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PREFACE

Teaching reinforced concrete design, carrying out research relevant to the behavior of
reinforced concrete members, as well as designing concrete structures motivated the
preparation of this book. The basic objective of this book is to furnish the reader with
the basic understanding of the mechanics and design of reinforced concrete. The
contents of the book conform to the latest edition of the Egyptian Code for the Design
and Construction of Concrete Structures ECP-203. The authors strongly recommend

that the Code be utilized as a companion publication to this book.

The book is aimed at two different ’groups..First,, by treating the material in a logical
and unified form, it is hoped that it can serve as a useful text for undergraduate and
graduate student courses on reinforced concrete. Secondly, as a result of the continuing
activity in the design and construction of reinforced concrete structures, it will be of

value to practicing structural engineers.

Numerous illustrative examples are given, the solution of which has been supplied so
as to supplement the theoretical background and to familiarize the reader with the

steps involved in actual design problem solving.

In writing the book, the authors are conscious of a debt to many sources, to friends, -
colleagues, and co-workers in the field. Finally, this is as good a place as any for the
authors to express their indebtedness to their honorable professors of Egypt, Canada
and the U.S.A. Their contributions in introducing the authors to the field will always
be remembered with the deepest gratitude. ‘

This volume contains the following chapters

Solid slabs

Hollow block slabs

Paneled beams

Flat slabs

Reinforced concrete stairs
Short columns

.Eccentric sections

Slender columns
Reinforced concrete Frames

It also includes appendices containing design aids.
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Photo 1.1 Burj Dubai during construction (2007) -—

1.1 Introduction

Reinforced concrete solid slabs are used in floors, roofs and as decks-of bridges as
shown in Photo 1.1. Slabs may span in one direction or in two directions depending on
the slab dimensions and the surrounding supporting elements. Slabs spanning in one
direction are referred to as one-way slabs while those spanning in two directions are
referred to as two-way slabs.



1.2 One-Way Solid Slabs
1.21 ‘Definition

One-way solid slabs are extensively used in buildings, especially for spans less than 4
meters. To be classified as a one-way slab, the ratio of the long side to the short side
of thfz slab panel must exceed 2. They are referred to as one-way slabs because the
bending is mainly in the short direction. Typically, a 1m wide strip ‘of the slab is
analyzed and the reinforcement required for this strip is used in all parts of the slab.
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Fig. 1.1 One-way slabs
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1.2.2 Structural Behavior

The direction in which the slab bends is called the main direction as shown in Fig 1.1.
The main reinforcement is placed in this direction as illustrated in Fig. 1.2.

For a one-way slab supported on four beams like the one shown in Fig. 1.2, the strip
near the middle acts as a one-way slab. However, at the slab parts. near the edges,
some of the load is transferred in the longitudinal direction producing a two-way slab
action. Thus, top reinforcement should be added on each side of the girder to account
for this action. If this reinforcement is ignored, wide cracks may develop on the top of
the slab along edges (A-B) and (A'-B")

N

Secondary reinforcement
Main reinforcement direction
direction !

Fig. 1.2 Structural action of one-way slabs

The load transferred to the perpendicular direction is almost equal to zero except near
the edge beams (Beams AB and A'B’). Thus, a secondary mesh is required in this
direction (as shown in Figs. 1.2 and 1.3) to carry this small portion and to keep the
main reinforcement in place. Also, the secondary reinforcement is placed to control
cracks produced by shrinkage or temperature changes and to help in distributing
concentrated loads transversely.
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Fig. 1.3 One-way slabs supported on two sides

It should be noted that if a slab panel is supported only on two sides, it would act as
one-way slab regardless of the ratio 6f the long side to the short side. Figures 1.3.a and
1.3.b show examples of slabs act as one way because of having supporting beams on
two sides only.

1.2.3 Effective Span
The effective span (L) for solid slabs is given by the following equation

: +t
) ‘max Of clear s ) ) -
L, =minof 1.05xL,, for simple or continuous slabs ..........ccceueeee. (L.1)
CLtoCL (L)
L =minof { e s for cantilever slab 12
= or cantilever s1abs ......ccciveiiiiiniiineiiee .
- edgeto CL (L) ans (1-2)
ts t
! ! !
i 1 J ! &
| ! J = ! |
] .
|_§_ Lclear 1 _E_I : Lclear 1
i i i '
i L ! o L
Continuous span N Cantilever span

Fig. 1.4 Effective spans for solid slabs

1.2.4  Minimum Thickness

The depth of solid slabs is usually controlled by deflection rather than flexural
strength requirements. The ECP-203 gives the minimurm thickness for one-way slabs
reinforced with high grade steel in which the deflection calculations can be ignored as
listed in Table 1.1. -

Table 1.1 (L,./t)* ratios for members spanning less than 10 meters or cantilevers
spanning less than 2m (f;=400 N/mm?). (Deflection calculations can be ignored)

Simply | Oneend Two ends Cantilever
Element : .
supported continuous continuous
Solid slabs 25 30 36 10
Hidden Beams
20 25 28 8
and hollow blocks .

"Ly is the clear span.

The values listed in Table (1.1) are valid when using high grade steel 400/600. In the

" case of using other types of reinforcing steel, the values mentioned in Table 1.1 should

be divided by factor &, given by:

’ §=0.40+€f516 ST, SRR ¢ W)

Where f, is the yield strength of reinforcing steel in N/mm’.
The code also provides an absolute minimum thickness for one-way slabs

L /30 simplespan
t . =<L/35 continuous from one end ... 1.3)

min

L /40 continuous from two ends
where L is the effective span

In addition, the absolute minimum thickness should not be less than 80 mm for slabs
subjected to static loads and 120 mm for slabs subjected to dynamic loads. The
aforementioned thickness can be reduced in case of prefabricated slabs. To satisfy
serviceability requirements for corrosion and fire protection, the concrete cover should
not be less than 20mm.



1.2.5 Bending moments

The exact solution for determining the bending moment distribution of solid slabs is
complicated. In the case of equal spans with a maximum difference of 20% with equal
uniform loads and the live loads are less than the dead loads (p<g), the Egyptian Code
gives the following values: ) '

For slabs with two spans
w, =1.4(y, xt, +flooring)+1.6w
L

M _w, X Zif
“T ok

The value of the factor k is given in Fig. 1.5.

Fig. 1.5 k-factor for continuous slabs with two spans_

For slabs with three spans or more

My = xsz

k
- The value of the factor k is given in Fig. 1.6.

A NAN pANI
LN NG

10

Fig. 1.6 k-factor for continuous slabs with three spans or more

In the case of unequal continuous one-way slabs, the bending moment can be obtained
using classical structural analysis or computer programs. In this case, the negative
bending moment over supports can be reduced according to a parabolic distribution by
M,/2, where M, is the difference between the bending at the centerline and that at the
support face as shown in Fig. 1.7.

| __Beam or

N

Fig. 1.7 Negative moment reduction in solid slabs

The structural analysis of the slabs shown in Fig. 1.8 may lead to a negative rpqment
at midspan of the interior bay. However, the Egyptian Code requiresz that a minimum
positive bending moment at any span should not be less than w, L°/16 as shown in

Fig. 1.8.

Wal . Waam Wur

HENEEEREN NREREER
A

L §>L...

{ i { L
l LL ' L,,, l R

moment obtained from
structural analysis

Required +ve W XLy,

M in
moment by the code " 16

Fig. 1.8 Minimum positive bending moments in one way slabs

In case of slabs subjected to heavy live loads, the sections at midspan should be
designed to withstand a negative bending moments in addition to a positive bending
moment. The negative moment at midspan equals

Y S U OO (1.4)
24

where g is the dead loads, p is the live loads, and L is the effective span



Example 1.1

Compute and draw the reinforcement details for the reinforced concrete floor shown
in the figure below. The floor is to be designed to carry a live load of 3 KN/m? and 2
flooring material of 1.5 KN/m? using concrete strength of 30 N/mm? and yield strength
of steel of 400 N/mm?. Consider the width of all beams to be 250 mm. .

7.0

1
!

3.0 ! 3.0
i

Floor plan

Solution
Step 1: Estimate the thickness of .the slab

The plan consists of one way slabs. Assume that the slab thickness ¢, is 120 mm for all
slabs in the floor and will be checked as follows.

For one way slab, the minimum thickness is given by

L /30 simplespan -
t..=4L /35 continuousfrom one end

L /40 continuous from two ends
Slabs S; and S5 are-one way slabs continuous from one end thus

L _3.0x1000

Eoin == =86 mm (<t,....0K)
35 35

Also for deflection calculations may be ignored if the thickness is greater than the
values listed in Table 1.1. For the solid slab panel that is continuous from one side
with £;=400 N/mm’ '

L. . (3.0-0.25)x1000

Lo ™ T30 === =91.67 mm <t (Deflection calculation is not necessary)

[g74% - —

7.0

w=11.1 kN/m’ w=11.1kN/m’ w=11.1 kN/m’

3.0 i 3.0 i

Step 2: Calculate the effective span

Since the width of all beams is 250 mm, the clear span is equal to
Letear =L-0.25
where L is the centerline to centerline distance

For the interior panel, the effective span is equal to

{(Lclelrr +t:

max of

LW =min 1.05x L,
CL—>CL

(3-0.25)+0.12=287m

maxo

Ly = 1.05x(3-0.25)=2.89 m
3m '

Ly=2.89m




Step 3: Calculate the Loads
g, =slab weight +flooring =y, xt_ +flooring = 25x0.12+1.5=4.5kN /m*
= Live loads =3kN I m*
wy=14g,+1.6p;
w, =14x4.5+1.6x3=11.10kN /m*
Taking a strip width of 1m (b=1000 mm), the load acting on this strip is equal to
< w, =w, x1=1L10kN /m'
Load transferred in x-direction = 11.1 kN/m’ (main direction)
Load transferred in y-direction = 0 (secondary direction)

Step 4: Bending Moments

Since the slab is continuous with equal spans and equal loading, the bending moments
can be obtained using code coefficients as follows

2
w,x L,

M, =
k

wu/,i,,=ll.10 kN/m”*

Loading iy rrrrrrre i v i iddd
N P A A
| 2.89 | 2.89 | 2.89 |
-24 -10 -10 -24

‘ Moment

factor A +10 »@b +12 . ﬁ@?x +10 3@»

9.25 9.25

3.86 ’ 3.86
Bending DN /\ /\ ]
moments A‘\/ :@b\/ fﬁh\ﬁ
(kN.m)

Critical ‘ l

sections A @ é} »Qir zﬁb

Step 5: Design of reinforcement
Assuming concrete cover of 20 mm
d=120-20 =100 mm

0.6 0.6

A, =——xbxd =——x1000x100 = 150 mm?
) £ 400

Design of Section 1

M= 9.25 kN.m, using the design aids namely R-o curve

Re Mo _ 9.25x10° 1 0a08
fubd? T 30x1000x100°

From the curve, ©®=0.037

4, = };‘"bxd 0037—%0—0x1000x100 276 mm® >Aqmin

s
y

use (2590 10+ 2.5 ® 8/m’) Aj chosen=322 mm’

Design of Section 2

M.,=7.71 kN.m, and using R-o curve

6
M, __T71X10° o ooe

f bar2 30%1000x100°

i

From the curve, ®=0.030

s

A =oteapxd =0.030 22 x1000x100 = 229 mm® >Aq iy
f 400

y

use (5 @ 8/m’) A chosen=250 mm®

Because the slabs are one-way in the x-direction, the moment in the y-direction equals
to zero. However, a secondary reinforcement mesh with cross sectional area of at least
25% of the main steel should be provided.

Use (S @ 8 /m).

10
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Photo 1.2 Cantilever solid slab in a hotel building.
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1.3 Two-Way Slabs

1.3.1 Definition

To classify a slab as a two-way slab, the length of the long side should be less than
twice the length of the short side. The short direction is considered the main direction
because most of the load is transferred in this direction. The main reinforcement is
arranged in the short direction and the secondary reinforcément is arranged in the long
direction. Two-way slabs are those that bend in double curvature as shown in Fig. 1.9,
and thus require steel reinforcement in two directions to prevent excessive cracking
and to limit deflections. The reinforcement is normally positioned parallel to the side
of the slab in both directions. The position of the reinforcement is determined by the
curvature of the slab. The top steel is placed in the negative curvature areas and the
bottom steel in the positive curvature areas. -

Fig. 1.9 Main and secondary reinforcement in two-way slabs

1.3.2 Elastic Analysis of Plates

Textbooks dealing with the theory of elasticity such as the one by Timoshenko and
Krieger contain exact solutions for two-way slabs. The fundamental assumption used
in the analysis of plates under pure bending is that the deflection of the plate (2) is
small in comparison to its thickness ¢ The basic differential equation for the uniformly
loaded-simply supported rectangular plate shown in Fig. 1.101is given by

— 2t — =

at Tt oyt D
where z is the deflection of the plate, w is the uniform load and D is the flexural
rigidity of the plate (similar to EI in beams) and is given by

4 4 4
o'z 8z 0z w (1.5)

E?
—1—2’(‘1:/—2‘)‘ ......................... s (1.6)

13



where E is the modulus of elasticity of the plate, t is the plate thickness and v is
Poisson's ratio.

N e

Fig. 1.10 Elastic analysis of plates

Solving the previous differential equation gives the deflection of the plate. The
solution must satisfy the conditions at the boundaries of the plate. For example, for a
simply supported plate the deflection z along the edges must equal to zero (z=0 and
M,=0 @ x=0 and x=a). Lévy presents one of the famous solutions for this probiem in
1899 in the form of a series of sin curves as follows:

where Y, is function of y only and determined to satisfy the boundary condition.
Having determined the deflection equation, the developed bending moments in the
plate can be obtained using the following relations:

2 2
M, =-D 4 v o L O — (1.8)
. ox dy

2 2
M,=-D 9z Oz .. e nersen e (1.9)

dy ox :
2

M, =-M, =D(-v) OZ e o (1.10)

ox Oy

14

where 82z/8x? is the curvature of the slab in x direction, and 8°2/3y is the curvature in
y direction. A positive curvature corresponds to a curve that is concave downwards.
The magnitude of the moment is proportional to curvature. Equation 1.5 can be
written in the following form: )

'a;%-‘—zgzMa;y +a;i'[; N ¢ R 11
X X

This form indicates that in plates the load w results in:

. Bending moments in strips running in the x-direction (M)
. Bending moments in strips running in-the y-direction (M,)
. Torsional moments (M)

Photo 1.3 Preparation of reinforcement of solid slabs

15



1.3.3 Load Distribution Factors According to ECP 203

As has been shown in 1.3.2, the exact analysis of two-way slabs is complicated and
involves many mathematical computations. However, for simplicity a strip of 1.0 m
width can be analyzed in each direction as a wide beam. The bending moments
resulting from the analysis of such a strip is quite different from those obtained using
the exact plate analysis mentioned in section 1.3.2. This is attributed to the disregard
of the torsional mioment represented by the term &*2/6xdy. For example, for a
uniformly loaded-simply supported square slab, the load transferred in x direction

equals the load transferred in y direction (=w/2). Thus, the maximum bending -

moments developed in a strip of 1.0 m width of the slab is equal

2 2
P S ) L Ve (1.12)

max 8

However, according to the theory of plates the maximum bending for square plate
(v=0.2, Poisson's ratio for concrete) is only equal to

w xa’

M = 0.044wa” = 035X v (1.13)

maxtheo

The difference is quite large (%30) and attributed to the torsional moments developed
in the plate. As the rectangularity ratio increases the load transferred in the short
direction increases and the load transferred in the long direction decreases. The
theoretical analysis of the plates is the basis of the values adopted in the Egyptian
code in which the bending moment of a simply supported slab equals

=

a

(short direction)

2
M, = LW_éf)?_ (long direction)

where o and P represent the percentage of loads causing bending moments in each
direction.

Comparing Eq. 1.13 to Eq. 1.14 gives 0=0.35 for square plates, which is identical to
the value adopted by the Egyptian code. Table 1.2 shows the ECP 203 values for o
and P for different plate rectangularity ratios. The slab load w, transferred in the short
direction is denoted as w, and the load transferred in the longitudinal direction is
denoted as wp as shown in Fig. 1.11, where

W S @ W, oeerereeressesssssessssssessssseseenessssessnnes (1.15.a)

W= oW, s :...(1.15.b)

The distribution factors o and P can be also represented by following set of equations

16

a=L-015
2 ettt nnaens (1.16.2)
B33 (1.16)
id

e

|
a I

y
Fig. 1.11 Load distribution for two-way slabs

- Table 1.2 Values of o and B for solid slab with live loads less than 5 KN/m®

r 1 11 |12 | 13 | 14 1 15 16 | 1.7 | 1.8 | 1.8 2
% 1035|040 | 045|050 055 | 0.60| 065 0.70 | 0.75 | 0.80 | 0.85
p|035]029|025]021]0.18 0.16 | 0.14 | 0.12 | 0.11 ] 0.09 | 0.08

The load transferred in each direction is affected by the continuity condition of the
adjacent slabs. This was taken into consideration when determining the rectangularity
ratio of slabs by using the coefficient m. The value of m depends on the support
condition and is defined as the ratio between the two inflection points to the effective
span. This coefficient is applied in each direction (a, b) to determine the effective
rectangularity ratio  as follows

where
1.0 simplespan
m, or m, =40.87 continuous from one end oo (1.18)

0.76 continuous from two ends

17



The use of the values listed in Table 1.2 is limited to slabs with live loads not more
than 5 KN/m?. If the live loads exceed this limit, the value of a and B should be taken
from Table 2.4 in which the torsional moment is neglected.

Two-way slabs designed according to the previously mentioned procedure have
proven over the years a very satisfactory performance under service loads. This is
attributed to the stress redistribution at higher loads. As a result, the design of two-
way slabs is generally based on empirical moment coefficients even for unequal
spans, which might not give actual prediction of the stresses but give the total amount
of reinforcement. That is why they say, “the total amount of reinforcement in a slab
Seems more important than the exact distribution”. The designer can clearly establish
his design on numerical analysis or on a finite element method as long as they meet all
the ECP 203 requirements for deflection, cracking and reinforcement.

1.34 Minimum Thickness

To control cracking, deflection and to ensure good performance for two-way slab, the
code states that the minimum thickness ¢,,;, should be

al35 simple span
Lo =va/40  continuous from one end —......eueeeeeneeneennnn.. (1.19)

min

al/45 continuous from two ends

where a is the short effective span

Although thin reinforced concrete two-way slabs have high flexural resistance, their
deflections are often large. From the deflection point of view, the thickness is
considered acceptable if it is greater than ¢ calculated using the following equation

fy

1600) 2100 M7 oo, (1.20)
15+20/(b /a)+10 B,

a (O.85+

Where a is the span in the short direction, b is the span in the long direction, B, is the
ratio between the penmeter of the continuous edges to the total perimeter, and f, is the
steel yield strength N/mm?. It is clear that the slab thickness required for deﬂectlon
considerations is higher in case of square slabs with large spans. For example, a slab
reinforced with high-grade steel and continuous from all edges with dimensions of
(5mx5m) requires 122 mm thickness, while a slab with diniensions of (6m x 6m)
requires 146 mm.

18

160
140 e
‘ ——
120 ] (a0 m
\ \
~~ O —
B 101 \ S — a=STT |
E 80 - =4m
Nt
60
40 7 )
£,~400 N/mm ) o
0 continuous from all eds{es
0 }
1 1.2 1.4 1.6 1.8 2

Rectangularity ratio, B

Fig. 1.12 Minimum th‘ickness' of 2-way slabs for deflection control

1.3.5 Related Code Provisions

The minimum area of steel for one and two—way slabs is given by

A, in _06 b d  forall types of steel.....oeeuriiriviinnnis (1.21a)
5, fy
Or
9025, .4 formildsteel (f, ~240and 280 N/mr’)
100
4=l (1.21b)

15 b xd forhigh gradébsteel (f,=360and 400 N/mm?)
100 .

. At least one third of the reinforcement must extend from the support to the -
support.
The maximum distance between bars is 200 mm .
The area of the secondary steel mesh should be at least 20% of the main
area of steel with a minimum of 4 bars per meter.
. The minimum bar diameter is 6 mm for straight bars and 8mm for bf:nt bars.
. Slabs with a thickness of more than 160 mm should be reinforced with top
steel mesh not less than 20% of the main steel with a minimum of 5¢8/m’
for mild steel and 5¢6/m’ for high grade steel.
. Under normal conditions and for spans that do not differ more than 20%,
half of the reinforcement can be bent at the fifth of the clear span and
extends to the adjacent span one fourth the blgger of the two spans as shown

in Fig. 1.13.
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A. Minimum code requirement for bar extension

Fig. 1.13a Reinforcement details for solid slabs
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B. Example of reinforcement for two-way slabs

Fig. 1.13b Reinforcement details for solid slabs
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1.3.6 Corner Reinforcement

Twisting moments are developed at the corners of exterior two-way slabs. The
magnitude of these moments is usually small for slabs spanning less than 4 to 5
imeters. However, for bigger spans (>5 ms) these moments tend to crack the slab.
Special reinforcement should be added to control crackirig and to resist the torsional
moments. Bottom bars are placed perpendicular to the slab diagonal while top bars are
placed in the direction of the diagonal as shown in Fig. 1.14.a. Alternatively, the
diagonal reinforcement can be replaced by top and bottom mats as shown in Fig.
1.14.b. The amount of this reinforcement can be taken as the same area and the
spacing as the main positive reinforcement (per meter). The reinforcement should
extend about one fifth of the clear span in either direction as shown in Fig. 1.14.

N

i ! Top and Botto
r LJ5 {0/7' Bot‘t{;m bars mats Y
\j ‘ - |
- M XA e | i / 1
X S
_ A

LJ/5

L5

i
i
|
i
i
|
i
i
{
i 1

AY
tension on < A tension  :
top \ onbottom!

{
s 0 SRR GHICUNIRIRRSR S TR I RS S

b-using top and bottom

L= longer clear span

a- using skewed bars

_ Fig. 1.14 Corner reinforcement at an exterior two-way slab
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Example 1.2

A reinforced concrete floor is to be constructed as shown in Fig. EX 1.2. Beams with
a cross section of (250 mm x 600 mm) are prov1ded on all column lines. The ﬂoor is
to be designed to carry a live load of 3 kN/m? and a flooring material of 2 kKN/m® using
concrete strength of 25 N/mm’ and reinforcing steel having a yield strength of 360
N/mm?. Calculate and draw the reinforcement required for the floor.

Solution '

Step 1: Estimate the thickness of the slab

The plan consists of one way, two way and cantilever slabs. Assume that the slab
thickness ¢, is 120 mm for all slabs of the floor.

For one way slab

L/30 simplespean.
Lnin = L/35  continuous from one end
L/40 continuous from two ends

Since slabs S¢ and Sg are one-way slabs continuous from two ends, the minimum
thickness is given by

L _24x1000 _

fo = 22T <t.....0k
min 40 40 mm( tS 0 )
‘Also for deflection calculations to be ignored the thickness should be at least:
£= 040+f—=040+@-—095
650 650

; L, _(24-025)x1000
mn T 36/8) - (36/0.95)

=56.73 mm (<ts....0k)

For two way slabs
The biggest slab is S10 (4.8x 5.4 m)

a' /35 simple span
t . =1a 140 continuous from one end

a'/45 continuous from two ends

_a* s the short span

* This span is considered continuous from-one end thus

¢ =2 48000 o) (=t,....0K)
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Fig. EX 1.2 Structural Plan
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For cantilever slabs

There is no direct recommendation for the minimum thickness for cantilever slabs
except for deflection calculations. The minimum thickness for cantilever slabs
reinforced with high grade steel (£,=360 N/mm’ ) equals

- _ L _16x1000
"1 10

From economic point of view, it is better to use thickness of 120 mm and to check the
deflection. ‘

=160 mm >t;

Step 2: Effective span.

Since the width of all beams are 250 mm, the clear span equals
Leicar =L-0.25 . _
where L is the centerline to centerline distance

For interior span, the effective length equals to

N Loowr +15 (L-025)+0.12
[ = min max of o
of 1.05x L, =mun 1.05%x(L ~0.25)
’ CLtoCL L .
For cantilever slabs

L | Lo +14 . [(L-0.125)+0.12
o7 = Imin =min . .
edgetoCL L :

Slab L, Letearx | Lotearx 1.05x | Lemx Ly Lclear.y Lclcar.y 105 x L’eﬂ'.y

+Hs . Lclmn'.x +tg Lclcar.y

S1 3.60 |- - - 3.‘§O 1:.é0 1.08| 1.20} 1.43| 1.20

S2 480| 455| 467| 4.78| 4.78| 4.80| 455 4.67| 4.78| 4.78

83 3.60| 3.35| 347 3.52| 3.52| 4.80| 455} 467 | 478 4.78

S4 160| 148} 160| 1.55| 160] 360 - - - 3.60 

S5 480| 455 467 47871 4.78 360 335 347 | 3.52| 3.82

S6 | 1.80| 1.55| 1.67| 163| 167| 7.20| 695 7.07| 7.30| 7.20

S7 | 400] 3.75] 3.87| 3.94| 3:94| .3.60 "335| 347| 352 352

S8 480) 4.55| 4.67| 478 T.4.78“ 240 215} 2.27 2.26] 227

59 4.00| 3.75| 3.87 | 3.94| 3.94|-3.60| 3.35| 347 3.52 3..52

S10 | 4.80| 455 467 ’4,:/8 "4.78 | 540| 515 527 | 541| 540

S11 | 180] 155 167 163| 167] 420| 3.95| 407 | 4.15| 415

Step 3: Calculation of loads ‘

w, =1.4 g, +1.6 p= 1.4 (25 x t; + flooring) + 1.6 X LL

w, =1.4x(25x0.120+ 2.0)+1.6x3=11.8 kN I m? '

Taking a strip of 1m, the load acting on this strip equals to
w,, =w, x1=11.80kN/m’ and b=1000 mm

For one-way and cantilever slabs
Wo=Wsg, and wp=0

For two-way slabs o : o
The load distribution factors are determined using the rectangularity ratio
. m, xbbigger) o
- m, x a(smaller)
where b and a are the effective spans and
1.0  simplespan
m, or m, ={0.87 continuous from one end
0.76 continuous from two ends

The values of o and B are obtained from Table 1.2

Wo= 0. Wy :

wg= f. Wy,

Please note that w, is the load transferred in the short direction (not x-direction) and
wy is the load transferred in the long direction. For example for slab S8 w,, runs in y-
direction and wg in x-direction, while for slab S10 w,, runs in x-direction and wy in y-
direction.

Slab | Legx | mx - | Lemy |my r o g Wg W

S1 | 360 1] 120| o087| 346| 1.00| 0.00| 11.80 0.00

'S2 | ‘478! os87| 478| 087| 1.00| 035| 0.35 4.13 413

S3 | 352! 087| 478| 087 | 1.36| 053] 0.19| 6.24 224

54 1.60] 0.87] 3.60 1] 259 1.00f{ 0.00 11.80 0.00

S5 | 478| o076| 352| 076 1.36| 053| 019| 624 224

S6 | 167| 076| 720 087 494 1.00| 000| 11:80{ -0.00

ST | 394| 087| 352| 087] 1.12| 041{ 028| 483 330}

S8 478| 087| 227| o076 241 1.00| 0.00| 11.80 0.00

S9 | 304| 087| 352| 087 1.12] o041| 028| -483{ --330)

S0 | 478 1| 540| os7| 102| 036| 034] 423} 399

S11 | 467 11 415!~ 1| 248! 100| 000| 1180} ~-0.00

24

* In Y- direction, slab S3 is not continuous with S6 (one way slab in X- direction).
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Bending moment and reinforcement

The floor slab considered in this example has panels that contain variation in loads
and spans of more than 20%. Exact analysis of such a floor is lengthy and quite
tedious. Due to the fact that R/C slabs have an ability to redistribute the moments, it
has become a common practice to extend the use of the moment coefficients
mentioned in 1.2.5 to most types of floors.

The procedure followed to obtain the design moments in the floor of this example:

1. The positive moment in any span equals to '

w, x L,

M, =

" 2. The negative moment developed at the support connecting two adjacent unequal
spans is conservatively taken as the larger of M,; and M, given by

LZ 2
Mul = wulkx l 4 MuZ = WMZ XLZ
1 2
the larger of the larger of
Mu] and Mug Mug and M,,j L
M. = wul X Lf — wu2 X L; — wu3 X Ll;
ut 10 u2 12 u3 12

For cantilever slabs and assuming that the hand rail weight is 1.5 kN/m’, the bending moment
equals to
w, x 2
—_4 i
=T +1.5x L,

The effective depth equals
d=1-15= 105 mm

in the main direction (o)
d=1t,-25 =95 mm

in the secondary direction ()

_ M, x10° M, x10° M, x40

C fu b d® 25x1000x d®  d°

. 25
A, —_fa_)x?—xbxd:w XS_G—OXIOOOXd =6944xw xd > A

¥y

s,min

Ao = 2250 =06 1000105175 mm?
i =4 =360

Design of Slabs in X-Direction

Siab| Leix | Wax | K | Mu | d R o As As
{m) | (&N/m') (kN.m) | mm required chosen
S1 1360 1000] 0| 0.00 | 95 |0.0000{0.000| - |5®8/m
— 1478 | 413 | 10 | 9.43 | 105 |0.0342|0.041| 299 |3 @ 8/m'+
52 ' . 3 10/m’
S3 352 | 6.24 | 10 | 7.72 | 105 [0.0280{0.033 | 243 |6 O 8/m’
3@ 10/m'+
S4 | 160 |11.80| 2 | 17.40 105 |0.0631|0.079| 573 |3 12/
3@ 8/m'+
S5 | 478 122410} 511 | 95 |0.0226]|0.027 | 176 |3 ¢ 10/m’
‘ ' 3 @ 8/m'+
s6 | 167 |11.80] 12 | 2.74 | 105 |0.0099|0.012| 175 |3 ¢ 10/m’
S7 | 3904 | 330| 10 | 5.11 | 95 |0.0226(0.027 | 176 |6 ® 8/m’
S8 | 478 |000] 0 | 0.00 | 95 |0.0000|0.000| 175 {6 @ 8/m’
S0 | 394 |330] 10 | 511 | 95 |0.0226{0.027| 176 |6 ® 8/m'’
S101 478 13.99| 8 | 11.39| 95 [0.0505]0.062| 408 |6 @ 10/m'’
S111 167 |11.80] 8 | 4.11 | 105 |0.0149]0.017| 175 |5 ® &/m’
Design of Slabs in Y-Direction
Siab| Lemy | Way | kK | My | 'd R ® As As
{m) | (kN/m’) (&N.m) | mm required chosen
S1 | 120 |11.80] 2 | 10.37 | 105 |0.0374|0.045| 325 |3 @ 8/m'+
3@ 10/m’
52 [ 478 1413 | 10| 943 | 95 [0.0418|0.051| 333 |3 8/m'+
3 ® 10/m’
S3 | 478 | 224 ] 10 | 5.11 | 95 [0.0226]0.027 | 176 |6 ® 8/m’
S4 | 360 | 0.00| - | 0.00 | 95 |0.0000|0.000| 175 |5 @ 8/m’
S5 [ 352 624 | 12 | 6.44 | 105 [0.0234|0.028| 201 |6 ® 8/m’
S6 [ 720 |0.00] - | 0.00 | 95 |0.0000|0.000| 175 |5 @ 8/m’
S7 | 352 | 4.83] 10 | 5.98 | 105 |0.0217|0.026 | 187 {6 @ 8/m’
S8 | 227 [11.80| 12 | 5.07 | 105 |0.0184]0.022| 175 |3 @ &/m"+
3 @ 10/m’
S0 | 352 | 483 10 | 5.98 | 105 [0.02170.026 | 187 |6 @ 8/m’
510 | 540 | 4.23 | 10 | 12.33 | 105 [0.04470.054| 396 |6 @ 10/m’
S11 1445 |000| - | 0.00 | 95 [0.0000{0.000| 175 |5 @ 8/m’

26

"M, =11.8x1.2*/2+1.5x1.2
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Hollow Block Slabs

Photo 2.1 Reinforcement placement in ribbed slab during construction

2.1 Introduction

Hollow block floors are forméd typically using blocks made of concrete with
lightweight aggregate. The void in the blocks reduces the total weight of the slab

significantly.

The main advantage of using holiow blocks is the reduction in weight by removing the
part of the concrete below the neutral axis. An additional advantage is the ease of
construction, especially if the floor is designed with no projected beams (hidden
beams). Hollow block floors proved economic for spans of more than 5m with light or
moderate live loads, such as hospitals, office or residential buildings. They are not
suitable for structures having heavy live loads such as warehouses or parking garages.
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The blocks do not contribute to the strength of the slab; as a matter of fact it is an
additional weight on the slab. Thus, in recent years these blocks were made of
polystyrene which is 1/15 of the weight of concrete blocks as shown in Fig. 2.1. Thus,
a reduction in the reinforcement can be achieved. The values listed in Table 2.1

include the weight of the concrete ribs and 50mm top concrete slab. If for any reason

the thickness of the top flange was increased more than 50 mm, the additional weight

should be included in the calculations. The total ultimate load for per square meter w,,
is given by

w, =Ld4x[weight of blocks | m*(Table 2.D)+flooring 141.6 W, crncnn...... 2.1)

’w/“““i

cement mortar (20-30 mm)

g
£ el I 'Z
& S 7 Z
A SR %/////////////////%////////////////////2
| |
[ 0mm l 400 mm !
Foam block, w=0.16 kN/m? Concrete block, w=2.7 kN/m?
(polystyrene) (without concrete slab weight)

-

Fig. 2.1 Weight comparison between concrete and foam blocks.

Table 2.1 Weight of material used in hollow block floors” (kN/m?)

Concrete blocks Concrete blocks Concrete blocks Foam blocks
400x200x150 400x200x200 400x200x250 500x400x200

One way |Two-way |One-way Two-way |One-way |Two-way |One-way Two-way

3.03 3.36 3.30 3.80 4.10 4.78 0.70 1.20

* include the weight of the concrete ribs and 50mm top concrete slab

Hollow block slabs are classified into: a)one-way hollow block slabs or b)two-way
hollow block slabs depending on the arrangement of the ribs on plan. Fig. 2.2.A shows
a one-way hollow block slab in which the ribs are arranged in one direction. Fig. 2.2.B

on the other hand; shows a two-way hollow block slabs in which the ribs are arranged
in two directions

To avoid shear failure, the blocks are terminated near the suppoﬁ and replaced by solid
parts. Solid parts are also made under partitions, brick walls and concentrated loads.
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A. One-way hollow blocks with hidden beams
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B. Two-way hollow blocks with projected beams

Fig. 2.2 One and two-way hollow block slabs

2.2 One-Way Hollow Block Slabs
2.2.1 General

One-way hollow blocks are used frequently in construction even for slabs w;{t:.av
rectangularity ratio less than 2. This is attributed to the ease of placing the blocks in
one direction. The arrangement of the ribs controls the direction of thg slab regardless
of its rectangularity ratio. The ribs are positioned %n the shorter direction, thus all the
loads are transferred in this direction as shown in Fig. 2.2.A
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2.2.2 Arrangement of blocks

’ | 9
The number of blocks in each direction must be specified on the construction
drawings. Thus, the layout of the blocks must be positioned so that enough solid parts

are present near the supporting beams. For floors with hidden beams, the solid part 8
must be wide enough to carry all the applied loads. The normal width of the solid part 2
ranges between 0.8-2.0 for floors with hidden beams and ranges between 0.2-0.5 for =1 L1
floors with projected beams. il -
Having determined the dimension of the solid parts, the clear length of the blocks can -
be attained as shown in Fig. 2.3. For example, in the case of using 400%x200%200 Le2= 500 x n2 - 100
blocks in a one-way slab, the clear distance in the rib direction equals to _ \ .
ISR IRSHSTISARASASS
L, =200xn,+100xn,, DDA
. e e . . . ‘ ’ nl = number of blocks in rib direction
where n; is the number of blocks in rib direction and n,, is the number of cross ribs. : 12 = pumber of blocks in the
The clear distance in the perpendicular direction equals perpendicular direction
: , o L2
L,, =400xn,+100 (n,-1) = '
" .
4 <
| B Y e
Where n; is the number of blocks perpendicular to the ribs. The number of ribs=n»-1 o ; L1
| | B L PEEEEEEEE
-
solid part ' Le=500xn2 - 100
(min.200 mm)

] L2

EBE‘BEBBEEB cross ribs=3 x100mm
e E=== ZN
o o e

I e e

| Le2= 500 x n2 - 100 |

L= n1 x 200 + 300

|

- Fig. 2.3 Arrangement of blocks and cross ribs in one-way slabs

-

Photo 2.2 One-way hollow blocks during construction
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Hollow block slabs can be used to form a cantilever slab as shown in Fi i

_ . : ig. 2.4. The rib:
can be either madg continuous as in Fig. 2.4.A, or simply supported in two h?d:ilersl
beams as shown in Elg. 2.4.B. For slabs with irregular shapes, the blocks can be
arranged along the perimeter as shown in Fig 2.4.C.

—wzz
[T
[0
[T
(10
[TI0

,//!IJ]]]

o~

LTI
LTI

LTI

IO

LTI

LTI T

i

A. Continuous ribs spanning in
the long direction

Y

solid part

Hidden beams

LTI

Hidden beams

AV

LTI

V27
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N\ [T
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ITRRRERRANENANED
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B. Ribs spanning as simply
supported on hidden beams.

N
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I
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LU T T

LU T T

LTI

LTI

C. Ribs arrangement in irregular plans

Fig. 2.4 Hollow blocks arrangement in cantilever and irregular slabs.
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2.2.3 Code Provisions

The thickness of the slab () should not be less than 50 mm or the 1/10 of the
clear spacing between blocks (e/10) as shown in Fig. 2.5.

The maximum clear distance (g) is 700 mm
The minimum rib width () is 100mm or 1/3 the total slab thickness (t/3)

5¢6/m'(min.)
1t 4¢6/m’ (min.)
t 46/m'(min.) ; >
ts > 50 mm
k> e/10 )
[i i |

-
I

] .
bleOmm7 e<700 mm

b>t3

Fig. 2.5 Minimum dimensions required by the code

To avoid cracking dué to shrinkage in the top concrete flange, the cement
blocks should be watered prior to concrete placing. A light reinforcing steel
mesh should be placed in the top slab for added durability and strength. This
mesh also helps in case the slab is subjected to concentrated or moving loads
and reduces cracking and shrinkage in the concrete. The code requires that
reinforcement in the direction of the ribs should be at least 5¢6/m’

perpendicular to the ribs and 4¢6/m’ parallel to the ribs.

Transversal ribs or cross ribs are added to one-way hollow block floors for
better distribution of the applied loads. They also help in distributing the
concentrated loads due to walls in the transverse direction. The bottom
reinforcement is taken as the reinforcement in the main ribs, and the top
reinforcement should be at least % of the bottom reinforcement. The code
requires that in case of large spans or heavy live loads that the floor should
be equipped with cross ribs with the conditions shown in Table 2.2. Fig. 2.3
illustrate the use of cross ribs in one way slabs and block arrangement

Table 2.2 Cross-rib requirements by the ECP 203

Live loads Span Condition
<3 KN/m’ <5m No cross rib required
<3 kKN/m’ >5m One cross 1ib

>3 kN/m” 4mto 7Tm One cross tib

>3 kN/m® >7m Three cross 1ib
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2.2.4 Design of One-way Hollow Block Slabs
2.2.4.1 Design of Ribs

The ribs can be considered as a beam having a flange width B which is equal to the
distance between ribs. The ribs catries a uniformly distributed load w,, equals to

W =W, XB (AN /m") e 2.2)
where w, is the $lab load in kKN/m? and B=e+b

Depending on the sign of the bending moment, the sections may be designed either as
T-sections or rectangular sections. Since Section (A) is subjected to positive bending it

is designed as T-section, whereas section (B) is subjected to negative bending and it is
designed as rectangular section as shown in Fig. 2.6.

Wur=w, X B

p v i3t

[ I RN

{ ]
> 2
F i

L

€

.. Fig. 2.6 De__sign of ribs

An example of the reinforcement of a one way hollow block floor is shown in Fig. 2.7

36

1@
-©

®
|
!l
=
bt
|
|
|
s

[

I

i

|
1#12/rib
11

5.00

g

|

I

'I :
i
i
'
%%
|

zéél

|

©

| ShEcE===— |
J | g | EEE | EelE2Ess)
o a i -2 59 _l !:: 3? :
i ; ! — ! = :"l:: IE I-fd‘den beam
<}¥&~wwﬂ#~f;~h~~ﬁ;{>
| =FEE | EEE | EEE B e B
A== ===r = | B S E IS5
iR e | EEH | EEEARE !ga_g
l t l | E | |
O A =l
| | L LS =E]
I 6.00 '!, 2.00 6.00 ‘!, 1.50 *

Fig. 2.7 Reinforcement of a one way hollow blocks slab with hidden beams
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2.2.4.2 Design of Hidden Beams

Hlddpn beams are usually used in hollow block floors to give flexibility and a sense of
spaciousness. Due to their limited depth, hidden beams are heavily reinforced and their
wyith exceeds their depth as shown in Fig. 2.8.A. To reduce the amount of
;exgnlgorccment, the depth of the hidden beam is increased by 50 mm as shown in Fig.

sand flooring

Secondary reinforcement Stirrups

d
| . . .
ain reinforcement 250 mm (max) \ Hollow blocks
l B |
¥ 1
A: Hidden beam
flooring
50 mm Secondary reinforcement  Stirrups
— |
d
’ . . N :
i L
ain reinforcement 250 mm (max) \ Hollow blocks
| B

B: Hidden beam with increased thickness

Fig. 2.8 Cross section in a hidden beam
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Since the width of the hidden beam is greater than its depth, the ECP 203 requires that
the applied. shear stress, 2.=0./(B . d), be less than the concrete shear strength g,
without any shear reinforcement contribution. Thus, it is customary not to use bent
bars in hidden beams because the shear reinforcement contribution is not allowed by
the code. For hidden beams, the concrete shear strength g, is given by

g, =016 [~ 2q, (N /MM®) i 2.3)

<

The minimum shear reinforcement for hidden beams can be reduced to

\

Hoin = Mx[—q-“—} ................................................ (2.4.2)
Sy Ya
4, =2 bxs (—‘—1"—) ...................................... 2.4)
5y Do

where g, is the ultimate shear strength at the critical section and g, is the concrete
shear strength. The stirrups should be arranged so that the distance between stirrups
should not exceed 250 mm as shown in Fig, 2.8. It has to be mentioned that the role of

" the stirrups in such case is to keep the longitudinal bars in place and to confine

concrete in the cross section.

Photo 2.3 Reinforcement placement in a hidden beam
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Example 2.1

A hollow block floor yvith hidden beams is constructed with concrete blocks over
several spans as shown in figure. The characteristic material strength is

So= 40 N/mm’ and
£,=400 N/mm’

The applied loads are
Live loads=4 kN/m?
Flooring =2 kN/m®

Design the floor using one-way hollow block slabs with hidden beams.

@.._. ey _§_.-._‘_._._._._.__%_ ................. .@_._

6200 mm

Floor layout ’
N X

Solution
Step 1: Dimensioning
Choose 400x200x200 concrete blocks

‘ Thus, e= block width=400 mm

0 mm
& ~bzggerof e/10 =40 mm

t=50 mm
t = thlock T = 200+50 =250 mm °

100 mm
=bi b= 100 mm
b= biggerof {250/3 —833mm

S(Ln_m;‘__

ts=

{ =250 mm

r
[

[

[ ' \ |
‘i concrete block

=400 mm

S

b=100

Step 2: Calculation of ultimate loads.
For concrete blocks of dimensions 400x200x200, the self weight of the blocks and the
concrete ribs is 3.3 kN/m” (refer to Table 2.1)
— self weight + flooring=3.3+2 =5.3 kN/m”
=4 kKN/m’
w,=14g, +1.6p, =14x53+1.6x4= 13. 82kN/m

Since this is a one way hollow blocks, all the load is carried in the direction of the ribs.

Wu, = W, (e+) = 13.82 (400+100) /1000=6.91 KN/m'

Step 3: Arrangement of blocks
The code requires the use of one cross rib for live loads >3 kN/m” and spans from 4-7
m (n,=1). Since the roof contains hidden beams the distance ¢ measured from the

centerline is taken from 300-700 mm. . :
Let us assume that clear span for the blocks are 0. 6 1.0 m less than centerline distance.

40
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Step 3.1: Arrangement of the blocks in x-direction
Step 3.1.1: Exterior bay

. (Let C+Cyp=900)
L¢y = 5400 — (C; +C,)= 5400 - 900 = 4500 mm
200x n, +100x 7, = 4500 mm
where, n;=No of blocks and n,,= No. of cross ribs
200xn, +100x1 = 4500 n;=22
Ci=300 mm (near projected beam) C,=600 mm (near hidden beam)
Step 3.1.2: Interior bay
Assume C;=650 mm (value close to Cy)
L =5400 — 2C5 = 5400 - 1300 = 4100 mm
200x 1, +100%n_, = 4100 mm
200xn, +100x1= 4100

where, n,=no of blocks

—— ;=20 —— C3=650 mm

Step 3.2: Arrangement of the blocks in y-direction
Assume C4= 300 mm '

Les = 6200 — 2 C4 =6200 — 2 x.300 =5600 mm

If we assume that ny= No. of blocks, then the number of ribs =(n3-1)
400x 1, +100 (n, —1) = 5600

5600=500xn, —100

n; =11.4 block » )

Round down to the nearest number (n3=11), and recalculate Cy4
6200 — 2 C4= 500 x 11100 .. C#~400 mm

Thus use C4~400 mm

Step 4: Design of Ribs

Step 4.1: Calculation of the Bending Moments in Ribs
Since the ribs are continuous over the supports with equal loads and equal spans, the

code coefficients for slabs are applied

' Wum'bXLZ
M=
Wiris=06.91 kN/m’
Y O O O O A
e R
‘rﬁ 5.4 i 54 i 5.4 )1
24 -10 -10 24
> +10 ’;%’ +12 ';Q" +10 @h
8.40 20.15 20.15 8.40
A 20.15 '&& 16.80 "%;’ 20.15 AQ;’
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Step 4.2: Design of rib critical sections (Continuous rib)

Design of Section 1

This section is subjected to a positive bending (20.15 kN.m), the compression flange
form a T-section as shown in the Figure.

From the figure B=500 mm -

Assuming concrete cover of 30 mm

d=250 30 =220 mm

! B=500 mm l
| ! !
: \
T‘T} = 50 mm Mu=20.15

rt |
b=100 €=400 mm

Using the C1-J curve

d=Cl M,

f;:uB

{20.15><106
220 = Cl |~ =
40x 500 C1=6.93

The point is outside the curve use (c/d)p,=0.125
c¢=0.125 x 220=27.5 mm

a=0.8 x ¢ =22 mm <i; .....0.k.

use j=0.825
M 20.15x10°
= I =2 2
Jxdxf, 0825x220x400 "™
0.225 ff,, 0.225 \/40 2
A, O =smaller of 7) bd= 200 x100x220=782mm* J<d4, ok

1.34, =1.3x277 =360 mm*

use 2 @ 14 (307 mm?)/rib®

1 ..
The minimum area of steel for beams was used

44

Design of Section 2 '
This section is subjected to a negative bending moment (20.15 kN.m), thus the rib will
be designed as rectangular section

5=100 mm
L . |
? T
2 ! ‘
e
T t;=50 mm ' Rec.
section
1 | —=20.15
: [
=400 mm b=100 mm -

Using R-» curve

M,  2015x10°

= = =0.1041
f.bd®  40x100x220*

R

“From the curve it can be determined that w=0.14

40 100%220 =307 mm® >Aqmin

Jou
=@ >2pxd =0.14
A, = =2bx 200

"
use (2 @ 14, 307.9 mm’)/rib
Design of Section 3

This section is subjected to a positive bending (16.8 kN.m), the compression flange
form a T-section. Using the C1-J curve

d=c1 | M
fuB

’16.8><106
= Cl,|—— s C1=7.6
220 40x 500

The point is outside the curve,

use ¢/d)pi=0.125 ——— use j=0.826
¢=0.125 x 220=27.5 mm

=0.8 x ¢ =22 mm < .....0.k.
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M,  16.8x10°

u

T jxdxf,  0.826x220x400

=231.3 mm?

use (1912+1D14, 267 mm?)/rib

ts=50 mm

=250 mm

Step 5: Design of hidden Beam (B1)

The slab over the hidden beam will be increased by 50 mm.

t=300 mm

B=600+650=1250 mm

The self weight of the beam =y, B t = 25 x 1.25x 0.3 = 9.375 kN/m'

But this weight should subtracted from the self weight of the blocks

Self weight of the blocks = o.w x B=3.3 x 1.25 =4.125 kKN/m’

Net weight =9.375-4.125=5.25 kN/n, factored net weight =1.4 x 5.25 =7.35 kN/m'
Wyp = W, X spacing + net weight=13.82 x 5.4 + 7.35= 81.98 kN/m’

50 mm

1 ' 1
! ......... et N |
. B=1250 .
Hidden beam / ! *‘! \Hollow blocks

Note: w,; calculations can be simplified by assuming that the increase in the hidden
beam weight is about 10— 12% of the slab weight as follows:

W, =LIxw, xspacing =1.1x13.82x5.4=82.1kN /m'

300 mm

t

Step 5.1: Design for flexure

way=81.98 kN/m” l
ultimate T T 1 111 TT T T 1 i
j s s s

Loads
]
if 6.2 ‘ 6.2 ——-1
24 9 24
Moment
factors  Amy "1 e " Ay
131.3 " 350.14 131.3
Bending @ﬁ é}h
moments
(kN.m) > 286.5 286.5
Critical l ‘ . ‘ |
sections g é - @ @ ,;%’
Shear 4 49 0.60 0.60 0.40
factors 5 » 5@» 5@;,
Shear 203.3 304.9 304.9 203.3
force, kKN £\ & ,;Qb

Design of section 1 ' .
All sgctions in the hidden beam are rectangular sections. Assuming cover of 30 mm,

d=270 mm. Using R-® curve

6
R Mo 35014x10° 4496
f.bd®  40x1250%x270

From the curve it can be determined that »=0.126

46
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A =0 S grd=0.126 -fO%XIZSOxNO: 4248 mm?
fy 030L, \ 0.30L, b 030L, ]
0.225 \/40 ! A !

— 2 : v T H
=smaller of 400 x1250x270=1201 mm™ I<d, ok _ : T~ — T - SRR N § E N § BN R R R E
134, =1.3x4248 =5523 mm* A : , | A

|
i
1

A

5 min

F

T R
0L, 0.10L, - :
0.1 4‘—‘!’1'%*’ L ‘Jl%

use (149 20, 4398 mm?)

The design of other critical sections is summarized in the following table

!
i
d
i

’ 14920 6@ 16 _
Sec M, R ® A, Chosen _ 6 D20 6016 777 ' — 6220
2 | 286.5 | 0.079 | 0.100 | 3379.7 | 3456 [11®20 T e _ 3020 —
3 131.3 | 0.036 | 0.043 [ 1459.5 | 1885 | 6 @20 o PP T 6020 —

Step 5.2: Design for Shear

The critical section for shear is at d/2 from the face of the middle support.
Assurmne that the width of the column is 600 mm. The critical section is at section 1 as
shown in figure with code coefficient of 0.6

b. Longitudinal section in the hidden beam

0, =0.6w, L-w, (§+§)= O.6x81.98x6.2—?—3§0§x(6—20-+—222) =269.3 kN
50 mm : 6D 16 ’ Stirrups

5¢ 10/m’

_ O, _269.3x1000
%= Bxd T 1250x270

=0.80 N/mm?

The code requires that the beam shear stress be less than concrete shear strength given by

4. =O.16J%=O.161/%=0.826 N/ mm? >

: . . (max) \ Hollow blocks
Since q,<qq, the shear strength of the beam is sufficient, Provide minimum area of

stirrups. Assuming spacing of 200 mm and using mild steel £,=240 N/mm’ : A | 1250 |
o =22 Bas = 04 1950%200 = 416 mm?
L e

The previous amount can be reduced according to the code item 4-2-2-1-6-¢ ‘ 7

Ay, o =416x| 1o | < 416x —9:&)=405 mm?
' 0.826

9

250 mm
| !

A

a. Section A-A
Assuming 6 branches, the area of one branch equals

416

2 .
Ay = T =69.44 mm’ ) Choose ¢10 (78.5 mm ) Reinforcement details for the hidden beam

Use ¢ 10/200 mm (5¢ 10/m’).

Since we have six branches, use 6@ 16 as a secondary reinforcement
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Reinforcement layout for the hollow blocks floor

- )
R ribs

2.3 Two-Way Hollow Block Slabs

In these types of floors the ribs run in two directions and the load is distributed in both
directions as shown in Fig. 2.9. It is more economical to use two-way slabs if the
shorter span exceeds 6 meters. However, the placing of the blocks in two directions

during the construction is more difficult.

ﬁamememam
[DEI[UE![DEIEDEIED \. projected beam

[mEngEnsnsn
mEngnsman
mEnsngmngn
mEnsEneEng
DEIEOBna0n
n=in=hn==n
mEnsEnsngn
msngnsng

@E[DED]EI[DEE&

ribs

Plan

l I \. projected beam

Fig. 2.9 Arrangement of the blocks in two-way hollow block slabs

Section

the designer has to choose between the simplicity of

In typical hollow bilock floors,
lock and the economy that might be offered by utilizing

construction one-way hellow b
two way hollow blocks.

Figure 2.10 shows two options fo
cantilever hollow block slabs are

r afranging hollow-blocks in the same roof. Note that
designed as one-way hollow block slabs. -
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a) One way slab hollow block slabs
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b) :One way and two way slab hollow block slabs
“Fig.2.10 Alte_rpative solytions for arranging blocks in hollow block slabs
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2.3.1 Method of Analysis

The analysis of two-way hollow blocks is carried out according to the type of
supporting beams. The code distinguishes between the two cases:

Case A: two-way hollow block floors with hidden beams are designed in a similar
fashion to the flat slabs. :

Case B: two-way hollow block floors with projected beams are divided in two sub-
cases depending on the live loads and the compression flange as shown Table

2.3.

N

Table 2.3 load distribution values that should be used in designing two-way
hollow block floors with projected beams

Compression flange case Live load value

LL <5 KN/m’ LL> 5 KN/m’
Complete compression Use Table (2.4) Use Table (2.5) -
flange (Marcus) (Grashoff)
1 Incomplete compression Use Table (2.5) Use Table (2.5)
flange - | (Grashoff) (Grashoff) J

2.3.2 Design of two-way hollow slabs with projected beams

2.3.2.1 Design of ribs

Two-way hollow blocks have some capability to develop torsion but not as much as

the solid slab. About 15-20% of the total load is consumed in torsional action. Marcus

developed the distribution for such types of slabs in which the distribution load factors
~ are reduced to account for some torsion action. The values are listed in Table 2.4.

Table 2.4 o and P values for two-way hollow block slabs (Marcus values) .

r 10 | 141 12 | 13 ]| 14 | 15 | 16 | 17§ 18 | 1.9 2.0

o 10396 |0.473|0.543 | 0.606 | 0.660 0.706 | 0.746 | 0.778 0.806 | 0.830 0.849

B ]0.396}10.333 0.26210.212]0.172}0.140 0.113] 0.093{0.077 | 0.063] 0.053

In some cases where the livé loads are considerably high, it is more advisable to
neglect the torsion action and distribute the load accordingto Grashoff 's factors listed

in Table 2.5.
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Table 2.5 o and B values for two-way hollow block slabs with high live loads
(Grashoff’s values)

r 1.0 | 1.1 12 113 114 | 15 | 16 | 1.7 | 18 | 19 | 20

o [0.500}0.5950.6720.742| 0.797 | 0.834 | 0.867 | 0.893 | 0.914 | 0.928 | 0.941

B {0.500{0.405|0.3280.258 ] 0.203 | 0.166 | 0.133 | 0.107 | 0.086 | 0.072 | 0.059

The total factored load in the slab is given by:

w, =1.4x[weightof blocks/m*(Table 2.1)+flooring]+1.6 w w

.............. (2.4a)
For ribs running in the short direction, the design loads are given by:
Wornis SOW, D+€) oo, (2.4b)
For ribs running in the long direction, the design loads are given by:
' Wit =BW, (BH€) oo, (24c¢)

The analysis and the design of the ribs in the two directions are carried out in similar
manners to those followed in one way hollow block slabs. Fig. 2.11 shows an example
of the reinforcement for a floor comprising one-way and two-way hollow block slabs.

2.3.2.2 Design of Projected beams

Projected beams are designed to carry the following loads
1- Own-weight
2- Wall load (if any)
3- Load transmitted from the slabs

The distribution of the slab load to the projected beams is carried out as shown in Fig.

2.12. The triangular or trapezoidal loads can be replaced by equivalent uniform loads
for calculating bending moment and shear forces using Table 2.6.

Fig. 2.6 Coefficients of equivalent uniform loads on beams

Li2x| 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 19 | 20

o |0.667]0.7251 0.769 | 0.803 | 0.830 ] 0.853 0.870 0.885 | 0.8977 0.908 | 0.917

B 0.500 | 0.554 0.582 1 0.615] 0.642 | 0.667 | 0.688 | 0.706 [ 0.722 | 0.737 ‘0.750
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Fig. 2.11 Reinforcement of a typical hollow block floor
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Fig. 2.12 Load distribution on the brojected beams.

The bending moments and shear forces in the projected beams are obtained using
methods of structural analysis (or code coefficients if applicable). Sections of positive
moments are designed as T-sections while those of negative moments are designed as

rectangular sections as shown in Fig. 2.13.

T-section

Rectangular section i compression u

b zone

" Fig. 2.13 Type of section in projected beams according to the applied moment.

Fig 2.14 shows a summary of the load calculations for beams in hollow block roofs.
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Design of Beams in
Hollow block slabs

)

Hidden beam
or projected beam
B2 B2
B2 B2
’ AR T2
Sk . 5 & — 84— —l®
& e IN—ill~— i —
B2 B2 B2 B2
.00
N 5.00 " 5.00m & — 5.00 P 5 ¥
r=6/5=1.20

W, = OW. + W, x2.50

Wy, = OW From Table 2.6 — a =0.769
B2 VY. -

Wy, = OW. + W, X 5.00 Wy, =0OW. + W, x 0.769 x 2.50
W,, =0W. + W, x 0.67 x 2.50

Wy, = O.W. + W, x 0.769 x5.00

Note:Wall loads may be added (if any)

Fig.2.14 Calculation of loads of beams in hollow block roofs
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Example 2.2

Redesign example 2.1 using two-way hollow blocks with projected beams
Solution '

Step 1: Dimensioning

Choose 400x200x200 blocks

Take e=400 mm
50 mm
t, =bi
» =biggerof {e /10 = 40 mim
t=50 mm
t = tyoaitts = 200450 =250 mm
100 mm
b=bi ;
‘ggerof {250/3 =8.33 mm
b= 100 mm
\
i Y . Y
s| B
o [
Ly
8 L
I -

D | \_concrete block
100 e=400 mm

Step 2: Calculating Ultimate Loads. .

For concrete blocks 400x200x200 and from Table (2.1) the self weight of the blocks
and the concrete ribs is 3.8 kN/m2

g~ self weight + flooring=3.8+2 =5.8 kN/m’

p=4 kKN/m’

w,=14g, +1.6p, =1.4x5.8+1.6x4 =14.52 kN /m*

r= f—; = g—j =1.148

Since this is two way hollow blocks with projected beams and L.L.< 5KN/m?, use
Table 2.3 (Marcus). The load distribution factors are

o=0.507 and B=0.299

Weip = 00 Wy, (6+b) =0.507 x 14.52 (400+100) /1000=3.68 KN/m’
Wanip = B Wy (e+b) = 0.299 x 14.52 (400+100) /1000=2.17 kN/m’

" Since the ribs are continuous over the supports with equal loads and equal spans, the

Step 3: Arrangement of Blocks

Since the roof contains projected beams the distance ¢ measured from the .centerline is
iaken from 300-500 mm. Let us assume that the clear span for the blocks is 0.6-1.0 m
less than centerline distance

Transversal direction
Assume C;=500 mm :
Let = 5400 — 2Cy= 5400 - 1000 = 4400_ mm
500x n, + 400 = 4400 mm where, ny=no of ribs —— n;=8

-

Longitudinal direction

Assume C; =400 mm
Lep=6200-2C, =6200-2x 400=5400
500 % 1, +400= 5400 n, =10

where, n,=no of ribs

Step 4: Design of ribs
Step 4.1: Transversal direction
Step 4.1.1: Calculation of the bending moments

code coefficients (k) for slabs are applied. The transversal direction is the shorter
direction thus wy, is transferring in this direction
w,xL* 3.68x54’

M, =

k k
wg=3.68 kKN/m'
lllllllllltllll!lll&J Joads
,4;,},—‘ - s A2 e
| 54 ! 5.4 t 5.4 2
| | |
-24 -10 -10 24
k factor

> +10- e +12 e +10 e

10.73 10.73

4.47 | 4.47 '
bending
AI\\//»%,\ , /M nfoments
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10.73 8.94 ' 10.73
. i ' ‘ : . critical
> Cb ' @ é o ) 5 sections
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Step 4.2: Design of the Longitudinal Direction

Step 4.2.1 Calculation of the bending moments '

Since the ribs are continuous over the supports with equal loads equal span, the code
coefficients (k) for slabs are applied. The longitudinal direction is the shorter direction
thus wy is transferring in this direction

w el 217x62?
u k k
. wy=2.17 kN/m”
Doirmate )}JHH-H;HHHJ&
i ( |
Moment -24 -8 -24
factors
> +10 e +10 e
Bending 3.47 10.42 3.47
moment > 834 A 8.34 ANy
Critical ' ! I '
sections

6 o & o ©
Step 4.2.2: Design of Rib Critical Sections

Design of Section 1

This section has positive bending (8.34 kN.m), the compression flange form a T-
section as shown in Fig.

Since this is the secondary direction, d= 250 -30-15 =205 mm

| B=500 mm |
[ |
L v
%?E L 0w Mu=8.34 kN.m
B -t |
b=100mm =400 mm

Using the CI—J curve

' 8.34x10° C1=10.04
5=l \j 40x500
The point is outside the curve use ¢/@)pin=0.125
¢=0.125 x 205=25.5 mm

2=0.8 x ¢ = 20.6 mm <t .....0.k.

use j=0.825
6 R
oM 836D 93 SA
Toojxdx f) 0.825 x205%x 400

use 2 @ 10 (157 mm’)/rib

Design of Section 2

This section is subjected to negative
be designed as rectangular section
b—lOOO mm

bending moment (10.42 kN.m), thus the rib will

Using R-o curve

6
M 10.42x10 0.061

u —_ o

“7bd®  40x100x205°

From the curve it can be determined that ©®=0.075

5
y

use (2 @ 10, 157 mm’)/rib
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| |
= l
£ I
I
Tx; t; =50 mm R-section
M,=10.42
‘ i ¥i kN.m
=400 mm b=100 mm

A =w -fﬂb xd =0.075 %x100x205 =153 mm® >Aspmin




=250

50 g
ts mm 5 ¢ 6/m 49 6/’
| /
~ i d — 1 _h_ .

M

5 ¢ 6/m’

Rib reinforcement details in transverse direction

| | H
24 10 I N\
‘J’__/ 400 loo! 2¢ 10

Sfep 5: Design Of Projected beam (B1)

Assume that the projected beam has the cross section shown in ﬁgure

The self weight of the web of the beam equals =Y. bt=25x0.25x 0.75 = 4.68 kN/m’
The weight of the flanged part of the beam is approximately taken into consideration
when calculating the slab load transmitted to the beam

The load distribution over the beams will be the same as regular solid slab and the load

distribution factors of the beams will be used

,‘ e

B=‘|—l 000

1

1

re—t=-2=1148 :

L3 I@Zl_ ;

0=0.75 and B=0.56 : 1§L :

d for bending Lu
Load for bending N . —

Wyp= Wy X O X spacirig + 1l4xo0w
W, =14.52x0.75 x 5.4 + 1.4 x 4.68= 65.37 KN/m’

Load for shear

Wysh =

Wy X B x spacing + 1.4 x o.w.

Wash =14.52 x 0.56 X 5.4 + 1.4 x 4.68= 50.47 kKN/m'
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Reinforcement details and blocks arrangement for the two-way hollow blocks
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Load distribution on the projected beams.
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Step 5.1: Design for Flexure

Wu=65.4 kN/m "

bendi
bending JITTTTTTLITITITT)
I 6.2 i 6.2 i
?Aoment -24 9 24
actors Py !
+11 e +11 A
Bending 104.7 279.2 104.7
m t
e A g4 A 284 A

Critical

|

é T é di) i

Wush=50.47 kN/m "

Shear

S N N N O A
Loads
A e pas
; 6.2 i 6.2 - ;
S
_ f:;ﬁis 0.40 0.60 0.60 0.40
Ay o ras
Shear 125.17 » 187.75 187.75 125.17
force Ay . A e
66

Design of Section 1

This section is subjected to —ve moment, thus it is a rectangular section
Assume concrete cover of 50 mm, d=700 mm

B=1000 mm
T -
C=500 mm i Cy=500 mm
|
E } i ;L
1R ] B
2 !
o~ 1
il ;
- b =4 ! i
E !
(==
0
L
A o M=279.2 kN.m
compression zone
a—
b=250 mm
Using R-o curve '
6
R M, _ 279.2x10 - 0.057

T bd® | 40x250x 7007

From the curve it can be determined that ®=0.07

A =0 Tapxd =007 2«
f 400

5
y

0.225\[f .. b d

250% 700 = 1230mm* >Asmin

A, i =smaller of 7,

use (5 @ 18, 1272 mm’)
Design of Section 2

=0.2if)g/zﬁx250x7002622_6mm2 d<d, ok

1.34, =1.3x1230 =1599mm*

This section is subjected to a positive bending moment (228.43 kN.m), the
compression flange form a T-section as shown in Fig., B=500+500=1000 mm

B='1000 mm

Cl=500 min

i C1=500 mm

M=228.4 kN.m

-

ts =250 mm

=750 mm|

I_._._._._._.-. .-

1
\ compression zone

=250 mm
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| 4=

Using the C1-J curve

d=Cl_j—*
JuB

6 .
700 = Cl /M
40x1000

The point is outside the curve use ¢/d)y;=0.125
c=0.125 x 700=87.5 mm |
2=0.8xc=70 mm<t, ..... o.k.

use j=0.825

C1=9.26

M,  22843x10°

= = =988 mm’
jxdxf,  0.825x700x400

use (4018, 1017 mm?)

Step 6.2: Design for Shear

The critical section for shear is at d/2 from the face of the support.

Assume the width of the column is 600 mm. The critical section is at section 1 as
shown in figure with code coefficient of 0.6

0,=06w, L-w, [S+9)=06x5047x62-3047 (600 700\ _ i o in
272 1000 2 2
go= Qe _Is494x1000 oo
bxd 250x700

Concrete shear strength is given by

g, =024 1’& =0.24 w’i?. =1.24 N/mm?
L5 1.5

Since qu<Qeu , 10 need for web reinforcement, provide minimum area of stirrups
Assuming spacing of 200 mm and using mild steel £=240 N/mm’®

A =22 b5 = 22 250200 = 83.33 mm?
; 240 |

5
Assuming 2 branches, the area of one branch equals
8333

2

= 41.67 mm* choose ¢8 (50 mm?)

Use ¢ 8/200 mm
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250 mm

5¢8/m’
@ 2016
awi6 | 5018 =
— = 7
! /I \ [ : L :
4018 @ L 2010 [ 4018 LL
118 2016
2016 — ' — >
[ M ﬁ
[—_\ 2018 _7 \ 2018
( 2018 . 2018 ]
Elevation
1010 as shrinkage
: inforcement
! 2016 remio 1
i ! 5¢8/m’
P T 7 7 ! 7
i . . i %
— ~ 598/ml i
: .
i & 2010 !
i § * 5¢8/m’
L
oo 4018

Cross section A-A in the projected beam

Reinforcement details of the projected beam
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PANELED BEAMS

Photo 3.1 Reinforced concrete airplane hanger, Italy.

3.1 Introduction

A Paneled beams system is normally utilized when the dimensions of the floor are
relatively large so that it becomes uneconomical to either use solid slabs, or hollow
block slabs. In a paneled beams system, the floor is strengthened with a series of
beams with equal depth spanning usually in two perpendicular directions. These
beams divide the large floor into a number of small panels that can be easily designed
as solid slabs as shown in Fig. 3.1. The spacing between the beams ranges normally
from 2 to 4 meters. In this system, all beams are of the same depth and are supported
directly either on columns or on edge beams. .
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Because the_ deflection is equal at the point of intersection for any two beams the load
?ransferred in the short direction is much larger than the long direction. This i; becauasl
it takes more loads to deflect a short beam than it does for a long one. If the ratio oi‘
th§ long span to the short span (L/L;) exceeds 1.5, there is no structural advantage fo
using paneled beams system. Almost the entire load in this case is transferred in thr
short span, similar to the case of one-way slabs. )

| L, |
2
solid  slabs
with small 4§ ——
dimensions
=

%

paneled
beams
\ /

y 4

Plan
) N \
N N
edge beams
paneled beams i
Section

Fig. 3.1 Layout of paneled beams floor
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3.2 Load Distribution
To illustrate the behavior of the paneled beams system, let us assume a very simple

* system ‘which consists of two beams with the same depth intersecting at point A as

shown in Fig. 3.2. The dead and the live loads are transferred through these two
peams. Denoting the load transferred in the short direction as wy and the load

transferred in the long direction as wp.

\\E\ig. 3.2 Load distribution in paneled beams

.
.

The deflection of the sh(;ﬁ?*sgan ‘beam A, equals ,

. )
A =2 XL SR % )
384 EI

The deflection of the long span beam A, equals

A= Sxw ,x Ly
27 384 EI

But since the deflection at point A is the same, A, =4,

5xw , xL; =5xwprf \(3'3)
384 EI 384 EI T v
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but the total load w = w,+wy -
we __ L
L+D .(3.5)

Wp+W

a

Defining w,=w aand wz=w g

wxa _ LI LY/L
B LY A Wy 7 LR (.6)

Denoting r as rectangularity ratio

roLongspan L 4y e Toad distributi
Short span L, ¢ load distribution factors o and B equals

r4
o =
1+r*

and similarly B= !
1+7*

3;};:; 'l;i('i distribution. factor in the short direction o is always larger than the load
ibution factor § in the long direction by the magnitude of ‘. Table 3.1 lists 21?
. . €

values of o and B for different rectan i i i i
load! taus e o different r gularity ratio. This table is used to calculate the

Table 3.1 o and B values for paneled beam slabs (Grashoff's values)

r
1.0 1.1 1.2 1.3 14 1.5 1.6 1.7 1.8 1.9 2.0

o
0.500 | 0.595 | 0.672 | 0.742 | 0.797 | 0.834 | 0.867 | 0.893 { 0.914 | 0.928 0.941

B 0.500 | 0.405 | 0.328 | 0.258 | 0.203 | 0.166 | 0.133 | 0.107

0.086 { 0.072 | 0.059
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The difference in magnitude between the part of the load transferred in the short beam
and that in the long beam can be explained by considering the structure in Fig 3.3. For
the same amount of deflection, it takes more force to displace a shorter beam than a
longer one. If the two beams are of the same length, the load transferred in both
directions will be the same (P;=P,=P/2). The developed bending moment in each
beam will be PL/8 instead of PL/4 in case of a simple beam(50% reduction), because
each beam supports the other. However, if the long span is twice that of the short span,
the long beam will provide little support to the short beam because the flexural
stiffness is considerably low. A computer analysis reveals that the developed bending
moment in the short beam is about (90%) of the simple beam moment with length
L(P;=0.9 P) and the developed bending momient in the long direction is about 10% of
the simple beam moment with length 2L. This explains the limitation imposed by the
code concerning the ratio of the long span 0 the short span (L1/L,<1.5). At this ratio,
about 75% percent of the load is transferred in the short direction (P;=0.75P).

M=50% (PL/4)

P=P+P, P=05P

M1=0.5 P (L/4)=0.125 PL

! L=L —

MI1=0.9 P (L/4)=0.225 PL

fe— =L —]

P=0.1P

P e

2=0.1P (2L)/4=0.05 P
M 2L) L M2=0.5 P (L/4)=0.125 PL

jo— Li=L —+]

| L |
case Li/1;=2 - case Li/Ly =1

Fig. 3.3 Bending moment and load distribution for different paneled beams
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3.3 Code Provisions

The paneled beams could either be arranged i '
. : ged in two pe di irecti
or in skew, triangular, or quadruple grids as shown ilr)n l?i,;]B IZUIar directions

All beams should h ' i i
Allbe ave the same depth with a maximum rectangularity ratio

. The internal force in the paneled beams should be determined based on.

structural analysis, equilibrium and compatibility. The use of any simplified

method to calculate the forces is valid as long as the solution is compatible

with the actual behavior.

T T

s é - M |

N/

XD

N/

Pt

X

7%

AN

Triangular grids

Quadruple grid

Fig. 3.4 Types of paneledvbeams systems
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3.4 Simplified Design Method

In the simplified method, the paneled beams floor of dimension L X L, behaves as

two-way slab that has rectangularity ratio =Li/Ls. This two-way slab consists of a
system of intersecting beams surrounding a number of two-way slabs of smaller

dimensions. The design process consists of two steps namely

1.  Design of the small solid slabs to resist the loads directly transferred to them
2. Design of the floor beams having dimensions Ly X Ls as follows

Assume the dimensions of the beams

Calculate the design loads

Distribute the design loads

Design of paneled beams in both the short and long directions

Design of edge beams

a-Beam dimensions
The thickness of the paneled beams is usually assumed as a ratio form the short span
as follows .
_ shortspan (L)
12-16

Since the thickness (t) of the beams in both directions is the same, the reinforcement in
the short direction is the main direction and the effective depth equals the beam
thickness minus the cover as shown in Fig. 3.5. Reinforcement running in the long
direction (secondary direction) is placed on the top of the main reinforcement and the
effective depth equals the thickness minus the cover and the bar diameter of the main

direction as shown in Fig. 3.5.

0 .

&
M, T
tld e
X = == =—ewm — — T -1\
e \
brs . b depth in the secondary
o direction
depth in the main direc:,_tion_ : =t — cover-dy

=t - coVer,

Fig. 3.5 Cross-section in paneled‘ beams floor
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b-Design loads

The self-weight of the beams is assumed to be uniformly distributed over the floor.

The average weight of the beams equals

nxL, +n,xL,
L, xL,

To obtain the total loads of the system, beams self-weight is added to the slab self-

weight, flooring, partitions, and live loads.

Nm)  (38.4)

ow, =y, xbx(t -t,)x

w, =14x(ow, +t, xy, +flooring + partitons) +1.6 w , (kN/m?*) (3.8.B)
where y, =25 kN /m®

c-Distribution of design loads

In the simplified method, a portion of the load transferred to the beams is determined
according to the overall rectangularity ratio of the slab. The transferred load in the
short direction is much higher than that transferred in the long direction and is
determined using Table 3.1.

L

L

5

r=

wua=wuxa Wuﬂ=wuxﬁ

d-Design of paneled beams

The design of paneled beams is carried out similar to that of regular beams. However,
the distribution of the moments is obtained by assuming that the deflection of the slab
is in the form of a sin curve. The bending moments developed in each beam is the
ratio between the deflection at this location to the deflection at mid span.

For example if we have the paneled beams slab shown in Fig. 3.6 with four beams
running in the short direction and three beams running in the long direction, the
developed bending moment equals

2 2

L
MB,=w“xa—§—sin(6',) Mn=wuxa£§—sin(¢92)

2 2

L~ . L
M33=w“x,8—§—sm(93) M“:wuxﬂ—g—xl.o

e-Design of edge beams

The thickness of the edge beams is usually equal to or greater than that of the paneled
beams. The load distribution on edge beams is affected greatly by the support
conditions. If the floor is supported on the corners only, the overall slab is considered
supported directly on the edge beam as shown in Fig. 3.7.A . On the other hand, if the
paneled beams rest directly on supports, the reaction of the beams is carried directly
by the columns. In this case, the load on the edge beam can be estimated as one half
the load of the parallel beams as shown in Fig. 3.7.
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Fig. 3.6 Load distribution and deflection of paneled beams system.
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Fig. 3.7 Effect of column location on load distribution of edge beams
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3.5 Design of Skew Paneled Beams

The Egyptian code allows the use of paneled beams that are not perpendicular to each
other or that are not parallel to the hall (skew grid). The simplified method discussed
in the previous section can not be used in designing skew girds. Structural analysis
programs can be used to compute the bending moment and shear developed in the
skew system in this case. Alternatively, for a relatively small number of beams, hand
calculations can be carried out using equilibrium of forces and compatibility of
deflections. For example, for the square hall shown in Fig. 3.8, the beams are
perpendicular to each other but are not parallel to the hall directions. Due to
symmetry, the problem has only 4 unknowns, which is the percent of loading
distributed in each direction (P11, P12, P31, P32). At points 2 and 4 due to symmetry,
the load transferred in the two directions is the same (i.e. 50%, P/2). The load acting at
each intersection (joint) can be approximated by

P=w, xaxb

This load is divided between each two perpendicular beams. For example, at point 1
and 3, the equilibrium equation is

P=P,+P, (pointl )
P=P +P, (point3 )

The deflection at any point can be easily obtained using the principle of superposition.
The compatibility of deflection at point 1 and 3 gives

A; (beam B3)=A, (beam B1) (pointl )
Az (beam B3)=A; (beam B2) ‘ (point3 )
Solving this set of equations gives the loads and bending moment at each beam.

Py Py P2 Py Py

A, As A,
Beam B2
- Pp
/ﬂ% Beam Bl
4

Fig. 3.8 Structural analysis of skew paneled beams
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Example 3.1

For the hall shown in figure, it is required to design rectangular paneled beams system
to cover the roof, knowing that

£,~30 N/mm’

£~400 N/mm”

Loads due to flooring=2.0 KN/m?
Live loads=3.0 kN/m”

1 13.0m |
— | '
T N ~
E
4 F .
£ ’ E
vs__ ﬁw Q
g
ui__L | N Q
i S

6.50m i 650m |

Solution

Step 1: Roof layout ) o
The l:’Hall is divided into small slabs spanning between (3-4 m in each direction).

Assuming three beams spanning in the longitudinal direction (four spacing) and four

beams spanning in the shorter direction (five spacing) gives

17
ol =%=3.25m and G = =340m
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Step 2: Design of solid slabs
Since the slab is relatively small (3.4 x 3.25), assume t=100 mm

Wy=1.4 go+1.6 p=1.4 (y; x t; + flooring)+1.6 x live loads

W, =1.4x(25%0.10+2) +1.6x3=11.1kN / m?

The slab load distribution factors are determined using table (6-1) in the code.
Woemwisxa=(11.1) a

wg=w,s x B=(11.1)B

The rectangularity ratio r is given by

m xL,
ie Bias

m, x L,

where m equals 1, 0.87, and 0.76 for simple, continuous from one end and continuous

from both ends respectively

The following table summarizes the results

Slab | L | me | L, | m, r o B | we wp

S1 325 | 0.87 34 0.87 | 1.046 | -0.37 | 0.32 [ 4.141 | 3.550

S2 3.25 | 0.76 34 087 | 1.198 | 045 | 0.24 | 4.982 | 2.709

S3 325 | 0.87 34 076 | 1.094 | 040 | 029 | 4.408 | 3.245

S4 325 | 0.76 34 0.76 | 1.046 | 0.37 | 0.32 | 4.141 | 3.550
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The bending moment for each slab is taken according to code coefficients given in
figure below :

-24 -10 -12 J
> +10 Ao +12 E +12 (

d (main direction) = ts‘ls mm=85 mm

d (secondary direction) = ts“25n'1-1'11=75 mm

For high grade steel the minimum area of steel equals

06, d =96 1000x85 =127.5 mm?
400 ~

smin f),

The following table summarizes the results of the bending moment in x direction and

4

y-directions

X-Direction

Slab| L, Wy M, d R ® As As As
(m) |kN/m’ | KN.m (mrﬁ) mm?*m’| chosen |chosen
S1 | 325 | 4.141 4>.374 85 | 0.0202 | 0.024 | 1514 | 5®8/m’ | 251.3
S2 | 325 | 4982 | 4385 | 85 | 0.0202 | 0.024 | 151.8 | 58/m’ 251.3
S3 | 325 |3.245| 34271 75 0.0203. 0.024 | 134.5 | 5®8/m' | 251.3
Sa | 325 | 4.141 | 3.645| 85 | 0.0168 | 0.020 1275 | 508m' | 251.3

Y-Direction

Slab; L, Wy M, d R o As As As

(m) | kN/m'| kN.m |(mm) mm?/m’| chosen | chosen
ST | 34 | 3550 | 4104 | 75 | 0.0243 | 0.029 | 1618 | 5P8/m’ | 251.3
S2 | 34 | 2709 | 3.131 | 75 | 0.0186 | 0.022 | 1275 | 5®8/m’ | 2513
S3 34 | 4408 ‘ 4246 | 85 | 0.0196 | 0.023 | 1465 | SP8/m’ 2513

S4 | 34 | 3550|3420 75 | 0.0203 | 0.024 | 1342 | 5P8/m’ 251.3

* the minimum reinforcement {4smi») controls the design

Step 3: Design of the paneled beams roof

Step 3.1: Assume concrete dimensions
Assume that the depth of the beams is shorter span/14

t =13.0/14=0.93m ——Take t=950 mm and b=300 mm
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Step 3.2: Calculate design loads
The self-weight of the beams is averaged over the slab using

nxL +n,xL,
L,xL,
N 300 N (950—100))( 3x17+4x13
1000 1000 17x13

ow, =y xbx(t—t )%

ow, =25 =297 kN /m?®

w, =1.4xo.w of beams(kN/m*)+w,, (kN/m*)
w, =14x2.97+11.1=15.26 kN / m?

Step 3.3: Distribution of the design loads
To determine the distribution of the load in both directions, use the total size of the
hall not the individual slab dimension

r=~;—‘%§§% =%=1'3°7<1'5 .0k

From Tgble 3.1, it can be determined that

0=0.746 and B=0.253, thus

Wo=0.746 % 15.26 =11.39 kN/u?’, this load is for beams in the short direction (13m)

wp=0.253 x 15.26 =3.87 kN/m’, this load is for beams in the long direction (17m)

6.5m
3.25m
P———
El
5
o
8=36 B2 El g
) [+
e B
o0
B1
gl of
al o o
B1
©
B2 om

B5 |

0=45 0=90 0=45

Step 3.4: Design of paneled beams

Step 3.4.1: Design of beam B1 (short direction)

Design beam B1 for flexure . o
Since beam B1 is spanning in the short direction, the load considered for design is Wy

The compatibility angle © equals the ratio of its distance relative to the centerline of

the hall, thus

6.8
G =——x 90 = 72°
85

W= W, X spacing % sin 0

w,, =11.39%3.4xsin(72) =36.83 kN/m'

w, xL* _36.83x13’
8

M o= =778 kN .m

Wup=36.82 kN/m’
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bending rr i i1t i iibd
Loads )y ; i Jrasy
1 : 13.0 }
]
Moment 2
omen
factors AN +8 Ao
25934 259.34
Bending {\ /\
moment
778
Critical ‘ l
sections % <b A
Beam B1
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Section 1
This section has positive bending (778 kN.m), the compression flange form a T-

section. The effective width equals

16¢t,+b =16x100+300=1900 mm o
B = smaller of ~§—+b = 13x;000 +300 = 2900 mm
CLtoCL =3400 mm

B=1900 mm
Using the C1-J curve

d=Cl

fuB

’778><106
900=C1,|———— =
30x1900 c1=1.1

The point is outside the curve use ¢/d);;=0.125
=0.125 x 900=112.5 mm
2=0.8 x 112.5 = 90 mm <t, .....0.k.

use j=0.825
M 778x10°
s T * = =26 2
Jdxf, 0825 x900x400 018 M
02257, 0225430
A, =smaller of 7 d =y X300x500=832 mm® <A, ok

134, =1.3x2616 =3401mm*

use (4022+4D20, 4,~2777 mm?)
AS=(0.1-0.2) A choose (3016, 603 mm?)
Section 2

_waxI’ _3683x13"
24 24

_ M, 259.34x10°
fobd?  30x300x900°

M, = =259.34 kN .m

=0.0355

From the curve it can be determined that ©=0.043

87

s

A =0 f"‘bxd 0043—%0—x300x9()0 870mm’ >Asmin

]
use (4 @ 20, 1256 mm’)

Design Beam B1 for Shear
The critical section for shear is at d/2 from the face of the support. Assuming that

column width (c) is 500 mm

0 =wube _W"b(i+£)=36.83x13 3683(090 050) 213.6 kN
“ 2 2 2 2 2

0, _ 213.6x1000
bxd  300x900

=0.791 N/ mm*

qu

The concrete shear strength is given by

g, =024 1,1% =0.24 1’-33 =1.07N/mm>
1.5 15

Since q,<q., the beam is considered safe, provide minimum area of stirrups

Assuming spacing of 200 mm and using mild steel £;=240 N/mm’

0 s = 04 300%200 = 100 mm®
i =77 240

Assuming 2 branches, the area of one branch equals

4

100

Ay = - = 50 mm® choose ¢8 (50 mm?)

sh T

Use 5¢8/m'’

Step 3.4.2: Design of Beam B3 (longitudinal)

Design Beam B3 for flexure

Since this beam spanning in the long direction, the load considered is wp(3.87 KN/m®).
The compatibility angle 6 equals the ratio of the its distance relative to the distance of
centerline of the hall, thus

9——2—2x90 90°

W, = W Xspacing xsin §=3.87%3.25x5in(90) =12.58kN /m’

uly
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wu=12.58 kN/m’.

bending T T T T T T 111 T T I T 111
Loads A4S ' . A
} 17.0 {
Moment 24 2
factors Ao +8 o
1515 151.5
Bending /‘
moment
454 .45
Critical | |
sections@ d) A
Beam B3
Section 1
L 12 :
M, =Wub8>‘ _1258XUT° _ 45445 kN m

This section has positive bending (454.45 kN.m), the compression flange form a T-

section.

161, +b =16x100+300 =1900 mm |
B = smaller of —g‘-+ b = 17551000 +300 = 3700 mm
CLtoCL =3250 mm

B=1900 mm

B.ecau§e the steel in the longitudinal direction is placed on top of the steel in the short
dlrectlpn, the depth is less than the transverse direction by approximately 50 mm.

q‘= 850 mm
Using the C1-J curve
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A

850 =C1J£§A_5_x_1()i —C1=9.52
30x1900

The point is outside the curve use ¢/d)in=0.125

¢=0.125 x 850=106.25 mm

a=0.8 x 106.25 = 85 mm <t .....0.k.

6
M, 45445x10° o0 o

A = Xdxf,  0.825x850x400

use j=0.825

0.225 Jf,
=smaller of f,

"bd=°-225‘/§5><300><850=786mm2 d<A, ok
4 200

s min

134, =13%1620 = 2106 mm”
use (5022, 1900 mm®)

A/=(0.1-0.2) A, choose (216, 400 mm’)
Section 2
2 2 .
M ____w_z_lﬁs_g_xl:wu kN.m
* 24 24
6
Re M. _ 151.5x10°  _ 0 0oas

T Fbd®  30x300x850°

From the curve it can be determined that ®=0.028

s

A =w£“~b><d=0.028 Z:s(—)%’x300x850=535 mm’®

y

0225 fu ) ;022530 300, 850 =786 mm
=smaller of 5 400

134, =1.3x535=696mm?> > A, (check 0.15/100b d)

5 min

But not less than -’%g—x300x850=382.'5 mm?

Use Ag min (696 mm?)——use (2 @ 22, 760 mm?)

Design of Beam B3 for Shear

Since beam B1 (which have more load than beam B3) requires minimum stirrups for
shear, provide minimum stirrups as well for beam B3(5¢8/m’ )
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Step 3.4.3: _Design ’ 3
gn of Beam B2 dﬂd B4 : The load on each beam will be calculated using the area method because the load is
Beam B2 Beam B4 : not symmetrical between each two successive supports.
Item short direction long direction The thickness of this beam should be at least the thickness of the paneled beams, thus
Wy ' 1139 : ' try a beam cross section (250 x 950 mim)
spacing (@) 387 - 1 | Ultimate beam self weight =1.4y. bt
3.40 3.25
0 36 wow=1.4x25><0.25x0.95=8.31kN/m'
45
Wy,=W, X spacing x sin (0) kN/m’ 22.76 880 j w = 3 of thetriangular _ < 5 ¢ 05%6.5%6.5 _ 40 ¢ kn/m"
span (m) 13 = T slab u span —-——'—'—"5
M, =W, L/8  (kN.m) 43086 TP ; W= Wont Wsiap =8.31+49.6=57.9 kN/m'
g l(mm) - 1900 1900 Since the beam has an equal loads and spans, the code coefficients for continuous
T 9.8 113 beam with two spans can be used .
=c min :
2 () 0.125 0.125 | Design of beam B5 for flexure
7 90<t, 85 <t; E Section 1 '
0.825 i 0.825 : w,x[} 57.9x6.5°
- ) . po=Pw XL _D20IX00 97184 kN.m
- “;‘:)‘ ) 1616 1144
o of bars . ;
: 5 : ’
Shear design i 0016 Stab
5¢8/m’ 5¢8/m’ load A Py A
: '———— 6.5 ————-'—————— 6.5 ———-I—
Step 4: Design of edge beams "  w=57.9 kN/m’
. . ¥ . w=57.9 kN/m
Step 4.1: Design of edge beam B5 Ulimate T T T T T T [T T 11]
Thg load distribution on the supportin i i : load ‘
pp g beams is shown in figure below. AN A e
13.0 : )
g m } i 6.5 i 6.5 ———-‘—
— - B5 ‘
T | 24 9 24
E E y )2 Moment 24
a > factors 4™ +i1 A 1 A
A ! 271.84
= : . .
5| @ @ § . 101.9 101.9
“ ‘ = Bending [N\ |
4 = moment /,\/ ,)%,\/}»
g : _
5 y = | = v 2224 2224
i E . v T .
-+ — & _;.__ Critical l : ‘




Since this section is subjected to negative bending, it will be designed as rectangular
section
6
__M, __ 271.84%10 00447
f.bd*  30%250x900

From the curve it can be determined that ®=0.054

4, = I&bxd =0.054 30, 250%900=916 mm* >A;min
I3 400

y

use (5 @ 16, 1005 mm®)

Section 2
2 2
M, = ——w“”lj L. ——-—57'91"16'5 = 2224 kN.m

This section has positive bending (222.4 kN.m), the compression flange forfn al-
section.

61, +b  =6x100+250=850 mm
B = smaller of -1L—8+b - 0.8x6.5x1000 50 _ 770 mm

CLtoCL =1700 mm

B=770mm
Using the C1-J curve

6
900 = C1 ’M C1=9.17
30%x770

The point is outside the curve use ¢/d)y;=0.125
¢=0.125 x 900=112.5 mm
a=0.8 x 112.5 =90 mm <t .....0.k.

use j=0.825
6
4, =— M, __224X10° __ou5 e
jxdxf, 0.825x900x400
0225J—
A, —smaller of | — 400 x250x 900 =693mm*> J<A, ok

134, =1.3x 748 =972.4mm’
use (4016, 804 mm?)
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Design of Beam B5 for shear

The critical section for shear is at d/2 from the face of the support. Assuming that

column width (c) is 250 mm

4w.,,,=5 7.9 kN/m’
O T W S O
o

Loads 4
1
iﬁ 6.5 { 6.5 ———~|-
Shear .40 0.60 0.60 0.40
factors 5 . Ay
critical )
150.5 section 225.8

i
I
Shear I\ i
i

foree \@
CiN2ss

i 1505
L die2

Q,=0.6xw %L wu,,( +—) 2258 579(0290 0225) 192.5 kN

0, _192.5x1000
9= h%d ~ 250%900

=0.856 N /mm’

The concrete shear strength is ‘given by

q., =024 1#@— =024 "93 =1.07 N/ mm*
15 15

L . .
- Since ¢,<qc, the beam is considered safe, provide minimum area of stirrups

Assummg spacing of 200 mm and using mild steel £,=240 N/mm”

A, . =— b s=—Qix250x200 83.33 mm?
240

s1,min j-J

: Assuming 2 branches, the area of one branch equals

83233 =41.67 mm* - choose ¢8 (50 mm?), Choose 5 ¢ 8/m’
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Step 4.2 Design of Beam B6 - 1 A 567 oo Ay 65 567

w,, =1.4x25x0.25%0.95=8.31 kN / m’ d
The weight of the slab will be divided in two parts , Slab » .
area of thetri lar(A4,) 0.5x5.67%5.67 : bt 6.30 = L— o :l 0.83 ~
_ etriangular(A, .9X%35.67%3. ’ ’ ’ ’ ’ ’
w, =w, x =15.26x 222900 _ 43 96 ' 0.83— i
2 span X 567 kN /m 5.67 | . 567 — ! 5.67 }
Wur =W+ W, =43.26 + 8.31=51.5 kN/m’ - = ’
rTe ) 4 wy=51.5 kN/m” ‘wi Ilo j'r kli[/ml t wu=51.5 kN/m'
_areaof 4, _ 4.01x6.5+2x0.5(5.67+6.5)x 0.83 , ] ultimate T T T 7 777 | B
w, =W, x—-———~span =15.26x% <67 =9733kN/m : loads ‘%T b e A
, , g A 5.67 1 5.67 { 3.67 |
Wy =Wirtw,, =97.33 + 8.31=105.64 kN/m' - : . : ! ‘ !

. . . 4 - 2524 2524 .
Since the beam is equal in spans but the load magnitude differs by more than 20%, 68.9
code coefficient can not be used. For simplicity, pattern loading was not considered. Bending 68& /l\ .
Using three moment equations-to solve the indeterminate beam, applying the equation .| moments '4’\/ P ¥ w
atb - } : 80.7 | 80.7

. i 171.9
M,L; +2 My, (L1+L2) + M, Ly=-6(Rpa+Ryc) '
The elastic reaction Ry, and Ry, equals Critical ‘ ‘ ‘ - N
; . sections A> é % é e
w, XL  51.5x5.67
R = ul = = 2
- = ” 391.15kN.m
w,xL  105.6x5.67° .
R, = 22 = 24 = 802kN.m? Design of beam B6 for flexure
Section 1
From symmetry My=M, and Ma=0, substituting in the moment equation gives ;
o M,=252.4 KN.m (rectangular section)
0+ 2 M, (5.67+5.67) + My, (5.67)= -6 (391.15+802) 6
M 252.4x10
M, _ =0.0415
M= -252.4 kN.m R f.bd®  30x250%x900° \

51.5%5.67% 2524 From the curve it can be determined that ©=0.050

M(+ve)span (gb) = 3 7 80.7 kN.m .
. Ja 30 250x900 = 843.75 mm?
105.6x5.67° . 4, =0 =bxd =0.05 770> 250x900 = 84375 mm
M(+ve)span (bc) = —-;—567— ~2524=1719 kN.m 4 400

022530 50,0900 = 693 mm® <4, ok

A . =smaller of

5 win

134, =1.3x843 =1095mm*

| use (2@ 16+2 @ 18, 911 mm’)
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Section 2
This section has positive bending (171.9 kN.m), the compression flange forms L-
section.
6t +b =6x100+250=850 mm
_ L 0.7x5.67x10 .
B= L _ .67x1000
smaller of 1(’) +b = 4250=6469mm J

CLtoCL =1700 mm

B=646.9 mm

Using the C1-J curve

Mu
~f-cll B

171.9x10°
900 = C1 /ﬁ_ -
30x6469 C1=9.56

The point is outside the curve use ¢/d)in=0.125
¢=0.125 x 900=112.5 mm

a=0.8x 112.5=90 mm <t, .....0.k.

use j=0.825

d=Cl1

M,  171.9x10°

= N = = 2
Jxdxf, 0.825x900x400 378 mm

s

0.22530
A, in =Smaller of 400

1.34, =1.3x578 =752 mm’

x250% 900 = 693 mm? .J

A< As.min use A; i (693 mmz)

use (2 @ 16+2 @ 18, A=911 mm?)

Design of Beam B6 for shear

Since the loading on the beam is not equal on all spans, code shear coefficients can not
be used. The maximum shear is at section middle span (bc) thus, the maximum shear
can be obtained from the structural analysis of the beam.

252.4 wy2=105.6 kN/m’ . 2524
Loads < [TTHid >
b : ¢
b o ]
299.3 299.3
299.3 | l¢ritical section

190.4

Shear l\ i I\ -
diagram 4> w | W \fh
190.4 101.6

299.3

101.6

The critical section for shear is at d/2 from the face of the support(b). Assuming that

column width (c) is 250 mm

0, <R, -w, L+ =188 1056 09,9231 7386 kN
272 2 2 2

_ 0, _ 238.6x1000
T =pud 250x900

concrete shear strength is given by

g, =024 ,’f—w =024 ‘PQ =1.07N/mm*
1.5 1.5

Since qu<q., the beam is considered safe, provide minimum area of stirrups

=1.06 N/mm?

Assuming spacing of 200 mm and using mild steel £,=240 N/mm?

A ——%bxs=9—'ix250x200=83.33 mm*
240

semin fy
Choose 5 ¢ 8/m’

97

98



B5
8 g
«
B2
g8
IR 3
B1 %
N
©
b g g o0 <t E
;; 2! E m m 8 8 g
o <
B1
Elg
ﬁ H: S
8 o
lﬂ B2
\3$8m S&é8/m = S#8h i
stgmf 2 Sﬁan ::3: )
K—L 7 72
. B5
3.25 .,l' 3.25 ,,I‘ 3.25 l, 3.25
A
13.00 m
. Reinforcement details

5¢8/m’

Sec 2 in Beam B3 (longitudinal direction)

300

Reinforcement details for beams B1 and B3

#

Sec | in Beam B

T
- 3016
4020
[ 4022
Beam B1
548/’ (2P
2016 |
\ |
1
- 5022 I |
ad @
2016
! \ 2022
[ 3022
Beam B3
| 8 2016 | {8 3016
< & = <
| 1 I |
. H ooz * 2012
= 5¢8/m’ ol 9 5¢8/m’
2|8 : ke L
L d o2 2012
4920+ .
sa08) 5022 4022

Foo

1 (short direction)
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Reinforcement details for beams BS and B6

FLAT SLABS
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T .é'ﬁoto 4.1 Flat slab system

4.1 Introduction

re one of the most commonly used structural systems in residential

Flat plates a
tals and office buildings. Flat plates are

buildings, hotels, commercial buildings, hospi
solid concrete slabs of uniform thickness that transfer the load directly to the columns

without the presence of projected beams, drop panels or column capitals as shown in
Fig. 4.1.A. The ease of construction is one of the important aspects that make flat slab
systems a very attractive solution. Architects prefer this system because the flexibility
in the arrangement of columns and partitions with no obstruction of light. In addition,
the absence of sharp comers gives greater fire resistance, as there is less danger of the

concrete spalling and exposure of the reinforcement.
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The major concern when using flat plates is shear transfe

columns. Ir{ ott.ler words, there is a danger that columns may ;uﬁf:)}rlntht?:u;larhéoslﬁge
Therefore, if .hve loads exceed 3 kN/m?, it is advisable to use drop panels at e
colm locations as shown in Fig. 4.1.B. The use of the drop panels Ii)ncre:js::1 s
negative flexural capacity at locations of high negative bending and reduces th " e
shear failure. Moreover, if the live loads exceed 6 kN/m?, it is recommen(;3 ::)Sk of
;?\}2:?)1 S}:f:l;iz Sas‘: nSlZf::wcl a;r; l;ifg' 4(.11.Ct2..1? bcase of excessively heavy live loads (:183

“indus ildi
panels‘together with column heads is :;:es:;glgsg zhf;snvzsrg?g?‘fjsbthe e of drop

} |

]
4 e —

-,V\_,

lv

A-Flat plate

_/V—_.

B-Flat slab with drop panel

4 s ,

L '——}

C-Fl i
at slab with column head D-Flat slab with drop panel and column head

Fig. 4.1 Types of flat slabs

The use of drop panels and column heads i P
o ‘ 1 1s -‘more acceptal arki Ia
storage buildings, and similar structures. cceptable in parking garages,
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4.2 Statical Equilibrium of Flat Slabs

The floor shown in Fig. 4.2 consists of individual concrete strips that form a slab. The
two beams support the concrete strips at their edges. Assume that the total load of the

" (section A-A) equals

M, =Yaizil

The reaction of the slab per meter is

The moment at mid span of the beam in Y~direction is

beam 8

2

M =.RxL,z =(wuxL2)X£,2_

The total moment for both beams equals

_ strips including self-weight equals w, (kN/mz). The moment per meter at mid-span

Fig. 4.2 Analysis of individual concrete strips supported on beams
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It is clear that the full load transferred by the concrete strips causes a moment in the
X-direction of the slab and the full load is transferred again by the beams causing
bending moment in Y-direction. This system of transferring the load is similar to a flat
slab system supported on four columns. The total moment in X-direction equals

W, xL)xL2
8

and the total moment in Y-direction equals

It can be concluded that whether the structural system is slab-beam system or flat
slabs as shown in Fig.4.3, the load is transferred in both directions. By comparing
Equations 4.6 and 4.7, it can be noticed that the largest moment develops in the longer
span direction. ’

/. S )

/ L,/2 A concrete slab

column

Fig. 4.3 Analysis of a flat plate system

4.3 Minimum Dimensions According to ECP 203

The Egyptian code requires certain minimum dimensions for different elements of the
flat slab system. These minimum requirements are summarized in Fig. 4.4.

105

Slab Thickness(t;)

150 mm
t the bigger of L/32 without drop
L/36 with drop
where L is the longer span

Drop thickness (tg)
t
tll 2—5_
dt;: ) | ! i - : —
Drop wi + =+
> Lundercansidemlion ts T
& . s
3 .
§ :
< Ly(smaller span)
- 2

Column width (b)
» L under consideration

‘ 20
. H ioh
b the bigger of< s (H =floor height)

300 mm” ‘ .
* The width of the column may be taken equal to 250 mm provided that detailed
column moment transfer calculations were performed

Column head width (D)

D
p<le ' ‘
< = 4
Column Strip width (Cy) .
L <45°
=2 . without drop
2
¢ =l
Drop width(S) with drop
Field Strip width (F;) . ‘
F, s = L under consideration” Cs -
e Marginal beam thickness (t) ¢ ?
t
t2=3t, ' .

Fig. 4.4 Minimum flat slab dimensions according to ECP 203
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Flat slab with drop panel

" 'Fig. 4.4 Minimum flat slab dimensions (cont.)
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4.4 Analysis of Flat Slabs

Flat Slabs may be analyzed and designed by any method that ensures that all the
strength and serviceability requirements of the ECP 203 are satisfied. When slabs are
supported on a rectangular grid of columns, the code offers two simplified methods

for analyzing the flat slab system. The first method is the direct design method and the

_second one is the equivalent frame method. These two methods, which are mentioned

in section 6-2-5-3 of the ECP 203, will be discussed in detail in the following sections.
In addition, if the slabs have unusual geometric .configurations or the columns are
spaced irregularly, neither of the code methods bécomes applicable. For these special
cases, the designer may analyze the floor by using finite element analysis (computer
model), in which the slab is divided into small finite elements connected by nodes.
The stiffness matrix of each element is computed and the global stiffness matrix is
constructed. Having determined the deformation at each node, the element internal
forces can be evaluated (refer to Section 4.10 of this text).

4.5 Direct Design Method

4.5.1 Limitation of the direct method

To ensure that the moments at the critical sections are adequate, the ECP 203 requires
that the following design conditions be satisfied:

1. A minimum of three continuous spans in each direction.

2. The ratio of the longer to the shorter span within a panel should not exceed 1.3

3. Successive span lengths in each direction should not differ by more than 10%

4. Non-Successive span lengths in each direction should not differ by more than 20%

4.5.2 Definition of column strip and field strip

The distribution of moment varies continuously across the width of the slab panel. To
simplify the steel arrangement, the design moments are averaged over the width of the
column strip.

The column strip width should be taken as ¥; the short direction for flat slabs without

drop panels. In the case of flat slab with drop panel, the column strip width equals the
drop width. The width of the field strip equals the difference between span length and

column strip width as shown in Fig. 4.5.

4.5.3 Calculation of slab load
The calculation of the slab load is carried out in a similar manner like solid slabs. -
However, since the brick walls are often distributed over the plan, an average wall
load w,, is added to the design loads as follows: ’
; ¥, Xh, XZ b, xwall length

w. =
" areaof the floor
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The ultimate loads for flat slabs without drop is
w, =14x{, xy, +w, . +w )+1.6
YA flooring w OXW ;e “4.8
In case of flat slabs with dro ight i i -
p, the drop weight is considered b i
y averaging th
the drop over the total area of the slab then multiplying by concrete we%:ghgt asef:lrl:v()f
_ s

S, xS
A Xt, Xx—L 2
drop = Ve X1y 7 7 — (4.9)

The ultimate loads for flat slabs with drop is
W, =LAXE XY, AW 4, AW g AW ) HLEXW ) oo 4.10)

(7, =25 kN /m*and ¢, in meters)

' { ' H
...... S S : . :
: t : -------- :-—-—-'—-—--\"--
...... ——di e b 7%
3 i : H
oo A
K S I R SRR R . i
= A T
5 H t . t i |
5 Yo g
=g ¢ G I
© ' | H q | :
=] 1 L H : i :
s R T R A.--..!--__'
[} ] H ' HE
o + N ! H ! :
~, ) N ' ; i
& — 3 ! H
) L T A I
i T H H
' i H H i
b N I S s
¢ -
1

H f
! tong direction !
1 H N
f [} )

Ly2 field strip=Li-Ly2 L,/2

A. Flat slab without drop

Sy=coluron strip width in the short direction.
S;=column strip width in the long direction.
td= drop thickness

i
_______ H e —————— i
o~ : = . ] ~
B .::;:a_._. ——————————— .8} -+ —
= i
(;,n_% —— — e i
e EEERE
al o H ! H : i :
£l e 4 H [ H ! :
@ i P 1 H
= 'Z% . E i fif—-drop panel |} : E
2 ¢ i H i
ol e 4 ' - 1 -
o~ ! » ! .
A ._._._..%_._ s 5 %
) FAE S 9 I
i i
1

B. Flat slab with drep

H H . .

1 ! ! o
PoL i L, (long direction
' ]

' 1

S, ' Ficldswip=L,-S, S,

Fig. 4.5 Definition of column and field strips
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4.5.4 Statical Moment ¥,

hod is an empirical procedure for establishing the design
ections. It is well known that the sum of the negative moment
at midspan of a uniformly loaded beam is w,L/8.
and span L,, the total statical

The direct design met
moments at the critical s
at the supports and positive moment
Accordingly, for a uniformly ioaded slab. with width Ly,

moment M, equals

To account for the effect of supports on the value of the bending moment, the code

gives the following equation for M, calculations

2
_w ;Lz x( L- 2"3D ] (long direction) ............ (4.12)

2
w, ;Ll x( L,- 2"3D ) (short direction) -........ 4.13)

on between the column and the slab. If
lar cross section or if the sides of the
treated as a square support having the

where D is the smallest distance at the intersecti
a supporting element does not have a rectangu
rectangle are not parailel to the span, it is to be
same area, as illustrated in Fig. 4.6.

The total static moment M, is divided into a ne
positive moment at midspan M, as follows

R Y S R
n column and filed strips as

gative moment at the support M and a

Both M, and M, shall be distributed again betwee
described in section 4.5.5.

— =P ] .

. E SR

| L

—
%

_,‘ 0.89 ‘ —— g J_L(

= .
Fig. 4.6 Definition of D for different flat slab systems
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4.5.5 Distribution of the Statical Moment

To simplify the analysis of flat slab floors, many design codes, including the ECP-
203, approximate the actual distribution of the transverse moments by two regions of
constant moment. The center strip, where the moment is the smallest, is called the

JSield strip or middle strip, and the strip in the column zones, where the moment is the
largest, is called the column strip. )

The distribution of the moments between column strip and field strip can be
explained by examining Fig. 4.7. Beam A represents the column strip while beams B
and C represent the field strip. Since beam A is rested directly on columns, beams B is
supported on beam A. If all of the beams are subjected to uniform load w, the
developed bending moment in beam A is larger than that in beam B. This is because
beam A carries the same uniform load w in addition to the reaction wl/2 from Beam
B. For an actual flat slab, the ratio of column strip- moment to field strip moment is
-variable and depends on the rectangularity ratio and the flexural stiffness of the
exterior beams (if any) along the building perimeter.

Fig. 4.7 Representation of column and field strips

The total statical moment M, is divided into positive and negative moments according

to the rules given in ECP-203 sec. 6-2-5-5. In the interior spans, 60% of M, is
distributed to the negative moment region and 40% to the positive moment region as
shown in Fig. 4.8. This is approximately the case for a beam fixed from both ends and
uniformly loaded where the negative moment is (wL%//2) 67% and the positive
moment is (wL*/24) 33% of the total moment of wL%/3.
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The distribution of the negative moment between cslurrl;n sttig artx}cll it;eli Ss;r}:gnvta}:rl:z
‘ i m dep

ing to the stiffness of the edge beam. If ?he edge bea I ) three

tai;clg;(i;:legslab thickness, only 25% of M, is assigned to column strip as shown in Fig

4.8.

‘In the case of floors that differ in spans (within 20% difference), the negative moment

t
section of the slab is designed for the larger of t}}e two'mom%nti zntesjwa tr,x:;‘xﬂn::n
distribution is carried out. Table 4.1 and Fig.4.9 give the distributio A
column and field strip according to the Egyptian Code.

Interior panel

Column strip
25% . ey No marginal beam
s 0% # 25%
o 15% Field strip
5% 20% & No marginal beam
20%
o 45% Column strip
20% 50% ’;Qb With marginal beam
A A 25%
30%
10% 20% 15% Fldstip
With marginal beam
o 0% Ay 15% o e
(1]

Fig. 4.8 Distribution of M, between column and field strip
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Table 4.1 Distribution of M, between column and field strip

Strip type | Marginal Exterior bay Interior bay
beam -ve moment | +ve moment | -ve moment { -ve moment | +ve moment
(external) (internal) A
Column | no beam 25 30 50 45 25
strip with 20
beam"
Field no beam 5 20 20 15 15
strip with 10
‘beam”

* the depth of the marginal beam should be at least =3 ts

Column strip -ve moment = 45%
Negative moment

_J/F—>(mm —q<i::
M, .
100%
Column strip +ve moment =25%
Positive moment

Field strip -ve moment = 5%

(40%)
Field strip +ve moment = 15%

A: Moment distribution in interior panels (with or without marginal beam)

< Column strip -ve moment = (20%+50%)/2=35%
Negative moment
(50%)
Field strip -ve moment = (10%+20%)/2=15%
M,
100%
-\_‘ Column strip +ve moment =30%
Positive moment
(50%) <

Field strip +ve moment = 20%
B: Moment distribution in exterior panels with marginal beam
Fig. 4.9 Distribution Moment in flat slabs using the direct design method
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| Direction Ideal width ' | Actual width | Correction factor
Long direction L2 . L,-S, L,/2
_ (L3-8
Short direction Li-Lo/2 L-S; L-L,/2
| @)

4.5.6 Moment Correction

The distribution of M, between the field strip and the column strip, as proposed by
ECP 203, is based on the assumption that the widths of the column strip and the field
strip are as shown in Fig.4.10a. If the field strip width is different from the ideal
length as shown in Fig. 4.10b, a correction needs to be made. The moment in the field
strip needs to be increased by multiplying their original value by the correction factor
given in Table 4.2. In addition, the moment in the column strip is reduced so that the
total bending is the same in either case as shown by the following equations.

, Actualwidthof F.S.
M ¢ 5 (comectedy = M g 5 iteaty * Tdedwidthof FS. =TT (4.15)
MC.S‘(comected) = {MF.S.-(MMI) +MCS.(ideal)} _MF.S.(conecIed) --------- (4.16)

where the actual width and ideal length are given in table 4.2

Table 4.2 Actual width and ideal length in field strip.
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Fig. 4.10 Moment correction for field strip in flat slabs with drop panels
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4.5.7 Provision for Pattern Loading

Ifthe slab is subjected to heavy live loads, negative moments shall form at midspan in
addition to the positive bending moments. If the live load (p) is greater than 1.5 the
dead loads (g), the negative bending in column strip in L, direction can be estimated

- as follows
2xp L 2xDY
M_  =lg- S L e 4.17
' ~-ve (g 3 )X(4O)X( H 3 ) ( )
and negative moment in the field strip in L, direction is
2
M_ve=(g_2xP)x(i)x(L,~2"D) ................. (4.18)
3 100 3
where

L, = span in direction 1 (refer to Fig. 4.5)

L, = span in direction 2

D = width of the column at slab intersection (refer to fig. 4.6)
p = uniform live loads

g = uniform dead loads

4.5.8 Design Steps According to the Direct Design Method
The steps necessary to perform the designs are briefly summarized as follows:

1- Choose the appropriate flat slab system according to the intensity of the live
load and the architectural requirements.

2- Estimate the slab thickness according to code requirements
3

4- Distribute the static moment between column strip and field strip.

1

Calculate the total static moment to be resisted in the two directions.

5- Divide the résulting moments by strip width to obtain the moment per meter.
6- Design the sections to select the reinforcement.
7- Design the slab for punching shear.

Examples 1 and 2 illustrate the use of this method as applied to flat slabs with and
without drop panels. If the slab thickness is greater than 160 mm, an upper
reinforcement mesh should be provided to satisfy temperature and cracking -
requirements by the code.
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4.6 Reinforcement of Flat Slabs
4.6.1 General

e . dition,
Minimum bar extension requirements are given in l?lg. 4.1;;:::1 g;ﬁ étt};;tZ.aItnlae(;S tl 1t(\)v 0
integri t is reco
the inte of the flat slab floors, 1 Lo
g)ot:(r)l:ll rle):ars in thgrt:tglumn strip should run through the core of the column

‘minimum area of steel is given by

A, = 9£xb xd  (for all types of Steel) wvrmirirmcericcenns
§,mun fy »

Photo 4.2 Menara.Tel:e’kVo;n; Kﬁala Lumpur, 310 meters, 55 stories, 2001
o 25th tallest building in the world
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Fig. 4-12 Reinforcement layout of flat slabs using mesh
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)

Column strip

Field strip

Columnstrip

o
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o

*

_, Field strip

- transferred to columns. This reinforcement s

4.6.2 Column Head Reinforcement

Column heads should be reinforced with bars in the directions 1 and 2 as shown in
Fig. 4.13. Closed stirrups should be provided to secure the reinforcement of the

column head in place. Column head reinforcement should be designed to resist
flexural moments resulting from either equivalent frame analysis or bending
hould not be less than 4% of the column

strip negative reinforcement per meter multiplied by the perpendicular span. In the
case of circular columns, the required reinforcement is the sum of the two directions

and should be uniformly distributed along the perimeter.

stirrups

As,co /m’ etk Eiuiaiuly ahal WA
VIR / ;;5
R ==
— i~ | i a

%0 S i \!\ R ’:/ : reinforcement 1
:zg:_ stin'updl . % / / il E'
| A7 TN
im——————————————— . i ___—/ --------- \-_-- 1 i
Z 7 T NN

span length =L,

Fig. 4.13 Reinforcement in column head

Area of reinfbrcement 1 =—-i—x A, o /m'xL,
’ 100 °°

Area of reinforcement 2 N B R
' 100 .
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4.6. i
3 Reinforcement at Openings in Flat Slabs

An opening of a size ;
not more than 0.4

of the two middle stri 0 0.4 span length may be formed i i .
of reinforcement reqrx?i):e:sfshOWﬂ in Flg.‘4. 14 (zone A), provided th altnt}tf;et mt(lersectlon
the intersection of the tw, or the slab without the opening is maintained }01'-‘3 amount
column strip in either 0 column Strips, no more than one-tenth of th - However, gt
amounts of reinforcemeil:asr; Sllllagl bg Interrupted by openings (zone (?)Wédthl of the
all be added he si . . Equivalent

more than one- ) on the sides of the o
openings. It sho?xlllgr:)eer l?gtéget}fetlntfl?rcergent in either strip sfﬁ?lgf iilntezr?::et li] no
presence of the opening. at the ultimate shear capacity is reduced duel:J teo tﬁy
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4.7 Punching Shear Strength of Flat Slabs

4.7.1 General .
the most critical design aspects in determining .the

punching shear strength is one of
hear failure mechanisms that may be encountered in

flat slab thickness. There are two s

a flat slab system. The first is the one-way shear similar to that in beams. This type
rarely controls the design of flat slab floors. The second is the two-way shear, in
which the failure surrounds the column forming a pyramid shape. Normaily, the

stresses resulting from the two-way shear are much higher than that resulting from the

one-way shear.

Two-way shear failure mechani
Interior columns are generally subj
from the slab to the columns. However, to ensure
Egyptian code requires that part of the connecting moment
slab and the columns, resulting in additional punching shear.

The combination of shear and unbalanced moment is unavoidable at edge and corner
column locations and occurs at interior columns because of unequal spans and lateral
loads. Prevention of punching failure of column-slab connections transferring
moment depends on an accurate calculation of shear stresses produced by moment

sm is usually encountered in flat slab and footings.

ected to shear with negligible moment transfer
adequate shear strength, the

be transferred between the

transfer.
One of the most widely used analysis methods is based on summing the stresses
s developed by the unbalanced moments.

developed by vertical shear and the stresse

This detailed analysis is adopted by the ACI and the Egyptian code of practice.

However, the computational time required for such analysis is still costly and is not
The Egyptian code also offers a simplified

suitable for routine design computations.
analysis method for calculating punching shear stress due to both gravity and moment

transferred to columns due to torsion. In this method, a magnification factor is used to
account for the portion transferred by the unbalanced moment
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i 4.7.2 Critical Sections ‘ .
‘ L . . . Ded |e—Dxd
’ For both design methods, the critical section for punching shear is at d/2 from the face ]
of the column. Fig. 4.15 shows several examples of internal, external and corner
columns. If the openings are located less than 10 times the slab thickness, the code o ol h g
requires that the critical perimeter be reduced as illustrated in Fig 4.16. In floors with ] ] 3 90 a0
drop panels, two critical sections should be investigated as shown in Fig. 4.17. : ' 7
‘ . it he Critical shear
Critical shear / \_Qm@l_s%a‘r C‘rg-e[—jme—?!/
a=c/+d ; perimeter pernme 5
31=C]+d » ' . l D I I l
o - , b)Flat slab with column
S —— - . 7 : N a)Flat slab without drop head&without drop panel
: E o ¢ : + panel or column head
o b a2 _ o 4z : 3
e ' #2 BRI L D E EE RS ! ")
H [ ¥ d/2 :
T T TR OU | 01 D+d
fd/Z = ’ ci+di
]._L_._! critical shear perimeter ;
U=2 a;+2 b, U=a+2 b,
: 1 i
I k=]
, . =
aj=c,+d/2 a Critical shear di=d+td N Critical Shezaf
= - ! ! . _——i——/ Critical shear perimeter
e ; < . h ritical shear
°2:{ / rd2 | % dz i by : : ; D —]
: |L :\ . %
........... H ] >/ '," e c)Flat siab with drop panel
¥ ' FAN . &without column head
3 N, /a3
L . oo dn2
U=ai+ b, critical shear perimeter Drop width+d
U=a|+ ay +2 as +2bl . D+dt
Fig. 4.15 Critical shear perimeter for internal, exterior and corner columns
considered as o 1 L : %0
i E p
%Gdg*e_ _"__'M/ d1=d+1g \Critif:al shear
=] perimeter 2 permeter2
(e . . ] Critca shear_
an : a2 | 7w % : bemeer oD | Permetr
b I ! H ! / ! ! : perimeter
- // : i : - : _
SR b} b d)Fiat slab with drop panel
d2 7d/2 : ?d/z & column head
a a
o fe— ]

Fig. 4.17 Critical shear perimeter in flat slab
Fig.4.16. Critical sections for flat slabs with openings
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4.7.3 Concrete Punching Shear Strength

The Egyptian code states that the smallest of the following three values represents the
- concrete punching shear strength q,,,

Gup =0.316 0.5+)x o e (4.22.4)
b 7.
ad \ cu '
Qo =08 (E=402)x o e (4.22.B)
b, e
Gup =0.316 o <LEN /mm? .o SO (4.22.C)
| '

where
a is the column dimension in the analysis direction.
b is the column dimension in the perpendicular direction.

a equals 4,3,2 for interior, exterior, corner column respectively.
b, is the critical shear perimeter. '

The applied shear s~tress, calculated using either the detailed analysis described in

section 4.7.4 or the simplified method described in section 4.7.5, should be less than
concrete punching shear strength g, :

Photo 4.3 Flat slab and solid slabs during construction in Dubi
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4.7.4 Detailed Analysis
4.7.4.1 Introduction

Concentric loading on flat slab systems as shown in Fig. 4.18, produces uniform

punching shear stress that can be calculated from Eq. 4.23

where N

Q. is the ultimate desxgn‘s ear force.

b, ‘i’s the critical shear perimeter b,=2 [(a+d)+(b+d)]
d is the effective flat slab depth.

L,

/; critical shear
: perimeter

Fig. 4.18 Concentric shear stress calculations for interior column

The case of concentric loading is rarely encountered in real structures. Therefore, the
Egyptian code imposes a minimum amount of l.mbalanced mqment that should be
transferred to columns. This amount varies according to the location of the column. '
The moment transferred between slab and column, produce a complex behavior
involving flexure, shear and torsion. »

4.7.4.2 Calculations of the Punching Stresses

Figure 4.19 illustrate the moment and shear transfer at interior and exterior columns,
where a shear and an unbalanced moment are transferred from the slab.to column. A
fraction of the unbalanced moment transferred by flexure (3 My, where y is
calculated from

in which
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SRR =

%= fraction of the unbalanced moment transferred by flexure
¢,= is the column dimension in the analysis direction

c;= is the column dimension in the perpendicular direction
d= depth of the flat slab

The moment transferred to the column by eccentric shear stress is (3, My) where

Vo Tl e (4.252)
A e A O (4.25b)
Yo =1V e (4.25¢)

This moment causes additional shear stresses that have to be combined with those
resulting from the vertical shear. The code requires that the moment transferred be
taken as 50% and 90% of the negative bending of the column strip for the interior and
exterior columns, respectively. For an edge bay, the amount of.the negative bending
transferred is reduced by half.

»>

Corner column layout

Critical section

Transfer of moment at corner column

M
9% My Q 9, =pr—d+m
a=c;+d 1) baXd J up ), X le .
P A Shear Stresses due to vertical loads
Cap d/2~ E ‘ C;: I 5
~ | - %
c ) h | © |
CB : H : al
: /—E\‘My i Shear Stresses due to M,
€ e N B
i dn
e s Crm critical shear perimeter
y
a-Internal column Shear Stresses due to M,
o, Mz7C
— y ‘g A8
a;=c(+d/2 \ Qup 94 “bo Xd—*——.](y—_
) I— ooy '
Cap, &t g : § - b A
T _ix |2 e B <
Co Ci—{ wm ]l_ PlL Total Shear Stresses
B L <)
My
o) L
d/zf PP
Cep iCAB
1 \critical shear perimeter

b-Edge column
Fig. 4.19 Punching stress distribution due to an unbalanced moment

127

Fig. 4.20: Punching shear stresses for a corner column
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The case of corner column subjected to eccentric punching stress is illustrated in Fig.
4.20. The centroid of the critical perimeter lies closer to the inside face of the column.
Hence, shear stresses due to moment transfer are larger at the outside perimeter. If the
shear stress due to transferred moment is larger than shear stress due to gravity load qp
as defined by Eq. 4.26, a negative shear stress may occur at these points (corners A,
C). The punching shear stresses calculated using the code-detailed method is given in
Eqs. (4.27-4.30). These stresses should be added to the punching stresses caused by
the vertical loads. The final shear stress at each point for the comer column is
computed using Egs. (4.314.33).

The shear stress due to gravity loads is given by:

The shear stresses due to unbalanced moment M, are given by:

M C :
I R R 427
Jc:v
M y C
ya = s ess s sbess e anssnenes (4.28)
<y
The shear stresses due to unbalanced moment M, are given by:
Mr }/qt CCB
ettt areea e e et e e aa s 4.29
qxl ch ( )
M C
Pt ;q 2D et (4.30)
The total stresses at column corner points equal to:
A = Qp Tyt ~ Quaereereermrmennsiisiiceccniceeeeeveeenans “4.31)
Gg=qp+ qu + L NN T OSSO (4.32)
GC = Qp T Gri = Qy2eeereereerecionensercomseenerceneseeseeneas (4.33)

These stresses should be checked against concrete shear strength given in Eq. 4.22.
where the properties Cap, Ccp, Ces,Can, J,, and J, for different column locations are
given by:
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Case of interior column (Fig. 4.19)

' : b
Cu=Cop ”_"a_zl' Co=Cypp= 9
g x4 4 xd’ d’“’;"b‘ .............................. (4.34)
i 6 6 .
g dxbl b Xd? dxbiXay e (4.35)
=7 6 6 2
Case of exterior column (Fig. 4.19)
2 b
= 4 Ces =Cap =—
Cas (b‘+2xa‘) 2
Ce ax_c,w
2xd xC2  2xd xC} a,_><d3 436
J,, =dxb, xC3, + 3 @ 4 3 48 o .(4.36)
_dxbl boxd® dxbixa . (4.37)
=6 6 2
Case of corper column (Fig. 4.20)
2
C =———————'alz . CCB ;—————_bbl ) )
A2 (2xb, +2%a) (2%b, +2xa,
Cop=0,—Cyp . Cup=b-Ce
dxClp dxChy  axd” .. 4.38)
Ty =dxbyXCly + B A T (
dxC3, dxCl b xd’ (439
J, =dxa xCl + 3'“’+ Ty 4.39)
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4.7.5 Simplified Method

The Egyptian code offers a simplified design method for calculating the tota)
punching shear stress including shear stresses due to moment transferred to columns,
In this simplified method, the shear stress due to vertical gravity loads is magnified by
the factor B to account for unbalanced moment transferred to columns. The method
implies that the estimated additional increase in shear stresses due to moment
transferred from slab to column is 15%, 30%, 50% for the interior, exterior and corner
column, respectively. '

The shear stress is given by

where

Q,p is the ultimate design shear force
8 = 1.15 for interior column

= 1.30 for exterior column

B = 1.50 for corner column

b, is the critical shear perimeter

d is the effective slab depth

Fig. 4.21 shows the critical shear perimeter and the loaded area for an interior column
in flat slab floor. According to this figure, the calculation procedure is as follows:

0, =W, X{Ly XLy =@ XBy} oot 4.41)
0, x1.15
e e e 4.42
="y a (4.42)
a=a+d b =b+d b, =2a,+2b,

Table 4.3 summarizes the calculations of the critical shear perimeter and design shear
force for interior, exterior and corner columns.
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X

Fig. 4.21 loaded area and critical shear perimeter for an interio

Table 4.3 Calculation of criti

r column

cal shear perimeter and design shear force

Type of column | yoeorior Column | Exterior Column | Corner column
2 ‘ 1__ __‘b‘ Lo/2 5_5 by 1)
I_ -; L, a 1
Shape : :bl T —
L
a a+d a+d a+d/2
1
b b+d b +d/2 b +d/2
1
+
perimeter (b,) 2(a,+by) art2 by artby
' \ 15
1.15 1.3
B .
Qup w"(L‘xsz—a‘Xbl) W(LlXL2 ~a, xb) Wu(LlXLz —a,; b))
R u 9
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4.8 One-Way Shear Strength

Sm?sses resulting from one-way shear are normally low, and usually do not control the
design. One-way shear stresses must be resisted by concrete strength only and without

any reinforcement contribution. The Egyptian code gives the following equation for
one-way concrete shear strength:

g, =0.16 Py—w ................................................... (4.43)

The cri?ical-section for one-way shear is taken at d/2 from the face of the column as
shown in Fig. 4.22. The calculated shear stress should be less than concrete shear

sl;rength. For example, shear stresses for the interior column shown in Fig. 4.22 are
given by o

q —W<

il Lxd Gy corerrreresserssansaransatsnstasssssanenias (4.44)
_w, xLxL, <

9u2 L xd _qmv ............................................. (4.45)

R : Q,_
: i .
R . b | critical shear sections

L,

Fig. 4.22 Critical sections for one-way shear in interior columns
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Example 4.1

It is required to design the Flat Slab Roof shown in Fig. EX4.1. Columns (500x 500
mm) are only allowed as shown. For architectural purposes, it is required that no drop

~ panels or columns’ heads to be used.

Data:-
Concrete Characteristic Strength = 25 N/mm’
Steel Yield Stress = 360 N/mm’
Live Load = 40 KN/m’
Flooring = 20 KN/m?
Equivalent wall loads = 1.5  kNm®
Floor Height = 350 m

Solution:

The floor consists of three equal spans in each direction, the span in the long direction
equals L, = 6.0 m and the span in the short direction L,=5.0 m

The system satisfies the requirements of the empirical method specified in the Code-
article (6-2-5-5)

The average length L,,,=5.5 m

Step 1: Dimensioning

= Slab thickness (t.):-

150 mm

t, =bigger of
L
Liwg _ 6000 107 5 mm
32 32

Take t, = 200 mm

« Column Dimensions (bxb)

300 mm

b =bigger of P =M)—= 220 mm

Thus b=500 mm is satisfactory
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Fig. EX 4.1 Flat Slab Roof

Long direction

Short direction

[4]

ALL DIMENSIONS ARE IN METERS
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* Marginal Beams (bbxtl;)
Punching stresses are usually high in exterior and corner columns. Hence, a
marginél beam is considered with thickness t, > 3t; > 600 mm
Take t, = 700 mm & b, =250 mm
* Column and Field Strips:-
Assume that width of Column Strip = % Smailer side = 1/2x5.0 = 2.50m ,
Width of Field Strip:-
For short direction = 6.00-2.50 = 3.50 m
For long direction = 5.00-2. 50 =2.50m

Step 2: Mmlmum steel requnremen*rs -
For f, =360 N/mm’

A, i (long) =—66><1000><(200 20) =300 mm *fm'

(short)=—6x1000x(200 30)=283 mm?/m

: min

Step 3: Load calculations
Dead Load, g = Own weight + Flooring + Equlvalent Wall Loads

=25x020+2.0+1.5=8.5 kN/m’
Live Load, ps= 4.0 KN/m’
Since the live loads is less than 0.75 the dead loads
we =  1.50(g*p)
1.5 x (8.50 + 4.0)
18.75 kN/m’

It

1l

Step 4: Design of Strips
Step 4-a: Long Direction
Step 4-a-i: Statical system and bending moment

Mn = Wy XLZ'LLl _ZXD)Z
8

As no column head is used D=b=0.50 m
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_18.75x5 2x0.5Y
M, === (6.0— "3 J=376.3 kN.m

Percentage of moments is taken from Table 4.1
Column strip -ve moment =169
Negative moment ’ 2 HmE

225.78 kN.m(60%)

Mo=376.3 kN. Field strip -ve moment = 56.45kN.m (15%)

Column strip +ve moment =94
Positive moment O
150.52 kN.m (40%,

- Field strip +ve moment = 56.45kN.m (15%)

Distribution of M, for an interior bay

Step 4-a-ii: Design of sections

Since the width of the column strip i :
Since strip is 2.5 'm, the maximum i
interior panel per meter equals negative moment at the

169.33
M, = = 67.73 kN.m/m'

R=— M. __ 6173x10°
fuxbxd®  25x1000x180% 084

Fora=0.0 ®»=0.107

4 = oo b 201072
s a)xf xbxd—-0.107xﬁx1000><180=1337mmzlm'

¥
use ( 9P 14 /m’) as negative column strip reinforcement in the‘ long direction

The design for the rest of the long direction critical section is given in the figure
Step 4-b: Short Direction:- |
Step 4-b-i: Statical system and bending moment: -

M =_w:uXL|(L ZXD)Z
o 8 2" 3

As no column head is used D=b=0.50 m

_ 18756 2x0.5)’
M, === (5.0— 3 ) =306.25 kN.m

Percentage of moments is taken from Table 4.1
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Step 4-b-ii: Design of sections
Since the width of the column strip is 2.5 m, the maximum negative moment at the
interior panel per meter equals

. L7855 10 kvam/m
2.5
since this is the secondary direction d=200-30=170 mm
6
R M, __5512x10° 0

T xbxd®  25x1000x170°

Fora=0.0 ©=0.097

A, =a)><_f‘" xbxd =0.097x3:)'6i0x1000x170=1144 mm?® [ m'

b4 -
use (6012/m'+3®14 /m’) as negative column strip reinforcement of the short direction

The design for the rest of the short direction critical sections is given in the figure

Step 5: Design of edge column strip

Due to the presence of the marginal beam, the moment in the exterior strip/m’ equal

" half the moment in the interior strip/m’.

So, the reinforcement in the exterior strip/m equals half the reinforcement in the

interior strip/m’. (While considexjiﬁg the minimum steel requirements).

Step 6: Check for negative reinforcement in the field span

As g, >2/3 ps, no top reinforcement is required. However, since the slab thickness is
greater than 160 mm, shrinkage top mat is needed (use 6 @ 10/m’ in the long direction

and 5 @ 10/m’ in the short direction)

Step 7: Design for Punching Shear for Interior Column
Assume concrete cover of 20 mm

d =200-20 = 180 mm

a; =b;=500 +180 = 680 mim

Qup=18.75x 5.0 % 6 — 18.75 x 0.68 x 0.68 =554 kN

B =1.15 (case of interior column)
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b, = 2 x (680+680) =2720 mm

_ 9, B 554x1000x1.15

q,= =
b, d 2720%180

=13 N/mm?

9oup 15 the smallest of

_ [f 25
1 g, =0316 y—=0.316‘/r§=1.29N/mm2<1.6....o.k

2. q,,=0316(0.5+%) Jeu 500, [25
aup = 0- : X = =0316 (0.5+ 2 ) x == =
5y, ( *500) s = 193 N/ mm’
3 g, =08 ad Jo _ 4 %180 25
» (= +0D)x |7 =038 +0.2)x \[== =151 N/ mm®

o Ve 2720 1.5

Note : o =4.0 for interior columns

Qeup=1.29 N/mm?
Sinceq, =q.,, , the slab is considered safe regarding fo punching

a|=680

=680

eroen ol ]

by

critical shéar perimeter

The punching strength i
of the exteri -
manner. or and corner columns can be checked in similar

Y
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Design of Long Direction

Column Strip (Width=2.50 m) Field Strip (Width=2.50 m)

rﬂvvvvvvvvvvvvvvvvvvvvvvvvvvv-v‘ﬂ

r"vv""vvvvvvvvvvvvvvvv'vv'v'v‘m

oy : A VA AN

b 6.00 | 6oo] | _ .6.00 | 6.00
Mo=376.3 KN.m _

oMo 20% 50% 10% - : 20%
A 30% AN 5% | A~ 20% FAS 15%

m 75.26 188.15 3763 75.26
Mo 112.90 & 9400| A 75.26 FAS 56.45

kNMr:jll 30.10. . 75.26 15.10 30.10
mmsSe 45.16 AN 37.60| > 30.10 & 22.58
d=180 d=180 d=180°  d=180 d=180 d=180 d=180  d=180

R 0037 ~_0.093 0.019 0.037
A 0.056 o~ 0046 A 0.037 rAY 0.028

® 0045 ) 0.121 0.022 , 0.045
2 0.069 AN 0.057| 0.045 AN 0.033

As 563 1513 - 275 563
mrifm 4o 863 rAN 713 Ve 563 raN 214

6414 ' 3410

acim 6612 13916 6810 a5
e 614 &~ 32| 3410 FAN 610

_ +3p14 312
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Column Strip (Width=2.5m)

Design of Short Direction

Field Strip (Width=3.50 m)

B Field Strip
-r 2.50

A =t Column Strip

2.50

[AAAAAARARAAAAAARRAAAAAARALAAAN AN,

oy AN au AN
L 5.00 | so0| | 5.00 | 5.00
Mo=306.3 kN.m
%Mo 20% 50% 10% 20%
e 30% AN 25% pas 20% AN 15%
m: 61.25 153.13 - 3063 61.25
A 91.88 AN 76.56 A 61.25 AN 4594
m: y 24.50 61.25 8.75 17.50
pllal’A™ 36.75 VAN 30.62 AN 17.50 AN 13.13
d=170 d=170 d=170  d=170 d=170 d=170 d=170  d=170
R 0.034 0.085 0.012 0.024
Y 0.051 AN 0.042 s 0.024 AN 0.018
®  0.041 0.109 0.014 0.028
= 0.062 A 0.051 A 0.028 AN 0.021
As 481 1291 165 335
mnfim 5, 737 Ay 600 g 335 TAN 250
As/m 6%12 914 6410 6410
312 A XV BAY 6410 FAN 6410
+3¢14
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Example 4.2

It is required to design the flat slab Roof shown in Fig. EX4.2. Columns (500x 500
mm) are only. allowed as shown.

Data:-
Concrete Characteristic Strength = 25  N/mm?
Steel Yield Stress = 360 N/mm’
Live Load = 100 KN/m?
Flooring = 20  kN/m?
Equivalent wall loads = 1.5 KN/m®
Floor Height = 350 m
Solution: -

Since live load is relatively high and there is no architecture restriction, use flat slab
with drop panels.

The floor consists of three equal spans in each direction, the span in the long direction
equals L; = 6.0 m and the span in the short direction L;=5.0m.

The system satisfies the requirements of the empirical method specified in the Code-
article (6-2-5-5).

Step 1: Dimensioning

= Slab thickness (t,):-

150 mm
t, =bigger of
L
St _ 8000 _ 166,67 mm
36 36
Take t; = 200 mm
* Column Dimensions (bxb)
300 mm
. h (3500 - 200)
b=b e - T =220
igger of T T mm
L = 00 =300 mm
20 20
Take b=500 mm
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Fig. EX 4.2 Flat Stab Roof with drop panel
ALL DIMENSIONS ARE IN METERS ‘

Short direction
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ST ety

* Drop Panel
-Dimensions of Drop panels S
> L/3
s L,/2
Taking the Drop Panel Dimensions 2.00 X 2.00 (refer to roof layout)
* Thickness of Drop Panel
Thickness of drop panel under the slab 2 t/4 = 200/4 = 50 mm
Taking the total depth at drop panel = 200+50 = 250 mm
* Marginal Beams (byxty)
No marginal beam is provided
* Column and Field Strips:-~
Width of Column Strip = width of drop panel = 2.0 m (in each direction)
Width of Field Strip:-
For Long Direction = 5.00-2.00 = 3.0 m
For Short Direction = 6.00-2.00 = 4.0 m

Step 2: Minimum Steel Requirement
For f, = 360 N/mm®

0.6
A (] =
s.min (fong ) 360 1000 (200-20) = 300 mm? /m’

0.6
A, in (short) =7 <1000x(200-30) = 283 ram? / m’

y

Minimum Steel Reinforcement at the location of drop panel

A (omey 2 0:60 .
s.min (fOng ) 360 <1000x(250~20) = 383 mm? / m
4 _ 060 |

sumin (ShOTE) = 22X 1000 (250~ 30) = 367 mm* / m*

Step 3: Calculation of Loads

There is additional weight due to the presence of 50 mm drop in the column stri
N rlp

Sx§
y ~ 2x2
=25%0.05x "6=o.1667 kN I m?

drop = 25x t‘] X

1 XLy

Dead load, g, = Own weight + Flooring + Drop + Equivalent Wall Loads
=25x0.20+2.0+0.167+1.5=8.667 kN/m®
Live load, p; = 10.0 KN/m?
Since the live loadé is greater than 0.75 the dead loads

Wey . = 1.4g,+ 1.6ps
1.4x8.667 +1.6x 10
28.13 KN/m?

I

I

Step 4: Design of Strips
Step 4-a: Long Direction
Step 4-a-i: Statical system and Bending Moment -

M, =w‘”XL2(L|—2XD)2
8 3

_As no column head is used D=b=0.50 m

2.
M, = 28'183"5 (6.0— 2"30‘5) = 564.6 kN.m

Percentage of moments is taken from Table 4.1

Step 4-a-ii: Moment Correction
Since the width of the column strip is less than ¥ the short span and the flat slab is

with drop panel, moment correction needs to be carried out. The correction is applied
to the field strip and then the column strip moment is adjusted accordingly. The
correction factor equals to the ratio of the actual width of the filed strip to the width of
the filed strip in case of no drop panel is used (ideal width). The ideal column strip
width equals 2.5 m and the ideal field strip width is given in the following table:
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Long direction
Actual width of filed strip | Ideal width of filed strip correction factor
3 5-2.5=2.5 1.2
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The calculation of bending moments in the longitudinal direction of an interior bay is
given in the following table:

Negative moment (kN.m) Positive moment (kN.m)
field strip column strip field strip column strip
(20%) (%50) (15%) (25%)
before ) 112.92 282.31 84.7 14
correction e
;A:;::;Ction 1 i)%'g ?592 (112.92+282.31)- 1.2x84.7 225.86-101.6
g 135.5 =259.73 =101.6 =124.2

Step 4-b-ii: Moment Correction

Since the width-of the column strip is less than %2 the short span and the flat slab is
with drop panel, moment correction needs to be carried out. The correction is applied
to the field strip and then the column strip moment is adjusted accordingly. The
correction factor equals to the ratio of the actual width of the filed strip to the width of
the filed strip in case of no drop panel is used (ideal width). The ideal column strip
width equals 2.5 m and the ideal field strip width is given in the following table:

Step 4-a-iii: Design of Sections

Slnce the “ldth Of the COlunnl St"-p 18 2‘0 rn’ the maxumnum negatl ve moment at the

259.73
M,= o =129.86 kN .m /m'

- M, _ 129.86x10°
Sfaxbxd?  25x1000x 230>

=0.098
Fora=0.0 ©=0.129

A4 = wxfc"

Yy

Step 4-b: Short Direction

25
xb xd =O.129x§6—0x1000x230=2063 mm*/m'

Step 4-b-i: Statical system and Bending Moment

M, =YL, 2xDY
8 23

As no column head is used D=b=0.50 m

o

_28.13x6 2x0.5Y
M, =—2 (5.0- ) =459.5 kN.m

Percentage of moments is taken from Table 4.1

Short direction

Actual width of filed strip | Ideal width of filed strip correction factor
.4 6-2.5=3.5 1.143
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Step 4-b-iii: Design of Sections

Since the width of the column strip is 2.0 m, the maximum negative moment at the
interior panel per meter equals

M, :2—;6(;—6=108.3 KN.mim'

The depth in the short direction=250-30=220 mm

M, 1083x10°
f.xbxd® 25x1000%220”

Fora=0.0 «@=0.116

A, - wxlexbxd =O.116x-2—5—><1000><220=1773 mm®/m'
i 360
Step 5: Design of edge column strip

Due to the presence of the marginal beam, the value of the bending moments in the
exterior strip/m’ equal to half the value of the bending moments in the interior
strip/m’.

Accordingly, the reinforcement in the exterior strip/m equals half the reinforcement in
the interior strip/m’. (While considering the minimum steel requirements).

Step 6: Negative reinforcement in the midspan

Since g, >2/3 ps (8.6>2/3 x 10=6.67), no negative moments will be developed at
midspan and no top reinforcement is required for such a reason. However, since the
slab thickness is greater than 160 mm, top reinforcement is needed to resist shrinkage
and temperature stresses.

Provide 6 @ 10 /m’ in both directions.
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Step 7: Design for Punching Shear for Interior Column

Since the floor is flat slab with drop panels, two critical sections should be
investigated as shown in figure.

Step 7.1: Section 1

d=200-20 = 180 mm

a; =b,=2000 +180 =2180 mm
Qup=28.13x5.0x6-28.13x2.18 x 2.18 = 710 kN

B =1.15 (case of interior column)

a;=2180 ,
| | | 2180 1
—F : ———————————————————— £ | '
500 N | ; |
s M P T
51 isTU : : ‘
1 5 %I ] : 180 \
s . E critical section |
| o t
e , mChe
critical shear section 1

| 2000 1
|

bo =2 x (2180+2180) =8720 mm

_9 B _710x1000x1.15
b, d 8720% 180

9, =0.52 N/ mm?

Geup 1s the smallest of

L ¢, =0316 Pﬁ=0.316‘/12—2=1.29N/mm2<1.6....o.k

2 Gy =0316 05+ 2)x Ja =o.316(o.5+§(%)x 25 193 N/mm?

Ve L5
ad v 4v .
3. 40, =08(5+02)x i— =0.8(—8i7;z—°+0.2)x %:ogz N/ mm?

Note : o =4.0 for interior columnns

Qoup=0.92 N/mm?

since ¢,<q_.,, section 1 is considéred safe

‘ Qup=28.13 x5.0x6—28.13%x0.73x0.73 =829 kN
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Step 7.2: Section 2

Assume concrete cover of 20 mm
d =250-20 = 230 mm

a, =b;=500 +230 =730 mm

B =1.15 (case of interior column)

b, = 2 X (730+730) =2920 mim

_ 0., ¥ij =829x1000x1.15 ~142 N/ mm?
W= d 2920 x 230

qeup 18 the smallest of

’ ,25 )
L. qcu,z=0'316 i;5“—=0.316 E=1.29 N/mm

5 2
a Sau- _ 5 i@x 2—=1.93N/mm
2. q,,=0316 (0'5+Z)X, s =0316 (0.5+0) \}1.5

ad 1, 4 x230 ’2—5—=168 N[ mm?
_ dar -8 +0.2)x . .
3. 44, =08(5 +°'2)"\, 7. 08 (o500 V15

Note : o =4.0 for interior columns

Goup=1.29 N/mm’

Since 4,7 the slab is considered unsafe

d/2=115 mm

“\ critical shear perimeter
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of following solutions can be followed

Increasing concrete compressive strength to 30 N/mm? will increase

Qeyp tO
1.42 N/mm?

2. Increasing column dimensions to 600x600 will decrease qu to 1.24 N/mm?

Increasing drop panel thickness to 70 mm will decrease q, to 1.27 N/mm?

Column Strip (Width=2.00 m)

Design of Long Direction

Field Strip (Width=3.00 m)

YYYVYY
L OARAAAARARAAALAAARALARSANS
oY

s
S 7< S
6.00
| 6.00 | 600l | 6.00 |
— 4
O
25% 50% 5% _ i&/u —
%Mo 5 30% rA. 5% > 20%
Mo=564.6 kN.m
112.92
28.23
. el FAY 84.69
kN-"‘-ég 2 169.4 D 412 A 112.92
135.51
88
" L S AN 101.63
-kN'"‘,ZYas 2 146.8 & 1242| A= 135.51
corrected
452
Mu g738 129.9 ’41&1‘3 = 45 =
N.m/m /s 73.4 S e ]
‘ - d=180
d=230  d=180 d=230 d=180| d=180  d=180 d=180
0.056
098 0.014
. »4%) = 0.091 OA 0077| ™ 0.056 FAS 0.042
0.069
129 0.016
° /»g 2 0.118 OA 0.097| > 0.069 AN 0.051
859
2063 204
As 1002 859 —
mm?/m A 1471 FAY 1218 A~ 859 ‘
G213 10 6d14
+3¢18 6¢
As/m 6¢16 — 341 — g 7 L =7
& : +3518
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B —fFieldStip A ~T Column Strip
3,00 2,00
1.00 :
. L | ] -
Design of Short Direction il N E—‘ ' l
: El : va—l ) : i
o8 g 8 g '
- '3 TN - . B B +
Column Strip (Width=2.0m) Field Strip (Width=4.00 m) ! { & | & : : i \ ol
, ol
: ; - [ i l || 1 l 322 W |
OO YV Y Y Y Y Y Y Y Y YV Yy vy vy vy asassaannsniansaannnnsssnsssst 1 1 i I N | —tt - |
Vis AN VAN ~ ' Ty L a1 ]
L 5,00 | 500 | 5.00 | 5.09 - I :
. — — |}t o5) A4 3 -
Z - —%a - w15, AAE o
oMo 25% 50% 5% 20% [Bh 7 ol ?o‘: R ‘
T ao% ST 2% | A 20% . 4~ 15% 1 (V3
I b le
Mo=459.5 kN.m ————1‘:'“’ _____ P { ,
{ 1 |
| i !
Mu_ 11488 229.76 22.98 91.9 { 1 R | b
M 137.85 AT 11488 | > 91.9 < 6893 ' 1 L !
i L % b— )J'
y | = 1 Ll }
u 1116 216.63 26.26 105.03 Il E S
- { £ _ gl !¢
kN.m/s 124.72 AN 10503 | 4 105.03 S 7877 a [ §| s 1% =] !
corrected 8 i e 5 .1 ©l |
) { O
| : |l 8" © | | | 3‘ : t
] 1 | b
Mu 558 108.31 6.56 26.26 ! Iy l
.. 6.5 . , : |
kN.m/m/s 62.36 A YR IRA 26.26 Fay 19.69 | l Lyl !
! ! iy ! H|
i 1 b g '
d=220  d=170 d=220  d=170 | d=170 d=170 d=170  d=170 | ' | T -l ;:I b
—————— r——1 7 Tals, E
| oy | 2 |
R 0.046 0,090 0.009 0.036 ool s |
o 0.086 RAS 0.073| 4 0.036 FAY 0.027 L_ 1 I (WR87/7)] nl—
— 5.00 l
©  0.05 0.117 . 0010 0.043 '
AN 0.111 A 0.092{ A 0.043 AN 0.032 Dj B 1 AL 2
Reinforcement Details
As g5 1788 118 508 ' TN
mfim 45, 1310 AN 1086 | 4> 508 KAy 378 Long Direction
LEGEND
6416
As/m 6914 +3p16 6910 , 612 ——————ToP
3¢16 AN 6416 | A 6412 % B
+3¢18 : - ? #10 BOTTOM
158
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Section D-D (Field Strip-Short Direction)

Cross sections in the short direction

Example 4.3
Using the code simplified me

comer column (0.4 x 0.4 m) in a
panel (6 5m x 6m). The total ultimate loads is 17 kN/m’,

thod, check the safety against punching failure of a
flat slab system without margmal beams of a typical
t=200 mm and f,=25
N/mm® .

Solution
Assume concrete cover of 20 mm

d =120 =180 mm

a; =b;=400 +180 /2 = 490 mm

Qup = 17x65/2x6/2—17x049x049— 161.7 kN
B =1.5 (case of comner column)

b, =2 % 490 =980 mm

4 = O B _1617x1000X 15 _ 1 20 v/ vum?
? b, d 980 x 180

is the smallest of

1. ¢q,,=0316 f-——0316" =129 N /mm*<16....0k

2. ¢ —0316(05+—-)x e —o316(05+f@)x =193 N/mm®
cup 7. '5
Ju _08 22180 02)x ’3§=1.85 N/ mm®
7. 980 15

afe . To increase the punching

Geup

3 N qcup =

Gewp=1.29 N/mm”
qup™Qeup» PUnCching strength of the corner column is unsafe
strength of the slab one of the following solution may be adopted:

1. Increase the compressive strength of concrete
Increase the dimensions of the corner column

2.
3. Increase the thickness of the slab
4. Use drop panel or column head if such a solution

architect. =490

T A
81 ////// E critical shear section 1
&= r—

b,-490

161

162

meets the acceptance of the




Example 4.4

Redesign the previous example using the code-detailed method

Solution

Stepl: Calculate the unbalanced moments

Mo =17x 6 x (6.5 - 2/3 x 0.4)*/ 8 = 495 kN.m

Moy =17 x 6.5 x (6.0 — 2/3 x 0.4)% /8 = 454 kN.m

% of column strip moment = 40% (no edge beams)

M-ve column strip in x-direction (M,) = 0.4 x 495 = 198.2 kN.m

. M-ve column strip in y-direction (M,) = 0.4 x 454 = 181.6 kN.m

Moment transferred to column in x-direction (M,)= 0.9 x 0.5 x 198.2 = 89.2 kN.m
Moment transferred to column in y-direction (Mx)= 0.9 x 0.5 x 181.6 = 81.7 kN.m

1
1+2 &+d 1+—2—
3 ¢, +d 3
Yo=Yqy= 1-0.6=0.4

T =Yy = =0.6

Moment transferred by torsion in x-direction M= 0.4 x 89.2 = 35.7 kN.m
Moment transferred by torsion in y-direction M,= 0.4 x 81.7 = 32.7 kN.m

Step 2: Calculate section properties
a1=c;+d/2 = 0.4 +0.18/2=0.49 m
by=c,+d/2=0.440.18/2=0.49 m

Ccop=Cap= 0.49 -0.123 =0.368 m

dxCl, +d><C:B +ap(d3

J,=dxbxCly+

3 3 12
V 3
0.18x0368° 0.18x0.123° 0.49x0.18° _ o
Jo=Jy =018 X0A9X0I2F 4=t 0.00465m

Step 3: Calculate shear stresses
The ultimate shear force equals
Qup=17x652x6/2-17x 0.49 x 0.49=161.7 KN
The shear stress due to punching of the gravity loads equals to:
q,= Qp _1617x1000 _4 617 N /mm?

Py, d 980x 180 v -

(M, 7, )Cas _ 357 0.123

=T, 0.00465 1000

=0.944 N /mm*

(M, 7)Cep _ 357% 0368 _, 05 v

1y 7 = 0.00465x1000

yx

(M, 7.)Ca _ 327% 0123 _ e n imm?
9= 7 0.00465x1000

(M. 7, )Cap _ 32.7x 0368

= 220 —258N /mm®
Ger A 0.00465x1000

Qa = Gp + Gyt — Qo= 0.917 +0.944 2.58 = -0.723 N/mm22

Qs =qp *+ G T qy = 0.917 + 0.86 +0.944 = 2.717 N/mm’———>(.,, (unsaf)
. 2

qc=qp + Gu1 — qy2= 0917 + 0.86 —2.82 = -1.043 N/mm

. Therefore, the maximum shear stress is at corner B with

a value of 2.717 N/mm”. The

2 2
C :C = al - 0.49 -
T (2xb +2xa)  2x0.49+2x0.49 0-123m
Li=6.5m

hod (1.375 N/mm?®) is

value of the shear stress obtained using the simplified metl : ‘ ‘
X extremely low when compared to the value obtained using the detailed method. This
at the values of B given in the simplified method of the

¢=0.4m A M,

7

leads to a conclusion th
Egyptian code should reviewed.

=6.0 m
0.368
R
0.49

%

-

AN\

. Ly
ay

o]

d
=
My/_\.A i

b;=0.490 m

Cormner column notations
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4.9 The Equivalent Frame Method

4.9.1 Introduction

The Equivalent frame method was first introduced in 1948. It is intended for use in
analyzing moments in any practical frame building. The method is more general than

calculated for each span and divided between positive and negative moment regions
according to the code coefficients given in Table 4-4.
The main features of this method can be summarized as follows:

1. Moments are distributed among the critical sections by employing an elastic

analysis. Cases of loading have to be considered for the most critical loading

conditions.

There are no limitations on loading or dimensions.

The variations in the moment of inertia such as drop panel have to be considered

in the analysis.

4. Lateral analysis can be performed during the computations of the equivalent
frame.

5. The total statical moment calculated using this method need not exceed the
moment M, required by the direct design method.

hadi

4.9.2 Structural Analysis

The slab is divided into a series of equivalent frames running in two perpendicular
directions. These frames consist of the slab, drop panel, projected beams, and the

moment of inertia for the slab is calculated using column width plus three times the
slab thickness from each side (not exceeding span/3).

When a lateral analysis is carried out, the full height of the building should be
modeled to account for the variation of wind or earthquake forces at each level. If the
analysis is limited to gravity loads, calculations can be greatly simplified by analyzing
each floor and its attached column separately. The column ends are assumed to be
fixed at the intersection with the floor above and below as shown in Fig. 4.23.
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Where:
K = 4xE, xI{g
¢ h

The form of the previous equation can be explained by making an analogy between
the equivalent column and the system of two springs. The total deformation of both
systems equals the sum of the two individual displacements. If the two springs are
replaced by a single spring with an equivalent stiffness X, , the second system must
deflect similar to the original system when identical load P is applied at the end.
Equating the deflection of system 1 to that of the equivalent system 2 gives

D=8y +Ay e (4.48)

Since the relation between force and displacement for a spring is P=KA, where K

equals spring stiffness, Eq. 4.48 can be expressed in term of the applied load P and the
stiffness as

A (4.49)
Kc Kl Kec
dividing both sides with P gives
L +—1— - et e sesaean (4.50)
KL‘ K1 KBC

Code equation 6.16 is similar to Eq. 4.50 but includes a summation sign to account for
the possibility of contributions from columns above and below the slab.

An approximate expression for the stiffness of the torsional member, based on the
results of three-dimensional analysis of various slab configurations is given by

E, is the modulus of elasticity of concrete.
¢ is the transverse dimension of the column, equivalent column, capital or bracket.

L, is the center to center distance measured perpendicular to the analysis direction as
shown in Fig. 4.23

An expression for C, which is a cross sectional constant to define torsional properties,
is given by: ‘

ip i i i thod
< Table 4.4 Distribution of column and field strip in equivalent frame me

i i i ember.
here b and t are the shorter and the longer dimensions resl.)ectlvelybiot1 lt\l}sj ;?1 mber
;:tﬁre torsional member consists of beam and slab, the section can

number of rectangles.

Moment type Pél;;:lenur;';g:t;)é moment form t(?;?él?cs):g;nts
negative moment in 75 25
interior panel

negative moment in 0 20
exterior panel _
positive moment 55

a-column and torsional member

Kec P
A N
c-Equivalent spring system

b-Two springs system

Fig. 4.24 Eqﬁivalent column and analogous spring system
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| Example 4.5

{ Evaluate the effective stiffness for exterior column shown in figure below. The floor

consists of an 200 mm thick slab supported on a marginal beams that are 300 mm
. wide and 600 mm deep. :

=500 ——=y = ;=300 mm
. ] fixed end
E <
S CL of panel
o
I
|
= 200 mm
L,=6000 E
Y ts=200 m o
TL CL of panel
=]
J . ‘ 300 I 400 I
Solution

Step 1: Compute column stiffness

The equivalent column stiffness equals

The stiffness of each column equals
K = 4xE xI,
¢ h
The height center to center of the columnn varies from one floor to the other.
h;=4500 mm and h,=4000 mm. The moment of inertia for the column is taken about
axis parallel to the edge of the slab

500 % 300°
[, =—"
12

=1.13x10° mm

ZK‘4XE°XIg +4><E¢><1g _4xE, x1.13x10° +4><EC><1.13><109
B h, 4000 4500

> K =2125x10°E,
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Step 2: Compute the torsional member properties

According to the ECP 203 the attached torsional member is divided in two parts. Thy
- The

dimension of the slab i
ne portion equals (b,=200, t;=400
(6,=300, t;=600). The torsional constantIC equalg ) and that for the beam equal

c= Z[(l -0.63 ?)x b;"‘]

C= (1 ~0.63 @)"M 300 300° x 600
[ 400 3 [f||1-0e g@)X—T—-J = 4.43x10° mm*

Since torsion arms of the i i
: . proportions exists on both sides identi
terms are included in the determination of X, as follows ofthe column, (wo idenical

K= i_C_J

L-(-(c, /L)

_ 9E, -4.43x10°
K, =2x =17.25%10° E,

3
6000- 1{3%
6000

Step 3 Compute the Equivalent column stiffness K.

__ 2K 2125x10°E,

K
« - =1.89x10° E
(HZ’@ |, 212510°, c
K, 17.25x10° E,
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4.10 Computer Model of Flat Slabs

Flat slab can be modeled using shell or plate bending elements, while the beams are
modeled using frame elements.

" When flat slabs ‘are modeled using thin shell elements and beams are modeled using

frame elements, the eccentricity of the slab from the c.g. of the member should be
considered. However, the common practice is to neglect such an effect.

The effect of the torsional moment 7, must be considered when analyzing the results
of finite element programs as shown in Fig. 4.26. In case of using uniform
reinforcement arranged in two perpendicular directions, the bending moment in any
strip can be obtained using the following equations

T A Y R (4.53)

i, =Almy‘+|m_‘yt .......................................... (4.54)

where
#i, and 7, are the maximum bending moments per meter in X and y directions,
respectively. The design moment , or m, need not exceed 1.5 the average moment in

the strip. .
!m,“andlm y‘ are the absolute value of the bending moment in the strip

lmn,‘ is the absolute vatue of the torsional bending moment in the strip

In the case of modeling the columns as points restrained in the vertical direction, the
design moment is taken at the. perimeter of the columns. It should be noted that the
finite element method usually overestimates the negative bending moment over the
supports and underestimates the positive bending moment at midspan.

Tt should be mentioned also that deflections obtained using analysis that based on
linear elastic finite elements should be modified to take into account the effect of
cracking.

According to the ECP 203, the main reinforcement can be arranged in the direction of
the principal tensile stresses with a maximum deviation of £ 15 degrees. Otherwise,
the reinforcement should placed in two perpendicular directions.

\

my my

(P

iy
Fig. 4.26 Internal moments on a slab element.
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An example of the results obtained fiom modeling the flat slab using plate elements is

shown in Fig. 4.27. One can notice the intensity of the moment contours over the
column locations.

REINFORCED CONCRETE STAIRS

shell/plate element stress concentration at

column locations

Fig. 4.27 Computer model of flat slab system

When designing the top reinforcement of the flat slab one should use the value of the
bending moment at the face of the column (Sec. 1-1 and Sec. 2-2) as shown in Fig.
4.28. In other words, the contour liné located inside the columns should be ignored.

2

Photo 5.1 Spiral staircase at Arca showroom, USA.

5.1 Introduction

Reinforced concrete stairs are essential elements in buildings to transfer pcpple _frqm
one. level to another. The staircase consists of landings .and ﬂlghts_. Tt'xe ﬂlgh? is :u;
inclined slab that consists of risers and treads (going), while the }an@mg isa Eor%zon ;1
slab. The flights and the landings are. supported on broken, inclined or horizon
beams and columns as shown in Fig. 5.1}.

2

: Flg 428 I\’t['(’)‘méli'ti contéixi‘s ‘ai cbiﬁinh l6cat§oxis

174
173




hand rail

] flight

Landing

supporting beam

Landing

l hand rail

flight

| floor beam

Fig. 5.1 Details of landings and flights for a staircase

The stair consists of risers and treads (going). The height of the riser (r) is about 150-
200 mm, while the width of the going (t,) is about 250-300 mm as shown in Fig. 5.2.
The higher the riser the shorter the going. It is common practice to form the height of
the riser at 150 mm and the width of the going at 300 mm. A good design of the stair

. should comply with the following rol¢ of thumb

21+, 7600-620 MM .evireiirerereie e

To achieve comfort, landing has to be formed every 10-14 steps. Landing may be also
needed when a change in the direction of the stairs is required.

going (t;)

riser (r)

Landing

Fig. 5.2 Geometric design of the stairs

The width of the stair in each direction usually ranges from 0.9-1.5 m and the space
(stairwell) between each flight ranges from 0.3-0.6 m. Thus, for residential building
with a height of no more than 3 m, the total space for the staircase is approximately
3x6 m as shown in Fig 5.3. For proper geometric design, care should be given to the

details C and D in Fig. 5.3.
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stairwell

going 10x0.3=3m

80 mm (sand + mortar)

5P

TN

%

‘ \\\\\\\\\\\\ NOANNNINNRNN AN
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\\\\\\\\\\\\\\\

80 mm (sand + mortar)
20 mm tiles
40 mm marble
1

40 mm marble 20 mm mortar

20mm mortat

20 mm tiles ho%d

Detail C

40-50 mm  Detail D

Fig. 5.3 Typical 2-flight staircase in residential buildings
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5.2 Structural Systems of Stairs

From the Stmctural pomt Of VIEW, t yp
he types Of stairs can be ClaSSIfled mto flve

L. Cantilever type.
2. Slab type.

3. Slab-beam type.
4. Spiral type

5.

Free-stranding type

The main differences amon,
g these types are the way through which th
landings transfer their loads to the supporting beamsyand coglumnsC e ﬂlghtS nd the

Photo 5.2: Cantilever reinforcéd céncrete stair’
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"= (;059 /&‘)))))

Since the flight is inclined, the self-weight of the flight is normally calculated in the
horizontal pro;ectxon Thus, the vertical distance ¢* is used in the weight calculations of

the loads as shown in Fig. 5. 4,

1.0m

bib b iy

w=y, x(bxtx1) . w=y, x{bxtx])

w(H.P)=

Lﬁw y, x (b xt" x1)
cos &

Fig. 5.4 Calculation of the flight self weight

5.2 Cantilever Type

In this type, the flights, the landings and the stairs act as a cantilever slab supported on
a beam or a wall as shown in Fig. 5.5. Care should be taken to the correct placing of
the main reinforcement in the stairs-and inside the beam during construction time.

i
. landing § . hand rail
i .
AL A
% RC wall
% landing
supporting ! -
beam i
| hand rail of S
i
Sec A-A

\

Fig. 5.5 Examples of cantilever stairs

178



curely anchored in the supporting beam with a

The staircase is designed by taking one-meter width of the flight or the landing with an g b
evelopment length (L) as shown in Fig. 5.6.

effective depth d,.,. The effective depth is taken as the average depth of the sectjop,
The main reinforcement is placed in the top of the stairs and anchored to the
supporting beam as shown in Fig.5.6. The selected reinforcement is normally two barg
preferably placed at the middle of the stair and at the stair edge as shown in Fig. 5.7, [
this case, an additional bar is placed at the other edge. The bending moment developed
in the stairs is transformed into torsion on the beam. The amount of the developed

v " The main reinforcement should se
minimum distance equal to tension d

going (t)

main
reinforcement

additional bar

@8 or¢ 10)
|___

torsion is quite large and should be investigated. A light reinforcement mesh is placed .t
in the bottom face to resist cracking and shrinkage. T cosd
1 )
{ riser (1) g = * _{_M
i light reinforcing mesh 2
i P, o
wall :
= i
i Wu
>Ly i
. BB EEEER
i
beam [ i \
i
i \Main reinforcement
i edge
i
|
! Lclcar l
!

Fig. 5.6 Cross section in a cantilever stair

Live loads (3-4 kN/m?) are applied in form of uniform loads on the stairs in the
horizontal direction and a concentrated line load (P.=1-1.5 kN) on the free edge as
shown in Fig. 5.6. The uniform loads w, is the summation of the (slab+stair)

weight(using t,.,), covering material (0.8—1 kN/m?), and live loads. The effective
span Ly is taken as
L t
Ly =min d o ot e (5.2)
edge to CL
L] t
b ettt eaaans 5.3 g
cosé (53)
« niser(r)
g =t 2( ............................................... .(5.4)
Stair total self weight =f,y, X 3 oveeeereevrrieein.. (5.5)
w,= 1.4 WpL + 1.6 WL Lenrernenuesnerasrineereesesrananaearennsensnns (5.6)
W, =1.4 [tayy X ¥ + covering material(0.8—1)}+ 1.6 Wy (3—4) ... (.7) Photo 5.3 Cantilever stair during construction
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Example 5.1

The staircase shown in ﬁgure below is a cantilever type for a floor height of 3.0
The live load i 1s 3 KN/m?, the characteristic strength of concrete is 2f =35 N/mm> ag:i
J=400 N/mm?’. The welght of the covering material is 0.8 kN/m c’besx and d
reinforcement details for the staircase and the supporting beams. & -

! 3.0 1.6
t f
i A
floor slab ' T '—'$ —
A
i o
floor beam | : -+
250x600 i
wall :
<
i -
i
stair beam !
Sec A-A ’ § -
i
) i
Architecture Plan

Solution
Step 1: Design of the flight
Step 1.1: Load calculations

Assume the riser h .
stair equals eight is 150 mm and the going width is 300 mm, the slope of the

d= tan"(MJz tan~ (150 =2 0
going 300 656

I 300

150

tavg
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Assume t=140 mm
To calculate the loads on the horizontal projection, use the vemcal thickness t"

ot o M0 565 mm
cos(d) cos(26.56) e

To include the weight of the stairs (goings and rlsers) in the dead load calculation (in
the horizontal direction), one has to calculate the average vertxcal thickness

t =t*+’”"—1565+-1—529=2315mm

avg

Stair total self weight —tavg x v, = 0.2315 x 25=5.7875 KN/m®

W= 1‘4 wpr + 1.6 wi=1.4 (self weight +covering material)+ 1.6 wiL

w,=1.4x (5.78 +0.8) + 1.6 x 3=14.02 KN/m®

Taking a one-meter strip then w,= 14.02 KN/m’

An additional concentrated live load (Pegge)of 1.5 KN/m' is assumed at the free edge.

P = 16P, =1.6x15 = 24kN Im'

u edge

Step 1.2 Bending moments
The effective span is given by

N P o {(1.6+0.231=1.831 m
L, =min g =
edge to CL 1.640.125=1.725 m
L= 1.725m ‘

| t=023Im

Lclear=1~6m _____l )

—0.125 .
N P=2.4kN
y w,=14.02 kN/m’
 IRRRERRRRERREEER
Y
f— Le=1.725m -
25 kN.m

e
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The maximum bending moment on a 1.0 m strip of the stairs is

w, x L2y 14.02x1.7252

M, = +P Ly ———2—— +2.4x1.725=25kN.m

Step 1.3: Design of stairs

Assuming 20 mm concrete cover, the effective depth equals

d =ty - cover =231.5-20=211.5 mm |
Recalling that we base the design on a strip of 1.0 m (b=1000 mm)

! 6 .
=M 2O g
S bd* 35x1000x211.5

Using the R-® curve »—— ©=0.019

A =w Qb d = 0.019 x> x1000x 2115 =346 mm®
7 400

A
samin = =2 6bd —EXIOOOlel 5=317 mm <As

™ f, 400

Astep =A; x step width(going)=346 x 0.3 =104 mm>

Choose 2 @ 10 (157 mm?)/step

A4

Step 2: Design of landing

Step 2.1: Load calculations

The thickness of the landing is taken equal to the thickness of the flight =140 mm
Landing self-weight = £, % y, = 0.14 x 25=3.5 kN/m?

wu= 1.4 wpp + 1.6 wi =1.4 (self weight +covering material)+ 1. 6 Wi

wy=1.4 % (3.54+0.8) + 1.6 x 3 = 10.82 kN/m?

Taking a strip of one meter

w,~ 10.82 kN/m’

The landing is a slab that is supported on two sides. The exact analysis of such slabs
involves a lengthy calculation procedure. However, since this slab is supported on two
beams, the amount transferred in each direction can be approximated by dividing the
load between them. Thus the load transferred to each direction equals

W= 10.82 /2 =5.41 KN/m’ '

Step 2.2 Design of sections:

M- Wy x Loy _ 5.41x1.725° _ 8.05kN.m
u 2 ‘
Assuming 20 mm concrete cover, the effective depth equals

~d=t- cover=140-20 =120 mm

6
M 8.05x10° o o0co

u _ =

f. bd® 35x1000x120

R..—_

Using the R-o curve—— ©=0.019
A, =02

¥

Choose 5 @ 10/m’ (393 mm' ) >A5,m;“

Jo bd= 0019><—30——0x1000x120 196 mm®

Additional 110 -
landing main rft. 5 ¢ 10/m’

stair main rft -
2010/step S¢8m
' |
A ' _ ) e o]
5¢8/m 2]
. . 1
dditional 1010 . e , |
R =} > secondary rft.5 ¢ 8/m'
5¢8/m’
=140 mm

5¢8/m’

Stair reinforcement details

Step 3: Design the supporting beam
Step 3.1: Calculation .of loads

Assume the beam cross section is 250 x 800 mm ]
To obtain the weight in the horizontal projection, calculate the vertlcal thlckness

gt 800 2044 mm
" cos(@) cos(26.56)
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floor beam 250x600

hy wall

3.0

1
0.75

\, Stair beam

Calculation of wall load

Self weight =1.4 x y, x b x t", _

Self weight=1.4 x 25 x (.25 x 0.8944 = 7.83 kN/m’ (Horizontal projection)

The height of the wall is variable along the beam, however for simplicity an average
height will be used throughout the beam. This average height is conservatively
calculated as follows:

h,= 3-floor beam-t",-1.5/2=3.0- 0.6 - 0.89 - 0.75 = 0.755 m

wall load = 1.4 x y,, x b x hy=1.4 x 1.2 x 0.25 x 0.755=3.17 kN/m’

wyp= self weight + w, x flight width + wall load + edge live load

Wy =7.83+14.02x1.6+3.17 + 2.4 =35.84 kN / m'

wall ) wall P=24 kN
: " wy=5.41 - w,=14.02
HREEREEE EREEETEE
beam i beam i
i D
i 1.60m i 1.60 m
i i
f ’ i
—t ! j—025m —] ! je—025m
1725 m 1.725 m
Loads on landing Loads on flight

The loads transmitted to the beam at the level of the landing wy;; equals to
wpr= self weight + w,, x landing width + wall load
=783 +541x1.6+3.17=19.6 kN/m'

Note: The readef should observe that the average wall load previously calculated is
conservatively used for the whole span. :

Wipr=35.84 KN/m’ Wi=19.6 KN/m’

O T

Loads

Bending
moment

The reaction R1 equals

_ 35.84x3x(1.5+1.6)+19.6x1.6x08 _ ;g 1
= 46

Rl

| 35.84%3x15419.6x1.6x(3+08) _ o 06 v
= 46

R2

Step 3.2: Design for flexure

. !
The maximum moment occurs at point of zero shear (x)

R i m

W, 358

2172 P
Mw=77.9x2.17—35.84>< > =84.7 kN.m

Note: Since the beam is inclined with reslﬁect to the reaction, R1 will produce shear

and normal force on the beamn.
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This section has positive bending (84.6 kN.m), but we shall neglect the contribution of
the stairs and design the beam as rectangular section
M, 84.7x10°

= = =0.017
fubd? 35%250x750°

Using R-o curve —— ©=0.02
4 =w L“—bxd =0.02 ﬁ-xZSOx 750=330 mm?
7 400 _

3

0.225 Jf J3
0225 W py 4 0225435 o0 750 623 mm?
A in =smaller of S, 400

134, =1.3x330 = 430mm?> J

As<As,mim use A&~ As,min=430 mm2
use (3 @ 16, 603 mm?)

Step 3.3: Design the beam for shear and torsion
Step 3.3.1: Shear stresses

The critical section for shear and torsion is at d/2 from the face of the support.
Assuming that the column width is 600 mm, the vertical force at the critical section
equals

0 =779 ——35.8x(07'6 +°;;§) =537 kN

This vertical force produces shear and normal force because the beam is inclined. The
normal force is normally small and neglected (<0.04 Jeu b t )and the shear force equals

O, = @xcos(d) =53.7x cos(26.6) = 48.1 kN

0, _ 48.1x1000

= = =0.256 N/ mm*
bxd 250x750

4q,

Step 3.3.2: Shear reinforcement
The concrete shear strength q,, equals

Gui = 0.2’44% <116 N/mm®

Since the applied shear stress (0.256) is less than q., (1.16), thus shear reinforcement is
_ Dot needed.

Wan=35.84 KN/m'’

LT

LTI

shear force

Loading for Shear and shear force diagram

Step 3.3.3: Torsion stresses
Assume the distance from the concrete cover to the stirrup

“xy =250 -2 x 40 = 170 mm

y; =800 -2 x 40 = 720 mm
P, = 2x(x, +y,) = 2x(170+720) = 1780 mm

A, =x,. 3, =170x720 =122400 mm’

A, =0854,, =0.85x122400 = 104040 mm*

' ingg

x;=170 mm

y1=720 mm

W =19.6 KN/n!

R2=60.96

center line is 40 mm
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The torsional moment (M) applied to the beam equals the bending moment developed
in the stairs (=25 kN.m) and equals 8.05 kN.m at the landing level.

Fu=2.4>kN
w,=14.02

IEEREEERNE
]

beam i
'l reom

i
—_— : j—0.25m My, =25 kN.m

i
e L725m__|

The torsional moment is distributed along the length of the beam as shown in figure.
All these moments are horizontal projection and in the vertical plane.

Mu2=8.05 kN.m

Muwr=25 kN.m (H.P.

RTZ

ff 3.0 1.6m

RT1=52.8

The torsional reaction Ry, equals

Ry, = 25x3><(l:5+1.6)+8.05><L6><0.8 =528 kN

4.6
The critical section for torsion is at d/2 from the face of the support, thus the vertical
torsional moment at the critical section equals to:

T =52.8——25x(%§+%)=35.9 kN m

This vertical torsional moment produces torque and out-of-plane bending moment
(M,) because the beam is inclined. The out-of-plane bending is usually small and can
be neglected and the torque equals to:

M, =T xcos(6)=35.9xc0s(26.6) =32.1 kN

The shear stress due to the torque M, is given by:

M, 320040° 5 04 N/mm®

Tu =354 xz, 2x104040x 68.76

Mu/=25 KN/’ M, =8.05 KN/m'

iy

ke »T»
EA

My =52.8 sin(8)=23.6 /‘ s

- Rpi=52.8 lAg ‘T=35.9 _

o

sect10]

0.675 m—]

criti(ia—l_ sectio
f

32.

b

47.2
Twisting moment diagram

Loading for torsion and twisting moment diagram

Step 3.3.4: Check adequacy of the concrete dimensions

g =070 Lo =O.70x"—?£=3.38<4.0 N /mm®
e 7. 1.5

Quma= 3.38 N/mm’

NG+ <G

0.256% +2.245> =2.26<3.38.....0k

bThus, the concrete dimensid;xs of the section are-acceptable for shear:and

torsion.
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Step 3.3.5: Torsional reinforcement

qm min =0. 06." =0. 06.“ =0.29 N/mm

Since Guw>Guumin torsxonal remforcement is requlred According to the ECP-203 the
torsional concrete strength is neglected and the torsional stresses must be carried by
reinforcement

Assuming spacing of 100 mm, the area of one branch Agy equals

M, xs  321x10°x100

4, = =73.97 mm?
2x4,% f,. 1y, 2x104040x240/1.15
4, = Ay %Py [ Sy _ 73.97><1780(240) 790 i
s £, 100 400

Calculate the minimum area for longitudinal reinforcement Agmin

04 freeq _—
A = y" p_Astrxph(fyst' -
slotin = AL
Sy 17, s kfy

v

i

There is a condition on this equation that A 2 _b5_
s 6xf,
73.97 _ 250
—_—2 a0
100 6x240
04"3—5x250x800 T
4. = L5 _73.97x1780( 240 240) 320 mm?
e 4007115 <. 100, 400 -
Since As) > Asl.min ...0k
Choose 8¢12 (904 mm?)

Step 3.3.6 Reinforcement for combined shear and torsion

Since it was previously computed that no shear reinforcement is needed (A4=0), the
area of one branch for combined shear and torsion equals

Ayt Ay2=73.97+0="73.97 mm’

- Choose ¢ 10 mm (78.5 mm’)

04
o= =—"1250%100 = 41.67 mm*
Asl‘mm .f;' b Xs 240
Total area =2A,, + Ay 2 Ay pin «+ovvevee--
=2x7397+0=147. 94mm > 41.67 mm’ ......O.k.

Final design use ¢ 10 @ 100 mm - - ~

e 5¢8/m’ ’ 2®10/step
3012
? 10$10/m’
S $10/m 5¢8/m’
<
o0
508/m’
=250 | 1600 L

stajr main rft. 2010/step.

Stair reinforcement details .
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@ A T
10(])10/“’1' P A
v
¢ 10/1'00mm o 910/100 mm ‘
— 1
ETIF - — | 2012
o)
v o o
£ o o
2012
o > 8P12 :
B ST 1 "/ = . 4| 2012
3DI6 |o o o J h
= oo of3®16+2012
=320
Flexural Shear & torsion : .
reinforcement reinforcement Flexure, shear & torsion

reinforcement

Syt A N P
B sro I TS IO

Beam reinforcement details
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5.3 Slab Type

In this type, the main supporting element is the slab itself. The flight could be
supported on the landing, which is in turn supported on the supporting beams. From
the structural point of view, it is better that the main supporting element is spanning in
the short direction. However, this depends on the surrounding beams. If the beams
exist around the perimeter of the stair well or at least along the long sides, solution A

“in Fig. 5.8 is more economical. If the supporting beams are only at the short side,

solution B is the only valid structural syster

supporting beam

1
~- = T = =~
: main slab :
g i i .
o | i
" i i
2 I i 2 a
=1 i | =
g ! | @
i i =
& i 3 < 3
{ |
i i
i - P
{ |
——— §====n=n=n===§ e e N ————
-
i i Supporting beam
Solution A Solution B

Fig. 5.8 Proposed structural systems for a slab-type staircase

The applied live loads are based on the plan arca (horizontal projection), while the
dead load is based on the sloped length. To transform the dead load into horizontal
projection the average vertical thickness is used tiy (Eq. 5.11) as shown in Fig. 5.9.
However, the depth used in design (d) is perpendicular to the slope (Eq. 5.9) as shown
in Fig. 5.9. Slab thickness & is taken as (1/25 to 1/30 from the slab span).

__span

................................................... 5.8
s 25-30 5-8)
d =L, —COVET wevuarassivssserassmmassmsssiaseassssnssssonees (59
* [1

B VU TU T B 5.10
cosf (5-10)

. niser(r
Loe =1 +——E(—)_ .............................................. (5.11)
Stair total self Weight =fayg X Fo cerercevsmarsmrmsemessasarrnaces (5.12)
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main reinforcement

Fig. 5.9 Effective depth and reinforcement in a slab type staircase

The uniform loads w, is the summation of the (stair +slab) weight (using tavg), COVering
material (0.8—1 kN/m?), and live loads. The effective span Ly is taken as

w,= 1.4 wpr, + 1.6 WL eemetentteninnineinaaannseranneceanaaenns (513)
w,=1.4 [t,,; X ¥, + covering material(0.8— 1)+ 1.6 w (3—4) ............ (5.14)
If the slab thickness exceeds 160 mm, a top reinforcement mesh must be supplied to

control shrinkage and temperature. However, this reinforcement is only required at the

landing level as the stair reinforcement acts as shrinkage reinforcement as shown in
Fig. 5.10.

shrinkage reinforcement

shrinkage reinforcement is not
needed as the stair reinforcement
work as shrinkage reinforcement >

main reinforcement

Fig. 5.10 Shrinkage reinforcement for slab greater than 160 mm
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- if the produced stresses €xc

e : Its>160 mm

. . ¢ in these

Since the landing and the stairs are not straight, ’;ntemal f?r:izeast 'c;llr; %ﬁga;igsacing .
i ces Ty and T, generate L

sloped elements. The twokrgrvlvs:il?nf;rig. 5.111. This force tends to cause splitting cracks

third outward force F as s eed concrete tensile strength. Thus, tension reinforcement

should be extended from each side so that no outward force is generated.

R NN

\\\\

B y .
S
‘ l
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\s l>
.ﬁ
~ T
\ tension reinforcement
(not allowed)
T2 /
My

L _|

M, .
tension reinforcement

Case of positive bending . .
(splitting of reinforcement is required)

Detail A

tensioh reinforcement

M. Case of positive bending Detail B

(splitting of reinforcement is not required)

Fig. 5.11 Intefnal forces developed in the landing and the sloped slab
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Photo 5.5 Cantiléver staircase
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s,

i

Example 5.2

Design the staircase shown in figure below as slab-type. The live load is 4 KN/, the
characteristic strength of concrete is fe =30 N/mm’ and steel yield stress is £=280
N/mm?. The weight of the covering material is 0.75 KN/m? for the stairs and 1.8 KN/m®
for landing. Floor height=3.3 m and vy, is 12 KN/m®

gy

Lo ©

Solution
Stepl: Staircase layout and loads

Assume the riser height is 150 mm

3.3x1000
5

Number of goings = =22 going,

Using three flights with tread width of 300 mm a8 shown in figure

‘B at floor level B
@_ B3 at landing level _@
o

landing level

B2
at floor level
main slab

floor level

R I

!

17170 3.0
6.40
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The slope of the stair equals

9=tan-.(ﬂJ=tan-.(_@ o
going 300) =203

, 300
75_r!.1-m
i

"t =160 mm

150

tuvg

Assume the slab thickness t="P%" - 4700 _
*""30 30 =156.7 ~160 mm

fate 160
cos(f) co0s(26.56)

=178.9 mm

riser 150

tavg =t'+ =1789+—2—=253.9 mm

Stair self weight =t,,, x v, = 0.2539 x 25=6.347 kN/m?

Step 2: Design of Slab S1
Step 2.1: Calculation of loads

w,= 1.4 wp + 1.6 wi;=1.4 (self weight +covering material)+ 1.6 wy;
w,=1.4x (6.347+0.75) + 1.6 x 4 = 16.34 kN/m?

Taking one meter then w,= 16.34 kN/m’
Slab 81 is supported at the centerline of slabs S2 and S3

16.34 kN/m'
IO TITTITT

245 kN

R=24.5 kN
0.85 3.0m 0.8
f n! 85 m
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The reaction at each end (R) equals

R= w, x3 _ 16.34x3 ~24.5 kN
2 2

Step 2.2: Design for flexure

"The maximum bending moment is at the middle and equals

1.5% 1.5%
M, =Rx(0.85+15)-w, x—;— =24.5%2.35-16.34x% 3

=392 kN.m

Assumning concrete cover of 30 mm for the secondary direction and 20mm for the
main direction

d=160-30 =130 mm (secondary direction slab S2)

d=160—20 = 140 mm (main direction slab S1)

6
R M, - 39.2x10 00773 —— ©=0.098

T 7 bd® 30x1000x130°

A = Jau gy g = 0.098x -2 x1000x130 = 1365 mm?
8 280 ,
A, ia 2025 g =925 1000x130 = 325 mm* <A,
- 100 100

Choose 6 ¢ 18/m’ (1527 mm’)

Step 2.3 Design for shear
According to the ECP 203, concrete shear strength of slabs equals to:

9. =0.16~1’% =0.16 J% =0.715 N/mm*

Q. =R=24.5 kN

_ 0, _24.5x1000
9 =3xd ~ 1000x130

Gu<Geu ---0.k

=0.188 N/mm*

R=24.5kN(per meter of slab S,)

Intersection
£
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Step 3: Design of Slab S2
Step 3.1: Calculation of loads

Slab S2 is supported on the beams located on axis 1,2 at the floor level. The reaction
of the slab S1 is applied at the centerline of the slab S2. Since the width of S2 is 1.7 m,
the reaction R will be distributed along this width. Thus the load per meter (R') equals

R

R'= S (per meter) = 24-5 =14.4 kN /m,
B 7
Or R'= R 1oy _24.5x1.7

- = =144 kN Im’
Intersectionarea betweenS, andS,  1.7x1 7

Landing self weight =t x y, = 0.16 x 25=4.0 kN/m?

w,= 1.4 wpy, + 1.6 wi1=1.4 (self weight +covering material)+ 1.6 w;;
The weight of the covering material for the landing is given as 1.8 kN/m?
w,=1.4x% (4.0+1.80) + 1.6 x 4 = 14.52 kN/m?

Taking one meter width of the slab (b=1000 mm), then

We=w, X 1= 14.52 x 1.0 =14.52 kKN/m’

R'=14.4 kN/m’ R'=14.4 kN/m’
LHITTTTTY TTrn

we= 14.52 kKN/m’
T T T I

R2=53.55 kN R2=53.55 kN
170m _060m 4 70my
¥ 1

4.0

Step 3.2 Design for flexure

14.52 x4

The maximum moment is at mid span

R2=—V~VL2Xi+Rx1.7= +14.4x1.7 = 53.54 kN

2 h -
M, =R2x2+M—R'x1.7x(1§+0.3)

2 : )
M, =53.55x2—-1ﬂ§~2——14.4x1.7x(1—;1+0.3)=49.9 kN.m

d=160-20 =140 mm —(main direction)

T Fap g - 0.11x—=2 %1000 %140 = 1650 mm?
4S_w7—bd 0.1 x280 | | v

6
poMa _499X10° ¢85
" f. bd® 30x1000x140

Using the R-o curve —— ®»=0.11

¥
=9£-5—b xd _925 1000 % 140 = 350 mm > <A,
sm 100 100 o .
Choose 6 ¢ 20/m’ (1885 mm’)

Step 3.3: Design for shear
According to the ECP 203 clause 4-2-2-1-6-d , concrete shear strength equals

o [T — 016 (22 0715 N/ mm?
qcu=0.161’ﬁ—0.1 "1‘.5

Q.=R=53.55 kN
0, _ 53.55x1000

= = =038 N /mm*<q ...ok
W= ud  1000x140

. . . 3
Step 4: Design of slab S . ‘ »
Slab S3 is supported on the beams, the reaction of the slab S1 is applied at the middle

of the slab ,
Landing self weight = t; > y. = 0.16 x 25=4.0 KN/m

2
w=14x (4.0+1.80) + 1.6 x 4= 14.52 kN/m
The weight of the stairs equals = 16.34 kN/m' (same as slab Sl)

R'=14.4 kKN/m’ R'=14.4 kN/m’

w,=1634kN/m'
sxaiil

1 wa14.52 KN’
A

‘Wam14.52 N/mTTTLT

1.70 m ?'60 ‘? 1.70m

40m
o S . PR . th:
, e T e , @ ihe
' Comparing the loads acting on slab S2 with slab 1§3.£§‘{§?15,1t%%§.§119¥ are almost the
géﬁi‘ep'tffﬁs‘ the same reinforcement used in slab 52 is useé insla

R T
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| Choose 6 ¢ 20/m’ (1885 et TURAR I L SN
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2410/step

Reinforcement details for slabi S2.

=160 mm Sb18/m
s 6618/m’
6620/’ \G$18/m’
— 318/m /T
T~ s |
3¢18/m’
[ 318/
Reinforcement details for slab S1
_ flicht wi : well .
r’\'— ight width I width I flight width
-
60 510/ | 5¢10/m’
e o e 2. .2 ... 8 o 2. 2. .2 @ T .
t ® s ) 8
6018/m'
| 620/m'’ 6¢18/m'
da L
_
|"“\ 320/’ ST
L 3¢20/m'- .

203

Step 5: Design of supporting beam B1 on axis 1
The supporting beam B1 exists at the floor level and beam B3 exists at the landing

_ tevel as shown in the figure below. Bearn B1 supports the slab S2 while B3 supports

the slab S3.
Step 5.1: quculaﬂpn of loads

' The beam at the landing level Bl carries its own weight, stair load and wall load.

Assume beam size is 250x700 mm

 Self weight of the beam = 1.4 X o X b x t=1.4 x 25 x 0.25 x 0.7 =6.125 kn/m’

slab load equals to the reaction of the slab 52 (ws;,) ‘ = 53.‘55 kN/r-n'

. Wall load = 1.4 X 75 X b x hy, = 1.4 x 12 % 0.25 x (3.3/2-0.7) = A kN/m’

w=6.125+ 4.0 =10.125 KN/m'

column colurﬁn
B3 s3 .
; Landing level
Floor level i e~
B2 | RS ¥
~
~
~ ~
B3 . s N 83 | Yandinglevel |
Floor level @ i
B2 o B2
3. 1.70
1L70m 3.0m LE

Elevation of beams on axis 1

Step 5.2: Reactions and bending moments

2 2
10.125x—6—§—+53.55xl'-7—

Ry = 2 -4445kN

6.4

R, =10.125%6.4+53.55x1.7-44.45=1113 kN
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Wg=53.55 kN/m'

 w,=10.125 kN/m’
LLllllllll!lllllllll“llllill

Ry=111.3 ’ o VRe=daas
1.70m | 47m
1
6.4m
| | x=4:395
I .
. Mypax=97.6
. : 4445
Point of zero shear from the right support =x, = 0125 4395 m
. x? 4. 3957
M, =R xx, wbx7“=4445><4395 -10.125x - ~=97.6 kN .m

d=700- 50 =650 mm
Since some part of the beam 1s not connected to slab, it shall be designed as
rectangular section

M, _ 976x10°
fo bd? 30x250x650?

=0.031

From the R-® curve —— ©=0.037

4, =012 42 0.037% 3%« 250% 650 = 644 mm?
I 280 .

¥
0.225
s min =—-f—f-°L bxd = 9 225\/— 350%650 =715 mm 22 A use Aqmin
i4

Choose 4 ¢ 16 (804 mm?)

4

Step 5.3 Design for shear

q., =024 1’!‘—“ =0.24 1’—32 =1.06 N/mm?
1.5 1.5

Qumax= Rg=111.3 kN

205

The critical section for shear is at d/2 from the face of the support. The column width

(c) equals 0.25 m, thus
0.25 , 0.65
c d =+ =) = 8262 kN
S 53.56+10.125)x (=~ +
0, = Ry~ (w,, + W)X G+ ) =1113( )

Qu 82.62x 1000 =0.508 N/mmz <qcu . .O.k
% =pxd  250x650

provide minimum shear reinforcement

4 20 s =0 250%200=71.43 mm? for two branches
sr,min fy 280
Choose 5 ¢ 8 /m’
o | A
5¢8/m’
- : 2012
|
I
= 4016
L ® | e
2012 ]

4016

Beam elevation -

T [?E—-T 2012

5¢8/m’

700

2. 4P16
! |
i !

|'250‘

Sec 1-1

Beam reinforcement details
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Example 5.3

Deiign the stazircase shown in figure knowing that
Jeu =25 N/mm’, £;=360 N/mm® and f,,~<280 N/mm’

The weight of th . e .
takon as 4 kN/tnzc covering material is 1.0 kN/m® The live loads on the stair may be

o

'supporting beam (B1)

Vi rrrrruongr vy
RERRRRRERIIRERE
L R R R T I I D I X T I O |
KT S I N N Y N N W A N |
column 03X03 [ S TRt R FE Y, S T ppr g g el w et A
— SIEEEERRRRRREE -
[ I I T I S R BT R S S B R}
—_—t P T T T T S T T B S S B 'Y
E LI O IR A I N S TN TR B Y SN B A § ' Fl
S supporting beam oor‘beam
e 6.15m i
Lon g e ]
L 45m I
! 1
Floor beam

———r

landing

supporting beam

2.1m

section A

“section B

Solution
Step 1: Design of the flight
Step 1.1: Load calculations

Assume the riser height is 150 mm and the tread width is 300 mm, the slope of the

stair equals
6= tan"( riser )= tan™ (EE) =26.56°

treqd 300
1 300 |
) 75 mm
o ]

Assume slab thickness #; equals to 150 mm

= L 150 =167.7 mm
cos(@). cos(26.56)

£+ BL 21677+ 1’;—0 =242.7 mm

tuvg =
Stair self weight =tog e = 0.2427 x 25=6.068 KN/’
w,= 1.4 wp + 1.6 w; =1.4 (self weight -+covering material)+ 1.6 wiL

w,=1.4x (6.068+1) + 1.6 x 4 =16.29 KN/m”
Taking one meter then w,~ 16.29 kN/m'’

Step 1.2: Flexure design

Assuming that the supporting beam width is 300
stairs is given by - .

mm, then the effective span for the

B variable

—

1350 mm

[
i
i
!
i

—] | {=—300mm
1500 mm i
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L, = min Litar g - mi (135+024=1.59 m
edge to CL 1.5 m

Lige=1.5m

Assuming an edge live load of 1.5 KN/m’. P,=1.6 x 1.5 = 2.4 kN/m’
The slab is assumed fixed in the beam and the bending moment in the slab equals

. w1629 KNmY b
| ERREEEEREREERRER)

t
! .
IM,=21.9 kN.m

RN NN

L=1.50m

. -
M,=21.9 kN.m

The structural system for the sla is cantilever slab form

Moy 1629x1.507
= XLy =—22 12.4%1.50 2219 kN.m

Thus, assuming 30 mm concret i |

, e cover, the effective depth is vertical di i

s, ¢ 0 m \ st

slab thickness which is connected to the beam as shown in figure below sance In the

Ay =l —COVer =242.7-30=212.7 mm

__ M, _ 219x10°
Tobd, T 2sxi000x2iz7? OO
From the R-o curve —»— ©=0.0228
b dge
o i \ ' beam

reinforcement

209 : ,

A =w —f“—"b d =0.0228x—326i0x1000x212.7 =337 mm?

s
¥y .

= %bd = %%x 1000x 212.7 =355 mm® >As —— use Asmin

As.min
5

© A /step =03% 4, =0.3x355=101 mm’

Choose 2 @ 10/step (157 mm’)

Step 2: Design of the landing -

The thickness of the landing is the same as the stairs =150 mm
Landing self weight = tx yo = 0.15 X 25=3.75 KN/m?

wa= 1.4 wpp + 1.6 Wi =1 4 (self weight +covering material)+ 1.6 WL
w,=1.4% (3.75+1.0) + 1.6 x 4 = 13.05 KN/m?

Taking a strip of one meter
wy= 13.05 kKN/m'

Assuming an edge live load of 1.5 kN/m'. P,=1.6 x 1.5 = 2.4 KN/m’

P=24kN
w,=13.05 kN/m'

EEEREREREERRE!

777777

H 1
=183 kN.m

2 2
L= ZL‘*” = 13'05;1‘5 +24x1.5=183kN.m
» Assuming 30 mm concrete Cover, the effective depth equals
d=t- cover=150-30=120mm
M 18.3x10°

R=—tt = _=0.051
f.bd 25x1000%120 »

From the R-o curve
®©=0.062

4 -—0laba =’0.062x—32—656x1000x120=518 mm® > A, i

y
Choose 5 ® 12/m’ (565 mm’)
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1®10 (straight)

2®10/step

568/m’

5012/m' @

508/m’

S68/m’ 20 10/step

316

=150 mm
5¢8/m’

2d10/step

[ v

= Aa 8 .8 .

800

/ - «t 2016
S68/m . , | 10012/step  |5¢8/m’

T 2d16

— et 9l 5020

I 300I

Section A-A
2®10/step

— 5P8/m’

Stair main reinforcement

211

Step 3: Design the supporting beam (B1)
Step 3.1: Design for flexure
Step 3.1.1: Calculation of loads

Assume the beam cross section is 300x800 mm
The horizontal projection weight can be obtained from

*

o= vt _800-150
cos(@) cos(@) cos(26.6)
Self weight = 1.4 x v, x b x t/

Self weight=1.4 x 25 x 0.30 x 0.7267 = 7.63 kN/m’ (H.P.)

=726.7 mm

The beam load (W) eqﬁals (in the stairs part)
W= OW. + W, x flight width + 2 x hand rail live load

w,, =7.63+1629x3+2x2.4 =613 kN/m'

P, =24 kN . P=24kN ; P,=2.4 kN
’ w,=16.29 kNfm* w=13.05 kN’
‘Iiiif!itl_‘i{iii* iili‘itli'l‘ii
1350 m JJ v 1.350 m _EJ _{t
——] | ~—030m -———I‘ i =—030m
30m i 3.0m |
Stairs loads Landing loads
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The beam load (w,;;) equals (in the landing part)

Wypz= OW. + w, X flight width + hand rail live load .

ow=14%y,xbx (t-t)=1.4 x 25 x 0.30 x (0.8-0.15) = 6.825 kN/m'
»2 = 6.825+13.05x3+2.4 = 48.375 kN /m'

Wu2=48.375 kN/m! Wy=61.3 kKN/m’

xxxxxaxnxxIIRRRRRRRRRRERNRRRERER

f

R2=252.9 kN

| 1.5m 6.15m

L5m.| . 465m
T

Bending
moment

Mmax

F——m——'-—!

Step 3.1.2: Calculation of bending moments

R, =W X 4O5x (4.65/2:+1.5)+w p x3xzer0 _ 61.3x4.65%(4.65/2+1.5)
6.15 - 6.15

Ry = W, X3+ w,, x4.65 - Rt=48.375x3+61.3x4.65~177.3=252.9 kN

R o
Point of zero shear xg;;w%ﬁ =289 m
e ’// 2
Mo = Ry x %, — W, xf‘-z‘— ~1773%2.89 - 613523
i 2

=256 kN.m

R1=177.3

=1773 kN

213

Step 3.1'.3: Design of the critical sections

Secﬁon 1

This section has positive bending ( 256 kN.m), but we shall neglect the contribution of
the stairs and design the beam as rectangular section
Using R-w curve
d =t - 50 mm= 800- 50= 750 mm
M 256x10°

R=—rt—= — =0.061
f.bd®  25x%300x750

From the curve it can be determined that @=0.075

A =0 i‘l‘—b xd =0.075 S%x 300x750 = 1179mm* >Ag min

¥

0225 Ve p g = 022525 x300x750=703 mm* J<A; ok
A, . =smaller of f, 360

S min

1.34, =1.3x1179 =1532 mm*

use (5 @ 18, 1272 mm’)

Section 2

2
48‘3752x1.5 ~54.4 KN.m

=

Using R-w curve

(3
R= M, _ 54.4x10 ~0.0129

f.bd>  25x300%750°

From the curve it can be determined that ©=0.015

s

A =0 —f‘—“bxd =0.015 %x300x750= 235mm* <Agmin

¥

: 022525 ,
A, o =smaller of 360 x300x 750 = 703 mm

1.3x235=305mm’ d>A, ok

Use A=A min=305 mm’

| Choose (2 @ 20)
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Step 3.2: Design the beam for Shear

It should be mentioned that the case of loading that causes the maximum bending
moments in the beams results in no torsional moment. However, it produce the
maximum shear

Step 3.2.1: Check the adequacy of the concrete dimensions
The critical section for shear and torsion is at d/2 from the support.

c d
=R - —
Qu 2 Wul x(z 2)
0, =2529-48.375 x(—oz—3 +gg£) =2275kN
g =% _2275x1000

T bxd  300x750

Iy =0.70 S = 0.701’—2—5 =2.8 N/mm*
’ Ve L5

since g,('q, .. - the concrete dimensions are adequate.

Step 3.2.2: Design of the transverse reinforcement

qu = 0.244-1—2% =0.98 N/mm?*

Since the applied shear is greater than Qe shear reinforcement is needed

4. =4q, —%=1.01—°—'29§=o.52 N/ mm?

Assume spacing of 100 mm

4 < 9uxbxs _0.52x300x100
" fm /115 280/1.15

use 10 ¢ 10 /m

=64 mm?

Step 3.3: Check the case of loading that produces shear and torsion
Step 3.3.1: Calculate shear and torsion stresses

The unsymmetrical loading of the flight produces combined shear and torsion as
shown in figure below. For simplicity, the loading of the landing is taken the same as

the flight (conservative).

A. Torsion Stresses
2

2
M, =1 6LL'><L5—+P“ x1.5+(1.4 DL-0.9 DL)x
t N 2

2
LL = 4 kN/m® and DL=(6.068+1)=7.068 KN/m

2 1.5?

5 f T
=14.78 tmim
1'; +2.4><1.5+(1.4x7.07——0.9x7.07)x 5 14.78 tm

M, =1.6x4x

1.6LL

ERRERRREE ISP

1.4 DL

1
!
! 1350 m
| | ——————t
i
{

—e] i }=—030m M,
B=3.0m

0.9 DL

Load case that produce maximum torsion on beam

o
L

,/(

6.15m

1.5m

15m | 4.65 m

7.65m
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7.65? 2
M, x= 14.78x 163~

il

615 T e =703 iVm

The critical section is at d/2 from the face of the column (300x300 mm)
M, =M, -M (_c_+i L 0.30 0.75).
. . 3+5 70.3-14.78x T+T)= 62.5 kN .m

Assume the distance from the concrete cover to the stfrrup center line is 35 mm
X1=300 -2 x 35=230 mm

y1=800-2 x 35=730 mm

Py =2X(x, + ) = 2x(230+730) = 1920 mm

Ay = x,. y; = 230x 730 = 167900 mm>

4, =0.854,, = 0.85x167900 = 142715 mm?

A4, 167900 -
tg oh = = yl—730
>, 1920 87.4 mm
g, = M, ___ 625x10° s
2x A, xt, 2x142715x87.4 =23 N/ mm x/=230
=

B. Shear Stresses

The critical section for shear is at d/2

Wiz = O Wy +1.AX DL % (B/2) +1.6x LLx(B/2) + B +09x DLx(B/Z)
W, =7.63+1.4x7.07x1.5+1.6x4x1.5+2.44+09%7.07x1.5 = 4401 kN/m’

R _Wuix(615+1.5/2 44.01x(6.15;1.5)2/2
6.15 - 6.15

=209.4 kN

_ c d ' ‘
0, =R-w, X(;-{-;) . wur=44.01 kN/m’

O OO OOy

o004 03 075
0, =209.4 44.01x(~2—+—2—)=186.3 kN

__Q. _1863x1000

T ed = 300%750 " 0828 N/mm’

R=209.4 kN r

Heamy 615m

Step 3.3.2: Check the adequacy of the concrete dimensions

G =0.70 F—— =0.70x ’%35 =2.86<4.0 N /mm’
Ye .

=2.86 N/mm’

. q.max

N2 +GE S
J0.8287 +2.5% =2.63<2.86....0k

Thus, section dimension is acceptable for shear and torsion

Note: Since the section is very close to the ‘maximum values, it is advisable to increase
the beam cross-section. However, from the architectural point of view, smaller depth is

preferable.

Step 3.3.3: Reinforcement for shear

The concrete shear strength g, equals

G = 0.241{125; =098 N/mm*

Since the applied shear is less than qe, shear reinforcement is not needed

Step 3.3.4: Reinforcement for torsion

G pemin = 0-06 Jo _ 0.06,’ZZ =0.24 N/mm?
) Ve 1.5

Since G (2.5)>Gtumin (0.24) then reinforcement is required, and torsional concrete
strength is neglected. Assuming spacing of 100mm, the area of one branch Ay, equals

M, xs 62.5x10° x100 2
A, = = = =90m
2% A, % fr Vs 2x142714%x280/1.15

4 = Ay X P [ Jow | _ 90x1920(g§9)=1343 e
! s S, 100 (360

Calculate the minimum area for longitudinal reinforcement Ag min

040, —=-A
A - Ye v _Asirxph(f}’“}
sl min —
2 s\,
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There is a condition on this equation that Ay b

00 § 300 .8 6xfm

100 = 6x 280" %%

0.40, /—25 x300x800
- L5 90><1920(280)
=-ve

sl min -

‘ 360/1.15 100 (360
Since Ag > Agmin ...0k k ’
Choose 8¢16 (1600 mm?)
}////
Agp
S
S
’ 200 |

Step 3.3.5: Reinforcement for combined shear and torsion

The area for tw =
o branches=24,, + 4, > 4,, ..., or the area of one branch for combined

shear and torsion equals
Ay tAy/2=90+0=90 mm®
Choose ¢ 12 mm (113 mm?) (one branch)

A,v. =%_be=2_-1300 )
™ 280 > 0% 100 = 42.85 mm (two branches)

A, min = =
stmin (OD€ branch) = 42.85/2=21.4 mm? <113 mm® .....0k
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Step 4: Design of column (Refer to Chapter 8)

The column is subjected to compressive force in addition to bending resulted from the
torsion load case of the beam.

P,=209.4 kN

Mun=70.3 kN

2.1m

M add=6~02

Additional moment ' Original column
The column is considered as case 1 (fpeamteotumn) at the top and case 3 (foundation) at
the bottom in the in-plane and out of plane directions

Heoumn =2.1= m, From Table 6-10 in the code for unbraced columns k= 1.6

H= k X Heopymo =1.6 x2.1=336 m

A= Eb“— = 3—%2—:)@ —11.2>10— additional moment is developed

_ A*xb 1 1.22x0.30
2000 2000

M, =P,x5=209.4%0.0188 =3.94kN .m

=0.0188

add

M =M, +M 4, =70.3+3.94=T424 kN m

tot {in—plane)

Mtot(outofplan): Mu + Madd =0+3.94= 3.94 kN.m

_ Pu _ 209.4x1000 - 0.093
foxbxt 25x300%x300

R,
The column is subjected to biaxial bending, from code Table 6.12.a with Rg=0.1—p=0.8

M =M_+ ﬂ( ) M, = 74.24+0.8x(:22—?/%)x 3.94 =77.39 kN.m

'
a
b

M. T139x10° o .is
Faxbxt® 25x300x300°

Using interaction diagram with uniform steel, ;=360 N/mm? and {=0.8— —p =8.0

p= pxf, x107 =8.0x25x107 = 0.02>Hmin
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A, o = uxb xt =0.02x300%300 =1800mm >

Choose 818 (2035 mm?)

300 mm

T~ 8018
P

300 mm

5é8m’

10912/m’
Beam elevation
2920
2012
| 2010 _| | 2016 3016
2012 . 4 2016 : 2016
g 10912/m’ 10012/n7
2012 2P16 L 2016
+ p— o
peceel 518 : |_L=_—'J 2016 J....ul 5020
"~ 300 I :
Flexure rft. shear and torsion rft. Flexure, shear,
and torsion Tft.

Sec 1-1

Beam reinforcement details

- Photo 5.6 Cantilever stairs from a middie beam

222

221



SHORT COLUNINS SUBJECTED TO
CONCENTRIC COMPRESSION

Photo 6.1 Reinforced concrete columns in a shopping center

6.1 Introduction

Columns are the most important structural element in buildings. A great number of
structural failures are attributed to column failure. A plain concrete column can carry
compression forces, however its ultimate capacity is greatly enhanced by adding
vertical bars. For normal ratios of reinforcement, the increase in strength due, to the
addition of vertical reinforcement can range from 15-40 percent of the total carrying
axial capacity. Lateral reinforcement or ties are added to provide support to the
longitudinal bars and decrease the tendency of the bars to buckle out. They also
prevent the concrete from expanding laterally due to Poisson’s effect and accordingly
increase the concrete ultimate strain. Reinforced concrete columns are classified as
tied or spiral depending on the lateral confinement type.
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In actual practice there are no perfect axially loaded columns. Some percentage of
eccentricity will occur due to the reduction of the size of the column from one floor to
another or the misalignment of the column. Hence, a minimum longitudinal
reinforcement ratio has to be provided to account for any stresses resulting from the
eccentricity.

Reinforced concrete columns are usually classified as short or long depending on the
length to width ratio and end restraint conditions (refer to Chapter 7). The discussion
in this chapter is limited to short columns either subjected to axial loads.

6.2 Axially Loaded Tied Columns

6.2.1 Behavior and Strength

The failure of the tied column is usually initiated by the spalling (falling) of the
concrete cover followed by the buckling of the longitudinal bars due to the lack of the
lateral support provided by the cover. The failure of axially loaded reinforced concrete
columns is brittle with little or no warning. Up to approximately 80% of the total load,
no sign of cracking appears. Suddenly vertical cracks start.to appear with concrete
cover failure leading to the collapse of the column.

Since failure of columns is often sudden with a high potential for loss of life, columns
are designed with a much higher safety factor than beams. Because perfect straight
columns subjected to pure axial loading are subjected to the brittle failure mode, the
Egyptian code increases the strength reduction factors for concrete and steel tol.75
and 1.34, respectively.

0.67 X fou I7c
Ecu i .
- _ _________ cg___fo | “
L |
I b | strain stress

Fig. 6.1 Strain and stress distributions for columns under axial loads

When a column is subjected to axial loads, longitudinal strain develops in both
concrete and steel. Because of the perfect bond between steel and concrete, the strains

in the concrete and steel are equal. The total carrying capacity of the column is the

summati@n of concrete and steel Cbntributions. At failure, all the steel reinforcement is
assumed to reach yielding.. Applying the equilibrium equation for the section shown in
Fig. 6.1 gives ' '
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p 2 067/ab?t R S — 6.1)
“n ?,c 73
_0.67f,bt +Asc *fy _ 0383, A, +0.T5A, f, woverries (6.2)
L W 1.34

. . .
£l ¢

. ) icall
The previous behavior is applied for perfect straight columns, which are practically

i impose a
almost do not exist. Even for concentrically loaded cplumns, mos‘ct ;g;ie;ime ri:siomﬂ
minimum eccentricity to be considered in column _de51gn to .aclzc;)ur(lis 203
inaccuracies and uncertainties in the line of action of axial loads.

minimum eccentricity is given by Eq. 6.} as follows

00 e 6.3)
e, =biggerof {20 g T _

. . . code
The existence of moments leads to 2 reduction in axial load capacity. Thus the

. . bout
imposes a further reduction on the column strength by reducing the capacity by abou

10% giving the following equation

P 0357, A, +0.671, Ay ot

Photo 6.2 Olympic stadium in Berlin
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. 300 mm é
6.2.2 Code Provisions for Tied Columns " 2
* For short tied columns, the minimum vertical reinforcement is 0.8% of the E | v
required cross sectional area but not less than 0.6% of the chosen concrete &
area. _ 3
*  The maximum reinforcement ratio in colurnns is ' -
* 4% for interior columns
* 5% for exterior columns < 250 mm
* 6% for comer columns / f—
*  The minimum vertical bar diameter is 12mm » ‘__—ﬂ E
* The minimum column dimension is 200 mm for both circular and Vi
rectangular columns. However, in practice, column dimensions are usually E
not less than 250 mm. S
Vi
* Intermediate bars should be added if the column width is greater than 300 1
mm as shown in Fig. 6.2.
* The maximum distance between two bars supported by ties is 250 mm. ’ < 150 mm
The maximum distance between unsupported bars and supported bars < 250|mm _ T
is 150 mm as shown in Fig. 6.2.
* The maximum vertical distance for ties is 15xthe smallest longitudinal _ °® g = E
bar diameter but not more than 200mm as shown in F ig. 6.3. ,5_ I a E I =
o i
*  The minimum stirrup diameter is one quarter of the longitudinal bars but not =3 Vi g
less than 8 mm w Vi
* The minimum stirrups volume is 0.25% of the concrete volume for one e o o o
meter of the column.
. 0.25
v, =nxA_ x primeter meb Xt x1000 oo (6.5a)
Vi =nxd, xprimeter 22.5xb xt (mm>) ....ooerromremesroereson. (6.5b) ' r-@- I =]
vi
where A, is the area of the stirrups and # is number of stirrups per meter. ‘
< 250 mm
| il 1 2
=9 Vi
e—
< 250 mm

[0 L

Fig. 6.2 Column Reinforcement Details
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R
b
n _1000 r:: N R . _,;’ Ky =minof {ISdlmr
- A e A — 200m
s PR i m
J Soopiy NN S B §
E 11T 145 =~ .
§ LA I DU PN | 23N J
- 11T T A7 bar
Z- N [ \ stirrups d, = max of 4
P B 1 : 8 mm
‘ —— o - il - jo~
. — -1 TI=
Vertical bars (dyar) 4= -3 4-4-1F
el B I N | Ve .
| P il 52 el

Fig. 6.3 Stirrups spacing requirements

P . . .
hoto 6.3 Bridge column failure due to lack of lateral reinforcement
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6.2.3 Splicing of Vertical Reinforcement '

sed as a part of a lateral load resisting system, the
e each floor. Figure 6.4 shows lap details of the most
ment for lap splice depends on the state of
ected to combined bending and axial ioads,
should be provided. For concentrically

lap splice of 40 @ for high grade steel

For columns that are not u:
reinforcement is spliced abov
widely used types in Egypt. The require
stress at ultimate state. If the column is subj
tensile stress may occur and tensionlap splice
load columns, the ECP requires compression

and 35 ¢ for mild steel.
Columnn cross sections might change from one floor to another due to change in the
dinal bars may be discontinued or laterally

axial applied force. Thus, the longitu
displaced. The maximum allowable slope for the bars is 1:6 as shown in Fig 6.4.A. If
the slope exceeds this limit the detail shown in Fig. 6.4.B-C should be followed. For

columns subjected to high lateral forces such as those used in seismic regions, the
splice is made at the mid-height of the column as shown in Fig. 6.4.D.

g sl af |
(A Ta 5| A Ta = Ta
8 '8 g
! — 6_-\ H W= H
P 5‘ i { \ !
qi=t=—t% .y —
== | n
L N— & |
Beam I 'J—L ©
% L A _ ®

A: Slope less than 1:6 B: Slope more than 1:6 C: Slope more than 1:6

#150mm

$250mm
$250mm

Sec. A-A v Sec. A-A

Spliced bars @
Column reinforcement  ®

Fig. 6.4 Column lap splice requirements in structures with limited ductility
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Design steps for short columns (dimensions are not known)
- ‘ 1) Assuime Ag= 0.0 4
Calculate P, =1.4P, +1.6P,

Solve the column equation to find 4.

N o ‘ P, = 4,(035 f,, +0.0067 f,)

T
2) Calculate reinforcement area A

roor ! 3 Q Age= 0.01 Agroguivea > 0.006 Asc,chosen

200m . splice at mid-height of the : 3) Design the stirrups diameter d, and spacing s
; column at different locations Check that d, > 8 mm > dpar/4- (biggest bar diameter)
b P . Check that s <200 mm < 15 dpe, (smallest bar diameter)

> - g : 4) Check that stirrups volume > 0.25%
nx A, x primeter 2 25xbxt (mm)
K ,
Note: In some cases, and due to architectural requirements, the cross-section of

the column could be limited to certain dimensions. Accordingly, the designer
has to provide the amount of longitudinal reinforcement that satisfies the
strength requirement. If such amount might case a difficulty in casting the
column, the designer could specify a higher concrete strength.

T

D: columns subj i : . . . y
jected to high lateral forces Design steps for short columns (dimensions are known)

1) Solve the column equation to find 4,

P, =035 f, A, +0.67 f, 4,

500mm

Lo = blgger of Clear helghl‘ /6 2) Check that

Column bigger dimension (f) Ase> Asemin and Asc< 4

3) Design the stirrups diameter d, and spacing s

— : Check that d; > 8 mm > dpa- /4 (biggest bar diameter)
s, = smaller of 8 (Dlongintudnal Check that s <200 mm <15 dp,r (smallest bar diameter)

24 Griiaps ' : 4) Check that stirrups volume 2 0.25%

150 mm

1 nx A4, x primeter 2 2.5%xbxt (mm®)

F- . . . s »
ig. 6.4 Reinforcement of columns in ductile structures subjected to
large lateral force

230
231



Example 6.1

Design a tied column that is subjected to the following axial compression loads

PDL = 1057 kN
Py =400kN

The material properties are as follows:

foo =35 N/mm?
5, =400 N/mm’

Solution
Step 1: Calculate column dimension

Calculate the ultimate load

P, =14 P, +1.6 P, =1.4x1057+1.6x400 = 2119.8 kN
Assume 4,.= 0.0] 4,

P, = A4,(035 f,, +0.0067 f, )
2119.8x1000 = 4,(0.35x35 +0.0067 x 400 )
Ac = 141982 mm>

Assume column width b of 250 mm, then column thickness t equals

t=i=141982=568mm
b 250
t= 600 mm

Step 2: Calculate reinforcement area
A, =0.01 4, required > 0.006 A,,chosen

A, =0.01x141982 = (1419 mm?) > 0.006 (250x 600) o.k.

Choose 8 @ 16 (1608 mm?)

Step 3: Calculate stirrups
Chose stirrup diameter of 8 mm (>16/4) and spacing of 200

Choose 5 ¢ 8 /m’

Assume concrete cover of 25 mm from each
Stirrup A (200x 550)  Stirrup B (200 x 250)
The perimeter of the center line of the stirrups

p = 2200+ 550) + 2 (200 + 250) = 2400 mm
The volume of the stirrups in 1 meter equals
Noting that we bave 5 stirrups per meter an@ Ay
V, o =2.5%250x600=375x10° mm®

V,=nxA4,x%p 5% 50% 2400 = 600X 10*mm® >V iy -0k

600 mm 1

—

mm <(16 x 15)

side, the dimensions of the stirrups equal:

for ¢ $mm =50 mm’

25 mm to CL of bar

I 0
50 200 15
To bar CL ':~l : 1 — ,J\—_- 25 mm cover

232,

L4 5¢8m
E A
2
o~
8P 16
1250 ‘ _
To stirrup CL ‘—* 550 )_%
( ) -
A B
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reisdr
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Example 6.2

Calculate the maxi ini

A fouo::,?:;; ;r;c:l the minimum loads that an interior colu
Column cross section (250 mm x 800 mm)

fu =30 N/mm?

5 =360 N/mm’

mn can carry

Solution

Since the ¢ i ;
olumn dimension i
. S, materia i ;
reinforcement area. ’ 1 properties are given, the only variable is the

i . L
1€ maximum area steel for interior column is 4% thus A. equals
SC
4
A.\‘l‘ max =TT =
iy 100><250><800-8000 mm? — (18 © 25)

P, =035f, 4, +0.67 f, 4,

1
P -1
e = Togg (035 % 30250800+ 0.67 x 360 x 8000} = 4029.6 kv

Ihe minimum area Of .
Steel fOI a coiumn 1s O 8 o) € requ ]ed area
l 1 /0 fth T q 1 T

A . =-—O‘_8.x250 8
semin = Tog < 220%800=1600mm” - @ @ 16)

B =035f, 4,+0.67f, 4,

1
P =L
umin = 75551035 %30 x 250800+ 0.67 x 360x 1600} = 2485.92 kv

800 mm

e T i
R et

L{ B j@? [ rﬂs 167}

- — 7

250 mm
250 mm

r

COluInn Wlth maximum leln‘()!cenlellt (:()lulll]l Wlﬂl mmmum lelni()lcelllﬁ]ﬂ
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6.3 Axially Loaded Spiral Columns
6.3.1 Behavior and Strength

Tied columns are commonly used in buildi
Occasionally, when ductility or higher stren
reinforcement in the form of a spiral is used instea

ngs and structures in non-seismic regions.
gth is required, a continuous circular steel
d of individual stirrups. This type of

. column is called a spiral column.

Photo 6.4 Spiral reinforced concrete column

cement is the enhancement of the

The main advantage of using the spiral reinfor
pacing of spiral reinforcement as

concrete confinement developed by the closer s
shown in Fig. 6.5.

Cover spall off Second maximum 1021\

Load

Spiral column under
axial loading

loading

_» Deformation

Fig. 6.5 Behavior of tied and spiral columns
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The closely spaced stirrups of the spi i

‘ piral and the vertical bars confine the concrete ve
effectively. As a result, the concrete cover will spall off but the core will continue :Z
c?ﬂrry loads larger than the u'ut'lal load that caused spalling (falling). This is due to the
enhancement of the compressive strength produced by the spiral. The spalling of the

cover gives a warning of failure, and shortly afier that the column will
maximum load but under very large deformations. will reach another

gé(;)gnizing tt}e difference between the failure modes of tied and spiral columns, the
2‘03 specifies (refer to Eq. 6.6) an additional increase of approximately 14"% in
the ultimate load capacity than regular tied columns Eq. 6.4.

—2 |
, D, i
I !
pitch, p | —Spiral
reinforcement //—\
spiral

) stirrup
| Diameter

Fig. 6.6 Spiral reinforcement details

;I‘he ECP 203 states that the u}timatc load a spirally loaded column is the smaller of
wo values. The first value given by Eq. 6.6 is based on the axial capacity of the

concrete gross area A,. The second value given by Eq.. 6.7 i i
effect of the spiral on the core strength ¢ Y B .7 considers the confining

P, =041, A, +0.T6f, A, wivrorrrrersreersssesrrseensoe (6.6)
P,=035f, A, +0.67f, 4, +1.38xf, V

where
Ay i‘s the area of concrete core enclosed by spiral stirrups
Vi is the spiral reinforcement ratio
p is the pitch of the spiral stirrups
Jyp is the steel yield strength of the stirrups
A, is the area of the vertical steel
w

.._” 2
Ac “—4“D Ak =ZDk2 Dk=(D—cover)
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A4;, is the area of the spiral.

P is the pitch of the spiral (30—80mm)

/ )[A
f s =036 L ] S8 m 1| i (6.9)
i (fyp Ak
but ,
-V
sy min ;’1:‘ .............................................................. (6.10)
V i =036 g—} P (R ——— 6.11)
p

The designer assumes a Cross sectional area for the rebar used as spiral (8mm or
bigger diameter) and computes the required pitch. The pitch used must be within the
limitations of the ECP 203 of 30 mm to 80mm. If the required pitch is less than 30
mm, a bigger diameter should be assumed. On the other hand, if the caiculated pitch is
greater than 80mm, a decrease of the spiral diameter or the use of the same diameter
but with spacing of 80 mm should be considered.

The minimum area of the longitudinal steel for spiral columns is more than that for a
tied column, and is related to both the gross and core Cross sectional areas of concrete,

and is given by

0014 0SS area
= the maximum of ( Y R 6.12)

A
0.012 4, (core area)

5 ,min

6.3.2 Minimum Spiral Reinforcement

The ability of the confined concrete to carry additional loads is attributed to the lateral
pressure developed on the concrete core by the heavy coils of the spiral. Experimental
tests proved that concrete axial compressive strength increases to the order of 4.1 times
the applied lateral pressure. The spiral column is designed so that the increased
capacity of the core due to spiral lateral pressure f; equals the loss that may occur if the
concrete cover spalls off as shown in Fig. 6.7. Thus, the capacity of the column
without applying the strength reduction factor equals,

PRT IV TR Yr LT VIR ) pe————— (6.13)
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concrete core(d;)

lateral concrete
pressure cover
| —— e

J2

concrete

spital Spiral stirrup
pressure

Fig. 6.7 Lateral pressure developed in spiral columns

From the free body diagram shown in Fi i
g. 6.8, and by equat i
the pressure on concrete, it can be concluded that Y cauating the force in the stecl t

JaXPXDy =2X A, XS, oo (6.14)

_ 24, xf,,

/s
PxD,

A4 5 f;’l’

A-‘I’ g
Fig. 6.8 Analysis of forces

Substituting in with expression 6.15 into Eq. 6.13 gives
xf.

4122w 4 o6
T R SR L A1 E——— (6.16)
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Noting that A== D% /4
4
A X v (1D Y= 0335 (A, ~Ay) o 6.17)
. px

wdA, D
buty, o= w Tk

sp.in
p

Rounding some numbers, Eq. 6.17 can be put in the following form

XY L 1 S — (6.18)
o L
or . . g ik
v,
i i = 036 (Jf_m_ X(A_ —"J .................................. (6.19)
ysp k .

The previous equation is the ECP 203 equation for minimum stirrups.

6.3.3 Code Provisions for Spiral Columns

‘e The minimum area of steel is 1 % of the gross sectional area but not less than
1.2 from the core area.
o  The minimum spiral bar diameter is § mm »
e The maximum pitch for a spiral column is 80 mm and the minimum is 30 mm.

| Minimum spiral
diameter is 8 mm

Fig. 6.9 Spiral column code requirements
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Design Steps

I Assume A= 0.01 A,

2. Solve the first equation to find 4,
Calculate P, =14P,, +1.6P,

F, =404 f, +0.0076 f, )

3. Solve the second equation to get ¥, ! Dy '
F,=035f, 4, +0.67f, 4, +138xf V . !

' if V, =-ve use Vi min ‘

4. check Vi pin

f
Vsp.min = 036 — A -
(f ] [ c Ak ]

e

5. calculate the pitch (p) using
w A, D

= sp k

T,

if p > 80 mm use p = 80 mm

if p< 30 mm increase spiral area (4,,) and recalculate p

Note: In some cases, and due to architectural requirements, the cross-section of
the column gould be limited to certain dimensions. Accordingly, the designer
has to provtc}e the amount of longitudinal reinforcement that’ satisfies the
strength requirement. If such amount might case a difficulty in casting the
column, the designer could specify a higher concrete strength. ®
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Example 6.3

Design a spiral column to support an unfactored dead load of 1500 kN and an
unfactored live load of 700 kN. The material properties are fo,=25 N/mm® , f, =240

N/mm? , £,,=240 N/mm’ ,

Solution
Step 1: Determine cross section and A,
P, =14 Py, +1.6 P, =14x1500+1.6x700=3220 kN

The most economical percentage of steel . is 1% to1.5%. Assume that p= 1%,
substitute in equation to find the area of the cross section as first trial.

P, =04f, 4, +0.76 f, A,

3220x1000 = 0.4 x 25 x 4, +0.76 x 240x (0.01 4,)
A, =272327 mm*

4 =2p
4
D = 588.84 mm

The nearest round number is 600 mm. Assume that the concrete cover is 25 mm then
the core diameter Dy equals '

D=600-50 =550 mm

The area of the concrete, 4, = %Dz = %6002_ = 282743 inm®

The area of the core, 4, = %Df = 1:-5502 = 237583 mm”

0.014, =0.010x282743 =2827 mm®

4 :
0.012 4, =0.012x 237583 = 2850.mm”

= the maximum of (

5 min

A= 0.01 A, = 2827.43 mn’ <Agmin— ti5€ Ase=Asmin
A, =2850 mm’
Choose 12 ¢ 18 (3053 mm’)
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Step 2: Determine spiral reinforcement

Applying in the second equation to determine the volume of the spiral (V)
F, =035 f, 4, +0.67 f, 4, +138xf,, ¥,

Note that 4, chosen will be used

3220x1000 = 0.35 x 25 x 237583 + 0.67 x 240x 3053 +1.38x 240 V"
P

Ve = 1963 mm?

Check that Vg, >V,

sp,min
Y ipumin =0.36 Ja 14 -4 =0.36(£ 282743 —
" (wa[ = 4] - oo | [282743-237583]
Vsp.min = 1693 mmz < V,p ...... O.k

Step 3: Design of spiral

Assuming that bar diameter of the spiral i 2
: piral is 8 mm, Ag,= 50 mm®”. U i
equation to determine the stirrup pitch p v e the ollowing
_r A4, D,

V.

P

P

=7r><50x550

TR 44.2 mm

Example 6.4

Determine the ultimate load that can be supported by a spiral column. having a cross
section of 800 mm with minimum area of steel required by the code. The spiral
reinforcement is-$10 every 50 mm. The material properties are f,~30 Nmm? , f, =
360 N/mm’ , £;,=240 N/mm’

Solution
Step 1: calculate section properties

Calculate the cross sectional area of the column

A = %Dl = %8002 = 502655 mm*

D,=800-50 =750 mm
4, =Z D2 =Z750* = 441786 mm’
4 4

The area of the reinforcement equals

. 0014,  0.01x502655=5026 mm*
A, = bigger of . ~z
0.012 4, 0.012x441786=5301mm*

" A4, =5301 mm®

Step 2: calculate ultimate load
Substitute in the first equation ‘

P, =04 f, A, +0.76 f, A,
P, =(0.4%30x% 502655+ 0.76 x 360 x 5301)/1000
P,=7482 kN
Calculate the volume of the spiral, for $10 mm 4,,~ 78.53 mm’
Z 4, D,
2 ——T—‘

_ %7853 750

' =3701mm’
50

Applying in the second equation to determine the second ultimate load

Round to the smallest pitch p=40 mm P, =035f, A + 0.67 f’ A:F’+ 1.38% f),l, Vsp

»<80 mm and p>30 mm ....0.k.
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F, =0.35x30x441786+0.67 x360x 5301 +1.38 x 240 x 3701  P,=7143 kN
P, is the smaller of the two ultimate léads, thus

P,= 7143 kN

Choose 12 ¢ 25 (5890 mm?)

¢ 10/50 mm

> y . N -
Photo 6.5 Circular reinforced concrete columns supporting a bridge
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6.4 Design of Composite Columns

The use of composite columns has become increasingly popular in high-rise buildings
construction due to several advantages such are:

1-
2-

3-
4-

Significant saving in material and construction time. ,
Smaller cross section and higher strength to weight ratio than conventional
reinforced concrete colummns. ’

Inherent ductility and toughness that can be useful in resisting lateral loads.

Higher load carrying capacity due to the composite action of steel and concrete.
Furthermore the confinement of the outer shell in case of in-filled columns,
increase the compressive strength of concrete.

Compbsite columns can include concrete filled into FRP shell (fiber reinforced
plastics) or into steel pipe. The ECP-203 defines composite columns as compression
members reinforced longitudinally with one of the following (refer to Fig. 6.10):

1- Internal structural steel shapes.
2- External steel pipe.
3- External steel tubing.

1.

6.4.1 Design Guidelines

Forces required to be resisted by concrete in the composite member shall be
transmitted to concrete through direct bearing on concrete. Bearing strength
should be checked in accordance to clause (4-2-4-1) or clause (5-6) of ECP-
203. All forces not directly transmitted to the concrete should be transmitted to
the steel section through connections attached to the steel sections.
Interaction diagrams for composite columns subjected to eccentric compression
force can be developed in a manner similar to that followed for regular
reinforced concrete columns. _ »
All axial load strength not assigned to concrete of a composite member shall be
developed by direct connection to the structural steel shape, pipe, or tube. This
achieved through welding of shear connectors (small steel pieces) to the steel
shape or pipe before casting the concrete.
The maximum yield strength of the structural steel core shall not exceed 350
N/mm’. .
Spiral reinforcement pitch and diameter should confirm to that mentioned in
non-composite reinforced concrete columns. .

e p= 30-—-80 mm

e ¢=8mm
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6. The ratio of the longitudinal reinforcement () shall not be less than 1% and
not more than 6% of the net area of the cross section as follows:

U= A 21%
A, —4,

< 6%

Ar =Asc +Ass

Where 4, is the gross cross sectional area, 4, is the area of the reinforcement
and A, is the structural steel area.

7. The moment of inertia of the longitudinal reinforcement may be added to the
structural steel moment of inertia as follows

II =[sc +Iss

I, =moment of inertia of the longitudinal steel.
I, = moment of inertia for the structural steel about the centroid.

8. The slenderness ratio of the composite column may be evaluated using the radius
of gyration given by the following equation:

(E. 1,15)+E 1,

r =0.80
(E. 4, /5)+E 4,

N

g = gross area of the cross section
A, = total area of steel (4,+4,;)

E. = Young’s modulus of concrete — E, = 4400,/fm

E; =Young’s modulus of the structural steel (=200000 N/mm?)

I, = moment of inertia of the concrete section about the centroid neglecting the effect
of the reinforcement

I, . = moment of inertia of the structural steel and reinforcement (I, +1;,)

In reinforced concrete columns subject to sustained loads, creep transfers some of the
load from the concrete to the steel, increasing the steel stresses. In the case of lightly
reinforced columns, the load transfer between concrete and steel may cause the
compression steel to yield prematurely (too early), resulting in a loss of the effective
EI due to creep in both steel and concrete. However, For heavily reinforced columns or
for composite columns in which the pipe or structural shape makes up a large
percentage of the cross section, the load transfer due to creep is not significant.
Accordingly, in Eq. (6.20) only the term EI of the concrete is reduced for sustained
load effects. :
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Circular stirrups
or spiral reinforcement

-

B

n

a)External tube + steel reinforcement

b)External pipe + steel reinforcement

Circular stirrups
or spiral reinforcement

, o )
" . ‘ .
i 9 " | Structural steel
’ 1 I-beam

“la

i t
¢)Internal I-beam + steel réinforcement  d)Internal angles + steel relnforcemgn

Fig. 6.10 Examples of composite columns.
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6.4.2 Types of Composite Columns
6.4.2.1 Structural steel confining concrete core

Structural steel confining concrete core should h i

; _ ave a wall thickness large enough to

:Z::bzlreld_f;ress before buckling outward. The ECP-203 requires that for a compgosite
with concrete encased by structural steel tube or pi ick

steel wall shall be not less than: " PIPe, the thiclness of the

For rectangular column with width b, the minimum thickn
e G o X um thickness for each face as shown

fy
L 2B Jp, ———— (6.21)
For circular columns with diameter D
£
ton 2D QE s (6.22)

Where E; is the modulus of elasticity of external steel casing.

* Capacity of columns with ordinary stirrups

Tl}e' capacity of the encased concrete columns subjected to axial load with
minimum eccentricity (e < ey;,) equals to:

P,=035f, A, +0.67f, A, +0.67f, A oo errereneienns (6.23)
Where:
» fiss = Steel y%eld strength of the outer steel tube or pipe.
fise = Steel yleld_ strength of internal steel vertical reinforcement.
4 =Crods sectfonal area of the outer steel tube or pipe.
Ase = Cross sectional area of the internal vertical reinforcement.
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- Capacity of circular columns with spiral reinforcement

The capacity of circular composite columns that are latcraily confined is given
by: '

P =040f, A, +0.67f,, Ay +0.T6f, Ay wovvovevecrniren (6.24)
Where: )
fss = Steelyield strength of the internal structural steel shape.
fse = Steel yield strength of internal steel reinforcement.
A, =Cross sectional area of the internal structural steel shape.
A,. = Cross sectional area of the internal reinforcement.

In such a case, the amount of the spiral reinforcement should satisfy the
minimum requirements given by the following equations:

A, D
A R NN (6.252)
p
V) e =036 (i%} TR [PS— (6.25b)
yp

A is the gross cross sectional area of the column.

Ay is the area of concrete core enclosed by spiral stirrups.
Ay,  isthe cross sectional atea of the spiral stirrups.

V,, is the spiral reinforcement volume.

p - is the pitch of the spiral stirrups.

f,p  is the steel yield strength of the stirrups.
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6.4.2.2 Concrete surrounding Structural Steel Core

To maintain the concrete around the structural steel core in composite columns, it is
reasonable to require more lateral ties than needed for ordinary reinforced concrete
columns. The yield strength of the structural steel core should be limited to prevent
separcition of the concrete. It has been assumed that axially compressed concrete will

not separate at strains less than 0.0018. According to the ECP-203 yield strength of
350 N/mm? represents an upper limit of the useful maximum steel stress.

The axial capacity of the composite column with concrete surounding the structural
steel core may be calculated according to the type of ties as follows:

¢ Ordinary stirrups surrounding' structural steel core

In case of using ordinary’ stirrups, the following requirements should be
satisfied: :

1. The diameter of stirrups shall not be less than 8 mm and

shall completely
surround the structural steel core.

. Stirrups shall have a diameter not less than 0.02 times the greatest side
dimension of the composite member but not more than 16 mm,

. Vertical spacing of stirrups shall not exceed (16®) longitudinal bar diameters.

A longitudinal bar shall be located at every comer of a rectangular cross

section, with other longitudinal bars spaced not more than one-half the least
side dimension of the composite member or 150 mm.

The ultimate carrying capacity of the column is calculated by

P'=035f, A, +0.67f,, 4, +0.67f 0 App v coneeer (6.26)
Where:
Jiss = Steel yield strength of the internal structural steel.
Jyse = Steel yield strength of the longitudinal steel reinforcement.
45 = Cross sectional area of the internal structural steel.
Ase = Cross sectional area of the longitudinal reinforcement.
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i i i uctural steel core
o Spiral reinforcement surrounding str

. . . &
Concrete that is laterally confined by spiral reinforcement has increased 19a
carrying strength.

In case of using spiral reinforcement, the capacity is given by:

.(6.27
P =035f,, Ay +0.67 fyq Ay +0.67f Ay +138f Vg ovvnnnnee 6.27)
}Nhere; Steel yield strength of the internal stru.ctural steel shape.
jX . = Steel yield strength of internal steel reinforcement.

; i iral stirrups.

= Steel yield strength of the spirdl

f/;p = Crossyslectional area of the internal s@ctural steel shape.

A“ = Cross sectional area of the internal reinforcement.

Vi: = Spiral reinforcement volume.

. mum
The amount of the spiral reinforcement should satisfy the minimu
requirement given by the following equation:

Where Vipmin is determined from Eq. 6.25.

The designer assumes a cross sectional area for tl}e rebar useﬁitaisl 5551:11 ﬁﬁg g;ef
bigger diameter) and.computes the required pitch. Thelaf%ll ecmquiwd o b
within the limitations of the ECP-203 (30 mm—80mm). e T e
1 han 30 mm, a bigger diameter should be assumed. On t e oth R e
eS]S tl:tr(lad pitch’is greater than 80mm, a decrease of the spiral dlafgetzrd 0
fxzecgf the same diameter but with spacing of 80 mm should be considered.
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0,
o The ratio of the longitudinal reinforcement p should not be less than 1% and

Example 6.5 ; - not more than 6% from the net cross section
Design a rectangular composite column with an internal IPE No. 300 if the column is A o
. . . . : =——%__>1%
subjected to the following axial compression loads K=" 4
§ g 1.
P DL = 1450 kN E < 6% )
Py, =760kN ' E A=A o +A =1810+5380 = 7190 mm
. . - 3 t sc chosen ss
The material properties are as follows _ 1810 et i
2 e 0 =127%21%.....0
o =35 N/mm’® ; A= 550%600—7190
Jse =360 N/mm < 6% ....0k
Jss =300 N/mm® : -
Solution ] Step 3: Calculate stirrups . o . 4 than for ordinary
Step 1: Calculate column dimension | In this type of composite columns, more lateral ties 1s require
Calculate the ultimate load reinforced concrete columns.
P, =14 P, +1.6 P, =14x1450+1.6x760 = 3246 kN ' >8mm

The minimum stirrup diameter{>¢ /50 = 600750 =12mm

The cross sectional area of IPE 300=5380 mm>
<16mm

The axial capacity of a composite column is given by

P, =035f, A, +0.67f, A, +067f,, A,

yse

The vertical spacing between the ties should be less than 16 times the \gzzmcal)bars
Chose stirrup diameter of 12 mm and spacing of 167 mm <(16 x 12=192 mm

Assume A;.= (.01 4,, thus 1 Choose 6 ¢ 12 /m’
P, =43035f, +0.0067f,, )+0.67f, A

ysc yss 55

3246 x1000 = 4, (0.35 %35 +0.0067 x 360 ) +0.67 x300x 5380 ] %‘ 600 mm _ll o5 rmim to CL of bar

Ac = 147635 mm? | 125 | 125 | 125 | 125 Elﬂ .

Assume column width b of 250 mm, then column thickness ¢ equals _ i I | l 25 mmn cov
T

t= A~‘ = 147635 =590.5 mm

b 250 £ |

t= 600 mm E
2 [~

Step 2: Calculate longitudinal reinforcement area o ° \!

4, =0014, _ 1

|\ \
|.P.E 300 12¢512
612/m

A, =0.01x147635 = 1476 mm?

Choose 16 ® 12 (1810 m)
The maximum horizontal spacing between the vertical bars equals

.Sb—_ =-2§)- =125 mm <150mm ok .
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. Assume that p= 1%

Example 6.6

Design a spiral composite column (D=600 mm) with internal IPE 330 to support an
unfactored dead load of 1940 kN and an unfactored live load of 1620 kN.

The material properties are as follows

fu =25 N/mm®
fise =360 N/mm?
S =240 N/mm’
f,{ls: =400 N/, mmz

‘ 600 mm

Spiral
reinforcement IPE 330

A=6260 mm?

Solution
Step 1: Determine cross section and A,

P, =14 P, +1.6 P,, =14x1940+1.6x1620 = 5308 kN

The area of the concrete, 4, = %Dz =;%6()(_)2 = 282743 mm*

Dy=600-50 =550 mm

The area of the core, 4, = %D,f =%5502 = 237583 mm”

—— A,=0.01 4, = 2827.43 mm’®

" The chosen A is less than 1.2% of 4, (2850 mm? ), thus take 4,,=2850 mm?
" Choose 12 ¢ 18 (3054 mm?)

o The ratio of the longitudinal reinforcement x should not be less than 1% and
not more than 6% from the net cross section

>1%

#zAc —AI

A, =4 A, =3054+6260 =9314 mm’

sc chosen

3054

= =1.12% 21%.....
282743 -9314

<6% ..ok
Step 2: Determine spiral reinforcement
Applying in the column equation to detexmine the volume of the spiral (V)
P =035f, A, +0.67f,, A, +0.61f, A, +1381,V,

Note that fs =400 N/mm’, however, accordmg to the ECP-203, the maximum usable
structural steel yield strength is 350 N/mm® = f, JRRCRIY N/mm?

5308 x 1000 = 0.35 x 25 x 237583 +0.67 x350x 6260 + 0.67 x 360 x 3053 +1.38x 240V,

Ve = 3094 mm’

Check that Vg, > Vg min

r

25 ;.
- 43— 237583
V i =0.36(f ][A -4,]= 036( 40)[2827 ]

=1694 mm <V vie0k

s/: min
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Step 3: Design of ‘spiral
Assuming that bar diameter of t} iral is

: f the spiral is 10
equation to determine the stirrup pitch p i
_z 4, D,

v

p

P

3094

Round to the smallest pitch p=40 mm

p<80 mm and p>30 mm ....0.k.

=43.8 mm

600 mm

sp

78.5 mun’. Use the following

550 mm

I.P.E 330
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Example 6.7

Design a spiral composite column with an external pipe to support an unfactored dead
load of 2400 kN and an unfactored live load of 1500 kN.

The material prOpérties are as follows

fuu  =25N/mm’
fse =280 N/mm’
=240 N/mm”

w .
=350 N/mm'

yss

Solution ‘
Step 1: Determine cross section and A,

P =14P, +1.6 P, =1.4x 2400 + 1.6 x1500 = 5760 kN

According to the ECP-203, the minimum thickness of the pipe equals

tm 2D —f’—
8E,

Thus minimum area of the pipe equals

‘ Ass minantmin =ﬂD2 ___fyss =4 f___yss Ac
; 8E, . 8E,

A, =40 4 00594, — 4, =2Dp?
8x 200000 4

Assume that the reinforcement ratio p for the vertical bars= 1%
P =040f, A, +0.67 Sy A +0.76f,, A,
5760%1000 = 0.4 x 25 x A, +0.67x350% 0.059x A, +0.76 x 280 (0.01 A)

A, =221850 mm® A, =§—D2 '
D =531 mm ——D=550 mm

Assuming that concrete cover is 25 mm then the core diameter Dy equals
D,=550-50 =500 mm :

The area of the concrete, 4, =%1)2 = %5502 = 237583 mm?
The area of the core, 4, = %D 2= %5002 =196350 mm?

A= 0.01 A, = 2376 mm’ >1.2% of 4; (2356 mm? )....ok
A,~2376 mm’ —+—>—» Choose 12 ¢ 16 (2413 mm”)
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Step 3: Determine the Pipe thickness

tmin=DV[£=SSO‘ 350

\I8x200000 =8.13mm —— Take t= 9 mm

A, =7Dt = 7x550x9 = 15551 mm?

e The ratio of the longitudi i
gitudinal reinforcement (
) should not be 1 °
not more than 6% from the net cross section s han 1% and

U= A“ >19
A ~A %

4

A, =A, +A4, =2413+15551 =17964 mm>

2413

p=—0
23758317964 1.1% 21%.....0k.

<6% ....0k
Step 3: Determine spiral reinforcement

the code

Vs min =O'36 f# A —-A = 25
» [ 7 J[ . —4,]=036 P [237583-196350]

Th i
e used spiral should be greater than the minimum spiral reinforcement specified by

Jp
V in = 1546.3 mm?

Assuming that bar diameter of iral i
: the spiral = 2 i
equation to determine the stirrup pitclf)pra 1o 8 mim 4= 30 mar Use the following

B T A,,, D,
V.

n

p

_Zx 50x 500
1546.3

Round to the smallest pitch p=50 mm

=350.
0.8 mm Steel pipe of

thickness 9 mm

~p<80 mm and p>30 mm ....0.k.

r

8 at 50 mm

550 mm

L

258

6.5 Calculation of Axial Loads on Columns

The axial load on a column is the sum of the total loads that comes from all structural
clements such as beams, slabs, and walls. There are two approaches for calculating the
axial loads on columns namely, the area method and the reaction method.

6.5.1 Area Method

The first method is the area method in which the column is assumed to carry loads
acting on an area bounded by the centerline of the previous bay to the centerline of the
next bay in both directions as shown in Fig. 6.11. This method is very effective in
calculating loads on columns with a symmetrical layout or on columns with flat slab
floors.

Fig. 6.11 Calculations of column load using area method

This method can be used for floors containing projected beams. The reaction is
calculated by ignoring the effect of contitwity and treating every beam as a simple
span. This method should be lifnited to plans with nearly equal spans. The effect of
continuity at point B can be implemented by multiplying the reaction by 1.1 as shown

in Fig 6.12.
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Fig. 6.12 Effect of éontinuity on the calculation of column load

However, this method may lead to serious errors in buildings where large differences
exist in the adjacent spans either for flat slabs or slab beams floors. This is attributed to
neglecting the effect of continuity especially for unequal spans. For example, the
reaction on column B (shown in Fig. 6.13) when calculated by the area method gives

80 kN whereas the reaction obtained from the structural analysis equals 126 XN (about
57% error) '

20 kN/m” 20 kN/m”

HEENREREERN NEEREERRERER
Ay A B A% C A by 4B A C
1; 2m } G6m ; } 2m ; (2 i
- | | |
20kiN  80kN : GO kN . 4 kN 126 kN 48 kN

. (tension)
Area method Exact analysis

Fig. 6.13 Comparison between arca methed and exact analysis
(where the use of area method is not recommended)
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6.5.2 Reaction Method . .
This method depends on the exact structural analysis of the structure either using a
computer analysis program or classical structural analysis. The reactions are calculated
from the shear loads. When using the computer, the whole structure is modeled and thp
reactions are obtained from the final solution. For hand calculations, the structure{ is
divided into individual beams and the reaction of each beam should. be added to give
the final column load. _ '

The self-weight of the column should be added to these reactions or can be estimated
as 5-10% of the column load. .

Photo 6.6 Column reinforcement placement in a high-rise building
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e—————————————————————————————ct

DESIGN OF SECTIONS SUBJECTED TO ECCENTRIC
FORCES

Photo 7.1 The bridge over Suez canal

7.1 Introduction

" This chapter deals with the analysis and design of cross sections subjected to axial
1 . loads and bending moments. Concrete sections may be subjected to eccentric
compression or eccentric - tension. The eccentricity of the load could be in one
direction “uniaxial” or in two directions “biaxial”.
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The behavior of the sections under combined axial compression loads and bending
moments depends on the magnitude of the moment M, and the axial force P,. If M, is
relatively small compared to P,, the eccentricity e will be small and the section will be
subjected to a small eccentricity. In this case, most of the section will be in
compression and column behavior will dominate. On the contrary, if M, is large the
eccentricity e will be large enough so that the normal force will be outside the Ccross
section and the section will be subjected to a big eccentricity. In this case, the near side
of the section will be subjected to compression and the far side will be subjected to
tension, and beam behavior will dominate. The combination of an axial load P, and

bending moment M, is equivalent to a load P, applied at eccentricity e =M, /P, as
shown in Fig. 7.1.

~ (a) Axial load and moment (b) Eccentric Load

(c) Eccentric Load

Fig. 7.1 Representation of axial load and bending moment
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- The interaction diagram or “the failure enve

~7.2Interaction Diagrams

7.2.1 Definition
lope” of a reinforced concrete Cross-

i ’ i i f the
section contains the different combinations of M, a_nd P, tt.xat res.ult in th.e fa:lur(; ohical
cross section as shown in Fig. 7.2. Thus, an interaction dlagram is germ}; ool
representatidn of all possible combinations of axl;l 1<)Iadstz:c}nl::;ciltril§nlg?:;r ots that

i i -secti der to develop X
failure for a given cross-section. In or 0 de c ins )
ﬁz‘slsti) know the CO%lchte dimensions of the section, the longitudinal reinforcement, foy

and f;.

Developing the interaction diagram of a reinforced concrete cross-section can be
achieved through the application of:

1. Compatibility of strains.
2. Equilibrium of forces and moments.

Pure compression

Interaction diagram

Balanced point

Axial load , Py

Morhent, M,

\ Pure bending

Pure tension

Fig. 7.2 Interaction diagram of a reinforced concrete cross section
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7.2.2 Modes of Failure

g 7.3 presents a series of strain distributions and the resulting points on the

interaction diagram. The state of i
‘ . stress developed in the conc
type of failure. These modes are explained as follows rete and steel controls the

7.2.2.1 Compression failure mode

Point A i .

comt 2 lcoczlré?sponfihs to the case of pure axial loading and point A’ represents the case
of axial compris‘:ilon ctgfile mmmgxm el(l:centricity (i.e. e/t=0.05). Point B represents the

: tlure mode where the concret i i i
0,003 ant mpression fail . ‘ te reaches its ultimate strain of
el does not yield. This fail is bri ' .
) 2 - This failure mode is brittle, as the ¢
defonn:ti(s)gcs)norassu}l%e. C(zncrete compressive strain reaches 0.003 without Oizg:
cient warning. Accordingly, the Egypti i
: ‘ ) A an cod
strength reduction factors for concrete and steel for such m;g)?;s of failu:e nereases the

This mode of failure belongs to columns with a relatively small bending moment

0.002

pure compression
0.003

‘.._.i

column equation

AI
. - o o
=
ol &< E/Ys balanced point, P,
<
2 ¢
= A
5 i
g=¢,/1.15
P, i '
€> Ey/ 1.15
Moment, M,

Mub
Pure bending
Eccentric tension force

Pure tension

Fig. 7.3 Modes of failure for a section subjected to eccentric forces

265

7.2.2.2 Balanced Failure Mode

At this point the concrete reaches its ultimate strain of 0.003 at the same time that the
tension steel reaches (£,/1.15) (point C). The maximum bending moment capacity for
the section occurs at this point (M,p)- Loads larger than the balanced load P,, cause
compression failure and loads smaller than the balanced load P,; cause tension failure.
The position of the neutral axis ¢, can be obtained from the following equation:

690 SO 7.1)

+f,,(N /mm?*)

7.2.2.3 Tension failure mode

This is represented by point D on the interaction diagram. The strain in the steel is
Jarger than the yield strain and the steel will reach the yielding stress. This is a ductile
mode of failure since the section will crack and develop large deformations before
failure, thus giving sufficient signs of warning before the complete collapse. This
behavior is similar to that of beams rather than columns. If the axial force 1is equal to
zero, the section will reach the case of pure bending represented by point E. Both the
axial loads and moment capacities increase in this zone up to the balanced point.

Point F corresponds to the section axial tension capacity. The part E-F represents the
section capacity under the combined axial tension and bending. The modes of failure
and steel stress can be established from Eq. 7.2 and Table 7.1 as follows:

Compression Failure
£, <f, |7, (steel did not yield)
if P, >P, € (7.22)
if B,>P, e 2a
b ] e<e,
Mu < Mul)

y, 21.15and y, 21.50

Tension Failure
f. =/, / 7, (steel yields)

. c<¢,

if B, <P, W ese e (7.2b)
b

M, <M,

| 7, =115and 7, =1.50 .
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: . '\’- Steel strains in both compression and tensionf'steel are calc&la:ltedu;s:nigs
Table 7.1 Steel stressés according to the type of failure similarity of triangles. The developed stress using the computed st 1
T checked to ensure the yieldin§ of the stefel. Notmg_. that Yogngs §teed
Type of failure | Tension steel stress Compression steel stress modulus equals 200,000 N/mm’, the stress in the tension steel is obtaine
i owi atibility equation
. ) . - yields, f5=f,/ 1.15,0r ~ using the following compatibility eq ’
Tension failure | yields, f,=f,/1.15 — Ie dc_ f, o iF p0SiiYE) o a5
P<py, does not yield £/ = 600< ' . f, =E,x0.003x P 600—-:-— <= (ten p .
. c 5 -
Comipression _ | vields, fi=f,/y, or ‘ e f
failure does not yield, -f, =600d ¢ - ) cd’ f, =600 <y
’ c does not yield, f, =600 < ¥
P u>pub i ¢ - .
Similarly, the stress in the compression steel equals
7.2.3 Development of the Interaction Diagram ' T » -
; : -p : i .9 ‘ . . '~ 600 —d Sf—’ (cOmPpression if POSIIVE) w.c.eceruseressnnes (7.6)
In this section the relationships needed to calculate different points on the interaction s c Ve :
diagram are derived using the principles of strain compatibility and equilibrium of - . ]
forces. The procedure followed to obtain a point on the interaction diagram is as : The values of strength reduction factors and steel stresses are _111ustrated in
follows: L Fig.7.4b. It is clear from this figure that fi=f,/1.15 if the point is in the ductile
o Concrete strain at the outermost stressed fiber of the section is assumed to ; failure mode (belaw the balanced point) and Eq. 7.5 should if the point in the
be equal to 0.003. brittle failure zone (above the balanced point).

* Because it is difficult to solve the equilibrium equations for a specific axial
load and bending moment, the neutral axis distance ¢ is usually assumed and
the developed forces and moments in the concrete and steel are evaluated as
shown in Fig. 7.4a. Incrementing the neutral axis distance for enough points
gives the interaction diagram as shown in Fig. 7.3.

. . i .
* According to the ECP-203, the strength reduction factors change depending = Brittle failure zon
on the applied eccentricity (mode of failure) and are given by N\E ¥>1.15, y>1.5
' 7 elt L d-c fy
¥, =15 (————3—)215 ......................................... (7.3) 7,
y, =1 15><(-7-—"’—/i)21 15 cooereeeeemnesserenmesreereese (7.4)
3 balanced point, Pu
Note: if e/t >0.50 then y=1.15 and v, =1£)5g7 A Tension failure zone
0.003 ol ‘o =1.15, y=1.5
- C=A s ¥s o
2 o1 ﬁ:f)/ 1.15
o0
3
! o © !le CC Mu/f cu btz
-T=A, f, ' | an 7.4b Calculation of tension steel stress(f;) in developing interaction diagram

Fig. 7.4a Strain and stress distribution eccentrically loaded sections
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The §quivalent stress block distance (a) is assumed to be equal toi 0.8¢c as
permlm?d by thg co‘de,.and the corresponding concrete force is evaluated. The
total axial capacity is given by the following equilibrium equation

_067£,b6(08) ., _,
P =2870abO8) i g af (7.7b)

c

e For symmetrical sections, the bending moment capacity of the section is

obtained by taking the moment of the individual forces about the ¢ g as
follows .

0677, 608c) (t a
M =" w @ AO0) — ropr |t p t ,
u 7. x(z 2)'“4; xf (-Z-—d )+AS xf, (—2 -d ) (7.8)

It should be clear to the reader that the corresponding bending moment can

be ‘cc')mputed at any point in the cross-section similar to the case of pure
bending, bu.t with one major difference in that the axial load is located at the
c.g along with the bending moment. Thus, if the ‘bending is calculated at any
point rather than the c.g (or plastic centroid in case of unsynimetrical
sections), the normal force should be included. For example, the bending
moment at point “o0” in Fig. 7.4 equals ’

t 0671 b (08c) a
M =P x——da” V077 02 A 'xd’
=X ” x2 A xfixd'+ A xf, xd ... (7.9)

An example of an interaction dia i i
) gram obtained using the aforementi
procedure is shown in Fig. 7.8. ® emtioned
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7.2.4 Plastic Centroid

Most of reinforced concrete columns are symmetrically reinforced. However, in the
cases where the eccentricity is large, it is more economical to place most of the
reinforcement on the tension side. In reinforced concrete sections with unsymmetrical
reinforcement the load must pass through a point known as the plastic centroid. The
plastic centroid is defined as the point of application of the resultant force(p,,)when
the column is compressed uniformly to the failure strain. Eccentricity must be
measured with respect to the plastic centroid as shown in Fig. 7.5. The strength

reduction factors y, and y are taken as 1.75 and 1.34 receptively

For symmetrically reinforced sections, the plastic centroid coincides with the center of
gravity. The procedure for calculating the plastic centroid is illustrated in example 7.2

¢ ' 0.67 % fau /175

A , c

: ! s P cmavga
® - @

; 1

i - Ce

S I I S I -~ -3 Ao
|P €p
up

T I

5§ Xo Cr=Af,/1.34
XX { r=AdS;

1 4
Plastic centroid |-——r——l

Fig. 7.5 Plastic centroid for sections with unsymmetrical reinforcement

Photo 7.2 Unconventional support for a Multifamily Building ~-Warsaw
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Example 7.1

Calculate the balanced load and balanced moment for the section shown in figure
knowing that the material properties are , o '

£,,=35 N/mm?
£,=400 N/mm’
50 mm ’ [ 300 mm |
T ® ® o] A'~=1800 mm®
[o=]
Q .
-l- ® o o] A=1800 mm®
50 mm
Solution

Step 1: Calculate C, |

The position of the neutral axis position at balanced failure is given by

690 690
cl; = d =
7690+ f,"  690+400

800 = 506.42 mm

a, =0.8xc =0.8x506.42 = 405.14 mm

Assume that 7=1.5,y,=1.15 (e/t>0.5) (will be verified later)

fr=600% ~4 _ 600 30642 -30 _ 54076 N/mm? >> ﬂ)-q....'..steelyields
c, 506.42 : 1.15
,_ 400
Ji= 115

Step 2: Calculate the forces

C=0.67fm§<bxab 0.67x35x300x405.14 1

3 - =1900.1&N
15 15 1000 .
C = xT Z1800x 4% 1 _ 61 v
115 1151000
T=a,x22 1800290 L _ 61 in
115 115 (1000
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d=
|

A=1800mm® /

b=300 mm

Step 3: Calculate the bending moment

Computing moment at plastic centroid (c.g. in this case)

t 4y, d—ayeTl-d
Mubzc"(iu— 2)+Cs(2 d)+ (2 )

850

M, = [1900.1 (—2— -

e, 89221
¢t 1900.1x0.85

405'14)+626.1 (@——5
2 2

2

) 0.67x35/1.5
'=1800 mm :
A'=1800m | 0.003 1 c=aipyiis
7 tf———
< g =
S| M / 11 /4 C
E o % '=50 mm % (¢
ol & - &
2 78

-
T=A, f,/1.15

850 1
g —— =89221kN.m
O) +626.1 ( 50)] 1000

=0.552 > 0.50...(our assumption that y=1.5,y=1.15 is correct)

Note: The bending moment can be taken at any other point as long as the ultimate load

P, is considered, thus

~ 1
50 405.14 — - =89221 kN .m
M, =[1900,1x8_2_—1900.1x 1% - 626,150+ 626.1x800 | o

(same as before)
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Example 7. 2

Locate the plastic centroid for the section shown in figure, knowing that

Jeu =25 N/mm’ 50 mm l 300 mm
£, =400 N/mm’ : T ] 400 mm’
g
—L ® ® o 1500 mm®

50mm |
Solution

To find the plastic centroid, the entire section is subjected to compression force, thus
Y.=1.75 and vs~1.34. Assume 50 mm concrete cover

‘ . S0mm 0.67 x 25 /1.75
A =400 }—r ,
| Ce A1 /134
g E T
fo]
SN T ce | T | =%
= r
S _I.._/_,_Q)ftw_ I
1
1500 mm7 X;=408.
oo o —408.32 | . Cr=d, f,/1.34
Plastic centroid [ FH———1 0
300 mm
C, =A;><~fi=400xﬂx L 194
: 134 1000
c - 0.67x f,, xbxt _ 0.67x25x300x900 1 — 2584.286 kN
1.75 1.75 1000 _
Gy =, L 21500x39% L _ar760n
7, 134 1000

The resultant of the three forces P,, equals

F,=C, +C, +C, =119.4+2584.286+447.76 =3151.45 kN

Computing the moment of all forces at point o (bottom fibers)

P, xX,=C,x850+C, x450+C; x50

_ 119.4x850+2584.286 x 450 + 447.76 x 50

X, = 408.32 mm
3151.45

The distance of the plastic centroid to the c.g (e,) equals

e =2-X,= %-408.32 = 41.68 mm
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Example 7.3

Construct the interaction diagram for the. section shown in figure knowing that the
material properties are

fow =30 N/mm’
f, =400 N/mm’
50 mml ’
__{_ A'=1575 mm”
3
~1 50 mm
_L A=1575 mm?
b=250 mm
Solution

‘Point 1 (Pure axial compression)

The entire section is under axial compression and the neutral axis is considered at
~ infinity. The strain distribution is uniform at the ultimate strain and all the steel has

yielded in compression. Summing all the forces gives the total section capacity

0.67 x 30 Iy
[ 2
kil St ceaip
%/ T -
R d'=50 mm
3 - C
T _ / _________ g .. IR _ °
o
’4 A=1575 mm” ‘ Cr=A; /%
b=250 mm
P, 067/ bt bt+A; x-J:"—+AS XIL
e Ys o Vs

Since the section is in pure compression ¢=0 thus y.=1.75 and y,~1.34
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p, =280 A0T0 | 575, 400 1575, 400 _ s kv
175 134 134

u

Since the column has symmetrical reinforcement M.EO
However, the ECP-203 does not permit the use of this capacity and assumes that any

column will be subjected to a minimum eccentricity of (€y;,=0.05 t). Thus, use the tied
column equation

P, =035f,4,+0.67 4,
F, =0.35x30x 250x 700 +0.67 (1575 +1575) 400 = 2681 kN

M, =F, €y, =2681x(0.05x700) = 93835 Kn.mm = 93.84 KN.m

Point 2 (compression failure)

The compression failure occurs when the depth of the neutral axis is greater than its
depth at the balanced position. In this situation the tension steel stress is below the
yield stress and for the purpose of simplicity, the neutral axis position is chosen at the

tension steel location (c=d). Thus, the developed force in the tension steel is equal to
Zero. :

A'=1575 mm? l 0.67 x 30 /y,

0003 I ¢ yup

d=650 mm
¢=650 mm
S
%
é ———trd
3

As=1575 mm?®

b=250 mm

¢=650 mm and a= 0.8 x ¢= 520 mm

To -estimate the strength reduction factors Ysandy,, assume that e/t=0.2 (will be
verified later), thus

7 020 ' 7 020
=15x| =-=2Y =165 =L15x| < ——22]=1.265
re (6 3 ) Vs x(s 3 )

Since ¢=d thus, £;=0 and T=0

c~d' i

= —<

£ =605 52
650-750 400

1 _ e T .85>

fi=00= 0 =3 g5

.f'=;f1=—490—=316.2N/mm2

= T 1265

=498 kN

1
A X[ = 2
C, = 4 x f] =1575x3162x

0.67x f,, xbxa _ 0.67x30x250x520x 1 ~1583.6 kN
C.= Y - 1.65 1000

P,=C.+C,—T=1583.6 +498 -0 =2081.6 kN

Computing moment at plastic centroid (the ¢.g. in this case)
1
- —— — =291.92kN.m
M, =C. (%—%) + c,(%—d') = [1583.6x (350~ 260) + 498 (350~ SO}

Check strength reduction factors

M, 29192
B, 20816

y. = 1.5x(%'——0'31—4)=1.68 ~1.65...0k

=0.14

e =

7 0.14
= ~ - }=1288=1.265...0k
}’s—l.ISX(G 3 ) V

Point 3 (balanced point) ,,
By definition at the balanced point the strain in the tension steel equals €,/1.15. Thus,
the stress in the tension steel equals f,/1.15. .

0.67 x 30 Me
0.003 i | =Af%
7 Cedif!

- 5
T #/ 8l
/ =50 mm & ¢

oo e : - T=A,£,/1.15

A'=1575 mm’ I

oy=414.47 im
S

d=650 mm

b=250 mm
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690 690

c, = d= 6 =
b 690+f,, 690+4OOX 50 =411.47 mm

a=0.8 ¢=329.17 mm
Assume that e/t>0.50, thus y=1.5 and y,~1.15 (will be verified later)

i 400
T=4,x2=1575x——=
115 x1.15 54783 kN

£ =6005=2 I
[4 }’s

41147~
ALAT=50_ o0 Sy
41147 7.

£! =600

£, _ 400

S fl= =347.83 N/ mm?
£ 7. 115 /mm

C, = A! x f! =1575x347.83 = 547.83 kN

c 067xf, xbxa _ 0.67x30x250x329.17

¢ 7. 150 =1102.72 kN

P,=C,+C,—T = 1102.72+547.83-547.83=1102.72 kN
Computing moment at plastic centroid (i.e. c.g due to symmetry)

t a t t

M, =C(=-=)+C,(~—d' "

(2 2) ,(2 )+T(2 d"
329.17

2

M, =1102.72x(350— ) +547.83% (350~ 50) + 547.83 x (350~ 50) = 533.16 kN.m

Check strength reduction factors

e _{ M, ) _ 53316
t (P"xt) 11027%07 %

Since e/t > 0.5 our assumption that y,=1.5 and y,=1.15 is correct
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Point 4 (tension failure)
For tension failure to occur, the neutral axis should be less than the balanced point. Let
us assume the neutral axis position at c=2/3 ¢, (position for maximum reinforcement in

case of pure bending)

0.67 x3071.5
A'=1575 mm® .
= 7/l » 77 9
gl g M / o AR c
ol W A " @ ©
175 (3] .
i L. e e
]
o
A=1575 mm?
e%° y T=A, f,/1.15
| | 7€/ AsJy/L-
S S
b=250 mm
2 2 N
c=—3—c,, =§x411.47=274.31mm . —a=0.8 ¢=219.45 mm

v=1.5 and y~1.15 (no need to check this assumption, because it was valid at the

" balanced point)

The point is below the balanced load thus f; = 5 :—(i% =347.83 N/mm’
y s N

T =4, xf, =1575x347.83 =547.83 kN

fi= GOQM =490.6 >&.
274.31 s
= Jy _ 400

=2 = 347.83 N/ mm’
y, 115

C, = A! x f! =1575x347.83 = 547.83 kN

c - 0.67x f,, xbxa _ 0.67x30>;?:5500x 219.45 —735.16 kN
 Ye ) :

P,=C,+ Cs— T = 735.16+547.83-547.83=735.16 kN

Taking moment about plastic centroid (i.e. c.g due to symmetry)

i a t t
M, =C.E-4y+C,(=-d)+T(E-d"
==+ C G- TG =)

M, =735.16x(350— 2192'45) +547.83% (350 — 50) + 547.83 x (350 — 50) = 505.34 kN.m
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Point 5 (Pure bending)

In the case of sections subj

‘ : jected to pure bending, locating th i
performed by applying the equilibrium equation ¢ 18 fhe newiral axs must be
P,=0=C-T

Y=1.5 and y~1.15 (no need to ch i ‘

. CRRE eck this assumption, b ;

¢ . ption, because at the b

his assumption was valid). Assume that compression steel did not yiel(ii. alanced point

0.67x30/1.5
' lC=4 o fs
f——————
: =
=) <
S .
o
I a
g
I
L 1
£>8,/1.15 T=A, f,/1.15
b=250 mm

fs’=600""‘d' =600c—50
[

c
C.+C—-T=0 or C.+Ci=T
s
0.67f, xbx
___l_sﬁa.fA;xfs':ﬂ
. 1.15

0.67x30x250% (0.8 x

= ( C)+157.5x600c_50=157SX400

. c 1.15

The previou ion i
p 5 equation is a second order equation in ¢, its solution results in
‘

¢=77.96 mm- —— a=0.8 ¢ = 62.37 mm
Fr=6005=4 _ 600779650 _ 400
c 77.96 =215.18 <ﬁ§...o.k(didnotyieldas assumed)

T=A4xf =1575x347.83=547.83 kN~

C, = A, x f! =1575x215.18 = 338.90 kN

c = 0.67xf_ xbxa _0.67x30x250x62.37

Ye 1.50

=208.93 kN

Computing moment at the c.g.

’ t a t t
M =C(—-—)+C e dY+T(=-d'

M, =20893x (350 - 62'37) +338.90x(350-50) + 547.83x (350 —50) = 332.63 kN.m

2

P=C,+C—-T=0

Point 6 (pure axial tension)

The final loading case to be cons
strength of the concrete is completely neglected and the steel is in pure tension.

that the tension force is negative, Py equals

___f’
P =—"2(4 +A.
“ 1‘15( ¥ )

idered in this example is the concentric tension. The
Noting

P = _”1—41‘2—0(1575 +1575) =—1095.7 kN

u

M, =0 because the section is symmetrical

The interaction diagram for the previous column is drawn in the following Figure.

3500 :
,/'\p re compression, point 1
3000 - - -
_ point 2 (compression failure)

2500 L ——
z 209 M ~
~5 1500 \\ V4 i
e ~u balanced
- 1000 (point 3)
&
+] .
- 500 . \\ tension failure

y—— oint 4
0 //— (point 4)
-500 - S -
L pure bending
-1000 ] (point 5)
pure tension . | |
-1500 +— ? t T
0 100 -200 300 400 500 600

Moment (M,), KN.m

Interaction diagram for Example 7.3
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7.3 Sections Subject to Eccentric Compression Forces

To design an eccentric section, one has to know the applied forces, moments and
material properties as shown in the frame below.

Design Problem
Given 1Py, My, foy, 1,

Required :b,t, A, A,

Assume :b,t
Determine : A, A’

Three approaches are available for the design of sections subjected to eccentric
compression force:

1. Interaction diagrams
2. M, approach.
3. Design using curves

A trial section (b, t) is assumed and the reinforcement areas (A;, A}) are determined.
Selecting a trial cross section for members subjected to eccentric forces is not an easy
task. However, when the eccentricity of the member is small, an approximate trial area
can be established by designing the section as if it is subjected to axial loads only. On
the other hand, when the eccentricity of the member is large, the trial area can be
obtained by designing the section as if it is subjected to bending moments only.
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Photo 7.3 Eccentrically loaded section in 2 reinforced concrete tower

7.31 Design Using Interaction Diagrams

i i ial forms.
Interaction diagrams can also be used as design tools when preg;l;:d nl(l‘)l rj;f;?;zd P
is i ign i ion diagrams repres _
izontal axis in the design interaction di ‘ ! o
gheele?;grzz?z?) bending moment M,/fo,b 2, wmle tt}e vertical m?_drig;ezzzzgn e
Z:malized axial load P/, b t. These interaction diagrams are_lvz} i ! for designing
rrilembers subjected to eccentric compression forc_es, Whitl?folrtn ;Te :Slix(lm, Stezl ssion o
i ' d for sections with
tension. However, they were prepare : e desiancr nced 10
i i.ewo= 0.60, 0.80, 1). Thus if the
% of the tension steel (i.e:o= 0.40, 3 s 1)- . . e )
g;znlggrg; ratio of the compression reinforcoment (especially in tension failur )
the use of the interaction diagram is not attainable.
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The interaction diagram is usually divided into four zones as follows (refer to Fig. 7.6)

1- Zone A (e/t<0.05): In this zone, the design of sections is attained by
applying the equation for tied columns and the applied moment is
ignored.

2- Zone B (compression failure P,>Py): The design of sections in this zone is
performed by using the interaction diagrams directly.

3- Zone C (tension failure P,<Py) : The design of sections can be performed
according to the ratio of the compression reinforcement as follows: '

a) If the ratio of the compression steel is equal or greater than 0.4, the
use of interaction diagrams is preferred.

b) If the ratio of the compression steel is smaller than 0.4,
(1)approximate methods (M,)can be used (as explained later) or
(2) eccentric design charts. The use of the approximate methods
(M) should be limited to sections subjected to relatively small
compression forces otherwise it may lead to unsafe designs (as
explained in the next section).

4- Zone D (P /fou b t <0.04): In this zone, the compression force is completely
ignored and the section may be designed as if it is subjected to moment only.

_t—2xcover d-d’

g
' t t A’
:‘e/t-—'0.0S PO
Zone A .' t
Design as a "
tied column : Zone B .A.s .
- ~ use interaction diagram -—
! b
t .
: —
{
H . balanced load
compression
failure
Ny
- zone
&E .............................. - - -
~
R, tension Zone C
Z)lr::re use the interaction diagram if
o>0.4, eccentric design charts, or
0.04 approximate method (Mys
R i AV AV AR approach)
Zone D Mffoub ¢

design as simple bending

Fig. 7.6 Using interaction diagrams and design zones
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The use of the interaction diagrams can be summarized in the following steps

1) Estimaté the cross section dimensions if not given using a trial section
2) Determine the required diagram with the given f), a.and §

if % <02 useuniform steel chrats

if -i— (0.2-0.5) usetopand bottomsteel a =1

if ; >0.5 usetop and bottom steel & = 04-1
3) Calculate the following terms

B _M,
fubt fubt
4) Locate the reinforcement ratio p, and i

5) Calculate area of steel using
=prcu>(10—4’ A:=/1Xbxt or As’wml:luxbxt

ession steel (case of top and bottom steel)

hferpolate if required.

y7

6) Compute the area of the comprt
A =a 4 » ‘

7) Check that the total area of steel is higher than code mimmuim requirement

AL+ A, >0.008bx1 (columns)
A,>0225 f.. If, bxdand (13 A)  (beams)

T

jagram (point a), the minimum area of steel
point falls within the diagram (point b), the
d out normally. However, if the point falls
this indicates that the cross-

If the point falls inside the interaction d
should be used as shown in Fig. 7.7. If the

design of the cross-section should be_ carrie :
outside the boundaries of the interaction diagram (point c),

section dimensions are inadequate and must be increased.

unsafe, change

¢ //cross section

use interaction
diagram

P/fubt

M/, bt

Fig. 7.7 The use of the interaction diagram
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Appendix B contgins interaction diagrams that can be used in design of eccentrically
loaded sections with top and bottom reinforcement. An example of such diagrams is Example 7.4 ' . o
shpwn in Fig. 7.8. Appendix C contains interaction diagrams for sections with uniform Design a reinforced concrete column using interaction diagrams knowing that it is
reinforcement. ‘ subjected to the following straining actions
P,=1400 kN.
M,=295 kN.m
Steel yield stress The material properties are
P — N 2 250 mm
T fou =30 N/mm ]
Y ,
0.65 1 5 s 5 =280 N/mm
: S : ST ;
050 P AL P o ;
B : . 5 - T Q
- 1N\ == £,=240 N/mm? | ©° &
055 1 : Co_mgression steel 1 0=0.40 ® b« s
- \ | ratio . QY
0.50 £ =\ e 1,6=0.70
i : ) = -—ZXcover o)
045 k \ d ¢ 2 - . 83
040 £ .\\ i ] RS Solution '
; N \ . e Step 1: Determine the suitable design interaction diagram
0.35 & : 3 ’ R
L N N
- \ 3 0. e M, 25 _o3
0.30 LN BN t Pxt 1400x0.65
t \J-
: since e/t =0.2—0.5 use a=1.0
0.25 f | R
F Lo Assume cover=40 mm
‘0.20 A ,—“,. "' N\ ."’ LW, X \ §=t—2xcover=650;520X40§0‘9
0.15 S Y NNNINNNN 7] 150 t , - -,
F . / . / P & >\\ \ 200! Using chart in Appendix B with £=0.9, £,=280 N/mm’
o0 :':" A / L > \ 500 Step2: Calculate the non-dimensional ferms
005 £ y / // / y 7 > ----- P, __1400x10° o .oo
: // // / fubt 30x250 x650
» 4 = M, 295 % 10° 3
0 002 004 006 008 01 0412 014 016 018 02 7 b8 30x250 x650° =0.09
- M" cu
S xbxt? Step3: Calculate As, A's ' .
Locating the point in the chart and determining p =2.8, (compression failure )
i rction di - e 0" =0.0084
Fig. 7.8 An example of an interaction diagram with top and bottom m=p £ 107=2.8x30x1
reinforcement(Appendix B) A, =p b t=0.0084 x 250 X650 =1365 mm’ —(4022)
| A'y=a A=1x 1365 = 1365 mm’ —(4422)
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< fy=280 N/mm?
compression  failure 6709, 0710
zone

'Da s applied loads
) p=
-
0287 balanced point

ension failure zone

0.093 MJ/f, bt

Step 4: Check Agpin
The minimum area steel for short columns is 0.008

Ay i = 0.008x b x ¢ = 0.008x 250 x 650 = 1300 mm*
Ag o= As+ A’ =1365 + 1365 = 2730 mm’ >Ag in «eeee-n ok

250 mm
=

Fe e 47522

| 2412

650 mm

ke o[ 2412

Qe o o/ | 4422

1
{
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7.3.2  Design Using Mys Approach

If the eccentricity of the applied compression load is relatively small (above the
balanced point), the tension steel does mot yield and the section lies on the
compression failure zone as shown in Fig. 7.9.a. However, all points lower than the
balanced failure point represent a case in which the section is partially cracked and the
strain in the tension steel is greater than the yield strain as shown in Fig 7.9.b. This is
defined as the tension failure zone. Although it is possible to derive a family of
equations to evaluate the strength of sections subjected to combined bending and axial
force, these equations are tedious to use and cumbersome. Interaction diagrams can be
used to design sections in the tension failure zone. The available interaction diagrams
were prepared for sections having equal amounts of steel on both sides or with a
maximum differerice of 40 percent between area of tension steel and compression
(a=A'J/A~0.4). For sections in the tension failure zone, it is more economical to place
most of the reinforcement in the tension side.

There is analytical method for désigning such type of sections called the M, approach.
The approximation in this method comes from neglecting the compression steel
contribution in the calculation.

compression
Y p
- zone

reinforcement

distribution

+

~L&=6/s |
N

a- Compression failure b-Tension failure

distribution

Fig. 7.9 Strain distributions of sections subjected to eccentric compression
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In the M, approach, the m i ‘

- > oment is taken about tensi .
Eq. ’ ension steel and .
q. 7.10. It should be emphasized that the balanced load hasa Itlo ;:llee\:gmlts 2> gven in

that the type of failure is a tension failure. ed to verify

Referring to Fi
ng to Fig. 7.10, the external moment M, about the tension steel equals to:

M inal P
o s 1 K€ e et evene (7.10)
e =e+ LA cover
| 5 TOOVEr o {(7.11)
or altematively M, can be written as
Mm =M +P E— - COV
TP (=—cover) .. Cevemneeenannns (7.12)

Taking moment- of the i
e internal forc :
external moment M, es about the tension steel and equating it to the

_0.67f,ba
1.50

/,

a f
y @=2) 44, 2o d =d) (7.13)

1.15

)
e

- ._,_?

€s

—

!

i

.i

i

i

!

!

!

i

s
cover T l "“b‘“l

T=A:];»/1.15

Fig. 7.10 Design of sections subjected to tension failure
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Equilibrium of internal forces gives

0.67f.,b :
Ly _08Tfuba _p o g0 Ss (7.14)
115 150 1.15

‘Substituting with M,,; expression in the previous equation gives

4, - aMm _%M;(p{ild—/g—)—) ..................... (1.15)
@=2) f, /115 £, (-a/2d)

To simplify the previous expression, the third term in Eq. 7.15 is neglected

A= —— - 7‘;15 ................................ (7.16)
@-9) 1,15 [y

The first term in the equation can be determined using design curves for section
subjected to pure bending such as (C1-J or R-m).

Equation 7.16 (M,)gives the same-solution as the strain compatibility in case of A'=0. -

' Furthermore, equation 7.16 gives a very close solution if the applied compression

force is relatively small (Py<<P,) and consequently the values ‘of o are usually small.
On the other hand, as the applied compression force increases and gets closer to the
balanced load, the assumption of ignoring the effect of the compression reinforcerpent
in Eq. 7.15 becomes unconservative especially with high ratios of compression steel.

Figure 7.11 presents the ratios of the required area of the steel when using the My,
approach and those when using of strain compatibility method. It is clear that the
calculated area of tension steel using the M,, approach is much less than that
calculated using the strain compatibility method; leading to unconservative results.

The area of the tension steel using the M,, approach can be %2 that of the strain
compatibility method (interaction diagram). On the other hand, the area of the
compression steel obtained using the M, approach can be as high as three times that
obtained using the interaction diagrams. Thus, the use of M, approach should be
limited to sections with relatively small compression forces in which the values of a
are usually very small. :
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g' N us
It 18 Cleal fIOIIl Il ; 1]. that devlatlon between the area Of Steel obtalned uslng lM
appl OaCh and the lnteracthH dlagrams mncreases When thC load leVCI mcreases

4.0 ; : ;
£,=360 N/mm?®

3.5 4+ M/, b2 =010

3 0 - &:22‘-)9mm t=700 mm :ompres#ion steqf ,
— * /
2 ~
g 25 T
£ 20 —
< —
2 1.5 — — i
% (0 . tehsion stepl
£ 05 —
~

0.0

0.00 0.02 004 006 008 010 012 014 0.16 0.18
Load level (P/f., b 1)

-I lg; ;-11 COﬂlpal 1son betw een area Of Steel C l lll pp
N g
aic ated usin the luus a loaCh alld

Photo 7.4 Bridge column during construction
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Example 7.5 _
Design the concrete section shown in figure below if it is subjected to an uitimate
compression force of 220 kN and ultimate bending moment of 150 kN.m

2 —
fow =30 N/mm’ £, =360 N/mm a=0.2
250 mm
o F—
2 *
:
p As
Solution

Step 1: Assume failure condition

Since we do not have the area of steel we have to assume the failure condition.
Assume that P,<P, ....tension failure (the bending moment is relatively high)

e =M" =—1—52=0.682m

P, 220

Step 2: Determine area of steel

Using the approximate method (tension failure), ca
steel M. Assume that the concrete cover is 40 mm

lculate the moment about tension

d =t ~cover = 500—40 =460 mm

M, =M,+P, (—?——cover)=150+220x ﬂ9—40 x——l—=196.2 kN.m
2 2 1000

e, =e +%— cover=o.682+9‘§’—° ~0.04=0.892 m

Another method to calculate M.s

M, =P, xe, =220x0.982=196.2 kN .m

. 6
R M, _ 196.2 x 10

s o T —=0.1236
f.bd> 30x250 x 460
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Ry

R=0.1236

®=0.16

Using simple bending curves with compression steel in Appendix A, with (0¢=0.2) and
d’/d = 0.1, it can be determined that:

o0 =0.16
7. P, 30 220 x 1000
A =0l bxd- =0.16 —— 250 x 460-—~’<—=8305 2
7, 7,17, 360 3607115 o0 e
A =aa)—f°—“bxd=O.2x0.163%%x250x460=306.67mm2
y

Note: The strain compatibility method (calculations not shown) gives
= 2 . L
A=841 mm® and A’=310.5 mm?, Which is very close to the approximate solution

because the applied load is small and far from the balanced load and the compression

steel ratio o is small.

Step 3: Verify failure condition

690 d= 690
690 + f) 690 + 360

460 =302.285 mm

C, =

Applying the equilibrium equation

p _O67xf, b (08¢) Ax[, 4x],
ub — -
1.5 : 1.15 1.15

P, = 0.67x30% 250 (0.8x302.285) + 306x360 830x360
1.5 1.15 1.15

Since P,<P,;, This it is 4 tension failure mode as assumed.

=645 kN > P,
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7.3.3 Design Curves For Eccentric Sections

As mentioned ‘before, M,, approach for designing eccentric compression sections
should be limited to sections subjected to tension failure and with relatively small
compression force. This section presents new design charts prepared based on the
strain compatibility prmmple and the equilibrium of forces and can be used to

‘accurately design sections subjected to tension fallure whatever the value of the

compression force.

The following procedure is adopted to develop the charts. The neutral axis depth is
first assumed and the corresponding strain in the steel is calculated for a concrete
compressive strain of 0.003. To achieve equilibrium, a trial and adjustment procedure
is performed. If the summation of the tension and compression forces is not equal to
the desired load level, another value for the neutral axis depth is assumed and iteration
is performed. This procedure is continued until the equilibrium is achieved.

Consider the design interaction diagram shown in Fig. 7.12.a which were prepared for
certain value of f, and a, {. Each curve in the chart is equivalent to cutting the design
interaction diagrams by a horizontal line at a certain load level (Ry=P/fy b 0). ThlS
gives a group of points with different values of the normalized moment (My/fe bt?)
and the reinforcement index p. The normalized moment values were plotted on the
vertical axis and the corresponding values of @ are plotted on the horizontal axis and

are calculated using the following relation.

w=pxf,x10™

These charts fill the gap that was not covered by the interaction diagram (from a=0 to
0=0.6).

£=360 Nimm? M
o=0.4

P/f,bt

with  some}
ladjustments

load level=Ry=0.1

M/fo b€ : e
Fig. 7.12.a Development of the design charts

Appendix D contains design charts that can be used in the design of eccentrically
loaded sections. An example of such diagrams is shown in Fig. 7.12.b.
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026 I 1 I

| | d

3 £,=360 N/mm’ Load level o =06
L Cb;)g-Z P/ bt

0.22 ,/ ,/

/ / 0%
S [ /
g i 1
§ 0.18 LY. I -f A's // //04

( t s
3 / / L~ 0.8 Actual Compression
- As steel ratio (o)

0.14 __H— é o u/
| Enter with M./ b £ / // .
[ | //'/ 0.1 P
I < ) R, =—*

0.10 e at0 Jubxt

M4, =wx &b xt

5 Determine @ J ¥y
i Calculate A, A:' =a A

0.06 — [ a— I

0 004 008 012 016 02 024 028 0.32 036 0.4

@
Fig. 7.12.b Eccentric design curve for load level of 0.2 (Appendix D)

The design steps for section subjected to eccentric forces in the tension failure zone
using the proposed charts can be summarized in the following steps

Design steps for using eccentric design charts

1. Determine the appropriate design curves by calculating the load level R
P

R, =—*~
f.bt
P, is positive for compression force and negative for tension force
2. Enter the chart with the applied normalized moment capacity (M,/f., b 1)
and choose the appropriate value for o
3. Locate the steel index value o (interpolate if necessary)
4. Calculate 4, and 4/ from

s

As=co%-bt and Al =a 4

>
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Example 7.6

e . . ‘on
Design a reinforced concrete section if it is subjected to an eccentric COmpress

force using

A- Interaction Diagram
B-Approximate method (Mys apprc?ach)
C-Design curves for eccentric sections

Data B
M,=250 kN.m P,=700 kN =250 mm t=700 mm
£, =25 N/mm’ £,=360 N/mm’  £=0.9 a=0.6
Solution

A-Interaction Diagram
Using interaction diagram for £,=360 N/mm? , 0=0.6, and £{=0.9

The point is below the balanced point, thus it is a tension failure

3
B _ T00x10° _..¢

u

fubt 25x250 x700

s
M, 250x10° e
fu b 2 25x%250 x700

Locating thé point in the chart and determining p =1.30
p=p £, 107 =1.3x25 x 10™ =0:00325

A, =p b t=0.00325 x 250 x 700 =570 mm’

A'y=a Ag= 0.6 x 570 = 341 mm’

balanced point=0.2

0.16 //71/ ténsion failure zone
2
0.082 M/ffeu bt
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it

B- Approximate Method (M)
Since it is a tension failure mode the approximate method (M, )can used

cover=——1~§ -1-09
2 2

Xt x700 =35 mm

d =700- 35 =665 mm
250 0.7

e, =e+£—cover=——+———0.035=0.672 m
2 700 2

M, =P, xe =700x0.672 = 470.5 kN.m

6
Ri=—Me___ 470510 017
fubd® 25x250 x 665
L35 2005
d 655

Using simple bending curves (R1-w) in Appendix A, with compression steel (a=0.6)

and d'/d=0.05 ——@ =0.21

A, =w£bxd—i=0‘21£250x565_M=lggmmz
5 51y, 360 360/1.15
/£

A =awbhbxd=06x 0.21£X250X 665 =1455 mm?
5 360
It can be concluded from this example that the approximate method did not give a
valid reinforcement area of steel solution as the compression reinforcement is greater
than the tension reinforcement, and the area of the tension steel (188 mm®) is less than
obtained from the interaction diagrams (570 mm®). The main reason for this big
difference is that R, (0.17) is very close to the balanced load leve] (0.20)

C-Using Design curves for eccentric sections

3
R=—Te o _T0xI0 ¢
Ju b1 25%250 x700
6
M, — 250x10 - 0.082

fu b2 25%250 % 700°

' Obtained from the interaction diagram (refer to the figure in the previous page)

M ; =360 N/mm®
M, [ __b?(\&ﬁo.z I
f b tZ @ f cu k
“ . 6 o=0.6
o=0.
0.082
0.082
®
58 4] ®=0.040
©=0.0

2 —
Using charts in Appendix D with fy=360 N{mm. , (0=0.6) .
For load level R,=0.1 and R,=0.2, ® can be obtained as follows:
®RyH=0.1— 0.058 and ORp=02~ 0.040

Using interpolation ®gp=0.16= 0.0472
Jo = 225250 x 700 = 574 cm’
A, =o =2 bxt=0.047 360 .
¥

A'y= o A= 0.6 x 574 = 344 cm’

I 1 T m I 1g. ;.13 ﬂlat the area Of Steel calculated fIOIIl the Cha.I ts 1S CXaCﬂy as
t 15 cleal ro

tha IIl[EIﬂ:tan dlag[a]ns and the appx:leatE I[lithod (MUS) gl €S unconser ative

tension area of steel.
1600

Approximate
1400 +— & Interaction
1 Load level cunes

Area of steel (mm

Tension Steel Compression steel

i i i and
ig. 7.13 Comparison between the approximate method, interaction diagram
e b Eccentric load curves in example 7.6
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7.4 Sections Subjected to Eccentric Tension Forces

Sections: subjected to tension force are some times encountered in frames, and tension
members. The design of these types of members depends on the amount of the
eccentricity. The ECP-203 states that concrete strength must be completely ignored if
the applied tension force is inside the cross section. In this case the tension force is
carried solely by the reinforcement as shown in Fig. 7.14.a. However, if the tension

force, T, lies outside the cross-section, part of the section will be subjected to
compression as shown in Fig, 7.14.b.

compression
zone
. reinforcement Y
. P
ke ‘. Tu
e }
ra .
-7 A X
. -/ e
strain ~ N €s
\\It\J istribution

\< strain
%V  distribution
N

a- Small eccentric tension b- Big eccentric tension

"d“d eZd—d,
2 2

See section 7.4.1

See section 7.4.2 -

Fig. 7.14 Sections subjected to eccentric tension force.
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7.4.1 Sections Subject to Small Eccentric Tension Forces

In members subjected to small eccentric force, the whole section is §u}9jected to tenlgllg
strain and the concrete strength is completely ignored. _The eccentricity of the applie
tension force and moment must be within the cross section, or

e < ;d' eeeeessoaseFemas e saessasaase e senesasrans 717

i i i ion force with no concrete
Only the steel reinforcement act against the applied tension ;
conzribution as shown in Fig. 7.15. The developed force in egch layer of steel is
calculated according to its distance from the applied load and is given by

Calculate the developed tension forces T and T; (T; is always > T). To calculate 77,

take moment of forces about point o in Fig. 7.15 as follows:

L U (7.20)
L=l g
Y L R (7.21)
Calculate A, 4,2
A, = T e emnnninenereseee (7.22)
f, 1115
I (7.23)
*f, 15
Asz “J‘d' TFA;}_ﬂ,/].I.s
o0& -
! dmd
2 €2
°l 3 R AR D |
i :
_——-——-————>Tll
A €s1
sl )
2 0 @ -— ——
Ti=Ag f,/1.15
f— :
b

Fig. 7.15 Equilibrium of a section subjected to a small eccentric tension force
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step 2 Calculd‘re the developed tension force

Example 7.7 v .
Calculate the reinforcement required for a concrete section of (250x600 mm), if it is
subjec;ed to M,=30 kN.m and T,= 300 kN. Knowing that £,=400 N/mm® and Je=30
N/mm’

esZ =300><0‘_35‘=210kN
d—d' 0.5 .

Solution 1,=T,~T, =300-210=90 kN

Step 1: Calculate ey and e.,

Step 3: Calcu|a1'e Asy, Asz

M 30

=——=01m
I, 300

Assume that the distance from the centerline of steel to concrete is 50 mm

u

e=

gD 2101000 (o3 95 m2  (30016)
# £, /115 400/1.15

d'=50mm
d=600-50 = 550 mm
d-d'=550-50=500 mm=0.5 m

A = T2 - 90 x 1000 = 25875 mm? (2@16)
52 f’,/1.15 400/1.15

since e < d _zd < % <0.25, (small eccentric tension) Ez_s‘/_ga.zsox 600 =462 mm”
400

=462mm* <A, -0k

Since the member is small eccentric section, concrete strength is completely neglected Ay iy =smaller of 603 = 783 mm®
. . ) . = mm
and all the tension force is resisted by the reinforcement. 1.3x
e, = d_d +e=2201-035m
2 2 .
—LSO mm 2016
T2=90 kN
- —— ]
Ag | g
250 g =
Bl g g
5 § S <SR (U S A T
T,=300 kN - 1100 & P16
Agy €5=150 mm -
oo o —1 : Final design
| | T,=210 kN
250 mm s
301 302




7.4.2 Sections Subjected to Big Eccentric Tension Forces

;I'Vglli hca;;z 1:cus_utal.ly‘four.1d in reinforced concrete tanks, tunnels and aqueducts, in
ereating tenSi(c):;aln ric thtfmsxon force lies outside the cross section “big eccentricity”,
contribaten to theogtr € nhcar-s1de anq compr‘ession on the far side. Thus, the concrete
interaction diagma eﬁgt of the‘ section. This part is represented by the part E-F in the
the internt g; shown in F%g 7.3. However, since this part is not represented in

ction diagram as explained before, the same approximate method (M,) used

in sections with compression forces i i i
1 ¢ is used here with minor i i
distance e, shown in Fig. 7.16 is given by. : modifications The

-t
e, =e —3 FCOVEF ittt reens (7.24)
where e = M,
The moment about the tension steel M, equals
M, =T,e =M, T (- | '
w =T,e, =M, -T, (2 cover) e (7.25)

The problem can be solved using curves with double reiﬁforcement R1-0)

Compute M,
d 2

cu

L . . |
ocate @ from curves using the desired compression steel ratio o and calculate 4,

As = fo_b d + eeMeriesusnesetcaattsetincarensasnsanne ;.26
fy 1 f / - . I ( )
A: = a)f_“ b d HEeeetecatetcaeritattercecsarrnnansetansaiana ;.2;
f . . ( )
t d

B I N cg

R B S _
i

Al

o0 o

}-.‘;b_..l T=4, £,/1.15

i
i ©s
éT, L -

Fig. 7.16 Design of sections subjected to big eccentric tension force
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Example 7.8 ‘
Design a tension member (250 x 650 mm) if it is subjected to eccentric axial tension
force of 200 kN as shown in figure.

£,=400 N/mm’
£,=35 N/mm®

concrete member
250 x 650 °

0.65 m

200 kN

Solution H

T,=200 KN (tension) 0.9m

e=0.9m (outside the cross section — big eccentric tension)

M, =0.9 x 200 =180 kN.m ' '

Assume concrete cover of 50 mm — d=650-50=550 mm —d'/d =50/600=0.10

e, = e—%+c0vei = 0.9—0'—265+0.05 =0.625m

M, =T,e =200x0.625=125kN.m .

6
M, 125x10° e

Compute ——2—=—t——— "=
foubd® 35x250x600

From doubly reinforced tables of curves with 0=0.4 d'/d=0.10, and R=0.0397

From the curves — ©=0.048

A, =wf-ib d +——]1“——=0.048—:3¥5—x250x600 +w=1205 mm® — (4®20)
f f, /115 400 ) 400/1.15 .
Al =a a)fibd =0.4x0.048%x250x600=252 mm’® — (2016)

¥

650 mm - |
!

250 mm

4920

2®16

23 12
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7.5 T-Sections Subjected To Eccentric Forces

;I‘t;iiigl:;s sll;zje.cted_ t(: eccentric forces are often encountered in the girders of framed
. sign interaction diagrams are available in desi

. ! ‘ gn format only for
lr;c;t::;;geular sectlogs. Preparations of such diagrams for T-section would be unreglistic
pocause Elain}l;e varlagles are encountered such as B/b and t/t ratios. The approximate

used to transform the T- shaped secti j
iy . shaped sections to members subjected to
be?cc)irl:ginoglyt}xsmg M,s approach. The design steps are the same as those explained
s (ot Sec ion 7.3, hovyever, the designer has to check the location of the neutral
.8 ¢), and determine the area of steel using the (C1-J) as follows.

last, As=-———M"‘ + A
A = f,Jd f,/1115
ST e 7.
a>t, 4 M, +_ L v

TS5 -1, /2) f, 1115

where t; is the slab thickness and P, i i i
: is the applied axial fi jve i
C(;lmpresszon and positive in case of t;nsion) PP oree (negative in case of
where e; is measured from the c.g. of the T-secti in Fi
& ] .g. -section as sh
determined from the following relations: ' o i Fe AT and

M =P Xe, ettt (7.29a)
e, =e +(d ~z) (Compression)..............cceeurvrrenennn....(7.29b)
e, =¢—(d —2z) (tenSiON) ...ccovererevrvreceeeeeeeaeenrnn. (7.29¢)

P !
! : - 1
i I
i T i
L 7} L —11.
g ]ee B _fi_fee
o B A _ N _
i & i
i § i )
i JAs o i JAs < o
[ lé‘
i
I w1
P, | ©
. h g
e =e —
-=etld-2) | e, =e~(d2)

a-Eccentric compression b-Eccentric tensio
- n

Fig. 7.17 Definition of e, in T-sections
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Example 7.9

Design the T-section shown in figure if it is subjected to the following straining
actions. '

P, =600 kN (compression)
M, =450kN.m

The material properties are

£, =25N/mm’
f, =240 N/mm®

} 1800 mm A{
M, ”
| T
g 100 mm
ot -3
b‘ 3
e o of AF?
i
250 mm

Solution
Since the member is T-section, we can not use interaction diagrams and the

approximate method should be used
d = 700- 50 =650 mm

e=£‘i=ﬁ—5—9=0.75 m

P, 600

u

100 x 1800 x 50 + 608 x 250 % (600/2 +100)
z= =209.1 mm
100x 1800 + 600x 250

e, =e+(d -2)=0.75+(0.65-0209)=1.19 m

M, =R, xe, =600x1.19=714.5kN m

d=c1 | L
fu B

3 N
650=C1"M C1=5.15
25%x1800

Using the (C1-J), determine c/d ratio
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-.-—<£) <1 =0125
d d min d min

(o : J
5.15 b -
¥ Ci ]
3
L? | ,|1=0-826
0.125
c=0.125 x 650=81.25 mm
a=0.8 ¢=65mm
since a< ts(100 mm), get J from the curve using ¢/d=0.125
J=0.826
6
M, + b _ 7145x10°  600x1000 = 2670 mm

A
¢ f Jd f, /115 240x0.826x650 240/1.15

As,chosen =6P25

3412 i
e~ v 1

100 mm

. o lag12

700 mm

ety o925

250 mm

2
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Example 7.10

For the cross section shown in the figure below calculate the moment capacxty from
{ the first principles. The material properties are f;,=25 N/mm’ and £,=240 N/mm?

P, =600 kN (compressmn)

1800 mm
— |

100 mm

700 mm

o o o] AF2014 mm?

P

250 mm

Solution

Assufne that a<t,, apply the equilibrium equation, and assume that y=1.5 and ys~=1.15

a  067f
B-1800mm . ‘ 15 .
e . o 671, Ba
T T T =2 e 20
N
100 ._M_"._.__f“_...._._._.__.__....__
700 i
i >
i 4
i 2014 mm’
o e T=A, {115
250

_ .67fcuxBxab_ A, f,

P = :
| ° 15 1.15

14x 24
| 6001000 = 67X 25x1800xa _ 2014x240

1.5 1.15

2=50.67 mm < t,, our assumption is correct
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The axial force P, is located at a distance e from the plastic centroid. For simplicity it

shall be assumed that the plastic centroid coincides with the c.g.

, 1001800 50 +600x 250 (600/2+100) _ 0,
100 x 1800 + 600 x 250 =Tt mm

The moment capacity of the section about the c.g equals

0.67 f Ba a +ASXf,

a
M, =C(z-=)+Tx(d-z)= 7=y Y e (d —
) TTxd-2) s P s <9
0.67x 251800 50.67 50.6
M, = = (209.1- 27)+20114;‘5240x(650-209.1)=372.8k1v.m

Photo 7.5 Reinforced concrete columns during construction
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Example 7.11

- Design the T-section shown in figure if it is subjected to the following straining

actions
P,=150 kN (Tension) M,=850 kN.m
The material properties are
£,=30 N/mm’ £,=400 N/mm’ g
600 mm
- =
e | 1
E T
o 100 mm
Tyy
@©
o o] A=
P
250 mm
Solution

Since the section is T-section and subjected to tension force, transformation using the
approximate method must be made

d =850 - 50 =800 mm

e= M, =§—5£= 5.667m
P, 150

u

calculate the c.g of the section

100 x 600 x 50 +750x120x(750/2 +100)
z= =305 mm
100x 600 +750%120
e, =e—(d-2z)=5.667-(08-0.305)=5.172m

d=800 mm
o
o
z=305

d-z
e=5.67Tm

As

Cs
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£=100 v 600 mm i3
- ] - b= .
: <] C.= 0.67f, Bi,
¢ _ a B s
400 { 3| parttobe _§
e | neglected : %
=)
8
*-0-0
T=A, £/1.15
250

M, =P, xe, =150x5.172= 775.75 kiN.m

d=Cl My

fu B

775.75%x10¢ '
800 = Cl,|—~" =
\ 30x600 — C1=3.85

Using the (C1-J), determine c/d ratio —»5 =0.21

¢=0.21 x 800=168 mm
a=0.8 x 168 = 1344 mm .
Sincg a(134.4)> (100 mm), neglect the part in the web and calculate 4, using

- M, ., A _ 775.75x10° 150x1000
S, /115 d —1,/2)" f,/1.15  400/1.15x(800~100/2) = 400/1.15

s

Choose 6® 28 (3695 mm?) L 600mm
3412

IR

e dl2g12

850 mm

3 olegiz

ety [or2s

250 mm

=3404mm> .
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7.6 Analysis of Irregular Sections

7.6.1 General

Reinforced concrete sections can take any shape. Irregular cross-sections are usually
encountered in shear walls where irregularity comes from either the shape of the
cross-section or the distribution of the reinforcement. For these sections, the

~ development of the interaction diagrams follows the previously mentioned procedure.

Referring to Fig. 7.18, any point falling inside the interaction diagram is considered
safe (point A), while any point falling outside the diagram is considered unsafe (point

B).

The adequacy of the section is satisfied by ensuring that for the same axial load, the
calculated moment capacity is greater than the applied moment. Thus comparing
points C & F indicates that point C is considered safe because P,=P, and M,>M,

3

9 Point B (unsafe)

<

'5 Point A (safe) . ‘$“

Actual curve
Point C (safe) Point B
P,=P, -ommmmmm e es - Point ¥
M, 7 Moment

Fig. 7.18 Analysis of irregular sections
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7.6.2 Strength of Shear Walls

Shear walls are usually encountered in tall buildings to resist lateral loads initiated by
wind or earthquake. The analysis of these walls should be based on strain
compatibility and equilibrium of forces as shown in Fig. 7.19. The calculation can be
carried out in tabulated form or using spreadsheet like EXCEL. The design procedure
can be summarized in the following steps:

1.The shape of the cross-section is usually chosen to fit the architectural
requirements of the structure.

2.The structural engineer usually assumes the concrete dimensions and the
reinforcement distribution. Some codes of practice give recommendations
regarding these issues.

3.The neutral axis distance is assumed and the internal forces are evaluated. The
stress in each steel bar is given by

£=600xE2 <Lr (7.30)
[4 Vs

The force in each layer of steel equals the stress multiplied by its area

F, =f,xA, (positive if compression)

4.The assumption of equivalent stress block is used, and the distance of the
compression block is evaluated as (@=0.8 ¢). The concrete force is divided into
areas A4,; then multiplied by the stress (0.67 f../y.)-

F, = 0.67xf, 4
e

5.The section nominal ultimate axial capacity P, is the sum of concrete and steel
contributions as follows: '

L e sses s sssssenns (7.32)

i=nc i=ns

Po= Y Fy Y Fy coeeeeneeesseseemsesenenias s sisasnanas (7.33)
i=l i=]

This procedure is repeated until the condition of P,=P,, is satisfied.

6. The nominal moment capacity M, is computed by summing the moments of all

the internal forces from its c.g to the plastic centroid of the section (X,). Thus
the moment capacity equals:

i=nc i=ns

M, =Z=]F;,. Xy, +ZF;,. (X, =) e (7.34)
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7.The section will be considered safe if the calculated axial gapaCity P, equ$8
the applied force P, (within 5%) and calculated moment is greater than the

applied:
P, =P, and M, 2 M, coemssrmsseense: R (7.35)

8.If the calculated force is less than applied force, increase the neutral axis
distance to increase the axial load capacity.

9.1f Pn=Pu but the calculated moment is less than the applied moment (Mn<Mu)
increase either section dimension or reinforcement or both

° [}
* o ® [
¢ o
¢ o
+ Pboc
S P
\:;\ 0.003
Fs9 F s8 F. 57 FSS FsS Fs4:
i a

|

Lyl

g

Fcz Fcl

Fig. 7.19 Forces and strains in the shear wall at ultimate
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Example 7.12
The shear wall shown in figure is subjected to the following straining actions

P,=12600 kN .
M,=7520 kN.m

The material ?roperties are
=30 N/mm

£,=400 N/mm’

Determine the adequacy (Safety) of the cross section

2100 mm
300 ', 300 ‘ 350
o . 1 . .
: wig Pl
- U‘. L L]
' S D :
e o . O t . O . .
: <
« . . | . . o o h]
[ - o~
L) L] I * * i
. . ) O - -\ . .
e ol B Lo l e (<] o o
o o o~ 3] (] « (] L]
N 9 e
g o BB
SIS S

Solution
Step 1: Find the location of fhe N.A. _
Since the location of the neutral axis is uniknown, a ‘mal and adjustment procedure is
carried out. As a first trial, assume that the neutral axis distance ¢=700 mm
*.a=0.8¢ =0.80x700 = 560mm -
S'l-ep 1.1 Forces and moments in steel
Since the section is symmetrical, the c.g. and the plastic centroid coincides.
Xp=t/2=1050 mm ' ‘
" Calculate the applied eccentricity e,
M 7520

u

e, =—%="222205968 m
P, 12600

Calculate the strength reduction facf_ors Yc and y;.

. =1_5x(%—0'53968)=1.45<1.5 ...... y.=15

Y —115 (Z 05968) L11<1.15...... 7, =1.15
- The stress at each bar at distance d; from the compressmn face equals -
700-d,;
= d _ 00 x ———+F <3478N/mm
£ = 600X == c 6 700 -1.15

The force in each layer of steel equals the stress multiplied by its area by number of
bars in the layer (positive in compression)
The area of one bar ® 19 Ag is 283. 53 mm®

Fy=fax(m XA,,)IOOO (kN)

12019

1750 mm

ee 0 e @ o0 00 0 &
-

2019
P 2019 e e

0.003

Fs Fa Fs Fss Fu
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The following table summarizes the results

Layer | No of d; S Fg
bars, n;] mm N/mm? kN
1 12 50| 347.8 11834
2 12 300] 3429 1166.5
3 600|  85.7 486
1 900 -171.4 972
5 1200] -347.8 1972
6 2 1500] -347.8 972
7 12 1800| -347.8]  -11834
8 12 2050] -347.8]  -1183.4
Total P.=-459.99

Step 1.2: Force and moment in concrete
2= 0.8 x ¢ =560 mm

Since a > flange thickness, divide the compression zone into two zones, the flange and
the web. The force developed in each layer equals

S0 !
F = 67><fc,,Ad 1 =067x30Ad 1 001344,
7. 1000 1.5 1000

t, =560-350=210mm

The following table summarizes the calculations

Noi{ 4 b; Aci Foi

mm | mm mm’ kN
1 | 350 1750{ 612500 8207.5
2 | 210, 400{ 84000 1125.6
Total P:=8333.1

P, =) F,+Y F,=P +P =9333.1-459.99 = 8873.11kN
i=1

i=1

Since P, (8873.11 kN) is less than the applied load P, (12600 kN), thus location of the
N.A. must be adjusted.

Note: The corresponding M,=12106 kN.m (calculations not shown)

Step 2: Adjust ¢, and Recalculate P,

Since the calculated normal force is less than the applied, try increas.ing .the neutral
axis distance c. After several trials, it can be found that the neutral axis distance that
gives the axial force of 12600 kN is 1303 mm

¢ =1303 mm

Step 2.1: Forces and moments in steel

The stress in each bar f; equals

1303 -4, 2
=600 ——L-<347.8 N /mm
fa=6 1303

1
= f. X A)—— (kN
Fsi .fsl X(nl X 51)1000 ( )

The bending of each bar about the c.g equals

1
kN.m
1000 ( )

M, =F (Lz—d'.)x

The following table summarizes the results
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Tayer [Noof | Ax | & 2 F. | v2d; M,
bars, n; mm® mm N/mm? kN mm kN.m
1 12 | 28353 | 50 | 347.8 1183.4) 1000 1183.4
2 12 | 28353 | 300 | 347.8]  11834| 750 887.6
3 2 |283s3| 600 | 3237 183.6] 450 82.6
4 2 |28353| 900 | 1856 105.2] 150 15.8
5 2 |28353| 1200 | 474 26.9| -150 4.0
6 2 | 28353 | 1500 | -90.7 51.4| -450 23.1
7 12 | 28353 | 1800 | -228.9]  -778.6| -750 584.0
8 12 | 28353 | 2050 | -344.0| -1170.3| -1000 11703
Total , P.=682.2 39428
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Step 2.2: Forces and Moments in Concrete

a=0.8xc=1042,4 mmn

t, =1042.4-350 = 692.4 mm

The force developed in each layer equals

0.67x :
i fet, 101@0= 0.617.: 24, 10100=0'0134A“'
M, =F,;xy |
No!| # b | Ay Fy yi My
mm { mm | mm’ kN - . mm- kN-m -
1| 350]1750|612500]  8207.5] 875 7181.56
2 |692.4] 400[276960]  3711.26] 353.8 1313.05
Total P=11918.8| 8494.61

P, =F,+Y F, =P, +P, =682.2+11918.8=12600kN
i=1

i=l

M, =Y M/ +> M, =3942.8+8494.6 =124374kN.m

i=l i=1

Step 3: Conclusion

Since P,=P,and M (12437)> M (7520) , the section is considered safe !
16000
14000 P.@o=1500 —> A 14375
12000 12600' s e \* e Simplified
él 10000 — — al I R g;:igrm:;ion
g 800 » . . 5 P.@c=70 mm—bl ?8873 1
6000 ~*] :
. 4000 +——— =+ i
2000 {—2= R
ok R | 0] 1237 RE
0 2000 4000 6000 8006 10000 12000 14000 Mu (kNm)

Simplified interaction diagram for shear wall presented in example 7.12

! Calculation for ¢=1500 was not shown
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7.7 Interaction Diagrams For Circulaf Columns

The same procedure used in developing the capacity of rectangular columns is used
for circular ones. However, the ECP-203 does not permit the use of the equivalent
stress block in developing circular section capacity. The depth of the neutral axis is
assumed and the resulting compression zone is a segment of a circle. Since the stress-
strain curve is parabolic and the width of the cross section “varies along the depth of
the neutral axis, an integration procedure must be followed. In order to calculate the
compressive force resisted by the concrete, the compressed zone is divided to n
segments with height ; and width w; as shown in Fig. 7.20. The width of the segment

" w;is given by

w, =2\l x(2r-h)

i

Where #; is the height of the segment from the top

The corresponding concrete force at the center of gravity of each segment is evaluated
as follows.

C =ZW; 3707 VRN (7.37)
where f}; is the concrete stress at the c.g of the segment.
" Iy ‘ 0003 L
T P‘-l - ’ 76
Mu % As’mu,] ] J¢——l CC 1
<t
..... e N
T3
T2'
T1
Concrete section strain stresses concrete
anH forces segment

. Fig. 7.20 Internal forces and strains distribution in circular columns

The moment of this segment is determined by multiplying the force by the distance to
1o column center of gravity y;.

L=l ’ '
M, =Zw‘.xt‘.xfa.xyi' ................ e PR (7.38)
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Summing all the forces and the moments of all segments gives the total concrete force

and moments about the column center of gravity. The number of bars in the colump

affects the shape of the interaction diagram. This is because the position of both
compression and tension steel varies accordin

. g to bar arrangement with column height
giving different strain distribution. Therefore interaction diagrams for circular sectiopg
are computed by assuming a continuous ring. Placing 8 bars in the column or more is
sufficient to validate this assumption. The interaction diagram is normalized tq

concrete column radius rather than the total area of the column (nr’) as follows

M
“— and £
2 3
o r cu r

The reinforcement area is obtained by
reinforcement ratio as follows

multiplying the column area with the

As,mml lal (ﬂ- rz)

Appendix E contains interaction diagrams for circular column based on the above
procedure. Example of the developed interaction diagrams is given in Fig. 7.21.
Similarly, interaction diagrams for hollow circular sections can be prepared as shown

in Appendix F. The reinforcement area in this case is obtained by multiplying the net
column area with the reinforcement ratio as follows:

Ay =H A, oo (7.39)
A =z (r2 -—r,.z)

Where r and #; are the external and internal radius respectively.
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0.5 {Determine p |54l — ] "3 ) 1 1 17 !
04 ‘_' '.}"HZ'E' 7 "’:[:‘ /‘§ 7-‘ / -'/ . l__/--- ] 3.0
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XA AW AT AV 1/
4 ] 2 AA ’
4 / [/
040 050 060 070 080 090 1.00
M"
r wl
§=7
p=p f,x10"
N A ,
r T As.tolal =UEY
— 33
r—L As totat L:?

Fig. 7.21 Interaction diagrams for circular sections (appendix E)
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Example 7.13
Design a circular column to résist the following straining actions:

P,=5600 kN
M,=830 kN.m

The material properties are as follows:

Jou =40 N/mm?
£, =360 N/mm®

800 mm

.Solution

Since the section is circular and is subjected to eccentric force, use interaction
diagrams for circular sections.

r= b - 800 = 400 mm
2 2
Calculate the following terms
F, - 5600><10(2)0 0875
fur® 40%400 .
6
M, _830x10° .

fur  40x400°

Assuming 40 mm concrete cover, r'=400-40=360 mm

Using the interaction diagram with £=0.9, /=360 N/mm’
p=2.5

323

si= px f x10% = 2.5x40x10™ = 0.010 >Hmiy (0:008).....0.k
4, = plrr?)=0010x7x400" =5026 mm® (20®18, 5089mm’)
s Jdotal Ny

) . . - ) . 2
Assume that we shall use 8¢10 stirrups per meter and A, for ¢ 10mm =78.5 mm
* The volume of the stirrups in 1 meter equals

V, =nx A, x(zxD,) =8x78.5x (mx720) = 1420502 mm’

2025 7 200% x1000 =1256637 mm’ <V, ..ok

T x—

'Vs.min - 100

8 ¢ 10 /m'’
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Example 7.14
Design a spirally reinforced column that is subjected to a normal force of 1100 kN ang
bending moment of 180 kN (factored values). The material properties are as follows:

Sou =30 N/mm?
£, =400 N/mm?
Fp = 240 N/mm?

Solution

Stepl: Estimate cross section diameter

Interaction diagrams for circular sections is used to calculate the capacity of the spiral
column by neglecting the contribution of the spiral under eccentric loading.. The spiral
reinforcement will be added after using the interaction diagram for confinement only.

Since the column dimension is not given, assume a middle point on the interaction
diagram such as P, /f,, ¥*=0.9

1100x1000 _

0.9
30xr?

r=201.8 mm, try r=250 mm and D=500mm
Step2: Calculate the following terms
P, 1100x1000

. >~ = 0.5866
Wt 30x250
6
M, _180x10° _ 0.384

furt 30x250°

Assume concrete cover of 30 mm, r'=250-30=220 mm

Using the interaction diagram twice with £=0.9 and £=0.8
Pe=09=2.3, and pr_o5=2.8

Pe=0.35=2.4

KE=pxf,x10™ =24%30x10™ = 0.0072 <Hmin(0.014, or 0.012 4))

¢ 8/30 mm

0.01x 7 x250* =1963 mm*
smin = 0.012x 7 x 2200 =1824 mm®

Choose 12 @ 16 (2400 mm?)
Step 3: Spiral design

The minimum volume of stirrup for spiral column is used to calculate the required

pitch p.

v

sp.min

Tor (4 - 4y =036%x= (xx250 — 7 x220%) =1993 mm?
=036 x L2 (4, - 4,) =036 (

yp

Using 8mm spiral with Ay,=50 mm’

7 A, Dy x50x440
P T T T 1993

B

=34.67 mm

Use ¢ 8 /30 mm
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Example 7.15

Design a hollow circular core shown below to resist the following straining actions:

P, = 30000 KN ’
M, = 19000 KN.m

The material properties are as follows: |

Jea=30N /mm’.
Jy =360 N /mm’.

Solution:
Step No.1: Calculate the following terms: }
Since the core is hollow circular section and is subjected to eccentric force, use

interaction diagrams for hollow circular sections.

It

4. =] (1500) ~(1100)" |=3.27x10° mm* = 3.27m?
B, __30000x1000 '
“Fu A, 30x(3.27x10°%)

=0.306 -

M, 19000 10°
foi Ar 30%(3.27x10%)x1500

=0.129

Step No.2: Design of the reinforcement:
Assuming 40 mm concrete cover, r'=1500-40=1460 mm

=’_”=l4ﬂ=0_97
r 1500

i 1100,

r 1500

Using the interaction diagram for hollow circular sections (Appendix F)

f, =360 N /mm’, {=0.95, tr =0.75
Therefore p=3 ‘
= pxf,, x10™ =3x30x107" =0.009>Hmin (0.008).....0k

4 s fotal

. v )
=,u(Ac)=0.009><(3.27><106)=2934O mm® (96®20, 30159 mm )

Step No.3: Stirrups design: ' | N
Assurme that we shall use 7 $10/m" stirrups perimeter and Ag, for ¢ 10 mm = 78.5 mm
The volume of the stirrups in 1 meter equals: ‘

For outer diameter:

’ 6 3
Vs=nxAspx(ﬂxDS)=7x78.5x(ﬂ>§2920)=_5‘04><10 mm’.
For inner diameter:

. 6 3
V.=nxA4 x(n’xD)=7x78.5x(7tx2120)=3.66><10 mm
s sp s .
+V =3.66x10° +5.04x10° =8.7x10° mm’

'.'V stotal = Vsinncr souter
025 4 =9£§x(3.27x106)x1000 =8.17x10% mm> <V .--0k
smn 00 0 100 -

i i % of the
Note: Since the outer diameter is larger than the inner dla(r)neter, abogt f6?‘£ rr?:nt e
re(i)nfc;rdement is assigned to the outer diameter and about 40% of the reinforcem -

assigned to the inner diameter.
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7.8 Interaction Diagrams For Box Sections

The development of non-traditional interaction diagrams is performed for box section,
which is frequently found in building and bridges. The construction of the diagrams js
similar to those for rectangular sections. It is obvious that the capacity of the box
section is greatly affected by the area of the internal void. Thus, in developing the
interaction diagram the thickness of the concrete wall must be specified and is given
as a ratio from the section width and depth (ot and o b) as shown in Fig. 7.22

—T Pu'f—- Assou/8 0.67 £ufye
e i As o8 f—r]
M, ( T
iab .
i v
i ¢
tle 1Pl N/ i
|
As o8 & AN (7 | IR
ot ! oa\A Lok a8
i \s,tot
As.(uwl/ 8 - As.lolaI/ 8
L s aie o 8 As.‘om/g
- ] N A
' : As.(olzl/s
= b ]

Fig. 7.22 Distribution of the reinforcement in box section

If the neutral axis is inside the top flange, the concrete force and moment can be easily
evaluated exactly as rectangular sections. However, if the neutral axis is outside the
top flange the area of the void must be subtracted to obtain the exact area of the
compressed concrete. The ECP-203 concrete stress-strain curve was used in
developing the charts. The developed compression force in the concrete C. is

evaluated by integrating the compressed area with the stress-strain curve - and
- subtracting the void area.

The reinforcement area determined from the interaction diagram is the total area of
steel and should be uniformly distributed around the cross section and in both sides of
the section (i.e. each face will have 1/8 of the total area) as shown in Fig. 7.22.

The interaction diagrams are normalized to the net concrete column area A, rather than
the total area of the column as follows

P M
and £
f;ll AC f;:ll A(‘ t

The reinforcement area is given by multiplying the reinforcement ratio with the net
concrete area 4, as follows:

As.mm/ =H Ac
A, =b t —void area
An example of the curves is shown in Fig. 7.23 and the rest is given in Appendix G.
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Ac = net area of the concret
p=p f,x107

A,y ot = H Ay

Fig. 7.23 An example of an interaction diagram for box section (appendix G)
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Example 7.16 ‘ ' ' . ’ The net area of the concrete 4, equals

Design the box section shown in figure if it is subjected to the following straining 4 =1500%1000 7001050 = 765000 mm™
actions o ’ < ‘ -
P, =9000kN .- : _ P, _9000x1000 _ o .o,
M," =2700 kN.m" s . A, 30x765000
The material prop;ertxes are as follows : o e
f =30 N/mm . - 6
cu . , Mu . 2700x10 — —0.078

- - 2 i = - U,
£, =360 N/mm S A, 1 30%765000x1500

i o
i : M, From the diagram with £=360 N/mm’, £=0.95, 0=0.15
E ' : - p=6.2
Sl B o i -l- = px fu ¥107 =62x30x10 =0.0186 -
) | : AN | | | Ay = 4 4, =0.0186x 765000 = 14229 mm?
- : | Ch&ose the area of steel multiple of éight and more than 24 bars
— | Choose 56 @ 18 (14250 mm®) ‘
" 1000 mm ' ’
Solution. _ v |
Interaction diagrams for box sections are used to design the given member. 1 . _ : 10 @18 4418 at each corner
Since the thickness of the concrete Walls is ndt given assume 0~0.15, thus ' N /i

ot=0.15 (1500)=225 mm

ob=0.15 (1000)=150 mm $8/200 mm

| 700 mm |

1018

1500 mm
10 ®18

N

150

1050 mm

1500 mm

1 : \ .
1018 _AD18

1000 mm

fzzé ’

1000 mm
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2

d-d'

Small eccentricity
es

7.9 Columns Subjected to Biaxial Bending

Tension force(M,,T,)

2

d-d'

Big eccentricity
ez

~
6
3 3 “ 7.9.1 General
oS ‘E Z - : .
o Y ~.; Koo T T Designing a rectangular cross section for biaxial bending and axial load is a
:= [\lf % SN complicated process because the d'irection anq the position of the.‘ neutr:.ll a)Fis are
i U " s difficult to establish. Furthermore, since the strain over the cross section varies linearly
TR in both directions as shown in Figure 7.24, considerable computation time is required
to establish equilibrium. :
< 3
g 2 2 ,
3 = o Neutral axis
Q = =}
=) [} tn ke
& T o= 3 \ 0.003
.‘é % :; 30y oy 2 Reinforcement 1
Y 2 193 3 -8
8 N = "Qz g+ ~ é ™\ Compression strain
2 8 <5 w3 4
g Yoy g 2 dws o st .
2 ) g Tensile strain \
S tind g gy )
5 =
S Elll[\ : "“ g E t f 5‘;’, L~ Neutral axis
- ¢ X § & N g

Column cross section

Design of Eccentric Sections

More than balanced load
Compression failure

Compression force (M,,P,)

Less than the balanced load
Tension failure

v - NN .
§D —— . °~=I "Qs = is Fig. 7.24 Strain distribution for columns subjected to biaxial bending
<
g
g§ | F— 1 . ‘ o o o
S 4 - S The failure surface of sections subjected to biaxial bending is .a three-dimensional
g X X surface as shown in Fig. 7.25. Any combination of P,, M,,, and M, . falling inside the
E = X surface is considered safe, but any point falling outside the surface is considered.
% _@I Q;’ 3 g NS >é~ ?‘ unsafe. The surface consists of infinite number of interaction diagrams as follows:

|8 g 0.

SR 1. Position 1 represents the uniaxial section capacity in x direction in which the
neutral axis is parallel to x-direction (M,).

~ ] 2. Position 2 represents the uniaxial section capacity in y-direction in which the
o 8 L % neutral axis is parallel to y-direction (M,,).
‘@ ‘“ .,
g % ?—j " § 3. An inclined neutral axis such as position 3 represents the case of column
&b § s as = 3 under biaxial bending (M., M,,).
~ = ~ ‘o ~ 7]
g & 4= 8 > Q ) . . '
g g § Y it g l\ ~ g Another representation can be made by cutting the failure surface with horizontal
g Hwe 8 “~ B BN ey § planes called load level. This approach is adopted for preparing the design aids
< el . @ S = " . 1
E9ET ula ¥ o g NGRS “‘g\ Y presented in the Appendix H of this book.
S8 + N 5 & k= -
o Al g & o i =% 3 3 3 o
S828& 0« §E g 0 03
-« v R0 OO W <

334
333




Position 1

Plane of constant P,

Position 1

‘\§
§

load contour
Position 2
o . /:\M“" M,
M M, TN')
Position 3

Fig. 7.25 Failure surface for columns subjected to biaxial bending -

7.9.2 Exact Analysis of Biaxial Bending

.The apalysis of se‘cFior'xs subjected to biaxial bending is performed using compatibility
of stra1n§ and equilibrium of forces. Defining thie neutral axis distance from the origin
as Xna with an angle ¢ as shown in Fig. 7.26. The strain at any steel bar equals to

.It s__hould be f:lear that a positive strain indicates compression and a negative. strain
indicates tension. The developed stress in each bar equals to

fa =E, x&, =200,000xe, =600S=% <Lr (7.43a)
| ¢ 7
c—d, f,
fﬂ. = 600—C— < 'YL ..................................... (7.43b)

The total force in each bar is

Fy = A, Xfy oo, O ¢ 27

where A;i is the area of each individual bar

335

For use with -
interaction
. c diagrams
reinforcemeny/
~ S 0.67x f,,

/\;/," For use
with hand

/\ calcualtion

/P“
+ .

P SIpp IR

-

Flg 7.26 Stress and strain distributions for a column under biaxial bending

The moments of the reinforcement M, M,y; is taken about X and Y axis respectively
for each bar as

Y S (7.45)

7S S SRR ¢ - 1+)

The ECP-203 does not allow the use of the equivalent stress block in the computation
of the capacity of biaxially loaded columns, thus an integration process must be
performed. The compression zone will be divided into sniall areas 4; and multiplied by
the corresponding stress f.; This procedure is used in a computer program developed
for the propose of preparing biaxial interaction diagrams. The compressive force
developed in each concrete segment is given by

Fo=fy A oo S — (7.47)

However, the previous procedure is not suitable in hand cal}culations.’ For hand"
computations, the equivalent stress block is used. Depending on the compression zone
shape, it is divided into two or three areas and the developed force.in each area equals

B, =08 e g e (7.48)
7. ,
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The mome i
compresswtt f(())f the concrete compression force in each segment equals the individual
rce multiplied by the distance from the axis X and Y as follows:

M SF XY e ereans (7.49)
M =Fy XXy s, e (7.50)

The total resultant capacity of the section P, equals to

F D AR 39 (7.51)

The total fi

sections Wi;)lﬁcses and rgomen'ts are assumed to be located at the plastic centroid. For

of gravity Thﬁ‘lllsm.rfl‘etncal reinforcement, the plastic centroid coincides with the center
. 1f one needs to calculate the total moments M,,, M,,, about any point

rather than the plastic centroi j i
ntroid (point o in Fig. 7.26), the mo
(P,) should be taken into consideration as foﬁows a ment of the resultan force

M, =Pxy (DM + 3 M) e, (7.52)

M, =Pxx-(3M, +ZM9,i) .......................... (7.53)

where x and y are the di
) istance from the i i
) ctrical sections xeb/> g s, plastic centroid to the assumed axes. For

It sh ;
should be noted that the reduction safety factors depend on the eccentricity, and the

resultant eccentrici i i
g city (e/t') is used for the calculations of these factors as shown in Fig.
2 2
e_ e ,[e
- 5 ] (1.534)
where
& _M, e, M
t P e
u reinforcement b £,

plastic centroid

Fig. 7.2 i
g. 7.27 calculation of the eccentricity for a section under biaxial bending
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Example 7.16
Calculate the biaxial column capacity for the neutral axis position shown in the figure
below knowing that:
"= 25N/mm’
£= 400 N/mm’

1 -40 mm

400 mm

"~

~ Solution

For the sake of simplicity, the equivalent stress block is assumed to be valid in such a
case. The calculation of the capacity can be summarized in the following steps:

Step 1: Moments due to Forces Developed in the Steel Bars
o= 825 sin (30) = 412.5 mm
The strain in the steel equals

c—d, 412.5-d,

=0.003x
4125

&, =0.003x

where d, =x, sin(#)+y, cos($) =x; sin(30)+y, cos(30)

825 mm
400 mm
0
1 @
di=54.6 mm
3 R c=412.5 0.003
4028 e i -
\_\!~
X; L F1
"
i ~.
! \_\‘\ F2
; ~ ~_ /3
Yo :
H F4
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Positive strain indicates compression and vice versa. The stress in each bar equals:

f =200,000x 5, <22
Vs

Since most of the section is in compression (e/t is small). Assume e/t=0.27.

Thus concrete and steel safety factors equals y,=1.24 and y,=1.6. This assumption will
be verified later. The area of one bar @ 28 mm equals=615.75 mm’
The force in each bar equals ‘

Fy= A, f, =615.15x f,

The moment capacity of the section is calculated by taking the moments of the forces
about any point (for example point ©0). The moments of the forces resisted by the steel
reinforcement M,,;, M,y; are taken about X and Y axes. The moment of the resultant
force P, should be considered since point o does not coincide with the plastic centroid.

M =F;xy, Mg, =F;xx,

Calculations of moments due to forces developed in the steel bars

Bar X IYi di Esi fs.'i Fsi Mx' Myi

mm mm mm N/mm? kN kKN.m kN.m

1 140 40 54.6  10.00260 [322.6 [198.63 |7.95 7.95

2 360 |40 214.6 0.00144 |287.8 |177.21 |7.09 63.80

3 40 360 |331.8 10.00059 [117.4 [7231 [26.03 [2.89

4 360 (360 1491.8 |-0.00058 -115.3  |-71.00* |-25.56 |-25.56

Total 377.15 {15.50 149.07

*(tension force)

Step 2: Moments due to Forces Resisted by Concrete

The equivalent stress block is 0.8 of the neutral axis distance

x'= 0.8 (825) =660 mm N . )
Since the compression zone is trapezoidal, it will be Slmded to rectangular an
triangular as shown in figure.

1, = (x' —400) x tan § = (660~ 400) x tan 30" =150.11mm

t, =400x tan ¢ = 400x tan 30° = 230.94 mm

825 mm
1
' 1 x'=660 mm
X i

DS W RN =1

© ~ "~

< '~ N

ES \’\_\

(a4} ‘.

J N

o

_ 400xt,
A, =400x¢, Az——-—z-—
t

yclzt ycz=t1+—2

1
2
F =L_Ai=

67%fo 4 _067%25 A _ 01047 A, (KN)
160 1000

. ' i i individual
The moment of the concrete compression force 1s“. the s(;lm sf)f:o]tl}(fn Smd
compressive force multiplied by the distance from the axis x and y 2

- Yei kN.m)
Mcxi - Fci x 1000 ( E
X ..
o F x—d (kKN.m)
Mo =Fax150
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qT
Calculations of moments due to forces resisted by concrete Step 4: Check r;ec.:iucﬁon safety factors
No | shape| b; 4 Area Kei Yei Fo My My e, M 125.36
Lalm o200 (2]
mm| mm mm® mm mm kN kN.m | kN.m t P oxt 1489.27x0.40 "
1 400 |150.11 {60044.43]200.00 !75.06 1628.59 147.18 }125.72
e, M, 58.6
<7 b B xb 1am027x040 0% ’
. - X . XU
2 400 {230.94 {46188 133.33  |227.09 |483.53 {109.81 {64.47 “
Total 1112.12|156.98 [190.19 j e (e )2 (e , T
, SofiZ=] 2| =024
t b t
Step 3: Total Forces and Moments in Concrete and Steel 7. =15 x(%—‘%J:l.&zlﬁ......ak
P, = ZF si T ZF ci
P, =377.15+1112.12 = 1489.27 kN. 7. =115 (_7___ 0‘.24) 125124, ok
Since the section is symmetrical, the plastic centroid coincides with the c.g. Thus the 3
location of the section compressive force P, (the resuitant) is at 200 mm from both X
and Y axes. Since the moment is not taken at the plastic centroid of the section, » -
contribution of the P, must be taken into consideration, thus the total moments about : K € 0
point o equals ' ° -+-P.
; . ey ¢ et “
M|u=Rlxy~(ZMsxi+zeri) - I e---ﬂ'__'-_‘__
M"J,=P”Xx—‘(ZMn.i+ZMC),,-) ‘ " ) ® [
. 400 i
M, =1489.27 %200/1000—(15.50+156.98) =125.36 kN.m - ‘ . i
5 M, =1489.27 x 200/1000—(49.07 +190.188) = 58.6 kN.m Y
¥ X o " s
‘_ .....
e My @ )
; y I\
P, ) -
] @
| i ; .
. o i
= ) > i vY
341 e 342




7.9.3 Minimum Eccentricity for Biaxially Loaded Columns

The Egyptian code states that for columns subjected to biaxial bending, the moment
applied on either direction can be neglected if the eccentricity caused by this moment
is less than code minimurmn eccentricity of 0.05 t or 20 mm. The column in such a case
will be designed as if it is subjected to a uniaxial bending as shown in Fig. 7.28.

Yy
<005b i4p, = ”
€< U, ep, ©y v
P {f < { S
1 © T V. v,
;e g ° : O By ° ; ° 'y
! P,
T I I O
N S - SO I B ——e JIUY IO 2 F—
: X b r.- * —i T *
I 1
o‘o o o o 0050 oo o] 0050
— — E—
b b b
Design for P,, & M. Design for P, & M.y Design for P, only’
Neglect M, Neglect M., Neglect M,.and M,,

Fig. 7.28 Minimum eccentricity requirements for biaxially loaded columns
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Example 7.17

Determine the reinforcement required for [
a column subjected to biaxial bending with

i
the following data: . i
i
P,= 960 kN _ !
= 25 Nimum? M,=480 Jm L 21 | 700 mm
f,= 360 N/mm’ !
—
300 mm

Solution

The minimum eccentricity in each direction is the bigger of 0.05 of the column
dimension and 20 mm : )

300 700

e, mn =0.05% =0.015m (0r0.02m) e, =0.05% =0.035m
wmn 1000 10
M
e, = ?"’— = —91% =0.0125 m <€, mim, NELlECt M,
e, = Mpﬁ = ;—2-3— =0.5m >€y,min Design for wa

Thus design as if the section is subjected to uniaxial bending P, M,

P, __960x1000 _ .
f.bt 25x300x700

6
M,  480x10 ~0.1306

f.b P 25x300x 7007

Using interaction diagram with £=0.9 £,=360 N/mm?, a=1(top and bottom)
p=2.7 '

= pxf,, x10™ =2.7x25x107* = 0.00675

A= pbt=0.00675 x 300 x 700 = 1418 mm’ (3 ®25)
Al =4, = 1473mm?

Please note that the two @ 16 is added to
satisfy code spacing requirement.

700 mm
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: A computer program was prepared to carryout the computatiops requi.red ;o cc;r:rsltsngi
7-94 Biaxial Interaction Diagrams : the biaxial interaction diagrams. An example of the developed interaction diagr

. v i i Fig. 7.29. The rest of the design aids is given in
The design of sections subjected to biaxial bending can be greatly simplified by using biaxially load column is shown in Fig

interaction diagrams. The horizontal plane (constant load level) is the chosen

Appendix H.
representation of the failure surface. A computer program was prepared to carry out all Steel yield stress
the required calculations. The program can be summarized in the following steps M, —
- 2
1. The neutral axis is first assumed with certain‘incﬁnation angel ¢, the forces ' Julb
and moments in the reinforcement steel are evaluated. 0.28 ] £.=360 N/imm?
2. The force in the concrete is detem_linea" thiough the integration of the 0.26 - (;y=o,80
idealized concrete stress strain curve (not the equivalent stress block) with the ‘ R FIEPL R,=0
compressed area. : o i 0.24 ——_ \\ g=—""
3. A trial and adjustment procédure is performed by changing the neutral axis ' 0.22 IS \\ Load level 7
inclination and/or position until the equilibrium is achieved. i \\ \\ NG )
4. Having determined the desired load level, moments are evaluated and a point : 0-20 _\\ \\ \\\\
in the interaction diagram is plotted. 048 S ‘\ AN
5. For the same reinforcement index (p) and load level Ry, several neutral axis i \\ \\ N\ \ \“’=24
positions are assumed and the corresponding bending moments are plotted : 0.16 ~ ‘\ \ N Rz \
forming a curve on the interaction diagram. 0.44 \\ \\ NS
. P ——
6. The area of the steel determined from the charts and should be uniformly r \\ \\ Q \ \ \\
distributed along the cross section. 012 ] ~N J NN
: S \ 14\\\\ NN\ N\
. : . . : 0.10 4 ~—t—
7.9.5 The use of Biaxial Interaction Diagrams [Enter with P/t b \@ N\ \\ \\ \\ \\
The use of biaxially interaction diagrams (refer to Fig. 7.29 and the appendix H) can 0.08 \'J-ESJ—]‘\ & >< ] \ \ \ \
be summarized in the following steps. ' ; 0.06 I \\< N\ < NN V¢V Y
fif ' j_"lﬁ—\ SNCONCNCNC NN
A N =
1- Evaluate the load level R, using the following equation & 0.04 1 alcu‘ati ° \ \ \ S \ \ \ %
3 s 5 z
- _& : 0.02 —Nz AN k| \ \ \ £
' f.bt 3 \ \ \ S R | \
2- Calculate the non-dimensional biaxial moments quantities 0.00 . ' 0.02' 004 006 0.08N0.4 042 014 016 018 02 022 024 0-26M0~23
Mux M uy . : A ’ ux .
5 and 2 M f.bt
Jubt Fut b Asroutd e, b
3- Locate the reinforcement index p from the required load level chart using the J R = £
previous non-dimensional moments. If the desired load level is not NN " fubt
available, use interpolation to find p using charts of higher and lower value. N =p £, x10
4- Calculate the total area of steel using the following £1G BEP T
‘ =
p=pxf,x10™ Ao =Hb 1
. As,roml =ubt. As.\oml/4' "_-"b :
This area of steel should be distributed uniformly (uniform in area) along the
,g;otsl‘lsesfslt:r):n ptzrgrr::‘t;z. ll’lr"llilte‘(;l":msit/:;uld~ be ‘at least three-four bars in each slde 91 Fig. 7.29 Interaction diagram for biaxially load columns (appendix H)
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- Example 7.18

Design the reinforcement for a short colurnn subjected to biaxial bending accompanied
with compressive force using the following data:

S =35 N/mm®
5 =360 N/mm®

P,  =1200kN
M, =215KkN.m M.=215 KN.m E
M, =65KWNm 4777 T S
{ O
i ©
f—
Solution 250 mm

Step 1: Calculate the following terms

P, 1200x1000

=t " 35w 250600 - 0228
M, _ 215x10°
fubt* 35x250x 600 =00683
M, _ 65x10°
St b* 35x%600x 2507 =0.0493
M ! 0.28
Fotb? o028 I ==pe £,=360 Nimm?
.24 \\\\~\
022 \\‘\\\\\
0.20 \\ \\\\\\‘
- \\\\\\\\
‘016 - \\\\\\\‘\ .
0.14 \\ \\\\\\\\\\B,s -
042 \‘\ \\\\\\\\\N‘\\\\
oo \\\\\\\\\>:\\\\\\\\
0.08 \‘\;\\ NN NN N
0.06 4 N \\\\\\Q\\ \\ \\ \\ \\ \\ \\ :
e o e N A VAN AVANAVANANAN
o DRSS SRS
AN Y NV MY

N '
T + 7
0 002 004 006 008 01 042 014 0616 018 02 022 024 026 028 f wb t

0.0683

Step 2: Calculate reinforcement area

Since the desired load level Ry=0.228 is not available in the biaxial interaction
diagrams (see Appendix H; £,=360 N/mm?, £=0.8), interpolation is performed between
Ry=0.2 and Rg=0.3

Ry=0.20 —p=5.0
Ry=0.30 — p=6.8

Interpolating for Ry-g228 —— P =5.5
p=p £, 107 =55x35x 10" =0.0193 >jinis (0.008) and < pnax(0.04)

Asm = b t=0.0193 x 250 x 600 = 2895 mm’ =28.95 cm’

Choose 12 @ 18.

AJ/4=4018

"/ leach face

0

-

250 mm

1
|

347

348



7.9.6 ECP-203 Design Procedure for Biaxial Bending

The calculation i j iaxi
> procedure for sections subjected to biaxial bending i i
4 : : . nding is laborious. Man
dzsfgn_ codes including .the Egyptian code adopt the use of the simplified methods fojr,
Signing members subjected to biaxial bending. »

Th . . . : . N

repi;rgp:o;umatlon useq in th‘e ECP-203 is to assume that the interaction curve can be

o nte by.two st.ralght lines. Then, transferring the two applied biaxial moments
ne magnified (increased) uniaxial moment either M, or M % depending on the

ratio of the applied moments and the lo i i
) : ad level. Fig. 7.30 sh \
_sectlon capacities in each direction. ® Shows fhe tatlo between the

Zw , b
5 My =M, +f ()M,
M,
e Approximate lines
- 2 M.‘/af M/b’
B . a'
. MX=M.!+ﬂ (_bT)M’
M, A Interacﬁon curve
bl
45° | oM,
™ a'
— M, .M
a ' a
Y
A
A4 7NM,

» X
N A5/4
A4 / IG-—B,———>|
' 3]

b

Fig. 7.30 Developemtn of the ECP-203 design metilod
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The angle A can be calculated as
M, M

G O 7.55
tan A i ( )

y

a

where M, is the design moment, and M is the magnified. moment

Defining P as tan A gives

! M
LI Py T O—— (7.56)

a a b

t a'
M =M_+p (F)MY ............................................. (1.57)

similarly M,
M! =M +p CNVM, e (7.58)
a

The previous equations are the basis of the code-simplified equations, in which the
value of the factor p was defermined from the comparisons with the biaxial interaction
diagrams. '

p=10  Rb=0.5

v T T T T T B Mux
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 fwbt2

Fig. 7.31 Load contour for different reinforcement ratios and load levels.
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Fig. 7.31 shows that for the same reinforcement ratio, the moment capacity for
columns with low load level is more than the moment capacity of columns at higher
load levels (above the balanced point). Also, the angle A differs from one load level to
‘another, and a constant value cannot be used. Thus, using A determined from high load
level (R,=0.5) will lead to unconservative values of M’y for load levels near the
balanced point (R, =0.2) (point A instead of point B). The actual variation of B (tan A)
with load level is nonlinear. However, the code approximates the relation with a
conservative straight line given in Table 7.2 or the following equation.

Table 7.2 Values of B for different load levels

|, = £ <02 0.3 0.4 0.5 206
b fw b a = V. . B . - = U.
B 0.8 0.75 0.70 0.65 0.60

Figure 7.32 represents the actual values of B determined from the strain compatibility
method versus the code approximate values. It can be seen that code value will yield
always a conservative design than using the interaction diagrams. The average area of
steel using the simplified method is about 10-20 percent higher than the actual vales as
shown in Fig. 7.32. However, better accuracy can be hardly obtained from such a
simplified design method

0.9

0.8 —~—— Code|values

0.7 — £

B o6 — ]

0.5 Actualjvalues \\\

0.4 ‘ -

0.3

0.2

0.1

0 . S— ,
0 0.1 02 03 04 0.5 0.6

-Load level, R, '

Fig. 7.32 Comparison among actual and code values for
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Design steps for biaxially ioaded columns with uniform reinforcement

1- Calculate the applied load level using
P

R, = —%—

fauba

2- From Table 7.2 or Eq. 7.59 determine P factor, use interpolation if required

M

X
a !

M !
>—then M =M, +ﬁ(§7)My

¥
M b’
if Mo <™ then M =M, +8 CM,
a b _ a )
3- Locate a point on the uniformly distributed steel uniaxial interaction diagrams using

P M’ M,

u

fauba and(fcubaz Olfcuab2 )

4- Calculate the total area of steel by determining the reinforcement index p

4 =H bt >As,min

s gotal

This area of steel should be distributed uniformly (uniform in area) around the cross
section perimeter. There should be at least 3—4 bars in each side of the column to ensure
uniformity as shown in Fig. 7.33.

\
A4
©oam/ )
e
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Example 7.19

Design a corner colump
mn in a braced building if it i i
P 1620k uilding if it is subjected to
€x =0.068 m
€y =0.2345m

The material properties are

fw =30 N/mm?
fy =280‘N/mm2 . P.=1620 kN

€,=0.068 m

€y=0.2345m

X

Solution

Sln umn dlﬂl S € ven, assume load level Of C'E
CE the COI CNsions a
e not gl n,

L _3-1620x1000

fubt T 30%250%s
t=720 mm
Try a column with 250x750 mm

Determi
etermine the actual load leve] R;, using the following equation

—_—— -
Fubt 30x250x750 0.288

R, =—fu__ _1620x1000

From Table 7.2 and using inte

Eq. 7.50 rpolation between R,=0.2 and R,=0.3, or directly use

R
=090~ = 0.288
B > 0'90—T=0‘756
Calcul i r
ate the applied moments using the given eccentricities

M, =F, e, =1620x0.2345 = 380 kN
M, = P,,.e; =1620%0.068 = 110 kN .m
Assume concrete cover =

“nll, and the d. cnte Of the
lStal’lCC fI‘Ol’n the cent I‘llne

a’ =750 —45 =705 mm

b’ =250-45=205 mm
Since M, /a’= (380/705) > (M,/b") =(1 10/205), the design moment will be taken about
x. Using Eq. 7.57 gives

M! =M, + ﬁ(%;)My =380+0.756(%)11o = 665.99 kN..m

M, 66599x10° _ ..
fubtf* 30x250x750°

750-2x45

= = 0.88
g 750

‘ Using uniaxial interaction (uniformly distributed steel) f,= 280 N/mm’?

Since ¢=0.88 use interpolation

For =09 p=14.0

For (=08 p=16.0

_Therefore for {=0.88 —— p=14.4

= 14.4 x 30 x 10™= 0.0432 > prio(0.008) and henax(0-06)

Agon =} b t=0.0432 x 250 ¥ 750 = 8100 mm’

The number of bars should be the multiple of 4, thus choose 16 ¢ 28.

The bars are distributed equally on the four sides. -
16 ¢ 28

750 mm

H— 6¢8m
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7.9.7 . Biaxial Bending in Unsymmetrically Reinforced
Sections

tS):;:rt:lonsl with unsymmetrical‘ reinforcement are often encountered in shear wallg
ean ~c;> umns and 'columns }mth high rectangularity ratio. From the cost-effectivenes;
gfﬁcieot vi%w, ptlﬁcn;zgc gle reinforcement in the direction of the large moment is more
nt. Thus, the 203 provides a simple method for designing biaxi
ient. . esignin
sections in which the steel is not uniformly distributed. Eving biaxially loaded

This .sxmplliﬁed method is based on magnifying the applied moments by a mo
magmﬁca’glon factor. The magnification factor oy, was introduced to modify the dm'em
n}on'.lents in both directions according to the load level and the ratio of the apesiligj1
gi:x;ila::zr;itgs. Tl}e lrinagniﬁcation _factc?r oy was evaluated after the examinatié)n of
ol Thel(;x:)do the gnsymmetrlcal 1r_1tergcti9n diagrams' ( as the one shown in
1evé1 ;)f R he e permits the use of this simplified method until a fairly high load
- » <0.50 given by Eq. 7.60a. If Rb>0.5, biaxial interaction diagram with
:g;f?trr; ste;l ;r the sim’pliﬁed method (7.9.2) may be used. The magnified moments
ey ba:zl) SO;)(()&:;,S If\élﬁoa;;i: M'y, are modified by the same factor o, provided that

R, =fcul; e (7.60a)
Mi=0, M, oo, (7.60b)
Vo My=ay M, ... (7.60c)
Fag? e 1 Ry= P/f, ba=03
=< f, = 360 Nimn’
0.14 - =9
0.10 \ \; F-.—ﬂ
_\\ \ \ ‘\ \ .
0.08 ™ N AN
N NN D
0.06 T AN SEAN

-
| N N\ N
0.04 AN \‘ AN \\ AN
0.02 \\ AN \\ \\ \
WENEMNRAWNARWNAR

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.247«?

Fig. 7.34 Biaxial interaction diagram for unsymmetrically reinforced sections®

o

w
a2

! Developed by the authors
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The uniaxial bending interaction diagrams (top and bottom steel only-Appendix B) is
used twice to calculate the area of steel for each direction.

This approach is easy to use in routine calculations and yields approximately the same
results obtained through the interaction design curves for biaxially loaded members
with unsymmetrical reinforcement. The suggested values of o, are given in Table 7.3.

. It can be noticed that the values of the coefficient o, are symmetrical about

(M,/a")/(M,/b") =1 (case of uniform steel). It can also be noticed from Fig. 7.35 that the
general practice of designing rectangular reinforced concrete beams subjected to pure
biaxial bending (R,=0) twice by using the design moments M and M, without
magnification (op=1) is valid. However for sections subjected to biaxial bending with
normal force this assumption will yield unconservative results, as the design bending

moments need to be magnified.

1.9

1.7

15

1.3

1.1 N
N
$

0.9

Oy
“a N
- \

0.7
0 005 041 0145 02 025 03 035 04 045 05

R,

Fig. 7.35 Actual values of o, for rectangular cross sections
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Table 7. 3 values of o, for rectangular cross sections

MAYMD)|  oo” 3 2 1 | 05 {033 0
Ry=Pu/ fu b3
Rp< 0.1 1 51 125 130 125| 120 1
R,=0.2 1 35| 150 175| 150] 135 1
Ry=0.3 1 1351 135 14| 135] 125] 1
Re=0.4 1 005 095 095| 095| 095] 1
R=05" 1 065 070 05| 070| 065| 1

* This is a case of M,=0. For cases in which My does not equal to zero, value of 10 is
sufficient for interpolation

#x If R,>0.5, biaxial interaction diagram with uniform steel or the simplified method
(7.9.2) may be used

Photo 7.8 Biaxially loaded corner columnvin court house
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. . mmetfica|
Design Steps for biaxially loaded columns with unsy

reinforcement

1- Calculate the applied load level and moment ratio using

R = A an M ld
’ f cu b a M}’ /b’ L.
2- From the table determine o, factor R, <0.50 , use intergolation if required
M,=a,M,
M,=a, M,

rmine the reinforcemem

3- Use Top and bottom steel interaction diagrams twice 10 dete!
index p, calculate the total area of steel.

r -4
Using M; and B, determine g, = p*Ja x10
fuba fu ba
! -4
Using M, and B getermine #, = px fu¥10
fuab®  fuba
A‘“ = 1 _A_sy_____ bt
- = M. bt and 5 Hy

: t
The area of steel determined for each direction should be duplicated &

as shown in Fig. 7.36. The total area of steel equals

4

=Asx+Asy =2(ﬂx+lu)')ba

sdotal

t
i inforcemen
Fig. 7.36 Analysis of sections with unsymmetrxcal rel

the opposite face
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Example 7.20

Determine the unsymmetrical rej
‘ ¢ unsy reinforcement required fi interi
subjected to biaxial bending with the following datczlr o short nteriar column

Column size 300 x 800 mm

P, =1440kN.
My =580 kKN.m
M,, =120KkN.m
fw =30 N/mm?
£, =400 N/mm? { My=120 kN.m
i
|
M.=580 kN.m :
i
fo ]l |E
-+1- |
1 o0
i
i
Solution =]
300 mm

Step 1: Calculate the magnified moments.
Assuming concrete cover 40 mm, thus

a’=800-40=760 mm
b'=300-40=260 mm
Calculate

M,/da _580/760
M, /b6 120/260

P, 1440 x1000

RIJ = - - =
f.ba 30x300x800

=1.65

Note that the corner bar is
divided between x and y
directions

Y
0.20 TN My

From Table 7.3 in this text and by using interpolation oy,=1.587

MM T3 [ o2 | 1 | 05 | 033 0
Ry=P./f,ba
Rp= 0.1 1 121 125 30 125] 120] 1
b Y .

Rp=0.2 1 135 :@ﬂ@ 150 135] 1
R,=0.3 1 125] 135 14| 135 125) 1
Rp=0.4 1 095| 095[] 095] 095 095} 1
Ry=0.5"* 1 065] 070 1&ons 070] 065 1

i
)

M= M,, . ay=>580 (1.587)=920.2 kN.m
MYy=M,, . a=120 (1.587)=190.4 kN.m

Calculate the non-dimensional quantities:

My _9202x1000x1000 _ oo
fuba®  30x300x800° )

M, 190.4 x1000 x 1000 _
f.ab® 30 x 800 x 300”

£ 23002340 5
800
_250-2x40

250

Using the regular uniaxial interaction diagrams with symmetrical reinforcement top
and bottom (£,=400 N/mm’, a=1)

0.088

S, =0.685~0.70

Step 2: Area of steel for M’y

P M' . .
£.~0.9, fm; ~= 0.20, T bxa’ =0.159, the reinforcement index (py) equals
px=34
pe=p X% £, 10*=34x30x10*=0.0102
A=A5=A,/2

(4:/2) = pcb 2 = 0.0102 x 300 x 800 = 2448 mm” (@each side)
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Step 3: Area of steel for M/, 7.9.8 Circular Columns under Biaxial Bending

7 M, L : . . . . .

& =0.7, 7 Za =0.20, ’b2 =0.088, the reinforcement index (p,) equals Biaxial moments applied to circular sections can be transformed into equivalent

e fue uniaxial bending. This procedure is possible because the bending strength of circular

py=16 columns is the same in all directions due to the complete symmetry of the section.

1y =Py o 10 = 1.6 x 30 x 10% = 0. _ . Thus the design of a circular column subjected to biaxial bendi‘ng (as the‘ one shown in

v X 0.0048 Fig. 7.37) is the same as the one subjected to uniaxial bending but with a resultant
(4, /2)= py b a = 0.0048 x 300 x 800 = 1152 mm® (@each side) uniaxial moment equals

Step 4: Final design
Agmin = 0.008 x 300 x 800 = 1920 mm®

Agtort = Ag + Agy = 2 (2448 + 1152) = 7200 mm®> A pin

U= As./olal _ 7200

= xd = 300x800 = 0.03 <(ex=0.04 for interior column)

(choose 12 @ 28, 7389 mm’ )

Note : The corner bar is divided between x direction and y direction
[As/2 =5 @ 25 (2454 mm?), A, /2= 3 @ 25 (1473 mm’)]

5425
g h)
300 mm 1/2625 4?25 1724425
FETeeY RARAE
112425 1/2:;325\
E F b . | |
8 - =
(4]
& o |- A—
172425 1/2425
' . - J
. ) 1 | esees $r29900d
[ 317 \
12§25 4;p725 17225
[ - J
5025 ’

Flg 7.37 Circular sections under biaxial bending

The previous procedure is valid in case of using almost uniform steel distribution. The
use of at least 12 bars is considered sufficient to ensure uniformity.
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Example 7.21

Design a circular column in a braced building if it is subjected to:
P, =560 kN

My, =275KkN.m

M,, =140kN.m

The material properties are

f., =25 N/mm?
f, =240 N/mm®

Muy= 140 KN.m

RN
—'_"'} My=275 kN.m
i
b

D=600 mm

Solution

The column is subjected to biaxial bendi i i
roonliont maot 4 ending moments. It can be designed to withstand a

_ 2
M, -JM,“ +MZ
M, =275% +140* =308.58 kN.m

Assume concrete cover of 30 mm

r' 300-30
{=—=""r—""=09
r 300
M,=308.58 kN.m
F,__560x1000 _ 248
fur? 25x300% ?
M,  308.58x10° B
= =0.457

Jur 25x300°

363

Using interaction cliagramsvfor circular sections (Appendix E) f;= 240 N/mm?, £=0.9

- p=6.8

p=p fo,x107 =6.8%25x10™ =0.017 >pmin (0.008) and < pmax (0.04)

A =pxi?=0.017xzx300" = 4806 mm’
s.total

Choose 16 ¢ 20

610/m’

' D=600mm !

Reinforcement detail

Assuming that the lateral reinforcement is 6 $10/m’, thus the volume of the stirrups ¥
equals (Apgi0=78 mm?):

V, =nzx D A4, = 6x 7 x550x 78 = 808645 mm’

%x%xpz x1000 = %x%xﬁooz x 1000 = 706858 mm® <V,......0k

s, min = 100
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7.9.9 Interaction Diagrams for L-Sections

L-section columns are often encountered in the corners of buildings. Most of these
columns are subjected to bending in addition to the normal force. Since L-sections are
not symmetrical about either axis, evaluating their strength is very complicated and
time consuming. In addition, the eccentricity of the applied load with respect to the
local axes affects the resistance of the section. Developing interaction diagrams for L-
sections is a design tool without any approximations. The construction of the
interaction diagram for L-sections is similar to that for rectangular columns subjected
to biaxial bending, but the neutral axis has to be assumed in one of four positions as
shown in Fig. 7.38.

The developed charts are limited to columns that are symmetrical about a 45° axis as
in Fig. 7.38. Furthermore, the width of the column b is defined as a ratio from column

height 1 =It’—.

-
;
]
<45
.

2 3N T4

Fig. 7.38 Different positions for the neutral axis in L-sections

The load level is determined by normalizing the applied compressive force with the
net concrete area 4,

P .
Ry =t e 7.62
v e
A, =b Xt bt =b)=2%E Xb =B e (7.63)
365

The moment is normalized with respect to the net concrete area A, and the section

thickness f.

M“y and Mu.\:

f cu AC t f cu AC t
The area of steel should be at least 16 bars and should be a multipie of 8'to ensure
uniformity and equals

A g = BXA, e rerererrseseeecsine e anneaas (7.64)

An example of these charts is shown in Fig. 7.39, the rest of the charts is given in the
Appendix L

Interaction Diagram for L-Sections

fM;“ - f,7360 N/mm?, £=0.85, 1=0.35, R,=0.20
a e 1 -
0.18 '

8 o e e T8 R
“:2 S By N LESNY
0.14 XL — ~] < ]

M.y e e N | Y
o 1/ o \\\\\\\\\\\
0.10 Lo ~
0.08 e \\\‘\\\\
TN \\‘\ N,
0.06 \\\ \\:\\
- SO
0.02 \\.\\\\\.\ \\\-
0.00
SRR
o VAL VA
ooe JUFE AN
-0.06 / //I /I ’
~0.08
-0.12 [ = -
0.4 | i
\. o AN
.16 |- wm(‘ -1
-o.1am P E——— 3...:2'
g "
S At
[
K k=4
#=pfo,xi0
A, g =H A,

Fig. 7.39 Biaxial Interaction Diagrams for L-sections (appendix I)
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Example 7.22
Determine the area of steel required for an L-shape reinforced concrete column that is
subjected to the following straining actions:

P, =950kN

M, =180kN.m

M,y =115kNm

The material properties are as follows:
f, =25N/mm’

£ =360 N/mm®

M,=115 kKN.m

My=180 kN.m

_____________ ) IN—— _

250 |

Solution:
Calculate the area of the concrete section 4.
A, =500x250+250x 250 = 187500 mm’

b0
t 500

" Note that the direction of the given moments will produce a compression in zone 1,
thus the normal force will be as shown in figure.

Calculate the following terms

__ P _950x1000 _o.0 F
f. A 25x187500 i P,

R,

M, 180x1000 x1000 ~0.0768

fuA 1 25x187500x500 . \§
M, _115x1000x1000 _, mE ;

¥ 049 :
f. At 25x187500x500 Mo=180 kN.m

367

Referring to chart (in Appendix I) with Ry=0.2, 2=0.50, £=0.85 the compression zone
in the first quarter of the chart, the reinforcement index p can be obtained as follows

\\

p=102

p=p £,10™=102x25x 10™ =0.0255
Ao = 1 A= 0.0255 x 187500 = 4781.25 mm’
The area of steel should be at least 8 bars and should be a multiple of 8

Area of one bar =:‘ZT81=299 mm’®

As,chosen= 16 (2] 20, 5026 I'ﬂl’Il2

b 5 10 /oo’
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SLENDER COLUMNS :

Photo 8.1 Unbraced slender columns at Rice University; USA.

8.1 Definition of Slender Columns

-

Consider a very short column subjected to increasing axial load, eventually the
compressive stress is exceeded and compressioi failure occurs. Now consider a
relatively slender column subjected to increasing axial load, when the load reaches a
certain value, the column begins to bend about its weaker axis and deflect laterally.
The column is said to have buckled.

For a pin-pin ideal column (without any imperfections) the buckling load (also called
Euler oad) is given by

in which EX is the flexural rigidity and L is tﬁe ‘column length.
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Thus, a column is more likely to buckle when either the len. is i
olum : gth (L) is increased or
S:m ingl:h];}ll (EI) is reduced. Up to Euler load, for a perfectly s)traight member, 311:
e ast sb 'flfue W}thotx‘t any lateral de;ftorrpation. However, at Euler load, the column
el tl rcatlop unstable” eqpxhbnum, in which it will buckle laterally with
ot W}a:i eil mlagmtude. The previous behavior is applied for perfectly straight
X , which almost does not exist in reinforced concrete industry. Colunins will not
e exactly vertical and loads are always slightly eccentric. .

ifg:l ila shows a Qm-ended cqlumn before loading. Assuming that the column is

Fig. 5.16 aTI;l pclcenmcxty e, t?lCﬂ‘lt will laterally deflect by an amount & as shown in

. - 8. d. is lateral deﬂgctlon increases the moments for which the column must be
esigned. In the. symmetrically loaded column shown here, the maximum moment

occurs at mid-height where the maximum deflection occurs.

The moments at the ends of the column are:

E

M=P(e+8)

F

{a) Before loading

(b) During loading

Fig. 8.1 Straining actions for a deflected column

A i . '
a :;e:der Folumn is defined as a column that has a significant reduction in its axial
apacity due to moments resulting from lateral deflections of the column.
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Figure 8.2 shows an interaction ‘diagram for a cross-section of a reinforced concrete

column. This diagram gives the combinations of axial load and moment, which are
required to cause failure of a very short column. The dashed radial line O-A is a plot
for the end moment on the column in Fig. 8.1b. Since the load is applied at a constant
eccentricity, €, the end moment, M., is a linear function of P, as given by Eq. (8.2.a).

The curved solid line O-B is the moment M, at mid-height of the column, given by
Eq. (8.2.b).. At any given load P, the moment at mid-height is the sum of the end
moment, Pe, and the moment due to the lateral deflection, P3. The line O-A is referred
to as a load-moment curve for the end moment, while the line O-B is the load-moment
curve for the total column moment. If the column is slender, failure occurs when the
Joad-moment curve O-B intersects the interaction diagram for the cross-section at
point B as shown in Fig. 8.2. Because of the increase in maximum moment due-to the
secondary moments, the axial load capacity is reduced from A to B. This reduction in
axial load capacity results from what are referred to as slenderness effect. Since,
failure still occurs at one of the points of the interaction diagram, it is called material
failure.

For very slender columns, failure occurs well within the cross-section interaction
diagram because of the pronounced second-order effect (slenderness effect). This type
of failure is called stability failure. In this type of failure, the collapse load of the
column (point C) is less than the actual material given by the interaction diagram.

interaction diagram
/ for column cross-section
Failure point
Short column

Failure point
Slender column

Failure point
Very slender column

\j

Fig. 8.2 Loads and moments in short and slender columns
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8.2 Classification of Buildings
The Egyptian Code ECP classifies concrete structures as being braced or unbraced.

Many concrete building structures are braced by providing shear walls, cores, or

The bracing system is not stiff enough

(]
[
o
©
/2]
elevator shafts. The stiffness of these elements is considerably higher than the § S S
columns themselves and may be assumed to attract all horizontal forces (Fig. 8.4a). 5 ] —\—\\\f
o}
An unbraced building is the one that resists the lateral loads by the framing action of f I R B e e
the beams and the columns or that is provided with flexible shear walls (Fig. 8.4b). o £ T4
According to the ECP-203, a building that does not contain shear walls is considered 3 k7]
unbraced. @ 8 —%\J—\J.\J_\_}_\J )
. . a2 — (e} ‘\\q—\\‘f o
According to the Egyptian Code, a building that contains shear walls or cores that 5 = 8
extend the full building height can be considered braced at a certain direction if they — o
were symmetrically distributed and satisfy the following equation: p a 8
2 (53]
a=H,x ZEI < 0.60 for n24 ... (8.3a) s -§ oo
2 3 [ g
ES T 3
< 0.20+0.1n for n<4 ... (8.3b) @ s 3 3
S — 5 2 B ©
where = 5 = o
=} © .2 . 8>
. o . m 5 3 T ‘ =
Hy = height of the building in meters above foundation o g g \\‘ﬁ =)
N = sum of all unfactored vertical loads of the building (total working gravity — =z = ] =
loads) _ - ‘ \—J\J\J g
Y. EI  =sum of the flexural rigidities of all the vertical stiffening elements 8 — -8
under service conditions. 7] §
n = number of stories. l-% A =
(7]
E =4400,f,, 5
It should be mentioned that a building can be considered braced in one direction and ® o
unbraced in the other depending on the distribution of the walls on plan. Fig 8.4 shows o sb
examples of braced and unbraced structures. To check the bracing of a building in the 2 29 23
two directions, one has to calculate the values o, and a as follows: g g P
: O 2=
SN . L -8 52 :
a, =H,x; (bracing in X-dir€ction) .........eoeweeeeoeeeuereremoroso (8.3c) ; o ® £ = W e i 1
D El, : o 8 2 _
. : - 5 9 B
>N | I O O
a, =H,x (bracing in y-dir€Ction) ...........oeeveeveeeveerersooos o (8.3d) £ 2
' ZEI g o3
E oy 8
< [=%

Example 8.1 illustrates the application of the above equations
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Stiff shear walls

(a) No shear walls or core)

Unbraced structure

Stiff shear

Vs Y IO PE I P IIT

%
2
zZ
Z
Z
2
H
7
4
Z
Z
%

P LI LI ELIIF IO

(c) shear walls system

Braced structure in X&Y directions

LRI II AT LA

{b) (shear walls system)

Unbraced in Y-direction
Braced in X-direction

Stiff shear walls

Y

7
Z
7
Z

RTINS
AN

H
Z
Z
Z
%

(d) shear walis+core system

Braced structure in X&Y directions

Fig. 8.4 Examples for braced & unbraced structures
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8.3 Braced and Unbraced Columns

Columns located in braced structures are referred to as braced columns. Columns
located in unbraced structures are referred to as unbraced columns.

Eccentrically loaded braced slender columns are subjected to additional moments due
to the fact that the center-line deviates from the original vertical (un-deformed) shape.
This is called additional moments due to member stability effect (Fig. 8.52).

Unbraced columns are subjected to additional moments due mainly to lateral drift
effect, which occurs due to the fact that each story is laterally shifted with respect 1o
the one below (Fig. 8.5b). Member stability effect still exists but has a minor effect.

It should be noted that member stability effect results in additional moments in braced
slender columns. On the other hand, lateral drift effect results in additional moments
in unbraced short columns as well as in unbraced slender columns. In unbraced
slender columns, however, member stability effect might increase the additional
moments.

Relative displacement
between column ends

- 2 B
\ 7
i
]
1 /
/
J o[
el /
k= \ /
.C !
sl |
3 v/
Q . /
O J
Deformed ‘ /
shape v f
il "\ Deformed
7 shape
— A
P

a) Braced column b) Un-Braced column

Fig. 8.5 Braced and unbraced columns
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8.4 Slenderness Considerations in the Egyptian Code
This section outlines the procedure adopted by the Egyptian Code for slendemess
consideration.

8.4.1 Code Definition of Slender Columns

The degree of slenderness is generally expressed in terms of the slenderness ratios

A, = e (8.4.2)
b
or
A= h.(“ ................ e teeeeteeseearnrrarasarsaneeianatas (8.4.b)
i
in which
I
I o = e rer e e e be e et nneas (8.5)
Ag
and
H, =k H, i, (8.6)
where

H, = the buckling length or the effective height of the compression member.

b =the column dimension perpendicular to the axis of bending.

k = length factor which depends on the end conditions of the compression member
as well as the bracing conditions.

H, = unsupported (clear) height of the compression member.

i = the radius of gyration of the cross section and can be taken as 0.3 b for
rectangular section and 0.25 D for circular section. For other shapes, I may be
computed for the gross concrete section.

According to the Egyptian Code, slender columns are defined as those that have
slenderness ratios greater than those mentioned in Table (8.1) but not more than those
mentioned in Table (8.2). The minimum area of steel for slender column is given by

Ay i = Has XBXE eeeeeeeeeseeesseeese oo ssssssssse e sseesseessssenens (8.72)
Hin =0.25 + 0.052 4, (for rectangular columns) ......... (8.7b)
Hin =0.25 + 0.015 2 (for other columns) ......ccccoeeee. (8.7¢)
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Table (8.1) Limits of Slenderness Ratio for Short Columns

Column Status A or % Ap 4
Braced 15 12 50
Unbraced 10 8 35

Table (8.2) Limits of Slenderness Ratio for Slender Columns

Column Status A or b Ap A
Braced 30 25 100
Unbraced 23 18 70

8.4.2 Unsupported Height of a Compression Member (H,)

The unsupported height H, of a compression member shall be taken as the clear
distance between floor slabs, floor beams, girders or other rpembers capable of
providing lateral support for the compression member. Where capitals or haunches grei
present, the unsupported length shall be measured to the lower extremity of the capita
or haunch in the plane considered (see Fig. 8.6). It.should be no.ted Fhat the buckling
length may be different in X-direction than Y-direction as shown in Fig. xx

l
I
i

c) Flat slab with
columns heads

a) Slab-beam type b) Flat plates

Fig. 8.6 Unsupported length of columns (H,)
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8.4.3 Effective Height of a Compression Member (H,)

Columns supported by hinges and rollers do not exist in real structures. The ends of a
real column are retrained against rotation by their supports, and moments always
develop. The effective length concept can be established by examining the
deformation of the buckled column with that of a pin-pin column.

The buckling length or the effective height of a compression member (H) is the
distance between the points of inflection of the diagram representing the buckled
shape of the member. It depends on the end conditions of the column and whether it is
braced against side-sway or not.

The definition of the effective height is illustrated in Figs. 8.7a and 8.7b for braced
and unbraced columns, respectively.

For braced columns, k is the smaller of:

k =[07+005 (@ +@)] £ 10 e (8.8a)

ke =[085 +0.05 (Qpin)] S 10 corrrrinsiinssssisssssnennen (8.8b)

-~

For unbraced columns, k is the smaller of:

k = [10+0.15 CRT | S K — (8.92)

E=[204030(tpa)] 2 10 s (8.9b)

where
a@;, ap = Ratio of the sum of the column stiffness to the sum of the beam
stiffness at column lower and upper ends respectively

Cmin = Smaller of o1& ay

The coefficient «is given by

(E L/H,)

o = e Tel TR0l e (8.10)

- Z(Eb Ib/Lb)
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Where

E.  =modulus of elasticity for columns

E, = modulus of elasticity for beams

I, = gross moment of inertia of the column cross-section without considering the
steel reinforcement

I, = gross moment of inertia of the beam cross-section

L, = clear span of the beam

H, = clear height of the column

Special cases

- a=1.0 for a column connected to a base designed to resist column moment.

- a=10 for a column connected to a base that is not designed to resist moment.
- a=1.0 for simply supported beams framing into a coluPmn.

Notes:

- Wheﬁ calculating the flexural rigidity of the beam cross-section that has a T shape or
L shape, the width of the flange is taken as follows

B is the smaller of (16, +b)/2 or (L,/5+b)/2 for a T-section

B is the smaller of (6¢, +b)/2 or (L,/10+B)2 for a L-section

The Egyptian Code permits the use of the gross moment of inertia of the beam section
and allows taking the effect of cracking of the beam through using half the value of
the gross moment of inertia of the beam section.

- The ratio (a) may be calculated in flat slab construction on the basis of an
equivalent beam having the width and the thickness of the column strip of the slab
in the direction of analysis.

As a simplification, the Egyptian Code gives the values of the factor (k) for four cases
of end restraint condition. The values of (k) are given in Table (8-3) for braced
columns and in Table (8-4) for unbraced columns. ’
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r Table (8-3) Values of (k) for Braced Columns
r ’

” = = End condition at bottom
1P \ “ ~~——=""N\p. FAS End condition at top
\ \ e 1 '—1 1 2 3
\ \ = \
\\ \ ‘ \\ . 1 0.75 0.80 0.90
! 1
A I e | |He 2 0.80 0.85 0.95
! |
l
/ / inlection paint | / 3 0.90 0.95 100
) H3 Taey . Nyt ' :
/ —_—_
LP. “L & ————=7\
1 TP *P Table (8-4) Values of (k) for Unbraced Columns
P
1) k=1.0 2) k=0.50 3)0.50 <k<1.0 End condition at bottom
t @ ® End condition at top " 5 3
(a) Braced columns _
‘ 1 1.20 1.30 1.60
2 1.30 1.50 1.80
P
__________ 3 1.60 1.80 -
& " 2
4 2.20 - -
The four conditions are as follows:
i) -Condition 1: The end of the column is connected monolithically to
; beams that are at least as deep as the overall dimension.of the column
\ e, . - in the plane considered. Foundation designed to withstand moments is
\\ & A considered in this category.
P : ' :
|_P§§ 1 ii) Condition 2: The end of the column is connected monolithicaily to
; \\ beams or slabs that are shallower than the overall dimensions of the
/ \ . column in the plane considered.
] (k=20 | @ k=10 (3)0.50 <k< ®
1

dip iii) Condition 3: The end of the column is connected to members which,

while not specifically designed to provide restraint to rotation of the
(b) Unbraced columns column, nevertheless, provide some nominal restraint (hinged base).

iv) Condition 4: The end of the column is unrestrained against both
Fig. 8.7 Effective heights of columns lateral movement and rotation (i.e cantilever column).

Note: The unsupported height of the column might be different in the two orthogonal
directions (X- and Y- directions). Figure 8-8 shows an example for such a case.
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Case 1
B
J! X-direction | Y-direction
T ! Case| 1-top / 3-bot. | 1-top / 3-bot.
H, | H, | H H,
| K 1.60 1.60
| H | 16xH, 1.6 xH,
Hy — 16 xH T6xH
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Y
-
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Fig. 8.8 Effective height for an unbraced column
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8.5 Design Moments in Slender Braced Columns

The Egyptian Code takes into account the increase in the applied moments in slender
columns by adding to the original moment an additional moment. The additional

moment is assumed to occur due to interaction of the applied load with the lateral
deflection of the column.

8.5.1 Calculation of the Additional Moments

According to the Egyptian Code the additional moment (M ) induced by the
deflection (&) is given by:

M = P 8 eeercereesieeinennessnn s (8.11)

add

Figure 8.9 illustrates a case of a rectangular column subjected to additional moments
in two directions.

Y

/!!\\Madd(y)

{

‘i Madd(x)

i .
i

| A

!

!

!

i

et
b

Fig. 8.9 Calculations of additional moments

If the columns is slender in t direction (about X-axis in Fig. 8.7

At

e et 8.12
! 2000 ®.12)
T S (8.13)

AZb

= e 8.14

b 2000 @.14)

YT R (8.15)
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For circular columns of diameter (D)

2
Ao D e (8.16)
2000
For columns with a general shape
2 4t
L (8.17)
30000
where
t' = column dimension in the direction considered (in mm).
Aq = slenderness ratio using the column radius of gyration i, given by Eq. 8.4b.

8.5.2 Design Moments

Assume a braced slender column subjected to two end moments M; and M, and the
M, is the larger of the two end moments. Figure (8.10) shows the distribution of
moments assumed over the height of a typical braced column. M; is the initial

moment at a section located near the mid-height and is calculated from:

M,=04M,6 +0.6M, 2 04M, e (8.18)
Fdr columns subjected to double curvature, the sign of the moment is taken negative.
The design moment for braced columns is taken as the largest value of:

MZ
M +M /2

. Note:

The axial force in a column may be calculated based on the assumption that the beams
and slabs transmitting force into it are simply supported. For the case of interior
columns supporting approximately symmetrical arrangements of beams, the end
moments (M;) and (M) may be assumed equal to zero. This assumption does not
apply to columns of flat slab construction for which moments transferred to columns
are dealt with explicitly by the code. The initial moments in exterior columns may be
estimated as given in Table (8.5).
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End condition Initial moment Additional

of column from analysis moment
v
Madd
‘
Madd
L]{_/ M, _.‘._QAC— 2
Madd
M;
|
bigger moment . Madd
{ \ |
Magd
M
Z M. gt Madd
77 1 Moas.

smaller moment

Fig. 8.10 Initial and additional moments in braced slender columns °
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Table (8.5) Design Moments for Exterior Columns

Position of moment

Moments for frames of one | Moments for frames of two

bay bays or more
Moments at foot of upper K,-M, K,-M,
column K,+ K, +0.5K, K, + K, +K,
Moments at head of lower KM, K,-M,
column K.+ K, +05K, K.+ K,+K,

Where

M ,= bending moment at the end of the beam framing in the column, assuming fixity
at both ends of the beam.

K, = stiffness of the beam
K, = stiffness of the lower
K= stiffness of the upper

column

column

Photo 8.2: Shear walls and slender columns during construction.
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8.6 Design Moments in Unbraced Slender Columns

The Egyptian Code takes into account the increase in the applied moments in
unbraced slender columns by adding to the original moment an additional moment.
The additional moment is assumed to occur due to interaction of the applied load with
the lateral deflection of the column. It should be mentioned that unbraced short
columns are also subjected to additional moments due the relative displacements of
the ends of the columns.

8.6.1 Additional moment

Unbraced columns are generally connected to floors that are rigid enough in their own.
plane to induce equal deflection (side-sway) to all columns under lateral loads. In such
a case an average deflection may be applied to all columns. This deflection can be
assessed from the following equation:

IR 37— (8.20)
where
54, =average deflection at ultimate limit state of the floor
5 = deflection at ultimate limit state for each column calculated from Egs. 8.12
n = the number of the columns in the floor :

After the calculation of (84, ), any values of the (&) more than twice (5,4, ) should

be ignored and the average recalculated. In such a case, (n) in Eq. (8.20) should be
reduced appropriately.

Mndd = P ‘ 5

qu | ceeteesseseesesessrecssesssessesscnsene

8.6.2 Design moments

Assume an unbraced slender column subjected to two end moments M, and M, and
the M, is the larger of the two end moments. The distribution of moments assumed -
over the height of an unbraced column is shown in Fig. (8.11). The design moment for
unbraced columns is taken as the largest value of: :

M 2 +M add -
where

M, is the larger initial end moment due to design ultimate loads.

Fig. 8.12 summarizes the calculations of M,4 in rectangular slender columns
according ECP-203
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Columns

End condition Initial moment Additional Design ]
of column from analysis moment moment L L

M+ M
M, Maga 2" Vada : Braced Unbraced

LL/
Short if A <15 A<10
Long if 15<A <30 10<A <25
+ = v Not acceptedif A > 30 A>23
K-factor (Table 8.3) (Table 8.4)
H,=KH,
Stiffer énd joint
M. Madd M+ Magq
L1/ 2 i | —— 7\' __‘:li
' b
+ 7 = & L
5= AD 5218
~ 2000 i *n
77 M ) i - [M=P.3 M=P.3,

1 tiff end joint
ess siill end join may be reduced in proportion to

the ratio of the stiffness of the less
stiff fo the stiffer joint

Fig.8.12 Calculations of M ddin rectangular slender columns according to ECP-203
a v

Fig. 8.11 Design moments in unbraced slender columns

389
388




AT

e

Design of columns

anbraced structure

braced structure

10-23

By
Long column

15-30

A
Long column

Short column

Short column

B
» =)
gg §‘ cHe
28 =
— 9 g
3 OE £ 5 x
Sl=T || E2 g g3
Q, Q
I A%v BET
o ¥ 88 x>
Sa4] =7 ]85=
T
= Gt 'E
Esx_ 2 %5 |
Ik i EY
on 5 oS R
&
gegw___~ i& = &
-l T o 2"’5
= 2 =
< S
P 8
I RN
Y=} ™~ o
S 82 S s ™
8 F B + % %
ExE <
3 3 %
T R0 Sw
O e L 0
2 It a hof
= a8 gy Al
w ]
3 g =
st 7/ 5 &
ck 5 =
[ | o Y o © 3
82 '\/g)gz“ﬁ
[
ST g
“8% 222 agxx
| S A O 5
<{& A==
] X - @
© oy 5 E =
'_‘.._,'\_/vq, 3 3
g8 22 3 3
ng ngi,ﬂt + &
88 Ty F8S X I &
- I 5 ~~ o~
e S5 S SES & o ¥
s> "%R&
3 <23
[y \OSQ.\"&‘
et l\.\ooo
S 8 S s M
=+E++1
E X2 33
o <
R IR
O o = St
2 ll-a . n
Lo WAl
390

.

Figure EX-8.1 shows a structural plan of an eleven story residential building. The
following data are given:

Thickness of the flat plate at all floors = 220 mm, flooring=1.5 KN/m?, equivalent wall
loads = 2 kN/m’ and the live load =3 KN/m?. The height of the ground floor is 5.0m
and that of the typical floor is 3.0 m. The weight of the core, the walls and the
columns can be assumed equal to 20000 kN. The concrete cube strength

fow =35 N/ mm”
It is required to check the bracing condition of the building in both directions.

Example 8.1

Solution

The building is provided with a core and 2 shear walls to increase its capacity to resist
the lateral loads. According to the ECP 203, the following equation is to be used to
check whether the building is braced or unbraced.

a=Hp ’—Z—NE< 0.6

H, The total height of the building above the foundation level

where

N Total unfactored vertical loads acting on all vertical elements
S EI Summation of flexural rigidity of all vertical walls in the direction under
consideration

Step 1: Calculation of N

Weight of typical floor = Own weight + Flooring + Equivalent wall load + Live load
=0.22x25+1.50 +2.0 +3.0
_ =12 KN/m’
Total Weight of floor = Area x Unit weight

= (26.00x34.00) x 12
= 10608 kN/floor

Total Weight of Building, N
= No. of floorsx Weight of floor + weight of core, walls and columns

= 11x 10608+20000
= 136688 kN

3N




50m

5.0m 6.0m 50m 50m

®

5.0

;

I .

?

Figure Ex-8.1. Plan of a Typical Story

Step 2:Calculation of the moment of inertia of the core and the walls

The core resists lateral loads in the X- and the Y-directions. The walls resist lateral
loads in the Y-direction only.

For the Core
 3x0.35x3.85%2.275+6.3x0.35x 0.175 _ | 53,
3%0.35x3.85+6.3x0.35 ’

3. 3
= 2‘&3—?2"—3'—85—'+3x0.35x3.85x(2.275— 1.53)? +—6'-3-"1—2£§—+ 6.3%0.35%(1.53-0.175)

I, =11.30m"

3 3
I, = 3"0'3?2"3'85 + 0'35;‘26'3 +2x0.35x3.85 (6—;—-0.175)Z =31.19m*

Y
0.35 0.35 0.35
11 g mi
T 1
£ 2
[ep]
Sr! B - | - - )i>
gy

For the Walls 0.3:
0.35x4.2° 'T—
[ =222t 2216 m [l
12
4 i
I,=2.16m o X
& — -
4.2%0.35° ~ !
I), = =zero i
12 : Ll-

Step 3: Calculation of Hp
Height of the building above the foundation
=10 x3.0 +5.0=35.0m
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Step 4: Check bracing condition in Y-direction (Calculation of a,)

The lateral bracing of the building in Y-direction is achieved by the core, I, = 11.3 m*
and the two shear walls.

E = 4400,[f,, N/mm’
E = 4400335 = 2.6 x10* N/ mm? =2.6x10 kN / m*

S EL, = ES( x(core) + 2% I x(wall)) =2.6x107 x(11.30+2x2.16) = 4.06x10% kN.m?

N
EI,

3500 [ O
4.06x10

= (.64 > 0.60 Unbraced Structure in Y-direction

a, =H,

Step 5: Check bracing condition in X-direction (Calculation of <)
The bracing of the building in X-direction is achieved by the core, I, = 31.19 m”.

S El,=ExI,,, =2.6x10"x31.19=8.1x10" kN.m*

N
El,

a,=H,

136688
8.1x10°

=0.45<0.60 Braced Structure in X-direciion

a, =35.0x

Unbraced in Y-direction

Braced in X-direction
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Example 8.2 :

Design the rectangular column shown in the figure below to support a factored load of
1500 kKN. For simplicity the column may be assumed hinged at the foundation level.
The column is considered unbraced in x-direction and braced in y-direction. The
material properties are fo, = 30 N /mm’ and f,= 360 N fmm®.

beam 250x6Q0 |

g |
O
I
—A 0.45
e
AN A
L1 1

050
L. L
|
N\
6.60m

2.80

Elevation

Y.
beam
{450 250x600 |
7] !

=

beam
250x600

Sec A-A
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Solution:
Step No.1: Considering the moments developed in t-direction (M,)

The column is considered unbraced in X and Y directions as no lateral resisting system
is provided.

Clear height of the column, H, = 6.6- 0.6=6.0 m

The top end of the column is connected monolithicaily to beams that are deeper than
the dimension of the column (condition1), while the bottom end of the column is given
as hinged condition (condition 3).

From Table (8-4), the effective length factor —— k =1.60.

The effective height, He =k H,
H.=1.60x6.0=9.60 m

e

nple =T 45

The column is classified as slender column in the direction considered, and additional
moment is developed.

H =—9ﬁ= 21.33 >10and not more than 23

Y
_Axt 2133 %045 _ o _ |
2000 2000 ' /:\\ M)
i
M, . =P, x ¢ =1500x0.102 =153kN.m o |
So? 4.-—. §_._..._ _____ X
Mloml {in-plane) = Mu + Madd O 1
M, =0 !
. — — o
% (inplane) = 0+153 =153 kN.m » ‘ =450
~M, =153 kKN.m.

Step No.2: Considering the moments déveloped in b-direction (M,)
Clear height of the column, H, = 2.80 m (the largest of the two heights)

The top end of the column is connected monolithically to beams that are deeper than
the dimension of the column (condition1), while the bottom end of the column is given
as hinged condition(condition 3).

From Table (8-4), the effective length factor—— k= 0.90.
The effective height, H. =k H, ) '
H.=0.90x2.80=2.52m

A, H, =2—'5—2—=8.4<10

outof planc =T 0.30

The column is classified as short column in the direction considered, and no additional
moment is developed.

M tot,{outof ptane) = Mu + Madd
~M tot,(out of planc) =

5

- M, =0 :

Step No.3: Design of the reinforcement:

The column is subjected to uniaxial bending, calculate the following terms:

B, _ 1500x1000
fo-bt 30x300x450

0.37

M, 153x10°

= =0.084
f.bt* 30x300x450

_ 450-2x40

250 = 0.82 »—Use £=0.80(conservative)

Assume cover =40 mm ¢

Using the uniaxial interaction diagram (top & bottom steel) (Appendix B)
From the diagram with J, = 360 N /mm’, { = 0.80, & =1—>—p=3.5
p=3.5% 30 x 10™=0.00875 < 1t rmax (0.05) (external column).
As=pbt=0.00875 x 300 x 450 = 1181 mm’

A, =A! =1181mm*

A g =A, +A! =1181+1181 = 2362 mm’

s, total
I min = 0.25 +0.052 x 21.33 =1.359 %

Aqmin=0.01359 x 300 x 450 = 1834.65 mm’ < A;,
Choose 5 @ 18 top & 5 @ 18 bottom (A o= 2544 mm’)

. 450 mm -

300 mm
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Example 8.3 Solution:
Design the rectangular column shown in the figure below to support a factored Step 1: Considering the in-plane direction of the column (M.)
eccentric load of 500 kN (own weight of colurmn may be neglected). The column is Since the structure is not provided by lateral resisting system, it is considered
connected to a footing that can resist moment. The material properties are fu=25N unbraced. Clear height of the column, H, = 6.0 m
/mm’” and f, =400 N fom’. The top end of the column is unrestrained against both lateral movement & rotation
(cantilever column) (condition 4) while the bottom end of the column is connected to
a footing that can resist moment (condition 1). From Table (8-4), the effective iength
8 factor, k = 2.20.
+ '*“_"' 500 KN
L . T The effective height, H = k Ho
| | H,=220x6.0=1320m
! beam 250x700
"—5 ! ‘ Aipeotane He 1320 22 >10 and not more than 23
| At Ta P T 0.60
L ‘ o The column is classified as a slender column in the direction considered, and an
C -+ c N I 800, additional moment is developed. \
l gl A’xt _22x0.60 .
Sec. A-A d= =22 ——=0.145 i
! 2000 2000 - i <
=] [ I - SRS I § -
! M, =P, x5=500x0.145 = 72.5KN.m © :
i = M
‘ Mlolal.(in-p\ane) =Mu+Madd ] 25“0— add(x)
i -+ M, =500x0.50 = 250KN.m 15
ia
Semelle My ety = 250+72.5=322.5KN.m 2
| [250x600, I i ol S
: t { s M, =322.5KN.m. i85
I | . i
} : — : g
i T ] ! | I TR LA < g J
K 250 Kn.m 250 Kn.m
Elevation In-plane direction '
b . 250 Kn. 250 Kn.
| 250x700 2%839"00_ | &EB_E. - - B
[ =t X |
S é C
eCc -
Fig Ex.8.3 + =
250 Kn.m 72.5 Kn.m 322.5 Knm
Original Additional Total
moment moment moment
398 . 399




I —

Step No.2: Considering the out of plane direction of the column(M,)
Clear height of the column, H, = 6-0.70=5.30m

The top end of the column is connected monolithically to beams that are deeper than
the dimension of the column (conditionl), while the bottom end of the column is
connected to a footing that can resist moment (condition 1).

From Table (8-4), the effective length factor —»—— k=1.20.
The effective height, H, =k H,
H,=1.20x5.30=6.36m

0'36 = 21.2 >10and not more than 23

=)

A

‘outof plane

|

H
b

(=]

beam 250x700

The column is classified as slender column in the direction considered, and additional
moment is induced.

_A%xb _ 21.22x0.30

= = =0.067
2000 2000
M, =P,x6=500x0.067 =33.5kN.m 300
Mmml.(uu(ofplanc) = Mu + Madd :
M s outarpiang = 0+33:5=33.5kN .m 1' X (out-of-plan direction)
et
~M, =33.5KN.m P
]
i
/T\ My=0
t
/TN Muagy33.5
Y

:

400

Step No.3: Design of the reinforcement:

The column is subjected to the following straining actions(compression force+ biaxial
bending)

P,=500 kN
M,=322.5 KN.m
M,=33.51N.m

Determine the load level R, as follows:

Ry = fwl.J;v.a - 255 22;33‘35%0 =011
Since R, <0.2— B =0.80
Assume that the concrete cover = 40 mm
a' =600—-40=560mm

b'=300-40=260mm

I |

SinceM, /a' =(322.5/560)>M,