ( )·

cm
c eff

G Ed
t

Ed

E
E

N
N

 

where: 
 

0= ( , )t t t  is the creep coefficient, defining the creep between times t and t0, 
related to elastic deformation at 28 days, 

=t ( ,t0) is the final creep coefficient, 
t is the age of the concrete at the time considered, 
t0 is the age of the concrete at loading, 
NEd is the axial design force, 
NG,Ed is the permanent part of the axial design force NEd, NG,Ed = G NGk. 

 
For the calculation of the creep coefficient (t, t0), the following is valid: 
 
- the perimeter of that part which is exposed to drying, u 
 
u 2·( + )h b  
 
u 2·(26 +14) = 80  cm 
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Figure C4.6 Perimeter which is “exposed” to drying 
 
- the notional size of the cross-section, h0 
 

0

2· 2·302,6= = = 7,6
80

cA
h

u
 cm = 76  mm 

- 0 = 7t  days, 
- inside conditions, the ambient relative humidity RH 50 %, 
- the concrete strength class C 40/50, 
- the type of cement – cement class N, strength class 32,5 R. 
 
The final value of creep coefficient ( , t0) is determined using the nomogram 
shown in Figure 3.1, EN 1992-1-1. The process of determining the final value of 
the creep coefficient, taking into account these assumptions, is given in Figure 
C4.7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C4.7 Method for determining the creep coefficient 
 
The final value of creep coefficient ( , t0), found from Figure C4.7, is: 

t 

z 

 y

b 

h 
u 2(h + b)

t0 = 7 days 

h0 [mm]

t0 
R1 

2 
3 
5 

N S 

10 

20 
30gk 
50 

100 
( , t0) 7,0L 6,0 5,0 4,0 3,0 2,0 1,0 0 100 30030500 700 900I 1100 1300 1500

C20/25 
C25/30 
C30/37
C35/45 
C40/50
C45/55 
C50/60 
C60/75 
C80/95 

C55/67 
C70/85 
C90/105 

h0 = 76 mm t = 3,0

1st step

2nd step

3th step

4th step

5th
 st

ep
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t = ( , t0) = 3,0 
 
The design force of the permanent load, NG,Ed, and the total design force, NEd, are: 
 

1, 2,, = ·( + )
k kG Ed G G GN N N  

 
, = 1,35·(410 +110) = 702G EdN  kN 

 

1, 2, 1, 2,
= 1,35·( + ) +1,50·( + )

k k k kEd G G Q QN N N N N  

 
= 1,35·(410 +110) +1,50·(230 +70) = 702 + 450 = 1152EdN  kN 

 
Accordingly, the value of Ec,eff is: 
 

,
,

3500= = = 1238
7021 + ( )·3,01 + ( )·

1152

cm
c eff

G Ed
t

Ed

E
E

N
N

 kN/cm2 

 
Further calculation is performed with the effective modulus of elasticity of the 
concrete Ec,eff = 1238 kN/m2. 
 
Remark: 
 
Note that a conservative estimation of the effective modulus of elasticity is 
obtained according to EN 1994-1-1 because in the case of a concrete-filled 
hollow section the drying of the concrete is significantly reduced by the steel 
section (see example C1). However, in the case of concrete-filled rectangular 
hollow section the dimensioning of the composite columns is rarely sensitive to 
the influence of creep coefficient t on the effective modulus of elasticity of the 
concrete Ec,eff. With this statement the conservative estimation of Ec,eff, according 
to EN 1994-1-1, can be justified in the case of concrete-filled hollow sections. 

8. Resistance of the cross-section to compressive axial force 

The design plastic resistance of the composite cross-section to axial compressive 
force, Npl,Rd, is given by the sum of the design resistances of the components as 
follows: 
 

, = · + 0,85· · + ·pl Rd a yd c cd s sdN A f A f A f  
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Remark: 
 
The coefficient of 0,85 can be replaced with value 1,0 due to better curing 
conditions of concrete-filled hollow sections. 

 
The design plastic resistance of the composite cross-section to compressive axial 
force, Npl,Rd, is calculated according to the corrected expression: 
 

, = · + · + ·pl Rd a yd c cd s sdN A f A f A f  
 

, = 47,8·23,5 + 302,6·2,67 +12,6·43,5pl RdN  
 

, = 1123 + 808 + 548 = 2479pl RdN  kN 
 
The characteristic value of the plastic resistance of the composite cross-section to 
compressive axial force, Npl,Rk, is determined by the following expression: 
 

, = · + · + ·pl Rk a yk c ck s skN A f A f A f  
 

, = 47,8·23,5 + 302,6·4,00 +12,6·50,0pl RkN  
 

, = 1123,3 +1210,4 + 630 = 2964pl RkN  kN 

9. Verification of conditions for using the simplified design 
method 

The cross-section of the composite column should be doubly symmetrical and 
uniform along the entire length of the column. 
 
This condition is satisfied. 
 
Relative slenderness 
 
To apply the simplified method it is necessary to satisfy the following conditions: 
 

y  2,0 
 

z  2,0 
 
In this example it is obvious that z  is higher than y , the verification of both 
relative slendernesses will be performed for educational reasons. 
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About the y-y axis 
 
Relative slenderness, y , is determined as: 
 

,

,

= pl Rk
y

cr y

N
N

 

 
For the determination of the relative slenderness y  and the elastic critical force 
Ncr,y, it is necessary to calculate the value of the effective flexural stiffness of the 
cross-section of the composite column, ,( )eff yEI , according to the expression: 
 

, , , , ,( ) = · + · + · ·eff y a y a s y s e c eff y cEI E I E I K E I  
 
With the correction factor Ke = 0,6, the value ,( )eff yEI is: 
 

,( ) = 21000·4259 + 21000·954 + 0,6·1238·15122eff yEI  
 

6
,( ) =120,71·10eff yEI  kNcm2 

 
The elastic critical force, Ncr,y,, for the pin-ended column and the buckling length 
Le,y, is determined as: 
 

2
,

, 2
,

( ) ·
= eff y

cr y
e y

EI
N

L
   , =e yL L  

 
6 2

, 2

120,71·10 ·= = 7446
400cr yN  kN 

 
The relative slenderness, y , is: 
 

2964= = 0,63
7446

y  

 
Accordingly = 0,63 < 2,0y , and the condition is satisfied. 
 
About the z-z axis 
 
Relative slenderness, z , is determined as: 
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,

,

= pl Rk
z

cr z

N
N

 

 
For the determination of the relative slenderness z  and the elastic critical force 
Ncr,z, it is necessary to calculate the value of the effective flexural stiffness of the 
cross-section of the composite column ,( )eff zEI  according to the expression: 
 

, , , , ,( ) = · + · + · ·eff z a z a s z s e c eff z cEI E I E I K E I  
 
With the correction factor Ke = 0,6, the value ,( )eff zEI is: 
 

,( ) = 21000·1634 + 21000·106 + 0,6·1238·4157eff zEI  
 

6
,( ) = 39,63·10eff zEI  kNcm2 

 
The elastic critical force, Ncr,z, for the pin-ended column and the buckling length 
Le,z, is determined as: 
 

2
,

, 2
,

( ) ·
= eff z

cr z
e z

EI
N

L
   , =e zL L  

 
6 2

, 2

39,63·10 ·= = 2445
400cr zN  kN 

 
The relative slenderness, z , is: 
 

2964= = 1,10
2445

z  

 
Accordingly = 1,10 < 2,0z , and the condition is satisfied. 
 
The maximum permitted cross-sectional area of the longitudinal 
reinforcement 
 
The maximum cross-sectional area of longitudinal reinforcement As,max that can be 
taken in the calculation should not exceed 6% of the concrete area. This condition 
is satisfied, see Section 4.1. 
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The ratio of the depth to the width 
 
The ratio of the depth to the width of the composite cross-section should be within 
the following limits: 
 

0,2 h
b

 5,0 

 
26,0= = 1,9
14,0

h
b

 

 

0,2 < = 1,9 < 5,0h
b

, the condition is satisfied 

 
Remark: 
 
All conditions from clause 6.7.3.1, EN 1994-1-1, are satisfied, so this allows the 
use of the simplified design method for composite columns. 

10. Resistance of the member in axial compression 

Remark: 
 
Although the column is subjected to combined compression and bending, the 
check based on buckling curves is useful as the preliminary check for this 
column. If the resistance to the axial compressive force is not sufficient, the 
considered column is inadequate and it is necessary to select the stronger cross-
section. 

 
The resistance of the member subjected only to axial compression can be 
checked by second-order analysis according to clause 6.7.3.5, EN 1994-1-1, so 
as to take into account member imperfections. As a simplification in the case of 
the member subjected only to axial compression, the design value of the axial 
force NEd should satisfy the check based on European buckling curves, which 
can be written as: 
 

,·
Ed

pl Rd

N
N

 1,0 

 
The reduction factor  is given by: 
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2 2

1=
+ –

, but   1,0 

 
and 
 

2
0= 0,5·[1 + ·( – ) + ] , with 0 = 0,2  

 
Since = 1,10 > = 0,63z y , the buckling resistance about z-z axis is governed. 
 
Remark: 
 
The relevant buckling curves for cross-sections of composite columns are given 
in Table 6.5, EN1994-1-1. According to Table 6.5, EN 1994-1-1, circular or 
rectangular hollow section columns filled with concrete or containing up to 3% 
reinforcement can be designed using buckling curve a with an imperfection 
factor  = 0,21. However, concrete-filled hollow section columns containing 
from 3% to 6% can be designed using buckling curve b with an imperfection 
factor  = 0,34. 

 
The reinforcement ratio s is 4,2 %. Therefore from Table 6.5, EN1994-1-1, 
buckling curve b should be used. 
 
From Table 6.3, EN1993-1-1,  = 0,34 for buckling curve b so that z is: 
 

2
0= 0,5·[1 + ·( – ) + ]z  

 
2= 0,5·[1 + 0,34·(1,10 – 0,2) +1,10 ] = 1,26z  

 
The reduction factor  is: 
 

2 2

1=
+ –

z

z z z

 

 

2 2

1= = 0,53 < 1,0
1,26 + 1,26 – 1,10

z  

 
Check: 
 

,·
Ed

z pl Rd

N
N

 1,0 
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1152 = 0,88 < 1,0
0,53·2479

 

 
Since 0,88 < 1,0 , the check of the composite column subjected to axial 
compression is satisfied. It is not necessary to select the stronger cross-section. 

11. Resistance of the member in combined compression and 
uniaxial bending 

11.1 Resistance of the member about the y-y axis taking into account the 
equivalent member imperfection e0,z 

11.1.1 General 

According to clause 6.7.3.6, EN 1994-1-1, the member in combined compression 
and uniaxial bending has sufficient resistance if the following condition is 
satisified: 
 

, , ,

=
·

Ed Ed

pl N Rd d pl Rd

M M
M M M  

 
where: 
 
MEd is the greatest of the end moments and the maximum bending moment 

within the column length. This moment is calculated according to 
clause 6.7.3.4, EN 1994-1-1, including imperfections (Table 6.5, EN 
1994-1-1) and second-order effects if necessary ( cr > 10). 

Mpl,N,Rd is the plastic resistance moment taking into account the axial force NEd, 
given by d·Mpl,Rd, see Figure 6.18, EN 1994-1-1. 

Mpl,Rd is the plastic resistance moment, given by point B in Figure 6.18, EN 
1994-1-1. 

d is the factor related to the design for compression and uniaxial 
bending. 

M is the coefficient related to the bending of a composite column and is 
taken as 0,9 for steel grades between S235 and S355. 

 
The condition can be written in the following form: 
 

,

=
· ·

Ed Ed

Rd M d pl Rd

M M
M M

 1,0 

 
The calculation of the design bending moment MEd = MEd,II taking the initial 
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bending moment about y-y axis, the imperfection e0,z, and second-order effects is 
shown in Figure C4.8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C4.8 Equivalent member imperfection e0,z about y-y axis 

11.1.2 Resistance of cross-section in combined compression and bending 
about y-y axis 

Remark: 
 
In order to determine the resistance of the composite cross-section to combined 
compression and uniaxial bending, it is necessary to produce an axial load – 
bending moment (N–M) interaction curve. As a simplification, the interaction 
curve is replaced by an interaction polygon ACDB, clause 6.7.3.2 (5), EN 1994-
1-1. 
 
The N–M interaction polygon ACDB is shown in Figure 6.19, EN 1994-1-1. For 
concrete-filled hollow sections, the interaction polygon of AECDB, (shown in 
Figure C4.9, may be preferred to the interaction polygon of ACDB shown in 
Figure 6.19, EN 1994-1-1. The introduction of the point E gives a more 
economical design, especially for columns with high axial force and low end 
moments. For better polygonal approximation to the interaction curve, the 
position of point E may be chosen to be closer to point A rather than being mid-
way between points A and C. The introduction of the point E does not 
recommend in the case of steel section with low value of the shape factor pl (= 

e

NG1,k NG2,k

NQ1,k
NQ2,k

L 

e0,z 

A A

B B

z 

 y

NG1,k

NG2,k

NQ1,k NQ2,k

0,18 m 

Section A-A

Section B-B

e0,z 

z 

 y
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Wpl/Wel), I- section in bending about y-y axis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure C4.9 N M interaction polygon and corresponding stress distributions 
 
The modified version of the interaction polygon AECDB, which refers to the 
composite column with concrete-filled rectangular hollow section, is shown in 
Figure C4.9. 
 
In order to produce the N–M interaction polygon, the cross-sectional capacities 
at points A to D should be determined assuming the stress distributions 
indicated, see Figure C4.9. 
 
It should be noted that EN 1994-1-1 does not provide expressions for concrete-
filled rectangular cross-sections. 

 
Point A 
 
 
 
 
 
 
 
 
 
 

Figure C4.10 Stress distributions for point A on the interaction polygon 
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At point A, only the design plastic resistance of the cross-section is taken into 
account: 
 

, = · + 0,85· · + ·pl Rd a yd c cd s sdN A f A f A f  
 
Remark: 
 
For concrete filled hollow sections, the coefficient of 0,85 can be replaced with a 
value of 1,0 due to better curing conditions. 

 
The design plastic resistance of composite cross-section to compression, Npl,Rd, is 
calculated according to the corrected expression: 
 

, = · + · + ·pl Rd a yd c cd s sdN A f A f A f  
 
The design plastic resistance of composite cross-section to compression is: 
 

, = 47,8·23,5 + 302,6·2,67 +12,6·43,5pl RdN  
 

, = 1123 + 808 + 548 = 2479pl RdN  kN 
 
Point D 
 
The position of the plastic neutral axis and the stress distributions are shown in 
Figure C4.11. 
 
 
 
 
 
 
 
 
 
 
 

Figure C4.11 Stress distributions for point D on the interaction polygon 
 
The maximum design plastic resistance moment is determined by the following 
expression: 
 

max, , , , , , , , , , ,= + +y Rd pl y a Rd pl y c Rd pl y s RdM M M M  

fcd  fyd  fsd 

t 

 y 

z 

b 

h 

 Npm,Rd/2 

Mmax,y,Rd 
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The maximum design plastic resistance moment, Mmax,y,Rd, at point D is: 
 

max, , , , , , , ,= · + 0,5· · + ·y Rd pl a y yd pl c y cd pl s y sdM W f W f W f  
 

–2
max, , = (403·23,5 + 0,5·1840,1·2,67 +109,3·43,5)·10y RdM  

 
max, , = 167y RdM  kNm 

 
The design value of the resistance of the concrete to compression, Npm,Rd, is: 
 

, = · = 302,6·2,67 = 808pm Rd c cdN A f  kN 
 
The design axial force at the point of maximum design plastic resistance moment is 
0,5·Npm,Rd, and therefore is: 
 

,0,5· = 0,5·808 = 404pm RdN  kN 
 
Point C 
 
 
 
 
 
 
 
 
 
 
 

Figure C4.12 Stress distributions for point C on the interaction polygon 
 
Calculation of the design plastic resistance moment of the composite section, 
Mpl,y,Rd, is carried out as shown below. 
 
Determination of position of neutral axis depth, hn, when axial force is zero: 
 

, ,– ·(2· – )
=

2· · + 4· ·(2· – )
pm Rd s n sd cd

n
cd yd cd

N A f f
h

d f t f f
 

 
where As,n is the reinforcement area within hn. Because it is at this point unknown, 
assumed to be (initial guess): 

fcd  fyd  fsd 

t 

 y 

z 

b 

h 2hn
hn

 Npm,Rd 

Mpl,y,Rd 
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, = 0s nA  cm2 
 
Thus, for the case when the axial force is equal to zero, hn is: 
 

808,0 – 0·(2·43,5 – 2,67)= = 4,33
2·14,0·2,67 + 4·0,63·(2·23,5 – 2,67)nh  cm 

 
Since in this region there is no reinforcement, the assumption is correct. 
 
Plastic section moduli in region 2·hn 
 
Reinforcement 
 
Wpl,y,,s,n = 0 cm3 
 
Concrete 
 

2
, , , , , ,= ( – 2· )· –pl y c n n pl y s nW d t h W  

 
2

, , , = (14,0 – 2·0,63)·4,33 – 0 = 238,9pl y c nW  cm3 
 
Structural steel 
 

2
, , , , , , , , ,= · – –pl y a n n pl y c n pl y s nW d h W W  

 
2

, , , = 14,0·4,33 – 238,9 – 0 = 23,6pl y a nW  cm3 
 
The design plastic resistance moment of the composite section, Mpl,y,Rd, is 
calculated as follows: 
 

, , max, , , ,= –pl y Rd y Rd n y RdM M M  
 
where: 
 

, , ,
, , , , , , , ,

·
= · + · +

2
pl y c n cd

n y Rd pl y a n yd pl y s n sd

W f
M W f W f  

 
–2

, ,
238,9·2,67= (23,6·23,5 + 0·40,0 + )·10 = 8,73

2n y RdM  kNm 
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The design plastic resistance moment of the composite section, Mpl,y,Rd, is: 
 

, , = 167 – 8,73 = 158pl y RdM  kNm 
 
Point B 
 
 
 
 
 
 
 
 
 
 
 

Figure C4.13 Stress distributions for point B on the interaction polygon 
 
The design value of Mpl,y,Rd has previously been calculated in order to define point 
C on the N–M interaction polygon: 
 

, , = 158pl y RdM  kNm 
 
Point E 
 
Remark: 
 
If the enhancement of the resistance at point E is little more than that given by 
direct linear interpolation between A and C, the calculation can be omitted. 

 
For the calculation of the design resistances at the point E, the neutral axis is 
located on the outer border of reinforcement bars, see Figure C4.14. 
 
The distance between the centroidal axis of the composite section and the outer 
border of reinforcement bars, hE, is obtained as follows: 
 

2,0= + = 8,7 + = 9,7
2 2
bar

E
d

h z  cm 

 
In accordance with Figure C4.14, Eh  is obtained as: 
 

= – = 9,7 – 4,33 = 5,37E E nh h h  cm 

fcd  fyd  fsd 

t 

 y 

z 

b 

h 2hn
hn

Mpl,y,Rd 
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Figure C4.14 Stress distributions for point E on the interaction polygon 
 
In region of Eh  there is reinforcement (2  20) of cross-sectional area As,n = 6,28 
cm2. The stresses in the region = –E E nh h h  provide the force ,

E
pl RdN  which is 

given by: 
 

, = · · + 2· · ·(2· – ) + ·(2· – )E
pl Rd E cd E yd cd sn sd cdN b h f t h f f A f f  

 
The force ,

E
pl RdN  is: 

 
, = 14,0·5,37·2,67 + 2·0,63·5,37·(2·23,5 – 2,67) + 6,28·(2·43,5 – 2,67)E

pl RdN  
 

, = 1030E
pl RdN  kN 

 
Therefore, the design resistance to axial force at point E is: 
 

, , ,= + = 1030 + 808 = 1838E E
pl Rd pl Rd pm RdN N N  kN 

 
Plastic section moduli in region 2·hE 
 
Reinforcement 
 

, , , ,= · = 4·3,14·8,7 = 109,3pl y s n s i iW A z  cm3 
 
Concrete 
 

2 2

, , , , , ,
( – 2· )·(2· ) (14,0 – 2·0,63)·(2·9,7)= – = – 109,3

4 4
E

pl y c n pl y s n
b t h

W W  

 

t 

hn

hE
hE 

z

fcd  fyd  fsd 

 y 

z 

b 

h 
 

 
,

E
pl RdN

,
E
pl, y RdM  
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, , , = 1089,4pl y c nW  cm3 
 
Structural steel 
 

2 2

, , ,
2· ·(2· ) 2·0,63·(2·9,7)= =

4 4
E

pl y a n
t h

W  

 
, , , = 118,6pl y a nW  cm3 

 
The design plastic resistance moment of the composite section, , ,

E
pl y RdM , is 

calculated as follows: 
 

, , max, , , ,= –E E
pl y Rd y Rd n y RdM M M  

 
where: 
 

, , ,
, , , , , , , ,

·
= · + · +

2
pl y c n cdE

n y Rd pl y a n yd pl y s n sd

W f
M W f W f  

 
–2

, ,
1089,4·2,67= (118,6·23,5 +109,3·43,5 + )·10 = 90

2
E
n y RdM  kNm 

 
The design plastic resistance moment of the composite section, , ,

E
pl y RdM , is: 

 
, , max, , , ,= – =167 – 90 = 77E E

pl y Rd y Rd n y RdM M M  kNm 
 
Previously calculated values at points A to E should be plotted to produce the N–M 
interaction polygon (Figure 6.19, EN 1994-1-1). With the obtained value at point E 
the better polygonal approximation to the interaction curve is achieved. 
 
According to the interaction polygon AECDB, Figure C4.15, the following value 
Mpl,y,N,Rd is obtained: 
 

, , , , , ,= +E
pl y N Rd pl y Rd y RdM M M  

 
where: 
 

, , , , , ,( – ) : = ( – ) : ( – )E E E
pl y Rd pl y Rd y Rd Rd pm Rd Rd EdM M M N N N N  
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, , , , ,
,

–
= ·( – )

–

E
ERd Ed

y Rd pl y Rd pl y RdE
Rd pm Rd

N N
M M M

N N
 

 

,
1838 – 1152= ·(158 – 77) = 53,9
1838 – 808y RdM  kNm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C4.15 N–M interaction polygon 
 
Therefore, the value Mpl,y,N,Rd is: 
 

, , , = 77 +53,9 = 131pl y N RdM  kNm 
 
The value of dy is: 
 

, , ,

, ,

131= = = 0,83 < 1,0
158

pl y N Rd
dy

pl y Rd

M
M

 

 
The check is carried out by the factor = 0,83dy . 

11.1.3 Calculation of the effects of actions about the y-y axis 

11.1.3.1 General 

According to clause 6.7.3.4 (3), EN 1994-1-1, which refers to clause 5.2.1(3), 
EN 1994-1-1, second-order effects can be therefore neglected if the load factor 

, =158pl, y RdM  kNm 

Npl,Rd = 2479 kN

N 

M 

 A 

 B 

 C 

 D 
 max , = 167, y RdM  kNm 

= 1838E
RdN  kN 

, = 77E
pl, y RdM  kNm

 , = 158pl, y RdM  kNm 

, = 77E
pl, y RdM  kNm 

= 808pm,RdN  kN

1/2 Npm,Rd = 404 kN 

     NEd = 1152 kN
dy Mpl,y,Rd

Mpl,y,N,Rd = 130 kNm 

 E 
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cr, which is the ratio between the elastic critical load and the corresponding 
applied loading, for elastic instability of the member exceeds 10. 
 
To calculate cr, the ends of the column are assumed to be pinned, and cr is 
found using the Euler formula for the elastic critical force Ncr,y,eff: 
 

2
,

, 2
,

( )
= eff, y II

cr, y eff
e y

E
N

L
   Le,y = L 

 
The design value of the effective flexural stiffness (EI)eff,y,II, used to determine 
the internal forces and moments by second-order analysis, pursuant to clause 
6.7.3.4(2), EN 1994-1-1, is defined by the following expression: 
 

, 0 , , ,( ) = ·( · + · + · · )eff, y II a y a s y s e,II cm y cEI K E I E I K E I  
 
where: 
 
Ke,II is a correction factor, which should be taken as 0,5, 
K0 is a calibration factor, which should be taken as 0,9. 

 
The value Ec,eff has been used in place of Ecm in expression for (E  )eff,y,II  in order to 
take into account the long-term effects, in the same way as calculated in Section 7. 
Accordingly, the value of Ec,eff is: 
 

, = 1238c effE  kN/cm2 
 
The design value of the effective flexural stiffness (EI)eff,y,II, is: 
 

, 0 , , ,( ) = ·( · + · + · · )eff, y II a y a s y s e,II cm y cEI K E I E I K E I  
 

,( ) = 0,9·(21000·4259 + 21000·954 + 0,5·1238·15122)eff, y IIEI  
 

6
,( ) = 106,95·10eff, y IIEI  kNcm2 

 
The elastic critical force, Ncr,y,eff, for the pin-ended column, is: 
 

2
,

, 2
,

( )
= eff, y II

cr, y eff
e y

E
N

L
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6 2

, , 2

106,95·10 ·= = 6597
400cr eff yN  kN 

 
To check whether the effects of second-order analysis can be neglected, the value 
of cr must be higher than 10: 
 

, , 6597= = = 5,7 < 10
1152

cr eff y
cr

Ed

N
N

 

 
The value of cr is less than 10, so the second-order effects must be considered. 
 
Remark: 
 
Second-order effects are included by using a first-order analysis modified with 
appropriate amplification according to clause 6.7.3.4(5), EN 1994-1-1. 

11.1.3.2 Bending moments about the y-y axis 

According to clause 6.7.3.4(5), EN 1994-1-1, the second-order effects can be 
calculated by multiplying the greatest first-order design bending moments by a 
factor k. 
 
Thus, the second-order effects may be considered according to the expression: 
 

, , , ,= ·y Ed II y Ed IM M k  
 
The factor k is given by: 
 

, ,

=
1 – /Ed cr y eff

k
N N

 1,0 

 
where: 
 
 is an equivalent moment factor given in Table 6.4, EN 1994-1-1, 

Ncr,y,eff is the critical axial force, about the y-y axis, obtained with the effective 
flexural stiffness (EI)eff,y,II and with the effective length taken as the 
physical length of the column. 

 
The design bending moment from the member imperfections is determined by 
the following expression: 
 

, , 0,= ·y Ed I Ed zM N e  
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where: 
 
NEd is the design value of the axial force,  
e0,z is the equivalent member imperfection, which is given in Table 6.5, EN 

1994-1-1, depending on the buckling curve. 
 
Remark: 
 
The reinforcement ratio s is 4,4 %. Therefore from Table 6.5, EN 1994-1-1, for 
3%< s  6%, the buckling curve b should be used. 

 
Therefore, for the buckling curve b, the equivalent member imperfection is: 
 

0, =
200z

Le  

 

0,
400= = 2,0
200ze  cm 

 
The design bending moments calculated according to first-order analysis are shown 
in Figure C4.16. 
 
The design values of bending moments are: 
 
The design bending moment at the top of the column is: 
 

, = 46y EdM  kNm 
 
The design bending moment at the bottom of the column is: 
 

, = 0y EdM  kNm 
 
The design bending moment due to imperfection is: 
 

, , 0,= · = 1152·0,02 = 23y Ed imp Ed zM N e  kNm 
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Figure C4.16 First-order bending moments, design values 
 
Remark: 
 
The factor  from Table 6.4, EN 1994-1-1, allows for the shape of the bending 
moment diagram. When bending is caused by lateral loading on the column, the 
value of factor  is 1,0. For a column subjected to end moments, the factor  is 
calculated as: 
 

1 = 0,66 + 0,44·r  0,44 
 
where r is the ratio of the end-moments on the ends of the column ( 1  r  +1). 

 
Therefore, the two values of factor k must be calculated: 
 
- for the end moments, k1, 
- for the moment from the member imperfection, k2. 
 
Determination of factor k1 
 
The ratio of the end-moments on the ends of the column is: 
 

,

0 0= = = 0,0
46y Ed

r
M

 

 

My,Ed 
NEd 

L 
=

 4
,0

0 
m

 

e0,z 

46 kNm

23 kNm 

,y EdM , ,y Ed impM



518 C     Composite columns 
 

 

The equivalent moment factor  is: 
 

1 = 0,66 + 0,44·r  0,44 
 

1 = 0,66 + 0,44·0 = 0,66  
 
Therefore, the factor k1 is: 
 

1
1

Ed cr,eff,y

0,66= = = 0,80 < 1,0
1 – 1 – 1152 / 6597

k
N N

 

 
Remark: 
 
According to clause 6.7.3.4(5), EN 1994-1-1, the value of factor k must be 1,0 or 
higher. It is over-conservative to use when combining two sets of second-order 
effects. Therefore, the calculated value of 0,80 is adopted. 

 
Determination of factor k2 
 
For the bending moment from the member imperfection, according to Table 6.4, 
EN 1994-1-1, the equivalent moment factor  is: 
 

2 = 1,0  
 
Therefore, the factor k2 is: 
 

2
2

Ed cr,eff,y

1,0= = = 1,21 > 1,0
1 – 1 – 1152 / 6597

k
N N

 

 
The adopted value of the factor is: 
 
k2 = 1,21 
 
The design bending moment at mid-height, with second-order effects taken into 
account, is: 
 

, , , 1 , , 2= · + · = 46·0,80 + 23,0·1,21 = 65y Ed II y Ed y Ed impM M k M k  kNm 
 
The design bending moments calculated according to second-order analysis are 
shown in Figure C4.17. 
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Figure C4.17 Second-order bending moments about the y-y axis, design values  
 
The check is performed with the bending moment at mid-height: 
 

, , ,max= = 65y Ed II yM M  kNm 

11.1.3.3 Shear forces parallel to the z-z axis 

According to clause 6.7.3.4(5), EN 1994-1-1, second-order effects can be 
allowed for by multiplying the greatest first-order design bending moment by a 
factor k given by:  
 

,

=
1 – /Ed cr eff

k
N N

 1,0 

 
Accordingly, the approximate value of shear force can be obtained as: 
 

, = ·Ed II EdV V k  
 
In accordance with Figure C4.18, the first-order design shear force at the bottom of 
the column is: 

a) Second-order bending 
moments due to NG2,Ed and 
NQ2,Ed 

b) Imperfection 
moment increased 
by the second-order 
effects 

My,Ed,I

NEd 
L 

=
 4

,0
0 

m
 e0,z 

46 kNm
23,0 kNm 

0,66·46 

0,80·46 1,21·23,0 

+
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, 0,
,

4· · 46 4·1152·0,02= + = + = 11,5 + 23,0 = 34,5
4,0 4,0

y Ed Ed z
z Ed

M N e
V

L L
 kN 

 
In accordance with Figure C4.18, the first-order design shear force at the top of the 
column is: 
 

, 0,
,

4· · 46 4·1152·0,02= – + = – + = –11,5 + 23,0 = 11,5
4,0 4,0

y Ed Ed z
z Ed

M N e
V

L L
 kN 

 
The diagram of shear forces, calculated by first-order analysis for bending moment 
and the equivalent lateral load due to imperfections, is shown in Figure C4.18. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C4.18 First-order design shear forces parallel to the z-z axis 
 
The factor k1 is: 
 

1
1

, ,

0,66= = = 0,80 < 1,0
1 – / 1 – 1152 / 6597Ed cr y eff

k
N N

 

 
The factor k2 is: 
 

2
2

, ,

1= = = 1,21 > 1,0
1 – / 1 – 1152 / 6597Ed cr y eff

k
N N

 

 

0,
2

8 Ed z·N ·e
L

NEd  

L 

e0,z 

My,Ed 

34,5 kN 

11,5 kN 

NEd 

My,Ed 

0,4 Ed zEd ·N ·eM
– +

L L

, 0,4Ed I Ed dM ·N ·e
+

L L
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Therefore, the maximum design shear force, calculated by approximative second-
order analysis, is: 
 

, 0,z
, , 1 2

4· ·
= · + ·y Ed Ed

z Ed II

M N e
V k k

L L
 

 

, ,
46 4·1152·0,02= 0,80· +1,21· = 9,2 + 27,9 = 37,1
4,0 4,0z Ed IIV  kN 

11.1.4 Check of the resistance of the member in combined compression and 
bending about the y-y axis 

It is necessary to satisfy the following condition: 
 

, ,

, , , ,

=
· ·

y Ed y Ed

y Rd M y dy pl y Rd

M M
M M

 1,0 

 
The coefficient M,y is taken as 0,9 for steel grades between S235 and S355. 
 
The design value of the maximum design bending moment by the approximative 
second-order analysis is: 
 

, , ,= = 65y Ed y Ed IIM M  kNm 
 
The design resistance moment My,Rd is (Figure C4.15): 
 

, , ,= · · = 0,9·0,83·158 = 118y Rd M dy pl y RdM M  kNm 
 
Condition: 
 

,

,

65= = 0,55
118

y Ed

y Rd

M
M

 1,0 

 
Since 0,55 < 1,0 , the condition is satisfied. 

11.1.5 Check of the plastic resistance to transverse shear parallel to the z-z 
axis 

In accordance with clause 6.7.3.2(4), EN 1994-1-1, for simplification VEd may be 
assumed to act on the structural steel section alone. According to clause 6.2.6(2), 
EN 1993-1-1, in the absence of torsion the design plastic shear resistance, 
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Vpl,z,a,Rd, is given by: 
 

,
, , ,

0

·( / 3)
= v z y

pl z a Rd
M

A f
V  

 
The shear area, Av,z, according to clause 6.2.6(3), EN1993-1-1, is calculated as: 
 

,

·
=

+
a

v z
A h

A
b h

 

 
where: 
 
Aa is the cross-sectional area of the rectangular hollow section, 
b is the width of the rectangular hollow section, 
h is the depth of the rectangular hollow section. 
 
According to clause 6.2.2.4(1), EN 1994-1-1, where the shear force is less than 
half the plastic shear resistance its effect on the resistance moment can be 
neglected. Therefore, the condition is: 
 

, , , ,< 0,5·z Ed pl z a RdV V  
 
The design value of second-order shear force is: 
 

, , ,= = 37,1z Ed z Ed IIV V  kNm 
 
The shear area, Av,z, is: 
 

,
47,8·26,0= = 31,07

14,0 + 26,0v zA  cm2 

 
The design plastic shear resistance, Vpl,z,Rd, is: 
 

, , ,
31,07·(23,5 / 3)= = 422

1,0pl a z RdV  kN 

 
Check: 
 

, , , ,= 37,1 < 0,5· = 0,5·422 = 211z Ed pl a z RdV V  kN 
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The condition is satisfied and no reduction in the resistance moment is needed. 

11.2 Resistance of member about the z-z axis taking into account the 
equivalent member imperfection e0,y 

11.2.1 General 

Remark: 
 
Since that the column is subjected to bending about the y-y axis, initially given 
moment My,Ed, and the bending about the z-z axis, the bending moment due to 
imperfection NEd·e0, it is necessary to check the column resistance in combined 
compression and biaxial bending. 

 
In accordance with clause 6.7.3.7, EN 1994-1-1, for combined compression and 
biaxial bending the following conditions should be satisfied: 
 
Check for bending about the y-y axis: 
 

, ,

, , , , ,

=
·

y Ed y Ed

pl y N Rd dy pl y Rd

M M
M M My  

 
The condition can be written in the following form: 
 

,

, , ,· ·
y Ed

M y dy pl y Rd

M
M

 1,0 

 
Check for bending about the z-z axis: 
 

, ,

, , , , ,

=
·

z Ed z Ed

pl z N Rd dz pl z Rd

M M
M M ,M z  

 
The condition can be written in the following form: 
 

,

, , ,· ·
z Ed

M z dz pl z Rd

M
M

 1,0 

 
Interaction of My Mz N: 
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, ,

, , , , , ,

+y Ed z Ed

pl y N Rd pl z N Rd

M M
M M

 1,0 

 
The condition can be written in the following form: 
 

, ,

, , , ,

+
· ·

y Ed z Ed

dy pl y Rd dz pl z Rd

M M
M M

 1,0 

 
These interaction expressions are shown in Figure C4.19 by means of interaction 
curves. 
 
The check for bending about the y-y axis is carried out taking into account 
initially given bending moment My,Ed without the equivalent member 
imperfection e0,z, but including the second-order effects.  
 
The check for bending about the z-z axis is carried out taking into account the 
bending moment Mz,Ed (= NEd · e0,y) due to the equivalent member imperfection 
e0,y, including the second-order effects. 
 
Since the column is subjected to bending about the y-y axis and bending about 
the z-z axis, it is necessary to check the column resistance in combined 
compression and biaxial bending, the interaction of My Mz N. 
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a) Section resistance interaction curve – non-failure axis (y-y axis). Neglect 

imperfections.  
b) Section resistance interaction curve – axis of the anticipated failure (z-z 

axis). Consider imperfections. 
c) Biaxial resistance moment of the column section under axial compression 

NEd. 
 
Figure C4.19 Column resistance in combined compression and biaxial bending 

 – assumed bending failure about the z-z axis 
 
Calculation of the bending moment about the z-z axis, Mz,Ed = Mz,Ed,II, taking into 
account the equivalent member imperfection e0,y, and including the second-order 
effects, is shown in Figure C4.20. 
 

b) 

1,0

dz 1,0 

N/Npl,Rd 

Mz,Ed/Mpl,z,Rd 

0

NEd/Npl,Rd

0,9 dz 

a)

1,0 

dy 1,0 

N/Npl,Rd 

My,Ed /Mpl,y,Rd

0 

NEd/Npl,Rd 
0,9 dy 

c) 

0

dy 

0,9 dz 

0,9 dy 

Mz,Ed/Mpl,z,Rd 

My,Ed/Mpl,y,Rd 

dz 

Design 
moment 

 

 ,

, ,·
z Ed

dz pl z Rd

M
M ,M z  

, ,

, , , ,

+
· ·

y Ed z Ed

dy pl y Rd dz pl z Rd

M M
M M

 1,0 

,

, ,·
y Ed

dy pl y Rd

M
M ,My 
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Figure C4.20 Equivalent member imperfection e0,y about the z-z axis 

11.2.2 Resistance of the cross-section in combined compression and bending 
about the z-z axis 

Remark: 
 
In order to determine the resistance of the composite cross-section to combined 
compression and uniaxial bending, it is necessary to produce an axial load – 
bending moment (N–M) interaction curve. As a simplification, the interaction 
curve is replaced by an interaction polygon ACDB, clause 6.7.3.2 (5), EN 1994-
1-1. 
 
The N–M interaction polygon ACDB is shown in Figure 6.19, EN 1994-1-1. For 
concrete-filled hollow sections, the interaction polygon of AECDB, (shown in 
Figure C4.9, may be preferred to the interaction polygon of ACDB shown in 
Figure 6.19, EN 1994-1-1. The introduction of point E gives a more economical 
design, especially for columns with high axial force and low end moments. For 
better polygonal approximation to the interaction curve, the position of point E 
may be chosen to be closer to point A rather than being mid-way between points 
A and C. The introduction of the point E is not recommended in the case of steel 
section with low value of the shape factor pl (= Wpl/Wel), I-section in bending 
about the y-y axis. 
 

z 

 y

NG1,k

NG2,k

NQ1,k NQ2,k

0,18 m 

Section A-A

Section B-B

e0,y 
z 

 y

NG1,k
 + NG2,k

 

NQ1,k
 + NQ2,k

 

L 

e0,y 

A A

B B
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The modified version of the interaction polygon AECDB, which refers to the 
composite column with concrete-filled rectangular hollow section, is shown in 
Figure C4.21. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C4.21 N M interaction polygon and corresponding stress distributions 
 
In order to produce the N–M interaction polygon, the cross-sectional capacities 
at points A to D should be determined assuming the stress distributions 
indicated, see Figure C4.21. 
 
It should be noted that EN 1994-1-1 does not provide expressions for concrete-
filled rectangular cross-sections. 

 
Point A 
 
 
 
 
 
 
 
 

Figure C4.22 Stress distributions for point A on the interaction polygon 
 
At point A, only the design plastic resistance of the cross-section is taken into 
account: 

t 

b 

h fcd  fyd 

Npl,Rd 

 fsd 

 z 

 y

Interaction 
polygon D

E

 fcd  fyd 
Mmax,z,Rd 

Npm,Rd/2 

,
E
pl,z RdM

E
pl,RdN  

hn hEhE

 fcd  fyd 

 fsd 

 fsd 

B  fcd  fyd 

hn 2hn

Mpl,Rd 
 fsd 

A  fcd  fyd Npl,Rd 
 fsd 

C  fcd  fyd 
hn 2hnhn

Mpl,z,Rd 

Npm,Rd 

 fsd N M interaction curve

 Mpl,z,Rd

Npm,Rd 

Npl,Rd 

N 

M

 A 

 B

 C

 D1/2 Npm,Rd 

 Mmax,z,Rd

 E
E
pl,RdN  

,
E
pl,z RdM
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, = · + 0,85· · + ·pl Rd a yd c cd s sdN A f A f A f  
 
Remark: 
 
For concrete filled hollow sections, the coefficient of 0,85 can be replaced with a 
value of 1,0 due to better curing conditions. 

 
The design plastic resistance of the composite cross-section to compression, Npl,Rd, 
is calculated according to the corrected expression: 
 

, = · + · + ·pl Rd a yd c cd s sdN A f A f A f  
 
The design plastic resistance of the composite cross-section to compression is: 
 

, = 47,8·23,5 + 302,6·2,67 +12,6·43,5pl RdN  
 

, = 1123,3 + 807,9 +548,1 = 2479pl RdN  kN 
 
Point D 
 
 
 
 
 
 
 
 
 

Figure C4.23 Stress distributions for point D on the interaction polygon 
 
The maximum design plastic resistance moment is determined by the following 
expression: 
 

max, , , , , , , , , , ,= + +z Rd pl z a Rd pl z c Rd pl z s RdM M M M  
 
The maximum design plastic resistance moment, Mmax,z,Rd, at point D is: 
 

max, , , , , , , ,= · + 0,5· · + ·z Rd pl z a yd pl z c cd pl z s sdM W f W f W f  
 

–2
max, , = (263·23,5 + 0,5·967,4·2,67 + 36,5·43,5)·10z RdM  

 

fcd  fyd  fsd 

 z 

 y
t 

b 

h

 Npm,Rd/2 

Mmax,z,Rd 
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max, , = 91,0z RdM  kNm 
 
The design value of the resistance of the concrete to compression, Npm,Rd, is: 
 

, = · = 302,6·2,67 = 808pm Rd c cdN A f  kN 
 
The design axial force at the point of maximum design plastic resistance moment is 
0,5·Npm,Rd, and therefore is: 
 

,0,5· = 0,5·808 = 404pm RdN  kN 
 
Point C 
 
 
 
 
 
 
 
 
 

Figure C4.24 Stress distributions for point C on the interaction polygon 
 
Calculation of the design plastic resistance moment of the composite section, 
Mpl,z,Rd, is carried out as shown below. 
 
Determination of the position of the neutral axis depth, hn, when axial force is zero: 
 

, ,– ·(2· – )
=

2· · + 4· ·(2· – )
pm Rd s n sd cd

n
cd yd cd

N A f f
h

h f t f f
 

 
where As,n is the reinforcement area within hn. Because it is at this point unknown, 
assumed to be (initial guess): 
 

, = 0s nA  cm2 
 
Thus, for the case when the axial force is equal to zero, hn is: 
 

808 – 0·(2·43,5 – 2,67)= = 3,22
2·26,0·2,67 + 4·0,63·(2·23,5 – 2,67)nh  cm 

2hn
hn

fcd  fyd  fsd 

 z 

 y
t 

b 

h

 Npm,Rd 

Mpl,z,Rd 
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Since in this region there is reinforcement, the assumption is not correct. 
Accordingly, the neutral axis depth, hn, is given by: 
 

, ,– 0,5· ·(2· – )
=

2· · + 4· ·(2· – )
pm Rd s n sd cd

n
cd yd cd

N A f f
h

h f t f f
 

 
808,0 – 0,5·12,6·(2·43,5 – 2,67)= =1,1

2·26,0·2,67 + 4·0,63·(2·23,5 – 2,67)nh  cm 

 
Plastic section moduli in region 2·hn 
 
Reinforcement 
 
Wpl,z,s,n = 0 cm3 
 
Concrete 
 

2 2

, , ,
( – 2· )·(2 ) (26,0 – 2·0,63)·2,2= = = 29,9

4 4
n

pl z c n
h t h

W  cm3 

 
Structural steel 
 

2 2

, , ,
2· ·(2 ) 2·0,63·2,2= = = 1,5

4 4
n

pl z a n
t h

W  cm3 

 
The design plastic resistance moment of the composite section, , ,pl z RdM , is 
calculated as follows: 
 

, , max, , , ,= –pl z Rd z Rd n z RdM M M  
 
where: 
 

, , ,
, , , , , , , ,

·
= · + · +

2
pl z c n cd

n z Rd pl z a n yd pl z s n sd

W f
M W f W f  

 
–2

, ,
29,9·2,67= (1,5·23,5 + 0·43,5 + )·10 = 0,8

2n z RdM  kNm 

 
The design plastic resistance moment of the composite section, , ,pl z RdM , is: 
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, , = 91,0 – 0,8 = 90pl z RdM  kNm 
 
Point B 
 
 
 
 
 
 
 
 
 

Figure C4.25 Stress distributions for point B on the interaction polygon 
 
The design value of Mpl,z,Rd has previously been calculated in order to define point 
C on the N–M interaction polygon: 
 

, , = 90pl z RdM  kNm 
 
Point E 
 
Remark: 
 
If the enhancement of the resistance at point E is little more than that given by 
direct linear interpolation between A and C, the calculation can be omitted. 

 
For the calculation of the design resistances at point E, the neutral axis is located 
on the outer border of reinforcement bars, see Figure C4.26. 
 
 
 
 
 
 
 
 
 

Figure C4.26 Stress distributions for point E on the interaction polygon 
 
The distance between the centroidal axis of the composite section and the outer 
border of reinforcement bars, hE, is obtained as: 
 

2hn
hn

fcd  fyd  fsd 

 z 

 y
t 

b 

h

Mpl,z,Rd 

fcd  fyd  fsd 

 z 

 y
t 

b 

h

 Npm,Rd 

Mpl,z,Rd 
 y
hn

hE
hE 
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2,0= + = 2,9 + = 3,9
2 2
bar

E
d

h y  cm 

 
In accordance with Figure C4.26, Eh  is obtained as: 
 

= – = 3,9 – 1,1 = 2,8E E nh h h  cm 
 
In the region of Eh , there is reinforcement (2  20) of cross-sectional area As,n = 
6,28 cm2. The stresses in the region = –E E nh h h  provide the force ,

E
pl RdN  which 

is given by: 
 

, ,= · · + 2· · ·(2· – ) + ·(2· – )E
pl Rd E cd E yd cd s n sd cdN h h f t h f f A f f  

 
The force ,

E
pl RdN  is: 

 
, = 26,0·2,8·2,67 + 2·0,63·2,8·(2·23,5 – 2,67) + 6,28·(2·43,5 – 2,67)E

pl RdN  
 

, = 880E
pl RdN  kN 

 
Therefore, the design resistance to axial force at point E is: 
 

, , ,= + = 880 + 808 = 1688E E
pl Rd pl Rd pm RdN N N  kN 

 
Plastic section moduli in region 2·hE 
 
Reinforcement 
 

, , , = · = 12,6·2,9 = 36,5pl z s n s iW A y  cm3 
 
Concrete 
 

2

, , , , , ,
( – 2· )·(2· )

= –
4

E
pl z c n pl z s n

h t h
W W  

 
2

, , ,
(26,0 – 2·0,63)·(2·3,9)= – 36,5

4pl z c nW  

 
, , , = 339,8pl z c nW  cm3. 
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Structural steel 
 

2 2

, , ,
2· ·(2· ) 2·0,63·(2·3,9)= =

4 4
E

pl z a n
t h

W  

 
, , , = 19,2pl z a nW  cm3 

 
The design plastic resistance moment of the composite section, , ,

E
pl z RdM , is 

calculated as follows: 
 

, , max, , , ,= –E E
pl z Rd z Rd n z RdM M M  

 
where: 
 

, , ,
, , , , , , , ,

·
= · + · +

2
pl z c n cdE

n z Rd pl z a n yd pl z s n sd

W f
M W f W f  

 
–2

, ,
339,8·2,67= (19,2·23,5 + 36,5·43,5 + )·10 = 24,9

2
E
n z RdM  kNm 

 
The design plastic resistance moment of the composite section, , ,

E
pl z RdM , is: 

 
, , max, , , ,= – = 91,0 – 24,9 = 66E E

pl z Rd z Rd n z RdM M M  kNm 
 
Previously calculated values at points A to E should be plotted to produce the N–M 
interaction polygon (Figure 6.19, EN 1994-1-1). With the obtained value at point E 
a better polygonal approximation to the interaction curve is achieved. 
According to the interaction polygon AECDB, Figure C4.27, the following value 
Mpl,z,N,Rd is obtained: 
 

, , , , , ,= +E
pl z N Rd pl z Rd z RdM M M  

 
where: 
 

, , , , , ,( – ) : = ( – ) : ( – )E E E
pl z Rd pl z Rd z Rd Rd pm Rd Rd EdM M M N N N N  

 

, , , , ,
,

–
= ·( – )

–

E
ERd Ed

z Rd pl z Rd pl z RdE
Rd pm Rd

N N
M M M

N N
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,
1688 – 1152= ·(90 – 66) = 14,6
1688 – 808z RdM  kNm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C4.27 N–M interaction polygon 
 
Therefore, the value Mpl,z,N,Rd is: 
 

, , , = 66 +14,6 = 81pl z N RdM  kNm 
 
The value of dz is: 
 

, , ,

, ,

81= = = 0,90 < 1,0
90

pl z N Rd
dz

pl z Rd

M
M

 

 
The check is carried out by the factor = 0,90dz . 

11.2.3 Calculation of action effects about the y-y axis 

In accordance with the calculation given in Section 11.1.3.2, the value of the 
design bending moment at mid-height of the column, excluding the equivalent 
member imperfection, e0,z, but including the second-order effects, is: 
 

, , ,= · = 46,0·0,80 = 37y Ed II y EdM M k  kNm 

, = 90pl,z RdM  kNm 

Npl,Rd = 2479 kN

N 

M 

 A 

 B 

 C 

 D 
 max , = 91,z RdM  kNm 

= 1688E
RdN  kN 

, = 66E
pl,z RdM  kNm 

 , = 90pl,z RdM  kNm = 808pm,RdN  kN 

1/ 2 = 404pm,RdN  kN 

0 
0 

= 1152EdN  kN 
dz Mpl,z,Rd

Mpl,z,N,Rd = 81 kNm 

 E 
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11.2.4 Calculation of action effects about the z-z axis 

11.2.4.1 General 

According to clause 6.7.3.4 (3), EN 1994-1-1, which refers to clause 5.2.1(3), 
EN 1994-1-1, second-order effects can therefore be neglected if the load factor 

cr, which is the ratio between the elastic critical load and the corresponding 
applied loading, for elastic instability of the member exceeds 10. 
 
To calculate cr, the ends of the column are assumed to be pinned, and cr is 
found using the Euler formula for the elastic critical force Ncr,z,eff. 
 

2
,

, 2
,

( )
= eff,z II

cr,z eff
e z

E
N

L
   Le,z = L 

 
The design value of the effective flexural stiffness (EI)eff,z,II, used to determine 
the internal forces and moments by second-order analysis, according to clause 
6.7.3.4(2), EN 1994-1-1, is defined by the following expression: 
 

, 0 , , ,( ) = ·( · + · + · · )eff,z II a z a s z s e,II cm z cEI K E I E I K E I  
 
where: 
 
Ke,II is a correction factor, which should be taken as 0,5, 
K0 is a calibration factor, which should be taken as 0,9. 

 
The value Ec,eff has been used in place of Ecm in the expression for (E  )eff,z,II in order 
to take into account the long-term effects, in the same way as calculated in Section 
7. Accordingly, the value of Ec,eff is: 
 

, = 1238c effE  kN/cm2 
 
The design value of the effective flexural stiffness (EI)eff,z,II, is: 
 

, 0 , , , ,( ) = ·( · + · + · · )eff,z II a z a s z s e,II c eff z cEI K E I E I K E I  
 

,( ) = 0,9·(21000·1634 + 21000·106 + 0,5·1238·4157)eff,z IIEI  
 

6
, ,( ) = 35,20·10eff z IIEI  kNcm2 

 
The elastic critical force, Ncr,z,eff, for the pin-ended column, is: 
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2
,

, 2
,

( )
= eff,z II

cr,z eff
e z

E
N

L
 

 
6 2

, , 2

35,20·10 ·= = 2171
400cr z effN  kN 

 
To check whether the effects of second-order analysis can be neglected, the value 
of cr must be higher than 10: 
 

, , 2171= = = 1,9 < 10
1152

cr z eff
cr

Ed

N
N

 

 
The value of cr is less than 10, so second-order effects must be considered. 

11.2.4.2 Bending moments about the z-z axis 

According to clause 6.7.3.4(5), EN 1994-1-1, the second-order effects can be 
calculated by multiplying the greatest first-order design bending moments by a 
factor k. 
 
Thus, the second-order effects may be considered according to the expression: 
 

, , , ,= ·z Ed II z Ed IM M k  
 
The factor k is given by: 
 

, ,

=
1 – /Ed cr z eff

k
N N

 1,0 

 
where: 
 
 is an equivalent moment factor given in Table 6.4, EN 1994-1-1, 

Ncr,z,eff is the critical axial force, about the z-z axis, obtained with the effective 
flexural stiffness (EI)eff,z,II and with the effective length taken as the 
physical length of the column. 

 
The design bending moment from the member imperfections is determined by 
the following expression: 
 

, , 0,= ·z Ed imp Ed yM N e  
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where: 
 
NEd is the design value of the axial force,  
e0,y is the equivalent member imperfection which is given in Table 6.5, EN 

1994-1-1, depending on the buckling curve. 
 
Remark: 
 
The reinforcement ratio s is 4,4 %. Therefore from Table 6.5, EN 1994-1-1, for 
3%< s  6%,the buckling curve b should be used. 

 
Therefore, for the buckling curve b, the equivalent member imperfection is: 
 

0, =
200y
Le  

 

0,
400= = 2,0
200ye  cm 

 
The design bending moments calculated according to first-order analysis are shown 
in Figure C4.28. 
 
The design values of bending moments are as folows: 
 
The design bending moment at the top of the column is: 
 

, = 0z EdM  kNm 
 
The design bending moment at the bottom of the column is: 
 

, = 0z EdM  kNm 
 
The design bending moment due to imperfection is: 
 

, , 0,= · = 1152·0,02 = 23,04z Ed imp Ed yM N e  kNm 
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Figure C4.28 First-order bending moments, design values 
 

Remark: 
 
The factor  from Table 6.4, EN 1994-1-1, allows for the shape of the bending 
moment diagram. When bending is caused by lateral loading on the column, the 
value of factor  is 1,0. For a column subjected to end moments, the factor  is 
calculated as: 
 

1 = 0,66 + 0,44·r  0,44 
 
where r is the ratio of the end-moments on the ends of the column ( 1  r  +1). 

 
For the moment from the member imperfection, the factor k is given by: 
 

=
1 – Ed cr,z,eff

k
N N

 

 
where  is the equivalent moment factor. 
 
The equivalent moment factor  is: 
 

= 1,0  
 
Therefore, the factor k is: 

NEd 

L 
=

 4
,0

0 
m

 
e0,y 

23,04 kNm

, ,z Ed impM
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1,0= = = 2,13 > 1,0
1 – 1 – 1152 / 2171Ed cr,z,eff

k
N N

 

 
The design bending moment at mid-height, with second-order effects taken into 
account, is: 
 

, , , ,= · = 23,04·2,13 = 49z Ed II z Ed impM M k  kNm 
 
The design bending moments calculated according to second-order analysis are 
shown in Figure C4.29. 
 
The check is performed with the bending moment at mid-height: 
 

, , ,max= = 49z Ed II zM M  kNm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C4.29 Second-order bending moments about the z-z axis, design values 

11.2.4.3 Shear forces parallel to the y-y axis 

According to clause 6.7.3.4(5), EN 1994-1-1, second-order effects can be 
allowed for by multiplying the greatest first-order design bending moment by a 
factor k given by: 

Imperfection moment 
increased by the second-

order effects

NEd 

L 
=

 4
,0

0 
m

 

e0,y 

23,04 kNm

2,13·23,04 
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,

=
1 – /Ed cr eff

k
N N

 1,0 

 
Accordingly, the approximate value of the shear force can be obtained as: 
 

, = ·Ed II EdV V k  
 
In accordance with Figure C4.30, the first-order design shear force at the bottom of 
the column is: 
 

0,
,

4· · 4·1152·0,02= = = 23,04
4,0

Ed y
y Ed

N e
V

L
 kN 

 
In accordance with Figure C4.30, the first-order design shear force at the top of the 
column is: 
 

0,
,

4· · 4·1152·0,02= = = 23,04
4,0

Ed y
y Ed

N e
V

L
 kN 

 
The diagram of the shear forces, calculated by first-order analysis for the 
equivalent lateral load due to imperfections, is shown in Figure C4.30. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C4.30 First-order design shear forces parallel to the y-y axis 
 

0,4· ·Ed yN e
L

0,
2

8· ·Ed yN e
L

23,04 kN

23,04 kN 

NEd NEd  

L 

e0,y 

0,4· ·Ed yN e
L
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The factor k is: 
 

, ,

1,0= = = 2,13 > 1,0
1 – / 1 – 1152 / 2171Ed cr eff z

k
N N

 

 
Therefore, the maximum design shear force, calculated by approximative second-
order analysis, is: 
 

, , ,= · = 23,04·2,13 = 49,1y Ed II y EdV V k  kN 

11.2.5 Check of the resistance of the member in combined compression and 
bending about the z-z axis 

It is necessary to satisfy the following conditions: 
 

,

, , ,· ·
y Ed

M y dy pl y Rd

M
M

 1,0 
  

(My,Ed – neglect imperfections but use second-order 
analysis) 

 
,

, , ,· ·
z Ed

M z dz pl z Rd

M
M

 1,0 
  

(Mz,Ed – consider imperfections and second-order 
analysis) 

 

, ,

, , , ,

+
· ·

y Ed z Ed

dy pl y Rd dz pl z Rd

M M
M M

 1,0  (Interaction of My,Ed and Mz,Ed) 

 
Substituting previously calculated values gives: 
 

37 = 0,31 < 1,0
0,9·0,83·158

 

 
49 = 0,67 < 1,0

0,9·0,90·90
 

 
37 49+ = 0,28 + 0,60 = 0,88 < 1,0

0,83·158 0,90·90
 

 
Therefore, the resistance of the composite column to biaxial bending, taking into 
account the design axial force NEd = 1152 kN, is adequate. 
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11.2.6 Check of the plastic resistance to transverse shear parallel to the y-y 
axis 

In accordance with clause 6.7.3.2(4), EN 1994-1-1, for simplification VEd may be 
assumed to act on the structural steel section alone. According to clause 6.2.6(2), 
EN 1993-1-1, in the absence of torsion the design plastic shear resistance, 
Vpl,y,a,Rd, is given by: 
 

,
, , ,

0

·( / 3)
= v y y

pl y a Rd
M

A f
V  

 
The shear area, Av,y, according to clause 6.2.6(3), EN1993-1-1, is calculated as: 
 

,
·

=
+
a

v y
A b

A
b h

 

 
where: 
 
Aa is the cross-sectional area of the rectangular hollow section, 
b is the width of the rectangular hollow section, 
h is the depth of the rectangular hollow section. 
 
According to clause 6.2.2.4(1), EN 1994-1-1, where the shear force is less than 
half the plastic shear resistance, its effect on the resistance moment can be 
neglected. Therefore, the condition is: 
 

y, ,y, ,< 0,5·Ed pl a RdV V  
 
The design value of the second-order shear force is: 
 

, , ,= = 49,1y Ed y Ed IIV V  kN 
 
The shear area, Av,y, is: 
 

,
47,8·14,0= = 16,7

14,0 + 26,0v yA  cm2 

 
The design plastic shear resistance, Vpl,a,y,Rd, is: 
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,
, , ,

0

·( / 3)
= v y y

pl y a Rd
M

A f
V  

 

, , ,
16,7·(23,5 / 3)= = 226

1,0pl a y RdV  kN 

 
Check: 
 

, , ,= 49,1 < 0,5· = 0,5·226 = 113Ed pl a z RdV V  kN 
 
The condition is satisfied and there is no reduction in the resistance moment. 

12. Commentary 

We have considered the concrete-filled tube of rectangular hollow section in 
combined compression and uniaxial bending. The member imperfections have 
been neglected in the global analysis. Therefore, it is necessary to include them 
in the analysis of the column. According to clause 6.7.3.7(1), EN 1994-1-1, 
imperfections should be considered only in the plane in which failure is expected 
to occur. If it is not obvious which plane is the more critical, checks should be 
made for both planes. This means that the verification of the composite column 
should be performed as for the column in compression and biaxial bending 
because the equivalent member imperfection e0,y causes the bending moment 
Mz,Ed. Accordingly, the following checks are needed: 
 
a) The verification of the column resistance in axial compression only is carried 

out as the preliminary check. Since = 1,10 > = 0,63z y , the buckling 
resistance about the z-z axis is governed. The check of the composite column 
subjected to axial compression is satisfied. It is not necessary to select the 
stronger cross-section. 

 
The utilization is 88%. 
 
b) Check for bending about the y-y axis: The next step is to carry out the check 

of the column resistance in combined compression and uniaxial bending. The 
equivalent member imperfection e0,z is taken into account, which is in the 
same plane as the initial moment. In addition it was found that the second-
order effects must be allowed for. The final step is to check that the cross-
section can resist My,Ed (consider imperfections and second-order analysis) 
with compression NEd. 

 
The utilization is 55%. 
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c) Check for bending about the z-z axis: Finally, the check of the column 
resistance in combined compression and biaxial bending is carried out. The 
design bending moment about the y-y axis, My,Ed, is calculated neglecting the 
equivalent member imperfection. About the z-z axis, the design bending 
moment due to the equivalent member imperfection Mz,Ed,(=NEd·e0,y) is taken 
into account. In addition, it was found that the second-order effects must be 
allowed for. The final step is to check that the cross-section can resist My,Ed 
(neglect imperfections but use second-order analysis) and Mz,Ed (consider 
imperfections and second-order analysis) with compression NEd.  

 
The utilization is: 
 
31% (My,Ed neglect imperfections but use second-order analysis), 
67% (Mz,Ed consider imperfections and second-order analysis), 
88% (interaction of My,Ed and Mz,Ed). 
 
Remark: 
 
According to clause 6.7.3.7(1), EN 1994-1-1, imperfections should be 
considered only in the plane in which failure is expected to occur, i.e. the 
bending moment NEd·e0 is included only for this plane. If it is not obvious, 
checks should be made for both planes.  
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C5 Composite column with partially concrete-encased H-
section subject to axial compression and uniaxial 
bending 

1. Purpose of example 

This example demonstrates the design of a composite column with partially 
concrete-encased H-section subject to axial compressive load and bending moment. 
In order to ensure adequate force transfer between the steel and the concrete, stud 
connectors and reinforcement are provided. The design load for the considered 
column is made up of the variable and permanent load on the floor area 
immediately over the column, NG2,k and NQ2,k, and the load transmitted by the 
columns above, NG1,k and NQ1,k. The eccentricity moments due to the end reactions 
from the incoming beams are considered. The resistance of the cross-section to 
combined compression and bending is calculated in two ways: using the interaction 
curve of N–M (the exact approach) and using the interaction polygon of N–M (the 
approximate approach). Also, this example illustrates the design of load 
introduction for combined compression and bending. The forces at the interface are 
determined by elastic theory and by plastic theory. 

2. Static system, cross-section and design action effects 

Actions 
 
Permanent action 

1,
= 1800

kGN  kN 

 2,
= 300

kGN  kN 

 
Variable action 

1,
= 750

kQN  kN 

 2,
= 150

kQN  kN 
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Figure C5.1 Static system and cross-section (bending about the y-y axis) 
 
Design action effects 
 
Axial force: 
 

1, 2, 1, 2,
= ·( + ) + ·( + )

k k k kEd G G G Q Q QN N N N N  

 

1, 2, 1, 2,
= 1,35·( + ) +1,50·( + )

k k k kEd G G Q QN N N N N  

 
= 1,35·(1800 + 300) +1,50·(750 +150) = 2835 +1350 = 4185EdN  kN 

 
Bending moment at the top of the column: 
 

2, 2,, = · ·0,30 + · ·0,30
k ky Ed G G Q QM N N  

 

2, 2,, = 1,35· ·0,30 +1,50· ·0,30
k ky Ed G QM N N  

 
, = 1,35·300·0,30 +1,50·150·0,30 = 121,5 + 67,5 = 189,0y EdM  kNm 

 
 

Concrete C 40/50 

Reinforcement 4  25, S500 HEB 300, S355 
z 

 y

300 

30
0 

0,30 m

NG1,k
 NG2,k

 

NQ1,k
 NQ2,k

 

L 
=

 L
e =

 4
,5

0 
m

 

Le – buckling length 

19 

69 

50 

11 
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Denotation of imperfections 
 
Imperfection about the y-y axis is denoted by e0,z. Imperfection about the z-z axis is 
denoted by e0,y. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.2 Denotation of imperfections 

3. Properties of materials 

Concrete strength class: C 40/50 = 40,0ckf  N/mm2 

 40,0= = = 26,7
1,5

ck
cd

c

f
f  N/mm2 

 = 35000cmE  N/mm2 
 
Structural steel: S355 = 355ykf  N/mm2 

 355= = = 355
1,0

yk
yd

M

f
f  N/mm2 

 = 210000aE  N/mm2 
Reinforcement: ductility class B or C = 500skf  N/mm2 

 500,0= = = 435
1,15

sk
sd

s

f
f  N/mm2 

 = 210000sE  N/mm2 
 
Shear connectors: ductile headed studs  = 450uf  N/mm2 
 = 19d  mm      = 100sch  mm 

 100= = 5,26 > 4,0
19

sch
d

 

z 

 y

300 

30
0 

19 

11 

e0,z 

e0,y
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4. Geometrical properties of the cross-section 

4.1 Selection of the steel cross-section and reinforcement 

The cross-section HE 300 B is selected. The selected cross-section is shown in 
Figure C5.3. 
 
 
 
 
 
 
 
 
 
 
 
 

= 300h  mm 
= 300b  mm 

= 19ft  mm 

= 11wt  mm 
= 27r  mm 

= 149,1aA  cm2 

, = 25170y aI  cm4 

, = 8563z aI  cm4 

, , = 1869pl y aW  cm3 

, , = 870,1pl z aW  cm3 
Figure C5.3 Steel cross-section 

 
The cross-sectional area of the structural steel section HE 300 B is: 
 

= 149,1aA  cm2 
 
The cross-sectional area of the reinforcement with four bars of 25 mm diameter is: 
 
dbar = 25 mm, Abar = 4,91 cm2 
 

= 4· = 4·4,91 = 19,6s barA A  cm2 
 
The cross-sectional area of the concrete is: 
 

= · – –c a sA b h A A  
 

= 30·30 – 149 – 19,6cA  
 

= 731,4cA cm2 
 
The ratio of the reinforcement area to concrete area is: 
 

z 

 y 

b

h 
tf 

tw 

r
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19,6= = = 0,027
731,4

s
s

c

A
A

 = 2,7s % 

 
= 2,7% < 6%s  

 
The limit of 6% in clause 6.7.3.1 (1), EN 1994-1-1, on the reinforcement is 
satisfied. 
 
Remark: 
 
According to clause 6.7.3.1(3), EN 1994-1-1, the ratio of reinforcement area to 
concrete area, s, should not exceed 6%. 

4.2 Cross-sectional areas 

Structural steel 
 

= 149,1aA  cm2 
 
Reinforcement 
 

= 19,6sA  cm2 
 
Concrete 
 

= 731,4cA cm2 

4.3 Second moments of area 

Bending about the y-y axis 
 
Structural steel 
 

, = 25170y aI  cm4 
 
Reinforcement 
 

2
, = 4· ·8,1y s barI A  

 
2

, = 4·4,91·8,1y sI  
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2
, = 19,6·8,1 = 1289y sI  cm4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.4 Composite column cross-section 
 
Concrete 
 

3

, , ,
·= – –
12y c y a y s

b hI I I  

 
3

,
30·30= – 25170 – 1289

12y cI  

 
, = 41041y cI  cm4 

 
Bending about the z-z axis 
 
Structural steel 
 

, = 8563z aI  cm4 
 
Reinforcement 
 

2
, = 4· ·10,0z s barI A  

 
2

, = 4·4,91·10,0z sI  
 

2
, = 12,6·10,0 = 1964z sI  cm4 

 

300 

300

19 

69

50 

Concrete C40/50 HEB 300, S355 

y 

11 

Reinforcement 4  25, S500 
z 

81

100



Example C5 551 
 

 

Concrete 
 

3

, , ,
·= – –
12z c z a z s

h bI I I  

 
3

,
30·30= – 8563 – 1964

12z cI  

 
, = 56973z cI  cm4 

4.4 Plastic section moduli 

Bending about the y-y axis 
 
Structural steel 
 

, , = 1869pl y aW  cm3 
 
Reinforcement 
 

, , ,= · = 4·4,91·8,1 = 159pl y s s i ii
W A z  cm3 

 
Concrete 
 

2 2

, , , , , ,
· 30,0·30,0= – – = – 1869 – 159 = 4722
4 4pl y c pl y a pl y s

b hW W W  cm3 

 
Bending about the z-z axis 
 
Structural steel 
 

, , = 870,1pl z aW  cm3 
 
Reinforcement 
 

, , = · = 4·4,91·10,0 = 196pl z s si ii
W A z  cm3 

 
Concrete 
 

2 2

, , , , , ,
· 30,0·30,0= – – = – 870,1 – 196 = 5684
4 4pl z c pl z a pl z s

b hW W W  cm3 
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5. Steel contribution ratio 

According to clause 6.7.3.3(1), EN 1994-1-1, the steel contribution ratio, , is 
defined as: 
 

,

·
= a yd

pl Rd

A f
N

 

 
The term Aa·fyd is the contribution of the structural steel section to the plastic 
resistance of the composite section to axial force. The design plastic resistance of 
the composite section to axial force Npl,Rd is calculated according to clause 
6.7.3.2(1), EN 1994-1-1. 
 
According to 6.7.1(4), EN 1994-1-1, the steel contribution ratio, , must satisfy 
the following conditions: 
 
0,2    0,9 
 
If  is less than 0,2, the column should be designed as a reinforced concrete 
member according to EN 1992-1-1. If  is larger than 0,9, the concrete is ignored 
in the calculations, and the column is designed as a structural steel member 
according to EN 1993-1-1. 

 
The term Aa·fyd is the contribution of the structural steel section to the plastic 
resistance of composite section to axial force: 
 

· = 149,1·35,5 = 5293a ydA f kN 
 
The plastic resistance of the composite section to axial force is: 
 

, = · + 0,85· · + ·pl Rd a yd c cd s sdN A f A f A f  
 

, = 149,1·35,5 + 0,85·731,4·2,67 +19,6·43,5pl RdN  
 

, = 7806pl RdN  kN 
 
According to 6.7.1(4), EN 1994-1-1, the steel contribution ratio, , must satisfy the 
following conditions: 
 
0,2    0,9 
 
The steel contribution ratio, , is: 
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,

· 149,1·35,5= = = 0,68
7806

a yd

pl Rd

A f
N

 

 
Since the limits 0,2 <  = 0,68 < 0,9, are satisfied, the column can be classified as a 
composite column and the provisions of EN 1994-1-1 can be used for the 
dimensioning. 

6. Local buckling 

The web of the steel section is encased in reinforced concrete. The encasement 
prevents local buckling of the web and rotation of the flange at the junction with 
the web. Due to this favourable effect, the higher ratio b/tf can be used than for 
the web without the encasement. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.5 Partially concrete encased H-section 
 
According to Table 6.3, EN 1994-1-1, for partially concrete encased I- or H- 
sections, the effects of local buckling can be ignored if the following condition is 
satisfied, see Figure C5.5: 
 

235max( ) = 44·
f y

b
t f

 

 
For the selected cross-section, the maximum slenderness is: 
 

300max( ) = = 15,8
19,0f

b
t

 

 
The required condition is: 
 

b 

h

tf 

y 

tw 

z 
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235 23544· = 44· = 35,8
355yf

 

 
Since 15,8 < 35,8 , the condition is satisfied. The effect of local buckling can be 
neglected. 

7. Effective modulus of elasticity for concrete 

For long-term loading, the creep and shrinkage are taken into account in design 
by a reduced flexural stiffness of the composite cross-section. Due to the 
influence of long-term creep effects on the effective elastic stiffness, the 
modulus of elasticity of the concrete, Ecm, should be reduced to the value Ec,eff in 
accordance with following equation: 
 

,
,

=
1 + ( )·

cm
c eff

G Ed
t

Ed

E
E

N
N

 

where: 
 

0= ( , )t t t  is the creep coefficient, defining the creep between times t and t0, 
related to the elastic deformation at 28 days, 

=t ( ,t0) is the final creep coefficient, 
t is the age of the concrete at the time considered, 
t0 is the age of the concrete at loading, 
NEd is the axial design force, 
NG,Ed is the permanent part of the axial design force NEd, NG,Ed = G·NGk. 

 
For the calculation of the creep coefficient (t, t0), the following is valid: 
 
- the perimeter of that part which is exposed to drying, u, is determined in 

accordance with Figure C5.6. 
 
u 2· + 0,5·h b  
 
u 2·30 + 0,5·30 = 75  cm 
 
- the notional size of the cross-section, h0 
 

0
2· 2·731,4= = = 19,5

75
cA

h
u

 cm = 195  mm 

- 0 = 28t  days, 
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- inside conditions, the ambient relative humidity RH 50 %, 
- the concrete strength class C 40/50 
- the type of cement – cement class N, strength class 32,5 R. 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.6 Perimeter which is “exposed” to drying 
 
The final value of the creep coefficient ( , t0) is determined using the nomogram 
shown in Figure 3.1, EN 1992-1-1. The process of determining the final value of 
the creep coefficient, taking into account these assumptions, is given in Figure 
C5.7. 
 
The final value of the creep coefficient ( , t0), found from Figure C5.7, is: 
 

t = ( , t0) = 1,9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.7 Method for determining the creep coefficient 
 
The design force of the permanent load, NG,Ed, and the total design force, NEd, are: 
 

,1 ,2, = ·( + )
k kG Ed G G GN N N  

 

b 

h

z 

y 

u  2h + 0,5 b

t0 = 28 days 

h0 [mm]

t0 
R1 

2 
3 
5 

N S 

10 

20 
30 
50 

100 
( , t0) 

7,0 6,0 5,0 4,0 3,0 2,0 1,0 0 100 300 500 700 900 1100 1300 1500

C20/25 
C25/30 
C30/37 
C35/45 
C40/50 
C45/55 
C50/60 
C60/75 
C80/95 

C55/67 
C70/85 
C90/105 

h0 = 195 mm t = 1,9

1st step

2nd step

3th step

4th step

5th
 st

ep
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, = 1,35·(1800 + 300) = 2835G EdN  kN 
 

1, 2, 1, 2,
= 1,35·( + ) +1,50·( + )

k k k kEd G G Q QN N N N N  

 
= 1,35·(1800 + 300) +1,50·(750 +150) = 2835 +1350 = 4185EdN  kN 

 
Accordingly, the value of Ec,eff is: 
 

,
,

3500= = = 1530
28351 + ( )·1,901 + ( )·
4185

cm
c eff

G Ed
t

Ed

E
E

N
N

 kN/cm2 

 
Further calculation is performed with the effective modulus of elasticity of the 
concrete Ec,eff = 1530 kN/m2. 

8. Resistance of the cross-section to compressive axial force 

The design plastic resistance of composite cross-section to axial compressive force, 
Npl,Rd, is given by the sum of the design resistances of components as follows: 
 

, = · + 0,85· · + ·pl Rd a yd c cd s sdN A f A f A f  
 

, = 149,1·35,5 + 0,85·731,4·2,67 +19,6·43,5pl RdN  
 

, = 5293 +1660 + 853 = 7806pl RdN  kN 
 
The characteristic value of the plastic resistance of the composite cross-section to 
compressive axial force, Npl,Rk, is determined by the following expression: 
 

, = · + 0,85· · + ·pl Rk a yk c ck s skN A f A f A f  
 

, = 149,1·35,5 + 0,85·731,4·4,0 +19,6·50pl RkN  
 

, = 5293 + 2487 + 980 = 8760pl RkN  kN 
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9. Verification of the conditions for using simplified design 
method 

The cross-section of the composite column should be doubly symmetrical and 
uniform along the entire length of the column. 
 
This condition is satisfied. 
 
Relative slenderness 
 
To apply the simplified method it is necessary to satisfy the following conditions: 
 

y  2,0 
 

z  2,0 
 
About the y-y axis 
 
Relative slenderness, y , is determined by the following expression: 
 

,

,

= pl Rk
y

cr y

N
N

 

 
For the determination of the relative slenderness y  and the elastic critical force 
Ncr,y, it is necessary to calculate the value of the effective flexural stiffness of the 
cross-section of composite column, ,( )eff yEI , as: 
 

, , , , ,( ) = · + · + · ·eff y a y a s y s e c eff y cEI E I E I K E I  
 
With the correction factor Ke = 0,6, the value ,( )eff yEI is: 
 

,( ) = 21000·25170 + 21000·1289 + 0,6·1530·41041eff yEI  
 

6
,( ) = 593,31·10eff yEI kNcm2 

 
The elastic critical force, Ncr,y,, for the pin-ended column and the buckling length 
Le,y, is determined as: 
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2
,

, 2
,

( ) ·
= eff y

cr y
e y

EI
N

L
   , =e yL L  

 
6 2

, 2

593,31·10 ·= = 28917
450cr yN  kN 

 
The relative slenderness, y , is: 
 

8760= = 0,55
28917

y  

 
Accordingly = 0,55 < 2,0y , and the condition is satisfied. 
 
About the z-z axis 
 
Relative slenderness, z , is determined by the following expression: 
 

,

,

= pl Rk
z

cr z

N
N

 

 
For the determination of the relative slenderness z  and the elastic critical force 
Ncr,z, it is necessary to calculate the value of the effective flexural stiffness of the 
cross-section of the composite column ,( )eff zEI  according to the expression: 
 

, , , , ,( ) = · + · + · ·eff z a z a s z s e c eff z cEI E I E I K E I  
 
With the correction factor Ke = 0,6, the value ,( )eff zEI is: 
 

,( ) = 21000·8563 + 21000·1964 + 0,6·1530·56973eff zEI  
 

6
,( ) = 273,37·10eff zEI  kNcm2 

 
The elastic critical force, Ncr,z, for the pin-ended column and the buckling length 
Le,z, is determined as: 
 

2
,

, 2
,

( ) ·
= eff z

cr z
e z

EI
N

L
   , =e zL L  
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6 2

, 2

273,37·10 ·= = 13324
450cr zN  kN 

 
The relative slenderness, z , is: 
 

8760= = 0,81
13324

z  

 
Accordingly = 0,81 < 2,0z , and the condition is satisfied. 
 
The maximum permitted cross-sectional area of the longitudinal 
reinforcement 
 
The maximum cross-sectional area of the longitudinal reinforcement As,max that can 
be used in the calculation should not exceed 6% of the concrete area. This 
condition is satisfied, see Section 4.1. 
 
The ratio of the depth to the width 
 
The ratio of the depth to the width of the composite cross-section should be within 
the following limits: 
 

0,2 h
b

 5,0 

 
30,0= = 1,0
30,0

h
b

 

 

0,2 < = 1,0 < 5,0h
b

, the condition is satisfied 

 
Remark: 
 
All the conditions from clause 6.7.3.1, EN 1994-1-1, are satisfied, so that allows 
the use of the simplified design method for composite columns. 

10. Resistance of the member in axial compression 

Remark: 
 
Although the column is subjected to combined compression and bending, the 
check based on buckling curves is useful as the preliminary check for this 
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column. If the resistance to axial compressive force is not sufficient, the 
considered column is inadequate and it is necessary to select the stronger cross-
section. 

 
The resistance of the member subjected only to axial compression can be 
checked by the second-order analysis according to clause 6.7.3.5, EN 1994-1-1, 
so as to take into account member imperfections. As a simplification in the case 
of the member subjected only to axial compression, the design value of the axial 
force NEd should satisfy the check based on European buckling curves, which 
can be written in the following format: 
 

,·
Ed

pl Rd

N
N

 1,0 

 
The reduction factor  is given by: 
 

2 2

1=
+ –

, but   1,0 

 
and 
 

2
0= 0,5·[1 + ·( – ) + ] , with 0 = 0,2  

 
Since = 0,81 > = 0,55z y , the buckling resistance about the z-z axis is governed. 
 
Remark: 
 
The relevant buckling curves for cross-sections of composite columns are given 
in Table 6.5, EN1994-1-1, according to which composite columns with partially 
concrete-encased section can be designed using buckling curve b for the y-y axis 
of buckling and using buckling curve c for the z-z axis of buckling. 

 
From Table 6.5, EN1994-1-1, the buckling curve c with  = 0,49 is adopted for the 
z-z axis of buckling so that z is: 
 

2

0= 0,5·[1 + ·( – ) + ]zz z  
 

2= 0,5·[1 + 0,49·(0,81 – 0,2) + 0,81 ] = 0,98z  
 
The reduction factor z is: 
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2 2

1=
+ –

z

z z z

 

 

2 2

1= = 0,65 < 1,0
0,98 + 0,98 – 0,81

z  

 
Check: 
 

,·
Ed

z pl Rd

N
N

 1,0 

 
4185 = 0,82 < 1,0

0,65·7806
 

 
Since 0,82 < 1,0, the check of the composite column subjected to axial 
compression is satisfied. It is not necessary to select the stronger cross-section. 

11. Resistance of the member in combined compression and 
uniaxial bending 

11.1 Resistance of the member about the y-y axis taking into account the 
equivalent member imperfection e0,z 

11.1.1 General 

According to clause 6.7.3.6, EN 1994-1-1, the member in combined compression 
and uniaxial bending has sufficient resistance if the following condition is 
satisfied: 
 

, , ,

=
·

Ed Ed

pl N Rd d pl Rd

M M
M M M  

 
where: 
 
MEd is the greatest of the end moments and the maximum bending moment 

within the column length. This moment is calculated according to 
clause 6.7.3.4, EN 1994-1-1, including imperfections (Table 6.5, EN 
1994-1-1) and second-order effects if necessary ( cr > 10). 

Mpl,N,Rd is the plastic resistance moment taking into account the axial force NEd, 
given by d·Mpl,Rd, see Figure 6.18, EN 1994-1-1. 

Mpl,Rd is the plastic resistance moment, given by point B in Figure 6.18, EN 
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1994-1-1. 
d is the factor related to design for compression and uniaxial bending. 
M is the coefficient related to bending of a composite column and is taken  

as 0,9 for steel grades between S235 and S355. 
 
The condition can be written as: 
 

,

=
· ·

Ed Ed

Rd M d pl Rd

M M
M M

 1,0 

 
The calculation of the design bending moment MEd = MEd,II taking the initial 
bending moment about the y-y axis, the imperfection e0,z, and second-order 
effects is shown in Figure C5.8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.8 Equivalent member imperfection e0,z about the y-y axis 

11.1.2 Resistance of the cross-section in combined compression and bending 
about the y-y axis 

11.1.2.1 General 

Remark: 
 
In order to determine the resistance of the composite cross-section to combined 
compression and uniaxial bending, it is necessary to produce an axial load – 

e

NG1,k NG2,k

NQ1,k
NQ2,k

L 

e0,z 

A A

B B

 y

NG1,k

NG2,k

NQ1,k NQ2,k

e = 0,30 m 

Section A-A 

Section B-B 

 z

e0,z 
 y

 z
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bending moment (N–M) interaction curve. As a simplification, the interaction 
curve is replaced by an interaction polygon ACDB, clause 6.7.3.2 (5), EN 1994-
1-1. 
The N–M interaction polygon ACDB is shown in Figure 6.19, EN 1994-1-1. 
Modified version of the interaction polygon, which refers to the composite 
column with partially concrete-encased H-section, is shown in Figure C5.9. 
 
In order to produce the N–M interaction polygon, the cross-sectional capacities 
at points A to D should be determined assuming the stress distributions 
indicated, see Figure C5.9. 
 
It should be noted that EN 1994-1-1 does not provide expressions for concrete-
filled rectangular cross-sections. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.9 N M interaction polygon and corresponding stress distributions 
 
The resistance of the cross-section to combined compression and bending is 
calculated in two ways: using the interaction curve of N–M and using the 
interaction polygon of N–M. 

11.1.2.2 Interaction curve 

It is necessary to carry out the calculation of the reduced design resistance 
moment, Mpl,y,N,Rd, due to the design axial compressive force, NEd. The position 
of the plastic neutral axis is determined by the following condition: 
 

– =com ten EdN N N  
 
where: 
 

N M interaction curve

 Mpl,y,Rd

Npm,Rd 

Npl,Rd 

N 

M

 A 

 B

 C

 D1/2 Npm,Rd 

 Mmax,y,Rd

Interaction 
polygon 

A

B

C

D

0,85 fcd  fyd 

0,85 fcd

0,85 fcd 

0,85 fcd  fyd 

 fyd 

 fyd 

hn 2hn

hn 2hnhn

Npl,Rd 

Mpl,y,Rd 

Mpl,y,Rd 

Npm,Rd 

Mmax,y,Rd 

Npm,Rd/2 

 fsd 

 fsd 

 fsd 

 fsd 
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Ncom is the axial compressive force (from the compressive stress block), 
Nten is the axial tensile force (from the tensile stress block), 
NEd is the design axial compressive force. 
 
In the case of the high axial force, the neutral axis lies within the flange of the 
steel section. The position of the plastic neutral axis is in region 3, see Figure 
C5.10. 
If the plastic neutral axis lies within region 3, the following expression is 
applicable: 
 

, = · + 0,85· · + ·pl Rd a yd c cd s sdN A f A f A f  
 
 
 
 
 
 
 
 
 
 
 

Figure C5.10 Possible regions of positions of plastic neutral axis within 
 the column section 

 
For the cross-section of the column, the axial compressive force and the axial 
tensile force are determined by: 
 

,= – · ·com pl Rd f ydN N t b f  
 

= · ·ten f ydN t b f  
 
From the condition – =com ten EdN N N , the expression for ft is: 
 

, –
=

2· ·
pl Rd Ed

f
yd

N N
t

b f
 

 
The expression for Mpl,y,N,Rd is: 
 

, , , , , , , , , , , ,= · + ·0,85· + ·pl y N Rd pl y a N yd pl y c N cd pl y s N sdM W f W f W f  
 

 y

S Region 1 

Region 2 

Region 3 

h1

h2 tf

VEd 

NEd 

Mpl,y,N,Rd 

b

h 

ztf
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The symmetrical areas do not contribute to the bending so that the expression for 
Mpl,y,N,Rd is: 
 

, , , , , ,= · = · ·( – )·pl y N Rd pl y a N yd f f ydM W f t b h t f  
 
Accordingly, the design plastic resistance of the composite cross-section to 
compression, Npl,Rd, is: 
 

, = · + 0,85· · + ·pl Rd a yd c cd s sdN A f A f A f  
 

, = 149,1·35,5 + 0,85·731,4·2,67 +19,6·43,5 = 7806pl RdN  kN 
 
For calculation of Mpl,y,N,Rd, it is necessary to determine tf: 
 

, –
=

2· ·
pl Rd Ed

f
yd

N N
t

b f
 

 
7806 – 4185= = 1,70
2·30·35,5ft  cm 

 
Therefore, the reduced design resistance moment Mpl,y,N,Rd is: 
 

, , , = · ·( – )·pl y N Rd f f ydM t b h t f  
 

–2
, , , = 1,70·30·(30 – 1,70)·35,5·10pl y N RdM  

 
, , , = 512pl y N RdM  kNm 

 
If the design axial force is = 0EdN , the plastic neutral axis lies within region 1, 
and the exact design resistance moment is determined as: 
 

= 0EdN         , , , , ,=pl y N Rd pl y RdM M  
 
Thus, it is assumed that the plastic neutral axis lies within the web of the steel 
section (hn  h/2  tf). The position of the plastic neutral axis, h1 = hn, is 
calculated as: 
 

, ,– ·(2· – 0,85· )
=

2· ·0,85· + 2· ·(2· – 0,85· )
pm Rd s n sd cd

n
c cd w yd cd

N A f f
h

b f t f f
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The design value of the resistance of the concrete to compression, Npm,Rd, is: 
 

= ·0 85· = ( · – – )·0 85·pm,Rd c cd a s cdN A , f b h A A , f . 
 
The design resistance moment of the column section in combined bending about 
the y-y axis and the axial force NEd = 0 is obtained by: 
 

, , , , , , , , , , , , , ,= = · + ·0,85· + ·pl y N Rd pl y Rd pl y a N yd pl y c N cd pl y s N sdM M W f W f W f  
 
Alternatively, the design resistance moment of the column section in bending 
about the y-y axis can be determined by: 
 

, , max, , , ,= –pl y Rd y Rd n y RdM M M  
 
where: 
 

, , ,
, , , , , , , ,

·
= · + · +

2
pl y c n cd

n y Rd pl y a n yd pl y s n sd

W f
M W f W f  

 
The maximum design plastic resistance moment, max, ,y RdM , is determined by: 
 

max, , , , , , , ,= · + 0,5· ·0,85· + ·y Rd pl y a yd pl y c cd pl y s sdM W f W f W f  
 
The design value of the resistance of the concrete to compression, Npm,Rd, is: 
 

= ( · – – )·0 85·pm,Rd a s cdN b h A A , f  
 

, = (30,0·30,0 – 149,1 – 19,6)·0,85·2,67 = 1660pm RdN  kN 
 
When the design axial force is = 0EdN , the plastic neutral axis lies within region 1, 
see Figure C5.10. The plastic neutral axis lies within the web of the steel section 
(hn  h/2  tf). and its position is determined by: 
 

, ,– ·(2· – 0,85· )
=

2· ·0,85· + 2· ·(2· – 0,85· )
pm Rd s n sd cd

n
c cd w yd cd

N A f f
h

b f t f f
 

 
where As,n is the reinforcement area within hn. Because it is at this point unknown, 
it is assumed to be (initial guess): 
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, = 0s nA  cm2 
 
Thus, for the case when the axial force is equal to zero, hn is: 
 

1660 – 0= = 5,78
2·30,0·0,85·2,67 + 2·1,1·(2·35,5 – 0,85·2,67)nh  cm 

 
Since in this region there is no reinforcement, the assumption is correct. 
 
Plastic section moduli in region 2·hn 
 
Structural steel 
 

2 2

, , ,

·(2 ) 1,1·11,56= = = 36,7
4 4

w n
pl y a n

t h
W  cm3 

 
Reinforcement 
 
Wpl,y,s,n = 0 cm3 
 
Concrete 
 

2 2

, , , , , ,
·(2 ) 30·11,56= – = – 36,7 = 966

4 4
c n

pl y c n pl y a n
b h

W W  cm3 

 
The design plastic resistance moment of the composite section, Mpl,y,Rd, is 
calculated as: 
 

, , max, , , ,= –pl y Rd y Rd n y RdM M M  
 
where: 
 

, , ,
, , , , , , , ,

·
= · + · +

2
pl y c n cd

n y Rd pl y a n yd pl y s n sd

W f
M W f W f  

 
–2

, ,
966·0,85·2,67= (36,7·35,5 + 0·43,5 + )·10 = 24,0

2n y RdM  kNm 

 
The maximum design plastic resistance moment is: 
 

max, , , , , , , ,= · + 0,5· ·0,85· + ·y Rd pl y a yd pl y c cd pl y s sdM W f W f W f  
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–2
max, , = (1869·35,5 + 0,5·4722·0,85·2,67 +159·43,5)·10y RdM  

 
max, , = 786y RdM  kNm 

 
The design plastic resistance moment of the composite section, Mpl,y,Rd, is: 
 

, , = 786 – 24,0 = 762pl y RdM  kNm 
 
The obtained values are the exact values on the interaction curve and they are 
shown in Figure C5.11. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.11 Interaction curve 
 
The value of dy is: 
 

, , ,

, ,

512= = = 0,67 < 1,0
762

pl y N Rd
dy

pl y Rd

M
M

 

11.1.2.3 Interaction polygon 

Point A 
 
 
 
 
 
 
 
 
 
 

Figure C5.12 Stress distributions for point A on the interaction polygon 

Mpl,y,Rd = 762 kNm 

Mpl,y,N,Rd = dy Mpl,y,Rd

NEd = 4185 kN

Npl,Rd
N 

M

Mpl,y,N,Rd = 512 kNm 

0,85 fcd  fyd 

Npl,Rd 

 fsd 
b 
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 y 
h
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At point A, only the design plastic resistance of the cross-section is taken into 
account: 
 

, = · + 0,85· · + ·pl Rd a yd c cd s sdN A f A f A f  
 
The design plastic resistance of composite cross-section to compression is: 
 

, = 149,1·35,5 + 0,85·731,4·2,67 +19,6·43,5pl RdN  
 

, = 7806pl RdN  kN 
 
Point D 
 
The positions of the plastic neutral axis and the stress distributions are shown in 
Figure C5.13. 
 
 
 
 
 
 
 
 
 
 

Figure C5.13 Stress distributions for point D on the interaction polygon 
 
The maximum design plastic resistance moment is determined by: 
 

max, , , , , , , , , , ,= + +y Rd pl y a Rd pl y c Rd pl y s RdM M M M  
 
The maximum design plastic resistance moment, Mmax,y,Rd, at point D is: 
 

max, , , , , , , ,= · + 0,5· ·0,85· + ·y Rd pl y a yd pl y c cd pl y s sdM W f W f W f  
 

–2
max, , = (1869·35,5 + 0,5·4722·0,85·2,67 +159·43,5)·10y RdM  

 
max, , = 786y RdM  kNm 

 
The design value of the resistance of the concrete to compression, Npm,Rd, is: 
 

h

b 

 y 

z 

0,85 fcd fyd  fsd 

 Npm,Rd/2 

Mmax,y,Rd 
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, = ·0,85· = 731,4·0,85·2,67 = 1660pm Rd c cdN A f  kN 
 
The design axial force at the point of maximum design plastic resistance moment is 
0,5·Npm,Rd, and is therefore: 
 

,0,5· = 0,5·1660 = 830pm RdN  kN 
 
Point C 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.14 Stress distributions for point C on the interaction polygon 
 
Calculation of the design plastic resistance moment of the composite section, 
Mpl,y,Rd, is carried out as shown below. 
 
When the design axial force is equal to zero, the plastic neutral axis lies within the 
web of the steel section (hn  h/2  tf) and its position is determined by: 
 

, ,– ·(2· – 0,85· )
=

2· ·0,85· + 2· ·(2· – 0,85· )
pm Rd s n sd cd

n
c cd w yd cd

N A f f
h

b f t f f
 

 
where As,n is the reinforcement area within hn. Because it is at this point unknown, 
it is assumed to be (initial guess): 
 

, = 0s nA  cm2 
 
Thus, for the case when the axial force is equal to zero, hn is: 
 

1660 – 0= = 5,78
2·30,0·0,85·2,67 + 2·1,1·(2·35,5 – 0,85·2,67)nh  cm 

 
Since in this region there is no reinforcement, the assumption is correct. 
 

 Npm,Rd 

Mpl,y,Rd 

b 

2hn
hn h

z 

 y 

0,85 fcd fyd  fsd 
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Plastic section moduli in region 2·hn 
 
Structural steel 
 

2 2

, , ,

·(2 ) 1,1·11,56= = = 36,7
4 4

w n
pl y a n

t h
W  cm3 

 
Reinforcement 
 
Wpl,y,s,n = 0 cm3 
 
Concrete 
 

2 2

, , , , , , , , ,

·(2 ) 30·11,56= – – = – 36,7 – 0 = 966
4 4

c n
pl y c n pl y a n pl y s n

b h
W W W  cm3 

 
The design plastic resistance moment of the composite section, Mpl,y,Rd, is 
calculated as: 
 

, , max, , , ,= –pl y Rd y Rd n y RdM M M  
 
where: 

, , ,
, , , , , , , ,

·
= · + · +

2
pl y c n cd

n y Rd pl y a n yd pl y s n sd

W f
M W f W f  

 
–2

, ,
966·0,85·2,67= (36,7·35,5 + 0·43,5 + )·10 = 24,0

2n y RdM  kNm 

 
Point B 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.15 Stress distributions for point B on the interaction polygon 
 

hn 2hn
Mpl,y,Rd 

b 

z 

 y 
h

0,85 fcd fyd
 fsd 
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The design plastic resistance moment of the composite section, Mpl,y,Rd, is: 
 

, , = 786 – 24,0 = 762pl y RdM  kNm 
 
The design value of Mpl,y,Rd has previously been calculated in order to define point 
C on the N–M interaction polygon: 
 

, , = 762pl y RdM  kNm 
 
Previously calculated values at points A to E should be plotted to produce the N–M 
interaction polygon (Figure 6.19, EN 1994-1-1). The interaction polygon ACDB is 
shown in Figure C5.16. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.16 N–M interaction polygon 
 
According to the interaction polygon ACDB, Figure C5.16, the following value 
Mpl,y,N,Rd is obtained: 
 

, , , , , , , ,: = ( – ) : ( – )pl y Rd pl y N Rd pl Rd pm Rd pl Rd EdM M N N N N  
 

,
, , , , ,

, ,

–
= ·

–
pl Rd Ed

pl y N Rd pl y Rd
pl Rd pm Rd

N N
M M

N N
 

 

, , ,
7806 – 4185= ·762 = 449
7806 – 1660pl y N RdM  kNm 

 
The value of dy is: 

 Mpl,y,Rd = 762 kNm 

Npm,Rd = 1660 kN 

Npl,Rd = 7806 kN

N 

M 

 A 

 B 

 C 

 D 
1/2 Npm,Rd = 830 kN max, , = 786y RdM  kNm 

NEd = 4185 kN

Mpl,y,N,Rd = 449 kNm 

dy Mpl,y,Rd 

, ,pl y RdM
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, , ,

, ,

449= = = 0,59 < 1,0
762

pl y N Rd
dy

pl y Rd

M
M

 

 
Remark: 
 
According to the approach with the interaction curve, Section 11.1.2.2., the value 
of dy is 0,67. According to the approach with the interaction polygon, the value 
of dy is 0,59. This value is too conservative. Accordingly, it is recommended to 
find an intermediate point, E, for better polygonal approximation to the 
interaction curve, see example C4. EN 1994-1-1 does not give this 
recommendation. 

 
The check is carried out with the factor = 0,59dy , in accordance with EN 1994-1-
1. 

11.1.3 Calculation of the effects of actions about the y-y axis 

11.1.3.1 General 

According to clause 6.7.3.4 (3), EN 1994-1-1, which refers to clause 5.2.1(3), 
EN 1994-1-1, second-order effects can therefore be neglected if the load factor 

cr, which is the ratio between the elastic critical load and the corresponding 
applied loading, for elastic instability of the member exceeds 10. 
 
To calculate cr, the ends of the column are assumed to be pinned, and cr is 
found using the Euler formula for the elastic critical force Ncr,y,eff: 
 

2
,

, 2
,

( )
= eff, y II

cr, y eff
e y

E
N

L
   Le,y = L 

 
The design value of the effective flexural stiffness (EI)eff,y,II, used to determine 
the internal forces and moments by second-order analysis, according to clause 
6.7.3.4(2), EN 1994-1-1, is defined as: 
 

, 0 , , ,( ) = ·( · + · + · · )eff, y II a y a s y s e,II cm y cEI K E I E I K E I  
 
where: 
 
Ke,II is a correction factor, which should be taken as 0,5, 
K0 is a calibration factor, which should be taken as 0,9. 
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The value Ec,eff has been used in place of Ecm in the expression for (E  )eff,y,II in order 
to take into account the long-term effects, in the same way as calculated in Section 
7. Accordingly, the value of Ec,eff is: 
 

, = 1530c effE  kN/cm2 
 
The design value of the effective flexural stiffness (EI)eff,y,II, is: 
 

, 0 , , , ,( ) = ·( · + · + · · )eff, y II a y a s y s e,II c eff y cEI K E I E I K E I  
 

, ,( ) = 0,9·(21000·25170 + 21000·1289 + 0,5·1530·41041)eff y IIEI  
 

6
, ,( ) = 528,33·10eff y IIEI  kNcm2 

 
The elastic critical force, Ncr,y,eff, for the pin-ended column, is: 
 

2
,

, 2
,

( )
= eff, y II

cr, y eff
e y

E
N

L
 

 
6 2

, , 2

528,33·10 ·= = 25750
450cr y effN  kN 

 
To check whether the effects of second-order analysis can be neglected, the value 
of cr must be higher than 10: 
 

, , 25750= = = 6,2 < 10
4185

cr y eff
cr

Ed

N
N

 

 
The value of cr is less than 10, so second-order effects must be considered. 

11.1.3.2 Bending moments about the y-y axis 

According to clause 6.7.3.4(5), EN 1994-1-1, the second-order effects can be 
calculated by multiplying the greatest first-order design bending moments by a 
factor k. 
 
Thus, the second-order effects may be considered according to the expression: 
 

, , , ,= ·y Ed II y Ed IM M k  
 
The factor k is given by: 
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, ,

=
1 – /Ed cr y eff

k
N N

 1,0 

 
where: 
 
 is an equivalent moment factor given in Table 6.4, EN 1994-1-1, 

Ncr,y,eff is the critical axial force, about the y-y axis, obtained with the effective 
flexural stiffness (EI)eff,y,II and with the effective length taken as the 
physical length of the column. 

 
The design bending moment from the member imperfections is determined as: 
 

, , 0,= ·y Ed imp Ed zM N e  

 
where: 
 
NEd is the design value of the axial force, 
e0,z is the equivalent member imperfection which is given in Table 6.5, EN 

1994-1-1, depending on the buckling curve. 
 
Remark: 
 
According to Table 6.5, EN 1994-1-1, the composite columns with partially 
concrete-encased section can be designed using buckling curve b for the y-y axis 
of buckling. 

 
Therefore, for buckling curve b, the equivalent member imperfection is: 
 

0, =
200z

Le  

 

0,
450= = 2,25
200ze  cm 

 
The design bending moments calculated according to first-order analysis are shown 
in Figure C5.17. 
 
The design values of bending moments are as follows: 
 
The design bending moment at the top of the column is: 
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, = 189y EdM  kNm 
 
The design bending moment at the bottom of the column is: 
 

, = 0y EdM  kNm 
 
The design bending moment due to imperfection is: 
 

, , 0,= · = 4185·0,0225 = 94,2y Ed imp Ed zM N e  kNm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.17 First-order bending moments, design values 
 
Remark: 
 
The factor  from Table 6.4, EN 1994-1-1, allows for the shape of the bending 
moment diagram. When bending is caused by lateral loading on the column, the 
value of factor  is 1,0. For a column subjected to end moments, the factor  is 
calculated as: 
 

1 = 0,66 + 0,44·r  0,44 
 
where r is the ratio of the end-moments on the ends of the column (-1  r  +1). 

 
Therefore, the two values of factor k must be calculated: 
 

My,Ed 
NEd 

L 
=

 4
,5

0 
m

 

e0,z 

189 kNm

94,2 kNm 

,y EdM , ,y Ed impM
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- for the end moments, k1, 
- for the moment from the member imperfection, k2. 
 
Determination of factor k1 
 
The ratio of the end-moments on the ends of the column is: 
 

,

0 0= = = 0,0
189y Ed

r
M

 

 
The equivalent moment factor  is: 
 

1 = 0,66 + 0,44·r  0,44 
 

1 = 0,66 + 0,44·0 = 0,66  
 
Therefore, the factor k1 is: 
 

1
1

0,66= = = 0,79 < 1,0
1 – 1 – 4185 / 25750Ed cr, y,eff

k
N N

 

 
Remark: 
 
According to clause 6.7.3.4(5), EN 1994-1-1, the value of factor k must be 1,0 or 
higher. It is over-conservative to use when combining two sets of second-order 
effects. Therefore, the calculated value of 0,79 is adopted. 

 
Determination of factor k2 
 
For the bending moment from the member imperfection, according to Table 6.4, 
EN 1994-1-1, the equivalent moment factor  is: 
 

2 = 1,0  
 
Therefore, the factor k2 is: 
 

2
2

Ed cr,y,eff

1,0= = = 1,19 > 1,0
1 – 1 – 4185 / 25750

k
N N

 

 
The adopted value of the factor is: 
 
k2 = 1,19 
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The design bending moment at mid-height, with second-order effects taken into 
account, is: 
 

, , , 1 , , 2= · + · = 189·0,79 + 94,2·1,19 = 261y Ed II y Ed y Ed impM M k M k  kNm 
 
The design bending moments calculated according to second-order analysis are 
shown in Figure C5.18. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.18 Second-order bending moments about the y-y axis, design values 
 
The check is performed with the bending moment at mid-height: 
 

, , ,max= = 261y Ed II yM M  kNm 

11.1.3.3 Shear forces parallel to the z-z axis 

According to clause 6.7.3.4(5), EN 1994-1-1, second-order effects can be 
allowed for by multiplying the greatest first-order design bending moment by a 
factor k given by: 
 

,

=
1 – /Ed cr eff

k
N N

 1,0 

b) Imperfection 
moment increased 
by the second-order 
effects 

a) Second-order bending
moments due to NG2,Ed
and NQ2,Ed 

My,Ed 
NEd 

L 
=

 4
,5

0 
m

 e0,z 

189 kNm
94,2 kNm 

0,66·189 

0,79·189 1,19·94,2 

+
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Accordingly, the approximate value of shear force can be obtained as: 
 

, = ·Ed II EdV V k  
 
In accordance with Figure C5.19, the first-order design shear force at the bottom of 
column is: 
 

, 0,
,

4· · 189 4·4185·0,0225= + = + = 42,0 + 83,7 = 126
4,5 4,5

y Ed Ed z
z Ed

M N e
V

L L
 kN 

 
In accordance with Figure C5.19, the first-order design shear force at the top of 
column is: 
 

, 0,
,

4· · 189 4·4185·0,0225= – + = – + = –42,0 + 83,7 = 41,7
4,5 4,5

y Ed Ed z
z Ed

M N e
V

L L
 kN 

 
The diagram of shear forces, calculated by first-order analysis for bending moment 
and the equivalent lateral load due to imperfections, is shown in Figure C5.19. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.19 First-order design shear forces parallel to the z-z axis 
 
The factor k1 is: 
 

0,z
2

8· ·EdN e
L

NEd  

L 

e0,z 

My,Ed 

126 kN 

41,7 kN 

NEd 

My,Ed 

, 0,z4· ·
+y Ed EdM N e

L L

0,z4· ·
– + EdEd N eM

L L
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1
1

, ,

0,66= = = 0,79 < 1,0
1 – / 1 – 4185 / 25750Ed cr y eff

k
N N

 

 
The factor k2 is: 
 

2
2

, ,

1= = = 1,19 > 1,0
1 – / 1 – 4185 / 25750Ed cr y eff

k
N N

 

 
Therefore, the maximum design shear force, calculated by approximate second-
order analysis, is: 
 

, 0,z
, , 1 2

4· ·
= · + ·y Ed Ed

z Ed II

M N e
V k k

L L
 

 

, ,
189 4·4185·0,0225= 0,79· +1,19· = 33,2 + 99,6 = 133
4,5 4,5z Ed IIV  kN 

11.1.4 Check of the resistance of the member in combined compression and 
bending about the y-y axis 

It is necessary to satisfy the following condition: 
 

, ,

, , , ,

=
· ·

y Ed y Ed

y Rd M y dy pl y Rd

M M
M M

 1,0 

 
The coefficient M,y is taken as 0,9 for steel grades between S235 and S355. 
 
The design value of the maximum design bending moment by the approximative 
second-order analysis is: 
 

, , ,= = 261y Ed y Ed IIM M  kNm 
 
The design resistance moment My,Rd is (Figure C5.16): 
 

, , , ,= · · = 0,9·0,59·762 = 405y Rd M y dy pl y RdM M  kNm 
 
Condition: 
 

,

,

261= = 0,64
405

y Ed

y Rd

M
M

  1,0 
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Since 0,64 < 1,0 , the condition is satisfied. 

11.1.5 Check of the plastic resistance to transverse shear parallel to the z-z 
axis 

In accordance with clause 6.7.3.2(4), EN 1994-1-1, for simplification VEd may be 
assumed to act on the structural steel section alone. According to clause 6.2.6(2), 
EN 1993-1-1, in the absence of torsion the design plastic shear resistance, 
Vpl,z,a,Rd, is given by: 
 

,
, , ,

0

·( / 3)
= v z y

pl z a Rd
M

A f
V  

 
The shear area, Av,z, according to clause 6.2.6(3), EN1993-1-1, is calculated as: 
 

, = – 2· · + ( + 2 )·v z a f w fA A b t t r t · · = ·( – 2· – 2· )·w w f wh t h t r t  
 
According to clause 6.2.2.4(1), EN 1994-1-1, where the shear force is less than 
half the plastic shear resistance its effect on the resistance moment can be 
neglected. Therefore, the condition is: 
 

, , , ,< 0,5·z Ed pl z a RdV V  
 
The design value of the second-order shear force is: 
 

, , ,= = 133z Ed z Ed IIV V  kNm 
 
The shear area, Av,z, is: 
 

, = – 2· · + ( + 2 )·v z a f w fA A b t t r t · · = ·( – 2· – 2· )·w w f wh t h t r t  
 

· · = ·( – 2· – 2· )· = 1,0·(30,0 – 2·1,9 – 2·2,7)·1,1 = 22,9w w f wh t h t r t  cm2 
 

, = 149,1 – 2·30,0·1,9 + (1,1 + 2·2,7)·1,9 = 47,4v zA  cm2 22,9  cm2 
 
The design plastic shear resistance, Vpl,z,a,Rd, is: 
 

,
, , ,

0

·( / 3)
= v z y

pl z a Rd
M

A f
V  
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, , ,
47,4·(35,5 / 3)= = 972

1,0pl z a RdV  kN 

 
Check: 
 

, , , , ,= 133 < 0,5· = 0,5·972 = 486z Ed II pl z a RdV V  kN 
 
The condition is satisfied and there is no reduction in the resistance moment. 

11.2 Resistance of the member about the z-z axis taking into account the 
equivalent member imperfection e0,y 

11.2.1 General 

Remark: 
 
Since the column is subjected to bending about the y-y axis, initially given 
moment My,Ed, and the bending about the z-z axis, the bending moment due to 
imperfection NEd·e0,y, it is necessary to check the column resistance in combined 
compression and biaxial bending. 

 
In accordance with clause 6.7.3.7, EN 1994-1-1, for combined compression and 
biaxial bending, the following conditions should be satisfied: 
 
Check for bending about the y-y axis: 
 

, ,

, , , , ,

=
·

y Ed y Ed

pl y N Rd dy pl y Rd

M M
M M My  

 
The condition can be written in the following form: 
 

,

, , ,· ·
y Ed

M y dy pl y Rd

M
M

 1,0 

 
Check for bending about the z-z axis: 
 

, ,

, , , , ,

=
·

z Ed z Ed

pl z N Rd dz pl z Rd

M M
M M ,M z  

 
The condition can be written in the form: 
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,

, , ,· ·
z Ed

M z dz pl z Rd

M
M

 1,0 

 
Interaction of My–Mz–N: 
 

, ,

, , , , , ,

+y Ed z Ed

pl y N Rd pl z N Rd

M M
M M

 1,0 

 
The condition can be written in the following form: 
 

, ,

, , , ,

+
· ·

y Ed z Ed

dy pl y Rd dz pl z Rd

M M
M M

 1,0 

 
These interaction expressions are shown in Figure C5.20 by means of interaction 
curves. 
 
The check for bending about the y-y axis is carried out taking into account 
initially given bending moment My,Ed without the equivalent member 
imperfection e0,z, but including the second-order effects. 
 
The check for bending about the z-z axis is carried out taking into account the 
bending moment Mz,Ed (= NEd· e0,y) due to the equivalent member imperfection 
e0,y, including the second-order effects. 
 
Since the column is subjected to bending about the y-y axis and bending about 
the z-z axis, it is necessary to check the column resistance in combined 
compression and biaxial bending, the interaction of My–Mz–N. 
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a) Section resistance interaction curve – non-failure axis (y-y axis). Neglect 

imperfections.  
b) Section resistance interaction curve – axis of the anticipated failure (z-z 

axis). Consider imperfections. 
c) Biaxial resistance moment of the column section under axial compression 

NEd. 
 
Figure C5.20 Column resistance in combined compression and biaxial bending 

 – assuming bending failure about the z-z axis 
 
Calculation of the bending moment about the z-z axis, Mz,Ed = Mz,Ed,II, taking into 
account the equivalent member imperfection e0,y, and including the second-order 
effects, is shown in Figure C5.21. 
 

c) 

0

dy 

0,9 dz 

0,9 dy 

Mz,Ed/Mpl,z,Rd 

My,Ed/Mpl,y,Rd 

dz 

Design 
moment 

, ,

, , , ,

+
· ·

y Ed z Ed

dy pl y Rd dz pl z Rd

M M
M M

 1,0 

,

, ,·
y Ed

dy pl y Rd

M
M ,My

 ,

, ,·
z Ed

dz pl z Rd

M
M ,M z

 

b) 

1,0

dz 1,0 

N/Npl,Rd 

Mz,Ed/Mpl,z,Rd 

0

NEd/Npl,Rd

0,9 dz 

a)

1,0 

dy 1,0 

N/Npl,Rd 

My,Ed /Mpl,y,Rd

0 

NEd/Npl,Rd 
0,9 dy 
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Figure C5.21 Equivalent member imperfection e0,y about the z-z axis 

11.2.2 Resistance of the cross-section in combined compression and bending 
about the z-z axis 

11.2.2.1 General 

Remark: 
 
In order to determine the resistance of the composite cross-section to combined 
compression and uniaxial bending, it is necessary to produce an axial load – 
bending moment (N–M) interaction curve. As a simplification, the interaction 
curve is replaced by an interaction polygon ACDB, clause 6.7.3.2 (5), EN 1994-
1-1. 
 
The N–M interaction polygon ACDB is shown in Figure 6.19, EN 1994-1-1. The 
modified version of the interaction polygon, which refers to the composite 
column with partially concrete-encased H-section, is shown in Figure C5.22. 
 
In order to produce the N–M interaction polygon, the cross-sectional capacities 
at points A to D should be determined assuming the stress distributions 
indicated, see Figure C5.22. 
 
It should be noted that EN 1994-1-1 does not provide expressions for concrete-

NQ1,k
 + NQ2,k

L 

A A

B B
e0,y 

 y 
y

NG1,k

NG2,k

NQ1,k NQ2,k

e = 0,30 m 

Section A-A

Section B-B

z

 y

e0,y  z

NG1,k
 + NG2,k
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filled rectangular cross-sections. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.22 N M interaction polygon and corresponding stress distributions 
 
The resistance of the cross-section to combined compression and bending is 
calculated in two ways: using the interaction curve of N–M and using the 
interaction polygon of N–M. 

11.2.2.2 Interaction curve 

It is necessary to carry out the calculation of the reduced design resistance 
moment, Mpl,z,N,Rd, due to the design axial compressive force, NEd. The position of 
the plastic neutral axis is determined by the following condition: 
 

– =com ten EdN N N  
 
where: 
 
Ncom is the axial compressive force (from the compressive stress block), 
Nten is the axial tensile force (from the tensile stress block), 
NEd is the design axial compressive force. 
 
The position of the plastic neutral axis is in region 1 (Figure C5.23). 
 
 
 
 
 
 

N M interaction curve 

 Mpl,z,Rd 

Npm,Rd 

Npl,Rd 

N 

M

 A 

 B

 C

 D1/2 Npm,Rd 

Mmax,z,Rd

Interaction 
polygon 

A

B

C

D

0,85 fcd  fyd 

0,85 fcd 

0,85 fcd 

0,85 fcd  fyd 

 fyd  

 fyd 

hn 2hn

hn 2hnhn

Npl,Rd 

Mpl,z,Rd 

Mpl,z,Rd 

Npm,Rd 

Mmax,z,Rd 

Npm,Rd/2 

 fsd 

 fsd  

 fsd  

 fsd  
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Figure C5.23 Position of plastic neutral axis 
 
If the plastic neutral axis lies within region 1, the following expression is 
applicable: 
 

, = · + ·0,85· + ·pl Rd a yd c cd s sdN A f A f A f  
 
For the cross-section of column, the axial compressive force and the axial tensile 
force are determined by the following expressions: 
 

, , 1 ,= – = – ·2· · – ·com pl Rd ten pl Rd f yd ten si sdi
N N N N b t f A f  

 
1 ,= ·2· · + ·ten f yd ten si sdi

N b t f A f  

 
From the condition – =com ten EdN N N , the expression for b1 is: 
 

, ,

1

– – 2· ·
=

4· ·
pl Rd Ed ten si sdi

f yd

N N A f
b

t f
 

 
The plastic resistance moment of the composite section in combined 
compression and bending Mpl,z,N,Rd is determined by the following expression: 
 

, , , , , , , , , , , ,= · + ·0,85· + ·pl z N Rd pl z a N yd pl z c N cd pl z s N sdM W f W f W f  
 
Accordingly, the design plastic resistance of the composite cross-section to 
compression, Npl,Rd, is: 
 

, = · + 0,85· · + ·pl Rd a yd c cd s sdN A f A f A f  
 

 fsd

Mpl,z,N,Rd 

NEd 

VEd 

0,85·fcd fyd

 fyd

 fsd

h 

b 

Region 2 

b1 

Steel Concrete Reinforcement 

tf tf PNA – plastic neutral axis 

PNA 

Region 1 

 y h1

h2
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, = 149,1·35,5 + 0,85·731,4·2,67 +19,6·43,5 = 7806pl RdN  kN 
 
The position of the plastic neutral axis b1 is: 
 

, ,

1

– – 2· ·
=

4· ·
pl Rd Ed vl si sdi

f yd

N N A f
b

t f
 

 

1
7806 – 4185 – 2·2·4,91·43,5= = 10,3

4·1,9·35,5
b  cm 

 
Plastic section moduli 
 
Structural steel 
 

, , , , 1 1= 2· = ·2· ·( – )pl z a N z N fW S b t b b  
 

, , , = 10,3·2·1,9·(30 – 10,3) = 771pl z a NW  cm3 
 
Reinforcement 
 

, , , = ·| |= 4·4,91·10 = 196pl z s N si ii
W A y  cm3 

 
Concrete 
 

, , ,1
, , , 1 ,= · ·( – ) – – ·| |

2 2 2
pl z a N

pl z c N tl si ii

WbbW b h A y  

 

, ,
30 10,3 771= 10,3·30·( – ) – – 2·4,91·10,0 = 2560
2 2 2pl c NW  cm3 

 
Therefore, the reduced design resistance moment Mpl,z,N,Rd is: 
 

, , , , , , , , , , , ,= · + ·0,85· + ·pl z N Rd pl z a N yd pl z c N cd pl z s N sdM W f W f W f  
 

–2
, , , = (771·35,5 + 2560·0,85·2,67 +196·43,5)·10 = 417pl z N RdM  kNm 

 
If the design axial force is = 0EdN , the plastic neutral axis lies within region 1, 
and the exact design resistance moment is determined as: 
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= 0EdN         , , , , ,=pl z N Rd pl z RdM M  
 
Thus, it is assumed that the plastic neutral axis lies within the web of the steel 
section (hn  tw/2). The position of the plastic neutral axis, h1 = hn, is calculated 
as: 
 

, ,– ·(2· – 0,85· )
=

2· ·0,85· + 2· ·(2· – 0,85· )
pm Rd s n sd cd

n
c cd yd cd

N A f f
h

h f h f f
 

 
The design value of the resistance of the concrete to compression, Npm,Rd, is: 
 

= ·0 85· = ( · – – )·0 85·pm,Rd c cd a s cdN A , f b h A A , f  
 
The design resistance moment of the column section in combined bending about 
the z-z and the axial force NEd = 0 is obtained by: 
 

, , , , , , , , , , , , , ,= = · + 0,85· · + ·pl z N Rd pl z Rd pl z a N yd pl z c N cd pl z s N sdM M W f W f W f  
 
Alternatively, the design resistance moment of the column section in bending 
about the z-z axis can be determined using: 
 

, , max, , , ,= –pl z Rd z Rd n z RdM M M  
 
where: 
 

, , ,
, , , , , , , ,

·
= · + · +

2
pl z c n cd

n z Rd pl z a n yd pl z s n sd

W f
M W f W f  

 
The maximum design plastic resistance moment, max, ,z RdM , is determined as: 
 

max, , , , , , , ,= · + 0,5· ·0,85· + ·z Rd pl z a yd pl z c cd pl z s sdM W f W f W f  
 
The design value of the resistance of the concrete to compression, Npm,Rd, is: 
 

= ( · – – )·0 85·pm,Rd a s cdN b h A A , f  
 

, = (30,0·30,0 – 149,1 – 19,6)·0,85·2,67 = 1660pm RdN  kN 
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When the design axial force is = 0EdN , the plastic neutral axis lies within region 1, 
see Figure C5.23. The plastic neutral axis lies within the web of the steel section, hn 

 tw/2, and its position is determined by: 
 

, ,– ·(2· – 0,85· )
=

2· ·0,85· + 2· ·(2· – 0,85· )
pm Rd s n sd cd

n
c cd yd cd

N A f f
h

h f h f f
 

 
where As,n is the reinforcement area within hn. Because it is at this point unknown, 
it is assumed to be (initial guess): 
 

, = 0s nA  cm2 
 
Thus, for the case when the axial force is equal to zero, hn is: 
 

1660 – 0= = 0,39
2·30·0,85·2,67 + 2·30·(2·35,5 – 0,85·2,67)nh  cm 

 
Since in this region there is no reinforcement, the assumption is correct. 
 
Plastic section moduli in region 2·hn 
 
Structural steel 
 

2 2
, , , = · = 30·0,39 = 4,56pl z a n nW h h  cm3 

 
Reinforcement 
 

, , , ,= ·| |= 0pl z s n sn i ii
W A y  

 
Concrete 
 

2 2
, , , ,0= ( – )· – = (30 – 30)·0,39 – 0 = 0pl z c n c n sW h h h W  

 
The design plastic resistance moment of the composite section, Mpl,z,Rd, is: 
 

, , max, , , ,= –pl z Rd z Rd n z RdM M M  
 
where: 
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, , ,
, , , , , , , ,

·
= · + · +

2
pl z c n cd

n z Rd pl z a n yd pl z s n sd

W f
M W f W f  

 
–2

, ,
0·0,85·2,67= (4,56·35,5 + 0·40,0 + )·10 = 1,62

2n z RdM  kNm 

 
The maximum design plastic resistance moment is: 
 

max, , , , , , , ,= · + 0,5· ·0,85· + ·z Rd pl z a yd pl z c cd pl z s sdM W f W f W f  
 

–2
max, , = (870,1·35,5 + 0,5·5684·0,85·2,67 +196·43,5)·10z RdM  

 
max, , = 459z RdM  kNm 

 
The design plastic resistance moment of the composite section, Mpl,z,Rd, is: 
 

, , max, , , ,= –pl z Rd z Rd n z RdM M M  
 

, , = 459 – 1,62 = 457pl z RdM  kNm 
 
The obtained values are the exact values on the interaction curve and they are 
shown in Figure C5.24. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.24 Interaction curve 
 
The value of dz is: 
 

, , ,

, ,

417= = = 0,91 < 1,0
457

pl z N Rd
dz

pl z Rd

M
M

 

Mpl,z,Rd = 457 kNm 

Mpl,z,N,Rd = dz Mpl,z,Rd 

NEd = 4185 kN

Npl,Rd
N 

M

Mpl,z,N,Rd = 417 kNm 



592 C     Composite columns 
 

 

11.2.2.3 Interaction polygon 

Point A 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.25 Stress distributions for point A on interaction polygon 
 
At point A, only the design plastic resistance of the cross-section is taken into 
account: 
 

, = · + 0,85· · + ·pl Rd a yd c cd s sdN A f A f A f  
 
The design plastic resistance of composite cross-section to compression is: 
 

, = 149,1·35,5 + 0,85·731,4·2,67 +19,6·43,5pl RdN  
 

, = 7806pl RdN  kN 
 
Point D 
 
The position of the plastic neutral axis and the stress distributions are shown in 
Figure C5.26. 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.26 Stress distributions for point D on the interaction polygon 

0,85 fcd  fyd

Npl,Rd 

 fsd 
h 

y 

 z 
b

b

h 

 z 

y 

0,85 fcd fyd  fsd 

 Npm,Rd/2 

Mmax,z,Rd 
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The maximum design plastic resistance moment is determined as: 
 

max, , , , , , , , , , ,= + +z Rd pl z a Rd pl z c Rd pl z s RdM M M M  
 
The maximum design plastic resistance moment, Mmax,z,Rd, at point D is: 
 

max, , , , , , , ,= · + 0,5· ·0,85· + ·z Rd pl z a yd pl z c cd pl z s sdM W f W f W f  
 

–2
max, , = (870,1·35,5 + 0,5·5684·0,85·2,67 +196·43,5)·10z RdM  

 
max, , = 459z RdM  kNm 

 
The design value of the resistance of the concrete to compression, Npm,Rd, is: 
 

, = ·0,85· = 731,4·0,85·2,67 = 1660pm Rd c cdN A f  kN 
 
The design axial force at the point of maximum design plastic resistance moment is 
0,5·Npm,Rd, and is therefore: 
 

,0,5· = 0,5·1660 = 830pm RdN  kN 
 
Point C 
 
 
 
 
 
 
 
 
 
 

Figure C5.27 Stress distributions for point C on the interaction polygon 
 
Calculation of the design plastic resistance moment of the composite section, 
Mpl,z,Rd, is carried out as shown below. 
 
When the design axial force is equal to zero, the plastic neutral axis lies within the 
web of the steel section, hn  tw/2, and its position is: 
 

 Npm,Rd 

Mpl,z,Rd 

h 

2hn
hn b

y 

 z 

0,85 fcd fyd  fsd 
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, ,– ·(2· – 0,85· )
=

2· ·0,85· + 2· ·(2· – 0,85· )
pm Rd s n sd cd

n
c cd yd cd

N A f f
h

h f h f f
 

 
where As,n is the reinforcement area within hn. Because it is at this point unknown, 
it is assumed to be (initial guess): 
 

, = 0s nA  cm2 
 
Thus, for the case when the axial force is equal to zero, hn is: 
 

1660 – 0·(2·43,5 – 0,85·2,67)= = 0,39
2·30,0·0,85·2,67 + 2·30,0·(2·35,5 – 0,85·2,67)nh  cm 

 
Since in this region there is no reinforcement, the assumption is correct. 
 
Plastic section moduli in region 2·hn 
 
Structural steel 
 

2 2
, , , = · = 30,0·0,39 = 4,56pl z a n nW h h  cm3 

 
Reinforcement 
 
Wpl,z,s,n = 0 cm3 
 
Concrete 
 

2 2
, , , , , ,= ( – )· – = (30,0 – 30,0)·0,39 – 0 = 0pl z c n c n pl z s nW h h h W  cm3 

 
The design plastic resistance moment of the composite section, , ,pl z RdM , is 
calculated as follows: 
 

, , max, , , ,= –pl z Rd z Rd n z RdM M M  
 
where: 
 

, , ,
, , , , , , , ,

·
= · + · +

2
pl z c n cd

n z Rd pl z a n yd pl z s n sd

W f
M W f W f  
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–2
, ,

0·0,85·2,67= (4,56·35,5 + 0·43,5 + )·10 = 1,62
2n z RdM  kNm 

 
The design plastic resistance moment of the composite section, , ,pl z RdM , is: 
 

, , = 459 – 1,62 = 457pl z RdM  kNm 
 
Point B 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.28 Stress distributions for point B on the interaction polygon 
 
The design value of Mpl,z,Rd has previously been calculated in order to define point 
C on the N–M interaction polygon: 
 

, , = 457pl z RdM  kNm 
 
Previously calculated values at points A to D should be plotted to produce the N–M 
interaction polygon (Figure 6.19, EN 1994-1-1). The interaction polygon ACDB is 
shown in Figure C5.29. 
 
According to the interaction polygon AECDB, Figure C5.29, the following value 
Mpl,z,N,Rd is obtained: 
 

, , , , , , , ,: = ( – ) : ( – )pl z Rd pl z N Rd pl Rd pm Rd pl Rd EdM M N N N N  
 

,
, , , , ,

, ,

–
= ·

–
pl Rd Ed

pl z N Rd pl z Rd
pl Rd pm Rd

N N
M M

N N
 

 

, , ,
7806 – 4185= ·457 = 269
7806 – 1660pl z N RdM  kNm 

 

hn 2hn
Mpl,z,Rd 

h 

y 

 z 
b

0,85 fcd fyd
 fsd 



596 C     Composite columns 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.29 N–M interaction polygon 
 
The value of dz is: 
 

, , ,

, ,

269= = = 0,59 < 1,0
457

pl z N Rd
dz

pl z Rd

M
M

 

 
Remark: 
 
According to the approach with the interaction curve, Section 11.2.2.2, the value 
of dy is 0,91. According to the approach with the interaction polygon, the value 
of dy is 0,59. This value is too conservative. Accordingly, it is recommended to 
find an intermediate point, E, for better polygonal approximation to the 
interaction curve, see example C4. EN 1994-1-1 does not give this 
recommendation. 

 
The check is carried out by the factor = 0,59dz , in accordance with EN 1994-1-1. 

11.2.3 Calculation of the action effects about the y-y axis 

In accordance with the calculation given in Section 11.1.3.2, the value of the 
design bending moment at mid-height of the column, excluding the equivalent 
member imperfection, e0,z, but including the second-order effects, is: 
 

, , , 1= · = 189·0,79 = 149y Ed II y EdM M k  kNm 

 Mpl,z,Rd = 457 kNm

Npm,Rd = 1660 kN 

Npl,Rd = 7806 kN

N 

M 

 A 

 B 

 C 

 D 
1/2 Npm,Rd = 830 kN  max, , = 459z RdM  kNm 

NEd = 4185 kN

Mpl,z,N,Rd = 269 kNm 

dz Mpl,z,Rd

, ,pl z RdM
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11.2.4 Calculation of the action effects about the z-z axis 

11.2.4.1 General 

According to clause 6.7.3.4 (3), EN 1994-1-1, which refers to clause 5.2.1(3), 
EN 1994-1-1, second-order effects can therefore be neglected if the load factor 

cr, which is the ratio between the elastic critical load and the corresponding 
applied loading, for elastic instability of the member exceeds 10. 
 
To calculate cr, the ends of the column are assumed to be pinned, and cr is 
found using the Euler formula for the elastic critical force Ncr,z,eff. 
 

2
,

, 2
,

( )
= eff,z II

cr,z eff
e z

E
N

L
   Le,z = L 

 
The design value of the effective flexural stiffness (EI)eff,z,II, used to determine 
the internal forces and moments by second-order analysis, according to clause 
6.7.3.4(2), EN 1994-1-1, is defined by the following expression: 
 

, 0 , , ,( ) = ·( · + · + · · )eff,z II a z a s z s e,II cm z cEI K E I E I K E I  
 
where: 
 
Ke,II is a correction factor, which should be taken as 0,5, 
K0 is a calibration factor, which should be taken as 0,9. 

 
The value Ec,eff has been used in place of Ecm in the expression for (E  )eff,z,II in order 
to take into account the long-term effects, in the same way as calculated in Section 
7. Accordingly, the value of Ec,eff is: 
 

, = 1530c effE  kN/cm2 
 
The design value of the effective flexural stiffness (EI)eff,z,II, is: 
 

, 0 , , , ,( ) = ·( · + · + · · )eff,z II a z a s z s e,II c eff z cEI K E I E I K E I  
 

, ,( ) = 0,9·(21000·8563 + 21000·1964 + 0,5·1530·56973)eff z IIEI  
 

–6
, ,( ) = 238,19·10eff z IIEI  kNcm2 

 
The elastic critical force, Ncr,z,eff, for the pin-ended column, is: 
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2
,

, 2
,

( )
= eff,z II

cr,z eff
e z

E
N

L
 

 
6 2

, , 2

238,19·10 ·= = 11609
450cr z effN  kN 

 
To check whether the effects of second-order analysis can be neglected, the value 
of cr must be higher than 10: 
 

, , 11609= = = 2,8 < 10
4185

cr z eff
cr

Ed

N
N

 

 
The value of cr is less than 10, so the second-order effects must be considered. 

11.2.4.2 Bending moments about the z-z axis 

According to clause 6.7.3.4(5), EN 1994-1-1, the second-order effects can be 
calculated by multiplying the greatest first-order design bending moments by a 
factor k. 
 
Thus, the second-order effects may be considered according to the expression: 
 

, , , ,= ·z Ed II z Ed IM M k  
 
The factor k is given by: 
 

, ,

=
1 – /Ed cr z eff

k
N N

 1,0 

 
where: 
 
 is an equivalent moment factor given in Table 6.4, EN 1994-1-1, 

Ncr,z,eff is the critical axial force, about the z-z axis, obtained with the effective 
flexural stiffness (EI)eff,z,II and with the effective length taken as the 
physical length of the column. 

 
The design bending moment from the member imperfections is determined as: 
 

, , 0,= ·z Ed imp Ed yM N e  

 
where: 
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NEd is the design value of the axial force,  
e0,y is the equivalent member imperfection which is given in Table 6.5, EN 

1994-1-1, depending on the buckling curve. 
 
Remark: 
 
According to Table 6.5, EN 1994-1-1, composite columns with partially 
concrete-encased section can be designed using buckling curve c for z-z axis of 
buckling. 

 
Therefore, for the buckling curve c, the equivalent member imperfection is: 
 

0, =
150y

Le  

 

0,
450= = 3,0
150ye  cm 

 
The design bending moments calculated according to first-order analysis are shown 
in Figure C5.30. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.30 First-order bending moments, design values 
 
The design values of bending moments are as follows: 
 
The design bending moment at the top of the column is: 

NEd 

L 
=

 4
,5

0 
m

 

e0,y 

126 kNm

, ,z Ed impM
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, = 0z EdM  kNm 
 
The design bending moment at the bottom of the column is: 
 

, = 0z EdM  kNm 
 
The design bending moment due to imperfection is: 
 

, , 0,= · = 4185·0,03 = 126z Ed imp Ed yM N e  kNm 
 
Remark: 
 
The factor  from Table 6.4, EN 1994-1-1, allows for the shape of the bending 
moment diagram. When bending is caused by lateral loading on the column, the 
value of factor  is 1,0. For a column subjected to end moments, the factor  is 
calculated as: 
 

1 = 0,66 + 0,44·r  0,44 
 
where r is the ratio of the end moments on the ends of the column ( 1  r  +1). 

 
For the moment from the member imperfection, the factor k is given by: 
 

=
1 – Ed cr,z,eff

k
N N

 

 
where  is the equivalent moment factor. 
 
The equivalent moment factor  is: 
 

= 1,0  
 
Therefore, the factor k is: 
 

1 0= = = 1 56 > 1 0
1 – 1 – 4185 11609Ed cr,z,eff

,k , ,
N N /

 

 
The design bending moment at mid-height, with second-order effects taken into 
account, is: 
 

, , , ,= · = 126·1,56 = 197z Ed II z Ed impM M k  kNm 
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Figure C5.31 Second-order bending moments about the z-z axis, design values 
 
The design bending moments calculated according to second-order analysis are 
shown in Figure C5.31. 
 
The check is performed with the bending moment at mid-height: 
 

, , ,max= = 197z Ed II zM M  kNm 

11.2.4.3 Shear forces parallel to the y-y axis 

According to clause 6.7.3.4(5), EN 1994-1-1, second-order effects can be 
allowed for by multiplying the greatest first-order design bending moment by a 
factor k given by: 
 

,

=
1 – /Ed cr eff

k
N N

 1,0 

 
Accordingly, the approximate value of shear force can be obtained as: 
 

, = ·Ed II EdV V k  
 

Imperfection moment 
increased by the second-

order effects

NEd 

L 
=

 4
,5

0 
m

 

e0,y 

126 kNm

1,56·126 
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In accordance with Figure C5.32, the first-order design shear force at the bottom of 
the column is: 
 

0,
,

4· · 4·4185·0,03= = = 112
4,5

Ed y
y Ed

N e
V

L
 kN 

 
In accordance with Figure C5.32, the first-order design shear force at the top of the 
column is: 
 

0,
,

4· · 4·4185·0,03= = = 112
4,5

Ed y
y Ed

N e
V

L
 kN 

 
The diagram of shear forces, calculated by first-order analysis for the equivalent 
lateral load due to imperfections, is shown in Figure C5.32. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.32 First-order design shear forces parallel to the y-y axis 
 
The factor k is: 
 

, ,

1 1,0= = = 1,56 > 1,0
1 – / 1 – 4185 / 11609Ed cr z eff

k
N N

 

 
Therefore, the maximum design shear force, calculated by approximative second-
order analysis, is: 

0,
2

8 Ed y·N ·e
L

112 kN 

112 kN 

NEd 

0,4 Ed y·N ·e
L

0,4 Ed y·N ·e
L

NEd  

L 

e0,y 



Example C5 603 
 

 

, , ,= · = 112·1,56 = 175y Ed II y EdV V k  kN 

11.2.5 Check of the resistance of the member in combined compression and 
bending about the z-z axis 

It is necessary to satisfy the following conditions: 
 

,

, , ,· ·
y Ed

M y dy pl y Rd

M
M

 1,0. 

 

  
(My,Ed – neglect imperfections but use second-order 
analysis) 

 
,

, , ,· ·
z Ed

M z dz pl z Rd

M
M

 1,0. 

 

  
(Mz,Ed – consider imperfections and second-order 
analysis) 

 

, ,

, , , ,

+
· ·

y Ed z Ed

dy pl y Rd dz pl z Rd

M M
M M

 1,0.  (interaction of My,Ed and Mz,Ed) 

 
Substituting previously calculated values gives: 
 

149 = 0,37 < 1,0
0,9·0,59·762

 

 
197 = 0,81 < 1,0

0,9·0,59·457
 

 
149 197+ = 0,33 + 0,73 = 1,06 > 1,0

0,59·762 0,59·457
 

 
This exceeds 1,0 so the check is not satisfied. 
 
Remark: 
 
Therefore, the resistance of composite column to biaxial bending taking into 
account the design axial force NEd = 1152 kN does not satisfy the check. The 
check based on the interaction polygon was carried out in accordance with EN 
1994-1-1. This approach is too conservative, see the comparison of the results 
obtained based on the interaction curve and on the interaction polygon in Section 
11.2.2. Therefore, it is recommended to find an intermediate point, E, for better 
polygonal approximation to the interaction curve and a more accurate check of 
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the resistance of the composite column, see example C4. 

11.2.6 Check of the plastic resistance to transverse shear parallel to the y-y 
axis 

In accordance with clause 6.7.3.2(4), EN 1994-1-1, for simplification VEd may be 
assumed to act on the structural steel section alone. According to clause 6.2.6(2), 
EN 1993-1-1, in the absence of torsion the design plastic shear resistance, 
Vpl,y,a,Rd, is given by: 
 

,
, , ,

0

·( / 3)
= v y y

pl y a Rd
M

A f
V  

 
The shear area, Av,y, according to clause 6.2.6(3), EN1993-1-1, is calculated as: 
 

, = 2·( · )v y fA b t  
 
where: 
 
b is the width of the flange of the H-section, 
tf is the thickness of the flange of the H-section. 
 
According to clause 6.2.2.4(1), EN 1994-1-1, where the shear force is less than 
half the plastic shear resistance its effect on the resistance moment can be 
neglected. Therefore, the condition is: 
 

y, ,y, ,< 0,5·Ed pl a RdV V  
 
The design value of second-order shear force is: 
 

, , ,= = 175y Ed y Ed IIV V  kN 
 
The shear area, Av,y, is: 
 

, = 2·(30,0·1,9) = 114v yA  cm2 
 
The design plastic shear resistance, Vpl,a,y,Rd, is: 
 

,
, , ,

0

·( / 3)
= v y y

pl y a Rd
M

A f
V  
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, , ,
114·(35,5 / 3)= = 2337

1,0pl y a RdV  kN 

 
Check: 
 

, , , , ,= 175 < 0,5· = 0,5·2337 = 1169y Ed II pl a y RdV V  kN 
 
The condition is satisfied and there is no reduction in the resistance moment. 

12. Check of the longitudinal shear outside the area of load 
introduction 

The check of longitudinal shear outside the area of load introduction will not be 
carried out in this example. The shear resistance, developing at the interface 
between the concrete and the inner walls of the steel section, is provided by means 
of the appropriate structural details. The different structural details are shown in 
Figure C.5.33: 
 
a) closed stirrups and studs welded to the web of the H-section, 
b) stirrups welded to the web of the H-section, 
c) bars and stirrups that pass through holes in the web of the H-section. 
 
 
 
 
 
 
 
 
 
 

Figure C5.33 Resistance to longitudinal shear provided by different structural 
 details 

13. Check of the load introduction 

13.1 Load introduction for combined compression and bending 

The beams of the composite floor are attached to the column. The characteristic 
values of shear forces from beams, which act on the column, see Figure C5.1, are: 
 

2,
= 300

kGN  kN 

 

a) b) c)
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2,
= 150

kQN  kN 

 
The design values of the effects of the actions are: 
 

2, 2,
= 1,35· +1,50·

k kEd G QN N N  

 
= 1,35·300 +1,50·150 = 630EdN  kN 

 

2, 2,, = 1,35· ·0,3 +1,50· ·0,3
k ky Ed G QM N N  

 
, = 1,35·300·0,3 +1,50·150·0,3 = 189y EdM  kNm 

 
Load introduction for combined compression and bending is shown in Figure 
C5.34. 
 
The load is applied through the joint attached to the steel section. The load is 
distributed between the individual components of the cross-section in proportion 
to their resistances. The distribution of the load into the components acting on 
the steel section, Na,Rd and Ma,Rd, and the reinforced concrete web encasement, 
Nc+s,Rd and Mc+s,Rd, is determined as: 
 

, ,
,

,

= · pl a Rd
a Ed Ed

pl Rd

M
M M

M
 

 
+ , ,= –c s Ed Ed a EdM M M  

 
, ,

,
,

= · pl a Rd
a Ed Ed

pl Rd

N
N N

N
 

 
+ , ,= –c s Ed Ed a EdN N N  
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a) Distribution of loading into components acting on the steel section and the 
reinforcement concrete web encasement 

 
 
 
 
 
 
 
 
 
 

b) Distribution based on plastic theory 
 
Figure C5.34 Load introduction for combined compression and bending 

 
The design plastic resistance moment of the steel section, with the value Wpl,y,a,n 
calculated in Section 11.1.2.3, Figure C5.14, is: 
 

–2
, , , , , , , ,= ( – )· = (1869 – 36,7)·35,5·10 = 650pl y a Rd pl y a pl y a n ydM W W f  kNm 

 
The design plastic resistance moment of the composite section, calculated in 
Section 11.1.2.3, Figure C5.16, is: 
 

, , = 762pl y RdM  kNm 
 
Therefore: 

eD0 MEd 

NEd 

Mc,Ed + Ms,Ed Nc,Ed + Ns,Ed 

Ma,Ed Na,Ed 

zpl 

0,85 fcdfyd

 fsd 

 Na,Rd

Ma,Rd 

 Nc+s,Rd

Mc+s,Rd 

=
 NRd 

MRd 

 fsd 

+

MRd = Ma,Rd + Mc+s,Rd                       NRd = Na,Rd + Nc+s,Rd 
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, , ,

, ,

650= = 0,85
762

pl y a Rd

pl y Rd

M
M

 

 
, ,

,

149,1·35,5= = = 0,68
7806

pl a Rd

pl Rd

N
N

 

 
Accordingly, the load acting on the steel section is: 
 

, , ,
, , ,

, ,

= · = 189·0,85 = 161pl y a Rd
y a Ed y Ed

pl y Rd

M
M M

M
 kNm 

 
, ,

,
,

= · = 630·0,68 = 428pl a Rd
a Ed Ed

pl Rd

N
N N

N
 kN 

 
The load acting on the reinforced concrete web encasement is: 
 

+ , , , ,= – = 189 – 161 = 28c s Ed y Ed y a EdM M M  kN 
 

+ , ,= – = 630 – 428 = 202c s Ed Ed a EdN N N  kN 

13.2 Calculation of the stud resistance 

The headed stud shear connectors, with the diameter of the shank of the stud d = 19 
mm and with the ultimate tensile strength fu = 450 N/mm2, are selected. The design 
resistance of a single-headed shear connector, automatically welded in accordance 
with EN 14555, should be determined as the smaller of: 
 

(1) (2)= min ( , )Rd Rd RdP P P  
 
The design resistance (1)

RdP  is: 
 

2 2
(1) · 1 ·1,9 1= 0,8· · · = 0,8·45,0· · = 81,7

4 4 1,25Rd u
v

dP f  kN 

 
The design resistance (2)

RdP  is: 
 

(2) 2 1= 0,29· · · · ·Rd cm ck
v

P d E f  
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The overall nominal height of the stud hsc = 100 mm so: 
 

100= = 5,26
19

sch
d

 

 

For = 5,26 > 4sch
d

,  = 1,0, so the design resistance (2)
RdP  is: 

 
(2) 2 1= 0,29·1,0·1,9 · 3500·4,0 · = 99,1

1,25RdP  kN 

 
Therefore, the governed design resistance is: 
 

(1)= = 81,7Rd RdP P  kN 
 
The studs are welded to each side of the web into two rows. The number of studs 
within the load introduction length is n = 8 studs, with spacing e = 15 cm, see 
Figure C5.35. 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.35 Arrangement of the studs 
 
The adjacent steel flanges prevent the lateral expansion of the concrete. Due to the 
prevention of the lateral expansion of the concrete, the frictional forces are 
developed. This resistance can be added to the design resistance of the studs. This 
additional resistance is determined by the expression ·PRd/2 on each flange and 
each horizontal row of studs as shown in Figure 6.21, EN 1994-1-1. For steel 
sections without painting,  can be taken as 0,5. 
 

· 0,5·81,7= = 20,4
2 2

RdP
 kN on flange 

 
This additional resistance and the resistance of a single stud give the total design 
resistance, which is: 

150 

15
0 

1 2 

3 4 z 

 y 
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= 81,7 + 20,4 = 102,1RdP  kN 

13.3 Calculation of the shear forces on the studs based on elastic theory 

The procedure based on elastic theory is shown in Figure C5.36. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.36 Shear forces on the studs based on elastic theory 
 
In accordance with Figure C5.36, the maximum design shear force for the single 
stud is: 
 

+ , + , + ,2 2
2 2max = [ + · ] +[ · ]c s Ed c s Ed c s Ed

Ed i i
i i

N M M
P x z

n r r
 

 
According to Figures C5.35 and C5.36 we have: 
 

= = 75i ix z  mm i 2 2= 75 + 75 = 106ir  mm 
 
The maximum design shear force, max EdP , is: 
 

3 3
2 2

2 2

202 28·10 28·10max = [ + ·75] +[ ·75] = 53,9
8 8·106 8·106EdP  kN 

 
The following condition must be satisfied: 
 
max Ed

Rd

P
P

 1,0 

 

Nc+s,Ed 

PEd(N)

PEd,h PEd(M)

PEd,v ri 

zi

xi

Mc+s,Ed 

+ , + , + ,2 2
2 2max = [ + · ] + [ · ]c s Ed c s Ed c s Ed

Ed i i
i i

N M M
P x z

n r r
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max 53,9= = 0,53
102,1

Ed

Rd

P
P

 

 
Since 0,53 < 1,0, the condition is satisfied. 

13.4 Calculation of the shear forces on the studs based on plastic theory 

The procedure based on plastic theory is shown in Figure C5.37. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.37 Shear forces on the studs based on plastic theory 
 
In accordance with Figure C5.37, the maximum design shear force for the single 
stud is: 
 

+ , + , 202 28max = + = + = 71,9
·0,5· 8 0,15·0,5·8

c s Ed c s Ed
Ed

h

N M
P

n e n
 kN 

 
The following condition must be satisfied: 
 
max Ed

Rd

P
P

 1,0 

 
max 71,9= = 0,70

102,1
Ed

Rd

P
P

 

 
Since 0,70 < 1,0, the condition is satisfied. 

+ , + ,max = +
·0,5·

c s Ed c s Ed
Ed

h

N M
P

n e n

Nc+s,Ed 

PEd(N)

Mc+s,Ed 

eh
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14. Commentary 

This example illustrates the design of the composite column with partially 
concrete-encased H-section subject to axial compressive load and bending 
moment. However, the bending moment about the z-z axis was caused by taking 
into account the equivalent member imperfection about the z-z axis. This means 
that the check of resistance should be carried out for combined compression and 
biaxial bending. Accordingly, the following checks are needed: 
 
a) The verification of the column resistance in axial compression only is carried 

out as the preliminary check. Since = 0,81 > = 0,55z y , the buckling 
resistance about the z-z axis is governed. The check of the composite column 
subjected to axial compression is satisfied. It is not necessary to select the 
stronger cross-section. 

 
The utilization is 82%. 
 
b) Check for bending about the y-y axis: The next step is to carry out the check 

of the column resistance in combined compression and uniaxial bending. The 
equivalent member imperfection e0,z is taken into account, which is in the 
same plane as the initial moment. In addition it was found that the second-
order effects must be allowed for. The final step is to check that the cross-
section can resist My,Ed (consider imperfections and second-order analysis) 
with compression NEd. 

 
The utilization is 64%. 
 
c) Check for bending about the z-z axis: Finally, the check of the column 

resistance in combined compression and biaxial bending is carried out. The 
design bending moment about the y-y axis, My,Ed, is calculated neglecting the 
equivalent member imperfection. About the z-z axis, the design bending 
moment due to the equivalent member imperfection Mz,Ed (=NEd·e0,y) is taken 
into account. In addition it was found that the second-order effects must be 
allowed for. The final step is to check that the cross-section can resist My,Ed 
(neglect imperfections but use second-order analysis) and Mz,Ed (consider 
imperfections and second-order analysis) with compression NEd. 

 
The utilization is: 
 
37% (My,Ed neglect imperfections but use second-order analysis), 
81% (Mz,Ed consider imperfections and second-order analysis), 
1,06% (interaction of My,Ed and Mz,Ed). 
 
Since 1,06 > 1,0, the resistance of the composite column to biaxial bending 



Example C5 613 
 

 

taking into account the design axial force NEd = 1152 kN does not satisfy the 
check. The check based on the interaction polygon was carried out in accordance 
with EN 1994-1-1. This approach is too conservative, see the comparison of the 
results obtained based on the interaction curve ( dy = 0,67 and dz = 0,91) and on 
the interaction polygon ( dy = 0,59 and dz = 0,59), Section 11.2.2. Therefore, it 
is recommended to find an intermediate point, E, for better polygonal 
approximation to the interaction curve and the more accurate check of resistance 
of the composite column. EN 1994-1-1 does not state this recommendation. 
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C6 Composite column with fully concrete-encased H-
section subject to axial compression and biaxial 
bending 

1. Purpose of example 

This example demonstrates the design of a composite column with fully concrete-
encased H-section subject to axial compressive load and biaxial bending. The 
composite column consists of an H-column section with square concrete section 
encasement. Additional reinforcement is placed in the concrete cover around the 
steel section. The check of the composite column in combined compression and 
biaxial bending is carried out in several steps, as described below. 
 
The resistance to axial compression is carried out separately for each axis. In 
general, based on the obtained result, it is possible to estimate which of the axes is 
more likely to fail.  
 
In the next step, it is necessary to check the column resistance under compression 
and uniaxial bending individually in each of the planes of bending. Then, it is 
necessary to check the column resistance in biaxial bending taking into account 
imperfections in the plane in which failure is expected to occur. For the other plane 
of bending the effect of imperfections is neglected. If it is not obvious which plane 
is the more critical, checks should be made for both planes. 
 
The verification of the considered composite column is carried out in accordance 
with clause 6.7.3, EN 1994-1-1. 

2. Static system, cross-section and design action effects 

Actions 
 
Design action effects 
 
Axial force: 
 

= 1800EdN  kN (the total design axial force) 
 

, = 1200G EdN  kN (the design axial force due to the permanent load) 
 
Bending moments at the top of the column: 
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, = 380y EdM  kNm 
 

, = 50z EdM  kNm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C6.1 Static system and cross-section (bending about the y-y axis and 
 the z-z axis) 

 
Denotation of imperfections 
 
Imperfection about the y-y axis is denoted with e0,z. Imperfection about the z-z axis 
is denoted with e0,y. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C6.2 Denotation of imperfections 
z 

y 

400

400

e0,z 

e0,y 

Concrete C 25/30 

HEB 260, S355 

z 

y 

Le – buckling length 

400

260 70 70 

10 

400 260 

70 

70 

17,5

35

35 

NEd 
L 

=
 L

e =
 7

,0
0 

m
 

Mz,Ed My,Ed 
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3. Properties of materials 

Concrete strength class: C 25/30 = 25ckf  N/mm2 

 25= = = 16,7
1,5

ck
cd

c

f
f  N/mm2 

 = 31000cmE  N/mm2 
 
Structural steel: S355 = 355ykf  N/mm2 

 355= = = 355
1,0

yk
yd

M

f
f  N/mm2 

 = 210000aE  N/mm2 
 
Reinforcement: ductility class B or C = 400skf  N/mm2 

 400= = = 348
1,15

sk
sd

s

f
f  N/mm2 

 = 210000sE  N/mm2 

4. Geometrical properties of the cross-section 

4.1 Selection of the steel cross-section and reinforcement 

The cross-section HE 260 B is selected. The selected cross-section is shown in 
Figure C6.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= 260h  mm 
= 260b  mm 

= 17,5ft  mm 

= 10wt  mm 
= 24r  mm 

= 118,4aA  cm2 

, = 14920y aI  cm4 

, = 5135z aI  cm4 

, , = 1283pl y aW  cm3 

, , = 602,2pl z aW  cm3 

Figure C6.3 Steel cross-section 
 
The cross-sectional area of the structural steel section HE 260 B is: 

z 

 y 

b

h 

tf 

tw 

r
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= 118,4aA  cm2 
 
The cross-sectional area of the reinforcement with four bars of 16 mm diameter is: 
 
dbar = 16 mm, Abar = 2,01 cm2 
 

= 4· = 4·2,01 = 8,04s barA A  cm2 
 
The cross-sectional area of the concrete is: 
 

= · – –c c c a sA b h A A  
 

= 40·40 – 118,4 – 8,04cA  
 

= 1473,6cA cm2 
 
The ratio of reinforcement area to concrete area is: 
 

8,04= = = 0,005
1473,6

s
s

c

A
A

 = 0,5s % 

 
0,3% < = 0,5% < 6%s  
 
The limits of 0,3% in clause 6.7.5.2(1), EN 1994-1-1, and of 6% in clause 6.7.3.1 
(1), EN 1994-1-1, on the reinforcement are satisfied. 
 
Remark: 
 
According to clause 6.7.3.1(3), EN 1994-1-1, the ratio of reinforcement area to 
concrete area, s, should not exceed 6%. 
 
According to clause 6.7.5.2(1), EN 1994-1-1, the ratio of reinforcement area to 
concrete area, s, should be not less 0,3%. 

4.2 Cross-sectional areas 

Structural steel 
 

= 118,4aA  cm2 
 
Reinforcement 
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= 8,04sA  cm2 
 
Concrete 
 

= 1473,6cA  cm2 

4.3 Second moments of area 

Bending about the y-y axis 
 
Structural steel 
 

, = 14920y aI  cm4 
 
Reinforcement 
 

2
, = 4· ·16,5y s barI A  

 
2

, = 4·2,01·16,5y sI  
 

2
, = 8,04·16,5 = 2189y sI  cm4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C6.4 Composite column cross-section 
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3

,
40·40= – 14920 – 2189

12y cI  

 
, = 196224y cI  cm4 

 
Bending about the z-z axis 
 
Structural steel 
 

, = 5135z aI  cm4 
 
Reinforcement 
 

2
, = 4· ·16,5z s barI A  

 
2

, = 4·2,01·16,5z sI  
 

2
, = 8,04·16,5 = 2189z sI  cm4 

 
Concrete 
 

3

, , ,

·
= – –

12
c c

z c z a z s

h b
I I I  

 
3

,
40·40= – 5135 – 2189

12z cI  

 
, = 206009z cI  cm4 

4.4 Plastic section moduli 

Bending about the y-y axis 
 
Structural steel 
 

, , = 1283pl y aW  cm3 
 
Reinforcement 
 

, , = · = 4·2,01·16,5 = 132,7pl y s si ii
W A z  cm3 
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Concrete 
 

2 2

, , , , , ,
· 40,0·40,0= – – = – 1283 – 132,7 = 14584,3
4 4

c c
pl y c pl y a pl y s

b h
W W W  cm3 

 
Bending about the z-z axis 
 
Structural steel 
 

, , = 602,2pl z aW  cm3 
 
Reinforcement 
 

, , = · = 4·2,01·16,5 = 132,7pl z s si ii
W A z  cm3 

 
Concrete 
 

2 2

, , , , , ,

· 40,0·40,0= – – = – 602,2 – 132,7 = 15265,1
4 4

c c
pl z c pl y a pl y s

b h
W W W  cm3 

5. Steel contribution ratio 

According to clause 6.7.3.3(1), EN 1994-1-1, the steel contribution ratio, , is 
defined as: 
 

,

·
= a yd

pl Rd

A f
N

 

 
The term Aa·fyd is the contribution of the structural steel section to the plastic 
resistance of the composite section to axial force. The design plastic resistance of 
the composite section to axial force Npl,Rd is calculated according to clause 
6.7.3.2(1), EN 1994-1-1. 
 
According to 6.7.1(4), EN 1994-1-1, the steel contribution ratio, , must satisfy 
the following conditions: 
 
0,2    0,9 
 
If  is less than 0,2, the column should be designed as a reinforced concrete 
member according to EN 1992-1-1. If  is larger than 0,9, the concrete is ignored 
in the calculations, and the column is designed as a structural steel member 
according to EN 1993-1-1. 
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The term Aa·fyd is the contribution of the structural steel section to the plastic 
resistance of the composite section to axial force: 
 

· = 118,4·35,5 = 4203a ydA f kN 
 
The plastic resistance of the composite section to axial force is: 
 

, = · + 0,85· · + ·pl Rd a yd c cd s sdN A f A f A f  
 

, = 118,4·35,5 + 0,85·1473,6·1,67 + 8,04·34,8pl RdN  
 

, = 6575pl RdN  kN 
 
According to 6.7.1(4), EN 1994-1-1, the steel contribution ratio, , must satisfy the 
following conditions: 
 
0,2    0,9 
 
The steel contribution ratio, , is: 
 

,

· 118,4·35,5= = = 0,64
6575

a yd

pl Rd

A f
N

 

 
Since the limits 0,2 <  = 0,64 < 0,9, are satisfied, the column can be classified as a 
composite column and the provisions of EN 1994-1-1 can be used for the 
dimensioning. 

6. Local buckling 

For fully encased steel section with the thickness of cover of reinforced concrete 
greater than 40 mm, or more than 1/6 of the width of the steel flange, the local 
buckling of steel elements can be neglected. 

 
For the selected section, the thickness of cover of reinforced concrete is 70 mm. 
This thickness should not be less than the larger of the following two values: 
 
40 mm 
 

260= = 43,3
6 6
b  mm 
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The cover thickness, 70 mm, is larger than the required values, and local buckling 
can be neglected. 

7. Effective modulus of elasticity for concrete 

For long-term loading the creep and shrinkage are taken into account in design 
by a reduced flexural stiffness of the composite cross-section. Due to the 
influence of long-term creep effects on the effective elastic stiffness, the 
modulus of elasticity of the concrete, Ecm, should be reduced to the value Ec,eff as: 
 

,
,

=
1 + ( )

cm
c eff

G Ed
t

Ed

E
E

N
N

 

 
where: 
 

0= ( , )t t t  is the creep coefficient, defining the creep between times t and t0, 
related to elastic deformation at 28 days, 

=t ( ,t0) is the final creep coefficient, 
t is the age of the concrete at the time considered, 
t0 is the age of the concrete at loading, 
NEd is the axial design force, 
NG,Ed is the permanent part of the axial design force NEd, NG,Ed = G·NGk. 

 
For the calculation of the creep coefficient (t, t0), the following is valid: 
 
- the perimeter of that part which is exposed to drying, u, is determined in 

accordance with Figure C6.5. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C6.5 Perimeter which is “exposed” to drying 
 

z 

y 

bc 

hc 

u = 2(bc + hc)
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= 2( + )c cu b h  
= 2·(40 + 40) = 160u  cm 

 
- the notional size of the cross-section, h0 
 

0
2· 2·1473,6= = = 18,4

160
cA

h
u

 cm = 184  mm 

- 0 = 30t  days, 
- inside conditions, the ambient relative humidity RH 50 %, 
- the concrete strength class C 25/30 
- the type of cement – cement class N, strength class 32,5 R; 42,5 N. 
 
The final value of creep coefficient ( , t0) is determined using the nomogram 
shown in Figure 3.1, EN 1992-1-1. The process of determining the final value of 
the creep coefficient, taking into account these assumptions, is given in Figure 
C6.6: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C6.6 Method for determining the creep coefficient 
 
The final value of creep coefficient ( , t0), found from Figure C6.6, is: 
 

t = ( , t0) = 2,7 
 
The design force of the permanent load, NG,Ed, and the total design force, NEd,  
are: 
 

, = 1200G EdN  kN 
 

= 1800EdN  kN 

t0 = 30 days 
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Accordingly, the value of Ec,eff is: 
 

,
,

3100= = = 1107
12001 + ·2,71 + ( )·
1800

cm
c eff

G Ed
t

Ed

E
E

N
N

 kN/cm2 

 
Further calculation is performed with the effective modulus of elasticity of 
concrete Ec,eff = 1107 kN/m2. 

8. Resistance of the cross-section to compressive axial force 

The design plastic resistance of the composite cross-section to axial compressive 
force, Npl,Rd, is given by the sum of the design resistances of components as 
follows: 
 

, = · + 0,85· · + ·pl Rd a yd c cd s sdN A f A f A f  
 

, = 118,4·35,5 + 0,85·1473,6·1,67 + 8,04·34,8pl RdN  
 

, = 4203 + 2092 + 280 = 6575pl RdN  kN 
 
The characteristic value of the plastic resistance of the composite cross-section to 
compressive axial force, Npl,Rk, is determined as: 
 

, = · + · · + ·pl Rk a yk c c ck s skN A f A f A f  
 

, = 118,4·35,5 + 0,85·1473,6·2,5 + 8,04·40pl RkN  
 

, = 4203 + 3131 + 322 = 7656pl RkN  kN 

9. Verification of the conditions for using the simplified design 
method 

The cross-section of the composite column should be doubly symmetrical and 
uniform along the entire length of the column. 
 
This condition is satisfied. 
 
Relative slenderness 
 
To apply the simplified method it is necessary to satisfy the following conditions: 
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y  2,0 
z  2,0 

 
About the y-y axis 
 
Relative slenderness, y , is determined as: 
 

,

,

= pl Rk
y

cr y

N
N

 

 
For the determination of the relative slenderness y  and the elastic critical force 
Ncr,y, it is necessary to calculate the value of the effective flexural stiffness of the 
cross-section of composite column, ,( )eff yEI , as: 
 

, , , , ,( ) = · + · + · ·eff y a y a s y s e c eff y cEI E I E I K E I  
 
With the correction factor Ke = 0,6, the value of ,( )eff yEI is: 
 

,( ) = 21000·14920 + 21000·2189 + 0,6·1107·196224eff yEI  
 

6
,( ) = 489,62·10eff yEI  kNcm2 

 
Elastic critical force, Ncr,y,, for the pin-ended column and the buckling length Le,y, is 
determined as: 
 

2
,

, 2
,

( ) ·
= eff y

cr y
e y

EI
N

L
   , =e yL L  

 
6 2

, 2

489,62·10 ·= = 9862
700cr yN  kN 

 
The relative slenderness, y , is: 
 

7656= = 0,88
9862

y  

 
Accordingly = 0,88 < 2,0y , and the condition is satisfied. 
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About the z-z axis 
 
Relative slenderness, z , is determined as: 
 

,

,

= pl Rk
z

cr z

N
N

 

 
For the determination of the relative slenderness z  and the elastic critical force 
Ncr,z, it is necessary to calculate the value of the effective flexural stiffness of the 
cross-section of composite column ,( )eff zEI  as: 
 

, , , , ,( ) = · + · + · ·eff z a z a s z s e c eff z cEI E I E I K E I  
 
With the correction factor Ke = 0,6, the value of ,( )eff zEI is: 
 

,( ) = 21000·5135 + 21000·2189 + 0,6·1107·206009eff zEI  
 

6
,( ) = 290,64·10eff zEI  kNcm2 

 
The elastic critical force, Ncr,z, for the pin-ended column and the buckling length 
Le,z, is determined as: 
 

2
,

, 2
,

( ) ·
= eff z

cr z
e z

EI
N

L
   , =e zL L  

 
6 2

, 2

290,64·10 ·= = 5854
700cr zN  kN 

 
The relative slenderness, z , is: 
 

7656= = 1,14
5854

z  

 
Accordingly = 1,14 < 2,0z , and the condition is satisfied. 
 
The maximum permitted cross-sectional area of the longitudinal 
reinforcement 
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The maximum cross-sectional area of longitudinal reinforcement As,max that can be 
used in the calculation should not exceed 6% of the concrete area. This condition is 
satisfied, see in Section 4.1. 
 
The minimum permitted cross-sectional area of the longitudinal 
reinforcement 
 
The minimum cross-sectional area of longitudinal reinforcement As,min that can be 
used in the calculation should be not less 0,3% of the concrete area. This condition 
is satisfied, see in Section 4.1. 
 
The ratio of the depth to the width 
 
The ratio of the depth to the width of the composite cross-section should be within 
the following limits, see Figure C6.4: 
 

0,2 c

c

h
b

 5,0 

 
40,0= = 1,0
40,0

h
b

 

 

0,2 < = 1,0 < 5,0c

c

h
b

, the condition is satisfied 

 
Maximum thickness of concrete cover 
 
The maximum thicknesses of concrete cover that may be used in calculation are: 
 
max cy = 0,4bc 
 
max cz = 0,3hc 
 
Thus, in accordance with Figure C6.4: 
 
max = 0,4· = 0,4·40,0 = 16 > = 7y c yc b cm c cm , the condition is satisfied 

max = 0,3· = 0,3·40,0 = 12 > = 7z c zc h cm c cm , the condition is satisfied 
 
Remark: 
 
All the conditions from clause 6.7.3.1, EN 1994-1-1, are satisfied, so this allows 
the use of the simplified design method for composite columns. 
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10. Resistance of the member in axial compression 

Remark: 
 
Although the column is subjected to combined compression and biaxial bending, 
the check based on buckling curves is useful as the preliminary check for this 
column. If the resistance to the axial compressive force is not sufficient, the 
considered column is inadequate and it is necessary to select a stronger cross-
section. 

 
The resistance of the member subjected only to axial compression can be 
checked by the second-order analysis according to clause 6.7.3.5, EN 1994-1-1, 
so as to take into account member imperfections. As a simplification in the case 
of the member subjected only to axial compression, the design value of the axial 
force NEd should satisfy the check based on European buckling curves, which 
can be written in the following format: 
 

,·
Ed

pl Rd

N
N

 1,0 

 
The reduction factor  is given by: 
 

2 2

1=
+ –

, but   1,0 

 
and 
 

2
0= 0,5·[1 + ·( – ) + ] , with 0 = 0,2  

 
Since = 1,14 > = 0,88z y , the buckling resistance about the z-z axis is governed. 
 
Remark: 
 
The relevant buckling curves for cross-sections of composite columns are given 
in Table 6.5, EN1994-1-1. according to which, composite columns with fully 
concrete encased section can be designed using buckling curve b for the y-y axis 
of buckling and using buckling curve c for the z-z axis of buckling. 

 
From Table 6.5, the buckling curve c with  = 0,49 is adopted for the z-z axis of 
buckling so that z is: 
 

2

0= 0,5·[1 + ·( – ) + ]zz z  
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2= 0,5·[1 + 0,49·(1,14 – 0,2) +1,14 ] = 1,38z  
 
The reduction factor z is: 
 

2 2

1=
+ –

z

zz z z

 

 

2 2

1= = 0,46 < 1,0
1,38 + 1,38 – 1,14

z  

 
Check: 
 

,·
Ed

z pl Rd

N
N

 1,0 

 
1800 = 0,60 < 1,0

0,46·6575
 

 
Since 0,60 < 1,0 , the check of the composite column subjected to axial 
compression is satisfied. It is not necessary to select the stronger cross-section. 

11. Resistance of the member in combined compression and 
uniaxial bending 

11.1 Resistance of the member about the y-y axis taking into account the 
equivalent member imperfection e0,z 

11.1.1 General 

According to clause 6.7.3.6, EN 1994-1-1, the member in combined compression 
and uniaxial bending has sufficient resistance if the following condition is 
satisfied: 
 

, ,

,y, , ,y,

=
·

y Ed y Ed

pl N Rd dy pl Rd

M M
M M ,M y  

 
where: 
 
My,Ed is the greatest of the end moments and the maximum bending moment 

within the column length. This moment is calculated according to 



Example C6 631 
 

 

clause 6.7.3.4, EN 1994-1-1, including imperfections (Table 6.5, EN 
1994-1-1) and second-order effects if necessary ( cr > 10). 

Mpl,y,N,Rd is the plastic resistance moment taking into account the axial force NEd, 
given by dy·Mpl,y,Rd, see Figure 6.18, EN 1994-1-1. 

Mpl,Rd is the plastic resistance moment, given by point B in Figure 6.18, EN 
1994-1-1. 

dy is the factor related to the design for compression and uniaxial 
bending. 

M,y is the coefficient related to the bending of a composite column and is 
taken as 0,9 for steel grades between S235 and S355. 

 
The condition can be written as: 
 

, ,

, , , ,

=
· ·

y Ed y Ed

y Rd M y dy pl y Rd

M M
M M

 1,0 

 
The calculation of the design bending moment My,Ed = MEd,II taking the initial 
bending moment about the y-y axis, the imperfection e0,z, and second-order 
effects is shown in Figure C6.7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C6.7 Equivalent member imperfection e0,z about the y-y axis 

L 

e0,z 

A A

B B

Section A-A

Section B-B

NEd

Mz,Ed My,Ed

e0,z  y

 z

 

NEd

My,Ed
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 z
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11.1.2 Resistance of the cross-section in combined compression and bending 
about the y-y axis 

Remark: 
In order to determine the resistance of the composite cross-section to combined 
compression and uniaxial bending, it is necessary to produce an axial load – 
bending moment (N–M) interaction curve. As a simplification, the interaction 
curve is replaced by an interaction polygon ACDB, clause 6.7.3.2 (5), EN 1994-
1-1. 
 
The N–M interaction polygon ACDB is shown in Figure 6.19, EN 1994-1-1. The 
modified version of the interaction polygon, which refers to the composite 
column with fully concrete-encased H-section, is shown in Figure C6.8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C6.8 N M interaction polygon and corresponding stress distributions 
 
In order to produce the N–M interaction polygon, the cross-sectional capacities 
at points A to D should be determined assuming the stress distributions 
indicated, see Figure C6.8. 
 
The resistance of the cross-section to combined compression and bending is 
calculated using the interaction polygon of N–M. 

 
Point A 
 
At point A, only the design plastic resistance of the cross-section is taken into 
account: 
 

, = · + 0,85· · + ·pl Rd a yd c cd s sdN A f A f A f  

N M interaction curve

 Mpl,y,Rd

Npm,Rd 

Npl,Rd 

N 

M

 A 

 B

 C

 D1/2 Npm,Rd 

 Mmax,y,Rd

Interaction 
polygon 

A

B

C

D

 fyd 

0,85 fcd 

0,85 fcd 

0,85 fcd  fyd 

 fyd 

 fyd 

hn 2hn

hn 2hnhn

Npl,Rd 

Mpl,y,Rd 

Mmax,y,Rd 

Npm,Rd 

Mmax,y,Rd 

Npm,Rd/2 

 fsd 

 fsd 

 fsd 

 fsd 

0,85 fcd 



Example C6 633 
 

 

 
 
 
 
 
 
 
 
 
 

Figure C6.9 Stress distributions for point A on the interaction polygon 
 
The design plastic resistance of the composite cross-section to compression is: 
 

, = 118,4·35,5 + 0,85·1473,6·1,67 + 8,04·34,8pl RdN  
 

, = 6575pl RdN  kN 
 
Point D 
 
The position of the plastic neutral axis and the stress distributions are shown in 
Figure C6.10. 
 
 
 
 
 
 
 
 
 
 

Figure C6.10 Stress distributions for point D on the interaction polygon 
 
The maximum design plastic resistance moment is determined as: 
 

max, , , , , , , , , , ,= + +y Rd pl y a Rd pl y c Rd pl y s RdM M M M  
 
The maximum design plastic resistance moment, Mmax,y,Rd, at point D is: 
 

max, , , , , , , ,= · + 0,5· ·0,85· + ·y Rd pl y a yd pl y c cd pl y s sdM W f W f W f  
 

0,85 fcd fyd

Npl,Rd 

 fsd 
b 

z 

 y 
h

hc

bc 

 y 

z 

0,85 fcd  fyd  fsd 

 Npm,Rd/2 

Mmax,y,Rd 
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–2
max, , = (1283·35,5 + 0,5·14584,3·0,85·1,67 +132,7·34,8)·10y RdM  

 
max, , = 605y RdM  kNm 

 
The design value of the resistance of the concrete to compression, Npm,Rd, is: 
 

, = ·0,85· = 1473,6·0,85·1,67 = 2092pm Rd c cdN A f  kN 
 
The design axial force at the point of maximum design plastic resistance moment is 
0,5·Npm,Rd, and therefore is: 
 

,0,5· = 0,5·2092 = 1046pm RdN  kN 
 
Point C 
 
 
 
 
 
 
 
 
 
 

Figure C6.11 Stress distributions for point C on the interaction polygon 
 
Calculation of the design plastic resistance moment of the composite section, 
Mpl,y,Rd, is carried out as shown below. 
 
When the design axial force is equal to zero, the plastic neutral axis lies within the 
web of steel section (hn  h/2  tf) and its position is determined as: 
 

, ,– ·(2· – 0,85· )
=

2· ·0,85· + 2· ·(2· – 0,85· )
pm Rd s n sd cd

n
c cd w yd cd

N A f f
h

b f t f f
 

 
where As,n is the reinforcement area within hn. Because it is at this point unknown, 
it is assumed to be (initial guess): 
 

, = 0s nA  cm2 
 
Thus, for the case when the axial force is equal to zero, hn is: 

 Npm,Rd 

Mpl,y,Rd 

bc 

2hn
hn hc

z 

 y 

0,85 fcd  fyd  fsd 
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2092 – 0·(2·34,8 – 0,85·1,67)= = 8,27
2·40,0·0,85·1,67 + 2·1,0·(2·35,5 – 0,85·1,67)nh  cm = 82,7  mm 

 
Since in this region there is no reinforcement, the assumption is correct. 
 
Plastic section moduli in region 2·hn 
 
Structural steel 
 

2 2
, , , = · = 1,0·8,27 = 68,4pl y a n w nW t h  cm3 

 
Reinforcement 
 
Wpl,y,s,n = 0 cm3 
 
Concrete 
 

2 2
, , , , , , , , ,= · – – = 40,0·8,27 – 68,4 – 0 = 2667pl y c n c n pl y a n pl y s nW b h W W  cm3 

 
The design plastic resistance moment of the composite section, Mpl,y,Rd, is 
calculated as: 
 

, , max, , , ,= –pl y Rd y Rd n y RdM M M  
 
where: 
 

, , ,
, , , , , , , ,

·
= · + · +

2
pl y c n cd

n y Rd pl y a n yd pl y s n sd

W f
M W f W f  

 
–2

, ,
2667·0,85·1,67= (68,4·35,5 + 0·34,8 + )·10 = 43,2

2n y RdM  kNm 

 
The design plastic resistance moment of the composite section, Mpl,y,Rd, is: 
 

, , = 605 – 43,2 = 562pl y RdM  kNm 
 
Point B 
 
The design value of Mpl,y,Rd has previously been calculated in order to define point 
C on the N–M interaction polygon: 
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, , = 562pl y RdM  kNm 
 
 
 
 
 
 
 
 
 
 

Figure C6.12 Stress distributions for point B on the interaction polygon 
 
Previously calculated values at points A to E should be plotted to produce the N–M 
interaction polygon (Figure 6.19, EN 1994-1-1). The interaction polygon ACDB is 
shown in Figure C6.13. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C6.13 N–M interaction polygon 
 
According to the interaction polygon ACDB, Figure C6.13, the following value 
Mpl,y,N,Rd is obtained: 
 

,
, , , , , , ,

,

–
= + 2 ( )pm Rd Ed

pl y N Rd pl y Rd n y Rd
pm Rd

N N
M M M

N
 

 

, , ,
2092 – 1800= 562 + 2·43,2( ) = 574

2092pl y N RdM  kNm 

 

 Mpl,y,Rd = 562 kNm 

Npm,Rd = 2092 kN 

Npl,Rd = 6575 kN

N 

M 

 A 

 B 

 C 

 D 
1/2 Npm,Rd = 1046 kN  max, , = 605y RdM  kNm 

NEd = 1800 kN Mpl,y,N,Rd = 574 kNm 
, ,pl y RdM

hn 2hn
Mpl,y,Rd 

bc 

z 

 y 
hc

0,85 fcd  fyd  fsd 
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The value of dy is: 
 

, , ,

, ,

574= = = 1,02 > 1,0
562

pl y N Rd
dy

pl y Rd

M
M

 

 
Remark: 
 
The value of dy is greater than 1,0. According to clause 6.7.3.6(2), EN 1994-1-1, 
a value of dy greater than 1,0 should be not used unless the design bending 
moment MEd is directly caused by the design axial force NEd, acting at the 
eccentricity on the considered column. If the design bending moment MEd does 
not depend on the action of the design axial force NEd, it is necessary to carry out 
the additional check in accordance with clause 6.7.1(7), EN 1994-1-1. 
 
According to clause 6.7.1(7), EN 1994-1-1, for the composite column subjected 
to bending moment and axial force resulting from independent actions, the 
partial factor F for this bending moment and axial force that lead to an increase 
of resistance should be reduced by 20%. It means that the design bending 
moment, 0,8· F·MEk, coexists with the independent design axial force, 0,8· F·NEk.  
 
However, in this example, it makes no difference whether the bending moment 
and the axial force are from dependent actions or not, because the point Mpl,y,N,Rd 
(= 574 kNm) lies on line CD in Figure C6.13, not on line BD, so the additional 
check according to clause 6.7.1(7), EN 1994-1-1, would not alter the result. 

 
The check is carried out using the factor = 1,02dy , in accordance with clause 
6.7.3.6(2), EN 1994-1-1, because the bending moment MEd results from the 
eccentricity of the design axial force NEd. 

11.1.3 Calculation of the effects of actions about the y-y axis 

11.1.3.1 General 

According to clause 6.7.3.4 (3), EN 1994-1-1, which refers to clause 5.2.1(3), 
EN 1994-1-1, second-order effects can therefore be neglected if the load factor 

cr, which is the ratio between the elastic critical load and the corresponding 
applied loading, for elastic instability of the member exceeds 10. 
 
To calculate cr, the ends of the column are assumed to be pinned, and cr is 
found using the Euler formula for the elastic critical force Ncr,y,eff: 
 

2
,

, 2
,

( )
= eff, y II

cr, y eff
e y

E
N

L
   Le,y = L 
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The design value of the effective flexural stiffness (EI)eff,y,II, used to determine 
the internal forces and moments by second-order analysis, according to clause 
6.7.3.4(2), EN 1994-1-1, is defined by: 
 

, 0 , , ,( ) = ·( · + · + · · )eff, y II a y a s y s e,II cm y cEI K E I E I K E I  
 
where: 
 
Ke,II is a correction factor, which should be taken as 0,5, 
K0 is a calibration factor, which should be taken as 0,9. 

 
The value Ec,eff has been used in place of Ecm in the expression for (E  )eff,y,II, in 
order to take into account the long-term effects, in the same way as calculated in 
Section 7. Accordingly, the value of Ec,eff is: 
 

, = 1107c effE  kN/cm2 
 
The design value of the effective flexural stiffness (EI)eff,y,II, is: 
 

, 0 , , , ,( ) = ·( · + · + · · )eff, y II a y a s y s e,II c eff y cEI K E I E I K E I  
 

–2
, ,( ) = 0,9·(21000·14920 + 21000·2189 + 0,5·1107·196224)·10eff y IIEI  

 
6

, ,( ) = 421,11·10eff y IIEI  kNcm2 
 
The elastic critical force, Ncr,y,eff, for the pin-ended column, is: 
 

2
,

, 2
,

( )
= eff, y II

cr, y eff
e y

E
N

L
 

 
6 2

, , 2

421,11·10 ·= = 8482
700cr y effN  kN 

 
To check whether the effects of second-order analysis can be neglected, the value 
of cr must be higher than 10: 
 

, , 8482= = = 4,7 < 10
1800

cr y eff
cr

Ed

N
N

 

 
The value of cr is less than 10, so the second-order effects must be considered. 
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11.1.3.2 Bending moments about the y-y axis 

According to clause 6.7.3.4(5), EN 1994-1-1, the second-order effects can be 
calculated by multiplying the greatest first-order design bending moments by a 
factor k. 
 
Thus, the second-order effects may be considered according to the expression: 
 

, , , ,= ·y Ed II y Ed IM M k  
 
The factor k is given by: 
 

, ,

=
1 – /Ed cr y eff

k
N N

 1,0 

 
where: 
 
 is an equivalent moment factor given in Table 6.4, EN 1994-1-1, 

Ncr,y,eff is the critical axial force, about the y-y axis, obtained with the effective 
flexural stiffness (EI)eff,y,II and with the effective length taken as the 
physical length of the column. 

 
The design bending moment from the member imperfections is determined as: 
 

, , 0,= ·y Ed imp Ed zM N e  

 
where: 
 
NEd is the design value of the axial force,  
e0,z is the equivalent member imperfection, which is given in Table 6.5, EN 

1994-1-1, depending on the buckling curve. 
 
Remark: 
 
According to Table 6.5, EN 1994-1-1, composite columns with fully concrete-
encased section can be designed using buckling curve b for y-y axis of buckling. 

 
Therefore, for the buckling curve b, the equivalent member imperfection is: 
 

0, =
200z

Le  
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0,
700= = 3,5
200ze  cm 

 
The design values of the bending moments are as follows: 
 
The design bending moment at the top of the column is: 
 

, = 380y EdM  kNm 
 
The design bending moment at the bottom of the column is: 
 

, = 0y EdM  kNm 
 
The design bending moment due to imperfection is: 
 

, , 0,= · = 1800·0,035 = 63,0y Ed imp Ed zM N e  kNm 
 
The design bending moments calculated according to first-order analysis are shown 
in Figure C6.14. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C6.14 First-order bending moments, design values 
 
Remark: 
 
The factor  from Table 6.4, EN 1994-1-1, allows for the shape of the bending 

My,Ed 
NEd 

L 
=

 7
,0

0 
m

 

e0,z 

380,0 kNm

63,0 kNm 

,y EdM , ,y Ed impM
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moment diagram. When bending is caused by lateral loading on the column, the 
value of factor  is 1,0. For a column subjected to end moments, the factor  is 
calculated as: 
 

1 = 0,66 + 0,44·r  0,44 
 
where r is the ratio of the end moments on the ends of the column ( 1  r  +1). 

 
Therefore, the two values of factor k must be calculated: 
 
- for the end moments, k1, 
- for the moment from the member imperfection, k2. 
 
Determination of factor k1 
 
The ratio of the end moments at the ends of the column is: 
 

,

0 0= = = 0,0
380y Ed

r
M

 

 
The equivalent moment factor  is: 
 

1 = 0,66 + 0,44·r  0,44 
 

1 = 0,66 + 0,44·0 = 0,66  
 
Therefore, the factor k1 is: 
 

1
1

0 66= = = 0 84 < 1 0
1 – 1 – 1800 8482Ed cr, y,eff

,k , ,
N N /

 

 
Remark: 
 
According to clause 6.7.3.4(5), EN 1994-1-1, the value of factor k must be 1,0 or 
higher. It is over-conservative to use when combining two sets of second-order 
effects. Therefore, the calculated value of 0,84 is adopted. 

 
Determination of factor k2 
 
For the bending moment from the member imperfection, according to Table 6.4, 
EN 1994-1-1, the equivalent moment factor  is: 
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2 = 1,00  
 
Therefore, the factor k2 is: 
 

2
2

Ed cr,eff,y

1,0= = = 1,27 > 1,0
1 – 1 – 1800 8482

k
N N

 

 
The adopted value of the factor is: k2 = 1,27 
 
The design bending moment at mid-height, second-order effects being taken into 
account, is: 
 

, , , 1 , , 2= · + · = 380,0·0,84 + 63,0·1,27 = 399y Ed II y Ed y Ed impM M k M k  kNm 
 
The design bending moments calculated according to second-order analysis are 
shown in Figure C6.15. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C6.15 Second-order bending moments about the y-y axis, design values 
 
The check is performed with the bending moment at mid-height: 
 

a) Second-order bending 
moments due to G
and Q 

b) Imperfection 
moment increased 
by the second-order 
effects 

My,Ed 
NEd 

L 
=

 7
,0

0 
m

 e0,z 

380,0 kNm
63,0 kNm 

0,66·380,0 

0,84·380,0 1,27·63,0 

+
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, , ,max= = 399y Ed II yM M  kNm 

11.1.3.3 Shear forces parallel to the z-z axis 

According to clause 6.7.3.4(5), EN 1994-1-1, second-order effects can be 
allowed for by multiplying the greatest first-order design bending moment by a 
factor k given by:  
 

,

=
1 – /Ed cr eff

k
N N

 1,0 

 
Accordingly, the approximate value of shear force can be obtained as: 
 

, = ·Ed II EdV V k  
 
In accordance with Figure C6.16, the first-order design shear force at the bottom of 
column is: 
 

, 0,
,

4· · 380,0 4·1800·0,035= + = + = 54,3 + 36 = 90,3
7,0 7,0

y Ed Ed z
z Ed

M N e
V

L L
 kN 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C6.16 First-order design shear forces parallel to the z-z axis 
 
In accordance with Figure C6.16, the first-order design shear force at the top of 
column is: 

0,
2

8 Ed z·N ·e
L

NEd  

L 

e0,z 

My,Ed 

90,3 kN 

18,3 kN 

NEd 

My,Ed 

, 0,4y Ed Ed zM · N ·e
+

L L

0,4 Ed zEd ·N ·eM
– +

L L
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, 0,
,

4· · 380,0 4·1800·0,035= – + = – + = –54,3 + 36 = –18,3
7,0 7,0

y Ed Ed z
z Ed

M N e
V

L L
 kN 

 
The diagram of shear forces, calculated by first-order analysis for the bending 
moment and the equivalent lateral load due to imperfections, is shown in Figure 
C6.16. 
 
The factor k1 is: 
 

1
1

, ,

0,66= = = 0,84 < 1,0
1 – / 1 – 1800 / 8482Ed cr y eff

k
N N

 

 
The factor k2 is: 
 

2
, ,

1 1,0= = = 1,27 > 1,0
1 – / 1 – 1800 8482Ed cr y eff

k
N N

 

 
Therefore, the maximum design shear force, calculated by approximate second-
order analysis, is: 
 

, 0,
, , 1 2

4· ·
= · + ·y Ed Ed z

z Ed II

M N e
V k k

L L
 

 

, ,
380,0 4·1800·0,035= 0,84· +1,27· = 45,6 + 45,7 = 91,3
7,0 7,0z Ed IIV  kN 

11.1.4 Check of the resistance of the member in combined compression and 
bending about the y-y axis 

It is necessary to satisfy the following condition: 
 

, ,

, , , ,

=
· ·

y Ed y Ed

y Rd M y dy pl y Rd

M M
M M

 1,0 

 
The coefficient M,y is taken as 0,9 for steel grades between S235 and S355. 
 
The design value of the maximum design bending moment by the approximate 
second-order analysis is: 
 

, , ,= = 399y Ed y Ed IIM M  kNm 
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The design resistance moment My,Rd is (Figure C6.13): 
 

, , ,= · · = 0,9·1,02·562 = 516y Rd M dy pl y RdM M  kNm 
 
Condition: 
 

,

,

399= = 0,77
516

y Ed

y Rd

M
M

 

 
Since 0,77 < 1,0 , the condition is satisfied. 

11.1.5 Check of the plastic resistance to transverse shear parallel to the z-z 
axis 

In accordance with clause 6.7.3.2(4), EN 1994-1-1, for simplification VEd may be 
assumed to act on the structural steel section alone. According to clause 6.2.6(2), 
EN 1993-1-1, in the absence of torsion, the design plastic shear resistance, 
Vpl,z,a,Rd, is given by: 
 

,
, , ,

0

·( / 3)
= v z y

pl z a Rd
M

A f
V  

 
The shear area, Av,z, according to clause 6.2.6(3), EN1993-1-1, is calculated as: 
 

, = – 2· · + ( + 2 )·v z a f w fA A b t t r t · · = ·( – 2· – 2· )·w w f wh t h t r t  
 
According to clause 6.2.2.4(1), EN 1994-1-1, where the shear force is less than 
half the plastic shear resistance its effect on the resistance moment can be 
neglected. Therefore, the condition is: 
 

, , , ,< 0,5·z Ed pl z a RdV V  
 
The design value of the second-order shear force is: 
 

, , ,= = 91,3z Ed z Ed IIV V  kN 
 
The shear area, Av,z, is: 
 

, = – 2· · + ( + 2 )v z a f w fA A b t t r t · · = ·( – 2· – 2· )·w w f wh t h t r t  
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· · = ·( – 2· – 2· )· = 1,0·(26,0 – 2·1,7 – 2·2,4)·1,0 = 17,8w w f wh t h t r t  cm2 
 

, = 118,4 – 2·26,0·1,7 + (1,0 + 2·2,4)·1,7 = 39,9v zA  cm2  17,8 cm2 
 
The design plastic shear resistance, Vpl,z,a,Rd, is: 
 

,
, , ,

0

·( / 3)
= v z y

pl z a Rd
M

A f
V  

 

, , ,
39,9·(35,5 / 3)= = 818

1,0pl z a RdV  kN 

 
Check: 
 

, , , , ,= 91,3 < 0,5· = 0,5·818 = 409z Ed II pl z a RdV V  kN 
 
The condition is satisfied and no reduction in the resistance moment is required. 

11.2 Resistance of the member about the z-z axis taking into account the 
equivalent member imperfection e0,y 

11.2.1 General 

According to clause 6.7.3.6, EN 1994-1-1, the member in combined compression 
and uniaxial bending has sufficient resistance if the following condition is 
satisfied: 
 

, ,

, , , , ,

=
·

z Ed z Ed

pl z N Rd dz pl z Rd

M M
M M ,M z  

 
where: 
 
Mz,Ed is the greatest of the end moments and the maximum bending moment 

within the column length. This moment is calculated according to 
clause 6.7.3.4, EN 1994-1-1, including imperfections (Table 6.5, EN 
1994-1-1) and second-order effects if necessary ( cr > 10). 

Mpl,z,N,Rd is the plastic resistance moment taking into account the axial force NEd, 
given by dz·Mpl,z,Rd, see Figure C6.18. 

Mpl,z,Rd is the plastic resistance moment, given by point B in Figure 6.18, EN 
1994-1-1. 

dz is the factor related to the design for compression and uniaxial 
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bending. 
M,z is the coefficient related to the bending of a composite column and is 

taken as 0,9 for steel grades between S235 and S355. 
 
The condition can be written in the following form: 
 

, ,

, , , ,

=
· ·

z Ed z Ed

z Rd M z dz pl z Rd

M M
M M

 1,0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C6.17 Equivalent member imperfection e0,y about the z-z axis 
 
The calculation of the design bending moment Mz,Ed = Mz,Ed,II taking the initial 
bending moment about the z-z axis, the imperfection e0,y, and second-order 
effects is shown in Figure C6.17. 

11.2.2 Resistance of the cross-section in combined compression and bending 
about the z-z axis 

Remark: 
 
In order to determine the resistance of the composite cross-section to combined 
compression and uniaxial bending, it is necessary to produce an axial load – 
bending moment (N–M) interaction curve. As a simplification, the interaction 
curve is replaced by an interaction polygon ACDB, clause 6.7.3.2 (5), EN 1994-

e0,y 

L 

A A

B B

Section A-A

Section B-B

NEd

Mz,Ed My,Ed

e0,y 

 y

NEd

My,Ed

Mz,Ed 

 z

 y

NEd

My,Ed

Mz,Ed 

 z e0,y 
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1-1. 
 
The N–M interaction polygon ACDB is shown in Figure 6.19, EN 1994-1-1. A 
modified version of the interaction polygon, which refers to the composite 
column with fully concrete-encased H-section, is shown in Figure C6.18. 
 
In order to produce the N–M interaction polygon, the cross-sectional capacities 
at points A to D should be determined assuming the stress distributions 
indicated, see Figure C6.18. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C6.18 N M interaction polygon and corresponding stress distributions 
 
The resistance of the cross-section to combined compression and bending is 
calculated using the interaction polygon of N–M. 

 
Point A 
 
 
 
 
 
 
 
 
 
 

Figure C6.19 Stress distributions for point A on the interaction polygon 
 
At point A, only the design plastic resistance of the cross-section is taken into 
account: 

0,85 fcd  fyd

Npl,Rd 

 fsd 
hc 
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 z 
bc

N M interaction curve

 Mpl,z,Rd 

Npm,Rd 

Npl,Rd 

N 

M
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 D1/2 Npm,Rd 

 Mmax,z,Rd
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A

B

C

D

0,85 fcd  fyd 

0,85 fcd

0,85 fcd 

0,85 fcd  fyd 

 fyd 

 fyd 

hn 2hn

hn 2hnhn
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, = · + 0,85· · + ·pl Rd a yd c cd s sdN A f A f A f  
 
The design plastic resistance of the composite cross-section to compression is: 
 

, = 118,4·35,5 + 0,85·1473,6·1,67 + 8,04·34,8pl RdN  
 

, = 6575pl RdN  kN 
 
Point D 
 
The position of the plastic neutral axis and the stress distributions are shown in 
Figure C6.20. 
 
 
 
 
 
 
 
 
 
 
 

Figure C6.20 Stress distributions for point D on the interaction polygon 
 
The maximum design plastic resistance moment is determined as: 
 

max, , , , , , , , , , ,= + +z Rd pl z a Rd pl z c Rd pl z s RdM M M M  
 
The maximum design plastic resistance moment, Mmax,z,Rd, at point D is: 
 

max, , , , , , , ,= · + 0,5· ·0,85· + ·z Rd pl z a yd pl z c cd pl z s sdM W f W f W f  
 

–2
max = (602 2·35 5 + 0 5·15265 1·0 85·1 67 +132 7·34 8)·10,z,RdM , , , , , , , ,  

 
max, , = 368z RdM  kNm 

 
The design value of the resistance of the concrete to compression, Npm,Rd, is: 
 

, = ·0,85· = 1473,6·0,85·1,67 = 2092pm Rd c cdN A f  kN 
 

bc

hc 

 y 

z 

0,85 fcd  fyd  fsd 

 Npm,Rd/2 

Mmax,z,Rd 
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The design axial force at the point of maximum design plastic resistance moment is 
0,5·Npm,Rd, and therefore is: 
 

,0,5· = 0,5·2092 = 1046pm RdN  kN 
 
Point C 
 
 
 
 
 
 
 
 
 
 

Figure C6.21 Stress distributions for point C on the interaction polygon 
 
Calculation of the design plastic resistance moment of the composite section, 
Mpl,z,Rd, is carried out as shown below. 
 
When the design axial force is equal to zero, the plastic neutral axis lies within the 
flanges of the steel section, tw/2 < hn < b/2, and its position is determined as: 
 

, ,– ·(2· – 0,85· ) + ·(2· – )·(2· – 0,85· )
=

2· ·0,85· + 4· ·(2· – 0,85· )
pm Rd s n sd cd w f yd cd

n
c cd f yd cd

N A f f t t h f f
h

h f t f f
 

 
where As,n is the reinforcement area within hn. Because it is at this point unknown, 
it is assumed to be (initial guess): 
 

, = 0s nA  cm2 
 
Thus, for the case when the axial force is equal to zero, hn is: 
 

2092,0 – 0·(2·34,8 – 0,85·1,67) +1,0·(2·1,75 – 26,0)·(2·35,5 – 0,85·1,67)=
2·40,0·0,85·1,67 + 4·1,75·(2·35,5 – 0,85·1,67)nh  

= 0,88nh  cm 
 
Since in this region there is no reinforcement, the assumption is correct. 
 
 
 

 Npm,Rd 

Mpl,z,Rd 

hc 

2hn
hn bc

z 

 y 

0,85 fcd  fyd  fsd 
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Plastic section moduli in region 2·hn 
 
Structural steel 
 

2 2
2 2

, , ,

( – 2· )· (26,0 – 2·1,75)·1,0= 2 · + = 2·1,75·0,88 + = 8,3
4 4

f w
pl z a n f n

h t t
W t h  cm3 

 
Reinforcement 
 
Wpl,z,s,n = 0 cm3 
 
Concrete 
 

2 2
, , , , , , , , ,= · – – = 40,0·0,88 – 8,3 – 0 = 22,7pl z c n c n pl z a n pl z s nW h h W W  cm3 

 
The design plastic resistance moment of the composite section, , ,pl z RdM , is 
calculated as: 
 

, , max, , , ,= –pl z Rd z Rd n z RdM M M  
 
where: 
 

, , ,
, , , , , , , ,

·
= · + · +

2
pl z c n cd

n z Rd pl z a n yd pl z s n sd

W f
M W f W f  

 
–2

, ,
22,7·0,85·1,67= (8,3·35,5 + 0·34,8 + )·10 = 3,1

2n z RdM  kNm 

 
Point B 
 
 
 
 
 
 
 
 
 

Figure C6.22 Stress distributions for point B on the interaction polygon 
 
The design plastic resistance moment of the composite section, , ,pl z RdM , is: 

hn 2hn
Mpl,z,Rd 

bc 

z 

 y 
hc

0,85 fcd  fyd  fsd 
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, , = 368 – 3,1 = 365pl z RdM  kNm 
 
The design value of Mpl,z,Rd has previously been calculated in order to define point 
C on the N–M interaction polygon: 
 

, , = 365pl z RdM  kNm 
 
Previously calculated values at points A to D should be plotted to produce the N–M 
interaction polygon (Figure 6.19, EN 1994-1-1). The interaction polygon ACDB is 
shown in Figure C6.23. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C6.23 N–M interaction polygon 
 
According to the interaction polygon AECDB, Figure C6.23, the following value 
Mpl,z,N,Rd is obtained: 
 

,
, , , , , , ,

,

–
= + 2 ( )pm Rd Ed

pl z N Rd pl z Rd n z Rd
pm Rd

N N
M M M

N
 

 

, , ,
2092 – 1800= 365 + 2·3,1( ) = 366

2092pl z N RdM  kNm 

 
The value of dz is: 
 

, , ,

, ,

366= = = 1,003
365

pl z N Rd
dz

pl z Rd

M
M

 1,0 

 Mpl,z,Rd = 365 kNm 

Npm,Rd = 2092 kN 

Npl,Rd = 6575 kN 

N 

M 

 A 

 B 

 C 

 D 
1/2 Npm,Rd = 1046 kN max, , = 368z RdM  kNm 

NEd = 1800 kN Mpl,z,N,Rd = 366 kNm 
, ,pl z RdM
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The check is carried out by the factor = 1,00dz . 

11.2.3 Calculation of the action effects about the z-z axis 

11.2.3.1 General 

According to clause 6.7.3.4 (3), EN 1994-1-1, which refers to clause 5.2.1(3), 
EN 1994-1-1, second-order effects can therefore be neglected if the load factor 

cr, which is the ratio between the elastic critical load and the corresponding 
applied loading, for elastic instability of the member exceeds 10. 
 
To calculate cr, the ends of the column are assumed to be pinned, and cr is 
found using the Euler formula for the elastic critical force Ncr,z,eff. 
 

2
,

, 2
,

( )
= eff,z II

cr,z eff
e z

E
N

L
   Le,z = L 

 
The design value of the effective flexural stiffness (EI)eff,z,II, used to determine 
the internal forces and moments by second-order analysis, according to clause 
6.7.3.4(2), EN 1994-1-1, is defined by: 
 

, 0 , , ,( ) = ·( · + · + · · )eff,z II a z a s z s e,II cm z cEI K E I E I K E I  
 
where: 
 
Ke,II is a correction factor, which should be taken as 0,5, 
K0 is a calibration factor, which should be taken as 0,9. 

 
The value Ec,eff has been used in place of Ecm in the expression for (E  )eff,z,II in order 
to take into account the long-term effects, in the same way as calculated in Section 
7. Accordingly, the value of Ec,eff is: 
 

, = 1107c effE  kN/cm2 
 
The design value of the effective flexural stiffness (EI)eff,z,II, is: 
 

, 0 , , , ,( ) = ·( · + · + · · )eff,z II a z a s z s e,II c eff z cEI K E I E I K E I  
 

, ,( ) = 0,9·(21000·5135 + 21000·2189 + 0,5·1107·206009)eff z IIEI  
 

6
, ,( ) = 241,05·10eff z IIEI  kNcm2 
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The elastic critical force, Ncr,z,eff, for the pin-ended column, is: 
 

2
,

, 2
,

( )
= eff,z II

cr,z eff
e z

E
N

L
 

 
6 2

, , 2

241,05·10 ·= = 4855
700cr z effN  kN 

 
To check whether the effects of second-order analysis can be neglected, the value 
of cr must be higher than 10: 
 

, , 4855= = = 2,7 < 10
1800

cr z eff
cr

Ed

N
N

 

 
The value of cr is less than 10, so the second-order effects must be considered. 

11.2.3.2 Bending moments about the z-z axis 

According to clause 6.7.3.4(5), EN 1994-1-1, the second-order effects can be 
calculated by multiplying the greatest first-order design bending moments by a 
factor k. 
 
Thus, the second-order effects may be considered according to the expression: 
 

, , , ,= ·z Ed II z Ed IM M k  
 
The factor k is given by: 
 

, ,

=
1 – /Ed cr z eff

k
N N

 1,0 

 
where: 
 
 is an equivalent moment factor given in Table 6.4, EN 1994-1-1, 

Ncr,z,eff is the critical axial force, about the z-z axis, obtained with the effective 
flexural stiffness (EI)eff,z,II and with the effective length taken as the 
physical length of the column. 

 
The design bending moment from the member imperfections is determined as: 
 

, , 0,= ·z Ed imp Ed yM N e  
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where: 
 
NEd is the design value of the axial force,  
e0,y is the equivalent member imperfection which is given in Table 6.5, EN 

1994-1-1, depending on the buckling curve. 
 
Remark: 
 
According to Table 6.5, EN 1994-1-1, composite columns with fully concrete 
encased section can be designed using buckling curve c for the z-z axis of 
buckling. 

 
Therefore, for the buckling curve c, the equivalent member imperfection is: 
 

0, =
150y

Le  

 

0,
700= = 4,7
150ye  cm 

 
The design bending moments calculated according to first-order analysis are shown 
in Figure C6.24. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C6.24 First-order bending moments, design values 

Mz,Ed 
NEd 

L 
=

 7
,0

0 
m

 

e0,y 

50 kNm

84,6 kNm 

,z EdM , ,z Ed impM
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The design values of bending moments are as follows: 
 
The design bending moment at the top of the column is: 
 

, = 50z EdM  kNm 
 
The design bending moment at the bottom of the column is: 
 

, = 0z EdM  kNm 
 
The design bending moment due to imperfection is: 
 

, , 0,= · = 1800·0,047 = 84,6z Ed imp Ed yM N e  kNm 
 
Remark: 
 
The factor  from Table 6.4, EN 1994-1-1, allows for the shape of the bending 
moment diagram. When bending is caused by lateral loading on the column, the 
value of factor  is 1,0. For a column subjected to end moments, the factor  is 
calculated as: 
 

1 = 0,66 + 0,44·r  0,44 
 
where r is the ratio of the end moments on the ends of the column ( 1  r  +1). 

 
Therefore, the two values of factor k must be calculated: 
 
- for the end moments, k1, 
- for the moment from the member imperfection, k2. 
 
Determination of factor k1 
 
The ratio of the end-moments on the ends of the column is: 
 

, ,

0= = 0,0
z Ed I

r
M

 

 
The equivalent moment factor  is: 
 

1 = 0,66 + 0,44·r  0,44 
 

1 = 0,66 + 0,44·0 = 0,66  
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Therefore, the factor k1 is: 
 

1
1

Ed cr,eff,z

0,66= = = 1,05 > 1,0
1 – 1 – 1800 / 4855

k
N N

 

 
The adopted value of the factor is: 
 
k1 = 1,05 
 
Determination of factor k2 
 
For the bending moment from the member imperfection, according to Table 6.4, 
EN 1994-1-1, the equivalent moment factor  is: 
 

2 = 1,0  
 
Therefore, the factor k2 is: 
 

2
2

Ed cr,eff,z

1,0= = = 1,59 > 1,0
1 – 1 – 1800 4855

k
N N

 

 
The adopted value of the factor is: 
 
k2 = 1,59 
 
The design bending moment at mid-height, second-order effects being taken into 
account, is: 
 

, , , 1 , , 2= · + · = 50·1,05 + 84,6·1,59 = 187z Ed II z Ed z Ed impM M k M k  kNm 
 
The design bending moments calculated according to second-order analysis are 
shown in Figure C6.25. 
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Figure C6.25 Second-order bending moments, design values 
 
The check is performed with the bending moment at mid-height:  
 

, , ,max= = 187z Ed II zM M  kNm 

11.2.3.3 Shear forces parallel to the y-y axis 

According to clause 6.7.3.4(5), EN 1994-1-1, the second-order effects can be 
allowed for by multiplying the greatest first-order design bending moment by a 
factor k given by: 
 

,

=
1 – /Ed cr eff

k
N N

 1,0 

 
Accordingly, the approximate value of shear force can be obtained as: 
 

, = ·Ed II EdV V k  
 
In accordance with Figure C6.26, the first-order design shear force at the bottom of 
column is: 

a) Second-order bending
moments due to G
and Q 

b) Imperfection moment 
increased by the second-
order effects 

Mz,Ed 
NEd 

L 
=

 7
,0

0 
m

 e0,y 

50 kNm

84,6 kNm 

0,66·50 

1,05·50 1,59·84,6 

+
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0,,
,

4· · 50,0 4·1800·0,047= + = + = 7,1 + 48,3 = 55,4
7,0 7,0

Ed yz Ed
y Ed

N eM
V

L L
 kN 

 
In accordance with Figure C6.26, the first-order design shear force at the top of 
column is: 
 

0,,
,

4· · 50,0 4·1800·0,047= – + = – + = –7,1 + 48,3 = 41,2
7,0 7,0

Ed yz Ed
y Ed

N eM
V

L L
 kN 

 
The diagram of shear forces, calculated by first-order analysis for bending moment 
and the equivalent lateral load due to imperfections, is shown in Figure C6.26. 
 
The factor k1 is: 
 

1
1

0,66= = = 1 05 > 1 0
1 – 1 – 1800 4855Ed cr,z,eff

k , ,
N N

 

 
The factor k2 is: 
 

2
2

1 0= = = 1 59 > 1 0
1 – 1 – 1800 4855Ed cr,z,eff

,k , ,
N N

 

 
Therefore, the maximum design shear force, calculated by approximate second-
order analysis, is: 
 

0,,
, , 1 2

4· ·
= · + · Ed yz Ed

y Ed II

N eM
V k k

L L
 

 

, ,
50,0 4·1800·0,047= 1,05· +1,59· = 7,5 +76,9 = 84,4
7,0 7,0y Ed IIV kN 
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Figure C6.26 First-order design shear forces parallel to the y-y axis 

11.2.4 Check of the resistance of the member in combined compression and 
bending about the z-z axis 

It is necessary to satisfy the following condition: 
 

, ,

, , , ,

=
· ·

z Ed z Ed

z Rd M z dz pl z Rd

M M
M M

 1,0 

 
The coefficient M,z is taken as 0,9 for steel grades between S235 and S355. 
 
The design value of the maximum design bending moment by the approximative 
second-order analysis is: 
 

, , ;= = 187z Ed z Ed IIM M  kNm 
 
The design resistance moment Mz,Rd is (Figure C6.23): 
 

, , , ,= · · = 0,9·1,00·365 = 329z Rd M z dz pl z RdM M  kNm 
 
Condition: 
 

0,
2

8 Ed y·N ·e
L

NEd  

L 

e0,y 

Mz,Ed 

55,4 kN 

41,2 kN 

NEd 

Mz,Ed 

0,, 4 Ed yz Ed ·N ·eM
+

L L

0,4 Ed yEd
· N ·eM

– +
L L
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,

.

187= = 0,57
329

z Ed

z Rd

M
M

 

 
Since 0,57 < 1,0 , the condition is satisfied. 

11.2.5 Check of the plastic resistance to transverse shear parallel to the y-y 
axis 

In accordance with clause 6.7.3.2(4), EN 1994-1-1, for simplification VEd may be 
assumed to act on the structural steel section alone. According to clause 6.2.6(2), 
EN 1993-1-1, in the absence of torsion the design plastic shear resistance, 
Vpl,y,a,Rd, is given by: 
 

,
, , ,

0

·( / 3)
= v y y

pl y a Rd
M

A f
V  

 
The shear area, Av,y, according to clause 6.2.6(3), EN1993-1-1, is calculated as: 
 

, = 2( · )v y fA b t  
 
According to clause 6.2.2.4(1), EN 1994-1-1, where the shear force is less than 
half the plastic shear resistance its effect on the resistance moment can be 
neglected. Therefore, the condition is: 
 

, ,y, ,< 0,5·y Ed pl a RdV V  
 
The design value of second-order shear force is: 
 

, , ,= = 84,4y Ed y Ed IIV V  kNm 
 
The shear area, Av,y, is: 
 

, = 2(26,0·1,75) = 91v yA  cm2 
 
The design plastic shear resistance, Vpl,a,y,Rd, is: 
 

,
, , ,

0

·( / 3)
= v y y

pl y a Rd
M

A f
V  
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, , ,
91·(35,5 / 3)= = 1865

1,0pl a y RdV  kN 

 
Check: 
 

, , , , ,= 84,4 < 0,5· = 0,5·1865 = 933y Ed II pl a y RdV V  kN 
 
The condition is satisfied and no reduction in the resistance moment is required. 

12. Resistance of the member in combined compression and biaxial 
bending 

12.1 General 

Remark: 
 
For the design of a composite column subjected to axial compression and biaxial 
bending, it is necessary to carry out the following verifications: 
 

The resistance to axial compression separately for each axis is the first step. 
Then, it is necessary to check the column resistance under compression and 
uniaxial bending individually in each of the planes of bending. 
Also, it is necessary to check the column resistance in biaxial bending, 
taking into account imperfections in the plane in which failure is expected to 
occur. For the other plane of bending the effect of imperfections is 
neglected. If it is not obvious which plane is the more critical, checks should 
be made for both planes. 

 
In accordance with clause 6.7.3.7, EN 1994-1-1, for combined compression and 
biaxial bending the following conditions should be satisfied: 
 
Check for bending about the y-y axis: 
 

, ,

, , , , ,

=
·

y Ed y Ed

pl y N Rd dy pl y Rd

M M
M M My  

 
The condition can be written in the following form: 
 

,

, , ,· ·
y Ed

M y dy pl y Rd

M
M

 1,0 

 
Check for bending about the z-z axis: 
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, ,

, , , , ,

=
·

z Ed z Ed

pl z N Rd dz pl z Rd

M M
M M ,M z  

 
The condition can be written in the following form: 
 

,

, , ,· ·
z Ed

M z dz pl z Rd

M
M

 1,0 

 
Interaction of My–Mz–N: 
 

, ,

, , , , , ,

+y Ed z Ed

pl y N Rd pl z N Rd

M M
M M

 1,0 

 
The condition can be written in the following form: 
 

, ,

, , , ,

+
· ·

y Ed z Ed

dy pl y Rd dz pl z Rd

M M
M M

 1,0 

 
These interaction expressions are shown in Figure C6.27 by means of interaction 
curves. 
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a) Section resistance interaction curve – non-failure axis (y-y axis). Neglect 

imperfections.  
b) Section resistance interaction curve – axis of the anticipated failure (z-z 

axis). Consider imperfections. 
c) Biaxial resistance moment of the column section under axial compression 

NEd. 
 

Figure C6.27 Column resistance in combined compression and biaxial 
 bending – assumed bending failure about the z-z axis 

12.2 Failure about the y-y axis is assumed 

12.2.1 General 

Assuming the failure about the y-y axis, the verification is carried out as follows: 
 

b) 

1,0

dz 1,0 

N/Npl,Rd 

Mz,Ed/Mpl,z,Rd 

0

NEd/Npl,Rd

0,9 dz 

a)

1,0 

dy 1,0 

N/Npl,Rd 

My,Ed /Mpl,y,Rd

0 

NEd/Npl,Rd 
0,9 dy 

c) 

0

dy 

0,9 dz 

0,9 dy 

Mz,Ed/Mpl,z,Rd 

My,Ed/Mpl,y,Rd 

dz 

Design 
moment 

, ,

, , , ,

+
· ·

y Ed z Ed

dy pl y Rd dz pl z Rd

M M
M M

 1,0 

,

, ,·
y Ed

dy pl y Rd

M
M ,M y

 ,

, ,·
z Ed

dz pl z Rd

M
M ,M z

 



Example C6 665 
 

 

Bending about the y-y axis: It is necessary to check the resistance under 
compression, NEd, and bending, My,Ed, taking into account the equivalent 
member imperfection, e0,z, and the second-order effects. 

 
Bending about the z-z axis: It is necessary to check the resistance under 
compression, NEd, and bending, Mz,Ed, neglecting the equivalent member 
imperfection, e0,y, but taking into account the second-order effects. 

 
Finally, it is necessary to check the resistance under compression and biaxial 
bending in terms of the linear interaction curve My–Mz–N. 

12.2.2 Calculation of the action effects about the y-y axis 

In accordance with the detailed calculation given in Section 11.1.3.2, the design 
bending moment at mid-height My,Ed taking into account the equivalent member 
imperfection, e0,z, and the second-order effects is: 
 

, , , 1 , , 2= · + · = 380,0·0,84 + 63,0·1,27 = 399y Ed II y Ed y Ed impM M k M k  kNm 

12.2.3 Calculation of the action effects about the z-z axis 

In accordance with the detailed calculation given in Section 11.2.3.2, the design 
bending moment at mid-height Mz,Ed neglecting the equivalent member 
imperfection, e0,y, but taking into account the second-order effects is: 
 

, , , 1= · = 50·1,05 = 53z Ed II z EdM M k  kNm 

12.2.4 Check of the resistance of the member in combined compression and 
biaxial bending 

It is necessary to satisfy the following conditions: 
 

,

, , ,· ·
y Ed

M y dy pl y Rd

M
M

 1,0 

 
,

, , ,· ·
z Ed

M z dz pl z Rd

M
M

 1,0 

 

, ,

, , , ,

+
· ·

y Ed z Ed

dy pl y Rd dz pl z Rd

M M
M M

 1,0 
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Figure C6.28 Interaction polygon for bending about the y-y axis and the z-z axes 

 - assumed bending failure about the y-y axis 
 
Substituting previously calculated values gives: 
 

399 = 0,77 < 1,0
0,9·1,02·562

 

 
53 = 0,16 < 1,0

0,9·1,00·365
 

 
399 53+ = 0,70 + 0,15 = 0,85 < 1,0

1,02·562 1,00·365
 

 
Remark: 
 
Therefore, the check of the resistance of the composite column to biaxial 
bending taking into account the design axial force NEd = 1800 kN and assuming 
bending failure about the y-y axis is satisfied. 

01
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12.3 Failure about the z-z axis is assumed 

12.3.1 General 

Failure about the z-z axis is assumed. The verification is carried out as follows: 
 

Bending about the y-y axis: It is necessary to check the resistance under 
compression, NEd, and bending, My,Ed, neglecting the equivalent member 
imperfection, e0,y, but taking into account the second-order effects. 

 
Bending about the z-z axis: It is necessary to check the resistance under 
compression, NEd, and bending, Mz,Ed, taking into account the equivalent 
member imperfection, e0,z, and the second-order effects. 

  
Finally, it is necessary to check the resistance under compression and biaxial 
bending in terms of the linear interaction curve My Mz N. 

12.3.2 Calculation of the action effects about the y-y axis 

In accordance with the detailed calculation given in Section 11.1.3.2, the design 
bending moment at mid-height My,Ed neglecting the equivalent member 
imperfection, e0,z, but taking into account the second-order effects is: 
 

, , , ,= · = 380,0·0,84 = 319y Ed II y Ed IM M k  kNm 

12.3.3 Calculation of the action effects about the z-z axis 

In accordance with the detailed calculation given in Section 11.2.3.2, the design 
bending moment at mid-height Mz,Ed taking into account the equivalent member 
imperfection, e0,y, and the second-order effects is: 
 

, , , 1 , , 2= · + · = 50·1,05 + 84,6·1,59 = 187z Ed II z Ed z Ed impM M k M k  kNm 

12.3.4 Check of the resistance of the member in combined compression and 
biaxial bending 

It is necessary to satisfy the following conditions: 
 

,

, , ,· ·
y Ed

M y dy pl y Rd

M
M

 1,0 
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,

, , ,· ·
z Ed

M z dz pl z Rd

M
M

 1,0 

 

, ,

, , , ,

+
· ·

y Ed z Ed

dy pl y Rd dz pl z Rd

M M
M M

 1,0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure C6.29 Interaction polygon for bending about the y-y axis and the z-z axes 

 - assumed bending failure about the z-z axis 
 
Substituting previously calculated values gives: 
 

319 = 0,62 < 1,0
0,9·1,02·562

 

 
187 = 0,57 < 1,0

0,9·1,00·365
 

 
319 187+ = 0,56 + 0,51 = 1,07 > 1,0

1,02·562 1,00·365
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Remark: 
 
Therefore, the check of the resistance of the composite column to biaxial 
bending taking into account the design axial force NEd = 1800 kN and assuming 
bending failure about the z-z axis is not satisfied. 

13. Commentary 

This example illustrates the design of the composite column with fully concrete 
encased H-section subject to axial compressive load and biaxial bending. If it is 
not obvious which plane is the more critical, checks are made for both planes. 
Therefore, the following checks are needed: 
 
a) The verification of the column resistance in axial compression only is carried 

out as the preliminary check. Since = 1,14 > = 0,88z y , the buckling 
resistance about the z-z axis is governed. The check of the composite column 
subjected to axial compression is satisfied. It is not necessary to select the 
stronger cross-section. 

 
The utilization is 60%. 
 
b) Check for bending about the y-y axis: The next step is to carry out the check 

of the column resistance in combined compression and uniaxial bending. The 
equivalent member imperfection e0,z is taken into account, which is in the 
same plane of the initial moment. In addition it was found that the second-
order effects must be allowed for. The final step is to check that the cross-
section can resist My,Ed (consider imperfections and second-order analysis) 
with compression NEd. 

 
The utilization is 77%. 
 
c) Check for bending about the z-z axis: The next step is to carry out the check 

of the column resistance in combined compression and uniaxial bending. The 
equivalent member imperfection e0,y is taken into account, which is in the 
same plane of the initial moment. In addition it was found that the second-
order effects must be allowed for. The final step is to check that the cross-
section can resist Mz,Ed (consider imperfections and second-order analysis) 
with compression NEd. 

 
The utilization is 57%. 
 
d) Check for biaxial bending: The failure about the y-y axis is assumed. For 

bending about the y-y axis, it is necessary to check the resistance under 
compression, NEd, and bending, My,Ed, taking into account the equivalent 
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member imperfection, e0,z, and the second-order effects. For bending about 
the z-z axis, it is necessary to check the resistance under compression, NEd, 
and bending, Mz,Ed, neglecting the equivalent member imperfection, e0,y, but 
taking into account the second-order effects. Finally, it is necessary to check 
the resistance under compression and biaxial bending in terms of the linear 
interaction curve My–Mz–N. 

 
The utilization is: 
 
77% (My,Ed with imperfection and second-order effects), 
16% (Mz,Ed without imperfection, but including second-order effects), 
85% (interaction of My,Ed and Mz,Ed). 
 
e) Check for biaxial bending: The failure about the z-z axis is assumed. For 

bending about the y-y axis, it is necessary to check the resistance under 
compression, NEd, and bending, My,Ed, neglecting the equivalent member 
imperfection, e0,y, but taking into account the second-order effects. For 
bending about the z-z axis, it is necessary to check the resistance under 
compression, NEd, and bending, Mz,Ed, taking into account the equivalent 
member imperfection, e0,z, and the second-order effects. Finally, it is 
necessary to check the resistance under compression and biaxial bending in 
terms of the linear interaction curve My–Mz–N. 

 
The utilization is: 
 
62% (My,Ed without imperfection, but including second-order effects), 
57% (Mz,Ed with imperfection and second-order effects), 
107% (interaction of My,Ed and Mz,Ed). 
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D1 Two-span composite slab unpropped at the 
construction stage 

1. Purpose of example 

This example demonstrates the design of a continuous composite slab over two 
spans. The composite slab consists of a cold-formed profiled steel sheeting covered 
with a concrete slab containing reinforcement. The composite slab is supported by 
steel beams, which act compositely with the concrete slab.  
 
In composite slab design, we need to consider the construction stage and the 
composite stage. At the construction stage, the profiled steel sheeting acts as 
shuttering. The profiled sheeting has to carry its own weight, the wet concrete and 
the construction loads. In the composite stage, the slab is loaded with its own 
weight, the floor finishes and the variable load.  
 
The composite slab is almost always continuous, because the profiled sheeting is 
provided in two-span lengths and the concrete is cast on the sheeting without joints. 
However, very often it is assumed that it is simply supported. According to clause 
9.4.2(5), EN 1994-1-1, the continuous slab may be designed as a series of simply 
supported spans. In such cases, according to clause 9.8.1, EN 1994-1-1, the 
reinforcement for crack control is provided above internal supports.  
 
The design resistance of the composite slab against longitudinal shear is carried out 
by the semi-empirical method called the m-k method. The method is based on two 
empirical factors, m and k. The design values of empirical factors m and k are 
based on slab tests and are provided by the manufacturer of the sheeting. 
 
The partial connection method is an alternative to m-k method. This method also 
relies on tests on the composite slab to estimate the shear connection. Both of these 
methods can be applied in cases where the longitudinal shear behaviour is ductile. 
However, if the longitudinal behaviour is non-ductile, only the m-k method is 
permitted. According to clause B.3.5(1), EN 1994-1-1, in such cases the m-k 
method can be used but with an additional partial factor of 1,25, expressed by the 
reduction factor 0,8. 
 
 
 
 



674 D     Composite slabs 
 

 

2. Static system, cross-section and actions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D1.1 Static system 
 
The profiled steel sheeting is continuous over two spans. For simplicity, it is 
assumed as simply supported span. This assumption is adopted only for the 
construction stage. The static system, adopted for verifications of profiled sheeting 
for ultimate limit state and serviceability limit state, is shown in Figure D1.2. 
 
 
 
 
 
 

Figure D1.2 Static system for the construction stage 
 
The cross-section of the composite slab and the cross-section of selected profiled 
sheeting with dimensions are shown in Figure D1.3. 
 
 
 
 

L = 2,5 m 

Composite secondary beam 
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Figure D1.3 Cross-sections: a) composite slab, b) profiled steel sheeting 
 
Actions 
 
a) Permanent action 
 
Remark: 
 
According to EN 1991-1-1 the density of the normal weight concrete is 24 
kN/m3, increased by 1 kN/m3 for normal percentage reinforcement, and 
increased for the wet concrete by another 1 kN/m3. 

 
Concrete slab area per m width: 
 

1 +1000= 1000· – ( · · )
2

r
c p

s

b b
A h h

b
 

 
1000 15 + 40= 1000·130 – ( · ·51) = 120800
152,5 2cA  mm2 = 1208  cm2 

 
- concrete slab and reinforcement (wet concrete): 
 
 ·26 = 0,1208·26 = 3,14cA  kN/m2 
 
- concrete slab and reinforcement (dry concrete): 
 
 ·25 = 0,1208·25 = 3,02cA  kN/m2 

Re-entrant profiled sheet 

hc=79 
hp=51 

h = 130  
e = 16,7

dp = 113,3 

Concrete 

a) 

b) 

ENA 34,3 

bb=137,5 bs=152,5

610

16,7 hp=51 mm 

b0=112,5 br=40 mm 

b1=15 mm

ENA – elastic neutral axis 



676 D     Composite slabs 
 

 

Construction stage 
 
- concrete slab = 3,14  kN/m2 
 
- profiled steel sheeting = 0,16  kN/m2 
 
Total ,1 = 3,30kg  kN/m2 
 
Composite stage 
 
- concrete slab = 3,02  kN/m2 
 
- profiled steel sheeting = 0,16  kN/m2 
 
Total ,2 = 3,18kg  kN/m2 
 
Floor finishes ,3kg = 1,20 kN/m2 
 
b) Variable action 
 
Construction stage 
 
- construction loads ,1 = 1,50kq  kN/m2 
 
Composite stage 
 
- imposed floor load ,2 = 7,0kq  kN/m2 

3. Properties of materials 

Concrete strength class: C 25/30 = 25ckf  N/mm2 

 25= = = 16,7
1,5

ck
cd

c

f
f  N/mm2 

 0,85 = 0,85·16,7 = 14,17cdf  N/mm2 
 = 31000cmE  N/mm2 
 
Reinforcement: = 500skf  N/mm2 

 500= = = 435
1,15

sk
sd

s

f
f  N/mm2 
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Profiled steel sheeting: = 1,1t  mm 
 = 51ph  mm 

 = = 1938p peA A  mm2/m 

 4= 68,5·10pI  mm4/m 

 = = 210000p aE E  N/mm2 

 , = 350yp kf  N/mm2 

 ,
,

350= = = 350
1,0

yp k
yp d

M

f
f  N/mm2 

Resistance moment (provided by manufacturer): = 7,0RdM  kNm/m (sagging) 
 = 8,88RdM  kNm/m (hogging) 
Empirical factors (provided by manufacturer): = 128,5m  N/mm2 
 = 0k  N/mm2 

4. Structural details of composite slab 

4.1 Slab thickness and reinforcement 

The composite slab should satisfy the conditions given in clause 9.2, EN 1994-1-1. 
 
a) The slab acts compositely with a beam, and the following conditions should be 

satisfied: 
 
- the overall depth of slab h  90 mm, = 130h  mm (satisfied), 
 
- the thickness of concrete above the main flat surface of the top of the ribs of 

sheeting ch  50 mm, = 79ch  mm (satisfied), 
 

- the ratio of the width of the sheet rib to the rib spacing r

s

b
b

 0,6,  

40= = 0,26
152,5

r

s

b
b

 (satisfied). 

 
b) The minimum amount of reinforcement in both directions should not be less 

than 80 mm2/m. For the unpropped construction, the area of reinforcement, 
according to clause 9.8.1(2), EN 1994-1-1, is: 

 
,min = 0,002· · = 0,002·79·1000 = 158s cA h b  mm2/m    = 80sA  mm2/m 
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The reinforcement bars are assumed to be 6 6/1000 mm. The cross-sectional area 
of reinforcement is: 
 

26 ·= 6· = 170
4sA  mm2/m 

 
c) Spacing of reinforcement bars 
 

< 2· = 2·130 = 260e h  or < 350 mm 

4.2 Largest nominal aggregate size 

dg  0,4 · hc 0,4 · 79 = 31,6 mm 
dg  b0/3 112,5/3=37,5 mm 
dg  31,5 mm = 31,5 mm 
 
The minimum adopted value is dg = 31,5 mm. 

4.3 Minimum value for nominal thickness of steel sheet 

In accordance with clause 3.5(2), EN 1994-1-1, the recommended value for the 
nominal thickness of steel sheet is 0,70 mm. The thickness of the selected profiled 
steel sheeting is 1,10 mm. The condition is satisfied. 

4.4 Composite slab bearing requirements 

According to clause 9.2.3(2), EN 1994-1-1, the recommended bearing lengths and 
support details differ depending upon the support material and they are different for 
internal supports and end supports, see Figure D1.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D1.4 Minimum bearing lengths 
 

lbc

lbc

lbs lbs

lbs

lbs
lbs

a) b) c)

Bearing on lbs (mm) lbc (mm) 
steel or concrete 50 75 
other materials 70 100 



Example D1 679 
 

 

For composite slabs bearing on steel or concrete, the minimum bearing lengths are: 
lbc = 75 mm and lbs = 50 mm. The composite slab is supported by steel beams with 
the section IPE 500, and the top-flange width is 200 mm. Therefore, the condition 
for the bearing length is satisfied. 

5. Ultimate limit state 

5.1 Construction stage 

At the construction stage, it is necessary to carry out verifications of profiled 
steel sheeting for the ultimate and serviceability limit states in accordance with 
EN 1993-1-3. 
 
Profiled steel sheetings are normally continuous over two or more spans. 
However, in some cases, a single span is unavoidable due to the floor geometry. 
 
Usually the manufacturer gives information on the properties of profiled steel 
sheeting. These properties are usually based on test results performed in 
accordance with EN 1993-1-3, Annex A. Characteristic and design values of 
resistance moment, crushing resistance, second moment of area etc. may be 
estimated using methods of reliability analysis in accordance with EN 1990. 
Properties of profiled steel sheeting estimated by calculation are more 
conservative than equivalent properties based on testing. 

 
For simplicity, the profiled steel sheeting is considered as a simply supported span. 
The static system and the design load for the construction stage are shown in 
Figure D1.5. 
 
 
 
 
 
 
 

Figure D1.5 Static system and design load for the construction stage 
 
Design load for ultimate limit state: 
 

.1 ,1= · + ·d G k Q ke g q  
 

= 1,35·3,30 +1,5·1,5 = 6,71de  kN/m2 
 
Therefore, the design values of bending moment and shear force are: 
 

bsheet = 1000 mm 

ed

L = 2,5 m 
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2 2· 6,71·2,5= = = 5,24
8 8

d
Ed

e L
M  kNm/m 

 
· 6,71·2,5= = = 8,39
2 2

d
Ed

e L
V  kN/m 

 
Check for bending: 
 

Ed

Rd

M
M

 1,0 

 
5,24 = 0,75 < 1,0
7,0

, the condition is satisfied 

 
In accordance with EN 1993-1-3, the following checks should be carried out: 
 
- shear resistance of the cross-section according to clause 6.1.5, EN 1993-1-3, 
- local resistance according to clause 6.1.7.3, EN 1993-1-3, 
- combined bending and shear according to clause 6.1.10, EN 1993-1-3, 
- combined web crushing and bending moment according to clause 6.1.11, EN 

1993-1-3. 

5.2 Composite stage 

The continuous composite slab is designed as a series of simply supported spans, 
in accordance with clause 9.4.2(5), EN 1994-1-1, provided that the criterion for 
minimum reinforcement above internal supports of composite slab is satisfied, 
clause 9.8.1, EN 1994-1-1. 

 
The static system and the design load for the composite stage are shown in Figure 
D1.6. 
 
 
 
 
 
 

Figure D1.6 Static system and design load for the composite stage 
 
Design load for ultimate limit state: 
 

,2 ,3 ,2= ·( ·( + ) + · )d G k k Q ke b g g q  

bslab = 1000 mm 

ed

L = 2,5 m 
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= 1,0·(1,35·(3,18 +1,2) +1,5·7,0) = 16,4de  kN/m 
 
Therefore, the design values of bending moment and shear force are: 
 

2 2· 16,4·2,5= = = 12,8
8 8

d
Ed

e L
M  kNm/m 

 
· 16,4·2,5= = = 20,5
2 2

d
Ed

e L
V  kN/m 

5.2.1 Plastic resistance moment in sagging region 

It is assumed that the neutral axis lies above the sheeting. The assumed distribution 
of longitudinal bending stresses is shown in Figure D1.7. The design compressive 
force in concrete, Nc,f, is: 
 

, = 0,85· · ·c f cd cN f h b ,    = 1000b  mm 
 

–3
, = 0,85·16,7·79·1000·10 = 1121c fN  kN/m 

 
The design tensile force in the steel sheeting for a width of sheeting b is calculated 
with the characteristic of the effective steel section Ape: 
 

,= ·p yp d peN f A  
 

–3= 350·1938·10 = 678pN  kN/m 
 
Since Np < Nc,f, the plastic neutral axis lies within the concrete. The design 
resistance moment in sagging region is calculated according to the distribution of 
stresses shown in Figure D1.7. 
 
 
 
 
 
 
 

Figure D1.7 Cross-section of composite slab and stress blocks for 
 sagging bending 

 
The position of the plastic neutral axis of the composite section xpl is: 

PNA  plastic neutral axis 

hc

hp
h

Centroidal axis of profiled steel sheeting 

xpl 

Np 

Nc,f 

z Mpl,Rd dp 

fyp,d 

0,85·fcd 

e 
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,·
=

0,85· ·
pe yp d

pl
cd

A f
x

f b
, b = 1000 mm slab width 

 
1938·350= = 47,8

0,85·16,7·1000plx  mm < = 79ch mm 

 
For full shear connection, the design plastic resistance moment in sagging region 
Mpl,Rd is calculated as: 
 

, ,= min( , )·pl Rd c f pM N N z  
 

, = ·( – )
2
pl

pl Rd p p

x
M N d  

 
–3

,
47,8= 678·(113,3 – )·10 = 60,6

2pl RdM  kNm/m 

 
Check: 
 

,

Ed

pl Rd

M
M

 1,0 

 
12,8 = 0,21 < 1,0
60,6

, the condition is satisfied 

 
The design plastic resistance moment in sagging region for full shear connection is 
adequate. 

5.2.2 Longitudinal shear resistance 

It is assumed that there is no end anchorage. Therefore, the longitudinal shear 
resistance is calculated according to clause 9.7.3, EN 1994-1-1. The design 
resistance of the composite slab against longitudinal shear is carried out by the 
semi-empirical method called the m-k method. According to clause 9.7.3(4), EN 
1994-1-1, the maximum design vertical shear VEd for a width of slab b is limited 
due to the design longitudinal shear resistance Vl,Rd, given as:  
 

,

· ·
= ·( + )

·
p p

l Rd
vs s

b d m A
V k

b L
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where: 
 
b, dp are in mm, 
Ap is the nominal cross-section of the sheeting in mm2, 
m, k are design values for the empirical factors in N/mm2 obtained from slab 

tests meeting the basic requirements of the m-k method, 
Ls is the shear span in mm, defined in clause 9.7.3(5), EN 1994-1-1, 

vs is the partial factor for ultimate limit state; the recommended value is 1,25. 
 
If the m-k method is used, it should be verified that the maximum design vertical 
shear VEd does not exceed the design shear resistance Vl,Rd: 
 

,

Ed

l Rd

V
V

 1,0 

 
Design values of empirical factors m and k are based on slab tests and are provided 
by the manufacturer of the sheeting: 
 

= 128,5m  N/mm2 
 

= 0k  N/mm2 
 
According to clause 9.7.3(5), EN 1994-1-1, the shear span sL  for the uniform load 
applied to the entire span length is: 
 

2500= = = 625
4 4s
LL  mm 

 
The design longitudinal shear resistance Vl,Rd is: 
 

,

· ·
= ·( + )

·
p p

l Rd
vs s

b d m A
V k

b L
 

 
–3

,
1000·113,3 128,5·1938= [ ·( + 0)]·10 = 36,1

1,25 1000·625l RdV  kN/m 

 
This value, Vl,Rd = 36,1 kN/m, must not be exceeded by the vertical shear in the 
slab.  
 
Check: 
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,

Ed

l Rd

V
V

 1,0 

 
20,5 = 0,57 < 1,0
36,1

, the condition is satisfied 

 

5.2.3 Check for vertical shear resistance 

According to 9.7.5, EN 1994-1-1, the vertical shear resistance, Vv,Rd, should be 
determined according to the method given in EN 1992-1-1. According to clause 
6.2.2., EN 1992-1-1, the design shear resistance Vv,Rd is calculated as: 
 

1/3
, , , 1= = [ · ·(100· · ) + · ] ·v Rd Rd c Rd c l ck cp w pV V C k f k b d , ,minv RdV  

 
The minimum value of Vv,Rd,min is: 
 

, ,min min 1= ( + · )· ·v Rd cp w pV k b d  
 
The minimum requirement for ,v RdV  is related to the fact that the member 
without reinforcement still has some shear resistance. 
 
Generally, the check is carried out as follows: 
 

,

Ed

v Rd

V
V

 1,0 

 
According to clause 6.2.2(1), EN 1992-1-1, the values needed for calculation ,v RdV  
are: 
 

,
0,18 0,18= = = 0,12

1,5Rd c
c

C  

 
200= 1 +

p

k
d

 2,0 

 
200= 1 + = 2,32

113,3
k   adopted k = 2,0 
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=
·
sl

l
w p

A
b d

 0,02 

 
The resistance of the cross-section is dependent on the area of the tensile 
reinforcement, whose section has to be extended by an appropriate anchorage 
length, (lbd + d) see  Figure 6.3, EN 1992-1-1  where lbd is the design anchorage 
length and d is the effective depth of the section, taken as the depth from the top 
surface to the centroid of the profile for a composite slab. The anchorage of the 
profiled sheeting was confirmed by the check on longitudinal shear, and the 
sheeting can be treated as reinforcement, i.e. Asl = Ape = 1938 mm2. 
 
In accordance with Figure D1.8, the smallest width of the cross-section in the 
tensile area bw is calculated per metre width as follows: 
 

0
1000= · = ·112,5 = 738
152,5w

s

bb b
b

 mm/m 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D1.8 Determination of value bw  
 
The percentage of longitudinal reinforcement is: 
 

=
·
sl

l
w p

A
b d

 0,02 

 
1938= = 0,023 > 0,020

738·113,3l  

 
The value = 0,02l is adopted. 
 

bs = 152,5 mm 
br = 40 mm 
b0 = 112,5 mm 

hc=79 

hp=51 
h = 130  

16,7

dp = 113,3 

bs

bb 

br b0 
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The design axial force is = 0EdN  and therefore = = 0Ed
cp

c

N
A

. 

 
1 = 0,15k , according to clause 6.2.2(1), EN 1992-1-1 

 
The design shear resistance Vv,Rd is: 
 

1/3
, , , 1= = [ · ·(100· · ) + · ] ·v Rd Rd c Rd c l ck cp w pV V C k f k b d  

 
1/3 –3

, = [0,12·2,0·(100·0,02·25) + 0,15·0] 738·113,3·10v RdV  
 

, = 73,9v RdV  kN/m 
 
The minimum value is: 
 

, ,min min 1= ( + · )· ·v Rd cp w pV v k b d  
 

3/2 1/2 3/2 1/2
min = 0,035· · = 0,035·2,0 ·25 = 0,49ckv k f  N/mm2 

 
–3

, ,min = (0,49 + 0,15·0)·738·113,3·10 = 41v RdV  kN/m ,< = 73,9v RdV  kN/m 
 
Check: 
 

,

Ed

v Rd

V
V

 1,0 

 
20,5 = 0,28 < 1,0
73,9

, the condition is satisfied 

 
Remark: 
 
Since it is unlikely that the profiled steel sheet can satisfy the requirement “full 
anchorage”, the design shear resistance is equal to the minimum value: 
 

, , ,min= = 41v Rd v RdV V  kN/m 
 
Also, the required condition is satisfied since that is , , ,min= = 41v Rd v RdV V  kN/m > 

= 20,5EdV  kN/m. 
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6. Serviceability limit state 

6.1 Control of cracking of concrete 

Since the slab is designed as simply supported, it only requires reinforcement for 
crack width limitation. 
 
According to clause 9.8.1(2), EN 1994-1-1, for unpropped construction the 
required cross-sectional area of reinforcement sA  is 0,2% of the area of concrete 
above the ribs: 
 

0,2= ·1000·( – )
100s pA h h  mm2/m 

 
0,2= ·1000·(130 – 51) = 158
100sA  mm2/m 

 
The reinforcement bars are assumed to be 6 6/1000 mm. Therefore, the cross-
sectional area of reinforcement is: 
 

26 ·= 6· = 170
4sA  mm2/m > 158 mm2/m 

 
The selected minimum amount of reinforcement may be insufficient to control 
cracking at the supports of continuous slabs for certain exposure classes. In such 
cases, the slab should be designed as continuous, and in hogging regions the crack 
widths should be estimated according to EN 1992-1-1. 

6.2 Limit of span/depth ratio of slab 

According to clause 9.8.2(4), EN 1994-1-1, calculation of the deflection of the 
composite slab can be omitted if the two conditions are satisfied. According to 
the first condition, the span/depth ratio of the slab should not exceed the limits 
given in EN 1992-1-1. These are: 

< 20L
d

 for a simply supported span 

< 26L
d

 for an external span of continuous slab 

< 30L
d

 for an internal span of continuous slab 

 
According to clause 9.8.2(6), EN 1994-1-1, the second condition is given as: 
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the load causing an end slip of 0,5 mm in the tests on composite slab exceeds 
1,2 times the design service load. 

 
If the second condition is not satisfied, i.e. the end slip exceeds 0,5 mm at a load 
1,2 times the design service load, two options exist: 
 

end anchors should be provided, or 
deflections should be calculated including the effect of end slip. 

 
According to clause 9.8.2(8), EN 1994-1-1, in cases where the behaviour of the 
shear connection between the profiled sheeting and the concrete are not known 
from tests, the tied-arch model may be used, see [34]. 

 
For the considered slab, with L = 2500 mm and dp = 113,3 mm, the following 
span/depth ratio is obtained: 
 

2500= = 22 < 26
113,3

L
d

 for the external span of continuous slab 

 
Therefore it is not necessary to carry out the calculation of the deflection. 
However, the calculation is carried out for educational reasons. 

6.3 Calculation of deflections 

6.3.1 Construction stage deflection 

According to clause 9.6(2), EN 1994-1-1, the deflection, s, of the profiled sheeting 
due to its own weight and the weight of wet concrete should not exceed the 
following limit: 
 

,max
2500= = = 14

180 180s
L  mm 

 
For simplicity, the profiled steel sheeting is considered as a simply supported span. 
The static system and the design load for the construction stage are shown in 
Figure D1.9. 
 
 
 
 
 
 

Figure D1.9 Static system and design load for the construction stage 

bsheet = 1000 mm 

ed

L = 2,5 m 
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The premature local buckling of the profiled sheeting under the weight of wet 
concrete and construction loading is checked to prevent irreversible deformation. 
This verification is important in regions of internal support. 
 
Design load for the serviceability limit state is: 
 

.1= ·d ke b g  
 

= 1,0·3,30 = 3,30de  kN/m 
 
Maximum sagging bending moment in the serviceability limit state is: 
 

2 2· 3,30·2,5= = = 2,58
8 8

d
Ed

e L
M  kNm/m 

 
Maximum compressive stress in the top flange of the profiled sheeting is: 
 

6

4

2,58·10= · = ·(51 – 16,7) = 129
68,5·10

Ed
com

p

M
z  N/mm2 

 
In accordance with clause 4.4, EN 1993-1-5, the plate slenderness, p , is 
calculated as: 
 

= =
28,4· ·

y
p

cr

b
f t

k
 

 
235 235= = = 1,35

129com

 

 
According to Table 4.1, EN 1994-1-1, for the stress ratio  = 1, the buckling factor 
is k  = 4. 
 
Therefore, the plate slenderness, p , with the design thickness of the sheet t = 1,06 
mm (not including coatings) and b = br = 40 mm, is: 
 

40
1,06= = 0,492

28,4·1,35· 4p  
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Since that is = 0,492 < 0,673p , the reduction factor is  = 1,0 and the cross-
section is fully effective. 
 
The deflection of the profiled steel sheeting for the simply supported span, Figure 
D1.9, is: 
 

4

1
·5= ·

384 ·
d

a p

e L
E I

 

 
4

1 4

5 3,30·2500= · = 11,7
384 210000·68,5·10

 mm 

 

1 =11,7  mm < ,max
2500= = = 14

180 180s
L  mm 

 
The deflection due to the self-weight of profiled sheeting and the weight of the wet 
concrete meets the criterion L/180. 
 
Since the deflection 1 is less than 10% of the slab depth, 1 = 11,7 mm < 0,10·h 
= 0,1·130 = 13 mm, according to clause 9.3.2(2), EN 1994-1-1, the ponding 
effects can be neglected at the construction stage. 

 
The conditions for the serviceability limit state are satisfied, and the profiled steel 
sheeting can be used at the construction stage. 

6.3.2 Composite stage deflection 

For the calculation of the deflection at the composite stage, the slab is considered 
as continuous over two spans. According to clause 9.8.2(5), EN 1994-1-1, the 
following approximations can be applied: 
 

The second moment of area can be taken as the average of the values for the 
cracked and uncracked section. 
An average value of the modular ratio, n, for both short-term and long-term 
effects can be used: 
 

210000= = = = 10,2
21' ·31000·( + )
32 3

a a

cmcm
cm

E E
n

EE E
 

 
Elastic analysis is used to calculate the deflection of the slab. 
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a) The second moment of area for the cracked section, Icc, for slab width b is 
calculated in accordance with Figure D1.10. 

 
The second moment of area for the cracked section and the slab width b is 
calculated as: 
 

3
2·

= + ·( – ) +
3·

c
cc p p c p

b x
I A d x I

n
 

 
The position of the elastic neutral axis relative to the upper side of the slab is 
obtained as: 
 

· 2· ··
= = ( 1 + – 1)

·
p pi i

c
i p

n A b dA z
x

A b n A
 

 
10,2·1938 2·1000·113,3= ·( 1 + – 1) = 50,0

1000 10,2·1938cx  mm 

 
The second moment of area for the cracked section is: 
 

3
2 61000·50,0= +1938·(113,3 – 50,0) + 685000 = 12,54·10

3·10,2ccI  mm4/m 

 
 
 
 
 
 
 
 
 
 

Figure D1.10 Second moment of area calculation for cracked cross-section, Icc 
 
b) The second moment of area for the uncracked section, Icu, for slab width b is 

calculated in accordance with Figure D1.11. 
 
 
 
 
 

hc 

hp 
h  

e

dp

bs 
bb 

br b0 

ENA – elastic neutral axis 

b'm
Compression

xc

Tension 

Cracked 
concrete 

ENA 

Steel sheeting 
centroidal axis 
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Figure D1.11 Second moment of area calculation for uncracked cross-section, Icu 

 
The second moment of area for the uncracked section and the slab width b is 
calculated as: 
 

33
2 2

2

· ·· ·
= + ·( – ) + + ·( – – ) +

12· 2 12· 2

·( – ) +

m p m p pc c c
cu u t u

p p u p

b h b h hb h b h h
I x h x

n n n n

A d x I
 

 
where: 
 

2

· + · ·( – ) + · ·
2 2=

· + · + ·

pc
m p t p p

u
c m p p

hh
b b h h n A d

x
b h b h n A

 

 
In accordance with Figure D1.11, the value of bm is: 
 

0( – 2· ) + (137,5 – 2·1,10) +112,5' = = = 123,9
2 2

b
m

b t b
b  mm 

 
1000= · ' = ·123,9 = 812
152,5m m

s

bb b
b

 mm/m 

 
The position of the elastic neutral axis relative to the upper side of the slab is: 
 

279 511000· + 812·51·(130 – ) +10,2·1938·113,3
2 2= = 69,1

1000·79 + 812·51 +10,2·1938ux  mm 

 
The second moment of area for the uncracked section is: 
 

hc 

hp 
h  

e

dp

bs 
bb 

br b0 
Compression 

xu

Tension
Uncracked 
concrete 

ENA

ENA – elastic neutral axis 

b'm

Steel sheeting 
centroidal axis 
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3 3
2

2 2

1000·79 1000·79 79 812·51 812·51= + ·(69,1 – ) + + ·
12·10,2 10,2 2 12·10,2 10,2

51·(130 – 69,1 – ) +1938·(113,3 – 69,1) + 685000
2

cuI
 

 
6= 21,25·10cuI  mm4/m 

 
The mean value of ccI  and cuI is: 
 

+
=

2
cc cu

c
I I

I  

 
6 6

612,54·10 + 21,25·10= =16,90·10
2cI  mm4/m 

 
Calculation of deflections 
 

 Deflection due to permanent action 
 
The design load of the weight of dry concrete, the weight of the profiled sheeting 
and the floor finishes is: 
 

,2 ,3= ·( + ) = 1,0·(3,18 +1,20) = 4,38d k ke b g g  kN/m 
 
 
 
 
 
 
 

Figure D1.12 Static system and load for calculation of deflection at 
 the composite stage 

 
The deflection is: 
 

4

1

·
= 0,0054·

·
d

c

e L
E I

 

 
4

1 6

4,38·2500= 0,0054· = 0,26
210000·16,90·10

mm = L/9615 

ed = 4,38 kN/m 

L = 2,5 m L = 2,5 m 
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Deflection due to frequent value of variable action and the selected combination 
factor is 1 = 0,7 

 
The design load is calculated for the frequent combination: 
 

1 ,2= · · = 1,0·0,7·7,0 = 4,9d ke b q  kN/m 
 
 
 
 
 
 

Figure D1.13 Static system and load for calculation of deflection at 
 the composite stage 

 
The deflection is: 
 

4

2
·

= 0,0099·
·

d

a c

e L
E I

 

 
4

2 6

4,9·2500= 0,0099· = 0,53
210000·16,9·10

mm = L/4716 

 
Remark: 
 
The limit of the deflection is adopted according to clause 7.4.1(4), EN 1992-1-1. 
The recommended limitation is: 
 

total 250
L  

 
The total deflection is: 
 

1 2= + = 0,26 + 0,53 = 0,79total  mm 2500= = 10,0
250 250

L  mm 

 
The total deflection meets the criterion L/250. 

7. Commentary 

The design of composite slabs is mainly based on data provided by the supplier 
of the profiled sheeting. However, the reliability of the obtained data is very 

ed

L = 2,5 m L = 2,5 m 
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important for structural reliability. 
 
At the construction stage, profiled steel sheetings act as both a working platform 
and also permanent formwork and they can stabilise beams during execution. 
The requirements for the construction stage are governed for the design of 
profiled steel sheetings. 
 
The area of cross-section of profiled steel sheeting that satisfies the criteria for 
the construction stage usually provides enough bottom reinforcement for the 
composite slab. In such cases, the composite slabs are considered as simply 
supported. The top longitudinal reinforcement at internal supports should be 
provided to control the widths of cracks. It is recommended that reinforcement 
for crack control is provided in the form of a mesh over the full area of the slab. 
In this way, the mesh reinforcement has very favourable structural effects under 
fire conditions. 
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D2 Three-span composite slab propped at the 
construction stage 

1. Purpose of example 

This example demonstrates the design of continuous composite slab over three 
spans. We need to consider the construction stage, where the profiled steel sheeting 
acts as shuttering, and the composite stage, where the concrete and the steel 
sheeting form a composite unit. For practical reasons, the unpropped construction 
of composite slab is more acceptable solution; its speed and simplicity of execution 
is a great advantage. When unpropped construction is used, the profiled steel 
sheeting alone resists the selfweight of the wet concrete and construction loads. 
However, for educational reasons, in this example the design of a composite slab is 
illustrated where the profiled steel sheeting is temporarily propped during 
construction. 
 
The design resistance of the composite slab against longitudinal shear is carried out 
by the partial interaction method. This method relies on tests on composite slabs to 
estimate the shear connection and it can be applied in cases where the longitudinal 
shear behaviour is ductile. 

2. Static system, cross-section and actions 

a) Construction stage  the profiled steel sheeting acts as shuttering 
 
 
 
 
 
 
 
 
 

Figure D2.1 Static system of profiled sheeting for the construction stage 
 
b) Composite stage 
 
The composite slab is continuous, see Figure D2.2. However, according to clause 
9.4.2(5), EN 1994-1-1, the continuous slab may be designed as a series of simply-
supported spans. 
 

P  temporary props during casting of the concrete 

L = 3,6 m L = 3,6 m L = 3,6 m 
P PP

1,8 m 1,8 m 
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Figure D2.2 Static system of the composite slab 
 
c) Cross-section of composite slab 
 
The profiled steel sheeting, shown in Figure D2.3, used in unpropped construction, 
is optimised to suit beam centres in the region of 2,6 to 3,3 m. However, in this 
example, props are used for pedagogical reasons. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D2.3 Cross-sections: a) composite slab, b) profiled steel sheeting 
 
Actions 
 
a) Permanent action 
 
Remark: 
 
According to EN 1991-1-1 the density of the normal weight concrete is 24 
kN/m3, increased by 1 kN/m3 for normal percentage reinforcement, and 
increased for the wet concrete by another 1 kN/m3. 

 
Concrete slab area per m width: 
 

1 +1000= 1000· – ( · · )
2

r
c p

s

b b
A h h

b
 

 
1000 120 + 67= 1000·120 – ( · ·46) = 100900
225 2cA  mm2 = 1009  cm2 

L = 3,6 m L = 3,6 m L = 3,6 m 

hp=46 

bs=225
bb=105

b0=131,5 br=67

e = 20,4 b1=120 52,5

158 ENA 

ENA – elastic neutral axis 

b) 

hp/2 

a) 

Open trough  
profiled sheet 

Concrete 

dp=99,6 
hp=46 
hc=74 h=120 mm 

e=20,4
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- concrete slab and reinforcement (wet concrete): 
 
 ·26 = 0,1009·26 = 2,62cA  kN/m2 
 
- concrete slab and reinforcement (dry concrete): 
 
 ·25 = 0,1009·25 = 2,52cA  kN/m2 
 
Construction stage 
 
- concrete slab ,1 =cg 2,62 kN/m2 
 
- profiled steel sheeting =pg 0,09 kN/m2 
 
Total ,1 ,1= + =k c pg g g  2,71 kN/m2 
 
Composite stage 
 
- concrete slab ,2 =cg  2,52 kN/m2 
 
- profiled steel sheeting =pg  0,09 kN/m2 
 
Total ,2 ,2= + =k c pg g g  2,61 kN/m2 
 
Floor finishes ,3kg = 1,20 kN/m2 
 
b) Variable action 
 
Construction stage 
 
- construction loads ,1kq = 1,50 kN/m2 
 
Composite stage 
 
- imposed floor load ,2kq = 5,0 kN/m2 
 
Remark: 
 
Clause 9.3.2(1), EN 1994-1-1, refers to clause 4.11, EN 1991-1-6, for 
construction loads. According to clause  4.11.2(1), EN 1991-1-6, the actions 
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from personnel and equipment, qk, are referred to as “10% of the self-weight of 
the concrete, but not less than 0,75 and not more than 1,5 kN/m2”. Also, 
according to clause 4.11, EN 1991-1-6, the load of 1,50 kN/m2 acts on the 
working area of 3,0 × 3,0 m, and outside the working area the load is 0,75 
kN/m2. 

3. Properties of materials 

Concrete strength class: C 25/30 = 25ckf  N/mm2 

 25= = = 16,7
1,5

ck
cd

c

f
f  N/mm2 

 0,85· = 0,85·16,7 = 14,17cdf  N/mm2 
 = 31000cmE  N/mm2 
 
Reinforcement: = 500skf  N/mm2 

 500= = = 435
1,15

sk
sd

s

f
f  N/mm2 

 
Profiled steel sheeting: = 0,9t  mm 
 = 46ph  mm 

 = = 1137p peA A  mm2/m 

 4= 41,5·10pI  mm4/m 

 = = 210000p aE E  N/mm2 

 , = 280yp kf  N/mm2 

 ,
,

280= = = 280
1,0

yp k
yp d

M

f
f  N/mm2 

Plastic resistance moment (provided by manufacturer): , = 5,70pa RkM  kNm/m 

Resistance moment (provided by manufacturer): = 4,63RkM  kNm/m (sagging) 
 = 4,67RkM  kNm/m (hogging) 
Resistance to support reaction (provided by manufacturer): , = 34,0w kR  kN/m 
Resistance to horizontal shear (provided by manufacturer): , = 0,306u Rk  N/mm2 

4. Structural details of composite slab 

4.1 Slab thickness and reinforcement 

The composite slab should satisfy the conditions given in clause 9.2, EN 1994-1-1. 
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a) The slab does not act compositely with a beam, nor is it used as a diaphragm, so 
the following conditions should be satisfied: 

 
- the overall depth of slab h   80 mm, = 120h  mm (satisfied), 
 
- the thickness of concrete above the main flat surface of the top of the ribs of 

sheeting ch   40 mm, = 74ch  mm (satisfied), 

- the ratio of the width of the sheet rib to the rib spacing r

s

b
b

 0,6,  

67 = 0,30 < 0,60
225

 (satisfied). 

 
b) The minimum amount of reinforcement in both directions should not be less 

than 80 mm2/m. For propped construction, the area of reinforcement, according 
to clause 9.8.1(2), EN 1994-1-1, is: 

 
min = 0,004· · = 0,004·74·1000 = 296s cA h b  mm2/m  = 80sA  mm2/m. 

 
The reinforcement bars are assumed to be 8/160 mm. The cross-sectional area of 
reinforcement is: 
 

28 · 1000= · = 314
4 160sA  mm2/m 

 
c) Spacing of reinforcement bars 
 

< 2· = 2·120 = 240e h  or < 350 mm. 

4.2 Largest nominal aggregate size 

dg  0,4 · hc 0,4 · 74 = 29,6 mm 
dg  b0/3 131,5/3=43,8 mm 
dg  31,5 mm = 31,5 mm 
 
The minimum adopted value is dg = 29,6 mm. 

4.3 Minimum value for nominal thickness of steel sheet 

In accordance with clause 3.5(2), EN 1994-1-1, the recommended value for the 
nominal thickness of steel sheet is 0,70 mm. The thickness of the selected profiled 
steel sheeting is 0,90 mm. The condition is satisfied. 
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4.4 Composite slab bearing requirements 

According to clause 9.2.3(2), EN 1994-1-1, the recommended bearing lengths and 
support details differ depending upon the support material, and they are different 
for internal supports and end supports, see Figure D2.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D2.4 Minimum bearing lengths 
 
For composite slabs bearing on steel or concrete, the minimum bearing lengths are: 
lbc = 75 mm and lbs = 50 mm. The composite slab is supported by steel beams with 
the top flange width larger than 75 mm. Therefore, the condition for the bearing 
length is satisfied. 

5. Ultimate limit state 

5.1 Construction stage 

At the construction stage, it is necessary to carry out verifications of profiled 
steel sheeting for the ultimate and serviceability limit state in accordance with 
EN 1993-1-3. 
 
Usually, the manufacturer gives information on the properties of profiled steel 
sheeting. These properties are usually based on test results performed in 
accordance with EN 1993-1-3, Annex A. Characteristic and design values of 
resistance moment, crushing resistance, second moment of area etc. may be 
estimated using methods of reliability analysis in accordance with EN 1990. 
Properties of profiled steel sheeting estimated by calculation are more 
conservative than equivalent properties based on testing. 

 
 
 
 

lbc

lbc

lbs lbs

lbs

lbs
lbs

a) b) c)

Bearing on lbs (mm) lbc (mm) 
steel or concrete 50 75 
other materials 70 100 
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Maximum sagging bending moment 
 
The profiled steel sheeting acts as shuttering and carries its own weight, the wet 
concrete and the construction loads. The static system and loads are shown in 
Figure D2.5. 
 
 
 
 
 
 
 
 
 
 

Figure D2.5 Static system and loads for the construction stage 
 
The design value of sagging bending moment is: 
 

= · + ·Ed G g Q qM M M  
 

,1

2 2= + = 0,078·0,09·1,8 + 0,094·2,62·1,8 = 0,82
p cg g gM M M  kNm/m 

 
2= 0,094·1,5·1,8 = 0,46qM  kNm/m 

 
= 1,35·0,82 +1,5·0,46 = 1,80EdM  kNm/m 

 
Verifications for the profiled steel sheeting are carried out in accordance with EN 
1993-1-3. However, since the characteristic resistance moment is provided by the 
manufacturer, the check is carried out with this value: 
 

0

4,63= = = 4,63
1,0

Rk
Rd

M

M
M  kNm/m 

 
Check: 
 

Ed

Rd

M
M

 1,0 

 
1,80 = 0,39 < 1,0
4,63

, the condition is satisfied 

L = 3,6 m L = 3,6 m L = 3,6 m 
P PP

1,8 m 1,8 m 

gp 

qk,1 

gc,1 
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Maximum hogging bending moment 
 
The profiled steel sheeting acts as shuttering and carries its own weight, the wet 
concrete and the construction loads. According to clause 4.11, EN 1991-1-6, the 
construction load of 1,50 kN/m2 acts on the working area of 3,0 × 3,0 m and 
outside the working area the construction load is 0,75 kN/m2. The static system and 
loads are shown in Figure D2.6. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D2.6 Static system and loads for the construction stage 
 
The design value of hogging bending moment is: 
 

= · + · = 1,35·1,00 +1,5·0,54 = 2,16Ed G g Q qM M M  kNm/m 
 
The design value of support reaction is: 
 

= · + · = 1,35·5,80 +1,50·3,17 = 12,6Ed G g Q qF F F  kNm/m 
 
The values of Mg, Mq, Fg and Fq are calculated by computer. 
 
The design resistance moment in hogging region is: 
 

0

4,67= = = 4,67
1,0

Rk
Rd

M

M
M  kNm/m 

 
Check: 
 

Ed

Rd

M
M

 1,0 

 

3,0 m L = 3,6 m L = 3,6 m 
P PP

1,8 m 1,8 m 

L = 3,6 m 

0,3 m 0,3 m 

gp 

gc,1 

0,5 qk,1 

qk,1 



Example D2 705 
 

 

2,16 = 0,46 < 1,0
4,67

, the condition is satisfied 

 
The design resistance to support reaction is: 
 

,
0

34,0= = = 34,0
1,0

Rk
w Rd

M

R
R  kN 

 
Check: 
 

,

Ed

w Rd

F
R

 1,0 

 
12,6 = 0,37 < 1,0
34,0

, the condition is satisfied 

 
The check for combined bending moment and support reaction is carried out as 
(6.28), clause 6.1.11, EN 1993-1-3: 
 

,

+Ed Ed

Rd w Rd

M F
M R

 1,25 

 
2,16 12,6+ = 0,83
4,67 34,0

 1,25 

 
The condition is satisfied. 

5.2 Composite stage 

The continuous composite slab is designed as a series of simply supported spans, 
in accordance with clause 9.4.2(5), EN 1994-1-1, provided that the criterion for 
minimum reinforcement above internal supports of composite slab is satisfied, 
clause 9.8.1, EN 1994-1-1. 

 
The static system and the design load for the composite stage are shown in Figure 
D2.7. 
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Figure D2.7 Static system and loads for the composite stage 
 
The design values of bending moment and shear force are: 
 

2
,2 ,3[ ·( + ) + · ] ·

=
8

G k k Q k
Ed

g g q L
M  

 
2[1,35·(2,61 +1,2) +1,5·5,0]·3,6= = 20,5

8EdM  kNm/m 

 

,2 ,3[ ·( + ) + · ] ·
=

2
G k k Q k

Ed

g g q L
V  

 
[1,35·(2,61 +1,2) +1,5·5,0]·3,6= = 22,7

2EdV  kN/m 

5.2.1 Plastic resistance moment in sagging region 

It is assumed that the neutral axis lies above the sheeting. The assumed distribution 
of longitudinal bending stresses is shown in Figure D2.8. The design compressive 
force in concrete, Nc,f, is: 
 

, = 0,85· · ·c f cd cN f h b ,    = 1000b  mm 
 

–3
, = 0,85·16,7·74·1000·10 = 1050c fN  kN/m 

 
The design tensile force in the steel sheeting for a width of sheeting b is calculated 
using the characteristic of the effective steel section Ape: 
 

,= ·p yp d peN f A  
 

–3= 280·1137·10 = 318pN  kN/m 
 

L = 3,6 m 

gk,2 + gk,3 

qk,1
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Since Np < Nc,f, the plastic neutral axis lies within the concrete. The design 
resistance moment in sagging region is calculated according to the distribution of 
stresses shown in Figure D2.8. 
 
 
 
 
 
 

 
Figure D2.8 Cross-section of composite slab and stress blocks for sagging bending 
 
The position of the plastic neutral axis of the composite section xpl is: 
 

,·
=

0,85· ·
p yp d

pl
cd

A f
x

b f
 b = 1000 mm slab width 

 
1137·280= = 22,4

0,85·1000·16,7plx  mm < = 74ch  mm 

 
For full shear connection, the design plastic resistance moment in sagging region 
Mpl,Rd is calculated as: 
 

, ,= min( , )·pl Rd c f pM N N z  
 

, = ·( – )
2
pl

pl Rd p p

x
M N d  

 
–3

,
22,4= 318·(99,6 – )·10 = 28,1

2pl RdM  kNm/m 

 
Check: 
 

,

Ed

pl Rd

M
M

 1,0 

 
20,5 = 0,73 < 1,0
28,1

, the condition is satisfied 

 
The design plastic resistance moment in sagging region for full shear connection is 
adequate. 

PNA  plastic neutral axis 

Centroidal axis of profiled steel sheeting 

dp=99,6 
hp=46
hc=74 h=120 

e=20,4 

xpl 

 fyp,d 

0,85 fcd Nc,f

Np 

Mpl,Rd z
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5.2.2 Longitudinal shear resistance 

For composite slabs with ductile behaviour, the partial connection method can be 
used for the verification of the resistance to longitudinal shear, clause 9.7.3(8), 
EN 1994-1-1. 
 
The shear span required for full shear connection is determined as: 
 

,= · ·c u Rd xN b L ,c fN  
 
The distance to the nearest support, LX, required for full shear connection may be 
determined as: 
 

,

, ,

·
= =

· ·
c f p yd

x
u Rd u Rd

N A f
L

b b
 

 
The design shear strength, u,Rd, acting at the steel-concrete interface is: 
 

,
,

0,306= = = 0,245
1,25

u Rk
u Rd

Vs

 N/mm2 

 
The distance to the nearest support, LX, required for full shear is: 
 

1137·280= = 1299
1000·0,245xL  mm < L/2 = 3600/2 = 1800 mm 

 
Therefore, at a distance of 1299 mm from the support a full shear connection is 
fulfilled. 
 
According to clause 9.7.3(7), EN 1994-1-1, the verification is carried out using 
the simplified partial interaction diagram and for any cross-section along the 
span it has to be shown that the corresponding design bending moment, MEd, 
does not exceed the design resistance moment MRd. This criterion can be written 
in the following format: 
 

( )
( )

Ed

Rd

M x
M x

 1,0 

 
The longitudinal shear resistance of the slab, expressed by its design resistance 
moment, MRd, found from the design shear strength, u,Rd, and the design bending 
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moment from applied loads, are functions of x and they are plotted in Figure D2.9. 
Two characteristic points are found as follows. 
 
The first characteristic point is where the degree of shear connection for sheeting  
= 0. The sheeting has no longitudinal force, and the resistance moment is that of 
the sheeting only, Mpa,Rd = Mpa,Rk/ M = 5,70 kNm/m. 
 
The second characteristic point is determined as follows. 
 
The design plastic resistance moment for full shear connection has been calculated 
in Section 5.2.1. Further calculation is carried out for pedagogical reasons. 
 
The design tensile force in the steel sheeting for a width of sheeting b is (Figure 
D2.8): 
 

,= · = 1137·0,280 = 318p p yp dN A f  kN/m 
 
The position of the plastic neutral axis of the composite section xpl is: 
 

,·
=

0,85· ·
p yp d

pl
cd

A f
x

b f
, b = 1000 mm slab width 

 
1137·280= = 22,4

0,85·1000·16,7plx  mm < = 74ch  mm 

 
The lever arm z is calculated as (9.9), EN 1994-1-1: 
 

c
pl p p

pe yp,d

= – 0,5· – + ( – )·
N

z h x e e e
A f

 

 
The lever arm z, for Nc = Np, see Figure D2.8, is: 
 

= – –
2
plx

z h e  

 
22,4= 120 – 20,4 – = 88,4

2
z  mm 

 
Therefore, the design plastic resistance moment in sagging region, Mpl,Rd, is: 
 

, = ·pl Rd pM N z  
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, = 318·0,0884 = 28,1pl RdM  kNm/m 
 
The longitudinal shear resistance of the slab, expressed as its design resistance 
moment, MRd, found from the design shear strength, u,Rd, and the design bending 
moment from applied loads, are functions of x and they are plotted in Figure D2.9. 
From the simplified partial interaction diagram, shown in Figure D2.9, it can be 
seen that at any cross-section the design bending moment MEd does not exceed the 
design resistance moment MRd. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D2.9 Design partial-interaction diagram 

5.2.3 Check for vertical shear resistance 

According to 9.7.5, EN 1994-1-1, the vertical shear resistance, Vv,Rd, should be 
determined according to the method given in EN 1992-1-1. According to clause 
6.2.2, EN 1992-1-1, the design shear resistance Vv,Rd is calculated as: 
 

1/3
, , , 1= = [ · ·(100· · ) + · ] ·v Rd Rd c Rd c l ck cp w pV V C k f k b d , ,minv RdV  

 
The minimum value of Vv,Rd,min is: 
 

, ,min min 1= ( + · )· ·v Rd cp w pV k b d  
 
The minimum requirement for ,v RdV  is related to the fact that the member 
without reinforcement still has some shear resistance. 
 
Generally, the check is carried out as follows: 
 

Mpl,Rd = 28,1 

Mpa,Rd = 5,7

0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0

MRd, MEd [kNm/m]

MEd = 20,5

Lx [m] 

10 

20

30

MRd

,2 ,3[ ·( + ) + · ]·
= ·( – )

2
G k k Q k

Ed

g g q x
M L x  

Lx = 1,299 m 
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,

Ed

v Rd

V
V

 1,0 

 
According to clause 6.2.2(1), EN 1992-1-1, the values needed for calculation ,v RdV  
are: 
 

,
0,18 0,18= = = 0,12

1,5Rd c
c

C  

 
200= 1 +

p

k
d

 2,0 

 
200 200= 1 + = 1 + = 2,4

99,6p

k
d

    adopted k = 2,0 

 

=
·
sl

l
w p

A
b d

 0,02 

 
The resistance of the cross-section is dependent on the area of the tensile 
reinforcement, whose section has to be extended by an appropriate anchorage 
length, (lbd + d) see  Figure 6.3, EN 1992-1-1  where lbd is the design anchorage 
length and d is the effective depth of the section, taken as the depth from the top 
surface to the centroid of the profile for a composite slab. The anchorage of the 
profiled sheeting was confirmed by the check on longitudinal shear and the 
sheeting can be treated as reinforcement, i.e. Asl = Ape = 1137 mm2. 
 
In accordance with Figure D2.10, the smallest width of the cross-section in the 
tensile area bw is calculated per metre width as follows: 
 

0
1000= · = ·128,5 = 571
225w

s

bb b
b

 mm/m 

 
The percentage of longitudinal reinforcement is: 
 

=
·
sl

l
w p

A
b d

 0,02 

 
1137= = 0,02

571·99,6l  
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The value = 0,02l is adopted. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D2.10 Determination of value bw 
 

The design axial force is = 0EdN  and therefore = = 0Ed
cp

c

N
A

. 

 
1 = 0,15k , according to clause 6.2.2(1), EN 1992-1-1 

 
The design shear resistance Vv,Rd is: 
 

1/3
, , , 1= = [ · ·(100· · ) + · ] ·v Rd Rd c Rd c l ck cp w pV V C k f k b d  

 
1/3 –3

, = [0,12·2,0·(100·0,02·25) + 0,15·0] ·571·99,6·10v RdV  
 

, = 50,3v RdV  kN/m 
 
The minimum value is: 
 

, ,min min 1= ( + · )· ·v Rd cp w pV v k b d  
 

3/2 1/2 3/2 1/2
min = 0,035· · = 0,035·2,0 ·25 = 0,49ckv k f  N/mm2 

 
–3

, ,min = (0,49 + 0,15·0)·571·99,6·10 = 27,9v RdV  kN/m < , = 50,3v RdV  kN/m 
 
Check: 
 

,

Ed

v Rd

V
V

 1,0 

bs = 225 mm 
br = 67 mm 
b0 = 128,5 mm 

dp=99,6 
hp=46
hc=74 h=120 

e=20,4

bs 
bb 

br b0 
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22,7 = 0,45 < 1,0
50,3

, the condition is satisfied 

 
Remark: 
 
Since it is unlikely that the profiled steel sheet can satisfy the requirement of 
“full anchorage”, the design shear resistance is equal to the minimum value: 
 

, , ,min= = 27,9v Rd v RdV V  kN/m 
 
Also, the required condition is satisfied since that is , , ,min= = 27,9v Rd v RdV V  kN/m 
> = 22,7EdV  kN/m. 

6. Serivceability limit state 

6.1 Control of cracking of concrete 

Since the slab is designed as simply supported, it is only requires reinforcement for 
crack width limitation. 
 
According to clause 9.8.1(2), EN 1994-1-1, for propped construction the required 
cross-sectional area of reinforcement sA  is 0,4% of the area of concrete above the 
ribs: 
 
min = 0,004· · = 0,004·1000·74 = 296s cA b h  mm2/m 
 
The reinforcement bar is assumed to be 8/160 mm. Therefore, the cross-sectional 
area of reinforcement is: 
 

28 · 1000= · = 314
4 160sA mm2/m > 296 mm2/m 

 
The selected minimum amount of the reinforcement could be insufficient to control 
cracking at the supports of continuous slabs for certain exposure classes. In such 
cases, the slab should be designed as continuous, and in hogging regions the crack 
widths should be estimated according to EN 1992-1-1. 

6.2 Limit of span/depth ratio of slab 

According to clause 9.8.2(4), EN 1994-1-1, calculation of the deflection of the 
composite slab can be omitted if the two conditions are satisfied. According to 
the first condition, the span/depth ratio of the slab should not exceed the limits 
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given in EN 1992-1-1. These are: 
 

< 20L
d

 for a simply supported span 

< 26L
d

 for an external span of continuous slab 

< 30L
d

 for an internal span of continuous slab 

 
According to clause 9.8.2(6), EN 1994-1-1, the second condition is given as 
follows: 
 

the load causing an end slip of 0,5 mm in the tests on composite slab exceeds 
1,2 times the design service load. 

 
If the second condition is not satisfied, i.e. the end slip exceeds 0,5 mm at a load 
1,2 times the design service load, two options exist: 
 

end anchors should be provided, or 
deflections should be calculated including the effect of end slip. 

 
According to clause 9.8.2(8), EN 1994-1-1, in cases when the behaviour of the 
shear connection between the profiled sheeting and the concrete are not known 
from tests, the tied-arch model may be used, see [34]. 

 
For the considered slab with L = 3600 mm and dp = 99,6 mm, the following 
span/depth ratio is obtained: 
 

3600= = 36 > 26
99,6

L
d

 for the external span of continuous slab 

3600= = 36 > 30
99,6

L
d

 for the internal span of continuous slab 

 
The span/depth ratio exceeds the limit, and the calculation of the deflection needs 
to be carried out. 

6.3 Calculation of deflections 

6.3.1 Construction stage deflection 

According to clause 9.6(2), EN 1994-1-1, the deflection, s, of the profiled sheeting 
due to its own weight and the weight of wet concrete should not exceed the 
following limit: 
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,max
1800= = = 10

180 180s
L  mm 

 
The premature local buckling of the profiled sheeting under the weight of wet 
concrete and construction loading is checked to prevent irreversible deformation. 
 
Maximum sagging bending moment in the serviceability limit state is: 
 

2 2= 0,078·0,09·1,8 + 0,094·2,62·1,8 = 0,82EdM  kNm/m 
 
Maximum compressive stress in the top flange of the profiled sheeting is: 
 

6

4

0,82·10= · = ·(46 – 20,4) = 50,6
41,5·10

Ed
com

p

M
z  N/mm2 

 
In accordance with clause 4.4, EN 1993-1-5, the plate slenderness, p , is 
calculated as: 
 

= =
28,4· ·

y
p

cr

b
f t

k
 

 
235 235= = = 2,2

50,6com

 

 
According to Table 4.1, EN 1994-1-1, for the stress ratio  = 1, the buckling factor 
is k  = 4. 
 
Therefore, the plate slenderness, p , with the design thickness of the sheet t = 0,86 
mm (not including coatings) and b = br = 67 mm, is: 
 

67
0,86= = 0,623

28,4·2,2· 4p  

 
Since that is = 0,623 < 0,673p , the reduction factor is  = 1,0 and the cross-
section is fully effective. 
 
The deflection, s, is calculated as: 
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4
,1(2,65· + 3,4· )·

=
384· ·

p c
s

p

g g L
E I

 

 
The deflection, s, is: 
 

4

4

(2,65·0,09 + 3,4·2,62)·1800= = 2,9
384·210000·41,5·10s mm 

 
s = 2,9 mm < s,max = 10 mm 

 
The deflection due to the self-weight of the profiled sheeting and the weight of the 
wet concrete meets the criterion L/180. 
 
Since the deflection s  is less than 10% of the slab depth, s = 2,9 mm < 0,10·h 
= 0,1·120 = 12 mm, according to clause 9.3.2(2), EN 1994-1-1, the ponding 
effects can be neglected at the construction stage. 

 
The conditions for the serviceability limit state are satisfied, and the profiled steel 
sheeting can be used at the construction stage. 

6.3.2 Composite stage deflection 

For the calculation of the deflection in composite stage, the slab is considered as 
continuous over two spans. According to clause 9.8.2(5), EN 1994-1-1, the 
following approximations can be applied: 
 

The second moment of area can be taken as the average of the values for the 
cracked and uncracked section. 
An average value of the modular ratio, n, for both short-term and long-term 
effects can be used: 
 

210000= = = = 10,2
21' ·31000·( + )
32 3

a a

cmcm
cm

E E
n

EE E
 

 
Elastic analysis is used to calculate the deflection of the slab. 

 
a) The second moment of area for the cracked section, Icc, for slab width b is 

calculated in accordance with Figure D2.11. 
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Figure D2.11 Second moment of area calculation for cracked cross-section, Icc  
 
The second moment of area for the cracked section and the slab width b is 
calculated as: 
 

3
2·

= + ·( – ) +
3·

c
cc p p c p

b x
I A d x I

n
 

 
The position of the elastic neutral axis relative to the upper side of the slab is: 
 

· 2· ··
= = ( 1 + – 1)

·
p pi i

c
i p

n A b dA z
x

A b n A
 

 
10,2·1137 2·1000·99,6= ( 1 + – 1) = 37,8

1000 10,2·1137cx  mm 

 
The second moment of area for the cracked section is: 
 

3
2 4 61000·37,8= +1137·(99,6 – 37,8) + 41,5·10 = 6,52·10

3·10,2ccI  mm4/m 

 
b) The second moment of area for the uncracked section, Icu, for slab width b is 

calculated in accordance with Figure D2.12. 
 
The second moment of area for the uncracked section and the slab width b is 
calculated as: 
 

dp 
hp 
hc h 

e 

bs 
bb 

br b0 

ENA – elastic neutral axis 

hp/2 Compression
xc

Tension 

Cracked 
concrete 

ENA

Steel sheeting 
centroidal axis 
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33
2 2

2

· ·· ·
= + ·( – ) + + ·( – – ) +

12· 2 12· 2

+ ·( – ) +

m p m p pc c c
cu u u

p p u p

b h b h hb h b h h
I x h x

n n n n

A d x I
 

 
where: 
 

2

· + · ·( – ) + · ·
2 2=

· + · + ·

pc
m p p p

u
c m p p

hh
b b h h n A d

x
b h b h n A

 

 
 
 
 
 
 
 
 
 
 
 
Figure D2.12 Second moment of area calculation for uncracked cross-section, Icu 

 
In accordance with Figure D2.12, the value of bm is: 
 

0
158 +105= = 131,5

2
b  mm 

 

0
1000= · = ·131,5 = 584
225m

s

bb b
b

 mm/m 

 
The position of the elastic neutral axis relative to the upper side of the slab is: 
 

274 461000· + 584·46·(120 – ) +10,2·1137·99,6
2 2= = 57,8

1000·74 + 584·46 +10,2·1137ux  mm 

 
The second moment of area for the uncracked section is: 
 

Compression 
xu

Tension

Uncracked 
concrete 

ENAdp 
hp 
hc h 

e 

bs 
bb 

br b0 

ENA – elastic neutral axis 

hp/2

Steel sheeting 
centroidal axis 
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3 3
2

2 2 4

1000·74,0 1000·74,0 74,0 584·46,0= + ·(57,8 – ) + +
12·10,2 10,2 2 12·10,2

584·46,0 46,0·(120 – 57,8 – ) +1137·(99,6 – 57,8) + 41,5·10
10,2 2

cuI
 

 
6= 13,36·10cuI  mm4/m 

 
The mean value of ccI  and cuI is: 
 

6 6
6+ 6,52·10 +13,36·10= = = 9,94·10

2 2
cc cu

c
I I

I  mm4/m 

 
Calculation of deflections 
 

 Deflection due to permanent action – weight of floor finishes ,3kg = 1,20 kN/m2 
 
 
 
 
 
 
 
 

Figure D2.13 Static system and load for calculation of deflection at 
 the composite stage 

 
The deflection is: 
 

4
,3

1

0,0068· ·
=

·
k

c

g L
E

 

 
4

1 6

0,0068·1,2·3600= = 0,66
210000·9,94·10

 mm 

 
Deflection due to frequent value of variable action and the selected combination 
factor is 1 = 0,7 

 
The design load is calculated for the frequent combination: 
 

1 ,2= · kq q  

gk,3 

L = 3,6 m L = 3,6 m L = 3,6 m 
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The deflection is: 
 

4
1 ,2

2

0,0099· · ·
=

·
k

c

q L
E I

 

 
4

2 6

0,0099·0,7·5,0·3600= = 2,79
210000·9,94·10

 mm 

 
 
 
 
 
 
 
 

Figure D2.14 Static system and load for calculation of deflection at  
 the composite stage, the worst load case 

 
Self-weight of the slab gk, removal of the props 

 
 
 
 
 
 
 
 

Figure D2.15 Self-weight of slab, removal of the props 
 
The support reactions 1'G  due to the self-weight of the slab are applied as point 
loads on the system: 
 

1 ,2
3,6' = · = 2,61· = 4,70

2 2k
LG g  kN/m 

 
The deflection is: 
 

3
1

3
0,01146· '·

=
· c

G L
E I

 

 

L = 3,6 m L = 3,6 m L = 3,6 m 

1qk,2 1qk,2 

gk,2 

L = 3,6 m L = 3,6 m L = 3,6 m 

G1' G1' G1' 
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3

3 6

0,01146·4700·3600= = 1,20
210000·9,94·10

 mm 

 
Remark: 
 
The limit of the deflection is adopted according to clause 7.4.1(4), EN 1992-1-1. 
The recommended limitation is: 
 

total 250
L  

 
The total deflection is: 
 

1 2 3= + + = 0,66 + 2,79 +1,20 = 4,65total  mm 3600= = 14,4
250 250

L  mm 

 
The total deflection meets the criterion L/250. 

7. Commentary 

The usual spans for composite slabs are between 3 m and 4,5 m. For spans less 
than 3,5 m, it is not necessary to use temporary propping during concreting of 
the slab. In this case, the construction stage is governed for the design of the 
profiled sheeting. The stresses in the short span composite slab are very low. For 
such composite slabs, profiled steel sheeting with limited longitudinal shear 
resistance and ductility are usually used. For larger spans, props are necessary to 
support the profiled steel sheeting during execution. In this case, the stresses in 
the composite slab are very high, and usually the composite stage is governed for 
the design. Profiled steel sheeting requires good longitudinal shear resistance. 
Re-entrant steel profiles are often used in such cases. 
 
In this example the slab is propped during construction. All of the loads have to 
be resisted by the composite section. The design resistance of the composite slab 
against longitudinal shear was carried out by the partial connection method. This 
method relies on tests on the composite slab to estimate the shear connection. 
The method is based on a diagram that relates the bending moment strength to 
the shear connection degree of the slab, Figure D2.9. 
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D3 Three-span composite slab propped at the 
construction stage  end anchorage and additional 
reinforcement 

1. Purpose of example 

This example shows the design of the composite floor slab that is supported by the 
composite beam at 3,6 m centres, Figure D3.1. The composite slab is 130 mm deep 
with the profiled steel sheeting of height 51 mm and 0,88 mm thick. The profiled 
steel sheeting is propped temporarily during construction. The composite slab is 
continuous because the profiled sheeting is provided in three-span lengths and the 
concrete is cast on the sheeting without joints. In accordance with EN 1994-1-1, 
two different static systems are considered, as simply supported and alternatively 
as continuous spans. 
 
In this case, elastic global analysis is used based on the uncracked stiffness. The 
design bending moments at internal supports are very high. Due to very high 
resulting moments at internal supports, heavy reinforcement may be required. To 
avoid this problem, the composite slab may be designed as a series of simply 
supported spans, clause 9.4.2(5), EN 1994-1-1, or by using redistribution of 
moments, clause 9.4.2(3), EN 1994-1-1. In this case, the use of plastic analysis, 
clause 9.4.2(4), EN 1994-1-1, is not possible because the required conditions are 
not satisfied. 
 
This example illustrates the design of the resistance of composite slab taking into 
account the end anchorage and the additional reinforcement provided in troughs of 
profiled sheeting. The first step is to carry out the verification of the longitudinal 
shear resistance without end anchorage. Since the check for longitudinal shear 
resistance is not satisfied, the end anchorage and the additional reinforcement are 
taking into account. The partial connection method is used, although the m-k 
method has been widely used in the design of composite slabs. The m-k method is 
not based on a mechanical model and is therefore less flexible than the partial 
connection method. In this example, the benefit of end anchorage and additional 
reinforcement cannot be quantified without additional tests that include these 
variables. 
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2. Static system, cross-section and actions 

a) Construction stage – the profiled steel sheeting acts as shuttering 
 
 
 
 
 
 
 
 
 

Figure D3.1 Static system of profiled sheeting for the construction stage 
 
b) Composite stage 
 
The composite slab is continuous, Figure D3.2. However, according to clause 
9.4.2(5), EN 1994-1-1, the continuous slab may be designed as a series of simply 
supported spans. 
 
 
 
 
 
 

Figure D3.2 Static system of the composite slab 
 
c) Cross-section of composite slab 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D3.3 Cross-sections: a) composite slab, b) profiled steel sheeting 
 

620

bb=138
bs=150 150 150 150

600 

e=17 
hp=51

b0=114 br = 36 

b1=12

b) 

dp=143

e=17

h=160
hc=109

hp=51
a) 

ENA 

ENA – elastic neutral axis 

P  temporary props during casting of the concrete 

L = 3,6 m L = 3,6 m L = 3,6 m 
P PP

1,8 m 1,8 m 

L = 3,6 m L = 3,6 m L = 3,6 m 
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Actions 
 
a) Permanent action 
 
Remark: 
 
According to EN 1991-1-1 the density of normal weight concrete is 24 kN/m3, 
increased by 1 kN/m3 for normal percentage reinforcement, and increased for the 
wet concrete by another 1 kN/m3. 

 
Concrete slab area per m width: 
 

1 +1000= 1000· – ( · · )
2

r
c p

s

b b
A h h

b
 

 
1000 12 + 36= 1000·160 – ( · ·51) = 151840
150 2cA  mm2 =1518  cm2 

 
- concrete slab and reinforcement (wet concrete): 
 
 ·26 = 0,152·26 = 3,95cA  kN/m2 
 
- concrete slab and reinforcement (dry concrete): 
 
 ·25 = 0,152·25 = 3,80cA  kN/m2 
 
Construction stage 
 
- concrete slab ,1 =cg 3,93 kN/m2 
 
- profiled steel sheeting =pg 0,13 kN/m2 
 
Total ,1 =kg 4,08 kN/m2 
 
Composite stage 
 
- concrete slab ,2 =cg  3,80 kN/m2 
 
- profiled steel sheeting pg = 0,13 kN/m2 
 
Total ,2kg = 3,95 kN/m2 
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Floor finishes ,3kg = 1,20 kN/m2 
 
b) Variable action 
 
Construction stage 
 
- construction loads ,1kq =1,50 kN/m2 
 
Composite stage 
 
- imposed floor load ,2kq =5,0 kN/m2  
 
Remark: 
 
Clause 9.3.2(1), EN 1994-1-1, refers to clause 4.11, EN 1991-1-6, for 
construction loads. According to clause 4.11.2(1), EN 1991-1-6, the actions from 
personnel and equipment, qk, are referred to as “10% of the self-weight of the 
concrete, but not less than 0,75 and not more than 1,5 kN/m2”. Also, according 
to clause 4.11, EN 1991-1-6, the load of 1,50 kN/m2 acts on the working area of 
3,0 × 3,0 m, and outside the working area the load is 0,75 kN/m2. 

3. Properties of materials 

Concrete strength class: C 25/30 = 25ckf  N/mm2 

 25= = = 16,7
1,5

ck
cd

c

f
f  N/mm2 

 0,85 = 0,85·16,7 = 14,17cdf  N/mm2 
 = 31000cmE  N/mm2 
 
Reinforcement: = 500skf  N/mm2 

 500= = = 435
1,15

sk
sd

s

f
f  N/mm2 

 
Profiled steel sheeting:  = 0,88t  mm 
 = 51ph  mm 

 = = 1562p peA A  mm2/m 

 4= 62·10pI  mm4/m 

 = = 210000p aE E  N/mm2 

 , = 280yp kf  N/mm2 
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 ,
,

280= = = 280
1,0

yp k
yp d

M

f
f  N/mm2 

Plastic resistance moment (provided by manufacturer): , = 6,30pa RkM  kNm/m 

Resistance moment (provided by manufacturer): = 5,18RkM  kNm/m (sagging) 
 = 6,10RkM  kNm/m (hogging) 
Resistance to support reaction (provided by manufacturer): , = 22,8w kR  kN/m 
Resistance to horizontal shear (provided by manufacturer): , = 0,0425u Rk  N/mm2 

4. Structural details of composite slab 

4.1 Slab thickness and reinforcement 

The composite slab should satisfy the conditions given in clause 9.2, EN 1994-1-1. 
 
a) The slab does not act compositely with a beam, nor is it used as a diaphragm, so 

the following conditions should be satisfied: 
 
- the overall depth of slab h   80 mm, = 160h  mm (satisfied), 
 
- the thickness of concrete above the main flat surface of the top of the ribs of 

sheeting ch   40 mm, = 109ch  mm (satisfied), 

- the ratio of the width of the sheet rib to the rib spacing r

s

b
b

 0,6,  

36 = 0,24 < 0,60
150

 (satisfied). 

 
b) The minimum amount of reinforcement in both directions should not be less 

than 80 mm2/m. For propped construction, the area of reinforcement, according 
to clause 9.8.1(2), EN 1994-1-1, is: 

 
min = 0,004· · = 0,004·109·1000 = 436s cA h b  mm2/m  = 80sA  mm2/m 

 
c) Spacing of reinforcement bars 
 

< 2· = 2·160 = 320e h  or < 350 mm 

4.2 Largest nominal aggregate size 

dg  0,4 · hc 0,4 · 109 = 43,6 mm 
dg  b0/3 114/3=38,0 mm 
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dg  31,5 mm = 31,5 mm 
 
The minimum adopted value is dg = 31,5 mm. 

4.3 Minimum value for nominal thickness of steel sheet 

In accordance with clause 3.5(2), EN 1994-1-1, the recommended value for the 
nominal thickness of steel sheet is 0,70 mm. The thickness of the selected profiled 
steel sheeting is 0,88 mm. The condition is satisfied. 

4.4 Composite slab bearing requirements 

 
 
 
 
 
 
 
 
 
 
 
 

Figure D3.4 Minimum bearing lengths 
 
According to clause 9.2.3(2), EN 1994-1-1, the recommended bearing lengths and 
support details differ depending upon the support material, and they are different 
for internal supports and end supports, see Figure D3.4. 
 
For composite slabs bearing on steel or concrete, the minimum bearing lengths are 
lbc = 75 mm and lbs = 50 mm. The composite slab is supported by steel beams with 
the top flange width larger than 75 mm. Therefore, the condition for the bearing 
length is satisfied. 

5. Ultimate limit state 

5.1 Construction stage 

At the construction stage, it is necessary to carry out verifications of profiled 
steel sheeting for the ultimate and serviceability limit state in accordance with 
EN 1993-1-3. 
 
Usually, the manufacturer gives information on the properties of profiled steel 

lbc

lbc

lbs lbs

lbs

lbs
lbs

a) b) c)

Bearing on lbs (mm) lbc (mm) 
steel or concrete 50 75 
other materials 70 100 
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sheeting. These properties are usually based on test results performed in 
accordance with EN 1993-1-3, Annex A. Characteristic and design values of 
resistance moment, crushing resistance, second moment of area etc. may be 
estimated using methods of reliability analysis in accordance with EN 1990. 
Properties of profiled steel sheeting estimated by calculation are more 
conservative than equivalent properties based on testing. 

 
Maximum sagging bending moment 
 
The profiled steel sheeting acts as shuttering and carries its own weight, the wet 
concrete and the construction loads. The static system and loads are shown in 
Figure D3.5. 
 
 
 
 
 
 
 
 
 
 

Figure D3.5 Static system and loads for the construction stage 
 
The design value of sagging bending moment is: 
 

= · + ·Ed G g Q qM M M  
 

,1

2 2= + = 0,078·0,13·1,8 + 0,094·3,95·1,8 = 1,24
p cg g gM M M  kNm/m 

 
2= 0,094·1,50·1,8 = 0,46qM  kNm/m 

 
= 1,35·1,24 +1,5·0,46 = 2,36EdM  kNm/m 

 
Verifications for the profiled steel sheeting are carried out in accordance with EN 
1993-1-3. However, since the characteristic resistance moment is provided by the 
manufacturer, the check is carried out with this value: 
 

0

5,18= = = 5,18
1,0

Rk
Rd

M

M
M  kNm/m 

 
Check: 

L = 3,6 m L = 3,6 m L = 3,6 m 
P PP

1,8 m 1,8 m 

gp 

qk,1 

gc,1 
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Ed

Rd

M
M

 1,0 

 
2,36 = 0,46 < 1,0
5,18

, the condition is satisfied 

 
Maximum hogging bending moment 
 
The profiled steel sheeting acts as shuttering and carries its own weight, the wet 
concrete and the construction loads. According to clause 4.11, EN 1991-1-6, the 
construction load of 1,50 kN/m2 acts on the working area of 3,0 × 3,0 m, and 
outside the working area the construction load is 0,75 kN/m2. The static system and 
loads are shown in Figure D3.6. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D3.6 Static system and loads for the construction stage 
 
The design value of hogging bending moment is: 
 

= · + · = 1,35·1,50 +1,50·0,54 = 2,84Ed G g Q qM M M  kNm/m 
 
The design value of support reaction is: 
 

= · + · = 1,35·8,73 +1,50·3,17 = 16,5Ed G G Q QF F F  kNm/m 
 
The values of Mg, Mq, Fg and Fq are calculated by computer. 
 
The design resistance moment in hogging region is: 
 

0

6,10= = = 6,10
1,0

Rk
Rd

M

M
M  kNm/m 

 

3,0 m L = 3,6 m L = 3,6 m 
P PP

1,8 m 1,8 m 

L = 3,6 m 

0,3 m 0,3 m

gp 

gc,1 

0,5 qk,1 

qk,1 
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Check: 
 

Ed

Rd

M
M

 1,0 

 
2,84 = 0,47 < 1,0
6,10

, the condition is satisfied 

 
The design resistance to support reaction is: 
 

0

22,8= = = 22,8
1,0

Rk
d

M

R
R kN 

 
Check: 
 

,

Ed

w Rd

F
R

 1,0 

 
16,5 = 0,72 < 1,0
22,8

, the condition is satisfied 

 
The check for combined bending moment and support reaction is carried out as 
(6.28), clause 6.1.11, EN 1993-1-3: 
 

,

+Ed Ed

Rd w Rd

M F
M R

 1,25 

 
2,84 16,5+ = 1,19 < 1,25
6,10 22,8

, the condition is satisfied 

5.2 Composite stage 

The continuous composite slab is designed as a series of simply supported spans, 
in accordance with clause 9.4.2(5), EN 1994-1-1, provided that the criterion for 
minimum reinforcement above internal supports of composite slab is satisfied, 
clause 9.8.1, EN 1994-1-1. 

 
The static system and the design load for the composite stage are shown in Figure 
D3.7. 
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Figure D3.7 Static system and loads for the composite stage 
 
The design values of bending moment and shear force are: 
 

2
,2 ,3 ,2[ ·( + ) + · ] ·

=
8

G k k Q k
Ed

g g q L
M  

 
2[1,35·(3,93 +1,2) +1,5·5,0]·3,6= = 23,4

8EdM  kNm/m 

 

,2 ,3 ,2[ ·( + ) + · ] ·
=

2
G k k Q k

Ed

g g q L
V  

 
[1,35·(3,93 +1,2) +1,5·5,0]·3,6= = 26,0

2EdV  kN/m 

5.2.1 Plastic resistance moment in sagging region 

It is assumed that the neutral axis lies above the sheeting. The assumed distribution 
of longitudinal bending stresses is shown in Figure D3.8. The design compressive 
force in concrete, Nc,f, is: 
 

, = 0,85· · ·c f cd cN f h b  =1000b  mm 
 

–3
, = 0,85·16,7·109·1000·10 = 1547c fN  kN/m 

 
The design tensile force in the steel sheeting for a width of sheeting b is calculated 
with the characteristic of the effective steel section Ape: 
 

,= ·p yp d peN f A  
 

–3= 280·1562·10 = 437pN  kN/m 
 

L = 3,6 m 

gk,2 + gk,3 

qk,2
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Since Np < Nc,f, the plastic neutral axis lies within the concrete. The design 
resistance moment in sagging region is calculated according to the distribution of 
stresses shown in Figure D3.8. 
 
 
 
 
 
 
 
Figure D3.8 Cross-section of composite slab and stress blocks for sagging bending 
 
The position of the plastic neutral axis of the composite section xpl is: 
 

,·
=

·0,85·
p yp d

pl
cd

A f
x

b f
 b = 1000 slab width 

 
1562·280= = 30,8

1000·0,85·16,7plx  mm < hc = 109 mm 

 
For full shear connection, the design plastic resistance moment in sagging region 
Mpl,Rd is calculated as: 
 

, ,= min( , )·pl Rd c f pM N N z  
 

, = ·( – )
2
pl

pl Rd p p

x
M N d  

 
–3

,
30,8= 437·(143 – )·10 = 55,8

2pl RdM  kNm/m 

 
Check: 
 

,

Ed

pl Rd

M
M

 1,0 

 
23,4 = 0,42 < 1,0
55,8

, the condition is satisfied 

 
The design plastic resistance moment in sagging region for full shear connection is 
adequate. 

dp=143

e=17

h=160
hc=109

hp=51
fyp,d

0,85·fc,d

Np 

Nc,f 

z
xpl

Mpl,Rd 

PNA  plastic neutral axis 

Centroidal axis of profiled steel sheeting 
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5.2.2 Longitudinal shear resistance 

5.2.2.1 Longitudinal shear resistance without end anchorage 

For composite slabs with ductile behaviour, the partial connection method can be 
used for the verification of the resistance to longitudinal shear, clause 9.7.3(8), 
EN 1994-1-1. 
 
The shear span required for full shear connection is determined as: 
 

,= · ·c u Rd xN b L ,c fN  
 
The distance to the nearest support, LX, required for full shear connection may be 
determined by: 
 

,

, ,

·
= =

· ·
c f p yd

x
u Rd u Rd

N A f
L

b b
 

 
The design shear strength, u,Rd, acting at the steel-concrete interface, is: 
 

,
,

0,0425= = = 0,034
1,25

u Rk
u Rd

Vs

 N/mm2 

 
The distance to the nearest support, LX, required for full shear, is: 
 

1562·280= = 12864
1000·0,034xL  mm > L/2 = 3600/2 = 1800 mm 

 
Therefore, at a distance of 12864 mm from the support a full shear connection is 
fulfilled. 
 
The length of shear span needed for full interaction Lsf = 12864 mm exceeds L/2 = 
1800 mm, so full interaction is not achieved in a span of this length. 
 
According to clause 9.7.3(7), EN 1994-1-1, the verification is carried out using 
the simplified partial interaction diagram and, for any cross-section along the 
span, it has to be shown that the corresponding design bending moment, MEd, 
does not exceed the design resistance moment MRd. This criterion can be written 
as: 
 

( )
( )

Ed

Rd

M x
M x

 1,0 
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The longitudinal shear resistance of the slab, expressed by its design resistance 
moment, MRd, found from the design shear strength, u,Rd, and the design bending 
moment from applied loads, are functions of x and they are plotted in Figure D3.9. 
Two characteristic points of the simplified partial interaction diagram are found as 
follows. 
 
The first characteristic point is where the degree of shear connection for sheeting  
= 0. The sheeting has no longitudinal force, and the resistance moment is that of 
the sheeting only, Mpa,Rd = Mpa,Rk/ M = 6,30 kNm/m.  
 
The second characteristic point is determined as follows. 
 
The design tensile force in the steel sheeting for a width of sheeting b is, Figure 
D3.8: 
 

–3= 280·1562·10 = 437pN  kN/m 
 
For full shear connection, the position of the plastic neutral axis of the composite 
section xpl is: 
 

,·
=

0,85· ·
p yp d

pl
cd

A f
x

b f
 b = 1000 mm slab width 

 
1562·280= = 30,8

1000·0,85·16,7plx  mm 

 
This value of xpl gives a slightly conservative result for the lever arm z. But, for 
simplicity this value is used in this example. 
 
The lever arm z is calculated as (9.9), EN 1994-1-1: 
 

c
pl p p

pe yp,d

= – 0,5· – + ( – )·
N

z h x e e e
A f

 

 
The lever arm z, for Nc = Np (Figure D3.8), is: 
 

= – –
2
plx

z h e  

 
30,8= 160 – 17 – = 127,6

2
z  mm 
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Therefore, the design plastic resistance moment in sagging region, Mpl,Rd, is: 
 

, = ·pl Rd pM N z  
 

, = 437·0,1276 = 55,8pl RdM  kNm/m 
 
The longitudinal shear resistance of the slab, expressed by its design resistance 
moment, MRd(x), found from the design shear strength, u,Rd, and the design bending 
moment from applied loads, MEd(x), are plotted in Figure D3.9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D3.9 Design partial interaction diagram 
 
According to the simplified partial interaction diagram, Figure D3.9, it is evident 
that the required condition, that for each cross-section along the span L: 
 

( )
( )

Ed

Rd

M x
M x

 1,0 

 
is not satisfied. 
 
Remark: 
 
The longitudinal shear resistance of the slab can be increased by the use of some 
form of end anchorage, such as studs or local deformations of the profiled 
sheeting, clause 9.7.4, EN 1994-1-1. 

5.2.2.2 Longitudinal shear resistance with end anchorage 

End anchorage is provided by welded studs: 
 

MRd, MEd [kNm/m] 

0 2 4 6 8 10 12 

MRd

Mpl,Rd=55,8 

3,60 m
Lx [m] 

Lsf=12,9 

MEd,max=23,4

Mpa,Rd=6,3 0,25 0,5 0,75 1,0  

,2 ,3[ ·( + ) + · ]·
= ·( – )

2
G k k Q k

Ed

g g q x
M L x  

10

20

30

40

50
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the stud diameter d = 19 mm, welded through the steel sheeting profile, the 
ultimate tensile strength fu,k = 500 N/mm2 and the partial factor V = 1,25, 
one stud connector in one rib – 6,67 studs/m. 

 
According to clause 9.7.4, EN 1994-1-1, the design resistance of a headed stud 
welded through the steel sheeting profile used for end anchorage should be taken as 
the smallest of the design shear resistance of the stud in accordance with 6.6.4.2, 
EN 1994-1-1, or the bearing resistance of the sheet should be determined with the 
following expression: 
 

, 0 ,= · · ·pb Rd d yp dP k d t f  
 
with: 
 

0

= 1 +
d

ak
d

 6,0 

 
where: 
 
dd0 is the diameter of the weld collar, which may be taken as 1,1 times the 

diameter of the shank of the stud, 
a is the distance from the centre of the stud to the end of the sheeting, to be not 

less than 1,5·dd0, 
t is the thickness of sheeting. 
 
In this case, the bearing resistance of the sheet is governed. The following values 
needed for the calculation of the bearing resistance of the sheet are: 
 

the thickness of sheeting t = 0,88 mm, 
the diameter of the weld collar dd0 = 1,1·d = 1,1·19 = 20,9 mm, 
the distance from the centre of the stud to the end of the sheeting a = 2,0·dd0. 

 
The value of k  is: 
 

0

= 1 +
d

ak
d

 6,0 

 
0

0

2·
= 1 + = 3 < 6,0d

d

d
k

d
 

 
The design bearing resistance of the sheet is: 
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, 0 ,= · · ·pb Rd d yp dP k d t f  
 

–3
, = 3·20,9·0,88·280·10 = 15,4pb RdP  kN 

 
The design shear resistance of the end anchorage is: 
 

, ,= 6,67· = 6,67·15,4 = 102,7l Rd pb RdV P  kN/m 
 
The degree of shear connection is: 
 

,
,

,

102,7= = = 0,24
437

l Rd
l d

c f

V
N

 

 
The calculation is carried out using the linear interpolation method. The 
contribution of the end anchorage to the longitudinal shear resistance is taken into 
consideration by shifting the resistance curve to the left, Figure D3.10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D3.10 End anchorage design 
 
Linear interpolation: 
 

,

,

– –102,7= = –3,02
· 1,0·34,0

l Rd

u Rd

V
b

 m 

 
, ,

,

– 437 – 102,7= = 9,83
· 1,0·34,0

c f l Rd

u Rd

N V
b

 m 

MRd (with end anchorage) 

MRd (without end anchorage) 

Mpl,Rd 

Mpl,p,Rd 

Lsf L Lx 

MEd 

Vl,Rd 

qd 
MEd 

Lx 

MEd  MRd 

Lx 
L 

MRd, MEd  

,

,·
l Rd

u Rd

V
b
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Figure D3.11 Design partial interaction diagram, slab with end anchorage 
 
The simplified design partial interaction diagram for the slab with end anchorage is 
shown in Figure D3.11. 
 
According to the simplified partial interaction diagram, Figure D3.11, it is evident 
that the required condition, that for each cross-section along the span L: 
 

( )
( )

Ed

Rd

M x
M x

 1,0 

 
is not satisfied. 
 
Remark: 
 
The longitudinal shear resistance of the slab can be increased by the use of 
additional reinforcement provided in troughs of the profiled sheeting, clause 
9.7.3(10), EN 1994-1-1. 

5.2.2.3 Longitudinal shear resistance with additional reinforcement 

The following additional reinforcement is assumed: 
 

one  6 mm per rib  
2 2· 6 · 1000= · = · = 188
4 4 150s

s

d bA
b

 mm2/m, 

yield strength of reinforcing steel , = 500yk sf  N/mm2, 
distance between the reinforcement in tension and the extreme fibre of the 
composite slab in compression ds = 130 mm. 

MRd, MEd [kNm/m] 

-3 -2 0 2 4 6 8

MRd

Mpl,Rd=55,8

Lx [m] 
Lsf=9,83 

MEd,max=23,4

Mpa,Rd=6,3 -3,02 

MEd

10 -1

10 

20 

30 

40 

50 

3,60 m
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In the analytical model it is assumed that the total resistance is that from composite 
action of the concrete with both the profiled sheeting and the bars, as for reinforced 
concrete. The resistance is calculated by plastic analysis of the cross-section. 
 
At Lx = 0, there is no composite action and the load acts on the profiled sheeting. 
The distribution of stresses is shown in Figure D3.12. 
 
 
 
 
 
 
 
 
 
 
 

Figure D3.12 Cross-section and stress distribution 
 
The design resistance of reinforcement to axial force is: 
 

, –3· 188·500= = ·10 = 81,7
1,15

s yk s
as

s

A f
N  kN/m 

 
At Lx = 0, there is no composite action,  = 0. It is assumed that the reinforcement is 
fully anchored at x = 0. The resistance moment is that of the profiled sheeting only, 
Mpa,Rd. The profiled sheeting has no longitudinal force, i.e. 
 

= 0pN  kN 
 
Forces Nas and Np give the longitudinal strains at two levels in the slab, for values 
of x. The depth of the neutral axis in the slab below the top surface is given by: 
 

·( + )
= 1,25·

·0,85·
as p

cd

b N N
x

b f
 

 
assuming a rectangular stress block, see Figures D3.12 and D3.13, which extends 
to 80% of the depth to the neutral axis, [36]. 
 
The depth of the neutral axis in the slab below the top surface is: 
 

dp

e=17

hds 

es 
fyp,d

0,85·fc,d

z
x

6

Reinforcement Profiled 
sheeting

Cracked 
concrete 

PNA 

PNA – plastic neutral axis 

fyp,d

Nas

Nas

fsd 

Concrete in 
compression
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(81,7 + 0)= 1,25· = 7,2
0,85·16,7

x  mm 

 
The lever arm z is determined in accordance with Figure D3.12: 
 

= – –
2s
xz h e  

 
7,2= 160 – 30 – = 126
2

z  mm 

 
The design resistance moment, MRd(  = 0), is calculated as: 
 

( = 0) = + ·Rd pr asM M N z  
 
With Mpr = Mpa,Rd = 6,3 kNm/m, the design resistance moment, MRd(  = 0), is: 
 

( = 0) = + ·Rd pr asM M N z  
 

( = 0) = 6,3 + 81,7·0,126 = 16,6RdM  kNm/m 
 
At Lx = Ls,f, where  = 1 (full shear connection), the design plastic bending of the 
composite cross-section, Mpl,Rd, is reached. The design resistance moment is 
calculated in accordance with Figure D3.13. 
 
 
 
 
 
 
 
 
 
 
 

Figure D3.13 Cross-section and stress distribution 
 
At this point, where  = 1, there is an axial tensile force Np in the profiled sheeting 
but no bending moment, Mpr = 0. The axial tensile force Np is:  
 

,= · = 1562·0,280 = 437p p yp dN A f  kN/m 
 

dp

e=17

hds

es 
fyp,d

0,85·fc,d

z1

x 

6Cracked 
concrete 

PNA 

PNA – plastic neutral axis 

Np 

Nc,f

Concrete in 
compression

fsd 

z2

Nas

Reinforcement and  
profiled sheeting
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The depth of the neutral axis in the slab below the top surface is given by: 
 

·( + ) (437 + 81,7)= 1,25· = 1,25· = 45,7
·0,85· 0,85·16,7

p as

cd

b N N
x

b f
 mm 

 
The lever arms z1 and z2 are determined in accordance with Figure D3.13: 
 

1 = – –
2
xz h e  

 

1
45,7= 160 – 17 – = 120

2
z  mm 

 

2 = – –
2s
xz h e  

 

2
45,7= 160 – 30 – = 107

2
z  mm 

 
The design resistance moment, MRd(  = 1), is calculated as: 
 

1 2( = 1) = · + + ·Rd p pr asM N z M N z  
 
With Mpr = 0, the design bending moment, MRd(  = 1), is: 
 

1 2( = 1) = · + + ·Rd p pr asM N z M N z  
 

( = 1) = 437·0,120 + 0 + 81,7·0,107 = 61,2RdM  kNm/m 
 
The simplified design partial interaction diagram is shown in Figure D3.14. 
 
According to the simplified partial diagram, Figure D3.14, it is evident that the 
required condition is satisfied: for each cross-section along the span L: 
 

( )
( )

Ed

Rd

M x
M x

 1,0 
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Figure D3.14 Design partial interaction diagram, with additional reinforcement 

5.2.3 Check for vertical shear resistance 

According to 9.7.5, EN 1994-1-1, the vertical shear resistance, Vv,Rd, should be 
determined according to the method given in EN 1992-1-1. According to clause 
6.2.2, EN 1992-1-1, the design shear resistance Vv,Rd is calculated as: 
 

1/3
, , , 1= = [ · ·(100· · ) + · ] ·v Rd Rd c Rd c l ck cp w pV V C k f k b d , ,minv RdV  

 
The minimum value of Vv,Rd,min is: 
 

, ,min min 1= ( + · )· ·v Rd cp w pV k b d  
 
The minimum requirement for ,v RdV  is related to the fact that the member 
without reinforcement still has some shear resistance. 
 
Generally, the check is carried out as: 
 

,

Ed

v Rd

V
V

 1,0 

 
According to clause 6.2.2(1), EN 1992-1-1, the values needed for calculation of 

,v RdV  are: 
 

,
0,18 0,18= = = 0,12

1,5Rd c
c

C  

MRd, MEd [kNm/m] 

0 2 4 6 8 10 12 

MRd

Mpl,Rd=61,2 

3,60 m
Lx [m] 

Lsf=12,9 

MEd,max=23,4

Mpa,Rd( =0)=16,6 ,2 ,3[ ·( + ) + · ]·
= ·( – )

2
G k k Q k

Ed

g g q x
M L x  
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200= 1 +
p

k
d

 2,0 

 
200= 1 + = 2,18
143

k   adopted k = 2,0 

 

=
·
sl

l
w p

A
b d

 

 
The resistance of the cross-section is dependent on the area of the tensile 
reinforcement, whose section has to be extended by an appropriate anchorage 
length, (lbd + d) see  Figure 6.3, EN 1992-1-1  where lbd is the design anchorage 
length and d is the effective depth of the section, taken as the depth from the top 
surface to the centroid of the profile for a composite slab. The anchorage of the 
profiled sheeting was confirmed by the check on longitudinal shear and the 
sheeting can be treated as reinforcement. Treating the profiled sheeting as the 
reinforcement and taking into account the additional reinforcement, the area of 
tensile reinforcement is: 
 

= + = 1562 +188 = 1750sl p sA A A  mm2 
 
In accordance with Figure D3.15, the smallest width of the cross-section in the 
tensile area bw is calculated per metre width as: 
 

0
1000= · = ·114 = 760
150w

s

bb b
b

 mm/m 

 
The percentage of longitudinal reinforcement is: 
 

=
·
sl

l
w p

A
b d

 

 
1562 +188= = 0,016 < 0,02

760·143l  

 

The design axial force is = 0EdN  and therefore = = 0Ed
cp

c

N
A

. 

 
1 = 0,15k , according to clause 6.2.2(1), EN 1992-1-1 
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Figure D3.15 Determination of value bw 
 
The design shear resistance Vv,Rd is: 
 

1/3
, , , 1= = [ · ·(100· · ) + · ] ·v Rd Rd c Rd c l ck cp w pV V C k f k b d  

 
1/3 –3

, = [0,12·2,0·(100·0,016·25) + 0,15·0] ·760·143·10v RdV  
 

, = 89,2v RdV  kN/m 
 
The minimum value is: 
 

, ,min min 1= ( + · )· ·v Rd cp w pV v k b d  
 

3/2 1/2 3/2 1/2
min = 0,035· · = 0,035·2,0 ·25 = 0,49ckv k f  N/mm2 

 
–3

, ,min = (0,49 + 0,15·0)·760·143·10 = 53,3v RdV  kN/m < , = 89,2v RdV  kN/m 
 
Check: 
 

,

Ed

v Rd

V
V

 1,0 

 
26,0 = 0,29 < 1,0
89,2

, the condition is satisfied 

bb

bs

b0 br 

dp = 143

e = 17

h = 160
hc = 109

hp = 51es 

bs = 150 mm 
br = 36 mm 
b0 = 114 mm 
es = 30 mm
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5.3 Composite stage – alternatively, the composite slab is designed as 
continuous 

The profiled sheeting is provided in three-span lengths. The concrete is cast on the 
sheeting without joints. Therefore, the composite slab is continuous over more 
spans. 
 
The maximum design moment at the internal support is calculated for the design 
loads shown in Figure D3.16. 
 
 
 
 
 
 
 
 

Figure D3.16 Design load for maximum design moment at the internal support 
 
Linear elastic analysis with limited redistribution is applied, clause 5.4.4, EN 1994-
1-1, for calculation of the action effects. 
 
The maximum design moment at internal support, MEd,B, is: 
 

, = · + ·Ed B G g Q qM M M  
 

2 2
, = 1,35·[0,10·(3,93 +1,20)·3,6 ]+1,50·[0,117·5,0]·3,6 = 20,3Ed BM  kNm/m 

 
The maximum design shear force at internal support, VEd,B, is: 
 

,
3,6 20,3= [1,35·(3,93 +1,2) +1,50·5,0]· + = 31,6
2 3,6Ed BV  kN/m 

 
The resulting moments at the internal supports, calculated by elastic global analysis 
based on the uncracked stiffness, are high. To resist these moments the heavy 
reinforcement is required. According to clause 9.4.2(5), EN 1994-1-1, to avoid the 
heavy reinforcement the slab can be designed as a series of simply supported spans, 
provided that control of the cracking of concrete is not a problem. This approach 
has previously been carried out, see Section 5.2. The reduction in the quantity of 
hogging reinforcement is possible by the use of redistribution of moments, clause 
9.4.2(3), EN 1994-1-1. 
 

gk,2 + gk,3 

L = 3,6 m L = 3,6 m L = 3,6 m 

qk,1
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Clause 9.4.2(3), EN 1994-1-1, states that “If the effects of cracking of concrete are 
neglected in the analysis for ultimate limit states, the bending moments at internal 
supports may optionally be reduced by up to 30%, and corresponding increases 
made to the sagging bending moments in the adjacent spans.” 
 
The maximum design moment at the internal support, taking into account the 
redistribution, MEd,B,r, is: 
 

, , = (1 – 0,30)·20,3 = 14,2Ed B rM  kNm/m 
 
The maximum design shear force at the internal support, taking into account the 
redistribution, VEd,B,r, is: 
 

, ,
3,6 14,2= [1,35·(3,93 +1,2) +1,50·5,0]· + = 29,9
2 3,6Ed B rV  kN/m 

 
The reaction at the end support is:  
 

, ,
3,6 14,2= [1,35·(3,93 +1,2) +1,50·5,0]· – = 22,0
2 3,6Ed A rR  kN/m 

 
The point of maximum bending moment is at a distance of 22,0/[1,35·(3,93 + 1,2) 
+ 1,50·5,0] = 1,53 m from the end support, and the maximum design sagging 
moment is: 
 

,
1,53= 22,0·1,53 – [1,35·(3,93 +1,2) +1,50·5,0]·1,53· = 16,8

2Ed rM  kNm/m 

5.3.1 Plastic resistance moment in hogging region 

The design resistance moment at the internal support is calculated taking into 
account the longitudinal reinforcement and according to the stress distribution 
shown in Figure D3.17. 
 
The following additional reinforcement is assumed: 
 

 12/250 mm  
2 2· 12 · 1000= · = · = 452
4 4 250s

s

d bA
b

 mm2/m, 

yield strength of reinforcing steel   , = 500yk sf  N/mm2, 
distance between the reinforcement and the top surface of  
the composite slab    es = 20 mm, 
average width of concrete in compression  bc = 840 mm/m. 
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Figure D3.17 Cross-section of composite slab and stress blocks for 
 hogging bending 

 
0+ 138 +114 1000= ( )· = ( )· = 840

2 2 150
b

c
s

b b bb
b

 mm/m 

 
The design resistance of the reinforcement bars is: 
 

, –3· 452·500= = ·10 = 197
1,15

s ys k
as

s

A f
N  kN/m 

 
The design internal force in the concrete is: 
 

, = 0,85· · ·c f c pl cdN b x f  
 
Equilibrium gives the depth of concrete in compression xpl as: 
 

3197·10= = = 16,5
·0,85· 840·0,85·16,7

cf
pl

c cd

N
x

b f
 mm 

 
The design resistance moment is: 
 

, ,= · = ·( – – )
2
pl

Rd c f c f s

x
M N z N h e  

 
–316,5= 197·(160 – 20 – )·10 = 26,0

2RdM  kNm/m 

 
Check: 
 

, ,Ed B r

Rd

M
M

 1,0 

 

hp

h

es

dp

12

x

es

z
x/2

Ncf 

Nas fsd 

0,85·fcd concrete in compression 
(840 mm/m) 
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14,2 = 0,55 < 1,0
26,0

, the condition is satisfied 

 
To allow rotations in the yielded sections, the reinforcement should be sufficiently 
ductile. The selected high yield reinforcing steel satisfies this criterion since the 
depth of the concrete slab is not too great.  
 
Since the design bending moment in the sagging region is less than the design 
bending moment for the simply supported slab, the verification of the sagging 
resistance moment is not necessary. 

5.3.2 Longitudinal shear resistance 

According to clause 9.7.3(6), EN 1994-1-1, where the composite slab is designed 
as continuous, it is permitted to use an equivalent isostatic span for the 
determination of the resistance. The span length should be taken as (Figure 
D3.18): 
 

0,9·L for internal spans 
0,8·L for external spans 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D3.18 Equivalent isostatic spans for determination of the resistance 
 
The design resistance against longitudinal shear is carried out as for the simply 
supported slab. From the simplified design partial interaction diagram shown in 
Figure D3.14, it is evident that the required condition is satisfied, that for each 
cross-section along the span L: 
 

 L1  L2  L3  L4

 L1,eff  L3,eff
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( )
( )

Ed

Rd

M x
M x

 1,0 

5.3.3 Check for vertical shear resistance 

End support 
 
The vertical shear resistance, Vv,Rd, is the same as the vertical shear resistance for 
the simply supported slab. Therefore, the vertical shear resistance is: 
 

, = 89,2v RdV  kN/m 
 
Check: 
 

, ,

,

Ed A r

V Rd

V
V

 1,0 

 
22,0 = 0,25 < 1,0
89,2

, the condition is satisfied 

 
Internal support 
 
According to 9.7.5, EN 1994-1-1, the vertical shear resistance, Vv,Rd, should be 
determined according to the method given in EN 1992-1-1. According to clause 
6.2.2, EN 1992-1-1, the design shear resistance Vv,Rd is calculated as: 
 

1/3
, , , 1= = [ · ·(100· · ) + · ] ·v Rd Rd c Rd c l ck cp w pV V C k f k b d , ,minv RdV  

 
The minimum value of Vv,Rd,min is: 
 

, ,min min 1= ( + · )· ·v Rd cp w pV k b d  
 
The minimum requirement for ,v RdV  is related to the fact that the member 
without reinforcement still has some shear resistance. 
 
Generally, the check is carried out as: 
 

,

Ed

v Rd

V
V

 1,0 
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According to clause 6.2.2(1), EN 1992-1-1, the values needed for calculation ,v RdV  
are: 
 

,
0,18 0,18= = = 0,12

1,5Rd c
c

C  

 
200= 1 +

p

k
d

 2,0 

 
= – –p s pld h e x  

 
= 160 – 20 – 16,5 = 123,5pd  mm 

 
200= 1 + = 2,27

123,5
k   adopted k = 2,0 

 

=
·
sl

l
w p

A
b d

 0,02 

 
The area of longitudinal reinforcement in the slab at the internal support is (Section 
5.3.1): 
 

= 452slA  mm2/m 
 
In accordance with Figure D3.15, the smallest width of the cross-section in the 
tensile area bw is calculated per metre width as: 
 

0
1000= · = ·114 = 760
150w

s

bb b
b

 mm/m 

 
The percentage of longitudinal reinforcement is: 
 

=
·
sl

l
w p

A
b d

 

 
452= = 0,005 < 0,02

760·123,5l  
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The design axial force is = 0EdN  and therefore = = 0Ed
cp

c

N
A

. 

 
1 = 0,15k , according to 6.2.2, EN 1992-1-1 

 
The design shear resistance Vv,Rd is: 
 

1/3
, , , 1= = [ · ·(100· · ) + · ] ·v Rd Rd c Rd c l ck cp w pV V C k f k b d  

 
1/3 –3

, = [0,12·2,0·(100·0,005·25) + 0,15·0] ·760·123,5·10v RdV  
 

, = 52,3v RdV  kN/m 
 
The minimum value is: 
 

, ,min min 1= ( + · )· ·v Rd cp w pV k b d  
 

3/2 1/2 3/2 1/2
min = 0,035· · = 0,035·2,0 ·25 = 0,49ckv k f  N/mm2 

 
–3

, ,min = (0,49 + 0,15·0)·760·123,5·10 = 46,0v RdV  kN/m < , = 52,3v RdV  kN/m 
 
Check: 
 

, ,

,

Ed B r

V Rd

V
V

 1,0 

 
29,9 = 0,57 < 1,0
52,3

, the condition is satisfied 

6. Serviceability limit state 

6.1 Control of cracking of concrete 

When the composite slab is designed as a series of simply supported spans, it only 
requires reinforcement for crack width limitation. 
 
According to clause 9.8.1(2), EN 1994-1-1, for propped construction the required 
cross-sectional area of reinforcement sA  is 0,4% of the area of concrete above the 
ribs: 
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0,4= ·1000·( – )
100s pA h h  

 
0,4= ·1000·(160 – 51) = 436
100sA  mm2/m 

 
The reinforcement bar is assumed to be  12/250 mm. Therefore, the cross-
sectional area of reinforcement is: 
 

212 · 1000= · = 452
4 250sA  mm2/m > 436 mm2/m 

 
The selected minimum amount of reinforcement could be insufficient to control 
cracking at the supports of continuous slabs for certain exposure classes. In such 
cases, the slab should be designed as continuous, and in hogging regions the crack 
widths should be estimated according to EN 1992-1-1. 

6.2 Limit of span/depth ratio of slab 

According to clause 9.8.2(4), EN 1994-1-1, calculation of the deflection of the 
composite slab can be omitted if the two conditions are satisfied. According to 
the first condition, the span/depth ratio of the slab should not exceed the limits 
given in EN 1992-1-1. These are: 
 

< 20L
d

 for a simply supported span 

< 26L
d

 for an external span of continuous slab 

< 30L
d

 for an internal span of continuous slab 

 
According to clause 9.8.2(6), EN 1994-1-1, the second condition is given as 
follows: 
 

the load causing an end slip of 0,5 mm in the tests on composite slab exceeds 
1,2 times the design service load. 

 
If the second condition is not satisfied, i.e. the end slip exceeds 0,5 mm at a load 
1,2 times the design service load, two options exist: 
 

end anchors should be provided, or 
deflections should be calculated including the effect of end slip. 
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According to clause 9.8.2(8), EN 1994-1-1, in cases where the behaviour of the 
shear connection between the profiled sheeting and the concrete is not known 
from tests, the tied-arch model may be used, see [34]. 

 
For the considered slab with L = 3600 mm and dp = 143 mm, the following 
span/depth ratio is obtained: 
 

3600= = 25 < 26
143

L
d

 for the external span of continuous slab 

 
3600= = 25 < 30
143

L
d

 for the internal span of continuous slab 

 
Therefore, calculation of the deflection is not necessary. However, the calculation 
is carried out for educational reasons. 

6.3 Calculation of deflections 

6.3.1 Construction stage deflection 

According to clause 9.6(2), EN 1994-1-1, the deflection, s, of the profiled sheeting 
due to its own weight and the weight of the wet concrete should not exceed the 
following limit: 
 

,max
1800= = = 10

180 180s
L  mm 

 
The premature local buckling of the profiled sheeting under the weight of the wet 
concrete and the construction loading is checked to prevent irreversible 
deformation. 
 
Maximum sagging bending moment in the serviceability limit state is: 
 

2 2= 0,078·0,13·1,8 + 0,094·3,95·1,8 = 1,24EdM  kNm/m 
 
Maximum compressive stress in the top flange of the profiled sheeting is: 
 

6

4

1,24·10= · = ·(51 – 17) = 68
62·10

Ed
com

p

M
z  N/mm2 

 
In accordance with clause 4.4, EN 1993-1-5, the plate slenderness, p , is 
calculated as: 
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= =
28,4· ·

y
p

cr

b
f t

k
 

 
235 235= = = 1,9

68com

 

 
According to Table 4.1, EN 1994-1-1, for the stress ratio  = 1, the buckling factor 
is k  = 4. 
 
Therefore, the plate slenderness, p , with the design thickness of the sheet t = 0,84 
mm (not including coatings) and b = br = 36 mm, is: 
 

36
0,84= = 0,397

28,4·1,9· 4p  

 
Since = 0,397 < 0,673p , the reduction factor is  = 1,0 and the cross-section is 
fully effective. 
 
The deflection, s, is: 
 

4
,1(2,65· + 3,4· )·

=
384· ·

p c
s

p

g g L
E

 

 
The deflection, s, is: 
 

4

4

(2,65·0,13 + 3,4·3,95)·1800= = 2,9
384·210000·62·10s  mm 

 
s = 2,9 mm < s,max = 15,5 mm 

 
The deflection due to the self-weight of the profiled sheeting and the weight of the 
wet concrete meets the criterion L/180. 
 
Since the deflection s  is less than 10% of the slab depth, s = 2,9 mm < 0,10·h 
= 0,1·160 = 16 mm, according to clause 9.3.2(2), EN 1994-1-1, the ponding 
effects can be neglected at the construction stage. 
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The conditions for the serviceability limit state are satisfied, and the profiled steel 
sheeting can be used at the construction stage. 

6.3.2 Composite stage deflection 

To calculate the deflection at the composite stage, the slab is considered as 
continuous over three spans. According to clause 9.8.2(5), EN 1994-1-1, the 
following approximations can be applied: 
 

The second moment of area can be taken as the average of the values for the 
cracked and uncracked sections. 
An average value of the modular ratio, n, for both short-term and long-term 
effects, can be used: 

 
210000= = = = 10,2
21' ·31000·( + )
32 3

a a

cmcm
cm

E E
n

EE E
 

 
Elastic analysis is used to calculate the deflection of the slab. 

 
a) The second moment of area for the cracked section, Icc, for slab width b is 

calculated in accordance with Figure D3.19. The longitudinal reinforcement is 
not taken into account. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure D3.19 Second moment of area calculation for cracked cross-section, Icc  
 
The second moment of area for the cracked section and the slab width b is 
calculated as: 
 

3
2·

= + ·( – ) +
3·

c
cc p p c p

b x
I A d x I

n
 

 

b'm

bb

bs

b0 br 

dp 

e 

h
hc 

hp 

Compression
xc

Tension

Cracked 
concrete 

ENA 

ENA – elastic neutral axis 

hp/2

Steel sheeting 
centroidal axis 
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The position of the elastic neutral axis relative to the upper side of the slab is 
obtained as: 
 

· 2· ··
= = ( 1 + – 1)

·
p pi i

c
i p

n A b dA z
x

A b n A
 

 
10,2·1562 2·1000·143= ( 1 + – 1) = 53,4

1000 10,2·1562cx  mm 

 
The second moment of area for the cracked section is: 
 

3
2 4 41000·53,4= +1562·(143 – 53,4) + 62·10 = 1814·10

3·10,2ccI  mm4/m 

 
b) The second moment of area for the uncracked section, Icu, for slab width b is 

calculated in accordance with Figure D3.20. The longitudinal reinforcement is 
not taken into account. 

 
 
 
 
 
 
 
 
 
 
 
Figure D3.20 Second moment of area calculation for uncracked cross-section, Icu  

 
The second moment of area for the uncracked section and the slab width b is 
calculated as: 
 

33
2 2

2

· ·· ·
= + ·( – ) + + ·( – – ) +

12· 2 12· 2

+ ·( – ) +

m p m p pc c c
cu u u

p p u p

b h b h hb h b h h
I x h x

n n n n

A d x I
 

 
where: 
 

b'm

bb

bs

b0 br 

dp 

e 

h
hc 

hp 

Compression
xu

Tension

Uncracked 
concrete 

ENA 

ENA – elastic neutral axis 

hp/2

Steel sheeting 
centroidal axis 
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2

· + · ·( – ) + · ·
2 2=

· + · + ·

pc
m p p p

u
c m p p

hh
b b h h n A d

x
b h b h n A

 

 
In accordance with Figure D3.20, the value of bm is: 
 

0( – 2· ) + (138 – 2·0,88) +114' = = = 125,1
2 2

b
m

b t b
b  mm 

 
1000= · ' = ·125,1 = 834
150m m

s

bb b
b

 mm/m 

 
The position of the elastic neutral axis relative to the upper side of the slab is: 
 

2109 511000· + 834·51·(160 – ) +10,2·1562·143
2 2= = 83,2
1000·109 + 834·51 +10,2·1562ux  mm 

 
The second moment of area for the uncracked section is: 
 

3 3
2

2 2 4

1000·109 1000·109 109 834·51= + ·(83,2 – ) + +
12·10,2 10,2 2 12·10,2
834·51 51+ ·(160 – 83,2 – ) +1562·(143 – 83,2) + 62·10
10,2 2

cuI
 

 
4= 3747·10cuI  mm4/m 

 
The mean value of ccI  and cuI is: 
 

4 4
4+ 1814·10 + 3747·10= = = 2781·10

2 2
cc cu

c

I I
I  mm4/m 

 
Remark: 
 
The longitudinal reinforcement was taken into account for the calculation of the 
design resistance moment at the internal support. Therefore, the second moment 
of area for both uncracked and cracked sections is calculated taking into account 
the longitudinal reinforcement. 
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c) The second moment of area for the cracked section, Icc, for slab width b is 
calculated in accordance with Figure D3.21. The longitudinal reinforcement is 
taken into account. 

 
 
 
 
 
 
 
 
 
 
 

Figure D3.21 Second moment of area calculation for cracked cross-section, Icc 
 
The second moment of area for the cracked section and the slab width b is 
calculated as: 
 

3
2 2·

= + ·( – ) + + ·( – – )
3·

c
bc p p c p s s c

b x
I A d x I A h e x

n
 

 
The position of the elastic neutral axis relative to the upper side of the slab is 
obtained by the expression: 
 

2·( + ) ·( + ) 2· ·[ · + ·( – )]
= – + [ ] +p s p s p p s s

c

n A A n A A n A d A h e
x

b b b
 

 

2

10,2·(1562 +188)= – +
1000

10,2·(1562 +188) 2·10,2·[1562·143 +188·(160 – 30)]+ [ ] +
1000 1000

cx
 

 
= 55,6cx  mm 

 
The second moment of area for the cracked section is: 
 

3
2 4 21000·55,6= +1562·(143 – 55,6) + 62·10 +188·(160 – 30 – 55,6)

3·10,2ccI  

 
4= 1921·10ccI  mm4/m 

es 

b'm

bb

bs

b0 br 

dp 

e 

h
hc 

hp 

Compression
xc

Tension

Cracked 
concrete 

ENA 

ENA – elastic neutral axis 

ds 

Steel sheeting 
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d) The second moment of area for the uncracked section, Icu, for the slab width b is 
calculated in accordance with Figure D3.22. The longitudinal reinforcement is 
taken into account. 

 
 
 
 
 
 
 
 
 
 
Figure D3.22 Second moment of area calculation for uncracked cross-section, Icu 

 
The second moment of area for the uncracked section and the slab width b is 
calculated as: 
 

33
2 2

2 2

· ·· ·
= + ·( – ) + + ·( – – ) +

12· 2 12· 2

+ ·( – ) + + ·( – – )

m p m p pc c c
cu u u

p p u p s s u

b h b h hb h b h h
I x h x

n n n n

A d x I A h e x
 

 
where: 
 

2

· + · ·( – ) + · · + · ·( – )
2 2=

· + · + · + ·

pc
m p p p s s

u
c m p p s

hh
b b h h n A d n A h e

x
b h b h n A n A

 

 
In accordance with Figure D3.22, the value of bm is: 
 

0( – 2· ) + (138 – 2·0,88) +114' = = = 125,1
2 2

b
m

b t b
b  mm 

 
1000= · ' = ·125,1 = 834
150m m

s

bb b
b

 mm/m 

 
The position of the elastic neutral axis relative to the upper side of the slab is: 
 

2109 511000· + 834·51·(160 – ) +10,2·1562·143 +10,2·188·(160 – 30)
2 2=

1000·109 + 834·51 +10,2·1562 +10,2·188ux  

es 

b'm

bb

bs

b0 br 

dp 

e 

h
hc 

hp 

Compression

xu

Tension

Uncracked 
concrete 

ENA 

ENA – elastic neutral axis 

ds 

Steel sheeting 
centroidal axis 
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= 83,8ux  mm 
 
The second moment of area for the uncracked section is: 
 

3 3
2

2 2 4

2

1000·109 1000·109 109 834·51= + ·(83,8 – ) + +
12·10,2 10,2 2 12·10,2
834·51 51+ ·(160 – 83,8 – ) +1562·(143 – 83,8) + 62·10 +
10,2 2

+188·(160 – 30 – 83,8)

cuI

 

 
4= 3787·10cuI  mm4/m 

 
The mean value of ccI  and cuI is: 
 

4 4
4+ 1921·10 + 3787·10= = = 2854·10

2 2
cc cu

c
I I

I  mm4/m 

 
Remark: 
 
The values of the second moment of area are slightly higher taking into account 
the longitudinal reinforcement. The calculation of deflection is carried out with 
the mean value of the second moment of area taking into account the 
contribution of the longitudinal reinforcement. 

 
Calculation of deflections 
 

Deflection due to permanent action – weight of floor finishes ,3kg = 1,20 kN/m2 
 
 
 
 
 
 
 
 

Figure D3.23 Static system and load for calculation of deflection at 
 the composite stage 

 
The deflection is: 
 

gk,3 

L = 3,6 m L = 3,6 m L = 3,6 m 
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4
,3

1

0,0068· ·
=

·
k

c

g L
E

 

 
4

1 4

0,0068·1,2·3600= = 0,23
210000·2854·10

 mm 

 
Deflection due to the frequent value of variable action and the selected 
combination factor is 1 = 0,7 

 
The design load is calculated for the frequent combination: 
 

1 ,2= · kq q  
 
 
 
 
 
 
 
 

Figure D3.24 Static system and load for calculation of deflection at 
 the composite stage, for the worst load case 

 
The deflection is: 
 

4
1 ,2

2

0,0099· · ·
=

·
k

c

q L
E I

 

 
4

2 4

0,0099·0,7·5,0·3600= = 0,97
210000·2854·10

 mm 

 
Self-weight of the slab gk, removal of the props 

 
 
 
 
 
 
 
 

Figure D3.25 Self-weight of slab, removal of the props 

L = 3,6 m L = 3,6 m L = 3,6 m 

1qk,2 1qk,2 

gk,2 

L = 3,6 m L = 3,6 m L = 3,6 m 

G1' G1' G1' 
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The support reactions 1'G  due to the self-weight of the slab are applied as point 
loads on the system: 
 

1 ,2
3,6' = · = 3,93· = 7,07

2 2k
LG g  kN/m 

 
The deflection is: 
 

3
1

3
0,01146· '·

=
· c

G L
E I

 

 
3

3 4

0,01146·7070·3600= = 0,63
210000·2854·10

 mm 

 
Remark: 
 
The limit of the deflection is adopted according to clause 7.4.1(4), EN 1992-1-1. 
The recommended limitation is: 
 

total 250
L  

 
The total deflection is: 
 

1 2 3= + + = 0,23 + 0,97 + 0,63 = 1,83total  mm  3600= = 14,4
250 250

L  mm 

 
The total deflection meets the criterion L/250. 

7. Commentary 

Regarding the design of the continuous composite slab, the main disadvantage is 
the much more complex procedure compared with the design of the simply 
supported slabs. However, there are the corresponding advantages: 
 

The higher span/depth ratios can be applied for the given limit of deflection. 
It is possible to control the cracking of concrete at the internal support so that 
a brittle floor finish can be applied. 
Regarding the robustness of the structure, the continuity can have a positive 
effect. 

 
According to clause 9.7.3(10), EN 1994-1-1, the design resistance against 
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longitudinal shear can be carried out by the partial connection method taking 
into account the additional bottom reinforcement. But, it does not specify a 
method. Therefore, in this example, the following advantages of the partial 
connection method are illustrated: 
 

It may be applied to composite slabs with end anchorages. 
It may be modified to include additional reinforcing bars, which increase the 
resistance of the composite slabs. 

 
Very often, the reinforcing bars are placed in the ribs of the slab due to 
improving its fire resistance. In the case of the calculation of the resistance of 
composite slab in fire conditions, the profiled steel sheeting offers little tensile 
resistance. Therefore, the reinforcement in the slab becomes the principal 
reinforcement. In accordance with EN 1994-1-2, the reinforcing bars are placed 
in the ribs of the slab. However, the corresponding tests have shown that 
adequate performance can also be achieved using mesh reinforcement without 
bottom bars, provided that the slab is continuous over at least one support. 
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D4 Two-span composite slab unpropped at the 
construction stage – commentaries on EN 1994-1-1 

1. Purpose of example 

The composite slab designed in this example is cast in situ on the profiled steel 
sheeting with a profile height of 75 mm and 0,9 mm thick, creating an overall slab 
thickness of 130 mm. Details of the geometry of this composite slab are shown in 
Figure D4.1. The spacing of the supporting composite beams is 2,75 m. The width 
of top flange of these beams is 190 mm. 
 
The shear connection is provided by embossments in the profiled sheeting in 
accordance with clause 9.1.2.1(a), EN 1994-1-1. Some of the design data are taken 
from the manufacturer’s publication. 
 
Lightweight concrete is used in this composite slab. In the Eurocodes lightweight 
concrete is referred to as lightweight aggregate concrete. It is commonly used for 
the obvious advantage of 25% weight saving. Lightweight concrete also has better 
fire insulating qualities than normal weight concrete. 

2. Static system, cross-section and actions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D4.1 Static system 

L = 2,75 m 

Section 1-1 

L = 2,75 m

9,0 m

L = 2,75 m 

1

Secondary composite beam 

1 

L = 2,75 m
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Figure D4.2 Cross-sections: a) composite slab, b) profiled sheeting 
 
The shear connection is provided by embossments in the profiled sheeting in 
accordance with clause 9.1.2.1(a), EN 1994-1-1. According to clause 1.6, EN 
1994-1-1, the overall depth of the profiled steel sheeting excluding embossments is 
denoted as hp and the thickness of the concrete above the main flat surface of the 
top of the ribs of the sheeting is denoted as hc. The profiled sheet and slab 
dimensions, in accordance with Figure 9.2, EN 1994-1-1, are shown in Figure 
D4.3. 
 
 
 
 
 
 
 
 
 

Figure D4.3 Sheet and slab dimensions (open trough profile) shown in  
 Figure 9.2, EN 1994-1-1 

 
In accordance with Figure D4.3 the dimensions of selected profiled steel sheeting 
have the following values: 
 
hc = 75 mm, concrete above “main flat surface” of the profiled sheeting, 
hp = 70 mm, “overall depth” of the profiled steel sheeting. 
 
The thickness of the composite slab is 130 mm. This thickness is less than hc + hp. 
In such cases, the thickness of the slab, hc = 75 mm, is appropriate for bending of 

200  8/200

ENA  elastic neutral axis 

dp = 99,7
e=30,3 hp=70

hc=75 
h=130 mm a) 

b) 

bs = 300 

138 

b0 = 162 

13

e=30,3

15
br = 112 tp=0,9 

ENA bb=136

hp/2 hp=70 

b1 = 164 

bs

bb

b0 br

hp 

hc h 

½ hp 



Example D4 767 
 

 

the composite slab. For the calculation of the weight of the concrete slab, the depth 
of the profiled sheeting, hp = 55 mm, is appropriate. However, for bending of the 
composite beam supporting the profiled sheeting and for in-plane shear in the slab, 
the relevant thickness is (hc  15) = (75  15) = 60 mm, see Figure D4.2. 
 
Actions 
 
a) Permanent action 
 
Remark: 
 
According to Table 11.1, clause 11.3, EN 1992-1-1, the density of the 
lightweight aggregate concrete of density class 1.8 and strength class LC25/28 is 
18,5 kN/m3. According to EN 1991-1-1 the density is increased by 1 kN/m3 for 
normal percentage reinforcement, and increased for the wet concrete by another 
1 kN/m3. 
 
Also, in Table 11.1, EN 1992-1-1, the oven-dry density is  = 1800 kg/m3. This 
value is used for estimation of the mean value of the tensile strength, flctm, and of 
the secant modulus, Elcm. 
 
According to clause 11.3.1, EN 1992-1-1, the coefficient 1 is: 
 

1 = 0,4 + 0,6· / 2200 = 0,4 + 0,6·1800 / 2200 = 0,891  
 
Thus, according to Table 11.3.1, EN 1992-1-1, the mean tensile strength is: 
 

1= · = 0,891·2,6 = 2,32lctm ctmf f  N/mm2 
 
According to clause 11.3.2, EN 1992-1-1, the mean value of the secant modulus 
is: 
 

2= · = ·( )
2200lcm cm E cmE E E  

 
218= 31000·( ) = 20752

22lcmE  N/mm2 

 
Therefore, the modular ratio for short-term loading is: 
 

0
210= = = 10,1
20,7

a

lcm

E
n

E
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Concrete slab area per m width, with the adopted depth of the profiled sheeting, hp 
= 55 mm, is: 
 

1 +1000= 1000· – ( · · )
2

r
c p

s

b b
A h h

b
 

 
1000 164 +112= 1000·130 – ( · ·55) = 104700
300 2cA  mm2 = 1050  cm2 

 
- concrete slab and reinforcement (wet concrete) 
 
 ·20,5 = 0,105·20,5 = 2,15cA  kN/m2 
 
- concrete slab and reinforcement (dry concrete) 
 
 ·19,5 = 0,105·19,5 = 2,05cA  kN/m2 
 
Construction stage 
 
- concrete slab ,1 =cg 2,15 kN/m2 
 
- profiled steel sheeting =pg 0,10 kN/m2 
 
Total ,1 ,1= + =k c pg g g  2,25 kN/m2 
 
Composite stage 
 
- concrete slab ,2 =cg  2,05 kN/m2 
 
- profiled steel sheeting =pg  0,10 kN/m2 
 
Total ,2 ,2= + =k c pg g g  2,15 kN/m2 
 
Floor finishes ,3kg = 1,00 kN/m2 
 
b) Variable action 
 
Construction stage 
 
- construction loads ,1kq = 1,00 kN/m2 
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Composite stage 
 
- imposed floor load and movable partitions ,2kq = 7,0 kN/m2 
 

Remark: 
 
Clause 9.3.2(1), EN 1994-1-1, refers to clause 4.11, EN 1991-1-6, for 
construction loads. According to clause 4.11.2(1), EN 1991-1-6, the actions from 
personnel and equipment, qk, are given as “10% of the self-weight of the 
concrete, but not less than 0,75 and not more than 1,5 kN/m2”. Also, according 
to clause 4.11, EN 1991-1-6, the load of 1,50 kN/m2 acts on the working area of 
3,0 × 3,0 m and outside the working area the load is 0,75 kN/m2. 
 
In this example, the construction load is taken as 1,0 kN/m2. This value allows 
for construction operatives, the heaping of concrete during placing, hand tools 
etc. 

3. Properties of materials 

Concrete strength class: LC 25/28 = 25ckf  N/mm2 

 25= = = 16,7
1,5

ck
cd

c

f
f  N/mm2 

 0,85 = 0,85·16,7 = 14,2cdf  N/mm2 
 = 20752lcmE  N/mm2 
 = 2,32lcmf  N/mm2 
 
Reinforcement: = 500skf  N/mm2 

 500= = = 435
1,15

sk
sd

s

f
f  N/mm2 

 
Profiled steel sheeting: = 0,9pt  mm 

 = 70ph  mm 

 = = 1178p peA A  mm2/m 

 4= 54,8·10pI  mm4/m 

 = = 210000p aE E  N/mm2 

 , = 350yp kf  N/mm2 

 ,
,

350= = = 350
1,0

yp k
yp d

M

f
f  N/mm2 
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Plastic resistance moment (provided by manufacturer): , = 6,18pa RkM  kNm/m 

Resistance moment (provided by manufacturer): = 4,83RkM  kNm/m (sagging) 
 = 4,75RkM  kNm/m (hogging) 
Empirical factors (provided by manufacturer): =184m  N/mm2 
 = 0,0530k  N/mm2 
Resistance to horizontal shear (provided by manufacturer): , = 0,180u Rk  N/mm2 

 
For the profiled steel sheeting, it is necessary to emphasize the following: 
 

The nominal thickness, including a zinc coating, is 0,9 mm and 0,86 without a 
zinc coating. 
The cross-sectional area of the profiled sheeting is Ap = 1178 mm2/m. 
The self-weight of the profiled sheeting is 0,10 kN/m2.  
The second moment of area is Iy,p = 54,8 104 mm4/m. 
The position of the plastic neutral axis above the bottom of the section is ep = 33 
mm, Figure 9.6, EN 1994-1-1. 
The position of the centroid above the bottom of the section is e = 30,3 mm, 
Figure 9.6, EN 1994-1-1. 
The modulus of elasticity Ea = 210 kN/mm2, the yield strength fyk,p = 350 
N/mm2 and the partial factor M,p = 1,0. 
The characteristic value of the plastic resistance moment of the effective cross-
section in hogging and sagging regions is Mpa = 6,18 kNm/m. It is assumed that 
in this value the effect of embossments is taken into account, clause 9.5(1), EN 
1994-1-1. 

4. Structural details of composite slab 

4.1 Slab thickness and reinforcement 

The composite slab should satisfy the conditions given in clause 9.2, EN 1994-1-1. 
 
a) The slab acts compositely with a beam and the following conditions should be 

satisfied: 
 
- the overall depth of slab h   90 mm, =130h  mm (satisfied), 
- the thickness of concrete above the main flat surface of the top of the ribs of 

sheeting ch  50 mm, = 75ch  mm (satisfied), 

- the ratio of the width of the sheet rib to the rib spacing r

s

b
b

0,6 ,  

112= = 0,37
300

r

s

b
b

 (satisfied). 
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b) The minimum amount of reinforcement in both directions should not be less 
than 80 mm2/m. For unpropped construction, the area of reinforcement, 
according to clause 9.8.1(2), EN 1994-1-1, is: 

 
,min = 0,002·75·1000 = 150sA  mm2/m    = 80sA  mm2/m 

 
c) Spacing of reinforcement bars 
 

< 2· = 2·130 = 260e h  or < 350 mm 

4.2 Largest nominal aggregate size 

dg  0,4 · hc 0,4 · 75 = 30,0 mm 
dg  b0/3 162/3=54,0 mm 
dg  31,5 mm = 31,5 mm 
 
The minimum adopted value is dg = 30,0 mm. 

4.3 Minimum value for nominal thickness of steel sheet 

In accordance with clause 3.5(2), EN 1994-1-1, the recommended value for the 
nominal thickness of steel sheet is 0,70 mm. The thickness of the selected profiled 
steel sheeting is 0,90 mm. The condition is satisfied. 

4.4 Composite slab bearing requirements 

According to clause 9.2.3(2), EN 1994-1-1, the recommended bearing lengths and 
support details differ depending upon the support material and they are different for 
internal supports and end supports, see Figure D4.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D4.4 Minimum bearing lengths 
 

lbc

lbc

lbs lbs

lbs

lbs
lbs

a) b) c)

Bearing on lbs (mm) lbc (mm) 
steel or concrete 50 75 
other materials 70 100 
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For composite slabs bearing on steel or concrete, the minimum bearing lengths are: 
lbc = 75 mm and lbs = 50 mm. The composite slab is supported by steel beams with 
the top flange width of 190 mm. Therefore, the condition for the bearing length is 
satisfied. 

5. Ultimate limit state 

5.1 Construction stage 

At the construction stage, it is necessary to carry out verifications of profiled 
steel sheeting for the ultimate and serviceability limit states in accordance with 
EN 1993-1-3. To avoid brittle behaviour of the composite slabs, various 
mechanical means such as embossments or indentations are used, see clause 
9.5(1), EN 1994-1-1. Clause 9.5(1), EN 1994-1-1, refers to the loss of effective 
cross-section caused by deep deformations of the sheeting. The loss of effective 
cross-section and the effects of local buckling are estimated by means of tests, 
and design recommendations are provided by manufacturers. 

 
For simplicity, the profiled steel sheeting is considered as a simply supported span. 
The static system and the design load for the construction stage are shown in 
Figure D4.5. 
 
 
 
 
 
 

Figure D4.5 Static system and design load for the construction stage 
 
The design load for ultimate limit state is: 
 

,1 ,1= · + ·d G k Q ke g q  
 

= 1,35·2,25 +1,5·1,0 = 4,54de  kN/m2 
 
Therefore, the design values of bending moment and shear force are: 
 

2 2· 4,54·2,75= = = 4,29
8 8

d
Ed

e L
M  kNm/m 

 
· 4,54·2,75= = = 6,24
2 2

d
Ed

e L
V  kN/m 

 

bsheet = 1000 mm 

ed

L = 2,75 m
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With the partial factor M,0 = 1,0, the design resistance moment is: 
 

,0

4,83= =
1,0

Rk
Rd

M

M
M kNm/m 

 
Check for bending: 
 

Ed

Rd

M
M

 1,0 

 
4,29 = 0,89 < 1,0
4,83

, the condition is satisfied 

 
The shear resistance of the profiled sheeting is calculated according to clause 6.1.5, 
EN 1993-1-3. 
 
The design shear resistance of a single web, VRd, is determined as (6.8), EN 1993-
1-3, with dimensions shown in Figure D4.6: 
 

,

0

1= · · ·
sin 3

yk pw
Rd

M

fh
V t  

 
 
 
 
 
 
 

Figure D4.6 Dimensions of steel sheeting profile 
 
In this case, there are 6,7 webs per metre with of sheeting. The depth of the 
profiled sheeting is 55 mm, Figure D4.7. 
 
 
 
 
 
 
 
 
 

Figure D4.7 Cross-section with more webs 

112 

b0 = 162 

26

15
br = 112 tp=0,9 

bb=136
hp=70 

26138

VRd,1 VRd,1 VRd,1 

hw h 
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The design shear resistance of a single web is. 
 

,1
55 1 0,350= ·0,9· · = 11,1

sin64,7º 1,03RdV  kN 

 
For 6,7 webs per metre width of sheeting, the design shear resistance is: 
 

,1= 6,7· = 6,7·11,1 = 74,4Rd RdV V  kN/m 
 
Check: 
 

Ed

Rd

V
V

 1,0 

 
6,24 = 0,08 < 1,0
74,4

 (satisfied) 

 
Remark: 
 
The slenderness of each web, w, is: 
 

sin 55 sin64,7º= = = 68
0,9

p
w

h
t

 

 
This value is close to the limit value at which buckling must be taken into 
account. The design shear force, VEd = 6,24 kN/m, is far below the design shear 
resistance, VRd = 74,4 kN/m. This is usual for the construction stage and further 
calculation is not necessary. 
 
In accordance with EN 1993-1-3, the following checks should be carried out: 
 
- local resistance according to clause 6.1.7.3, EN 1993-1-3, 
- combined bending and shear according to clause 6.1.10, EN 1993-1-3, 
- combined web crushing and bending moment according to clause 6.1.11, EN 

1993-1-3.  

5.2 Composite stage 

The continuous composite slab is designed as a series of simply supported spans, 
in accordance with clause 9.4.2(5), EN 1994-1-1, provided that the criterion for 
minimum reinforcement above internal supports of composite slab is satisfied, 
clause 9.8.1, EN 1994-1-1. 
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The static system and the design load for the composite stage are shown in Figure 
D4.8. 
 
 
 
 
 
 

Figure D4.8 Static system and design load for the composite stage 
 
Design load for ultimate limit state is: 
 

,2 ,3 ,1= ·( + ) + ·d G k k Q ke g g q  
 

= 1,35·(2,15 +1,00) +1,5·7,0 = 14,8de  kN/m2 
 
Therefore, the design values of bending moment and shear force are: 
 

2 2· 14,8·2,75= = = 14,0
8 8

d
Ed

e L
M  kNm 

 
· 14,8·2,75= = = 20,4
2 2

d
Ed

e L
V  kN/m 

5.2.1 Plastic resistance moment in sagging region 

It is assumed that the neutral axis lies above the sheeting. The design compressive 
force in concrete, Nc,f, is: 
 

, = 0,85· · ·c f cd cN f h b  =1000b  mm 
 

–3
, = 0,85·16,7·75·1000·10 = 1065c fN  kN/m 

 
The design tensile force in the steel sheeting per metre width of sheeting is: 
 

,= ·p yp d peN f A  
 

–3= 350·1178·10 = 412pN  kN/m 
 

bslab = 1000 mm 

ed

L = 2,75 m



776 D     Composite slabs 
 

 

Since Np < Nc,f, the plastic neutral axis lies within the concrete. The design 
resistance moment in sagging region is calculated according to clause 9.7.2(5), EN 
1994-1-1, see Figure D4.9. 
 
 
 
 
 
 
 

Figure D4.9 Stress distribution for sagging bending when the neutral axis is  
 above the steel sheeting 

 
The cross-section of the considered composite slab and the distribution of stresses 
are shown in Figure D4.10. 
 
 
 
 
 
 
 

Figure D4.10 Cross-section of the composite slab and the stress blocks for  
 sagging bending 

 
The position of the plastic neutral axis of the composite section xpl is: 
 

,·
=

·0,85·
p yp d

pl
cd

A f
x

b f
 b = 1000 slab width 

 
1178·350= = 29

0,85·16,7·1000plx  mm < = 75ch mm 

 
For full shear connection, the design plastic resistance moment in sagging region 
Mpl,Rd is: 
 

, ,= min( , )·pl Rd c f pM N N z  
 

, = ·( – )
2
pl

pl Rd p p

x
M N d  

 

Centroidal axis of 
profiled steel sheeting

dp 
xpl

0,85·fcd Nc, f 

 fyp,d 

Np

z Mpl, Rd 

xpl

0,85 fcd 

dp = 99,7 
e = 30,3 hp=70

hc=75 
h=130 

200
Nc,f

Np

Mpl,Rd z

 fyp,d 
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–3
,

29= 412·(99,7 – )·10 = 35,1
2pl RdM  kNm/m 

 
Check: 
 

,

Ed

pl Rd

M
M

 1,0 

 
14,0 = 0,40 < 1,0
35,1

, the condition is satisfied 

 
The design plastic resistance moment in sagging region for full shear connection is 
adequate. 
 
Remark: 
 
The design bending moment, MEd = 14,0 kNm/m, is well below the design 
plastic resistance moment, Mpl,Rd = 35,1 kNm/m. Accordingly, there is no need to 
consider the continuity of the composite slab or the resistance to hogging 
bending. 
 
If it is necessary to consider the continuity of the composite slab, the provisions 
from clause 9.4.2, EN 1994-1-1, are applied for global analysis and from clause 
9.7.2(4), EN 1994-1-1, for the resistance to hogging bending. 

5.2.2 Longitudinal shear resistance 

5.2.2.1 Longitudinal shear resistance – m-k method 

It is assumed that there is no end anchorage. Therefore, the longitudinal shear 
resistance is calculated according to clause 9.7.3, EN 1994-1-1. The design 
resistance of the composite slab against longitudinal shear is carried out by the 
semi-empirical method called the m-k method. According to clause 9.7.3(4), EN 
1994-1-1, the maximum design vertical shear VEd for a width of slab b is limited 
due to the design longitudinal shear resistance Vl,Rd given as:  
 

,

· ·
= ·( + )

·
p p

l Rd
vs s

b d m A
V k

b L
 

 
where: 
 
b, dp are in mm, 
Ap is the nominal cross-section of the sheeting in mm2, 
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m, k are design values for the empirical factors in N/mm2 obtained from slab 
tests meeting the basic requirements of the m-k method, 

Ls is the shear span in mm, defined in clause 9.7.3(5), EN 1994-1-1, 
vs is the partial factor for the ultimate limit state; the recommended value is 

1,25. 
 
If the m-k method is used it should be verified that the maximum design vertical 
shear VEd does not exceed the design shear resistance Vl,Rd: 
 

,

Ed

l Rd

V
V

 1,0 

 
It is assumed that tests have shown that the longitudinal shear behaviour may be 
considered as ductile in accordance with clause 9.7.3(3), EN 1994-1-1. Design 
values of empirical factors m and k are based on slab tests and are provided by the 
manufacturer of the sheeting: 
 

= 184m  N/mm2 
 

= 0,0530k  N/mm2 
 
According to clause 9.7.3(5), EN 1994-1-1, the shear span sL  for the uniform load 
applied to the entire span length is: 
 

2750= = = 688
4 4s
LL  mm 

 
The design longitudinal shear resistance Vl,Rd is: 
 

,

· ·
= ·( + )

·
p p

l Rd
vs s

b d m A
V k

b L
 

 
–3

,
1000·99,7 184·1178= ·( + 0,0530)·10 = 29,4

1,25 1000·688l RdV kN/m 

 
This value, Vl,Rd = 29,4 kN/m, must not be exceeded by the vertical shear in the 
slab. 
 
Check: 
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,

Ed

l Rd

V
V

 1,0 

 
20,4 = 0,69 < 1,0
29,4

, the condition is satisfied 

 
Remark: 
 
For the two-span slab, the design shear force is a little higher at the internal 
support. However, it is evident that the design shear force does not exceed the 
design longitudinal shear resistance, Vl,Rd = 29,4 kN/m. 

5.2.2.2 Longitudinal shear resistance  partial connection method 

For composite slabs with ductile behaviour, the partial connection method can be 
used for the verification of the resistance to longitudinal shear, clause 9.7.3(8), 
EN 1994-1-1. 
 
The shear span required for full shear connection is determined as: 
 

,= · ·c u Rd xN b L ,c fN  
 
The distance to the nearest support, LX, required for full shear connection may be 
determined as: 
 

,

, ,

·
= =

· ·
c f p yd

x
u Rd u Rd

N A f
L

b b
 

 
Based on tests of composite slabs with profiled sheeting of thickness t = 0,9 mm, 
the following design shear strength is obtained: 
 

,
,

0,180= = = 0,144
1,25

u Rk
u Rd

vs

 N/mm2 

 
In clause 9.7.3(8), EN1994-1-1, the design compressive force in the slab is 
determined by: 
 

,= · ·c u Rd xN b L ,c fN  
 
Accordingly, the design compressive force in the slab at distance x(m) from an end 
support is: 
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,= · ·c u RdN b x  
 

= 0,144·1000· = 144·cN x x  kN/m 
 
According to Figure D4.10, the design compressive force in the slab for full shear 
connection, Nc,f, is equal to the design tensile force in the steel sheeting. Therefore, 
the design compressive force in the slab for full shear connection is: 
 
Nc,f = Ap·fyp,d = 1178·0,35 = 412 kN/m 
 
The distance to the nearest support, LX, required for full shear, is: 
 

,

, ,

·
= =

· ·
c f p yd

x
u Rd u Rd

N A f
L

b b
 

 
1178·350= = 2863

1000·0,144xL  mm > L/2 = 2750/2 = 1375 mm 

 
The length of shear span needed for full interaction Lsf = 2863 mm exceeds L/2 = 
1375 mm, so full interaction is not achieved in a span of this length. 
 

According to clause 9.7.3(7), EN 1994-1-1, the verification is carried out using 
the simplified partial interaction diagram, and for any cross-section along the 
span it has to be shown that the corresponding design bending moment, MEd, 
does not exceed the design resistance moment MRd. This criterion can be written 
as: 
 

( )
( )

Ed

Rd

M x
M x

 1,0 

 
For full shear connection, the position of the plastic neutral axis of the composite 
section xpl is 29,0 mm, see Section 5.2.1. This value of xpl gives a slightly 
conservative result for the lever arm z. But, for simplicity, this value is used in this 
example. 
 
The lever arm z is calculated as (9.9), EN 1994-1-1: 
 

c
pl p p

pe yp,d

= – 0,5· – + ( – )·
N

z h x e e e
A f

 

 
With h = 130 mm, ep = 33 mm and e = 30,3 mm, the lever arm z is: 
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144·= 130 – 0,5·29 – 33 + (33 – 30,3)·
412

xz  

 
= 82,5 + 0,94·z x  mm 

 
The reduced resistance moment of the composite slab is calculated as (9.6), EN 
1994-1-1: 
 

,

,

= 1,25· ·(1 – )
·
c f

pr pa
pe yp d

N
M M

A f paM  

 
In the above expression, Nc,f is replaced by Nc, and Mpa is the design value of the 
plastic resistance moment of the effective cross-section in hogging and sagging 
regions is, Mpa,Rd = 6,18 kNm/m. 
 
The reduced resistance moment of the composite slab is: 
 

144·= 1,25·6,18·(1 – )
412pr

xM 6,18  

 
= 7,725 – 2,7·prM x 6,18  

 
so 
 

x 7,725 – 6,18 = 0,572
2,7

m 

 
According to Figure 9.6, EN 1994-1-1, the plastic resistance moment is given by: 
 

,= · +Rd c f prM N z M  
 

= 0,144· ·(82,5 + 0,94· ) + (7,725 – 2,7· )RdM x x x  
 

2= 7,725 + 9,18· + 0,135·RdM x x    for region 0,572 m  x  1,375 m 
 
For x < 0,572 m, the plastic resistance moment is: 
 

,= · +Rd c f prM N z M  
 

= 0,144· ·(82,5 + 0,94· ) + 6,18RdM x x  



782 D     Composite slabs 
 

 

2= 6,18 +11,88· + 0,135·RdM x x  
 
The longitudinal shear resistance of the slab, expressed by its design resistance 
moment, MRd(x), found from the design shear strength, u,Rd, and the design bending 
moment from applied loads, MEd(x), are plotted in Figure D4.11. The curve MRd(x), 
denoted as AB, lies above the curve MEd(x), denoted as 0C, for each cross-section 
along the span. Thus, there is sufficient resistance to longitudinal shear. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D4.11 Design partial-interaction diagram 
 
When the m-k method is used it should be verified that the maximum design 
vertical shear VEd does not exceed the design shear resistance Vl,Rd. Based on this 
criterion it is possible to compare the partial connection method and the m-k 
method. It is necessary to calculate VEd from the design partial interaction 
diagram shown in Figure D4.11. When the curve MEd(x) touches the curve 
MRd(x) at point x, the shear failure occurs along length x (m) at the end support. 
The reaction at this support can be compared with the design shear resistance 
Vl,Rd. After the calculation, it is found that the scale factor  = 1,31, see the curve 
0DE in Figure D4.11. The point of contact of these curves is 0,89 m away from 
the end support. The design reaction at the end support is:  
 

· 14,8·2,75= · = 1,31· = 26,7
2 2

d
Ed

e L
V  kN/m 

 
The obtained value is 10% less than the design shear resistance, Vl,Rd = 29,4 
kN/m, obtained by the m-k method. In this example, these methods give similar 
results.  

0 0,5 1,0 1,375

10 

20 

MRd, MEd [kNm/m]

x (m) 

A

B

C

D E

MRd 

Mpa,Rd=6,18 
1,31MEd 

,2 ,3[ ·( + ) + · ]·
= ·( – )

2
G k k Q k

Ed

g g q x
M L x

MRd = 20,6 

MEd = 14,0 
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5.2.3 Check for vertical shear resistance 

According to 9.7.5, EN 1994-1-1, the vertical shear resistance, Vv,Rd, should be 
determined according to the method given in EN 1992-1-1. According to clause 
11.6.1, EN 1992-1-1, the design shear resistance VlRd,c is calculated as: 
 

1/3
, , 1 1= [ · · ·(100· · ) + · ] · ·lRd c lRd c l lck cp w pV C k f k b d , ,minlv RdV  

 
The minimum value of Vlv,Rd,min is: 
 

, ,min ,min 1= ( + · )· ·lv Rd l cp w pV v k b d  
 
The minimum value of ,lv RdV  is related to the fact that the member without 
reinforcement still has some shear resistance. 
 
Generally, the check is carried out as: 
 

,

Ed

lRd c

V
V

 1,0 

 
According to clause 11.6.1(1), EN 1992-1-1, the values needed for calculation  
VlRd,c are: 
 

,
0,15 0,15= = = 0,10

1,5lRd c
c

C  

 
According to clause 11.3.1, EN 1992-1-1: 
 

= 1800  kg/m3 
 

1 = 0,4 + 0,6· / 2200 = 0,4 + 0,6·1800 / 2200 = 0,891  
 

200= 1 +
p

k
d

 2,0 

 
200= 1 + = 2,42
99,7

k   adopted k = 2,0 
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=
·
sl

l
w p

A
b d

 0,02 

 
The resistance of the cross-section is dependent on the area of the tensile 
reinforcement, whose section has to be extended by an appropriate anchorage 
length, (lbd + d) see  Figure 6.3, EN 1992-1-1  where lbd is the design anchorage 
length and d is the effective depth of the section, taken as the depth from the top 
surface to the centroid of the profile for a composite slab. The anchorage of the 
profiled sheeting was confirmed by the check on longitudinal shear, and the 
sheeting can be treated as reinforcement, i.e. Asl = Ape = 1178 mm2. 
 
In accordance with Figure D4.12, the smallest width of the cross-section in the 
tensile area bw is calculated per metre width as follows: 
 

0
1000= · = ·162 = 540
300w

s

bb b
b

 mm/m 

 
 
 
 
 
 
 
 
 
 
 
 

Figure D4.12 Determination of value bw  
 
The percentage of longitudinal reinforcement is: 
 

=
·
sl

l
w p

A
b d

 0,02 

 
1178= = 0,022 > 0,020

540·99,7l  

 
The value = 0,02l is adopted. 
 

dp = 99,7
e=30,3 hp=70

hc=75 
h=130 mm 

br b0 

bs 

bb 

bs = 300 mm 
br = 112 mm 
b0 = 162 mm 
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The design axial force is = 0EdN  and therefore = = 0Ed
cp

c

N
A

. 

 
1 = 0,15k , according to clause 6.2.2(1), EN 1992-1-1. 

 
The design shear resistance VlRd,c is: 
 

1/3
, , 1 1= [ · · ·(100· · ) + · ] · ·lRd c lRd c l lck cp w pV C k f k b d  

 
1/3 –3

, = [0,10·0,891·2,0·(100·0,02·25) + 0,15·0] 540·99,7·10lRd cV  
 

, = 35,3lRd cV  kN/m 
 
The minimum value is: 
 

, ,min min 1= ( + · )· ·lv Rd l cp w pV v k b d  
 

3/2 1/2 3/2 1/2
min = 0,03· · = 0,03·2,0 ·25 = 0,42l lckv k f  N/mm2 

 
–3

, ,min = (0,42 + 0,15·0)·540·99,7·10 = 22,6lv RdV  kN/m ,< = 35,3lRd cV  kN/m 
 
Check: 
 

,

Ed

v Rd

V
V

 1,0 

 
20,4 = 0,57 < 1,0
35,3

, the condition is satisfied 

 
Remark: 
 
Since it is unlikely that the profiled steel sheet can satisfy the requirement “full 
anchorage”, the design shear resistance is equal to the minimum value: 
 

, , ,min= = 22,6lRd c lv RdV V  kN/m 
 
Also, the required condition is satisfied since that is , , ,min= = 22,6lRd c lv RdV V  
kN/m > = 20,4EdV  kN/m. 
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6. Serviceability limit state 

6.1 Control of cracking of concrete 

Clause 9.8.1(1), EN 1994-1-1, refers to continuous slab. For the considered slab, it 
can be assumed that the slab satisfies conditions according to clause 9.8.1(2), EN 
1994-1-1, and that the slab is designed as simply supported in accordance with 
clause 9.4.2(5), EN 1994-1-1. Furthermore, clause 9.4.2(5), EN 1994-1-1, requires 
that the reinforcement in accordance with clause 9.8.1, EN 1994-1-1, should be 
provided over internal supports to control crack widths. 
 
According to clause 9.8.1(2), EN 1994-1-1, for unpropped construction the 
required cross-sectional area of reinforcement sA  is 0,2% of the area of concrete 
above the ribs. In this case, the depth of concrete above the main flat surface of the 
profiled sheeting is 75 mm. Therefore, the required cross-sectional area of 
reinforcement is: 
 
min = 0,002· · = 0,002·1000·75 = 150s cA b h  mm2/m 
 
Strictly, this reinforcement is not required at mid-span. It is recommended that 
reinforcement for crack control is provided as mesh over the full area of the slab. 
 
The selected minimum amount of reinforcement could be insufficient to control 
cracking at the supports of continuous slabs for certain exposure classes. In such 
cases, the slab should be designed as continuous, and in hogging regions the crack 
widths should be estimated according to EN 1992-1-1. 

6.2 Limit of span/depth ratio of slab 

According to clause 9.8.2(4), EN 1994-1-1, calculation of the deflection of the 
composite slab can be omitted if the two conditions are satisfied. According to 
the first condition, the span/depth ratio of the slab should not exceed the limits 
given in EN 1992-1-1. These are: 
 

< 20L
d

 for a simply supported span 

< 26L
d

 for an external span of continuous slab 

< 30L
d

 for an internal span of continuous slab 

 
According to clause 9.8.2(6), EN 1994-1-1, the second condition is given as 
follows: 
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the load causing an end slip of 0,5 mm in the tests on composite slab exceeds 
1,2 times the design service load. 

 
If the second condition is not satisfied, i.e. the end slip exceeds 0,5 mm at a load 
of 1,2 times the design service load, two options exist: 
 

end anchors should be provided, or 
deflections should be calculated including the effect of end slip. 

 
According to clause 9.8.2(8), EN 1994-1-1, in cases when the behaviour of the 
shear connection between the profiled sheeting and the concrete is not known 
from tests, the tied-arch model may be used, see [34]. 

 
For the considered slab with L = 2750 m and dp = 99,7 mm, the following 
span/depth ratio is obtained: 
 

2750= = 27,6 > 26
99,7

L
d

 for the external span of continuous slab 

 
The span/depth ratio exceeds the limit, and the calculation of the deflection is 
necessary. 

6.3 Calculation of deflections 

6.3.1 Construction stage deflection 

According to clause 9.6(2), EN 1994-1-1, the deflection, s, of the profiled sheeting 
due to its own weight and the weight of the wet concrete should not exceed the 
following limit: 
 

,max
2750= = = 15,3

180 180s
L  mm 

 
For simplicity, the profiled steel sheeting is considered as simply supported span. 
The static system and the design load for the construction stage are shown in 
Figure D4.13. 
 
 
 
 
 
 

Figure D4.13 Static system and design load for the construction stage 

bsheet = 1000 mm 

ed

L = 2,75 m 
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The premature local buckling of the profiled sheeting under the weight of the wet 
concrete and the construction loading is checked to prevent irreversible 
deformation. This verification is important in the region of the internal support. 
 
The design load for serviceability limit state is: 
 

.1= ·d ke b g  
 

= 1,0·2,25 = 2,25de  kN/m 
 
The maximum sagging bending moment in serviceability limit state is: 
 

2 2· 2,25·2,75= = = 2,13
8 8

d
Ed

e L
M  kNm/m 

 
The maximum compressive stress in top flange of profiled sheeting is: 
 

6

4

2,13·10= · = ·(55 – 30,3) = 96
54,8·10

Ed
com

p

M
z  N/mm2 

 
In accordance with clause 4.4, EN 1993-1-5, the plate slenderness, p , is 
calculated as: 
 

= =
28,4· ·

y
p

cr

b
f t

k
 

 
235 235= = = 1,56

96com

 

 
According to Table 4.1, EN 1994-1-1, for the stress ratio  = 1, the buckling factor 
is k  = 4. 
 
The width of the flange of profiled sheeting in compression, b, is determined by the 
intermediate flange stiffener of width 18 mm, see Figure D4.2b. Therefore, the 
width of the flange of the profiled sheeting in compression, the flat plate width 
between the stiffener and the web, is: 
 

– 18 112 – 18= = = 47
2 2

rb
b mm 
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Therefore, the plate slenderness, p , with the design thickness of the sheet t = 0,86 
mm (not including coatings) and b = br = 47 mm, is: 
 

47
0,86= = 0,617

28,4·1,56· 4p  

 
Since = 0,617 < 0,673p , the reduction factor is  = 1,0 and the cross-section is 
fully effective. 
 
The deflection of the profiled steel sheeting for simply-supported span, Figure 
D4.13, is: 
 

4

1
·5= ·

384 ·
d

a p

e L
E I

 

 
4

1 4

5 2,25·2750= · = 14,6
384 210000·54,8·10

 mm 

 
Since the deflection 1 is higher than 10% of the slab depth, 1 = 14,6 mm > 
0,10·h = 0,1·130 = 13 mm, according to clause 9.3.2(2), EN 1994-1-1, the 
ponding effects should be taken into account at the construction stage. 

 
In accordance with clause 9.3.2(2), EN 1994-1-1, the specified thickness of the 
additional concrete is 0,7· . The weight of the wet concrete is: 
 
0,7·0,0146·20,5 = 0,21  kN/m2 
 
This increases the deflection to: 
 
14,6·(2,25 + 0,21) / 2,25 = 16,0  mm > ,max = 15,3s mm, the condition is not 
satisfied. 
 
Thus, the obtained value is L/172, which exceeds the limit value L/180. If the 
profiled sheeting is not continuous at either end of a 2,75 m span, propping must 
be used during construction. 

 
To reduce the excessive deflection, the effects of continuity at one end span are 
taken into account. The worst load case is when the concrete in one span hardens, 
and there are no construction loads, before the other span is cast. Thus, on one span 
the load is 2,25 kN/m and on the adjacent span the load is 0,10 kN/m. 
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For a continuous beam of uniform section under uniformly distributed loading, 
the deflection 1 at the centre of a span can be calculated as: 
 

1 0 1 2 0= [1 – 0,6( + ) / ]M M M  
 
where: 
 
M1 and M2 are hogging end moments, 

0 is the deflection of the span when the end moments are zero, 
M0 is the mid-span moment of the span when the end moments are zero. 

 
From elastic analysis, the following values are obtained: 
 

2

0
2,25·2,75= = 2,13

8
M  kNm 

 
2

1
1 2,25·2,75= · = 1,07
2 8

M  kNm 

 
2 = 0M  

 
4

0 4

5 2,25·2750= · = 14,6
384 210000·54,8·10

 mm 

 
Therefore, the deflection 1 is: 
 

1 = 14,6·[1 – 0,6·(1,07 + 0) / 2,13] = 10,2  mm < ,max = 15,3s mm, so the condition 
is satisfied. 

6.3.2 Composite stage deflection 

For the calculation of the deflection at the composite stage, the slab is considered 
as continuous over two spans. According to clause 9.8.2(5), EN 1994-1-1, the 
following approximations can be applied: 
 

The second moment of area can be taken as the average of the values for the 
cracked and uncracked sections. 
According to clause 11.3.2, EN 1992-1-1, the secant modulus is: 

2= · = ·( )
2200lcm cm E cmE E E  

218= 31000·( ) = 20752
22lcmE  N/mm2 
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An average value of the modular ratio, n, for both short-term and long-term 
effects can be used: 

 
210000= = = = 15,2
21' ·20752·( + )
32 3

a a

lcmcm
lcm

E E
n

EE E
 

 
Elastic analysis is used to calculate the deflection of the slab. 

 
a) The second moment of area for the cracked section, Icc, for the slab width b is 

calculated in accordance with Figure D4.14. 
 
 
 
 
 
 
 
 
 
 
Figure D4.14 Second moment of area calculation for the cracked cross-section, Icc  
 
The second moment of area for the cracked section and the slab width b is 
calculated as: 
 

3
2·

= + ·( – ) +
3·

c
cc p p c p

b x
I A d x I

n
 

 
The position of the elastic neutral axis relative to the upper side of the slab is 
obtained from the expression: 
 

· 2· ··
= = ( 1 + – 1)

·
p pi i

c
i p

n A b dA z
x

A b n A
 

 
15,2·1178 2·1000·99,7= ( 1 + – 1) = 44,5

1000 15,2·1178cx  mm 

 
The second moment of area for the cracked section is: 
 

Compression 
xc

Tension

Cracked 
concrete 

ENAdp 

e

hc h 

br b0 

bs 

bb 

ENA  elastic neutral axis 

hp

hp/2

Steel sheeting 
centroidal axis 
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3
2 4 61000·44,5= +1178·(99,7 – 44,5) + 54,8·10 = 6,07·10

3·15,2ccI mm4/m 

 
b) The second moment of area for the uncracked section, Icu, for the slab width b is 

calculated in accordance with Figure D4.15. 
 
 
 
 
 
 
 
 
 
 
 

Figure D4.15 Second moment of area calculation for the uncracked  
 cross-section, Icu 

 
The second moment of area for the uncracked section and the slab width b is 
calculated as: 
 

33
2 2

2

· ·· ·
= + ·( – ) + + ·( – – ) +

12· 2 12· 2

+ ·( – ) +

m p m p pc c c
cu u u

p p u p

b h b h hb h b h h
I x h x

n n n n

A d x I
 

 
where: 
 

2

· + · ·( – ) + · ·
2 2=

· + · + ·

pc
m p p p

u
c m p p

hh
b b h h n A d

x
b h b h n A

 

 
In accordance with Figure D4.15, the value of bm is: 
 

0 = 162b  mm 
 

0
1000= · = ·162 = 540
300m

s

bb b
b

 mm/m 

 
For the depth of the profiled sheeting hp = 55 mm, the position of the elastic neutral 
axis relative to the upper side of the slab is: 

dp 

e

hc h 

br b0 

bs 

bb 

ENA  elastic neutral axis 

Compression
xu

Tension 

Uncracked 
concrete 

ENA
hp

hp/2

Steel sheeting 
centroidal axis 
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275 551000· + 540·55·(130 – ) +15,2·1178·99,7
2 2= = 62

1000·75 + 540·55 +15,2·1178ux  mm 

 
For the depth of the profiled sheeting hp = 55 mm, the second moment of area for 
the uncracked section is: 
 

3 3
2

2 2 4

1000·75,0 1000·75,0 75,0 540·55,0= + ·(62,0 – ) + +
12·15,2 15,2 2 12·15,2

540·55,0 55,0·(130 – 62,0 – ) +1178·(99,7 – 62,0) + 54,8·10
15,2 2

cuI
 

 
6= 11,2·10cuI  mm4/m 

 
The mean value of ccI  and cuI is: 
 

6 6
6+ 6,07·10 +11,2·10= = = 8,64·10

2 2
cc cu

c
I I

I  mm4/m 

 
Calculation of deflections 
 
Normally, deflection is a reversible limit state. According to clause 6.5.3(2), EN 
1990, the frequent combination is recommended for the reversible limit state. 
The combination factor 1 for this combination is dependent on the floor loading 
category. According to Table A1.1, EN 1990 the values of combination factor 
are in the range 0,5–0,9. In this example, the value of 0,7 is taken, which is 
recommended for congregation areas or shopping areas. 

 
 Deflection due to permanent action 

 
The design load of the weight of dry concrete, the weight of the profiled sheeting 
and the floor finishes is: 
 

,2 ,3= ·( + ) = 1,0·(2,15 +1,00) = 3,15d k ke b g g  kN/m 
 
The deflection is: 
 

4

1

·
= 0,0054·

·
d

c

e L
E
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4

1 6

3,15·2750= 0,0054· = 0,54
210000·8,64·10

mm = L/5093 

 
 
 
 
 
 

Figure D4.16 Static system and load for the calculation of the deflection at 
 the composite stage 

 
The deflection due to the frequent value of variable action and the selected 
combination factor is 1 = 0,7 

 
The design load is calculated for the frequent combination: 
 

1 ,2= · · = 1,0·0,7·7,0 = 4,9d ke b q  kN/m 
 
 
 
 
 
 

Figure D4.17 Static system and load for calculation of the deflection at  
 the composite stage 

 
The deflection is: 
 

4

2

·
= 0,0099·

·
d

a c

e L
E I

 

 
4

2 6

4,9·2750= 0,0099· = 1,53
210000·8,64·10

mm = L/1797 

 
Remark: 
 
The limit of the deflection is adopted according to clause 7.4.1(4), EN 1992-1-1. 
The recommended limitation is: 
 

total 250
L  

 

ed = 2,65 kN/m 

L = 2,75 m L = 2,75 m

ed

L = 2,75 m L = 2,75 m
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The total deflection is: 
 

1 2= + = 0,54 +1,53 = 2,07total  mm 2750= = 11,0
250 250

L  mm 

 
The total deflection meets the criterion L/250. 

7. Commentary 

This example illustrates the use of lightweight aggregate concrete in a composite 
slab. The obvious advantage of lightweight aggregate concrete is weight saving. 
However, this advantage must be balanced against the effect of the reduced 
modulus of elasticity, which results in larger deflections of the slab. 
 
The design resistance against longitudinal shear was carried out by means of 
both partial connection and the m-k method. Both methods are based on tests on 
composite slabs. 
 
The partial connection method verifies the resistance moment of ductile slabs 
with ductile connections. Longitudinal shear resistance is related to the ultimate 
shear stress determined from full-scale tests. 
 
The m-k method consists of determining two coefficients, m and k, per type of 
profiled steel sheeting by means of tests of composite slab specimens.  
 
Both of these methods can be applied in cases where the longitudinal shear 
behaviour is ductile. However, if the longitudinal behaviour is non-ductile, only 
the m-k method is permitted. 
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D5 Hoesch Additive Floor 

1. Purpose of example 

The calculation and structural detailing of a Hoesch Additive Floor (HAF) in a car-
park building is considered. The floor resistance is obtained by summing 
resistances of profiled steel sheet and ribbed reinforced concrete slab without 
composite action. Referring to EN 1994, the system is a combination of two 
materials, steel and concrete, with the degree of shear connection  = 0. The 
calculation is conducted using EN 1994-1-1 and Technical Approval. The bending 
moment is carried by the profiled sheet and the reinforced concrete ribbed slab. 
Their load-bearing capacities can be added. The bearing of shear force is provided 
at the supports via the profiled sheet and the patented cleat support. In this example 
a fire resistance is not considered. 

2. Generally about the Hoesch Additive Floor system 

The basic HAF system with its components is shown in Figure D5.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D5.1 The Hoesch Additive Floor 
 
The bending moment in the span is carried by a trapezoidal steel sheet and a 
reinforced concrete ribbed slab. The shear force at the support is transferred 
through trapezoidal steel sheet to the steel girder by means of patented cleats.  
a) Verification of the ultimate limit states 
 

Stud shear 
connector

Steel cleat 

Constructive 
reinforcement 

on support 
Steel Z 
profile 

Concrete 
(min C20/25) 

Steel composite 
girder 

Plastic 
sealing 

cap 

Trapezoidal 
steel sheet TRP 

200 

Slab 
reinforcement Longitudinal 

reinforcement 
in the rib 
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The design value of resistance moment is the sum of resistances of the profiled 
steel sheet and the reinforced concrete ribbed slab given by the expression: 
 

, ,= +Rd PT Rd c RdM M M  
 
MRd design value of the resistance moment of HAF in the span 

of trapezoidal steel sheet, 
,

, = PT Rk
PT Rd

M

M
M  design value of the resistance moment of trapezoidal steel 

sheet in the span, 
MPT,Rk characteristic value of the resistance moment of trapezoidal 

steel sheet according to table D5.1, 
= 1,1M  partial factor, 

,
, = c Rk

c Rd
C

M
M  design value of the resistance moment of ribbed reinforced 

concrete slab in accordance with EN 1992-1-1, 
Mc,Rk characteristic value of the resistance moment of ribbed 

reinforced concrete slab, 
= 1,5C  partial factor. 

 
According to the design concept of load-bearing capacity, MPT,Rd is fully utilized, 
and the remaining bending moment is resisted by the concrete slab. Thus, the 
portion of resistance moment in the slab is given by expression: 
 

, ,= –c Rd Ed PT RdM M M  
 
Since the resistance moments of both “partners” are simply summed, it is 
assumed that resistance moments are reached at the same deflection, or that the 
stiffer “partner” has sufficient ductility to enable the flexible “partner” to reach 
its resistance. 
 
This requirement can be fulfilled with experiments on a full-scale specimen of 
HAF according to following conditions: 
 

span L  6 m, 
sheet thickness 1,0 mm  tN  1,5 mm, 
concrete class C20/25 to C50/60, 
reinforcement of the rib  2,6 cm2 per rib. 

According to Figure D5.2, the trapezoidal sheet alone carries all the loads close 
to the supports. 
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Figure D5.2 Calculation model for verification of the resistance moment 
 for the final stage 

 
For determination of the shear resistance it has to be verified that the profiled 
sheet support on the steel cleat can carry the support force on the slab alone. The 
relevant design value is AK,Rd which is the design resistance of the profiled sheet 

 ed = g1,d + g2,d + g3,d + qd 

 ec,d = g2,d  + g3,c,d+ q1,d 

ed

LRLR

Lc – the effective floor span of the 
ribbed reinforced slab 

L – effective span of trapezoidal sheet 

ePT,d = g1,d + g3,PT,d + q2,d 

ed

Designation 
 
PT trapezoidal steel sheet 
c reinforced concrete ribbed slab 
ed overall loading on HAF 
ec,d the portion of the concrete ribbed slab loading 
ePT,d the portion of the trapezoidal steel sheet loading 
g1,d design value of the dead load of the profiled sheet 
g2,d design value of the dead load of concrete 
g3,d design value of the dead load of finishes (flooring layers, asphalt, etc.) 
qd design value of imposed load (q1,d construction stage, q2,d final stage) 

Hoesch Additive
Floor (HAF) 

Ribbed reinforced 
concrete slab 

Trapezoidal steel 
sheet 

MEd,max 

Mc,Ed 

MPT,Ed 

M

, ·
2

c d ce L
, ·
2

c d ce L

LR  design length
from edge 
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support per cleat. The design value of the shear force acting on the ribbed 
reinforced concrete slab Vc,Ed,max is determined as: 
 

, ,max

,

c Ed

c Rd

V
V

 1,0 

 

, ,max = ·
2

c
c Ed cd

L
V e  

 
where: 
ecd proportionate action of the ribbed reinforced concrete slab, 
Lc the effective floor span of the ribbed reinforced concrete slab, which is 

smaller by 2·LR than the span L of the profiled sheet is: Lc = L – 2 · LR. 
 
According to Figure D5.2, the LR represents the support length for the ribbed 
slab. Within this length the bending reinforcement in the span has to be fully 
anchored. The design length from the edge, LR, is calculated for load qPT on the 
trapezoidal sheet and by using the calculation model from Figure D5.2 with fully 
utilized resistance moment MPT,Rd of trapezoidal sheet. 
 
From the moment in span according to Figure D5.3, there are three parts of the 
resistance moment of the trapezoidal sheet: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D5.3 Three parts of loading of one profiled steel sheet for calculation  
 of the length from the edge, LR 

L 

LRLR Lc

 ec,d 

 ePT,d 

LRLR Lc

 ec,d 

M1: 

M2: 

M3: 
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, 1, 2, 3,= + +PT Rd Ed Ed EdM M M M  
 

2
,

1,

·
=

8
PT d

Ed

e L
M  

 
2

,
2,

·
=

2
c d R

Ed

e L
M  

 
,

3,

·
= ·

2
c d c

Ed R

e L
M L  

 
= – 2·c RL L L  

 
After rearrangement, the design value of LR is determined according to the 
following equation: 
 

2
, ,E2 2· / – / 4

( ) – + = 0PT Rd PT dR R

cd

M L eL L
L L e

 

 
Calculation model for shear resistance is shown in Figure D5.4. 
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Figure D5.4 Calculation model for shear resistance 
 
b) Verification of the anchorage of the flexural tensile reinforcement in the rib. 
 
Thereby, the required anchor length at the support LR is verified from the 
required anchorage length summed with the effective depth of the reinforced 
concrete rib d: 
 

 ed = g1,d + g2,d + g3,d + qd 

 ec,d = g2,d  + g3,c,d+ q1,d 

ed 

LRLR

Lc – the effective floor span of the 
ribbed reinforced slab 

L – effective span of trapezoidal sheet 

ePT,d = g1,d + g3,PT,d + q2,d 

ed 

Designation 
 
PT trapezoidal steel sheet 
c reinforced concrete ribbed slab 
ed overall loading on HAF 
ec,d the portion of the concrete ribbed slab loading 
ePT,d the portion of the trapezoidal steel sheet loading 
g1,d design value of the dead load of the profiled sheet 
g2,d design value of the dead load of concrete 
g3,d design value of the dead load of finishes (flooring layers, asphalt, etc.) 
qd design value of imposed load (q1,d construction stage, q2,d final stage) 

Hoesch Additive
Floor (HAF) 

Ribbed reinforced 
concrete slab 

Trapezoidal steel 
sheet 

V

, ·
2

c d ce L, ·
2

c d ce L

VEd,max Vc,Ed,max 

LR  design length
from edge 
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RL ,eq +bl d  
 
where lb,eq is the anchorage length according to EN 1992-1-1. 
 
c) Verification of slab as a flange of steel composite beam 
 
The verification has to be done according to EN 1992-1-1 and/or EN 1994-1-1. 
The cleats may not be used as shear connectors for the composite beams. 
 
d) Verification of the serviceability limit state 
 
If no specific verification is carried out, a minimum reinforcement that is 
designed for the crack moment is installed above the inner girders (bearing 
moment) in case of predominantly bending forces. In case of predominant 
bending restraint the reinforcement will protrude over the edge of the flange for 
at least 25 cm in both directions. In case of predominantly tensile restraint a 
continuous minimum reinforcement is necessary if the tension exceeds the crack 
axial force. The verification of limitation of the crack widths as well as the 
acceptance of the crack moment and the crack axial force is made according to 
EN 1992-1-1. The deflections are limited in accordance with the provisions of 
the Member States. 
 
e) Verification at the construction stage 
 
Loads at the construction stage are shown in Figure D5.5. 
 
 
 
 
 
 
 
 
 
 
 

Figure D5.5 Loads at the construction stage 
 
Designation: 
 
g1k dead load of trapezoidal steel sheet (in technical approval gPT), 
g2k dead load of concrete (RC ribbed slab gc,d + floor layers gAB,d), 
q1,k live load value at the construction stage 1,50 kN/m2 on area 3 × 3 m, see 

L 

3,00 m 

q=0,75 kN/m2
q1k=0,75 kN/m2
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Figure D5.5. 
q live load value at the construction stage 0,75 kN/m2 on the remaining area 

(outside 3 × 3 m), see Figure D5.5. 

3. Structural system and cross-section 

Composite beams IPE 550 S355 with a span of 16 m and a spacing of 5 m. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D5.6. Top view 
 
 
 
 

Figure D5.7 Structural system – single span girder 
 
Trapezoidal sheet TRP 200, t = 1,25 mm with concrete slab thickness hc = 9 cm is 
supported on girders. 
 
 
 
 
 
 
 

Figure D5.8 Cross section 
 
Properties of Hoesch Additive trapezoidal sheet TRP 200 are given in Table D5.1. 

slab reinforcement As,slab 

hc =90 mm 

750 mm 

t = 1,25 mm rib reinforcement  
As,rib, ds = 8 mm concrete min C20/25 

Laxial span = 5,0 m 

16
,0

0 
m

 

5,0 m 5,0 m 

HAD 

IPE 550 
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Table D5.1 Hoesch Additive trapezoidal sheet TRP 200 

Section properties 
Characteristic 

values of 
resistance 
moment 

Nominal 
sheet 

thickness 
Dead load Moment of 

inertia 

Axial force resistance1 
Positive loads Gross cross-section Effective cross-

section2 
tN g Ieff Ag ig Aeff ieff MPT,Rk 

[mm] [kN/m2] [cm4/m] [cm2/m] [cm] [cm2/m] [cm] [kNm/m] 
1,00 
1,25 
1,50 

0,128 
0,160 
0,192 

653 
855 

1030 

7,68 
9,68 

11,70 

6,67 
6,67 
6,67 

7,24 
9,59 
11,70 

9,09 
8,97 
8,79 

17,0 
22,1 
26,5 

1 Calculation of the resistance value, see EN 1993-1-3: 2006, sections 6.1.2 and 6.1.3 considering the 
National Annex and/or the provisions of the Member State at the location where the product is 
incorporated in the works. 

2 Effective section for constant compressive stress: fy,k = 350 N/mm2

 
Concrete cover 
 
The longitudinal reinforcement one  8 is provided in each rib with the distance to 
the lower flange of trapezoidal sheet is given by: 
 

8= + = 50 + = 54
2 2

s
nom

d
u c  mm 

 
The effective span of the ribbed reinforced concrete slab L, shown in Figure D5.9, 
is given by: 
 

0
1= – – 2· – 2· ·
2axial span KL L b e L  

 
 
 
 
 
 
 
 
 
 
 
 

Figure D5.9 Effective span of HAF 
 

60

b0

Laxial span 

L 

LK 

e 

Laxail span = 5,0 m 
LK = 0,055 m 
e = 0,005 m < 0,01 m 
b0 = 0,21 m 

LK  load-bearing edge length of cleats 

IPE 550 
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2·0,055= 5,00 – 0,21 – 2·0,005 – = 4,73
2

L  m 

4. Properties of materials 

Concrete class: C 35/45 = 3,5ckf  kN/cm2 

fcd  DIN 18800-5 
0,85· 0,85·3,5= = = 1,98

1,5
ck

cd
c

f
f  kN/cm2 

Reinforcement: BSt 500S, BSt 500 M: = 50skf  kN/cm2 

 50,0= = = 43,5
1,15

sk
sd

s

f
f  kN/cm2 

 
Nails: Hilti X-ENP-19 L15: ETA-04/0101 
 
Provided: 
 ( = 1,25 ) = 8,0Rk NV t mm  kN and = 1,25M  

 8,0= = = 6,4
1,25

Rk
Rd

M

V
V  kN 

5. Selection of effective span length without supporting at the 
construction stage 

Input data: 
 
Trapezoidal sheet TRP 200, = 1,25Nt  mm 
 
Reinforced concrete slab thickness: = 9ch  cm 
 
Using Figure D5.10, maximal effective span without supporting is determined: 
 

max = 4,92L  m 
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Figure D5.10 Preliminary calculation of trapezoidal sheet as a function  
 of effective slab span L 

 
Check: 
 

max

4,73= = 0,961 < 1,0
4,92

L
L
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6. Ultimate limit state 

6.1 Calculation at the construction stage 

6.1.1 Loads 

Since the slab is not supported during concrete pouring, the trapezoidal sheet has to 
carry the self-weight of the sheet and concrete and the live load from the working 
process with the value g1k = 0,75 kN/m2 and additional load qk = 0,75 kN/m2  on 
the area 3 × 3 m. 
 
Dead load of trapezoidal steel sheet (tN = 1,25 mm): 
 
 1 = 0,16kg  kN/m2 
 
Dead load of wet concrete (ribbed slab): 
 
 2 = 0,87 + ·26 = 0,87 + 0,09·26 = 3,21k cg h  kN/m2 
 
Design permanent load: 
 
 1, 2,= ( + ) = 1,35(0,16 + 3,21) = 4,55d F k kg g g  kN/m2 
 
Live load: 
 
 1, = 0,75kq  kN/m2 
 = 0,75kq  kN/m2 
Design live load 
 
 1, 1,= = · = 1,5·0,75 = 1,13d d Q kq q q  kN/m2 
 
Overall loads 
 
 1,= + = 4,55 +1,13 = 5,68d d de g q  kN/m2 

6.1.2 Action effects 

For slab width 1 m: 
 

2= · / 8 + ·3,00·(2· – 3,00) / 8Ed d dM e L q L  
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2= 5,68·4,73 / 8 +1,13·3,00·(2·4,73 – 3,00) / 8 = 18,6EdM  kNm/m 
 
 
 
 
 
 
 
 
 
 

Figure D5.11 Load arrangement during concreting resulting in maximum 
 bending moment 

 
 
 
 
 
 
 
 
 
 

Figure D5.12 Load arrangement during concreting resulting in maximum 
 shear force 

 
= · / 2 + ·3,00 / ·( – 3,00 / 2)Ed d dV e L q L L  

 
= 5,68·4,73 / 2 +1,13·3,00 / 4,73·(4,73 – 3,00 / 2) = 15,7EdV  kNm/m 

 
The force flow in the steel cleat is shown in Figure D5.13. 
 
The shear force per one steel cleat is: 
 

,
0,75·

=
2

Ed
K Ed

V
A  

 

,
0,75·15,7= = 5,90

2K EdA  kN 

 
The shear force per one nail is: 
 

L 

3,00 m 

qd

 q1d 

 gd

L 

3,00 m 

qd

 q1d

 gd 
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,= 0,25·Ed K EdV A  
 

= 0,25·5,90 = 1,47EdV  kN 
 
 
 
 
 
 
 
 
 
 

Figure D5.13 Force flow in the steel cleat 

6.1.3 Design value of resistance moment 

Verification of the profiled steel sheet is given by: 
 

,

Ed

PT Rd

M
M

 1,0 

 
where: 
 
MEd design value of bending moment, 
MPT,Rd design value of resistance moment of the profiled steel sheet. 
 

,
,

22,1= = = 20,09
1,1

PT Rk
PT Rd

M

M
M  

 
MPT,Rk characteristic resistance moment of profiled steel sheet according to Table 

D5.1. 
 
Check: 
 

,

18,6= = 0,926 < 1,0
20,09

Ed

PT Rd

M
M

 (satisfactory) 

6.1.4 Shear resistance 

Design shear resistance of one steel cleat Ak,Rd according to table D5.2 is 10,7 kN. 
 

~ 0,25 AK 

 AK 

Steel cleat 

Nail 
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,
11,80= = 10,7

1,1K RdA  kN 

 
Table D5.2 Characteristic values of resistance of the profiled sheet support on 

a steel cleat 

tN [mm] 1,00 1,25 1,50 
AK,Rk [kN] 8,60 11,80 15,50 

 
Thus, verification is given by: 
 

,

,

5,90= = 0,551 < 1,0
10,7

K Ed

K Rd

A
A

 (satisfactory) 

6.1.5 Design of nail 

Provided: HILTI Setzbolzen X-ENP-19L 15 
 
Characteristic shear resistance of nail: 
 

( =1,25 mm) = 8,0Rk NV t  kN 
 
Design shear resistance of nail: 
 

2

8= = = 6,40
1,25

Rk
Rd

M

V
V  kN 

 
Check of nail: 
 

1,47= = 0,23 < 1,0
6,40

Ed

Rd

V
V

 (satisfactory) 

6.2 Calculation for final stage 

6.2.1 Loads 

Dead load of trapezoidal steel sheet: 
 1 = 0,16kg  kN/m2 
 
Dead load of dry concrete: 
 
 2 = 0,83 + ·25 = 0,83 + 0,09·25 = 3,08k cg h  kN/m2 
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Design permanent load: 
 
 1 2= ( + ) = 1,35(0,16 + 3,08) = 4,37d F k kg g g  kN/m2 
 
Live load: 
 
 2, = 3,50kq  kN/m2 
 
Design live load: 
 
 2, 2,= · = 1,5·3,50 = 5,25d Q kq q  kN/m2 
 
Overall load: 
 
 2,= + = 4,37 + 5,25 = 9,62d d de g q  kN/m2 

6.2.2 Action effects 

2 2· 9,62·4,73= = = 26,9
8 8

d
Ed

e L
M  kNm/m 

 
· 9,62·4,73= = = 22,8
2 2

d
Ed

e L
V  kN/m 

 
Shear force per one steel cleat: 
 

,
0,75·

=
2

Ed
K Ed

V
A  

 

,
0,75·22,8= = 8,55

2K EdA  kN 

 
Shear force per one nail: 
 

,= 0,25·Ed K EdV A  
 

= 0,25·8,55 = 2,14EdV  kN 

6.2.3 Resistance moment 

Bending moment is carried by both the trapezoidal sheet and the RC ribbed slab. 
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Carrying capacity of the trapezoidal sheet is fully utilized, and the rest of the 
bending moment is distributed to the RC ribbed slab. Close to the supports the 
trapezoidal sheet carries all the loading. 
 
The calculation model for verification of resistance moment is shown in Figure 
D5.2. 
 
Verification is given by: 
 

Ed

Rd

M
M

 1,0 

 
where: 
 

, ,= +Rd PT Rd c RdM M M  
 

,
,

22,1= = = 20,09
1,1

PT Rk
PT Rd

M

M
M  kNm 

 
and Mc,Rd: 
 

, ,= – = 26,91 – 20,09 = 6,82c Rd Ed PT RdM M M  kNm/m 
 
The distance between the centre of reinforcement and the edge of lower rib: 
 

= + / 2= 54nom su c d  mm 
 
Material properties: 
 
Reinforcement 
 

= 50 / 1,15 = 43,5sdf  kN/cm2 
 
Compressive strength of concrete 
 
For calculating the composite slab cross-section resistance a simplified rectangular 
shape of stress block is considered instead of the parabolic–rectangular shape. 
Thus, the reduction factor for compressive strength of concrete with the value 0,95 
may be introduced in the National Annex. 
 

· = · · / = 0,95·0,85·3,5 / 1,5 = 1,88cd ck cX f X f  kN/cm2 
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= 205TRPh  (the height of trapezoidal sheet) 
 
Static height: 
 

= + – = 205 + 90 – 54 = 241TRP cd h h u  mm 
 
Slab width: 
 

= 100b  cm 
 
Distribution of strains (strain hypothesis): 
 

/ = –0,197 / 25c s  in ‰ 
 
With rectangular stress block 
 

 = ·| | /(| | + ) = 241·0,197 / (0,197 + 25) = 1,88c c sx d  mm 
 
Compressive force in concrete: 
 

,= · ·cd cc red cdF A X f  
 
where: 
 

, = ·0,8· = 100·0,8·0,188 = 15,04cc redA b x  cm2 
 

= 15,04·1,88 = 28,3cdF  kN 
 
For the lever arm, see Figure D5.14: 
 

= – 0,5· = 241 – 0,5·1,88 = 240z d x  mm 
 
 
 
 
 
 
 

Figure D5.14 Stresses in cross section 
 
The action effects per slab width 1 m are: 

c 

MEd 

Fcd 

Fsd s

z

x 0,8x
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= ·Ed cdM F z  
 

, = 6,82c RdM  kNm/m 
 
6,82 28,3·0,24 = 6,79  kNm/m 
 

 The distribution of strains correct! 
 
The tensile force in steel: 
 

= = 28,3sd cdF F  kN 
 
Reinforcement: 
 
required = / = 28,3 / 43,5 = 0,651s sd ydA F f  cm2/m 
 
required , = 0,75·0,651 = 0,488s ribA  cm2 
 
provided: 1  8 mm 
 
existing reinforcement in rib , = 0,503s ribA  cm2 
 
existing reinforcement for 1 m slab width = 0,671sA  cm2/m 
 
Resistance moment provided by concrete: 
 

, = · ·( – / 2)c Rd s ydM A f d x  
 

, =0,671·43,5·(24,1 – 0,188 / 2) = 701c RdM  kNcm/m 
 

, =7,01c RdM  kNm/m 
 
Check: 
 

, ,

26,9 26,9= = = 0,993 < 1,0
+ (20,09 + 7,01)

Ed

Rd PT Rd c Rd

M
M M M
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6.2.4 Shear resistance 

The shear force is transferred to the supports using steel cleats. At the point where 
the concrete starts to carry load, the shear resistance of the concrete rib without 
shear reinforcement has to be verified (Figure D5.4) 

Check of sheet: ,

,

8,54= = 0,798
10,7

K Ed

K Rd

A
A

 1 

 

Check of nail: 2,13= = 0,333
6,40

Ed

Rd

V
V

 1 

 
Shear resistance of RC ribbed slab: 
 

, ,max

,

c Ed

c Rd

V
V

 1,0 

 
, ,max ,= · / 2c Ed c d cV q L  

 
where: 
 

, ,= – = 9,62 – 0,16·1,35 = 9,41c d d PT dq q g  kN/m2 
 

= – 2· = (1 – 2· / )C R RL L L L L L  
 
The length LR is given as: 
 

2 2
, , ,( / ) – / + (2· / – / 4) / = 0R R PT Rd PT d c dL L L L M L g q  

 
where , 1=PT d dg g  (dead load of sheet) 
 

2 2( / ) – / + (2·20,09 / 4,73 – 0,16·1,35 / 4) / 9,41 = 0R RL L L L  
 

2( / ) – / + 0,185 = 0R RL L L L  
 

2/ = 0,5 – (0,5 – 0,185) = 0,245RL L  
 

= 4,73(1 – 2·0,245) = 2,41cL  m 
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, ,max
9,41·2,41= = 11,33

2c EdV  kN/m 

 
1/3

, 1= [0,1· · ·(100· · ) ] · ·c Rd I ck wV f b d  
 
where: 
 

200 200= 1 + = 1 + = 1,91
241d

 

 
1 = 1,0  for normal concrete 

 

=
·
sI

I
w

A
b d

 

 
2= 0,503·10 = 50,3sIA  mm2 

 
= 241d  mm 

 
( = 50 mm) = 108w nomb c  mm  clause 10.3.3, DIN 1045-1:2001 

 
50,3= = 1,93

108·241I  ‰ < 20  ‰ 

 
= 35ckf  N/mm2 

 
1/3

, = [0,1·1,91·1,0·(0,193·35) ]·108·241 = 9398c RdV  N/Rib 
 

, = 9,40c RdV  kN/0,75m = 12,54  kN/m 
 
Check: 
 

,

,

11,33= = 0,903 < 1,0
12,54

c Ed

c Rd

V
V

 

6.2.5 Verification of anchor of rib-reinforcement due to bending moment 

RL , +b eql d   clause 12.6.2, DIN 1045-1:2001 
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= 0,245· = 0,245·4,73 = 1,16RL L  m 
 
The basic value of anchor length is: 
 

= ·
4

s sd
b

bd

d f
l

f
 

 
where: 
 

= 500 / 1,15 = 435ydf  N/mm2 
 

= 3,4bdf  N/mm2  Table 25, DIN 1025-1:2007 
 

= 8sd  mm 
 

8 435= · = · = 256
4 4 3,4

s sd
b

bd

d f
l

f
 mm 

 
The required anchor length is: 
 

, , ,= · · /b eq a b s required s existingl l A A ,minbl  
 
where: 
 

= 1,0a

  
, = 0,490s requiredA  cm2 (As,rib) 

 
, = 0,503s exisistingA  cm2 (As,rib) 

 
,min = max(0,3· ;10 ) = max(0,3·256;10·8) = 80b b sl l d  mm 

 
, = 1,0·256·0,490 / 0,503 = 249b eql  mm 80  mm 

 
, + = 249 + 241 = 490b eql d  mm = 0,490  m 

 
Check: 
 

= 1,16RL  m ,> + = 0,490b eql d  m 
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7. Serviceability limit state 

7.1 Cracking of concrete 

7.1.1 General 

Generally, it is necessary to distinguish two types of structural members 
 

elements predominantly subjected to bending restraint 
elements predominantly subjected to tension restraint 

 
In the first case restraint force occurs in practically every slab due to live load. In 
the second case restraint force occurs only in slabs with restrained thermal 
elongations with concrete cores or vertical bracings. 

7.1.2 Design for bending restraint 

2

,= · · ·
6
c

R ct eff
h

M k f  

 
= 0,8k  

 
= 1 + 0,18 / = 1 + 0,18 / 0,09 = 1,60ch , hc [m] 

 
, = = 3,2ct eff ctmf f  N/mm2 

 
= 0,09ch  m slab thickness 

 
2

–30,09= 0,8·1,6·3,2· = 5,53·10
6RM MN/m = 5,53  kN/m 

 
Depending on the exposure class, specific requirements for minimum thickness of 
concrete cover apply. For car parks classified in XD3, minimal cover thickness 
40+15 mm (DIN 1045-1, Table 4) is used. Crack control of HAF cannot be 
achieved with reinforcement installed that way. Therefore, for car parks chloride 
resistant reinforcement is used (for example made of stainless steel) with 
significant reduction of concrete cover. 
 

,min = / /s R sA M z  
 
where: 
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= 0,9· = 0,9·( – – / 2) = 0,9·(90 – 18 – 6 / 2) = 62,1c sz d h c d  mm = 0,062  m 
 

, 0= ·( + / 2) / ( + / 2)s s table s nom sc d c d  
 

= 6sd  mm 
 

, = 370s table  N/mm2 (exposure class XD3) 
 
The reference value of concrete cover for calculation of reduced stress s is: 
 

0 = 15c  mm 
 
Chosen: = 18nomc  mm 
 

= 370·(15 + 6 / 2) / (18 + 6 / 2) = 317s  N/mm2 = 31,7  kN/cm2 
 

,min = 5,53 / 0,062 / 31,7 = 2,814sA  cm2/m 
 
The reinforcement has to protrude above the edge of the flange for at least 25 cm in 
both directions. With limitations of stress in reinforcement, a characteristic cracked 
depth wk = 0,13 mm is achieved. 

7.1.3 Design for predominantly tensile restraint 

Tensile restraint can result from deformation due prevented temperature elongation 
or concrete shrinkage. It can be constructively avoided, for example by placing the 
vertical stabilization system of the building centrally. This reinforcement is 
provided with a concrete cover requirement according to DIN 1045-1, analogous to 
shear introduction in composite beams. The reinforcement should be chloride 
resistance. Considering limit stresses in reinforcement s [31], the minimum 
required reinforcement is calculated for concrete crack axial force NR using: 
 

,= · ·R ct eff cN k f h  
 
where: 
 

= 0,8k  
 

, = = 3,2ct eff ctmf f  N/mm2 
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= 0,09ch  m 
 

,rib,min = /s R sA N  
 
where: 
 

,= = 240s s table  N/mm2, (for ds = 8 mm and exposure class XD3) 
 

= 8sd  mm 
 

,rib,min = 230,4 / 24,0 = 9,60sA  cm2/m 
 
The constructive reinforcing of the slab is shown in Figures D5.16 and D5.17. 
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Figure D5.15 Constructional reinforcement at intermediate support 
 
 
 
 
 
 
 
 
 
 
 
 

 As,slab 

min 250

45°

min 250
As,rib 

 A

 A 

b 

2 clips  6 B500S 

min 80 

205 

As,slab 

2 clips  6 B500S 

 As,rib 

Possible types of reinforcement clips 

u 

steel cleat 

A-A 
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Figure D5.16 Constructional reinforcement at end support 

7.2 Deflections 

For deflection limits, clause 11.3 in DIN 1045-1: 2001 may be used. Deflection of 
an HAF slab consists of two parts. First part refers to the construction stage where 
all the loads are carried by the trapezoidal steel sheets. The second part refers to the 
final stage when profiled sheet and ribbed RC slab carry loads from floor finishes 
and live loads. The maximum deflection at the first stage (trapezoidal sheet + 
concrete) for sheet thickness 1,5 mm, slab thickness 80 mm and span of 5,55 m is 

B-B 

1 clip  6 B500S 

45°

min 250

B

B

As,rib 

As,slab 

As,slab

As,rib

min 80

205

1 clip  6 B500S 

1 clip  6 B500S 
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1,62 cm (L/342). For the final stage, deflections are not critical since the stiffness 
of the cross-section increases about 10 times. 

8. Commentary 

The HAF slab resistance at final stage is obtained by summing the resistances of 
profiled steel sheet and reinforced concrete ribbed slab. Shear connection 
between steel and concrete is not provided, so they act without composite action. 
This system is suitable for long spans as in the case of car park buildings. 
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E1 Fatigue verification for composite highway bridge 

1. Purpose of example 

This example deals with the fatigue assessment of a composite highway bridge. 
The static system and cross-section of a composite bridge are shown in Figures 
E1.1 and E1.2. Analysis and dimensioning of the bridge were conducted in 
accordance with appropriate European standards. The bridge was verified for the 
following design situations: transient, permanent and accidental. The required 
criteria for static loading are met. 
 
In this example, attention is focused on the fatigue assessment of the composite 
highway bridge subjected to simple vehicle load. However, this example does not 
aim to present the various actions on the bridge nor how they are modelled. 
Therefore, we only look at the design values of the internal forces and bending 
moments as well as the normal and shear stresses in selected cross-sections. 
 
Fatigue verification is carried out for the structural steel part and its shear 
connectors as well as for the reinforcing steel bars in the concrete slab. Fatigue 
verification of the concrete and of the transverse reinforcement in the concrete slab 
is not carried out. The fatigue limit state is verified for the reference stress range 
due to the application of the simplified fatigue load model (single vehicle model – 
FLM 3). Fatigue verification is carried out only for certain key structural details. 

2. Static system, cross-section and actions 

 
 
 
 
 
 
 
 
 
 

Figure E1.1 Composite bridge – elevation with selected location of 
  analysed cross-sections 

 
 
 
 

3000 3000

1 

1 

2 

2 

3 

3 

4 

4 
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Figure E1.2 Cross-section of composite bridge 
 
Fatigue load model 
 
In clause 4.6, EN 1991-2, five fatigue load models are defined. Their use is given 
in corresponding Parts of EN 1992 to EN 1999. In this example, a single vehicle 
model, fatigue load model 3 (FLM 3), is used. This model consists of four axles, 
each having two identical wheels. The geometry of FLM 3 is shown in Figure 
E1.3. The weight of each axle is 120 kN. The contact surface of each wheel is a 
square with sides of 0,40 m. 
 
This model is used for the calculation of the design value of the stress range at 
2·106 cycles according to clauses 9.4.2(1)–(5), EN 1993-2, and according to clause 
6, EN 1993-1-9. For the calculation of the design value of the stress range, elastic 
analysis is used and shear lag effect must be taken into account. In the case of 
cross-section class 4, stresses should be calculated taking into account the effective 
cross-section. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure E1.3 Fatigue Load Model 3 (FLM 3) 

3. Properties of materials 

Concrete strength class: C 40/50 = 40,0ckf  N/mm2 

0,40 

3,
00

 

2,
00

 

0,
40

 

1,20 6,00 1,20 

2000 9300 2000 
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 40,0= = = 26,7
1,5

ck
cd

c

f
f  N/mm2 

 = 3,5ctmf  N/mm2 

 
Structural steel: S355 = 355ykf  N/mm2 

 355= = = 355
1,0

yk
yd

M

f
f  N/mm2 

Structural steel: ductility class B or C (Table C.1., EN 1992-1-1) = 500skf  N/mm2 

 500= = = 435
1,15

sk
sd

s

f
f  N/mm2 

4. Global analysis 

The bending moments and internal forces are calculated by using an elastic 
analysis, see clauses 5.4.1 and 5.4.2, EN 1994-2. The analysis is carried out under 
the same conditions as the ones used to check the bridge design under basic traffic 
loads and taking into consideration the cracked zones in the region of the internal 
supports. The calculation of the bending moments and internal forces is carried out 
using the basic serviceability limit state (SLS) combination of the non-cyclic loads 
(permanent loads) to which the fatigue load is added, see clause 6.8.3, EN 1992-1-
1. The stress range  is obtained by  = | max,f – min,f| where the stresses max,f 
and min,f are calculated from MEd,max,f and MEd,min,f with the short-term modular 
ratio. Three different situations are taken into consideration for the stress range 
calculation: a) MEd,max,f and MEd,min,f  cause tensile stresses in the concrete slab, b) 
MEd,max,f and MEd,min,f  cause compressive stresses in the concrete slab and c) MEd,max,f 
causes tensile stresses in the concrete slab and MEd,min,f causes compressive stresses 
in the concrete slab. The detailed explanation of determining stresses and stress 
ranges in steel and concrete composite structures is given in [46]. The similar 
procedure is used for calculation of shear stress ranges. 
 
Selected cross-sections at locations from 1-1 to 4-4 are shown in Figures E1.4 and 
E1.5. 
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Figure E1.4 Cross-sections 1-1 and 2-2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure E1.5 Cross-sections 3-3 and 4-4 
 
The calculation of the bending moments and internal forces and of stresses in each 
cross-section due to fatigue load model FLM 3 is not presented here. Only their 
design values in selected cross-sections are shown in Table E1.1, Table E1.2 and 
Table E1.3. 
 
 
 
 
 
 
 

As = 24216 mm2/beff 

Tc

beff=3700 mm

Ts 

Ta 

hc=250 mm 

aa

a
ac

ha=1100 mm 

50 mm

 500 × 60

 500 ×60

 980 × 14

Ts  centroid of composite section 
Tc centroid of concrete
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Table E1.1 Maximal bending moments 

 
Section 1-1 

(At pier) 
Section 2-2 
(At splice) 

Section 3-3 
(At midspan) 

My (kNm) My (kNm) My (kNm) 
Lane 1, positive 0 410 660 
Lane 1, negative 430 270 140 

Range M 430 680 800 
Lane 2, positive 0 390 630 
Lane 2, negative 403 256 132 

Range M 403 646 762 
 
Table E1.2 Maximal shear forces 

 Section 1-1 Section 2-2 Section 3-3 Section 4-4 
Vz (kN) Vz (kN) Vz (kN) Vz (kN) 

Lane 1, positive 265 95 53 15 
Lane 1, negative 10 7 27 270 

Range V 275 102 80 285 
Lane 2, positive 238 90 48 14 
Lane 2, negative 0 3 24 248 

Range V 238 93 72 262 
 
The values of stress ranges, , given in Table E1.3 are calculated with bending 
moments, M, from Table E1.1 and corresponding values of section moduli, W. 
 
Table E1.3 Stress ranges due to fatigue load model FLM 3 

 
Bottom flange Top flange Top bar 

W 
(106 mm3) 

 
(N/mm2) 

W 
(106 mm3) 

 
(N/mm2) 

W 
(106 mm3) 

 
(N/mm2) 

Section 
1-1 

Range, lane 1 38,49 11,2 79,00 5,4 42,02 10,2 
Range, lane 2 38,49 10,5 79,00 5,1 42,02 9,6 

Section 
2-2 

Range, lane 1 38,49 17,7 79,00 8,6 — — 
Range, lane 2 38,49 16,8 79,00 8,2 — — 

Section 
3-3 

Range, lane 1 31,36 25,5 2802  0 — — 
Range, lane 2 31,36 24,3 2802  0 — — 

 
Lanes for bridges are defined in EN 1991-2. 
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5. Fatigue assessment 

5.1 Assessment of structural steel details 

5.1.1 General 

Fatigue assessment is carried out according to clause 9.5.1(1), EN 1993-2, as 
follows: 
 

,2·Ff E
C

Mf

 

 
where: 
 

Ff is the partial factor for equivalent constant amplitude stress ranges E, 
Mf is the partial factor for fatigue strength C. 

 
The design value of the stress range in structural steel is given as follows: 
 

,2 2· = · · ·Ff E Ff p  
 
where 2 = 1,0  according to clause 9.4.1(5), EN 1993-2, Ff = 1,0, p  denotes 
stress range and  is the damage equivalent factor. 
 
Values of  are determined according to clause 9.5.2(7), EN 1993-2 for road 
bridges up to 80 m: 
 

1 2 3 4= · · ·  
 
For intermediate supports in spans up to 30 m, the factor for the damage effect of 
traffic 1 should be obtained according to Figure 9.5, EN 1993-2, and is given by 
the expression: 
 

1 = (2 – 0,3·( – 10) / 20)L  
 
where L is the length of the critical influence line in metres and here L = 30 m, 
as the mean of the adjacent spans. 

 
Thus, 1 for intermediate supports is: 
 

1 = (2 – 0,3·( – 10) / 20) = (2 – 0,3·(30 – 10) / 20) = 1,70L  
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For the span region, 1 should be determined according to Figure 9.5, EN 1993-
2, and is given by: 
 

1 = (2,55 – 0,7·( – 10) / 70)L  
 
For L = 30 m as before, 1 for the span region is: 
 

1 = (2,55 – 0,7·(30 – 10) / 70) = 2,35  
 
The factor for the traffic volume 2 is calculated according to clause 9.5.2(3), EN 
1993-2 as: 
 

0,21
2

0 0

= ( )·( )Obsm NQ
Q N

 

 
where: 
 

0 = 480Q  kN and 6
0 = 0,5·10N  

NObs is the total number of lorries per year in the slow lane, according to clause 
4.6.1(3), Table 4.5, EN 1991-2; intermediate values of NObs are not 
excluded, 

Qm1 is the average gross weight (kN) of the lorries in the slow lane obtained 
from the expression: 

 
5

0,2
1 = ( )i i

m
i

n Q
Q

n
 

 
Qi is the gross weight in kN of lorry i in the slow lane, as specified by the 

competent authority, 
ni is the number of lorries of gross weight Qi in the slow lane, as specified 

by the competent authority. 
 
The National Annex may give guidance on parameter 2. 

 
In this example, the following values are adopted: 
 

1 = 260mQ  kN 
 

6= 1·10ObsN  
 
Thus, 2 is: 
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6
0,2

2 6

260 1,0·10= ( )·( ) = 0,62
480 0,5·10

 

 
The factor for the design life of bridge 3 should be calculated as: 
 

0,2
3 = ( )

100
Ldt

 

 
where: 
 
tLd is the design life of the bridge in years. 

 
For the design life of 120 years, 3 is: 
 

0,2
3

120= ( ) = 1,037
100

 

 
The value of 4 depends on the relative magnitude of stress range due to passage 
of FLM 3 in the second lane and is calculated as: 
 

5 5 5 0,23 3 32 2 2
4

1 1 1 1 1 1 1 1 1

= [1 + ( ) + ( ) +· · ·+ ( ) ]mm k k mk

m m m

N QN Q N Q
N Q N Q N Q

 

 
where: 
 
k is the number of lanes with heavy vehicles, 
Nj is the number of lorries per year in lane j, 
Qmj is the average gross weight of the lorries in lane j, 

j is the value of the influence line for the internal force that produces the 
stress range in the middle of lane j to be inserted in above equation with 
positive sign. 

 
In this example for FLM 3 and two traffic lanes 4 is calculated as: 
 

0,2
4

2= (1 + )
1

effect in line
effect in line

 

5.1.2 Design stress ranges – cross-section 1-1 

According to Table E1.1, the ratio of M in lane 2 to M in lane 1 is 403/430 = 
0,937. Thus, the value of 4 is: 
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0,2
4 = (1 + 0,937) = 1,14  

 
The damage equivalent factor  is: 
 

1 2 3 4= · · · = 1,70·0,62·1,037·1,14 = 1,25  
 
At cross-section 1-1, stress ranges p in the top and bottom flanges at their mid 
thickness according Table E1.3 are: 
 
top flange 5,4 N/mm2 
bottom flange 11,2 N/mm2 
 
The design stress ranges are: 
 
top flange ,2 2= · · · = 1,0·1,25·1,0·5,4 = 6,8E Ff p  N/mm2 
 
bottom flange ,2 2= · · · = 1,0·1,25·1,0·11,2 = 14,0E Ff p  N/mm2 
 
According to Table 3.1, EN 1993-1-9, the partial factor for fatigue strength for the 
safe life assessment method and high consequences of failure is recommended as: 
 

= 1,35Mf  
 
The determination of the appropriate category for the actual structural detail, the 
bearing plate welded to the underside of the bottom flange, is as follows. 
 
According to Table 8.5, EN 1993-1-9, constructional detail 6 can be applied to the 
bearing plate welded to the underside of the bottom flange, see Figure E1.6. For a 
flange plate over 50 mm thick, the worst detail category is category 36. 
 
 
 
 
 
 
 

Figure E1.6 Detail category 36 
 

Verification - plate welded to the underside of the bottom flange (detail 
category 36) 

 
The value of reference fatigue strength for detail category 36 is: 
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= 36C  N/mm2 
 
Accordingly, the design fatigue strength is: 
 

/ = 36 / 1,35 = 26C Mf  N/mm2 
 
Check: 
 

,2·Ff E
C

Mf

 

 
Check for top flange: 
 
6,8 < 26 , the condition is satisfied 
 
For bottom flange: 
 
14,0 < 26 , the condition is satisfied 

5.1.3 Design stress ranges – cross-section 2-2 

According to Table E1.1, the ratio of M in lane 2 to M in lane 1 is 646/680 = 
0,950. The value of 4 is: 
 

0,2
4 = (1 + 0,950) = 1,14  

 
The damage equivalent factor  is: 
 

1 2 3 4= · · · = 2,35·0,62·1,037·1,14 = 1,72  
 
At the cross-section 2-2, stress range p in top and bottom flanges at their mid 
thickness according Table E1.3 are: 
 
top flange 8,6 N/mm2 
bottom flange 17,7 N/mm2 
 
The design stress ranges are: 
 
top flange ,2 2= · · · = 1,0·1,72·1,0·8,6 = 14,8E Ff p  N/mm2 
 
bottom flange ,2 2= · · · = 1,0·1,72·1,0·17,7 = 30,4E Ff p  N/mm2 
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The determination of the appropriate category for the actual structural detail, the 
bolted splice, is as follows. 
 
According to Table 8.1, EN 1993-1-9, constructional detail 8 can be applied for a 
bolted splice, see Figure E1.7. For a bolted splice at the bolt holes, the worst detail 
category is category 112. 
 
 
 
 
 
 

Figure E1.7 Detail category 112 
 

Verification - bolted splice at the bolt holes (detail category 112) 
 
The value of reference fatigue strength for detail category 112 is: 
 

= 112C  N/mm2 
 
Accordingly, the design fatigue strength is: 
 

,/ = 112 / 1,35 = 83c Mf s  N/mm2 
 
Check: 
 

,2·Ff E
C

Mf

 

Check for top flange: 
 
14,8 < 83 , the condition is satisfied 
 
For bottom flange: 
 
30,4 < 83 , the condition is satisfied 
 
Further, it is necessary to determine the categories of other actual structural details. 
The determination of the appropriate categories for the actual structural details, the 
butt weld, welds with a cope hole, machining of the flange, full cross-section butt 
weld, is as follows. 
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According to Table 8.3, EN 1993-1-9, constructional detail 11 can be applied for a 
flange butt weld, see Figure E1.8. For a transverse splice in the flange, the worst 
detail category is category 80. 
 
For a welded splice, a flange butt weld, category 80 is selected, and for t = 60 mm 
> 25 mm, with size effect factor 0,2 0,2= (25 / ) = (25 / 60) = 0,84sk t . 
 
 
 
 
 
 

Figure E1.8 Detail category 80 
 
According to Table 8.2, EN 1993-1-9, constructional detail 9 can be applied for a 
flange butt weld with a cope hole not greater than 60 mm in the flange, see Figure 
E1.9a. For a flange butt weld with a cope hole not greater than 60 mm, the 
corresponding detail category is category 71. 
 
According to Table 8.1, EN 1993-1-9, constructional detail 5 can be applied for a 
web with machine gas cut edges, subsequently dressed to remove discontinuities, 
see Figure E1.9b. For such structural detail with appropriate stress concentration 
factor kf = 2,4 according to [46], the corresponding detail category is category 125. 
 
According to Table 8.3, EN 1993-1-9, constructional detail 3 can be applied for a 
full cross-section butt weld of rolled section, see Figure E1.9c. For this structural 
detail, the corresponding detail category is category 112. 
 
 
 
 
 
 
 
 a) 71, detail 9 b) 125, detail 5 c) 112, detail 3 
EN 1993-1-9 Table 8.2 EN 1993-1-9 Table 8.1 EN 1993-1-9 Table 8.3 

Figure E1.9 Detail categories 
 

Verification - flange butt (detail category 80) 
 
The value of reference fatigue strength for detail category 80 is: 
 

= 80C  N/mm2 

b

t 
 0,2 b
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Accordingly, the design fatigue strength, corrected with size effect factor = 0,84sk  
is: 
 

/ = 80·0,84 / 1,35 = 50C Mf  N/mm2 
 
Check: 
 

,2·Ff E
C

Mf

 

 
30,4 < 50 , the condition is satisfied 
 

Verification - flange at cope (detail category 71) 
 
The value of reference fatigue strength for detail category 71 is: 
 

= 71C  N/mm2 
 
Accordingly, the design fatigue strength, corrected with size effect factor = 0,84sk
is: 
 

/ = 71·0,84 / 1,35 = 44C Mf  N/mm2 
 
Check: 
 

,2·Ff E
C

Mf

 

 
30,4 < 44 , the condition is satisfied 
 

Verification - web at cope (detail category 125) 
 
The value of reference fatigue strength for detail category 125 is: 
 

= 125C  N/mm2 
 
Accordingly, the design fatigue strength is: 
 

/ = 125 / 1,35 = 92,5C Mf  N/mm2 
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The design stress range corrected with the stress concentration factor kf is: 
 

,2· = 2,4·30,4 = 73f Ek  N/mm2 
 
Check: 
 

,2·Ff E
C

Mf

 

 
73 < 92,5 , the condition is satisfied 
 

Verification – web butt at cope (detail category 112) 
 
The value of reference fatigue strength for detail category 112 is: 
 

= 112C  N/mm2 
 
Accordingly, the design fatigue strength is: 
 

/ = 112 / 1,35 = 83C Mf  N/mm2 
 
The design stress range corrected with the stress concentration factor kf is: 
 

,2· = 2,4·30,4 = 73f Ek  N/mm2 
 
Check: 
 

,2·Ff E
C

Mf

 

 
73 < 83 , the condition is satisfied 
 
In cases where a transverse web stiffener is attached to the bottom flange, 
according to Table 8.4, EN 1993-1-9, the detail category would be 80, see Figure 
E1.10. 
 
 
 
 
 

Figure E1.10 Detail category 80 
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Verification – transverse web stiffener (detail category 80) 
 
The value of reference fatigue strength for detail category 80 is: 
 

= 80C  N/mm2 
 
Accordingly, the design fatigue strength is: 
 

/ = 80 / 1,35 = 59C Mf  N/mm2 
 
Check: 
 

,2·Ff E
C

Mf

 

 
30,4 < 59 , the condition is satisfied 

5.1.4 Design stress ranges – cross-section 3-3 

According to Table E1.1, the ratio of M in lane 2 to M in lane 1 is 762/800 = 
0,953. The value of 4 is: 
 

0,2
4 = (1 + 0,953) = 1,14  

 
The damage equivalent factor  is: 
 

1 2 3 4= · · · = 2,35·0,62·1,037·1,14 = 1,72  
 
At cross-section 3-3, the stress range in the top flange is negligible. The stress 
range in the bottom flange is found according to Table E1.3 is 25,6 N/mm2. 
 
The design stress range is: 
 
bottom flange ,2 2= · · · = 1,0·1,72·1,0·25,5 = 43,9E Ff p  N/mm2 
 
The determination of the appropriate category for the actual structural detail, the 
transverse web stiffener, is as follows. 
 
According to Table 8.4, EN 1993-1-9, constructional detail 7 can be applied for a 
vertical stiffener welded to a plate girder. For the transverse web stiffener, the most 
onerous detail category is category 80. 
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Verification – transverse web stiffener (detail category 80) 
 
The value of reference fatigue strength for detail category 80 is: 
 

= 80C  N/mm2 
 
Accordingly, the design fatigue strength is: 
 

/ = 80 / 1,35 = 59C Mf  N/mm2 
 
Check: 
 

,2·Ff E
C

Mf

 

 
43,9 < 59 , the condition is satisfied 

5.2 Assessment of reinforcing steel 

The fatigue assessment of the longitudinal reinforcement is carried out according 
to clause 6.8.5, EN 1992-1-1 as follows (the similar criterion as for the structural 
steel structure and therefore assuming the use of the fatigue load model FLM 3): 
 

, ,· ( *)F fat S equ N
,

( *)Rsk

S fat

N
 

 
where: 
 
N* = 106 cycles 

Rsk = 162,5 N/mm2 stress range for N* cycles, 
F,fat = 1,0 is the partial factor applied to the fatigue load 

model (FLM3), 
S,fat = 1,15 is the partial factor for the material, 

S,equ = s·| s,max,f  s,min,f | is the equivalent constant amplitude normal stress 
range in reinforcement, 

s is the damage equivalent factor for reinforcement. 
 
The equivalent stress range ,S equ  is referred to in EN 1994-2 as E  and 
according to clause 6.8.6.1, EN 1994-2, it is given by: 
 

max, min,= · ·| – |E f f  
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where: 
 

max,f, min,f  are the maximum and minimum stresses determined in accordance 
with clauses 6.8.4 and 6.8.5, EN 1994-2, 

 is the damage equivalent factor, 
 is the damage equivalent impact factor according to clause 

6.8.6.1(7), EN 1994-2, for road bridges; this factor may be taken as 
equal to 1,0. 

 
The value of  = s and, according to clause NN2.1(102), EN 1992-2, s is given 
by: 
 

,1 ,2 ,3 ,4= · · · ·s fat s s s s  
 
where fat is the damage equivalent impact factor which can be taken for a road 
surface of good roughness as being equal to 1,2. It is important to note that the 
value  duplicated fat, but since is  = 1,0 this is not significant. 

 
Factor s,1 takes into account the damage effects due to the traffic volume 
according to the length L of the influence line for the longitudinal bending moment. 
For intermediate support region and span of 30 m, according to Figure NN.1, 
clause NN 2.1, EN 1992-2, the value of factor s,1 is: 
 

,1 = 0,97s  
 
The factor s,2 takes into consideration the traffic volume and should be 
calculated as: 
 

2,2 =
2,0

Obsk
s

N
Q  

 
where: 
 
NObs is the total number of lorries per year in the slow lane, according to clause 

4.6.1(3), Table 4.5, EN 1991-2. Intermediate values of NObs are not 
excluded. 

k2 is the slope of appropriate S-N curve according to Tables 6.3N and 6.4N, 
EN 1992-1-1. 

Q  is the factor for traffic type, according to Table NN.1, EN 1992-2. 
 
In this example, the following values are adopted: 
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6= 1·10ObsN  heavy vehicles per year and per slow lane, Table 4.5, EN 1991-2 
 

= 0,94Q , medium distance traffic and k2 =9 
 
Thus s,2 is: 
 

2

6

9,2 6 6

1,0·10= · = 0,94· = 0,87
2,0·10 2,0·10

Obsk
s

N
Q  

 
The factor s,3 takes into consideration the design life of bridge and should be 
calculated as: 
 

2
,3 =

100
Yearsk

s

N
 

 
where NYears is the design life of the bridge in years. 
 
Note: 
 
According to EN 1993-2 the design life of the bridge is marked with tLd. 

 
The design life of bridge in this example is chosen as 120 years so that s,3 is: 
 

2 9
,3

120= = = 1,02
100 100

Yearsk
s

N
 

 
The factor s,4 takes into account the effects of the heavy traffic on the other slow 
lanes defined in the design and it can be calculated as: 
 

2
,

,4
,1

= Obs ik
s

Obs

N
N

 

 
where: 
 
Nobs,i is the number of lorries expected on lane i per year, 
Nobs,1 is the number of lorries on the slow lane per year. 

 
In the case of two slow lanes with the same traffic, s,4 is: 
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2

6
, 9,4 6

,1

2,0·10= = = 1,08
1,0·10

Obs ik
s

Obs

N
N

 

 
The damage equivalent factor s is: 
 

,1 ,2 ,3 ,4= · · · · = 1,2·0,97·0,87·1,02·1,08 = 1,12s fat s s s s  
 
The check of reinforcements under fatigue is dealt with for the cross-section at 
internal support – cross-section 1-1. The stress calculations in the reinforcing steel 
bars are therefore calculated based on the cracked section properties. The stress in 
the top bars due to permanent load is 110 N/mm2. The stress range due to the 
fatigue load model, FLM 3, in lane 1 is from 0 to 10,2 N/mm2, Table E1.3. 
 
Remark: 
 
Since the calculation of these values is very comprehensive, in this example we 
will only show the obtained values relevant for fatigue assessment. 

 
According to clause NN.2.1(101), EN 1992-2, to determine the equivalent stress 
range for verification of reinforcing steel, the axle loads of FLM 3 should be 
multiplied by the following factors: 
 

for verification in regions of internal supports by 1,75, 
for verification in other regions by 1,40. 

 
In this example the calculation is carried out for verification in the region of 
internal support, the stress range due to fatigue load model, FLM 3, in lane 1 
should be multiplied with 1,75 giving a range of 18 N/mm2, (1,75·10,2 18 
N/mm2).  
 
Therefore, neglecting tension stiffening, the maximal stress in reinforcement is: 
 

max,f = 110+18 = 128 N/mm2 
 
Since FLM 3 does not cause sagging bending minimal stress in reinforcing steel, 
the minimum stress in the top bars is only due to permanent actions. Therefore, the 
minimum stress in reinforcement is: 
 

min,f = 110 N/mm2 
 
To determine the effect of tension stiffening, the following parameters are needed: 
 
- Cross-section of structural steel girder at internal support, Figure E1.4: 
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Cross-sectional area: = 73720aA  mm2 
 
Second moment of area 10= 1,734·10aI  mm4 
 
- Cross-section of reinforcement bar at internal support, Figure E1.4: 
 
Cross sectional area: = 24216sA  mm2 
 
- Cracked composite cross-section – hogging region, Figure E1.4: 
 
Cross-sectional area: = 97936A  mm2 
Second moment of area: 10= 2,692·10I  mm4 
 
The reinforcement ratio is: 
 

= / = 24216 / (3700·250) = 0,0262s s ctA A  
 
and 
 

10 10= / = (97936·2,692·10 ) / (73720·1,734·10 ) = 2,06st a aAI A I  
 
For concrete C40/50, the mean value of tensile strength is: 
 

= 3,5ctmf  N/mm2 
 
According to clause 6.8.5.4(1), EN 1994-2, with the factor 0,2, the effect of tension 
stiffening is: 
 

0,2· 0,2·3,5= = = 13
· 2,06·0,0262

ctm
s

st s

f
 N/mm2 

 
Thus, the maximum and minimum stresses with tension stiffening are: 
 

,max, max,= + = 128 +13 = 141s f f s  N/mm2 
 

,min,
,min, ,max,

,max,

= · Ed f
s f s f

Ed f

M
M

 

 
The minimum stress with tension stiffening can be calculated using the ratio of 
stresses: 
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min,
,min, ,max,

max,

= · f
s f s f

f

 

 

,min,
110= 141· = 121
128s f  N/mm2 

 
The equivalent stress range is: 
 

max, min,= · ·| – |E f f  
 

= 1,12·1,0·|141 – 121 |= 1,12·20 = 22,4E  N/mm2 
 
The design value of stress range in the reinforcing steel is: 
 

,· = 1,0·22,4 = 22,4Ff S equ  N/mm2 
 
According to Table 6.3.N, EN 1992-1-1,  the value of Rsk for straight bars is: 
 

= 162,5Rsk  N/mm2 
 
Thus, the design value is: 
 

,

162,5= = 141
1,15

Rsk

S fat

 N/mm2 

 
Check: 
 

,·Ff S equ
,

Rsk

S fat

 

 
22,4 < 141 , the condition is satisfied 
 
Note: 
 
For the bent bars, such as at abutment, the value of Rsk  is significantly 
reduced, see Table 6.3.N, EN 1992-1-1. 
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5.3 Assessment of shear connection 

5.3.1 General 

Fatigue verification of the stud connectors is carried out according to clause 
6.8.7.2, EN 1994-2, as follows: 
 

,2·Ff E
,

C

Mf s

 

 
The design value of the shear stress range in shear studs is calculated as: 
 

,2·Ff E  
 
The equivalent constant shear stress range E,2 at 2·106 cycles is given by: 
 

,2 = ·E v  
 
where  is the shear stress range in the cross-section of the stud with nominal 
value of stud diameter d. 
 
The recommended value of the partial factor for action Ff = 1,0. 
 
The value of the damage equivalent factor should be determined in accordance 
with clause 6.8.6.2(3), EN 1994-2: 
 

,1 ,2 ,3 ,4= · · ·v v v v v  
 
According to clause 6.8.6.2 (4), EN 1994-2, for road bridges of the span up to 
100 m the factor v,1 = 1,55. 
 
The values of factors v,2, v,3 and v,4 are calculated in the same manner as for 
structural steel, but with an exponent of 0,125 rather than 0,2. This is because the 
slope of the S-N curve for shear studs is m = 8. 
 
The factor v,2 can be calculated as: 
 

0,1251
,2

0 0

= ( )·( )Obsm
v

NQ
Q N

 

 
where: 
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0 = 480Q  kN and 6
0 = 0,5·10N  

NObs is the total number of lorries per year in the slow lane, according to clause 
4.6.1(3), Table 4.5, EN 1991-2; intermediate values of NObs are not 
excluded, 

Qm1 is the average gross weight (kN) of the lorries in the slow lane obtained 
from the expression: 

 
8

0,125
1 = ( )i i

m
i

n Q
Q

n
 

 
Qi is the gross weight in kN of the lorry i in the slow lane as specified by the 

competent authority, 
ni is the number of lorries of gross weight Qi in the slow lane as specified by 

the competent authority. 
 
The National Annex may give guidance on parameter 2. 

 
In this example, the following values are adopted: 
 

1 = 260mQ  kN 
 

6= 1·10ObsN  
 
Thus, v,2 is: 
 

6
0,125

,2 6

260 1,0·10= ( )·( ) = 0,591
480 0,5·10v  

 
The factor v,3 should be calculated as follows: 
 

0,125
,3 = ( )

100
Ld

v
t

 

 
tLd is the design life of the bridge in years. 

 
For the design life of 120 years, v,3 is: 
 

0,125
,3

120= ( ) = 1,02
100v  

 
The value of v,4 depends on the relative magnitude of stress range due to the 
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passage of FLM 3 in the second lane and is calculated as: 
 

8 8 8 0,1253 3 32 2 2
,4

1 1 1 1 1 1 1 1 1

= [1 + ( ) + ( ) +· · ·+ ( ) ]mm k k mk
v

m m m

N QN Q N Q
N Q N Q N Q

 

 
where: 
 
k is the number of lanes with heavy vehicles, 
Nj is the number of lorries per year in lane j, 
Qmj is the average gross weight of the lorries in lane j, 
j is the value of the influence line for the internal force that produces the 

stress range in the middle of lane j to be inserted in the equation with a 
positive sign. 

 
In this example for FLM 3 and two traffic lanes v,4 is calculated as: 
 

0,125
4

2= (1 + )
1

effect in line
effect in line

 

5.3.2 Design shear stress – cross-section 1-1 

According to Table E1.2, the ratio of V in lane 2 to V in lane 1 is 238/275 = 
0,865. Thus, the value of v,4 is: 
 

0,125
,4 = (1 + 0,865) = 1,081v  

 
The damage equivalent factor v is: 
 

,1 ,2 ,3 ,4= · · · = 1,55·0,591·1,023·1,081 = 1,013v v v v v  
 
The longitudinal shear flow for uncracked composite cross-section without 
reinforcement can be calculated as: 
 

· ·
·

Ed c

y

V A z
n

 

 
where: 
 
VEd is the shear force, 
Ac is the area of concrete flange, 
z  is the distance between the neutral axis and the centroidal axis of concrete 

section (mm), 
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n is the modular ratio, 
Iy is the second moment of area of the effective cross-section of the member. 
 
The shear stress range can be calculated as: 
 

2=
( )·( · / 4)E

shear flow for cyclic loading
number of studs per unit length d

 

 
At cross-section 1-1, the studs are in rows of two at 150 mm spacing. The diameter 
of shear studs is 19 mm. 
 
For the considered section, Figure E1.4, the obtained value of longitudinal shear 
flow is: 
 

3
10

· · 950000·229= 275· ·10 = 275·0,817 = 225
· 6·4,438·10

Ed c

y

V A z
n

 kN/m 

 
The stress range in a shear stud is: 
 

2=
( )·( · / 4)E

shear flow for cyclic loading
number of studs per unit length d

 

 

2

225000= = 59,5
1 / 0,15·2·(19 · / 4)E  N/mm2 

 
The equivalent constant shear stress range E,2 at 2·106 cycles is: 
 

,2 = ·E v  
 

,2 = 1,013·59,5 = 60,3E  N/mm2 
 
According to clause 6.8.3(3), EN 1994-2, the value of reference fatigue strength for 
a shear stud is: 
 

= 90C  N/mm2 
 
According to clause 2.4.1.2(6), EN 1994-2, the recommended value of the partial 
factor for fatigue strength of shear studs is: 
 

Mf,s = 1,0 
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Accordingly, the design fatigue strength for the shear studs is: 
 

,/ = 90 / 1,0 = 90C Mf s  N/mm2 
 
Check: 
 

,2·Ff E
,

C

Mf s

 

 
60,3 < 90 , the condition is satisfied 
 
Note: 
 
According to clause 6.8.7.2(2), EN 1994-2, where the maximum stress in the 
steel flange to which stud connectors are welded is tensile, the interaction 
between shear stress range in the weld of a stud and the normal stress range in 
the steel flange must be verified as: 
 

,2 ,2

,

· ·
+

/ /
Ff E Ff E

c Mf c Mf s

 1,3 

 
Stresses which occur at the same time must be used in verification. However, the 
most onerous values of C and C can be conservatively used. The most onerous 
detail category in the steel flange is = 80C  N/mm2. 
 
Check: 
 
1,0·6,8 1,0·60,3+ = 0,76 < 1,3
80 / 1,0 90 / 1,0

, the condition is satisfied 

5.3.3 Design shear stress range – cross-section 2-2 

According to Table E1.2, the ratio of V in lane 2 to V in lane 1 is 93/102 = 
0,912. Thus, the value of v,4 is: 
 

0,125
,4 = (1 + 0,912) = 1,084v  

 
The damage equivalent factor v is: 
 

,1 ,2 ,3 ,4= · · · = 1,55·0,591·1,023·1,084 = 1,016v v v v v  
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At the cross-section 2-2, the studs are in rows of two at 150 mm spacing. The 
diameter of shear studs is 19 mm. 
 
For the considered section, Figure E1.4, the obtained value of longitudinal shear 
flow is: 
 

3
10

· · 950000·229= 102· ·10 = 102·0,817 = 83,3
· 6·4,438·10

Ed c

y

V A z
n

 kN/m 

 
The stress range in a shear stud is: 
 

2=
( )·( · / 4)E

shear flow for cyclic loading
number of studs per unit length d

 

 

2

83300= = 22,0
1 / 0,15·2·(19 · / 4)E  N/mm2 

 
The equivalent constant shear stress range E,2 at 2·106 cycles is: 
 

,2 = ·E v  
 

,2 = 1,016·22,0 = 22,4E  N/mm2 
 
According to clause 6.8.3(3), EN 1994-2, the value of reference fatigue strength for 
a shear stud is: 
 

= 90C  N/mm2 
 
According to clause 2.4.1.2(6), EN 1994-2, the recommended value of the partial 
factor for fatigue strength of the shear studs is: 
 

Mf,s = 1,0 
 
Accordingly, the design fatigue strength for the shear studs is: 
 

,/ = 90 / 1,0 = 90C Mf s  N/mm2 
 
Check: 
 

,2·Ff E
,

C

Mf s
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22,4 < 90 , the condition is satisfied 

5.3.4 Design shear stress range – cross-section 3-3 

According to Table E1.2, the ratio of V in lane 2 to V in lane 1 is 72/80 = 0,800. 
Thus, the value of v,4 is: 
 

0,125
,4 = (1 + 0,800) = 1,076v  

 
The damage equivalent factor v is: 
 

= 1,55·0,591·1,023·1,076 = 1,008v  
 
At the cross-section 3-3, the studs are in rows of two at 150 mm spacing. The 
diameter of shear studs is 19 mm. 
 
For the considered section, Figure E1.5, the obtained value of longitudinal shear 
flow is: 
 

3
10

· · 950000·179= 80· ·10 = 80·0,843 = 67,4
· 6·3,362·10

Ed c

y

V A z
n

 kN/m 

 
The stress range in a shear stud is: 
 

2=
( )·( · / 4)E

shear flow for cyclic loading
number of studs per unit length d

 

 

2

67400= = 17,8
1 / 0,15·2·(19 · / 4)E  N/mm2 

 
The equivalent constant shear stress range E,2 at 2·106 cycles is: 
 

,2 = ·E v  
 

,2 = 1,015·17,8 = 18,1E  N/mm2 
 
According to clause 6.8.3(3), EN 1994-2, the value of reference fatigue strength for 
a shear stud is: 
 

= 90C  N/mm2 
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According to clause 2.4.1.2(6), EN 1994-2, the recommended value of the partial 
factor for fatigue strength of shear studs is: 
 

Mf,s = 1,0 
 
Accordingly, the design fatigue strength for the shear studs is: 
 

,/ = 90 / 1,0 = 90C Mf s  N/mm2 
 
Check: 
 

,2·Ff E
,

C

Mf s

 

 
18,1 < 90 , the condition is satisfied 

5.3.5 Design shear stress – cross-section 4-4 

According to Table E1.2, the ratio of V in lane 2 to V in lane 1 is 262/285 = 
0,919. Thus, the value of v,4 is: 
 

0,125
,4 = (1 + 0,919) = 1,085v  

 
The damage equivalent factor v is: 
 

= 1,55·0,591·1,023·1,085 = 1,017v  
 
At the cross-section 4-4, the studs are in rows of two at 150 mm spacing. The 
diameter of shear studs is 19 mm. 
 
For the considered section, Figure E1.5, the obtained value of longitudinal shear 
flow is: 
 

3
10

· · 950000·179= 285· ·10 = 285·0,843 = 240
· 6·3,362·10

Ed c

y

V A z
n

 kN/m 

 
The stress range in shear stud is: 
 

2=
( )·( · / 4)E

shear flow for cyclic loading
number of studs per unit length d

 

 



856 E     Fatigue 
 

 

2

240000= = 63,5
1 / 0,15·2·(19 · / 4)E  N/mm2 

 
The equivalent constant shear stress range E,2 at 2·106 cycles is: 
 

,2 = ·E v  
 

,2 = 1,017·63,5 = 64,6E  N/mm2 
 
According to clause 6.8.3(3), EN 1994-2, the value of reference fatigue strength for 
a shear stud is: 
 

= 90C  N/mm2 
 
According to clause 2.4.1.2(6), EN 1994-2, the recommended value of the partial 
factor for fatigue strength of shear studs is: 
 

Mf,s = 1,0 
 
Accordingly, the design fatigue strength for the shear studs is: 
 

,/ = 90 / 1,0 = 90C Mf s  N/mm2 
 
Check: 
 

,2·Ff E
,

C

Mf s

 

 
64,6 < 90 , the condition is satisfied 

6. Commentary 

In accordance with EN 1994-2, the equivalent stress ranges simplified method 
was used for the fatigue calculations. This example shows the determination of 
the parameters involved in a fatigue verification: applied stress ranges, fatigue 
strength of details and damage equivalent factors. In order to assist a structural 
designer in choosing the correct detail category, this example illustrates how the 
details can be classified. 
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E2 Fatigue assessment for a composite beam of a floor 
structure 

1. Purpose of example 

One purpose of this example is to check the fatigue resistance of reinforcement and 
shear studs of a composite beam. A floor structure for a storage building consists of 
composite beams over two spans of 10 m that act compositely with the slab. The 
composite slab consists of profiled steel sheeting with an in-situ reinforced 
lightweight concrete topping. The characteristic imposed floor load is qk = 7,0 
kN/m2. Also it is assumed that one transport vehicle (a forklift) moves on the floor 
along a fixed path. The actions are determined from the pattern of the vehicle’s 
wheel loads. The static value of wheel loads is determined from permanent weights 
and hoisting loads, and the spectra of loads is used to define the appropriate 
combination factors and fatigue loads. 
 
The example demonstrates the calculation of stresses and stress ranges for a 
composite structure using elastic global analysis with cracked concrete.  

2. Static system, cross-section and actions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure E2.1 Floor layout and static system 
 

b 
=

 2
,5

 m
 

L1 = 10,0 m 

Slab span 

b 
=

 2
,5

 m
 

L2 = 10,0 m 

Composite 
beam 

L1 = 10,0 m L2 = 10,0 m
A B C 
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= 130h  mm, = 80ch  mm, = 50ph  mm 
Figure E2.2 Cross-section of composite beam 

 
Actions 
 
a) Permanent action 
 
Remark: 
 
According to Table 11.1, clause 11.3, EN 1992-1-1 the density of the lightweight 
aggregate concrete of density class 1.8 and strength class LC25/28 is 18,5 
kN/m3. According to EN 1991-1-1 the density is increased by 1 kN/m3 for  
normal percentage reinforcement, and increased for the wet concrete by an 
additional 1 kN/m3. 

 
Concrete slab area per m width: 
 

1 +1000= 1000· – ( · · )
2

r
c p

s

b b
A h h

b
 

 
1000 125 +75= 1000·130 – ( · ·51) = 104500
200 2cA  mm2 = 1050 cm2 

 
- concrete slab and reinforcement (dry concrete) 
 
 Ac·19,5 = 0,105·19,5 = 2,05 kN/m2 
 
Composite stage 
 
- concrete slab = 2,05 kN/m2 
 

tw

st

beff  

hch hsc 

hp 

ha 

ba 

bs = 200 mm

b0 = 100 mm

hp/2 

br = 75 mm 
 12/125  12/200 

bb = 75 mm 

zst = 42 mm 
zsl = 30 mm 

IPE 450

b1 = 125 mm
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- profiled steel sheeting = 0,17 kN/m2 
 
- steel beam = 0,30 kN/m2 
 
Total ,1 = 2,52kg  kN/m2 
 
Floor finishes ,2 = 1,00kg  kN/m2 
 
b) Variable action 
 
- imposed floor load (category of use C3) and movable partitions = 7,00kq  kN/m2 
 
 
 
 
 
 
 
 

Figure E2.3 Imposed load (non cyclic) 
 
c) Fatigue load 
 
The four-wheeled forklift with two characteristic axle loads of 35 kN each is taken 
as the cyclic load (fatigue loading). The forklift moves along a fixed path 2,0 m 
wide. This path is free from other imposed loads and it is at right angles to the 
composite beam ABC, Figure E2.3. 
 
The spacing of composite beams is 2,5 m and it is less than the axle spacing. 
Accordingly, each passage of the forklift can be represented by two cycles of point 
load, 0 – 35 – 0 kN. The load is applied at point D, Figure E2.4. The adopted 
design working life is 25 years. We assume 25 passages per hour and 4000 h/year. 
Thus, these data give NEd = 2,5·106 cycles of each point load. The partial factor for 
fatigue load is Ff = 1,0. 
 
 
 
 
 
 
 
 

Figure E2.4 Fatigue load 

qk 

A B C 10,0 m 5,0 m 3,0 m 
1,0 m 

1,0 m 

D

qk 

A B C 10,0 m 5,0 m 3,0 m
1,0 m 

1,0 m 

Qfat = 35 kN force from one axle

D
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3. Properties of materials 

Concrete strength class: LC 25/28 = 25ckf  N/mm2 

 25= = = 16,7
1,5

ck
cd

c

f
f  N/mm2 

 0,85fcd = 0,85·16,7 = 14,2 N/mm2 
 = 31000cmE  N/mm2 
 = 2,6ctmf  N/mm2 
 = 20752lcmE  N/mm2 
 = 2,32lctmf  N/mm2 
 
Reinforcement: ductility class B or C (Table C.1., EN 1992-1-1)  fsk = 500 N/mm2 

  500= = = 435
1,15

sk
sd

s

f
f N/mm2 

  Es = 210000 N/mm2 
 
Structural steel: S355 fyk = 355 N/mm2 

 355= = = 355
1,0

yk
yd

M

f
f  N/mm2 

  Ea = 210000 N/mm2 

 
Shear connectors: ductile headed studs fu = 500 N/mm2 
 d = 19 mm 
 hsc = 95 mm 

 95= = 5 > 4,0
19

sch
d

= 1,0  
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4. Properties of the IPE 450 cross-section 

The IPE 450 section is adopted with the cross-section and the dimensions shown in 
Figure E2.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Wpl,y = 1702 cm3 
Wel,y = 1500 cm3 

Aa = 98,82 cm2 
ha = 450 mm 
ba = 190 mm 
tw = 9,4 mm 

tf = 14,6 mm 
r = 21 mm 

Iy,a = 33740 cm4 
Iz,a = 1676 cm4 

Iw,a = 791000 cm6 
It,a = 66,87 cm4 
g = 77,6 kg/m 

Figure E2.5 Cross-section and dimensions of IPE 450 

5. Effective widths of concrete flange 

Effective widths of concrete flange are taken from example B8: 
 

for the mid-span region = 2,23effb  m 

for the internal support region = 1,35effb  m 

at the end support = 1,84effb  m 

6. Classification of composite cross-section 

The classification of the composite cross-section was done in example B8. The 
cross-section was classified as class 2. 

7. Flexural properties of elastic cross-section 

The flexural properties were calculated in example B8 and the obtained results are 
given in Table E2.1. 
 
 
 
 
 

tw 
tf 

ba

ha
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Table E2.1 Elastic section properties of the composite cross-section 

Cross-section Modular 
ratio 

beff 
(m) 

Neutral axis1 
(mm) 

Neutral axis2 
(mm) 

Iy  
(106 mm4) 

1) Support, cracked, 
reinforced — 1,35 36 — 452 

2) Mid-span, 
uncracked 10,1 2,23 202 113 966 

3) Mid-span, 
uncracked 20,2 2,23 148 167 799 

4) Mid-span, 
uncracked 28,3 2,23 123 192 720 

1 The distance between the neutral axis and the centroidal axis of steel section 
2 The distance between the neutral axis and the centroidal axis of concrete section 

8. Global analysis 

8.1 Introductory considerations 

The calculation of internal forces and moments should be carried out by elastic 
global cracked analysis in accordance with clauses 5.4.1 and 5.4.2, EN 1994-1-1 
and for combination of actions given in clause 6.8.3, EN 1992-1-1. 
 
The effects of cracking are taken into account by using the flexural stiffness of 
cracked section over 15% of the span on each side of the internal support, and 
the flexural stiffness of uncracked section elsewhere. 
 
The effects of creep and shrinkage of concrete are taken into account by using 
corresponding modular ratio: 
 
n0 = 10,1 for fatigue load 
 
n = 20,2 for permanent and variable action 
 
n = 28,3 for shrinkage 

8.2 Calculation of bending moment at support B 

Permanent load on composite beam 
 
The continuous beam is unpropped at the construction stage. Only the load from 
floor finishes is relevant for the calculation of stress ranges. Thus, the characteristic 
load from floor finishes gk,2 = 1,0 kN/m2 is taken into account. The calculation of 
bending moments and internal forces is performed using commercial software for 
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the static system and the design load shown in Figure E2.6. The concrete is cracked 
at a length of 0,15 L on each side of internal support. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure E2.6 Permanent action on the composite beam  
 (weight of floor finishes only) 

 
Second moments of area are given in Table E2.1: 
 

6
1 = 799·10I  mm4, mid-span, uncracked, n = 20,2 

6
2 = 452·10I  mm4, support, cracked, reinforced 

 
Therefore, the corresponding flexural stiffnesses are: 
 

1 = 167790aE I  kNm2 

2 = 94920aE I  kNm2 
 
The characteristic load from the floor finishes is: 
 

,2= · = 2,5·1,0 = 2,50k kg b g  kN/m 
 
Bending moments and shear forces are shown in Figure E2.6. 
 

2,50 kN/m 

A B C 
10,0 m 10,0 m 

0,15 L 0,15 L 

D4,0 m 

MEk 

VEk 

26,1 kNm 

15,1 kN 

9,9 kN 

5,1 kN 

14,3 kNm 

EaI1 EaI2 EaI1 
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Imposed load on composite beam 
 
The continuous beam with cracked sections in hogging region and the 
characteristic imposed load are shown in Figure E2.7. The calculation of bending 
moments and shear forces is carried out for the characteristic imposed load qk = 7,0 
kN/m2 acting on span AB and on 10 m only of span BC. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure E2.7 Imposed load on composite beam (non cyclic) 
 
Second moments of area are given in Table E2.1: 
 

6
1 = 799·10I  mm4, mid-span, uncracked, n = 20,2 

6
2 = 452·10I  mm4, support, cracked, reinforced 

 
Therefore, the corresponding flexural stiffnesses are: 
 

1 = 167790aE I  kNm2 

2 = 94920aE I  kNm2 
 
The characteristic load from floor finishes is: 
 

= · = 2,5·7,0 = 17,5k kq b q  kN/m 

17,5 kN/m 

A B C 
10,0 m 10,0 m 

0,15 L 0,15 L 

D4,0 m 

MEk 

VEk 

156 kNm 

82 kN 

57,9 kN 

29,5 kN

41,4 kNm 

EaI1 EaI2 EaI1 

2,0 m 

103 kN 
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Bending moments and shear forces are shown in Figure E2.7. 
 
Shrinkage 
 
The secondary effect of shrinkage in this beam, the hogging bending moment at 
internal support, is calculated as follows.  
 
The primary bending moment due to shrinkage is calculated in accordance with the 
model given in Figure B8.43, Example B8. The primary bending moment due to 
shrinkage is: 
 

= 137csM  kNm 
 
The second moment of area for the cracked section at internal support I2 and the 
second moment of area for uncracked section I1 at mid-span with the modular ratio 
n = 28,3 are given in Table E2.1, and they are: 
 

1 = 45200I  cm4 and 1 = 72000I  cm4 
 
Therefore, the corresponding flexural stiffnesses are: 
 

1 = 151200aE I  kNm2 

2 = 94920aE I  kNm2 
 
In the region of the cracked concrete, the shrinkage effects are neglected and the 
primary bending moments act on the beam at the points shown in Figure E2.8. 
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Figure E2.8 Calculation of secondary bending moment due to shrinkage 
 
The secondary sagging bending moment due to shrinkage at point B is: 
 

, , = 121Ek sh BM  kNm 
 
Fatigue load 
 
The analysis is carried out for the fatigue load Qfat alone, with 15% of each span 
cracked, as shown in Figure E2.9. The second moments of area are given in Table 
E2.1: 
 

6
2 = 452·10I  mm4, support, cracked, reinforced 

6
1 = 966·10I  mm4, mid-span, uncracked, n0 = 10,1 

 
Therefore, the corresponding flexural stiffnesses are: 
 

1 = 202860aE I  kNm2 

2 = 94920aE I  kNm2 
 
Bending moments and shear forces are shown in Figure E2.9. 

A B C 

MEk 

VEk 

121 kNm 
64,5 kNm 

12,1 kN 

12,1 kN 

Primary bending moment Mcs 

Secondary bending moment Msh 

EaI1 

0,15 L20,15 L1

EaI2

L2 L1 

EaI1

Mcs Mcs
Mcs Mcs

D 4,0 m 

137 kNm 

12,1 kN

12,1 kN
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Figure E2.9 Fatigue load and bending moments on the composite beam 
 
The characteristic values of bending moments at support B calculated for particular 
action are given in Table E2.2. 
 
Table E2.2 Characteristic values of hogging bending moments at support B 

Action 
Load 

(kN/m) 
Qfat 
(kN) 

Modular 
ratio 

I1 
(106 mm4) 

I2 
(106 mm4) 

MEk,B 
(kNm) 

Permanent (on 
composite beam) 2,5 — 20,2 799 452 26,1 

Variable, imposed 
load, static 17,5 — 20,2 799 452 156 

Shrinkage — — 28,3 720 452 121 
Cyclic load 

(fatigue) — 35,0 10,1 966 452 25,9 

Qfat = 35 kN 

A B C 

0,15 L 0,15 L 

25,9 kNm 

68,5 kNm 

D 

MEk 

VEk 

23,6 kN 

11,4 kN 

EaI1 EaI2 EaI1 

10,0 m 5,0 m 3,0 m 
1,0 m 

1,0 m 

2,6 kN
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9. Fatigue assessment 

9.1 General 

Clause 6.8.4(1), EN 1994-1-1, refers to clause 6.8.3, EN 1992-1-1 for the 
combination of actions. According to clause 6.8.3(3), EN 1992-1-1, the cyclic 
action should be combined with the unfavourable basic combination. This 
combination of actions, called the basic combination plus the cyclic action, can 
be expressed as: 
 

, 1,1 ,1 2, ,>=1 >1
"+" "+ · "+" · "+ "k j k i k i fatj j

G P Q Q Q  

 
where Qk,1 and Qk,i are non-cyclic variable actions and Qfat is the cyclic load. In 
this case, only one G and one Q are relevant and there is no pre-stress, P = 0. 
Accordingly, the design combination is: 
 

1+ · +k k fatG Q Q  
 
In this combination, it is assumed that the non-cyclic loading co-exists with the 
design value of cyclic load. Then, it is the frequent combination.  

 
Therefore, the frequent combination of variable actions (non-cyclic) with the 
combination factor of 1 = 0,7 is considered. From Table E2.2, the characteristic 
value of imposed load is qk = 17,5 kN/m. 
 
Therefore, the load acting on span AB and on 10,0 m only of span BC is 1·qk = 
0,7·17,5 = 12,25 kN/m. In this case, the characteristic value of bending moment at 
support B is: 
 

, 1 ,= ·Ek B Ek BM M  
 

, = 0,7·156 = 109Ek BM  kNm 
 
The characteristic values of bending moments of the permanent action, due to 
shrinkage and of the cyclic load are given in Table E2.2. 
 
The minimum design bending moment is calculated as: 
 

, , ,

,
,min, = · + · + ·

Ek B Ek B Ek B

permanent composite imposed shrinkage
Ed f Ff Ff FfM M M M  

 
The minimum design bending moment is: 
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,min, = 1,0·26,1 +1,0·109 +1,0·121 = 256Ed fM  kNm 
 
The maximum design bending moment is calculated as: 
 

,max, ,min, ,= + · cyclic
Ed f Ed f Ff Ek BM M M  

 
The maximum design bending moment is: 
 

,max, = 256 +1,0·25,9 = 282Ed fM  kNm 

 
 
 
 
 
 
 
 
 
 
 

Figure E2.10 Cross-section at internal support, cracked concrete is neglected 
 
The tensile stresses in the longitudinal reinforcement at support B are calculated for 
the cross-section shown in Figure E2.10, as: 
 

,
,0

,

= Ek B
s

s cr

M
W

 

 
The values of hogging bending moments at support B MEk,B, for the characteristic 
values of actions, are given in Table E2.3. 
 
The section modulus, longitudinal reinforcement at support, Ws,cr, is calculated 
according Figure E2.10: 
 

6 6
,

452= ·10 = 1,56·10
(225 +100 – 36)s crW  mm3 

 
The obtained tensile stresses in the longitudinal reinforcement at support B are 
given in Table E2.3. 
 
 

ENA  elastic neutral axis 

beff = 135 cm 

100 mm 

As = 1221 mm2/beff 

30 mm

ENA 

Ta (centroid of steel section) 

225 mm 
 36

Tc
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Table E2.3 Stresses in longitudinal reinforcement at support B 

Action n 
load 

(kN/m) 
MEk,B 

(kNm) 
Ws,cr 

(106 mm3) 
s,0 

(N/mm2) 
Permanent, (on composite 

beam) 20,2 2,50 26,1 1,56 16,7 

Imposed ( 1 = 0,7) 20,2 12,25 109 1,56 69,9 
Shrinkage 28,3 — 121 1,56 77,6 

Cyclic load 10,1 — 25,9 1,56 16,6 
Total   282  180,8 

9.2 Verification for reinforcement at cross-section B 

According to clause 6.8.5.4 (1), EN 1994-1-1, the effects of tension stiffening 
can be taken into account by the simplified procedure that is used for other limit 
states. Thus, the maximum tensile stress in the fully cracked section s,0 is 
increased by s, that is independent of s,0 and of the limit state. 
 
The correction of the stress in the reinforcement for tension stiffening as (7.5), 
EN 1994-1-1, is: 
 

0,4·
=

·
ctm

s
st s

f
 

 
where: 
 
fctm is the mean tensile strength of the concrete, for normal concrete taken as 

fctm from Table 3.1, EN 1992-1-1, or for lightweight concrete as flctm from 
Table 11.3.1, EN 1992-1-1. 

s is the reinforcement ratio, given by s=(As/Act),  
Act is the effective area of the concrete flange within the tensile zone; for 

simplicity the area of the concrete section within the effective width 
should be used, 

As is the total area of all layers of longitudinal reinforcement within the 
effective area Act, 

·=
·st

a a

A I
A I

, with appropriate cross-section properties. 

 
In equation 7.5, EN 1994-1-1, the factor 0,2 should be used in place of the factor 
0,4. 

 
In accordance with Figure E2.10, the following values of properties of cross-
sections are obtained: 
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= + = 9880 +1221 = 11101a sA A A  mm2 
 

2 2 6= ( + · + ·(225 +100 – ) )·10y a a na s naI I A z A z  
 

2 2 6 6= (337,4 + 9880·0,036 +1221·(0,225 + 0,100 – 0,036) )·10 = 452·10yI  mm4 
 
Thus, st is: 
 

6

6

· 11101·452·10= = = 1,51
· 9880·337,4·10st

a a

A I
A I

 

 
The reinforcement ratio s is: 
 

1221= = = 0,0095
80·1600

s
s

ct

A
A

 

 
The correction of the stress in the reinforcement for tension stiffening s is: 
 

0,4·
=

·
lctm

s
st s

f
 

 
0,4·2,32= = 64,7

1,51·0,0095s  N/mm2 

 
However, according to clause 6.8.5.4(1), EN 1994-1-1, in the expression for s a 
factor 0,2 should be used in place of the factor 0,4. Therefore, the correction of the 
stress in the reinforcement for tension stiffening s is: 
 

s = 0,2/0,4·64,7 = 32,4 N/mm2 
 
With the value of the total stress s,0 = 180,8 N/mm2 from Table E2.3, the 
maximum stress in reinforcement s,max,f is: 
 

,max, = 180,8 + 32,4 = 213s f  N/mm2 
 
The simplified rules for calculating stresses are given in clauses 6.8.5.4(2), EN 
1994-1-1 and 6.8.5.4(3), EN 1994-1-1, with reference to Figure 6.26, EN 1994-
1-1. The determination of the stresses s,max,f and s,min,f in the cracked region in 
accordance with Figure 6.26, EN 1994-1-1, is shown in Figure E2.11. 
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Figure E2.11 Stress ranges in reinforcement in concrete cracked regions 
 
According to Figure E2.11, the minimum stress s,min,f in the reinforcement due 
to MEd,min,f can be calculated as: 
 

,min,
,min, ,max,

,max,

= · Ed f
s f s f

Ed f

M
M

 

 
In accordance with Figure E2.11, the minimum stress in the reinforcement is: 
 

,min,
,min, ,max,

,max,

= · Ed f
s f s f

Ed f

M
M

 

 

,min,
256= 213· = 193
282s f  N/mm2 

 
Thus, the stress range, s,f, is: 
 

, ,max, ,min,= – = 213 – 193 = 20s f s f s f  N/mm2 
 
Clause 6.8.3(2), EN 1994-1-1, refers to clause 6.8.4 in EN 1992-1-1, which gives  
the verification procedure for reinforcing steel. In Table 6.3N, EN 1992-1-1, the 
recommended value N* for straight bars is 106. The corresponding value for 
structural steel NC is 2·106, according to EN 1993-1-1. This value is used also for 
shear connectors, clause 6.8.6.2(1), EN 1994-1-1. 
 
For reinforcing steel, the fatigue assessment is carried out as (6.71), EN 1992-1-
1: 
 

s (slab in tension)
s,max,f 

s,f

s,min,f

0
MEd,min,f MEd,max,f M

 fully cracked section
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, ,· ( *)F fat E equ N
,

( *)Rsk

s fat

N
 

 
where: 
 

( *)Rsk N  is the stress range at N* cycles from the appropriate S-N curves 
given in Figure 6.30, EN 1992-1-1 or Table 6.3N, EN 1992-1-1, 

 
, ( *)E equ N  is the damage equivalent stress range for different types of 

reinforcement, and considering the number of loading cycles N*. 
For building construction s,equ(N*) may be approximated by 

s,max. 
s,max is the maximum steel stress range under the relevant load 

combinations, 
,F fat  is the partial factor for fatigue actions (the recommended value is 

1,0), 
,s fat  is the partial factor for reinforcing or pre-stressing steel under 

fatigue loading (the recommended value is 1,15, Table 2.1N, EN 
1992-1-1). 

 
With the values of partial factors ,F fat  and ,s fat  recommended in EN 1992-1-1, 
the expression (6.71), EN 1992-1-1, can be shown as: 
 

, ( *)E equ N
( *)

1,15
Rsk N

 

 
In cases where a stress range E(NE) can be calculated, the resistance Rsk(NE) 
can be determined from the S-N curve for reinforcing steel. The verification is 
carried out as: 
 

( )E EN
( )

1,15
Rsk EN

 

 
According to clause 6.8.4, EN 1992-1-1, the following values are adopted: 
 
m = 9 for NE > 106,    N* = 106,   Rsk (N*) = 162,5 N/mm2 
 
The damage equivalent stress range can be determined according to Palmgren–
Miner rule as follows: 
 



874 E     Fatigue 
 

 

, ,( ) ·( ) = ( ) ·( *)m m
s f Ed E equN N  

 

, 1
,

( ) ·( )
= [ ]

( *)

m
s f Ed m

E equ

N
N

 

 
The damage equivalent stress range for NEd = 2·2,5·106 = 5·106 cycles of stress 
range , = 20s f  N/mm2 is: 
 

, 1
,

( ) ·( )
= [ ]

( *)

m
s f Ed m

E equ

N
N

 

 
9 6

1 9
, 6

(20) ·(5·10 )= [ ] = 24
(10 )E equ  N/mm2 

 
The verification is carried out as: 
 

( )E EN
( )

1,15
Rsk EN

 

 
With E(NE) = E,equ = 24 N/mm2 and the resistance Rsk(NE) = 162,5 N/mm2, 
we have: 
 

24 162,5
1,15

 

 
24 N/mm2 < 141,3 N/mm2 the reinforcement is verified 

9.3 Verification for shear connection near point D 

The diagram of vertical shear forces due to the fatigue load is shown in Figure 
E2.9. Vertical shear is higher on the left of point D than on the right. From Figure 
E2.9 the value of shear force is VEd,f = 23,6 kN for each axle load. 
 
The values of vertical shear for other actions are: 
 
VEd = 5,1 kN, permanent load on composite beam, Figure E2.6 
 
VEd = 1·29,5 = 0,7·29,5 =20,7 kN, imposed load on composite beam, Figure E2.7 
 
VEd = 12,1 kN, shrinkage, Figure E2.8 
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The longitudinal shear flow for the uncracked composite cross-section without 
reinforcement can be calculated as: 
 

· ·
·

Ed c

y

V A z
n I

 

 
where: 
 
VEd is the shear force, 
Ac is the area of concrete flange, 
z  is the distance between the neutral axis and the centroidal axis of concrete 

section (mm), Table E2.1, 
n is the modular ratio, 
Iy is the second moment of area of the effective cross-section of the member. 

 
The obtained values of longitudinal shear flow are shown in Table E2.4. 
 
Table E2.4 The longitudinal shear per unit length (shear flow) near point D 

Action Modular 
ratio 

Ac 
(106 mm2) 

Iy 
(106 mm4) 

z  
(mm) 

VEd 
(kN) 

· ·
·

Ed c

y

V A z
n I

(kN/m) 
Permanent on 

composite beam 20,2 0,2 799 167 5,1 10,6 

Imposed 
1 = 0,7 

20,2 0,2 799 167 20,7 42,8 

Shrinkage 28,3 0,2 720 192 12,1 22,8 
Cyclic load 10,1 0,2 966 113 23,6 54,7 

Total     61,5 130,9 
 
The maximum vertical shear at point D, including all actions from Table E2.4, is 
61,5 kN. 
 
The maximum longitudinal shear flow for the uncracked unreinforced composite 
cross-section is 130,9 kN/m. The longitudinal shear flow due to the cyclic load is 
54,7 kN/m, Table E2.4. 
 
According to Example B8, the shear connection is five shear studs per unit length, 
with PRd = 51,3 kN/per shear stud, Figure E2.12. 
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Figure E2.12 Arrangement of stud connectors in one 10 m span 
 
According to clause 6.8.1(3), EN 1994-1-1, the maximum longitudinal shear force 
per connector should not exceed to 0,75·PRd for the characteristic combination of 
actions. For the characteristic combination, the shear flow from non-cyclic variable 
action is increased from 54,7 kN/m to 54,7/ 1 = 54,7/0,7 = 78,1 kN/m. Thus, the 
increase is 23,4 kN/m. 
 
The value of shear flow for the characteristic combination is PEk = 
130,9 + 23,4 = 154,3 kN/m. 
 
Accordingly, the ratio of PEk to PRd is: 
 

/ = 154,3 / (5·51,3) = 0,60Ek RdP P  
 
The obtained value is below the limit, 0,75, given in clause 6.8.1(3), EN 1994-1-1. 
 
The shear stress range can be calculated as: 
 

2=
( )·( · / 4)E

shear flow for cyclic loading
number of studs per unit length d

 

 
The shear stress range is: 
 

0 

257 
296 

422 

1,6 4,0 4,4 7,8 10,0 

301 

13 12 2 17 18 

A B 

vL (kN/m) vL,Rd 

vL,Ed for maximum sagging
bending moment 

vL,Ed for maximum hogging 
bending moment 

Number of troughs 

Equivalent number of single studs 

L (m) 

8 12 2 17 11 
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2

54700= = 38,6
5·19 · / 4E  N/mm2 

 
In the expression (6.50), EN 1994-1-1, C is the reference value at 2·106 cycles 
with C equal to 90 N/mm2. According to clause 6.8.3(4), EN 1994-1-1, for studs 
in lightweight concrete with the density class 1.8, the reference value C at 2·106 
cycles is: 
 

2 2= · = ( / 2200) · = (1,8 / 2,2) ·90 = 60C E C C  N/mm2 
 
The design cyclic loading consists of a single load cycle repeated NE times. The 
damage equivalent factor v used in clause 6.8.6.2, EN 1994-1-1 on shear 
connection is calculated using the Palmgren–Miner rule, as follows. 
 
The load cycle causes a shear stress range  in a stud connector and the slope of 
the fatigue strength curve m = 8. Then, the following expression can be given: 
 

8 8
,2( ) = ( ) ·E E E CN N  with NC = 2·106 cycles 

 
Hence: 
 

1/8
,2 / = = ( / )E E v E CN N  

 
From above expression, the equivalent constant range of shear stress E,2 for 2·106 
cycles is given by: 
 

1/8
,2 = ( / )E E E CN N  

 
With NE = NEd = 2·2,5·106 = 5·106, the equivalent constant range of shear stress is: 
 

6 6 1/8
,2 = 38,6·[5·10 / (2·10 )] = 43,3E  N/mm2 

 
For Mf,s = 1,0, the design fatigue strength C = 60 N/mm2. For the verification of 
shear connection, the following condition must be satisfied: 
 

,2E C  
 
Check: 
 

,2E C  
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43,3 N/mm2 < 60 N/mm2 the shear connection is verified 

10. Commentary 

Fatigue verification is mainly needed for bridges, but this example demonstrates 
the application for buildings with composite floors on which a forklift is 
travelling. 
 
Generally, fatigue problems are treated in EN 1993-1-9 in great detail. In EN 
1993-1-9, the unified European rules for fatigue verifications are given. Fatigue 
in reinforcement and concrete is covered in EN 1992-1-1. For a building, fatigue 
of concrete is unlikely to influence design. Fatigue failure of a shear stud 
connector is covered by EN 1994-1-1.  
 
In the analysis of the fatigue limit state the following effects should not be 
neglected: 
 

primary and secondary effects due to shrinkage and creep of concrete flange, 
effects of construction type, 
effects due to temperature. 

 
For building structures, fatigue verification is not required except for specific 
cases. These specific cases are given in clauses of the particular EN as follows: 
 

for concrete, clauses 6.8.1 (1) and 6.8.1 (2), EN 1992-1-1. Fatigue 
verification should be carried out for crane rails, bridges subjected to high 
traffic loads, i.e. for structures and structural components that are subjected 
to cyclic loading. In these cases, verification is carried out separately for 
concrete and reinforcement. 
for structural steel, clause 4(4)B, EN 1993-1-1. There are several cases 
where fatigue should be considered: where members support cranes, 
vibrating machinery or rolling loads, and where members are subjected to 
wind-induced vibrations or crowd-induced oscillations. 
for composite structures, clause 6.8.1 (4), EN 1994-1-1. This clause gives 
guidance for types of building where fatigue assessment may be required. 
According to clause 4(4)B, EN 1993-1-1, this includes buildings where 
members support cranes, vibrating machinery or rolling loads, and where 
members are subjected to wind-induced vibrations or crowd-induced 
oscillations. In accordance with clause 6.8.1, EN 1992-1-1, this includes 
reinforcing steel and concrete components which are subjected to large 
numbers of repetitive loading cycles. 
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F Types of composite joints  
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F1 Beam to beam joints 

Figure F1.1 illustrates four types of secondary beam to primary beam pinned joints. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F1.1 Types of secondary to primary beam pinned joints 
 
In cases where speed of erection is an important consideration, the joint shown in 
Figure F1.2 can be used. In this case, the secondary beam is connected to the 
primary beam by means of the single extended end plate which is welded onto the 
cleat. The cleat is welded onto the top flange of the primary beam. The extended 
end plate is slotted and welded onto the cleat, so the transmission of tensile force 
from the secondary to the primary beam is ensured. 
 
 
 
 
 
 
 
 
 

Stiffener 
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plate 

Fin plate 
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Bolts 

End plate 

Bolts 

Bolted web 
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Figure F1.2 Secondary to primary beam pinned joint 
 
Two variants of continuous beam to beam joints are shown in Figure F1.3. 
Continuity is achieved by means of cover plates welded onto the top flanges of the 
secondary beams and contact plates. Alternatively, the continuity can also be 
ensured by steel reinforcement in the concrete slab. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F1.3 Types of secondary to primary beam rigid joints (continuous) 
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F2 Beam to column joints 

Pinned joints of composite beams to steel or composite columns are often used in 
multi-storey buildings. Pinned joints are normally assumed to give vertical support 
and to be able to rotate without damage. Figure F2.1 illustrates a pinned joint of a 
composite beam to a steel column with angle cleats. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F2.1 Composite beam to steel column pinned joint with angle cleats 
 
The composite joint of partially encased composite beam to steel column is shown 
in Figure F2.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F2.2 Partially encased composite beam to steel column pinned joint with 
 welded web cleat 

 
The joint shown in Figure F2.2 is a very economic joint. A seating cleat may be 
used to help erection. The web cleat is welded to the steel column in the workshop.  
 

Double web 
cleats

Gap (s  10 mm) 

Welded web
cleat

Concrete encasement
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Figure F2.3 illustrates the type of shear plate connection. This type of joint is 
particularly suitable where beam shear is high and/or speed of erection is an 
important consideration. The specific detail of the junction between the shear plate 
and the end plate ensures that the connection integrity is maintained. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F2.3 Beam to column pinned joint 
 
Moment connections are those that are assumed to give vertical support, provide a 
degree of restraint against rotation and develop some moment capacity. Generally, 
joints are classified by stiffness (rigid, nominally pinned or semi-rigid) and by 
strength (full-strength, nominally pinned or partial-strength). Further, clause 5.1, 
EN 1993-1-8 defines the links between the types of global analysis and the types of 
models used for joints. In this way, it is possible to determine whether the 
resistance of the joint, its stiffness or both properties are relevant to the analysis. 
 
Figure F2.4 illustrates the beam to column end plate joint. For frames where the 
depth of construction is limited and where stiffness rather than resistance governs 
design, the semi-rigid joints shown in Figure F2.4 are a very economical solution. 
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Figure F2.4 Beam to column joint with bolted end plates 
 
Appropriate structural details ensure that the forces transmitted from a beam 
through the beam-column connection are distributed between the steel and concrete 
parts of the composite columns. Typical structural details are shown in Figure F2.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F2.5 Typical structural details 
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