.’;§TW47

salwnsassia:i] -

‘Concrete
Structures

1lson

. i)avid Darwin

-Charles W. Dolan



DESIGN .
CONCRETE
STRUCTURES







DESIGN .

CONCRETE
STRUCTURES

Fourteenth Edition

Arthur H. Nilson

Professor Emeritus
College of Engineering
Cornell University

David Darwin

Deane E. Ackers Distinguished Professor
of Civil, Environmental & Architectural Engineering
University of Kansas

Charles W. Dolan

H. T. Person Professor of Engineering
University of Wyoming

Mc . .
cx Higher Education

Boston Burr Ridge, IL  Dubuque, IA  New York San Francisco St. Louis
Bangkok Bogotd Caracas KualaLumpur Lisbon London Madrid Mexico City
Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto



The McGraw-Hill companies

Mc » .
cvl Higher Education

DESIGN OF CONCRETE STRUCTURES, FOURTEENTH EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of
the Americas, New York, NY 10020. Copyright © 2010 by The McGraw-Hill Companies, Inc. All
rights reserved. Previous editions © 2004, 1997, and 1991. No part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written consent of The McGraw-Hill Companies, Inc., including, but not limited
to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers
outside the United States.

@'I‘his book is printed on recycled, acid-free paper containing 10% postconsumer waste.
1234567890QPD/QPD 09

ISBN 978-0-07-329349-3
MHID 0-07-329349-0

Global Publisher: Raghothaman Srinivasan
Sponsoring Editor: Debra B. Hash

Director of Development: Kristine Tibbetts
Developmental Editor: Lorraine K. Buczek

Senior Marketing Manager: Curt Reynolds

Project Manager: Melissa M. Leick

Lead Production Supervisor: Sandy Ludovissy
Associate Design Coordinator: Brenda A. Rolwes
Cover Designer: Studio Montage, St. Louis, Missouri
(USE) Cover Image: Getty Images

Lead Photo Research Coordinator: Carrie K. Burger
Compositor: Laserwords Private Limited

Typeface: 10.5/12 Times Roman

Printer: Quebecor World Dubuque, IA

All credits appearing on page or at the end of the book are considered to be an extension of the
copyright page.

Library of Congress Cataloging-in-Publication Data

Nilson, Arthur H.

Design of concrete structures / Arthur H. Nilson, David Darwin, Charles W. Dolan.—14th ed.

p. cm.

Includes index.

ISBN 978-0-07-329349-3—ISBN 0-07-329349-0 (hard copy : alk. paper) 1. Reinforced
concrete construction. 2. Prestressed concrete construction. I. Darwin, David.
I1. Dolan, Charles W. (Charles William), 1943- III. Title.

TA683.2.N55 2010

624.1'834—dc22

2009006344

www.mhhe.com



Arthur H. Nilson was engaged in research, teaching, and consulting relating to struc-
tural concrete for over 40 years. He has been a member of the faculty of the College
of Engineering at Cornell University since 1956, in charge of undergraduate and grad-
uate courses in the design of reinforced concrete and prestressed concrete structures
until his retirement in 1991. He served as Chairman of the Department of Structural
Engineering from 1978 to 1985. Dr. Nilson has served on many professional com-
mittees, including Building Code Subcommittee 318-D of the American Concrete
Institute (ACI). His pioneering work on high-strength concrete has been widely
recognized. He was awarded the ACI Wason Medal for materials research in 1974, the
ACI Wason Medal for best technical paper in 1986 and 1987, and the ACI Structural
Research Award in 1993. Professor Nilson is an Honorary Member of ACI and a
Fellow in the American Society of Civil Engineers (ASCE). He has been honored by
the civil engineering student body at Cornell for outstanding teaching. He was elected
Professor Emeritus in 1991. He has held research appointments or lectureships at the
University of Manchester, Salford University, and the Technical University of Milan.
He is a registered professional engineer in several states and, prior to entering teaching,
was engaged in full-time professional practice. He received the B.S. degree from
Stanford University in 1948, the M.S. from Cornell in 1956, and the Ph.D. from the
University of California at Berkeley in 1967.

David Darwin has been a member of the faculty at the University of Kansas since
1974 and has been director of the Structural Engineering and Materials Laboratory
since 1982. He was appointed the Deane E. Ackers Distinguished Professor of Civil
Engineering in 1990. Dr. Darwin served as President of the American Concrete
Institute in 2007—2008 and is a member and past chair of ACI Committees 224 on
Cracking and 408 on Bond and Development of Reinforcement. He is also a member
of ACI Building Code Subcommittee 318-B on Reinforcement and Development and
of ACI-ASCE Committee 445 on Shear and Torsion. Dr. Darwin is an acknowledged
expert on concrete crack control and bond between steel reinforcement and concrete.
He received the ACI Arthur R. Anderson Award in 1992 for his research efforts in
plain and reinforced concrete, the ACI Structural Research Award in 1996, and the
ACI Joe W. Kelly Award in 2005 for his contributions to teaching and design. He has
also received a number of awards from the American Society of Civil Engineers,
including the Walter L. Huber Civil Engineering Research Prize in 1985; the Moisseiff
Award in 1991; the State-of-the-Art of Civil Engineering Award in 1996 and 2000; the
Richard R. Torrens Award in 1997; and the Dennis L. Tewksbury Award in 2008. He
has been honored for his teaching by the civil engineering students at the University

\4



vi

About the Authors

of Kansas. He is past editor of the ASCE Journal of Structural Engineering. Professor
Darwin is a Fellow of ACI and ASCE. He is a licensed professional engineer and
serves as a consultant in the fields of concrete materials and structures. He was hon-
ored with the Distinguished Alumnus Award from the University of Illinois Civil and
Environmental Engineering Alumni Association in 2003. Between his M.S. and Ph.D.
degrees, he served four years with the U.S. Army Corps of Engineers. He received the
B.S. and M.S. degrees from Cornell University in 1967 and 1968 and the Ph.D. from
the University of Illinois at Urbana-Champaign in 1974.

Charles W. Dolan has been on the faculty at the University of Wyoming since 1991,
serving as Department Head from 1998 to 2001. He was appointed the H. T. Person
Professor of Engineering in 2002. He is currently chair of Building Code Subcommittee
318-R of the American Concrete Institute. He has served as chair of the Technical
Activities Committee, of ACI Committee 358 on Transit Guideways, and of ACI-ASCE
Committee 423 on Prestressed Concrete. In private design practice for nearly 20 years,
he was the project engineer on the Walt Disney World Monorail, the Detroit Downtown
Peoplemover guideway, and the Dallas—Fort Worth Airport transit system guideway
and is responsible for the conceptual design of the Dubai Palm Island monorail. He
received the T. Y. Lin Award from ASCE in 1973 for outstanding contributions to the
field of prestressed concrete and the Arthur R. Anderson award from ACI in 2005 for
advancements in the design of reinforced and prestressed concrete structures. A
Fellow in ACI and the Prestressed Concrete Institute (PCI), he is an internationally
recognized leader in the development of fiber reinforced polymers for concrete rein-
forcement. He is a registered professional engineer and a consultant in the design of
structural concrete. He received the B.S. from the University of Massachusetts in 1965
and the M.S. and Ph.D. from Cornell University in 1967 and 1989.



About the Authors v

Preface Xiv

Chapter 1 Introduction 1
1.1 Concrete, Reinforced Concrete, and Prestressed Concrete 1
1.2 Structural Forms 2
1.3 Loads 8
1.4 Serviceability, Strength, and Structural Safety 12
1.5  Design Basis 15
1.6 Design Codes and Specifications 16
1.7  Safety Provisions of the ACI Code 17
1.8  Fundamental Assumptions for Reinforced
Concrete Behavior 19
1.9  Behavior of Members Subject to Axial Loads 20
References 26
Problems 27
Chapter 2 Materials 28
2.1 Introduction 28
22  Cement 28
2.3 Aggregates 29
2.4  Proportioning and Mixing Concrete 31
2.5  Conveying, Placing, Compacting, and Curing 33
2.6  Quality Control 34
277  Admixtures 38
2.8  Properties in Compression 40
2.9  Properties in Tension 46
2.10  Strength under Combined Stress 48
2.11 Shrinkage and Temperature Effects 49
| 2.12 High-Strength Concrete 52
2.13  Reinforcing Steels for Concrete 54
2.14 Reinforcing Bars 55
: 2.15 Welded Wire Reinforcement 61
" 2.16 Prestressing Steels 61
References 63
- Problems 65

vii




viii

Contents

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Flexural Analysis and Design of Beams

3.1
32
33
34
35
3.6
37

3.8

Introduction

Bending of Homogeneous Beams

Reinforced Concrete Beam Behavior

Design of Tension-Reinforced Rectangular Beams
Design Aids

Practical Considerations in the Design of Beams
Rectangular Beams with Tension and Compression
Reinforcement

T Beams

References

Problems

Shear and Diagonal Tension in Beams

4.1
4.2
4.3

4.4
4.5
4.6
4.7
4.8
4.9

Introduction

Diagonal Tension in Homogeneous Elastic Beams
Reinforced Concrete Beams without Shear
Reinforcement

Reinforced Concrete Beams with Web Reinforcement
ACI Code Provisions for Shear Design

Effect of Axial Forces

Beams with Varying Depth

Alternative Models for Shear Analysis and Design
Shear-Friction Design Method

References

Problems

Bond, Anchorage, and Development Length

5.1
5.2
53

5.4
55
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13

Fundamentals of Flexural Bond

Bond Strength and Development Length
ACI Code Provisions for Development

of Tension Reinforcement

Anchorage of Tension Bars by Hooks
Anchorage in Tension Using Headed Bars
Anchorage Requirements for Web Reinforcement
Welded Wire Reinforcement
Development of Bars in Compression
Bundled Bars

Bar Cutoff and Bend Points in Beams
Structural Integrity Provisions

Integrated Beam Design Example

Bar Splices

References

Problems

Serviceability

6.1
6.2

Introduction
Cracking in Flexural Members

67
67
67
69
80
94
97

99
108
115
116

120
120
121]

124
131
136
145
150
151
160
164
166

168
168
172

177
181
185
189
190
191
191
192
199
200
204
207
208

213
213
213



Chapter 7

Chapter 8

Chapter 9

6.3
6.4
6.5
6.6
6.7
6.8

6.9

Contents

ACI Code Provisions for Crack Control
Control of Deflections

Immediate Deflections

Deflections Due to Long-Term Loads
ACI Code Provisions For Control of Deflections
Deflections Due to Shrinkage and
Temperature Changes

Moment vs. Curvature for Reinforced
Concrete Sections

References

Problems

Analysis and Design for Torsion

7.1
72
7.3
7.4
7.5

Introduction

Torsion in Plain Concrete Members
Torsion in Reinforced Concrete Members
Torsion Plus Shear

ACI Code Provisions for Torsion Design
References

Problems

Short Columns

8.1
8.2
8.3
8.4

8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16

Introduction: Axial Compression

Lateral Ties and Spirals

Compression Plus Bending of Rectangular Columns
Strain Compatibility Analysis and Interaction
Diagrams

Balanced Failure

Distributed Reinforcement

Unsymmetrical Reinforcement

Circular Columns

ACI Code Provisions for Column Design

Design Aids

Biaxial Bending

Load Contour Method

Reciprocal Load Method

Computer Analysis for Biaxial Bending of Columns
Bar Splicing in Columns

Transmission of Column Loads Through Floor Systems
References

Problems

Slender Columns

9.1
9.2
9.3
9.4
9.5

Introduction

Concentrically Loaded Columns

Compression Plus Bending

ACI Criteria for Slenderness Effects in Columns
ACI Criteria for Nonsway vs. Sway Structures

ix

216
219
220
223
226

232

234
238
238

241
241
242
245
249
250
258
259

262
262
265
269

270
273
276
278
279
281
282
285
287
288
291
292
293
294
295

299
299
300
303
309
310



Contents

Chapter 10

Chapter 11

Chapter 12

Chapter 13

9.6
9.7
9.8

ACI Moment Magnifier Method for Nonsway Frames
ACI Moment Magnifier Method for Sway Frames
Second-Order Analysis for Slenderness Effects
References

Problems

Strut-and-Tie Models

10.1
10.2
10.3
10.4
10.5

Introduction

Development of Strut-and-Tie Models
Strut-and-Tie Design Methodology

ACI Provisions for Strut-and-Tie Models
Applications

References

Problems

Design of Reinforcement at Joints

11.1
11.2
11.3
114
11.5
11.6
11.7

Introduction

Beam-Column Joints

Strut-and-Tie Model for Joint Behavior
Beam-to-Girder Joints

Ledge Girders

Corners and T Joints

Brackets and Corbels

References

Problems

Analysis of Indeterminate Beams and Frames

12.1
12.2
12.3
124
12.5
12.6

12.7
12.8
12.9
12.10

Continuity

Loading

Simplifications in Frame Analysis
Methods for Elastic Analysis
Idealization of the Structure
Preliminary Design and Guidelines
for Proportioning Members
Approximate Analysis

ACI Moment Coefficients

Limit Analysis

Conclusion

References

Problems

Analysis and Design of Slabs

13.1
13.2
13.3
134
13.5

Types of Slabs

Design of One-Way Slabs

Temperature and Shrinkage Reinforcement
Behavior of Two-Way Edge-Supported Slabs
Two-Way Column-Supported Slabs

312
320
325
327
328

332
332
332
336
342
347
356
356

358
358
359
371
373
374
377
380
384
385

387
387
389
391
393
394

399
401
406
409
420
421
421

424
424
426
429
432
436



Chapter 14

Chapter 15

Chapter 16

13.6
13.7
13.8
139
13.10
13.11
13.12
13.13
13.14

Contents

Direct Design Method for Column-Supported Slabs
Flexural Reinforcement for Column-Supported Slabs
Depth Limitations of the ACI Code

Equivalent Frame Method

Shear Design in Flat Plates and Flat Slabs

Transfer of Moments at Columns

Openings in Slabs

Deflection Calculations

Analysis for Horizontal Loads

References

Problems

Yield Line Analysis for Slabs

14.1
14.2
14.3
144
14.5
14.6
14.7
14.8
149

Introduction

Upper and Lower Bound Theorems
Rules for Yield Lines

Analysis by Segment Equilibrium
Analysis by Virtual Work

Orthotropic Reinforcement and Skewed Yield Lines
Special Conditions at Edges and Corners
Fan Patterns at Concentrated Loads
Limitations of Yield Line Theory
References

Problems

Strip Method for Slabs

15.1
15.2
15.3
154
15.5
15.6
15.7
15.8
15.9

Introduction

Basic Principles

Choice of Load Distribution
Rectangular Slabs

Fixed Edges and Continuity
Unsupported Edges

Slabs with Holes

Advanced Strip Method
Comparisons of Methods for Slab Analysis and Design
References

Problems

Footings and Foundations

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

Types and Functions

Spread Footings

Design Factors

Loads, Bearing Pressures, and Footing Size
Wall Footings

Column Footings

Combined Footings

Two-Column Footings

Strip, Grid, and Mat Foundations

xi

439
445
447
454
462
477
480
482
489
490
492

497
497
500
500
504
506
511
513
515
516
517
517

522
522
523
524
527
529
534
542
546
554
555
555

559
559
559
560
561
563
565
574
575
582



xii

Contents

Chapter 17

Chapter 18

Chapter 19

16.10 Pile Caps

References
Problems

Retaining Walls

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
17.10

Function and Types of Retaining Walls

Earth Pressure

Earth Pressure for Common Conditions of Loading
External Stability

Basis of Structural Design

Drainage and Other Details

Example: Design of a Gravity Retaining Wall
Example: Design of a Cantilever Retaining Wall
Counterfort Retaining Walls

Precast Retaining Walls

References

Problems

Concrete Building Systems

18.1
18.2
18.3
18.4
18.5
18.6

Introduction

Floor and Roof Systems

Panel, Curtain, and Bearing Walls
Shear Walls

Precast Concrete for Buildings
Engineering Drawings for Buildings
References

Prestressed Concrete

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8
19.9
19.10
19.11
19.12
19.13
19.14
19.15
19.16
19.17
19.18

Introduction

Effects of Prestressing

Sources of Prestress Force

Prestressing Steels

Concrete for Prestressed Construction

Elastic Flexural Analysis

Flexural Strength

Partial Prestressing

Flexural Design Based on Concrete Stress Limits
Shape Selection

Tendon Profiles

Flexural Design Based on Load Balancing

Loss of Prestress

Shear, Diagonal Tension, and Web Reinforcement
Bond Stress, Transfer Length, and Development Length
Anchorage Zone Design

Deflection

Crack Control for Class C Flexural Members
References

Problems

584
587
587

589
589
589
593
594
597
598
599
601
608
610
611
611

613
613
614
627
628
631
646
646

648
648
649
653
656
658
660
666
670
672
682
683
685
690
694
701
702
706
710
710
711



Chapter 20

Appendix A

Appendix B

Index

Contents

Seismic Design

20.1 Introduction

20.2  Structural Response

20.3 Seismic Loading Criteria

20.4 ACI Provisions for Earthquake-Resistant Structures

20.5 ACI Provisions for Special Moment Frames

20.6 ACI Provisions for Special Structural Walls,
Coupling Beams, Diaphragms, and Trusses

20.7 ACI Provisions for Shear Strength

20.8 ACI Provisions for Intermediate Moment Frames
References
Problems

Design Aids

S| Conversion Factors:
Inch-Pound Units to Sl Units

xiii

714
714
716
721
726
727

739
742
747

749
749

751

785

787



xiv

The fourteenth edition of Design of Concrete Structures has the same dual objectives
as the previous work: first to establish a firm understanding of the behavior of structural
concrete, then to develop proficiency in the methods used in current design practice. It
has been updated in accordance with the provisions of the 2008 American Concrete
Institute (ACI) Building Code.

It is generally recognized that mere training in special design skills and codified
procedures is inadequate for successful professional practice. As new research becomes
available and new design methods are continually introduced, these procedures are
subject to frequent changes. To understand and keep abreast of these rapid develop-
ments and to engage safely in innovative design, the engineer needs a thorough ground-
ing in the basic performance of concrete and steel as structural materials, and in the
behavior of reinforced concrete members and structures. On the other hand, the main
business of the structural engineer is to design structures safely, economically, and
efficiently. Consequently, with this basic understanding as a firm foundation, famil-
iarity with current design procedures is essential. This edition, like the preceding ones,
addresses both needs.

The text not only presents the basic mechanics of structural concrete and methods
for the design of individual members for bending, shear, torsion, and axial forces, but
also provides much detail pertaining to applications in the various types of structural
systems, including an extensive presentation of slabs, footings, foundations, and retain-
ing walls. The important topic of joint design is included. The chapter on flexural
design has been expanded to improve the presentation of both the basic material and
the example problems, coverage of seismic design is updated, and an introduction to
prestressed concrete is included, as in previous editions.

There have been a number of significant changes in the 2008 ACI Building Code,
which governs design practice in most of the United States and serves as a model code
in many other countries as well. Among these are a reorganization of the provisions
for both slender column and earthquake design, the former with some simplification
compared to earlier Codes and the latter with some important additions; and the addition
of headed studs for use as shear reinforcement in two-way slabs and headed deformed
bars as another option for use in anchoring reinforcement.

In addition to changes in the ACI Code, the text includes the modified compres-
sion field theory method of shear design as updated in the 2008 Interim Revisions to
the American Association of State Highway and Transportation Officials (AASHTO)
LRFD Bridge Design Specifications.

A feature of the text is the comprehensive presentation of all aspects of slab
design. A chapter covering one-way and two-way edge-supported and column-supported
slabs, including the new Code material on headed studs, is followed by chapters on slab
analysis and design based on the theory of plasticity covering, respectively, the yield
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line method for analysis and the strip method for design of slabs, both particularly
useful for innovative structures.

A special strength of the text is the analysis chapter, which includes load com-
binations for use in design, a description of envelope curves for moment and shear,
guidelines for proportioning members under both gravity and lateral loads, and
procedures for developing preliminary designs of reinforced concrete structures.

Most present-day design is carried out using computer programs, either general-
purpose, commercially available software or individual programs written for special
needs. Step-by-step procedures are given throughout the book to guide the student and
engineer through the increasingly complex methodology of current design, with the
emphasis on understanding the design process. Once mastered, these procedures are
easily converted into flowcharts to aid in programming. References are given, where
appropriate, to the more widely used commercial programs.

The text will be found suitable for either a one or two-semester course in the
design of concrete structures. If the curriculum permits only a single course (probably
taught in the fourth undergraduate year), the following will provide a good basis: the
introduction and treatment of materials found in Chapters 1 and 2, respectively; the
material on flexure, shear, and anchorage in Chapters 3, 4, and 5; Chapter 6 on serv-
jceability; Chapter 8 on short columns; and the introduction to one and two-way slabs
found in the first four sections of Chapter 13. Time may or may not permit classroom
coverage of frame analysis or building systems, Chapters 12 and 18, but these
could well be assigned as independent reading, concurrent with the earlier work of
the course. In the authors’ experience, such complementary outside reading tends to
enhance student motivation.

The text is more than adequate for a second course, most likely taught in the first
year of graduate study. The authors have found that this is an excellent opportunity to
provide students with a more general understanding of reinforced concrete structural
design, often beginning with Chapters 12 and 18 and followed by the increasingly
important topics of torsion, Chapter 7; slender columns, Chapter 9; the strut-and-tie
method, Chapter 10; and the design and detailing of joints, Chapter 11. It should also
offer an opportunity for a much expanded study of slabs, including the remaining sec-
tions of Chapter 13, plus the methods for slab analysis and design based on plasticity
theory found in Chapters 14 and 15, yield line analysis and the strip method of design.
Other topics appropriate to a second course include foundations and retaining walls,
Chapters 16 and 17, and the introduction to seismic design in Chapter 20. Prestressed
concrete is sufficiently important to justify a separate course. If time constraints do
not permit this, Chapter 19 provides an introduction and can be used as the text for a
one-credit-hour course.

At the end of each chapter, the user will find extensive reference lists, which
provide an entry into the literature for those wishing to increase their knowledge
through independent study. For professors, the instructor’s solution manual is avail-
able online at www.mhhe.com/concrete.

A word must be said about units. In the United States, regrettably, the transition
from U.S. Customary System units to the metric system has proceeded very slowly, and
in many quarters not at all. This is in part because of the expense to the construction
industry of the conversion, but perhaps also because of perceived shortcomings
in the SI metric system (use of derived units such as the pascal, elimination of the
convenient centimeter, etc.) compared with the traditional European metric system.
Although most basic science courses are taught using SI units, in most upper-class and
graduate design courses, inch-pound units are customarily used, reflecting conditions
of practice here. Accordingly, inch-pound units are used throughout the text, although
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graphs and basic data in Chapter 2 are given in dual units. Appendix B gives the SI
equivalents of inch-pound units. An SI version of the ACI Building Code is available.

A brief historical note may be of interest. This book is the fourteenth edition of
a textbook originated in 1923 by Leonard C. Urquhart and Charles E. O’Rourke, both
professors of structural engineering at Cornell University at that time. Over its remark-
able 86-year history, new editions have kept pace with research, improved materials,
and new methods of analysis and design. The second, third, and fourth editions firmly
established the work as a leading text for elementary courses in the subject area.
Professor George Winter, also of Cornell, collaborated with Urquhart in preparing the
fifth and sixth editions. Winter and the present senior author were responsible for the
seventh, eighth, and ninth editions, which substantially expanded both the scope and
the depth of the presentation. The tenth, eleventh, and twelfth editions were prepared
by Professor Nilson subsequent to Professor Winter’s passing in 1982, the latter with
Professor David Darwin of the University of Kansas serving as a contributor.

Professors Nilson and Darwin were joined by Professor Charles Dolan of the
University of Wyoming beginning with the thirteenth edition. All three have been
deeply involved in research and teaching in the fields of reinforced and prestressed
concrete, as well as professional Code-writing committees, and have spent significant
time in professional practice, invaluable in developing the perspective and structural
judgement that sets this book apart.

Special thanks are due to reviewers and former students for their many helpful
comments and suggestions for this and previous editions. In particular, the authors
would like to thank the following reviewers: Paul Barr, Utah State University; Robert
N. Emerson, Oklahoma State University; A. Fafitis, Arizona State University; R. Craig
Henderson, Tennessee Technological University; Max Porter, Iowa State University;
Pizhong Qiao, The University of Akron; Aziz Saber, Louisiana Tech University; and
Eric Steinberg, Ohio University. Thanks are also due to the McGraw-Hill project team,
notably Debra Hash, Sponsoring Editor; Lorraine Buczek, Developmental Editor; and
Melissa Leick, Project Manager.

We gladly acknowledge our indebtedness to the original authors. Although it is
safe to say that neither Urquhart nor O’Rourke would recognize very much of the
detail, the approach to the subject and the educational philosophy that did so much to
account for the success of the early editions would be familiar. We acknowledge with
particular gratitude the influence of Professor George Winter in developing a point of
view that has shaped the work in the chapters that follow.

Arthur H. Nilson
David Darwin
Charles W. Dolan

ELECTRONIC TEXTBOOK OPTIONS

Ebooks are an innovative way for students to save money and create a greener envi-
ronment at the same time. An ebook can save students about half the cost of a tradi-
tional textbook and offers unique features like a powerful search engine, highlighting,
and the ability to share notes with classmates using ebooks.

McGraw-Hill offers two ebook options: purchasing a downloadable book from
VitalSource or a subscription to the book from CourseSmart. To talk about the ebook
options, contact your McGraw-Hill Sales Representative or visit the sites directly at
www.vitalsource.com and www.coursesmart.com.



1.1

Introduction

CONCRETE, REINFORCED CONCRETE,
AND PRESTRESSED CONCRETE

Concrete is a stonelike material obtained by permitting a carefully proportioned
mixture of cement, sand and gravel or other aggregate, and water to harden in forms
of the shape and dimensions of the desired structure. The bulk of the material consists
of fine and coarse aggregate. Cement and water interact chemically to bind the aggre-
gate particles into a solid mass. Additional water, over and above that needed for this
chemical reaction, is necessary to give the mixture the workability that enables it to
fill the forms and surround the embedded reinforcing steel prior to hardening.
Concretes with a wide range of properties can be obtained by appropriate adjustment
of the proportions of the constituent materials. Special cements (such as high early
strength cements), special aggregates (such as various lightweight or heavyweight
aggregates), admixtures (such as plasticizers, air-entraining agents, silica fume, and
fly ash), and special curing methods (such as steam-curing) permit an even wider vari-
ety of properties to be obtained.

These properties depend to a very substantial degree on the proportions of the
mix, on the thoroughness with which the various constituents are intermixed, and on
the conditions of humidity and temperature in which the mix is maintained from the
moment it is placed in the forms until it is fully hardened. The process of controlling
conditions after placement is known as curing. To protect against the unintentional
production of substandard concrete, a high degree of skillful control and supervision
is necessary throughout the process, from the proportioning by weight of the individ-
ual components, through mixing and placing, until the completion of curing.

The factors that make concrete a universal building material are so pronounced
that it has been used, in more primitive kinds and ways than at present, for thousands
of years, starting with lime mortars from 12,000 to 6000 BCE in Crete, Cyprus,
Greece, and the Middle East. The facility with which, while plastic, it can be deposited
and made to fill forms or molds of almost any practical shape is one of these factors.
Its high fire and weather resistance is an evident advantage. Most of the constituent
materials, with the exception of cement and additives, are usually available at low cost
locally or at small distances from the construction site. Its compressive strength, like
that of natural stones, is high, which makes it suitable for members primarily subject
to compression, such as columns and arches. On the other hand, again as in natural
stones, it is a relatively brittle material whose tensile strength is small compared with
its compressive strength. This prevents its economical use in structural members that
are subject to tension either entirely (such as in tie-rods) or over part of their cross
sections (such as in beams or other flexural members).
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To offset this limitation, it was found possible, in the second half of the
nineteenth century, to use steel with its high tensile strength to reinforce concrete,
chiefly in those places where its low tensile strength would limit the carrying capacity
of the member. The reinforcement, usually round steel rods with appropriate surface
deformations to provide interlocking, is placed in the forms in advance of the concrete.
When completely surrounded by the hardened concrete mass, it forms an integral part
of the member. The resulting combination of two materials, known as reinforced
concrete, combines many of the advantages of each: the relatively low cost, good
weather and fire resistance, good compressive strength, and excellent formability of
concrete and the high tensile strength and much greater ductility and toughness of
steel. It is this combination that allows the almost unlimited range of uses and possi-
bilities of reinforced concrete in the construction of buildings, bridges, dams, tanks,
reservoirs, and a host of other structures.

In more recent times, it has been found possible to produce steels, at relatively low
cost, whose yield strength is 3 to 4 times and more that of ordinary reinforcing steels.
Likewise, it is possible to produce concrete 4 to 5 times as strong in compression as the
more ordinary concretes. These high-strength materials offer many advantages, includ-
ing smaller member cross sections, reduced dead load, and longer spans. However, there
are limits to the strengths of the constituent materials beyond which certain problems
arise. To be sure, the strength of such a member would increase roughly in proportion
to those of the materials. However, the high strains that result from the high stresses that
would otherwise be permissible would lead to large deformations and consequently
large deflections of such members under ordinary loading conditions. Equally impor-
tant, the large strains in such high-strength reinforcing steel would induce large cracks
in the surrounding low tensile strength concrete, cracks that not only would be unsightly
but also could significantly reduce the durability of the structure. This limits the useful
yield strength of high-strength reinforcing steel to 80 ksit according to many codes and
specifications; 60 ksi steel is most commonly used.

A special way has been found, however, to use steels and concretes of very high
strength in combination. This type of construction is known as prestressed concrete.
The steel, in the form of wires, strands, or bars, is embedded in the concrete under high
tension that is held in equilibrium by compressive stresses in the concrete after hard-
ening. Because of this precompression, the concrete in a flexural member will crack
on the tension side at a much larger load than when not so precompressed. Prestressing
greatly reduces both the deflections and the tensile cracks at ordinary loads in such
structures, and thereby enables these high-strength materials to be used effectively.
Prestressed concrete has extended, to a very significant extent, the range of spans of
structural concrete and the types of structures for which it is suited.

STRUCTURAL FORMS

The figures that follow show some of the principal structural forms of reinforced con-
crete. Pertinent design methods for many of them are discussed later in this volume.
Floor support systems for buildings include the monolithic slab-and-beam floor
shown in Fig. 1.1, the one-way joist system of Fig. 1.2, and the flat plate floor,
without beams or girders, shown in Fig. 1.3. The flat slab floor of Fig. 1.4, frequently
used for more heavily loaded buildings such as warehouses, is similar to the flat plate
floor, but makes use of increased slab thickness in the vicinity of the columns, as well

* Abbreviation for kips per square inch, or thousands of pounds per square inch.
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FIGURE 1.1

One-way reinforced concrete
floor slab with monolithic
supporting beams. (Porrland
Cement Association.)

FIGURE 1.2

One-way joist floor system,
with closely spaced ribs
supported by monolithic
concrete beams; transverse
ribs provide for lateral
distribution of localized
loads. (Portland Cement
Association.)

as flared column tops, to reduce stresses and increase strength in the support region.
The choice among these and other systems for floors and roofs depends upon func-
tional requirements, loads, spans, and permissible member depths, as well as on cost
and esthetic factors.

Where long clear spans are required for roofs, concrete shells permit use of
extremely thin surfaces, often thinner, relatively, than an eggshell. The folded plate roof
of Fig. 1.5 is simple to form because it is composed of flat surfaces; such roofs have
been employed for spans of 200 ft and more. The cylindrical shell of Fig. 1.6 is also
relatively easy to form because it has only a single curvature; it is similar to the folded
plate in its structural behavior and range of spans and loads. Shells of this type were
once quite popular in the United States and remain popular in other parts of the world.

Doubly curved shell surfaces may be generated by simple mathematical curves
such as circular arcs, parabolas, and hyperbolas, or they may be composed of complex
combinations of shapes. The hyperbolic paraboloid shape, defined by a concave
downward parabola moving along a concave upward parabolic path, has been widely
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FIGURE 1.3

Flat plate floor slab, carried
directly by columns without
beams or girders. (Portland
Cement Association.)

FIGURE 1.4

Flat slab floor, without
beams but with slab
thickness increased at the
columns and with flared
column tops to provide for
local concentration of forces.
(University of Southern Maine.)

used. It has the interesting property that the doubly curved surface contains two
systems of straight-line generators, permitting straight-form lumber to be used. The
complex dome of Fig. 1.7, which provides shelter for performing arts events, consists
essentially of a circular dome but includes monolithic, upwardly curved edge surfaces
to provide stiffening and strengthening in that critical region.
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FIGURE 1.5

Folded plate roof of 125 fi
span that, in addition to
carrying ordinary roof loads,
carries the second floor as
well from a system of cable
hangers; the ground floor is
kept free of columns.

FIGURE 1.6
Cylindrical shell roof
providing column-free
interior space.

Bridge design has provided the opportunity for some of the most challenging
and creative applications of structural engineering. The award-winning Napoleon Bona-
parte Broward Bridge, shown in Fig. 1.8, is a six-lane, cable-stayed structure that spans
St. John’s River at Dame Point, Jacksonville, Florida. Its 1300 ft center span is the
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FIGURE 1.7

Spherical shell in Lausanne,
Switzerland. Upwardly
curved edges provide
stiffening for the central
dome.

FIGURE 1.8

Napoleon Bonaparte
Broward Bridge, with a
1300 ft center span at Dame
Point, Jacksonville, Florida.
(HNTB Corporation, Kansas
City, Missouri.)

second longest of its type in the western hemisphere. Figure 1.9 shows the Bennett
Bay Centennial Bridge, a four-span continuous, segmentally cast-in-place box girder
structure. Special attention was given to esthetics in this award-winning design. The
spectacular Natchez Trace Parkway Bridge in Fig. 1.10, a two-span arch structure using
hollow precast concrete elements, carries a two-lane highway 155 ft above the valley



FIGURE 1.9

Bennett Bay Centennial
Bridge, Coeur d’Alene,
Idaho, a four-span continuous
concrete box girder structure
of length 1730 ft. (HNTB
Corporation, Kansas City,
Missouri.)

FIGURE 1.10

Natchez Trace Parkway
Bridge near Franklin,
Tennessee, an award-winning
two-span concrete arch
structure rising 155 ft above
the valley floor. (Figg
Engineering Group, Tallahassee,
Florida.)
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FIGURE 1.11

Circular concrete tanks used
as a part of the wastewater
purification facility at
Howden, England.
(Northumbrian Water Authority
with Luder and Jones,
Architects.)

1.3

floor. This structure has won many honors, including awards from the American
Society of Civil Engineers and the National Endowment for the Arts.

Cylindrical concrete tanks are widely used for storage of water or in waste purifi-
cation plants. The design shown in Fig. 1.11 is proof that a sanitary engineering
facility can be esthetically pleasing as well as functional. Cylindrical tanks are often
prestressed circumferentially to maintain compression in the concrete and eliminate
the cracking that would otherwise result from internal pressure.

Concrete structures may be designed to provide a wide array of surface textures,
colors, and structural forms. Figure 1.12 shows a precast concrete building containing
both color changes and architectural finishes.

The forms shown in Figs. 1.1 to 1.12 hardly constitute a complete inventory but
are illustrative of the shapes appropriate to the properties of reinforced or prestressed
concrete. They illustrate the adaptability of the material to a great variety of one-
dimensional (beams, girders, columns), two-dimensional (slabs, arches, rigid frames),
and three-dimensional (shells, tanks) structures and structural components. This variability
allows the shape of the structure to be adapted to its function in an economical manner,
and furnishes the architect and design engineer with a wide variety of possibilities for
esthetically satisfying structural solutions.

LOADS

Loads that act on structures can be divided into three broad categories: dead loads, live
loads, and environmental loads.

Dead loads are those that are constant in magnitude and fixed in location through-
out the lifetime of the structure. Usually the major part of the dead load is the weight
of the structure itself. This can be calculated with good accuracy from the design con-
figuration, dimensions of the structure, and density of the material. For buildings, floor



FIGURE 1.12

Concrete structures can be
produced in a wide range of
colors, finishes, and
architectural detailing.
(Courtesy of Rocky Mountain
Prestress Corp.)
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fill, finish floors, and plastered ceilings are usually included as dead loads, and an
allowance is made for suspended loads such as piping and lighting fixtures. For
bridges, dead loads may include wearing surfaces, sidewalks, and curbs, and an
allowance is made for piping and other suspended loads.

Live loads consist chiefly of occupancy loads in buildings and traffic loads on
bridges. They may be either fully or partially in place or not present at all, and may
also change in location. Their magnitude and distribution at any given time are uncer-
tain, and even their maximum intensities throughout the lifetime of the structure are
not known with precision. The minimum live loads for which the floors and roof of a
building should be designed are usually specified in the building code that governs at
the site of construction. Representative values of minimum live loads to be used in a
wide variety of buildings are found in Minimum Design Loads for Buildings and Other
Structures (Ref. 1.1), a portion of which is reprinted in Table 1.1. The table gives uni-
formly distributed live loads for various types of occupancies; these include impact
provisions where necessary. These loads are expected maxima and considerably
exceed average values,

In addition to these uniformly distributed loads, it is recommended that, as an
alternative to the uniform load, floors be designed to support safely certain concen-
trated loads if these produce a greater stress. For example, according to Ref. 1.1, office
floors are to be designed to carry a load of 2000 Ib distributed over an area 2.5 ft square
(6.25 ft?), to allow for the weight of a safe or other heavy equipment, and stair treads
must safely support a 300 Ib load applied on the center of the tread. Certain reductions
are often permitted in live loads for members supporting large areas, on the premise that
it is not likely that the entire area would be fully loaded at one time (Refs. 1.1 and 1.2).
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TABLE 1.1
Minimum uniformly distributed live loads
Live Load, Live Load,

Occupancy or Use psf? Occupancy or Use psf?
Apartments (see residential) Dining rooms and restaurants 100
Access floor systems Dwellings (see residential)

Office use 50 Fire escapes 100

Computer use 100 On single-family dwellings only 40
Armories and drill rooms 150 Garages (passenger cars only) 40
Assembly areas and theaters Trucks and buses”

Fixed seats (fastened to floor) 60 Grandstands (see stadium and arena bleachers)

Lobbies 100 Gymnasiums, main floors and balconies® 100

Movable seats 100 Hospitals

Platforms (assembly) 100 Operating rooms, laboratories 60

Stage floors 150 Patient rooms 40
Balconies (exterior) 100 Corridors above first floor 80

On one and two-family residences 60 Hotels (see residential)

only, and not exceeding 100 ft? Libraries

Bowling alleys, poolrooms, and similar 75 Reading rooms 60

recreational areas Stack rooms? 150
Catwalks for maintenance access 40 Corridors above first floor 80
Corridors Manufacturing

First floor 100 Light 125

Other floors, same as occupancy Heavy 250

served except as indicated Marquees and canopies 75

Dance halls and ballrooms 100 Office buildings

Decks (patio and roof)

File and computer rooms shall be designed for

Same as area served, or for the heavier loads based on anticipated occupancy
type of occupancy accommodated Lobbies and first-floor corridors 100

(continued)

Tabulated live loads cannot always be used. The type of occupancy should be
considered and the probable loads computed as accurately as possible. Warehouses for
heavy storage may be designed for loads as high as 500 psf or more; unusually heavy
operations in manufacturing buildings may require an increase in the 250 psf value
specified in Table 1.1; special provisions must be made for all definitely located heavy
concentrated loads.

Live loads for highway bridges are specified by the American Association of
State Highway and Transportation Officials (AASHTO) in its LRFD Bridge Design
Specifications (Ref. 1.3). For railway bridges, the American Railway Engineering and
Maintenance-of-Way Association (AREMA) has published the Manual of Railway
Engineering (Ref. 1.4), which specifies traffic loads.

Environmental loads consist mainly of snow loads, wind pressure and suction,
earthquake loads (i.e., inertia forces caused by earthquake motions), soil pressures on
subsurface portions of structures, loads from possible ponding of rainwater on flat sur-
faces, and forces caused by temperature differentials. Like live loads, environmental
loads at any given time are uncertain in both magnitude and distribution. Reference 1.1
contains much information on environmental loads, which is often modified locally
depending, for instance, on local climatic or seismic conditions.

Figure 1.13, from the 1972 edition of Ref. 1.1, gives snow loads for the
continental United States and is included here for illustration only. The 2005 edition
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TABLE 1.1
(Continued)
Live Load, Live Load,
Occupancy or Use psf? Occupancy or Use psf?
Offices 50 Schools
Corridors above first floor 80 Classrooms 40
Penal institutions Corridors above first floor 80
Cell blocks 40 First-floor corridors 100
Corridors 100 Sidewalks, vehicular driveways, and yards 250
Residential subject to trucking®
Dwellings (one and two-family) Stadiums and arenas
Uninhabitable attics without storage 10 Bleachers® 100
Uninhabitable attics with storage 20 Fixed seats (fastened to floor)® 60
Habitable attics and sleeping areas 30 Stairs and exit ways 100
All other areas except stairs and balconies 40 One and two-family residences only 40
Hotels and multifamily houses Storage areas above ceilings 20
Private rooms and corridors serving them 40 Storage warchouses (shall be designed for
Public rooms and corridors serving them 100 heavier loads if required for anticipated storage)
Reviewing stands, grandstands, and bleachers® Light 125
Roofs Heavy 250
Ordinary flat, pitched, and curved roofs 20 Stores
Roofs used for promenade purposes 60 Retail
Roofs used for roof gardens or assembly purpose 100 First floor 100
Roofs used for other special purposes’ Upper floors 73
Awnings and canopies Wholesale, all floors 125
Fabric construction supported by a 5 Walkways and elevated platforms 60
lightweight rigid skeleton structure® (other than exitways)
All other construction 20 Yards and terraces, pedestrians 100

“ Pounds per square foot.

® Garages accommodating trucks and buses shall be designed in accordance with an approved method that contains provisions for truck and bus loadings.

¢ In addition to the vertical live loads, the design shall inctude horizontal swaying forces applied to each row of seats as follows: 24 Ib per linear seat
applied in the direction parallel to each row of seats and 10 Ib per linear ft of seat applied in the direction perpendicular to each row of seats. The
parallel and perpendicular horizontal swaying forces need not be applied simultaneously.

“ The loading applies to stack room floors that support nonmobile, double-faced library bookstacks subject to the following limitations: (a) The
nominal bookstack unit height shall not exceed 90 in.; (b) the nominal shelf depth shall not exceed 12 in. for each face; and (c) parallel rows of
double-faced bookstacks shall be separated by aisles not less than 36 in. wide.

¢ Other uniform loads in accordance with an approved method that contains provisions for truck loadings shall also be considered where appropriate.

fRoofs used for other special purposes shall be designed for appropriate loads as approved by the authority having jurisdiction.

8 Nonreducible.

Source: From Ref. 1.1. Used by permission of the American Society of Civil Engineers.

of Ref. 1.1 gives much more detailed information. In either case, specified values
represent not average values, but expected upper limits. A minimum roof load of
20 psf is often specified to provide for construction and repair loads and to ensure
reasonable stiffness.

Much progress has been made in developing rational methods for predicting
horizontal forces on structures due to wind and seismic action. Reference 1.1 summa-
rizes current thinking regarding wind forces and has much information pertaining to
earthquake loads as well. Reference 1.5 presents detailed recommendations for lateral
forces from earthquakes.

Reference 1.1 specifies design wind pressures per square foot of vertical wall sur-
face. Depending upon locality, these equivalent static forces vary from about 10 to 50 psf.
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FIGURE 1.13

Snow load in pounds per
square foot (psf) on the
ground, 50-year mean
recurrence interval. (From
Minimum Design Loads for
Buildings and Other Structures,
ANSI A58.1-1972, American
National Standards Institute,
New York, NY, 1972.)

1.4

Factors include basic wind speed, exposure (urban vs. open terrain, for example), height
of the structure, the importance of the structure (i.e., consequences of failure), and gust
effect factors to account for the fluctuating nature of the wind and its interaction with
the structure.

Seismic forces may be found for a particular structure by elastic or inelastic
dynamic analysis, considering expected ground accelerations and the mass, stiffness,
and damping characteristics of the construction. However, often the design is based on
equivalent static forces calculated from provisions such as those of Refs. 1.1 and 1.5.
The base shear is found by considering such factors as location, type of structure and
its occupancy, total dead load, and the particular soil condition. The total lateral force
is distributed to floors over the entire height of the structure in such a way as to approx-
imate the distribution of forces obtained from a dynamic analysis.

SERVICEABILITY, STRENGTH, AND STRUCTURAL SAFETY

To serve its purpose, a structure must be safe against collapse and serviceable in use.
Serviceability requires that deflections be adequately small; that cracks, if any, be kept
to tolerable limits; that vibrations be minimized; etc. Safety requires that the strength
of the structure be adequate for all loads that may foreseeably act on it. If the strength
of a structure, built as designed, could be predicted accurately, and if the loads and
their internal effects (moments, shears, axial forces) were known accurately, safety
could be ensured by providing a carrying capacity just barely in excess of the known
loads. However, there are a number of sources of uncertainty in the analysis, design,
and construction of reinforced concrete structures. These sources of uncertainty,
which require a definite margin of safety, may be listed as follows:

1. Actual loads may differ from those assumed.
2. Actual loads may be distributed in a manner different from that assumed.
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3. The assumptions and simplifications inherent in any analysis may result in
calculated load effects—moments, shears, etc.-—different from those that, in fact,
act in the structure.

4. The actual structural behavior may differ from that assumed, owing to imperfect

knowledge.

Actual member dimensions may differ from those specified.

Reinforcement may not be in its proper position.

Actual material strength may be different from that specified.

Nawm

In addition, in the establishment of a safety specification, consideration must be
given to the consequences of failure. In some cases, a failure would be merely an
inconvenience. In other cases, loss of life and significant loss of property may be
involved. A further consideration should be the nature of the failure, should it occur.
A gradual failure with ample warning permitting remedial measures is preferable to a
sudden, unexpected collapse.

It is evident that the selection of an appropriate margin of safety is not a simple
matter. However, progress has been made toward rational safety provisions in design
codes (Refs. 1.6 to 1.11).

Variability of Loads

Since the maximum load that will occur during the life of a structure is uncertain, it
can be considered a random variable. In spite of this uncertainty, the engineer must
provide an adequate structure. A probability model for the maximum load can be
devised by means of a probability density function for loads, as represented by the fre-
quency curve of Fig. 1.14a. The exact form of this distribution curve, for any particular
type of loading such as office loads, can be determined only on the basis of statistical
data obtained from large-scale load surveys. A number of such surveys have been com-
pleted. For types of loads for which such data are scarce, fairly reliable information
can be obtained from experience, observation, and judgment.

In such a frequency curve (Fig. 1.14a), the area under the curve between two
abscissas, such as loads Q, and Q,, represents the probability of occurrence of loads
Q of magnitude Q, < Q < Q,. A specified service load Q,, for design is selected con-
servatively in the upper region of Q in the distribution curve, as shown. The probabil-
ity of occurrence of loads larger than Q, is then given by the shaded area to the right
of Q. It is seen that this specified service load is considerably larger than the mean
load Q acting on the structure. This mean load is much more typical of average load
conditions than the design load Q,.

Strength

The strength of a structure depends on the strength of the materials from which it is
made. For this purpose, minimum material strengths are specified in standardized
ways. Actual material strengths cannot be known precisely and therefore also consti-
tute random variables (see Section 2.6). Structural strength depends, furthermore, on
the care with which a structure is built, which in turn reflects the quality of supervi-
sion and inspection. Member sizes may differ from specified dimensions, reinforce-
ment may be out of position, poorly placed concrete may show voids, etc.

Strength of the entire structure or of a population of repetitive structures, e.g.,
highway overpasses, can also be considered a random variable with a probability den-
sity function of the type shown in Fig. 1.14b. As in the case of loads, the exact form
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FIGURE 1.14
Frequency curves for

(a) loads Q, (b) strengths S,
and (c) safety margin M.
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of this function cannot be known but can be approximated from known data, such as
statistics of actual, measured materials and member strengths and similar information.
Considerable information of this type has been, or is being, developed and used.

Structural Safety

A given structure has a safety margin M if
M=S—-0>0 1.1

i.e., if the strength of the structure is larger than the load acting on it. Since S and )
are random variables, the safety margin M = S — Q is also a random variable. A plot
of the probability function of M may appear as in Fig. 1.14c. Failure occurs when M
is less than zero. Thus, the probability of failure is represented by the shaded area in
the figure.

Even though the precise form of the probability density functions for S and Q,
and therefore for M, is not known, much can be achieved in the way of a rational
approach to structural safety. One such approach is to require that the mean safety
margin M be a specified number B of standard deviations o, above zero. It can be
demonstrated that this results in the requirement that

¥S =y, 0 1.2)

where i, is a partial safety coefficient smaller than one applied to the mean strength
S and i, is a partial safety coefficient larger than one applied to the mean load Q.
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The magnitude of each partial safety coefficient depends on the variance of the
quantity to which it applies, S or Q, and on the chosen value of 8, the reliability
index of the structure. As a general guide, a value of the safety index 8 between 3
and 4 corresponds to a probability of failure of the order of 1:100,000 (Ref. 1.8).
The value of B is often established by calibration against well-proved and estab-
lished designs.

In practice, it is more convenient to introduce partial safety coefficients with
respect to code-specified loads which, as already noted, considerably exceed average
values, rather than with respect to mean loads as in Eq. (1.2); similarly, the partial
safety coefficient for strength is applied to nominal strength generally computed
somewhat conservatively, rather than to mean strengths as in Eq. (1.2). A restatement
of the safety requirement in these terms is

&S, = vQ, (1.3a)

in which ¢ is a strength reduction factor applied to nominal strength S, and vy is a load
factor applied to calculated or code-specified design loads Q,. Furthermore, recogniz-
ing the differences in variability between, say, dead loads D and live loads L, it is both
reasonable and easy to introduce different load factors for different types of loads. The
preceding equation can thus be written

oS, =vy,D + y,L (1.3b)

in which v, is a load factor somewhat greater than 1.0 applied to the calculated dead
load D and v, is a larger load factor applied to the code-specified live load L. When
additional loads, such as the wind load W, are to be considered, the reduced probabil-
ity that maximum dead, live, and wind or other loads will act simultaneously can be
incorporated by using modified load factors such that

¢S, = Yo+ v, L+ Y, W (1.3¢)
Present U.S. design specifications follow the format of Eqgs. (1.3b) and (1.3c).

DESIGN BASIS

The single most important characteristic of any structural member is its actual strength,
which must be large enough to resist, with some margin to spare, all foreseeable loads
that may act on it during the life of the structure, without failure or other distress. It is
logical, therefore, to proportion members, i.e., to select concrete dimensions and rein-
forcement, so that member strengths are adequate to resist forces resulting from certain
hypothetical overload stages, significantly above loads expected actually to occur in
service. This design concept is known as strength design.

For reinforced concrete structures at loads close to and at failure, one or both of
the materials, concrete and steel, are invariably in their nonlinear inelastic range. That
is, concrete in a structural member reaches its maximum strength and subsequent frac-
ture at stresses and strains far beyond the initial elastic range in which stresses and
strains are fairly proportional. Similarly, steel close to and at failure of the member is
usually stressed beyond its elastic domain into and even beyond the yield region.
Consequently, the nominal strength of a member must be calculated on the basis of
this inelastic behavior of the materials.

A member designed by the strength method must also perform in a satisfactory
way under normal service loading. For example, beam deflections must be limited to
acceptable values, and the number and width of flexural cracks at service loads must
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be controlled. Serviceability limit conditions are an important part of the total design,
although attention is focused initially on strength.

Historically, members were proportioned so that stresses in the steel and con-
crete resulting from normal service loads were within specified limits. These limits,
known as allowable stresses, were only fractions of the failure stresses of the materi-
als. For members proportioned on such a service load basis, the margin of safety was
provided by stipulating allowable stresses under service loads that were appropriately
small fractions of the compressive concrete strength and the steel yield stress. We now
refer to this basis for design as service load design. Allowable stresses, in practice,
were set at about one-half the concrete compressive strength and one-half the yield
stress of the steel.

Because of the difference in realism and reliability, the strength design method
has displaced the older service load design method. However, the older method pro-
vides the basis for some serviceability checks and is the design basis for many older
structures. Throughout this text, strength design is presented almost exclusively.

DESIGN CODES AND SPECIFICATIONS

The design of concrete structures such as those of Figs. 1.1 to 1.12 is generally done
within the framework of codes giving specific requirements for materials, structural
analysis, member proportioning, etc. The International Building Code (Ref. 1.2) is an
example of a consensus code governing structural design and is often adopted by local
municipalities. The responsibility of preparing material-specific portions of the codes
rests with various professional groups, trade associations, and technical institutes. In
contrast with many other industrialized nations, the United States does not have an
official, government-sanctioned, national code.

The American Concrete Institute (ACI) has long been a leader in such efforts.
As one part of its activity, the American Concrete Institute has published the widely
recognized Building Code Requirements for Structural Concrete and Commentary
(Ref. 1.12), which serves as a guide in the design and construction of reinforced con-
crete buildings. The ACI Code has no official status in itself. However, it is generally
regarded as an authoritative statement of current good practice in the field of rein-
forced concrete. As a result, it has been incorporated into the International Building
Code and similar codes, which in turn are adopted by law into municipal and regional
building codes that do have legal status. Its provisions thereby attain, in effect, legal
standing. Most reinforced concrete buildings and related construction in the United
States are designed in accordance with the current ACI Code. It has also served as a
model document for many other countries. The commentary incorporated in Ref. 1.12
provides background material and rationale for the Code provisions. The American
Concrete Institute also publishes important journals and standards, as well as recom-
mendations for the analysis and design of special types of concrete structures such as
the tanks shown in Fig. 1.11.

Most highway bridges in the United States are designed according to the require-
ments of the AASHTO bridge specifications (Ref. 1.3) which not only contain the
provisions relating to loads and load distributions mentioned earlier, but also include
detailed provisions for the design and construction of concrete bridges. Many of the
provisions follow ACI Code provisions closely, although a number of significant dif-
ferences will be found.

The design of railway bridges is done according to the specifications of the
AREMA Manual of Railway Engineering (Ref. 1.4). It, too, is patterned after the ACI
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Code in most respects, but it contains much additional material pertaining to railway
structures of all types.

No code or design specification can be construed as a substitute for sound engi-
neering judgment in the design of concrete structures. In structural practice, special
circumstances are frequently encountered where code provisions can serve only as a
guide, and the engineer must rely upon a firm understanding of the basic principles of
structural mechanics applied to reinforced or prestressed concrete, and an intimate
knowledge of the nature of the materials.

SAFETY PROVISIONS OF THE ACI CODE

The safety provisions of the ACI Code are given in the form of Eqgs. (1.3b) and (1.3¢)
using strength reduction factors and load factors. These factors are based to some extent
on statistical information but to a larger degree on experience, engineering judgment,
and compromise. In words, the design strength ¢S, of a structure or member must be
at least equal to the required strength U calculated from the factored loads, i.e.,

Design strength = required strength
or

¢S, = U (1.4)

The nominal strength S, is computed (usually somewhat conservatively) by accepted
methods. The required strength U is calculated by applying appropriate load factors to
the respective service loads: dead load D, live load L, wind load W, earthquake load
E, earth pressure H, fluid pressure F, snow load S, rain load R, and environmental
effects T that may include settlement, creep, shrinkage, and temperature change.
Loads are defined in a general sense, to include either loads or the related internal
effects such as moments, shears, and thrusts. Thus, in specific terms for a member sub-
jected, say, to moment, shear, and axial load

oM, =M, (1.5a)
PV, =V, (1.5b)
P, =P, (1.5¢)

where the subscripts n denote the nominal strengths in flexure, shear, and axial load,
respectively, and the subscripts u denote the factored load moment, shear, and axial
load. In computing the factored load effects on the right, load factors may be applied
either to the service loads themselves or to the internal load effects calculated from the
service loads.

The load factors specified in the ACI Code, to be applied to calculated dead loads
and those live and environmental loads specified in the appropriate codes or standards,
are summarized in Table 1.2. These are consistent with the concepts introduced in
Section 1.4 and with SEIVASCE 7, Minimum Design Loads for Buildings and Other
Structures (Ref. 1.1), and allow design of composite structures using combinations of
structural steel and reinforced concrete. For individual loads, lower factors are used for
loads known with greater certainty, e.g., dead load, compared with loads of greater vari-
ability, e.g., live loads. Further, for load combinations such as dead plus live loads plus
wind forces, reductions are applied to one load or the other that reflect the improbabil-
ity that an excessively large live load coincides with an unusually high windstorm. The
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TABLE 1.2

Factored load combinations for determining required strength
U in the ACI Code

Condition? Factored Load or Load Effect U

Basic? U=12D+ 16L

Dead plus fluid® U=14D + F)

Snow, rain, temperature, U=12D0+F+T)+ 16(L + H) + 05(,or SorR)
and wind U=12D + 1.6(L, or Sor R) + (1.0L or 0.8W)

U=12D+ 1.6W + 1.0L + 0.5(L, or Sor R)
U=09D + 1.6W + 1.6H

Earthquake U=12D+ 1.0E + 1.0L + 0.2§
U=09D + 1.0E + 1.6H

¢ Where the following represent the loads or related internal moments or forces resulting from the listed
factors: D = dead load; E = earthquake; F = fluids; H = weight or pressure from soil; L = live load;
L, = roof live load; R = rain; S = snow; T = cumulative effects of temperature, creep, shrinkage, and
differential settlement; W = wind.

® The ACI Code includes F or H loads in the load combinations. The “basic” load condition of 1.2D + 1.6L
reflects the fact that most buildings have neither F nor H loads present and that 1.4D rarely governs design.

factors also reflect, in a general way, uncertainties with which internal load effects are
calculated from external loads in systems as complex as highly indeterminate, inelastic
reinforced concrete structures which, in addition, consist of variable-section members
(because of tension cracking, discontinuous reinforcement, etc.). Finally, the load fac-
tors also distinguish between two situations, particularly when horizontal forces are
present in addition to gravity, i.e., the situation where the effects of all simultaneous
loads are additive, as distinct from that in which various load effects counteract one
another. For example, in a retaining wall the soil pressure produces an overturning
moment, and the gravity forces produce a counteracting stabilizing moment.

In all cases in Table 1.2, the controlling equation is the one that gives the largest
factored load effect U.

The strength reduction factors ¢ in the ACI Code are given different values
depending on the state of knowledge, i.e., the accuracy with which various strengths
can be calculated. Thus, the value for bending is higher than that for shear or bearing.
Also, ¢ values reflect the probable importance, for the survival of the structure, of the
particular member and of the probable quality control achievable. For both these rea-
sons, a lower value is used for columns than for beams. Table 1.3 gives the ¢ values
specified in the ACI Code.

The joint application of strength reduction factors (Table 1.3) and load factors
(Table 1.2) is aimed at producing approximate probabilities of understrength of the
order of 1/100 and of overloads of 1/1000. This results in a probability of structural
failure of the order of 1/100,000.

In addition to the values given in Table 1.3, ACI Code Appendix B, “Alternative
Provisions for Reinforced and Prestressed Concrete Flexural and Compression
Members,” allows the use of load factors and strength reduction factors from previous
editions of the ACI Code. The load factors and strength reduction factors of ACI Code
Appendix B are calibrated in conjunction with the detailed requirements of that appen-
dix. Consequently, they may not be interchanged with the provisions of the main body
of the Code.
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TABLE 1.3
Strength reduction factors in the AClI Code

Strength Reduction

Strength Condition Factor ¢
Tension-controlled sections? 0.90
Compression-controlled sections?

Members with spiral reinforcement 0.75

Other reinforced members 0.65
Shear and torsion 0.75
Bearing on concrete 0.65
Post-tensioned anchorage zones 0.85
Strut-and-tie models® 0.75

@ Chapter 19 discusses reductions in ¢ for pretensioned members where strand embedment is less than the
development length.

b Chapter 3 contains a discussion of the linear variation of ¢ between tension and compression-controlied
sections. Chapter 8 discusses the conditions that allow an increase in ¢ for spirally reinforced columns.

¢ Strut-and-tie models are described in Chapter 10.

FUNDAMENTAL ASSUMPTIONS FOR REINFORCED
CONCRETE BEHAVIOR

The chief task of the structural engineer is the design of structures. Design is the deter-
mination of the general shape and all specific dimensions of a particular structure so
that it will perform the function for which it is created and will safely withstand the
influences that will act on it throughout its useful life. These influences are primarily
the loads and other forces to which it will be subjected, as well as other detrimental
agents, such as temperature fluctuations, foundation settlements, and corrosive influ-
ences. Structural mechanics is one of the main tools in this process of design. As here
understood, it is the body of knowledge that permits one to predict with a good degree
of certainty how a structure of given shape and dimensions will behave when acted
upon by known forces or other mechanical influences. The chief items of behavior that
are of practical interest are (1) the strength of the structure, i.e., that magnitude of
loads of a given distribution which will cause the structure to fail, and (2) the defor-
mations, such as deflections and extent of cracking, that the structure will undergo
when loaded under service conditions.

The fundamental propositions on which the mechanics of reinforced concrete is
based are as follows:

1. The internal forces, such as bending moments, shear forces, and normal and shear
stresses, at any section of a member are in equilibrium with the effects of the
external loads at that section. This proposition is not an assumption but a fact,
because any body or any portion thereof can be at rest only if all forces acting on
it are in equilibrium.

2. The strain in an embedded reinforcing bar (unit extension or compression) is the
same as that of the surrounding concrete. Expressed differently, it is assumed that
perfect bonding exists between concrete and steel at the interface, so that no slip
can occur between the two materials. Hence, as the one deforms, so must the other.
With modern deformed bars (see Section 2.14), a high degree of mechanical
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1.9

interlocking is provided in addition to the natural surface adhesion, so this
assumption is very close to correct.

3. Cross sections that were plane prior to loading continue to be plane in the
member under load. Accurate measurements have shown that when a reinforced
concrete member is loaded close to failure, this assumption is not absolutely
accurate. However, the deviations are usually minor, and the results of theory
based on this assumption check well with extensive test information.

4. In view of the fact that the tensile strength of concrete is only a small fraction of
its compressive strength (see Section 2.9), the concrete in that part of a member
which is in tension is usually cracked. While these cracks, in well-designed
members, are generally so narrow as to be hardly visible (they are known as
hairline cracks), they evidently render the cracked concrete incapable of resisting
tension stress. Correspondingly, it is assumed that concrete is not capable of
resisting any tension stress whatever. This assumption is evidently a simplifica-
tion of the actual situation because, in fact, concrete prior to cracking, as well as
the concrete located between cracks, does resist tension stresses of small magni-
tude. Later in discussions of the resistance of reinforced concrete beams to shear,
it will become apparent that under certain conditions this particular assumption is
dispensed with and advantage is taken of the modest tensile strength that concrete
can develop.

5. The theory is based on the actual stress-strain relationships and strength proper-
ties of the two constituent materials (see Sections 2.8 and 2.14) or some reason-
able equivalent simplifications thereof. The fact that nonelastic behavior is
reflected in modern theory, that concrete is assumed to be ineffective in tension,
and that the joint action of the two materials is taken into consideration results in
analytical methods which are considerably more complex, and also more chal-
lenging, than those that are adequate for members made of a single, substantially
elastic material.

These five assumptions permit one to predict by calculation the performance of
reinforced concrete members only for some simple situations. Actually, the joint
action of two materials as dissimilar and complicated as concrete and steel is so com-
plex that it has not yet lent itself to purely analytical treatment. For this reason, meth-
ods of design and analysis, while using these assumptions, are very largely based on
the results of extensive and continuing experimental research. They are modified and
improved as additional test evidence becomes available.

BEHAVIOR OF MEMBERS SUBJECT TO AXIAL LOADS

Many of the fundamentals of the behavior of reinforced concrete, through the full range
of loading from zero to ultimate, can be illustrated clearly in the context of members
subject to simple axial compression or tension. The basic concepts illustrated here will
be recognized in later chapters in the analysis and design of beams, slabs, eccentrically
loaded columns, and other members subject to more complex loadings.

Axial Compression

In members that sustain chiefly or exclusively axial compression loads, such as build-
ing columns, it is economical to make the concrete carry most of the load. Still, some
steel reinforcement is always provided for various reasons. For one, very few members
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are truly axially loaded; steel is essential for resisting any bending that may exist. For
another, if part of the total load is carried by steel with its much greater strength, the
cross-sectional dimensions of the member can be reduced—the more so, the larger the
amount of reinforcement.

The two chief forms of reinforced concrete columns are shown in Fig. 1.15.
In the square column, the four longitudinal bars serve as main reinforcement. They
are held in place by transverse small-diameter steel ties that prevent displacement
of the main bars during construction operations and counteract any tendency of the
compression-loaded bars to buckle out of the concrete by bursting the thin outer
cover. On the left is shown a round column with eight main reinforcing bars. These
are surrounded by a closely spaced spiral that serves the same purpose as the
more widely spaced ties but also acts to confine the concrete within it, thereby
increasing its resistance to axial compression. The discussion that follows applies
to tied columns.

When axial load is applied, the compression strain is the same over the entire
cross section and, in view of the bonding between concrete and steel, is the same in
the two materials (see propositions 2 and 3 in Section 1.8). To illustrate the action of
such a member as load is applied, Fig. 1.16 shows two typical stress-strain curves, one
for a concrete with compressive strength £/ = 4000 psi and the other for a steel with
yield stress f, = 60,000 psi. The curves for the two materials are drawn on the same
graph using different vertical stress scales. Curve b has the shape that would be
obtained in a concrete cylinder test. The rate of loading in most structures is consider-
ably slower than that in a cylinder test, and this affects the shape of the curve. Curve c,
therefore, is drawn as being characteristic of the performance of concrete under slow
loading. Under these conditions, tests have shown that the maximum reliable com-
pressive strength of reinforced concrete is about 0.85f;, as shown.

N
Longitudinal bars Longitudinal bars
and spiral reinforcement and lateral ties

A,
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FIGURE 1.16

Concrete and steel stress-

strain curves.
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ELASTIC BEHAVIOR At low stresses, up to about f//2, the concrete is seen to behave
nearly elastically, i.e., stresses and strains are quite closely proportional; the straight
line d represents this range of behavior with little error for both rates of loading. For
the given concrete, the range extends to a strain of about 0.0005. The steel, on the
other hand, is seen to be elastic nearly to its yield point of 60 ksi, or to the much
greater strain of about 0.002.

Because the compression strain in the concrete, at any given load, is equal to the
compression strain in the steel,

fe A

€, =" =€ =
E, E,

from which the relation between the steel stress f, and the concrete stress f, is obtained as
E,
fi=g fe=nk (1.6)

where n = E/E_is known as the modular ratio.

Let
A, = net area of concrete, i.e., gross area minus area occupied by reinforcing bars
A, = gross area
A,, = total area of reinforcing bars
P = axial load

Then
P=fA +fA,=fA +nfA,
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FIGURE 1.17 Aqt nAg (n—1)Ag
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The term A, + nA,, can be interpreted as the area of a fictitious concrete cross
section, the transformed area, which when subjected to the particular concrete stress
f. results in the same axial load P as the actual section composed of both steel and con-
crete. This transformed concrete area is seen to consist of the actual concrete area plus
n times the area of the reinforcement. It can be visualized as shown in Fig. 1.17. That
is, in Fig. 1.17b the three bars along each of the two faces are thought of as being
removed and replaced, at the same distance from the axis of the section, with added
areas of fictitious concrete of total amount nA_,. Alternatively, as shown in Fig. 1.17¢,
one can think of the area of the steel bars as replaced with concrete, in which case one
has to add to the gross concrete area A, so obtained only (n — 1)A,, to obtain the same
total transformed area. Therefore, alternatively,

P=f[A, + (n— DA, (1.8)

If load and cross-sectional dimensions are known, the concrete stress can be
found by solving Eq. (1.7) or (1.8) for £,, and the steel stress can be calculated from
Eq. (1.6). These relations hold in the range in which the concrete behaves nearly
elastically, i.e., up to about 50 to 60 percent of f.. For reasons of safety and servicea-
bility, concrete stresses in structures under normal conditions are kept within this
range. Therefore, these relations permit one to calculate service load stresses.

EXAMPLE 1.1 A column made of the materials defined in Fig. 1.16 has a cross section of 16 X 20 in. and is
reinforced by six No. 9 (No. 29) bars, disposed as shown in Fig. 1.17. (See Tables A.1 and A.2
of Appendix A for bar diameters and areas and Section 2.14 for a description of bar size des-
ignations.) Determine the axial load that will stress the concrete to 1200 psi. The modular ratio
n may be assumed equal to 8. (In view of the scatter inherent in E,, it is customary and satis-
factory to round off the value of 7 to the nearest integer.)

SOLUTION.  One finds A, = 16 X 20 = 320 in?, and from Appendix A, Table A.2, two No. 9
(No. 29) bars provide steel area A, = 6.00 in? or 1.88 percent of the gross area. The load
on the column, from Eq. (1.8), is P = 1200[320 + (8 — 1)6.00] = 434,000 Ib. Of this total
load, the concrete is seen to carry P, = fA, = f(A, — A;) = 1200(320 — 6) = 377,000 Ib,
and the steel P, = f.A,, = (nf.)A,, = 9600 X 6 = 57,600 Ib, which is 13.3 percent of the total

axial load.
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INELASTIC RANGE Inspection of Fig. 1.16 shows that the elastic relationships that
have been used so far cannot be applied beyond a strain of about 0.0005 for the given
concrete. To obtain information on the behavior of the member at larger strains and,
correspondingly, at larger loads, it is therefore necessary to make direct use of the
information in Fig. 1.16.

EXAMPLE 1.2

One may want to calculate the magnitude of the axial load that will produce a strain or unit
shortening €, = €, = 0.0010 in the column of Example 1.1. At this strain the steel is seen to be
still elastic, so that the steel stress f, = € E, = 0.001 X 29,000,000 = 29,000 psi. The concrete
is in the inelastic range, so that its stress cannot be directly calculated, but it can be read from
the stress-strain curve for the given value of strain.

1. If the member has been loaded at a fast rate, curve b holds at the instant when the entire
load is applied. The stress for € = 0.001 can be read as [, = 3200 psi. Consequently,
the total load can be obtained from

P=fA +fA, (1.9)

which applies in the inelastic as well as in the elastic range. Hence, P = 3200(320 — 6)
+ 29,000 X 6 = 1,005,000 + 174,000 = 1,179,000 Ib. Of this total load, the steel is
seen to carry 174,000 Ib, or 14.7 percent.

2. For slowly applied or sustained loading, curve c represents the behavior of the concrete.
Its stress at a strain of 0.001 can be read as f. = 2400 psi. Then P = 2400 X 314 +
29,000 X 6 = 754,000 + 174,000 = 928,000 Ib. Of this total load, the steel is seen to
carry 18.8 percent.

Comparison of the results for fast and slow loading shows the following. Owing
to creep of concrete, a given shortening of the column is produced by a smaller load
when slowly applied or sustained over some length of time than when quickly applied.
More important, the farther the stress is beyond the proportional limit of the concrete,
and the more slowly the load is applied or the longer it is sustained, the smaller the share
of the total load carried by the concrete and the larger the share carried by the steel. In
the sample column, the steel was seen to carry 13.3 percent of the load in the elastic
range, 14.7 percent for a strain of 0.001 under fast loading, and 18.8 percent at the
same strain under slow or sustained loading.

STRENGTH The one quantity of chief interest to the structural designer is strength,
i.e., the maximum load that the structure or member will carry. Information on stresses,
strains, and similar quantities serves chiefly as a tool for determining carrying capac-
ity. The performance of the column discussed so far indicates two things: (1) in the
range of large stresses and strains that precede attainment of the maximum load and
subsequent failure, elastic relationships cannot be used; (2) the member behaves dif-
ferently under fast and under slow or sustained loading and shows less resistance to the
latter than to the former. In usual construction, many types of loads, such as the weight
of the structure and any permanent equipment housed therein, are sustained, and others
are applied at slow rates. For this reason, to calculate a reliable magnitude of compres-
sive strength, curve ¢ of Fig. 1.16 must be used as far as the concrete is concerned.

The steel reaches its tensile strength (peak of the curve) at strains on the order
of 0.08 (see Fig. 2.15). Concrete, on the other hand, fails by crushing at the much
smaller strain of about 0.003 and, as seen from Fig. 1.16 (curve c¢), reaches its maxi-
mum stress in the strain range of 0.002 to 0.003. Because the strains in steel and con-
crete are equal in axial compression, the load at which the steel begins to yield can be
calculated from the information in Fig. 1.16.
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If the small knee prior to yielding of the steel is disregarded, i.e., if the steel is
assumed to be sharp-yielding, the strain at which it yields is

(1.10)

or

. _ 60000
¥~ 29,000,000

At this strain, curve ¢ of Fig. 1.16 indicates a stress of 3200 psi in the concrete; there-
fore, by Eq. (1.9), the load in the member when the steel starts yielding is P, = 3200 x
314 + 60,000 x 6 = 1,365,000 Ib. At this load the concrete has not yet reached its full
strength, which, as mentioned before, can be assumed as 0.85f," = 3400 psi for slow or
sustained loading, and therefore the load on the member can be further increased. During
this stage of loading, the steel keeps yielding at constant stress. Finally, the nominal
capacity' of the member is reached when the concrete crushes while the steel yields, i.e.,

P, = 085f.A, + f,A, (1.11)

Numerous careful tests have shown the reliability of Eq. (1.11) in predicting the ulti-
mate strength of a concentrically loaded reinforced concrete column, provided its slen-
derness ratio is small so that buckling will not reduce its strength.

For the particular numerical example, P, = 3400 X 314 + 60,000 X 6 =
1,068,000 + 360,000 = 1,428,000 Ib. At this stage the steel carries 25.2 percent of the load.

= 0.00207

SUMMARY In the elastic range, the steel carries a relatively small portion of the total
load of an axially compressed member. As member strength is approached, there occurs a
redistribution of the relative shares of the load resisted by concrete and steel, the latter tak-
ing an increasing amount. The nominal capacity, at which the member is on the point of
failure, consists of the contribution of the steel when it is stressed to the yield point plus
that of the concrete when its stress has attained a value of 0.85f, as reflected in Eq. (1.11).

b. Axial Tension

The tension strength of concrete is only a small fraction of its compressive strength. It
follows that reinforced concrete is not well suited for use in tension members because
the concrete will contribute little, if anything, to their strength. Still, there are situations
in which reinforced concrete is stressed in tension, chiefly in tie-rods in structures such
as arches. Such members consist of one or more bars embedded in concrete in a sym-
metric arrangement similar to compression members (see Figs. 1.15 and 1.17).

When the tension force in the member is small enough for the stress in the concrete
to be considerably below its tensile strength, both steel and concrete behave elastically.
In this situation, all the expressions derived for elastic behavior in compression in
Section 1.9a are identically valid for tension. In particular, Eq. (1.7) becomes

P=f/ A +nA, (1.12)

where f,, is the tensile stress in the concrete.

t Throughout this book quantities that refer to the strength of members, calculated by accepted analysis methods, are furnished with the subscript n,
which stands for “nominal.” This notation is in agreement with the ACI Code. It is intended to convey that the actual strength of any member is
bound to deviate to some extent from its calculated, nominal value because of inevitable variations of dimensions, materials properties, and other
parameters. Design in all cases is based on this nominal strength, which represents the best available estimate of the actual member strength.
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However, when the load is further increased, the concrete reaches its tensile
strength at a stress and strain on the order of one-tenth of what it could sustain in com-
pression. At this stage, the concrete cracks across the entire cross section. When this
happens, it ceases to resist any part of the applied tension force, since, evidently, no
force can be transmitted across the air gap in the crack. At any load larger than that
which caused the concrete to crack, the steel is called upon to resist the entire tension
force. Correspondingly, at this stage,

P=fA, (1.13)

With further increased load, the tensile stress f, in the steel reaches the yield
point f,. When this occurs, the tension members cease to exhibit small, elastic defor-
mations but instead stretch a sizable and permanent amount at substantially constant
load. This does not impair the strength of the member. Its elongation, however,
becomes so large (on the order of 1 percent or more of its length) as to render it use-
less. Therefore, the maximum useful strength P, of a tension member is the force that
will just cause the steel stress to reach the yield point. That is,

P, =fA, (1.14)

To provide adequate safety, the force permitted in a tension member under normal
service loads should be limited to about 3P,,. Because the concrete has cracked at loads
considerably smaller than this, concrete does not contribute to the carrying capacity of
the member in service. It does serve, however, as fire and corrosion protection and
often improves the appearance of the structure.

There are situations, though, in which reinforced concrete is used in axial tension
under conditions in which the occurrence of tension cracks must be prevented. A case
in point is a circular tank (see Fig. 1.11). To provide watertightness, the hoop tension
caused by the fluid pressure must be prevented from causing the concrete to crack. In
this case, Eq. (1.12) can be used to determine a safe value for the axial tension force P
by using, for the concrete tension stress f., an appropriate fraction of the tensile
strength of the concrete, i.e., of the stress that would cause the concrete to crack.
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PROBLEMS

1.1. A 16 X 20 in. column is made of the same concrete and reinforced with the
same six No. 9 (No. 29) bars as the column in Examples 1.1 and 1.2, except
that a steel with yield strength f, = 40 ksi is used. The stress-strain diagram of
this reinforcing steel is shown in Fig. 2.15 for f, = 40 ksi. For this column
determine (a) the axial load that will stress the concrete to 1200 psi; (b) the
load at which the steel starts yielding; (c) the maximum load; and (d) the share
of the total load carried by the reinforcement at these three stages of loading.
Compare results with those calculated in the examples for f, = 60 ksi, keeping
in mind, in regard to relative economy, that the price per pound for reinforcing
steels with 40 and 60 ksi yield points is about the same.

1.2.  The area of steel, expressed as a percentage of gross concrete area, for the col-
umn of Problem 1.1 is lower than would often be used in practice. Recalculate
the comparisons of Problem 1.1, using f, of 40 ksi and 60 ksi as before, but for
a 16 X 20 in. column reinforced with eight No. 11 (No. 36) bars. Compare
your results with those of Problem 1.1.

1.3. A square concrete column with dimensions 22 X 22 in. is reinforced with a
total of eight No. 10 (No. 32) bars arranged uniformly around the column
perimeter. Material strengths are f, = 60 ksi and f; = 4000 psi, with stress-
strain curves as given by curves a and ¢ of Fig. 1.16. Calculate the percentages
of total load carried by the concrete and by the steel as load is gradually
increased from O to failure, which is assumed to occur when the concrete strain
reaches a limit value of 0.0030. Determine the loads at strain increments of
0.0005 up to the failure strain, and graph your results, plotting load percentages
vs. strain. The modular ratio may be assumed at n = 8 for these materials.

1.4. A 20 X 24 in. column is made of the same concrete as used in Examples 1.1
and 1.2. It is reinforced with six No. 11 (No. 36) bars with f, = 60 ksi. For this
column section, determine (a) the axial load that the section will carry at a
concrete stress of 1400 psi; (b) the load on the section when the steel begins to
yield; (c) the maximum load if the section is loaded slowly; and (d) the maxi-
mum load if the section is loaded rapidly. The area of one No. 11 (No. 36) bar
is 1.56 in%. Determine the percent of the load carried by the steel and the
concrete for each combination.

1.5. A 24 in. diameter column is made of the same concrete as used in Examples
1.1 and 1.2. The area of reinforcement equals 2.1 percent of the gross cross
section (that is, A; = 0.0214,) and f, = 60 ksi. For this column section, deter-
mine (a) the ax1a1 load the sectlon w111 carry at a concrete stress of 1200 psi;
(b) the load on the section when the steel begins to yield; (c) the maximum
load if the section is loaded slowly; (d) the maximum load if the section is
loaded rapidly; and (e) the maximum load if the reinforcement in the column
is raised to 6.5 percent of the gross cross section and the column is loaded
slowly. Comment on your answer, especially the percent of the load carried by
the steel and the concrete for each combination.
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Materials

INTRODUCTION

The structures and component members treated in this text are composed of concrete
reinforced with steel bars, and in some cases prestressed with steel wire, strand, or
alloy bars. An understanding of the materials characteristics and behavior under load
is fundamental to understanding the performance of structural concrete, and to safe,
economical, and serviceable design of concrete structures. Although prior exposure to
the fundamentals of material behavior is assumed, a brief review is presented in this
chapter, as well as a description of the types of bar reinforcement and prestressing
steels in common use. Numerous references are given as a guide for those seeking
more information on any of the topics discussed.

CEMENT

A cementitious material is one that has the adhesive and cohesive properties necessary
to bond inert aggregates into a solid mass of adequate strength and durability. This
technologically important category of materials includes not only cements proper but
also limes, asphalts, and tars as they are used in road building, and others. For making
structural concrete, hydraulic cements are used exclusively. Water is needed for the
chemical process (hydration) in which the cement powder sets and hardens into one
solid mass. Of the various hydraulic cements that have been developed, portland
cement, which was first patented in England in 1824, is by far the most common.

Portland cement is a finely powdered, grayish material that consists chiefly of
calcium and aluminum silicates.” The common raw materials from which it is made
are limestones, which provide CaO, and clays or shales, which furnish SiO, and
AlL,O;. These are ground, blended, fused to clinkers in a kiln, and cooled. Gypsum is
added and the mixture is ground to the required fineness. The material is shipped in
bulk or in bags containing 94 Ib of cement.

Over the years, five standard types of portland cement have been developed. Type
I, normal portland cement, is used for over 90 percent of construction in the United
States. Concretes made with Type I portland cement generally need one to two weeks
to reach sufficient strength so that forms of beams and slabs can be removed and

* See ASTM C150, “Standard Specification for Portland Cement.” This and other ASTM references are published and periodically updated by
ASTM International (formerly the American Society for Testing and Materials), West Conshohoken, PA.
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reasonable loads applied; they reach their design strength after 28 days and continue to
gain strength thereafter at a decreasing rate. To speed construction when needed, high
early strength cements such as Type III have been developed. They are costlier than
ordinary portland cement, but within 7 to 14 days they reach the strength achieved
using Type I at 28 days. Type III portland cement contains the same basic compounds
as Type I, but the relative proportions differ and it is ground more finely.

When cement is mixed with water to form a soft paste, it gradually stiffens until
it becomes a solid. This process is known as serting and hardening. The cement is
said to have set when it has gained sufficient rigidity to support an arbitrarily defined
pressure, after which it continues for a long time to harden, i.e., to gain further
strength. The water in the paste dissolves material at the surfaces of the cement grains
and forms a gel that gradually increases in volume and stiffness. This leads to a rapid
stiffening of the paste 2 to 4 hours after water has been added to the cement.
Hydration continues to proceed deeper into the cement grains, at decreasing speed,
with continued stiffening and hardening of the mass. The principal products of hydra-
tion are calcium silicate hydrate, which is insoluble, and calcium hydroxide, which
is soluble.

In ordinary concrete, the cement is probably never completely hydrated. The gel
structure of the hardened paste seems to be the chief reason for the volume changes
that are caused in concrete by variations in moisture, such as the shrinkage of concrete
as it dries.

For complete hydration of a given amount of cement, an amount of water equal
to about 25 percent of that of cement, by weight—i.e., a water-cement ratio of 0.25—
is needed chemically. An additional amount must be present, however, to provide
mobility for the water in the cement paste during the hydration process so that it can
reach the cement particles and to provide the necessary workability of the concrete
mix. For normal concretes, the water-cement ratio is generally in the range of about
0.40 to 0.60, although for high-strength concretes, ratios as low as 0.21 have been
used. In this case, the needed workability is obtained through the use of admixtures.

Any amount of water above that consumed in the chemical reaction produces
pores in the cement paste. The strength of the hardened paste decreases in inverse
proportion to the fraction of the total volume occupied by pores. Put differently,
since only the solids, and not the voids, resist stress, strength increases directly as
the fraction of the total volume occupied by the solids. That is why the strength of
the cement paste depends primarily on, and decreases directly with, an increasing
water-cement ratio.

The chemical process involved in the setting and hardening liberates heat,
known as heat of hydration. In large concrete masses, such as dams, this heat is dissi-
pated very slowly and results in a temperature rise and volume expansion of the
concrete during hydration, with subsequent cooling and contraction. To avoid the seri-
ous cracking and weakening that may result from this process, special measures must
be taken for its control.

AGGREGATES

In ordinary structural concretes the aggregates occupy 65 to 75 percent of the volume
of the hardened mass. The remainder consists of hardened cement paste, uncombined
water (i.e., water not involved in the hydration of the cement), and air voids. The latter
two do not contribute to the strength of the concrete. In general, the more densely the
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aggregate can be packed, the better the durability and economy of the concrete. For this
reason the gradation of the particle sizes in the aggregate, to produce close packing, is
of considerable importance. It is also important that the aggregate have good strength,
durability, and weather resistance; that its surface be free from impurities such as loam,
clay, silt, and organic matter that may weaken the bond with cement paste; and that no
unfavorable chemical reaction take place between it and the cement.

Natural aggregates are generally classified as fine and coarse. Fine aggregate
(typically natural sand) is any material that will pass a No. 4 sieve, i.e., a sieve with
four openings per linear inch. Material coarser than this is classified as coarse aggre-
gate. When favorable gradation is desired, aggregates are separated by sieving into
two or three size groups of sand and several size groups of coarse aggregate. These
can then be combined according to grading charts to result in a densely packed aggre-
gate. The maximum size of coarse aggregate in reinforced concrete is governed by the
requirement that it shall easily fit into the forms and between the reinforcing bars. For
this purpose it should not be larger than one-fifth of the narrowest dimension of the
forms or one-third of the depth of slabs, nor three-quarters of the minimum distance
between reinforcing bars. Requirements for satisfactory aggregates are found in
ASTM (33, “Standard Specification for Concrete Aggregates,” and authoritative
information on aggregate properties and their influence on concrete properties, as well
as guidance in selection, preparation, and handling of aggregate, is found in Ref. 2.1.

The unit weight of stone concrete, i.c., concrete with natural stone aggregate,
varies from about 140 to 152 pounds per cubic foot (pcf) and can generally be
assumed to be 145 pcf. For special purposes, lightweight concretes, on one hand, and
heavy concretes, on the other, are used.

A variety of lightweight aggregates are available. Some unprocessed aggregates,
such as pumice or cinders, are suitable for insulating concretes, but for structural
lightweight concrete, processed aggregates are used because of better control. These
consist of expanded shales, clays, slates, slags, or pelletized fly ash. They are light in
weight because of the porous, cellular structure of the individual aggregate particle,
which is achieved by gas or steam formation in processing the aggregates in rotary
kilns at high temperatures (generally in excess of 2000°F). Requirements for satisfac-
tory lightweight aggregates are found in ASTM C330, “Standard Specification for
Lightweight Aggregates for Structural Concrete.”

Three classes of lightweight concrete are distinguished in Ref. 2.2: low-density
concretes, which are chiefly employed for insulation and whose unit weight rarely
exceeds 50 pcf; moderate strength concretes, with unit weights from about 60 to
85 pef and compressive strengths of 1000 to 2500 psi, which are chiefly used as fill,
e.g., over light-gage steel floor panels; and structural concretes, with unit weights from
90 to 120 pcf and compressive strengths comparable to those of stone concretes. Simi-
larities and differences in structural characteristics of lightweight and stone concretes
are discussed in Sections 2.8 and 2.9.

Heavyweight concrete is sometimes required for shielding against gamma and
X-radiation in nuclear reactors and similar installations, for protective structures, and
for special purposes, such as counterweights of lift bridges. Heavy aggregates are used
for such concretes. These consist of heavy iron ores or barite (barium sulfate) rock
crushed to suitable sizes. Steel in the form of scrap, punchings, or shot (as fines) is
also used. Unit weights of heavyweight concretes with natural heavy rock aggregates
range from about 200 to 230 pcf; if iron punchings are added to high-density ores,
weights as high as 270 pcf are achieved. The weight may be as high as 330 pcf if ores
are used for the fines only and steel for the coarse aggregate.
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FIGURE 2.1

Effect of water-cement ratio
on 28-day compressive and
flexural tensile strength.
(Adapted from Ref. 2.3.)
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PROPORTIONING AND MIXING CONCRETE

The various components of a mix are proportioned so that the resulting concrete has
adequate strength, proper workability for placing, and low cost. The third calls for use
of the minimum amount of cement (the most costly of the components) that will
achieve adequate properties. The better the gradation of aggregates, i.e., the smaller the
volume of voids, the less cement paste is needed to fill these voids. In addition to the
water required for hydration, water is needed for wetting the surface of the aggregate.
As water is added, the plasticity and fluidity of the mix increase (i.e., its workability
improves), but the strength decreases because of the larger volume of voids created by
the free water. To reduce the free water while retaining the workability, cement must be
added. Therefore, as for the cement paste, the water-cement ratio is the chief factor that
controls the strength of the concrete. For a given water-cement ratio, one selects the
minimum amount of cement that will secure the desired workability.

Figure 2.1 shows the decisive influence of the water-cement ratio on the com-
pressive strength of concrete. Its influence on the tensile strength, as measured by the
nominal flexural strength or modulus of rupture, is seen to be pronounced but much
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smaller than its effect on the compressive strength. This seems to be so because, in
addition to the void ratio, the tensile strength depends strongly on the strength of bond
between coarse aggregate and cement mortar (i.e., cement paste plus fine aggregate).
According to tests at Cornell University, this bond strength is only slightly affected by
the water-cement ratio (Ref. 2.4).

It is customary to define the proportions of a concrete mix in terms of the total
weight of each component needed to make up 1 yd? of wet concrete, such as 517 1b of
cement, 300 1b of water, 1270 Ib of sand, and 1940 Ib of coarse aggregate, plus the
total volume of air, in percent, when air is deliberately entrained in the mix (typically
4 to 7 percent). The weights of the fine and coarse aggregates are based on material in
the saturated surface dry condition, in which, as the description implies, the aggre-
gates are fully saturated but have no water on the exterior of the particles.

Various methods of proportioning are used to obtain mixes of the desired prop-
erties from the cements and aggregates at hand. One is the trial-batch method.
Selecting a water-cement ratio from information such as that in Fig. 2.1, one produces
several small trial batches with varying amounts of aggregate to obtain the required
strength, consistency, and other properties with a minimum amount of paste. Concrete
consistency is most frequently measured by the slump test. A metal mold in the shape
of a truncated cone 12 in. high is filled with fresh concrete in a carefully specified
manner. Immediately upon being filled, the mold is lifted off, and the slump of the
concrete is measured as the difference in height between the mold and the pile of con-
crete. The slump is a good measure of the total water content in the mix and should be
kept as low as is compatible with workability. Slumps for concretes in building con-
struction generally range from 2 to 5 in., although higher slumps are used with the aid
of chemical admixtures.

The so-called ACI method of proportioning makes use of the slump test in
connection with a set of tables that, for a variety of conditions (types of structures,
dimensions of members, degree of exposure to weathering, etc.), permit one to esti-
mate proportions that will result in the desired properties (Ref. 2.5). These preliminary
selected proportions are checked and adjusted by means of trial batches to result in
concrete of the desired quality. Inevitably, strength properties of a concrete of given
proportions scatter from batch to batch. It is therefore necessary to select proportions
that will furnish an average strength sufficiently greater than the specified design
strength for even the accidentally weaker batches to be of adequate quality (for details,
see Section 2.6). Discussion in detail of practices for proportioning concrete is beyond
the scope of this volume; this topic is treated fully in Refs. 2.5 and 2.6, both for stone
concrete and for lightweight aggregate concrete.

If the results of trial batches or field experience are not available, the ACI Code
allows concrete to be proportioned based on other experience or information, if
approved by the registered design professional overseeing the project. This alternative
may not be applied for specified compressive strengths greater than 5000 psi.

On all but the smallest jobs, batching is carried out in special batching plants.
Separate hoppers contain cement and the various fractions of aggregate. Proportions
are controlled, by weight, by means of manually operated or automatic scales con-
nected to the hoppers. The mixing water is batched either by measuring tanks or by
water meters.

The principal purpose of mixing is to produce an intimate mixture of cement,
water, fine and coarse aggregate, and possible admixtures of uniform consistency
throughout each batch. This is achieved in machine mixers of the revolving-drum type.
Minimum mixing time is 1 min for mixers of not more than 1 yd? capacity, with an
additional 15 sec for each additional 1 yd®. Mixing can be continued for a considerable
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time without adverse effect. This fact is particularly important in connection with
ready mixed concrete.

On large projects, particularly in the open country where ample space is avail-
able, movable mixing plants are installed and operated at the site. On the other hand,
in construction under congested city conditions, on smaller jobs, and frequently in
highway construction, ready mixed concrete is used. Such concrete is batched in a
stationary plant and then hauled to the site in trucks in one of three ways: (1) mixed
completely at the stationary plant and hauled in a truck agitator, (2) transit-mixed, i.e.,
batched at the plant but mixed in a truck mixer, or (3) partially mixed at the plant with
mixing completed in a truck mixer. Concrete should be discharged from the mixer or
agitator within a limited time after the water is added to the batch. Although specifi-
cations often provide a single value for all conditions, the maximum mixing time
should be based on the concrete temperature because higher temperatures lead to
increased rates of slump loss and rapid setting. Conversely, lower temperatures
increase the period during which the concrete remains workable. A good guide for
maximum mixing time is to allow 1 hour at a temperature of 70°F, plus (or minus)
15 min for each 5°F drop (or rise) in concrete temperature for concrete temperatures
between 40 and 90°F. Ten minutes may be used at 95°F, the practical upper limit for
normal mixing and placing.

Much information on proportioning and other aspects of design and control of
concrete mixtures will be found in Refs. 2.7 and 2.8.

CONVEYING, PLACING, COMPACTING, AND CURING

Conveying of most building concrete from the mixer or truck to the form is done in
bottom-dump buckets or by pumping through steel pipelines. The chief danger during
conveying is that of segregation. The individual components of concrete tend to seg-
regate because of their dissimilarity. In overly wet concrete standing in containers or
forms, the heavier coarse aggregate particles tend to settle, and the lighter materials,
particularly water, tend to rise. Lateral movement, such as flow within the forms, tends
to separate the coarse gravel from the finer components of the mix.

Placing is the process of transferring the fresh concrete from the conveying
device to its final place in the forms. Prior to placing, loose rust must be removed from
reinforcement, forms must be cleaned, and hardened surfaces of previous concrete lifts
must be cleaned and treated appropriately. Placing and consolidating are critical in their
effect on the final quality of the concrete. Proper placement must avoid segregation,
displacement of forms or of reinforcement in the forms, and poor bond between
successive layers of concrete. Immediately upon placing, the concrete should be
consolidated, usually by means of vibrators. Consolidation prevents honeycombing,
ensures close contact with forms and reinforcement, and serves as a partial remedy to
possible prior segregation. Consolidation is achieved by high-frequency, power-driven
vibrators. These are of the internal type, immersed in the concrete, or of the external
type, attached to the forms. The former are preferable but must be supplemented by the
latter where narrow forms or other obstacles make immersion impossible (Ref. 2.9).

Fresh concrete gains strength most rapidly during the first few days and weeks.
Structural design is generally based on the 28-day strength, about 70 percent of which
is reached at the end of the first week after placing. The final concrete strength depends
greatly on the conditions of moisture and temperature during this initial period. The
maintenance of proper conditions during this time is known as curing. Thirty percent
of the strength or more can be lost by premature drying out of the concrete; similar
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amounts may be lost by permitting the concrete temperature to drop to 40°F or lower
during the first few days unless the concrete is kept continuously moist for a long time
thereafter. Freezing of fresh concrete may reduce its strength by 50 percent or more.

To prevent such damage, concrete should be protected from loss of moisture for
at least 7 days and, in more sensitive work, up to 14 days. When high early strength
cements are used, curing periods can be cut in half. Curing can be achieved by keeping
exposed surfaces continually wet through sprinkling, ponding, or covering with plastic
film or by the use of sealing compounds, which, when properly used, form
evaporation-retarding membranes. In addition to improving strength, proper moist-
curing provides better shrinkage control. To protect the concrete against low temper-
atures during cold weather, the mixing water, and occasionally the aggregates, is heated;
temperature insulation is used where possible; and special admixtures are employed.
When air temperatures are very low, external heat may have to be supplied in addition
to insulation (Refs. 2.7, 2.8, 2.10, and 2.11).

QUALITY CONTROL

The quality of mill-produced materials, such as structural or reinforcing steel, is ensured
by the producer, who must exercise systematic quality controls, usually specified by per-
tinent ASTM standards. Concrete, in contrast, is produced at or close to the site, and its
final qualities are affected by a number of factors, which have been discussed briefly.
Thus, systematic quality control must be instituted at the construction site.

The main measure of the structural quality of concrete is its compressive strength.
Tests for this property are made on cylindrical specimens of height equal to twice the
diameter, usually 6 X 12 in. or 4 X 8 in. Impervious molds of this shape are filled with
concrete during the operation of placement as specified by ASTM C172, “Standard
Method of Sampling Freshly Mixed Concrete,” and ASTM C31, “Standard Practice for
Making and Curing Concrete Test Specimens in the Field.” The cylinders are moist-
cured at about 70°F, generally for 28 days, and then tested in the laboratory at a
specified rate of loading. The compressive strength obtained from such tests is known
as the cylinder strength f! and is the main property specified for design purposes.

To provide structural safety, continuous control is necessary to ensure that the
strength of the concrete as furnished is in satisfactory agreement with the value called
for by the designer. The ACI Code specifies that two 6 X 12 in. or three 4 X 8 in.
cylinders must be tested for each 150 yd? of concrete or for each 5000 ft? of surface
area actually placed, but not less than once a day. As mentioned in Section 2.4, the
results of strength tests of different batches mixed to identical proportions show
inevitable scatter. The scatter can be reduced by closer control, but occasional tests
below the cylinder strength specified in the design cannot be avoided.

To ensure adequate concrete strength in spite of such scatter, the ACI Code stip-
ulates that concrete quality is satisfactory if

1. No individual strength test result (the average of two or three cylinder tests
depending on cylinder size) falls below the required f7 by more than 500 psi when
Jf¢ 18 5000 psi or less or by more than 0.10f] when f is more than 5000 psi, and

2. Every arithmetic average of any three consecutive strength tests equals or
exceeds f.

Itis evident that if concrete were proportioned so that its mean strength were just
equal to the required strength f/, it would not pass these quality requirements, because
about one-half of its strength test results would fall below the required f. It is
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Frequency curves and
average strengths for various
degrees of control of
concretes with specified
design strength f,. (Adapted
from Ref. 2.12.)
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therefore necessary to proportion the concrete so that its mean strength f;,, used as the
basis for selection of suitable proportions, exceeds the required design strength f, by
an amount sufficient to ensure that the two quoted requirements are met. The mini-
mum amount by which the required mean strength must exceed f, can be determined
only by statistical methods because of the random nature of test scatter. Requirements
have been derived, based on statistical analysis, to be used as a guide to proper pro-
portioning of the concrete at the plant so that the probability of strength deficiency at
the construction site is acceptably low.

The basis for these requirements is illustrated in Fig. 2.2, which shows three
normal frequency curves giving the distribution of strength test results. The specified
design strength is f]. The curves correspond to three different degrees of quality con-
trol, curve A representing the best control, i.e., the least scatter, and curve C the worst
control, with the most scatter. The degree of control is measured statistically by the
standard deviation o (o, for curve A, o, for curve B, and , for curve C), which is rel-
atively small for producer A and relatively large for producer C. All three distributions
have the same probability of strength less than the specified value f;; i.e., each has the
same fractional part of the total area under the curve to the left of f;. For any normal
distribution curve, that fractional part is defined by the index (3, a multiplier applied
to the standard deviation o; B, is the same for all three distributions of Fig. 2.2. It is
seen that, to satisfy the requirement that, say, 1 test in 100 will fall below f, (with the
value of B, thus determined), for producer A with the best quality control the mean
strength f7. can be much closer to the specified f; than for producer C with the most
poorly controlled operation.

On the basis of such studies, the ACI Code requires that concrete production
facilities maintain records from which the standard deviation achieved in the particular
facility can be determined. It then stipulates the minimum amount by which the required
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average compressive strength f;,, aimed at when selecting concrete proportions, must
exceed the specified compressive strength f.. In accordance with ACI Code 5.3.1, the
value of f;, is equal to the larger of the values in Egs. (2.1) and (2.2).

= 134, @.1)

or
|m+2335,-500  forf! = 5000 psi (2.2a)
e =Yoo + 2335, for £/ > 5000 psi 2.26)

where s, is the standard deviation of the test sample.

Equation (2.1) provides a probability of 1 in 100 that averages of three
consecutive tests will be below the specified strength f.. Equations (2.2a) and
(2.2b) provide a probability of 1 in 100 that an individual strength test will be more
than 500 psi below the specified f; for £ up to 5000 psi or below 0.90f, for f! over
5000 psi.

To use Egs. (2.1) and (2.2), ACI Code 5.3.1 requires that a minimum of 30 con-
secutive test results be available. The tests must represent concrete with (1) a specified
compressive strength within 1000 psi of f] for the project and (2) materials, quality
control, and conditions similar to those expected for the building in question. If fewer
than 30 but at least 15 tests are available, the equations may still be used, but s, must
be multiplied by a factor from Table 2.1. If fewer than 15 tests have been made,
the average strength must exceed f] by at least 1000 psi for f, less than or equal to
3000 psi, by at least 1200 psi for f, between 3000 and 5000 psi, and by 0.10f/ + 700 psi
for f] over 5000 psti, according to the ACI Code.

It is seen that this method of control recognizes the fact that occasional deficient
batches are inevitable. The requirements for £/, ensure (1) a small probability that such
strength deficiencies as are bound to occur will be large enough to represent a serious
danger and (2) an equally small probability that a sizable portion of the structure, as
represented by three consecutive strength tests, will be made of below-par concrete.

Both the requirements described earlier in this section for determining if con-
crete, as produced, is of satisfactory quality and the process just described of select-
ing f;, are based on the same basic considerations but are applied independently, as
demonstrated in Examples 2.1 and 2.2.

TABLE 2.1
Modification factors for sample standard deviation s, when less
than 30 tests are available

No. of Testst Modification Factor for Sample
Standard Deviationt*
Less than 15 See paragraph following
Egs. (2.1) and (2.2)
15 1.16
20 1.08
25 1.03
30 or more 1.00

*Interpolate for intermediate values.
*The sample standard deviation s, must be multiplied by the modification factor prior to use in Egs. (2.1) and (2.2).
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EXAMPLE 2.1 A building design calls for specified concrete strength f; of 4000 psi. Calculate the average
required strength £, if (@) 30 consecutive tests for concrete with similar strength and materials
produce a sample standard deviation s, of 535 psi, (b) 15 consecutive tests for concrete with
similar strength and materials produce a sample standard deviation s, of 510 psi, and (¢) less
than 15 tests are available.

SoLuTioN. (@) 30 tests available. Using s, = 535 psi, Eq. (2.1) gives
£ =f + 1.34s = 4000 + 1.34 X 535 = 4720 psi'
Because the specified strength f! is less than 4000 psi, Eq. (2.2a) must be used.
fo. =f, + 2335, — 500 = 4000 + 2.33 X 535 — 500 = 4750 psi
The required average strength £, is equal to the larger value, 4750 psi.
(b) 15 tests available. Because only 15 tests are available, s,, given as 510 psi, must be multi-
plied by 1.16, the factor from Table 2.1.
1.16 X s, = 1.16 X 510 = 590 psi
Again, using Egs. (2.1) and (2.2a),
£, = 4000 + 1.34 X 590 = 4790 psi
fi. = 4000 + 2.33 X 590 — 500 = 4870 psi
The larger value, 4870 psi, is selected as the required average strength f.
(¢) Less than 15 tests available. Because f. is between 3000 and 5000 psi, the required aver-
age strength is
fi. = f. + 1200 = 4000 + 1200 = 5200 psi
This example demonstrates that in cases where test data are available, good quality control,
represented by a low sample standard deviation s,, can be used to reduce the required aver-
age strength f... The example also demonstrates that a lack of certainty in the value of the
standard deviation due to the limited availability of data results in higher values for f;,, as
shown in parts (b) and (c). As additional test results become available, the higher safety
margins can be reduced.
EXAMPLE 2.2  The first eight compressive strength test results for the building described in Example 2.1c are

4730, 4280, 3940, 4370, 5180, 4870, 4930, and 4850 psi.
(a) Are the test results satisfactory, and (b) in what fashion, if any, should the mixture
proportions of the concrete be altered?

SoLuTION.

(a) For concrete to be considered satisfactory, no individual test may fall below f, —500 psi and
every arithmetic average of any three consecutive tests must equal f; . The eight tests meet these
criteria. No test is less than f. —500 psi = 4000 — 500 = 3500 psi, and the average of all sets
of three consecutive tests exceeds f, [for example, (4730 + 4280 + 3940)/3 = 4320, (4280 +
3940 + 4370)/3 = 4200, etc.].

(b) To determine if the mixture proportions must be aitered, we note that the solution
to Example 2.1c requires that f,, equal or exceed 5200 psi. The average of the first eight
tests is 4640 psi, well below the value of f;,. Thus, the mixture proportions should be mod-
ified by decreasing the water-cement ratio to increase the concrete strength. Once at least
15 tests are available, the value of £, can be recalculated using Eqs. (2.1) and (2.2) with the

+ ASTM International specifies that concrete cylinder strengths be recorded to the nearest 10 psi. Hence the values used for test results and f7, are

rounded accordingly.
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appropriate factor for S, from Table 2.1. The mixture proportions can then be adjusted
based on the new value of f;,, the strength of the concrete being produced, and the level of

quality control, as represented by the sample standard deviation s,.

2.7

In spite of scientific advances, building in general and concrete making in par-
ticular retain some elements of an art; they depend on many skills and imponderables.
It is the task of systematic inspection to ensure close correspondence between plans
and specifications and the finished structure. Inspection during construction should be
carried out by a competent engineer, preferably the one who produced the design or
one who is responsible to the design engineer. The inspector’s main functions in regard
to materials quality control are sampling, examination, and field testing of materials;
control of concrete proportioning; inspection of batching, mixing, conveying, placing,
compacting, and curing; and supervision of the preparation of specimens for labora-
tory tests. In addition, the inspector must inspect foundations, formwork, placing of
reinforcing steel, and other pertinent features of the general progress of work; keep
records of all the inspected items; and prepare periodic reports. The importance of
thorough inspection to the correctness and adequate quality of the finished structure
cannot be emphasized too strongly.

This brief account of concrete technology represents the merest outline of an impor-
tant subject. Anyone in practice who is actually responsible for any of the phases of
producing and placing concrete must be familiar with the details in much greater depth.

ADMIXTURES

In addition to the main components of concretes, admixtures are often used to improve
concrete performance. There are admixtures to accelerate or retard setting and harden-
ing, to improve workability, to increase strength, to improve durability, to decrease per-
meability, and to impart other properties (Ref. 2.13). The beneficial effects of particular
admixtures are well established. Chemical admixtures should meet the requirements of
ASTM C494, “Standard Specification for Chemical Admixtures for Concrete.”

Air-entraining agents are probably the most commonly used admixtures. They
cause the entrainment of air in the form of small dispersed bubbles in the concrete.
These improve workability and durability (chiefly resistance to freezing and thawing)
and reduce segregation during placing. They decrease concrete density because of the
increased void ratio and thereby decrease strength; however, this decrease can be
partially offset by a reduction of mixing water without loss of workability. The chief
use of air-entrained concretes is in pavements, but they are also used for structures,
particularly for exposed elements (Ref. 2.14).

Accelerating admixtures are used to reduce setting time and accelerate early
strength development. Calcium chloride is the most widely used accelerator because
of its cost effectiveness, but it should not be used in prestressed concrete and should
be used with caution in reinforced concrete in a moist environment, because of its ten-
dency to promote corrosion of steel. Nonchloride, noncorrosive accelerating admix-
tures are available, the principal one being calcium nitrite (Ref. 2.13).

Set-retarding admixtures are used primarily to offset the accelerating effect of
high ambient temperature and to keep the concrete workable during the entire placing
period. This helps to eliminate cracking due to form deflection and also keeps concrete
workable long enough that succeeding lifts can be placed without the development of
“cold” joints.
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Certain organic compounds are used to reduce the water requirement of a
concrete mix for a given slump. Such compounds are termed plasticizers. Reduction
in water demand may result in either a reduction in the water-cement ratio for a given
slump and cement content or an increase in slump for the same water-cement ratio and
cement content. Plasticizers work by reducing the interparticle forces that exist between
cement grains in the fresh paste, thereby increasing the paste fluidity. High-range
water-reducing admixtures, or superplasticizers, are used to produce high-strength
concrete (see Section 2.12) with a very low water-cement ratio while maintaining the
higher slumps needed for proper placement and compaction of the concrete. They are
also used to produce flowable concrete at conventional water-cement ratios.
Superplasticizers differ from conventional water-reducing admixtures in that they do
not act as retarders at high dosages; therefore, they can be used at higher dosage rates
without severely slowing hydration (Refs. 2.13, 2.15, and 2.16). The specific effects
of water-reducing admixtures vary with different cements, changes in water-cement
ratio, mixing temperature, ambient temperature, and other job conditions, and trial
batches are generally required.

When superplasticizers are combined with viscosity-modifying admixtures, they
can be used to produce self-consolidating concrete (SCC). Self-consolidating
concrete is highly fluid and does not require vibration to remove entrapped air. The
viscosity modifying agents allow the concrete to remain cohesive even with a very
high degree of fluidity. As a result, SCC can be used for members with congested
reinforcement, such as beam-column joints in earthquake-resistant structures, and is
widely used for precast concrete, especially precast prestressed concrete, a manufac-
tured product (prestressed concrete is discussed in Chapter 19). The high fluidity of
the mix, however, has been shown to have a negative impact on the bond strength
between the concrete and prestressing steel located in the upper portions of a mem-
ber, a shortcoming that should be considered in design (Ref. 2.17) but is not currently
addressed in the ACI Code, and the composition of SCC mixtures may result in
moduli of elasticity, creep, and shrinkage properties that differ from those of more
traditional mixtures.

Fly ash and silica fume are pozzolans, highly active silicas, that combine with
calcium hydroxide, the soluble product of cement hydration (Section 2.2), to form
more calcium silicate hydrate, the insoluble product of cement hydration (Refs. 2.18
and 2.19). Pozzolans qualify as supplementary cementitious materials, also referred
to as mineral admixtures, which are used to replace a part of the portland cement in
concrete mixes. Fly ash, which is specified under ASTM C618, “Standard Speci-
fication for Coal Fly Ash and Raw or Calcified Natural Pozzolan for Use in
Concrete,” is precipitated electrostatically as a by-product of the exhaust fumes of
coal-fired power stations. It is very finely divided and reacts with calcium hydroxide
in the presence of moisture to form a cementitious material. It tends to increase the
strength of concrete at ages over 28 days. Silica fume, which is specified under
ASTM C1240, “Standard Specification for Silica Fume Used in Cementitious
Mixtures,” is a by-product resulting from the manufacture, in electric-arc furnaces, of
ferro-silicon alloys and silicon metal. It is extremely finely divided and is highly
cementitious when combined with portland cement. In contrast to fly ash, silica fume
contributes mainly to strength gain at early ages, from 3 to 28 days. Both fly ash and
silica fume, particularly the latter, have been important in the production of high-
strength concrete (see Section 2.12).

Ground granulated blast-furnace slag (GGBFS), which is specified under
ASTM (989, “Standard Specification for Ground Granulated Blast-Furnace Slag for
Use in Concrete and Mortar,” is another supplementary cementitious material. It is
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2.8

produced by water quenching and grinding slag from the production of pig iron, the
key ingredient used to make steel (Ref. 2.20). GGBFS consists primarily of calcium
silicates, making it very similar to portland cement. As a result of the similarity, slag
can be used in higher quantities than fly ash or silica fume, and the resulting material
generally has similar or improved properties to those exhibited by concrete made with
100 percent portland cement.

When blast furnace slag, silica fume, fly ash, or a combination is used, it is cus-
tomary to refer to the water—cementitious material ratio rather than the water-cement
ratio. This typically may be as low as 0.25 for high-strength concrete, and ratios as low
as 0.21 have been used (Refs. 2.21 and 2.22).

Historically, the high durability and high thermal mass of concrete structures
have played a key role in sustainable development, that is, development that mini-
mizes both its impact on the environment and the resources used both during and after
construction. In sustainable development, the “cost” of concrete lies primarily in the
manufacture of portland cement. The production of a ton of portland cement requires
roughly the energy needed to operate a typical U.S. household for two weeks and
generates approximately 0.9 ton of CO, (a greenhouse gas). The latter translates to
about 250 1b of CO, for every cubic yard of concrete that is placed. The energy and
greenhouse gases involved in the production of concrete, however, can be viewed as
investments because properly designed reinforced concrete structures that take advan-
tage of concrete’s thermal mass provide significant reductions in the energy and CO,
needed for heating and cooling, and concrete’s inherent durability results in structures
with long service lives. Because by-products, such as the mineral admixtures fly ash
and blast furnace slag, involve minimal energy usage or greenhouse gas production,
they have the potential to further improve the sustainability of concrete construction
when used as a partial replacement for portland cement.

PROPERTIES IN COMPRESSION

Short-Term Loading

Performance of a structure under load depends to a large degree on the stress-strain
relationship of the material from which it is made, under the type of stress to which
the material is subjected in the structure. Since concrete is used mostly in compres-
sion, its compressive stress-strain curve is of primary interest. Such a curve is obtained
by appropriate strain measurements in cylinder tests (Section 2.6) or on the compres-
sion side in beams. Figure 2.3 shows a typical set of such curves for normal-density
concrete, obtained from uniaxial compressive tests performed at normal, moderate
testing speeds on concretes that are 28 days old. Figure 2.4 shows corresponding
curves for lightweight concretes having a density of 100 pcf.

All of the curves have somewhat similar character. They consist of an initial
relatively straight elastic portion in which stress and strain are closely proportional,
then begin to curve to the horizontal, reaching the maximum stress, i.e., the compres-
sive strength, at a strain that ranges from about 0.002 to 0.003 for normal-density
concretes, and from about 0.003 to 0.0035 for lightweight concretes (Refs. 2.23 and
2.24), the larger values in each case corresponding to the higher strengths. All curves
show a descending branch after the peak stress is reached; however, the characteristics
of the curves after peak stress are highly dependent upon the method of testing. If
special procedures are followed in testing to ensure a constant strain rate while
cylinder resistance is decreasing, long stable descending branches can be obtained
(Ref. 2.25). In the absence of special devices, unloading past the point of peak stress
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may be rapid, particularly for the higher-strength concretes, which are generally more
brittle than low-strength concrete.

In present practice, the specified compressive strength f. is commonly in the
range from 3000 to 5000 psi for normal-density cast-in-place concrete, and up to
about 8000 psi for precast prestressed concrete members. Lightweight concrete
strengths are somewhat below these values generally. The high-strength concretes,
with f7 to 15,000 psi or more, are used with increasing frequency, particularly for
heavily loaded columns in high-rise concrete buildings and for long-span bridges
(mostly prestressed) where a significant reduction in dead load may be realized by
minimizing member cross section dimensions. (See Section 2.12.)

The modulus of elasticity E, (in psi units), i.e., the slope of the initial straight
portion of the stress-strain curve, is seen to be larger as the strength of the concrete
increases. For concretes in the strength range to about 6000 psi, it can be computed
with reasonable accuracy from the empirical equation found in the ACI Code

E,. = 33wl Vf! (2.3)

where w, is the unit weight of the hardened concrete in pcf and f; is its strength in psi.
Equation (2.3) was obtained by testing structural concretes with values of w, from 90 to
155 pef. For normal sand-and-stone concretes, with w, = 145 pcf, E, may be taken as

E, = 57,000V (2.4)

For compressive strengths in the range from 6000 to 12,000 psi, the ACI Code equa-
tion may overestimate E, for both normalweight and lightweight material by as much
as 20 percent. Based on research at Cornell University (Refs. 2.23 and 2.24), the
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FIGURE 2.5

Effect of age on compressive
strength f; for moist-cured
concrete. (Adapted from Ref.
2.26.)

following equation is recommended for normal-density concretes with f in the range
of 3000 to 12,000 psi, and for lightweight concretes from 3000 to 9000 psi:

1.5
E, = (40,000\/7, + 1,000,000)( lv:;) 2.5)

where terms and units are as defined above for the ACI Code equations. When coarse
aggregates with high moduli of elasticity are used, however, Eq. (2.4) may underesti-
mate E_. Thus, in cases where E_ is a key design criterion, it should be measured,
rather than estimated, using Eq. (2.3), (2.4), or (2.5).

Information on concrete strength properties such as those discussed is usually
obtained through tests made 28 days after placing. However, cement continues to
hydrate, and consequently concrete continues to harden, long after this age, at a decreas-
ing rate. Figure 2.5 shows a typical curve of the gain of concrete strength with age for
concrete made using Type I (normal) cement and also Type III (high early strength)
cement, each curve normalized with respect to the 28-day compressive strength. High
early strength cements produce more rapid strength gain at early ages, although the
rate of strength gain at later ages is generally less. Concretes using Type III cement are
often used in precasting plants, and often the strength f! is specified at 7 days, rather
than 28 days.

Note that the shape of the stress-strain curve for various concretes of the same
cylinder strength, and even for the same concrete under various conditions of loading,
varies considerably. An example of this is shown in Fig. 2.6, where different
specimens of the same concrete are loaded at different rates of strain, from one
corresponding to a relatively fast loading (0.001 per minute) to one corresponding to
an extremely slow application of load (0.001 per 100 days). It is seen that the
descending branch of the curve, indicative of internal disintegration of the material,
is much more pronounced at fast than at slow rates of loading. It is also seen that the
peaks of the curves, i.e., the maximum strengths reached, are somewhat smaller at
slower rates of strain.

When compressed in one direction, concrete, like other materials, expands in the
direction transverse to that of the applied stress. The ratio of the transverse to the
longitudinal strain is known as Poisson’s ratio and depends somewhat on strength,
composition, and other factors. At stresses lower than about 0.7f,, Poisson’s ratio for
concrete falls within the limits of 0.15 to 0.20.
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FIGURE 2.6
Stress-strain curves at
various strain rates,

concentric compression.

(Adapted from Ref. 2.27.)

MATERIALS 43

1.00
/ — 100 days
\\ \
\ \\ 1 day
/| AN
0.75 74 N N
\ \
30 \ N1 hr
P AN
® \
B N[,
o 0.50 1 min
©
g
=
8 SE
.25 c
£35
w e
(@]
0
0 0.001 0.002 0.003 0.004

Concrete strain

Long-Term Loading

In some engineering materials, such as steel, strength and the stress-strain relation-
ships are independent of rate and duration of loading, at least within the usual ranges
of rate of stress, temperature, and other variables. In contrast, Fig. 2.6 illustrates the
fact that the influence of time, in this case of rate of loading, on the behavior of con-
crete under load is pronounced. The main reason is that concrete creeps under load,
while steel does not exhibit creep under conditions prevailing in buildings, bridges,
and similar structures.

Creep is the slow deformation of a material over considerable lengths of time at
constant stress or load. The nature of the creep process is shown schematically in
Fig. 2.7. This particular concrete was loaded after 28 days with resulting instantaneous
strain €,,,. The load was then maintained for 230 days, during which time creep was
seen to have increased the total deformation to almost 3 times its instantaneous value.
If the load were maintained, the deformation would follow the solid curve. If the load
is removed, as shown by the dashed curve, most of the elastic instantaneous strain €,
is recovered, and some creep recovery is seen to occur. If the concrete is reloaded at
some later date, instantaneous and creep deformations develop again, as shown.

Creep deformations for a given concrete are practically proportional to the
magnitude of the applied stress; at any given stress, and even at the same ratio of stress
to compressive strength, high-strength concretes show less creep than lower-strength
concretes (Ref. 2.28). As seen in Fig. 2.7, with elapsing time, creep proceeds at a
decreasing rate and ceases after 2 to 5 years at a final value which, depending on
concrete strength and other factors, is about 1.2 to 3 times the magnitude of the instan-
taneous strain. If, instead of being applied quickly and thereafter kept constant, the
load is increased slowly and gradually, as is the case in many structures during and
after construction, then instantaneous and creep deformations proceed simultaneously.
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FIGURE 2,7
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The effect is shown in Fig. 2.6; i.e., the previously discussed difference in the shape
of the stress-strain curve for various rates of loading is chiefly the result of the creep
deformation of concrete.

For stresses not exceeding about one-half the cylinder strength, creep strains are
approximately proportional to stress. Because initial elastic strains are also propor-
tional to stress in this range, this permits definition of the creep coefficient

Cor= (26)
ct
where €, is the final asymptotic value of the additional creep strain and €, is the ini-
tial, instantaneous strain when the load is first applied. Creep may also be expressed
in terms of the specific creep 8, defined as the additional time-dependent strain per
psi stress. It can easily be shown that

C.=ES, 2.7

In addition to the stress level, creep depends on the average ambient relative
humidity, being more than twice as large for 50 percent as for 100 percent humidity
(Ref. 2.8). This is so because part of the reduction in volume under sustained load is
caused by outward migration of free pore water, which evaporates into the surround-
ing atmosphere. Other factors of importance include the type of cement and aggregate,
age of the concrete when first loaded, and concrete strength (Ref. 2.8). The creep
coefficient for high-strength concrete is much less than that for low-strength concrete.
However, sustained load stresses are apt to be higher so that the creep deformation
may be as great for high-strength concrete, even though the creep coefficient is less.

The values of Table 2.2, quoted from Ref. 2.29 and extended for high-strength
concrete based on research at Cornell University, are typical values for average
humidity conditions, for concretes loaded at the age of 7 days.
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TABLE 2.2
Typical creep parameters

Compressive

Strength Specific Creep &,

psi MPa 10-¢ per psi 10~¢ per MPa Creep coefficient C_,
3,000 21 1.00 145 3.1

4,000 28 0.80 116 2.9

6,000 41 0.55 80 24

8,000 55 0.40 58 2.0
10,000 69 0.28 41 1.6
12,000 83 0.22 33 1.4

To illustrate, if the concrete in a column with f; = 4000 psi is subject to a long-
time load that causes sustained stress of 1200 psi, then after several years under load
the final value of the creep strain will be about 1200 X 0.80 X 1076 = 0.00096. Thus,
if the column were 20 ft long, creep would shorten it by about § in.

The creep coefficient at any time C,, can be related to the ultimate creep coeffi-
cient C,,. In Ref. 2.26, Branson suggests the equation

t0'60

" 70+ 0% G @9

Co
where ¢ = time in days after loading.

In many special situations, e.g., slender members or frames, or in prestressed
construction, the designer must take account of the combined effects of creep and
shrinkage (Section 2.11). In such cases, rather than rely on the sample values of Table
2.2, more accurate information on creep parameters should be obtained, such as from
Ref. 2.26 or 2.29.

Sustained loads affect not only the deformation but also the strength of concrete.
The cylinder strength f; is determined at normal rates of test loading (about
35 psi/sec). Tests by Riisch (Ref. 2.27) and at Cornell University (Refs. 2.30 and 2.31)
have shown that, for concentrically loaded unreinforced concrete prisms and cylin-
ders, the strength under sustained load is significantly smaller than f,, on the order of
75 percent of f. for loads maintained for a year or more. Thus, a member subjected to
a sustained overload causing compressive stress of over 75 percent of f. may fail after
a period of time, even though the load is not increased.

Fatigue

When concrete is subject to fluctuating rather than sustained loading, its fatigue
strength, as for all other materials, is considerably smaller than its static strength.
When plain concrete in compression is stressed cyclically from zero to maximum
stress, its fatigue limit is from 50 to 60 percent of the static compressive strength, for
2,000,000 cycles. A reasonable estimate can be made for other stress ranges using the
modified Goodman diagram (see Ref. 2.29). For other types of applied stress, such as
flexural compressive stress in reinforced concrete beams or flexural tension in unrein-
forced beams or on the tension side of reinforced beams, the fatigue limit likewise
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appears to be about 55 percent of the corresponding static strength. These figures,
however, are for general guidance only. It is known that the fatigue strength of
concrete depends not only on its static strength but also on moisture condition, age,
and rate of loading (see Ref. 2.32).

PROPERTIES IN TENSION

While concrete is best employed in a manner that uses its favorable compressive
strength, its behavior in tension is also important. The conditions under which cracks
form and propagate on the tension side of reinforced concrete flexural members
depend strongly on both the tensile strength and the fracture properties of the concrete,
the latter dealing with the ease with which a crack progresses once it has formed. Con-
crete tensile stresses also occur as a result of shear, torsion, and other actions, and in
most cases member behavior changes upon cracking. Thus, it is important to be able
to predict, with reasonable accuracy, the tensile strength of concrete and to understand
the factors that control crack propagation.

Tensile Strength

There are considerable experimental difficulties in determining the true tensile strength
of concrete. In direct tension tests, minor misalignments and stress concentrations in
the gripping devices are apt to mar the results. For many years, tensile strength has
been measured in terms of the modulus of rupture f,, the computed flexural tensile
stress at which a test beam of plain concrete fractures. Because this nominal stress is
computed on the assumption that concrete is an elastic material, and because this
bending stress is localized at the outermost surface, it is apt to be larger than the
strength of concrete in uniform axial tension. It is thus a measure of, but not identical
with, the real axial tensile strength.

More recently the result of the split-cylinder test has established itself as a
measure of the tensile strength of concrete. A concrete cylinder, the same as is used for
compressive tests, is inserted in a compression testing machine in the horizontal posi-
tion, so that compression is applied uniformly along two opposite generators. Pads are
inserted between the compression platens of the machine and the cylinder to equalize
and distribute the pressure. It can be shown that in an elastic cylinder so loaded, a
nearly uniform tensile stress of magnitude 2P/(7rdL) exists at right angles to the plane
of load application. Correspondingly, such cylinders, when tested, split into two halves
along that plane, at a stress f,, that can be computed from the above expression. P is
the applied compressive load at failure, and d and L are the diameter and length of the
cylinder, respectively. Because of local stress conditions at the load lines and the pres-
ence of stresses at right angles to the aforementioned tension stresses, the results of
the split-cylinder tests likewise are not identical with (but are believed to be a good
measure of) the true axial tensile strength. The results of all types of tensile tests show
considerably more scatter than those of compression tests.

Tensile strength, however determined, does not correlate well with the compres-
sive strength f7. It appears that for sand-and-gravel concrete, the tensile strength
depends primarily on the strength of bond between hardened cement paste and
aggregate, whereas for lightweight concretes it depends largely on the tensile strength
of the porous aggregate. The compressive strength, on the other hand, is much less
determined by these particular characteristics.
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Better correlation is found between the various measures of tensile strength and
the square root of the compressive strength. The direct tensile strength, for example,
ranges from about 3 to 5V/f*. for normal-density concretes, and from about 2 to 3 V7",
for all-lightweight concrete. Typical ranges of values for direct tensile strength, split-
cylinder strength, and modulus of rupture are summarized in Table 2.3. In these
expressions, f, is expressed in psi units, and the resulting tensile strengths are
obtained in psi.

These approximate expressions show that tensile and compressive strengths are
by no means proportional, and that any increase in compressive strength, such as that
achieved by lowering the water-cement ratio, is accompanied by a much smaller per-
centage increase in tensile strength.

The ACI Code recommends that the modulus of rupture f, be taken to equal
7.5Vf! for normalweight concrete, and that this value be multiplied by 0.85 for
“sand-lightweight” and 0.75 for “all-lightweight” concretes, giving values of 6.4V
and 5.6 V7, respectively, for those materials.

Tensile Fracture

The failure of concrete in tension involves both the formation and the propagation
of cracks. The field of fracture mechanics deals with the latter. While reinforced
concrete structures have been successfully designed and built for over 150 years
without the use of fracture mechanics, the brittle response of high-strength concretes
(Section 2.12), in tension as well as compression, increases the importance of the
fracture properties of the material as distinct from tensile strength. Research dealing
with the shear strength of high-strength concrete beams and the bond between rein-
forcing steel and high-strength concrete indicates relatively low increases in these
structural properties with increases in concrete compressive strength (Refs. 2.33 and
2.34). While shear and bond strength are associated with the V/f! for normal-
strength concrete, tests of high-strength concrete indicate that increases in shear and
bond strengths are well below values predicted using V!, indicating that concrete
tensile strength alone is not the governing factor. An explanation for this behavior is
provided by research at the University of Kansas and elsewhere (Refs. 2.35 and
2.36) that demonstrates that the energy required to fully open a crack (i.e., after the
crack has started to grow) is largely independent of compressive strength, water-
cement ratio, and age. Design expressions reflecting this research are not yet
available. The behavior is, however, recognized in the ACI Code by limitations on
the maximum value of V7, that may be used to calculate shear and bond strength,
as will be discussed in Chapters 4 and 5.

TABLE 2.3

Approximate range of tensile strengths of concrete
Normalweight Lightweight
Concrete, psi Concrete, psi

Direct tensile strength f; 3to 5VF 2t0 3VS!

Split-cylinder strength f,, 6 to 8VF! 4t0 6 V!

Modulus of rupture f, 8to 12VF 6 to 8V,
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2.10 STRENGTH UNDER COMBINED STRESS

In many structural situations, concrete is subjected simultaneously to various stresses
acting in various directions. For instance, in beams much of the concrete is subject
simultaneously to compression and shear stresses, and in slabs and footings to com-
pression in two perpendicular directions plus shear. By methods well known from the
study of engineering mechanics, any state of combined stress, no matter how complex,
can be reduced to three principal stresses acting at right angles to one another on an
appropriately oriented elementary cube in the material. Any or all of the principal stresses
can be either tension or compression. If any one of them is zero, a state of biaxial stress
is said to exist; if two of them are zero, the state of stress is uniaxial, either simple com-
pression or simple tension. In most cases, only the uniaxial strength properties of a
material are known from simple tests, such as the cylinder strength £ and the tensile
strength f,. For predicting the strengths of structures in which concrete is subject to
biaxial or triaxial stress, it would be desirable to be able to calculate the strength of
concrete in such states of stress, knowing from tests only either f or f and f;.

In spite of extensive and continuing research, no general theory of the strength
of concrete under combined stress has yet emerged. Modifications of various strength
theories, such as maximum stress, maximum strain, the Mohr-Coulomb, and the octa-
hedral shear stress theories, all of which are discussed in structural mechanics texts,
have been adapted with varying partial success to concrete. At present, none of these
theories has been generally accepted, and many have obvious internal contradictions.
The main difficulty in developing an adequate general strength theory lies in the
highly nonhomogeneous nature of concrete, and in the degree to which its behavior at
high stresses and at fracture is influenced by microcracking and other discontinuity
phenomena (Refs. 2.8 and 2.37).

However, the strength of concrete has been well established by tests, at least for
the biaxial stress state (Refs. 2.38 and 2.39). Results may be presented in the form of
an interaction diagram such as Fig. 2.8, which shows the strength in direction 1 as a
function of the stress applied in direction 2. All stresses are normalized in terms of the
uniaxial compressive strength f7. It is seen that in the quadrant representing biaxial
compression a strength increase as great as about 20 percent over the uniaxial com-
pressive strength is attained, the amount of increase depending upon the ratio of f, to
fi- In the biaxial tension quadrant, the strength in direction 1 is almost independent of
stress in direction 2. When tension in direction 2 is combined with compression in
direction 1, the compressive strength is reduced almost linearly, and vice versa. For
example, lateral compression of about one-half the uniaxial compressive strength will
reduce the tensile strength by almost one-half compared with its uniaxial value. This
fact is of great importance in predicting diagonal tension cracking in deep beams or
shear walls, for example.

Experimental investigations into the triaxial strength of concrete have been few,
due mainly to the practical difficulty of applying load in three directions simultane-
ously without introducing significant restraint from the loading equipment (Ref. 2.40).
From information now available, the following conclusions can be drawn relative to
the triaxial strength of concrete: (1) in a state of equal triaxial compression, concrete
strength may be an order of magnitude larger than the uniaxial compressive strength;
(2) for equal biaxial compression combined with a smaller value of compression in the
third direction, a strength increase greater than 20 percent can be expected; and (3) for
stress states including compression combined with tension in at least one other direc-
tion, the intermediate principal stress is of little consequence, and the compressive
strength can be predicted safely based on Fig. 2.8.



FIGURE 2.8

Strength of concrete in
biaxial stress. (Adapted from
Ref 2.39.)
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In fact, the strength of concrete under combined stress cannot yet be calculated
rationally, and, equally important, in many situations in concrete structures it is nearly
impossible to calculate all of the acting stresses and their directions; these are two of
the main reasons for continued reliance on tests. Because of this, the design of rein-
forced concrete structures continues to be based more on extensive experimental infor-
mation than on consistent analytical theory, particularly in the many situations where
combined stresses occur.

SHRINKAGE AND TEMPERATURE EFFECTS

The deformations discussed in Section 2.8 were induced by stresses caused by exter-
nal loads. Influences of a different nature cause concrete, even when free of any external
loading, to undergo deformations and volume changes. The most important of these
are shrinkage and the effects of temperature variations.

Shrinkage

As discussed in Sections 2.2 and 2.4, any workable concrete mix contains more water
than is needed for hydration. If the concrete is exposed to air, the larger part of this
free water evaporates in time, the rate and completeness of drying depending on
ambient temperature and humidity conditions. As the concrete dries, it shrinks in
volume, due initially to the capillary tension that develops in the water remaining in
the concrete (Ref. 2.8). Conversely, if dry concrete is immersed in water, it expands,
regaining much of the volume loss from prior shrinkage. Shrinkage, which continues
at a decreasing rate for several months, depending on the configuration of the member,
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FIGURE 2.9

Effect of water content on
drying shrinkage. (From
Ref. 2.3)

is a detrimental property of concrete in several respects. When not adequately
controlled, it will cause unsightly and often deleterious cracks, as in slabs, walls,
etc. In structures that are statically indeterminate (and most concrete structures are),
it can cause large and harmful stresses. In prestressed concrete it leads to partial
loss of initial prestress. For these reasons it is essential that shrinkage be minimized
and controlled.

As is clear from the nature of the process, a key factor in determining the amount
of final shrinkage is the unit water content of the fresh concrete. This is illustrated in
Fig. 2.9, which shows the amount of shrinkage for varying amounts of mixing water.
The same aggregates were used for all tests, but in addition to and independently of
the water content, the amount of cement was also varied from 376 to 1034 Ib/yd3 of
concrete. This very large variation of cement content causes a 20 to 30 percent varia-
tion in shrinkage strain for water contents between 250 to 350 1b/yd?, the range used
for most structural concretes. Increasing the cement content increases the cement paste
constituent of the concrete, where the shrinkage actually takes place, while reducing
the aggregate content. Since most aggregates do not contribute to shrinkage, an
increase in aggregate content can significantly decrease shrinkage. This is shown in
Fig. 2.10, which compares the shrinkage of concretes with various aggregate contents
with the shrinkage obtained for neat cement paste (cement and water alone). For
example, increasing the aggregate content from 71 to 74 percent (at the same water-
cement ratio) results in a 20 percent reduction in shrinkage (Ref. 2.29). Increased
aggregate content may be obtained through the use of (1) a larger maximum size
coarse aggregate (which also reduces the water content required for a given workabil-
ity), (2) a concrete with lower workability, and (3) chemical admixtures to increase
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FIGURE 2.10

Influence of aggregate
content in concrete (by
volume) on the ratio of the
shrinkage of concrete to the
shrinkage of neat cement
paste. (Adapted from Ref. 2.29,
based on data in Ref. 2.41.)
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workability at lower water contents. It is evident that an effective means of reducing
shrinkage involves both a reduction in water content and an increase in aggregate con-
tent. In addition, prolonged and careful curing is beneficial for shrinkage control.

Values of final shrinkage for ordinary concretes are generally on the order of
400 X 1076 to 800 X 1076, depending on the initial water content, ambient tempera-
ture and humidity conditions, and the nature of the aggregate. Highly absorptive
aggregates with low moduli of elasticity, such as some sandstones and slates, result in
shrinkage values 2 or more times those obtained with less absorptive materials, such
as granites and some limestones. Some lightweight aggregates, in view of their great
porosity, easily result in much larger shrinkage values than ordinary concretes.

For some purposes, such as predicting the time-dependent loss of force in
prestressed concrete beams, it is important to estimate the amount of shrinkage as a func-
tion of time. Long-term studies (Ref. 2.26) show that, for moist-cured concrete at any
time ¢ after the initial 7 days, shrinkage can be predicted satisfactorily by the equation

t

€.\‘h,t = ﬁ esh,u (29)

where €, is the unit shrinkage strain at time ¢ in days and €, , is the ultimate value
after a long period of time. Equation (2.9) pertains to “standard” conditions, defined
in Ref. 2.26 to exist for humidity not in excess of 40 percent and for an average
thickness of member of 6 in., and it applies both for normalweight and lightweight
concretes. Modification factors are applied for nonstandard conditions, and separate
equations are given for steam-cured members.

For structures in which a reduction in cracking is of particular importance, such
as bridge decks, pavement slabs, and liquid storage tanks, the use of expansive
cement concrete is appropriate. Shrinkage-compensating cement is constituted and
proportioned such that the concrete will increase in volume after setting and during
hardening. When the concrete is restrained by reinforcement or other means, the
tendency to expand will result in compression. With subsequent drying, the shrink-
age so produced, instead of causing a tension stress in the concrete that would result
in cracking, merely reduces or relieves the expansive strains caused by the initial
expansion (Ref. 2.42). Expansive cement is produced by adding a source of reactive
aluminate to ordinary portland cement; approximately 90 percent of shrinkage-
compensating cement is made up of the constituents of conventional portland cement.
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Of the three main types of expansive cements produced, only type K is commercially
available in the United States; it is about 20 percent more expensive than ordinary
portland cement (Ref. 2.43). Requirements for expansive cement are given in ASTM
C845, “Standard Specification for Expansive Hydraulic Cement.” The usual admix-
tures can be used in shrinkage-compensating concrete, but trial mixes are necessary
because some admixtures, particularly air-entraining agents, are not compatible with
certain expansive cements.

Effect of Temperature Change

Like most other materials, concrete expands with increasing temperature and contracts
with decreasing temperature. The effects of such volume changes are similar to those
caused by shrinkage; i.e., temperature contraction can lead to objectionable cracking,
particularly when superimposed on shrinkage. In indeterminate structures, deforma-
tions due to temperature changes can cause large and occasionally harmful stresses.

The coefficient of thermal expansion and contraction varies somewhat, depend-
ing upon the type of aggregate and richness of the mix. It is generally within the
range of 4 X 107 to 7 X 1076 per °F. A value of 5.5 X 107 is generally accepted
as satisfactory for calculating stresses and deformations caused by temperature changes
(Ref. 2.8).

HIGH-STRENGTH CONCRETE

There are a number of applications in which high-strength concrete will provide
improved structural performance. Although the exact definition is arbitrary, the term
generally refers to concrete having uniaxial compressive strength in the range of about
8000 to 20,000 psi or higher. Such concretes can be made using carefully selected but
widely available cements, sands, and stone; certain admixtures including high-range
water-reducing superplasticizers, fly ash, and silica fume; plus very careful quality
control during production (Refs. 2.44 and 2.45). In addition to higher strength in
compression, most other engineering properties are improved, leading to use of the
alternative term high-performance concrete.

The most common application of high-strength concretes has been in the columns
of tall concrete buildings, where normal concrete would result in unacceptably large
cross sections, with loss of valuable floor space. It has been shown that the use of the
more expensive high-strength concrete mixes in columns not only saves floor area but
also is more economical than increasing the amount of steel reinforcement. Concrete
of up to 12,000 psi was specified for the lower-story columns of 311 South Wacker
Drive in Chicago (see Fig. 2.11), a pioneering structure with a total height of 946 ft.
Formerly holding the height record, it has been superseded by taller buildings; the
present record is held by the tallest building and the tallest structure of any type in the
world, the Burj Dubai in Dubai, United Arab Emirates, shown in Fig. 18.2, which has
a total height in excess of 2100 ft.

For bridges, too, smaller cross sections bring significant advantages, and the
resulting reduction in dead load permits longer spans. The higher elastic modulus and
lower creep coefficient result in reduced initial and long-term deflections, and in the
case of prestressed concrete bridges, initial and time-dependent losses of prestress
force are less. Other recent applications of high-strength concrete include offshore oil
structures, parking garages, bridge deck overlays, dam spillways, warehouses, and
heavy industrial slabs (Ref. 2.46).
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FIGURE 2.11 FIGURE 2.12

311 South Wacker Drive, Chicago, which is among the High-strength concrete test cylinder after uniaxial loading to
world’s tallest buildings. High-strength concrete with f = failure; note the typically smooth fracture surface, with little
12,000 psi was used in the lower stories. (Courtesy of Portland aggregate interlock.

Cement Association.)

An essential requirement for high-strength concrete is a low water—cementitious
material ratio. For normal concretes, this usually falls in the range from about 0.40 to 0.60
by weight, but for high-strength mixes it may be 0.25 or even lower. To permit proper
placement of what would otherwise be a zero slump mix, high-range water-reducing
admixtures, or superplasticizers, are essential and may increase slumps to as much as 6
or 8 in. Other additives include fly ash and, most notably, silica fume (see Section 2.7).

Much research in recent years has been devoted to establishing the fundamental
and engineering properties of high-strength concretes, as well as the engineering char-
acteristics of structural members made with the material (Refs. 2.33, 2.34, and 2.47 to
2.53). A large body of information is now available, permitting the engineer to use
high-strength concrete with confidence when its advantages justify the higher cost. The
compressive strength curves in Figs. 2.3 and 2.4 illustrate important differences com-
pared with normal concrete, including a higher elastic modulus and an extended range
of linear elastic response. Creep coefficients are reduced, as indicated in Table 2.2.
Disadvantages include brittle behavior in compression (see Fig. 2.12), somewhat
reduced ultimate strain capacity, and an increased tendency to crack when drying
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shrinkage is restrained (Ref. 2.54), the latter resulting from the lower creep exhibited
by the material. Strength under sustained load is a higher fraction of standard cylinder
strength (Refs. 2.30 and 2.31), and high-strength concrete exhibits improved durability
and abrasion resistance (Refs. 2.51 and 2.55). As broader experience is gained in prac-
tical applications, and as design codes are gradually updated to recognize the special
properties of higher-strength concretes now available, much wider use can be expected.

REINFORCING STEELS FOR CONCRETE

The useful strength of ordinary reinforcing steels in tension as well as compression,
i.e., the yield strength, is about 15 times the compressive strength of common struc-
tural concrete and well over 100 times its tensile strength. On the other hand, steel is
a high-cost material compared with concrete. It follows that the two materials are best
used in combination if the concrete is made to resist the compressive stresses and the
steel the tensile stresses. Thus, in reinforced concrete beams, the concrete resists the
compressive force, longitudinal steel reinforcing bars are located close to the tension
face to resist the tension force, and usually additional steel bars are so disposed that
they resist the inclined tension stresses that are caused by the shear force in the beams.
However, reinforcement is also used for resisting compressive forces primarily where
it is desired to reduce the cross-sectional dimensions of compression members, as in
the lower-floor columns of multistory buildings. Even if no such necessity exists, a
minimum amount of reinforcement is placed in all compression members to safeguard
them against the effects of small accidental bending moments that might crack and
even fail an unreinforced member.

For most effective reinforcing action, it is essential that steel and concrete
deform together, i.e., that there be a sufficiently strong bond between the two materi-
als to ensure that no relative movements of the steel bars and the surrounding concrete
occur. This bond is provided by the relatively large chemical adhesion that develops
at the steel-concrete interface, by the natural roughness of the mill scale of hot-rolled
reinforcing bars and by the closely spaced rib-shaped surface deformations with
which reinforcing bars are furnished to provide a high degree of interlocking of the
two materials.

Additional features that make for the satisfactory joint performance of steel and
concrete are the following:

1. The thermal expansion coefficients of the two materials, about 6.5 X 107 for
steel vs. an average of 5.5 X 1076 for concrete, are sufficiently close to forestall
cracking and other undesirable effects of differential thermal deformations.

2. While the corrosion resistance of bare steel is poor, the concrete that surrounds
the steel reinforcement provides excellent corrosion protection, minimizing cor-
rosion problems and corresponding maintenance costs.

3. The fire resistance of unprotected steel is impaired by its high thermal conduc-
tivity and by the fact that its strength decreases sizably at high temperatures.
Conversely, the thermal conductivity of concrete is relatively low. Thus, damage
caused by even prolonged fire exposure, if any, is generally limited to the outer
layer of concrete, and a moderate amount of concrete cover provides sufficient
thermal insulation for the embedded reinforcement.

Steel is used in two different ways in concrete structures: as reinforcing steel and
as prestressing steel. Reinforcing steel is placed in the forms prior to casting of the
concrete. Stresses in the steel, as in the hardened concrete, are caused only by the loads
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Types of deformed
reinforcing bars.
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on the structure, except for possible parasitic stresses from shrinkage or similar causes.
In contrast, in prestressed concrete structures, large tension forces are applied to the
reinforcement prior to letting it act jointly with the concrete in resisting external loads.
The steels for these two uses are very different and will be discussed separately.

REINFORCING BARS

The most common type of reinforcing steel (as distinct from prestressing steel) is in
the form of round bars, often called rebars, available in a large range of diameters
from about } to 13 in. for ordinary applications and in two heavy bar sizes of about 13
and 25 in. These bars are furnished with surface deformations for the purpose of
increasing resistance to slip between steel and concrete. Minimum requirements for
these deformations (spacing, projection, etc.) have been developed in experimental
research. Different bar producers use different patterns, all of which satisfy these
requirements. Figure 2.13 shows a variety of current types of deformations.

For many years, bar sizes have been designated by numbers, Nos. 3 to 11 being
commonly used and Nos. 14 and 18 representing the two special large-sized bars pre-
viously mentioned. Designation by number, instead of by diameter, was introduced
because the surface deformations make it impossible to define a single easily mea-
sured value of the diameter. The numbers are so arranged that the unit in the number
designation corresponds closely to the number of L in. of diameter size. A No. 5 bar,
for example, has a nominal diameter of  in. Bar sizes are rolled into the surface of
the bars for easy identification.

For a number of years, ASTM standards have included a second designation for
bar size, the International System of Units (SI), with the size being identified using the
nominal diameter in millimeters. To limit the number of bar designations, reinforcing
bar producers in the United States have converted to SI for marking the bars. Thus,
Nos. 3 to 11 bars are marked with Nos. 10 to 36, and Nos. 14 and 18 bars with Nos. 43
and 57. Both systems are still used in the ASTM standards, and the older, customary
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system is used in the 2008 ACI Code. To recognize the dual system of identifying and
marking the bars, the customary bar designation system is retained throughout this text,
followed by the SI bar designations in parentheses, such as No. 6 (No. 19). Table A.1
of Appendix A gives areas and weights of standard bars. Tables A.2 and A.3 give similar
information for groups of bars.

a. Grades and Strengths

In reinforced concrete, a long-term trend is evident toward the use of higher-strength
materials, both steel and concrete. Reinforcing bars with 40 ksi yield stress, once stan-
dard, have largely been replaced by bars with 60 ksi yield stress, both because they are
more economical and because their use tends to reduce steel congestion in the forms.
Bars with a yield stress of 75 ksi are often used in columns, and bars with a yield stress
of 100 ksi are allowed to be used as confining reinforcement. Table 2.4 lists all presently
available reinforcing steels, their grade designations, the ASTM specifications that
define their properties (including deformations) in detail, and their two main minimum
specified strength values. Grade 40 bars are no longer available in sizes larger than
No. 6 (No. 19) and Grade 50 bars are available in sizes up to No. 8 (No. 25)."

The conversion to SI units described above also applies to the strength grades.
Thus, Grade 40 is also designated as Grade 280 (for a yield strength of 280 MPa),
Grade 60 is designated Grade 420, Grade 75 is designated Grade 520, and Grade 100
is designated Grade 690. The values 280, 420, 520, and 690 result in minimum yield
strengths of 40.6, 60.9, 75.4, and 100.1 kst; i.e., reinforcing steel is slightly stronger than
implied by the grade in ksi. Grades based on inch-pound units will be used in this text.

Welding of reinforcing bars in making splices, or for convenience in fabricating
reinforcing cages for placement in the forms, may result in metallurgical changes that
reduce both strength and ductility, and special restrictions must be placed both on the
type of steel used and the welding procedures. The provisions of ASTM A706 relate
specifically to welding.

The ACI Code permits reinforcing steels up to f, = 80 ksi for most applications.
Such high-strength steels usually yield gradually but have no yield plateau (see Fig. 2.15).
In this situation it is required that at the specified minimum yield strength the total
strain not exceed 0.0035. This is necessary to make current design methods, which
were developed for sharp-yielding steels with a yield plateau, applicable to such
higher-strength steels. Under special circumstances, steel in this higher-strength range
has its place, e.g., in lower-story columns of high-rise buildings.

To allow bars of various grades and sizes to be easily distinguished, which is
necessary to avoid accidental use of lower-strength or smaller-size bars than called for
in the design, all deformed bars are furnished with rolled-in markings. These identify
the producing mill (usually with an initial), the bar size (Nos. 3 to 18 under the inch-
pound system and Nos. 10 to 57 under the SI), the type of steel (S for carbon steel,
W for low-alloy steel, a rail sign for rail steel, A for axle steel, and CS for low-carbon
chromium steel, corresponding, respectively, to ASTM Specifications A615, A706,
A996 for both rail and axle steel, and A1035), and an additional marking to identify
higher-strength steels. Grade 60 (420) bars have either one longitudinal line or the
number 60 (4); Grade 75 (520) bars have either two longitudinal lines or the number
75 (5); Grade 100 (690) bars have either three longitudinal bars or the number 100 (6).
The identification marks are shown in Fig. 2.14. As mentioned earlier, SI markings are
used exclusively for bars rolled by mills in the United States.

¥ In practice, very little Grade 50 reinforcement is produced.
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TABLE 2.4
Summary of minimum ASTM strength requirements
ASTM Minimum Yield Minimum Tensile
Product Specification Designation Strength, psi (MPa) Strength, psi (MPa)
Reinforcing bars A615 Grade 40 40,000 (280) 60,000 (420)
Grade 60 60,000 (420) 90,000 (620)
Grade 75 75,000 (520) 100,000 (690)
AT06 Grade 60 60,000 (420) 80,000 (550)°
78,000 (540) maximum]
A996 Grade 40 40,000 (280) 60,000 (420)
Grade 50 50,000 (350) 80,000 (550)
Grade 60 60,000 (420) 90,000 (620)
A1035 Grade 100 100,000 (690) 150,000 (1030)
Deformed bar mats Al84 Same as reinforcing bars
Zinc-coated bars A767 Same as reinforcing bars
Epoxy-coated bars AT75, A934 Same as reinforcing bars
Stainless-steel bars® A955 Same as reinforcing bars
Wire
Plain A2 70,000 (480) 80,000 (550)
Deformed A496 75,000 (515) 85,000 (585)
Welded wire reinforcement
Plain Al85
W1.2 and larger 65,000 (450) 75,000 (515)
Smaller than W1.2 56,000 (385) 70,000 (485)
Deformed A497 70,000 (480) 80,000 (550)
Prestressing tendons
Seven-wire strand Adl6 Grade 250 212,500 (1465) 250,000 (1725)
(stress-relieved)
Grade 250 225,000 (1555) 250,000 (1725)
(low-relaxation)
Grade 270 229,500 (1580) 270,000 (1860)
(stress-relieved)
Grade 270 243,000 (1675) 270,000 (1860)
(low-relaxation)
Wire A421 Stress-relieved 199,750 (1375) to 235,000 (1620) to
212,500 (1465)° 250,000 (1725)°
Low-relaxation 211,500 (1455) to 235,000 (1620) to
225,000 (1550)° 250,000 (1725)°
Bars A722 Type I (plain) 127,500 (800) 150,000 (1035)
Type II (deformed) 120,000 (825) 150,000 (1035)
Compacted strand® AT79 Type 245 241,900 (1480) 247,000 (1700)
f Type 260 228,800 (1575) 263,000 (1810)
| Type 270 234,900 (1620) 270,000 (1860)

2 But not less than 1.25 times the actual yield strength.
b Not listed in ACI 318.
¢ Minimum strength depends on wire size.
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FIGURE 2.14 b.

Marking system for
reinforcing bars meeting
ASTM Specifications A615,
A706, and A996: (a) Grades
60 and 420; (b) Grades 75
and 520; (¢) Grades 40, 50,
280, and 350. (Adapted from
Ref. 2.56.) (Facing page.)

FIGURE 2.15
Typical stress-strain curves
for reinforcing bars.
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Stress-Strain Curves

The two chief numerical characteristics that determine the character of bar reinforce-
ment are its yield point (generally identical in tension and compression) and its
modulus of elasticity E,. The latter is practically the same for all reinforcing steels (but
not for prestressing steels) and is taken as E; = 29,000,000 psi.

In addition, however, the shape of the stress-strain curve, and particularly of its
initial portion, has significant influence on the performance of reinforced concrete
members. Typical stress-strain curves for U.S. reinforcing steels are shown in
Fig. 2.15. The complete stress-strain curves are shown in the left part of the figure; the
right part gives the initial portions of the curves magnified 10 times.

Low-carbon steels, typified by the Grade 40 curve, show an elastic portion
followed by a yield plateau, i.e., a horizontal portion of the curve where strain
continues to increase at constant stress. For such steels, the yield point is that stress
at which the yield plateau establishes itself. With further strains, the stress begins
to increase again, though at a slower rate, a process that is known as strain-
hardening. The curve flattens out when the tensile strength is reached, it then turns
down until fracture occurs. Higher-strength carbon steels, e.g., those with 60 ksi
yield stress or higher, either have a yield plateau of much shorter length or enter
strain-hardening immediately without any continued yielding at constant stress. In
the latter case, the ACI Code specifies that the yield stress f, be the stress corre-
sponding to a strain of 0.0035, as shown in Fig. 2.15. Low-alloy, high-strength
steels rarely show any yield plateau and usually enter strain-hardening immediately
upon beginning to yield. "

Fatigue Strength

In highway bridges and some other situations, both steel and concrete are subject to
large numbers of stress fluctuations. Under such conditions, steel, just like concrete
(Section 2.8¢), is subject to fatigue. In metal fatigue, one or more microscopic cracks
form after cyclic stress has been applied a significant number of times. These fatigue
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cracks occur at points of stress concentrations or other discontinuities and gradually
increase with increasing numbers of stress fluctuations. This reduces the remaining
uncracked cross-sectional area of the bar until it becomes too small to resist the
applied force. At this point the bar fails in a sudden, brittle manner.

For reinforcing bars it has been found (Refs. 2.32 and 2.57) that the fatigue
strength, i.e., the stress at which a given stress fluctuation between f,,, and f, ;. can be
applied 2 million times or more without causing failure, is practically independent of
the grade of steel. It has also been found that the stress range, i.e., the algebraic dif-
ference between maximum and minimum stress, f; = f, . — Jfnin, that can be sustained
without fatigue failure depends on f, ;. Further, in deformed bars the degree of stress
concentration at the location where the deformation joins the main cylindrical body of
the bar tends to reduce the safe stress range. This stress concentration depends on the
ratio r/h, where r is the base radius of the deformation and 4 its height. The radius r
is the transition radius from the surface of the bar to that of the deformation; it is a
fairly uncertain quantity that changes with roll wear as bars are being rolled.

On the basis of extensive tests (Ref. 2.57), the following formula has been devel-
oped for design:

f=21 - 033f,, + 8% (2.10)

where f, = safe stress range, ksi
Jmin = minimum stress; positive if tension, negative if compression
r/h = ratio of base radius to height of rolled-on deformation (in the common
situation where r/h is not known, a value of 0.3 may be used)

Where bars are exposed to fatigue regimes, stress concentrations such as welds
or sharp bends should be avoided since they may impair fatigue strength.

Coated Reinforcing Bars

Galvanized or epoxy-coated reinforcing bars are often specified to minimize corrosion
of reinforcement and consequent spalling of concrete under severe environmental con-
ditions, such as in bridge decks or parking garages subject to deicing chemicals, port
and marine structures, and wastewater treatment plants.

ASTM A767, “Standard Specification for Zinc-Coated (Galvanized) Steel Bars
for Concrete Reinforcement,” includes requirements for the zinc coating material, the
galvanizing process, the class or weight of coating, finish and adherence of coating,
and the method of fabrication. Bars are usually galvanized after cutting and bending.
Supplementary requirements pertain to coating of sheared ends and repair of damaged
coating if bars are fabricated after galvanizing.

Epoxy-coated bars, presently more widely used than galvanized bars, are gov-
erned by ASTM A775, “Standard Specification for Epoxy-Coated Reinforcing Steel
Bars,” which includes requirements for the coating material, surface preparation
prior to coating, method of application, and limits on coating thickness, and by
ASTM A934, “Standard Specification for Epoxy-Coated Prefabricated Steel
Reinforcing Bars.” Under ASTM A775, the coating is applied to straight bars in a
production-line operation, and the bars are cut and bent after coating. Under ASTM
A934, bars are bent to final shape prior to coating. Cut ends and small spots of dam-
aged coating are suitably repaired after fabrication. Extra care is required in the field
to ensure that the coating is not damaged during shipment and placing and that
repairs are made if necessary.
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WELDED WIRE REINFORCEMENT

Apart from single reinforcing bars, welded wire reinforcement (also described as
welded wire fabric) is often used for reinforcing slabs and other surfaces, such as shells,
and for shear reinforcement in thin beam webs, particularly in prestressed beams.
Welded wire reinforcement consists of sets of longitudinal and transverse cold-drawn
steel wires at right angles to each other and welded together at all points of intersec-
tion. The size and spacing of wires may be the same in both directions or may be
different, depending on the requirements of the design.

The notation used to describe the type and size of welded wire fabric involves a
letter-number combination. ASTM uses the letter “W” to designate smooth wire and
letter “D” to describe deformed wire. The number following the letter gives the cross-
sectional area of the wire in hundredths of a square inch. For example, a W5.0 wire is
a smooth wire with a cross-sectional area of 0.05 in. A W5.5 wire has a cross-sectional
area of 0.055 in%. D6.0 indicates a deformed wire with a cross-sectional area of
0.06 in%. Welded wire fabric having a designation 4 X 4 — W5.0 X WS5.0 has wire
spacings 4 in. in each way with smooth wire of cross-sectional area 0.05 in? in each
direction. Sizes and spacings for common types of welded wire fabric and cross-
sectional areas of steel per foot, as well as weight per 100 ft2, are shown in Table A.12
of Appendix A.

ASTM Specifications A185 and A497 pertain to smooth and deformed welded
wire fabric, respectively, as shown in Table 2.4. Because the yield stresses shown are
specified at a strain of 0.005, the ACI Code requires that f, be taken equal to 60 ksi
unless the stress at a strain of 0.0035 is used.

PRESTRESSING STEELS

Prestressing steel is used in three forms: round wires, stranded cable, and alloy steel
bars. Prestressing wire ranges in diameter from 0.192 to 0.276 in. It is made by cold-
drawing high-carbon steel after which the wire is stress-relieved by heat treatment to
produce the prescribed mechanical properties. Wires are normally bundled in groups of
up to about 50 individual wires to produce prestressing tendons of the required strength.
Stranded cable, more common than wire in U.S. practice, is fabricated with six wires
wound around a seventh of slightly larger diameter. The pitch of the spiral winding is
between 12 and 16 times the nominal diameter of the strand. Strand diameters range
from 0.250 to 0.700 in. Alloy steel bars for prestressing are available in diameters from
0.750 to 1.375 in. as plain round bars and from 0.625 to 2.50 in. as deformed bars.
Specific requirements for prestressing steels are found in ASTM A421, “Standard
Specification for Uncoated Stress-Relieved Steel Wire for Prestressed Concrete”;
ASTM A416, “Standard Specification for Steel Strand, Uncoated Seven-Wire Stress-
Relieved for Prestressed Concrete”; and ASTM A722, “Standard Specification for
Uncoated High-Strength Steel Bar for Prestressing Concrete.” Table A.15 of Appendix
A provides design information for U.S. prestressing steels.

Grades and Strengths

The tensile strengths of prestressing steels range from about 2.5 to 6 times the yield
strengths of commonly used reinforcing bars. The grade designations correspond to
the minimum specified tensile strength in ksi. For the widely used seven-wire strand,
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FIGURE 2.16
Typical stress-strain curves
for prestressing steels.

three grades are available: Grade 250 (f,, = 250 ksi), Grade 270, and Grade 300,
although the last is not yet recognized in ASTM A421. Grade 270 strand is used most
often. For alloy steel bars, two grades are used: the regular Grade 150 is most com-
mon, but special Grade 160 bars may be ordered. Round wires may be obtained in
Grades 235, 240, and 250, depending on diameter.

Stress-Strain Curves

Figure 2.16 shows stress-strain curves for prestressing wires, strand, and alloy bars of
various grades. For comparison, the stress-strain curve for a Grade 60 reinforcing bar
is also shown. It is seen that, in contrast to reinforcing bars, prestressing steels do not
show a sharp yield point or yield plateau; i.e., they do not yield at constant or nearly
constant stress. Yielding develops gradually, and in the inelastic range the curve con-
tinues to rise smoothly until the tensile strength is reached. Because well-defined
yielding is not observed in these steels, the yield strength is somewhat arbitrarily defined
as the stress at a total elongation of 1 percent for strand and wire and at 0.7 percent for
alloy steel bars. Figure 2.16 shows that the yield strengths so defined represent a good
limit below which stress and strain are fairly proportional, and above which strain
increases much more rapidly with increasing stress. It is also seen that the spread
between tensile strength and yield strength is smaller in prestressing steels than in
reinforcing steels. It may further be noted that prestressing steels have significantly
less ductility.
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While the modulus of elasticity E, for bar reinforcement is taken as 29,000,000 psi,
the effective modulus of prestressing steel varies, depending on the type of steel
(e.g., strand vs. wire or bars) and type of use, and is best determined by test or supplied
by the manufacturer. For unbonded strand (i.e., strand not embedded in concrete), the
modulus may be as low as 26,000,000 psi. For bonded strand, E; is usually about
27,000,000 psi, while for smooth round wires E is about 29,000,000 psi, the same
as for reinforcing bars. The elastic modulus of alloy steel bars is usually taken as
E, = 27,000,000 psi.

Relaxation

When prestressing steel is stressed to the levels that are customary during initial ten-
sioning and at service loads, it exhibits a property known as relaxation. Relaxation is
defined as the loss of stress in stressed material held at constant length. (The same
basic phenomenon is known as creep when defined in terms of change in strain of a
material under constant stress.) To be specific, if a length of prestressing steel is
stressed to a sizable fraction of its yield strength £, (say, 80 to 90 percent) and held at
a constant strain between fixed points such as the ends of a beam, the steel stress f,
will gradually decrease from its initial value f,,. In prestressed concrete members thlS
stress relaxation is important because it modifies the internal stresses in the concrete
and changes the deflections of the beam some time after initial prestress was applied.

The amount of relaxation varies, depending on the type and grade of steel, the
time under load, and the initial stress level. A satisfactory estimate for ordinary stress-
relieved strand and wires can be obtained from Eq. (2.11), which was derived from
more than 400 relaxation tests of up to 9 years’ duration:

b log t (ﬁn )
—=1-— 0.55 2.11
Joi 100 \fy @10

where f, is the final stress after 7 hours, f,; is the initial stress, and f,, is the nominal
yield stress (Ref. 2.58). In Eq. (2.11), log t s to the base 10, and f, /f,,, not less than 0.55;
below that value essentially no relaxation occurs.

The tests on which Eq. (2.11) is-based were carried out on round, stress-relieved
wires and are equally applicable to stress-relieved strand. In the absence of other infor-
mation, results may be applied to alloy steel bars as well.

Low-relaxation strand has replaced stress-relieved strand as the industry stan-
dard. According to ASTM A416, such steel must exhibit relaxation after 1000 hours
of not more than 2.5 percent when initially stressed to 70 percent of specified tensile
strength and not more than 3.5 percent when loaded to 80 percent of tensile strength.
For low-relaxation strand, Eq. (2.11) is replaced by

5 logt (fpt )
—=1- 0.55 (2.12)
fpi ﬁ)y
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PROBLEMS

2.1.  The specified concrete strength . for a new building is 6000 psi. Calculate the

required average strength ! for the concrete (a) if there are no prior test results
for concrete with a compressive strength within 1000 psi of f/ made with sim-
ilar materials, (b) if 20 test results for concrete with f/ = 5000 psi made with
similar materials produce a sample standard deviation s, of 580 psi, and (c) if
30 tests with f, = 5500 psi made with similar materials produce a sample stan-
dard deviation s, of 590 psi.

2.2. Ten consecutive strength tests are available for a new concrete mixture with

f7 = 4000 psi: 4590, 4750, 5280, 4210, 4460, 4170, 3750, 5110, 4640, and
4170 psi.
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(a) Do the strength results represent concrete of satisfactory quality? Explain
your reasoning.

(b) If f;, has been selected based on 30 consecutive test results from an earlier
project with a sample standard deviation s; of 510 psi, must the mixture
proportions be adjusted? Explain.



3.1

3.2

Flexural Analysis
and Design of Beams

INTRODUCTION

The fundamental assumptions upon which the analysis and design of reinforced
concrete members are based were introduced in Section 1.8, and the application of
those assumptions to the simple case of axial loading was developed in Section 1.9.
The student should review Sections 1.8 and 1.9 at this time. In developing methods for
the analysis and design of beams in this chapter, the same assumptions apply, and
identical concepts will be used. This chapter will include analysis and design for
flexure, including the dimensioning of the concrete cross section and the selection and
placement of reinforcing steel. Other important aspects of beam design including
shear reinforcement, bond, and anchorage of reinforcing bars, and the important ques-
tions of serviceability (e.g., limiting deflections and controlling concrete cracking)
will be treated in Chapters 4, 5, and 6.

BENDING OF HOMOGENEOUS BEAMS

Reinforced concrete beams are nonhomogeneous in that they afe made of two entirely
different materials. The methods used in the analysis of reinforced concrete beams are
therefore different from those used in the design or investigation of beams composed
entirely of steel, wood, or any other structural material. The fundamental principles
involved are, however, essentially the same. Briefly, these principles are as follows.

At any cross section there exist internal forces that can be resolved into compo-
nents normal and tangential to the section. Those components that are normal to the
section are the bending stresses (tension on one side of the neutral axis and compres-
sion on the other). Their function is to resist the bending moment at the section. The
tangential components are known as the shear stresses, and they resist the transverse
or shear forces.

Fundamental assumptions relating to flexure and flexural shear are as follows:

1. A cross section that was plane before loading remains plane under load. This
means that the unit strains in a beam above and below the neutral axis are
proportional to the distance from that axis.

2. The bending stress f at any point depends on the strain at that point in a manner
given by the stress-strain diagram of the material. If the beam is made of a
homogeneous material whose stress-strain diagram in tension and compression is
that of Fig. 3.1a, the following holds. If the maximum strain at the outer fibers is
smaller than the strain €, up to which stress and strain are proportional for the

67
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FIGURE 3.1

Elastic and inelastic stress
distributions in homogeneous
beams.
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given material, then the compression and tension stresses on either side of the
axis are proportional to the distance from the axis, as shown in Fig. 3.1b.
However, if the maximum strain at the outer fibers is larger than €, this is no
longer true. The situation that then occurs is shown in Fig. 3.1c; i.e., in the outer
portions of the beam, where € > ¢,, stresses and strains are no longer propor-
tional. In these regions, the magnitude of stress at any level, such as f, in Fig. 3.1c,
depends on the strain €, at that level in the manner given by the stress-strain dia-
gram of the material. In other words, for a given strain in the beam, the stress at
a point is the same as that given by the stress-strain diagram for the same strain.
The distribution of the shear stresses v over the depth of the section depends on
the shape of the cross section and of the stress-strain diagram. These shear
stresses are largest at the neutral axis and equal to zero at the outer fibers. The
shear stresses on horizontal and vertical planes through any point are equal.
Owing to the combined action of shear stresses (horizontal and vertical) and flex-
ure stresses, at any point in a beam there are inclined stresses of tension and com-
pression, the largest of which form an angle of 90° with each other. The intensity
of the inclined maximum or principal stress at any point is given by

2
= ]—C + =+ 3.D

t
2 4

where f = intensity of normal fiber stress
v = intensity of tangential shearing stress

The inclined stress makes an angle a with the horizontal such that tan 2a = 2v/f.
Since the horizontal and vertical shearing stresses are equal and the flexural
stresses are zero at the neutral plane, the inclined tensile and compressive stresses
at any point in that plane form an angle of 45° with the horizontal, the intensity
of each being equal to the unit shear at the point.
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6. When the stresses in the outer fibers are smaller than the proportional limit j;,,
the beam behaves elastically, as shown in Fig. 3.1b. In this case the following
pertains:

(a) The neutral axis passes through the center of gravity of the cross section.

(b) The intensity of the bending stress normal to the section increases directly with
the distance from the neutral axis and is a maximum at the extreme fibers. The
stress at any given point in the cross section is represented by the equation

M
f== (32

where f = bending stress at a distance y from neutral axis
M = external bending moment at section
I = moment of inertia of cross section about neutral axis

The maximum bending stress occurs at the outer fibers and is equal to

Jiax = Me -4 3.3)

I S
where ¢ = distance from neutral axis to outer fiber
S = I/c = section modulus of cross section

(c) The shear stress (horizontal equals vertical) v at any point in the cross section is
given by

_e
Ib

14

34

where V = total shear at section
Q = statical moment about neutral axis of that portion of cross section lying
between a line through point in question parallel to neutral axis and near-
est face (upper or lower) of beam
I = moment of inertia of cross section about neutral axis
b = width of beam at a given point

(d) The intensity of shear along a vertical cross section in a rectangular beam varies
as the ordinates of a parabola, the intensity being zero at the outer fibers of the
beam and a maximum at the neutral axis. For a total depth &, the maximum is
3V/bh, since at the neutral axis Q = bh?/8 and I = bk*/12 in Eq. (3.4).

The remainder of this chapter deals only with bending stresses and their effects
on reinforced concrete beams. Shear stresses and their effects are discussed separately
in Chapter 4.

REINFORCED CONCRETE BEAM BEHAVIOR

Plain concrete beams are inefficient as flexural members because the tensile strength
in bending (modulus of rupture, see Section 2.9) is a small fraction of the compressive
strength. As a consequence, such beams fail on the tension side at low loads long
before the strength of the concrete on the compression side has been fully utilized. For
this reason, steel reinforcing bars are placed on the tension side as close to the extreme
tension fiber as is compatible with proper fire and corrosion protection of the steel. In
such a reinforced concrete beam, the tension caused by the bending moments is chiefly
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FIGURE 3.2
Behavior of reinforced
concrete beam under
increasing load.
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resisted by the steel reinforcement, while the concrete alone is usually capable of
resisting the corresponding compression. Such joint action of the two materials is
ensured if relative slip is prevented. This is achieved by using deformed bars with
their high bond strength at the steel-concrete interface (see Section 2.14) and, if
necessary, by special anchorage of the ends of the bars. A simple example of such a
beam, with the customary designations for the cross-sectional dimensions, is shown
in Fig. 3.2. For simplicity, the discussion that follows will deal with beams of rec-
tangular cross section, even though members of other shapes are very common in
most concrete structures.

When the load on such a beam is gradually increased from zero to the magni-
tude that will cause the beam to fail, several different stages of behavior can be clearly
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distinguished. At low loads, as long as the maximum tensile stress in the concrete is
smaller than the modulus of rupture, the entire concrete is effective in resisting stress,
in compression on one side and in tension on the other side of the neutral axis. In
addition, the reinforcement, deforming the same amount as the adjacent concrete, is
also subject to tensile stresses. At this stage, all stresses in the concrete are of small
magnitude and are proportional to strains. The distribution of strains and stresses in
concrete and steel over the depth of the section is shown in Fig. 3.2¢.

When the load is further increased, the tensile strength of the concrete is soon
reached, and at this stage tension cracks develop. These propagate quickly upward to
or close to the level of the neutral plane, which in turn shifts upward with progressive
cracking. The general shape and distribution of these tension cracks is shown in
Fig. 3.2d. In well-designed beams, the width of these cracks is so small (hairline
cracks) that they are not objectionable from the viewpoint of either corrosion protec-
tion or appearance. Their presence, however, profoundly affects the behavior of the
beam under load. Evidently, in a cracked section, i.e., in a cross section located at a
crack such as a-a in Fig. 3.2d, the concrete does not transmit any tensile stresses.
Hence, just as in tension members (Section 1.9b), the steel is called upon to resist the
entire tension. At moderate loads, if the concrete stresses do not exceed approximately
f:/2, stresses and strains continue to be closely proportional (see Fig. 1.16). The
distribution of strains and stresses at or near a cracked section is then that shown in
Fig. 3.2e. When the load is still further increased, stresses and strains rise corre-
spondingly and are no longer proportional. The ensuing nonlinear relation between
stresses and strains is that given by the concrete stress-strain curve. Therefore, just as
in homogeneous beams (see Fig. 3.1), the distribution of concrete stresses on the com-
pression side of the beam is of the same shape as the stress-strain curve. Figure 3.2f
shows the distribution of strains and stresses close to the ultimate load.

Eventually, the carrying capacity of the beam is reached. Failure can be caused
in one of two ways. When relatively moderate amounts of reinforcement are employed,
at some value of the load the steel will reach its yield point. At that stress, the
reinforcement yields suddenly and stretches a large amount (see Fig. 2.15), and the
tension cracks in the concrete widen visibly and propagate upward, with simultaneous
significant deflection of the beam. When this happens, the strains in the remaining
compression zone of the concrete increase to such a degree that crushing of the
concrete, the secondary compression failure, ensues at a load only slightly larger than
that which caused the steel to yield. Effectively, therefore, attainment of the yield point
in the steel determines the carrying capacity of moderately reinforced beams. Such
yield failure is gradual and is preceded by visible signs of distress, such as the
widening and lengthening of cracks and the marked increase in deflection.

On the other hand, if large amounts of reinforcement or normal amounts of
steel of very high strength are employed, the compressive strength of the concrete
may be exhausted before the steel starts yielding. Concrete fails by crushing when
strains become so large that they disrupt the integrity of the concrete. Exact criteria
for this occurrence have yet to be established, but it has been observed that
rectangular beams fail in compression when the concrete strains reach values of
about 0.003 to 0.004. Compression failure through crushing of the concrete is
sudden, of an almost explosive nature, and occurs without warning. For this reason
it is good practice to dimension beams in such a manner that should they be over-
loaded, failure would be initiated by yielding of the steel rather than by crushing of
the concrete.

The analysis of stresses and strength in the different stages just described will be
discussed in the next several sections.
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FIGURE 3.3
Uncracked transformed beam
section.
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Stresses Elastic and Section Uncracked

As long as the tensile stress in the concrete is smaller than the modulus of rupture, so
that no tension cracks develop, the strain and stress distribution as shown in Fig. 3.2¢
is essentially the same as in an elastic, homogeneous beam (Fig. 3.1b). The only
difference is the presence of another material, the steel reinforcement. As shown in
Section 1.9a, in the elastic range, for any given value of strain, the stress in the steel
is n times that of the concrete [Eq. (1.6)]. In the same section, it was shown that one
can take account of this fact in calculations by replacing the actual steel-and-concrete
cross section with a fictitious section thought of as consisting of concrete only. In this
“transformed section,” the actual area of the reinforcement is replaced with an equiv-
alent concrete area equal to nA; located at the level of the steel. The transformed,
uncracked section pertaining to the beam of Fig. 3.2b is shown in Fig. 3.3.

Once the transformed section has been obtained, the usual methods of analysis
of elastic homogeneous beams apply. That is, the section properties (location of neu-
tral axis, moment of inertia, section modulus, etc.) are calculated in the usual manner,
and, in particular, stresses are computed with Egs. (3.2) to (3.4).

EXAMPLE 3.1

A rectangular beam has the dimensions (see Fig. 3.2b) b = 10 in., h = 25 in., and d = 23 in.
and is reinforced with three No. 8 (No. 25) bars so that A, = 2.37 in?. The concrete cylinder
strength £, is 4000 psi, and the tensile strength in bending (modulus of rupture) is 475 psi. The
yield point of the steel f, is 60,000 psi, the stress-strain curves of the materials being those of
Fig. 1.16. Determine the stresses caused by a bending moment M = 45 ft-kips.

SoLuTION. With a value n = E/E, = 29,000,000/3,600,000 = 8, one has to add to the
rectangular outline an area (n — 1)A, = 7 X 2.37 = 16.59 in?, disposed as shown on Fig. 3.4,
to obtain the uncracked, transformed section. Conventional calculations show that the location
of the neutral axis of this section is given by ¥ = 13.2 in. from the top of the section, and its
moment of inertia about this axis is 14,740 in*. For M = 45 ft-kips = 540,000 in-lb, the
concrete compression stress at the top fiber is, from Eq. (3.3),

_ My _ 540,000 X 13.2

fe I 14,740

= 484 psi

and, similarly, the concrete tension stress at the bottom fiber, 11.8 in. from the neutral axis, is

540,000 X 11.8

= 432 psi
e 14,740 pst



FIGURE 34
Transformed beam section of
Example 3.1.
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Since this value is below the given tensile bending strength of the concrete, 475 psi, no tension
cracks will form, and calculation by the uncracked, transformed section is justified. The stress
in the steel, from Egs. (1.6) and (3.2), is

; My _ ( 540,000 X 9.8
— n ——— = —_—en.
s 14,740

I
By comparing f, and f, with the concrete cylinder strength and the yield point, respectively, it
is seen that at this stage the actual stresses are quite small compared with the available strengths
of the two materials.

> = 2870 psi

Stresses Elastic and Section Cracked

When the tensile stress f,, exceeds the modulus of rupture, cracks form, as shown in
Fig. 3.2d. If the concrete compressive stress is less than approximately ; f, and the
steel stress has not reached the yield point, both materials continue to behave elasti-
cally, or very nearly so. This situation generally occurs in structures under normal
service conditions and loads, since at these loads the stresses are generally of the order
of magnitude just discussed. At this stage, for simplicity and with little if any error, it
is assumed that tension cracks have progressed all the way to the neutral axis and that
sections plane before bending are plane in the deformed member. The situation with
regard to strain and stress distribution is that shown in Fig. 3.2e.

To compute stresses, and strains if desired, the device of the transformed section
can still be used. One need only take account of the fact that all of the concrete that is
stressed in tension is assumed cracked, and therefore effectively absent. As shown in
Fig. 3.5a, the transformed section then consists of the concrete in compression on one
side of the axis and n times the steel area on the other. The distance to the neutral axis,
in this stage, is conventionally expressed as a fraction kd of the effective depth d.
{Once the concrete is cracked, any material located below the steel is ineffective,
which is why d is the effective depth of the beam.) To determine the location of the
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FIGURE 3.5 kd
Cracked transformed section. 3
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neutral axis, the moment of the tension area about the axis is set equal to the moment
of the compression area, which gives

(kd)?

b
2

~ nAy(d — kd) = 0 (3.5)

Having obtained kd by solving this quadratic equation, one can determine the
moment of inertia and other properties of the transformed section as in the preceding
case. Alternatively, one can proceed from basic principles by accounting directly for
the forces that act on the cross section. These are shown in Fig. 3.5b. The concrete
stress, with maximum value £, at the outer edge, is distributed linearly as shown. The
entire steel area A, is subject to the stress f,. Correspondingly, the total compression
force C and the total tension force T are

C= %bkd and T=Af, (3.6)

The requirement that these two forces be equal numerically has been taken care of by

the manner in which the location of the neutral axis has been determined.
Equilibrium requires that the couple constituted by the two forces C and T be

equal numerically to the external bending moment M. Hence, taking moments about

C gives
M =Tjd = A,f,jd 3.7
where jd is the internal lever arm between C and T. From Eq. (3.7), the steel stress is
M

= 3.8
S Ajd (3.8)

Conversely, taking moments about T gives

fe fe

M= Cjd = ) bkdjd = 5 kjbd* (3.9
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from which the concrete stress is
2™
kjbd*

In using Eqs. (3.6) through (3.10), it is convenient to have equations by which k& and j
may be found directly, to establish the neutral axis distance kd and the internal lever
arm jd. First defining the reinforcement ratio as

_A
bd
then substituting A, = pbd into Eq. (3.5) and solving for &, one obtains

k= "V (pn)* + 2pn — pn (3.12)

From Fig. 3.5b it is seen that jd = d — kd/3, or

fe (3.10)

p 3.11)

k
i=1-= 3.13
J 3 (3.13)

Values of k and j for elastic cracked section analysis, for common reinforcement ratios
and modular ratios, are found in Table A.6 of Appendix A.

EXAMPLE 3.2

The beam of Example 3.1 is subject to a bending moment M = 90 ft-kips (rather than 45 ft-
kips as previously). Calculate the relevant properties and stresses.

SoLuTiON. If the section were to remain uncracked, the tensile stress in the concrete would
now be twice its previous value, that is, 864 psi. Since this exceeds by far the modulus of
rupture of the given concrete (475 psi), cracks will have formed and the analysis must be
adapted consistent with Fig. 3.5. Equation (3.5), with the known quantities b, n, and A inserted,
gives the distance to the neutral axis kd = 7.6 in., or k = 7.6/23 = 0.33. From Eq. (3.13),
Jj=1-0.33/3 = 0.89. With these values the steel stress is obtained from Eq. (3.8) as f, =
22,300 psi, and the maximum concrete stress from Eq. (3.10) as f, = 1390 psi.

Comparing the results with the pertinent values for the same beam when subject to
one-half the moment, as previously calculated, one notices that (1) the neutral plane has
migrated upward so that its distance from the top fiber has changed from 13.2 to 7.6 in.;
(2) even though the bending moment has only been doubled, the steel stress has increased
from 2870 to 22,300 psi, or about 7.8 times, and the concrete compression stress has
increased from 484 to 1390 psi, or 2.9 times; (3) the moment of inertia of the cracked trans-
formed section is easily computed to be 5910 in*, compared with 14,740 in* for the
uncracked section. This affects the magnitude of the deflection, as discussed in Chapter 6.
Thus, it is seen how radical is the influence of the formation of tension cracks on the behav-
ior of reinforced concrete beams.

Flexural Strength

It is of interest in structural practice to calculate those stresses and deformations that
occur in a structure in service under design load. For reinforced concrete beams, this
can be done by the methods just presented, which assume elastic behavior of both
materials. It is equally, if not more, important that the structural engineer be able to
predict with satisfactory accuracy the strength of a structure or structural member. By
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FIGURE 3.6
Stress distribution at ultimate
load.

making this strength larger by an appropriate amount than the largest loads that can be
expected during the lifetime of the structure, an adequate margin of safety is ensured.
In the past, methods based on elastic analysis, like those just presented or variations
thereof, have been used for this purpose. It is clear, however, that at or near the
ultimate load, stresses are no longer proportional to strains. In regard to axial com-
pression, this has been discussed in detail in Section 1.9, and in regard to bending, it
has been pointed out that at high loads, close to failure, the distribution of stresses and
strains is that of Fig. 3.2f rather than the elastic distribution of Fig. 3.2e. More realis-
tic methods of analysis, based on actual inelastic rather than assumed elastic behavior
of the materials and on results of extremely extensive experimental research, have
been developed to predict the member strength. They are now used almost exclusively
in structural design practice.

If the distribution of concrete compressive stresses at or near ultimate load (Fig. 3.2f)
had a well-defined and invariable shape—parabolic, trapezoidal, or otherwise—it
would be possible to derive a completely rational theory of bending strength, just as
the theory of elastic bending with its known triangular shape of stress distribution
(Figs. 3.1 and 3.2¢ and e) is straightforward and rational. Actually, inspection of
Figs. 2.3, 2.4, and 2.6, and of many more concrete stress-strain curves that have been
published, shows that the geometric shape of the stress distribution is quite varied and
depends on a number of factors, such as the cylinder strength and the rate and duration
of loading. For this and other reasons, a wholly rational flexural theory for reinforced
concrete has not yet been developed (Refs. 3.1 to 3.3). Present methods of analysis,
therefore, are based in part on known laws of mechanics and are supplemented, where
needed, by extensive test information.

Let Fig. 3.6 represent the distribution of internal stresses and strains when the
beam is about to fail. One desires a method to calculate that moment M, (nominal
moment) at which the beam will fail either by tension yielding of the steel or by
crushing of the concrete in the outer compression fiber. For the first mode of failure,
the criterion is that the steel stress equal the yield point, f; = f,. It has been mentioned
before that an exact criterion for concrete compression failure is not yet known, but
that for rectangular beams, strains of 0.003 to 0.004 have been measured immediately
preceding failure. If one assumes, usually slightly conservatively, that the concrete is
about to crush when the maximum strain reaches €, = 0.003, comparison with a great
many tests of beams and columns of a considerable variety of shapes and conditions
of loading shows that a satisfactorily accurate and safe strength prediction can be

eU
— |
T - C = aftbe
c c
d d
< z=d~Bc
I /——= > T = A,
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made (Ref. 3.4). In addition to these two criteria (yielding of the steel at a stress of
Jf, and crushing of the concrete at a strain of 0.003), it is not really necessary to know
the exact shape of the concrete stress distribution in Fig. 3.6. What is necessary is to
know, for a given distance ¢ of the neutral axis, (1) the total resultant compression
force C in the concrete and (2) its vertical location, i.e., its distance from the outer
compression fiber.

In a rectangular beam, the area that is in compression is bc, and the total com-
pression force on this area can be expressed as C = f, bc, where f,, is the average
compression stress on the area bc. Evidently, the average compressive stress that can
be developed before failure occurs becomes larger, the higher the cylinder strength f;
of the particular concrete. Let

Jav
o =" (3.14)
1
Then
C = af!bc (3.15)

For a given distance c to the neutral axis, the location of C can be defined as some
fraction B of this distance. Thus, as indicated in Fig. 3.6, for a concrete of given
strength it is necessary to know only « and 8 to completely define the effect of the
concrete compressive stresses.

Extensive direct measurements, as well as indirect evaluations of numerous
beam tests, have shown that the following values for « and 8 are satisfactorily accurate
(see Ref. 3.5, where « is designated as k k; and 3 as k,):

a equals 0.72 for f, = 4000 psi and decreases by 0.04 for every 1000 psi above
4000 up to 8000 psi. For f; > 8000 psi, « = 0.56.

B equals 0.425 for f, = 4000 psi and decreases by 0.025 for every 1000 psi above
4000 up to 8000 psi. For £, > 8000 psi, 8 = 0.325.

The decrease in a and B for high-strength concretes is related to the fact that such
concretes are more brittle; i.e., they show a more sharply curved stress-strain plot with
a smaller near-horizontal portion (see Figs. 2.3 and 2.4). Figure 3.7 shows these
simple relations.

If this experimental information is accepted, the maximum moment can be
calculated from the laws of equilibrium and from the assumption that plane cross
sections remain plane. Equilibrium requires that

C=T or afbc=Af (3.16)

Also, the bending moment, being the couple of the forces C and T, can be written as
either

M =Tz = A,f,(d — Bc) 3.17)
or
M = Cz = aof!bc(d — Bc) (3.18)
For failure initiated by yielding of the tension steel, f; = f,. Substituting this
value in Eq. (3.16), one obtains the distance to the neutral axis
Ady

c= of b (3.19a)
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FIGURE 3.7
Variation of & and 8 with
concrete strength f7.
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Alternatively, using A, = pbd, the neutral axis distance is

_phd
aof;
giving the distance to the neutral axis when tension failure occurs. The nominal

moment M, is then obtained from Eq. (3.17) with the value for ¢ just determined, and
f, = f,; that is,

(3.19b)

C

Bfp )
of,

With the specific, experimentally obtained values for « and 8 given previously, this
becomes

M, = pfybd2<1 ~ (3.20a)

ol
M, = pfybd2(1 - 0.59 f) (3.20b)

If, for larger reinforcement ratios, the steel does not reach yield at failure, then
the strain in the concrete becomes €, = 0.003, as previously discussed. The steel stress
f.» not having reached the yield point, is proportional to the steel strain €; i.e., accord-
ing to Hooke’s law,

fS = GSES

From the strain distribution of Fig. 3.6, the steel strain €, can be expressed in terms of
the distance ¢ by evaluating similar triangles, after which it is seen that

f = e,E2 — (3.21)

Then, from Eq. (3.16),
d—c

af bc = Ae,E, (3.22)
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and this quadratic may be solved for c, the only unknown for the given beam. With both
¢ and f; known, the nominal moment of the beam, so heavily reinforced that failure
occurs by crushing of the concrete, may be found from either Eq. (3.17) or Eq. (3.18).

Whether or not the steel has yielded at failure can be determined by comparing
the actual reinforcement ratio with the balanced reinforcement ratio p,, representing
that amount of reinforcement necessary for the beam to fail by crushing of the con-
crete at the same load that causes the steel to yield. This means that the neutral axis
must be so located that at the load at which the steel starts yielding, the concrete
reaches its compressive strain limit €,. Correspondingly, setting f, = f, in Eq. (3.21)
and substituting the yield strain €, for f, /E,, one obtains the value of ¢ defining the
unique position of the neutral axis corresponding to simultaneous crushing of the
concrete and initiation of yielding in the steel

€,

23
€, t € (3-23)

Substituting that value of ¢ into Eq. (3.16), with A f, = pbdf,, one obtains for the bal-
anced reinforcement ratio
_afl €

fy €, T €

Po (3.24)

EXAMPLE 3.3

Determine the nominal moment M,, at which the beam of Examples 3.1 and 3.2 will fail.

SoLuTioN.  For this beam the reinforcement ratio p = A, /(bd) = 2.37/(10 X 23) = 0.0103.
The balanced reinforcement ratio is found from Eq. (3.24) to be 0.0284. Since the amount of steel
in the beam is less than that which would cause failure by crushing of the concrete, the beam will
fail in tension by yielding of the steel. Its nominal moment, from Eq. (3.205), is
0103 X 60,00
M, = 0.0103 X 60,000 X 10 X 232<1 - 0.59 @0———0)
4000
= 2,970,000 in-1b = 248 ft-kips
When the beam reaches M,, the distance to its neutral axis, from Eq. (3.19b), is

_ 0.0103 X 60,000 X 23
0.72 X 4000

4.94

It is informative to compare this result with those of Examples 3.1 and 3.2. In
the previous calculations, it was found that at low loads, when the concrete had not yet
cracked in tension, the neutral axis was located at a distance of 13.2 in. from the
compression edge; at higher loads, when the tension concrete was cracked but stresses
were still sufficiently small to be elastic, this distance was 7.6 in. Immediately before
the beam fails, as has just been shown, this distance has further decreased to 4.9 in.
For these same stages of loading, the stress in the steel increased from 2870 psi in
the uncracked section, to 22,300 psi in the cracked elastic section, and to 60,000 psi
at the nominal moment capacity. This migration of the neutral axis toward the
compression edge and the increase in steel stress as load is increased is a graphic
illustration of the differences between the various stages of behavior through which a
reinforced concrete beam passes as its load is increased from zero to the value that
causes it to fail. The examples also illustrate the fact that nominal moments cannot be
determined accurately by elastic calculations.
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3.4 DESIGN OF TENSION-REINFORCED RECTANGULAR BEAMS

For reasons that were explained in Chapter 1, the present design of reinforced concrete
structures is based on the concept of providing sufficient strength to resist hypotheti-
cal overloads. The nominal strength of a proposed member is calculated based on the
best current knowledge of member and material behavior. That nominal strength is
modified by a strength reduction factor ¢, less than unity, to obtain the design
strength. The required strength, should the hypothetical overload stage actually be
realized, is found by applying load factors vy, greater than unity, to the loads actually
expected. These expected service loads include the calculated dead load, the calcu-
lated or legally specified live load, and environmental loads such as those due to wind,
seismic action, or temperature. Thus reinforced concrete members are proportioned so
that, as shown in Eq. (1.5),

M, = oM,
Pu S ¢Pi’l
VH S ¢Vn

where the subscripts n denote the nominal strengths in flexure, thrust, and shear, respec-
tively, and the subscripts u# denote the factored load moment, thrust, and shear. The
strength reduction factors ¢ normally differ, depending upon the type of strength to be
calculated, the importance of the member in the structure, and other considerations
discussed in detail in Chapter 1.

A member proportioned on the basis of adequate strength at a hypothetical
overload stage must also perform in a satisfactory way under normal service load
conditions. In specific terms, the deflection must be limited to an acceptable value,
and concrete tensile cracks, which inevitably occur, must be of narrow width and well
distributed throughout the tensile zone. Therefore, after proportioning for adequate
strength, deflections are calculated and compared against limiting values (or otherwise
controlled), and crack widths limited by specific means. This approach to design,
referred to in Europe, and to some extent in U.S. practice, as limit states design, is the
basis of the 2008 ACI Code, and it is the approach that will be followed in this and
later chapters.

Equivalent Rectangular Stress Distribution

The method presented in Section 3.3c¢ for calculating the flexural strength of reinforced
concrete beams, derived from basic concepts of structural mechanics and pertinent
experimental research information, also applies to situations other than the case of rec-
tangular beams reinforced on the tension side. It can be used and gives valid answers
for beams of other cross-sectional shapes, reinforced in other manners, and for mem-
bers subject not only to simple bending but also to the simultaneous action of bending
and axial force (compression or tension). However, the pertinent equations for these
more complex cases become increasingly cumbersome and lengthy. What is more
important, it becomes increasingly difficult for the designer to visualize the physical
basis for the design methods and formulas; this could lead to a blind reliance on for-
mulas, with a resulting lack of actual understanding. This is not only undesirable on
general grounds but also, practically, is more likely to lead to numerical errors in design
work than when the designer at all times has a clear picture of the physical situation in
the member being dimensioned or analyzed. Fortunately, it is possible, essentially by a
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FIGURE 3.8
Actual and equivalent
rectangular stress

distributions at ultimate load.
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conceptual trick, to formulate the strength analysis of reinforced concrete members in
a different manner, which gives the same answers as the general analysis just devel-
oped but which is much more easily visualized and much more easily applied to cases
of greater complexity than that of the simple rectangular beam. Its consistency is
shown, and its application to more complex cases has been checked against the results
of a vast number of tests on a great variety of types of members and conditions of
loading (Ref. 3.4).

It was noted in the preceding section that the actual geometric shape of the
concrete compressive stress distribution varies considerably and that, in fact, one need
not know this shape exactly, provided one does know two things: (1) the magnitude C
of the resultant of the concrete compressive stresses and (2) the location of this resul-
tant. Information on these two quantities was obtained from the results of experimen-
tal research and expressed in the two parameters a and (.

Evidently, then, one can think of the actual complex stress distribution as
replaced by a fictitious one of some simple geometric shape, provided that this ficti-
tious distribution results in the same total compression force C applied at the same
location as in the actual member when it is on the point of failure. Historically, a
number of simplified, fictitious equivalent stress distributions have been proposed by
investigators in various countries. The one generally accepted in this country, and
increasingly abroad, was first proposed by C. S. Whitney (Ref. 3.4) and was subse-
quently elaborated and checked experimentally by others (see, for example, Refs. 3.5
and 3.6). The actual stress distribution immediately before failure and the fictitious
equivalent distribution are shown in Fig. 3.8.

It is seen that the actual stress distribution is replaced by an equivalent one of
simple rectangular outline. The intensity yf, of this equivalent constant stress and its
depth ¢ = B,c are easily calculated from the two conditions that (1) the total
compression force C and (2) its location, i.e., distance from the top fiber, must be the
same in the equivalent rectangular as in the actual stress distribution. From Fig. 3.8a
and b the first condition gives

C

C = af.cb = yflab from which y=a,

e

)
a

=N 3o

c - ¥ C—i a g

L ? C = af,ch 1 By C = yfzab
i 1
_______ | 5 S S
““““ " T=Ad, T T=Af,

Actual Equivalent

(a) (b)
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TABLE 3.1
Concrete stress block parameters
f., psi
=4000 5000 6000 7000 =8000

a 0.72 0.68 0.64 0.60 0.56

B 0.425 0.400 0375 0.350 0.325
B, =28 0.85 0.80 0.75 0.70 0.65

y = a/B, 0.85 0.85 0.85 0.86 0.86

With a = B,c, this gives ¥ = a/B,. The second condition simply requires that in the
equivalent rectangular stress block, the force C be located at the same distance B¢
from the top fiber as in the actual distribution. It follows that 8, = 2.

To supply the details, the upper two lines of Table 3.1 present the experimental
evidence of Fig. 3.7 in tabular form. The lower two lines give the just-derived param-
eters 8, and vy for the rectangular stress block. It is seen that the stress intensity factor
v is essentially independent of f; and can be taken as 0.85 throughout. Hence, regard-
less of f,, the concrete compression force at failure in a rectangular beam of width b is

C = 0.85f;ab (3.25)

Also, for the common concretes with f, = 4000 psi, the depth of the rectangular
stress block is a = 0.85¢, with ¢ being the distance to the neutral axis. For higher-
strength concretes, this distance is a = B,c, with the 3, values shown in Table 3.1.
This is expressed in ACI Code 10.2.7.3 as follows: For f! between 2500 and 4000 psi,
B, shall be taken as 0.85; for f, above 4000 psi, B, shall be reduced linearly at a rate
of 0.05 for each 1000 psi of strength in excess of 4000 psi, but B, shall not be taken
as less than 0.65. In mathematical terms, the relationship between 3, and f; can be
expressed as
fi — 4000
B =085 —-005—— and 0.65 < B, = 0.85 (3.26)
1000

The equivalent rectangular stress distribution can be used for deriving the equations
that have been developed in Section 3.3c. The failure criteria, of course, are the same
as before: yielding of the steel at f, = f, or crushing of the concrete at €, = 0.003.
Because the rectangular stress block is easily visualized and its geometric properties
are extremely simple, many calculations are carried out directly without reference to
formally derived equations, as will be seen in the following sections.

Balanced Strain Condition

A reinforcement ratio p, producing balanced strain conditions can be established
based on the condition that, at balanced failure, the steel strain is exactly equal to €,
when the strain in the concrete simultaneously reaches the crushing strain of €, =
0.003. Referring to Fig. 3.6,

c= d (3.27)
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which is seen to be identical to Eq. (3.23). Then from the equilibrium requirement that
C=T

pof,bd = 0.85f!ab = 0.858, f.bc

from which

_ 0858, Lc 6
Ppr = V. Blfy€u+€y

This is easily shown to be equivalent to Eq. (3.24).

(3.28)

Underreinforced Beams

A compression failure in flexure, should it occur, gives little if any warning of distress,
while a tension failure, initiated by yielding of the steel, typically is gradual. Distress
is obvious from observing the large deflections and widening of concrete cracks asso-
ciated with yielding of the steel reinforcement, and measures can be taken to avoid
total collapse. In addition, most beams for which failure initiates by yielding possess
substantial strength based on strain-hardening of the reinforcing steel, which is not
accounted for in the calculations of M,

Because of these differences in behavior, it is prudent to require that beams be
designed such that failure, if it occurs, will be by yielding of the steel, not by crushing
of the concrete. This can be done, theoretically, by requiring that the reinforcement
ratio p be less than the balance ratio p, given by Eq. (3.28).

In actual practice, the upper limit on p should be below p, for the following
reasons: (1) for a beam with p exactly equal to p,, the compressive strain limit of the
concrete would be reached, theoretically, at precisely the same moment that the steel
reaches its yield stress, without significant yielding before failure; (2) material prop-
erties are never known precisely; (3) strain-hardening of the reinforcing steel, not
accounted for in design, may lead to a brittle concrete compression failure even though
p may be somewhat less than p,; (4) the actual steel area provided, considering
standard reinforcing bar sizes, will always be equal to or larger than required, based
on selected reinforcement ratio p, tending toward overreinforcement; and (5) the extra
ductility provided by beams with lower values of p increases the deflection capability
substantially and thus provides warning prior to failure.

ACI Code Provisions for Underreinforced Beams

While the nominal strength of a member may be computed based on principles of
mechanics, the mechanics alone cannot establish safe limits for maximum rein-
forcement ratios. These limits are defined by the ACI Code. The limitations take two
forms. First, the Code addresses the minimum tensile reinforcement strain allowed
at nominal strength in the design of beams. Second, the Code defines strength
reduction factors that may depend on the tensile strain at nominal strength. Both
limitations are based on the net tensile strain €, of the reinforcement farthest from
the compression face of the concrete at the depth d,. The net tensile strain is exclu-
sive of prestress, temperature, and shrinkage effects. For beams with a single layer
of reinforcement, the depth to the centroid of the steel d is the same as d,. For beams
with multiple layers of reinforcement, d, is greater than the depth to the centroid of
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the reinforcement d. Substituting 4, for d and e, for €, in Eq. (3.27), the net tensile
strain may be represented as

(3.29)

Then based on Eq. (3.28), the reinforcement ratio to produce a selected value of net
tensile strain is

R LT (3.300)
p = DOk f, d e, +e e
or somewhat conservatively
— 0.858,c S (3.30b)
Fm P e e ‘

To ensure underreinforced behavior, ACI Code 10.3.5 establishes a minimum
net tensile strain ¢, at the nominal member strength of 0.004 for members subjected to
axial loads less than 0.10f,A,, where A, is the gross area of the cross section. By way
of comparison €,, the steel strain at the balanced condition, is 0.00207 for f, = 60,000 psi
and 0.00259 for f, = 75,000 psi.

Using €, = 0.004 in Eq. (3.30b) provides the maximum reinforcement ratio
allowed by the ACI Code for beams

fo &

Pmax = 085[31 e

7, € + 0.004 (3300

The ACI Code further encourages the use of lower reinforcement ratios by
allowing higher strength reduction factors in such beams. The Code defines a fension-
controlled member as one with a net tensile strain greater than or equal to 0.005. The
corresponding strength reduction factor is ¢ = 0.9." The Code additionally defines a
compression-controlled member as having a net tensile strain of less than 0.002. The
strength reduction factor for compression-controlled members is 0.65. A value of 0.75
may be used if the members are spirally reinforced. A value of €, = 0.002 corresponds
approximately to the yield strain for steel with f, = 60,000 psi yield strength. Between
net tensile strains of 0.002 and 0.005, the strength reduction factor varies linearly, and
the ACI Code allows a linear interpolation of ¢ based on €,, as shown in Fig. 3.9. Based
on Eq. (3.305), the maximum reinforcement ratio for a tension-controlled beam is

fo &

f et 0.005 (3.30d)

Pooos = 0.858,

A comparison of Egs. (3.30c) and (3.30d) shows that, for a given concrete cross
section, using €, = 0.004 will result in a higher reinforcement ratio, and thus a higher
nominal flexural strength, than using €, = 0.005. This higher strength, however,
cannot be used to full advantage in design because the increase in flexural strength is
canceled by the drop in ¢ as €, decreases from 0.005 to 0.004. As a result, the
maximum practical reinforcement ratio for beams is attained at a net tensile strain of
0.005. Values of €, below 0.005 are not recommended for the design of members with
low axial loads.

" The selection of a net tensile strain of 0.005 is intended to encompass the yield strain of all reinforcing steel including high-strength bars and

prestressing tendons.
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Variation of strength
reduction factor with net
tensile strain in the steel.

FIGURE 3.10

Net tensile strain and c¢/d,
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Compression-controlied Transition zone

Tension-controlled

¢ e "
¢ = 0.75 + 0.15[1/(c/d) — 5/3] _~
-~
0.85 Spiral s
\ P
”~
//
080 //’
//
//
075 === — -
0.70 + \
Other
0.65— ¢ = 0.65 + (€; — 0.002)(250/3)
¢ = 0.65 + 0.25[1/(c/d) — 5/3]

€, = 0.002 Net tensile strain

¢/d, = 0.600

6, = 0.005
¢/d, = 0.375

Calculation of the nominal moment capacity frequently involves determination
of the depth of the equivalent rectangular stress block a. Since ¢ = a/B,, it is some-
times more convenient to compute c/d, ratios than either p or the net tensile strain. The
assumption that plane sections remain plane ensures a direct correlation between net
tensile strain and the c/d, ratio, as shown in Fig. 3.10. The maximum value of ¢/d, for

€, = 0.005 is 0.375.

Comparing Egs. (3.30a) and (3.30b), it can be seen that the maximum rein-
forcement ratios in Eqs. (3.30c¢) and (3.30d) are exact for beams with a single layer of
reinforcement and slightly conservative for beams with multiple layers of reinforce-
ment, where d, is greater than d. Because €, = 0.004 (better yet €, = 0.005) ensures

€, = 0.003 €, = 0.003 €, = 0.003
c
d;
€ = 0.005 €; = 0.004 €, = 0.002
c 0.003 = 0.375 c 0.003 = 0.429 c 0.003 = 0.600

d; ~ 0.003 + 0.005

(a)

Tension-controlled

member

d; ~ 0.003 + 0.004

(b) ©
Minimum net tensile

strain for flexural member member

d; ~ 0.003 + 0.002

Compression-controlled
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FIGURE 3.11

0.85f;
Singly reinforced rectangular — b — I € = r—c-l
beam. —_
T T
c j =i
d L
<
As—+o—0—0+—t{\ — /& L ——
T= A,
e
(a) (b) (o)
that steel is yielding in tension, f, = f; at failure, and the nominal flexural strength
(referring to Fig. 3.11) is given by
A@=A¢<d—§> (3.31)
where
Af,
= 3.32
¢~ 0.85b (3.32)
EXAMPLE 3.4 Using the equivalent rectangular stress distribution, directly calculate the nominal strength of

the beam previously analyzed in Example 3.3. Recall that b = 10in., d = 23 in., A, = 2.37 in?,
J¢ = 4000 psi, f, = 60,000 psi, and 3, = 0.85.

SoLutioN. The distribution of stresses, internal forces, and strains is shown in Fig. 3.11. The
maximum practical reinforcement ratio is calculated from Eq. (3.30d) as
000 0.003

4
= 0. X 0. = {).
Pooos = 0.85 X 0.85 2006 0.:003 + 0.005 — 018!

and comparison with the actual reinforcement ratio of 0.0103 confirms that the member is
underreinforced and will fail by yielding of the steel. Alternatively, recalling that ¢ = 4.94 in.,

€80 _ a5

d, d 23
which is less than 0.375, the value of ¢/d, corresponding to €, = 0.005, also confirming that the
member is underreinforced. The depth of the equivalent stress block is found from the equilib-
rium condition that C = T. Hence 0.85f/ab = A, »ora= 2.37 X 60,000/(0.85 X 4000 X 10)
= 4.18. The nominal moment is

M, = Asfy(d - %) = 2.37 X 60,000(23 — 2.09) = 2,970,000 in-Ib = 248 ft-kips

The results of this simple and direct numerical analysis, based on the equivalent
rectangular stress distribution, are identical with those previously determined from the
general strength analysis described in Section 3.3c.
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It is convenient for everyday design to combine Egs. (3.31) and (3.32) as
follows. Noting that A, = pbd, Eq. (3.32) can be rewritten as

pfd
a= 0857 (3.33)
This is then substituted into Eq. (3.31) to obtain
ef
M, = pfybd2(1 - 0.59 f) (3.34)

which is identical to Eq. (3.20b) derived in Section 3.3c. This basic equation can be
simplified further as follows:

M, = Rbd* (3.35)
in which

R= pfy<l - 0.59 %) (3.36)
The flexural resistance factor R depends only on the reinforcement ratio and the
strengths of the materials and is easily tabulated. Tables A.5a and A.5b of Appendix A
give R values for ordinary combinations of steel and concrete and the full practical
range of reinforcement ratios.

In accordance with the safety provisions of the ACI Code, the nominal flexural
strength M,, is reduced by imposing the strength reduction factor ¢ to obtain the design
strength

oM, = ¢Asfy<d - %) (3.37)
or, alternatively,
oM, = d)pfybd2<1 - 0.59 ’}—fy) (3.38)
. .
¢M, = pRbd’ (3.39)

EXAMPLE 34
(continued)

Calculate the design moment capacity ¢M,, for the beam analyzed earlier in Example 3.4.

SoLuTION. Comparing p with p s OF ¢/d, for the beam with the value of c/d, corresponding
to €, = 0.005 demonstrates that €, > 0.005. Therefore, ¢ = 0.90 and the design capacity is

&M, = 0.9 X 248 = 223 ft-kips

Minimum Reinforcement Ratio

Another mode of failure may occur in very lightly reinforced beams. If the flexural
strength of the cracked section is less than the moment that produced cracking of the
previously uncracked section, the beam will fail immediately and without warning of
distress upon formation of the first flexural crack. To ensure against this type of
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failure, a lower limit can be established for the reinforcement ratio by equating the
cracking moment, computed from the concrete modulus of rupture (Section 2.9), to
the strength of the cracked section.

For a rectangular section having width b, total depth A, and effective depth d
(see Fig. 3.2b), the section modulus with respect to the tension fiber is bh2/6. For
typical cross sections, it is satisfactory to assume that #/d = 1.1 and that the internal
lever arm at flexural failure is 0.95d. If the modulus of rupture is taken as
f. = 71.5V/f, as usual, then an analysis equating the cracking moment to the flexural
strength results in

_L6VY
§,min ‘f‘;]

This development can be generalized to apply to beams having a T cross section (see
Section 3.8 and Fig. 3.16). The corresponding equations depend on the proportions of
the cross section and on whether the beam is bent with the flange (slab) in tension or
in compression. For T beams of typical proportions that are bent with the flange in
compression, analysis will confirm that the minimum steel area should be

27V

As min —
‘ 5

where b, is the width of the web, or stem, projecting below the slab. For T beams
that are bent with the flange in tension, from a similar analysis, the minimum steel
area is

bd (3.40a)

bd (3.40b)

6.2VF!

As min = 5 bwd (340C)
' 5

The ACI Code requirements for minimum steel area are based on the results just
discussed, but there are some differences. According to ACI Code 10.5, at any section
where tensile reinforcement is required by analysis, with some exceptions as noted
below, the area A, provided must not be less than
o 3VF! b= 2006,d
’ b 5
This applies to both positive and negative bending sections. The inclusion of the
additional limit of 200b,d/f, is merely for historical reasons; it happens to give the
same minimum reinforcement ratio of 0.005 that was imposed in earlier codes for
then-common material strengths. Note that in Eq. (3.41) the section width b,, is used;
it is understood that for rectangular sections b, = b. Note further that the ACI
coefficient of 3 is a conservatively rounded value compared with 2.7 in Eq. (3.40b) for
T beams with the flange in compression, and is very conservative when applied to
rectangular beam sections, for which a rational analysis gives 1.6 in Eq. (3.40a). This
probably reflects the view that the minimum steel for the negative bending sections of
a continuous T beam (which are, in effect, rectangular sections, as discussed in
Section 3.8c) should be no less than for the positive bending sections, where the
moment is generally smaller.

ACI Code 10.5 treats statically determinate T beams with the flange in tension
as a special case, for which the minimum steel area is equal to or greater than the value
given by Eq. (3.41) with b, replaced by either 2b, or the width of the flange,
whichever is smaller.

A

(341)
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Note that ACI Code Eq. (3.41) is conveniently expressed in terms of a minimum
tensile reinforcement ratio p,,, by dividing both sides by b, d.

According to ACI Code 10.5, the requirements of Eq. (3.41) need not be imposed
if, at every section, the area of tensile reinforcement provided is at least one-third
greater than that required by analysis. This provides sufficient reinforcement for large
members such as grade beams, where the usual equations would require excessive
amounts of steel.

For structural slabs and footings of uniform thickness, the minimum area of
tensile reinforcement in the direction of the span is that required for shrinkage and
temperature steel (see Section 13.3 and Table 13.2), and the above minimums need not
be imposed. The maximum spacing of such steel is the smaller of 3 times the total slab
thickness or 18 in.

Examples of Rectangular Beam Analysis and Design

Flexural problems can be classified broadly as analysis problems or design problems.
In analysis problems, the section dimensions, reinforcement, and material strengths
are known, and the moment capacity is required. In the case of design problems, the
required moment capacity is given, as are the material strengths, and it is required to
find the section dimensions and reinforcement. Examples 3.5 and 3.6 illustrate analy-
sis and design, respectively.

EXAMPLE 3.5

Flexural strength of a given member. A rectangular beam has width 12 in. and effective
depth 17.5 in. It is reinforced with four No. 9 (No. 29) bars in one row. If f, = 60,000 psi and
f/ = 4000 psi, what is the nominal flexural strength, and what is the maximum moment that
can be utilized in design, according to the ACI Code?

SoLUTION. From Table A.2 of Appendix A, the area of four No. 9 (No. 29) bars is 4.00 in?.
Assuming that the beam is underreinforced and using Eq. (3.32),

4.00 X 60
= ————— =588 in.
“T 085 x4x 12 "
The depth of the neutral axis is ¢ = a/B,= 5.88/0.85 = 6.92, giving
c . 692
—=——=1039
d 175 5

which is between 0.429 and 0.375, the values corresponding, respectively, to €, = 0.004 and
€, = 0.005, as shown in Fig. 3.10. Thus, the beam is, as assumed, underreinforced, and from
Eq. (3.31)

5.88
M, = 4.00 X 60(17.5 - T) = 3490 in-kips

The fact that the beam is unreinforced could also have been established by calculating
p = 4.00/(12 X 17.5) = 0.190, which just exceeds p; 45, Which is calculated using Eq. (3.304).

4 0.003
=085 X% 085 — |( ——————— ) =0.
Poos 5 085(60)(0.003+0.005> 0.0181

Because the net tensile strain ¢, is between 0.004 and 0.005, ¢ must be calculated:
€, = €,(d — ¢)/c = 0.003 X 17.5 — 6.92/6.92 = 0.00458. Using linear interpolation from
Fig. 3.9, ¢ = 0.87, and the design strength is taken as

oM, = 0.87 X 3490 = 3040 in-kips
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The ACI Code limits on the reinforcement ratio
Pmax = 0.0206

34000 - 200

60,000 — 60,000

Pain = = 0.0033

are satisfied for this beam.

EXAMPLE 3.6

FIGURE 3.12
Structural loads for
Example 3.6.

Concrete dimensions and steel area to resist a given moment. Find the concrete cross
section and the steel area required for a simply supported rectangular beam with a span of
15 ft that is to carry a computed dead load of 1.27 kips/ft and a service live load of 2.15 kips/ft,
as shown in Fig. 3.12. Material strengths are ! = 4000 psi and S, = 60,000 psi.

SoLuTION. Load factors are first applied to the given service loads to obtain the factored load
for which the beam is to be designed, and the corresponding moment:

w, = 1.2 X 1.27 + 1.6 X 2.15 = 4.96 kips/ft

1
M, = 2 X 496 X 15* X 12 = 1670 in-kips

The concrete dimensions will depend on the designer’s choice of reinforcement ratio. To
minimize the concrete section, it is desirable to select the maximum permissible reinforcement
ratio. To maintain ¢ = 0.9, the maximum reinforcement ratio corresponding to a net tensile
strain of 0.005 will be selected (see Fig. 3.9). Then, from Eq. (3.30d)

£ e ( 4 ) ( 0.003 )
= 0858, —————=085X085 | — || ——————) =0.0181
Pooss = 0858, f, €, + 0.005 0 085150,/ \ 0003 + 0.005

Using Eq. (3.30c) gives p,,, = 0.0206, but would require a lower strength reduction factor.
Setting the required flexural strength equal to the design strength from Eq. (3.38), and substi-
tuting the selected values for p and material strengths,

M, = ¢M,

0.0181 X 60)

1670 = 0.90 X 0.0181 X 60bd2<1 —0.59 4

from which
bd? = 2040 in®

A beam with width b = 10 in. and d = 14.3 in. will satisfy this requirement. The required steel
area is found by applying the chosen reinforcement ratio to the required concrete dimensions:

A, = 0.0181 X 10 X 14.3 = 2.59 in?

Two No. 10 (No. 32) bars provide 2.54 in?, which is very close to the required area.
Assuming 2.5 in. concrete cover from the centroid of the bars, the required total depth

is # = 16.8 in. In actual practice, however, the concrete dimensions b and h are always

rounded up to the nearest inch, and often to the nearest multiple of 2 in. (see Section 3.5). The

Service live load = 2.15 kips/ft
Computed dead load = 1.27 kips/ft
(including beam self-weight)

I 1 5/_01/ %
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actual d is then found by subtracting the required concrete cover dimension from /. For the
present example, b = 10 in. and £ = 18 in. will be selected, resulting in effective depth d =
15.5 in. Improved economy then may be possible, refining the steel area based on the actual,
larger, effective depth. One can obtain the revised steel requirement directly by solving
Eq. (3.38) for p, with ¢M, = M,. A quicker solution can be obtained by iteration. First a
reasonable value of a is assumed, and A, is found from Eq. (3.37). From Eq. (3.32) a revised
estimate of a is obtained, and A, is revised. This method converges very rapidly. For example,
assume a = 5 in. Then

1670

A, = = 2.38 in?
7 0.90 X 60(15.5 — 2.5) n
Checking the assumed a gives
2.38 X 60 .
@=08sxaxio i

This is close enough to the assumed value that no further calculation is required. The required
steel area of 2.38 in? could be provided using three No. 8 (No. 25) bars, but for simplicity of
construction, two No. 10 (No. 32) bars will be used as before.

A somewhat larger beam cross section using less steel may be more economical, and will
tend to reduce deflections. As an alternative solution, the beam will be redesigned with a lower
reinforcement ratio of p = 0.60p,,,, = 0.60 X 0.0206 = 0.0124. Setting the required strength
equal to the design strength [Eq. (3.38)] as before,

E X
1670 = 0.90 X 0.0124 X 6Obd2<1 — 0.59 M_JE)

4
and
bd® = 2800 in®
A beam with b = 10 in. and d = 16.7 in. will meet the requirement, for which
. =0.0124 X 10 X 16.7 = 2.07 in?

Two No. 9 (No. 29) bars are almost sufficient, providing an area of 2.00 in?. If the total con-
crete height is rounded up to 20 in., a 17.5 in. effective depth results, reducing the required steel
area to 1.96 in% Two No. 9 (No. 29) bars remain the best choice.

It is apparent that an infinite number of solutions to the stated problem are possi-
ble, depending upon the reinforcement ratio selected. That ratio may vary from an
upper limit of p,,,, to a lower limit of 3V/f;/f, = 200/, for beams, according to the
ACI Code. To compare the two solutions (using the theoretical dimensions, unrounded
for the comparison, and assuming A is 2.5 in. greater than d in each case), increasing
the concrete section area by 14 percent achieves a steel saving of 20 percent. The sec-
ond solution would certainly be more economical and would be preferred, unless beam
dimensions must be minimized for architectural or functional reasons. Economical
designs will typically have reinforcement ratios between 0.50p o5 and 0.75p o5 -

There is a type of problem, occurring frequently, that does not fall strictly into
either the analysis or the design category. The concrete dimensions are given and are
known to be adequate to carry the required moment, and it is necessary only to find
the steel area. Typically, this is the situation at critical design sections of continuous
beams, in which the concrete dimensions are often kept constant, although the steel
reinforcement varies along the span according to the required flexural resistance.
Dimensions b, d, and h are determined at the maximum moment section, usually at
one of the supports. At other supports, and at midspan locations, where moments are
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usually smaller, the concrete dimensions are known to be adequate and only the tensile
steel remains to be found. An identical situation was encountered in the design
problem of Example 3.6, in which concrete dimensions were rounded up from the
minimum required values, and the required steel area was to be found. In either case,
the iterative approach demonstrated in Example 3.6 is convenient.

EXAMPLE 3.7

Determination of steel area. Using the same concrete dimensions as were used for the
second solution of Example 3.6 (b = 10in.,d = 17.5 in., and & = 20 in.) and the same material
strengths, find the steel area required to resist a moment M, of 1300 in-kips.

SOLUTION. Assume g = 4.0 in. Then

1300

A, = = 1.55 in?
7 0.90 X 60(17.5 — 2.0) "‘

Checking the assumed a gives
1.55 X 60

=22 574in.
2= 085 xax 10 XT4in

Next assume a = 2.6 in. and recalculate A ;
A= 1300
* 090 X 60(17.5 — 1.3)

No further iteration is required. Use A; = 1.49 in%. Two No. 8 (No. 25) bars, A, = 1.58 in.2, will
be used. A check of the reinforcement ratio shows p < pg g0 and ¢ = 0.9.

= 1.49 in’

As seen in Example 3.5, the strength reduction factor becomes a variable at high
reinforcement ratios. Example 3.8 demonstrates how the variation in strength reduc-
tion factor affects the design process.

EXAMPLE 3.8

Determination of steel area and variable strength reduction factor. Architectural consid-
erations limit the height of a 20 ft long simple span beam to 16 in. and the width to 12 in. The
following loads and material properties are given: w, = 0.79 kips/ft, w, = 1.65 kips/ft, f =
5000 psi, and fy = 60,000 psi. Determine the reinforcement for the beam.

SoLuTiON.  Calculating the factored loads gives

w, = 1.2 X 079 + 1.6 X 1.65 = 3.59 kips/ft

20?
M, =3.59 X ry = 179 ft-kips = 2150 in-kips

Assume a = 4.0 in. and ¢ = 0.90. The structural depth is (16 — 2.5) in. = 13.5 in. Calcu-
lating A gives

_ MJ/é  2150/0.90
" f(d—a/2)  60(13.5 — 2.0)
Try two No. 10 (No. 32) and one No. 9 (No. 29) bar, A, = 3.54 in%.

Check a = 3.54 X 60/(0.85 X 5 X 12) = 4.16 in. from Eq. (3.32). This is more than
assumed; therefore, continue to check the moment capacity.

M, = 3.54 X 60(13.5 — 4.16/2) = 2426 in-kips

= 3.46 in’

A
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Using a ¢ of 0.90 gives M, = 2183 in-kips, which is adequate; however, the net tensile strain
must be checked to validate the selection of ¢ = 0.9. In this case ¢ = a/B, = 4.16/0.80 =
5.20 in. The ¢/d ratio is 0.385 > 0.375, so €, > 0.005 is not satisfied. The corresponding net
tensile strain is

35-52

1 .
€, = 0.003 T = 0.00479

A value of €, = 0.00479 is allowed by the ACI Code, but only if the strength reduction factor is
adjusted. A linear interpolation from Fig. 3.9 gives ¢ = 0.88 and M, = ¢M, = 2140 in-kips,
which is less than the required capacity. Try increasing the reinforcement to three No. 10 (No. 32)
bars, A, = 3.81 in?. Repeating the calculations,

3.81 X 60

=08 X5 x 12 H4sin
448 _
Cc = m = 5.60 m.

448
M, =381 X 60(13.5 - —2-) = 2574 in-kips

_ 0.003(13.5 — 5.60)
€= 5.60
& = 0.483 + 83.3 X 0.00423 = 0.835

M, = ¢M, = 0.835 X 2574 = 2150 in-kips

= (0.00423

which meets the design requirements.

In actuality, the first solution deviates less than 1 percent from the desired value and
would likely be acceptable. The remaining portion of the example demonstrates the design
implications of requiring a variable strength reduction factor when the net tensile strain falls
between 0.005 and 0.004. In this example, the reinforcement increased nearly 8 percent, yet the
design moment capacity ¢M,, only increased 0.5 percent due to the decreasing strength reduc-
tion factor. For this reason, designs with p < p; 45 are desirable.

In solving these examples, the basic equations have been used to develop famil-
iarity with them. In actual practice, however, design aids such as Table A.4 of Appen-
dix A, giving values of maximum and minimum reinforcement ratios, and Table A.5,
providing values of flexural resistance factor R, are more convenient. The example
problems will be repeated in Section 3.5 to demonstrate use of these aids.

Overreinforced Beams

According to the ACI Code, all beams are to be designed for yielding of the tension
steel with €, not less than 0.004 and thus p < p_ ... Occasionally, however, such as
when analyzing the capacity of existing construction, it may be necessary to calculate
the flexural strength of an overreinforced compression-controlled member, for which
f; is less than f; at flexural failure.

In this case, the steel strain, in Fig. 3.115, will be less than the yield strain, but
can be expressed in terms of the concrete strain €, and the still-unknown distance ¢ to
the neutral axis:

(3.42)
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3.5

From the equilibrium requirement that C = T, one can write
0.858,f. bc = pe,E.bd

Substituting the steel strain from Eq. (3.42) in the last equation, and defining k, = c/d,
one obtains a quadratic equation in &, as follows:

k2 + mpk, — mp =0
Here, p = A,/bd as usual, and m is a material parameter given by
Ee,
m=———-
0.85B, /.

Solving the quadratic equation for k,,

mp\* mp
ky=+mp+ (2} - 22 3.44
u mp (2) ) (3.44)

The neutral axis depth for the overreinforced beam can then easily be found from
¢ = k,d, after which the stress-block depth a = B,c. With steel strain €, then computed
from Eq. (3.42), and with f, = E €, the nominal flexural strength is

(3.43)

M, = Asfs(d - g) (3.45)

The strength reduction factor ¢ will equal 0.65 for beams in this range.

DESIGN AIDS

Basic equations were developed in Section 3.4 for the analysis and design of
reinforced concrete beams, and these were used directly in the examples. In prac-
tice, the design of beams and other reinforced concrete members is greatly facili-
tated by the use of aids such as those in Appendix A of this text and in Refs. 3.7
through 3.9. Tables A.1, A.2, A.4 through A.7, and Graph A.1 of Appendix A relate
directly to this chapter, and the student can scan this material to become familiar
with the coverage. Other aids will be discussed, and their use demonstrated, in
later chapters.

Equation (3.39) gives the flexural design strength ¢M, of an underreinforced
rectangular beam with a reinforcement ratio at or below p,,,,. The flexural resistance
factor R, from Eq. (3.36), is given in Table A.5a for lower reinforcement ratios or
Table A.5b for higher reinforcement ratios. Alternatively, R can be obtained from
Graph A.1. For analysis of the capacity of a section with known concrete dimensions
b and d, having known reinforcement ratio p, and with known materials strengths, the
design strength @M, can be obtained directly by Eq. (3.39).

For design purposes, where concrete dimensions and reinforcement are to be
found and the factored load moment M, is to be resisted, there are two possible
approaches. One starts with selecting the optimum reinforcement ratio and then
calculating concrete dimensions, as follows:

1. Set the required strength M, equal to the design strength ¢M,, from Eq. (3.39):
M, = ¢Rbd?
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2. With the aid of Table A.4, select an appropriate reinforcement ratio between p_,
and p,,;,. Often a ratio of about 0.60p,, will be an economical and practical
choice. Selection of p = p 05, (€, = 0.005) ensures that ¢ will remain equal to
0.90. For pg 05 < P < Prax> N iterative solution will be necessary.

3. From Table A.5, for the specified material strengths and selected reinforcement
ratio, find the flexural resistance factor R. Then

bd? = M,
¢R
4. Choose b and d to meet that requirement. Unless construction depth must be
limited or other constraints exist (see Section 12.6), an effective depth about 2 to
3 times the width is often appropriate.
5. Calculate the required steel area

s = pbd

Then, referring to Table A.2, choose the size and number of bars, giving prefer-
ence to the larger bar sizes to minimize placement costs.

6. Refer to Table A.7 to ensure that the selected beam width will provide room for
the bars chosen, with adequate concrete cover and spacing. (These points will be
discussed further in Section 3.6.)

The alternative approach starts with selecting concrete dimensions (see
Section 12.6 for practical guidelines), after which the required reinforcement is
found, as follows:

1. Select beam width » and effective depth d. Then calculate the required R:
M,

R =
obd?

2. Using Table A.5 for specified material strengths, find the reinforcement ratio
P < Pmax that will provide the required value of R and verify the selected
value of ¢.

3. Calculate the required steel area

A, = pbd

and from Table A.2 select the size and number of bars.
4. Using Table A.7, confirm that the beam width is sufficient to contain the selected
reinforcement.

Use of design aids to solve the example problems of Section 3.4 will be illus-
trated as follows.

EXAMPLE 3.9

Flexural strength of a given member. Find the nominal flexural strength and design strength
of the beam in Example 3.5, which has » = 12 in. and d = 17.5 in. and is reinforced with
four No. 9 (No. 29) bars. Make use of the design aids of Appendix A. Material strengths are
fe = 4000 psi and f, = 60,000 psi.

SoLutioN. From Table A.2, four No. 9 (No. 29) bars provide A, = 4.00 in?, and with b =
12 in. and d = 17.5 in., the reinforcement ratio is p = 4.00/(12 X 17.5) = 0.0190. According
to Table A 4, this is below p,,, = 0.0206 and above p,;, = 0.0033. Then from Table A.5b, with
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f; = 4000 psi, f, = 60,000 psi, and p = 0.019, the value R = 949 psi is found. The nominal

c

and design strengths are (with ¢ = 0.87 from Example 3.5), respectively,

17.5%
1000
&M, = 0.87 X 3490 = 3040 in-kips

M, = Rbd? = 949 X 12 X = 3490 in-kips

as before.

EXAMPLE 3.10

Concrete dimensions and steel area to resist a given moment. Find the cross section of
concrete and the area of steel required for the beam in Example 3.6, making use of the design
aids of Appendix A. M, = 1670 in-kips, . = 4000 psi, and J, = 60,000 psi. Use a reinforce-
ment ratio of 0.60p,_,..

SOLUTION.  From Table A.4, the maximum reinforcement ratio is Pmax = 0.0206. For econ-
omy, a value of p = 0.60p,,,, = 0.0124 will be used. For that value, by interpolation from
Table A.5a, the required value of R is 663. Then

p? = M _ 1670 X 1000

= =12 in®
PR 090 x 663 _ 2800in

Concrete dimensions » = 10 in. and d = 16.7 in. will satisfy this, but the depth will be rounded
to 17.5 in. to provide a total beam depth of 20.0 in. It follows that
M, 1670 X 1000

R= = — 606 psi
dbd>  0.90 X 10 X 17.52 pst

and from Table A.5a, by interpolation, p = 0.0112. This leads to a steel requirement of
A, =0.0112 X 10 X 17.5 = 1.96 in? as before.

EXAMPLE 3.11

Determination of steel area. Find the steel area required for the beam in Example 3.7, with
concrete dimensions » = 10 in. and d = 17.5 in. known to be adequate to carry the factored load
moment of 1300 in-lb. Material strengths are f/ = 4000 psi and Jf, = 60,000 psi.

SoLuTioN. Note that in cases in which the concrete dimensions are known to be adequate and
only the reinforcement must be found, the iterative method used earlier is not required. The
necessary flexural resistance factor is

M, 1300 X 1000 .
R = ;= 5 = 472 psi
dbd 0.90 X 10 X 17.5

According to Table A.5a, with the specified material strengths, this corresponds to a reinforce-
ment ratio of p = 0.0085, giving a steel area of

A, = 0.0085 X 10 X 17.5 = 1.49 in?
as before. Two No. 8 (No. 25) bars will be used.

The tables and graphs of Appendix A give basic information and are used exten-
sively throughout this text for illustrative purposes. The reader should be aware,
however, of the greatly expanded versions of these tables, plus many other useful aids,
that are found in Refs. 3.7 through 3.9 and in commercial design software.
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3.6 PRACTICAL CONSIDERATIONS IN THE DESIGN OF BEAMS

FIGURE 3.13
Requirements for concrete
cover in beams and slabs.

To focus attention initially on the basic aspects of flexural design, the preceding exam-
ples were carried out with only minimum regard for certain practical considerations
that always influence the actual design of beams. These relate to optimal concrete pro-
portions for beams, rounding of dimensions, standardization of dimensions, required
cover for main and auxiliary reinforcement, and selection of bar combinations. Good
judgment on the part of the design engineer is particularly important in translating
from theoretical requirements to practical design. Several of the more important
aspects are discussed here; much additional guidance is provided by the publications
of ACI (Refs. 3.7 and 3.8) and CRSI (Refs. 3.9 to 3.11).

Concrete Protection for Reinforcement

To provide the steel with adequate concrete protection against fire and corrosion, the
designer must maintain a certain minimum thickness of concrete cover outside of the
outermost steel. The thickness required will vary, depending upon the type of member
and conditions of exposure. According to ACI Code 7.7, for cast-in-place concrete,
concrete protection at surfaces not exposed directly to the ground or weather should
be not less than 3 in. for slabs and walls and 1 in. for beams and columns. If the
concrete surface is to be exposed to the weather or in contact with the ground, a pro-
tective covering of at least 2 in. is required [11 in. for No. 5 (No. 16) and smaller bars],
except that if the concrete is cast in direct contact with the ground without the use of
forms, a cover of at least 3 in. must be furnished.

In general, the centers of main flexural bars in beams should be placed 23 to
3 in. from the top or bottom surface of the beam to furnish at least 13 in. of clear cover
for the bars and the stirrups (see Fig. 3.13). In slabs, 1 in. to the center of the bar is
ordinarily sufficient to give the required 3 in. cover.

To simplify construction and thereby to reduce costs, the overall concrete
dimensions of beams, b and h, are almost always rounded up to the nearest inch, and
often to the next multiple of 2 in. As a result, the actual effective depth d, found by
subtracting the sum of cover distance, stirrup diameter, and one-half the main

1%"min.\ b
J’ No. 3 (No. 10} stirrups
~ ==
11" min.
z M Bars | .

2 r 1

ho 9 Nos. 4 to 10 J_% | %
1 (Nos. 10 to 32) o——p0 0 o
S T
B L 1
T

T%" min.

11" min.

“‘f Bars
., L*Zl" No. 3 or No. 4
2 (No. 10 or No. 13)

(a) Beam with stirrups (b) Slab
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reinforcing bar diameter from the total depth A, is seldom an even dimension. For
slabs, the total depth is generally rounded up to the nearest 3 in. up to 6 in. in depth,
and to the nearest inch above that thickness. The differences between # and d shown
in Fig. 3.13 are not exact, but are satisfactory for design purposes for beams with
No. 3 (No. 10) stirrups and No. 10 (No. 32) longitudinal bars or smaller, and for slabs
using No. 4 (No. 13) or smaller bars. If larger bars are used for the main flexural rein-
forcement or for the stirrups, as is frequently the case, the corresponding dimensions
are easily calculated.

Recognizing the closer tolerances that can be maintained under plant-control
conditions, ACI Code 7.7.3 permits some reduction in concrete protection for rein-
forcement in precast concrete,

Concrete Proportions

Reinforced concrete beams may be wide and shallow, or relatively narrow and deep.
Consideration of maximum material economy often leads to proportions with effec-
tive depth d in the range from about 2 to 3 times the width b (or web width b,, for T
beams). However, constraints may dictate other choices, and as will be discussed in
Section 12.6, maximum material economy may not translate to maximum structural
economy. For example, with one-way concrete joists supported by monolithic beams
(see Chapter 18), use of beams and joists with the same total depth will permit use of
a single flat-bottom form, resulting in fast, economical construction and permitting
level ceilings. The beams will generally be wide and shallow, with heavier reinforce-
ment than otherwise, but the result will be an overall saving in construction cost. In
other cases, it may be necessary to limit the total depth of floor or roof construction
for architectural or other reasons. An advantage of reinforced concrete is its adaptability
to such special needs.

Selection of Bars and Bar Spacing

As noted in Section 2.14, common reinforcing bar sizes range from No. 3 to No. 11
(No. 10 to No. 36), the bar number corresponding closely to the number of eighth-inches
(millimeters) of bar diameter. The two larger sizes, No. 14 (No. 43) [1% in. (43 mm)
diameter] and No. 18 (No. 57) [2% in. (57 mm) diameter] are used mainly in columns.

It is often desirable to mix bar sizes to meet steel area requirements more closely.
In general, mixed bars should be of comparable diameter, for practical as well as
theoretical reasons, and generally should be arranged symmetrically about the vertical
centerline. Many designers limit the variation in diameter of bars in a single layer to
two bar sizes, using, say, No. 10 and No. 8 (No. 32 and No. 25) bars together, but not
Nos. 11 and 6 (Nos. 36 and 19). There is some practical advantage to minimizing the
number of different bar sizes used for a given structure.

Normally, it is necessary to maintain a certain minimum distance between
adjacent bars to ensure proper placement of concrete around them. Air pockets below
the steel are to be avoided, and full surface contact between the bars and the concrete
is desirable to optimize bond strength. ACI Code 7.6 specifies that the minimum clear
distance between adjacent bars not be less than the nominal diameter of the bars, or
1 in. (For columns, these requirements are increased to 13 bar diameters and 14 in.)
Where beam reinforcement is placed in two or more layers, the clear distance between
layers must not be less than 1 in., and the bars in the upper layer should be placed
directly above those in the bottom layer.
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The maximum number of bars that can be placed in a beam of given width is
limited by bar diameter and spacing requirements and is also influenced by stirrup
diameter, by concrete cover requirement, and by the maximum size of concrete
aggregate specified. Table A.7 of Appendix A gives the maximum number of bars that
can be placed in a single layer in beams, assuming 15 in. concrete cover and the use
of No. 4 (No. 13) stirrups. When using the minimum bar spacing in conjunction with
a large number of bars in a single plane of reinforcement, the designer should be aware
that problems may arise in the placement and consolidation of concrete, especially
when multiple layers of bars are used or when the bar spacing is smaller than the size
of the vibrator head.

There are also restrictions on the minimum number of bars that can be placed
in a single layer, based on requirements for the distribution of reinforcement to
control the width of flexural cracks (see Section 6.3). Table A.8 gives the minimum
number of bars that will satisfy ACI Code requirements, which will be discussed in
Chapter 6.

In large girders and columns, it is sometimes advantageous to “bundle”
tensile or compressive reinforcement with two, three, or four bars in contact to
provide for better deposition of concrete around and between adjacent bundles.
These bars may be assumed to act as a unit, with not more than four bars in any
bundle, provided that stirrups or ties enclose the bundle. No more than two bars
should be bundled in one plane; typical bundle shapes are triangular, square, or
L-shaped patterns. Individual bars in a bundle, cut off within the span of flexural
members, should terminate at different points. ACI Code 7.6.6 requires at least
40 bar diameters stagger between points of cutoff. Where spacing limitations and
minimum concrete cover requirements are based on bar diameter, a unit of
bundled bars is treated as a single bar with a diameter that provides the same
total area.

ACI Code 7.6.6 states that bars larger than No. 11 (No. 36) shall not be bundled
in beams, although the AASHTO Specifications permit bundling of No. 14 and No. 18
(No. 43 and No. 57) bars in highway bridges.

RECTANGULAR BEAMS WITH TENSION
AND COMPRESSION REINFORCEMENT

If a beam cross section is limited because of architectural or other considerations, it
may happen that the concrete cannot develop the compression force required to
resist the given bending moment. In this case, reinforcement is added in the
compression zone, resulting in a doubly reinforced beam, i.e., one with compression
as well as tension reinforcement (see Fig. 3.14). The use of compression reinforce-
ment has decreased markedly with the use of strength design methods, which
account for the full-strength potential of the concrete on the compressive side of the
neutral axis. However, there are situations in which compressive reinforcement is
used for reasons other than strength. It has been found that the inclusion of some
compression steel will reduce the long-term deflections of members (see Section 6.5).
In addition, in some cases, bars will be placed in the compression zone for
minimum-moment loading (see Section 12.2) or as stirrup support bars continuous
throughout the beam span (see Chapter 4). It may be desirable to account for the
presence of such reinforcement in flexural design, although in many cases they are
neglected in flexural calculations.
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FIGURE 3.14

Doubly reinforced rectangular beam.

Tension and Compression Steel Both at Yield Stress

I, in a doubly reinforced beam, the tensile reinforcement ratio p is less than or equal
to p,, the strength of the beam may be approximated within acceptable limits by
disregarding the compression bars. The strength of such a beam will be controlled by
tensile yielding, and the lever arm of the resisting moment will ordinarily be little
affected by the presence of the compression bars.

If the tensile reinforcement ratio is larger than p,, a somewhat more elaborate
analysis is required. In Fig. 3.144, a rectangular beam cross section is shown with
compression steel A; placed a distance d' from the compression face and with tensile
steel A; at effective depth d. It is assumed initially that both A, and A, are stressed
to f, at failure. The total resisting moment can be thought of as the sum of two parts.
The first part, M,,, is provided by the couple consisting of the force in the compres-
sion steel A and the force in an equal area of tension steel

M, =Af(d—d) (3.46a)

as shown in Fig. 3.14d. The second part, M,,, is the contribution of the remaining ten-
sion steel A; — A; acting with the compression concrete:

M, = (A, - A;)fy<d - g) (3.46b)
as shown in Fig. 3.14e, where the depth of the stress block is
(As - A;) y
=7 3.47
0.85.b (347a)
With the definitions p = A, /bd and p’ = A]/bd, this can be written
(o —p')\d
=— 3.47b
4 0.85f, (3.476)

The total nominal resisting moment is then

M,=M,; +M,=Af(d—d)+ (4 - A;)fy<d - g) (3.48)
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In accordance with the safety provisions of the ACI Code, the net tensile strain is
checked; and if €, = 0.005, this nominal capacity is reduced by the factor ¢ = 0.90 to
obtain the design strength. For €, between 0.005 and 0.004, ¢ must be adjusted, as
discussed earlier.

It is highly desirable, for reasons given earlier, that failure, should it occur,
be precipitated by tensile yielding rather than crushing of the concrete. This can
be ensured by setting an upper limit on the tensile reinforcement ratio. By setting
the tensile steel strain in Fig. 3.14b equal to €, to establish the location of the
neutral axis for the failure condition and then summing horizontal forces shown in
Fig. 3.14c¢ (still assuming the compressive steel to be at the yield stress at failure),
it is easily shown that the balanced reinforcement ratio p, for a doubly reinforced
beam is

Py =pp tp (3.49)

where p, is the balanced reinforcement ratio for the corresponding singly reinforced
beam and is calculated from Eq. (3.28). The ACI Code limits the net tensile strain, not
the reinforcement ratio. To provide the same margin against brittle failure as for singly
reinforced beams, the maximum reinforcement ratio should be limited to

ﬁmax = Pmax T P' (3500)

Because p,,,, establishes the location of the neutral axis, the limitation in Eq. (3.50a)
will provide acceptable net tensile strains. A check of ¢, is required to determine the
strength reduction factor ¢ and to verify net tensile strain requirements are satisfied.
Substituting pgges fOT pmax in Eq. (3.50a) will give the maximum reinforcement ratio
for ¢ = 0.90.

Pooos = Pogos T P’ (3.50h)

Compression Steel below Yield Stress

The preceding equations, through which the fundamental analysis of doubly rein-
forced beams is developed clearly and concisely, are valid only if the compression
steel has yielded when the beam reached its nominal capacity. In many cases, such as
for wide, shallow beams, beams with more than the usual concrete cover over the com-
pression bars, beams with high yield strength steel, or beams with relatively small
amounts of tensile reinforcement, the compression bars will be below the yield stress
at failure. It is necessary, therefore, to develop more generally applicable equations to
account for the possibility that the compression reinforcement has not yielded when
the doubly reinforced beam fails in flexure.

Whether or not the compression steel will have yielded at failure can be deter-
mined as follows. Referring to Fig. 3.14b, and taking as the limiting case €; = €, one
obtains, from geometry,

c € €,

— = or c=
d €, € €, — €,

’

Summing forces in the horizontal direction (Fig. 3.14c) gives the minimum tensile
reinforcement ratio p., that will ensure yielding of the compression steel at failure:
| _ fld e
P, = 0858, —— + p' (3.51)
y 1 fy d Gu —_ ey p

;
:
!
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If the tensile reinforcement ratio is less than this limiting value, the neutral axis
is sufficiently high that the compression steel stress at failure is less than the yield
stress. In this case, it can easily be shown on the basis of Fig. 3.14b and c that the
balanced reinforcement ratio is

_ s
Po=pytp (3.52)
5
where
| A [ — d’
fi=Eg,=E/le, — g(eu +e€)| =S (3.53a)
To determine p,,,,, €, = 0.004 is substituted for €, in Eq. (3.53a), giving
- J .
fs=E]|€, — ?{(E" +0.004) | < f, (3.53b)
Likewise, for €, = 0.005,
- 7 -
fi=Ej|e€, — g(fu +0.005) | = f, (3.53¢)
Hence, the maximum reinforcement ratio permitted by the ACI Code is
R s
Pmax = Pmax + P T (354(1)
5
and the maximum reinforcement ratio for ¢ = 0.90 is
_ I
Pooos = Pooos + P (3.54b)
5

where f; is given in Eq. (3.53b). A simple comparison shows that Egs. (3.52), (3.54a),
and (3.54b), with f; given by Eqs. (3.53a), (3.53b), and (3.53c), respectively, are the
generalized forms of Eqgs. (3.49), (3.50a), and (3.50b).

It should be emphasized that Eqgs. (3.53a), (3.53b), and (3.53¢) for compression
steel stress apply only for beams with exact strain values in the extreme tensile steel
of €,, €, = 0.004, or €, = 0.005.

If the tensile reinforcement ratio is less than p,, as given by Eq. (3.52), and less
than p,,, as given by Eq. (3.51), then the tensile steel is at the yield stress at failure but
the compression steel is not, and new equations must be developed for compression
steel stress and flexural strength. The compression steel stress can be expressed in
terms of the still-unknown neutral axis depth as

c—d

fe=¢€kE; (3.55)

Consideration of horizontal force equilibrium (Fig. 3.14c with compression steel
stress equal to f}) then gives

c—d

Af, = 0.85B,f/bc + Ale,E, (3.56)

This is a quadratic equation in ¢, the only unknown, and is easily solved for c. The

nominal flexural strength is found using the value of f; from Eq. (3.55), and a = B¢
in the expression

M, = 0.85f;ab<d — %) +Afi(d—-d) (3.57)
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TABLE 3.2
Minimum beam depths for compression reinforcement to yield
€, = 0.004 €, = 0.005
Minimum d Minimum d
Maximum ford’ = 2.5in,, Maximum ford’ =25 in,,

f,, psi d'/d in. d/d in.
40,000 0.23 10.8 0.20 12.3
60,000 0.13 18.8 0.12 215
75,000 0.06 42.7 0.05 48.8

This nominal capacity is reduced by the strength reduction factor ¢ to obtain the
design strength.

If compression bars are used in a flexural member, precautions must be taken to
ensure that these bars will not buckle outward under load, spalling off the outer
concrete. ACI Code 7.11.1 imposes the requirement that such bars be anchored in the
same way that compression bars in columns are anchored by lateral ties (Section 8.2).
Such ties must be used throughout the distance where the compression reinforcement
is required.

For the compression steel to yield, the reinforcement ratio must lie below p,,,,
and above p.,. The ratio between d’ and the steel centroidal depth d to allow
yielding of the compression reinforcement can be found by equating p,, t0 Py, (or
Po.oos) and solving for d’/d. Furthermore, if d’ is assumed to be 2.5 in., as is often
the case, the minimum depth of beam necessary for the compression steel to yield
may be found for each grade of steel. The ratios and minimum beam depths are
summarized in Table 3.2. Values are included for €, = 0.004, the minimum tensile
yield strain permitted for flexural members, and €, = 0.005, the net tensile strain
needed to ensure that ¢ = 0.90. For beams with less than the minimum depth, the
compression reinforcement cannot yield unless the tensile reinforcement exceeds
Pmax- The compression reinforcement may yield in beams that exceed the minimum
depth in Table 3.2, depending on the relative distribution of the tensile and com-
pressive reinforcement. '

Examples of Analysis and Design of Beams
with Tension and Compression Steel

As was the case for beams with only tension reinforcement, doubly reinforced beam
problems can be placed in one of two categories: analysis problems or design prob-
lems. For analysis, in which the concrete dimensions, reinforcement, and material
strengths are given, one can find the flexural strength directly from the equations in
Section 3.7a or 3.7b. First, it must be confirmed that the tensile reinforcement ratio is
less than p,, given by Eq. (3.52), with compression steel stress from Eq. (3.53a). Once
it is established that the tensile steel has yielded, the tensile reinforcement ratio defin-
ing compression steel yielding is calculated from Eq. (3.51), and the actual tensile
reinforcement ratio is compared. If it is greater than p,, then f; = f,, and M, is found
from Eq. (3.48). If it is less than g, then f{ < f,. In this case, c is calculated by solving
Eq. (3.56), f, comes from Eq. (3.55), and M, is found from Eq. (3.57).

For the design case, in which the factored load moment M, to be resisted is
known and the section dimensions and reinforcement are to be found, a direct solution
is impossible. The steel areas to be provided depend on the steel stresses, which are
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not known before the section is proportioned. It can be assumed that the compression
steel stress is equal to the yield stress, but this must be confirmed; if it has not yielded,
the design must be adjusted. The design procedure can be outlined as follows:

1.

Calculate the maximum moment that can be resisted by the underreinforced
section with p = p_., or p, 405 to ensure that ¢ = 0.90. The corresponding tensile
steel area is A, = pbd, and, as usual,

a
M, = Asfy<d - 5)

with
Af,
a —
0.85f.b
Find the excess moment, if any, that must be resisted, and set M, = M,, as

calculated in step 1.
M,
M 1= ? -M 2

Now A, from step 1 is defined as A,,, i.e., that part of the tension steel area in the
doubly reinforced beam that works with the compression force in the concrete. In
Fig.3.14e, A, — A; = A,,.
Tentatively assume that f{ = f,. Then
_ M,

fld =)
Alternatively, if from Table 3.2 the compression reinforcement is known not to
yield, go to step 6.
Add an additional amount of tensile steel A;; = A, Thus, the total tensile steel
area A, is A, from step 2 plus A ;.
Analyze the doubly reinforced beam to see if f; = f,; that is, check the tensile
reinforcement ratio against Py
Ifp < P.y» then the compression steel stress is less than fy and the compression
steel area must be increased to provide the needed force. This can be done as
follows. The stress block depth is found from the requirement of horizontal
equilibrium (Fig. 3.14e),

A

-y n- o
0.85f'b 0.85f.b
and the neutral axis depth is ¢ = a/B,. From Eq. (3.55),
—d
fi= ekLS

The revised compression steel area, acting at f;, must provide the same force as
the trial steel area that was assumed to act at fy Therefore,

' ’ “fy

srevised — 41strial }-7
5

The tensile steel area need not be revised, because it acts at fy as assumed.
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EXAMPLE 3.12

FIGURE 3.15
Doubly reinforced beam of
Example 3.12.

Flexural strength of a given member. A rectangular beam, shown in Fig. 3.15, has a width
of 12 in. and an effective depth to the centroid of the tension reinforcement of 24 in. The tension
reinforcement consists of six No. 10 (No. 32) bars in two rows. Compression reinforcement
consisting of two No. 8 (No. 25) bars is placed 2.5 in. from the compression face of the beam.
If f, = 60,000 psi and f; = 5000 psi, what is the design moment capacity of the beam?

SOLUTION. The steel areas and ratios are

7.62
= 7.62 in? = = 0.02
A 62 in p 12 % 24 0265
1.58
"= 1.58 in® ' = = 0.005
Al = 1.58in p 2 %X 24 0.0055

Check the beam first as a singly reinforced beam to see if the compression bars can be disregarded,
Pmax = 0.0243 from Table A.4 or Eq. (3.30¢)

The actual p = 0.0265 is larger than p,,,, so the beam must be analyzed as doubly reinforced.

From Eq. (3.51), with 8, = 0.80,

525 0.003
Pey =0.85 X 0.80 X — X == X ————————— 4, = 0.
Po = 085 X 080 X 65 X 24 * 0003 — 0.00207 T 00055 = 0:0245

The tensile reinforcement ratio is greater than this, so the compression bars will yield when the
beam fails. The maximum reinforcement ratio thus can be found from Eq. (3.50),
Pmax = 0.0243 + 0.0055 = 0.0298

The actual tensile reinforcement ratio is below the maximum value, as required. Then, from
Eq. (3.47a),

_ (7.62 — 1.58)60

= =7.11 in.
085 x5x12 i
11
c=a/B = % = 8.89in.
24 — 8.89
€ = QOO?,(W) = 0.0051
21”
i 127 i 2
2 No. 8 (No. 25) [ —

' |
' |
' |
' |
| [ ,
| I 24
' |
! |
' |
' |
' |
o o @

6 No. 10 (No. 32) o-—l——-—-——- - —1
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and
¢ =090
and from Eq. (3.48),
M, =158 X 60(24 — 2.5) + 6.04 X 60(24 - %) = 0450 in-kips
The design strength is

¢M, = 0.90 X 9450 = 8500 in-kips

EXAMPLE 3.13

Design of a doubly reinforced beam. A rectangular beam that must carry a service live load
of 2.47 kips/ft and a calculated dead load of 1.05 kips/ft on an 18 ft simple span is limited in
cross section for architectural reasons to 10 in. width and 20 in. total depth. If f, = 60,000 psi
and f, = 4000 psi, what steel area(s) must be provided?

SoLuTION. The service loads are first increased by load factors to obtain the factored load of
1.2 X 1.05 + 1.6 X 2.47 = 5.21 kips/ft. Then M, = 5.21 X 18%/8 = 211 ft-kips = 2530 in-kips.
To satisfy spacing and cover requirements (see Section 3.6), assume that the tension steel
centroid will be 4 in. above the bottom face of the beam and that compression steel, if required,
will be placed 2.5 in. below the beam’s top surface. Then d = 16 in. and d’ = 2.5 in.

First, check the capacity of the section if singly reinforced. Table A.4 shows that pg ggs,
the maximum value of p for ¢ = 0.90, to be 0.0181. While the maximum reinforcement ratio
is slightly higher, Example 3.8 demonstrated there was no economic efficiency of using
€, = 0.005. So A, = 10 X 16 X 0.0181 = 2.90 in’. Then with

2.90 X 60

“Tossxaxio

¢ = a/B, = 5.12/0.85 = 6.02 in., and the maximum nominal moment that can be developed is
M, =290 X 60(16 — 5.12/2) = 2340 in-kips

Alternatively, using R = 913 from Table A.5b, the nominal moment is M, = 913 X 10 X
162/1000 = 2340 in-kips. Because the corresponding design moment ¢M, = 2100 in-kips is
less than the required capacity 2530 in-kips, compression steel is needed as well as additional
tension steel.

The remaining moment to be carried by the compression steel couple is

2530
M, = 090 2340 = 470 in-kips

As d is less than the value required to develop the compression reinforcement yield stress

(Table 3.2), a reduced stress in the compression reinforcement will be used. Using the strain
distribution in Fig. 3.14b, €, and f, can be computed as

.02 — 2.
€, = 0.003 %2—2 = 0.00175 and  f; = 0.00175 X 29,000 = 50.9 ksi

Try f; = 50 ksi for the compression reinforcement to obtain the required area of compression
steel.

470
Al

- = 070in?
*~ 50(16 — 2.5) =



FIGURE 3.16
Doubly reinforced beam of

Example 3.13.
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2 No. 6 (No. 9) — |

20”

|
i
l
!
4 No. 9 (No. 29) < i
== 7

1”
22

3”
23

The total area of tensile reinforcement at 60 ksi is

50
60

Two No. 6 (No. 19) bars will be used for the compression reinforcement and four No. 9
(No. 29) bars will provide the tensile steel area, as shown in Fig. 3.16. To place the tension bars
in a 10 in. beam width, two rows of two bars each are used.

A final check is made to ensure that the selection of reinforcement does not create a
lower compressive stress than the assumed 50 ksi.

f;) (50) .
A, — A (=] =40—-088| = | = 3.27 in?
s s(f 0 8 0 3.27 in

y

A, =290 + 0.70( ) = 3.48 in?

which is greater than 2.90 in? for €, = 0.005, so ¢ < 0.90.

327 X 60 ,
=85 xax10 7
577 ,
c = 085 §.79 in.
, 679 — 2.5 _
€, = 0.003 == = 0.0019

fi = 29,000 X 0.0019 = 55.0 ksi

which is greater than assumed. Check ¢, using d, = 17.25 from the strain distribution in
Fig. 3.14b, and compute the revised M,. For simplicity, the area of tensile reinforcement is
not modified.

17.25 — 6.79
= 0,003 =22 = 00046
€ 6.79

for which ¢ = 0.87. Then

M, = 0.87[3.27 X 60(16.0 - %)

+ 0.88 X 55.0(16 — 2.5)] = 2810 in-kips

This is greater than M, so no further refinement is necessary.
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d.
3.8
a.
FIGURE 3.17
Effective flange width of
T beams.

Tensile Steel below the Yield Stress

All doubly reinforced beams designed according to the ACI Code must be underrein-
forced, in the sense that the tensile reinforcement ratio is limited to ensure yielding at
beam failure. Two cases were considered in Sections 3.7a and 3.7b, respectively: (a)
both tension steel and compression steel yield and (b) tension steel yields but com-
pression steel does not. Two other combinations may be encountered in analyzing the
capacity of existing beams: (c) tension steel does not yield, but compression steel does,
and (d) neither tension steel nor compression steel yields. The last two cases are unusual,
and in fact, it would be difficult to place sufficient tension reinforcement to create such
conditions, but it is possible. The solution in such cases is obtained as a simple exten-
sion of the treatment of Section 3.7b. An equation for horizontal equilibrium is written,
in which both tension and compression steel stress are expressed in terms of the
unknown neutral axis depth c¢. The resulting quadratic equation is solved for c, after
which steel stresses can be calculated and the nominal flexural strength determined.

T BEAMS

With the exception of precast systems, reinforced concrete floors, roofs, decks, etc., are
almost always monolithic. Forms are built for beam soffits and sides and for the under-
side of slabs, and the entire construction is cast at once, from the bottom of the deepest
beam to the top of the slab. Beam stirrups and bent bars extend up into the slab. It is
evident, therefore, that a part of the slab will act with the upper part of the beam to resist
longitudinal compression. The resulting beam cross section is T-shaped rather than
rectangular. The slab forms the beam flange, while the part of the beam projecting below
the slab forms what is called the web or stem. The upper part of such a T beam is stressed
laterally due to slab action in that direction. Although transverse compression at the level
of the bottom of the slab may increase the longitudinal compressive strength by as much
as 25 percent, transverse tension at the top surface reduces the longitudinal compressive
strength (see Section 2.10). Neither effect is usually taken into account in design.

Effective Flange Width

The next issue to be resolved is that of the effective width of flange. In Fig. 3.17a, it
is evident that if the flange is but little wider than the stem width, the entire flange can
be considered effective in resisting compression. For the floor system shown in
Fig. 3.17b, however, it may be equally obvious that elements of the flange midway
between the beam stems are less highly stressed in longitudinal compression than
those elements directly over the stem. This is so because of shearing deformation of
the flange, which relieves the more remote elements of some compressive stress.

b, T b i |
Y A ; T % 7! T
by~ e byl



FIGURE 3.18
Effective cross sections of
T beams.

FLEXURAL ANALYSIS AND DESIGN OF BEAMS 109

Although the actual longitudinal compression varies because of this effect, it is
convenient in design to make use of an effective flange width, which may be smaller
than the actual flange width but is considered to be uniformly stressed at the maximum
value. This effective width has been found to depend primarily on the beam span and
on the relative thickness of the slab.

The criteria for effective width given in ACI Code 8.12 are as follows:

1. For symmetric T beams, the effective width b shall not exceed one-fourth the
span length of the beam. The overhanging slab width on either side of the beam
web shall not exceed 8 times the thickness of the slab or go beyond one-half the
clear distance to the next beam.

2. For beams having a slab on one side only, the effective overhanging slab width
shall not exceed one-twelfth the span length of the beam, 6 times the slab thick-
ness, or one-half the clear distance to the next beam.

3. For isolated beams in which the flange is used only for the purpose of providing
additional compressive area, the flange thickness shall not be less than one-half
the width of the web, and the total flange width shall not be more than 4 times the
web width.

Strength Analysis

The neutral axis of a T beam may be either in the flange or in the web, depending
upon the proportions of the cross section, the amount of tensile steel, and the strengths-
of the materials. If the calculated depth to the neutral axis is less than or equal to the
flange thickness 4, the beam can be analyzed as if it were a rectangular beam of width
equal to b, the effective flange width. The reason is illustrated in Fig. 3.18a, which shows
a T beam with the neutral axis in the flange. The compressive area is indicated by the
shaded portion of the figure. If the additional concrete indicated by areas 1 and 2 had
been added when the beam was cast, the physical cross section would have been rec-
tangular with a width b. No bending strength would have been added because areas 1
and 2 are entirely in the tension zone, and tension concrete is disregarded in flexural
calculations. The original T beam and the rectangular beam are equal in flexural
strength, and rectangular beam analysis for flexure applies.

When the neutral axis is in the web, as in Fig. 3.18b, the preceding argument is
no longer valid. In this case, methods must be developed to account for the actual
T-shaped compressive zone.

In treating T beams, it is convenient to adopt the same equivalent stress distribu-
tion that is used for beams of rectangular cross section. The rectangular stress block,
having a uniform compressive-stress intensity 0.85f,, was devised originally on the

b "

I r l
!// 2 /’! Neutral I W / A
| d o
| |
| [

| axis

|
| | N
M @ M @
l—— — |- —e— I LI4 -e-0-0-
b, - by
(a) (b)

Neutral
axis
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FIGURE 3.19
Strain and equivalent stress
distributions for T beams.

FIGURE 3.20
Computational model for
design and analysis of T
beams.

hy €, 0.85 f;
I b 1 ] ;’l [ -
V % _i//l_f _ (3 — Ia = B1C
Ag -e-0-0- - ' - - - - —
AP Tel Ady

(a) (b) (©

basis of tests of rectangular beams (see Section 3.4a), and its suitability for T beams
may be questioned. However, extensive calculations based on actual stress-strain curves
(reported in Ref. 3.12) indicate that its use for T beams, as well as for beams of circu-
lar or triangular cross section, introduces only minor error and is fully justified.

Accordingly, a T beam may be treated as a rectangular beam if the depth of the
equivalent stress block is less than or equal to the flange thickness. Figure 3.19 shows
a tensile-reinforced T beam with effective flange width b, web width b, effective
depth to the steel centroid d, and flange thickness hy. If for trial purposes the stress
block is assumed to be completely within the flange,

Af, of,d
a i =
0.85.b  0.85f.

(3.58)

where p = A, /bd. If a is less than or equal to the flange thickness hy, the member may
be treated as a rectangular beam of width b and depth d. If a is greater than he,a T
beam analysis is required as follows.

It will be assumed that the strength of the T beam is controlled by yielding of
the tensile steel. This will nearly always be the case because of the large compressive
concrete area provided by the flange. In addition, an upper limit can be established for
the reinforcement ratio to ensure that this is so, as will be shown.

As a computational device, it is convenient to divide the total tensile steel into
two parts, as shown in Fig. 3.20. The first part, A, represents the steel area that, when
stressed to f,, is required to balance the longitudinal compressive force in the over-
hanging portions of the flange that are stressed uniformly at 0.85f) (Fig. 3.20b). Thus,

0.85f. (b — b,)hy
sf f;;

(3.59)
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The force Af, and the equal and opposite force 0.85 f/(b — b,)h, act with a lever
arm d — hy/2 to provide the nominal resisting moment

hy
Mnl = Asffy d - E (3.60)
The remaining steel area A; — A, at a stress f, is balanced by the compression
in the rectangular portion of the beam (Fig. 3.20c). The depth of the equivalent
rectangular stress block in this zone is found from horizontal equilibrium.
As — Aglf,
a= (—ﬁ (3.61)
0.85f/ b,
An additional moment M,, is thus provided by the forces (A, — A,)f, and 0.85f/ab,,
acting at the lever arm d — a/2.

M, = (A, — Asf)fy<d - —Z—) (3.62)

and the total nominal resisting moment is the sum of the parts:
hy a
M,=M, + M, =As\d— > + (A, —Apfild— ) (3.63)

This moment is reduced by the strength reduction factor ¢ in accordance with the
safety provisions of the ACI Code to obtain the design strength.

As for rectangular beams, the tensile steel should yield prior to sudden crushing
of the compression concrete, as assumed in the preceding development. Yielding of
the tensile reinforcement and Code compliance are ensured if the net tensile strain is
greater than 0.004. From the geometry of the section,

[ €
— < L

d, €,%+¢

(3.64)

Setting €, = 0.003 and €, = 0.004 provides a maximum c/d, ratio of 0.429, as seen in
Fig. 3.10. Thus, as long as the depth to the neutral axis is less than 0.429d,, the net
tensile strain requirements are satisfied, as they are for rectangular beam sections. This
will occur if p,, = A,/b,d is less than -

pw,max = pmax + pf (365)

where p, = Ay/b,d and p,,. is as previously defined for a rectangular cross section
[Eq. (3.30¢)]. For c/d, ratios between 0.429 and 0.375, equivalent to p,, between the
Pmax from Eq. (3.65) and p,, g5, Calculated by substituting p; g5 from Eq. (3.30d)
for p,.. in Eq. (3.65), the strength reduction factor ¢ must be adjusted for €,, as shown
in Fig. 3.9. For p,, < p,.0 005 OF ¢/d, = 0.375, ¢ = 0.90.

The practical result of applying Eq. (3.65) is that the stress block of T beams
will almost always be within the flange, except for unusual geometry or combinations
of material strength. Consequently, rectangular beam equations may be applied in
most cases.

The ACI Code restriction that the tensile reinforcement ratio for beams not be
less than p,;, = 3Vf./ 'f, and = 200/f, (see Section 3.4d) applies to T beams as well
as rectangular beams. For T beams, the ratio p should be computed for this purpose
based on the web width b,
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Proportions of Cross Section

When designing T beams, in contrast to analyzing the capacity of a given section,
normally the slab dimensions and beam spacing will have been established by trans-
verse flexural requirements. Consequently, the only additional section dimensions that
must be determined from flexural considerations are the width and depth of the web
and the area of the tensile steel.

If the stem dimensions were selected on the basis of concrete stress capacity in
compression, they would be very small because of the large compression flange
width furnished by the presence of the slab. Such a design would not represent the
optimum solution because of the large tensile steel requirement resulting from the
small effective depth, because of the excessive web reinforcement that would be
required for shear, and because of large deflections associated with such a shallow
member. It is better practice to select the proportions of the web (1) so as to keep an
arbitrarily low web reinforcement ratio p,, or (2) so as to keep web-shear stress at
desirably low limits (Chapter 4) or (3) for continuous T beams, on the basis of the
flexural requirements at the supports, where the effective cross section is rectangular
and of width b,

In addition to the main reinforcement calculated according to the preceding
requirements, it is necessary to ensure the integrity of the compressive flange of T
beams by providing steel in the flange in the direction transverse to the main span. In
typical construction, the slab steel serves this purpose. In other cases, additional bars
must be added to permit the overhanging flanges to carry, as cantilever beams, the
loads directly applied. According to ACI Code 8.12.5, the spacing of such bars must
not exceed 5 times the thickness of the flange or in any case exceed 18 in.

Examples of Analysis and Design of T Beams

For analyzing the capacity of a T beam with known concrete dimensions and tensile
steel area, it is reasonable to start with the assumption that the stress block depth a does
not exceed the flange thickness ;. In that case, all ordinary rectangular beam equations
(see Section 3.4) apply, with beam width taken equal to the effective width of the
flange. If, upon checking that assumption, a proves to exceed /;, then T beam analysis
must be applied. Equations (3.59) through (3.63) can be used, in sequence, to obtain the
nominal flexural strength, after which the design strength is easily calculated.
For design, the following sequence of calculations may be followed:

1. Establish flange thickness hf based on flexural requirements of the slab, which
normally spans transversely between parallel T beams.

2. Determine the effective flange width b according to ACI limits.

3. Choose web dimensions b,, and d based on either of the following:

(a) Negative bending requirements at the supports, if a continuous T beam
(b) Shear requirements, setting a reasonable upper limit on the nominal unit shear
stress v, in the beam web (see Chapter 4)

4. With all concrete dimensions thus established, calculate a trial value of A, assum-
ing that a does not exceed h,, with beam width equal to flange width b. Use ordi-
nary rectangular beam design methods.

5. For the trial A, check the depth of stress block a to confirm that it does not exceed
hy. If it should exceed that value, revise A, using the T beam equations.

6. Check to ensure that €, = 0.005 or ¢/d = 0.375 to ensure that ¢ = 0.90. (This
will almost invariably be the case.)

7. Check to ensure that p,, =

pw,min‘



FLEXURAL ANALYSIS AND DESIGN OF BEAMS 113

EXAMPLE 3.14

FIGURE 3.21
T beam of Example 3.14.

Moment capacity of a given section. The isolated T beam shown in Fig. 3.21 is composed
of a flange 28 in. wide and 6 in. deep cast monolithically with a web of 10 in. width that extends
24 in. below the bottom surface of the flange to produce a beam of 30 in. total depth. Tensile
reinforcement consists of six No. 10 (No. 32) bars placed in two horizontal rows separated by
1 in. clear spacing. The centroid of the bar group is 26 in. from the top of the beam. The
concrete has a strength of 3000 psi, and the yield strength of the steel is 60,000 psi. What is the
design moment capacity of the beam?

SorLuTioN. It is easily confirmed that the flange dimensions are satisfactory according to the
ACI Code for an isolated beam. The entire flange can be considered effective. For six No. 10
(No. 32) bars, A, = 7.62 in2. First check the location of the neutral axis, on the assumption that
rectangular beam equations may be applied. Using Eq. (3.32)

7.62 X 60

= 1022 640in.
4= 85 %3 x 28 od0in

This exceeds the flange thickness, and so a T beam analysis is required. From Eg. (3.59) and
Fig. 3.19p,

3
Ay =085 X (28 — 10) X 6 = 4.59 in®

Then, from Eq. (3.60),
M, = 4.59 X 60(26 — 3) = 6330 in-kips
Then, from Fig. 3.19c¢,
A, — Ay =762 — 459 =3.03 in?
and from Egs. (3.58) and (3.59)

303X 60
=08 x3x 10

M, = 3.03 X 60(26 — 3.56) = 4080 in-kips

= 7.13 in.

| 28// i
- - f
° o &

I I '
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[ [
-
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The depth to the neutral axis is ¢ = a/B,= 7.13/0.85 = 8.39 and d, = 27.5 in. to the lowest bar.
The c/d, ratio is 8.39/27.5 = 0.305 < 0.375, so the €, > 0.005 requirement is met and ¢ = 0.90.
When the ACI strength reduction factor is mcorporated the design strength is

oM, = 0.90(6330 + 4080) = 9370 in-kips

EXAMPLE 3.15

FIGURE 3.22
T beam of Example 3.15.

Determination of steel area for a given moment. A floor system, shown in Fig. 3.22,
consists of a 3 in. concrete slab supported by continuous T beams with a 24 ft span, 47 in. on
centers. Web dimensions, as determined by negative-moment requirements at the supports, are
b,, = 11 in. and d = 20 in. What tensile steel area is required at midspan to resist a factored
moment of 6400 in-kips if £, = 60,000 psi and f; = 3000 psi?

SoLuTiON.  First determining the effective flange width,
16h; + b, = 16 X 3 + 11 = 59 in.

Span 12
=X == T2in

Centerline beam spacing = 47 in,

The centerline T beam spacing controls in this case, and b = 47 in. The concrete dimensions
b,, and d are known to be adequate in this case, since they have been selected for the larger neg-
ative support moment applied to the effective rectangular section b,d. The tensile steel at
midspan is most conveniently found by trial. Assuming the stress- block depth a is equal to the
flange thickness of hy = 3 in., one gets

d- % =20 — 1.50 = 18.50 in.

Trial:
M, 640 _
A, = = 0 = 6.41 in?
of,(d — a/2)  0.90 X 60 X 18.50
Checking the assumed value for a,
A, 41 X
5 _ b4 60 = 321in.

T 0851 0.85 X 3 X 47
Since a is greater than h;, a T beam design is required and ¢ = 0.90 is assumed.

_085f(b — bk 0.85 X3 %363
o f, 60

= 4.59 in’

7"

]

mluuu‘ﬂ
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h
oM, = d’Asffy(d - Ef> = 0.90 X 4.59 X 60 X 18.50 = 4590 in-kips
oM, = M, — &M, = 6400 — 4590 = 1810 in-kips
Assume a = 4.00 in.:

oM, 1810

_ B o
T #f,(d —aj2) 090 X 60 X (20 — 4.0/2) 1.86in

As - Asf

Check:

(A, — Ay, 1.86 X 60 _
a= = = 398 in.
0.85'b,  085X%3X 11

This is satisfactorily close to the assumed value of 4 in. Then
A=A+ A —A,;=459 + 1.86 = 645 in?

Checking to ensure that the net tensile strain of 0.005 is met to allow ¢ = 0.90,

a 3.98
=2 2 468
“~ B8, 08
¢ 468
€ =20 023 <0325
4 20

indicating that the design is satisfactory.

The close agreement should be noted between the approximate tensile steel area of
6.41 in? found by assuming the stress-block depth equal to the flange thickness and the more
exact value of 6.45 in? found by T beam analysis. The approximate solution would be satisfac-
tory in most cases.
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PROBLEMS

3.1.

3.2.

3.3.

34.

A rectangular beam made using concrete with fi = 6000 psi and steel with

fy = 60,000 psi has a width b = 20 in., an effective depth of d = 17.5 in., and

a total depth of 4 = 20 in. The concrete modulus of rupture f, = 530 psi. The

elastic moduli of the concrete and steel are, respectively, E. = 4,030,000 psi

and E; = 29,000,000 psi. The tensile steel consists of four No. 11 (No. 36)

bars.

(a) Find the maximum service load moment that can be resisted without
stressing the concrete above 0.45f” or the steel above 0.40f,.

(b) Determine whether the beam will crack before reaching the service load.

(¢) Compute the nominal flexural strength of the beam.

(d) Compute the ratio of the nominal flexural strength of the beam to the
maximum service load moment, and compare your findings to the ACI
load factors and strength reduction factor.

A rectangular, tension-reinforced beam is to be designed for dead load of
500 Ib/tt plus self-weight and service live load of 1200 Ib/ft, with a 22 ft simple
span. Material strengths will be f, = 60 ksi and f/ = 3 ksi for steel and con-
crete, respectively. The total beam depth must not exceed 16 in. Calculate the
required beam width and tensile steel requirement, using a reinforcement ratio
of 0.60p,,,,. Use ACI load factors and strength reduction factors. The effective
depth may be assumed to be 2.5 in. less than the total depth.

A beam with a 20 ft simple span has cross-sectional dimensions » = 12 in.,

d = 23 in., and h = 25 in. (see Fig. 3.2b for notation). It carries a uniform

service load of 2450 Ib/ft in addition to its own weight. Material strengths are

f; = 4000 psi and f, = 60,000 psi. Assume a weight of 150 pct for reinforced

concrete.

(@) Check whether this beam, if reinforced with three No. 9 (No. 29) bars, is
adequate to carry this load with a minimum factor of safety against flex-
ural failure of 1.85. If this requirement is not met, select a three-bar rein-
forcement of diameter or diameters adequate to provide this safety.

(b) Determine the maximum stress in the steel and in the concrete under ser-
vice load, i.e., when the beam carries its own weight and the specified uni-
form load.

(c) Will the beam show hairline cracks on the tension side under service load?

A rectangular reinforced concrete beam with dimensions » = 14in.,d = 25 in.,

and # = 28 in. is reinforced with three No. 10 (No. 32) bars. Material strengths

are f, = 60,000 psi and f = 5000 psi.

(@) Find the moment that will produce the first cracking at the bottom surface
of the beam, basing your calculation on Ig, the moment of inertia of the
gross concrete section.

(b) Repeat the calculation, using 7, the moment of inertia of the uncracked
transformed section.

(¢) Determine the maximum moment that can be carried without stressing the
concrete beyond 0.45f; or the steel beyond 0.60f..

(d) Find the nominal flexural strength of this beam.

(e) Compute the ratio of the flexural strength from part (d) to the service
capacity from part (c).

() Comment on your results, paying particular attention to comparing parts
(@) and (b) and comparing the result in part (e) with the load factors in the
ACI Code.
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A tensile-reinforced beam has b = 12 in. and d = 20 in. to the center of the
bars, which are placed all in one row. If f, = 60,000 psi and f; = 5000 psi, find
the nominal flexural strength M, for (a) A, = two No. 8 (No. 25) bars, (b) A, =
two No. 10 (No. 32) bars, (¢) A, = three No. 10 (No. 32) bars.

A singly reinforced rectangular beam is to be designed, with effective depth
approximately 1.5 times the width, to carry a service live load of 2000 1b/ft in
addition to its own weight, on a 24 ft simple span. The ACI Code load factors
are to be applied as usual. With £, = 60,000 psi and f = 4000 psi, determine
the required concrete dimensions b, d, and h, and steel reinforcing bars (a) for
p = 0.60p,,. and (b) for p = pgqs. Include a sketch of each cross section
drawn to scale. Allow for No. 4 (No. 13) stirrups. Comment on your results.
A four-span continuous beam of constant rectangular cross section is sup-
ported at A, B, C, D, and E. The factored moments resulting from analysis
are as follows:

At Supports, ft-kips At Midspan, ft-kips

M, =138 M, = 158
M, = 220 M, =138
M, =200 M, =138
M, =220 M, =158
M, =138

Determine the required final concrete dimensions for this beam, using d = 1.75b,
and determine the reinforcement requirements at each critical moment section.
Your final reinforcement ratio should not exceed = 0.6p;gys. Use f, = 60,000 psi
and f," = 6000 psi.

A two-span continuous concrete beam is to be supported by three concrete
walls spaced 30 ft on centers. A service live load of 1.5 kips/ft is to be carried
in addition to the self-weight of the beam. Use pattern loading; i.e., consider
two loading conditions: (1) live load on both spans and (2) live load on a single
span. A constant rectangular cross section is to be used with d = 2b, but rein-
forcement is to be varied according to requirements. Find the required concrete
dimensions and reinforcement at all critical sections. Allow for No. 3 (No. 10)
stirrups. Use a span-to-depth ratio of 15 as the first estimate of the depth.
Adjust the depth if the reinforcement ratio is too high. Include sketches, drawn
to scale, of the critical cross sections. Use f, = 60,000 psi and S+ = 6000 psi.
A rectangular concrete beam measures 12 in. wide and has an effective depth
of 18 in. Compression steel consisting of two No. 8 (No. 25) bars is located
2.5 in. from the compression face of the beam. If f; = 4000 psi and f, =
60,000 psi, what is the design moment capacity of the beam, according to the
ACI Code, for the following alternative tensile steel areas? (a) A, = three No. 10
(No. 32) bars in one layer, (b) A, = four No. 10 (No. 32) bars in two layers, (c)
A, = six No. 9 (No. 29) bars in two layers. (Note: Check for yielding of com-
pression steel in each case.) Plot M, versus p and comment on your findings.

A rectangular concrete beam of width b = 24 in. is limited by architectural
considerations to a maximum total depth 2 = 16 in. It must carry a total fac-
tored load moment M, = 400 ft-kips. Design the flexural reinforcement for
this member, using compression steel if necessary. Allow 3 in. to the center of
the bars from the compression or tension face of the beam. Material strengths
are f, = 60,000 psi and f! = 4000 psi. Select reinforcement to provide the
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FIGURE P3.11

FIGURE P3.13

3.11.

needed areas, and show a sketch of your final design, including provision for
No. 4 (No. 13) stirrups.

For the beam with the triangular cross section shown in Fig. P3.11, determine
(a) the balanced reinforcement ratio and (b) the maximum reinforcement ratio
if €, = 0.005. The dimensions of the triangle are such that the width of the
triangle equals the distance from the apex. Thus, the width at the effective
depth b equals the effective depth d. Express the reinforcement ratio p in
terms of b and d. Draw the strain distribution, and stress distribution, and define
your notation.

3.12.

3.13.

Develop a design table and graph for the moment capacity of rectangular con-
crete beams based on the use of the flexural resistance factor R. (See Table
A.5a and Graph A.1a for examples.) Material strengths are J, = 60,000 psi and
Jfo = 8000 psi. The table and graph should begin with p,;, and end at p_,.
Your work must show how the maximum and minimum values of p were com-
puted. You may use Excel or MathCAD to perform your calculations. Your
submittal must include a table, a graph, and commentary on how you checked
the work.

A rectangular beam made using concrete with f/ = 5000 psi and steel with
J, = 60,000 psi has a width b = 18 in., an effective depth d = 21 in., and a
total depth 2 = 24 in. The beam is reinforced with four No. 9 (No. 29) bars.
Compute the nominal moment capacity, assuming (a) an equivalent rectangu-
lar stress block, (b) a triangular stress block with a peak value of f/ , and (c) a
parabolic stress block with a peak value of f! (see Fig. P3.13). Compare and
comment on your results, knowing that the rectangular stress block correlates
within 4 percent with test results.

" 7

1 3
de T 1o

Triangle Parabola
Area = %ab Area = %ab

3.14.

A precast T beam is to be used as a bridge over a small roadway. Concrete
dimensions are b = 48 in., b, = 16 in., b = 5 in., and h = 25 in. The effec-
tive depth d = 20 in. Concrete and steel strengths are 6000 psi and 60,000 psi,
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respectively. Using approximately one-half the maximum tensile reinforcement
permitted by the ACI Code (select the actual size of bar and number to be
used), determine the design moment capacity of the girder. If the beam is used
on a 30 ft simple span, and if in addition to its own weight it must support rail-
ings, curbs, and suspended loads totaling 0.475 kip/ft, what uniform service
live load limit should be posted?

A rectangular beam with a width of 8 in., an effective depth of 10 in., and a
total depth of 12 in. is reinforced with a single fiberglass reinforcing bar that
has a cross-sectional area of 0.45 in?. The bar has a nominal tensile strength
of 140,000 psi, a linear stress-strain curve to failure, and a strain at failure of
1.8 percent. The concrete strength f] = 6000 psi. Determine the nominal flex-
ural strength of the section.

Compute the maximum and minimum reinforcement ratios for reinforcement
with an 80 ksi yield point and £/ = 4000 to 8000 psi in 1000 psi increments,
similar to those shown in Table A.4. Using the maximum and minimum
reinforcement ratios, develop resistance factors and design graphs similar to
Table A.5b and Graph A.1la.
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4.1

Shear and Diagonal Tension
in Beams

INTRODUCTION

Chapter 3 dealt with the flexural behavior and flexural strength of beams. Beams must
also have an adequate safety margin against other types of failure, some of which may
be more dangerous than flexural failure. This may be so because of greater uncertainty
in predicting certain other modes of collapse, or because of the catastrophic nature of
some other types of failure, should they occur.

Shear failure of reinforced concrete, more properly called diagonal tension
Jailure, is one example. Shear failure is difficult to predict accurately. In spite of many
decades of experimental research (Refs. 4.1 to 4.6) and the use of highly sophisticated
analytical tools (Refs. 4.7 and 4.8), it is not yet fully understood. Furthermore, if a
beam without properly designed shear reinforcement is overloaded to failure, shear
collapse is likely to occur suddenly, with no advance warning of distress. This is in
strong contrast with the nature of flexural failure. For typically underreinforced
beams, flexural failure is initiated by gradual yielding of the tension steel, accompa-
nied by obvious cracking of the concrete and large deflections, giving ample warning
and providing the opportunity to take corrective measures. Because of these differ-
ences in behavior, reinforced concrete beams are generally provided with special
shear reinforcement to ensure that flexural failure would occur before shear failure if
the member were severely overloaded.

Figure 4.1 shows a shear-critical beam tested under third point loading. With no
shear reinforcement provided, the member failed immediately upon formation of the
critical crack in the high-shear region near the right support.

It is important to realize that shear analysis and design are not really concerned
with shear as such. The shear stresses in most beams are far below the direct shear
strength of the concrete. The real concern is with diagonal tension stress, resulting
from the combination of shear stress and longitudinal flexural stress. Most of this
chapter deals with analysis and design for diagonal tension, and it provides background
for understanding and using the shear provisions of the 2008 ACI Code. Members
without web reinforcement are studied first to establish the location and orientation of
cracks and the diagonal cracking load. Methods are then developed for the design of
shear reinforcement according to the present ACI Code, both in ordinary beams and
in special types of members, such as deep beams.

Over the years, alternative methods of shear design have been proposed, based
on variable angle truss models and diagonal compression field theory (Refs. 4.9 and
4.10). These approaches will be reviewed briefly later in this chapter, with one such
approach, the modified compression field theory, presented in detail.



FIGURE 4.1

Shear failure of reinforced
concrete beam: (a) overall
view, (b) detail near right

support.
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Finally, there are some circumstances in which consideration of direct shear is
appropriate. One example is in the design of composite members combining precast
beams with a cast-in-place top slab. Horizontal shear stresses on the interface between
components are important. The shear-friction theory, useful in this and other cases,
will be presented following development of methods for the analysis and design of
beams for diagonal tension.

DIAGONAL TENSION IN HOMOGENEOUS ELASTIC BEAMS

The stresses acting in homogeneous beams were briefly reviewed in Section 3.2. It
was pointed out that when the material is elastic (stresses proportional to strains),
shear stresses

4%
e 3.4)
v b (3.4)
act at any section in addition to the bending stresses
My
f= T (3.2)

except for those locations at which the shear force V happens to be zero.

The role of shear stresses is easily visualized by the performance under load of
the laminated beam of Fig. 4.2; it consists of two rectangular pieces bonded together
along the contact surface. If the adhesive is strong enough, the member will deform as
one single beam, as shown in Fig. 4.2a. On the other hand, if the adhesive is weak, the
two pieces will separate and slide relative to each other, as shown in Fig. 4.2b.
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FIGURE 4.2
Shear in homogeneous ~
rectangular beams. E ’
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Evidently, then, when the adhesive is effective, there are forces or stresses acting in it
that prevent this sliding or shearing. These horizontal shear stresses are shown in
Fig. 4.2¢ as they act, separately, on the top and bottom pieces. The same stresses occur
in horizontal planes in single-piece beams; they are different in intensity at different
distances from the neutral axis.

Figure 4.2d shows a differential length of a single-piece rectangular beam acted
upon by a shear force of magnitude V. Upward translation is prevented; i.e., vertical
equilibrium is provided by the vertical shear stresses v. Their average value is equal
to the shear force divided by the cross-sectional area v,, = V/ab, but their intensity
varies over the depth of the section. As is easily computed from Eq. (3.4), the shear
stress is zero at the outer fibers and has a maximum of 1.5v,, at the neutral axis, the
variation being parabolic as shown. Other values and distributions are found for other
shapes of the cross section, the shear stress always being zero at the outer fibers and
of maximum value at the neutral axis. If a small square element located at the neutral
axis of such a beam is isolated, as shown in Fig. 4.3b, the vertical shear stresses on
it, equal and opposite on the two faces for reasons of equilibrium, act as shown.
However, if these were the only stresses present, the element would not be in
equilibrium,; it would spin. Therefore, on the two horizontal faces there exist equili-
brating horizontal shear stresses of the same magnitude. That is, at any point within
the beam, the horizontal shear stresses of Fig. 4.3b are equal in magnitude to the
vertical shear stresses of Fig. 4.2d.

It is proved in any strength-of-materials text that on an element cut at 45° these
shear stresses combine in such a manner that their effect is as shown in Fig. 4.3¢c. That
is, the action of the two pairs of shear stresses on the vertical and horizontal faces is
the same as that of two pairs of normal stresses, one tensile and one compressive,
acting on the 45° faces and of numerical value equal to that of the shear stresses. If an
element of the beam is considered that is located neither at the neutral axis nor at the
outer edges, its vertical faces are subject not only to the shear stresses but also to the
familiar bending stresses whose magnitude is given by Eq. (3.2) (Fig. 4.3d). The six
stresses that now act on the element can again be combined into a pair of inclined



FIGURE 4.3

Stress trajectories in
homogeneous rectangular
beam.
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Tension trajectories

" ——— Compression trajectories

compressive stresses and a pair of inclined tensile stresses that act at right angles to
each other. They are known as principal stresses (Fig. 4.3e). Their value, as mentioned
in Section 3.2, is given by

3.1n

and their inclination a by tan 2a = 2v/f.

Since the magnitudes of the shear stresses v and the bending stresses f change
both along the beam and vertically with distance from the neutral axis, the inclinations
as well as the magnitudes of the resulting principal stresses ¢ also vary from one place
to another. Figure 4.3f shows the inclinations of these principal stresses for a rectan-
gular beam uniformly loaded. That is, these stress trajectories are lines which, at any
point, are drawn in that direction in which the particular principal stress, tension or
compression, acts at that point. It is seen that at the neutral axis the principal stresses
in a beam are always inclined at 45° to the axis. In the vicinity of the outer fibers they
are horizontal near midspan.

An important point follows from this discussion. Tensile stresses, which are of
particular concern in view of the low tensile strength of the concrete, are not confined
to the horizontal bending stresses f that are caused by bending alone. Tensile stresses
of various inclinations and magnitudes, resulting from shear alone (at the neutral axis)
or from the combined action of shear and bending, exist in all parts of a beam and can
impair its integrity if not adequately provided for. It is for this reason that the inclined
tensile stresses, known as diagonal tension, must be carefully considered in reinforced
concrete design.
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4.3

REINFORCED CONCRETE BEAMS WITHOUT SHEAR
REINFORCEMENT

The discussion of shear in a homogeneous elastic beam applies very closely to a plain
concrete beam without reinforcement. As the load is increased in such a beam, a
tension crack will form where the tensile stresses are largest and will immediately
cause the beam to fail. Except for beams of very unusual proportions, the largest
tensile stresses are those caused at the outer fiber by bending alone, at the section of
maximum bending moment. In this case, shear has little, if any, influence on the
strength of a beam.

However, when tension reinforcement is provided, the situation is quite differ-
ent. Even though tension cracks form in the concrete, the required flexural tension
strength is furnished by the steel, and much higher loads can be carried. Shear stresses
increase proportionally to the loads. In consequence, diagonal tension stresses of
significant intensity are created in regions of high shear forces, chiefly close to the
supports. The longitudinal tension reinforcement has been so calculated and placed
that it is chiefly effective in resisting longitudinal tension near the tension face. It does
not reinforce the tensionally weak concrete against the diagonal tension stresses that
occur elsewhere, caused by shear alone or by the combined effect of shear and flexure.
Eventually, these stresses attain magnitudes sufficient to open additional tension
cracks in a direction perpendicular to the local tension stress. These are known as
diagonal cracks, in distinction to the vertical flexural cracks. The latter occur in
regions of large moments, the former in regions in which the shear forces are high. In
beams in which no reinforcement is provided to counteract the formation of large
diagonal tension cracks, their appearance has far-reaching and detrimental effects. For
this reason, methods of predicting the loads at which these cracks will form are desired.

Criteria for Formation of Diagonal Cracks

It is seen from Eq. (3.1) that the diagonal tension stresses ¢ represent the combined
effect of the shear stresses v and the bending stresses £, These in turn are, respectively,
proportional to the shear force V and the bending moment M at the particular location
in the beam [Egs. (3.2) and (3.4)]. Depending on configuration, support conditions,
and load distribution, a given location in a beam may have a large moment combined
with a small shear force, or the reverse, or large or small values for both shear and
moment. Evidently, the relative values of M and V will affect the magnitude as well as
the direction of the diagonal tension stresses. Figure 4.4 shows a few typical beams
and their moment and shear diagrams and draws attention to locations at which
various combinations of high or low V and M occur.

At a location of large shear force V and small bending moment M, there will be
little flexural cracking, if any, prior to the development of a diagonal tension crack.
Consequently, the average shear stress prior to crack formation is

vV

= @.1)

v
The exact distribution of these shear stresses over the depth of the cross section is not
known. It cannot be computed from Eq. (3.4) because this equation does not account
for the influence of the reinforcement and because concrete is not an elastic homoge-
neous material. The value computed from Eq. (4.1) must therefore be regarded merely
as a measure of the average intensity of shear stresses in the section. The maximum
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Typical locations of critical
combinations of shear and
moment.
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value, which occurs at the neutral axis, will exceed this average by an unknown but
moderate amount.

If flexural stresses are negligibly small at the particular location, the diagonal
tensile stresses, as in Fig. 4.3b and c, are inclined at about 45° and are numerically
equal to the shear stresses, with a maximum at the neutral axis. Consequently, diago-
nal cracks form mostly at or near the neutral axis and propagate from that location, as
shown in Fig. 4.5a. These web-shear cracks can be expected to form when the
diagonal tension stress in the vicinity of the neutral axis becomes equal to the tensile
strength of the concrete. The former, as was indicated, is of the order of, and somewhat
larger than, v = V/bd; the latter, as discussed in Section 2.9, varies from about 3VY!
to about 5V/f.. An evaluation of a very large number of beam tests is in fair agreement
with this reasoning (Ref. 4.1). It was found that in regions with large shear and small
moment, diagonal tension cracks form at an average or nominal shear stress v,, of
about 3.5V, that is,

V
=< =35Vf! 4.2
Ve = 5 = 35V (4.2a)
where V,, is that shear force at which the formation of the crack was observed.t Web-
shear cracking is relatively rare and occurs chiefly near supports of deep, thin-webbed
beams or at inflection points of continuous beams.

t Actually, diagonal tension cracks form at places where a compressive stress acts in addition to and perpendicular to the diagonal tension stress, as
shown in Fig. 4.3d and e. The crack, therefore, occurs at a location of biaxial stress rather than uniaxial tension. However, the effect of this
simultaneous compressive stress on the cracking strength appears to be small, in agreement with the information in Fig. 2.8.
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FIGURE 4.5
Diagonal tension cracking in
reinforced concrete beams.

j Web-shear crack Flexural crack

(a) Web-shear cracking

ﬁ Flexure-shear crack Flexural cracks

(b} Flexure-shear cracking

The situation is different when both the shear force and the bending moment
have large values. At such locations, in a well-proportioned and reinforced beam,
flexural tension cracks form first. Their width and length are well controlled and kept
small by the presence of longitudinal reinforcement. However, when the diagonal
tension stress at the upper end of one or more of these cracks exceeds the tensile
strength of the concrete, the crack bends in a diagonal direction and continues to grow
in length and width (see Fig. 4.5b). These cracks are known as flexure-shear cracks
and are more common than web-shear cracks.

It is evident that at the instant at which a diagonal tension crack of this type
develops, the average shear stress is larger than that given by Eq. (4.1). This is so
because the preexisting tension crack has reduced the area of uncracked concrete that
is available to resist shear to a value smaller than that of the uncracked area bd used
in Eq. (4.1). The amount of this reduction will vary, depending on the unpredictable
length of the preexisting flexural tension crack. Furthermore, the simultaneous bend-
ing stress f combines with the shear stress v to increase the diagonal tension stress ¢
further [see Eq. (3.1)]. No way has been found to calculate reliable values of the diag-
onal tension stress under these conditions, and recourse must be made to test results.

A large number of beam tests have been evaluated for this purpose (Ref. 4.1).
They show that in the presence of large moments (for which adequate longitudinal
reinforcement has been provided) the nominal shear stress at which diagonal tension
cracks form and propagate is, in most cases, conservatively given by

Vv,

== 1.9V7] 4.2b
Vor = 0 = LOVF (4.2b)
Comparison with Eq. (4.2a) shows that large bending moments can reduce the shear
force at which diagonal cracks form to roughly one-half the value at which they would
form if the moment were zero or nearly so. This is in qualitative agreement with the
discussion just given.



FIGURE 4.6
Correlation of Eq. (4.3a)
with test results.
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It is evident, then, that the shear at which diagonal cracks develop depends on
the ratio of shear force to bending moment, or, more precisely, on the ratio of shear
stress v to bending stress f near the top of the flexural crack. Neither of these can be
accurately calculated. It is clear, though, that v = K;(V/bd), where, by comparison
with Eq. (4.1), constant K; depends chiefly on the depth of penetration of the flexural
crack. On the other hand [see Eq. (3.10)], f = K,(V/bd?), where K, also depends on
crack configuration. Hence, the ratio

v_Kvd
f KM

must be expected to affect that load at which flexural cracks develop into flexure-shear
cracks, the unknown quantity K, /K, to be explored by tests. Equation (4.2a) gives the
cracking shear for very large values of Vd/M, and Eq. (4.2b) for very small values.
Moderate values of Vd/M result in magnitudes of v,, intermediate between these
extremes. Again, from evaluations of large numbers of tests (Ref. 4.1), it has been
found that the nominal shear stress at which diagonal flexure-shear cracking develops
can be predicted from

v, vd
Ve = ~< = L9V + 2500 EAT < 35Vf (4.3q)

bd
where
Ver = v, bd

and p = A, /bd, as before, and 2500 is an empirical constant in psi units. A graph of
this relation and comparison with test data are given in Fig. 4.6.
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Apart from the influence of Vd/M, it is seen from Eq. (4.3a) that increasing
amounts of tension reinforcement, i.e., increasing values of the reinforcement ratio o,
have a beneficial effect in that they increase the shear at which diagonal cracks
develop. This is so because larger amounts of longitudinal steel result in smaller and
narrower flexural tension cracks prior to the formation of diagonal cracking, leaving a
larger area of uncracked concrete available to resist shear. [For more details on the
development of Eq. (4.3a), see Ref. 4.1.]

A brief study of Fig. 4.6 will show that although Eq. (4.3a) captures the overall
effects of the controlling variables on v,,, the match with actual data is far from
perfect. Of particular concern is the tendency of Eq. (4.3a) to overestimate the shear
strength of beams with reinforcement ratios p < 1.0 percent, values that are
commonly used in practice. The cracking stress predicted in Eq. (4.3a) becomes
progressively less conservative as f; increases above 5000 psi and as beam depth d
increases above 18 in. On the other hand, Eq. (4.3a) underestimates the effect of Vd/M
on v,, and ignores the positive effect of flanges (present on most reinforced concrete
beams) on shear strength. The conservatism of Eq. (4.3a) increases as both flange
thickness and web width increase (Ref. 4.3), although these factors have less of an
effect than f, p, or Vd/M on v,,.

Considering the three main variables, an improved match with test results is
obtained with the empirical relationship (Ref. 4.11)

1% Vd\ '/
=< =359 flp— 4.3b
Ver = 3 (fcpM) (4.3b)

Equation (4.3b) was calibrated based on beams with d = 12 in. It can be modified to
account for the lower average shear cracking stress exhibited by deeper beams with
the addition of one term.

Ve, 12 1/4( Va')l/3
= = = "o — 43
Ver b 59( ) fip (4.3¢)

Behavior of Diagonally Cracked Beams

In regard to flexural cracks, as distinct from diagonal tension cracks, it was explained
in Section 3.3 that cracks on the tension side of a beam are permitted to occur and are
in no way detrimental to the strength of the member. One might expect a similar
situation in regard to diagonal cracking caused chiefly by shear. The analogy, however,
is not that simple. Flexural tension cracks are harmless only because adequate longi-
tudinal reinforcement has been provided to resist the flexural tension stresses that the
cracked concrete is no longer able to transmit. In contrast, the beams now being
discussed, although furnished with the usual longitudinal reinforcement, are not
equipped with any other reinforcement to offset the effects of diagonal cracking. This
makes the diagonal cracks much more decisive in subsequent performance and
strength of the beam than the flexural cracks.

Two types of behavior have been observed in the many tests on which present
knowledge is based:

1. The diagonal crack, once formed, spreads either immediately or at only slightly
higher load, traversing the entire beam from the tension reinforcement to the
compression face, splitting it in two and failing the beam. This process is sudden
and without warning and occurs chiefly in the shallower beams, i.e., beams with
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span-depth ratios of about 8 or more. Beams in this range of dimensions are very
common. Complete absence of shear reinforcement would make them very
vulnerable to accidental large overloads, which would result in catastrophic
failures without warning. For this reason it is good practice to provide a minimum
amount of shear reinforcement even if calculation does not require it, because
such reinforcement restrains growth of diagonal cracks, thereby increasing
ductility and providing warning in advance of actual failure. Only in situations
where an unusually large safety factor against inclined cracking is provided, i.e.,
where actual shear stresses are very small compared with v, as in some slabs and
most footings, is it permissible to omit shear reinforcement.

2. Alternatively, the diagonal crack, once formed, spreads toward and partially into
the compression zone but stops short of penetrating to the compression face. In
this case no sudden collapse occurs, and the failure load may be significantly
higher than that at which the diagonal crack first formed. This behavior is chiefly
observed in the deeper beams with smaller span-depth ratios and will be
analyzed now.

Figure 4.7a shows a portion of a beam, arbitrarily loaded, in which a diagonal
tension crack has formed. Consider the part of the beam to the left of the crack,
shown in solid lines. There is an external upward shear force V,,, = R, — P, acting
on this portion.

Once a crack is formed, no tension force perpendicular to the crack can be trans-
mitted across it. However, as long as the crack is narrow, it can still transmit forces in
its own plane through interlocking of the surface roughnesses. Sizable interlock forces
V, of this kind have in fact been measured, amounting to one-third and more of the
total shear force. The components V, and V;, of V; are shown in Fig. 4.7a. The other

FIGURE 4.7

Forces at a diagonal crack
in a beam without web
reinforcement.
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internal vertical forces are those in the uncracked portion of the concrete V,, and
across the longitudinal steel, acting as a dowel, V. Thus, the internal shear force is

Vo = Vo + Vy + Y, |
=V |

Equilibrium requires that oxt

uncracked concrete is

so that the part of the shear resisted by the

int

Vo=V — VY 4.4

In a beam provided with longitudinal reinforcement only, the portion of the shear
force resisted by the steel in dowel action is usually quite small. In fact, the reinforc-
ing bars on which the dowel force V, acts are supported against vertical displacement
chiefly by the thin concrete layer below. The bearing pressure caused by V, creates, in
this concrete, vertical tension stresses as shown in Fig. 4.75. Because of these stresses,
diagonal cracks often result in splitting of the concrete along the tension reinforce-
ment, as shown. (See also Fig. 4.1.) This reduces the dowel force V, and also permits
the diagonal crack to widen. This, in turn, reduces the interface force V; and frequently
leads to immediate failure.

Next consider moments about point a at the intersection of V,, and C; the exter-
nal moment M,,, , acts at a and happens to be Rx, — P,(x, — x,;) for the loading

ext,a
shown. The internal moment is

My ,=Tz+ Vp—Vm

Here p is the horizontal projection of the diagonal crack and m is the moment arm of
the force V, with respect to point a. The designation T, for T is meant to emphasize that
this force in the steel acts at point b rather than vertically below point a. Equilibrium
requires that M , = M, , so that the longitudinal tension in the steel at b is

Mexl,a —Vipt Vim

T, = - @.5)

Neglecting the forces V, and V,, which decrease with increasing crack opening, one
has, with very little error,

M

ext,a

Z

T, = 4.6)

The formation of the diagonal crack, then, is seen to produce the following redis-
tribution of internal forces and stresses:

1. At the vertical section through point a, the average shear stress before crack
formation was V,,, /bd. After crack formation, the shear force is resisted by a com-
bination of the dowel shear, the interface shear, and the shear force on the much
smaller area by of the remaining uncracked concrete. As tension splitting develops
along the longitudinal bars, V, and V, decrease; this, in turn, increases the shear
force and the resulting shear stress on the remaining uncracked concrete area.

2. The diagonal crack, as described previously, usually rises above the neutral axis
and traverses some part of the compression zone before it is arrested by the com-
pression stresses. Consequently, the compression force C also acts on an area by
smaller than that on which it acted before the crack was formed. Correspondingly,
formation of the crack has increased the compression stresses in the remaining
uncracked concrete.

3. Prior to diagonal cracking, the tension force in the steel at point b was caused by,
and was proportional to, the bending moment in a vertical section through the
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same point b. As a consequence of the diagonal crack, however, Eq. (4.6) shows
that the tension in the steel at b is now caused by, and is proportional to, the
bending moment at a. Since the moment at a is evidently larger than that at b,
formation of the crack has caused a sudden increase in the steel stress at b.

If the two materials are capable of resisting these increased stresses, equilibrium
will establish itself after internal redistribution and further load can be applied before
failure occurs. Such failure can then develop in various ways. For one, if only enough
steel has been provided at b to resist the moment at that section, the increase of the steel
force, described in item 3, will cause the steel to yield because of the larger moment at
a, thus failing the beam. If the beam is properly designed to prevent this occurrence, it
is usually the concrete at the head of the crack that will eventually crush. This concrete
is subject simultaneously to large compression and shear stresses, and this biaxial stress
combination is conducive to earlier failure than would take place if either of these
stresses were acting alone. Finally, if there is splitting along the reinforcement, it will
cause the bond between steel and concrete to weaken to such a degree that the rein-
forcement may pull loose. This either may be the cause of failure of the beam or may
occur simultaneously with crushing of the remaining uncracked concrete.

It was noted earlier that relatively deep beams will usually show continued and
increasing resistance after formation of a critical diagonal tension crack, but relatively
shallow beams will fail almost immediately upon formation of the crack. The amount
of reserve strength, if any, was found to be erratic. In fact, in several test series in
which two specimens as identical as one can make them were tested, one failed imme-
diately upon formation of a diagonal crack, while the other reached equilibrium under
the described redistribution and failed at a higher load.

For this reason, this reserve strength is discounted in modern design procedures.
As previously mentioned, most beams are furnished with at least a minimum of web
reinforcement. For those flexural members that are not, such as slabs, footings, and
others, design is based on that shear force V,, or shear stress v,, at which formation of
inclined cracks must be expected. Thus, Eq. (4.3a), or some equivalent of it, has
become the design criterion for such members.

REINFORCED CONCRETE BEAMS WITH WEB
REINFORCEMENT

Economy of design demands, in most cases, that a flexural member be capable of
developing its full moment capacity rather than having its strength limited by prema-
ture shear failure. This is also desirable because structures, if overloaded, should not
fail in the sudden and explosive manner characteristic of many shear failures, but
should show adequate ductility and warning of impending distress. The latter, as
pointed out earlier, is typical of flexural failure caused by yielding of the longitudinal
bars, which is preceded by gradual excessively large deflections and noticeable widen-
ing of cracks. Therefore, if a fairly large safety margin relative to the available shear
strength as given by Eq. (4.3a) or its equivalent does not exist, special shear
reinforcement, known as web reinforcement, is used to increase this strength.

Types of Web Reinforcement

Typically, web reinforcement is provided in the form of vertical stirrups, spaced at
varying intervals along the axis of the beam depending on requirements, as shown in
Fig. 4.8a. Relatively small bars are used, generally Nos. 3 to 5 (Nos. 10 to 16). Simple
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FIGURE 4.8
Types of web reinforcement.
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U-shaped bars similar to Fig. 4.8b are most common, although multiple-leg stirrups such
as shown in Fig. 4.8¢ are sometimes necessary. Stirrups are formed to fit around the main
longitudinal bars at the bottom and hooked or bent around longitudinal bars at the top of
the member to improve anchorage and provide support during construction. Detailed
requirements for anchorage of stirrups will be discussed in Chapter 5.

Alternatively, shear reinforcement may be provided by bending up a part of
the longitudinal steel where it is no longer needed to resist flexural tension, as
suggested by Fig. 4.8d. In continuous beams, these bent-up bars may also provide
all or part of the necessary reinforcement for negative moments. The requirements
for longitudinal flexural reinforcement often conflict with those for diagonal
tension, and because the savings in steel resulting from use of the capacity of bent
bars as shear resistance is small, most designers prefer to include vertical stirrups
to provide for all the shear requirement, counting on the bent part of the longitudi-
nal bars, if bent bars are used, only to increase the overall safety against diagonal
tension failure.

Welded wire reinforcement is also used for shear reinforcement, particularly for
small, lightly loaded members with thin webs, and for certain types of precast,
prestressed beams.

Behavior of Web-Reinforced Concrete Beams

Web reinforcement has no noticeable effect prior to the formation of diagonal cracks.
In fact, measurements show that the web steel is practically free of stress prior to crack



FIGURE 4.9
Forces at a diagonal crack in
a beam with vertical stirrups.
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formation. After diagonal cracks have developed, web reinforcement augments the shear
resistance of a beam in four separate ways:

1. Part of the shear force is resisted by the bars that traverse a particular crack. The
mechanism of this added resistance is discussed below.

2. The presence of these same bars restricts the growth of diagonal cracks and
reduces their penetration into the compression zone. This leaves more uncracked
concrete available at the head of the crack for resisting the combined action of
shear and compression, already discussed.

3. The stirrups also counteract the widening of the cracks, so that the two crack
faces stay in close contact. This makes for a significant and reliable interface
force V, (see Fig. 4.7).

4. As shown in Fig. 4.8, the stirrups are arranged so that they tie the longitudinal
reinforcement into the main bulk of the concrete. This provides some measure of
restraint against the splitting of concrete along the longitudinal reinforcement,
shown in Figs. 4.1 and 4.7b, and increases the share of the shear force resisted by
dowel action.

From this it is clear that failure will be imminent when the stirrups start
yielding. This not only exhausts their own resistance but also permits a wider
crack opening with consequent reduction of the beneficial restraining effects,
points 2 to 4, above.

It becomes clear from this description that member behavior, once a crack is
formed, is quite complex and dependent in its details on the particulars of crack con-
figuration (length, inclination, and location of the main or critical crack). The latter, in
turn, is quite erratic and has so far defied purely analytical prediction. For this reason,
the concepts that underlie present design practice are not wholly rational. They are
based partly on rational analysis, partly on test evidence, and partly on successful
long-time experience with structures in which certain procedures for designing web
reinforcement have resulted in satisfactory performance.

BEAMS WITH VERTICAL STIRRUPS. Since web reinforcement is ineffective in the
uncracked beam, the magnitude of the shear force or stress that causes cracking to
occur is the same as in a beam without web reinforcement and is approximated by
Eq. (4.3a). Most frequently, web reinforcement consists of vertical stirrups; the forces
acting on the portion of such a beam between the crack and the nearby support are
shown in Fig. 4.9. They are the same as those of Fig. 4.7, except that each stirrup
traversing the crack exerts a force A, f, on the given portion of the beam. Here A, is the
cross-sectional area of the stirrup (in the case of the U-shaped stirrup of Fig. 4.8b it is
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FIGURE 4.10
Redistribution of internal
shear forces in a beam
with stirrups. (Adapted from
Ref. 4.3.)
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twice the area of one bar), and f, is the tensile stress in the stirrup. Equilibrium in the
vertical direction requires

Vua = Vet Vat Yt ¥ @

where V, = nA, f, is the vertical force in the stirrups, n being the number of stirrups
traversing the crack. If s is the stirrup spacing and p the horizontal projection of the
crack, as shown, then n = p/s.

The approximate distribution of the four components of the internal shear force
with increasing external shear V,,, is shown schematically in Fig. 4.10. It is seen that
after inclined cracking, the portion of the shear V, = nA,f, carried by the stirrups
increases linearly, while the sum of the three other components, V., + V, + V,, stays
nearly constant. When the stirrups yield, their contribution remains constant at the yield
value V, = nA f,,, where f,, represents the yield strength of the stirrup (or transverse)
reinforcement. However, because of widening of the inclined cracks and longitudinal
splitting, V;, and V,, fall off rapidly. This overloads the remaining uncracked concrete
and very soon precipitates failure.

While total shear carried by the stirrups at yielding is known, the individual
magnitudes of the three other components are not. Limited amounts of test evidence
have led to the conservative assumption in present-day methods that just prior to
failure of a web-reinforced beam, the sum of these three internal shear components is
equal to the cracking shear V_, as given by Eq. (4.3a). This sum is generally
(somewhat loosely) referred to as the contribution of the concrete to the total shear
resistance and is denoted V. Thus V, = V_ and

Vo=V, +V+V, (b



FIGURE 4.11

Forces at a diagonal crack in
a beam with inclined web
reinforcement.
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The number of stirrups n spaced a distance s apart was seen to depend on the
length p of the horizontal projection of the diagonal crack. This length is conserva-
tively assumed to be equal to the effective depth of the beam; thus n = d/s, implying
a crack somewhat flatter than 45°. Then, at failure, when V,,, = V,, Egs. (a) and (b)
yield for the nominal shear strength

A f.d
V=V + % (4.7a)
where V,_ is taken equal to the cracking shear V,, given by Eq. (4.3a); that is,
vd
V.= (1.9\/fj’ + 2500 %)bd < 3.5Vf! bd (4.3a)

Dividing both sides of Eq. (4.7a) by bd, the same relation is expressed in terms
of the nominal shear stress:

v, Ayt
= — = vc -+

bd bs
In Ref. 4.1, the results of 166 beam tests are compared with Eq. (4.7b). It is shown that
the equation predicts the actual shear strength quite conservatively, the observed

strength being on average 45 percent larger than predicted; a very few of the individ-
ual test beams developed strength just slightly below that of Eq. (4.7b).

(4.7b)

Vn

BEAMS WITH INCLINED BARS.  The function of inclined web reinforcement (Fig. 4.8d)
can be discussed in very similar terms. Figure 4.11 again indicates the forces that act
on the portion of the beam to one side of the diagonal crack that results in eventual
failure. The crack with horizontal projection p and inclined length i = p/cos 6 is
crossed by inclined bars horizontally spaced a distance s apart. The inclination of the
bars is @ and that of the crack 6, as shown. The distance between bars measured
parallel to the direction of the crack is seen from the irregular triangle to be

s
a —1
sin @(cot 6 + cot &)

(@
The number of bars crossing the crack n = i/a, after some transformation, is

n=§(1 + cot a tan 6) b)
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4.5

The vertical component of the force in one bar or stirrup is A, f, sin , so that the total
vertical component of the forces in all bars that cross the crack is

V, = nA,f,sina = A,f, I;)(sin a + cos a tan 6) (4.8)

As in the case of vertical stirrups, shear failure occurs when the stress in the web
reinforcement reaches the yield point. Also, the same assumptions are made as in the
case of stirrups, namely, that the horizontal projection of the diagonal crack is equal
to the effective depth d, and that V,, + V, + V, is equal to V... Lastly, the inclination
6 of the diagonal crack, which varies somewhat depending on various influences, is
generally assumed to be 45°. On this basis, when failure is caused by shear, the
nominal strength is

A, f,d(sina + cos a
V=V + Ful ) 4.9)

N

It is seen that Eq. (4.7a), developed for vertical stirrups, is only a special case, for
a = 90°, of the more general expression (4.9).

Note that Egs. (4.7) and (4.9) apply only if web reinforcement is so spaced that
any conceivable diagonal crack is traversed by at least one stirrup or inclined bar.
Otherwise web reinforcement would not contribute to the shear strength of the beam,
because diagonal cracks that could form between widely spaced web reinforcement
would fail the beam at the load at which it would fail if no web reinforcement were
present. This imposes upper limits on the permissible spacing s to ensure that the web
reinforcement is actually effective as calculated.

To summarize, at this time the nature and mechanism of diagonal tension failure
are clearly understood qualitatively, but some of the quantitative assumptions that have
been made in the preceding development cannot be proved by rational analysis.
However, the calculated results are in acceptable and generally conservative agree-
ment with a very large body of empirical data, and structures designed on this basis
have proved satisfactory. Newer methods, introduced in Section 4.8, provide alterna-
tives that are slowly being incorporated into the ACI Code and the AASHTO Bridge
Specifications (Ref. 4.12). Chapter 10 presents a detailed description of one such
alternative, the so-called strut-and-tie model, which appears in Appendix A of the
2008 ACI Code.

ACI CODE PROVISIONS FOR SHEAR DESIGN

According to ACI Code 11.1.1, the design of beams for shear is to be based on the
relation

V.= ¢V, (4.10)

where V, is the total shear force applied at a given section of the beam due to factored
loads and V, = V, + V, is the nominal shear strength, equal to the sum of the contri-
butions of the concrete and the web steel if present. Thus for vertical stirrups

PA, fud

%S¢%+—T— 4.11a)

and for inclined bars
@A, f,d(sin @ + cos a)
+
s

V. < oV, (4.11b)



FIGURE 4.12

Location of critical section
for shear design: (a) end-
supported beam; (b) beam
supported by columns;

(¢) concentrated load within
d of the face of the support;
(d) member loaded near the
bottom; (e) beam supported
by girder of similar depth;
(f) beam supported by
monolithic vertical element.
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where all terms are as previously defined. The strength reduction factor ¢ is to be
taken equal to 0.75 for shear. The additional conservatism, compared with the value
of ¢ = 0.90 for bending for typical beam designs, reflects both the sudden nature of
diagonal tension failure and the large scatter of test results.

For typical support conditions, where the reaction from the support surface or
from a monolithic column introduces vertical compression at the end of the beam,
sections located less than a distance d from the face of the support may be designed
for the same shear V, as that computed at a distance d, as shown in Fig. 4.12a and b.
However, the critical design section should be taken at the face of the support if
concentrated loads act within that distance (Fig. 4.12¢), if the beam is loaded near its
bottom edge (as may occur for an inverted T beam, as shown in Fig. 4.12d), or if the
reaction causes vertical tension rather than compression [e.g., if the beam is supported
by a girder of similar depth (Fig. 4.12¢) or at the end of a monolithic vertical element
(Fig. 4.12)].

Shear Strength Provided by the Concrete

The nominal shear strength contribution of the concrete (including the contributions
from aggregate interlock, dowel action of the main reinforcing bars, and that of the
uncracked concrete) is basically the same as Eq. (4.3a) with slight notational changes.
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To permit application of Eq. (4.3a) to T beams having web width b, the rectangular
beam width b is replaced by b,, with the understanding that for rectangular beams b is
used for b,,. For T beams with a tapered web width, such as typical concrete joists, the
average web width is used, unless the narrowest part of the web is in compression, in
which case b, is taken as the minimum width. Further, in Eq. (4.3a), the shear V and
moment M are designated V, and M, to emphasize that they are the values computed
at factored loads. Thus, for members subject to shear and flexure, according to ACI
Code 11.2.2, the concrete contribution to shear strength is

pVid

V.= (1.9Ax/f_g + 2500 )bwd = 3.5AVf b,d (4.12a)

u

where p,, = longitudinal reinforcement ratio A, /b, d or A, /bd. With the section dimen-
sion b,, and d in inches and V,d and M, in consistent units, V, is expressed in pounds.
In Eq. (4.12a), the quantity V,d/M, is not to be taken greater than 1.0.

The term A in Eq. (4.12a) is a modification factor reflecting the lower tensile
strength of lightweight concrete compared with normalweight concrete of the same
compressive strength (see Table 2.2 and Ref. 4.13). Lightweight aggregate concretes
having densities from 90 to 120 pcf are used widely, particularly for precast elements.
In accordance with ACI Code 8.6.1, A = 0.85 for “sand-lightweight” concrete and
0.75 for “all-lightweight” concrete. Linear interpolation between 0.75 and 0.85, based
on volumetric fractions, is permitted when a portion of the lightweight fine aggregate
is replaced by normalweight fine aggregate. Linear interpolation between 0.85 and 1.0
is also permitted for concretes containing normalweight fine aggregate and a blend of
lightweight and normalweight coarse aggregate. If the average split-cylinder strength
of lightweight concrete (a good measure of its direct tensile strength) is specified, A =
£../(6.7Vf!) =< 1.0. For normalweight concert, A = 1.0.

While Eq. (4.12a) is perfectly well suited to computerized design or for
research, for manual calculations its use is tedious because p,, V,, and M, generally
change along the span, requiring that V, be calculated at frequent intervals. For this
reason, an alternative equation for V_ is permitted by ACI Code 11.2.1:

V. = 2AVfb,d (4.12b)

Referring to Fig. 4.6, it is clear that Eq. (4.12b) is very conservative in regions where
the shear-moment ratio is high, such as near the ends of simple spans or near the
inflection points of continuous spans; however, because of its simplicity, it is often
used in practice.

For members with a circular cross section, ACI Code 11.2.3 provides that
the area used to calculate V. in Egs. (4.124) and (4.12b) be the product of the diam-
eter and the effective depth. The latter may be taken as 0.8 times the diameter of
the member.

The tests on which Egs. (4.12a) and (4.12b) are based used beams with concrete
compressive strength mostly in the range of 3000 to 5000 psi. More recent experi-
mental results (Refs. 4.14 to 4.17) have shown that in beams constructed using high-
strength concrete (see Section 2.12) with f; above 6000 psi, the concrete contribution
to shear strength V, is less than predicted by those equations. Differences become
increasingly significant, the higher the concrete strength. For this reason, ACI Code
11.1.2 places an upper limit of 100 psi on the value of V! to be used in Egs. (4.12a)
and (4.12b), as well as in all other ACI Code shear provisions. However, values of
V! greater than 100 psi may be used in computing V., if a minimum amount of web
reinforcement is used (see Section 4.5b).
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b. Minimum Web Reinforcement

If V,, the shear force at factored loads, is no larger than ¢V, calculated by Eq. (4.12a)
or alternatively by Eq. (4.12b), then theoretically no web reinforcement is required.
Even in such a case, however, ACI Code 11.4.6 requires provision of at least a mini-
mum area of web reinforcement equal to

b b
Ay min = 0.75\/1”:’?’”ﬁ =50 ?W—s (4.13)

yt yt

where s = longitudinal spacing of web reinforcement, in.
f,x = yield strength of web steel, psi
A, nin = total cross-sectional area of web steel within distance s, in?

This provision holds unless V, is one-half or less of the design shear strength
provided by the concrete ¢V,. Specific exceptions to this requirement for minimum
web steel are made for slabs and footings; for concrete joist floor construction; for
beams with total depth & not greater than 10 in.; and for beams integral with slabs with
h not greater than 24 in. and not greater than the larger of 2.5 times the thickness of
the flange and 0.5 times the thickness of the web. These members are excluded
because of their capacity to redistribute internal forces before diagonal tension failure,
as confirmed by both tests and successful design experience. In addition, beams
constructed of steel fiber reinforced, normalweight concrete with £ not exceeding
6000 psi, total depth A not greater than 24 in., and V,, not greater than ¢$2V/7! b,d are
not required to meet the requirements for minimum web reinforcement because beams
meeting these requirements have been shown to have shear strength in excess of
3.5Vf b,d (Ref. 4.18).1

For high-strength concrete beams, the limitation of 100 psi imposed on the value
of V/f! used in calculating V., by Eq. (4.12a) or (4.12b) is waived by ACI Code
11.1.2.1 if such beams are designed with minimum web reinforcement equal to the
amount required by Eq. (4.13). In this case, the concrete contribution to shear strength
may be calculated based on the full concrete compressive strength. Tests described in
Refs. 4.14 and 4.17 indicate that for beams with concrete strength above about 6000 psi,
the concrete contribution V, was significantly less than predicted by the ACI Code
equations, although the steel contribution V, was higher. The total nominal shear
strength V was greater than predicted by ACT Code methods in all cases. The use of
minimum web steel for high-strength concrete beams is intended to enhance the
post-cracking capacity, thus resulting in safe designs even though the concrete contri-
bution to shear strength is overestimated.*

EXAMPLE 4.1 Beam without web reinforcement. A rectangular beam is to be designed to carry a shear
force V, of 27 kips. No web reinforcement is to be used, and f! is 4000 psi. What is the mini-
mum cross section if controlled by shear?

t To qualify, the fiber-reinforced concrete must conform to requirements in ACI Code 5.6.6.2 that specify a minimum deformed steel fiber content
of 100 1b/yd® and minimum residual flexural strength values when the concrete is tested in accordance with ASTM C1609, “Standard Test Method
for Flexural Performance of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading).”’

t The shortcomings of the ACI Code “V, + V,” approach to shear design, particularly the provisions relating to the concrete contribution V., have
provided motivation for the development of more rational procedures, as will be discussed in Section 4.8.
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SOLUTION. If no web reinforcement is to be used, the cross-sectional dimensions must be
selected so that the applied shear V, is no larger than one-half the design shear strength ¢V.,.
The calculations will be based on Eq. (4.12b). Thus,

V.= 5 $AVEbd)

bd = 27,000
0.75 X 1.0 V4000

A beam with b, = 18 in. and d = 32 in. is required. Alternately, if the minimum amount of
web reinforcement given by Eq. (4.13) is used, the concrete shear resistance may be taken at
its full value ¢V_, and it is easily confirmed that a beam with b, = 12 in. and d = 24 in. will
be sufficient.

= 569 in’

Region in Which Web Reinforcement Is Required

If the required shear strength V, is greater than the design shear strength ¢V, provided
by the concrete in any portion of a beam, there is a theoretical requirement for web
reinforcement. Elsewhere in the span, web steel at least equal to the amount given by
Eq. (4.13) must be provided, unless the factored shear force is less than ipV.

The portion of any span through which web reinforcement is theoretically
necessary can be found from the shear diagram for the span, superimposing a plot of
the shear strength of the concrete. Where the shear force V, exceeds ¢V, shear rein-
forcement must provide for the excess. The additional length through which at least
the minimum web steel is needed can be found by superimposing a plot of ¢V, /2.

EXAMPLE 4.2

Limits of web reinforcement. A simply supported rectangular beam 16 in. wide having
an effective depth of 22 in. carries a total factored load of 9.4 kips/ft on a 20 ft clear span.
It is reinforced with 7.62 in? of tensile steel, which continues uninterrupted into the supports.
If £ = 4000 psi, throughout what part of the beam is web reinforcement required?

SoLUTION. The maximum external shear force occurs at the ends of the span, where V, = 9.4 X
20/2 = 94 kips. At the critical section for shear, a distance d from the support, V, = 94 —
9.4 X 1.83 = 76.8 kips. The shear force varies linearly to zero at midspan. The variation of V,
is shown in Fig. 4.134. Adopting Eq. (4.12b) gives

V. = 2AVFb,d = 2 X 1.0V/4000 X 16 X 22 = 44,500 Ib

Hence ¢V, = 0.75 X 44.5 = 33.4 kips. This value is superimposed on the shear diagram, and,
from geometry, the point at which web reinforcement theoretically is no longer required is
94.0 — 334
10\ ———
( 94.0
from the support face. However, according to the ACI Code, at least a minimum amount of web

reinforcement is required wherever the shear force exceeds ¢V, /2, or 16.7 kips in this case. As
seen from Fig. 4.13aq, this applies to a distance

( 94.0 — 16.7
94.0

) = 645 ft

) = 8.22ft

from the support face. To summarize, at least the minimum web steel must be provided within
a distance of 8.22 ft from the supports, and within 6.45 ft the web steel must provide for the
shear force corresponding to the shaded area.



FIGURE 4.13

Shear design example.
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If the alternative Eq. (4.12a) is used, the variation along the span of p,, V,, and M, must

be known so that V, can be calculated. This is shown in tabular form in Table 4.1.

The factored shear V, and the design shear capacity ¢V, are plotted in Fig. 4.13b. From
the graph it is found that stirrups are theoretically no longer required 6.39 ft from the support
face. However, from the plot of ¢V./2 it is found that at least the minimum web steel is to be

provided within a distance of 8.26 ft.

When Figs. 4.13a and b are compared, it is evident that the length over which web
reinforcement is needed is nearly the same for this example whether Eq. (4.124a) or (4.12b)
is used. However, the smaller shaded area of Fig. 4.13b indicates that substantially less web-
steel area would be needed within that required distance if the more accurate Eq. (4.12q)

were adopted.
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TABLE 4.1
Shear design example
Distance from M, vV,
Support, ft ft-kips kips vz oV,
0 0 94.0 61.3 46.0
1 89 84.6 61.3 46.0
2 169 75.2 57.8 43.4
3 240 65.8 51.9 38.9
4 301 56.4 48.8 36.6
5 353 47.0 47.0 35.2
6 395 37.6 45.6 34.2
7 428 28.2 44.6 33.5
8 451 18.8 43.8 32.8
9 465 9.4 43.0 323
10 470 0 423 317

ay, = (L9AVF + 2500p,V,d/M,)b,d < 3.5A\F. b,d and V,d/M, < 1.0

d. Design of Web Reinforcement

The design of web reinforcement, under the provisions of the ACI Code, is based on
Eq. (4.11a) for vertical stirrups and Eq. (4.11b) for inclined stirrups or bent bars. In
design, it is usually convenient to select a trial web-steel area A, based on standard
stirrup sizes [usually in the range from No. 3 to 5 (No. 10 to 16) for stirrups, and
according to the longitudinal bar size for bent-up bars], for which the required spacing
s can be found. Equating the design strength ¢V, to the required strength V, and trans-
posing Egs. (4.11a) and (4.11b) accordingly, one finds that the required spacing of
web reinforcement is, for vertical stirrups,

A, f,.d
= — 4.14
STV - ov. @l
and for bent bars
A, f,d(sin e + cos a
s = A Sl ) (4.14b)

V. — ¢V

1t should be emphasized that when conventional U stirrups such as in Fig. 4.8b are
used, the web area A, provided by each stirrup is twice the cross-sectional area of the
bar; for stirrups such as those of Fig. 4.8¢, A, is 4 times the area of the bar used.
Equation (4.14a) is applicable to members with circular, as well as rectangular, cross
sections. For circular members, d is taken as the effective depth, as defined earlier in
Section 4.5a, and A, is taken as 2 times the area of the bar, hoop, or spiral.

While the ACI Code requires only that the inclined part of a bent bar make an
angle of at least 30° with the longitudinal part, bars are usually bent at a 45° angle.
Only the center three-fourths of the inclined part of any bar is to be considered
effective as web reinforcement.

It is undesirable to space vertical stirrups closer than about 4 in.; the size of the
stirrups should be chosen to avoid a closer spacing. When vertical stirrups are required
over a comparatively short distance, it is good practice to space them uniformly over
the entire distance, the spacing being calculated for the point of greatest shear



FIGURE 4.14
Maximum spacing of web
reinforcement as governed
by diagonal crack
interception.
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(minimum spacing). If the web reinforcement is required over a long distance, and if
the shear varies materially throughout this distance, it is more economical to compute
the spacings required at several sections and to place the stirrups accordingly, in
groups of varying spacing.

Where web reinforcement is needed, the Code requires it to be spaced so that
every 45° line, representing a potential diagonal crack and extending from the
middepth d/2 of the member to the longitudinal tension bars, is crossed by at least one
line of web reinforcement; in addition, the Code specifies a maximum spacing of
24 in. When V, exceeds 4V/f!b,d, these maximum spacings are halved. These limita-
tions are shown in Fig. 4.14 for both vertical stirrups and inclined bars, for situations
in which the excess shear does not exceed the stated limit.

For design purposes, Eq. (4.13) giving the minimum web-steel area A, is more
conveniently inverted to permit calculation of maximum spacing s for the selected A,
Thus, for the usual case of vertical stirrups, with V.= 4\/f_c’ b,d, the maximum spacing
of stirrups is the smallest of

Ady Ay

Sy = < 4.15a)
0.75Vf'b, 50b,

Smax = — (4.15b)

Smax = 24 1n. (4.15¢)

For longitudinal bars bent at 45°, Eq. (4.15b) is replaced by s,,,, = 3d/4, as confirmed
by Fig. 4.14.

To avoid excessive crack width in beam webs, the ACI Code limits the yield
strength of the reinforcement to Sy = 60,000 psi or less for reinforcing bars and
80,000 psi or less for welded wire reinforcement. In no case, according to the ACI
Code, is V, to exceed 8 V/f_. b,d, regardless of the amount of web steel used.

EXAMPLE 4.3

Design of web reinforcement. Using vertical U stirrups with S = 60,000 psi, design the web
reinforcement for the beam in Example 4.2,

SoLuTION.  The solution will be based on the shear diagram in Fig. 4.13a. The stirrups must
be designed to resist that part of the shear shown shaded. With No. 3 (No. 10) stirrups used for
trial, the three maximum spacing criteria are first applied. For ¢V, = V, — ¢V, = 43,400 b,
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which is less than 4¢Vf b,d = 66,800 Ib, the maximum spacing must exceed neither d/2 =
11 in. nor 24 in. Also, from Eq. (4.15a),

Afy 022 X 60,000

Smax = = = 17.41n.
075VF b, 0.75V4000 X 16
A, 0.22 X 60,
< A 000 _ 165in.

= 500, 50 X 16

The first criterion controls in this case, and a maximum spacing of 11 in. is imposed. From the
support to a distance d from the support, the excess shear V, — ¢V, is 43,400 Ib. In this region,
the required spacing is

_ PASud 075 X 0.22 X 60,000 X 22
vV, - ¢V 43,400

s = 5.0in.

This is neither so small that placement problems would result nor so large that maximum
spacing criteria would control, and the choice of No. 3 (No. 10) stirrups is confirmed. Solving
Eq. (4.14a) for the excess shear at which the maximum spacing can be used gives

A fd  0.75 X 0.22 X 60,000 X 22
s 11

V,— ¢V, = = 19,800 Ib

With reference to Fig. 4.13a, this is attained at a distance x, from the point of zero excess shear,
where x; = 6.45 X 19,800/60,600 = 2.10 ft. This is 4.35 ft from the support face. With this
information, a satisfactory spacing pattern can be selected. The first stirrup is usually placed at
a distance s/2 from the support. The following spacing pattern is satisfactory:

1 spaceat2in. = 2in.

7 spaces at 5 in. = 35 in.

2 spaces at 7 in. = 14 in.

4 spaces at 11 in. = 44 in.
Total = 95in. = 7 ft 11 in.

The resulting stirrup pattern is shown in Fig. 4.13c. As an alternative solution, it is possible to
plot a curve showing required spacing as a function of distance from the support. Once the
required spacing at some reference section, say at the support, is determined,

075 X 0.22 X 60,000 X 22
%o 94.000 — 33,400

= 3.59 in.

it is easy to obtain the required spacings elsewhere. In Eq. (4.14a), only V, — ¢V, changes with
distance from the support. For uniform load, this quantity is a linear function of distance from
the point of zero excess shear, 6.45 ft from the support face. Hence, at 1 ft intervals,

s; = 3.59 X 6.45/545 = 4.25in.
5, = 3.59 X 6.45/445 = 5.20in.
53 = 3.59 X 6.45/3.45 = 6.70in.
5, = 3.59 X 6.45/245 = 9.45in.
55 = 3.59 X 6.45/1.45 = 1597 in.

This is plotted in Fig. 4.15 together with the maximum spacing of 11 in., and a practical spacing
pattern is selected. The spacing at a distance d from the support face is selected as the minimum



FIGURE 4.15

Required stirrup spacings for

Example 4.3.
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requirement, in accordance with the ACI Code. The pattern of No. 3 (No. 10) U-shaped stirrups
selected (shown on the graph) is identical with the previous solution. In most cases, the expe-
rienced designer would find it unnecessary actually to plot the spacing diagram of Fig. 4.15 and
would select a spacing pattern directly after calculating the required spacing at intervals along
the beam.

If the web steel were to be designed on the basis of the excess-shear diagram in
Fig. 4.13b, the second approach illustrated above would necessarily be selected, and spacings
would be calculated at intervals along the span. In this particular case, a spacing of 7.07 in. is
calculated up to 20 in. from the face of the support. The calculated spacing drops to 6.76 in. at
d from the face of the support, and then increases to 11 in., the maximum permissible spacing,
4 ft from the support. The following practical spacing could be used:

1 spaceat3in. = 3in.

6 spaces at 7 in. = 42 in.

4 spaces at 11 in. = 44 in.
Total = 89in. = 7 ft 5 in.

Thus, 11 No. 3 (No. 10) stirrups would be used, rather than the 14 previously calculated, in each
half of the span.

The number of stirrups just calculated represents the minimum for each of the two
expressions for V.. Although not required by the ACI Code, it is good design practice to
continue the stirrups (at maximum spacing) through the middle region of the beam, even though
the calculated shear is low. Doing so satisfies the dual purposes of providing continuing support
for the top longitudinal reinforcement that is required wherever stirrups are used and providing
additional shear capacity in the region to handle load cases not considered in developing the
shear diagram. If this were done, the number of stirrups would increase from 14 and 11 to 16}
and 13% per half-span (i.e., one stirrup at midspan), respectively.

4.6

EFFECT OF AXIAL FORCES

The beams considered in the preceding sections were subjected to shear and flexure
only. Reinforced concrete beams may also be subjected to axial forces, acting simul-
taneously with shear and flexure, due to a variety of causes. These include external
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axial loads, longitudinal prestressing, and restraint forces introduced as a result of
shrinkage of the concrete or temperature changes. Beams may have their strength in
shear significantly modified in the presence of axial tension or compression, as is
evident from a review of Sections 4.1 through 4.4.

Prestressed concrete members are treated by somewhat specialized methods,
according to present practice, based largely on results of testing prestressed concrete
beams. They will be considered separately in Chapter 19, and only nonprestressed
reinforced concrete beams will be treated here.

The main effect of axial load is to modify the diagonal cracking load of the
member. It was shown in Section 4.3 that diagonal tension cracking will occur when
the principal tensile stress in the web of a beam, resulting from combined action of
shear and bending, reaches the tensile strength of the concrete. It is clear that the
introduction of longitudinal force, which modifies the magnitude and direction of the
principal tensile stresses, may significantly alter the diagonal cracking load. Axial
compression will increase the cracking load, while axial tension will decrease it.

For members carrying only flexural and shear loading, the shear force at which
diagonal cracking occurs V,, is predicted by Eq. (4.3a), based on a combination of
theory and experimental evidence. Furthermore, for reasons that were explained in
Section 4.4b, in beams with web reinforcement, the contribution of the concrete to
shear strength V, is taken equal to the diagonal cracking load V,,. Thus, according to
the ACI Code, the concrete contribution is calculated by Eq. (4.12a) or (4.12b). For
members carrying flexural and shear loading plus axial loads, V, can be calculated by
suitable modifications of these equations as follows.

Axial Compression

In developing Eq. (4.3a) for V,,, it was pointed out that the diagonal cracking load
depends on the ratio of shear stress v to bending stress f at the top of the flexural crack.
While these stresses were never actually determined, they were conveniently
expressed as

\%
y = KI(E‘}) (a)
and
M
f= Kz(ﬁ) ®

Equation (a) relates the concrete shear stress at the top of the flexural crack to the
average shear stress; Eq. (b) can be used to relate the flexural tension in the concrete
at the top of the crack to the tension in the flexural steel, through the modular ratio
n = E /E,, as follows:

fs M
=K.Z2=K
F=K O nA,jd
or
=K, —
f 0npjba’2 ©

where jd is the internal lever arm between C and 7, and K|, is an unknown constant.
Thus, the previous constant K, is equal to K,/npj.



FIGURE 4.16

Beams subject to axial
compression plus bending
and shear loads.
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Now consider a beam subject to axial compression N as well as M and V, as
shown in Fig. 4.16a. In Fig. 4.16b, the external moment, shear, and thrust acting on
the left side of a small element of the beam, having length dx, are equilibrated by the
internal stress resultants 7, C, and V acting on the right. It is convenient to replace
the external loads M and N with the statically equivalent load N acting at eccentricity
e = M/N from the middepth, as shown in Fig. 4.16¢. The lever arm of the eccentric
force N with respect to the compressive resultant C is

h
e’=e+d—5~jd @
The steel stress f, can now be found taking moments about the point of application of C.
Ne'
fi=7
A, jd

from which
_M+N(d—h/2—jd)
s A, jd

Noting that j is very close to § for loads up to that producing diagonal cracking, the
term in parentheses in the last equation above can be written as (d — 4h)/8. Then with
f = K,f,/n as before, the concrete tensile stress at the head of the flexural crack is

M—N@#h—d)/8 M- N(4h—d)/8
npjbd> -2 bd?

=K (e)
Comparing Eq. (e) with Egs. (¢) and (b) makes it clear that the previous derivation for
flexural tension f holds for the present case including axial loads if a modified moment
M — N(4h — d)/8 is substituted for M. It follows that Eq. (4.3a) can be used to cal-
culate V,, with the same substitution of modified for actual moment.
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FIGURE 4.17
Comparison of equations for
V, for members subject to
axial loads.

The ACI Code provisions are based on this development. The concrete contri-
bution to shear strength V, is taken equal to V,, and is given by Eq. (4.12a) as before:

whid
V= (1.9,\\/f—; + 2500 B}I——)bwd (4.12a)
except that the modified moment
4h ~ d
M, =M, - N,~ (4.16)

is to be substituted for M, and V,d/M, need not be limited to 1.0 as before. The thrust
N, is to be taken positive for compression. For beams with axial compression, the
upper limit of 3.5AV/f! b,d is replaced by

N
=35V b,d, |1 + —
v Vi bud 5004,

where A, is the gross area of the concrete and N, /A, is expressed in psi units.

As an alternative to the rather complicated determination of V, using Egs. (4.12a),
(4.16), and (4.17), ACI Code 11.2.1.2 permits the use of an alternative simplified
expression:

4.17)

V.= 2(1 + l“-—)/\\/ﬁ'bwd (4.18)

20004,

Figure 4.17 shows a comparison of V, calculated by the more complex and simplified
expressions for beams with compression load. Equation (4.18) is seen to be generally
quite conservative, particularly for higher values of N,/A,. However, because of its
simplicity, it is widely used in practice.

-16
\~\~ Eq. (4.17)
~. -15
~
\~
N4 v
™ Vb, d
-13
2  Eq.(4.19)
Approximate Eq. (4.18)
range of Eqs. —1
(4.12a) and (4.16)
I l |
1000 500 0 -500
Compression Tension

N, /A, psi
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Axial Tension

The approach developed above for beams with axial compression does not correlate
well with experimental evidence for beams subject to axial tension, and often predicts
strengths V_ higher than actually measured. For this reason, the ACI Code provides
that, for members carrying significant axial tension as well as bending and shear, the
contribution of the concrete be taken as

N,
5004,

V= 2(1 + ),\\/f_;bwd (4.19)
but not less than zero, where N, is negative for tension. As a simplifying alternative,
the Commentary to the Code suggests that, for beams carrying axial tension, V, be
taken equal to zero and the shear reinforcement be required to carry the total shear.
The variation of V, with N, /A, for beams with tension is shown in Fig. 4.17 also.

EXAMPLE 4.4

Effect of axial forces on V,. A beam with dimensions b = 12in.,d = 24in., and A = 27 in.,
with f = 4000 psi, carries a single concentrated factored load of 100 kips at midspan. Find the
maximum shear strength of the concrete V, at the first critical section for shear at a distance d
from the support () if no axial forces are present, (b) if axial compression of 60 kips acts, and
(c) if axial tension of 60 kips acts. In each case, compute V, by both the more complex and sim-
plified expressions of the ACI Code. Neglect the self-weight of the beam. At the section con-
sidered, tensile reinforcement consists of three No. 10 (No. 32) bars with a total area of 3.81 in?.

SoLuTION. At the critical section, V, = 50 kips and M, = 50 X 2 = 100 fe-kips, while
p = 3.81/(12 X 24) = 0.013.

(@ IfN, =0, Eq. (4.124a) predicts

. X X
V.= (1.9 X 1.0V4000 + 2500 0013 x 50 2)12 X 124

100 000=44.0k1ps

not to exceed the value of

24
V. =3.5 X 1.0V4000 X 12 X 50 = 63.8 kips

If the simplified Eq. (4.12b) is used, -

24
V. =2 X 1.0V4000 X 12 X —— = 36.4 kips
1000
which is about 17 percent below the more exact value of Eq. (4.12a).
(b) With a compression of 60 kips introduced, the modified moment is found from Eq. (4.16)
to be

4 X27—24

M, = 100 —
=100 = 60 —=—

= 47.5 ft-kips
After introduction of that value into Eq. (4.12a) in place of M, the concrete shear strength
is

0.013 X 50 X 2 24
V.=1 19 X 1.0V4000 + 2500 12 X = 543 ki
A (19 0 0 475 ) 1000 54.3 kips

and, according to Eq. (4.17), should not exceed

60,000 .
= . + e — = .
Ve=63 8\/1 500 X 12 X 27 74.6 kips
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(©

If the simplified Eq. (4.18) is used,

60,000 24
=2[ 14— X 1.0V X 12 X == = 39.8 ki
% ( 2000><12x27) 1074000 100 ~ 208 kips
Comparing the results of the more exact calculation for (a) and (b), one sees that the
introduction of an axial compressive stress of 60,000/(12 X 27) = 185 psi increases the
concrete shear V_ by about 25 percent.
With an axial tension of 60 kips acting, the reduced V. is found from Eq. (4.19) to be

60,000 24 .
=2[1-——2"  __Vx1. X 12 X —— = 22.
V. 2( EETE 27) 1OV4000 X 12 X o= = 22.9 kips

a reduction of almost 50 percent from the value for N, = 0. The alternative of using
Eq. (4.19) for this case, according to the ACI Commentary, would be to set V, = 0.

In all cases above, the strength reduction factor ¢ = 0.75 would be applied to V, to
obtain the design strength.

4.7 BEAMS WITH VARYING DEPTH

Reinforced concrete members having varying depth are frequently used in the form of
haunched beams for bridges or portal frames, as shown in Fig. 4.18a, as precast roof
girders such as shown in Fig. 4.18b, or as cantilever slabs. Generally the depth
increases in the direction of increasing moments. For beams with varying depth, the
inclination of the internal compressive and tensile stress resultants may significantly
affect the shear for which the beam should be designed. In addition, the shear resist-
ance of such members may differ from that of prismatic beams,

Figure 4.18¢ shows a cantilever beam, with fixed support at the left end, carrying

a single concentrated load P at the right. The depth increases linearly in the direction

FIGURE 4.18
Effect of varying beam depth

on shear.
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of increasing moment. In such cases, the internal tension in the steel and the
compressive stress resultant in the concrete are inclined, and introduce components
transverse to the axis of the member. With reference to Fig. 4.18d, showing a short
length dx of the beam, if the slope of the top surface is 8, and that of the bottom is 6,,
the net shear force V, for which the beam should be designed is very nearly equal to

V,=V,—Ttan8, — Ctan 6,

where V, is the external shear force equal to the load P here, and C = T = M, /z. The
internal lever arm z = d — a/2 as usual. Thus, in a case for which the beam depth
increases in the direction of increasing moment, the shear for which the member
should be designed is approximately

— M,
V,=V, — = (tan 8, + tan 8,) (4.20a)

For the infrequent case in which the member depth decreases in the direction of
increasing moment, it is easily confirmed that the corresponding equation is

_ Mu
V.=V, +=* (tan, + tan 6,) (4.20b)

These equations are approximate because the direction of the internal forces is not
exactly as assumed; however, the equations may be used without significant error
provided the slope angles do not exceed about 30°.

There has been very little research studying the shear strength of beams having
varying depth. Tests reported in Ref. 4.19 on simple span beams with haunches at
slopes up to about 15° and with depths both increasing and decreasing in the direction
of increasing moments indicate no appreciable change in the cracking load V,, com-
pared with that for prismatic members. Furthermore, the strength of the haunched
beams, which contained vertical stirrups as web reinforcement, was not significantly
decreased or increased, regardless of the direction of decreasing depth. Based on this
information, it appears safe to design beams with varying depth for shear using equa-
tions for V. and V, developed for prismatic members, provided the actual depth 4 at
the section under consideration is used in the calculations.

ALTERNATIVE MODELS FOR SHEAR ANALYSIS
AND DESIGN

The ACI Code method of design for shear and diagonal tension in beams, presented in
preceding sections of this chapter, is essentially empirical. While generally leading to
safe designs, the ACI Code “V, + V.” approach lacks a physical model for the behavior
of beams subject to shear combined with bending, and its shortcomings are now gener-
ally recognized. The “concrete contribution” V, is generally considered to be some
combination of force transfer by dowel action of the main steel, aggregate interlock
along a diagonal crack, and shear in the uncracked concrete beyond the end of the crack.
The values of each contribution are not identified. A rather vague rationalization is
followed in adopting the diagonal cracking load of a member withour web steel as the
concrete contribution to the shear strength of an otherwise identical beam with web steel
(see Section 4.4). Furthermore, as discussed in Section 4.3, Eqs. (4.3a) and (4.12a), used
to predict the diagonal cracking load, overestimate concrete shear strength for beams
with low reinforcement ratios (p < 1.0 percent), overestimate the gain in shear strength
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resulting from the use of high-strength concrete (Refs. 4.14 to 4.17), and underestimate
the influence of V,d/M, (Ref. 4.3). The expressions also ignore the fact that shear
strength decreases as member size increases (Refs. 4.20 to 4.21).

Ad hoc procedures are built into the ACI Code to adjust for some of these
deficiencies, but it follows that it is necessary to include equations, also empirically
developed for the most part, for specific classes of members (e.g., deep beams vs.
normal beams, beams with axial loads, prestressed vs. nonprestressed beams, high-
strength concrete beams)—with restrictions on the range of applicability of such
equations. And it is necessary to incorporate seemingly arbitrary provisions for the
maximum nominal shear stress and for the extension of flexural reinforcement past the
theoretical point of need. The end result is that the number of ACI Code equations for
shear design has grown from 4 prior to 1963 to 38 in 2008.

With this as background, attention has been given to the development of design
approaches based on rational behavioral models, generally applicable, rather than on
empirical evidence alone (Ref. 4.6).

The truss model was originally introduced by Ritter (Ref. 4.22) and Morsch
(Ref. 4.23) at the turn of the last century. A simplified version has long provided the
basis for the ACI Code design of shear steel. The essential features of the truss model
are reviewed with reference to Fig. 4.19a, which shows one-half the span of a simply
supported, uniformly loaded beam. The combined action of flexure and shear
produces the pattern of cracking shown. Reinforcement consists of the main flexural
steel near the tension face and vertical stirrups distributed over the span.

The structural action can be represented by the truss of Fig. 4.19b, with the main
steel providing the tension chord, the concrete top flange acting as the compression
chord, the stirrups providing the vertical tension web members, and the concrete
between inclined cracks acting as 45° compression diagonals. The truss is formed by
lumping all the stirrups cut by section a-a into one vertical member and all the diag-
onal concrete struts cut by section b-b into one compression diagonal. Experience
shows that for typical cases, the results of the model described are quite conservative,
particularly for beams with small amounts of web reinforcement. As noted above, in
the ACI Code the observed excess shear capacity is taken equal to the shear at the
commencement of diagonal cracking and is referred to as the concrete contribution V..

Over the past 25 years, the truss concept has been greatly extended by the work
of Schlaich, Marti, Collins, MacGregor, and others (Refs. 4.6, 4.24 to 4.29). It was
realized that the angle of inclination of the concrete struts is generally not 45° but may
range between about 25° and 65°, depending to a large extent on the arrangement of
reinforcement. This led to what has become known as the variable-angle truss model,
shown in Fig. 4.19¢, which illustrates the five basic components of the improved
model: (a) struts, or concrete compression members uniaxially loaded; (b) ties, or steel
tension members; (c) joints at the intersection of truss members, assumed to be pin-
connected; (d) compression fans, which form at “disturbed” regions, such as at
the supports or under concentrated loads, transmitting the forces into the beam; and
(e) diagonal compression fields, occurring where parallel compression struts transmit
force from one stirrup to another. As in the ACI Code development, stirrups are typi-
cally assumed to reach yield stress at failure. With the force in all the verticals known
and equal to A, f,,, the truss of Fig. 4.19¢ becomes statically determinate. Direct design
equations can be based on the variable-angle truss model for ordinary cases. The model
also permits direct numerical solution for the required reinforcement for special cases.
The truss model does not include components of the shear failure mechanism such as
aggregate interlock and friction, dowel action of the longitudinal steel, and shear carried
across uncracked concrete. Furthermore, in the format originally proposed, the truss
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FIGURE 4.19

Truss model for beams with
web reinforcement:

(a) uniformly loaded beam;
(b) simple truss model;

(c) more realistic model.
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model does not account for compatibility requirements; i.e., it is based on plasticity

theory. One form of the truss model is incorporated in Appendix A of the ACI Code;
strut-and-tie models are discussed in detail in Chapter 10.

Compression Field Theory

The Canadian National Standard for reinforced concrete (Ref. 4.30) includes a method
of shear design that is essentially the same as the present ACI method but also includes
an alternative “general method” based on the variable-angle truss and the compression
field theory (Refs. 4.27 and 4.31). The latter is incorporated in AASHTO LRFD Bridge
Design Specifications (Ref. 4.12), where its use is mandatory for shear design. In its
complete form, known as the modified compression field theory, it accounts for
requirements of compatibility as well as equilibrium and incorporates stress-strain
characteristics of both materials. Thus, it is capable of predicting not only the failure



154 DESIGN OF CONCRETE STRUCTURES Chapter 4

FIGURE 4.20

Basis of compression field
theory for shear: (@) beam
with shear and longitudinal
steel; (b) tension in
horizontal bars due to shear;
(c) diagonal compression
on beam web; (d) vertical
tension in stirrups;

(e) equilibrium diagram of
forces due to shear. (Adapted
Jrom Ref. 4.27.)
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load but also the complete load-deformation response. The most basic elements of the
compression field theory, applied to members carrying combined flexure and shear,
will be clear from Fig. 4.20. Figure 4.20a shows a simple-span concrete beam,
reinforced with longitudinal bars and transverse stirrups, and carrying a uniformly
distributed loading along the top face. The light diagonal lines are an idealized repre-
sentation of potential tensile cracking in the concrete.

Figure 4.20b illustrates that the net shear V at a section a distance x from the
support is resisted by the vertical component of the diagonal compression force in the
concrete struts. The horizontal component of the compression in the struts must be
equilibrated by the total tension force AN in the longitudinal steel. Thus, with refer-
ence to Fig. 4.20b and c, the magnitude of the longitudinal tension resulting from
shear is

AN = LO = Vcotf

4.21)
tan
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where 6 is the angle of inclination of the diagonal struts. These forces superimpose on
the longitudinal forces owing to flexure, not shown in Fig. 4.205.

The effective depth for shear calculations, according to this method, is taken at
the distance between longitudinal force resultants d,. Thus, from Fig. 4.204, the diag-
onal compressive stress in a web having width b, is

|4

=— 4.22
b,d,sin 8 cos 8 (4.22)

fa

The tensile force in the vertical stirrups, each having area A, and assumed to act

at the yield stress f,,, can be found from the free body of Fig. 4.20e. With stirrups
assumed to be at uniform spacing s,

Vstan 6
d,

Note, with reference to the free-body diagram, that the transverse reinforcement within
the length d,/tan 6 can be designed to resist the lowest shear that occurs within this
length, i.e., the shear at the right end.

In the ACI Code method developed in Section 4.4, it was assumed that the
angle 6 was 45°. With that assumption, and if d is substituted for d,, Eq. (4.23) is
identical to that used earlier for the design of vertical stirrups. It is generally recog-
nized, however, that the slope angle of the compression struts is not necessarily 45°,
and following Refs. 4.12 and 4.30 that angle can range from 20 to 75°, provided the
same value of 6 is used in satisfying all requirements at a section. It is evident from
Eqgs. (4.21) and (4.23) that if a lower slope angle is selected, less vertical reinforce-
ment but more horizontal reinforcement will be required. In addition, the compres-
sion in the concrete diagonals will be increased. Conversely, if a higher slope angle
is used, more vertical steel but less horizontal steel will be needed, and the diagonal
thrust will be less. It is generally economical to use a slope angle # somewhat less
than 45°, with the limitation that the concrete diagonal struts not be overstressed
in compression.

In addition to providing an improved basis for the design of reinforcement for
shear, the variable angle truss model gives important insights into detailing needs. For
example, it becomes clear from the above that the increase in longitudinal steel tension
resulting from the diagonal compression in the struts requires that flexural steel be
extended beyond the point at which it is theoretically not needed for flexure, to
account for the increased horizontal tensile force resulting from the thrust in the
compression diagonals. This is not recognized explicitly in the ACI Code method for
beam design. (However, the ACI Code does contain the arbitrary requirement that the
flexural steel be extended a distance d or 12 bar diameters beyond the point indicated
by flexural requirements.) Also, it is clear from the basic concept of the truss model
that stirrups must be capable of developing their full tensile strength throughout the
entire stirrup height. For wide beams, focus on truss action indicates that special
attention should be given to lateral distribution of web reinforcement. It is often the
practice to use conventional U stirrups for wide beams, with the vertical tension from
the stirrups concentrated around the outermost bars. According to the discussion
above, diagonal compression struts transmit forces only at the joints. Lack of stirrup
joints at the interior of the wide-beam web would force joints to form only at the exte-
rior longitudinal bars, which would concentrate the diagonal compression at the outer
faces of the beam and possibly result in premature failure. It is best to form a truss
joint at each of the longitudinal bars, and multiple leg stirrups should always be used
in wide beams (see Fig. 4.8¢).

A Sy = (4.23)
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References 4.12 and 4.30 incorporate a refined version of the approach just
described, known as the modified compression field theory (MCFT), in which the
cracked concrete is treated as a new material with its own stress-strain characteristics,
including the ability to carry tension following crack formation. The compressive
strength and the stress-strain curve of the concrete in the diagonal compression struts
decrease as the diagonal tensile strain in the concrete increases. Equilibrium, compat-
ibility, and constitutive relationships are formulated in terms of average stresses and
average strains. Variability in the angle of inclination of the compression struts and
stress-strain softening effects in the response of the concrete are taken into account.
Consideration is also given to local stress conditions at crack locations. The method is
capable of accurately predicting the response of complex elements such as shear walls,
diaphragms, and membrane elements subjected to in-plane shear and axial loads
through the full range of loading, from zero load to failure (Refs. 4.28 and 4.29). The
version of the method adopted in Ref. 4.12 has been simplified to allow its use for
routine design.

b. Design Provisions

The version of the MCFT adopted in the AASHTO LRFD Bridge Design
Specifications (Ref. 4.12) is, like the shear provisions in the ACI Code, based on nom-
inal shear capacity, with V, equal to the lesser of

V,=V.+V, 4.24)
V, = 0.25('b,d, (4.25)

where b, = web width (the same as b,, in the ACI Code) and d, = effective depth in

shear, taken as equal to the flexural lever arm (the distance between the centroids of

the tensile and compressive forces), but not less than the greater of 0.9d or 0.72h.
The values of V, and V differ from those used by the ACI, with

V.= BVf'b,d, (4.26)
and .
A,f,.d,(cot 8 + cot a) sin a
V.= p “4.27)

where A, fy,, s, a, and 0 are as defined before. B is the concrete tensile stress factor
and is based on the ability of diagonally cracked concrete to resist tension, which also
controls the angle of the diagonal tension crack 8. In Ref. 4.12, the values of 8 and 6
are determined based on the strain in the longitudinal tension reinforcement, which
can be approximated by'

_ ’Mu|/dv - OSNu + ,‘{ll

o EA,

The sign convention for N, is the same as used in Section 4.6 and the ACI Code:
compression is positive and tension is negative (the opposite sign convention is used
in Ref. 4.12). M, should not be taken less than V,d,; when calculating A, the area of

u

bars terminated less than their development length (see Chapter 5) from the section

= 0.006 (4.28)

IM,/d,| — 0.5N, + 0.5 |V,| cot @
E A,
eliminates the need for an iterative solution between €, and 6.

¥ Equation (4.28) is a simplification of e, = , with 0.5|V,| cot 8 approximated by |V,|. The simplification



FIGURE 4.21
Equilibrium diagram for
calculating tensile force in
reinforcement. (Adapted from
Ref. 4.12)
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under consideration should be reduced in proportion to the decreased development; €
should be taken as zero if the value calculated in Eq. (4.28) is negative; and €, should
be doubled if N, is high enough to cause cracking to the flexural compression face of
the member. For sections closer than d, to the face of the support, €, calculated at d,
from the face of the support may be used to determine 8 and 6.

For members with at least the minimum shear reinforcement, the concrete
tensile stress factor is given by

4.8
p= 1+750e, (4.29)
The angle 8, in degrees, is given by
0 = 29 + 3500¢, (4.30)

As shown in Eq. (4.21), the strength of the longitudinal reinforcement must be
adequate to carry the additional forces induced by shear. Referring to Fig. 4.21, this
leads to

Af,=T= M. _ 05N, + ('V“l - 05V>cot6 (4.31)
o &y b, b, ’

where ¢, ¢, and ¢, are, respectively, the capacity reduction factors for flexure, axial
load (tension or compression), and shear. V, need not be taken greater than V, /¢. Since
the inclination of the compression struts changes, tension in the longitudinal rein-
forcement does not exceed that required to resist the maximum moment alone.

For members with less than the minimum transverse reinforcement, the angle 6
is given by Eq. (4.30), while the value of 8 becomes a function of € and a crack spacing
parameter s,.

4.8 51
B=17 750e, 39 + s, (4.32)
The crack spacing parameter is
1.38
=85> 4.33
e T 1063 433)

/
4 41_’
3
«~—— 0.5d, cot 0 0.5d,cotd —

Vu
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where 12.0 in. = s, < 80.0 in., s, = lesser of the shear depth d, or the spacing
between layers of longitudinal crack control reinforcement, each layer with an area of
steel of at least 0.003b,s,, and a, = maximum size of the coarse aggregate. Note that
S = 8, for 2-in. coarse aggregate

Slnce 6 is not, in general, equal to 45°, the critical section might appropriately
be taken as d, cot § from the face of the support if all the load were applied to the upper
surface of the member. For simplicity, however, the critical section is taken a distance
d, from the face of the support when the reaction introduces compression into the end
region of the member, similar to the loading cases shown in Fig. 4.12a and b. For all
other cases, the crucial section is taken at the face of the support, as shown in
Fig. 4.12c to f.

AASHTO requires a minimum amount of transverse reinforcement A,
Vfib,s/ 'y« (compared to 0.75 VSl b,s/ 1y for ACI), when V, > 0.5¢V,, and spec:lﬁes
maximum spacings of transverse reinforcement of s < 0. 8d = 24 in. when v, <
0.125f] and s = 0.4d, = 12 in. when v, = 0.125f,. Because the predictions obtained
with the MCFT are generally more accurate than those obtained with the ACI method,
AASHTO allows the use of ¢ = 0.90 for shear, the same as for flexure.

EXAMPLE 4.5

Design by modified compression field approach. Re-solve the problem given in Examples
4.2 and 4.3 based on the MCFT. Use ACI load factors and ¢ = 0.9 for shear, as used in
AASHTO LRFD Bridge Design Specifications (Ref. 4.12). Assume an aggregate size a, of in,

SoLuTioN.  For simplicity, the effective depth for shear d, will be set at the minimum allowable
value = 0.9 = 0.9 X 22 = 19.8 in. Both M, and V, are as tabulated previously in Table 4.1,

The critical section for shear is located a distance d, = 19.8 in. = 1.65 ft from the support
where V, = 94 — 9.4 X 1.65 = 78.5 kips. Calculating 0.125f/b,d, = 0.125 X 4000 X 16 X
19.8 = 158,400 1b leads to maximum spacing criteria for No. 3 (No. 10) stirrups equal to the
smaller of 0.84, = 0.8 X 19.8 = 15.8 in., 24 in., or

Ay 022 X 60,000 .
Smax = = = 13.0in.

Vb, \/4000 X 16

Using Eq. (4.28), the strain in the longitudinal tension steel is approximated as
_ |M,]/19.8 + 1V|
7 729,000 X 7.62

with M, and V, in in-kips and kips, respectively.

The values of €, are tabulated along with M, and V, in Table 4.2. These values are used
to calculate 6 using Eq. (4.30) and B using Eqs. (4.29) and (4.32) for sections with and without
minimum stirrups, respectively. Where the section meets the minimum stirrup criterion, the
values of 3 are used to calculate the values of V, which are then used, along with the values of
8, to calculate V, and the required stirrup spacing s (see Table 4.2).

For transverse reinforcement less than the minimum, the values of B are based on €, and
s, The latter may be taken as the lesser of d, or the spacing of longitudinal crack control
reinforcement. In this case, d, = 19.8 in. controls since crack control reinforcement is not
used. The equivalent crack spacing parameter s,, = s, because @, = 0.75 in. These values of
B are used to determine the point where ¢V,/2 = V,, the point at which stirrups may be
terminated (Table 4.2). The values of V,, ¢V, with at least minimum stirrups, and ¢$V,/2 for
less than minimum stirrups are plotted in Fig. 4.22a. The following stirrup spacings can be
used for this case:

l1spaceat6in. = 6in.
6 spaces at 13 in. = 78 in.
Total = 84 in. = 7 ft
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TABLE 4.2
Modified compression field design example using ¢ = 0.9 for shear
&V, for at Least &V, for Less Than
Distance Minimum Stirrups Minimum Stirrups
from M,

Support, ft- V,, oV, V., s, OV, @V./2,
ft kips kips €, x 1000 0 B kips  kips in. B kips kips
0 0 94.0 0.85 320 293 52.8 45.7 9.2 2.54 45.8 22.9
1 89 84.6 0.77 31.7 3.05 55.0 329 12.9 2.64 47.7 23.8
1.65t 144 78.5 0.75 31.6 3.07 55.4 25.6 16.5 2.66 48.1 24.0
2 169 75.2 0.80 31.8 2.99 54.0 23.6 17.9 2.60 46.8 234
3 240 65.8 0.96 323 2.80 50.4 17.1 24.2 2.43 43.7 219
4 301 56.4 1.08 32.8 2.65 47.8 9.5 42.6 230 41.5 20.7
5 353 47.0 1.18 33.1 2.55 45.9 1.2 336 221 39.8 19.9
6 395 37.6 1.25 334 247 44.6 — — 2.15 38.7 194
7 428 28.2 1.30 33.6 2.43 43.8 — — 2.11 38.0 19.0
8 451 18.8 1.32 336 241 435 — — 2.09 37.7 18.8
9 465 9.4 1.32 33.6 241 43.5 — — 2.09 377 18.9
10 470 0.0 1.29 335 2.44 44.0 — — 212 38.2 19.1

t d, from face of support.

For this example, V; is selected based on V, at each point, not the minimum V, on a crack with
angle 6. This simplifies the design procedure and results in a somewhat more conservative
design. Even so, only 7 No. 3 (No. 10) stirrups are needed, or 9 stirrups if the stirrups are
continued at the maximum spacing through the middle region of the beam. These values
compare favorably with the minimum number of stirrups per half-span, 11 and 14, previously

FIGURE 4.22 d, = 1.65’'
Modified compression field
design for Example 4.5. V, = 94.0 kips

Vi, = 78.5 kips |

¢V, (= minimum stirrups) fasl
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514 |

8.00’ !
Web reinforcement ,l
10.00’

(@

Tt T TT T T T T T T T
| | | | |
! | I | |
| | | [ |

1

6@ 13
(b)



160

DESIGN OF CONCRETE STRUCTURES Chapter 4

calculated (Example 4.3) using the two methods required by the ACI Code. The resulting
stirrup pattern is shown in Fig. 4.225.

By way of comparison, had ¢, = 0.75 been used in this example, the stirrup spacing
would have been

5in.

1 space at 5 in.
3 spaces at 10 in. = 30 in.
4 spaces at 13 in. = 52 in.
Total = 87 in. = 7 ft 3 in.

for a total of 8 stirrups.

The MCFT recognizes that shear increases the force in the flexural steel, although, as
explained earlier, the maximum tensile force in the steel is not affected. Equation (4.31) should
be used to calculate the tensile force T along the span, which will then govern the locations
where tensile steel may be terminated. This will be discussed further in Chapter 5.

4.9

The MCFT is not included in the 2008 ACI Code. ACI Code 1.4, however,
permits the use of “any system of design or construction . . ., the adequacy of which
has been shown by successful use or by analysis or test,” if approved by the appropri-
ate building official. The application of the MCFT in Canada and in U.S. bridge
practice provides the evidence needed to demonstrate “successful use.”

SHEAR-FRICTION DESIGN METHOD

Generally, in reinforced concrete design, shear is used merely as a convenient measure
of diagonal tension, which is the real concern. In contrast, there are circumstances
such that direct shear may cause failure of reinforced concrete members. Such situa-
tions occur commonly in precast concrete structures, particularly in the vicinity of
connections, as well as in composite construction combining cast-in-place concrete
with either precast concrete or structural steel elements. Potential failure planes can be
established for such cases along which direct shear stresses are high, and failure to
provide adequate reinforcement across such planes may produce disastrous results.

The necessary reinforcement may be determined on the basis of the shear-
Jfriction method of design (Refs. 4.32 to 4.38). The basic approach is to assume that
the concrete may crack in an unfavorable manner, or that slip may occur along a
predetermined plane of weakness. Reinforcement must be provided crossing the
potential or actual crack or shear plane to prevent direct shear failure.

The shear-friction theory is very simple, and the behavior is easily visualized.
Figure 4.23a shows a cracked block of concrete, with the crack crossed by reinforce-
ment. A shear force V, acts parallel to the crack, and the resulting tendency for the
upper block to slip relative to the lower is resisted largely by friction along the concrete
interface at the crack. Since the crack surface is naturally rough and irregular, the effec-
tive coefficient of friction may be quite high. In addition, the irregular surface will
cause the two blocks of concrete to separate slightly, as shown in Fig. 4.23b.

If reinforcement is present normal to the crack, then slippage and subsequent

separation of the concrete will stress the steel in tension. Tests have confirmed that

well-anchored steel will be stressed to its yield strength when shear failure is obtained
(Ref. 4.34). The resulting tensile force sets up an equal and opposite pressure between
the concrete faces on either side of the crack. It is clear from the free body of
Fig. 4.23¢ that the maximum value of this interface pressure is A,f,, where A, is the
total area of steel crossing the crack and /, 18 its yield strength.
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FIGURE 4.23

Basis of shear-friction design method: (@) applied shear; (b) enlarged representation of crack
surface; (c) free-body sketch of concrete above crack.

The concrete resistance to sliding may be expressed in terms of the normal force
times a coefficient of friction u. By setting the summation of horizontal forces equal
to zero

V, = pAyf, (4.34)

Based on tests, u may be taken as 1.4 for cracks in monolithic concrete, but V,
should not be assumed to be greater than 0.2f/ A, (480 + 0.08f))A,, or 1600A, (Refs. 4.32,
4.37, and 4.38).

The relative movement of the concrete on opposite sides of the crack also sub-
jects the individual reinforcing bars to shearing action, and the dowel resistance of the
bars to this shearing action contributes to shear resistance. However, it is customary to
neglect the dowel effect for simplicity in design and to compensate for this by using
an artificially high value of the friction coefficient.

The provisions of ACI Code 11.6 are based on Eq. (4.34). The design strength
is equal to ¢V,, where ¢ = 0.75 for shear-friction design, and V, must not exceed the
smallest of 0.2f/A,, (480 + 0.08f)A, and 16004, for monolithic or intentionally
roughened normalweight concrete or the smaller of 0.2f/A, and 800A, 1b for other
cases. When concretes of different strengths are cast against each another, V, should be
based on the lower value of f.. Recommendations for friction factor u are as follows:

Concrete placed monolithically 1.4A
Concrete placed against hardened concrete with surface

intentionally roughened 1.0A
Concrete placed against hardened concrete not intentionally

roughened 0.6A
Concrete anchored to as-rolled structural steel by headed

studs or reinforcing bars 0.7A

where A is 1.0 for normalweight concrete and 0.75 for both sand-lightweight and all-
lightweight concrete. In other cases, A is determined based on volumetric proportions
of lightweight and normalweight aggregates, as described in Section 4.5a and specified
in ACI Code 8.6.1, but not greater than 0.85. The yield strength of the reinforcement
f, may not exceed 60,000 psi. Direct tension across the shear plane, if present, must be
carried by additional reinforcement, and permanent net compression across the shear
plane may be taken as additive to the force in the shear-friction reinforcement A f,
when calculating the required A,
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FIGURE 4.24
Shear-friction reinforcement
inclined with respect to crack
face.
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When shear is transferred between concrete newly placed against hardened
concrete, the surface roughness is an important variable; an intentionally roughened
surface is defined to have a full amplitude of approximately  in. In any case, the old
surface must be clean and free of laitance. When shear is to be transferred between
as-rolled steel and concrete, the steel must be clean and without paint, according to
ACI Code 11.6.

If V, is the shear force to be resisted at factored loads, then with V, = ¢V,, the
required steel area is found by transposition of Eq. (4.34):

A Y (4.35)
T puf, )

In some cases, the shear-friction reinforcement may not cross the shear plane at
90° as described in the preceding paragraphs. If the shear-friction reinforcement is
inclined to the shear plane so that the shear force is applied in the direction to increase
tension in the steel, as in Fig. 4.24q, then the component of that tension parallel to the
shear plane, shown in Fig. 4.24b, contributes to the resistance to slip. Then the shear
strength may be computed from

V, =A,f,(nsina + cos a) (4.36)

in lieu of Eq. (4.34). Here « is the angle between the shear-friction reinforcement
and the shear plane. If « is larger than 90°, i.e., if the inclination of the steel is such
that the tension in the bars tends to be reduced by the shear force, then the assump-
tion that the steel stress equals f, is not valid, and a better arrangement of bars should
be made.

Certain precautions should be observed in applying the shear-friction method of
design. Reinforcement, of whatever type, should be well anchored to develop the yield
strength of the steel, by the full development length or by hooks or bends, in the case
of reinforcing bars, or by proper heads and welding, in the case of studs joining
concrete to structural steel. The concrete should be well confined, and the liberal use
of hoops has been recommended (Ref. 4.32). Care must be taken to consider all pos-
sible failure planes and to provide sufficient well-anchored steel across these planes.

EXAMPLE 4.6

Design of beam bearing detail. A precast beam must be designed to resist a support reac-
tion, at factored loads, of V, = 100 kips applied to a 3 X 3 steel angle, as shown in Fig. 4.25.
In lieu of a calculated value, a horizontal force N,, owing to restrained volume change, will be
assumed to be 20 percent of the vertical reaction, or 20 kips. Determine the required auxiliary
reinforcement, using steel of yield strength f, = 60,000 psi. Concrete strength £/ = 5000 psi.
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Design of beam bearing
shoe: (a) diagonal crack;
(b) horizontal crack;

(¢) reinforcement; (d) cross
section.
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SOLUTION. A potential crack will be assumed at 20°, initiating at a point 4 in. from the end
of the beam, as shown in Fig. 4.25a. The total required steel A ;is the sum of that required to
resist the resultant of V, and N, acting parallel to the cracks = V, cos 20° + N, sin 20°.
Equation (4.35) is modified accordingly:

V,cos 20° + N, sin 20°

A=
! duf,
_ 100 X 0.940 + 20 X 0.340 _ 101 kips
0.75 X 1.4 X 60 63 ksi
= 1.60 in®

The net compression normal to the potential crack would be no less than V, sin 20° — N, cos
20° = 15.4 kips. This could be counted upon to reduce the required shear-friction steel, accord-
ing to the ACI Code, but it will be discounted conservatively here. Four No. 6 (No. 19) bars
will be used, providing an area of 1.76 in’. They will be welded to the 3 X 3 angle and will
extend into the beam a sufficient distance to develop the yield strength of the bars. According
to the ACI Code, the development length for a No. 6 (No. 19) bar is 26 in., 32 in. without the
W, factor (see Chapter 5). Considering the uncertainty of the exact crack location, the bars will
be extended 32 in. into the beam as shown in Fig. 4.254. The bars will be placed at an angle of
15° with the bottom face of the member. For the crack oriented at an angle of 20°, as assumed,
the area of the crack is

4
A, = lé( - ) = 187 in?
sin 20°
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Thus, according to the ACI Code, the maximum nominal shear strength of the surface is not to
exceed V, = 0.2f/A, = 187 kips, V, = (480 + 0.08f))A, = 165 kips, or V, = 16004, = 299 kips.
The maximum design strength to be used is ¢V, = 0.75 X 165 = 124 kips. As calculated
earlier, the applied shear on the interface at factored loads is

V, = 100 cos 20° + 20 sin 20° = 101 kips

and so the design is judged satisfactory to this point.

A second possible crack must be considered, as shown in Fig. 4.25b, resulting from the
tendency of the entire anchorage weldment to pull horizontally out of the beam.

The required steel area A, and the concrete shear stress will be calculated based on the
development of the full yield tension in the bars A, (Note that the factor ¢ need not be used
here because it has already been introduced in computing Ay)

a Af, cos 15°
sh i fy
_ 176 X 0.966
1.4
= 1.21in’
Four No. 4 (No. 13) hoops will be used, providing an area of 1.60 in%
The maximum shear force that can be transferred, according to the ACI Code limits, will
be based conservatively on a horizontal plane 32 in. long. No strength reduction factor need be

included in the calculation of this maximum value because it was already introduced in deter-
mining the steel area A, by which the shear force is applied. Accordingly,

V, < (480 + 0.08f) X 16 X 32 = 451 kips

The maximum shear force that could be applied in the given instance is the value used to
calculate A,

V, = 1.76 X 60 cos 15° = 102 kips

which is well below the specified maximum.

The first hoop will be placed 2 in. from the end of the member, with the others spaced at
8 in., as shown in Fig. 4.25¢. Also shown in Fig. 4.25d are four No. 5 (No. 16) bars that will
provide anchorage for the hoop steel.
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FIGURE P4.4

PROBLEMS

4.1.

A beam is to be designed for loads causing a maximum factored shear of
60.0 kips, using concrete with f; = 5000 psi. Proceeding on the basis that the
concrete dimensions will be determined by diagonal tension, select the appro-
priate width and effective depth (a) for a beam in which no web reinforcement
is to be used, (b) for a beam in which only the minimum web reinforcement is
provided, as given by Eq. (4.13), and (¢) for a beam in which web reinforce-
ment provides shear strength V, = 2V_. Follow the ACI Code requirements,
and let d = 2b in each case. Calculations may be based on the more approxi-
mate value of V, given by Eq. (4.125).

A rectangular beam having » = 10 in. and d = 17.5 in. spans 15 ft face to face
of simple supports. It is reinforced for flexure with three No. 9 (No. 29) bars
that continue uninterrupted to the ends of the span. It is to carry service dead
load D = 1.27 kips/ft (including self-weight) and service live load L =
3.70 kips/ft, both uniformly distributed along the span. Design the shear rein-
forcement, using No. 3 (No. 10) vertical U stirrups. The more approximate
Eq. (4.12b) for V, may be used. Material strengths are f; = 4000 psi and f, =

Redesign the shear reinforcement for the beam of Problem 4.2, basing V., on
the more accurate Eq. (4.12a). Comment on your results, with respect to

Design the shear reinforcement, using No. 4 (No. 13) vertical U stirrups for the
independent T beam shown in Fig. P4.4. The beam spans 24 ft face to face
between simple supports, has an effective depth d = 31 in., and is reinforced
for flexure with six No. 10 (No. 32) bars in two layers that continue uninter-
rupted to the ends of the span. It is to carry service dead load D = 2.67 kips/ft
(including self-weight) and service live load L = 5.36 kips/ft, both uniformly
distributed along the span. The more approximate Eq. (4.12b) for V, may be
used. Material strengths are f, = 5000 psi and f, = 60,000 psi.

35in.

4.2
60,000 psi.
4.3.
design time and probable construction cost difference.
4.4.
| 42in. |
1 1
6in.
14 in. I
4.5.

A beam of 11 in. width and effective depth of 16 in. carries a factored uniformly
distributed load of 5.3 kips/ft, including its own weight, in addition to a central,
concentrated factored load of 12 kips. It spans 18 ft, and restraining end
moments at full factored load are 137 ft-kips at each support. It is reinforced
with three No. 9 (No. 29) bars for both positive and negative bending. If f] =
4000 psi, through what part of the beam is web reinforcement theoretically
required (a) if Eq. (4.12b) is used and (b) if Eq. (4.12a) is used? Comment.



4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

4.14.
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What effect would an additional clockwise moment of 176 ft-kips at the right
support have on the requirement for shear reinforcement determined in part (@)
of Problem 4.5?

Design the web reinforcement for the beam of Problem 4.5, with V, deter-
mined by the more approximate ACI equation, using No. 3 (No. 10) vertical
stirrups with f, = 60,000 psi.

Design the web reinforcement for the beam of Problem 4.6, with V_ deter-
mined by the more approximate ACI equation, using No. 3 (No. 10) vertical
stirrups with f, = 60,000 psi.

The beam of Problem 4.2 will be subjected to a factored axial compression
load of 88 kips on the 10 X 20 in. gross cross section, in addition to the loads
described earlier. What is the effect on concrete shear strength V, (a) by the
more accurate ACI equation and (b) by the more approximate ACI equation?
The beam of Problem 4.2 will be subjected to a factored axial tension load of
44 Xips on the 10 X 20 in. gross cross section, in addition to the loads
described earlier. What is the effect on concrete shear strength V, (a) by the
more accurate ACI equation and (b) by the more conservative ACI approach?
Redesign the shear reinforcement for the beam of Problem 4.2, using the
modified compression field theory with (a) ¢, = 0.90 and (b) dy,.,, = 0.75.
Redesign the shear reinforcement for the beam of Problem 4.4, using the
modified compression field theory with (@) ¢, = 0.90 and (b) ¢, = 0.75.
A precast concrete beam having cross-sectional dimensions b = 10 in. and
h = 24 in. is designed to act in a composite sense with a cast-in-place top slab
having depth A, = 5 in. and width 48 in. At factored loads, the maximum
compressive stress in the flange at midspan is 2400 psi; at the supports of the
28 ft simple span the flange force must be zero. Vertical U stirrups provided
for flexural shear will be extended into the slab and suitably anchored to
provide also for transfer of the flange force by shear friction. Find the minimum
number of No. 4 (No. 13) stirrups that must be provided, based on shear-
friction requirements. Concrete in both precast and cast-in-place parts will
have f; = 4000 psi and f, = 60,000 psi. The top surface of the precast web will
be intentionally roughened according to the ACI Code definition.

Redesign the beam-end reinforcement of Example 4.6, given that a roller
support will be provided so that N, = 0.
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5.1

Bond, Anchorage, and
Development Length

FUNDAMENTALS OF FLEXURAL BOND

If the reinforced concrete beam of Fig. 5.1a were constructed using plain round
reinforcing bars, and, furthermore, if those bars were to be greased or otherwise lubri-
cated before the concrete were cast, the beam would be very little stronger than if it
were built of plain concrete, without reinforcement. If a load were applied, as shown in
Fig. 5.1b, the bars would tend to maintain their original length as the beam deflected.
The bars would slip longitudinally with respect to the adjacent concrete, which would
experience tensile strain due to flexure. Proposition 2 of Section 1.8, the assumption
that the strain in an embedded reinforcing bar is the same as that in the surrounding
concrete, would not be valid. For reinforced concrete to behave as intended, it is essen-
tial that bond forces be developed on the interface between concrete and steel, such as
to prevent significant slip from occurring at that interface.

Figure 5.1c shows the bond forces that act on the concrete at the interface as a
result of bending, while Fig. 5.1d shows the equal and opposite bond forces acting on
the reinforcement. It is through the action of these interface bond forces that the slip
indicated in Fig. 5.1b is prevented.

Some years ago, when plain bars without surface deformations were used, initial
bond strength was provided only by the relatively weak chemical adhesion and
mechanical friction between steel and concrete. Once adhesion and static friction were
overcome at larger loads, small amounts of slip led to interlocking of the natural
roughness of the bar with the concrete. However, this natural bond strength is so low
that in beams reinforced with plain bars, the bond between steel and concrete was
frequently broken. Such a beam will collapse as the bar is pulled through the concrete.
To prevent this, end anchorage was provided, chiefly in the form of hooks, as in
Fig. 5.2. If the anchorage is adequate, such a beam will not collapse, even if the bond
is broken over the entire length between anchorages. This is so because the member
acts as a tied arch, as shown in Fig. 5.2, with the uncracked concrete shown shaded
representing the arch and the anchored bars the tie-rod. In this case, over the length in
which the bond is broken, bond forces are zero. This means that over the entire
unbonded length the force in the steel is constant and equal to T = M, /jd. As a
consequence, the total steel elongation in such beams is larger than in beams in which
bond is preserved, resulting in larger deflections and greater crack widths.

To improve this situation, deformed bars are now universally used in the United
States and many other countries (see Section 2.14). With such bars, the shoulders of the
projecting deformations bear on the surrounding concrete and result in greatly increased
bond strength. It is then possible in most cases to dispense with special anchorage
devices such as hooks. In addition, crack widths as well as deflections are reduced.



FIGURE 5.1

Bond forces due to flexure:
(a) beam before loading;

(b) unrestrained slip between
concrete and steel; (¢) bond
forces acting on concrete;
(d) bond forces acting on
steel.

FIGURE 5.2
Tied-arch action in a beam
with little or no bond.
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Bond Force Based on Simple Cracked Section Analysis

In a short piece of a beam of length dx, such as shown in Fig. 5.3a, the moment at one
end will generally differ from that at the other end by a small amount dM. If this piece
is isolated, and if one assumes that, after cracking, the concrete does not resist any ten-
sion stresses, the internal forces are those shown in Fig. 5.3a. The change in bending
moment dM produces a change in the bar force

_dMm

Jjd
where jd is the internal lever arm between tensile and compressive force resultants.
Since the bar or bars must be in equilibrium, this change in bar force is resisted at the

contact surface between steel and concrete by an equal and opposite force produced
by bond, as indicated by Fig. 5.3b.

dT (a)
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FIGURE 5.3

Forces acting on elemental
length of beam: (a) free-body
sketch of reinforced concrete
element; (b) free-body sketch
of steel element.
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If U is the magnitude of the local bond force per unit length of bar, then, by
summing horizontal forces

Udx = dT ®
Thus
daTr
U=— 1
i G.1

indicating that the local unit bond force is proportional to the rate of change of bar
force along the span. Alternatively, substituting Eq. (a) in Eq. (5.1), the unit bond
force can be written as

jd dx
from which
1%
= — 5.2
U id (5.2)

Equation (5.2) is the “elastic cracked section equation” for flexural bond force, and it
indicates that the bond force per unit length is proportional to the shear at a particular
section, i.e., to the rate of change of bending moment.

Note that Eq. (5.2) applies to the tension bars in a concrete zone that is assumed
to be fully cracked, with the concrete resisting no tension. It applies, therefore, to the
tensile bars in simple spans, or, in continuous spans, either to the bottom bars in the
positive bending region between inflection points or to the top bars in the negative
bending region between the inflection points and the supports. It does not apply to
compression reinforcement, for which it can be shown that the flexural bond forces are
very low.

Actual Distribution of Flexural Bond Force

The actual distribution of bond force along deformed reinforcing bars is much more
complex than that represented by Eq. (5.2), and Eq. (5.1) provides a better basis for
understanding beam behavior. Figure 5.4 shows a beam segment subject to pure



FIGURE 54

Variation of steel and bond
forces in a reinforced
concrete member subject to
pure bending: (a) cracked
concrete segment; (b) bond
forces acting on reinforcing
bar; (¢) variation of tensile
force in steel; (d) variation
of bond force along steel.
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bending. The concrete fails to resist tensile stresses only where the actual crack is
located; there the steel tension is maximum and has the value predicted by simple
theory: T = M/jd. Between cracks, the concrete does resist moderate amounts of
tension, introduced by bond forces acting along the interface in the direction shown
in Fig. 5.4a. This reduces the tensile force in the steel, as illustrated by Fig. 5.4c.
From Eq. (5.1), it is clear that U is proportional to the rate of change of bar force,
and thus will vary as shown in Fig. 5.4d; unit bond forces are highest where the slope
of the steel force curve is greatest and are zero where the slope is zero. Very high
local bond forces adjacent to cracks have been measured in tests (Refs. 5.1 and 5.2).
They are so high that inevitably some slip occurs between concrete and steel adjacent
to each crack.

Beams are seldom subject to pure bending moment; they generally carry
transverse loads producing shear and moment that vary along the span. Figure 5.5a
shows a beam carrying a distributed load. The cracking indicated is typical. The steel
force T predicted by simple cracked section analysis is proportional to the moment
diagram and is as shown by the dashed line in Fig. 5.5b. However, the actual value of
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FIGURE 5.5

Effect of flexural cracks
on bond forces in beam:
(a) beam with flexural
cracks; (b) variation of

tensile force T in steel along
span; (¢) variation of bond
force per unit length U along

span.

span

5.2

T is less than that predicted by the simple analysis everywhere except at the actual
crack locations. The actual variation of T is shown by the solid line of Fig. 5.5b. In
Fig. 5.5¢, the bond forces predicted by the simplified theory are shown by the dashed
line, and the actual variation is shown by the solid line. Note that the value of U is
equal to that given by Eq. (5.2) only at those locations where the slope of the steel
force diagram equals that of the simple theory. Elsewhere, if the slope is greater than
assumed, the local bond force is greater; if the slope is less, local bond force is less.
Just to the left of the cracks, for the present example, U is much higher than predicted
by Eq. (5.2), and in all probability will result in local bond failure. Just to the right of
the cracks, U is much lower than predicted and in fact is generally negative very close
to the crack; i.e., the bond forces act in the reverse direction.

It is evident that actual bond forces in beams bear very little relation to those
predicted by Eq. (5.2), except in the general sense that they are highest in the regions
of high shear.

BOND STRENGTH AND DEVELOPMENT LENGTH

For reinforcing bars in tension, two types of bond failure have been observed. The first
is direct pullout of the bar, which occurs when ample confinement is provided by the
surrounding concrete. This could be expected when relatively small-diameter bars are
used with sufficiently large concrete cover distances and bar spacing. The second type



FIGURE 5.6
Splitting of concrete along
reinforcement.
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of failure is splitting of the concrete along the bar when cover, confinement, or bar
spacing is insufficient to resist the lateral concrete tension resulting from the wedging
effect of the bar deformations. Present-day design methods require that both possible
failure modes be accounted for.

Bond Strength

If the bar is sufficiently confined by a mass of surrounding concrete, then as the tensile
force on the bar is increased, adhesive bond and friction are overcome, the concrete
eventually crushes locally ahead of the bar deformations, and bar pullout results. The
surrounding concrete remains intact, except for the crushing that takes place ahead of
the ribs immediately adjacent to the bar interface. For modern deformed bars, adhesion
and friction are much less important than the mechanical interlock of the deformations
with the surrounding concrete.

Bond failure resulting from splitting of the concrete is more common in beams
than direct pullout. Such splitting comes mainly from wedging action when the ribs of
the deformed bars bear against the concrete (Refs. 5.3 and 5.4). It may occur either in
a vertical plane as in Fig. 5.6a or horizontally in the plane of the bars as in Fig. 5.6b.
The horizontal type of splitting of Fig 5.6b frequently begins at a diagonal crack. In
this case, as discussed in connection with Fig. 4.7b and shown in Fig. 4.1, dowel
action increases the tendency toward splitting. This indicates that shear and bond
failures are often intricately interrelated.

When pullout resistance is overcome or when splitting has spread all the way to
the end of an unanchored bar, complete bond failure occurs. Sliding of the steel relative
to the concrete leads to immediate collapse of the beam.

If one considers the large local variations of bond force caused by flexural and
diagonal cracks (see Figs. 5.4 and 5.5), it becomes clear that local bond failures imme-
diately adjacent to cracks will often occur at loads considerably below the failure load
of the beam. These local failures result in small local slips and some widening of
cracks and increase of deflections, but will be harmless as long as failure does not
propagate all along the bar, with resultant total slip. In fact, as discussed in connection
with Fig. 5.2, when end anchorage is reliable, bond can be severed along the entire
length of the bar, excluding the anchorages, without endangering the carrying capacity
of the beam. End anchorage can be provided by hooks as suggested by Fig. 5.2 or,

Splittin Splittin
y plitting et ] plitting

(a) (b)
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FIGURE 5.7
Development length.

much more commonly, by extending the straight bar a sufficient distance from the
point of maximum stress.

Extensive testing (Refs. 5.5 to 5.11), using beam specimens, has established
limiting values of bond strength. This testing provides the basis for current design
requirements.

Development Length

The preceding discussion suggests the concept of development length of a reinforc-
ing bar. The development length is defined as that length of embedment necessary
to develop the full tensile strength of the bar, controlled by either pullout or splitting.
With reference to Fig. 5.7, the moment, and therefore the steel stress, is evidentally
maximum at point a (neglecting the weight of the beam) and zero at the supports. If
the bar stress is f; at a, then the total tension force A, f, must be transferred from the
bar to the concrete in the distance / by bond forces. To fully develop the strength of
the bar A, f,, the distance / must be at least equal to the development length of the
bar, established by tests. In the beam of Fig. 5.7, if the actual length [ is equal to or
greater than the development length /,, no premature bond failure will occur. That
is, the beam will fail in bending or shear rather than by bond failure. This will be so
even if in the vicinity of cracks local slip may have occurred over small regions
along the beam.

It is seen that the main requirement for safety against bond failure is this: the
length of the bar, from any point of given steel stress (f; or at most f)) to its nearby
free end, must be at least equal to its development length. If this requirement is
satisfied, the magnitude of the nominal flexural bond force along the beam, as given
by Eq. (5.2), is of only secondary importance, since the integrity of the member is
ensured even in the face of possible minor local bond failures. However, if the actual
available length is inadequate for full development, special anchorage, such as by hooks,
must be provided.

Factors Influencing Development Length

Experimental research has identified the factors that influence development length,
and analysis of the test data has resulted in the empirical equations used in present
design practice. The most basic factors will be clear from review of the preceding
paragraphs and include concrete tensile strength, cover distance, spacing of the rein-
forcing bars, and the presence of transverse steel reinforcement.

Clearly, the tensile strength of the concrete is important because the most com-
mon type of bond failure in beams is the type of splitting shown in Fig. 5.6. Although
tensile strength does not appear explicitly in experimentally derived equations for
development length (see Section 5.3), the term /¥, appears in the denominator of
those equations and reflects the influence of concrete tensile strength.
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As discussed in Section 2.9, the fracture energy of concrete plays an important
role in bond failure because a splitting crack must propagate after it has formed. Since
fracture energy is largely independent of compressive strength, bond strength inc-
reases more slowly than V!, and as data for higher-strength concretes have become
available, /' has been shown to provide a better representation of the effect of con-
crete strength on bond than V¥ (Refs. 5.12 to 5.14). This point is recognized by ACI
Committee 408, Bond and Development of Reinforcement (Ref. 5.15), in proposed
design expressions based on f* and within the ACI Code, which sets an upper limit
on the value of V! for use in design.

For lightweight concretes, the tensile strength is usually less than for normal-
density concrete having the same compressive strength; accordingly, if lightweight
concrete is used, development lengths must be increased. Alternatively, if split-cylinder
strength is known or specified for lightweight concrete, it can be incorporated in
development length equations as follows. For normal concrete, the split-cylinder
tensile strength £, is generally taken as f,, = 6.7V/f/. If the split-cylinder strength £,
is known for a particular lightweight concrete, then V! in the development length
equations can be replaced by f,,/6.7.

Cover distance—conventionally measured from the center of the bar to the
nearest concrete face and measured either in the plane of the bars or perpendicular to
that plane—also influences splitting. Clearly, if the vertical or horizontal cover is
increased, more concrete is available to resist the tension resulting from the wedging
effect of the deformed bars, resistance to splitting is improved, and development
length is less.

Similarly, Fig. 5.6b illustrates that if the bar spacing is increased (e.g., if only
two instead of three bars are used), more concrete per bar will be available to resist
horizontal splitting (Ref. 5.16). In beams, bars are typically spaced about one or two
bar diameters apart. On the other hand, for slabs, footings, and certain other types of
member, bar spacings are typically much greater, and the required development length
is reduced.

Transverse reinforcement, such as that provided by stirrups of the types shown
in Fig. 4.8, improves the resistance of tensile bars to both vertical or horizontal
splitting failure because the tensile force in the transverse steel tends to prevent
opening of the actual or potential crack. The effectiveness of such transverse rein-
forcement depends on its cross-sectional area and spacing along the development
length. Its effectiveness does not depend on its yield strength f,» because trans-
verse reinforcement rarely yields during a bond failure (Refs. 5.12 to 5.15). The yield
strength of the transverse steel f,,, however, is presently used in the bond provisions
of the ACI Code.

Based on the results of a statistical analysis of test data (Ref. 5.10), with appro-
priate simplifications, the length /, needed to develop stress £, in a reinforcing bar may
be expressed as

L= 2 % d, (5.3)
40 \/J;,{(C + Ktr)J
(o db

where d, = bar diameter
¢ = smaller of minimum cover or one-half of bar spacing measured to
center of bar
K, = 40A,, /sn, which represents effect of confining reinforcement
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A, = area of transverse reinforcement normal to plane of splitting through the
bars being developed
s = spacing of transverse reinforcement
n = number of bars developed or spliced at same location

Equation (5.3) captures the effects of concrete strength, concrete cover, and
transverse reinforcement on /, and serves as the basis for design in the 2008 ACI Code.
For full development of the bar, f; is set equal to f,.

In addition to the factors just discussed, other influences have been identified.
The vertical location of horizondal bars relative to beam depth has been found to have
an effect (Ref. 5.17). If bars are placed in the forms during construction such that a
substantial depth of concrete is placed below those bars, there is a tendency for excess
water, often used in the mix for workability, and for entrapped air to rise to the top of
the concrete during consolidation. Air and water tend to accumulate on the underside
of the bars. Tests have shown a significant loss in bond strength for bars with more
than 12 in. of fresh concrete cast beneath them, and accordingly the development
length must be increased. This effect increases as the slump of the concrete increases
and is greatest for bars cast near the upper surface of a concrete placement (Ref. 5.18).

Epoxy-coated reinforcing bars are used regularly in projects where the structure
may be subjected to corrosive environmental conditions or deicing chemicals, such as
for highway bridge decks and parking garages. Studies have shown that bond strength
is reduced because the epoxy coating reduces the friction between the concrete and the
bar, and the required development length must be increased substantially (Refs. 5.19
to 5.23). Early evidence showed that if cover and bar spacing were large, the effect of
the epoxy coating would not be so pronounced, and as a result, a smaller increase was
felt justified under these conditions (Ref. 5.20). Although later research (Ref. 5.12)
does not support this conclusion, provisions to allow for a smaller increase remain in
the ACI Code. Since the bond strength of epoxy-coated bars is already reduced
because of lack of adhesion, an upper limit has been established for the product of
development length factors accounting for the depth of concrete cast below horizontal
bars and epoxy coating.

Not infrequently, tensile reinforcement somewhat in excess of the calculated
requirement will be provided, e.g., as a result of upward rounding A, when bars are
selected or when minimum steel requirements govern. Logically, in this case, the
required development length may be reduced by the ratio of steel area required to
steel area actually provided. The modification for excess reinforcement should be
applied only where anchorage or development for the full yield strength of the bar is
not required.

Finally, based on bars with very short development lengths (most with values of
l,/d, < 15), it was observed that smaller-diameter bars required lower development
lengths than predicted by Eq. (5.3). As a result, the required development lengths for
No. 6 (No. 19) and smaller bars were reduced below the values required by Eq. (5.3)."

Reference 5.15 presents a detailed discussion of the factors that control the bond
and development of reinforcing bars in tension. Except as noted, these influences are
accounted for in the basic equation for development length in the 2008 ACI Code.

T The use of Eq. (5.3) for low values of I,/d, greatly underestimates the actual value of bond strength and makes it appear that a lower value of Il
can be used safely. An evaluation of test results for small bars with more realistic development lengths (/,/d, = 16), however, has shown that the
special provision in the ACI Code for smaller bars is not justified (Refs. 5.14, 5.15, and 5.24). Because of the unconservative nature of the small
bar provision, ACI Committee 408 (Ref. 5.15) recommends that it not be applied in design.
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All modification factors for development length are defined explicitly in the Code,
with appropriate restrictions. Details are given next.

5.3 ACI CODE PROVISIONS FOR DEVELOPMENT
OF TENSION REINFORCEMENT

The approach to bond strength incorporated in the ACI Code follows from the discus-
sion presented in Section 5.2. The fundamental requirement is that the calculated force
in the reinforcement at each section of a reinforced concrete member be developed on
each side of that section by adequate embedment length, hooks, mechanical anchor-
age, or a combination of these, to ensure against pullout. Local high bond forces, such
as are known to exist adjacent to cracks in beams, are not considered to be significant.
Generally, the force to be developed is calculated based on the yield stress in the
reinforcement; i.e., the bar strength is to be fully developed.

In the ACI Code, the required development length for deformed bars in tension
is based on Eq. (5.3). A single basic equation is given that includes all the influences
discussed in Section 5.2 and thus appears highly complex because of its inclusiveness.
However, it does permit the designer to see the effects of all the controlling variables
and allows more rigorous calculation of the required development length when it is crit-
ical. The ACI Code also includes simplified equations that can be used for most cases
in ordinary design, provided that some restrictions are accepted on bar spacing, cover
values, and minimum transverse reinforcement. These alternative equations can be
further simplified for normal-density concrete and uncoated bars.t

In the following presentation of development length, the basic ACI equation is
given first and its terms are defined and discussed. After this, the alternative equations,
also part of the ACI Code, are presented. Note that, in any case, development length
[, must not be less than 12 in.

a. Basic Equation for Development of Tension Bars

According to ACI Code 12.2.3, for deformed bars or deformed wires,

L3 b e |
d 20 )\\/_[ ¢ +Ktr):| b 64
dy

in which the term (¢ + K,)/d, shall not be taken greater than 2.5. In Eq. (5.4), terms
are defined and values established as follows.

i, = reinforcement location factor
Horizontal reinforcement so placed that more than 12 in. of fresh
concrete is cast in the member below the development length or
splice: 1.3
Other situations: 1.0

T This two-tier approach to development length corresponds exactly to the ACI Code treatment for V,, the contribution of concrete in shear
calculations. The more detailed calculation by Eq. (4.12a) is useful for computerized design or research but is tedious for manual calculations
because of the need to recalculate the governing variables at close intervals along the span. For ordinary design, recognizing that overall economy
is but little affected, the simpler but more approximate and more conservative Eq. (4.12b) is used.
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¢, = coating factor
Epoxy-coated bars or wires with cover less than 3d, or clear

spacing less than 6d,: 1.5
All other epoxy-coated bars or wires: 1.2
Uncoated and zinc-coated (galvanized) reinforcement: 1.0

However, the product of ¢4, need not be taken greater than 1.7.
¥, = reinforcement size factor

No. 6 (No. 19) and smaller bars and deformed wires: 0.8t

No. 7 (No. 22) and larger bars: 1.0
A = lightweight aggregate concrete factor

When lightweight aggregate concrete is used: 0.75

However, when f,, is specified, A = £,,/(6.7Vf.) =< 1.0.

When normalweight concrete is used: 1.0

¢ = spacing or cover dimension, in.
Use the smaller of either the distance from the center of the bar to the nearest con-
crete surface or one-half the center-to-center spacing of the bars being developed.

K,, = transverse reinforcement index: 404, /sn
where A, = total cross-sectional area of all transverse reinforcement that is
within the spacing s and that crosses the potential plane of split-
ting through the reinforcement being developed, in?
s = maximum spacing of transverse reinforcement within /, center to
center, in.
n = number of bars or wires being developed along the plane of splitting

As a simplification, the designer is permitted to use K,, = 0 even if transverse rein-
forcement is present.

The limit of 2.5 on (¢ + K,,)/d,, is imposed to avoid pullout failure. With that term
taken equal to its limit of 2.5, evaluation of Eq. (5.4) results in [, = 0.03d,f,/ V!, the
experimentally derived limit found in earlier ACI Codes when pullout failure controls.
Note that in Eq. (5.4) and in all other ACI Code equations relating to the development
length and splices of reinforcement, values of Vf! are not to be taken greater than
100 psi because of the lack of experimental evidence on bond strengths obtainable
with concretes having compressive strength in excess of 10,000 psi at the time that
Eqgs. (5.3) and (5.4) were formulated. More recent tests with concrete with values of
£, to 16,000 psi justify this limitation.

Simplified Equations for Development Length

Calculation of required development length (in terms of bar diameter) by Eq. (5.4)
requires that the term (¢ + K,,)/d, be calculated for each particular combination of
cover, spacing, and transverse reinforcement. Alternatively, according to the Code, a
simplified form of Eq. (5.4) may be used in which (¢ + K,,)/d, is set equal to 1.5,
provided that certain restrictions are placed on cover, spacing, and transverse
reinforcement. Two cases of practical importance are:

1. Minimum clear cover of 1.0d,, minimum clear spacing of 1.0d,, and at least the
Code required minimum stirrups or ties (see Section 4.5b) throughout /,
2. Minimum clear cover of 1.0d, and minimum clear spacing of 2d,

¥ ACI Committee 408 recommends a value of 1.0 for all bar sizes based on experimental evidence. The ACI Code value of 0.8, however, will be

used in what follows.
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TABLE 5.1
Simplified tension development length in bar diameters according to the ACI Code

No. 6 (No. 19) and

Smaller Bars and No. 7 (No. 22)
Deformed Wirest and Larger Bars
Clear spacing of bars being de.veloped o.r spliced £bab. fbab
= d,, clear cover = d,, and stirrups or ties l,= d, ly= d,
throughout /; not less than the Code minimum 25’\\/fc 20/\\/170
Clear spacing of bars being developed or spliced Same as above Same as above
= 2d,, and clear cover = d,
oth ; ( b, ) J ; ( b, ) 4
er cases g =\—=d, =l —=14d,
50AVY! 40AVE!

t For reasons discussed in Section 5.3a, ACI Committee 408 recommends that /, for No. 7 (No. 22) and larger bars be used for all bar sizes.

For either of these common cases, it is easily confirmed from Eq. (5.4) that for No. 7

(No. 22) and larger bars
fab. )
lyj=\———+)d 5.5
’ (20A\/ﬁ ’ -5

and for No. 6 (No. 19) bars and smaller (with y = 0.8)

Lo, )
=27 ) g4 5.5b
4 (25,\\/}2 ’ ©-5)

If these restrictions on spacing are not met, then, provided that Code-imposed
minimum spacing requirements are met (see Section 3.6c), the term (¢ + K,,)/d, will
have a value not less than 1.0 (rather than 1.5 as before) whether or not transverse steel
is used. The values given by Eqgs. (5.5a) and (5.5b) are then multiplied by the factor
1.5/1.0. .

Thus if the designer accepts certain restrictions on bar cover, spacing, and trans-
verse reinforcement, simplified calculation of development requirements is possible.
The simplified equations are summarized in Table 5.1.

Further simplification is possible for the most common condition of normal-
density concrete and uncoated reinforcement. Then A and ¢, in Table 5.1 take the
value 1.0, and the development lengths, in terms of bar diameters, are simply a
function of f, f/, and the bar location factor . Thus development lengths are easily
tabulated for the usual combinations of material strengths and bottom or top bars and
for the restrictions on bar spacing, cover, and transverse steel defined.t Results are
given in Table A.10 of Appendix A.

Regardless of whether development length is calculated using the basic Eq. (5.4)
or the more approximate Eqs. (5.5a) and (5.5b), development length may be reduced
where reinforcement in a flexural member is in excess of that required by analysis,

t Note that, for convenient reference, the term top bar is used for any horizontal reinforcing bar placed with more than 12 in. of fresh concrete cast
below the development length or splice. This definition may require that bars relatively near the bottom of a deep member be treated as top bars.
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except where anchorage or development for J, 1s specifically required or the rein-
forcement is designed for a region of high seismic risk. According to the ACI Code,
the reduction is made according to the ratio (4, required/A, provided).

EXAMPLE 5.1

FIGURE 5.8

Bar details at beam-column
joint for bar development
examples.

Development length in tension. Figure 5.8 shows a beam-column joint in a continuous
building frame. Based on frame analysis, the negative steel required at the end of the beam is
2.90 in?% two No. 11 (No. 36) bars are used, providing A, = 3.12 in?. Beam dimensions are
b =10in.,d = 18 in., and % = 21 in. The design will include No. 3 (No. 10) stirrups spaced
four at 3 in., followed by a constant 5 in. spacing in the region of the support, with 1.5 in. clear
cover. Normalweight concrete is to be used, with f/ = 4000 psi, and reinforcing bars have
J, = 60,000 psi. Find the minimum distance /, at which the negative bars can be cut off, based
on development of the required steel area at the face of the column, (a) using the simplified
equations of Table 5.1, (b) using Table A.10, of Appendix A, and (c) using the basic Eq. (5.4).

SorutioN. Checking for laterat spacing in the No. 11 (No. 36) bars determines that the clear
distance between the bars is 10 — 2(1.50 + 0.38 + 1.41) = 3.42 in., or 2.43 times the bar diam-
eter d,. The clear cover of the No. 11 (No. 36) bars to the side face of the beam is 1.50 + 0.38 =
1.88 in., or 1.33 bar diameters, and that to the top of the beam is 3.00 — 1.41/2 = 2.30in., or 1.63
bar diameters. These dimensions meet the restrictions stated in the second row of Table 5.1.
Then for top bars, uncoated, and with normal-density concrete, we have the values of g, = 1.3,
¢, = 1.0, and A = 1.0. From Table 5.1,

;. 60000 X 13 X 1.0
20 X 1.0\/4000

This can be reduced by the ratio of steel required to that provided, so that the final development
length is 87 X 2.90/3.12 = 81 in.

Alternatively, from the lower portion of Table A.10, [,/d, = 62. The required length to
point of cutoff is 62 X 1.41 X 2.90/3.12 = 81 in., as before.

The more accurate Eq. (5.4) will now be used. The center-to-center spacing of the No. 11
(No. 36) bars is 10 — 2(1.50 + 0.38 + 1.41/2) = 4.83, one-half of which is 2.42 in. The side
cover to bar centerline is 1.50 + 0.38 + 1.41/2 = 2.59 in., and the top cover is 3.00 in. The
smallest of these three distances controls, and ¢ = 2.42 in. Potential splitting would be in the

141 =62 X 1.41 = 87 in.

2
Tr——17_No. 10 (No. 32)
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horizontal plane of the bars, and in calculating A,, two times the stirrup bar area is used.’ Based
on the No. 3 (No. 10) stirrups at 5 in. spacing:

40 X 0.11 X 2 c+K, 242+ 088
=20 T2 088 d =
o 5% 2 88 an d, 1.41

=234

This is less than the limit value of 2.5. Then from Eq. (5.4)

_ 3X60,000 X 1.3
‘740 x 1.0V/4000 X 2.34

1.41 = 40 X 141 = 55.7 in.

and the required development length is 55.7 X 2.90/3.12 = 52 in. rather than 81 in. as
before. Clearly, the use of the more accurate Eq. (5.4) permits a considerable reduction in
development length. Even though its use requires much more time and effort, it is justified
if the design is to be repeated many times in a structure.

5.4 ANCHORAGE OF TENSION BARS BY HOOKS

a. Standard Dimensions

In the event that the desired tensile stress in a bar cannot be developed by bond alone,
it is necessary to provide special anchorage at the ends of the bar, usually by means of
a 90° or a 180° hook or a headed bar (the latter is discussed in Section 5.5). The
dimensions and bend radii for hooks have been standardized in ACI Code 7.1 as
follows (see Fig. 5.9):

1. A 180° bend plus an extension of at least 4 bar diameters, but not less than 2% in.
at the free end of the bar, or
2. A 90° bend plus an extension of at least 12 bar diameters at the free end of the
bar, or
3. For stirrup and tie anchorage only:
(a) For No. 5 (No. 16) bars and smaller, a 90° bend plus an extension of at least
6 bar diameters at the free end of the bar, or
(b) For Nos. 6, 7, and 8 (Nos. 19, 22, and 25) bars, a 90° bend plus an extension of
at least 12 bar diameters at the free end of the bar, or
(¢) For No. 8 (No. 25) bars and smaller, a 135° bend plus an extension of at least
6 bar diameters at the free end of the bar.

The minimum diameter of bend, measured on the inside of the bar, for standard
hooks other than for stirrups or ties in sizes Nos. 3 through 5 (Nos. 10 through 16),
should be not less than the values shown in Table 5.2. For stirrup and tie hooks, for
bar sizes No. 5 (No. 16) and smaller, the inside diameter of bend should not be less
than 4 bar diameters, according to the ACI Code.

When welded wire reinforcement (smooth or deformed wires) is used for
stirrups or ties, the inside diameter of bend should not be less than 4 wire diameters
for deformed wire larger than D6 and 2 wire diameters for all other wires. Bends with
an inside diameter of less than 8 wire diameters should not be less than 4 wire diam-
eters from the nearest welded intersection.

1 If the top cover had controlled, the potential splitting plane would be vertical and one times the stirrup bar area would be used in calculating A,,.
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FIGURE 5.9

Standard bar hooks: (a) main

reinforcement; (b) stirrups
and ties.
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No. 5 (No. 16) Nos. 6,7,0r8 No. 8 (No. 25)
bar or smaller (Nos. 19, 22, or 25) bar or smaller
bar
—lb—d, —ll—dq, —l—d,
(b)

TABLE 5.2

Minimum diameters of bend for standard hooks
Bar Size Minimum Diameter
Nos. 3 through 8 (Nos. 10 through 25) 6 bar diameters
Nos. 9, 10, and 11 (Nos. 29, 32, and 36) 8 bar diameters
Nos. 14 and 18 (Nos. 43 and 57) 10 bar diameters

Development Length and Modification Factors
for Hooked Bars

Hooked bars resist pullout by the combined actions of bond along the straight length
of bar leading to the hook and anchorage provided by the hook. Tests indicate that
the main cause of failure of hooked bars in tension is splitting of the concrete in the
plane of the hook. This splitting is due to the very high stresses in the concrete inside
of the hook; these stresses are influenced mainly by the bar diameter d, for a given
tensile force, and the radius of bar bend. Resistance to splitting has been found to
depend on the concrete cover for the hooked bar, measured laterally from the edge of
the member to the bar perpendicular to the plane of the hook, and measured to the
top (or bottom) of the member from the point where the hook starts, parallel to the
plane of the hook. If these distances must be small, the strength of the anchorage can
be substantially increased by providing confinement steel in the form of closed
stirrups or ties.

ACIT Code 12.5 provisions for hooked bars in tension are based on research
summarized in Refs. 5.8 and 5.9. The Code requirements account for the combined
contribution of bond along the straight bar leading to the hook, plus the hooked
anchorage. A total development length /,, is defined as shown in Fig. 5.10 and is




FIGURE 5.10
Bar details for development
of standard hooks.

FIGURE 5.11
Transverse reinforcement
requirements at
discontinuous ends of
members with small
cover distances.
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measured from the critical section to the farthest point on the bar, parallel to the
straight part of the bar. For standard hooks, as shown in Fig. 5.9, the development
length is

0.02 ¢.f,
ln = (‘Wl) dy (5.6)

with ¢, = 1.2 for epoxy-coated reinforcement and A = 0.75 for lightweight aggregate
concrete. For other cases, , and A are taken as 1.0.

The development length 7, should be multiplied by certain applicable modifying
factors, summarized in Table 5.3. These factors are combined as appropriate; e.g., if
side cover of at least 23 in. is provided for a 180° hook and if, in addition, ties are
provided, the development length is multiplied by the product of 0.7 and 0.8. In any
case, the length [, is not to be less than 8 bar diameters and not less than 6 in.

Transverse confinement steel is essential if the full bar strength must be devel-
oped with minimum concrete confinement, such as when hooks may be required at the
ends of a simply supported beam or where a beam in a continuous structure frames
into an end column and does not extend past the column or when bars must be
anchored in a short cantilever, as shown in Fig. 5.11 (Ref. 5.11). According to ACI
Code 12.5.4, for bars hooked at the discontinuous ends of members with both side

Ties or stirrups
required

Lan
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N
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——I L— = 24, Section a-a
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TABLE 5.3

Development lengths for hooked deformed bars in tension

A. Development length [, for hooked bars <0'02¢&fy> d,
AV

B. Modification factors applied to /,,

For No. 11 (No. 36) and smaller bar hooks with side cover (normal to
plane of hook) not less than 24 in., and for 90° hooks with cover
on bar extension beyond hook not less than 2 in. 0.7

For 90° hooks of No. 11 (No. 36) and smaller bars that are either
enclosed within ties or stirrups perpendicular to the bar being
developed, spaced not greater than 3d, along the development
length I, of the hook; or enclosed within ties or stirrups parallel
to the bar being developed, spaced not greater than 3d, along the
length of the tail extension of the hook plus bend 0.8

For 180° hooks of No. 11 (No. 36) and smaller bars that are
enclosed within ties or stirrups perpendicular to the bar being
developed, spaced not greater than 3d,, along the development
length 1, of the hook 0.8

Where anchorage or development for J, 18 not specifically required,

. . y ) A, required
reinforcement in excess of that required by analysis —_

A, provided
b
For epoxy-coated bars 1.2
For other bars 1.0
A
For lightweight concrete 0.75
For normalweight concrete 1.0

cover and top or bottom cover less than 23 in., hooks must be enclosed with closed
stirrups or ties along the full development length, as shown in Fig. 5.11. The spacing
of the confinement steel must not exceed 3 times the diameter of the hooked bar d,,
and the first stirrup or tie must enclose the bent portion of the hook within a distance
equal to 2d, of the outside of the bend. In such cases, the factor 0.8 of Table 5.3 does
not apply.

EXAMPLE 5.2

Development of hooked bars in tension. Referring to the beam-column joint shown in
Fig. 5.8, the No. 11 (No. 36) negative bars are to be extended into the column and terminated
in a standard 90° hook, keeping 2 in. clear to the outside face of the cotumn. The column width
in the direction of beam width is 16 in. Find the minimum length of embedment of the hook
past the column face, and specify the hook details.

SoLuTioN.  The development length for hooked bars, measured from the critical section along
the bar to the far side of the vertical hook, is given by Eq. (5.6):

002 X 1.0 X 60,000

l —
a* 1.0 X \/4000

1.41 = 27 in.
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In this case, side cover for the No. 11 (No. 36) bars exceeds 2.5 in. and cover beyond the bent
bar is adequate, so a modifying factor of 0.7 can be applied. The only other factor applicable is
for excess reinforcement, which is 0.93 as for Example 5.1. Accordingly, the minimum
development length for the hooked bars is

Ly =27 X 0.7 X 093 = 18 in.

With 21 — 2 = 19 in. available, the required length is contained within the column. The hook
will be bent to a minimum diameter of 8 X 1.41 = 11.28 in. The bar will continue for 12 bar
diameters, or 17 in. past the end of the bend in the vertical direction,

5.5

FIGURE 5.12

Headed deformed reinforcing
bar with an obstruction of the
deformations that extends
less than 2 bar diameters
from the bearing face of

the head.

ANCHORAGE IN TENSION USING HEADED BARS

Requirements for Headed Bars

Headed bars provide an alternative to hooks when the desired tensile stress in the bar
cannot be developed by bond alone. ACI Code 3.5.9 requires that headed deformed
bars conform to ASTM A970 and, in addition, that obstructions or interruptions of the
bar deformations not extend more than 2 bar diameters from the bearing face of the
head, as shown in Fig. 5.12. While heads come in many configurations and sizes, ACI
Code 12.6.1 requires that the bearing area of the head A,,, be equal to at least 4 times
the area of the bar A,.

Obstructions, such as shown in Fig. 5.12, are not counted as part of the bearing
area according to the Commentary to ACI Code 3.5.9, and thus, the net bearing area
of the head may be less than the gross area of the head minus the area of the bar.

Development Length and Modification Factors for Headed Bars

Differences between the mode of failure of headed bars loaded in tension and those
exhibited by straight bars and hooks, coupled with the fact that only limited test data
are available for headed bars, have resulted in the ACI Code adding restrictions to the
design criteria for headed bars.

The bond strength of headed bars results from a combination of bond along the
length of the bar and bearing at the face of the head. Prior to failure, the bond force
along the bar increases and then decreases as slip occurs, while the bearing force on

Obstruction of
deformations

Diameter of
obstruction
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FIGURE 5.13

Headed deformed bars
showing conical concrete
wedges. (Photograph
courtesy of Michael Keith
Thompson.)

the head increases. In some cases, the contribution of bond along the length of the bar
may become negligible prior to failure. Unlike straight reinforcing bars, which tend to
fail in bond due to the formation of splitting cracks between bars or between the bar
and the surface of the concrete, and hooks, which tend to fail in bond by cracking in
the plane of the hook, headed bars fail in bond due to the formation of a conical
wedge, as shown in Fig. 5.13, which causes radial splitting cracks in the concrete. In
addition to radial splitting, failure can also occur due to the formation of a flat con-
crete cone near the surface (shallow pullout), if the development is relatively short, or
a breakout cone, if the development length is long, and due to spalling or side-face
blowout, if the side cover is low (Refs. 5.25 to 5.28). Transverse confining reinforce-
ment, such as stirrups and ties, which increase the bond strength of both straight and
hooked bars, provides little additional capacity to headed bars and is, thus, not consid-
ered when calculating the development length of headed bars. Because transverse
reinforcement limits the width of splitting cracks, however, its use is still recommended
when headed bars are used.

Because test data are not available for a wide range of concrete properties, bar
sizes, and member geometries, the design provisions are restricted to No. 11 (No. 36)
and smaller bars with yield strengths not greater than 60,000 psi. The bars, as distinct
from the heads, must have a clear cover of at least 2d, and a clear spacing between
bars of at least 4d,,. In addition, headed bars are restricted by ACI Code 12.6 to use
with normalweight concrete, and the value of f! used to calculate the development
length /,, is limited to 6000 psi. The development length for headed deformed bars in

tension is
0.016y, f,
ly= ( ___!If‘ 5 )d.‘; (5.7)

VL

where ¢, = 1.2 for epoxy-coated reinforcement and 1.0 for other cases.




FIGURE 5.14
Development length of
headed deformed bars.

FIGURE 5.15
Headed deformed bar
extended to far side of
column with anchorage
length that exceeds /,,.
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TABLE 5.4

Development lengths for headed deformed bars in tension

A. Development length [, for headed bars <%> d
it ,\/f‘c,‘ b

B. Modification factors applied to

Where anchorage or development for £, is not specifically required,

. ! y : A, required
reinforcement in excess of that required by analysis

A provided
v,
For epoxy-coated bars 1.2
For other bars 1.0

Where the reinforcement provided exceeds that required by analysis, except when
development of the yield strength f, is specifically required, the value of [ in Eq. (5.7)
may be multiplied by the factor (A, required)/(A, provided). Under any circumstances,
I,, may not be less than 8 bar diameters or less than 6 in. Calculation of the development
length 1, and the applicable modifying factors are summarized in Table 5.4.

The development length /,, should be measured from the bearing face of the head
to the critical section, as shown in Fig. 5.14. When headed bars from a flexural member,
such as a beam or a slab, terminate in a supporting member, such as the column shown
in Fig. 5.15, the commentary to ACI Code 12.6 recommends that the bar be extended
“through the joint to the far face of the confined core of the supporting member,
allowing for cover and avoidance of interference with column reinforcement,” even if
the resulting anchorage length is greater than /. Doing so helps to adequately anchor

Critical

L~ section
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the compressive forces that are developed at the face of the head and improves the
performance of the beam-column connection.

Mechanical Anchorage

In cases where headed bars do not meet the requirements specified in Section 12.6 or
in cases where bars are terminated by mechanisms such as welded plates or other
manufactured devices, ACI Code 12.6.4 allows such devices to be used to develop the
reinforcement if the adequacy of the devices is established by tests. In such cases, the
development of the reinforcement may consist of the combined contributions of bond
along the length of the bar leading to the critical section, plus that of the mechanical
anchorage, much in the way that the total resistance of headed bars is provided.

EXAMPLE 5.3

FIGURE 5.16
Column and bracket for
headed deformed bar
development example.

Development of headed deformed bars in tension. Three No. 7 (No. 22) bars serve as top
reinforcement for a bracket framing into a 16 X 16 in. column (Fig. 5.16). The bracket projects
15 in. from the column and is the same width as the column. The top cover to the center of the
bars is 3 in., and the side cover to the center of the bars is 3.5 in. The bars are spaced laterally
at 4.5 in. These dimensions are inadequate for straight development length or for standard hooks.
Based on other reinforcement, cover requirements, and head thickness, total development
lengths for headed bars of 12 in. in the column and 12.5 in. in the bracket are available. The
reinforcing bars have f, = 60,000 psi, and the concrete is normalweight with f. = 5000 psi.
Determine if a bar with heads at both ends can be used in this application.

SoLuTION. The minimum head size is Ag,, = 4A, = 2.4 in?. The smaller available anchorage
length in the column governs. Assuming that the bars will be used at the full yield strength, the
development length [, calculated using Eq. (5.7) is
0.016¢. f, 0.016 X 1.0 X 60,000
a=\ "= )dy=

YA - V5000

)0.875 =11.9in.

[ 1 6" | 1 5}1
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I

/ Bracket

L
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which must be checked against the minimum values for /;, which are
ldt = 8db = Tin.
ly = 6in.
Thus, the value of [, obtained using Eq. (5.7) governs and is less than the available anchorage

length. Thus, a bar with heads at both ends can be used, with a distance between heads of 24.5 in.,
as shown in Fig. 5.16.

5.6

ANCHORAGE REQUIREMENTS FOR WEB REINFORCEMENT

Stirrups should be carried as close as possible to the compression and tension faces
of a beam, and special attention must be given to proper anchorage. The truss model
(see Section 4.8 and Fig. 4.19) for design of shear reinforcement indicates the devel-
opment of diagonal compressive struts, the thrust from which is equilibrated, near the
top and bottom of the beam, by the tension web members (i.e., the stirrups). Thus, at
the factored load, the tensile strength of the stirrups must be developed for almost
their full height. Clearly, it is impossible to do this by development length. For this
reason, stirrups normally are provided with 90° or 135° hooks at their upper end (see
Fig. 5.9b for standard hook details) and at their lower end are bent 90° to pass around
the longitudinal reinforcement. In simple spans, or in the positive bending region of
continuous spans, where no top bars are required for flexure, stirrup support bars
must be used. These are usually about the same diameter as the stirrups themselves,
and they not only provide improved anchorage of the hooks but also facilitate fabri-
cation of the reinforcement cage, holding the stirrups in position during placement of
the concrete.

ACI Code 12.13 includes special provisions for anchorage of web reinforce-
ment. The ends of single-leg, simple-U, or multiple-U stirrups are to be anchored by
one of the following means:

1. For No. 5 (No. 16) bars and smaller, and for Nos. 6, 7, and 8 (Nos. 19, 22, and
25) bars with fy, of 40,000 psi or less, a standard hook around longitudinal rein-
forcement, as shown in Fig. 5.17a.

2. For Nos. 6, 7, and 8 (Nos. 19, 22, and 25) stirrups with fy, greater than 40,000 psi,
a standard hook around a longitudinal bar, plus an embedment between midheight
of the member and the outside end of the hook equal to or greater than
0.014d, f,/A V! in., as shown in Fig. 5.17b.

ACI Code 12.13 specifies further that, between anchored ends, each bend in the
continuous portion of a simple-U or multiple-U stirrup shall enclose a longitudinal
bar, as in Fig. 5.17c. Longitudinal bars bent to act as shear reinforcement, if extended
into a region of tension, shall be continuous with longitudinal reinforcement and, if
extended into a region of compression, shall be anchored beyond middepth d/2 as
specified for development length. Pairs of U stirrups or ties so placed as to form a
closed unit shall be considered properly spliced when length of laps are 1.3, as in
Fig. 5.17d. In members at least 18 in. deep, such splices are considered adequate if
A, f,, = 9000 Ib and the stirrup legs extend the full depth of the member. As will be
discussed in Section 5.11, pairs of U stirrups may not be used in perimeter beams.

Other provisions are contained in the ACI Code relating to the use of welded
wire reinforcement, which is sometimes used for web reinforcement in precast and
prestressed concrete beams.
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FIGURE 5.17

ACT requirements for stirrup
anchorage: (@) No. 5 (No.
16) stirrups and smaller, and
Nos. 6, 7, and 8 (Nos. 19, 22,
and 25) stirrups with yield
stress not exceeding

40,000 psi; (b) Nos. 6, 7,
and 8 (Nos. 19, 22, and 25)
stirrups with yield stress
exceeding 40,000 psi;

(c) wide beam with multiple-
leg U stirrups; (d) pairs of

U stirrups forming a closed
unit. See Fig. 5.9 for
alternative standard hook
details.

5.7
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WELDED WIRE REINFORCEMENT

Tensile steel consisting of welded wire reinforcement (often referred to as welded
wire fabric), with either deformed or smooth wires, is commonly used in one-way
and two-way slabs and certain other types of members (see Section 2.15). For
deformed wire reinforcement, some of the development is assigned to the welded
cross wires and some to the embedded length of the deformed wire. According to
ACI Code 12.7, the development length of welded deformed wire reinforcement
measured from the point of the critical section to the end of the wire is computed as
the product of the development length I, from Table 5.1 or from the more accurate
Eq. (5.4) and the appropriate modification factor or factors related to those equations,
except that the development length is not to be less than 8 in. For welded deformed
wire reinforcement with at least one cross wire within the development length and
not less than 2 in. from the point of the critical section, a deformed wire factor Y,
equal to the greater of

— 35,000
fy—f—— (580)
y
or
5d
a4 (5.8b)
s

is applied, where s is the lateral spacing of the wires being developed; but this factor
need not exceed 1.0. When ,, from Eq. (5.8a) or (5.8b) is used, the epoxy coating
factor i, is taken as 1.0. For welded wire deformed reinforcement with no cross wires
within the development length or with a single cross wire less than 2 in. from the point
of the critical section, the wire fabric factor is taken to be equal to 1.0 and the devel-
opment length determined as for the deformed wire.

For welded plain wire reinforcement, development is considered to be provided
by embedment of two cross wires, with the closer wire not less than 2 in. from the
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critical section. However, the development length measured from the critical section
to the outermost cross wire is not to be less than

A,

I, =027 2 —=

s AV
according to ACI Code 12.8, where A,, is the cross-sectional area of an individual wire
to be developed or spliced. The modification factor for excess reinforcement may be
applied, but /, is not to be less than 6 in. for the welded plain wire reinforcement.

(5.9

DEVELOPMENT OF BARS IN COMPRESSION

Reinforcement may be required to develop its compressive strength by embedment
under various circumstances, €.g., where bars transfer their share of column loads to a
supporting footing or where lap splices are made of compression bars in column (see
Section 5.13). In the case of bars in compression, a part of the total force is transferred
by bond along the embedded length, and a part is transferred by end bearing of the
bars on the concrete. Because the surrounding concrete is relatively free of cracks and
because of the beneficial effect of end bearing, shorter basic development lengths are
permissible for compression bars than for tension bars. If transverse confinement steel
is present, such as spiral column reinforcement or special spiral steel around an indi-
vidual bar, the required development length is further reduced. Hooks and heads
such as are shown in Figs. 5.9 and 5.12 are not effective in transferring compression
from bars to concrete, and, if present for other reasons, should be disregarded in
determining required embedment length.

According to ACI Code 12.3, the development length in compression is the
greater of

i (0'02fy> d 5.10

de = A\/f_c’ b (5.10a)
and

lie = 0.0003f,d, (5.10b)

Modification factors summarized in part B of Table 5.5, as applicable, are applied to
the development length in compression to obtain the value of development length I,
to be used in design. In no case is I, to be less than 8 in., according to the ACI Code.
Basic and modified compressive development lengths are given in Table A.11 of
Appendix A.

BUNDLED BARS

It was pointed out in Section 3.6¢ that it is sometimes advantageous to “bundle” tensile
reinforcement in large beams, with two, three, or four bars in contact, to provide for
improved placement of concrete around and between bundles of bars. Bar bundles are
typically triangular or L-shaped for three bars, and square for four. When bars are cut
off in a bundled group, the cutoff points must be staggered at least 40 diameters.

t The ACI Code offers no explanation as to why I, ... = 6 in. for welded plain wire reinforcement, but 8 in. for welded deformed wire

reinforcement.
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5.10

TABLE 5.5
Development lengths for deformed bars in compression

0.02f,
- )
A. Basic development length /. RN/ 4 dy
= 0.0003 £, d,

B. Modification factors to be applied to I,

. . . . A, required
Reinforcement in excess of that required by analysis —_—
A, provided
Reinforcement enclosed within spiral
reinforcement not less than  in. diameter and
not more than 4 in. pitch or within No. 4 (No. 13)
ties spaced at not more than 4 in. on centers 0.75

According to ACI Code 12.4, the development length of individual bars within a bundle,
for both tension and compression, is that of the individual bar increased by 20 percent
for a three-bar bundle and by 33 percent for a four-bar bundle, to account for the
probable deficiency of bond at the inside of the bar group.

For bundled bars, to determine the appropriate spacing and cover values (1) for
use in Table 5.1, (2) when calculating the confinement term K, in Eq. (5.4), or (3)
when selecting the epoxy coating factor i,, the unit of bundled bars is treated as a
single bar with a diameter derived from the equivalent total area and having a centroid
that coincides with that of the bar group.

BAR CUTOFF AND BEND POINTS IN BEAMS

Chapter 3 dealt with moments, flexural stresses, concrete dimensions, and longitudi-
nal bar areas at the critical moment sections of beams. These critical moment sections
are generally at the face of the supports (negative bending) and near the middle of the
span (positive bending). Occasionally, haunched members having variable depth or
width are used so that the concrete flexural capacity will agree more closely with the
variation of bending moment along a span or series of spans. Usually, however, pris-
matic beams with constant concrete cross-sectional dimensions are used to simplify
formwork and thus to reduce cost.

The steel requirement, on the other hand, is easily varied in accordance with
requirements for flexure, and it is common practice either to cut off bars where they
are no longer needed to resist stress or, sometimes in the case of continuous beams, to
bend up the bottom steel (usually at 45°) so that it provides tensile reinforcement at
the top of the beam over the supports.

Theoretical Points of Cutoff or Bend

The tensile force to be resisted by the reinforcement at any cross section is

M

T=Af =~
where M is the value of bending moment at that section and z is the internal lever arm
of the resisting moment. The lever arm z varies only within narrow limits and is never




FIGURE 5.18
Bar cutoff points from
moment diagrams.
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less than the value at the maximum-moment section. Consequently, the tensile force
can be taken with good accuracy directly proportional to the bending moment. Since
it is desirable to design so that the steel everywhere in the beam is as nearly fully
stressed as possible, it follows that the required steel area is very nearly proportional
to the bending moment.

To illustrate, the moment diagram for a uniformly loaded simple-span beam
shown in Fig. 5.18a can be used as a steel requirement diagram. At the maximum-
moment section, 100 percent of the tensile steel is required (0 percent can be discon-
tinued or bent), while at the supports, O percent of the steel is theoretically required
(100 percent can be discontinued or bent). The percentage of bars that could be
discontinued elsewhere along the span is obtainable directly from the moment diagram,
drawn to scale. To facilitate the determination of cutoff or bend points for simple spans,
Graph A.2 of Appendix A has been prepared. It represents a half-moment diagram for
a uniformly loaded simple span.

To determine cutoff or bend points for continuous beams, the moment diagrams
resulting from loading for maximum span moment and maximum support moment are
drawn. A moment envelope results that defines the range of values of moment at any
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section. Cutoff or bend points can be found from the appropriate moment curve as for
simple spans. Figure 5.18b illustrates, for example, a continuous beam with moment
envelope resulting from alternate loadings to produce maximum span and maximum
support moments. The locations of the points at which 50 percent of the bottom and
top steel may theoretically be discontinued are shown.

According to ACI Code 8.3, uniformly loaded, continuous reinforced concrete
beams of fairly regular span may be designed using moment coefficients (see Table 12.1).
These coefficients, analogous to the numerical constant in the expression gwL? for
simple-beam bending moment, give a conservative approximation of span and support
moments for continuous beams. When such coefficients are used in design, cutoff and
bend points may conveniently be found from Graph A.3 of Appendix A. Moment
curves corresponding to the various span and support-moment coefficients are given
at the top and bottom of the chart, respectively.

Alternatively, if moments are found by frame analysis rather than from ACI
moment coefficients, the location along the span where bending moment reduces to
any particular value (e.g., as determined by the bar group after some bars are cut off),
or to zero, is easily computed by statics.

Practical Considerations and ACI Code Requirements

Actually, in no case should the tensile steel be discontinued exactly at the theoretically
described points. As described in Section 4.3 and shown in Fig. 4.7, when diagonal
tension cracks form, an internal redistribution of forces occurs in a beam. Prior to
cracking, the steel tensile force at any point is proportional to the moment at a verti-
cal section passing through the point. However, after the crack has formed, the tensile
force in the steel at the crack is governed by the moment at a section nearer midspan,
which may be much larger. Furthermore, the actual moment diagram may differ from
that used as a design basis, due to approximation of the real loads, approximations in
the analysis, or the superimposed effect of settlement or lateral loads. In recognition
of these facts, ACI Code 12.10 requires that every bar be continued at least a distance
equal to the effective depth of the beam or 12 bar diameters (whichever is larger)
beyond the point at which it is theoretically no longer required to resist stress, except
at supports of simple spans and at the free end of cantilevers.

In addition, it is necessary that the calculated stress in the steel at each section
be developed by adequate embedded length or end anchorage, or a combination of the
two. For the usual case, with no special end anchorage, this means that the full devel-
opment length [, must be provided beyond critical sections at which peak stress exists
in the bars. These critical sections are located at points of maximum moment and at
points where adjacent terminated reinforcement is no longer needed to resist bending. '

Further reflecting the possible change in peak stress location, ACI Code 12.11
requires that at least one-third of the positive-moment steel (one-fourth in continuous
spans) be continued uninterrupted along the same face of the beam a distance at least 6 in.
into the support. When a flexural member is a part of a primary lateral load resisting
system, positive-moment reinforcement required to be extended into the support must be
anchored to develop the yield strength of the bars at the face of support to account for

¥ The ACI Code is ambiguous as to whether or not the extension length d or 12d,, is to be added to the required development length /,. The Code
Commentary presents the view that these requirements need not be superimposed, and Fig. 5.19 has been prepared on that basis. However, the
argument just presented regarding possible shifts in moment curves or steel stress distribution curves leads to the conclusion that these
requirements should be superimposed. In such cases, each bar should be continued a distance 1, plus the greater of d or 12d, beyond the peak

stress location.



FIGURE 5.19
Bar cutoff requirements of
the ACT Code.
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the possibility of reversal of moment at the supports. According to ACI Code 12.12, at
least one-third of the total reinforcement provided for negative moment at the support
must be extended beyond the extreme position of the point of inflection a distance not
less than one-sixteenth the clear span, or d, or 12d,, whichever is greatest.

Requirements for bar cutoff or bend point locations are summarized in Fig. 5.19.
If negative bars L are to be cut off, they must extend a full development length /, beyond
the face of the support. In addition, they must extend a distance d or 124, beyond the
theoretical point of cutoff defined by the moment diagram. The remaining negative bars
M (at least one-third of the total negative area) must extend at least [, beyond the theo-
retical point of cutoff of bars L and in addition must extend d, 12d,, or [,/16 (whichever
is greatest) past the point of inflection of the negative-moment diagram.

If the positive bars N are to be cut off, they must project [, past the point of theo-
retical maximum moment, as well as d or 12d, beyond the cutoff point from the positive-
moment diagram. The remaining positive bars O must extend /, past the theoretical point
of cutoff of bars N and must extend at least 6 in. into the face of the support.

When bars are cut off in a tension zone, there is a tendency toward the formation
of premature flexural and diagonal tension cracks in the vicinity of the cut end. This
may result in a reduction of shear capacity and a loss in overall ductility of the beam.
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ACI Code 12.10 requires special precautions, specifying that no flexural bar shall be
terminated in a tension zone unless one of the following conditions is satisfied:

1. The shear is not over two-thirds of the design strength ¢V,

2. Stirrups in excess of those normally required are provided over a distance along
each terminated bar from the point of cutoff equal to 3d. These “binder” stirrups
shall provide an area A, = 60b,s/f,,. In addition, the stirrup spacing shall not
exceed d/8,, where B, is the ratio of the area of bars cut off to the total area of
bars at the section.

3. The continuing bars, if No. 11 (No. 36) or smaller, provide twice the area required
for flexure at that point, and the shear does not exceed three-quarters of the design
strength ¢V,

As an alternative to cutting off the steel, tension bars may be anchored by
bending them across the web and making them continuous with the reinforcement on
the opposite face. Although this leads to some complication in detailing and placing
the steel, thus adding to construction cost, some engineers prefer the arrangement
because added insurance is provided against the spread of diagonal tension cracks. In
some cases, particularly for relatively deep beams in which a large percentage of the
total bottom steel is to be bent, it may be impossible to locate the bend-up point for
bottom bars far enough from the support for the same bars to meet the requirements
for top steel. The theoretical points of bend should be checked carefully for both
bottom and top steel.

Because the determination of cutoff or bend points may be rather tedious,
particularly for frames that have been analyzed by elastic methods rather than by
moment coefficients, many designers specify that bars be cut off or bent at more or
less arbitrarily defined points that experience has proved to be safe. For nearly equal
spans, uniformly loaded, in which not more than about one-half the tensile steel is to
be cut off or bent, the locations shown in Fig. 5.20 are satisfactory. Note, in Fig. 5.20,
that the beam at the exterior support at the left is shown to be simply supported. If the
beam is monolithic with exterior columns or with a concrete wall at that end, details
for a typical interior span could be used for the end span as well.

c. Special Requirements near the Point of Zero Moment

While the basic requirement for flexural tensile reinforcement is that a full develop-
ment length [, be provided beyond the point where the bar is assumed fully stressed
to f,, this requirement may not be sufficient to ensure safety against bond distress.
Figure 5.21 shows the moment and shear diagram representative of a uniformly
loaded continuous beam. Positive bars provided to resist the maximum moment at ¢
are required to have a full development length beyond the point ¢, measured in the
direction of decreasing moment. Thus /, in the limiting case could be exactly equal
to the distance from point ¢ to the point of inflection. However, if that requirement were
exactly met, then at point b, halfway from ¢ to the point of inflection, those bars would
have only one-half their development length remaining, whereas the moment would be
three-quarters of that at point ¢, and three-quarters of the bar force must yet be devel-
oped. This situation arises whenever the moments over the development length are
greater than those corresponding to a linear reduction to zero. Therefore, the problem
is a concern in the positive-moment region of continuous uniformly loaded spans, but
not in the negative-moment region.



FIGURE 5.20

Cutoff or bend points for
bars in approximately
equal spans with
uniformly distributed
loads.

FIGURE 5.21
Development length
requirement at point of
inflection.
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The bond force U per unit length along the tensile reinforcement in a beam is
U = dT/dx, where dT is the change in bar tension in the length dx. Since dT = dM/z,
this can be written

_ M

U
zdx

(@)
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that is, the bond force per unit length of bar, generated by bending, is proportional to
the slope of the moment diagram. In reference to Fig. 5.21a, the maximum bond force
U in the positive-moment region would therefore be at the point of inflection, and U
would gradually diminish along the beam toward point c. Clearly, a conservative
approach in evaluating adequacy in bond for those bars that are continued as far as the
point of inflection (not necessarily the full A, provided for M, at point ¢) would be to
require that the bond resistance, which is assumed to increase linearly along the bar
from its end, be governed by the maximum rate of moment increase, i.e., the maxi-
mum slope dM/dx of the moment diagram, which for positive bending is seen to occur
at the inflection point.

From elementary mechanics, it is known that the slope of the moment diagram
at any point is equal to the value of the shear force at that point. Therefore, with
reference to Fig. 5.21, the slope of the moment diagram at the point of inflection is V,.
A dashed line may therefore be drawn tangent to the moment curve at the point of
inflection having the slope equal to the value of shear force V,. Then if M, is the
nominal flexural strength provided by those bars that extend to the point of inflection,
and if the moment diagram were conservatively assumed to vary linearly along the
dashed line tangent to the actual moment curve, from the basic relation that M, /a =
V,, a distance a is established:

M, b

v (b)
If the bars in question were fully stressed at a distance a to the right of the point of
inflection, and if the moments diminished linearly to the point of inflection, as
suggested by the dashed line, then bond failure would not occur if the development
length [, did not exceed the distance a. The actual moments are less than indicated by
the dashed line, so the requirement is on the safe side.

If the bars extend past the point of inflection toward the support, as is always
required, then the extension can be counted as contributing toward satisfying the
requirement for embedded length. Arbitrarily, according to ACI Code 12.11, a length
past the point of inflection not greater than the larger of the beam depth d or 12 times
the bar diameter d, may be counted toward satisfying the requirement. Thus, the
requirement for tensile bars at the point of inflection is that

a:

= M, +1 (5.11)
d— Vu a .
where M, = nominal flexural strength assuming all reinforcement at section to be
stressed to f,
V, = factored shear force at section
1, = embedded length of bar past point of zero moment, but not to exceed
the greater of d or 12d,

A corresponding situation occurs near the supports of simple spans carrying
uniform loads, and similar requirements must be imposed. However, because of the
beneficial effect of vertical compression in the concrete at the end of a simply supported
span, which tends to prevent splitting and bond failure along the bars, the value M,,/V,
may be increased 30 percent for such cases, according to ACI Code 12.11. Thus, at the
ends of a simply supported span, the requirement for tension reinforcement is

M,
=138+, (5.12)

u
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The consequence of these special requirements at the point of zero moment is
that, in some cases, smaller bar sizes must be used to obtain smaller /,, even though
requirements for development past the point of maximum stress are met.

It may be evident from review of Sections 5.10b and 5.10c that the determina-
tion of cutoff or bend points in flexural members is complicated and can be extremely
time-consuming in design. It is important to keep the matter in perspective and to
recognize that the overall cost of construction will be increased very little if some bars
are slightly longer than absolutely necessary, according to calculation, or as dictated
by ACI Code provisions. In addition, simplicity in construction is a desired goal, and
can, in itself, produce compensating cost savings. Accordingly, many engineers in
practice continue all positive reinforcement into the face of the supports the required
6 in. and extend all negative reinforcement the required distance past the points of
inflection, rather than using staggered cutoff points.

STRUCTURAL INTEGRITY PROVISIONS

Experience with structures that have been subjected to damage to a major supporting
element, such as a column, owing to accident or abnormal loading has indicated that
total collapse can be prevented through relatively minor changes in bar detailing. If
some reinforcement, properly confined, is carried continuously through a support,
then even if that support is damaged or destroyed, catenary action of the beams can
prevent total collapse. In general, if beams have bottom and top steel meeting or
exceeding the requirements summarized in Sections 5.10b and 5.10c, and if binding
steel is provided in the form of properly detailed stirrups, then that catenary action can
usually be ensured.

According to ACI Code 7.13.2, beams at the perimeter of the structure (span-
drel beams) must have continuous reinforcement passing through the region bounded
by the longitudinal reinforcement of the columns consisting of at least one-sixth
of the tension reinforcement required for negative moment at the support, but not
less than two bars, and at least one-quarter of the tension reinforcement required
for positive moment at midspan, but not less than two bars. At noncontinuous
supports, the reinforcement must be anchored using a standard hook or a headed
deformed bar to develop f, at the face of the support. The continuous reinforce-
ment must be enclosed by closed stirrups or closed ties perpendicular to the axis
of the member, a closed cage of welded wire reinforcement with transverse wires
perpendicular to the axis of the member, or spiral reinforcement (see Fig. 1.15).
This transverse reinforcement must be anchored by a 135° standard hook (Fig. 5.9b)
or a seismic hook (see Section 20.4) around a longitudinal bar, or where the concrete
surrounding the anchorage is restrained against spalling by a flange or slab, by
either a 90° or 135° standard hook around a longitudinal bar, as shown in Fig. 5.174
and b.

Figure 5.22 shows a two-piece stirrup that meets the requirements of ACI Code
7.13.2. Although the spacing of these stirrups is not specified, the requirements for
minimum shear steel given in Section 4.5b provide guidance in regions where shear
does not require closer spacing. The stirrups need not be extended through the joints.
Overlapping pairs of U stirrups of the type shown in Fig. 5.17d are not permitted in
perimeter beams because damage to the side cover concrete may cause both the stir-
rups and top longitudinal reinforcement to tear out of the concrete, thus preventing the
longitudinal reinforcement from acting as a catenary.
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FIGURE 5.22

Two-piece stirrup meeting
the requirements of ACI
Code 7.13.2 for confinement
of longitudinal integrity
reinforcement in perimeter
beams. The 90 degree hook
must be placed adjacent to
the slab.

5.12

Confinement
from slab

i,

The required continuity of longitudinal steel can be provided using top rein-
forcement spliced at midspan and bottom reinforcement spliced at or near the supports
using Class B tension splices, or mechanical or welded splices (see Section 5.13).

In other than perimeter beams, when stirrups of the type shown in Fig. 5.22 are
not provided, at least one-quarter of the positive-moment reinforcement required at
midspan, but not less than two bars, must pass through the columns’ longitudinal
reinforcement and must be continuous. The requirements for anchoring this longitu-
dinal reinforcement at noncontinuous supports and for splicing the bars to provide
continuity are the same as for perimeter beams.

Note that these provisions require very little additional steel in the structure.
At least one-quarter of the bottom bars must be extended 6 in. into the support by
other ACI Code provisions; the structural integrity provisions merely require that
these bars be made continuous or spliced. Similarly, other ACI Code provisions
require that at least one-third of the negative bars be extended a certain minimum
distance past the point of inflection; the structural integrity provisions for perime-
ter beams require only that one-half of those bars be further extended and spliced
at midspan.

INTEGRATED BEAM DESIGN EXAMPLE

In this and in the preceding chapters, the several aspects of the design of rein-
forced concrete beams have been studied more or less separately: first the flexural
design, then design for shear, and finally for bond and anchorage. The following
example is presented to show how the various requirements for beams, which are
often in some respects conflicting, are satisfied in the overall design of a repre-
sentative member.

EXAMPLE 5.4

Integrated design of T beam. A floor system consists of single-span T beams 8 ft on cen-
ters, supported by 12 in. masonry walls spaced at 25 ft between inside faces. The general
arrangement is shown in Fig. 5.23a. A 5 in. monolithic slab carries a uniformly distributed serv-
ice live load of 165 psf. The T beams, in addition to the slab load and their own weight, must
carry two 16,000 Ib equipment loads applied over the stem of the T beam 3 ft from the span
centerline as shown. A complete design is to be provided for the T beams, using concrete of
4000 psi strength and bars with 60,000 psi yield stress. (Note: Because normalweight concrete
is used, A = 1.0 and, as such, will be dropped from the calculations for shear and bond.)

SoLuTION. According to the ACI Code, the span length is to be taken as the clear span plus
the beam depth, but need not exceed the distance between the centers of supports. The latter
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T beam design for Example 5.4.
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provision controls in this case, and the effective span is 26 ft. Estimating the beam web dimen-
sions to be 12 X 24 in., the calculated and factored dead loads are as follows:

Slab:

% X 150 X 7 = 440 Ib/ft
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Beam:

12 X 24
144

150 = 300 Ib/ft

w, = 740 1b/ft
12w, = 890 Ib/ft
The uniformly distributed live load is
w, = 165 X 8 = 1320 Ib/ft
1.6w, = 2110 Ib/ft

Live load overload factors are applied to the two concentrated loads to obtain P, = 16,000 X
1.6 = 25,600 1b. Factored loads are summarized in Fig. 5.23b.

In lieu of other controlling criteria, the beam web dimensions will be selected on the
basis of shear. The left and right reactions under factored load are 25.6 + 3.00 X 13 = 64.6
kips. With the effective beam depth estimated to be 20 in., the maximum shear that need be con-
sidered in design is 64.6 — 3.00(0.50 + 1.67) = 58.1 kips. Although the ACI Code permits V,
as high as 8V/f! b, d, this would require very heavy web reinforcement. A lower limit of
4Vf! b, d will be adopted. With V, = 2V/f/ b,,d this results in a maximum V, = 6 V7. b, d.
Then b,d = V,/(6¢VF) = 58,100/(6 X 0.75V4000) = 204 in>. Cross-sectional dimen-
sions b,, = 12 in. and d = 18 in. are selected, providing a total beam depth of 22 in. The assumed
dead load of the beam need not be revised.

According to the Code, the effective flange width b is the smallest of the three quantities

L 26X 12

4 4
16k + b, = 80 + 12 = 92in.

= 78 in.

Centerline spacing = 96 in.

The first controls in this case. The maximum moment is at midspan, where
1
M, = —8— X 3.00 X 262 + 25.6 X 10 = 510 ft-kips

Assuming for trial that the stress-block depth will equal the slab thickness leads to

M, 510 X 12

A = =
" ¢f,(d-aj2) 090X 60 X 15.5

= 7.31in’

Then

ALy 7.31 X 60
a = =
0.85f/b 0.85X 4 X 78

= 1.65 in.

The stress-block depth is seen to be less than the slab depth; rectangular beam equations are
valid. An improved determination of A, is

510 X 12

= = 6.60 in?
* = 0.90 X 60 X 17.11 m

A check confirms that this is well below the maximum permitted reinforcement ratio. Four
No. 9 (No. 29) plus four No. 8 (No. 25) bars will be used, providing a total area of 7.14 in?.
They will be arranged in two rows, as shown in Fig. 5.23d, with No. 9 (No. 29) bars at the outer
end of each row. Beam width b,, is adequate for this bar arrangement.

While the ACI Code permits discontinuation of two-thirds of the longitudinal reinforce-
ment for simple spans, in the present case it is convenient to discontinue only the upper layer
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of steel, consisting of one-half of the total area. The moment capacity of the member after the
upper layer of bars has been discontinued is then found:

3.57 X 60

4= 085 x4 x 78 08lin.

1
oM, = qSAny(d - g-) = 090 X 3.57 X 60 X 18.66 X — = 300 fe-kips

For the present case, with a moment diagram resulting from combined distributed and concentrated
loads, the point at which the applied moment is equal to this amount must be calculated. (In the
case of uniformly loaded beams, Graphs A.2 and A.3 in Appendix A are helpful.) If x is the
distance from the support centerline to the point at which the moment is 300 ft-kips, then

64.6x — 3—02(-)£ = 300

x = 5.30

The upper bars must be continued at least d = 1.50 ft or 12d, = 1.13 ft beyond this theoretical
point of cutoff. In addition, the full development length I, must be provided past the maximum-
moment section at which the stress in the bars to be cut is assumed to be f,- Because of the heavy
concentrated loads near the midspan, the point of peak stress will be assumed to be at the
concentrated load rather than at midspan. For the four upper bars, assuming 1.50 in. clear cover
to the outside of the No. 3 (No. 10) stirrups, the clear side cover is 1.50 + 0.38 = 1.88 in., or
1.66d,. Assuming equal clear spacing between all four bars, that clear spacing is [12.00 — 2 X
(1.50 + 0.38 + 1.13 + 1.00)}/3 = 1.33 in., or 1.184,. Noting that the ACI Code requirements
for minimum stirrups are met, it is clear that all restrictions for the use of the simplified equa-
tion for development length are met. From Table 5.1 (Section 5.3), the required development
length is

60,000
20’V 4000

or 4.42 ft. Thus, the bars must be continued at least 3.00 + 4.42 = 7.42 ft past the midspan
point, but in addition they must continue to a point 5.30 — 1.50 = 3.80 ft from the support
centerline. The second requirement controls and the upper layer of the bars will be terminated,
as shown in Fig. 5.23e, 3.30 ft from the support face. The bottom layer of bars will be extended
to a point 3 in. from the end of the beam, providing 5.55 ft embedment past the critical section
for cutoff of the upper bars. This exceeds the development length of the lower set of bars,
confirming that cutoff and extension requirements are met.

Note that a simpler design, using very little extra steel, would result from extending all
eight positive bars into the support. Whether or not the more elaborate calculations and more
complicated placement are justified would depend largely on the number of repetitions of the
design in the total structure.

Checking by Eq. (5.12) to ensure that the continued steel is of sufficiently small diame-
ter determines that

Iy= 1.13 =47 X 1.13 = 53 in.

333 X 12
I, = 1.3327‘6— + 3 = 83in.
The actual I, of 53 in. meets this restriction.
Since the cut bars are located in the tension zone, special binding stirrups will be used to
control cracking; these will be selected after the normal shear reinforcement has been determined.
The shear diagram resulting from application of factored loads is shown in Fig. 5.23c.
The shear contribution of the concrete is

oV, = 0.75 X 2V 4000 X 12 X 18 = 20,500 Ib
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Thus web reinforcement must be provided for that part of the shear diagram shown shaded.

No. 3 (No. 10) stirrups will be selected. The maximum spacings must not exceed
df2 =9in, 24 in., or A, jg,,/(0.75\/f_c’ b,) = 0.22 X 60,000/(0.75V4000 X 12) = 23 in. =<
A.f,./50b,, = 0.22 X 60,000/50 X 12 = 22 in. The first criterion controls here. For reference,
from Eq. (4.144) the hypothetical stirrup spacing at the support is

_ 075 X022 X 60 X 18

5o = 646 — 205 = 4.04 in.
and at 2 ft intervals along the span,
5, = 4.68in.
54 = 5.55in.
s¢ = 6.83in.
s = 8.87in.
s;0 = 12.64 in.

The spacing need not be closer than that required 2.00 ft from the support centerline. In
addition, stirrups are not required past the point of application of concentrated load, since
beyond that point the shear is less than one-half of ¢V_. The final spacing of vertical stirrups
selected is

Ispaceat2in. = 2in.
7 spaces at 4in. = 28 in.
8 spaces at 5 in. = 40 in.
5 spaces at 9 in. = 45 in.

Total = 115 in. = 9 ft 7 in. from the face of the
support (121 in. = 10 ft 1 in. from
the support centerline)

Two No. 3 (No. 10) longitudinal bars will be added to meet anchorage requirements and fix the
top of the stirrups.

In addition to the shear reinforcement just specified, it is necessary to provide extra web
reinforcement over a distance equal to 2d, or 13.5 in., from the cut ends of the discontinued
steel. The spacing of this extra web reinforcement must not exceed d/88, = 18/(8 X 1) =4.5in.
In addition, the area of added steel within the distance s must not be less than 60b,s/f,, = 60 X
12 X 4.5/60,000 = 0.054 in2. For convenience, No. 3 (No. 10) stirrups will be used for this
purpose also, providing an area of 0.22 in? in the distance s. The placement of the four extra
stirrups is shown in Fig. 5.23e.

5.13

BAR SPLICES

In general, reinforcing bars are stocked by suppliers in lengths of 60 ft for bars from
No. 5 to No. 18 (No. 16 to No. 57) and in 20 or 40 ft lengths for smaller sizes. For this
reason, and because it is often more convenient to work with shorter bar lengths, it is
frequently necessary to splice bars in the field. Splices in reinforcement at points of
maximum stress should be avoided, and when splices are used, they should be
staggered, although neither condition is practical, for example, in compression splices
in columns.

Splices for No. 11 (No. 36) bars and smaller are usually made simply by lapping
the bars a sufficient distance to transfer stress by bond from one bar to the other. The
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lapped bars are usually placed in contact and lightly wired so that they stay in position
as the concrete is placed. Alternatively, splicing may be accomplished by welding or
by sleeves or mechanical devices. ACI Code 12.14.2 prohibits use of lapped splices
for bars larger than No. 11 (No. 36), except that No. 14 and No. 18 (No. 43 and
No. 57) bars may be lapped in compression with No. 11 (No. 36) and smaller bars per
ACI Code 12.16.2 and 15.8.2.3. For bars that will carry only compression, it is possi-
ble to transfer load by end bearing of square cut ends, if the bars are accurately held
in position by a sleeve or other device.

Lap splices of bars in bundles are based on the lap splice length required for
individual bars within the bundle but must be increased in length by 20 percent for
three-bar bundles and by 33 percent for four-bar bundles because of the reduced effec-
tive perimeter. Individual bar splices within a bundle should not overlap, and entire
bundles must not be lap-spliced.

According to ACI Code 12.14.3, welded splices must develop at least 125 percent
of the specified yield strength of the bar. The same requirement applies to full mechan-
ical connections. This ensures that an overloaded spliced bar would fail by ductile
yielding in the region away from the splice, rather than at the splice where brittle
failure is likely. Mechanical connections of No. 5 (No. 16) and smaller bars not meet-
ing this requirement may be used at points of less than maximum stress, in accordance
with ACI Code 12.15.5.

Lap Splices in Tension

The required length of lap for tension splices is stated in terms of the development
length [,. In the process of calculating [, the usual modification factors are applied
except that the reduction factor for excess reinforcement should not be applied
because that factor is already accounted for in the splice specification.

Two different classifications of lap splices are established, corresponding to
the minimum length of lap required: a Class A splice requires a lap of 1.0, and a
Class B splice requires a lap of 1.3/, In either case, a minimum length of 12 in.
applies. For Class B splices, the 12 in. minimum applies to 1.3/, not to the value
of I, used to calculate the lap length. Lap splices, in general, must be Class B
splices, according to ACI Code 12.15.2, except that Class A splices are allowed
when the area of reinforcement provided is at least twice that required by analysis
over the entire length of the splice and when one-half or less of the total reinforce-
ment is spliced within the required lap length. The effect of these requirements is
to encourage designers to locate splices away from regions of maximum stress, to
a location where the actual steel area is at least twice that required by analysis, and
to stagger splices.

Spiral reinforcement is spliced with a lap of 484, for uncoated bars and 72d, for
epoxy-coated bars, in accordance with ACI Code 7.10.4.5. The lap for epoxy-coated
bars is reduced to 48d,, if the bars are anchored with a standard stirrup or tie hook.

Compression Splices

Reinforcing bars in compression are spliced mainly in columns, where bars are most
often terminated just above each floor or every other floor. This is done partly for
construction convenience, to avoid handling and supporting very long column bars,
but it is also done to permit column steel area to be reduced in steps, as loads become
lighter at higher floors.
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Compression bars may be spliced by lapping, by direct end bearing, or by welding
or mechanical devices that provide positive connection. The minimum length of lap for
compression splices is set according to ACI Code 12.16:

For bars with f, = 60,000 psi 0.0005f,d,
For bars with f, > 60,000 psi  (0.0009f, — 24)d,

but not less than 12 in. For f less than 3000 psi, the required lap is increased by one-
third. When bars of different size are lap-spliced in compression, the splice length is
to be the larger of the development length of the larger bar and the splice length of the
smaller bar. In exception to the usual restriction on lap splices for large-diameter bars,
No. 14 and No. 18 bars may be lap-spliced to No. 11 and smaller bars.

Direct end bearing of the bars has been found by test and experience to be an
effective means for transmitting compression. In such a case, the bars must be held
in proper alignment by a suitable device. The bar ends must terminate in flat sur-
faces within 1.5° of a right angle, and the bars must be fitted within 3° of full bearing
after assembly, according to ACI Code 12.16.4. Ties, closed stirrups, or spirals must
be used.

Column Splices

Lap splices, butt-welded splices, mechanical connections, or end-bearing splices may
be used in columns, with certain restrictions. Reinforcing bars in columns may be
subjected to compression or tension, or, for different load combinations, both tension
and compression. Accordingly, column splices must conform in some cases to the
requirements for compression splices only or tension splices only or to requirements
for both. ACI Code 12.17 requires that a minimum tension capacity be provided in
each face of all columns, even where analysis indicates compression only. Ordinary
compressive lap splices provide sufficient tensile resistance, but end-bearing splices
may require additional bars for tension, unless the splices are staggered.

For lap splices, where the bar stress due to factored loads is compression, column
lap splices must conform to the requirements presented in Section 5.13b for com-
pression splices. Where the stress is tension and does not exceed 0.5f,, lap splices
must be Class B if more than one-half the bars are spliced at any section, or Class A
if one-half or fewer are spliced and alternate lap splices are staggered by /. If the
stress is tension and exceeds 0.5f, then lap splices must be Class B, according to
ACI Code.

If lateral ties are used throughout the splice length having an area of at least
0.0015As in both directions, where s is the spacing of ties and & is the overall thick-
ness of the member, the required splice length may be multiplied by 0.83 but must not
be less than 12 in. If spiral reinforcement confines the splice, the length required may
be multiplied by 0.75 but again must not be less than 12 in.

End-bearing splices, as described above, may be used for column bars stressed
in compression, if the splices are staggered or additional bars are provided at splice
locations. The continuing bars in each face must have a tensile strength of not less than
0.25f, times the area of reinforcement in that face.

As mentioned in Section 5.13b, column splices are commonly made just above
a floor. However, for frames subjected to lateral loads, a better location is within the
center half of the column height, where the moments due to lateral loads are much
lower than at floor level. Such placement is mandatory for columns in “special moment
frames” designed for seismic loads, as will be discussed in Chapter 20.
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EXAMPLE 5.5

Compression splice of column reinforcement. In reference to Fig. 5.8, four No. 11 (No. 36)
column bars from the floor below are to be lap-spliced with four No. 10 (No. 32) column bars
from above, and the splice is to be made just above a construction joint at floor level. The
column, measuring 12 in. X 21 in. in cross section, will be subject to compression only for all
load combinations. Transverse reinforcement consists of No. 4 (No. 13) ties at 16 in. spacing.
All vertical bars may be assumed to be fully stressed. Calculate the required splice length.
Material strengths are f, = 60,000 psi and f = 4000 psi.

SoLuTION.  The length of the splice must be the larger of the development length of the No. 11
(No. 36) bars and the splice length of the No. 10 (No. 32) bars. For the No. 11 (No. 36) bars,
the development length is equal to the larger of the values obtained with Egs. (5.10a) and
(5.108):
0.02 X 60,000
= 14

L, = e 20
« /4000

I = 0.0003 X 60,000 X 1.41 = 25 in.

1 =27in.

The first criterion controls. No modification factors apply. For the No. 10 (No. 32) bars, the
compression splice length is 0.0005 X 60,000 X 1.27 = 38 in. In the check for use of the
modification factor for tied columns, the critical column dimension is 21 in., and the required
effective tie area is thus 0.0015 X 21 X 16 = 0.50 in% The No. 4 (No. 13) ties provide an
area of only 0.20 X 2 = 0.40 in% so the reduction factor of 0.83 cannot be applied to the
splice length. Thus the compression splice length of 38 in., which exceeds the development
length of 27 in. for the No. 11 (No. 36) bars, controls here, and a lap splice of 38 in. is
required. Note that if the spacing of the ties at the splice were reduced to 12.8 in. or less (say
12 in.), the required lap would be reduced to 38 X 0.83 = 32 in. This would save steel, and,
although placement cost would increase slightly, would probably represent the more
economical design.
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PROBLEMS

5.1.
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The short beam shown in Fig. P5.1 cantilevers from a supporting column at the

left. It must carry a calculated dead load of 2.0 kips/ft including its own weight

and a service live load of 2.6 kips/ft. Tensile flexural reinforcement consists of

two No. 11 (No. 36) bars at a 21 in. effective depth. Transverse No. 3 (No. 10)

U stirrups with 1.5 in. cover are provided at the following spacings from the

face of the column: 4 in., 3 at 8 in., 5 at 10.5 in.

(a) If the flexural and shear steel use f, = 60,000 psi and if the beam uses light-
weight concrete having f, = 4000 psi, check to see if proper development
length can be provided for the No. 11 (No. 36) bars. Use the simplified
development length equations.

(b) Recalculate the required development length for the beam bars using the
basic Eq. (5.4). Comment on your results.

T  2No. 11 (No. 36) 7
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kb
\__/\/_h
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(c) If the column material strengths are f, = 60,000 psi and f; = 5000 psi
(normalweight concrete), check to see if adequate embedment can be pro-
vided within the column for the No. 11 (No. 36) bars. If hooks are required,
specify detailed dimensions.

The beam shown in Fig. P5.2 is simply supported with a clear span of 24.75 ft

and is to carry a distributed dead load of 1.05 kips/ft including its own weight

and live load of 1.62 kips/ft, unfactored, in service. The reinforcement consists
of five No. 10 (No. 32) bars at a 16 in. effective depth, two of which are to be
discontinued where no longer needed. Material strengths specified are f, =

60,000 psi and £, = 5000 psi. No. 3 (No. 10) stirrups are used with a cover of

1.5 in. at spacing less than ACI Code maximum.
(a) Calculate the point where two bars can be discontinued.

(b) Check to be sure that adequate embedded length is provided for continued
and discontinued bars.

(¢) Check special requirements at the support, where M, = 0.

(d) If No. 3 (No. 10) bars are used for transverse reinforcement, specify special
reinforcing details in the vicinity where the No. 10 (No. 32) bar is cut off.

(¢) Comment on the practical aspects of the proposed design. Would you
recommend cutting off the steel as suggested? Could three bars be dis-
continued rather than two?

2 No. 10 (No. 32)
3 No. 10 (No. 32) 22—

|—;=J&==L==L====_ 19" 16"
/ T | L.....

ON

1 !_0/! __,I 26"0” L~1 I_OH

5.3.

No. 3 (No. 10)
spiral at 2" pitch

Figure P5.3 shows the column reinforcement for a 16 in. diameter concrete
column, with f; = 75,000 psi and f; = 8000 psi. Analysis of the building frame
indicates a required A, = 7.30 in? in the lower column and 5.80 in? in the upper
column., Spiral reinforcement consists of a 3 in. diameter rod with a 2 in. pitch.
Column bars are to be spliced just above the construction joint at the floor level,
as shown in the sketch. Calculate the minimum permitted length of splice.

Ar~—-FRTFEFT
HE ———H+HHH+

2

6 No. 10 (No. 32) bars
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FIGURE P54

FIGURE P5.5

54.

The short cantilever shown in Fig. P5.4 carries a heavy concentrated load 6 in.
from its outer end. Flexural analysis indicates that three No. 8 (No. 25) bars
are required, suitably anchored in the supporting wall and extending to a point
no closer than 2 in. from the free end. The bars will be fully stressed to fyat
the fixed support. Investigate the need for hooks and transverse conﬁnement
steel at the right end of the member. Material strengths are J, = 60,000 psi and
f2 = 4000 psi. If hooks and transverse steel are required, show details in a sketch.

Py
6"
4'1 Fﬁ — [—2" cover

———————————— L A N ] ‘T'

18" 201"

!

Minimum 2” cover——l - -1 0”4

5.5.

40"

A continuous-strip wall footing is shown in cross section in Fig. P5.5. It is
proposed that tensile reinforcement be provided using No. 8 (No. 25) bars at
16 in. spacing along the length of the wall, to provide a bar area of 0.59 in¥/ft.
The bars have strength f, = 60,000 psi, and the footing concrete has f! =
4000 psi. The critical section for bending is assumed to be at the face of the
supported wall, and the effective depth to the tensile steel is 12 in. Check to
ensure that sufficient development length is available for the No. 8 (No. 25)
bars, and if hooks are required, sketch details of the hooks, giving dimensions.

Note: 1f hooks are required for the No. 8 (No. 25) bars, prepare an
alternate design using bars having the same area per foot but of smaller
diameter such that hooks could be eliminated; use the largest bar size possible
to minimize the cost of steel placement.

227

66"
12"

Wall

I

< No. 8 (No. 25) bars at 16" spacing

5.6.

A closure strip is to be used between two precast slabs (Fig. P5.6). The slabs
contain No. 5 (No. 16) bars spaced at 10 in. Determine the minimum width of
the closure strip for use with headed bars spliced within the strip. Abrg 4Ab.
Material strengths are f, = 60,000 psi and f = 5000 psi. The maximum size
aggregate =3 in. Assume head thickness = 0.5 in.
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FIGURE P5.7

No. 5 (No. 16)
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Closure strip
/ Precast slab

The continuous beam shown in Fig. P5.7 has been designed to carry a serv-
ice dead load of 2.25 kips/ft including self-weight and service live load of
3.25 kips/ft. Flexural design has been based on ACI moment coefficients of 7
and % at the face of support and midspan, respectively, resulting in a concrete
section with b = 14 in. and d = 22 in. Negative reinforcement at the support
face is provided by four No. 10 (No. 32) bars, which will be cut off in pairs
where no longer required by the ACI Code. Positive bars consist of four No. 8
(No. 25) bars, which will also be cut off in pairs. Specify the exact point of cut-
off for all negative and positive steel. Specify also any supplementary web
reinforcement that may be required. Check for satisfaction of ACI Code
requirements at. the point of inflection, and suggest modifications of
reinforcement if appropriate. Material strengths are f, = 60,000 psi and f, =
4000 psi.

4No.10(No.32) 4 No. 10 (No. 32)

[ | VLT

4 No. 8 (No.25)  -—\—

— 24'0"

Figure P5.8 shows a deep transfer girder that carries two heavy column loads
at its outer ends from a high-rise concrete building. Ground-floor columns
must be offset 8 ft as shown. The loading produces an essentially constant
moment (neglect self-weight of girder) calling for a concrete section with
b = 22 in. and b = 50 in., with main tensile reinforcement at the top of the
girder comprised of 12 No. 11 (No. 36) bars in three layers of four bars each.
The maximum available bar length is 60 ft, so tensile splices must be provided.
Design and detail all splices, following ACI Code provisions. Splices will be
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FIGURE P5.8 P, = 465 kips P, = 4865 kips

12 No. 11 (No. 36) (3 rows)

I I

staggered, with no more than four bars spliced at any section. Also, investigate
the need for special anchorage at the outer ends of main reinforcement, and
specify details of special anchorage if required. Material strengths are 5=
60,000 psi and f, = 5000 psi.




6.1

6.2

Serviceability

INTRODUCTION

Chapters 3, 4, and 5 have dealt mainly with the strength design of reinforced concrete
beams. Methods have been developed to ensure that beams will have a proper safety
margin against failure in flexure or shear, or due to inadequate bond and anchorage of
the reinforcement. The member has been assumed to be at a hypothetical overload
state for this purpose.

It is also important that member performance in normal service be satisfactory,
when loads are those actually expected to act, i.e., when load factors are 1.0. This is
not guaranteed simply by providing adequate strength. Service load deflections under
full load may be excessively large, or long-term deflections due to sustained loads may
cause damage. Tension cracks in beams may be wide enough to be visually disturb-
ing, and in some cases may reduce the durability of the structure. These and other
questions, such as vibration or fatigue, require consideration.

Serviceability studies are carried out based on elastic theory, with stresses in
both concrete and steel assumed to be proportional to strain. The concrete on the
tension side of the neutral axis may be assumed uncracked, partially cracked, or fully
cracked, depending on the loads and material strengths (see Section 3.3).

In early reinforced concrete designs, questions of serviceability were dealt with
indirectly, by limiting the stresses in concrete and steel at service loads to the rather
conservative values that had resulted in satisfactory performance. In contrast, with
current design methods that permit more slender members through more accurate
assessment of capacity, and with higher-strength materials further contributing to the
trend toward smaller member sizes, such indirect methods no longer work. The current
approach is to investigate service load cracking and deflections specifically, after
proportioning members based on strength requirements.

In this chapter, methods will be developed to ensure that the cracks associated
with flexure of reinforced concrete beams are narrow and well distributed, and that
short and long-term deflections at loads up to the full service load are not objection-
ably large.

CRACKING IN FLEXURAL MEMBERS

All reinforced concrete beams crack, generally starting at loads well below service
level, and possibly even prior to loading due to restrained shrinkage. Flexural cracking
due to loads is not only inevitable, but actually necessary for the reinforcement to be
used effectively. Prior to the formation of flexural cracks, the steel stress is no more
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than n times the stress in the adjacent concrete, where n is the modular ratio E, /E,. For
materials common in current practice, n is approximately 8. Thus, when the concrete is
close to its modulus of rupture of about 500 psi, the steel stress will be only 8 X 500 =
4000 psi, far too low to be very effective as reinforcement. At normal service loads,
steel stresses 8 or 9 times that value can be expected.

In a well-designed beam, flexural cracks are fine, so-called hairline cracks,
almost invisible to the casual observer, and they permit little if any corrosion of the
reinforcement. As loads are gradually increased above the cracking load, both the
number and the width of cracks increase, and at service load level a maximum width
of crack of about 0.016 in. is typical. If loads are further increased, crack widths
increase further, although the number of cracks is more or less stable.

Cracking of concrete is a random process, highly variable and influenced by
many factors. Because of the complexity of the problem, present methods for predict-
ing crack widths are based primarily on test observations. Most equations that have
been developed predict the probable maximum crack width, which usually means that
about 90 percent of the crack widths in the member are below the calculated value.
However, isolated cracks exceeding twice the computed width can sometimes occur
(Ref. 6.1).

Variables Affecting Width of Cracks

In the discussion of the importance of a good bond between steel and concrete in Section
5.1, it was pointed out that if proper end anchorage is provided, a beam will not fail
prematurely, even though the bond is destroyed along the entire span. However, crack
widths will be greater than for an otherwise identical beam in which good resistance
to slip is provided along the length of the span. In general, beams with smooth round
bars will display a relatively small number of rather wide cracks in service, while
beams with good slip resistance ensured by proper surface deformations on the bars
will show a larger number of very fine, almost invisible cracks. Because of this
improvement, reinforcing bars in current practice are always provided with surface
deformations, the maximum spacing and minimum height of which are established by
ASTM Specifications A615, A706, and A996.

A second variable of importance is the stress in the reinforcement. Studies by
Gergely and Lutz and others (Refs. 6.2 to 6.4) have confirmed that crack width is
proportional to f, where f; is the steel stress and n is an exponent that varies in the
range from about 1.0 to 1.4. For steel stresses in the range of practical interest, say
from 20 to 36 ksi, n may be taken equal to 1.0. The steel stress is easily computed
based on elastlc cracked-section analysis (Section 3.3b). Alternatively, f, may be taken
equal to 3 fy according to ACI Code 10.6.4.

Experiments by Broms (Ref. 6.5) and others have shown that both crack
spacing and crack width are related to the concrete cover distance d,., measured
from the center of the bar to the face of the concrete. In general, increasing the
cover increases the spacing of cracks and also increases crack width. Furthermore,
the distribution of the reinforcement in the tension zone of the beam is important.
Generally, to control cracking, it is better to use a larger number of smaller-diameter
bars to provide the required A, than to use the minimum number of larger bars, and
the bars should be well distributed over the tensile zone of the concrete. For deep
flexural members, this includes additional reinforcement on the sides of the web
to prevent excessive surface crack widths above or below the level of the main
flexural reinforcement.




FIGURE 6.1
Geometric basis of crack
width calculations.
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Equations for Crack Width

A number of expressions for maximum crack width have been developed based on the
statistical analysis of experimental data. Two expressions that have figured promi-
nently in the development of the crack control provisions in the ACI Code are those
developed by Gergely and Lutz (Ref. 6.2) and Frosch (Ref. 6.4) for the maximum
crack width at the tension face of a beam. They are, respectively,

w = 0.0768£,Vd.A 6.1)

)
w =200 By Jdf + ( (6.2)

where w = maximum width of crack, thousandth inches
f, = steel stress at load for which crack width is to be determined, ksi
E, = modulus of elasticity of steel, ksi

and

The geometric parameters are shown in Fig. 6.1 and are as follows:

d. = thickness of concrete cover measured from tension face to center of bar
closest to that face, in.

B = ratio of distances from tension face and from steel centroid to neutral
axis, equal to h, /h,

A = concrete area surrounding one bar, equal to total effective tension area of
concrete surrounding reinforcement and having same centroid, divided
by number of bars, in®

s = maximum bar spacing, in.

Equations (6.1) and (6.2), which apply only to beams in which deformed bars are used,
include all the factors just named as having an important influence on the width of
cracks: steel stress, concrete cover, and the-distribution of the reinforcement in the
concrete tensile zone. In addition, the factor 8 is added to account for the increase in
crack width with distance from the neutral axis (see Fig. 6.1b).

Cyclic and Sustained Load Effects

Both cyclic and sustained loading account for increasing crack width. While there is
a large amount of scatter in test data, results of fatigue tests and sustained loading tests
indicate that a doubling of crack width can be expected with time (Ref. 6.1). Under
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6.3

most conditions, the spacing of cracks does not change with time at constant levels of
sustained stress or cyclic stress range.

ACI CODE PROVISIONS FOR CRACK CONTROL

In view of the random nature of cracking and the wide scatter of crack width mea-
surements, even under laboratory conditions, crack width is controlled in the ACI Code
by establishing a maximum center-to-center spacing s for the reinforcement closest to
the surface of a tension member as a function of the bar stress under service condi-
tions f; (in psi) and the clear cover from the nearest surface in tension to the surface
of the flexural tension reinforcement c,.

40,000 40,
s = 15(%) —25¢, = 12(—%) (6.3)

s s

The choice of clear cover c,, rather than the cover to the center of the bar d,, was made
to simplify design, since this allows s to be independent of bar size. As a consequence,
maximum crack widths will be somewhat greater for larger bars than for smaller bars.

As shown in Egq. (6.3), the ACI Code sets an upper limit on s of 12(40,000/f,). The
stress f; is calculated by dividing the service load moment by the product of the area of
reinforcement and the internal moment arm, as shown in Eq. (3.8). Alternatively, the
ACT Code permits f; to be taken as two-thirds of the specified yield strength f,- For
members with only a single bar, s is taken as the width of the extreme tension face

Figure 6.2a compares the values of spacing s obtained using Egs. (6.1) and (6.2)
for a beam containing No. 8 (No. 25) reinforcing bars, for f, = 40,000 psi, 8 = 1.2,
and a maximum crack width w = 0.016 in., to the values calculated using Eq. (6.3).
Equations (6.1) and (6.2) give identical spacings for two values of clear cover, but sig-
nificantly different spacings for other values of c.. Equation (6.3) provides a practical
compromise between the values of s that are calculated using the two experimentally
based expressions. The equatlon is plotted in Fig. 6.2b for f, = 26,667, 40,000, and
50,000 pst, corresponding to 5 fy for Grade 40, 60, and 75 bars, respectively.

ACIT Code 10.6.5 points out that the limitation on s in Eq. (6.3) is not sufficient
for structures subject to very aggressive exposure or designed to be watertight. In such
cases “special investigations or precautions” are required. These include the use of
expressions such as Egs. (6.1) and (6.2) to determine the probable maximum crack
width. Further guidance is given in Ref. 6.1.

When concrete T beam flanges are in tension, as in the negative-moment region
of continuous T beams, concentration of the reinforcement over the web may result in
excessive crack width in the overhanging slab, even though cracks directly over the
web are fine and well distributed. To prevent this, the tensile reinforcement should be
distributed over the width of the flange, rather than concentrated. However, because of
shear lag, the outer bars in such a distribution would be considerably less highly
stressed than those directly over the web, producing an uneconomical design. As a
reasonable compromise, ACI Code 10.6.6 requires that the tension reinforcement in such
cases be distributed over the effective flange width or a width equal to one-tenth the span,
whichever is smaller. If the effective flange width exceeds one-tenth of the span, some
longitudinal reinforcement must be provided in the outer portions of the flange. The
amount of such additional reinforcement is left to the discretion of the designer; it should
at least be the equivalent of temperature reinforcement for the slab (see Section 13.3), and
is often taken as twice that amount.



FIGURE 6.2

Maximum bar spacing versus
clear cover: (a) Comparison
of Egs. (6.1), (6.2), and
(6.3) forw, = 0.016in,, f, =
40,000 psi, B = 1.2, bar
size = No. 8 (No. 25); (b)
Eq. (6.3) for f, = 26,667,
40,000, and 50,000 psi,
corresponding to 3 f, for
Grades 40, 60, and 75 rein-
forcement, respectively.
[Part (a) after Ref. 6.6.]
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(b)

For beams with relatively deep webs, some reinforcement should be placed near
the vertical faces of the web to control the width of cracks in the concrete tension zone
above the level of the main reinforcement. Without such steel, crack widths in the web
wider than those at the level of the main bars have been observed. According to ACI
Code 10.6.7, if the total depth of the beam & exceeds 36 in., longitudinal “skin”
reinforcement must be uniformly distributed along both side faces of the member for
a distance /2 nearest the flexural tension steel, as shown in Fig. 6.3. The spacing s
between longitudinal bars or wires is as specified in Eq. (6.3). The size of the bars or
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FIGURE 6.3
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wires is not specified, but as indicated in ACI Commentary 10.6.7, No. 3 to No. 5
(No. 10 to No. 16) bars or welded wire reinforcement with a minimum area of 0.1 in2
per foot of depth are typically used. The contribution of the skin steel to flexural
strength is usually disregarded, although it may be included in the strength calcula-
tions if a strain compatibility analysis is used to establish the stress in the skin steel at
the flexural failure load.

Figure 6.2b provides a convenient design aid for determining the maximum
center-to-center bar spacing as a function of clear cover for the usual case used in
design, f, = 2 - From a practical point of view, it is even more helpful to know the
minimum number of bars across the width of a beam stem that is needed to satisfy the
ACI Code requirements for crack control. That number depends on side cover, as well
as clear cover to the tension face, and is dependent on bar size. Table A.8 in Appendix A
gives the minimum number of bars across a beam stem for two common cases, 2 in.
clear cover on the sides and bottom, which corresponds to using No. 3 or No. 4
(No. 10 or No. 13) stirrups, and 13 in. clear cover on the sides and bottom, representing
beams in which no stirrups are used.

EXAMPLE 6.1

Check crack control criteria. Figure 6.4 shows the main flexural reinforcement at midspan
for a T girder in a high-rise building that carries a service load moment of 8630 in-kips. The
clear cover on the side and bottom of the beam stem is 21 in. Determine if the beam meets the
crack control criteria in the ACI Code.

SOLUTION.  Since the depth of the beam equals but does not exceed 36 in., skin reinforcement
is not needed. To check the bar spacing criteria, the steel stress can be estimated closely by tak-
ing the internal lever arm equal to the distance d — hy/2:
_ M, 8630
Al(d — h/2) 7.9 X 29.25

f = 373ksi

(Alternately, the ACT Code permits using f, = 3 f,» giving 40.0 ksi.)



FIGURE 6.4

T beam for crack width
determination in
Example 6.1.
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Using f, in Eq. (6.3) gives

40,000 40,000
=15( 20} _asc = 15( 222 ) — 2.5 X 2.25 = 105 in.
s ( 1. ) ce =15 (37,300) "

By inspection, it is clear that this requirement is satisfied for the beam. If the results had been
unfavorable, a redesign using a larger number of smaller-diameter bars would have been indi-
cated.

6.4

CONTROL OF DEFLECTIONS

In addition to limitations on cracking, described in the preceding sections, it is usually
necessary to impose certain controls on deflections of beams to ensure serviceability.
Excessive deflections can lead to cracking of supported walls and partitions, ill-fitting
doors and windows, poor roof drainage, misalignment of sensitive machinery and
equipment, or visually offensive sag. It is important, therefore, to maintain control of
deflections, in one way or another, so that members designed mainly for strength at
prescribed overloads will also perform well in normal service.

There are presently two approaches to deflection control. The first is indirect and
consists in setting suitable upper limits on the span-depth ratio. This is simple, and it
is satisfactory in many cases where spans, loads and load distributions, and member
sizes and proportions fall in the usual ranges. Otherwise, it is essential to calculate
deflections and to compare those predicted values with specific limitations that may
be imposed by codes or by special requirements.

It will become clear, in the sections that follow, that calculations can, at best,
provide a guide to probable actual deflections. This is so because of uncertainties
regarding material properties, effects of cracking, and load history for the member
under consideration. Extreme precision in the calculations, therefore, is never justi-
fied, because highly accurate results are unlikely. However, it is generally sufficient
to know, for example, that the deflection under load will be about 3 in. rather than
2in,, whlle it is relatively unimportant to know whether it will actually be 3 in. rather
than § in.
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6.5

The deflections of concern are generally those that occur during the normal
service life of the member. In service, a member sustains the full dead load, plus some
fraction or all of the specified service live load. Safety provisions of the ACI Code and
similar design specifications ensure that, under loads up to the full service load,
stresses in both steel and concrete remain within the elastic ranges. Consequently,
deflections that occur at once upon application of load, the immediate deflections, can
be calculated based on the properties of the uncracked elastic member, the cracked
elastic member, or some combination of these (see Section 3.3).

It was pointed out in Sections 2.8 and 2.11, however, that in addition to concrete
deformations that occur immediately when load is applied, there are other deformations
that take place gradually over an extended time. These time-dependent deformations
are chiefly due to concrete creep and shrinkage. As a result of these influences,
reinforced concrete members continue to deflect with the passage of time. Long-term
deflections continue over a period of several years, and may eventually be 2 or more
times the initial elastic deflections. Clearly, methods for predicting both instantaneous
and time-dependent deflections are essential,

IMMEDIATE DEFLECTIONS

Elastic deflections can be expressed in the general form

__ f(loads, spans, supports)
B EI

A

where El is the flexural rigidity and f(loads, spans, supports) is a function of the par-
ticular load, span, and support arrangement. For instance, the deflection of a uniformly
loaded simple beam is Swi*/384EI, so that f = Swi*/384. Similar deflection equations
have been tabulated or can easily be computed for many other loadings and span
arrangements, simple, fixed, or continuous, and the corresponding f functions can be
determined. The particular problem in reinforced concrete structures is therefore the
determination of the appropriate flexural rigidity EI for a member consisting of two
materials with properties and behavior as widely different as steel and concrete.

If the maximum moment in a flexural member is so small that the tensile stress
in the concrete does not exceed the modulus of rupture £, no flexural tension cracks
will occur. The full, uncracked section is then available for resisting stress and
providing rigidity. This stage of loading has been analyzed in Section 3.3a. In agree-
ment with this analysis, the effective moment of inertia for this low range of loads is
that of the uncracked transformed section I, and E is the modulus of concrete E_ as

up

given by Eq. (2.3). Correspondingly, for this load range,

_f
Aiu - EcIut (a)

At higher loads, flexural tension cracks are formed. In addition, if shear stresses
exceed v, [see Eq. (4.3)] and web reinforcement is employed to resist them, diagonal
cracks can exist at service loads. In the region of flexural cracks, the position of the
neutral axis varies: directly at each crack it is located at the level calculated for the
cracked transformed section (see Section 3.3b); midway between cracks it dips to a
location closer to that calculated for the uncracked transformed section. Correspond-
ingly, flexural-tension cracking causes the effective moment of inertia to be that of the
cracked transformed section in the immediate neighborhood of flexural-tension
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Variation of I, with moment
ratio.
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cracks, and closer to that of the uncracked transformed section midway between
cracks, with a gradual transition between these extremes.
The value of the local moment of inertia varies in those portions of the beam in
which the bending moment exceeds the cracking moment of the section
_ Jil

M, = 6.4
3, 6.4)

where y, is the distance from the neutral axis to the tension face and f, is the modulus
of rupture. The exact variation of I depends on the shape of the moment diagram and
on the crack pattern, and is difficult to determine. This makes an exact deflection
calculation impossible.

However, extensively documented studies (Ref. 6.7) have shown that deflec-
tions A, occurring in a beam after the maximum moment M, has reached and
exceeded the cracking moment M, can be calculated by using an effective moment
of inertia /,; that is,

f
A, =— b
=B I ()]
where
M_\3? M\
Ie = (Mf-"’> Iut + |:1 - <VC’> :|Icr = Iut (65)

and I, is the moment of inertia of the cracked transformed section.

In Fig. 6.5, the effective moment of inertia, given by Eq. (6.5), is plotted as a
function of the ratio M,/M,, (the reciprocal of the moment ratio used in the equation).
It is seen that, for values of maximum moment M, less than the cracking moment M,,,
that is, M, /M, less than 1.0, I, = I,,. With increasing values of M,,, I, approaches /,; and
for values of M,/M,, of 3 or more, I, is almost the same as /. Typical values of
M_,/M,, at full service load range from about 1.5 to 3.

Figure 6.6 shows the growth of deflections with increasing moment for a simple-
span beam and illustrates the use of Eq. (6.5). For moments no larger than M_,, deflec-
tions are practically proportional to moments, and the deflection at which cracking
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FIGURE 6.6
Deflection of a reinforced
concrete beam.
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begins is obtained from Eq. (a) with M = M_,. At larger moments, the effective moment
of inertia I, becomes progressively smaller, according to Eq. (6.5), and deflections are
found by Eq. (b) for the load level of interest. The moment M, might correspond to the
full service load, for example, while the moment M, would represent the dead load
moment for a typical case. A moment-deflection curve corresponding to the line El,
represents an upper bound for deflections, consistent with Fig. 6.5, except that at loads
somewhat beyond the service load, the nonlinear response of steel or concrete or both
causes a further nonlinear increase in deflections.

Note that to calculate the increment of deflection due to live load, causing a
moment increase M, — M, a two-step computation is required: the first for deflection
A, due to live and dead load, and the second for deflection A, due to dead load alone,
each with the appropriate value of 1,. Then the deflection increment due to live load is
found, equal to A, — A,.

Most reinforced concrete spans are continuous, not simply supported. The
concepts just introduced for simple spans can be applied, but the moment diagram for
a given span will include both negative and positive regions, reflecting the rotational
restraint provided at the ends of the spans by continuous frame action. The effective
moment of inertia for a continuous span can be found by a simple averaging proce-
dure, according to the ACI Code, that will be described in Section 6.7c¢.

A fundamental problem for continuous spans is that although the deflections are
based on the moment diagram, that moment diagram depends, in turn, on the flexural
rigidity EI for each member of the frame. The flexural rigidity depends on the extent
of cracking, as has been demonstrated. Cracking, in turn, depends on the moments,
which are to be found. The circular nature of the problem is evident.

One could use an iterative procedure, initially basing the frame analysis on
uncracked concrete members, determining the moments, calculating effective EI terms
for all members, then recalculating moments, adjusting the EI values, etc. The process
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could be continued for as many iterations as needed, until changes are not significant.
However, such an approach would be expensive and time-consuming, even with
computer use.

Usually, a very approximate approach is adopted. Member flexural stiffnesses for
the frame analysis are based simply on properties of uncracked rectangular concrete
cross sections. This can be defended by noting that the moments in a continuous frame
depend only on the relative values of EI in its members, not the absolute values. Hence,
if a consistent assumption, i.e., uncracked section, is used for all members, the results
should be valid. Although cracking is certainly more prevalent in beams than in
columns, thus reducing the relative EI for the beams, this is compensated to a large
extent, in typical cases, by the stiffening effect of the flanges in the positive bending
regions of continuous T beam construction. This subject is discussed at greater length
in Section 12.5.

DEFLECTIONS DUE TO LONG-TERM LOADS

Initial deflections are increased significantly if loads are sustained over a long period
of time, due to the effects of shrinkage and creep. These two effects are usually
combined in deflection calculations. Creep generally dominates, but for some types of
members, shrinkage deflections are large and should be considered separately (see
Section 6.8).

It was pointed out in Section 2.8 that creep deformations of concrete are directly
proportional to the compressive stress up to and beyond the usual service load range.
They increase asymptotically with time and, for the same stress, are larger for low-
strength than for high-strength concretes. The ratio of additional time-dependent strain
to initial elastic strain is given by the creep coefficient C,, (see Table 2.2).

For a reinforced concrete beam, the long-term deformation is much more com-
plicated than for an axially loaded cylinder, because while the concrete creeps under
sustained load, the steel does not. The situation in a reinforced concrete beam is illus-
trated by Fig. 6.7. Under sustained load, the initial strain €, at the top face of the beam
increases, due to creep, by the amount €,, while the strain € in the steel is essentially
unchanged. Because the rotation of the strain distribution diagram is therefore about a
point at the level of the steel, rather than about the cracked elastic neutral axis, the
neutral axis moves down as a result of creep, and

S & @
¢ €
demonstrating that the usual creep coefficients cannot be applied to initial curvatures
to obtain creep curvatures (hence deflections).

The situation is further complicated. Due to the lowering of the neutral axis asso-
ciated with creep (see Fig. 6.7b) and the resulting increase in compression area, the
compressive stress required to produce a given resultant C to equilibrate T = A f; is
less than before, in contrast to the situation in a creep test of a compressed cylinder,
because the beam creep occurs at a gradually diminishing stress. On the other hand,
with the new lower neutral axis, the internal lever arm between compressive and tensile
resultant forces is less, calling for an increase in both resultants for a constant moment.
This, in turn, will require a small increase in stress, and hence strain, in the steel; thus,
€, is not constant as assumed originally.

Because of such complexities, it is necessary in practice to calculate additional,
time-dependent deflections of beams due to creep (and shrinkage) using a simplified,
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FIGURE 6.7

Effect of concrete creep on
curvature: (@) beam cross
section; (b) strains;

(c) stresses and forces.
(Adapted from Ref. 6.8.)
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empirical approach by which the initial elastic deflections are multiplied by a factor A N
obtain the additional long-time deflections. Values of A, for use in design are based on
long-term deflection data for reinforced concrete beams (Refs. 6.8 to 6.1 1). Thus

At = A‘AAi (66)

where A, is the additional long-term deflection due to the combined effect of creep and
shrinkage and 4, is the initial elastic deflection calculated by the methods described in
Section 6.5.

The coefficient A, depends on the duration of the sustained load. It also depends
on whether the beam has only reinforcement A, on the tension side, or whether
additional longitudinal reinforcement A; is provided on the compression side. In the
latter case, the long-term deflections are much reduced. This is so because when no
compression reinforcement is provided, the compression concrete is subject to
unrestrained creep and shrinkage. On the other hand, since steel is not subject to creep,
if additional bars are located close to the compression face, they will resist and thereby
reduce the amount of creep and shrinkage and the corresponding deflection (Ref. 6.11).
Compression steel may be included for this reason alone. Specific values of Ay, used
to account for the influence of creep and compression reinforcement, will be given in
Section 6.7.

If a beam carries a certain sustained load W (e.g., the dead load plus the average
traftic load on a bridge) and is subject to a short-term heavy live load P (e.g., the
weight of an unusually heavy vehicle), the maximum total deflection under this com-
bined loading is obtained as follows:

1. Calculate the instantaneous deflection A,, caused by the sustained load W by
methods given in Section 6.5.
2. Calculate the additional long-term deflection caused by W, that is,

Atw = AAAiw
3. Then the total deflection caused by the sustained part of the load is
A,=A, + A,

4. In calculating the additional instantaneous deflection caused by the short-term
load P, account must be taken of the fact that the load-deflection relation after
cracking is nonlinear, as illustrated by Fig. 6.6. Hence

Aip = Ai(w+p) - Aiw



FIGURE 6.8

Effect of load history on
deflection of a building
girder.
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where A, , is the total instantaneous deflection that would be obtained if W and
P were applied simultaneously, calculated by using /, determined for the moment
caused by W + P.

5. Then the total deflection under the sustained load plus heavy short-term load is

A=A, +4A,

In calculations of deflections, careful attention must be paid to the load history,
i.e., the time sequence in which loads are applied, as well as to the magnitude of the
loads. The short-term peak load on the bridge girder just described might be applied
early in the life of the member, before time-dependent deflections had taken place.
Similarly, for buildings, heavy loads such as stacked material are often placed during
construction. These temporary loads may be equal to, or even greater than, the design
live load. The state of cracking will correspond to the maximum load that was carried,
and the sustained load deflection, on which the long-term effects are based, would
correspond to that cracked condition. I, for the maximum load reached should be used
to recalculate the sustained load deflection before calculating long-term effects.

This will be illustrated referring to Fig. 6.8, showing the load-deflection plot for
a building girder that is designed to carry a specified dead and live load. Assume first
that the dead and live loads increase monotonically. As the full dead load W, is
applied, the load deflection curve follows the path 0-1, and the dead load deflection
A, is found using /,; calculated from Eq. (6.5), with M, = M. The time-dependent
effect of the dead load would be A,A,. As live load is then applied, path 1-2 would
be followed. Live load deflection A; would be found in two steps, as described in
Section 6.5, first finding A, , based on I,,, with M, in Eq. (6.5) equal to M, ,, and
then subtracting dead load deflection A

If, on the other hand, short-term construction loads were applied, then
removed, the deflection path 1-2-3 would be followed. Then, under dead load only,

Eclut Ecle1 EcIe2

/)
IS

Load
\

\

N

Ay A
Deflection, A
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6.7

the resulting deflection would be A/. Note that this deflection can be found in one
step using W, but with 7, corresponding to the maximum load reached. The long-
term deflection now would be A, A}, significantly larger than before. Should the full
design live load then be applied, the deflection would follow path 3-4, and the live
load deflection would be /ess than for the first case. It, too, can be calculated by a
simple one-step calculation using W, alone, in this case, and with moment of inertia
equal to [,,

Clearly, in calculating deflections, the engineer must anticipate, as nearly as
possible, both the magnitude and time sequence of the loadings. Although long-term
deflections are often calculated assuming monotonic loading, with both immediate
and long-term effects of dead load occurring before application of live load, in many
cases this is not realistic.

ACI CODE PROVISIONS FOR CONTROL OF DEFLECTIONS

Minimum Depth-Span Ratios

As pointed out in Section 6.4, two approaches to deflection control are in current
use, both acceptable under the provisions of the ACI Code, within prescribed
limits. The simpler of these is to impose restrictions on the minimum member
depth £, relative to the span /, to ensure that the beam will be sufficiently stiff that
deflections are unlikely to cause problems in service. Deflections are greatly
influenced by support conditions (e.g., a simply supported uniformly loaded beam
will deflect 5 times as much as an otherwise identical beam with fixed supports),
so minimum depths must vary depending on conditions of restraint at the ends of
the spans.

According to ACI Code 9.5.2, the minimum depths of Table 6.1 apply to one-
way construction not supporting or attached to partitions or other construction likely
to be damaged by large deflections, unless computation of deflections indicates a
lesser depth can be used without adverse effects. Values given in Table 6.1 are to be
used directly for normalweight concrete with w, = 145 pcf and reinforcement with
f, = 60,000 psi. For members using lightweight concrete with density in the range
from 90 to 115 pcf, the values of Table 6.1 should be multiplied by 1.65 — 0.005w,. =
1.09. For yield strengths other than 60,000 psi, the values should be multiplied by
0.4 + £,/100,000.

TABLE 6.1
Minimum thickness of nonprestressed beams or one-way slabs unless deflections are
computed
Minimum Thickness h
Member Simply One End Both Ends
Supported Continuous Continuous Cantilever

Members Not Supporting or Attached to Partitions or Other
Construction Likely to Be Damaged by Large Deflections

Solid one-way slabs

1/20 124 1/28 1/10

Beams or ribbed one-way slabs

116 1/18.5 121 I8
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Calculation of Immediate Deflections

When there is need to use member depths shallower than are permitted by Table 6.1,
or when members support construction that is likely to be damaged by large deflec-
tions, or for prestressed members, deflections must be calculated and compared with
limiting values (see Section 6.7e). The calculation of deflections, when required,
proceeds along the lines described in Sections 6.5 and 6.6. For design purposes, the
moment of the uncracked transformed section I, can be replaced by that of the gross
concrete section [, neglecting reinforcement, without serious error. With this simplifi-
cation, Egs. (6.4) and (6.5) are replaced by the following:

£l
M, = 6.7
v 6.7)
and
Mcr 3 MC 3
= (Y i (%) ] =, o
The modulus of rupture is to be taken equal to
f.=15A\VF (6.9a)

As explained in Section 4.5a, in accordance with ACI Code 8.6.1, A = 1.0 for
normalweight concrete, 0.85 for sand-lightweight concrete, and 0.75 for all-lightweight
concrete. If the splitting tensile strength of the concrete f,, is known, A = £, /(6.7Vf]) <
1.0, and Eq. (6.9a) becomes

f=75% =

. 1.12 .
6.7 Je (6.9b)

Continuous Spans

For continuous spans, ACI Code 9.5.2 calls for a simple average of values obtained
from Eq. (6.8) for the critical positive and negative-moment sections, i.e.,

I, = 0501, + 0.25(L,; + L) (6.10a)

where 1,,, is the effective moment of inertia for the midspan section and /,; and /,, are
those for the negative-moment sections at the respective beam ends, each calculated from
Eq. (6.8) using the applicable value of M,. It is shown in Ref. 6.12 that a somewhat
improved result can be had for continuous prismatic members using a weighted average
for beams with both ends continuous of

I, =0.701,, + 0.15(Z,, + I,,) (6.10D)
and for beams with one end continuous and the other simply supported of
1, = 0851, + 0.151,, (6.10¢)

where I, is the effective moment of inertia at the continuous end. The ACI Code, as
an option, also permits use of I, for continuous prismatic beams to be taken equal to
the value obtained from Eq. (6.8) at midspan; for cantilevers, I, calculated at the
support section may be used.

After ], is found, deflections may be computed with due regard for rotations of
the tangent to the elastic curve at the supports. In general, in computing the maximum
deflection, the loading producing the maximum positive moment may be used, and the
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FIGURE 6.9
Time variation of £ for long-
term deflections.
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midspan deflection may normally be used as an acceptable approximation of the
maximum deflection. Coefficients for deflection calculation such as derived by
Branson in Ref. 6.7 are helpful. For members where supports may be considered fully
fixed or hinged, handbook equations for deflections may be used.

Long-Term Deflection Multipliers

On the basis of empirical studies (Refs. 6.7, 6.9, and 6.11), ACI Code 9.5.2 specifies
that additional long-term deflections A, due to the combined effects of creep and
shrinkage be calculated by multiplying the immediate deflection A, by the factor

___ &
1 + 50p'

Ap (6.11)
where p' = A]/bd and ¢ is a time-dependent coefficient that varies as shown in Fig. 6.9.
In Eq. (6.11), the quantity 1/(1 + 50p") is a reduction factor that is essentially a section
property, reflecting the beneficial effect of compression reinforcement A in reducing
long-term deflections, whereas £ is a material property depending on creep and shrink-
age characteristics. For simple and continuous spans, the value of p’ used in Eq. (6.11)
should be that at the midspan section, according to the ACI Code, or that at the support
for cantilevers. Equation (6.11) and the values of £ given by Fig. 6.9 apply to both
normalweight and lightweight concrete beams. The additional, time-dependent deflec-
tions are thus found using values of A, from Eq. (6.11) in Eq. (6.6).

Values of £ given in the ACI Code and Commentary are satisfactory for ordinary
beams and one-way slabs, but may result in underestimation of time-dependent deflec-
tions of two-way slabs, for which Branson has suggested a 5-year value of £ = 3.0
(Ref. 6.7).

Research by Paulson, Nilson, and Hover indicates that Eq. (6.11) does not
properly reflect the reduced creep that is characteristic of higher-strength con-
cretes (Ref. 6.13). As indicated in Table 2.2, the creep coefficient for high-strength
concrete may be as low as one-half the value for normal concrete. Clearly, the
long-term deflection of high-strength concrete beams under sustained load,
expressed as a ratio of immediate elastic deflection, correspondingly will be less.
This suggests a lower value of the material modifier ¢ in Eq. (6.11) and Fig. 6.9.
On the other hand, in high-strength concrete beams, the influence of compression
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TABLE 6.2
Maximum allowable computed deflections
Type of Member Deflection to Be Considered Deflection
Limitation
Flat roofs not supporting or attached Immediate deflection due to the 1
to nonstructural elements likely to live load L 180
be damaged by large deflections
Floors not supporting or attached to Immediate deflection due to the live /
nonstructural elements likely to be load L —
damaged by large deflections 360
Roof or floor construction supporting That part of the total deflection
or attached to nonstructural elements occurring after attachment of the 1
likely to be damaged by large nonstructural elements (sum of 480
deflections the long-time deflection due to all
- - sustained loads and the immediate
Roof or floor construction supporting deflection due to any additional live !
or attached to nonstructural elements load) —
not likely to be damaged by large 240
deflections

steel in reducing creep deflections is less pronounced, requiring an adjustment in
the section modifier 1/(1 + 50p’) in that equation.

Based on long-term tests involving six experimental programs, the following
modified form of Eq. (6.11) is recommended (Ref. 6.13):

Ay = 1_;%5;7 (6.12)
in which
p = 1.4 — £1/10,000
04=p=<10 6.13)

The proposed equation gives results identical to Eq. (6.11) for concrete strengths
of 4000 psi and below, and much improved predictions for concrete strengths between
4000 and 12,000 psi.

Permissible Deflections

To ensure satisfactory performance in service, ACI Code 9.5.2 imposes certain limits
on deflections calculated according to the procedures just described. These limits are
given in Table 6.2. Limits depend on whether or not the member supports or is
attached to other nonstructural elements, and whether or not those nonstructural
elements are likely to be damaged by large deflections. When long-term deflections
are computed, that part of the deflection that occurs before attachment of the
nonstructural elements may be deducted; information from Fig. 6.9 is useful for this
purpose. The last two limits of Table 6.2 may be exceeded under certain conditions,
according to the ACI Code.



230 DESIGN OF CON

CRETE STRUCTURES Chapter 6

EXAMPLE 6.2

FIGURE 6.10

Continuous T beam for
deflection calculations in
Example 6.2. The uncracked
section is shown in (b), the
cracked transformed section
in the positive moment region
is shown in (d), and the
cracked transformed section
in the negative moment
region is shown in (e).
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Deflection calculation. The beam shown in Fig. 6.10 is a part of the floor system of an apart-
ment house and is designed to carry calculated dead load w, of 1.65 kips/ft and a service live
load w, of 3.3 kips/ft. Of the total live load, 20 percent is sustained in nature, while 80 percent
will be applied only intermittently over the life of the structure. Under full dead and live load,
the moment diagram is as shown in Fig. 6.10c. The beam will support nonstructural partitions
that would be damaged if large deflections were to occur. They will be installed shortly after
construction shoring is removed and dead loads take effect, but before significant creep occurs.
Calculate that part of the total deflection that would adversely affect the partitions, i.e., the sum
of long-time deflection due to dead and partial live load plus the immediate deflection due to
the nonsustained part of the live load. Material strengths are f; = 4000 psi and f, = 60 ksi.

SoLuTIoN. For the specified materials, E, = 57,000Vv/4000 = 3.60 X 10 psi, and with E, =
29 X 106 psi, the modular ratio n = 8. The modulus of rupture . = 7.5 X 1.0V4000 = 474 psi.
The effective moment of inertia will be calculated for the moment diagram shown in Fig. 6.10¢
corresponding to the full service load, on the basis that the extent of cracking will be governed
by the full service load, even though that load is intermittent. In the positive-moment region, the
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centroidal axis of the uncracked T section of Fig. 6.10b is found by taking moments about the
top surface, to be at 7.66 in. depth, and I, = 33,160 in*. By similar means, the centroidal axis
of the cracked transformed T section shown in Fig. 6.10d is located 3.73 in. below the top of
the slab and I, = 10,860 in®. The cracking moment is then found by means of Eq. (6.7):

33,160 % 1
16.84 12,000

M, = 474 % = 78 ft-kips

With M, /M, = 78/162 = 0.481, the effective moment of inertia in the positive bending region
is found from Eq. (6.8) to be

I, = 0.481° X 33,160 + (1 — 0.481%) X 10,860 = 13,340 in*

In the negative bending region, the gross moment of inertia will be based on the rectangular
section shown in Fig. 6.10b. For this area, the centroid is 12.25 in. from the top surface and
I, = 17,200 in?. For the cracked transformed section shown in Fig. 6.10e, the centroidal
axis is found, taking moments about the bottom surface, to be 8.65 in. from that level, and
I, = 11,366 in®. Then

17,200 1

X
12.25 12,000

M, = 474 X = 55.5 ft-kips

giving M, /M, = 55.5/225 = 0.247. Thus, for the negative-moment regions,
L= 0247 X 17,200 + (1 — 0.247%) X 11,366 = 11,450 in®

The average value of 1, to be used in calculation of deflection is
1
Logy = 5(13,340 + 11,450) = 12,395 in*

It is next necessary to find the sustained-load deflection multiplier given by Eq. (6.11) and
Fig. 6.9. For the positive bending zone, with no compression reinforcement, Aapos = 2.00.

For convenient reference, the deflection of the member under full dead plus live load of
4.95 kips/ft, corresponding to the moment diagram of Fig. 6.10¢, will be found. Making use
of the moment-area principles,

7620

1 2 5
A = — {(— X 387 X 12.5 X 3 X 12.5) - (225 X 125 X 6.25) | = 7l

EI{\3

_ 7620 X 1728
3600 X 12,395

Using this figure as a basis, the time-dependent portion of dead load deflection (the only part
of the total that would affect the partitions) is

=0295in.

1.65
=0. X —— X 2.00 = 0.197 in.
A, =0.295 205 2.00 = 0.197 in

while the sum of the immediate and time-dependent deflection due to the sustained portion of
the live load is

33
Aoz = 0295 X 2= X 020 X 3.00 = 0.118 .

and the instantaneous deflection due to application of the short-term portion of the live load is

33
=0. X — X 0.80 = 0. in.
Aggor = 0.295 205 0.80 = 0.157 in

Thus the total deflection that would adversely affect the partitions, from the time they are
installed until all long-time and subsequent instantaneous deflections have occurred, is

A =0.197 + 0.118 + 0.157 = 0472 in.
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For comparison, as shown in Table 6.2, the limitation imposed by the ACI Code in such
circumstances is //480 = 26 X 12/480 = 0.650 in., indicating that the stiffness of the proposed
member is sufficient.

Note that relatively little error would have been introduced in the above solution if the
cracked-section moment of inertia had been used for both positive and negative sections rather
than 7,. Significant savings in computational effort would have resulted. If M, /M, is less than
1, use of I, would almost always be acceptable. Note further that computation of the moment
of inertia forboth uncracked and cracked sections is greatly facilitated by design aids like those
included in Ref. 6.14.

6.8

DEFLECTIONS DUE TO SHRINKAGE AND TEMPERATURE
CHANGES

Concrete shrinkage will produce compressive stress in the longitudinal reinforcement
in beams and slabs and equilibrating tensile stress in the concrete. If, as usual, the rein-
forcement is not symmetrically placed with respect to the concrete centroid, then
shrinkage will produce curvature and corresponding deflection. The deflections will
be in the same direction as those produced by the loads, if the reinforcement is mainly
on the side of the member subject to flexural tension.

Shrinkage deflection is not usually calculated separately, but is combined with
creep deflection, according to ACI Code procedures (see Section 6.7d). However,
there are circumstances where a separate and more accurate estimation of shrinkage
deflection may be necessary, particularly for thin, lightly loaded slabs. Compression
steel, while it has only a small effect in reducing immediate elastic deflections, con-
tributes significantly in reducing deflections due to shrinkage (as well as creep), and
is sometimes added for this reason.

Curvatures due to shrinkage of concrete in an unsymmetrically reinforced concrete
member can be found by the fictitious tensile force method (Ref. 6.7). Figure 6.11a
shows the member cross section, with compression steel area A and tensile steel area
A,, at depths d' and d, respectively, from the top surface. In Fig. 6.115, the concrete
and steel are imagined to be temporarily separated, so that the concrete can assume its
free shrinkage strain €. Then a fictitious compressive force T, = (A, + A})eyE; is
applied to the steel, at the centroid of all the bars, a distance e below the concrete
centroid, such that the steel shortening will exactly equal the free shrinkage strain
of the concrete. The equilibrating tension force T, is then applied to the recombined
section, as in Fig. 6.11¢. This produces a moment 7,e, and the corresponding shrink-
age curvature is

_ Tye

sh — El
The effects of concrete cracking and creep complicate the analysis, but comparisons
with experimental data (Ref. 6.7) indicate that good results can be obtained using e,

and I, for the uncracked gross concrete section and by using a reduced modulus E,
equal to 3E, to account for creep. Thus

ngheg

El,

b = (6.14)

where E, is the usual value of concrete modulus given by Eq. (2.3).



FIGURE 6.11
Shrinkage curvature of a
reinforced concrete beam
or slab: (a) cross section;
(b) free shrinkage strain;
(c) shrinkage curvature.
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Empirical methods are also used, in place of the fictitious tensile force method,
to calculate shrinkage curvatures. These methods are based on the simple but
reasonable proposition that the shrinkage curvature is a direct function of the free
shrinkage and steel percentage, and an inverse function of the section depth (Ref. 6.7).
Branson suggests that for steel percentage p — p’ =< 3 percent (where p = 1004, /bd
and p’ = 100A,/bd),

€ — '\ 1/2
ba=07% (p - (2L 6.150)
h p
and for p — p’ > 3 percent,
€sn
b =" (6.15b)

With shrinkage curvature calculated by either method, the corresponding
member deflection can be determined by any convenient means such as the moment-
area or conjugate-beam method. If steel percentages and eccentricities are constant
along the span, the deflection €, resulting from the shrinkage curvature can be deter-
mined from

Ash = I<shd)shl2 (616)

where K, is a coefficient equal to 0.500 for cantilevers, 0.125 for simple spans, 0.065

for interior spans of continuous beams, and 0.090 for end spans of continuous beams
(Ref. 6.7).

EXAMPLE 6.3

Shrinkage deflection. Calculate the midspan deflection of a simply supported beam of 20 ft
span due to shrinkage of the concrete for which €, = 780 X 107°. With reference to Fig. 6.114,
b=10in,d = 17.5in., h = 20 in., A, = 3.00 in? and A} = 0. The elastic moduli are E, =
3.6 X 10° psiand E, = 29 X 109 psi.
SOLUTION. By the fictitious tensile force method,

T;, = 3.00 X 780 X 107 X 29 X 10° = 67,900 Ib
and from Eq. (6.14) with I, = 6670,

2% 67,900 X 7.5

= = 424X 107
3.6 X 10° X 6670

¢xh

while from Eq. (6.16) with K;, = 0.125 for the simple span,
Ay = 0.125 X 42.4 X 1075 X 2407 = 0.305 in.
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Alternatively, by Branson’s approximate Eq. (6.15a) with p = 100 X 3/175 = 1.7 percent
and p’' = 0,

_ 0.7 X780 X 107°

” (1.7 =325 % 107°

¢sh
compared with 42.4 X 1075 obtained by the equivalent tensile force method. Considering the
uncertainties such as the effects of cracking and creep, the approximate approach can usuaily
be considered satisfactory.

6.9

!
e
|

Unit length ~

FIGURE 6.12
Unit curvature resulting from
bending of beam section.

Deflections will be produced as a result of differential temperatures varying
from top to bottom of a member also. Such variation will result in a strain variation
with member depth that may usually be assumed to be linear. For such cases, the
deflection due to differential temperature can be calculated using Eq. (6.16) in which
¢, is replaced by a AT/h, where the thermal coefficient a for concrete may be taken
as 5.5 X 107 per °F and AT is the temperature differential in degrees Fahrenheit from
one side to the other. The presence of the reinforcement has little influence on curva-
tures and deflections resulting from differential temperatures, because the thermal
coefficient for the steel (6.5 X 1079) is very close to that for concrete.

MOMENT VS. CURVATURE FOR REINFORCED CONCRETE
SECTIONS

Although it is not needed explicitly in ordinary design and is not a part of ACI Code
procedures, the relation between moment applied to a given beam section and the
resulting curvature, through the full range of loading to failure, is important in several
contexts. It is basic to the study of member ductility, understanding the development
of plastic hinges, and accounting for the redistribution of elastic moments that occurs
in most reinforced concrete structures before collapse (see Section 12.9).

It will be recalled, with reference to Fig. 6.12, that curvature is defined as the
angle change per unit length at any given location along the axis of a member
subjected to bending loads:

1
= . 6.17)

where ¢ = unit curvature and r = radius of curvature. With the stress-strain relationships
for steel and concrete, represented in idealized form in Fig. 6.13a and b, respectively,
and the usual assumptions regarding perfect bond and plane sections, it is possible to
calculate the relation between moment and curvature for a typical underreinforced
concrete beam section, subject to flexural cracking, as follows.

Figure 6.14a shows the transformed cross section of a rectangular, tensile-
reinforced beam in the uncracked elastic stage of loading, with steel represented by
the equivalent concrete area nA,, i.e., with area (n — 1)A, added outside of the rectan-
gular concrete section.t The neutral axis, a distance ¢, below the top surface of the
beam, is easily found (see Section 3.3a). In the limiting case, the concrete stress at the
tension face is just equal to the modulus of rupture f, and the strain is €, = f,/E..

 Note that compression reinforcement, or multiple layers of tension reinforcement, can easily be included in the analysis with no essential

complication.



FIGURE 6.13
Idealized stress-strain curves:
(a) steel; (b) concrete.

FIGURE 6.14

Uncracked beam in the
elastic range of loading:

(a) transformed cross section;
(b) strains; (c) stresses and
forces.

(n = 1)Aq
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The steel is well below yield at this stage, which can be confirmed by computing, from
the strain diagram, the steel strain €; = €, where €, is the concrete strain at the level
of the steel. It is easily confirmed, also, that the maximum concrete compressive stress
will be well below the proportional limit. The curvature is seen, in Fig. 6.14b, to be

S _& 6.18
‘l’cr - ¢ - c, ( - )
and the corresponding moment is
rLu
M, = frhu (6.19)

4}
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FIGURE 6.15

Cracked beam in the elastic
range of material response:
(a) transformed cross section;
(b) strains; (c) stresses and
forces.
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where [, is the moment of inertia of the uncracked transformed section. Equations (6.18)
and (6.19) provide the information needed to plot point 1 of the moment-curvature
graph of Fig. 6.17a.

When tensile cracking occurs at the section, the stiffness is immediately reduced,
and curvature increases to point 2 in Fig. 6.17 with no increase in moment. The analy-
sis now is based on the cracked transformed section of Fig. 6.15a, with steel repre-
sented by the transformed area nA; and tension concrete deleted. The cracked, elastic
neutral axis distance ¢, = kd is easily found by the usual methods (see Section 3.3b).
In the limiting case, the concrete strain just reaches the proportional limit, as shown
in Fig. 6.15b, and typically the steel is still below the yield strain. The curvature is
easily computed by

=8 _ S 6.20
'1[/el - Cl - c ( . )
and the corresponding moment is
1
M, = Efe,kjbd2 6.21)

as was derived in Section 3.3b. This provides point 3 in Fig. 6.17. The curvature at
point 2 can now be found from the ratio M_,/M,,.

Next, the cracked, inelastic stage of loading is shown in Fig. 6.16. Here the
concrete is well into the inelastic range, although the steel has not yet yielded. The
neutral axis depth c, is less than the elastic kd and is changing with increasing load as
the shape of the concrete stress distribution changes and the steel stress changes.

It is now convenient to adopt a numerical representation of the concrete com-
pressive stress distribution, to find both the total concrete compressive force C and the
location of its centroid, for any arbitrarily selected value of maximum concrete strain
€, in this range. The compressive strain diagram is divided into an arbitrary number of
steps (e.g., four, in Fig. 6.16b), and the corresponding compressive stresses for each
strain are read from the stress-strain curve of Fig. 6.13b. The stepwise representation
of the actual continuous stress block is integrated numerically to find C, and its point
of application is located, taking moments of the concrete forces about the top of the
section. The basic equilibrium requirement C = T then can be used to find the correct
location of the neutral axis, for the particular compressive strain selected, following an
iterative procedure.

The entire process can be summarized as follows:

1. Select any top face concrete strain €, in the inelastic range, i.e., between €, and €,,.
2. Assume the neutral axis depth, a distance ¢, below the top face.
3. From the strain diagram geometry, determine €, = €_,.



FIGURE 6.16

Cracked beam with concrete
in the inelastic range of
loading: (a) cross section;
(b) strains; (c) stresses and
forces.

FIGURE 6.17
Moment-curvature relation
for tensile-reinforced beam.
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4. Compute f, = €, E, < f and T = A f,.

S. Determine C by integrating numerically under the concrete stress distribution
curve,

6. Check to see if C = T. If not, the neutral axis must be adjusted upward or
downward, for the particular concrete strain that was selected in step 1, until equi-
librium is satisfied. This determines the correct value of c,.

Curvature can then be found from

€

l/’inel = 2‘- (622)
1

The internal lever arm z from the centroid of the concrete stress distribution to the ten-

sile resultant, Fig. 6.16c¢, is calculated, after which

M,,=Cz=Tz (6.23)

The sequence of steps 1 through 6 is then repeated for newly selected values of

concrete strain €;. The end result will be a series of points, such as 4, 5, 6, and 7 in

Fig. 6.17. The limit of the moment-curvature plot is reached when the concrete top

face strain equals €, corresponding to point 7. The steel would be well past the yield
strain at this loading, and at the yield stress.

Eclut Ecly
/ / 7
Myl g S — Failure
/ 4 / — Steel yielding
j -
s /
§ Ma |- | 3§ —— Proportional limit
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= //2
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Mer |- —— Cracking
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It is important to be aware of the difference between a moment-unit curvature
plot, such as Fig. 6.17, and a moment-rotation diagram for the hinging region of a
reinforced concrete beam. The hinging region normally includes a number of discrete
cracks, but between those cracks, the uncracked concrete reduces the steel strain, leading
to what is termed the tension stiffening effect. The result is that the total rotation at the
hinge is much less than would be calculated by multiplying the curvature per unit
length at the cracked section by the observed or assumed length of the hinging region.
Furthermore, the sharp increase in unit curvature shown in Fig. 6.17 at cracking would
not be seen on the moment-rotation plot, only a small, but progressive, reduction of
the slope of the diagram.
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PROBLEMS

6.1. A rectangular beam of width b = 15 in., effective depth d = 20.5 in., and total
depth 2 = 23 in. spans 18.5 ft between simple supports. It will carry a com-
puted dead load of 1.08 kips/ft including self-weight, plus a service live load
of 2.29 kips/ft. Reinforcement consists of four evenly spaced No. 7 (No. 22) bars
in one row. The clear cover on the sides is 2 in. Material strengths are f, =
60,000 psi and f, = 4000 psi.

(a) Compute the stress in the steel at full service load, and using the Gergely-
Lutz equation, estimate the maximum crack width.
(b) Confirm the suitability of the proposed design based on Eq. (6.3).

6.2.  To save steel-handling costs, an alternative design is proposed for the beam in
Problem 6.1, using two No. 9 (No. 29) Grade 75 bars to provide approxi-
mately the same steel strength as the originally proposed four No. 7 (No. 22)



6.3.

64.
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Grade 60 bars. Check to determine if the redesigned beam is satisfactory with

respect to cracking according to the ACI Code. What modification could you

suggest that would minimize the number of bars to reduce cost, yet satisfy

requirements of crack control?

For the beam in Problem 6.1:

(@) Calculate the increment of deflection resulting from the first application of
the short-term live load.

(b) Find the creep portion of the sustained load deflection plus the immediate
deflection due to live load.

(c) Compare your results with the limitations imposed by the ACI Code, as

summarized in Table 6.2.

Assume that the beam is a part of a floor system and supports cinder block
partitions susceptible to cracking if deflections are excessive.

A beam having b = 12 in.,d = 21.5in., and & = 24 in. is reinforced with three
No. 11 (No. 36) bars. Material strengths are f, = 60,000 psi and f, = 4000 psi.
It is used on a 28 ft simple span to carry a total service load of 2430 1b/ft. For
this member, the sustained loads include self-weight of the beam plus addi-
tional superimposed dead load of 510 Ib/ft, plus 400 1b/ft representing that part
of the live load that acts more or less continuously, such as furniture, equip-
ment, and time-average occupancy load. The remaining 1220 Ib/ft live load
consists of short-duration loads, such as the brief peak load in the corridors of
an office building at the end of a workday.

(@) Find the increment of deflection under sustained loads due to creep.

(b) Find the additional deflection increment due to the intermittent part of the

live load.

In your calculations, you may assume that the peak load is applied almost
immediately after the building is placed in service, then reapplied intermit-
tently. Compare with ACI Code limits from Table 6.2. Assume that, for this
long-span floor beam, construction details are provided that will avoid damage
to supported elements due to deflections. If ACI Code limitations are not met,
what changes would you recommend to improve the design?

A reinforced concrete beam is continuous over two equal 22 ft spans, simply
supported at the two exterior supports, and fully continuous at the interior
support. Concrete cross-sectional dimensions are b = 10 in., 4 = 22 in., and
d = 19.5 in. for both positive and negative bending regions. Positive rein-
forcement in each span consists of two No. 9 (No. 29) bars, and negative
reinforcement at the interior support is made up of three No. 10 (No. 32)
bars. No compression steel is used. Material strengths are S, = 60,000 psi
and f! = 5000 psi. The beam will carry a service live load, applied early in
the life of the member, of 1800 Ib/ft distributed uniformly over both spans;
20 percent of this load will be sustained more or less permanently, while the
rest is intermittent. The total service dead load is 1000 1b/ft including self-
weight.
(a) Find the immediate deflection when shores are removed and the full dead
load is applied.
(b) Find the long-term deflection under sustained load.
(¢) Find the increment of deflection when the short-term part of the live load
is applied.

Compare with ACI Code deflection limits; piping and brittle conduits are
carried that would be damaged by large deflections. Note that midspan deflec-
tion may be used as a close approximation of maximum deflection.
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FIGURE Pe.7

6.6.

6.7.

3 No. 10 (No. 32)

Recalculate the deflections of Problem 6.5 based on the assumption that
20 percent of the live load represents the normal service condition of loading
and is sustained more or less continuously, while the remaining 80 percent is
a short-term peak loading that would probably not be applied until most creep
deflections have occurred. Compare with your earlier resuits.

The tensile-reinforced rectangular beam shown in Fig. P6.7 is made using steel
with f, = 60,000 psi and E = 29,000,000 psi. A perfectly plastic response
after yielding can be assumed. The concrete has a stress-strain curve in com-
pression that may be approximated by the parabola f, = f/[2€ /e, — (€,./€,)*],
where f, and €, are the stress and strain in the concrete. The variable € is
the strain at the peak stress = 0.002, and f/ = 4000 psi. The ultimate strain in
the concrete is 0.003. The concrete responds elastically in tension up to the
modulus of rupture f, = 475 psi. Based on this information, plot a curve
relating applied moment to unit curvature at a section subjected to flexural
cracking. Label points corresponding to first cracking, first yielding of steel,
and peak moment.

(12—




7.1

Analysis and Design

for Torsion

INTRODUCTION

Reinforced concrete members are commonly subjected to bending moments, to
transverse shears associated with those bending moments, and, in the case of columns,
to axial forces often combined with bending and shear. In addition, torsional forces may
act, tending to twist a member about its longitudinal axis. Such torsional forces seldom
act alone and are almost always concurrent with bending moment and transverse shear,
and sometimes with axial force as well.

For many years, torsion was regarded as a secondary effect and was not consid-
ered explicitly in design, its influence being absorbed in the overall factor of safety of
rather conservatively designed structures. Current methods of analysis and design,
however, have resulted in less conservatism, leading to somewhat smaller members
that, in many cases, must be reinforced to increase torsional strength. In addition, there
is increasing use of structural members for which torsion is a central feature of behav-
ior; examples include curved bridge girders, eccentrically loaded box beams, and
helical stairway slabs. The design procedures in the ACI Code were first proposed in
Switzerland (Refs. 7.1 and 7.2) and are also included in the European and Canadian
model codes (Refs. 7.3 and 7.4).

It is useful in considering torsion to distinguish between primary and secondary
torsion in reinforced concrete structures. Primary torsion, sometimes called equilib-
rium torsion or statically determinate torsion, exists when the external load has no
alternative load path but must be supported by torsion. For such cases, the torsion
required to maintain static equilibrium can be uniquely determined. An example is the
cantilevered slab of Fig. 7.1a. Loads applied to the slab surface cause twisting
moments m, to act along the length of the supporting beam. These are equilibrated by
the resisting torque T provided at the columns. Without the torsional moments, the
structure will collapse.

In contrast to this condition, secondary torsion, also called compatibility torsion
or statically indeterminate torsion, arises from the requirements of continuity, i.e., com-
patibility of deformation between adjacent parts of a structure. For this case, the tor-
sional moments cannot be found based on static equilibrium alone. Disregard of
continuity in the design will often lead to extensive cracking, but generally will not
cause collapse. An internal readjustment of forces is usually possible and an alternative
equilibrium of forces found. An example of secondary torsion is found in the spandrel
or edge beam supporting a monolithic concrete slab, shown in Fig. 7.1b. If the spandrel
beam is torsionally stiff and suitably reinforced, and if the columns can provide the
necessary resisting tor